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Thin aerofoil theory is used to obtain, in integral form the
aerodynamic derivatives of an aerofoil oscillating in an infinite cascade.
The theory allows for arbitrary stagger angle and phase difference between
adjacent blades of the cascade, The expressions obtained reduce, for zero
stagger and for in-phase and antiphase oscillations, to known results,
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: 8 Introduction

The flexure-torsion flutter of acerofoils in unstaggercd cascade hag
been the subject of theoretical studies by Lilley (1) and Mendelson and
Carroll (2), These authors use thin aercfoil theory to derive the 1ift and
moment equations for an acrofoil mowving in phase or in antiphase with its
neighbour, Lilley includes structural stiffness terms and deter:ines the
conditions or flutter to occur., Sisto (3) finds a general expression for
the vortioity at any point on the oscillating aerofoil in the form of an
integral equation which is solved approximately for the case of zero stogger
angle, The numerical results for the derivatives agree with the exuct
calculations of Mendelson and Carroll and the approximate values found by
Lilley.

Legendre (4), using a conformel transformation method, has considered
the general case of flutter in a cascade with stagger. This is an externsion
of the work of Timmen (5) for zero stagger. Expressions are given for
the wvelocity potential and circulation from which the pressurc distributicn
can be calculated, Eichelbrenner (6) gives details of calculations based
on Legendre!s method for one gap/chord ratio and one stagger angle, He
simplifies Legendre's integral expressions by the extended use of theta and
zeta functions.

The present paper uses thin aerofcil theory to extend the work of
Mendelson and Carroll to include arbitrary stagger angle and phase difference
between adjacent blades., An integral equation relating local velocity and
vorticity is solved and the aerodynomic derivatives are found in integral
form,

2. Zho Tift and Moment Equations
Consider an infinite cascade of oscillating serofoils of wndt goigle

chord at zero incidence, set at a stogger angle £ and having o gup s (Mg, 1),
The uniform velocity far upstream of the cascade is U, We shall assume

that the oscillations are of small amplitude so that welocity perturbations
are small compzred with the free stream veloeity,

The cquations of motion for the perturbed motion reduce to

du u _ 1 2p
52 *t Y% = -~ 7 & (1)
e oy _ 1 2
o - Uax = =~ 7 Oy (2)

Defining a perturbation velocity potential ¢ such that

u=%ﬁ; V=%§ (3)

w



equations (1) ond (2) becore respectively
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Adding (4) and (5) we have, if the operator d = -9-05{ dx + 5*3; dy,

. - _, al Q¢ 3

ap = -p d‘_at + Uax] (6)

The difference in velocity above (uu) and below (ul) an aerofoil is

e (), - (8

and, from thin ecrofoil theory, this velocity difference can be reprecsented
by a distribution of vorticity along the chordline of the acrofoil and its
wake,

W, = U =Y (x,%) (8)
Thus substituting (7) and (8) in (6)

’ % X N
Ap = P'Ll - Pl = =f (UY +é‘_E f y(:c,'b):.bc) (9)
-1

and since there can be no pressure differcnce across the wale
~ ; 41
a [* o, |
{ ~r -t 4 = Ix 4 cem
U yw\}*: ) 3"0! ¥ (X!t) L k g

;ow J
1 -1

y(x,t) ax =0 (10)

where Yw( x,t) is the vorticity in the vmake.

If T(t) is the total circulation about the cerofoil
1
D) = |yl

and (10) becomes (%

)
U yw(x,‘t) + 7% 1 yW(x,-t) dx + == =0 (141)



If the oscillation is simple harmonic all quentities have a time veriation
iwt . .
and we con cxpress our equations in terms of the

=

proportional to e

» ig the senmi-chord and is

We
reduced frequency k defined by k = *5% (vhere 5

teken as wnity). BEqueotion (11) becones
x
yw(x) + ik f yﬁf(x) ax + ik =0 (12)
1

where yvr( ¥) and T are now the amplitudes of the weoke vorticity and circulation
respectively end are thug complex quontities indepencdent of time,

Equation (12) can be solved for the vorticity in the wole in terms
of the circulation round the wing in the form

v (x) = -kl M1 (13)

and equation (9) becomes

s s 3 -
Ap = --DU‘V(}:) + ik f y (x) d_x} (14)
- . -
Integrating (14), the 1ift on the nerofoil is
1 1 x
= o | T :
L = =pU Joy(x) ax + ik | ¥{&} A& exl (15)
= - -1 = -

and, if the moment is measured about the elastic axis x = a,

1
[

1 .
M = =pU [ | (x-2) ¥ (x)ax + ik [(x—a) fv(t‘é)ag de (16)
- 4 - o

X



. The wvorticity distribution in the cascade
3 e e AL WL - T T TR ECSETER O OWEY R B S

For the infinite cascade the induced corplex velocity
dgn = &un - id Y. at any point x on the reference blade "
(zeroth blade) due to the vorticity yn(E,) at the point z = E+ins g
on the nth aerofoil and its wake is given by

e iyn(ﬁ)dé
S ¥ __meu%i

g,
Tge

or writing 7B S (wi‘bh-% =1) where A is complex.
iIt is real for £ = 0 and imaginary for g = z

2 .
A yn(«i) ag

27* [n il e 1

(17)

1l

a g, (%)

The complex velocity induced by the complete cascade is

A o vy (2)dg
g(x = @ fm . vy (18)
~ 3 gy T B -3,,"?- E o)
If the phase difference between two adjacent blades is 6 = 27m

(0 € m< 1) then the phase difference fSn between the nJGh blade and the
reference (n=0) blade is '

§ = 27mn
n
St 24immm
y(8) = v (E)ellm (19)
where yo(z‘-;) = y(g) is the vorticity distribution on the

reference blade,
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COEFRIGENDUM

Professor Sisto has pointed out that equation (19)

-
y, (&) =y (€)™ "

is valid only if m = 0 or %, and that arbitrary phase

difference can be included only if different complex

operators are used for harmonic time dependence and

for the complex velocities.

The appropriate sentences of the summary,

introduction and conclusion should be amended to:
"the theory allows for arbitrary stagger angle and

for phase differences of 0 and # between adjacent

blades"



Thus from (18) and (19)

© 2iummn
A
ox) = 3= f p AR ag (20)
!
o - ;—( %'x)
24i7mm . N1 =2m) ( £-x)
But f S - AZo o Ref.
. o0 _-_( ) sinh 7\115,— ) (%e£.7)
and thas (20) becomes
; = 1-2m) (&)
B O B 0 P
gx) = & f sich W)~ & L
We con now use (13) to express q(x) in terms of the local vorticity
and total circulation on the aerofoil, We obtain
er o (1) N1-m)(Ex)
%(x) = 2w f T sinn N E-x) - &
1
1 M1 =2m)( E-x)
. =
. [ 53 K S———- (22)
i sinh A (E-x)

=1

as the integral equation which must be solved for the local vorticity y(x)
on the aerofoil in terms of the perturbation velocity g(x).

If we put
tonk Mx = /e
tank ?\E, = T}/E (23)
tank A = 1/e

where (4 T, € are complex,

then (22) becones

. 'n'l :
gu) = =™ %—-—‘%m[ Le=n) k an
Sl ="

c, Cot ).n+ /27\

. m + =71
=i Let) f {plezm) _ . 41 ()

(=™ | (esm)™ =

1
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where the contour c, is the path of n = %:f-ﬂk?xf in the renge «1 < & € 1
and G2 is the path of 7 in the tange 1 < £ € » , Fig. 2 shows the contour
C, for the case A = e:'j'_/}"' :

Equation (24) can be simplified by writing

ik
i - 4o
m~1 ik sl -
Q(,u) = q,(.U) . LE‘.J_"_E.)_ . ..}E_.Egz_ r (e} - an
& (e 2 u)m 2ar f ik I

cz (¢+T?)m+ 2k

and the integral equation reduces to

i (M (e =M™ an
Q(,U) = l;é_j;?? f zejn)m-'](e:”?f) H=T (25)

G

N = € corresponds to the point & = « and hence does not lie on the

contour 01 o Thus the kernel of equation 25

K(n) = (") (e=m” (26)

2 e4m)™ (&%)

has no singularities on 01 o

Thus we have to invert the equation

W =55 [ = & (27)
Ci

which is a special case of the general Cauchy equation

i
C

b ) 4ok ] Lol o = 2(4) (28)

with 2 = 0 and b = 1 and C an unclosed continuous contour,

The solution of this equation is (Ref. 8)

¢(t) - (a_z _'bz )771 kt -3 s-%

Y6 wii B PP '
£f(t) - L k. f(a.é’f £(s) ?;»1.
a® - b* J & .

o

sesnw  (99)
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; - 1 a + b
i "'}’; TR, | i——— -
Wi P ST in S
end « ,0 the first and last points of the contour C.

In the special case conaidered here

o= o ma) = 2
a:n€m1=;1
and f Wi T 1

thus the solution of equation (27) is
1 E o, &
Ll il S8 0
Kn) = T (n-’l) _/(/J-ﬁ"]) Q(‘u).ﬂ -7 (30)
01

or, substituting back the actual vorticity and velocity distributions

A ﬁ_ii.tl?_lm"1(T}_1-> y [o(u) (e)™

EZ -J?z Ti (e_n)m E'HJ)

i o m--‘?-w%‘i =
kI j Le-) An,. } <£:_:1> a (31)

- . g =n 1] L7
2 g, (EH-ng_l’!‘k«irn_k/z}~ 1
Nowr ,j
I = j y(g)ag
-1

thus, using the substitution of eguation (23), the circulation on the reference
blade can be expressed as

r:-%[ A0 g (32)

2 -

J
g =1

Thus, from (31), putting p = m-»-ik/zl



o &
2€ (ern) Vo d ST ( );‘e_uu 1 etk
r =X m T T Tewg)™ or °
1 1
yp-1 3
e ¥ an, (_y‘_- 1) au_ -
C. (e+n )P =7 TR LmT]

which cen be manipuiated to give the circulation in terms of the velocity
over the blade and the cascade geometry in the form

(o™ g [ [y Leat™ (22 20 o

= o (E-W)m - Ci~ (e+4)
) z = " (33)
142 L&zz“” tanV® [ fua¥ [ Lo S 1y o,
c, ] . .
me- &
If now we write F1( n = mm 4 "
(e=7) 1 -1
z
e
£l 4 -1 1
F ” LS S S ]
Lusn (ean)™ < o 1) = (34)
JOR [ AN P e oy T
3 el e
-. G (€+n )P =0,
then (33) becomes
r .
2¢€ f
r = e S R ffiful E;(u,n) ap an
C C
1 1 .
(35)

Ekeik
it n 7
2y f Fy( ) PJ(T?) an

Cy

and substituting into (31) we hove the vorticity distribution on the
reference blade given in terms of the velocity distribution g (H) by
4 (”)_JL o) (u,n)auan

1 =y

- ke
[ u) F(u,m) === F(n e
o~ 2 ﬁz'h 3 eke & .
-0 1+ ey B (n)rs; (n) an

i . 2 .
nz e 4 T Pf(n)

g~ -
1
f

(36)

aveo00



Tne vertical displacement of a point x on the aserofoil at time
t is

y (x,8) = h+ (x=2)0 (37)

where h and © are functions of t and a is the position of the elastic axis
measured from mid chord.

We assume that the induced perturbation velocity in the stream
direcction is small enough, compared with the free stream veloeity, to be
neglected, The velocity normal to the surface must be zero (relative to
the surface) at all points of the surface,

Thus
u(x,t) = U
N i (38)
Wx,t) = U ax * Bt
- 0 o L S
or us,t) = B+ U6 =ab + o log o=
T A 6 e+U
and o(uy 8) = U -4 [h +T0 ~ 204+ 7 log =€-:_-E] (39)

Now g, h and © all have a time variation proportional to eiwt. Therefore,
considering the amplitude of the timec dependent terms, we have

) = u@-e[a+§-%1og st N (10)

and substituting for q(,u) in (36) from (40) we obtain the vorticity
distribution on the reference blade in terms of the blode motion in the form

L, .-:%-“’ F, (T?)"(h -0 a4 3/x]) ,({Fz(ﬂ,ﬂ)dﬂ

2
€ - n . j-l{ 5 i B B
¢ Sl g, _keel g (b -6 2 + “/k] )G, +3C
*E.T[ Fa(u’n) log €1l du Yy I‘, (n) [___..l__. " Uy S (41)
G-| 1+ £ G

Ty 3



r
where G = [ ¥ () j E, (u,n) dudn
¢, C,
| 2
¢ = .4 F, (n) E, (4,m) log T aman (42)
o c

1 i

g = f E;(n)Fj(n)&n

C
1

b The _;'-_;-.-pflynamic Derl'_lj"g}jgﬁ

5.1. The 1ift derivatives

From 71i5) the 1lift per unit span is given by

-f y(x)ax +i}:f FY(g)dgdx l

i |

L = =pU

or using the transformotions defined in (23)

. 2 E
T e -w[% —*‘2-/-—@—2 an +1k: f; { "f-gﬁz-a&dn]
e 2\ e* e 1]
S , ()

where C:(n) is the part of the contour C between -1 and 7

From (41), using the G functions defined Dby (42)

E_*Ll _ 2u [[h_e(a-ivl/’k)JG *..a.,.@r _E-ﬁi(} h—&l-ﬁ/k)Gi %G}]

C E - n 'I.-" 2}. wz-h e e fonc e
1 1 +-e~=k G
’ITZ 3
I E RN E ] (Llli-)
Similorly
g . ik r(h--aa "
f—”—-(éldﬁ =%-[h-e(a+l/k)} G’+%G’ S ol m12*1
re-— TN 35_1 eke™ G-
- qrz'h -

cowan  (43)




o MR .
where G-:(T?) = j 31(q) f F_(#,E)auds
!
c,(n) c,
c/(n) = f F, ) f 7, (1,E) auds (16)
'
51(71) c,
G;(n) = E &) F)(‘"‘;) ag
cr(m
and furthermore
5 ~ i 0
. XE). afan w & [h -oa + /) H + 535 H
62- n2 62" g2 o 1 2 2
! -1 i - .EI:-—- _Q_, 3
C, ci(n) realk (h-6a - =) G+ 253 G ) _
L Hy —= i J ("-I-f)
TN 3
4 4 e i1
7N a
/" G:(n) G'(n) r;,; n
where H1 = J --2'““—2 an 3 H=2 = f . adn ;h3 o= f ari—— (24.8)
g, e g EWA g v =¥
1 1 1
Stbstituting from (44) and (47) into (43)
i .-
5 -~ 1 :
L. . =ﬂzwﬁ (h_ea_? G +%I'§=EH L Xee C}.lmz\;.u )
—Trow? b 1 i cke a o
: ' S
: i, ik G+ ike H .
" pg_h [ Gz * .;Le Ha - lfg Gz( S 3)1
L 1 &l /) (49)
i T

The two dimensional 1if't derivatives zre foumd by collecting the coefficients
of = - s -};"; end 1 in (49). We write z for h to conform with the usual

I@ A
notation for such derivatives,

Thus, remembering that the chord length is 2

1€
1, = Dpfpyz= 0 lg = L.om = A % (50)



i ke
2 ik G, + 50— H
Les = . /ll-p -_e""’ ! iH - E‘“‘:" G1G'4 where G‘4 e *l‘i_‘jc‘ué
Z X 1 s 1. £k
TEUAN s
W (51)

and :

! = ik G

e L 1€ 2€ ie <=2
1, = L =35 a1, = TgMU = 2= | 200 F (H - GG )-)
0 = Bopge =G Ty = WU =T { R R
i | iH Sk G .
Ty = L.. Ty = _-_ .—,....E. — 1 r— f‘:.{;_ — G‘
1e TP e | W 2ia H + ~ (226 - =%)e, J (52)
5.2, The moment derivetives
From (16) the moment is given by
1 L & %
M = .-DU[ f (x=2)V(x)dx + ik f (x—a)fy(i)di d.'xj
or, using the trensformations of (23)
2 2 [ log el o _ﬁ'
5 . ( ; Ty |
M = -pU) & f log £l —a\]m an + -=-;='-'/' g y@,) agan;
|_ A el Je%- " A e? n° el g% R
C c - G.f 3

1 1 1

(53)

Substituting for the vorticity from (44) and (45) and using the functions
I, L, L andJ,, d,, J defined by

€47
T = f F,(n) log == [ F,(H,n)dudn
c, &
1
[ . €+T €4l
I, = | F,(7) log == F_(#,N) log z=p auan (54)
¢ c

§ 1

3 il
T, = f I’1(n) F,(n) log = an

C‘I



() 1065
Jn = Bty e (T} u=1,2,> (55)
& €2 = 72
1
the moment equation (53) becomes
g ik 15
1 € 5] !
oo e (h -6a ""';L'c"' [I - oG + i(J -DH1)v-=“.;-G1G5J}
- rpu? Ak . _
sme | T oocst, % RTHE wal Ve B ]“‘I’f-é)
CHY g [ 2 Raler i 4 jJ“
whe re I molh 25T el |
el = 3 3 A - {*_ =
| ssl{eik (57)
1+ GE
N
Collecting the coefficients of -~ , %; 1 we obtain the moment derivotives
kZ

i€
-5 (L - o)

m, = L-’[E/Qnﬂz =0 , W o= Hé/LHDU
2 JE (58)
By =leeks ® T - (3, = o) ==~GG l
and Y
mo= Y = -Fon (L - oG)
m, = M., = L(I ¢, )= s (1, -—G)J-—-,,E-[i(..?-al
0 6/80U 1.1.172?%. :Lk 2 A 1
e
2.
M S0 Y (g oH ) (7 aH, )
- = 1) = —— — - g - AF
me 6/169 82 )2 _1 [2:\. 2 2 & 1 1 -
+ 2= G (aG, = )| (59)

772



ot Flic e

5.3, Comparison with previous results

The basic equations of this paper (15, 16 and 24) are in agreement,
for the special case of zero stagger and antiphase oscillation, with those
of Lilley (Ref, 1, eqns, 2,10, 2.11 and 2,27) and the solution of the
integral equation also agrees, Lilley expresses the acrodynamic derivatives
directly in elliptic functions and further comparison of the two papers is
not possible except that the present author also finds that 1:3 =m = 0

and Z!.é = 16 and m, = me.

Z

Mendelson and Carroll (Ref, 2) present their results for the
unstaggered cascade oscillating in phase or in antiphase in the form of
functions Ly, Ly, My, Mys which show the dependence of the 1ift L and

moment M on flexural displacement h and angular displacement & such that

L = mpw’ [ Lp + [Lg ~(3+ o) | a]

My (F+ )y + 1, )+ (Fra)’ Lh-J a}
(}ief. 2 eqn.B.37)

M = 7ow? Uh{h - (% + e_)Lh'J ho+

In corresponding form the results of the present paper for the special
cases arc

i

G ieH ik =
«28 ade .. e ¢ G
2\ k ~ 174

A
s G iel ik 2 G 5 ik
- 1 21 € 4 1 Ee Lol L& 1€H2_ee )
Te "21‘1'1+n3k(k+?x glb=TY %Ga)-wz?L(k*T" 2%

- et 5 sae [4 (@ o ) -?j-—kG{} (60)
Wy TN k PO el Stk T e 15]
= .‘L(L + M 1 )+'1—L gﬁ.i_‘.i‘i;j’ E.g‘_..]kg.( ...1;(;.)
T e b, = 2y 1 h_wzl k k%t T o \Gy =iz,
ik

5 ke [. e g
+ = [zi -ag +'i"",-:l.(J1 - af, ) e e GiGBJ ]

WNI

1 ke e.ik
* = {Iz - ag, +-i-'-[i(a'2 ~aH,) -—-7-;-2-@2(;5]}



- ™

with m = 0 or %, A real and the integrsls slong C1 becondng integrals
elong the N-axis between -1 and 1, the integrals along C, becoming
integrals along the M-axis between 1 cnd € and C:(n) becoming that pert
of the meaxis between ~1 and 10g-§2§

If we substitute for the G, H, I and J integrals in (60) we obtein results
which show substontial agreement with equations B,38, 39, 40 and 41 of
reference 2, However llendelson and Cerroll have been able to sinwlifly

the integrals

1 x x
f [ HE) & a&x and f (x « 8) f YE) & ax
LR ~1 -1

further than the present author nnd hence the H and J integrals of this
paper are more complicated than the corresponding integrals of reference 2,

6, Conclusion

Thin aerofoil theory can be used to find the acrodynamic derivotives
of an aercfoil oscillating in an infinite cascade. The thecory tokes account
of stagger angle and phasc difference between adjrcent blades of the ecascade,
The derivatives are expresscd in terms of complex integrals (except fox
the degenerate case of zero stagger and antiphase oscillation when the
integrals are real) which have to be evaluated along the acrofoil and its
wake,



7.

Roferences

Lilley, G.M.

Mendelson, A,
and Carroll, R.W,

Sisto, F.

Legendre, R,

Timmon, R,

Eichelbrenner, E 4,

Bromwich, T.J.

Mikhlin, S.G.

- 16 =

An investigoation of the flexure=
torsion flutter chercceteristics of
aercfoils in cascade,

College of Aeronsutics Report 60, 1952,

Lift and moment equations for oscilluting
girfoils in an infinite unstoggered
cascaode,

NACA TN,3263 1954

Unsteady ecrodynemic reactions on airfoils
in cascade,
Jnl, Aero, Sciences, May 1955,

Premiers elements d'un colcul de

1t amortissement acrodynamique des
vibrations d'atbes de compresseurs.
Lo Recherche Acronautique No,37 195L4.

The acrodynemic forces on an oscillating
acrofoil between two porallel walls,
App. Sci, Res. Vol,A3 No, 1 1951,

Application numerique d'un calcul

d* amortisserment ccrodynamique des
vibrations d'aubes de compressecurs,
La Recherche Aeronszutique No,. L6 1955

An introduction to the theory of
infinite scries,
(MochMillen) 1942,

Integral equations,
(Pergamon Press) 1957.



FIG.1. CASCADE GEOMETRY
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