REPPORT NO. 124
January, 1960

## THE COLIEGEOF AERONAUTICS

CRANEIEID

On the sudden contact
between a hot gas and a cold solid

- by -
J. F. Clarke, B.Sc., Ph.D., A.F.R.Ae.S.


## SUMMARY

The flow induced by the sudden contact between a semi-infinite expanse of gas and a solid, initially at different temperatures, is examined on the basis of a linear continuum theory. For times large compared with the mean time between molecular collisions in the gas, the velocity and pressure disturbances are found to be concentrated around a wave front propagating out from the interface at the ambient isentropic sound speed, whilst, near to the interface, these disturbances are small and the gas temperatures are nearly equal to those predicted by the classical constant pressure heat conduction theory.

The possible significance of these results in connection with reflected shook wave techniques to measure high temperature gas properties is commented upon.

## CONTHNTS

Sunmary
List of Symbols

1. Introduction ..... 1
2. The Equations ..... 2
3. The Problem ..... 4
4. Laplace Transform Solutions ..... 6
5. Solutions for $\sigma=\frac{3}{4}$ ..... 9
5.1. Evaluation of $I_{1}$ ..... 9
5.2. Evaluation of $I_{2}$ ..... 12
5.3. The Temperature at Large Times ..... 17
5.4. The Pressure and Velocity Perturbations ..... 19
5.5. Interface Temperature and Conditions at Zero Time ..... 21
6. Solutions for $\sigma=0$ ..... 23
6.1. $\theta(x, t)$ for $x<t / \sqrt{y}$ and $t$ large ..... 25
6.2. $\theta(x, t)$ for $x>t / \sqrt{y}$ and $t$ large ..... 27
6.3. Pressure and Velocity Disturbances ..... 29
7. Conclusions ..... 30
8. References ..... 32Pigures
a
c
$\sigma \quad$ Prandtl number
$\tau \quad$ Shear stress tensor
Suffixes
$\infty$
m
Isentropic sound speed. Isothemmal sound speed

Error function
Specific enthalpy
Pressure
Inergy flux vector
Ratio of thermal properties
Gas constant per unit mass

Time
Gas temperature
Velocity
Distance
Ratio of specific heats
Temperature difference, $T-T_{\infty}$
Diffusivity
Conductivity
Viscosity
Kinematic viscosity
Density

Initial conditions in the gas
Refers to value in the solid

Speoific heat at constant pressure
Weber parabolic cylinder function of order $n$

Specific entropy or Laplace transform variable

Other symbols are defined in the text

## 1. Introduction

The conduction of heat in a compressible gas will in general be accompanied by changes in the gas pressure, donsity and velocity. It is the purpose of the present work to study these changes for the particular case of the sudaon contact betwon a semi-infinite solid and semi-infinite gas, initially at different uniform te peratures.

This simple theoretical model would be difficult to achicve in practice, but something approaching this situation is found when a shock wave reflects from the closed end wall of a conventional shock tube, and it is hoped to gain some idea of what may happen in this nome complicated case from the present study. The interest in reilloctod shock wave zones arises from the ease with which a saumle of gas at a high temperature can be produced by this procoss, and the resulting possibility that measurements of the gas properties under these conditions can then be made.

The question of the compressibility effect on heat conductica hes been examined previously by Cole and Mu (1952) for the case of the Dirco heat pulse, but these writers have made the assumption that gas viscosity can be neglected. It will be show below that viscosity con be included, however, provided that Prandtl numbor equals $3 / 4$. Like Cole's and Tru's, the present treatment is basod on the assumption of small disturbances, so that linear equations can be derived. To avoid over-complication at this stage the gas is assumed to consist of structureless particlos, i.e. to be monatomic and unexcited electronically, and to be porfect both themally and calorically. Although Prandtl number equal. to $3 / 4$ is a most practical state of affairs, and the solutions are quite roadily obtained in that event, the zero Prandtl number case is also examined here in air attempt to assess how drastic the zero viscosity assurption will be. The gas is treated as a continum, and, since the charactoristic time for the processes to be studied turns out to be comparable with the mean tine betroen molecular collisions, wo are effectively linjited to a consideration of "large time" solutions only.

Reforence will be made in later sections to the "classical solution" of the sudden contact problem. This solution treats the gas as a solid. and assumes at the outset that only its temperature will charge subsequent to the initial instont, the pressure (or density) romainine constant. Gas velocities are also assumod to be zero throughout. It is one of the results of the present analysis that the classical constant pressure solution is approached asynptotically with increasing tine fin the regions near to the interface. To assist in the interpretation or these results, a sketch of the classical solid-to-solid contact temperature profiles is given in Fig. 6.

## 2. The Equations

The gas is assumed to be thermally and calorically perfect so that its pressure $p$, density $\rho$ temperature $T$ and specific enthalpy $h$ are related as follows,

$$
\begin{equation*}
p=\rho R T \quad ; \quad h=C_{p} T \tag{1}
\end{equation*}
$$

$R$ is the gas constant for unit mass and $C_{p}$ the (constant) specific heat at constant pressure.

The continuity equation is

$$
\begin{equation*}
\frac{D \rho}{D t}+\rho \frac{\partial u}{\partial x}=0, \tag{2}
\end{equation*}
$$

(where $D / D t=\partial / \partial t+u \partial / \partial x$ for the one-dimensional unsteady $\partial r o b l e m$ ), but a more convenient form for present purposes can be derived by writing first of all

$$
\begin{equation*}
\frac{D \rho}{D t}=\left(\frac{\partial \rho}{\partial p}\right)_{s} \quad \frac{D p}{D t}+\left(\frac{\partial \rho}{\partial s}\right)_{p} \frac{D s}{D t} . \tag{3}
\end{equation*}
$$

$s$ is the specific entropy and

$$
\begin{equation*}
\left(\frac{\partial \rho}{\partial p}\right)_{s}=a^{-2} \tag{4}
\end{equation*}
$$

where $a$ is the usual isentropic sound speed. The derivative $\left(\partial \rho / \partial_{S}\right)_{p}$ is readily evaluated for a gas with the simple thermodynamics described in eq.(1) and we find that

$$
\begin{equation*}
\left(\frac{\partial \rho}{\partial s}\right)_{p}=-(\gamma-1) \rho T a^{-2} \tag{5}
\end{equation*}
$$

( $y$ is the (constant) ratio of specific heats). Writing $\dot{q}$ for the heat flux and $\tau$ for the viscous part of the stress tensor, the energy equation is

$$
\begin{equation*}
\rho C_{p} \frac{D T}{D t}-\frac{D p}{D t}=-\frac{\partial_{q}}{\partial x}+\tau \frac{\partial_{u}}{\partial x} . \tag{6}
\end{equation*}
$$

Combined with the thermodynamic equation $T d s=d h-\rho^{-1} d p$, eq. (6) shows that

$$
\begin{equation*}
\rho T \frac{D s}{D t}=-\frac{\partial \dot{q}}{\partial x}+\tau \frac{\partial u}{\partial x} \tag{7}
\end{equation*}
$$

It follows at once that tho continuity equation con be writton as

$$
\begin{equation*}
\frac{D p}{D t}+\rho a^{2} \frac{\partial u}{\partial x}+(y-1)\left(\frac{\partial \dot{g}}{\partial x}-\tau \frac{\partial u}{\partial x}\right)=0 . \tag{8}
\end{equation*}
$$

The heat flux and viscous stress are assuned to have their usual values

$$
\begin{equation*}
-\dot{q}=\lambda \frac{\partial T}{\partial x} \quad ; \quad \tau=\frac{4}{3}^{\mu} \quad \frac{\partial u}{\partial x}, \tag{9}
\end{equation*}
$$

so that eqs. 6 and 8, coupled with the momontum equation

$$
\begin{equation*}
\rho \frac{D u}{D t}+\frac{\partial p}{\partial x}-\frac{\partial \tau}{\partial x}=0 \tag{10}
\end{equation*}
$$

constitute three equations for the unknowns $p, u$ and $T$.
Ve shall now assume that all of these throe unknovm quentities differ but little from their undisturbed values, the undisturbed state being defined as one of uniform pressure $P_{\infty}$ and temperature $T_{\infty}$, and zero velocity, over the whole of the region of interest. Then the equations can be linearised by neglecting all torms involving squares or products of disturbance quantities, leading to the folloving three equations.

$$
\begin{align*}
& \frac{\partial p}{\partial t}+\rho_{\infty} a_{\infty}^{2} \frac{\partial u}{\partial x}-(y-1) \lambda_{\infty} \frac{\partial^{2} T}{\partial x^{2}}=0,  \tag{11}\\
& \rho_{\infty} \frac{\partial u}{\partial t}+\frac{\partial p}{\partial x}-\frac{4}{3} \mu_{\infty} \frac{\partial^{2} u}{\partial x^{2}}=0,  \tag{12}\\
& \rho_{\infty} C_{p} \frac{\partial T}{\partial t}-\frac{\partial p}{\partial t}-\lambda_{\infty} \frac{\partial^{2} T}{\partial x^{2}}=0 . \tag{13}
\end{align*}
$$

Since ve shall be interested in problems for which boundary values are expressed mainly in tems of tomperature, a single equation satisfied by TI ajone will be derived from eqs. 11 to 13. The thermal diffusivity $k$ and kinematic viscosity $v$ are defined as

$$
\begin{equation*}
k=\frac{\lambda_{\infty}}{\rho_{\infty} C_{p}} \quad ; \quad v=\frac{\mu_{\infty}}{\rho_{\infty}}, \tag{14}
\end{equation*}
$$

and the Prandit number $\sigma$ as

$$
\begin{equation*}
v=\sigma k \tag{15}
\end{equation*}
$$

The equation satisfied by $T$ is then

$$
\begin{align*}
\frac{1}{\kappa} \frac{\partial}{\partial t} & \left\{\frac{1}{a_{\infty}^{2}}-\frac{\partial^{2} T}{\partial \varepsilon^{2}}-\frac{\partial^{2} T}{\partial x^{2}}+\frac{4 y \sigma \kappa^{2}}{30_{\infty}^{2}} \frac{\partial^{4} T}{\partial x^{4}}\right\} \\
& -\frac{\partial^{2}}{\partial x^{2}}\left\{\frac{4 \sigma / 3+y}{a_{\infty}^{2}} \frac{\partial^{2} T}{\partial \theta_{0}^{2}}-\frac{\partial^{2} T}{\partial x^{2}}\right\}=0 . \tag{16}
\end{align*}
$$

## 3. The Paohlem

At this stage it is convenient to formulate the actual problen to be tackled. The gas, whose temperature is to satisfy eq. 15, is assuned to occupy the half-plane $\mathrm{x}>0$ and to be at rest at mifom pressure $p_{\infty}$ and temperature $\mathbb{T}_{\infty}$ for all $t<0$. At time $t=0$ a semi-infinite solid, which has been at a uniform temperature $T_{-\infty}$ for all $t<0$, is placed in contact with the gas along the plane $x=0$. The solid then occupics the halimplane $x<0$. Without any loss of generality $T_{-\infty}$ can be set equal to zero. Subsequent to time $t=0$ the temperature $T_{m}$ of the solid is assumed to satisfy the classical heat conduction equation

$$
\begin{equation*}
\frac{\partial T_{m}}{\partial t}-\kappa_{m} \frac{\partial^{2} T_{m}}{\partial x^{2}}=0, \tag{17}
\end{equation*}
$$

where $\kappa_{\mathrm{m}}$ is the appropriate diffusivity, (assumed constant here).
A new temperature $\theta$ is defined for the gas such that

$$
\begin{equation*}
\theta=T-T_{\infty} \text {. } \tag{18}
\end{equation*}
$$

The initial conditions then become

$$
\begin{equation*}
T_{m}=0, t<0, x<0 ; \quad \theta=0, t<0, x>0 . \tag{19}
\end{equation*}
$$

Compatibility of temperature and heat flux at the interface reouire

$$
\begin{array}{r}
T_{m}=\theta+T_{\infty}, t>0, x=0 ; \quad \lambda_{m} \frac{\partial T_{m}}{\partial x}=\lambda_{\infty} \frac{\partial \theta}{\partial x}, t>0, x=0 \\
\ldots \ldots(20)
\end{array}
$$

where $\lambda_{\mathrm{m}}$ is the (constant) thermal conductivity of the solid, and two flurther conditions are

$$
\begin{equation*}
T_{\mathrm{m}} \rightarrow 0, x+-\infty, t>0 ; \theta \rightarrow 0, x++\infty, t>0 . \tag{2i}
\end{equation*}
$$

A further requiremont is that the gas velocity $u$ shall be zero at $\mathrm{x}=0$ for all time, since the solid is impermeable. This condition can be translated into a temperature condition at $x=0$ via eqs. 11 to 13 by eliminating $p$ and all derivatives of $u$ which contain operations involving $\partial / \partial \mathrm{x}$ in terms of $T$ (or what amounts to the same thing, $\theta$ ), leaving an expression for $\partial^{2} u / \partial t^{2}$ in terms of derivatives of $\theta$. Then, since $u=0$ when $x=0$ and $t>0$ we have also $\partial^{2} u / \partial t^{2}=0, x=0, t>0$ and it follows that

$$
\begin{equation*}
\frac{\partial^{2} \theta}{\partial x \partial t}-\frac{4 y \sigma \kappa_{2}^{2}}{3 a_{\infty}^{2}} \quad \frac{\partial^{4} \theta}{\partial x^{3} \partial t}-\frac{k \partial^{3} \theta}{\partial x^{3}}+\frac{4 \sigma k}{3 a_{\infty}^{2}} \frac{\partial^{3} \theta}{\partial x \partial t^{2}}=0, x=0, t>0 \tag{22}
\end{equation*}
$$

The conditions 19 to 22 inclusive are sufficient to specify the problem. Before proceeding with a solution, however, the equations vill be written in dimensionless form according to the definitions

$$
\begin{equation*}
t=\frac{k t^{\prime}}{\mathrm{a}_{\infty}^{2}} \quad: \quad \mathrm{x}=\frac{\kappa x^{\prime}}{\mathrm{a}_{\infty}} \tag{23}
\end{equation*}
$$

Then we have to solve

$$
\begin{align*}
\frac{\partial}{\partial t^{\prime}} & \left\{\frac{\partial^{2} \theta}{\partial t^{\prime 2}}-\frac{\partial^{2} \theta}{\partial x^{\prime 2}}+\frac{4 y \sigma}{3} \frac{\partial^{4} \theta}{\partial x^{\prime 4}}\right\} \\
& -\frac{\partial^{2}}{\partial x^{\prime 2}}\left\{(y+4 \sigma / 3) \frac{\partial^{2} \theta}{\partial t^{\prime 2}}-\frac{\partial^{2} \theta}{\partial x^{\prime 2}}\right\}=0 \tag{24.}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial T_{m}}{\partial t^{\prime}}-\left(\frac{k_{m}}{\kappa}\right) \frac{\partial^{2} T_{m}}{\partial x^{\prime 2}}=0 \tag{25}
\end{equation*}
$$

subject to the conditions

$$
\begin{gather*}
T_{\mathrm{m}}=0, t^{\prime}<0, x^{\prime}<0 ; \quad \theta=0, t^{\prime}<0, x^{\prime}>0,  \tag{26}\\
T_{\mathrm{m}}=\theta+T_{\infty}, t^{\prime}>0, x^{\prime}=0 ;\left(\frac{\lambda_{\mathrm{m}}}{\bar{\lambda}}\right) \frac{\partial T_{m}}{\partial x^{\prime}}=\frac{\partial \theta}{\partial x^{\prime}}, t^{\prime}>0, x^{\prime}=0,  \tag{27}\\
\ldots,  \tag{28}\\
T_{m}+0, x^{\prime} \rightarrow-\infty, t^{\prime}>0 ; \theta+0, x^{\prime} \rightarrow+\infty, t^{\prime}>0,  \tag{29}\\
\frac{\partial^{2} \theta}{\partial x^{\prime} \partial t^{\prime}}-\frac{4 y \sigma}{3} \frac{\partial^{4} \theta}{\partial x^{\prime 3} \partial t^{\prime}}-\frac{\partial^{3} \theta}{\partial x^{\prime 3}}+\frac{4 \sigma}{3} \frac{\partial^{3} \theta}{\partial x^{\prime} \partial t^{\prime 2}}=0, x^{\prime}=0, t^{\prime}>0 .
\end{gather*}
$$

In subsequent sections we shall omit the primes from $x$ and $t$ for brevity, since from now on we shall work oxclusively in the dimensionless coordinates.
4. Laplace Transform Solutions

The Laplace transform with respect to the dimensionless tine $t$ will be denoted by a bar ( - ) over the appropriate symbol, e.g.

$$
\bar{\theta}(x ; s)=\int_{0}^{\infty} \theta(x, t) \exp (-s t) d t
$$

(Entropy will not be needed in subsequent discussions so that from now on $s$ refers to the transform variable).

With conditions 26 (expressing initial quiescence) the operational forms of eqs. 24 and 25 are

$$
\begin{gather*}
\bar{\theta}^{-(i v)}\left(1+\frac{4 y \sigma}{3} s\right)-\bar{\theta}^{\prime \prime}\left(s+\left(y+\frac{4 \sigma}{3}\right) s^{2}\right)+s^{3} \bar{\theta}=0  \tag{30}\\
\bar{T}_{m}^{\prime \prime}-\left(s k / k_{m}\right) \bar{T}_{m}=0 \tag{31}
\end{gather*}
$$

(Primes denote differentiation with respect to x ).
Eq. 31 can be solved at once, with the appropriate condition from eq. 28 , to give

$$
\begin{equation*}
\bar{T}_{\mathrm{m}}=A(\mathrm{~s}) \exp \left(\left(s k / k_{\mathrm{m}}\right)^{\frac{1}{2}} \mathrm{x}\right) \tag{32}
\end{equation*}
$$

where $A(s)$ is a function of $s$ to be found from the boundary conditions. Conditions 27 and the second of 28 in transform form are

$$
\begin{equation*}
\bar{\theta}(0 ; s)=A(s)-T_{\infty} s^{-1} ; \Lambda Q \sqrt{s}=\bar{\theta}^{\prime}(0 ; \pi) \tag{33}
\end{equation*}
$$

where we have written

$$
\begin{equation*}
\frac{\lambda_{\mathrm{m}}}{\lambda} \sqrt{\frac{\kappa_{k}}{k_{\mathrm{m}}}}=Q \tag{34}
\end{equation*}
$$

The transform versions of the remaining conditions 28 and 29 are

$$
\begin{gather*}
\vec{\theta}(x ; s) \rightarrow 0, \dot{x} \rightarrow \infty,  \tag{35}\\
s\left(1+\frac{4 \sigma}{3} s\right) \bar{\theta}^{\prime}-\left(1+\frac{4 y \sigma}{3} s\right) \bar{\theta}^{m \prime}=0, x=0, \tag{36}
\end{gather*}
$$

and the problem is now reduced to that of finding a solution of eq. 30 subject to conditions 33,35 and 36.
in appropriate solution of eq. 30 is $\bar{\theta} \propto \exp \left(\alpha_{n} x\right)$ where $\alpha_{n}$ is any one of the four roots of the auxiliary biquadratic equation

$$
\begin{equation*}
(1+4 \gamma \sigma s / 3) \alpha^{4}-s(1+(y+4 \sigma / 3) s) \alpha^{2}+s^{3}=0 . \tag{37}
\end{equation*}
$$

The general solution of this equation could be written dow, but would give formidable values for the $\alpha_{n}$. Instead we shall consider two special cases.
(i) $\sigma=\frac{3}{4}$.

When $\sigma=\frac{3}{4}$, eq. 37 factorises quite simply and gives the four solutions

$$
\begin{equation*}
\alpha= \pm \sqrt{s} ; \pm s(1+y s)^{-\frac{1}{2}} \tag{38}
\end{equation*}
$$

Condition 35 excludes the solutions with positive signs and it follows that the most general solution of eq. 30 subject to this requirement is

$$
\begin{equation*}
\bar{\theta}(x ; s)=B(s) \exp \left(-s^{\frac{1}{2}} x\right)+C(s) \exp \left(-s(1+y s)^{-\frac{1}{2}} x\right) \tag{39}
\end{equation*}
$$

The value $\frac{3}{4}$ for $\sigma$ is not far from the accepted value for a number of interesting gases, air for example for which $\sigma=0.72$ is quoted, so that the solution 39 should give a plausible description of the physical picture.
(ii) $\sigma=0$.

This not very practical value of the Prandial number corresponds to the solution for which $k$ is assumed to have a suitable finite, non-zoro value whilst the viscosity $\mu$ is set equal to zero. Physically, of course, this is quite inadmissable but it is argued that the effects of heat conduction and viscosity are similar, so that a reasonable physical picture should be obtained by ignoring one of them altogether. This is rather like saying that Prandtl number is of order unity so that we shall approximate to its effect by putting it equal to zero ! - but thoro does seen to bo an intuitive feeling that the physical picture should be retained despite this. Accordingly we shall examine the $\sigma=0$ case with this in mind. As remarked in the Introduction, Cole and Wu have studied the Dirac heat pulse problem for $\sigma=0$ and Lagerstrom, Cole and Trilling (1949) have studied a variety of essentially viscous problems under the
assumption $\lambda=0$ while retaining $\mu$ finite and nonzero. (As can be seen from the equations 11,12 and $13, \lambda=0$ uncouples the ' $p, u^{\prime}$ problem from the energy equation, so that the present theory is not directly comparable with Lagorstrom's. One might say that we are interested in problems primarily of heat conduction).

When $\sigma=0$ then, eq. 37 has the solutions

$$
\begin{equation*}
\alpha= \pm \sqrt{s^{\prime}}\left\{(1+y s) / 2 \pm\left[(1+y s)^{2} / 4-\left.s\right|^{\frac{1}{2}}\right\}^{\frac{1}{2}} .\right. \tag{40}
\end{equation*}
$$

The two solutions starting $+\sqrt{s}$ etc. must be abandoned to conform with eq. 35 and so, for our purposes, we have

$$
\begin{aligned}
\bar{\theta}(x ; s) & =B^{\prime}(s) \exp \left[-\sqrt{s^{\prime}}\left\{(1+y s) / 2+\left[(1+y s)^{2} / 4-s\right]^{\frac{1}{2}}\right\}^{\frac{1}{2}} x\right] \\
& +C^{\prime}(s) \exp \left[\left.-\sqrt{ } s^{\prime}\left\{(1+y s) / 2-\left[(1+y s)^{2} / 4-s\right]^{\frac{1}{2}}\right\}_{(41)}^{\frac{1}{2}} x \right\rvert\,\right.
\end{aligned}
$$

(The constants $B^{\prime}$ and $C^{\prime}$ are different from $B$ and $C$ in eq. 39). Cole and Wu remark that setting $\mu=0$ simplifies the equations to be studied. Examination of eq. 16 would certainly tend to suggest that this is true, but comparison of the solutions 39 and 41 indicate that the reverse is the case, certainly when $\mu$ is retained and $\sigma$ put equal to $3 / 4^{\circ}$
Fortunately Cole and Wu were able to find a transformation which renders an attack on the $\sigma=0$ case possible, but, as will become evident below, it must be applied with some care and greater labour is involved in the $\sigma=0$ problem than when $\sigma=3 / 4^{\circ}$

Neither case produces a particularly simple solution owing to the appearance of the complicated exponential functions, so it may be advisable to examine briefly the physics of the situation in order to decide just what kind of solutions it would be best to aim for. From equations 23 it can be seen that the characteristic time and length for the system are $k / a_{\infty}^{2}$ and $k / a_{\infty}$ respectively. Simple kinetic theory indicates that $\lambda \approx(1 / 3) \quad \bar{o} C_{V}$, where $\bar{c}$ is the moan molecular speed, $l$ the moan free path and $C_{v}$ the constant volume specific heat. Consequently $k \simeq \overline{\mathrm{c}} \ell / 3 y$ and, since $a^{2}=y p / \rho \simeq y \bar{c}^{2} / 3$, it follows that $k / a_{\infty}^{2} \simeq(l / \bar{c})$ and $k / a_{\infty} \simeq \ell$, apart from multiplying factors of order unity. The characteristic time and length are therefore comparable with the mean time between collisions of the molecules and the mean free path respective lv.

Thus for $t \sim 1$ or less a continuum theory such as that formulated here can hardly be valid and we should direct attention primarily towards the case $t \gg 1$, where it is plausible to use such a theory. For the sake of completeness some results for $t=0+$ will be given, however.

## 5. Solutions for $\sigma=3 / 4$ s

The functions $B(s)$ and $C(s)$ of eq. 39 can be related via the zoro-velocity-at-the-wall condition, eq.36. We find that

$$
C(s)=(y-1) \sqrt{s} \sqrt{1+y} s^{2} B(s),
$$

whence the solution 39 can be written

$$
\begin{equation*}
\vec{\theta}(x ; s)=\left[\exp \left(-x \sqrt{s^{\prime}}\right)+(y-1) \sqrt{s} \sqrt{1}+y s^{\prime} \exp \left(-s x(1+y s)^{-1}\right)\right] B(s) . \tag{4,2}
\end{equation*}
$$

It should be noted that eq. 42 is a valid solution for the gas torncrature in the half $\rightarrow$ plane $x>0$ when $u=0$ at $x=0$ for any variation of $\theta$ at this intorface, only the function $B(s)$ changing in accordence with the specilided behaviour of $\theta(0, t)$. For the present problen ono readily infors from conditions 33, that

$$
\begin{equation*}
B(s)=-\left(\frac{T}{\infty} / s\right)[1+Q+(y-1) s+(y-1) \sqrt{s} \sqrt{1+y s}]^{-1} \tag{4.3}
\end{equation*}
$$

Using the inversion theorem for Laplace transforms it follows that

$$
-\frac{\theta(x, t)}{\theta T_{\infty}}=\frac{1}{2 \pi i} \int_{I} \frac{\exp (t s-x \sqrt{s}) \ldots \ldots \ldots \ldots \ldots}{1+0+(y-1) s+0(y-1) \sqrt{s} \sqrt{1+y s}} \frac{d s}{s}
$$

$$
+\frac{1}{2 \pi i} \int_{L} \frac{(y-1) \sqrt{1+y} S^{-1} \operatorname{coxp}\left(\operatorname{ts}-s(1+y s)^{-\frac{1}{2}} x\right)}{1+Q+(y-1) s+0(y-1) \sqrt{s} \sqrt{1}+y s} \frac{d s}{\sqrt{s}},
$$

I being the usual inversion contour.
The first and second integrals in eq. 44 will be denoted by $I_{1}$ and $I_{2}$ rospectively and each one treated separately below.

### 5.1. Ivaluation of $I_{1}$

The singularities of the integrand in $I_{1}$ are branch points at $s=0$ and $-1 / y$. It can be verified that $L$ is equivalent to a dumbell contous procoeding parallel to the Re s axis just below and just above the branch cut between $s=0$ and $-1 / y$ and encircling the branch points at either end. On the straight line parts of this contour we put $s=y \exp ( \pm i \pi r)$, y roal and positive, taking upper and lower signs on the upper and lowor paths. Then $\sqrt{s}=\sqrt{y} \exp ( \pm i \pi / 2)$ accordingly and $\sqrt{1}+y s=\sqrt{1}-y \mathrm{y}$ on either path. On the circles surrounding the branch points we put
$s=\epsilon \exp (i \theta)$ and $s=-1 / y+\epsilon \exp (i \theta)$ respectively and then allow $\varepsilon$ to approach zero. The contribution from the circle around $s=-1 / \mathrm{y}$ vanishes in the limit and that from the circle round $s=0$ is $(1+0)^{-1}$, as may be easily verified. Rearranging the 'straight line' integrations it follows that

$$
I_{1}=\frac{1}{1+Q}-\frac{1}{\pi} \int_{0}^{1 / y} \frac{(1+Q-(y-1) y) \sin (x \sqrt{y})+Q(y-1) \sqrt{y} \sqrt{1}-y y}{(1+Q} \frac{\cos (x \sqrt{y})}{-(y-1) y)^{2}+Q^{2}(y-1)^{2} y(1-y y)} \int_{y}^{-y t} d y
$$

When $t \gg 1$ the principal contribution to the integral her comes from the region near $y=0$. Accordingly we can expand the integrand in ascending powers of $y$, the first term in each of the two integrals in eq. 45 being as follows

$$
\begin{equation*}
I_{1} \sim \frac{1}{1+Q}-\frac{1}{1+Q} \cdot \frac{1}{\pi} \int_{0}^{1 / y} \sin (x \sqrt{y}) e^{-y t} \frac{d y}{y}-\frac{Q(y-1)}{(1+Q)^{2}} \frac{1}{\pi} \int_{0}^{1 / y} \cos (x \sqrt{y}) e^{-y t} \frac{d y}{\sqrt{y}} \tag{46}
\end{equation*}
$$

Replacing the upper limit $1 / y$ by $\infty, I_{1}$ can be written in terns of well known functions to give

$$
(1+Q) I_{1} \sim 1-\operatorname{exf}(x / 2 \sqrt{t})-\frac{Q(y-1)}{1+Q} \cdot \frac{\exp \left(-x^{2} / 4 t\right)}{\sqrt{\pi t}}
$$

We must now investigate the errors in the result 47. First of all, in replacing $1 / y$ by $\infty$ in the limits of the integrals in eq. 46 we imply errors of the order of

$$
\frac{1}{\pi} \int_{1 / y}^{\infty} \sin (x \sqrt{y}) e^{-y t} \frac{d y}{y}+\frac{\varrho(y-1)}{1+Q} \int_{1 / y}^{\pi} \int_{1 / y}^{\infty} \cos (x \sqrt{y}) e^{-y t} \frac{d y}{\sqrt{y}}
$$

on the right hand side of eq. 47. By a mean value theorem we can write

$$
\frac{1}{\pi} \int_{1 / y}^{\infty} \sin (x \sqrt{y}) e^{-y t} \frac{d y}{y}=\frac{\sin (x a)}{\pi} \int_{1 / y}^{\infty} e^{-y t} \frac{d y}{y}=\frac{\sin (x a)}{\pi} \mathbb{E}_{1}(t / y)
$$

$$
\operatorname{erf}(\alpha) \text { is the error function, }=(2 / \sqrt{\pi}) \int_{0}^{\alpha} e^{-y^{2}} d y
$$

where a is a suitable mean value of $\sqrt{y}$ and $F_{1}(t / y)$ is the exponential integral defined in Bateman (1953 p. $143 \mathrm{eq} .9 .7(1)$ ). Then $t / y \gg 1$, $\mathrm{E}_{1}(\mathrm{t} / \mathrm{y}) \sim(y / t) \exp (-t / y)$, (vide Batemon, 1953 p .144 eq. 9.7.(7)). Likowise we can write

$$
\frac{1}{\pi} \int_{1 / y}^{\infty} \cos (x \sqrt{y}) e^{-y t} \frac{d y}{\sqrt{y}}=\frac{\cos (x b)}{\pi} \int_{1 / y}^{\infty} e^{-y t} \frac{d y}{\sqrt{y}}=\frac{\cos (x b)}{\sqrt{\pi t}}(1-\operatorname{erf}(\sqrt{t} / y))
$$

where $b$ is a suitable mean value of $\sqrt{y}$. Then $t / y \gg 1$, $\operatorname{erf}(\sqrt{t} / y) \sim 1$ $-\sqrt{y / \pi t} \exp (-t / y)$. It follows therefore that the orror inplied in neglecting the difference between $T / \gamma$ and $\infty$ is of order

$$
\sin (x a) \quad \frac{y}{\pi t} e^{-t / y}+\frac{Q(y-1)}{i+Q} \frac{\sqrt{y}}{\pi t} e^{-t / y} \cos (x b)
$$

We notice that even when $x$ approaches $t$ quite closely in ec. 4.7 the errors here are at most of ordor $1 / \sqrt{t}$ times this result, and are correspondingly less significant as $x \rightarrow 0$.

The terms neglected in expanding the part of the integrend in braces in eq. 4.5 give rise to errors $1+0(y)$ in the integrals in Gg. 4.6 . It can be scen that the resulting error terns aro obtaincd as second and third dorivatives of the first integral in eq. 4,6 (ignoring constont multiplying factors) with rospect to $x$, i.e. successive derivatives of $\operatorname{erf}(x / 2 \sqrt{t})$ with respect to $x$ as a not unroasonable estinate. These derivatives of the error function contain a factor $(1 / \sqrt{\pi t}) \exp \left(-x^{2} / 4 t\right)$ times vither $x / t$, or $1 / t$ and $x^{2} / t^{2}$. Provided $x$ is not of ordor $t$ the orrors aro small comparod with the terms written in eq. 47.

Provided $x$ is not of ordor $t$, then, eq. 47 is a reasonable represontation of the integral $I_{1}$. When $x$ is of order $t$ or preater it is cloar tinat $I_{1}$ contributes a small anount only to the overall value of $\theta$, by yoason of the exponential terms. We shall sce now that most of the contribution to $\theta$ in the region $x \sim t$ cones from the second incegral I when $t$ is large. We remark that the completo solution of the 'classical' heat conduction proble:a (for which pressure is assursed constant throughout) is given exactly by the first two torms on tho right hand side of eq. 47, the solution in that case being valid for all $x$ and $t$. The intecrai I gives solutions of a purcly diffusive nature, as scems reasonable from the prosence of the $\exp (-x \sqrt{s})$ factor there.

### 5.2. Evaluation of $I_{2}$

To complete the solution for $\theta(x, t)$ it is now necessary to examine the second integral of eq. 44 , nomely $I_{2}$. We have just scen how $I_{1}$ leads to diffusion-type solutions and examination of $I_{2}$ may lead us to suspect that this integral will produce a combination of diffusion type and wave-like solutions, from the presence of the exponential factor $\exp \left(t s-s(1+y s)^{-\frac{y}{2}}\right.$ ), which has a character somewhere betwoen these two.

In fact just this exponential torm arises in the study of purely viscous phenomena, mentioned previously as having been exarninod by Lagorstrom, Cole and Trilling. It is the complete transform solution of the Dirac velocity pulse problem in a fluid for which $\mu \neq 0, \quad \lambda=0$ and, when rultiplied by $\mathrm{s}^{-1}$, gives the solution for a unit stop function of velocity applied at $t=0, x=0$. The above named authors have found solutions valid for large and small times by a subtle choice of contour, followod by some lengthy sifting of various contributions to the whole integral from different parts of the contour in order to extract the most significant terms. Later Hanin (1957) troated the Dirac pulse problem at great length, finding solutions in series, as real integral representations and as asymptotic series, covering various ranges of $x$ and $t$. ITorrison (1957) also discovered the roal integral ropresentations for the impulse solution, during the course of his investigations of wave propagation in viscoelastic matorials, by using certain theoroms on Laplace transforms.

The present problem is more difficult than any of these, however, by reason of the complicated algebraic factor which multiplies the exponential tem in $I_{2}$.

It is clear that the two integrals $I_{1}$ and $I_{2}$ express the "combined" nature of our problem quite well. The sudden changes of temporature occurring first at the interface betreen gas and solid are bound to produce changes of pressure, density and velocity in the gas, and one would expect such changes to propagate out into the gas as some kind of wave motion. Such wave motion is necessarily going to be of a somerrhat complicatod nature, since it is an essential part of the whole problem that the dispersivc and absorptive mechanisms of conduction and monentum diffusion shall be present. These will act to change the form of the wave motion, and these changes will themselves react back on the diffusive and convective processes which are responsible for the changing onergy balance between solid and gas. Thus we may say that the algebraic factor in $I_{2}$ ropresents the type of "input" to the wave motion in the gas as a result of diffusion whilst that in $I_{1}$ represents the "input" to the diffusion processes as a result of the primary heat conduction processes plus the foedback from the wave motion. It is characteristic oi the $\sigma=3 / 4$ case that these two types of process separate in the way found in eq. 39. It is clear from the form of the auxiliary equation 37 that such separation will rot occur so obviously for other Prandtl numbers, and indeed the solution 41 for $\sigma=0$ provides a specific example.

To return to the problem in liand, nomoly the evaluation of $I_{2}$, we shall concentrate as before on solutions valid for large tinos, following very closely the methods used by Manin. First of all we examine the region around $\mathrm{x}=\mathrm{t}$ by defining

$$
\begin{equation*}
\delta=x-t \tag{48}
\end{equation*}
$$

and making the substitution $\left(1+\gamma_{S}\right)^{\frac{1}{2}}=\omega_{\text {. Then }}$

$$
\begin{equation*}
\left.\left.I_{2}=\frac{(y-1) \sqrt{y}}{\pi i} \int_{C_{\omega}} \frac{\omega^{2} \exp \left[(t / y)\left(\omega^{2}-1\right)(1-1 / \omega)\right] \exp [(-\delta / y)(\omega}{y(1+Q)+(y-1)\left(\omega^{2}-1\right)+Q(y-1) \sqrt{y\left(\omega^{2}-1\right)^{2}} \omega}=1 / \omega\right)\right] \frac{a^{\omega}}{\sqrt{\omega^{2}-1}} \tag{49}
\end{equation*}
$$

The contour $C \omega$ is asymptotic to $\infty \exp ( \pm i \pi / 4)$ at its ends and crosses the roal exis somovhere to the right of $\omega=1$. We shall imagine that $t$ in eq. 49 is large. $\delta$ will be assuncd small and we shall sec lator just what this must imply about the actual allowable magnitudo of $\delta$. Using the method of steepest descents, it is now necessary to find, first a suitable saddle point for the function

$$
\begin{equation*}
f(\omega)=\left(\omega^{2}-1\right)(1-1 / \omega), \tag{50}
\end{equation*}
$$

and second to ensure that the steepest path through this point can be reconciled with the contour $C_{\omega}$. The condition $d f / d^{\omega}=0$, which dofines the saddle points of $f(\omega)$ is satisfied by setting $\omega=1$ (i.o. df/d $\omega$ $=2 \omega-1-1 / \omega^{2}=0$ ) and the stoepest path of descent from the col at $\omega=1$ procceds from $1 / 2-i \omega$, through $\omega=1$, to $1 / 2+i \omega$. $\omega=1$ happens to be a singular point of the intogrand in eq. 49, howovur, so that clearly the steepest path for the exponential function cannot be reconciled dircotly with $C_{\omega}$. By indenting the steopest path so as to pass to the right of $\omega=1$ around an are of a small circle given by $\omega=1$ $+\epsilon \exp (i \theta)$ we may still make use of it though, and it quickly follows that tho contribution to $I_{2}$ made by intogration around this arc approaches zero as $\varepsilon \rightarrow 0$. Consequently we can now procoed in the usual way by writing

$$
\begin{equation*}
f(\omega)=-\phi^{2} / 2, \tag{51}
\end{equation*}
$$

thereby dofining $\phi$, the real variable of integration on the steopest path. It follows from 50 and 51 that $\omega$ exprossed as a series in $\phi$ begins

$$
\begin{equation*}
\omega=1 \pm i \phi / 2 \ldots \ldots \tag{52}
\end{equation*}
$$

and that to a first order

$$
\begin{equation*}
\frac{\partial \omega}{d \phi}= \pm i / 2 . \tag{53}
\end{equation*}
$$

The upper and lowor signs in 52 and 53 are to be taken on the upper ( $\omega=1$ to $\frac{1}{2}+i \infty$ ) and lower $\left(\frac{1}{2}-i \infty\right.$ to 1 ) halves of the stoopest path respectively.

Taking the first two teros in the expansion of the integrand in eq. 49 in tozins of $\phi$ we have, after some maripulation

$$
\begin{align*}
& \frac{\sqrt{y}(1+\Omega)}{(y-1)} \cdot I_{2} \sim \frac{1}{\pi} \int_{0}^{\infty} \exp \left(-t \phi^{2} / 2 y\right) \cos (\delta \phi / y+\pi / 2) \phi^{-\frac{1}{2}} \mathrm{~d} \phi \\
& -\frac{0(y-1)}{\sqrt{y}(-1 / 2)} \cdot \frac{1}{\pi} \int_{0}^{\infty} \exp \left(-t \phi^{2} / 2 y\right) \cos (\delta \phi / y) d \phi . \tag{4}
\end{align*}
$$

The domivation of rosul.t 54 follows the standord procedure of the steegest desconts methon, name series expansion of the function of $\omega$, which maitipifiss the ezporcntsial $\exp (t f(\omega) / \gamma)$, in acconding powors of $\phi$, excopt that re have wiouten the term exp $(-(\delta /))(\omega-1 / \omega)$ as ansoximate y equal to exp $(\dot{+} \phi \delta / \%)$, taling sig:s apmopriate to the partivulur half of the stoepest path being ocmsidered. Itis approximation gives rise to the cosine functions in 54. The first integral con be reduced to a recognizable form on substituting $\phi=\sqrt{y} / t \mathrm{y}$, namely,

$$
\left(\frac{y}{t}\right)^{\frac{1}{4}} \frac{1}{\pi} \int_{0}^{\infty} e^{-y^{2} / 2} \cos [(\delta / \sqrt{y t}) y+\pi / 4] y^{-\frac{1}{2}} d y,
$$

Batoman (1953, p. 120 eq. $8.3(4)$ ) showing that this is related to Webor's parabolic cylinder function of ordor $-\frac{1}{2}$ (writtion as $D_{-\frac{1}{2}}$ ). The second integral in 54 is a well known one and we can write

$$
\begin{gather*}
\frac{\sqrt{y}(1+2)}{(y-1)} I_{2} \sim \frac{(y /+)^{\frac{1}{4}}}{\sqrt{2 \pi^{1}}} e^{-\delta^{2} / 4 y t} D_{-\frac{1}{2}}(\delta / \sqrt{y t}) \\
-\frac{0(y-1)}{(i+Q)} \frac{e^{-\delta^{2} / 2 y t}}{\sqrt{2 \pi t}} \tag{55}
\end{gather*}
$$

A careful investigation of the errors in 54 or 55 as approximations to $I_{2}$ for $t \gg 1$ indicates that wo must restrict $\delta / \sqrt{y} \vec{t}$ to be $<O(1)$ to prevent thom becoming comparable wi.th ${ }^{3}$ the terms retained thore. When this is done the next term in 55 is $0\left(t^{-\frac{3}{4}}\right)$. Owing to the complicated nature of the integral it is impossible to give any general torm for an asymptotic expansion, even in the present relatively manageable rogion of $x$ and $t$. Fe observe, incidentally, that when $\delta=0, D_{-\frac{1}{2}}$ is $O(1)$, (the exact value will be given later on in Section 5.3.).

The result 55 fails as a general approximation, valid whon x is small for example, because of the behaviour of the $\exp [-(\delta / \gamma)(\omega-1 / \omega]$ term in this region, $\delta$ becoming large like the time $t$. However, if one assumes that $\delta$ is large and negative, as when $x$ is small, it can be show (using the results of Miller (1955)) that the first torm in 55 behaves like $\delta^{-\frac{1}{2}}$ and that the first error term from the oxponential just mentioned behaves like $\delta^{\frac{1}{2}} / t$. This suggests that at small values of $x$ (i.e. noer the interface), there is a port of the disturbance which is of a wave-like character and that it may be of a comparoble ordor of magnitude to the third term of eq. 47. Physically this state of affairs appoars highly plausible and accordingly we will attempt to evaluate the contribution which the integral $I_{2}$ makes to $\theta$ in the regions of $x$ near to the intorfoce.

To do this it is observed that the exponential term in the integral 49 can be rewritten as

$$
\begin{equation*}
\exp \left|\left(\omega^{2}-1\right)(1-\alpha / \omega)(t / y)\right| \tag{56}
\end{equation*}
$$

whero

$$
\begin{equation*}
\alpha=x / t \tag{57}
\end{equation*}
$$

We now scek solutions for $I_{2}$ which aro valid when $t \gg 1$ and $\alpha$ is sma.ll. Using steopest desconts, the col for the function

$$
\begin{equation*}
g(\omega)=\left(\omega^{2}-1\right)(1-\alpha / \omega) \tag{58}
\end{equation*}
$$

is found as a solution of

$$
\begin{equation*}
\delta^{\prime}(\omega)=2 \omega-\alpha-\alpha / \omega^{2}=0 \tag{59}
\end{equation*}
$$

$\alpha$ is real and positive and it follows that there must be one real and two complex roots of eq. 59. Of these we choose the real root, noting that when $\alpha$ is small this root is approximately

$$
\begin{equation*}
\omega_{0} \simeq\left(\frac{\alpha}{2}\right)^{\frac{1}{3}}\left[1+\frac{1}{3}\left(\frac{\alpha}{2}\right)^{\frac{2}{3}}+\ldots .\right] \tag{60}
\end{equation*}
$$

The stocpest path of descent passes through $\omega=\omega_{0}$ and is asymptotic to $\left(\omega_{0}-\alpha / 2 \omega_{0}^{2}\right) \pm i c \infty$ at its onds. However, the algcbraic fector in eq. 49 contains a branch point at $\omega=1$ and the original contour $C_{\omega}$ cannot bo roduced to this steepest path directly. Instead we shall use the contour illustrated in Fig. 1 which consists of the upper and lowor halves of the steopest path connected by a loop around the bronch out from $\omega=1$.

The intogration around the small circle of radius $\varepsilon$ contributes an amount to $I_{2}$ which is proportional to $\sqrt{\varepsilon}$, and consequently yields zero in the limit as $\varepsilon+0$. Writing Re $\omega=v$, the parts $A B$, $C D$ of the contour contribute an amount
$\frac{2(y-1) \sqrt{y}}{\pi} \int_{\omega_{0}}^{1} \frac{\left[y(1+Q)-\left(\frac{\left.y-1)\left(1-v^{2}\right)\right]}{(1+Q) y-} \frac{\exp \left[-\left(1-v^{2}\right)(1-\alpha / v)\right.}{(y-1)\left(1-v^{2}\right)^{2}+Q^{2}(y-1)^{2} y v^{2}\left(1-v^{2}\right.}\right)\right]}{\sqrt{1-v^{2}}} \cdot$

The index of the exponential term here is zero at the uppor limit $\mathrm{v}=1$ and is negative everywhere else within the range of intogration. Whence it follows that when $t \gg 1$ the principal contribution to the integral will cono from the region near $\mathrm{v}=1$. Changing the variable from v to y via the rolation $\left(1-v^{2}\right)(1-\alpha / v)=y$, the integrand can now be expandod as a powor soxies in $y$, the most irmortant torm being

$$
\begin{align*}
& \frac{(y-1)}{\sqrt{y}(1+Q)} \frac{1}{\sqrt{1-\alpha}} \cdot \frac{1}{\pi} \int_{0}^{\left(1-\omega_{0}^{2}\right)\left(1-\alpha / \omega_{0}\right)} e^{-y t / y} \cdot y^{-\frac{1}{2}} d y \\
& \quad=\frac{y-1}{1+Q} \cdot \frac{1}{\sqrt{\pi r(t-x)}} \cdot \operatorname{erf}\left[\left(1-\omega_{0}^{2}\right)\left(1-\alpha / \omega_{0}\right)(t / y)\right] . \tag{62}
\end{align*}
$$

The erroxs in writing 62 for the integral 61 are vury small cormared with the rosult 62 provided $\alpha$ is less than about $1 / 2$ and $t$ is large. Oving to the complicated nature of the intogral it is not practicablo to give a general result for the error terns, but thoy are roughly of ordor $t^{-\frac{1}{2}} \exp \left[-\left(1-\omega_{0}\right)\left(1-\alpha / \omega_{0}\right)(t / \gamma)\right]$. Since the argument of the orror
function in 62 is very large if $\alpha$ is small we may reasonably approximate to the expression thore by writing it as

$$
\begin{equation*}
\approx \frac{y-1}{1+Q} \cdot \frac{1}{\sqrt{\pi(t-x)}} \tag{63}
\end{equation*}
$$

To carry out the integration along the steopest path part of the contour in Fig. 1 we dofine the real variable of integration $y$ as follows,

$$
g(\omega)-g\left(\omega_{0}\right)=-y^{2}
$$

The usunl prorodure for evshation integrals by the method of stoopest desconts tisen leake to the najor term axising from this part of the contour and this is found to be

$$
\frac{2 \sqrt{\gamma}(\gamma-1) A \omega_{0}(y / \pi t) \exp \left(g\left(\omega_{0}\right) t / y\right)}{y(1+Q)-(y-1)\left(1-\omega_{0}^{2}\right)+Q(\gamma-1) \sqrt{\gamma} \omega_{0} \sqrt{1}-\omega_{0}^{\omega^{2}}}
$$

where $A$ is written for $1 /\left(1+\alpha / \omega_{0}^{3}\right)$. Since $g\left(\omega_{0}\right) \simeq-1$ when $\alpha$, and hence $\omega$, is small, this torm is very much loss than the result 63 and we conclude that, provided $t \gg 1$ and $\alpha$ is reasonebly small compared vi.th unity, a plausible estimate of the integral $I_{2}$ is

$$
\begin{equation*}
I_{2} \sim \frac{y-1}{1+Q} \cdot \frac{1}{\sqrt{\pi(t-x)}} \tag{64}
\end{equation*}
$$

This result confirms the viev, exprossed carlier, that vavo-like disturbances exist in the regions of x noar to the interface.

As in Hanin's paper, the form of the exponential function in eq. 56 can bc used to find approximations for the case $t \gg 1$ and alarge also. In that event the solution of eq. 59 indicates a saddue point at approximately $\omega_{0}=(\alpha / 2)$, and this will cortainly lie to tho right of the branch point at $\omega=1$. Consequantly $C_{\omega}$ and the steepest path are dircctiv reconcilablo and it can then be shown that the major contribution to $\theta$ from $I_{2}$ is roughly

$$
\begin{equation*}
\frac{2 y \sqrt{t} / \pi x^{x^{2}}}{1+Q \sqrt{y}} \cdot e^{-x^{2} / 2 y t}, \tag{65}
\end{equation*}
$$

which is a vory small quantity, (In deriving 65 we have neglected unity in comparison with $\omega_{0}^{2} \approx \alpha^{2} / 4$ ).

### 5.3. The Tomporature at Large Times

Collecting the results from the last throe sections enables us to build up a reasonable picture of the bchaviour of the gas tomperature at timos large compared with the moan timo betwoen molecular collisions.

Thus, in the region where x is small compared vith $t$

$$
\begin{align*}
& \theta(x, t) \sim-\frac{Q I_{Q}}{1+Q}\left\{1-\operatorname{erf}(x / 2 \sqrt{t})-\frac{Q(y-1)}{1+Q} \cdot \frac{\exp \left(-x^{2} / 4 t\right)}{\sqrt{\pi t}}\right. \\
&\left.+\frac{y-1}{\sqrt{\pi(t-x)}}\right\} \tag{66}
\end{align*}
$$

(using the rosults 44,47 and 63 ). When $x$ is comparable with $t$,

$$
\begin{align*}
\theta(x, t) \sim-\frac{Q T_{\infty}}{1+Q} \cdot(y-1)\left\{\frac{\exp \left(-\delta^{2} / 4 y t\right) D}{\sqrt{2 \pi}}(y t)^{\frac{1}{4}}\right. & (\delta / \sqrt{y t}) \\
& \left.-\frac{Q(y=1)}{(1+Q)} \frac{\exp \left(-\delta^{2} / 2 y t\right)}{\sqrt{2} \pi y t}\right\} . \tag{67}
\end{align*}
$$

For the latter case we have used the results 44 and 55 and it is rocalled that $\delta=x-t$. Then $x$ is greater than $t$ by an appreciable amount the value of $\theta$ has been shown to be practically zero.

The temperature at the interface $x=0$ follows from eq. 66, namely,

$$
\begin{equation*}
\theta(0, t) \sim-\frac{Q T_{\infty}}{1+Q}\left\{1+\frac{(y-1)}{1+Q}(\pi t)^{-\frac{1}{2}}\right\} \tag{68}
\end{equation*}
$$

and, remembering that the gas temperature $T=\theta+T_{c o n}$, it can be scen that the intorface terperature is increasing with time, if $T_{c o}$ is positive (i.c. gas hotter than solid). The classical constant pressure solution for $\theta(0, t)$ indicates that it jumps abruptly to the value $-Q T_{c} /(1+0)$ and remains constant for all later times. Thus in the practical casc the classical solution is approached asymptotically. This statement is also true of the whole solution for $\theta$ in the region near the wall, since as $t$ increases the last two terms in eq. 66 become small comparod with the first two (which represent the classical solution). As distance from the wall increases at given time, however, the solution 66 indicates that deviations from the classical solution increase and it seems plausible to suggest that such deviations tend to become of a predominantly wave-like character. The behaviour of the last two torms in 66 as $x$ increases is such as to cause the gas temperature to fall below the classical value. Tuming now to the regions where $x$ and $t$ are of comparable magnitude we find (from eq. 67) some notable deviations from the classical value of $\theta(x, t)$. This lattor solution would indicate that $\theta$ has fallen to an alrnost $t_{t / 2}$ negligible size when $x=t$, for exarple, because $1-\operatorname{erf} \sqrt{t / 2} \sim e^{-t / 2} / \sqrt{\pi} t / 2$ when $t$ is large. Iq. 67, however, shows that

$$
\begin{equation*}
\theta(t, t) \sim-\frac{Q T_{\infty}}{1+Q}(y-1)\left\{\frac{\Gamma\left(\frac{1}{4}\right) \ldots}{2 \pi(2 y t)^{\frac{1}{4}}}-\frac{Q(y-1)}{\lambda 1+Q)} \frac{1}{\sqrt{2 \pi t}}\right\} \tag{69}
\end{equation*}
$$

(NB. $D_{-\frac{1}{2}}(0)=\Pi\left(\frac{1}{4}\right) / 2^{\frac{3}{4}} \pi^{\frac{1}{2}}$ ), which, although small because $t$ must be large, is cortainly of a greator ordor of magnitude than the classical solution.

A sketch of the complete temperature distribution is given in Fig. 2 the full line curves being calculated from equations 66 and 67 , whilst the dotted lines represent a plausible estimate of the behaviour of the tormerature in the regions where these asymptotic solutions fail. The classical solution is shown for comparison, and it can be seen how the deviations from this solution become more marked as $x$ increases. Fig. 3 is a skotch
of the wave front for two values of $t$ ( 50 and 100), and indicates horr its anplitude diminishes and how it becomes more diffuse as time incroases. These two effects arise from the dissipative actions of viscosity and heat conduction. In an actual case the non-linear tems in the equations describing the motion (which have boon neglected in our linearised treatment) would act to flatton the wave front even further. Both Fig. 2 and Fig. 3 have been drawm for a value of $Q=100$, which is roughly the magnitude of this quantity for an air to pyrex-glass contact. This is the setmp generally encountered in the use of thin-film platinum resistance thermometers in shock-tube work. The variation of interface tomporature from the classical value is far too small to appear on Fig. 2 with this particular value of $Q$ (vide cq. 68), so that Fig. 4 shows a slectch of $T\left(=\theta+T_{\infty}\right)$ at the interface plotted against time. A rather more accurate estimate of this value is made in Section 5.5. below and Fig. 4. is a plot of eq. 85 appearing there. It can be soen that for $t>100$ the dificrences betrocon actual and classical values of $T$ arc insignificant for all practical purposes. For conditions around N.T.P. the mean collision tine is of order $10^{-10}$ secs., so that no difforence from the classical solution would be obsorved for times greater than about $1 / 100$ th of a microsocond, which implies that the practical effects of compressibility in heat transfer at the interface cannot be rusolved experimentally.

### 5.4. The Prossure and Velocity Perturbations .

Further comment on the significance of the results obtainod above will bo given in the final section: we proceed now to consider the pressure and velocity perturbations which must arise in the gas. The linearised onorgy equation (13) in dimonsionless form is

$$
\begin{equation*}
\frac{\partial p}{\partial t}=\rho_{\infty} c_{p}\left\{\frac{\partial \theta}{\partial t}-\frac{\partial^{2} \theta}{\partial x^{2}}\right\} \tag{70}
\end{equation*}
$$

which gives

$$
\begin{equation*}
s \bar{p}=\rho_{\infty} C_{p}\left\{s \bar{\theta}-\tilde{\theta}^{\prime \prime}\right\} \tag{71}
\end{equation*}
$$

in the transform plane, provided $\bar{p}$ represents the transform of $p-p_{\infty}$. Eq. 42 then shows that

$$
\begin{equation*}
\bar{p}=p_{\infty} C_{p} B(s)(y-1) \sqrt{s} \frac{1+(y-1) s}{\sqrt{1+y s}} \quad \exp \{-s x / \sqrt{1+y s}\}, \tag{72}
\end{equation*}
$$

$B(s)$ having beon given in eq. 43. It is obsorvod that $\bar{p}$ can bo written as

[^0]$$
\left.\ddot{p}=\rho_{\infty} c_{p}\left\{\frac{1+(y}{1+y}=1\right) \mathrm{s}\right\} \tilde{\theta}_{2}
$$
where we wite $\bar{\theta}_{2}$ for the second tom in eq. 42 . Consequantily
$$
P-p_{-\infty}=-\rho_{\infty} C_{p} Q T_{\infty} \cdot I_{2}^{\prime}
$$
where $I_{3}^{\prime}$ is an integral exactly jike $I_{2}$ in eq. 44, except that its jntogranz is mulinlesd yy $(1+(\gamma-1) s)\left(1+\gamma_{s}\right)^{-1}$, i.e. an intogral 1.ac e1. 49 ytase jiteprand is mal iolied by $(y-1) / y+1 / y \omega^{2}$. It fotions that, vs'ug the steegest descents approach when $x$ is of ordor $t$ (i.c. fon $\delta$ "smali"), the filsit two terms of $I_{2}^{\prime}$ will be identical with the first two toms of $I_{2}$ and we can write directly
\[

$$
\begin{equation*}
p-p_{\infty} \approx \rho_{\infty} c_{p} \theta(x, t) \tag{73}
\end{equation*}
$$

\]

where $\theta(x, t)$ is given by eq. 67 .
By vory similar arguments we can infer that a first ordor estimato of $p-p_{\infty}$ for 2 sinall is

$$
\begin{equation*}
p-p_{\infty} \sim-\rho_{\infty} c_{p}(\gamma-1) \frac{Q T_{\infty}}{i+Q} \frac{1}{\sqrt{\pi(t-x)^{\prime}}} . \tag{74}
\end{equation*}
$$

The velocsty induced by the heat conduction processes can be found from the non-dimensional version of oq. 11, namely

$$
\begin{equation*}
\rho_{\infty} \quad a_{\infty} \frac{\partial u}{\partial x}=\rho_{\infty} C_{p}(y-1) \frac{\partial^{2} \theta}{\partial x^{2}}-\frac{\partial p}{\partial t} . \tag{75}
\end{equation*}
$$

It follows that the transform of the velocity $\bar{u}$ is given by

$$
\begin{equation*}
\rho_{\infty} \quad a_{\infty} \bar{u}=\rho_{\infty} C_{p}(y-1)\left(\bar{\theta}^{\prime}\right)_{0}^{x}-s \int_{0}^{x} \bar{p} d x . \tag{76}
\end{equation*}
$$

Making use of the previous results for $\bar{\theta}$ and $\bar{p}$ (eqs. 42 and 72 respectively) we find that

$$
\rho_{\infty} \mathrm{a}_{\infty} \overline{\mathrm{u}}=-\rho_{\infty} \quad \mathrm{C}_{\mathrm{p}}(y-1) \sqrt{\mathrm{s}} \mathrm{~B}(\mathrm{~s})\left\{\exp \left(-\mathrm{x} \sqrt{\mathrm{~s})}-\operatorname{expp}^{\left(-\mathrm{sx} / \sqrt{1}+y_{\mathrm{s}}\right)}\right\}\right.
$$

The first integral which must be ovaluated to find $u(x, t)$ is vory like $I_{\text {, }}$, in fact it is $I_{1}$ with the integrand multiplied by $\sqrt{s}$, and can be treated in a similar fashion. It is found to contribute an anount

$$
\rho_{\infty} \quad C_{p}(y-1) \frac{T}{\frac{T}{\infty}} \frac{e^{-x^{2} / 4 t}}{1+Q} \cdot \frac{e^{-1}}{\sqrt{\pi t}}
$$

to the whole value of $\rho_{\infty} a_{\infty} u$.

Inspection of the second torm in oq. 77 shows it to be similar to the $I_{2}$ form of intogral, the only difforence being that its intogrand will be that of $I_{2}$ divided by $\sqrt{1+y s}$, and the provious remanks made about $I_{2}^{\prime}$ follow here too. Thence we can write at once,

$$
\begin{equation*}
\rho_{\infty} a^{2} \mu \sim \rho_{\infty}(y-1) \frac{T_{\infty} Q}{1+Q}\left\{\frac{e^{-x^{2} / 4 t}}{\sqrt{\pi t}}-\frac{1 \ldots}{\sqrt{\pi}(t-x)}\right\} \tag{78}
\end{equation*}
$$

when x is simall, and when x is comparable with $t$

$$
\begin{equation*}
\rho_{\infty} a_{\infty} u \simeq \rho_{\infty} C_{p} \theta(x, t) \simeq p-p_{\infty}, \tag{79}
\end{equation*}
$$

$\theta(x, t)$ being given by eq. 67.
It is of interest to observe that the pressure, volocity and temporature perturbations in the region around the wave front are, to the accuracy of the solutions prosented here, exactly those for an infinitesimal isontropic simple wave, (vide eqs. 73 and 79). This is not surprising, since, in the linearisod solution, the irrevorsible offects of hoat conduction and viscosity are neglocted and, at the large times for which our solutions arc valid, the actual quantities of hoat conducted into and out of the wave front are small. This lattor statomont draws some support from the skotch of $\theta(x, t)$ in Fig. 2, which shows how flat the distribution of temporature is in this region. When $x$ is small, hovever, the isentropic character of the disturbances vanishes, as is evident from eqs. 74 and 78 .

Eq. 73 shors that the pressure perturbation is an expansion across the rogion $\mathrm{x} \sim \mathrm{t}$ followed by a gradual recormression as the intorface is approached. The velocity disturbance is oonsistent with this prossure distribution (sce eas. 78 and 79), and it is clear that as time incroasos the system approaches the classical heat conduction conditions of constant pressure and zero volocity.

### 5.5. Intorface Temperature and Conditions at Zero Time

Bofore going on to consider the $\sigma=0$ case we shall briefly examine the tomporature at the interface in a littlo groater dotail and also the conditions at time $t=0+$ 。

When $\mathrm{x}=0$, the transform solution for the termorature roducos to

$$
\begin{equation*}
\bar{\theta}(0 ; s)=-\frac{T_{Q Q}}{s} \quad \frac{1+(y-1) \sqrt{s} \sqrt{1+y_{s}}}{1+Q+(y-1) s+Q(y-1) \sqrt{s} \sqrt{1+y_{s}}} \tag{80}
\end{equation*}
$$

(see eqs. 42 and 43). Whence it follows that the wall temperaturc can be written as

$$
\begin{equation*}
T(0, t)=\frac{T_{\infty}}{2 \pi i} \int_{L} \frac{[1+(y-1) s] e^{t s}}{1+Q+(y-1) s+Q(y-1) \sqrt{s} \sqrt{1}+y s} \frac{d s}{s} \tag{81}
\end{equation*}
$$

$L$ is the usual inversion contour, but it can be deformed into a dumb-bell contour surrounding the brancin points at $s=0$ and $-1 / y$. Then $t \gg 1$ the integrand in 81 can be expanded in ascending powers of $s$, the first three significant terms giving
$T(0, t)=\frac{T_{\infty}}{1+Q}\left\{1-\frac{A}{\pi \sqrt{t}} \int_{0}^{t / y} e^{-y} \frac{d y}{\sqrt{\bar{y}}}+\frac{B}{\pi t^{3} / 2} \int_{0}^{t / y} e^{-y} \sqrt{y} d y\right\}_{(82)}$
where

$$
\begin{align*}
& A=\frac{Q(y-1)}{1+Q}  \tag{83}\\
& B=\frac{Q^{3}(y-1)^{3}}{(1+Q)^{3}}+\frac{Q(y-1)(3 y-2)}{2(1+Q)}-\frac{2 Q(y-1)}{(1+Q)^{2}} \tag{84}
\end{align*}
$$

The integrals in 82 are incomplete garma functions which, hovver, diffor a negligible amount from the complete values when $t \gg 1$ (vide Batoman, 1953 p.135). Consequently we can write

$$
\begin{equation*}
T(0, t) \simeq \frac{T_{\infty}}{1+Q}\left\{1-\frac{A}{\sqrt{\pi t}}+\frac{B}{2 \sqrt{\pi^{3} t^{3}}}\right\}, \tag{85}
\end{equation*}
$$

the next term being of order $t^{-5 / 2}$. It can be seen how complicated the coefficients are becoming, even in such a simple case as the present one.

Although the large time condition has been studied exclusively for the reasons stated in Section 4, it is of interest to look briefly at the small time predictions of continuum theory. Since the major departures from ambient conditions will arise when $x$ is small also for small times, we shall content ourselves with the interface values of $p$ and $\theta$ at time $t=0+$. These can easily be found from eqs. 72 and 42 by letting $s \rightarrow \infty$, whence

$$
\begin{align*}
& p(0,0)=-\rho_{\infty}\left(c_{p} / y\right)(y-1) T_{\infty} \cdot \frac{Q \sqrt{y}}{1+Q \sqrt{y}},  \tag{86}\\
& \theta(0,0)=-\frac{T_{\infty} Q \sqrt{y}}{1+Q \sqrt{y}} . \tag{87}
\end{align*}
$$

These results show that, initially, the density has not changed (N.B. $(C / y)(y-1)=R$, the gas constant, whence the constancy of density follows from the first of equations 1) and that the whole process bogins as if it is to be one taking place at constant volume. This laitor fact is apparent on observing the definitions of \& (eq. 34) and $k$ (eq. 14) when it can be scen that writing $Q \sqrt{y^{7}}$ is equivalent to redefining the diffusivity $k$ in terms of $C_{p} / y$, the specific heat at constant volumo. Eq. 87 then represents the classical heat conduction solution appropriate to this type of process. The continuum solution thus represents a transition between the two processes of heat conduction at constant volume and heat conduction at constant pressure.

Those remarks conclude our treatment of the $\sigma=\frac{3}{4}$ case and wo shall now examine the case $\sigma=0$ to see how it varies in its behavious from the results given above.

## 6. Solutions for $\sigma=0$

When $\sigma=0$ the solution 41 must be used. The constants $B^{\prime}$ and $C^{\prime}$ can be evaluated from conditions 33,34 and 36 and the solution for $\theta(x, t)$ expressed in the form

$$
\begin{gather*}
\theta(x, t)=\frac{Q T_{\infty}}{2 \pi i} \int_{L}\left\{\frac{\left(v_{1}+v_{2}\right)^{1 / 2}\left(1-v_{1}-v_{2}\right) e^{\alpha^{2}}-\left(v_{1}-v_{2}\right)^{\frac{1}{2}}\left(1-v_{1}+v_{2}\right) e_{1}^{\alpha} x}{\left.\left.\left(v_{1}+v_{2}\right)^{\frac{1}{2}}-\left(v_{1}-v_{2}\right)^{\frac{-}{2}}\right\}\left(v_{1}+v_{2}\right)^{\frac{1}{2}}+\left(v_{1}-v_{2}\right)^{\frac{1}{2}+0(1+y \sqrt{s})}\right\}}\right. \\
\frac{e^{s t} \frac{d s}{s \sqrt{s}}}{} \tag{88}
\end{gather*}
$$

where

$$
\begin{align*}
& \alpha_{1,2}=-\sqrt{s}\left(v_{1} \pm v_{2}\right)^{\frac{1}{2}} ; \\
& v_{1}=\frac{1+y s}{2} ; \quad v_{2}=\left[\left(\frac{1+y_{s}}{2}\right)^{2}-s\right]^{\frac{1}{2}} \tag{89}
\end{align*}
$$

Eq. 88 is a very unvieldy expression and even approximate evaluation of the intagrals seems impossible viithout first attempting sono kind of transformation which will simplify the exponential terms there. Fortunately the necessary transformations have been supplied by Cole and Thu (1952), but care must be taken in their application and accordingly somo uscful general observations about the integrals in eq. 88 will be mado here.

Closing the straight line contour $L$ to the right with a semi-circle, whose radius R will be allowed to approach infinity, it is found that the real parts of the exponential terms behave as follows. The torm in $\exp \left(\alpha_{2} x\right)$ bchaves like $\exp (t R \cos \phi),(N \cdot B \cdot s=R \exp (i \phi))$, and honoc contributes to $\theta(x, t)$ for all $t>0$, whilet the term in $\exp (\alpha, x)$ behaves like $\exp (R \cos \phi(t-\sqrt{y} x))$ and will be different from zero only when $x<t / \sqrt{y}$.

Referring to the definitions of the dimensionloss co-ordinatos $x$ and $t$, it can be seen that the line $x=t / \sqrt{y}$ indicates 2 velocity oqual in magnitude to the isothomal sound spocd $c_{0}=a_{c o} / \sqrt{y}$. Across this line, thorefore, there is a discontinuity in the representation of the solution $Q(x, t)$ and in fact Cole and "u have shown such lines to be characteristics of the " $\mu=0$ systorn" of equations which leads to the result 88 . Bearing in mind the romarks made above, we now aynly Cole's and Wu's transformations to 88 . Thero are two stages of tronsfomation. The first, comon to both terms of 88 consists of writing

$$
\begin{equation*}
y^{2} s=(1+b \omega)(1-b / \omega) \tag{90}
\end{equation*}
$$

where

$$
b=\sqrt{y-1},
$$

Whence eq. 88 becomes
$\theta(x, t)=-\frac{Q b \sqrt{y} P_{\infty}}{2^{\pi} i} \int_{C_{\omega}^{\prime}} \frac{\exp ^{\prime}(1-b / \omega)[(1+b \omega) t / y-\sqrt{1+b \omega} \cdot x / \sqrt{y}] / y^{2} \cdot\left(\omega^{2}+1\right)}{\omega^{2}+1+Q \sqrt{y}\left[\omega^{2} \sqrt{1-b / \omega}+\sqrt{1+b \omega}\right](1+b \omega)(1-b / \omega)^{\frac{1}{2}}} \cdot d \omega$

A possiblo contour $\mathrm{C}_{\omega}^{\prime}$ starts from $\omega=-\mathbf{i c o}$ and prococds tomards $\omega=i \infty$ passing to the right of the singularities of the integrends. These lattor are branch points at $\omega=0, b$ and $-1 / b$ and it can be verified that the $C_{\omega}^{\prime}$ cescribed above can be replaced by a contour which cones from $\omega=\infty \exp (-i \pi)$, loops around $\omega=b$ and returns to $\omega \exp (+i \pi)$. This second form of $\mathrm{C}_{\omega}^{\prime}$ will shortly bo found useful.

Bach integral in eq. 91 is now tackled separately. Taking the first of theso first, it should be noted that this is the $\omega-$ plane version of the "exp $\left(\alpha_{2} x\right)$ " integral in the $s m p l a n e$ which has boon shorm to contribute to $\theta(x, t)$ for all $t>0$. Since the second or "exp $\left(\alpha_{g} x\right) ;$ integral is zero for $x>t / \sqrt{ } y^{\dagger}$ the first integral in eq. 91 givos the whole solution for this condition. No now write

$$
\begin{equation*}
\omega=\left(\zeta^{2}-1\right) / b, \tag{92}
\end{equation*}
$$

which transforms the first integral of eq. 91 into

$$
\begin{align*}
& \text { - } \frac{d \zeta}{\zeta} \text {. } \tag{93}
\end{align*}
$$

The contour $C_{>}$in the ${ }^{5}$ oplane is illustrated in Fig. 5, the singularitios of the intogrand being branch points at $\zeta= \pm \sqrt{\gamma}$ and $\pm 1$ with a sirple pole at $\zeta=0$.

When $x<t / \sqrt{y}$ it is necessary to considor the contribution from the second, or $\operatorname{lexp}\left(\alpha_{\mathrm{f}} \mathrm{x}\right)$ " integral in eq. 91. Writing

$$
\begin{equation*}
\omega=-b /\left(\zeta^{2}-1\right) \tag{94}
\end{equation*}
$$

it can be shown that the integrand transforms into precisely the form given in eq. 93. The contour of integration for this second intogral will be different from $C_{>}$, however. Meking use of the second form of $C_{\omega}^{\prime}$ contour described above it can be show that an appropriate $\zeta$-plane contour joins the points ABCODIF on Fig. 5, in the order written. The points $\triangle$ and $F$ lie on the lower and upper halves of the branch cut between $\zeta=\sqrt{y}$ and 1 , just to the right of the singularity at $\zeta=1$. To find the solution for $x<t / \sqrt{y}$ it is now necessary to acd the integrals takon along $C_{>}$and the contour $L_{1}$ to $F$. Since their integrands are identical it is clear that the parts of $C_{>}$between $B C$ and $\operatorname{BD}$ are cancolled so that integration should take place along the new contour $C_{<}$which is illustrated in Fig. 5, (i.e. roplace the symbol > by < in oq. 93).

The difference between the contours which are necessary here and in the case treated by Cole and Wu is apparent. As will be shortly scen, and as may be inferred from their rosults, the difference is associated with the presence of wave-like phenomena in the region $x<t / \sqrt{y}$ as well as when $x>t / \sqrt{y}$.

## 6.1. $\theta(x, t)$ for $x<t / \sqrt{y}$ and $t$ large

The part of $\mathrm{C}_{<}$to the left of $\zeta=1$ can be deformed into the $\operatorname{In} \zeta_{5}$ axis, retaining the indentation at $\zeta=0$, of course. This lattor part of the contour is thon a semi-circle and contributes an amount $\propto T_{c d}(1+Q)$ to $\theta(x, t)$ for $x<t / \sqrt{y}$. Writing $\operatorname{Im} \zeta=\eta$ and

$$
\left[\left(\eta^{2}+y\right) /\left(\eta^{2}+1\right)\right]^{\frac{1}{2}}=f ; \quad Q \sqrt{y}=Q^{\prime}
$$

for brevity, the remaining contribution to $\theta$ from $C_{<}$reduces to the roal integrals

$$
\begin{align*}
& \frac{2 Q^{\prime} T_{\infty}}{\pi} \int_{0}^{\infty} \frac{f\left(f+Q^{\prime}\right)+\eta^{2}\left(1+f \Omega^{\prime}\right)}{\left(f+Q^{\prime}\right)^{2}+\eta^{2}\left(1+2 Q^{\prime}\right)^{2}} \sin \left(\frac{x \eta}{y^{3} / 2} \cdot f^{2}\right) \\
& -\frac{\left.\left(f+Q^{\prime}\right)-\frac{f\left(1+f Q^{\prime}\right)}{\left(f+Q^{\prime}\right)^{2}+\eta^{2}\left(1+f Q^{\prime}\right)^{2}} \quad \eta \cos \left(\frac{x \eta}{y^{3} / 2} f^{2}\right)\right\} \exp \left(-\frac{t \eta^{2} f^{2}}{y^{2}}\right) \cdot \frac{d \eta}{r f}}{} . \tag{95}
\end{align*}
$$

When $t \gg 1$ the principal contribution to the integrals 95 comos from the region $\eta \sim 0$. In fact $\zeta=0$ and $R e \zeta=0$ are a saddle point and steepest path for the original integral, as can be easily verificd. In this case $f \approx \sqrt{y}$ and the expression 95 is approximately

$$
\begin{align*}
& \frac{Q T_{\infty}}{1+Q} \cdot \frac{2}{\pi} \int_{0}^{\infty} e^{-t \eta^{2} / y} \sin (\eta x / \sqrt{y}) \eta^{-1} \\
& \mathrm{~d} \eta  \tag{96}\\
&+\frac{(y-1) Q^{2} T_{\infty}}{\sqrt{y}(1+Q)^{2}} \cdot \frac{2}{\pi} \int_{0}^{\infty} e^{-t \eta^{2} / y} \cos (\eta x / \sqrt{y}) \mathrm{d} \eta
\end{align*}
$$

In more familiar terms, the part of $C_{<}$to the left of $\zeta=1$ contributes

$$
\begin{equation*}
-\frac{Q T_{\infty}}{1+Q}\left\{1-\operatorname{erf}(x / 2 \sqrt{t})-\frac{Q(y-1)}{1+Q} \quad \frac{\exp \left(-x^{2} / 4 t\right)}{\sqrt{\pi} t^{1}}\right\} \tag{97}
\end{equation*}
$$

to $\theta(x, t)$. The errors in 97 are negligible when $t \gg 1$ provided $x$ is not too near $t / \sqrt{y}$.

The solution for $x<t / \sqrt{y}$ is completed by evaluating the integral 93 along the contour ABFF. The circle surrounding $\zeta=\sqrt{y}$ contributes zoro to $\theta$ in the limit as its radius approaches zero and writing Re $\zeta=\xi$, the straight line parts of the contour yield

$$
\begin{gather*}
-\frac{2 Q \sqrt{y} \prod_{\infty}}{\pi} \int_{1}^{\sqrt{y}}\left(\frac{\xi^{2}-1}{y-\xi^{2}}\right)^{1}\left[\frac{\xi(\xi+Q \sqrt{y})\left(\xi^{2}-1\right)+\left(y-\xi^{2}\right)(1+\xi Q \sqrt{y})}{\left(\xi^{2}-1\right)\left(\xi+Q \sqrt{y^{2}}\right)^{2}+\left(y-\xi^{2}\right)(1+\xi Q \sqrt{y})^{2}}\right\} \\
\quad \exp \left[\left(\frac{y-\xi^{2}}{\xi^{2}-1}\right)\left(-\frac{t \xi^{2}}{y^{2}}+\frac{x \xi}{y^{3} 2}\right)\right] \cdot \frac{d}{\xi} \tag{98}
\end{gather*}
$$

This integral can be transformed to an infinite one by substituting

$$
\vec{\xi}^{2}=\frac{y^{2}+y}{y^{2}+1}
$$

whence, writing

$$
\left[\left(y^{2}+y\right) /\left(y^{2}+1\right)\right]^{\frac{1}{2}}=g \quad ; \quad Q \sqrt{y^{\prime}}=Q^{\prime}
$$

for brevity, we have

$$
\begin{equation*}
-\frac{2 Q^{( }(y-1) T}{\pi} \int_{0}^{\infty}\left\{\frac{g\left(g+Q^{\prime}\right)+y^{2}\left(1+Q^{\prime}\right)}{\left(g+Q^{\prime}\right)^{2}+y^{2}\left(1+g^{\prime}\right)^{2}}\right\} \frac{\exp \left[-y^{2}\left(\frac{\operatorname{tg}^{2}}{y^{2}}-\frac{x g}{y^{3 / 2}}\right)\right]}{\left(y^{2}+1\right)\left(y^{2}+y\right)} d y \tag{99}
\end{equation*}
$$

Once again this integral has a significant contribution mainly near $y=0$ when $t \gg 1$ and this, to a first order, is

$$
\begin{align*}
-\frac{(y-1)}{\sqrt{y}} \quad \frac{Q T_{\infty}}{1+Q} & \frac{2}{\pi} \int_{0}^{\infty} \exp \left[-\left(\frac{t}{y}-\frac{x}{y}\right) y^{2}\right] d y \\
& =-\frac{(y-1) Q T_{\infty}}{1+Q} \cdot \frac{1}{\sqrt{\pi(t-x)}} . \tag{100}
\end{align*}
$$

The orrors are small so long as $x$ is not too near $t \sqrt{y}$, for $t \gg 1$.
The whole solution for $x<t / \sqrt{y}$ is made up from the suan of the exprossions 97 and 100, namely
$\begin{aligned} & \theta(x, t) \\ & x<t / \sqrt{y}\end{aligned}-\frac{Q T_{\infty}}{1+Q}\left\{1-\operatorname{erf}(x / 2 \sqrt{t})-\frac{Q(y-1)}{1+Q} \frac{\exp \left(-x^{2} / 4 t\right)}{\sqrt{\pi} t}+\frac{(y-1)}{\sqrt{\pi}(t-x)}\right\}$.

To a first ordor of approximation then, this solution is idontical with the "small $x^{11}$ solution for $\sigma=\frac{3}{4}$, as can be scen from eqs. 101 and 66, despite the apparently very different exact solutions (eqs. 4\%: and 88). It is worth noting that there does exist a certain similarity betwoen the contours which have been used to obtain these results, horrovor. Differencesbetween the $\sigma=0$ and $\frac{3}{4}$ cases would arise in highor ordor terms than those presented here, but these differences are clearly of no great physical significance at largo times.

It is purhaps a little surprising that the agreement botwoon the two scomingly so different cases should bc as good as has just been demonstrated here; in fact we shall find that it is not quite so good when the $x \sim t$ regions are compared. The "small $x$ " region is one in which diffusion offocts predominate, however, and presunably Prandtl number is of less significance in these circumstances.
6.2. $\theta\left(x_{2} t\right)$ for $x>t / \sqrt{y}$ and $t$ large

To examine $\theta(x, t)$ in the region $x \sim t$ write

$$
x=t+\delta
$$

so that the exponential term in eq. 93 bocomes

$$
\begin{equation*}
\exp \left[\left(\frac{\zeta^{2}-y}{\zeta^{2}-1}\right) \cdot \frac{\zeta_{t}}{y^{2}}(\zeta-\sqrt{y})|\cdot \exp |-\frac{\zeta^{\delta}}{y^{3} / 2}\left(\frac{\zeta^{2}-y}{\zeta^{2}-1}\right)\right] \tag{102}
\end{equation*}
$$

When $t \gg 1$ and $\delta$ is small the method of steepest descents can be used to ind an appropriate integration contour which has a rapidly decreasing value of the first exponential factor in in expression 102 along its, length. A saddle point for the function of $\zeta$ in this term is $\zeta=\sqrt{y}$ and the steepest path of descent lies between this point and the points $\zeta=\sqrt{y} / 2 \pm i \infty$. A small semi-circular indentation of this path is necessary to avoid the singularity at $\zeta=\sqrt{y^{1}}$, which occurs in eq. 93 , but this contributes zero to the final value of $\theta(x, t)$. It can be verified that the steepest path with this indentation is equivalent to $G$. Writing

$$
\begin{equation*}
\zeta^{2}\left(\zeta^{2}-\gamma\right)(\zeta-\sqrt{y})\left(\zeta^{2}-1\right)^{-1}=-\phi^{2}, \tag{103}
\end{equation*}
$$

and thereby defining the real variable of integration $\phi$ on the steepest path, it is observed that expansion of $\zeta$ in ascending powers of $\phi$ begins

$$
\begin{equation*}
\zeta=\sqrt{y} \pm i \sqrt{\frac{y-1}{2 y}} \phi+\ldots \tag{104}
\end{equation*}
$$

The upper sign in 104 refers to the upper half of the path and vice versa.
The first order estimate of eq. 93 when $\mathrm{x} \sim \mathrm{t}$ and $\mathrm{t} \gg 1$ can now r be written as

$$
\left.\theta(x, t) \sim-\frac{Q T_{\infty}}{1+Q} \cdot \frac{2^{\frac{1}{4}}(y}{\sqrt{y}}-1\right)^{\frac{3}{4}} \frac{1}{\pi} \int_{0}^{\infty} e^{-t \phi^{2} / y^{2}} \cos \left(\frac{\sqrt{2} \delta \phi}{y(y-1)^{\frac{1}{2}}}+\frac{\pi}{4}\right) \frac{d \phi}{\phi^{\frac{p}{2}}}
$$

Putting

$$
\mathrm{t} \phi^{2} / y^{2}=\mathrm{y}^{2} / 2 \text { this becomes }
$$

$$
\begin{equation*}
\theta(x, t) \sim \quad-\frac{Q T_{\infty}}{1+Q} \cdot \frac{(y-1)^{\frac{3}{4}}}{t^{\frac{1}{4}}} \cdot \frac{1}{\pi} \int_{0}^{\infty} e^{-y^{2} / 2} \cos \left(\frac{\delta y}{\sqrt{(y-1) t}}+\frac{\pi}{4}\right) \frac{d y}{\sqrt{y}} \tag{106}
\end{equation*}
$$

which is recognizable as the parabolic cylinder function form found in Section 5.2. In other words

$$
\begin{equation*}
\theta(x, t) \sim-\frac{Q T_{\infty}}{1+Q} \cdot \frac{(y-1)^{\frac{3}{4}}}{\sqrt{2 \pi^{7}} t^{\frac{1}{4}}} \exp \left(-\delta^{2} / 4(y-1) t\right) D_{-1 / 2}(\delta / \sqrt{ }(y-1) t) \tag{107}
\end{equation*}
$$

a result which should be compared with the first term of eq. 67 in Section 5.3. They are seen to be identical if $y t$ in eq. 67 is replaced by $(y-1) t$.

When $\mu=0$ then, the form of the disturbance in the regions around the wave front is the same as in the more practical cise for which $\mu$ is retained, but the shape of the disturbance is much sharper at a given $\delta$ and $t$. This is hardly surprising, since in the $\sigma=0$ case the dispersive effects of viscosity are absent. It appears from the results 107 and 101, when compared with the corresponding $\sigma=\frac{3}{4}$ solutions, that the $\mu=0$ approximation is indeed not as drastic as might be supposed in the first place, provided $t$ is large enough. Also the effects of Prandtl number seem to be of most importance in the wave-front zone and of little significance near to the interface, certainly as far as temperature is concermed.

### 6.3. Pressure and Velocity Disturbances

The disturbance to the initially uniform pressure and velocity fields can be found in a similar manner to the $\sigma=\frac{3}{4}$ case, although by reason of the condition $\mu=0$ here, the velocity problem is in fact somewhat simpler to solve. We will not give the details here to avoid wearisome repetition, but merely quote the results.

Thus it is found that, when $x<t / \sqrt{y}$ and $x$ is not too nearly equal to $t / \sqrt{y}$

$$
\begin{equation*}
p-p_{\infty}=-\rho_{\infty} G_{p} \frac{Q T_{\infty}}{1+Q} \frac{(y-1)}{\sqrt{\pi}(t-x)^{2}}, \tag{108}
\end{equation*}
$$

whilst when $\mathrm{x} \sim t$

$$
\begin{equation*}
p-D_{0} \simeq \rho_{\infty} C_{p} \theta(x, t) \tag{109}
\end{equation*}
$$

$\theta(x, t)$ being given by eq. 107.
Eq. 108 is identical with eq. 74 and 109 is the equivalent of the result 73 , to which it reduces if $(\gamma-1) t$ is replaced by $\gamma t$.

Likewise, the velocity $u$ is exactly the same as eq. 78 when $x<t / \sqrt{y}$ and a result equivalent to 79 is obtained when $x \sim t$. To the oider of accuracy of these results, the similarity between the $\theta(x, t)$ values for $\sigma=0$ and $\frac{3}{4}$ is retained for the other flow variables therefore.

It can also be shorm that the $t=0+$ values of $\theta$ and $p$ are identical in the two cases, so that the transition from constant volume to constant pressure heat trensfer occurs when $\sigma=0$, too. Some idea of the extent of the difference between the tro sclutions at the interface for large $t$ can be gained by conmaring eq. 85 with the corresponding result for $\sigma=0$. In the latter case $\mathbb{T}(0, t)$ is given by an equation exactly like 85 in which the coefficient $B$ is now

$$
B=\frac{Q(y-1)}{2(1+Q)}\left\{y\left(\frac{3-y}{y-1}\right)+3+\frac{3(y-1) \Omega}{1+Q}\right\} .
$$

For typical values of $y$ and $Q$ of 1.4 and 100 , $B$ above equals 1.94 whilst $B$ in eq. 85 equals 0.49 , but, since the result is only valid when $t \gg 1$, the effect of this difference on $T(0, t)$ is very small.

The difference between the $\sigma=0$ and $\sigma=\frac{3}{4}$ cases has beon found to be very small at large times, the principal effects arising in the wave front region where viscosity acts to disperse the disturbance more rapidly than can be accomplished by conduction alone. Consequently the intuitive feeling, expressed in Section 4 (ii), that the omission of viscosity will still lead to a reasonable picture of the flow field has received some support in this case. Putting $\sigma=0$ does not simplify the problem, however.

## 7. Conclusions

The processes which take place in a gas, initially in a uniform state, when it is placed in sudden contact with a solid at a different temperatuce have been examined for two values of Prandtl number, namely $\frac{3}{4}$ and zero. The characteristic time for the establishment of the resulting flow has been found to be of the order of the mean time betreen collisions of the gas molecules whence, since tho formulation treats the gas as a continuum, the main effort has been concentrated on finding solutions valid for large times.

In these circumstances it has been found that the flow field divides into two regions in a rough sense. Some distance from the interface the disturbances propagate out into the gas as a wave motion travelling at the ambient isentropic sound speed (in this linearised treatment), upon which are superimposed the dispersive and dissipative effects of viscosity and heat conduction. When the gas is intiolly hotter than the solid the wave front is of an expansive character which tends to flatten as time proceeds. If the gas should be colder than the solid initially, the wave front will represent a compression. This front will still flatten and decay with increasing time in the linear theory presented here, but in practice non-linear convective effects will oppose these processes and a shock wave may be expected to appear.

In the regions near to the wall the heat diffusion processes dominate, but, as the temperature of the gas changes, corresponding changes of pressure and velocity will occur and these give rise to a wave motion which is superimposed on the main process of diffusion.

The build up of the flow field can be explained as follows. Assuming the gas to be hotter than the solid, at the initial instont, the layer of gas molecules irmediately adjacent to the wall lose some of their energy and momentum to the solid, but as yet there has been no time for any appreciable mass motion of the gas to occur and the density remains at its ambient value. The pressure pulse so produced then begins to propagate out into the gas, dropping the gas temperature below that which could be attained as a result of heat diffusion alone, and accelerating the gas towards the interface. Since the solid is impermeable, this motion must be resisted
and the gas will recompress more and more as the interface is approached. This recompression will give rise to some reheating of the gas and the temperatures near the wall will begin to rise back towards the values appropriate to pure heat conduction at constant pressure. Molecular velocities cover the whole range of magnitude from zero to infinity, so that changes such as those arising at the interface can be signalled to the furthest comers of the flow field instantaneously. However, the strength of this signal and the extent to which the gas will react to it at any given point depends on the muber of molecules which reach the point with the necessary information. Significant changes in gas properties are expected to occur only when a bulk of the molecules from an affected region reach the point in question therefore. In other words the bulk of the disturbance must travel at some average molecular speed, which is the meaning of the isentropic sound speed here.

It seems clear from the results derived above that the compressibility effects are very small near to the wall for times of order, say, 100 collision intervals from the start of the processes. Experimental. observation of wall temperatures could hardly be expected to reveal them, therefore, since it is difficult to resolve times of less than about 0.01 microsuconds, in which interval most of the effects have vanished. If an experimental set-up equivalent to the theoretical model studied here could be devised, however, it may be possible to see the wave front. Reflection of a shock wave from the closed end of a conventional shock tube would not be an adequate experimental model with which to examine the predictions of the present theory, since the shock wave itself is a front extending over a few moleculor mean free paths, across which the gas properties change to their new values. The instantaneous initiation condition demanded by the present theory would therefore be lost, and furthermore interaction between the reflected shock wave and the heat-transfor-induced pressure disturbances would arise to complicate the picture.

It seems plausible to suggest, however, that even in this more complicated problem the "ideal" inviscid shock reflection state would be pretty well established in about the same time interval as it takes for the convtant pressure heat transfer state to arrive in our simple theoretical model. This conclusion is not without significance, since it follows that the reflected shock technique may perhups be used to produce a slug of hot gas which can then be employed to study other important properties of gases. By these we mean the effects of molecular structure, which have been explicitly excluded fron the present work. Thus, for example, excitation or de-excitation of the vibrational modes of diatomic molecules is known to take scveral thousand collisions, so that any effects which may arise as a result of this relatively long reloxation time could be examined in the reflected shock region on the assumption that compressibility effects behind the shock wave are negligible. The simple theoretical model of a semi-infinite gas and solid may then be adequate for a study of, say, interface temperatures in such a relaxing gas, the pressure being substantially constant.

The witer wrould like to thank Mr. G. M. Lilley for numerous helpful suggestions during the course of the work described above and, indeed, for pointing out that the $\sigma=\frac{3}{4}$ case could be solved.
8. References

| Bateman, H. (1953) | Higher Transcendental Functions.? MoGraw Hill Book Co. Inc. ITow Zorl. |
| :---: | :---: |
| Cole, J.D. and (1952) Wu, T.I. | Joumal Applied Mechanics. 19, 209. |
| Hanin, M. (1957) | Joumal Math. \& Phys. XXXVI, 3. 234 |
| Lagerstrom, P.A., | Problems in the Theory of Compressible |
| Cole, J.D., (1949) | Fluids. |
| Trilling, L. (194) | GAICIT Report N6-ONR. |
| Miller, J.C.P. (1955) | Tables of Weber Parabolic Cylinder Functions. <br> H.M.S.O. Londan. |
| lormison, J.A. (1956) | Qtly. App. Maths. XIV. 153 |



FIG. I. CONTOUR USED TO EVALUATE I 2 WHEN $t$ is LARGE AND $x / t$ SMALL
$\delta=x-t$


FIG. 3. SHAPE OF THE WAVE FRONT; TEMPERATURE vs. 6 AT TWO VALUES OF $t$


FIG. 2. COMPARISON OF CLASSICAL AND ACTUAL TEMPERATURE DISTRIBUTIONS AT $t=50 \quad Q=100$


FIG. 5. CONTOURS $\mathbb{I N}$ THE $\zeta$ - PLANE


FIG. 6. SKETCH OF THE CONSTANT-PRESSURE TEMPERATURE PROFILES (Not to Scale)


[^0]:    * In the ovont that the gas is initially colder than the solid ( $T_{\infty}<0$ ) the wave front is one through which temperature increases. In that evont the non-linoar convective effects vill countoract the dispersive effocts of viscosity and heat conduction and tho wave front will tond to romain stoep, i.c. it will be a shock wave whose strongth will depend on $T_{c o}$ and $Q$.

