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SUf IIARY 

The flow induced by the sudden contact between a semi-infinite 
expanse of gas and a solid, initially at different temperatures, is 
examined an the basis of a linear continuum theory. For times large 
compared with the mean time between molecular collisions in the gas, 
the velocity ,uid pressure disturbances are found to be concentrated 
around a wave front propagating out from the interface at the ambient 
iscntropic sound speed, whilst, near to the interface, these disturbances 
are small and the gas temperatures are nearly equal to those predicted 
by the classical constant pressure heat conduction theory. 

The possible significance of these results in connection with 
reflected shock wave techniques to measure high temperature gas 
properties is commented upon. 
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LT7 OF SI7POLS 

a 	Ison b-c;ic sound speed 

Isothorn.al sound speed 

C 	Spc c:If1c heat at constant pressure 

Dn 	
Ubber parabolic cylinder function of order n 

erf 	Error function 

h Specific enthalpy 

p 	Pressure 

4 	EnerLy flux vector 

Ratio of thermal properties 

R 	 Gas constant per unit mass 

Specific entropy or Laplace transform variable 

t Time 

T 	Gas temperature 

u Velocity 

x 	 Distance 

Y 	Ratio of specific heats 

6 	 Temperature difference, T - 11,3  

Diffusivity 

Conductivity 

Viscosity 

Kinematic viscosity 

P Density 

cr 	Prandtl nuiAber 

T 	Shear stress tensor 

Suffixes 

Initial conditions in the gas 

m 	Refers to value in the solid 

Other symbols are defined in the text 
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1. Introduction 

The conduction of heat in a cam. 2ressible as will in c;eneral "ee 
accompanied by changes in the ;as 1ressure, density and velocit. It 
is the purpose of the present work to study these changes for the 
particular case of the sudden contact between a semi-infinite solid and 
semi-infinite gas, initially at different uniform to. ,)eratures. 

This simple theoretical mo•lel would be difficult to achieve in 
practice, but something approaching this situation is found when a shock 
wave reflects from the closed end vall of a conventional shoe tube, 
and it is hoped to gain some idea of what may happen in this Lore 
complicated ease from the present study, The inter.:st in reflected shock 
wave zones arises from the ease with which a saleple of has at a hl.gh 
temperature can be produced by this process, and the resulti:e.,i; possibility 
that measurements of the gas properties under these conditions ca..1 then be 
made. 

The question of the compressibility effect on heat concir.ctien has 
been examined. previously by Cole andl7u (1952) for th& case of the Dinec 
heat pulse, but these writers have made the assumption that ::,as viscosity 
can be neglected. It will be shown below that viscosity can be included, 
however, provided that Prandtl number equals 3/14-. Like Cole's 	Wu' s, 

the present treatoent is based on the assumption of small oistor"._:,:ncer, 
so that linear equations can be derived. To avoid over-co.iplicat-2on at 
this stet-se the gas is assumed to consist of structureless particles, 
i.e. to be monatomic and unexcited electronically, and to be 7,2erfect 
both thermally and calorically. Although i'rand.t1 number equal_ to 3/14. 
is a most practical state of affairs, and. the solutions are oulto readily 
obtained in that event, the zero Prandtl number case is also exaLlined 
here in ai e.--tempt to assess how drastic the zero viscosity assumption 
will be. The gas is treated as a continuum, and, since the characteristic 
time for the processes to be studied turns out to be comparale with the 
mean time between molecular collisions, we are effectively lleaited to a 
consideration of "large time" solutions only. 

Reference will be made in later sections to the "classical solution" 
of the sudden contact problem. This solution treats the gas as a solid 
and assumes at the outset that only its tennorature 	chalige subsequent 
to the initial instant, the pressure (or density) remainini-_,-  constant. 
Gas velocities are also assumed to be zero throughout. It is one of 
the results of the present analysis that the classical constant -3ressure 
solution is a-oproached asymptotically vrith increasing tive in the 
re,71ens near to the interface. To assist in the interpretation of these 
results, a sketch of the classical solid-to-solid contact te:iperat-ure 
profiles is given in Fig. 6. 



- 2 - 

2. The Equations 

The gas is assumed to be thermally and calorically perfect so that 
its pressure p, density P temperature T and specific enthal-ay h are 
related as follows, 

p = PRT 	 h = C T 	 (1 ) 

R is the gas constant for unit mass and C the (constant) specific heat 

at constant pressure. 

The continuity equation is 

DP
n 

au 
Dt 	" 17c = 0 , 	 (2) 

(where D/Dt = aptt ua/ax for the one-dimensional inasten. -iroblem), 
but a more convenient form for present purposes can be derived_ by writing 
first of all 

DP Cp) 
D. 

(ap Ds  
Dt )5; 	Dt 

s is the specific entropy and 

(e..E) = a. 
s  

where a is the usual isentropic sound speed. The derivative (DP/as) 

is readily evaluated for a gas with the simple thermodynamics described 
in eq.(1) and we find that 

)1 	
= -(y - 1)A T a-2  . 	 (5) 

1) 

( y is the (constant) ratio of specific heats). Writing q for the heat 
flux and r for the viscous part of the stress tensor, the energr equation is 

( 3) 

(4) 

PC DT 
p 	- Dz 

- 
Dt (6) 

Conibined with the thermodynamic equation Tds = dh -P-ldp, eq. (6) shows that 

	

Ds n 	au PT 	= 	ax 	T arc (7) 



It follows at once thLt the continuity equation can be written as 

a + 
Dt 

au 
Pa 	+ (y -1) 	̀5x̀  ax tri 

The heat flux and viscous stress are assumed to have their usual 
values 

= x .
ax T = 4 bi 	au 

3 	ax 

so that eqs. 6 and 8, coupled lath the momentum equation 

n  Du j. 	ar 
Dt ' ax ax = 0 

constitute three equations for the unknowns p, u and T. 

Ve shall now assume that all of these three unknown quantities 
differ but little from their undisturbed values, the undisturbed state 
being defined as one of uniform pressure pc°  and temperature Tcy, 

and zero velocity, over the whole of the region of interest. Then the 
equations can be linearised by neglecting all terns involving squares 
or products of disturbance quantities, leading,  to the following three 
equations. 

p 	 P2 0 m at 	3x 	3 	ax2 	
= 

 

3T 	 a2T 
r, 0 	 = 
a) p at — at 	axe 

AP + 
at 

2 au 
-67c  - 	I) xn co 	co 

32T 

ax2  

Since ire shall be interested in i?roblems for which boundar; values 
are expressed mainly in terns of teamerature, a single equatia ,  satisfied 
by T alone will be derived from eqs. 11 to 13. The thermal Oifftsivity 
and kinematic viscosity v are defined as 

K = ; V = 0) 

co 

and the Prandtl number 0-  as 

= cr rc 
	

(15) 



The equation satisfied by T is then 

 

a2 T 

axe  

b 	Cr K 2 

J. 

a4T 
ax4 

1 	3 
K at a, 

 

••• 
F7 2  

2 

I 	
2 	 2 

4fT 17 	Y 	F?2T`'0
2T 

Ma. 

I. a. 	 Ox2  
= 0 • (16) 

3. ate  Prf."-slam 
mesa, 

At this stage it is conve7ient to formulate the actual problen to 
be tac,cled. The gas, whose t=r,::ature is to sf-tisfy eq. 16, is assumod 
to occupy the half-17-...ne x > 0 and to be at rest at unIfurm Ixessure pea  
and twperature Tc. for all t 0. At time t = 0 a semi-infinite solirl, 

which has been at a uniform temperature T 	for all t < 0, iS placed in 

contnet with the gas along the plane x = 0. The solid then occupies the 
halt''-plane x < 0. Withuut any loss of generally T can be set equal 

to zero. Su'osequent to time t = 0 the. temperature Tm  of the solid is 

assumed to satisfy the classical heat condpr.tion equation 

aT
m .. 

a2Tm K
m 	

-' 	= 0 $ 	 (17) at ax 

where K m  is the appropriate diffusivjty, (assumed constant hr_:re). 

A new te,lperature e is defined for the has such that 

e = T - Tm • 	 (13) 

The initial conditions then become 

	

Tm  = 0, t < 0, x < 0 ; 
	0 = 0, t < 0, x > 0 . 	(15) 

Compatibility of teinperature and heat flux at the interface re, uire 
aT 

1m 	 " m x 2  

	

6 + T 1  t > 0, x = 0 ; 	m-a---  — 	-9  x - 00 ax 9 t > 0, x = 0,M  = m 

	(20) 

there Am is the (constant) thermal conalctivity of the soliC1  and trio 

further conditions arc 

Tm '• 0, x 	- 	t > 0 ; 0 	0, x 4+00 	, t > 0. 	 (21) 



and 
( K

m 
a2T 

0 	 (25) 
aT. m  

3 'V K 	ax' 2 
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L further revirera:nt is that the gas velocity u shall be zero at 
x = 0 for all time, since the solid is Lopermeable. This condition can 
be translated into a temperature condition at x = 0 via eqs. 11 to 13 
by eliminating p and all derivatives of u which contain operations involving 
a/ax in terms of T (or what amounts to the same thing,0), leaving an 
expression for a2A/at2  in terms of derivatives of 0 . Then, since u = 0 
when x = 0 and t 0 we have also 02u/at2  = 0, x = 0, t > 0 and it 
follows that 

(22)  

The conditions 19 to 22 inclusive are sufficient to specify the 
problem. Before proceeding, with a solution, however, the couations will 
be written in dimensionless form according to the definitions 

t = K t' 

a2 X = K XI  

aco (23)  

Then we have to solve 

a 	 ate 
	2..ixo 646  

a t' 	ati 2 
	

ax' 2 
	

3 ax" 

Ci 	y + 4 013) 12 8 
	

a2e 	= 0 	(24-) 
xl 2 	 3 ti 2 

	
a Xi 2  

a26 	 646  

axat .. 	2 ax'at 

K 03 0 
• - 

a X3  

 

a3e 

axat2  3a2 

subject to the conditions 

T1.1 = 0, tl < 0, 	<0 	 = 0, 	< 0, x' > 0, 	(26) 

Tip = 0 + T in 	CC; , t

i  > 0, Y! = 0 ; ( --1-11X  ) 	

aTm 
x 	ax/ 	

ae 
= 	7 , , t' > 0, Xf  = 0, 

(27) 

Tm . 0, x' , - ca , t( > 0 ; 6 . 0, 	JE' 4 +CO , t' 
 > 0, 	 (28) 

a20 	Az  cr. 	4 e 	a3o 	
+ LE 

a3  °--  
= ) 	x' = 0, t' > 0 

ax'ati 	3  ale3ati 	 3 	axi ati2  
(29) 



In subsequent sections we shall emit the primes from x and t 
for brevity, since from now on we shall work exclusively in the dimensionless 
co-ordinates. 

4. 	Lmlace Transform Solutions 

The Laplace transform with respect to the dimensionless tine t 
will be denoted by a bar (-) over the appropriate symbol, e.g. 

(x ; s) e(x, t) oxp(-st)dt. 

(Entropy will not be needed in subsequent discussions so that from 
now on s rofers to the transform variable). 

With conditions 26 (expressing initial quiescence) the operational 
forms of eqs. 24_ and 25 are 

-( iv) 	 I ycr 

o 	 ( I + 	 S 6" (s 	(y -4,-;:)52 ) s3 
V = 0 s 	(30) 

T" 	- (5 K/)TM  = . 
M  (31) 

(Primes denote differentiation with resnect to x). 

Eq. 31 can be solved at ance )with the appropriate condition from oq,28, 
to give 

Tm 	= A(s) exp ((s 	)2x), 	 (32) 

where A(s) is a function of s to be found from the bounartry conditions. 

Conditions 27 and the second of 28 in transform form are 

6 (0 	s) = A(s) 	T s 	; A Q 	= ei(0 ; 0) 	s (33) 

where we have written 

X211  

\

I-  
Q . 	 (34) 

In 

The transforn versions of the remaining conditions28 and 29 are 

(x ; s) 	0 , 	 (35) 

s(1 + 	ez - (1 -i..-3)-12- 13) em 
 

= 0, x = 0 , 	 (36) 



and the problela is now reduced to that of finding a solution of ea. 30 
subject to conditions 33, 35 and 36. 

appropriate solution of eq. 30 is e exp(an 
x) where a

n 
is any one of the four roots of the auxiliary biquadratic equation 

(1 + 4.y6 s/3)a4 	s(1 + (Y + 40/3)5)M2 
	

S3  . 0 . 	(37) 

The general solution of this equation could be written down, but 7mIlld 
give formidable values for the an. Instead we shall consider two 
special cases. 

(i) 	a- /4- 	• 

1.7hen a' - 	eq. 37 factorises quite simply and gives the four 
solutions 

1 
a 	±ds 
	

s( 1 + Ys)  2 
	

(38) 

Condition 35 excludes the solutions with positive signs and it follows 
that the most general solution of eq. 30 subject to this reruireilJent is 

e (x ; s) = B(s) ex.p(- s`x) + C(s) err - s(1 + ys)- x). (39) 

The value for cs-  is not far from the accepted value for a nu:lber of 

interesting gases, air for example for which o= 0.72 is quoted, so that 
the solution 39 should give a plausible description of the physical icturc. 

( ii) 	6 = 0. 

This not very practical value of the Prandtl number co orewlends to 
the solution for which c is assumed to have a suitable finite, non-zero 
value whilst the viscosity g is set equal to zero. Physically, of course, 
this is quite inadmissable but it is argued that the effects of heat 
conduction and viscosity are similar, so that a reasonable physical 
picture should be obtained by ignoring one of them altogether. This is 
rather like saying that Prandtl number is of order unity so that we shall 
approximate to its effect by putting it equal to zero - but there does 
seem to be an iptuitive feeling that the physical picture should be 
retained despite this. Accordingly we shall examine the o = 0 case with 
this in mind. is remarked in the Introduction, Cole and Wu have studied 
the Dirac heat pulse problem for a = 0 and Lagerstrom, Cole and Trilling 
(1949) have studied a variety of essentially viscous problems under the 



assumption % = 0 while retainingg finite and non-zero. (As can be seen 
from the equations 11, 12 and 130 X = 0 uncouples the Tp, u' problem from 
the energy equation, so that the present theory is not directly camarable 
with Lagerstromts. One might say that we are interested in problems 
primarily of heat conduction). 

When a-  = 0 then, eq. 37 has the solutf.ons 
4 

a 	= 	[ 	+ ys)t2 ± 1 (1 + 	s)2A s 	Ye (lin) 

The two solutions starting + /6 etc. must cc al :manned to conform with 
eq. 35 and so, for our purposes, we have 

2 

b-  (x ; 	= 	(s) exp 	-- (1 + y 8)/2 + 	(1 + y s) 	s 

+ 	(s) exp 1- 	(1 + ysV2 - 1(1 + y 8)2/4  s 172 	x 

(41) 

(The constants B' and C' are different from B and C in eq. 39). Cole and 
Wu remark that setting g= 0 simplifies the equations to be studied. 
Examination of eq. 16 would certainly tend to suaest that this is true, 
but comparison of the solutions 39 and 41 indicate that the reverse is the 
case, certainly when g is retained and a put equal to 3/4. 

Fortunately Cole and Wu were able to find a transformation which renders 
an attack on the or = 0 case possible, but, as will become evidaat 
below, it must be applied with some care and greater labour is involved 
in the o-  = 0 -oroblem than when a-= 3 

Neither case produces a particularly simple solution owing to the 
appearance of the complicated exponential functions, so it may be advisable 
to examine briefly the physics of the situation in order to decide just 
what kind of solutions it would be best to aim for. From equations 23 
it can be seen that the characteristic time and length for the system are 
Ic/ 2  a,,,  and Kik, respectively. Simple kinetic theory indicates that 
X '11 (0) PaC 	where c is the mean moluoninr speed, -6  the mean free 

path and C. the constant volume specific heat. Conseqtontly x ' 3 Z/3y 

and, since a2  = yp/p = y g2/3, it follows that it/a2  ( eva) aaa 
t 	apart from multiplying factors of order unity. The characteristic 

time and length are therefore comparable with the mean time between 
collisions of the molecules and the roan free path respectively. 

Thus for t . 1 or less a continuum theory such as that formulated 
here can hardly be valid and we should direct attention primarily towards 
the case t >> 1, where it is plausible to use such a theory. Per the sake 
of completeness some results for t = 0+ will be given, however. 



5. 	solutions for 6{ ,  

The fUnctions B( s) and C(s) of eq. 39 can be related via the zero-
velocity-at-the-wall condition, e(1.36. re find that 

C(s) = (y- 4:y s B(s) 

whence the solution 39 can be written 

( x ; s) = !_cxp ( x v) + (y-1) 	VI 	exo( —sx( 1 y 	s) . 

**SOO (42) 

It should Le noted that eq. 42 is a valid solution for the gas terr.9era Lure 
in the half-plane x > 0 when u = 0 at x = 0 for snit variation of 0 
at this interface, only the thnction B(s) changing in accordance with 
the specified behaviour of 6 (0, t). For the present problen elle readily 
infers from conditions 33, that 

_ 	 -1 
B( s) = - (T,  Vs) I.  I + Q + (y-.. 1 )s + ,( y - 1) VINT-42,;T I 	. 	(10) 

Using the inversion theorem for Laplace transforms it follows that 

,q(AAa  - -.-- , 	....._ c=a1.t 	as ,  v7...) 	------------ 	ds • —•-• 

T 	- I 
	I 
2wi 	 s L 	1 + q + ( y -- 1)s + r( y — 1) Ng 11--T-34' 

	

1 	- 	1 	j + ji  eS1(..ts :_.s(j  ..Y.srLi- 	ds 

1-.271--  IL 	1  + 	+ (Y- 1)s + 	-1)V3V-1  + 

(44) 

L being the umlal inversion contour. 

The first and second integrals in eq. 44 will be denoted by II  and 
12  res- ectively and each one treated separately below. 

5.1. Eva:mation of II  
F.B•a• •__•L • e-  me •  ••••••-•Cm•••••••c..- 

The singularities of the LI tegrand in Ii  are branch points at 

s = 0 and —1/y . It can be verified that L is equivalent to a dunbell 
contour proceeding parallel to the Re s axis just below and just above the 
branch cut between s = 0 and -1/y and encircling the branch points at 
either end. On the straight line 'Darts of this contour we put s = y ex-k±is), 
y real and positive, taking upper and lower signs on the upper and 

	

paths. Then Vis' = 	exp (± 	/2) accordingly and Vi + ys = . yy' 
on either path. On the circles surrounding the branch points no put 

••• 
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s =Eexp(ie) and s = 	1AI 	e,a)(i 0) respectively and then allow e 
to approach zero. The contribution from the circle around s = 
vanishes in the limit and that from the circle round s = 0 is (1 + 
as may be easily verified. Rearranging the 'straight line' integrations 
it follaus that 

1 	" iLLQ4y. 	 + 	 cos_bpril e 
-yt 

1+Q 	Y-1 	+ Q4  6/ -4 )4  3r( 1 	YY 

(1,5) 

Men t»1 the principal contribution to the integral hen: comes 
from the region near y = 0. Accordingly we can expand the intogrand in 
ascending powers of y, the first term in each of the two integrals in 
eq. 45 being as follows 

I  1 - 1 1 
1+Q 	1+Q • 

1/Y
f  

J 
sin ( x tiny -5 

1/Y 

	

- 21Y-7-11 	f cos( Dry) e-YtAy 

	

( 1  +)2 	77- 0 
(46) 

Replacing the ucper limit 1/y by co, I can be written in torus of uell 
known functions to give 

(1 + 0I1  , 	erf( x/2 )11 ) - 	 .92 -( -x2 At)  1 + Q 	• 

Vie must now investigate the errors in the result 47. First of all, 
in replacing 1A/ by co  in the limits of the integrals in eq. 46 we 
imply errors of the order of 

77 

r  co 

sin ( x 1Y) e-Yt  AYy 	(21 1 + Q
.1::1-11 
' 

cos(x Iii)e"31-t  AY 
j  A 	 1A, 

on the right hand side of eq. 47. By a mean value theorem we 	write 

1 
IT 	c° 	sin( x Nri)e-Yt Y = 

1
/)/ 

sl11(7Q 
7r e-yt 	= 	El(th) 

MINIMMIN 	 ab.-• 	 ••••.M.F., 	 mesar-vic-a.-sc.mmieen--e4._ 	• 	 •r_:.• ca. 

a 
2 

erf( a) is the error function, = (2/V7/7) 	e dy. 

7117 

( 47)*  

0 
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where a is a suitable LEM= value of -Ty and F., (t/Y) is the or)onentiaI 
integral defined in Bateman (1953 p.143 eq. 9.1(1)). `,:'hen t/Y >> 1, 
E i (t/Y) 	(Y/t) exp(-t/Y), (vide l'atc.:Lir-n, 1953 :?.1114 ce.  9.7.(7)). 
Likoyrise vie can \Trite 

Ir. co 

. 	COS (X fi)e-Yt 	= 2.( 7;:.:S.xlc1) J 1/ -3rt 	 erf(iitio)  

1/y 

where b is a suitable mean value of V-37` . 	t/Y >> 1, orf(Itti) " 1 

- 	y 	7-rt exp (-t/Y). It follows therefore that the error 

neglectinL; the difference betm.en 1/y and co is of order 

sin(xa) 
	

0—t/Y 	
Q 
	Nir? 

 C 	 cos(xb) 

We notice that even when x approaches t quite closely in orj. 17 the 
errors hero are at most of order 01 ti. es this result, and are colresPondinly 
less significant as x y 0. 

The terms neglected in expanding the part of the intogrand in braces 
in eq.. /1.5 give rise to errors + 0(y) in the integrals in erl. 2;.6. It can 
be soon that the resulting error torus are obtained as second and third 
derivatives of the first integral in eq. 1F6 (igioring constant Lultiplying 
factors) vrith respect to x, i.e. successive derivatives of erf(x/21t) 
vrith respect to x as a not ucareasonalle estivate. These derivatives of 
the error function contain a factor (1/1(rit)oxp(-x2/21.t) times 	x/t, 
or 1/t and x2/t 2  . 2rovided x is not of order t the errors arc small 
compared .crith the terms written in eq. /4-7. 

Provided x is not of order t, then, eq. 47 is a roasonable representation 
of the integral I. When x is of order t or :water it is clear that II 
contributes a small amount only to the overall value of 6 , by yeasaa of 
the exponential terms. We shall sue now that most of the contribution to 
in the region x N  t cones from the second ir3::egral 1 2  71-11011t is large. 
We remark that the coKiplete solution oi' the ?classical? heat col Cuctien 
probleD. (for which pressure is assured conEtant throughout) is L,iven 
exactly by the first two terms on the riE,ht hand side of eq. 4..7, the 
solution in that case being valid for all x and t. The integral I I  r;ivos 
solutions of a purely diffusive nature, as soolas ieasonable freia the 
presence of the exp(.. x Is) factor there. 



- 12 - 

5.2. Tmaluation of 12  

To complete the solution for &(x,t) it is now necessary to examine 
the second integral of eq. 44,  namely 12 . We have just seen how If  leads 
to diffnsion-type solutions and examination of 12  may lead us to suspect 
that this integral will produce a combination of diffusion type and 
wave-like solutions, from the presence of the exponential factor 
exp(ts s(1 ys)-.2x), which has a character somewhere between these two. 

In fact just this exponential term arises in the study of purely 
viscous phenomena, mentioned previously as having been examined by 
Lagerstrom, Cole and Trilling. It is the complete transform solution of 
the Dirac velocity pulse problem in a fluid for which p X 0, 	W 0 
and, when multiplied by s-1, gives the solution for a unit ste-) function 
of velocity ap?lied at t = 0, x = O. The above named authors have found 
solutions valid for large and small times by a subtle choice of contour, 
followed by some lengthy sifting of various contributions to the whole 
integral from different parts of the contour in order to extract the most 
significant terms. Later Hanin (1957) treated the Dimc pulse ,problem 
at groat length, finding solutions in series, as real integral representations 
and as asymptotic series, covering various ranges of x and t. ilorrison (1957) 
also discovered the real integral representations for the impulse solution, 
during the course of his investigations of wave propagation in visco-
elastic materials, 1): using certain theorems on Laplace transforys. 

The present problem is more difficult than any of these, however, 
by reason of the complicated algebraic factor which multiplies the 
exponential term in 12. 

It is clear that the two integrals II  and 12  express the "combined„  
nature of our problem quite well. The sudden changes of temperature 
occurring first at the interface beLween gas and solid are bound to 
produce changes of pressure, density and velocity in the gas, and one would 
expect such changes to propagate out into the gas as some kind of wave 
motion. Such wave motion is necessarily going to be of a somewhat 
complicated nature, since it is an essential part of the whole problem 
that the dispersive and absorptive mechanisms of conduction and momentum 
diffusion shall be present. These will act to change the form of the wave 
motion, and these changes will themselves react back on the diffusive 
and convective processes which are responsible for the changing energy 
balance between solid and gas. Thus we may say that the algebraic factor 
in 12  represents the type of "input" to the wave motion in the gas as 
a rusult of diffusion whilst that in II  represents the "input" to the 
diffusion processes as a result of the primary heat conduction processes 
plus the feedback from the wave motion. It is characteristic of the 

= 	case that these lab typos of process separate in the way found 
in eq. 39. It is clear from the form of the auxiliary equation 37 that 
such separation will riot occur so obviously for other Prandt1 numbers, and 
indeed the solution 41 for a-  = 0 provides a specific example. 
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To return to the problem in hand, viamely the evaluation of '20  
we shall concentrate as before on solutions valid for larLe tinee, 
following very closely the methods used ly 	First of ell we 
examine the region around x = t by defining 

8 = x t 

and making the substitution (1 + Ys) = w. Then 

y 	Ey I w 2  eXa j/Y1(.°2^Ai(1-1I ex' 	 :_1/:(42):  I do  

( 1 +Q ) +( Y•01 ) ( 	) + Q( 	) TY  ( 	 0/72.711  

(49) 

The contour 06) is asymptotic to cc exp(t ifr/4) at its ends and crosses 
the real axis somewhere to the right of w = 1. We shall imagine that t 
in eq. 49 is large. 8 will be assumed small and we shall see later 
just what this must imply about the actual allowable r.lagnitude of 0 . 
Using the method of steepest descents, it is noyrnecessary to find, first 
a suitable saddle point for the function 

f(w) = (2- 1)(1 - 	 (50) 

and second to ensure that the steepest path through this point can be 
reconciled with the contour C ul. The condition df/dw = 0, wldch defines 
the saddle points of f(w) is satisfied by setting w = 1 (i.e. df/dw 
= 2w - 1 - 1/w2  = 0) and the steepest path of descent from the col 
at w = 1 proceeds from 1/2  - ice p throu,:h w = 1, to 1/2 + i . w = 1 
happens to be a singular point of the integmnd in eq. 49, hav&A&Jr, so 
that clearly the steepest path for the exponential function cannot be 
reconciled directly with C w  . By inrIentin_ the steepest path so as to 
pass to the right of w = 1 around an arc of a small circle given by w = 1 
+ e exp(i0) we may still make use of it though, and it quickly follows 
that the contribution to 12  made by integration around this arc tmproaches 
zero as e .. 0. Consequently we can now proceed in the usual my by 
writing 

f(w) = - S52/2, 	 (51) 

thereby defining 0 , the real variable of integration on the steepest path. 
It follows from 50 and 51 that w expressed as a series in 0 begins 

= 1 ± i¢/2  
	

(52) 

and that to a first order 

/ 2 
	

(53) 

(48) 

12  = 



1171 .1 
-(7 1) 	• 2 Tr 

Al 

co 
orp (-t 95'72 Y) COS 

61.-p ( -t 02/2  y) COS 

( 8 ,r'-/Y 
	

a0 

( 80/Y) d0 . 
	 ( 54) 

I 	
(y /x.17 

2 
e

_ 82/4Yt 
D 	( 6 pry i) 

82/2yt 

V-27PC ofy^ t i + QT (55) 
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The upper and lower sip;ns in 52 and 53 are to be taken on the upper 
( 	= 	i co) azki. 1c7.7er 2  i Do to 1) haaves of the steepest 
path respectively. 

Tong the first two terms in the eypalis 1 on of the integrznd in 
eq. 49 in tc:1-.ins of 95  we have, afi;er some 

The dorl.vation of result 54. follows the standard prer,edure of the 
steepest 	 is.aue7.5?-  series expansion of the 	of 6', 
whic}t 	 the e.....c.f2r.en.ti.al. 	t f( wily ), in at_•condirig powers of 0, 
except that 17.-e have 	the 	ern(45/.:.•)(6.1-1/(0)as 
erraal to exp(; 1.06,1-/), 	s5.F.:rizs aff.',.r)-..):riate to the par.1-.1ao.1,ir half of 

s.1.7)epest path "Leing colsidererl. 	appro.76.Trat!,on g.:.,;.es rise to the 
fuacV..eris in 54. The first iategral can be redacted. to a recoglizable 

foim on subE4tituting 	= 	y, naLnely,  

1 

Y 	
it 

 
.T  2/200s 	 7,4 	̀-''Y 

Batmen (1953, p.120 e.r1.8.';(4)) shcw-ini that this is related to Weber's 
parabi...lic cylinder fuLetion 	orck.r rf (written as D 1). The second -*a  
integxal i n 54. is a well known one and vie can write 

A careful in-restigation of the errors in 54- or 55 as approximations 
to 12  for t >>1 indicates that we must restrict 5/'[y t i  to be < 0(1) 
to prevent them becoming comparable with3the terms retained there. When 
this is done the next term in 55 is 0(t-4). Owing to the complicated 
nature of the integral it is impossible to give any general term for an 
asymptotic expansion, even in the present relatively manageable region 
of x and t. Ire observe, incidentally, that when 5= 0, D 1 is 0(1), 

(the exact value will be given later on in Section 5.3.). 
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The result 55 fails as a general approximation, valid when x is 
small for example, because of the behaviour of the exp 17(8,60)(4) - 1/63 
term in this region, E becoming lore like the time t. 
However, if ono assumes that 8 is large and negative, as when x is small, 
it can be shown (usingi the results of Miller (1955)) that the first term 
in 55 behaves like 8'..E and thq.t the first error term from the excomntial 
Just mentioned behaves like Wt. This suggests that at snail values of x 
(i.e. near the interface), there is a past of the disturbance which is of 
a wave-like character and that it may be of a comparcIle order of mac-itude 
to the third term of ecj. 47. Physically this state of affairs a:7?cars 
highly plausible and accordingly we will attempt to evaluate the contribution 
which the integral 12  makes to 0 in the regions of x near to the interface. 

To do this it is observQd that the exponential tern in the integral 
49 can be re mitten as 

expl (6.12  - 1)(1 -a/w)(t/Y) I 	 (56) 

where 
a = x/t . 	 (57) 

We non seek solutions for 12  which are valid when t>> 1 and a is small. 
Using steepest descents, the col for the function 

g(w) = (w2  - 1)(1 -a/w) 	 (58) 

is found as a solution of 

s 	= 	2 - a- a/  w2 = fl 	 (59) 

a is real and positive and it follows that there must be one real and two 
complex roots of eq. 59. Of those =:.° choose the real root, noting that 
when a is small this root is approximately 

w
o 	

+ 1 	f va-2- )vi . 	 (60) 

The steepest path of deLcent passes through 6-1 = o 
and is asymptotic 

to (co
o 
- a/

26.) 
2 ) ticD at its ends. H070Nrer, the algebraic factor in 

eq. 49 contains a branch point at as = 1 and the original contour Col  
cannot be reduced to this steepest path directly. Instead we shall use 
the contour illustrated in Fig. 1 which consists cf the upper and lower 
halves of the steepest path connected by a loop around the branch cut 
from al= 1. 
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The integration 
an amount to I which 

2 

around the mall circle 
is proportional to VT 

w 

of radius e contributes 
, and consequently yields 
= v, the parts AB, CD of zero in the limit as e » 0. Writing 2e 

the contour contribute an amount 

 

j
wo 
( 	14.1 

1 +Q) Y 	1)l 3 2e+ 
Q y...,1 	yv 

(..V A:1  • vad.v . 
fi -v2  

(61) 

 

The inllx of the exponential term hero is zero at the wrier limit 
v = 1 and is negative everywhere else within the range of integration. 
V/hence it follows that when t>> 1 the principal contribution to the integral 
will come from the region near v = 1. Changing the variable from v to y 
via the relation (1-v2)(1-o/v) = y, the integrand can now be expanded as 
a power series in y, the most impc.otant term being 

71- 
_Lx.1.11) 

yriP(1 Q)  

( 1  " 02  ( 1 "'CV ) 
0 

1 

f 'TV 
y4 

dy  
0 

y•-• .1_ 
1 +Q 

 

1 . erf 01(2) )( 1 -a/ 00 ) ( 	) 	( 62) 

  

The errors in writing 62 for the integral 61 are very small car:roared with 
the rostat 62 proviued a is less than about 1/2 and t is large. Cuing 
to the complicated nature of the integral it is not practicable to give 
a rneral result for the error terms, but they are roughly of order 

exp o )(1 a/w ) (t/ 	I . Since the argument of the error 

function in 62 is very large if a is small we may reasonably ayoroximato 
to the expression there by writing it as 

- 1 
1 + Q 1771( t • -: xT 

(63) 

To carx out the integration along the steepest path part of the contour 
in Fig. 1 we define the real variable of integration y as follovrs, 

g(w) - 	No) = - y 2 
 • 

The usual ;:Yu* pro for 07-Jluati.-,g intervals by the method of steepest 
descents 	Lads to tz!.. ;:la,11„r term arising from this part of the 
contour and tills is found to be 
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2 	- 1) A 0  Mt) exP 	0)t/ . . 

Y(1 + Q) 	(y- 1)(1 - W20)+ 0,(Y- 1)rii1 W 0 	6.312-; 

where A is written for 1A1 + a/'(43). Since g((40) 	- 1 when a and 

hence (4,, is small, this term is very much less than the result 63 and 
we conclude that, provided t >>1 and a is reasonably smll compared with 
unity, a plausible estimate of the integral 12  is 

12  y- 
+ Q • 

This result confirms the view, expressed earlier, that wave-like 
disturbances exist in the regions of x near to the interface. 

As in Hanin' s paper, the form of the exponential function in eq. 56 
can be used to find approximations for the case t »1 and alar3e also. 
In that event the solution of eq. 59 indicates a saddle point at approximately 
wo = ( a /2) and this will certainly lie to the right of the branch 

point at w = 1. Consequently Cw  and the steepest path are directl7 

reconcilable and it can then be shown that the major contribution to 
from I is roughly 2 

Ly.  IV:u -,c1" 	
e /2 yt 	

(65) 1
+Q4 

which is a very small quantity. (In deriving 65 we have neglected unity 
in conraarison with (420  = a2/4). 

5.3. The Temeprature at Lars Tims 

Collecting the results from the last throe sections enables us to 
build up a reasonable picture of the behaviour of the gas temperature 
at tines large compared with the man time between molecular collisions. 

Thus, in the region where x is small compared with t 

0(x,t) - 1+Q 
0. Teo [ 	erf(x/2A) 	

1 4Q 	• fii-Tti  

1 
	

(66) 

(using the results L4, 47 anti 63) . ,'hen x is comparable with t, 

1 	
(64) 
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6(x,t) 	
QT

. (Y- 1)[ ex10( - 824 D ( 5rn ) 

 

V1F (yt) 
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1 
0

+ Q) 
2..!=_11 

- (  

  

(67) 

    

For the latter case we have used the results 44. and 55 and it is recalled 
that 8 = x t. [hen x is greater than t by an appreciable amount the 
value of 0 has been shown to be practically zero. 

The temperature at the interface x = 0 follows from eq. 66, namely, 

e (ost) 	—Q T' 	
+ 1+ 	

(wt)-1- 	 (68) 1 +Q 	 Q 

and, remembering that the gas temperature T = e + T , it can be seen that 
the interface temperature is increasing with time, if ic is positive 
(i.e. gas hotter than solid). The classical constant pressure solution 
for e(o,t) indicates that it jumps abruptly to the value - Q T,/(i + Q) 
and remains constant for all later times. Thus in the practical case the 
classical solution is approached asymptotically. This statement is also 
true of the whole solution for e in the region near the wall, since as t 
increases the last two terms in eq. 66 become small compared with the first 
two (which represent the classical solution). As distance from the wall 
increases at given time, however, the solution 66 indicates that deviations 
from the classical solution increase and it seems plausible to suggest 
that such deviations tend to become of a predominantly wave-like character. 
The behaviour of the last two terms in 66 as x increase& is such as to 
cause the gas temperature to fall below the classical value. Turning now 
to the regions where x and t arc of comparable magnitude we find (from 
eq. 67) some notable deviations from the classical value of 0(x,t). 
This latter solution would indicate that 0 has fallen to an almost n  _r -t negligible size when x = t, for example)  because 1 - erf lit/2 	e 	/72  
when t is large. Eq. 67, however, shows that 

Q Too  ( e ( t t ) 	Q 	 (69) 
L 27T ( 2 A) 

3 1 

(NB. D (0) = I( 4)/24 n2), which, although small because t must be 
large, is certainly of a greater order of magnitude than the classical 
solution. 

A sketch of the complete temperature distribution is given in Fig. 2 
the full line curves being calculated from equations 66 and 67, whilst the 
dotted lines represent a plausible estimate of the behaviour of the temperature 
in the regions where these asymptotic solutions fail. The classical 
solution is shown for comparison, and it can be seen how the deviations 
from this solution become more marked as x increases. Fig. 3 is a sketch 



of the wave front for two values of t (50 and 100), and indicates how its 
amplitude diminishes and how it becomes llore diffuse as time increases. 
These two effects arise from the dissipative actions of viscosity and 
heat conduction. In an actual case the non-linear terns in the collations 
describing the motion (which have boon neglected in our linerised 
treatment) would act to flatten the wave front even further*. Both Fig. 2 
and Fig. 3 have been drawn for a value of Q = 100, which is roughly the 
magnitude of this quantity for an air to pyrex-glass contact. This is 
the set-up generally encountered in the use of thin-film platinum resistance 
thermometers in shock-tube work. The variation of interface temperature 
from the classical value is far too small to appear on Fig. 2 with this 
particular value of Q(vide eq. 68), so that Fig. 4. Shows a sketch of 
T (= e + TJ at the interface plotted against time. ft rather more accurate 
estimate of this value is made in Section 56. below and Fig. 4 is a plot 
of eq. 85 appearing there. It can be seen that for t> 100 the difference:-; 
bett/een actual and classical values of T arc insignificant for all practical 
purposes. For conditions aroumil.W. the mean collision time is of 

order 10-"'sacs., so that no difference from the classical solution would 
be observed for times greater than about 1/100th of a microsecond, 
which implies that the practical effects of compressibility in heat 
transfer at the interface cannot be resolved experimentally. 

5.4. The Pressure and Velooitz perturbations. 

Further comment on +he significance of the results obtained above 
will be given in the final section: vie ixoceed naa to consider the 
pressure and velocity perturbations which must arise in the gas. The 
linearised energy equation (13) in dimensionless form is 

at rt.
ap 	 [ ae 

49co 
C
p 

which gives 

= p Cp  [s 8 — 

in the transform plane, provided p-  renresents the transform of p 	. 

Eq. 4.2 then shows that 

= Poo p B(s) ( Y- 1) 
	

exp [ sx/1-1 + 

	 (72) 

B(s) having been given in ura. 43. It is di:served that p can be written as 

* 	In the event. that the gas is initially colder than the solid (T0< 0) 
the wave front is one through which temperature increases. In that event 
the non-linear convective effects will counteract the dispersive effects of 
viscosity and heat conduction and the wave front will tend to remain steep, 
i.e. it will be a shock wave whose strength will depend on T,, and Q. 

a2 0 
(70)  

(71)  
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where we 	be E.) for the second tc..rm in eq, 42. 
C on r, c 

P 	= • , 
where I' is an irltegxal exactly D.-  ho 12  iii eq. 44, except that its 

jz,t4747:: 	r,11-1-1 • 1 IT (1 + 	y— 1)s)(1 + 	i.e. an integral 
:!d• ' 	is la.d.iplied by ( 	1)/Y + 1Aw2  • 

It I. ...L0 	Lict, 	the Sthe,„' :4t descents aoproach when x is of order 
t (i.e. for 8 "s7,J1'9, the fiLL.  two terms of I12  will be identical with 

the first two terms of I2  and me can writedirectly 

P - 	t=t p C
• p  e(x,t) 
	

(73) 

whore e(x,t) is given by eq. 67. 

By very similar  arguments me can infer that a first order estimate 
of p pc() fer x amall is 

P p
p (y -1) 9 To. 

+ Q . (74) 

Me vnlocl.ty induced by the heat conduction processes can be found 
from the non-d:Launsional version of eq. 11, namely 

.0.1.4 	 \ a2 	.P..E 	 (75) A 	a 	= p C (y — 	
0 

1 ) ---- — at . 
Co CO ax . p 	ex2 

It follaus that the transform of the velocity U is given by 

p 	aco  U 	
x 

= P co Cp 	 0 	
()I — 1 )(Z92c  — s f p dx. 	(76) co  

o 

Baking use of the previous results for t and p (eqs. 4.2 and 72 respectively) 
me find that 

(77) 

The first integral which must be evaluated to find u(x,t) is very 
like I 	in fact it is II  with the integrand multiplied by Is, and can be 
treated in a similar fashion. It is found to contribute an amount 

24  
p 	C 	( y 1) T 	

_aft
(y) 

P 1 + 4 • iic  

to the whole value of P a u . 00 	co 

p 	17 03 	a  co 	-P 	Cp  (y - 1) 	B( s) 	exp ( 	- ex-2( -sx/1.1 + 
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(see eqs. 42 and 43). Thence it follows that the wall temperature can be 
wri.tten as 

T 	I 	( y 1)s  1 st5 

ds T(Ost) = 	L 	 
(y- 1)s 	Q(y - ) 

	 ( ) 

L is the usual inversion contour, but it can be deformed into a dumb bell 
contour surrounding the brancn points at s = 0 and - 1/y. When t>> 1 
the integrand in 31 can be expanded in ascending powers of ss  -Le first 
three significant terms giving 

e-y Ay B 
t 

[1 - 	A 

Ifsr 
T(o,t) 	T. 	 r 0-31.  Nril 

J 

where 
A 1 Q 

B 2,-SY  /13  2.C_Y - 	-3 I. 	20 A^ 0 	". 
(1 	Q) 

(83) 

20 Cx 
) 

	 (84) 

The integrals in 82 are incomplete gamma functions which, howLvers  differ 
a negligible amount from the complete values when t>>1 vide Bateman, 
1953 p.135). Consequently we can write 

	 (c2) 

T( 0, t) 
, 

1 + 

T 

 Q I 

A  

fir t 	2 Ili' -g 	J' 
(85) 

the next term being of order t 52  . It can be seen how complicated the 
coefficients are becoming, even in such a simple case as the present one. 

Although the large time condition has been studied exclusively for 
the reasons stated in Section 40  it is of interest to look briefly at 
the small time predictions of continuum theory. Since the major departures 
from ambient conditions will arise when x is small also for small times, we 
shall content ourselves with the interface values of p and 0 at time 
t = 0+. These can easily be found from eqs. 72 and 42 by lettiaz s 
whence 

p(0,0) = - Aco (c 	)( 	1)T 

T roQ IT/ 
e(o,o) 

Vi? 

 

(86) 

( 87) 

i 



6. 	Solutions for  0-  = 0 

When 0. = 0 the solution AA must be used. The constants B' and C' 
can be evaluated from conditions 33, 34 and 36 and the solution for 0(x,t) 
expressed in the form 

Q T 

2 fri 

ax 	 1, 
(v1 	„7.2 )Y1, 	v; 	)e

2 	
172  ) (1 — 	V2  ) 0a i x  

L 2 
( 	+ v2 ) 2 -( v - v ) 2__  ( V 1 2 	 2 

+V ) 	V 	V ) 2:1-C2( 	y Irs1 

2 

V 	1 	s 
2 

2 

= 	 S 2 	2 	 • 

a 	= 	(V1  ± 2  2 ) 	; 
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Those results show that, initially, the density has not changed 
(IT.B. (Cy)(y - 1) = R, the gas constant, whence the constancy of density 
follows from the first of equations 1) and that the whole process begins 
as if it is to be one taking place at constant volume. This latter fact 
is apparent on observing the definitions of Q (eq. 34) and K  (eq. 14) 

_ when it can be seen that writing Qv r  y is equivalent to redefining the 
diffusivity K in terms of Cp/Y, the sn 	 me ecific heat at constant volume 

Eq. 87 then represents the classical heat conduction solution appropriate 
to this type of process. The continuum solution thus represents a 
transition between the two processes of heat conduction at constant volume 
and heat conduction at constant pressure. 

These remarks conclude our treatment of the o = case and we shall 
now examine the case Cr= 0 to see how it varies in its behaviour from the 
results given above. 

st 

• s 
(88) 

where 

Eq. 88 is a very unwieldy expression and even approximate evaluation 
of the integrals seems impossible without first attempting some hind of 
transformation which will simplify the exponential terms there. Fortunately 
the necessary transformations have been supplied by Cole and 17u (1952), 
but care must be taken in their application and accordingly some useful 
general observations about the integrals in eq. 88 will be made here. 

Closing the straight line contour L to the right with a sod-circle, 
whose radius R will be allowed to approach infinity, it is found that the 
real parts of the exponential terms behave as follows. The term in 
exp (a2  x) behaves like exp( tR cos), (F.B. s = R exp(i55)), and hence 
contributes to e(x,t)_ for all t > 0, whilst the term in exp(a,x) behaves 
like e R. cos 0(t - V);l x)) and will be different from zero only when x < t/ Nr). 
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Referring to the definitions of the dimensionless co-ordinates x and t, 
it can be seen that the lino x = tflY.  indicates z. velocity equal in 
magnitude to the isothermal sound speed 0, = a, 	. Across this 
line, therefore, there is a discontinuity in the representation of the 
solution e(x,t) and in fact Cole and -u have shown such lines to be 
characteristics of the "IA = 0 system" of equations which leads to the 
result 88. Bearing in mind the remarks made above, we now a:rly Goleis 
and Wuls transformations to 88. There are two stages of tronsforilation. 
The first, canon to both terms of 88 consists of writing 

Yes = (1 + b w)(1 	(d) 
	

(90) 

where 
b = 

whence eq. 88 becomes 

e(x,t) Qb1/3,1'. 

Cu% 

2,2ikrJazy.)  r +1*)1LZy - 114-67 
(42+1 + QI/Kw21/121377+ 1/117EV1 

   

(1+b(A) )(1 	b/4)72..  

 	( 91 ) 
Qb,r9 T„ 
21i—  f

exp -• (1+ bwil il-bh2)t/Y 	--bZZ3Tar ry I y 

C, w2+ 1 + Try-' L(42  V-41:1/0? + 	—+-13 W 1 '• (42  ( -b/u} 

S.̀12- 	do, 

) .44:E w'  

A possible contour CL starts from w = 3.(J and proceeds towards 
w = ico passing to the right of the singularities of the intogrands. 
These latter are branch points at w = 0, b and - 1/b and it can be verified 
that the C'w  wscribed above can be replaced by a contour which cores 
from w = M exp(-i v),I loops around w = b and returns to 0: exp(+ iv). 
This second form of Cw  will shortly be found useful. 

Each inte,:-;ral in eq. 91 is now tackled separately. Taking the 
first of these first, it should be noted that this is the co- plane 
version of the "exp(a2x)" integral in the s-plane which has been shown to 
contribute to 0(x,t) for all t > 0. Since the second or "exp(alx)" 
integral is zero for x > t/ly*  the first integral in eq. 91 gives the 
whole solution 

which transforms 

0(x, t) 
x > 

	

for this condition. 	now nrite 

( 	2 
	1)/b , Cil 

the first integral c,f eq. 

QVy T„„, 
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The contour C>  in the 4-plane is illustrated. in Fig. 5, the singularities 
of the integrand being branch points at 4 . ±I and 1 with simple 
pole at 4 = 0. 

When x < t/6/ it is neceLisary to consider the contributen from 
the second, or II exp(a ix)" integral in e q. 91 . Writing 

= b/( ) 

it can be shown that the integrand transforas into precisely the form 
given in eq. 93. The contour of integration for this second integral 
will be different from C>  however. Haking use of the second form of Cto  

contour described above it can be shown that an appropriate 4 -plane 
contour joins the points ABCODEF on Fig. 5, in the order written. The 
points A and F lie on the lower and upper halves of the branch cut 
between = V Y and 1, just to the right of the singularity at 4 = 1 . 
To find the solution for x <t/v/ it is now necessary to add the integrals 
taken along C>  and the contour A to F. Since their integrands are 
identical it is clear that the parts of C>  between BC and ED arc cancelled 
so that integration should take place along the new contour C‹  which is 
illustrated in Fig. 5, (i.e. replace the symbol > by < in eq. 93). 

The difference between the contours whjch are necessary here and in 
the case treated by Cole and Wu is apparent. As will be shortly seen, 
and as may be inferred from their results, the difference is associated 
with the presence of wave-like phenomena in the region x < tivy' as 
well as when x > t/ 

6.1 . qbcat1  for x <I/171  ana t lame 

The part of C‹  to the left of 4 = i can be deformed into the Ind 
axis, retaining the indentation at 4 = 0, of course. This latter part 
of the contour is then a semi-circle and contributes an amount 

T.,/(1 + Q) to 6(x, t) for x < Or)? . Writing Im 4 = n and 

2 ( 772 y) 712 	 = f ; Q 	= Q  

for brevity, the remaining contribution to 0 from C‹  reduces to the 
real integrals 

?Q T., [ f  
(ft.1'..)._:t-Tit2 .+J 

IT 	j 	(f 	Q /)2+ n2( 1  + 	/y xn•  
sin —72 f2) 

0 

(x 7) 	 _ 	t n2y n cos -;i72  I) j tal) 	yz 

(95) 
d 

• rtr . 
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When t » 1 the principal contribution to the integrals 95 comes 
from the region q ti 0. In fact = 0 and Re 4 = 0 are a saddle point 
and steepest path for the original integral, as can be easily verified. 
In this case f = if and the expression 95 is approximately 

c: c  

r +7 . -- • IT 

I 	-t '' 	sulk . , nxi V 4/ ) Vn-1  an 

0 
(y- 1)02T + 	- 

2
- . IT 2 1 

°P  —tr12/Y e 	cos(Wiii)san . 
4-)(1+0 

in more familiar terms, the part of C<  to the left of 4 = 1 contributes 

(96) 

0 

T, r 

1 +Q L l  - erf(x/2"rt
7  ) 

+ Q (97) 

to (3 (x,t). The errors in 97 are negligible when t>> 1 provided x is 
not too near VVY'. 

The solution for x < trn is completed by evaluating the inLegral 93 
along the contour ABEL The circle surrounding =Vy' contributes zero 
to e in the limit as its radius approaches zero and writing Re 	= 
the straight line parts of the contour yield 

VT/ 

2Q VS' rIt f 

 

ag).  

t_ce 	 cprvi 	). ra2)(1 	crri/1) 3 

 

1 	t 2  + X 
2 	

1 	\ y2 	Y3. 2 

This integral can be transformed to an infinite one by substituting 

,2 =  

y2  + 

whence, writing 

exp (98) 

 

1) .1 
1 
2 

= g 

 

(y 2  + )/(y 2  + ; (-
1
)6 1  = 

   

for brevity, we have 

Xg 

21 y 1 f [ 	  Ina exp 	—i- 
Y 	.k?/ 

•-ac s. a • "-sc ammo 
( 	Q 1) 2+ 	 + 8Q  ,‘ 2] 	 • 	_ 1/4h,y 

0 	‘ab 	 j 	(3r + 1)(Y + Y) 

(99) 
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Once again this integral has a siLnificant contribution mainly near y = 0 
vrhen t >>1 and this, to a first order, is 

 

Q T„ 
1+Q exp 2 

T. 
+ "6- 

  

if  
dy . 

 

   

1 

 

(100) 

     

The errors are small so long as x is not too near tArY"' , for t >> 1 . 

The whole solution for x < tilry)  is made up from the sum of the 
expressions 97 and 100, namely 

0(x,t) 

x < ttry-I  

Q T 
1 - erf(x/2"ft1) 2LY. 	exP(-x2/Itt). 

Q 	,r 

 	(1 01 ) 

To a first order of approximation then, this solution is identical with 
the "small x" solution for o = 	as can be seen from eqs. 101 ana 66, 
despite the apparently very different exact solutions (oqs. 4 acid 88). 
It is worth noting that there does exist a certain similarity batmen 
the contours which have been used to obtain those results, howovor. 
Differencebetween thou-  = 0 and a cases would arise in higher order 
terms than those presented here, but these differences are clearly of 
no great physical significance at large times. 

It is perhaps a little surprising that the agreement between the two 
seerithi.ly so different cases should be as good as has just been demonstrated 
here; in fact we shall find that it is not quite so good when the x ^ t 
regions are compared. The "small x" region is one in which diffusion 
LffJ,cts predominate, however, and presumably Prandt1 number is of less 
significance in these circumstances. 

6.2. p(AAlsor x >t/Y3  and t larcre 

To examine e(x,t) in the region x t write 

x = t + 8 

so that the exponential term in eq. 93 becomes 

      

      

exp 
2-Y 

•- 1 Y 

exp LEi 
72 

(102) 
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17hcn t» 1 and 8 is small the TEL; thod of steepest descents can be used 
to find an a?propriate integration contour which has a r.,pidly decreasing 
value of the first exponential factor in in expression 102 alon 
lenLth. A saddle point for the function of in this term is lz v Y 
and the steepest path of descent lies between this point and the -ooints 

iy -1/2 ± i co . A small semi-circular indentation of this path is 

	

necessary to avoid the singularity at 	= V-y` which occurs in eo. 93, but 
this contributes nJro to the final value of 6 (x2t) . It can be verified 
that the steepest. path with this indentation is equivalent to C>  
Writing 

( 42 y ) 	 74  ) 42 	 02, 	 ( 1 03) 

and thereby defining the real variable of integration 0 on the steepest 
paths  it is obser-ved that expansion of 4 in ascending powers of 9b ber7ins 

4 	,ri/1 i 	1 

	

2 y 	0  • (la,) 

The u7per sign in -;04 refers to the upper half of the path and vice versa. 

The first order estimate of eq. 93 when x 	t and t >>1 can now be 
written as 

e(x2t) (Y 	1 	 tie/y2  
1+ Q V 

- 	(12 80 •  cos 	Lc)4 
)0-1)Y 	c2- 0 

(105) 

Putting 	t 02/Y2  = y2/2  this becomes 

• 0 	• & 

(106) 

which is recognizable as the parabolic cylinder function fern foind in 
Section 5.2. In other words 

e(xst) 	 • it.7.1/-..r  exp(-82/4 	air(V=1)--e), (1o7) 
1-1-Q 	/2/P t 

a result which should be compared with the first term of eq. 67 in 
Section 5.3. They are seen to be identical if yt in eq. 67 is replaced 
by(Y1)t. 

e(x,t) QTee  

1441,  • 

a 
Sy_-)Vir.  1 

• -17  t¢.  
e".it cos 
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When 12 = 0 then, the f,,rm of the disturbance in the regions around 
the wave front is the same as in the mole practical cLee for which P 
is retained, but the shape of the disturbance is much sharper at a given 8  
and t. This is hardly surprising, since in the c = 0 case the dispersive 
effects of viscosity are absent, It appears from the results 107 and 101, 
when compared with the corresponding cr= =;; solutions, that the bi = 0 
approximation is indeed not as drastic as might be supposed in the first 
place, provided t is large enough Also the effects of Prandtl number 
seem to be of most importance in the wave-front zone and of little sic;lificance 
near to the interface, certainly as far as temperature is concerned. 

6.3. Pressure and Velocit' Disturbances 

The disturbance to the initially uniform pressure and velocity 
fields can be found in a similar manner to the cr= 4  case, although by 
reason of the condition t2 = 0 here, the velocity problem is in fact 
somewhat sip pler to solve. We will not give the details here to avoid 
wearisone repetition, but merely quote the results. 

Thus it is found that, when x < ttry" and x is not too nearly 
equal to 

P 	= C Q  -LY- 
Poo

.  
P 1 + Q 	il. - (10o) 

whilst when x -t 

c
P 	(x, t) , 
	 (109) 

0  ( x, t) being given by e q. 1 07 . 

Eq. 108 is identical with eq. 71. and 109 is the equivalent of the 
result 73, to which it reduces if (y 1)t is replaced 1.y Yt. 

_r Likewise, the velocity u is exactly the same as eq. 78 when x < t/Ny 
and a result equivalent to 79 is obtained when x -t. To the order of 
accuracy of these results, the similarity between the 6 ( x, t) values for 
cr = 0 and. :713. is retained for the other flow variables therefore. 

It can also be shown that the t = 0+ values of 6 and p are identical 
in the lxio cases, so that the transition from constant volume to constant 
pressure heat transfer occurs when 0-  = 0, too. Some idea of the extent 
of the difference between the two solutions at the interface for large t 
can be gained by comparing eq. 85 with the corresponding result for o = 0. 
In the latter case T(0,t) is given by an equation exactly like E5 in which 
the coefficient B is now.  

B  	Y 	) 	3 4_ 
+ Q) 	y 	1 	 1 + • 
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For typical values of y and Q of 144 and 100, B above equals .1.94 whilst 
B in eq. 85 equals 0.49, but, since the result is only valid when t >>1, 
the effect of this difference on T(0,t) is very small. 

The difference between the o = 0 and o = 74.- cases has been found to 
be very small at large times, the principal effects arising in the wave 
front region :There viscosity acts to disperse the disturbance more rapidly 
than can be accomplished by conduction alone. Consequently the intuitive 
feeling, expressed in. Section 4 (ii), that the omission of viscosity will 
still lead to a reasonable picture of the flow field has received some 
support in this case. Puttingo = 0 does not simplify the -problem, 'nowever. 

7. 	Conclusions 

The processes which take place in a gas, initially in a uniform 
state, when it is placed in sudden contact with a solid at a different 
temperature have been examined for two values of Prandtl number, namely 
4 and zero. The characteristic time for the establishment of the resulting 
flow has been found to be of the order of the mean time between collisions 
of the gas molecules whence, since the formulation treats the ins as a 
continuum, the main effort has been concentrated on finding solutions 
valid for large times. 

In these circumstances it has been found that the flow field divides 
into two regions in a rough sense. Sore distance from the inerface the 
disturbances propagate out into the gas as a wave motion travelling at the 
ambient isentropic sound speed (in this linearised treatment), upon 
which are superimposed the dispersive and dissipative effects of viscosity 
and heat conduction. When the gas is intially hotter than the solid the 
wave front is of an expansive character which tends to flatten as time 
proceeds. If the gas should be colder then the solid initially, the Wave 
front will represent a compression. This front will still flatten and 
decay with increasing time in the linear theory presented here, but in 
practice non-linear convective effects will oppose these processes and a 
shook wave may be expected to appear. 

In the regions near to the wall the heat diffusion erocesses dominate, 
but, as the temperature of the gas changes, corresponding changes of pressure 
and velocity will occur and these give rise to a wave motion which is 
superimposed on the main process of diffusion. 

Mbisbuild up of the flow field can be explained as follows. Assuming 
the gas to be hotter than the solid, at the initial instant, the layer of 
gas molecules immediately adjacent to the wall lose some of their energy 
and momentum to the solid, but as yet there has been no time for any 
appreciable mass motion of the gas to occur and the density remains at its 
ambient value. The pressure pulse so produced then begins to propagate out 
into the gas, dropping the gas temperature below that which could be attained 
as a result of heat diffusion alone, and accelerating the gas towards 
the interface. Since the solid is impermeable, this motion must be resisted 
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and the gas will recompress more and more as the interface is approached. 
This recompression will give rise to some reheating of the gas and the 
temperatures near the wall will begin to rise back towards the values 
appropriate to pure heat conduction at constant pressure. Molecular 
velocities cover the whole range of magnitude from zero to infinity, so 
that changes such as those arising at the interface can be signalled to the 
furthest corners of the flaw field instantaneously. However, the strength 
of this signal and the extent to which the gas will react to it at any 
given point depends on the ne71-er of molecules which reach the point with 
the necessary information. Significant changes in gas properties are 
expected to occur only when a bulk of the molecules from an affected 
region reach the point in question therefore. In other words the bulk 
of the disturbance must travel at some average molecular speed, which is 
the meaning of the isentropic sound speed here. 

It seems clear from the results derived above that the compreesibility 
effects are very small near to the wall for times of order, say, 100 
collision intervals from the start of the processes. Experimental 
observation of wall temperatures could hardly be expected to reveal them, 
therefeee, since it is difficult to resolve times of less than about 0.01 
microseeends, in which interval mast of the effects have vanished. If an 
experimental set-up equivalent to the theoretical model studied here 'could 
be devised, however, it may be possible to see the wave front. 
Reflection of a shock wave from the closed end of a conventional shock tube 
would not be an adequate experimental model with which to examine the 
predictions of the present theory, since the shock wave itself is a front 
extending over a few molecular mean free paths, across which the gas 
properties change to their new values. The instentaneous initiation condition 
demanded by the present theory would therefore be lost, and furthermore 
interaction between the reflected shock wave and the heat-transfert-induced 
pressure disturbances would arise to complicate the picture. 

It seers plausible to suggest however, that even in this more 
complicated problem the "ideal" inviscid shock reflection state would be 
pretty well established in about the same time interval as it takes for 
the constant pressure heat transfer state to arrive in our simple theoretical 
model. This conclusion :s not without significance, since it follows 
that the reflected shock technique may perhaps be used to produce a slug of 
hot gas which can then be employed to study other important properties of 
gases. By these we mean the effects of molecular structure, which have 
been explicitly excluded from the present work. Thus, for exweele, 
excitation or de-excitation of the vibrational modes of diatomic molecules 
is known to take several thousand collisions, so that any effects which 
may arise as a result of this relatively lone relaxation time could be 
examined in the reflected shock region on the assumption that compressibility 
effects behind the shock wave are negligible. The simple theoretical 
model of a semi-infinite gas and solid may then be adequate for a study 
of, says  interface temperatures in such a relaxing gas, the pressure being 
substantially constant. 
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