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SUINMARY

The flow induced by the sudden contact between a semi-infinite
expanse of gas and a solid, initially at different terperatures, is
examined on the basis of a linear continuum theory. For times large
compared with the mean time between molecular collisions in the ges,
the velocity and pressure disturbances are found to be concentrated
around a wave front propagating out from the interface at the ambient
isentropic sound speed, whilst, near to the interface, these disturbances
are small and the gas temper&turcs are nearly equal to those predicted
by the classical constant pressure heat conduction theory,

The possible significance of these results in connection with
reflected shock wave techniques to measure high temperature gos
properties is commented upon.
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LTST OF SYMROLS

Iscnircpic sound speed

Iscthermal sound speed

Speclifiic heat at constant pressure
Weber parabolic cylinder function of order n
Error function

Specific enthalpy

Pressure

Energy flux vector

Ratio of thermal properties

Gas constant per unit mass
Specific entropy or Laplace transform variable
Time

Gas temperature

Velocity

Distance

Ratio of specific heats
Temperature difference, T - T,
Diffusivity

Conductivity

Viscosity

Kinematic viscosity

Density

Prandtl number

Shear stress tensor

Initial conditions in the gas
Refers to value in the solid

Other symbols are defined in the text



The conduction of heat in a conpressible gos will in general e
accompanied by changes in the gas pressurc, density and velocity. It
is the purpose of the present work to study these chonges for the
particular case of the sudden contact betvuen a semi-infinite solid and
semi-infinite gas, initially at different uniform te neratures,

This simple theoretical model would be difficult to achicve in
practice, but something approaching this situation is found when a shock
wave reflects from the closed end wall of a conventional shock tube,
and it is hoped to gain some idea of what mey happen in this rocwe
complicated case from the present study. The intercst in refllccted shock
wave zones crises from the ease with which a sample of gas at a high
temperature can be produced by this process, end the resulting possibility
that mcasurements of the gas properties under these conditions can then be
made,

The question of the comuressibility effect on heat conducticn hes
been exaurined previously by Cole and Y (1952) for thé case of the Dirce
heat pulse, but these writers have made the assuwmption that pes viscosity
can be neglected, It will be showm below that viscosity can e included,
however, provided that Prandtl number ecuals 3/4. Like Cole's aund Wu's,
the present trecatient is bascd on the assumption of small disturboneces,
so that linear cquatiuns can be derived. To aveid over-cawplication ot
this stage the gas is assumed to consist of structureless porticles,

i,e. to be monatomic and unexcited electronically, and to be perfect

both thermally and calorically, Althouch Prandtl nunber ecuel to 3/L

is a most practical state of affairs, and the solutions arc quitc readily
obtained in that event, the zero Prandtl number case is also examined
here in au attempt to assess how drastic the zero viscosity asswiption
will be. The gas is treated as a continuwm, and, since the characteristic
time for the processes to be studied tuwrms out to be comparcble with the
mean time betvuen molecular collisions, we are effectively limited to a
consideration of "large time" solutions only.

Reference will be made in later sections to the "classical solution”
of the sudden contaect problem, This solution treats the gas as a solid
and assuncs at the outset that only its temmerature will change subsequent
to the initial instant, the presswre (or density) remaining constant,

Gos velocities are also assumcd to be zero throughout. It is one of
the results of the present analysis that the classical constost pressure
solution is awproached asymptotically with increasing time in the
regions near to the interface. To assist in the interpretation of these
results, a sketch of the classical solid-to-solid contact termerature
profiles is given in Fig, 6.



2. [The Equations

The gas is assumed to be thermally and calorically perfect so that
its pressure p, density P temperature T and specific enthalpy h are
related as follows,

p = PRT 3 h=CPT- (1)

R is the gas constant for unit mass and CP the (constant) specific heat

at constant pressure,

The continuity equation is

Dp du
B * Py = o, (2)
(where D/Dt = 3/8%t + udfx for the one-dimensicnal unsteady -roblem),
but a more convenient form for present purposes can be derived by writing
first of all
Dp _ dp Dp 3p Ds
= '55)5 Dt * (‘ETE)P s (3)

s is the specific entropy and

(-?;-—g) R (1)

where a is the usual isentropic sound speed, The derivative (ap/as)p

is readily evaluated for a gos with the simple thermodynamics described
in eq.(1) and we find that

(%.f) = y-1)oTa™", (5)
v /p

(y is the (constant) ratio of specific heats). Writing § for the heat
flux and 7 for the viscous part of the stress tensor, the énergy equation is

pcp%-%=--%+ 7%. (6)

Combined with the thermodynamic equation Tds = dh -p"'dp, eq. (6) shows that

Ds _ _ 2§ 2u 5
PT 5t = " 2x ¥ "oz ° (7)



It follows at orce that the continmuity equation can be written as

(8)
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The heaot flux and viscous stress are assumed to have their usual
valucs

2 T a
-g =28 ; 5= 3¥ g, (5)

so that eqs., 6 and 8, coupled with the momentum equation

Du ar -2 .
PHE * x - = — 9o (10)

constitute three equations for the unknows p, u and T,

Ve shall now assume that all of thesc three unknown quentitics
differ but little from their undisturbed veluecs, the undisturbed state
being defined as one of uniform pressurc p, and temperature T, ,

and zero velocity, over the whole of the region of interest, Then the
equations can be linearised by neglecting all terms involving squares
or products of disturbence quantities, leading to the followring thrce
equations.

eie = 2 : 22 .
ot + P a 5%~ (y=1) Fxm o2 = 0, (11)
au 2p Y, 2um _
.23 v B - 38, — = 0, (12)
aT p e A
p_ CP % - Pt - A ';‘2* = O, (13)
X

Since e shall be interested in nroblems for which boundaxy, values
are expressed mainly in terms of tecamerature, a single equation satisfied
by T alone will be derived from egs, 11 to 13. The thermal diffusivity «
and kinematic viscosity v are defined as

?\m um
Sl = N R i (1)
oo P s ]

and the Prandtl nurmber o as

vV = oK, (15)



The equation satisfied by T is then

1 8 (. @22 2T . hyox @im
K ot 2 2 = 2 % 7.2 4
a 9% x ol 9x

5 [&T;’.HY 2?7 _ 2%
_ £y 23 . 2

=3 " N R
B ac Ox

3. Ihe Problem

At this stage it is convenient to formulate the actual problen to
be tackled, The gas, whose iemperature is to satisfy eq. 15, is assumed
to ocoupy the half-plene x > 0 and to be at rest at wmiform nressuwre po,
and temperature T for all t < 0, At time t = 0 a semi~infinite solid,

which has been at a uniform temperature T__ for all ¢t < 0, is placed in

consact with the gas along the plane x = 0, The solid then occupics the
half=plane x < 0, Without any lcss of generality T can be sct equal

to zero., Subsequent to time t = O the. temperature T o:E' the solid is

assumed to satisfy the classical heat conduction equat:.on

aT T
m m
5t " i 0, 17

where k  is the appropriate diffusivity, (assumed constant here).
A new temperature © is defined for the gas such that
0 = Tt ., (18)
The initial conditions then become

T,=0,t <0, x<0 ; 0=0,t <0, x>0, (19)

Cormatibility of temperature and heat flux at the interface recuire

n T 80
I,= 6+7 ,t>0, x=0 ; _8“:?. =7‘w'é‘§,‘b>0,x=0,

s neal 20)

where A is the (constant) thermal conductivity of the solid, and two

further conditions are

(3]
=
~—

T,* OgX+ce0 3 £>0; 6 L0, x 42 , % >0, (



A further requirement is that the gas velocity u shall be zero at
x = 0 for all time, since the solid is impermeable, This condition can
be translated into a temperature condition at x = O via eqs. 11 to 13
by eliminating p and all derivatives of u which contain operatians involving
8/9x in terms of T (or what amounts to the seme thing,0), leaving en
expression for 9%u/dt? in terms of derivatives of 6 . Then, since u =0
when x = 0 and t > O we have also 9%u/ot®? =0, x =0, t > O and it
follows that

aze 4 3 3
Ex_,a_t._muf-n ga—-e-—-..xuaase- +£K— a—-@u-=0,x=0,t>0.
3a2 x>0t x> 322  9xdt?

oo

cinss  THZ)

The conditions 19 to 22 inclusive are sufficient to specifly the
problem, Before proceeding with a solution, however, the equations will
be written in dimensionless form according to the definitions

<k

XL wx!

M
1
l

: (23)

8“’»%
m

Then we have to solve

6] 2 2 —
L oo _ 2%0_ %{g 340
9 o4 2 ax' 2 ox’ 4

o {(y+4o‘/3) o 826] =0 (24)

9x/ 2 ot 2 ax’ 2
and
oT £ aaTm
o¥ “<?>axf2 W o2 (25)

subject to the conditions

Tm=o,t’<o,x’<o ; 6 =0, ¥<0, x >0, (26)
" aT
m 96
Tm.—.B+Tm,'b’>0,x’=0 3 (_,_?) ey =-é;,,'b">0,x’=0,
seo8 s (27)
2.0+ 0, X s - ,¥>0; 84 0, x's 4o, ¥ >0 (28)
» 4 ] 3
= 1 _J%E -1 SR 5. +£EI3 i =2, ¥=0, t>0.
ox/ot’ ax 3o ox' > ox o2

Lisen C29)



In subsequent sections we shall omit the primes from x and t
for brevity, since from now on we shall work cxclusively in the dimensionless
co=ordinates,

i, Laplace Trensform Solutions

The Laplace transform with respect to the dimensionless time +
will be denoted by a bar (-) over the appropriate symbol, e.g.

[=4]
6 (x ; 8) = f 0(x, t) cxp(-st)dt.
o
(Entropy will not be needed in subscquent discussions so that from
now on s refers to the transform variable).

Vith conditions 26 (expressing initial q_uiescence) the opcrational
forms of egs. 24 and 25 are

e v) (1+3:.VE_5)_6"(3+(V,,£|;9“)32)+336 =0, (30)
3 >

T (s K/Km)Em =0. (343

(Primes denote differcntiation with resmect to x).

Eq. 31 can be solved at once,with the appropriate condition from eq.28,
to give '

T = A(s) om ((sw/k)%), (32)

where A(s) is a function of s to be found from the boundary conditions,

Conditions 27 and the second of 28 in transform form are

6(058) = Als) =T_s™' ; AQ Vs =0(038 , (33)

where we have written

A A
m | K -
vE - ¢ (34)

The transform versions of the remaining conditions28 and 29 are

é(xﬁs) "0,3'{'*“” (35)

R e
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and the problca is now reduced to that of finding o solution of eqg. 30
subject to conditions 33, 35 and 36,

in appropriate solution of eq. 30 is 8 « exp( ) x) where a

is any oue of the four roots of the auxiliary biquadratic equation

(1 + hyo 8/3)a* = s(1 + (v + 4o/3)s)a®> +8° =0, (37)

The general solution of this equation could be written dovm, but would
give formidable wvalucg for the L Instead we shall consider two
special cases,

(1) o =£.

Vhen © =-§ s €q. 37 factorises quite simply and gives the four
solutions

= 1
a = £tvg ;3 * g1+ ya)72 (38)

Condition 35 excludes the solutions with positive signs and it follows
that the most general solution of eg., 30 subjeet to this recuirement is

Bz su) m Bla) ovole o5 » ola) sle dft & "8y, )

The value -f_ for o is not far from the accepted value for a numbor of
intcresting gases, air for example for which o = 0,72 is quoted, so that
the solution 39 should give a plausible description of the physical picture.

(1) o = 0,

This not very practical value of the Prandtl number corresponds to
the solution for which k is assumcd to have a suitable finite, non-zcro
value whilst the viscosity p is set equal to zero, Physically, of course,
this is quitc inadmissable but it is argued that the effects of hecat
conduction and viscosity arc similar, so that a reasmable physical
picture should be obtained by ignoring one of them altogcther, This is
rather like saying that Prandtl nusber is of order unity so that we shall
approximaote to its ciffect by putting it cqual to zero | - but there does
scen to be an intuitive feeling that the plhiysical picture should be
retaincd despite this. Accordingly we shall cxamine the o = 0 case with
this in mind, &As remerked in the Introduection, Cole end Wu have studied
the Direc heat pulse problem for ¢ = O and Lagerstrom, Cole and Trilling
(1949) have studied a varicty of essentially viscous problems under the



assumtion A = O while retainingy finite and non-zero, (As can be scen
from the equations 11, 12 and 13, A = O uncouples the 'p, u' problem from
the energy equation, so that the present thcory is not dircetly comarable
with Lagerstrom's, One might say that we arc interested in problems
primarily of heat conduction).

When o = O then, eq. 37 has the solutions

tal-

a = iw/'é"[ 1+ ys)/2 £{(1+y s)z/h--sl z ]'- (40)

The two solutions starting + s ete, must be abandoned to conform with
eq. 35 and so, for our purposes, w2 have

§(x;8) = B(s) exp’ b \ffi’[ (1 +ys)/2 + I(‘i +y s)zflp"SI’l'}z xll

+ C' (s) exp [- {s‘{ (1 +vys)/2 - ['(1 +ysP /b= s "“" }E xl.
ST -

(The constents B and ¢’ are different from B and C in eq. 39). Cole and
Wu remark that setting M= O simplifies the equations to be studied,
Examination of eq., 16 would certainly tcnd to sugzest that this is true,
but comparison of the solutions 39 and 41 indicate that the reverse is the
case, certainly when p is retained and © put equal to 3 X

Fortunately Cole and Wu were sble to find a transformation vhich renders
an attack on the o = O case possible, but, as will become evident
below, it nust be applied with some carc and greater labour is involved
in the o = 0 problem than when C= 3/4,

Neither case produces a particularly simple solution owing to the
appearance of the complicated exponential functions, so it may be advisable
to examine briefly the physics of the situation in order to decide Jjust
what kind of solutions it would be best to aim for, From equations 23
it can be secen that the characteristic time and length for the system are

k/a’ end K/a, respectively., Simple kinctic theory indicates that
A= (1/3) pE;ecv , where ¢ is the mcan molecular speed, ¢ the mcan frce

path and C_ the constant volume specific heat, Consequently « = ¢ £/3y

and, since 82 = yp/p = y &2/3, it follows that k/a’ = ( £4/G) end

k/e_ = & , apart from mltiplying factors of order unity. The characteristic
time and length are therefore comparsble with the mean time betwcen

collisions of the molecules and the mean frec path respectively,

Thus for t ~ 1 or less a continuum theory such as that formulated
hexre can hardly be valid and we should direct attention primerily towards
the case t >> 1, where it is plausible to usc such a theory. For the sake
of completcness some results for + = O+ will be given, however,



5.  Solutions for o = 3/k.

The functions B(s) and C(s) of ¢q. 39 can be related via the zcro-
velocity-at-the-wall condition, eq,.36, Te find that

o(s) = (y=-1) V&@Viiys B(s) ,

whence the solution 39 can be written

S = -
0(x ;38 =lexp(-x &) + (y=1) V1 + 8 exp(-sx(1 +y s) =)J2(s),
TERE) (25‘2)

It should e noted thet eq. 42 is a valid solution for the gas termcrature
in the halfeplanc x >0 when u =0 at x = 0 for any variation of ©

at this interface, only the function B(s) changing in accordence with

the speciricd behaviour of 6 (0, t), Tor the prescnt problen cne readily
“infers from conditions 33, that

B(s) == (L/s) |1 +Q+ (y=1)s+aly=1) Va@vT+ys | . (13)

Using the inversion theorem for Loplace transforms it follows that

- Axat)

QT

=

1. f —em(tsmx¥s ), ety -
2 L 1+Q+(y=1s+0(y=-1) FVA Ty B

09

- - -
" _2.3ﬂ.{ j (y=)Y 1 sy s'om(ts =s(1 +¥8) T x) . ds :
T 1+Q+ (y=1s+0(y=1 VsVl +ysd Vs

& o8 88 (l}l'l')
L being thc usual inversion contour,

The first and second integrals in ceq. 44 will be denoted by I, and
I, respectively eand each one treated scparately below,

5.1. Lvaluation of I,

L A

The singularities of the integrand in I, arc branch poinits at

s =0and =1/y . It con be verified that L is equivalent to a dumbell
contour procceding parellel to the Re s axis just below and just above the
branch cut betwecn s = 0 and =1/y and encircling the branch points at

either end, On the straight linc verts of this contour we put s = y exp{tin),
¥ real and positive, taking upper and lower signs on the cr and lovcr
paths., Then Vs = V¥ exp (% iw /2) accordingly and VI + ys = Vi =yy'

on either peth, On the circles surrounding the branch peints we put



s =¢exp(i6) and s = -~ 14 +¢exp(i®) respectively end then allow €
to approach zero. The contribution from the circle around s = =1/
vanishes in the limit and that from the circle roumd s = 0 is (1 + 0)7",
as mey bec easily verified., Rearranging the 'straight line' integrations
it follows that

/y sl -yt

N, PR | (1+0=y=1)y)s AWy -y co__jx@ e

R P ""Tf (1+Q —(v—17;%gxr%z‘(y%27%' -vy g y ¥
° evewva (1}5)

When t>>1 the principal contribution to the integral herc comes
from the region near y = 0, Accordingly we can expand the integrand in
ascending powers of y, the first term in each of the two integrals in
eq. 45 being as follows

N 4 1 Y =1 1 =yt
I1 -=1*-+-(§ ""—1+Q o T [ sin (X {.V.)B _;ry %%_:é‘il ?T[ COS(X.\G;)G ‘;_Qy
o [o]
oses e (46)

Replacing the upper limit 1/y by o, I, can be written in terms of well
known functions to give

(1+QI ~1 - erf(x/2V%) -%Q;-Q'fﬁ 3 °&L‘-’5-4’i—l (7)"

Vg
Te must now investigate the errors in the result 47. Firgt of all,

in veplacing 1// by « in the limits of thc integrals in eq., 46 we
imply errors of the order of

co ) o3
u sin (x{yj)ehyt &, ely =0 1 cos(x {y’)e'yt &
T v 1%0Q T e
Yy Y
on the right hand side of eq. 47. By a mean valuec theorem we can vrite
1% snxvpe¥t & o st [TeFt &g 1
/ sin(xVy)e Y . f e . -.,53:13(.;5%2. 1('!.:/y)

1 1y

B e o B e T e ——rw LT Co ESE oEomoE EoE Bomlecs

o
2
erf(a) is the error function, = (2/@') [ e ay,
o



where a is a suitable meor value of Yy end B {t/Y) is the exponential
integral defined in Batemen (1953 p.143 eq. 9.7(1)). Vhen /¥ >> 1,
E, (/) ~ (v/t) exp(=t/Y), (vide Datemen, 1953 p.Akk eq. 9.7.(7)).
Likewise we can write

1 \ vt & g
T J[ - cos (x13)e¥* &L & gox(b) o7 @ = el (4 ety

1/y y
vhere b is a suitable mean value of Vy . Then t/Y >> 1, erf( Te/Y) ~ 1
-V y/ w exp (=t/¥). It follows thercfore that the crror irmplicd in
neglecting the difference between 1/Y and « is of order

sin(xza) %-t c-t/y + %Q -:;% e't/y cos(xb)

Wle notice that even when x approaches t ouite closely in eq, 47 the
errors hemw are at most of order 1 /‘ﬁ times this result, and arc corrcspondingly
less significant as x » 0,

The terms neglected in cxpanding the part of the integrend in bracces
in eq. L5 give rise to errors 1 + O(y) in the integrals in cd, L6, It can
be scen that the resulting error terms arc obtained as sccond onc third
derivatives of the first integral in eq. 46 (ignoring constont multiplying
factors) with respect to x, i.c. successive derivatives of crf(x/2V%
with respect to x as a not unrcasonable cstimate, These derivetives of
the crror function contain a factor (1/Vat)emp(~x®/ht) times cither x/t,
or 1/t and x?/t%, 2rovided x is not of ordcr t the crrors arc small
comparcd with the terms written in eq. 47.

Provided x is not of ordcr t, then, eq. 47 is & rcasonable representation
of the integral I,. When x is of order t or greater it is clcor thet I4
emtributes a smell amount only to the overall value of © , by ivason of
the cxponcntial terms. Ve sghall sce now that most of the contribution to 0
in the region x ~ t comes from the second integral I, when t is large,

Ve remark that the conplete solution of the 'elassical' heat coucuction
problen (for which pressure is assurmed constant throughout) is given
exactly by the first two tcrms on the right hand side of eq. 47, the
solution in that case being valid for all x and t. The integrel I, gives
solutions of a purcly diffusive nature, as scems reasoncble from the
presence of the exp(~ x Vs) factor therc.



5.2, IEvaluation of I,

e e e

To complcte the solution for 6(x,t) it is now necessary to cxamine
the second intcgral of eq. 44, namely I,. Ve have just scen how I; lcads
to diffusion~-type solutions and examination of I, may lead us to suspect
that this intcgral will produce a combination of diffusion typc and
wave-like solutions, from the presence of the exponential factor
exp(ts = s(1 + ys)™2x), which has a character somewhere betwoen these two.

In fact just this exponential tcrm arises in the study of purely
viscous phenomena, mentioned previously as having been examined by
Lagerstrom, Cole and Trilling, It is the complete transform solution of
the Dirac velocity pulse problem in a fluid for which p# £0, A=0
and, when mltiplied by s™!', gives the solution for a umit step function
of velocity applied at t = 0, x = 0. The above named authors have found
solutions valid for large and small times by a subtle choice of contour,
followed by somc lengthy sifting of various contributions to the whole
integral from diffcerent parts of the contour in order to extract the most
significant terms, Latcr Hanin (1957) trcated the Direc pulse problem
at great length, finding solutions in scrics, as real integrel representations
and as asymptotic series, covering various ranges of x and t. Ilorrison (1957)
alsc discovered the rcal integral representations for the impulsc solution,
during the course of his investigations of wave propagation in visco-
elastic matcrials, by using certain thecorcms on Laplace transforms,

The present problem is more difficult than any of these, however,
by rcason of the complicated algebraic factor which multiplies the
exponential term in I,

It is clear that the two integrals I, and I, express thc "combined"
nature of our problem quite well. The sudden changes of temperature
occurring first at the interface between gas and solid are bound to
produce changes of pressure, density and velocity in the gas, and one would
expect such changes to propagate out into the gas as some kind of wave .
motion., Such wave motion is necessarily going to be of a somcwhat
complicated nature, since it is an esscntial part of the whole problem
that the dispersivce and absorptive mechanisms of conduction and momentum
diffusion shall be present. Thesc will act to change the form of the wave
motion, and these changes will themselves react back on the diffusive
and convective processes which are responsible for the changing cnergy
balance between solid and gas, Thus we may say that the algebraic factor
in I, rcprescnts the type of "input" to the wave motion in the gas as
a rcsult of diffusion whilst that in I, represents the "input" to the
diffusion processes as a result of thc primary heat conduction nroccsses
plus the feedback from thc wave motion., It is characteristic of the
o = 3/k case that thesc two types of process separate in the way found
in eq, 39. It is clecar from thc form of the auxiliary equation 37 that
such separation will not occur so obviously for other Prandtl numbers, and
indeed the solution 41 for o = 0 provides a specific example,
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To return to the problem in lLand, nomely the evaluation of I,,
we shall concentrate as before on solutions valid for large times,
following wvery closcly the methods used by llanin., First of all we
examine the region around x = t by defining

E»:Ix-t (18)

4 1
and moking the substitution (1 + ¥8)? = w©, Then
1, = L= 00y f o (/) 00/0] expl (008 = 1/9)] 2,
Cp ¥ (14Q) #(¥=1)(w*) + Q(¥~1) YY (w'q)o W
ssewvo (1{9)

The contour Cw is asymptotic to « exp(* i#/4) at its ends and crosscs

the rcal exis somevhere to the right of w = 1, We shall imagine that t
in eq. 49 is large. 0 will be assumed small and we shall sce later
Jjust what this must imply about the actual allowable megnitude of o,
Using the mcthod of stcepest descents, it is now necessary to find, first
a suitable saddle point for the function

flw) = (wW’=1)(1 -1/4), (50)

and seccond to ensure that thc stecepest path through this point can be
reconciled with the contour C,, The condition df/d¥ = 0, which defines
the saddle points of f(w) is satisfied by setting « = 1 (i,u, af/aw
=28 =1 =~ 1/w® = 0) and the steepest path of descent from the col
ot w = 1 procceds from 1/2 = iw , throush w=1, to 1/2 + ie , © =1
happens to be a singular point of the intcgrand in eq. 49, howewr, so
that clcarly the steepest path for the exponential function cannot be
reconciled dircetly with C,, , By indenting the stecpest path so as to
pass to the right of W = 1 around an ayc of a small circle given by @ = 1
+ € exp(i6) we may still moke use of it though, and it quickly follows
that thce contribution to I, made by intcgration around this arc approaches
zero as € 4. 0, Consequently we can now procced in the usual vey by
writing

£(w) - ¢%/2, (51)
thercby defining ¢ , the real variable of intepgration on the stcepest path,
It follows from 50 and 51 that w expressed as a scries in ¢ begins

W = 1 z i¢/2 sesewn (52)
and that to a first order

aw

T = b4 1/2 = (53)

-
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The upper and lower signs in 52 and 53 are to be taken on the upper
(0w=1 %%+ 1ie) and lower (3 = i ©» to 1) halves of the stecepest
path respectively,

Toking the first two tervs in the exponsion of the integrend in
eq. 49 in teius of ¢ we have, after some munipulation

A ' e " o
i(tw;-".(.j'f}"’g) v b 3 f e7p (=t 972 ¥) cos (8¢/y + m/1)¢72 a$
I'.( ‘,-" — 5 2
-GG L[S (as/2 ) oon iy ) a6 (51

o

The derivation of result 54 follows the standord procedure of the
steepect descenbs melhed, namely series expansion of the funciion of @,
which mdipiies the euncrential exo( + £(w)/y ), in crcending powers of ¢,
exccpt that we have wriltion the term ewrn(={ §/1)( w-1/w})as ayncoximately
equal to exp{+ ig8/y), teling simms aypropriate to the particular half of
the s’cepest path being cmsidered, This approximation gilves rise to the
cogire fuactioms ia 54, The first integral con be reduzed to a recognizable

form on subsiituting ¢ =y /%t y, nanely,
2 i ; 1
(x.)‘* 1 f"e T oos [ (10 + ] v oy
i) T -

Bateman (1953, p.120 eq.8.%3(})) showing that this is related to Weber's
parckbolic cylinder function of ordor =3 (vritien as D..,,‘-—) . Thc second
2

integral in 54 is a well knowmn one and we can write

. (v/ 1 2
E{Jt{}% L~- iz 3 Sl D_a_ (5 /‘G’“_'E)

(V=1 Vo

CED R

A careful investigation of the errors in 54 or 55 as approximations
to I, for t >>1 indicates that we must restrict &AY ¢ tobe < 0(4)
to prevent them becoming comparable with the terms retaincd there., ihen
this is done the next term in 55 is 0(t™4), Owing to the camplicated
nature of the integral it is impossiblec to give any general tcrm for an
asymptotic expansicn, cven in the present rclatively manageablce rcgion
of x and t. Ve observe, incidentally, that when &= 0O, D_% is 0o(1),

(the exact value will be given later on in Section 5.3.).
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The result 55 fails as a general approximation, valid when x is
small for example, because of the behaviour of the exp [~ &/Y)(w = 1/w ]
term in this region, 0 becoming large like the time t.
However, if one assumes that & is large ond negative, aos when x is small,
it cen bc shown (using,thc results of Miller (1955)) that the first term
in 55 behaves like 672 and thgt the first crror term from the cxponential
just mentioned behaves like §2/¢, This sugpests that at small values of x
(i.e. ncer the interface), there is a port of the disturbance vhich is of
a wave=like charccter and that it moy be of a comparchble order of magnitude
to the third term of eq. 47. Physically this state of affairs ajmcars
highly plausible and accordingly we will attempt to evaluate the contribution
which the integral I, makes to 0 in the regions of x near to thc intcrface,

To do this it is observed that the exponential term in the integrel
49 can be re-written as

exp[ (6 = 1)(1 =2 /u)(t/Y) | (56)
wherc

« = %/t . (57)

We now scck solutions for I, which arc valid when t>>1 and @ is smell,
Using stcepest descents, the col for the function

gl = (v =1)1 -a/w) (58)
is found as a solution of
g(d = 20 = a= a/w® =0, (59)

@ is rcal and positive and it follows that there must be onc rcal and two
complex roots of eq., 59. Of these we choosc the real root, noting that
when @« is small this root is approximately

¥ [143@%4 .00 (60)

N = (3 5% ;

The stecpest path of descent passes through ¥= ‘*’o and is asyiptotic

to (wo -4/ 02 ) tieo at its cnds, Howewver, thc algebraic foctor in
o

eq. 49 contains a branch point atw =1 and the original contour Cy

cannot be rcduccd to this steepest path directly, Instead we shall use
the contour illustrated in Fig. 1 which consists cof the upper and lower
halves of thc stecpest path connected by a loop around the brench cut
from w=1,
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The intcgration around the small circle of radius € contributes
an amount to I2 which is proportional to \/?, and consequently yields

zero in the limit as € + 0, VWriting Re W = v, the parts AB, CD of
the contour contribute an amount

2@;1_)@'[ y(glg)})y-%z{‘%%_‘%%?iq —v %1\3&[).’),1 vzj‘_;
P .

The index of the exponcntial tcrm herc is zero at the upper limit
= 1 and is negative everywhere else within the range of integration,
Whence it follows that when t>»> 1 the principal contribution to the integrel
will comc from the region near v = 1, Changing the variable from v to y
via the relation (1=v2)(1-¢/v) = y, thc integrand can now be cxpanded as
a power scrics in y, the most impcrtant term being

(1=-w® ){1=a/uw)

aaedl o ol 1 f SNV | gy
W1+ Y1 -d °

1 1 y 2 ;
- T s e [0 w ] @

The errors in writing 62 for the integral 61 are wvery small comparcd with
the result 62 provided ais less than about 1/2 and t is large., Owing
to the complicated nature of the intcgral it is not practicablc to give
a gemral result for the error terms, but they arc roughly of order

t72 exp [:-(1 - )1 - l/wo)(t/y) J . Since the argument of the crror

function in 62 is very large if @ is small we may reasonsbly approximate
to the expression there by writing it as

R

Y =1 1
5 B =) 65
o (63

To carry out thc integration along the steepest path part of the contour
in Fig. 1 we definc the real variable of integration y as follows,

- "L = L ¥
g(w) - glu) :

The usunl pruredure for evsluating integrals by the method of stcepest
descents iicn leads to the major term ar-c_ﬂa from this part of the

£
i
contour and tunls is found to

g
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2\ (v = 1) aw_ (v/rt) exp (0 )4/Y)

A -_-_,“a_—x-a-

y(1+Q) = (v= 1)1 =)+ aly=- 1)V Vi 2 - Wt

m._n.u“1n:-_-_=.‘=n___-._.. e —

where A is written for 1/(1 + a/m;). Since g(wo) © =1 when a, ond

hence @ _, is smell, this term is very much lcss than the result 63 and
we conclude that, provided t >>1 amd o is recasoncbly simncll comparcd vith
unity, a plausiblc estimate of the integral I, is

Ve 1 1
I ~ . T i i A 3 ‘s!i
2 1+Q Vo (& - x) -

This result confirms the wview, expressed carlier, that vave-like
disturbances cxist in the regions of x ncar to the interface.

As in Hanin's paper, the form of the cxponcntial functidén in cq. 56
can be uscd to find approximations for the case t >>1 and alorge also,
In that cvent the solution of eg, 59 indicates a saddle point at approximately

W = (a /2), and this will ccrtainly lic to the right of the branch
point at 0w =1, Conscqwntly C and the stcepest path are dircetlyr

recconcilable and it can then be showm that the mojor contribution to €
from Iz is roughly

2UIYE L (€
¥

which is a very small quantity., (In deriving 65 we have neglected unity
in camparison with wzo = a? /L),

5.3. ZIhe Tempcrature at Large Timos

Collecting thc results from the last thrce sections enshbles us to
build up a recasonable picture of the behaviour of the gas tormerature
at times large comparcd with the meen time between molecular collisions,

Thus, in the region where x is small comparcd with t

0(x,t) ~ = -f[‘-;gn[ 1 - erf(x/2v%) _Elg}’;éﬂ.l , E@;_&%fﬂet)‘

s | (66
» B | )

(using the results 4k, 47 and 63). ‘hen x is comparsble with +,
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0y t) ~ =32y« (v 1 f Sy (GAVE)
Vo (vt)*®

- e =) &%;?{2@ ] . (67)

For the latter case we have used the results L2 and 55 and it is rccalled
that & = x = ¢, Vhen x is greater than t by an apprcciable amount the
value of €@ has been shown to be practically zero,

The temperaturc at the interface x = O follows from eq. 66, namely,

0 (0,8) ~ -2 [ =) (art) } : (68)

and, rcmembering that the gas temp«.rature T=6+T ! it can be scen that
the mturface terperature is increasing with time, ir T _ is positive

(i.c., gas hotter than solid)., The classical constant pressurc solution
for 6(0,t) indicates that it jumps ebruptly to the value - Q T_/(1 + Q)

and rcmains constant for all later times. Thus in the practical casc the
classical solution is approached asymptotically. This statement is also
true of the whole solution for € in the region necar the wall, since as t
increases the last two terms in eq. 66 become small comparcd with the first
two (which represent the classical solution). As distence from the wall
increcases at given time, however, thc solution 66 indicates that deviations
from the classical solution increase and it scems plausible to suggest

that such deviations tend to become of a predominantly wave-like character,
The behaviour of the last two tcrms in 66 as x increascs is such as to
cause the gas temperaturc to fall below the classical value, Turning now
to the regions where x and t arc of comparablc magnitude we find (from

eq. 67) some notable deviations from the classical value of (x,t).

This lattcr solution would indicate that © has fallen to an almost t/2
negligible size when x = t, for example, because 1 = exrf Vi/2 ~ TALET/)

wvhen t is lorge, ILq. 67, however, shows thot

-
0 (tyt) » =22 (). 1){_,:.!.4)‘..‘ Yaedl i ]( 69)
1+ Q 2”(2%)4 1 Q \['2“"'"1
3 4
(NB. D 1 (0) = N(4)/2* 7%), which, although small because t must be

large, is certainly of a greater order of magnitude than the classical
solution,

A skctch of the complete tenperature distribution is given in Pig, 2
the full line curves being calculated from cquations 66 and 67, whilst the
dotted lines represent a plausible estimate of the behaviour of the terperature
in the regions where thesc asymptotic solutions fail, The classical
solution is shown for comparison, and it can be scen how the deviations
fron this solution becomc more marked as x increases, Fig, 3 is a sketch
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of the wave front for two valucs of t (50 and 100), and indicotes how its
arplitude diminishes and how it becamncs more diffusc as time increasecs,
These two effccts arisc from the dissipative actions of viscosity and

heat conduction. In an actual case the non=linear terms in the egquations
describing the motion (which hawe been neglected in our lincarised
treatment) would act to flatten the wave front cven further® Both Fig, 2
and Fig, 3 have becn dravm for a value of Q = 100, which is rouzhly the
magnitude of this quantity for an air to pyrex~glaess contact,  This is

the set=up generally encountered in the usce of thin-film platinum resistonce
thermometers in shock-tube work, The variation of interface tempcrature
from thc classical value is far too small to appear on Fig, 2 with this
particular value of Q(vide cq. 68), so that Fig, 4 shows a slketch of

T (=0+ T, ) at the interface plotted against time., A rather morc accurate
cstimate of this wvalue is mede in Section 5,5, below and Fig, 4 is a plot

of eq., 85 appecaring there, It can be scen that for t > 100 the dificrences
between actual and classical valucs of T arc insignificant for all practical
purposcs, For conditions around N,T.,P, the mean collision time is of

order 10”7 '°secs., so that no @ifforcnce from the classical solution would
be obscrved for times greater than about 1/100th of a microsccond,

which implies that the practical eifects of comprecssibility in hcat
transfer at the interface cannot be résolved cxperimentally.

5.4. Ihe Pressure and Velocity Perturbations.

Further comment on the significance of the results obtaincd above
will be given in the final section: we procced now to congider the
pressurce and velocity perturbations which must arise in the pgas, The
lineariscd encrgy cquation (13) in dimcnsionlcss form is

2p _ oa _ 2¢
RN N (o
which gives
. b & gt
= p C = " 1
s P o Py [se & | (71)

in the transform planc, provided p represcnts the transform of p = p, &
Eq. 42 then shows that

-

5 = p, 0y Be) (y-n)ve Lrlimde gl a7V,

1 +Y¥Ys
Sover. €12}

B(s) having been given in cq. 43, It is obscrved that p can be written as

—— e A AR [ SR = oo

L

* Tn the cvert that the gas is initially colder than the solid (T.< 0)

the wave front is one through which temperature inercases, In that event
the non-lincar convective cffcets will counteract the dispersive effcets of
viscosity and heat conduction and the wave front will tend to rcmain stcep,
i.e, it will be a shock wave whosc strength will depend on T, and Q.
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vhere ve write § for the second tem in eq. 42.

Conscyieiiny

where I' is an integral exactly like I, iun eq. 44, except that its
2

intepmuad s meltiplied by (1 + { v=1)s}(4 + ¥s)™', i.e. an intogral
Live ag, 47 vhose iulegimad is maliiplied by (y=1)/y + 1,/}"'le .

5 Folliows Lhat, ve'ng ihe steecst descents approach when x is of order
t (i.e. for & "enaii'), the first two terms of I, will be identical with

the first two torms of I2 and we can write directly
P - B % £, 0 &xt) (73)
where 6(x,t) is given by eq. 67.

By very similar arguments we can irfer that a first order estimatc
of Pp = o f'ur 2 swall is

i
P = p, ~=p C (y=1) I N
w7 '+ e ETE

The welocity induced by the heat conduction processes can be found
from the non-diluxnsional version of cq, 11, namely

u 926 2
P& %JE:pw Cp(y—1)-a-—x2'-'5% . (75)

It follows that the treansform of the welocity U is given by

- X ® o
o a, B = a0 (r=1 )% —s [ Fa (79

(o}

Meking usc of the previous rcsults for 6 and p (eqs. 42 and 72 respectively)
we find that

pa_ U = =p Cp (y-1) /s'B(s) [cxp(-xfs_) - exp(-s;;/\cl-: ys:)J
sisan | &I7)

The first integral which must be cvaluated to find u(x,t) is very
like I, 4 in fact it is I, with thc integrand multiplied by Vs, and can be
treate& in a similar fashion, It is found to contribute an amount

T %%/t
£, C (y=-1) =9 . & /4
1 +Q {1}*{_’:
to the whole velue of p_ 2 _ u.
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Inspection of the second term in eq, 77 shows it to be similar to
the I, form of intcgral, the only diffcrence being that its integrend
will be that of I, divided by .1 +7Vs', end the previous romerks made

about Iz‘ follow here too, Thence we can virite at once,

& .0 o XY/t 4 ) _
potn 08, (V1) 5 {{Jﬂ g m;_;j (78)

vhen x is swall, and when x is comparable with t

R =0, G 6(x,t) * p=p_ (79)

p.DCJ (=]

6 (x,t) being given by eq. 67.

It is of interest to obscrve that the pressure, velocity and
temperature perturbations in the region around the wawve front are,
to the accuracy of thc solutions presented here, exactly thosc for an
infinitesimal isentropic simple wave, (vide cgs. 73 and 79). This is not
surprising, since, in the lineariscd solution, the irreversible cifeccts
of hcat conduction and viscosity are ncglcctod and, at the large times
for which our solutions arc valid, the actual quantities of heat conducted
into and out of the wave front arc small, This laticr statement draws
somc supoort from the sketch of 8(x,t) in Fig, 2, which shows how flat
the distribution of tempcrature is in this region. When X is small,
however, the isentropic character of the disturbanccs vanishes, as is
evident from cgs, 74 and 78,

Eq. 73 shows that the pressurc perturbation is an expansion across
the region x~ t followed by a gradual recompression as the interface is
aporocched, The wvelocity disturbance is consistent with this prossure
distribution (sce eos. 78 and 79), and it is clear that as time incroascs
the system ap_f:roachc.s the classical heat conduction conditions of constant

pressurce and zeroe velocity,
5.5. Interface Tempcraturc ond Conditions at Zero Time
Before going on to consider the o = 0 case we shall briefly examine
the temperature at the interface in a little greater detail and also the
conditions at time t = O +,
Then x = 0, the transform solution for the terpecraturc rcduces to
i T
6 (038) = W58 A (¥ =) Vs¥d s ys e ——
e 1+Q+(y-1)s+@(y-1)’/~s’f1+Y.9.'
LR NN (80)




(see eqs. 42 and 43). Whence it follows that the wall temperaturc can be

written as
ts
T 1+ (y=1)s]e
7(0,t) = wé-ﬂﬁ—f E pheio
L

B N T T SR S ) P

1+Q+ (y=1)s+aly-1) EAIYS
cecee (81)

L is the usual inversion contour, but it can be deformed into a dumb-bell
contour surrounding the branch points et s = 0 and = 1/y, Vhen t>> 1

the integrand in 81 can be expanded in ascending powers of s, thic first
three significant terms giving

0,4) = T2 [1_ Y v & ,.B ft/ye—y@nw]

e +
+Q oy vy o
0 o sceew® (82)
where ;
& ® 1y+-Q‘1 (83)
o (ve1)®  ofy=1 =2 _2(y=1

T (1eq> 21 ('g'%r"éjjf"

Sanee VEBk)

The integrals in 82 are incomplete gamma functions which, however, differ
a negligible amount from the complete values when t>> 1 ( vide Bateman,
1953 p.135). Consequently we can write

Te

S RS - ]
o s U tE e

b
the next term being of order % /e . It can be secn how complicated the
coefficients arc becoming, even in such a simple case as the present onc.

Although the large time condition has been studied exclusively for
the reasons stated in Section 4, it is of interest to look briefly at
the small time predictions of continuum theory, Since the major departures
from ambient conditions will arise when x is small also for small times, we
shall content ourselves with the interface values of p and © at time
t = 0+, These can easily be found from egs. 72 and 42 by letting s + o,
whence

P(O:O)

I

» By O iye R, . ﬁ_??y' . (86)

T_.QVY

6(0,0) (87)

I
1
L]

1+Q‘f‘7
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These results show that, initially, the density has not changed
(N.B. (C_/y)(y=1) = R, the gas constant, whence thc constancy of density
follows ¥rom the first of equations 1) and that the whole process begins
as if it is to be onc teking place at constant volume, This latter fact
is apparent on observing the definitions of Q (eq. 34) and K (eq. 14)
when it can be scen that writing Q Vy' is equivalent to redefining the
diffusivity k in terms of C P/V, the snecific heat at constant volure,

Eq, 87 then represents the classical heat conduction solution appropriate
to this type of process, The continuum solution thus represcnts a
transition between the two processes of heat conduction at constent volume
and heat conduction at constant pressure,

These remarks conclude our treatment of the O = £ case and we shall
now examine the case ¢= 0 to see how it varies in its behaviour from the
results given above,

6., - Solutions for O =0

When O = O the solution 41 must be used. The constants B and C
can be evaluated from conditions 33, 34 and 36 and the solution Ffor &(x,t)
expressed in the form

: (v, + %) )& v, = %,) 1 ) ®
QR I, f v, + Y, -vt- vp)® v, =%, il & Je Y

.Y

o(x,4) = 33 : : bk LB St B .
5 % x T T v
. L | (v + %)=y —VE)EJL(V1+V2)2+(W— v, ) %01 +yv”s)J
st
v (88)
S Vs
where
gl = - Vs'(vy, tw)* ;
d 1
L E 89)
w Lids - [ (LrysY . (
v =1 "l<2>'J

Eq. 88 is a very unwieldy expression and even approximate evaluation
of the intecgrals scems impossible without first attempting some kind of
transformation which will simplify the exponential terms there, TFortunately
the necessary transformations have been supplicd by Cole and W (1952),
but care must be taken in their application and accordingly somc uscful
general obscrvations about the integrals in eq., 88 will be made here,

Closing thc straight line contour L to the right with a semi-circle,
whose radius R will be allowed to approach infinity, it is found that the
real parts of the exponential terms behave as follows, The term in
exp (a, x) behaves like exp(tR cos¢), (17.B. s = R exp(i¢)), and hence
contributes to ©(x,t) for all t > 0, whilet the term in exp(®,x) behaves
like exp(R cos ¢#(% =~ V¥'x)) and will be diffcrent from zero only when x <t/ VY.
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Referring to the definitions of the d:.mnsmnl‘,ss co-ordinates x and t,
it can be scen that the line x = t/ Y' indicates = velocity cqual in
magnitude to the isothcrmal sownd speed o = a. /VY' . Across this
linc, thercfore, there is a discontinuity in the rcpresentation of the
solution &(x, tj and in fact Cole and 'u have showm such lincs to be
characteristics of the "¢ = 0 system® of cquations which lcads to the
result 88, Bearing in mind the rcmarks made above, we now apnly Colets
and Wu's transformations to 88. Therc arc two stages of trausforiation.
The first, conmon to both terms of 88 consists of writing

¥?s (1 +Db 91 =1b/ W) (90)

where Lo
b =Yy-1,

whence eq, 88 becomes
o(x,t) = 93“.??_. f exp_ (1. M)fiﬂba)_év CRAT: TN YA 6 O ) R
w241+ QVY' [wBVITB/0 + VATEG' | (44bw )(1 - b/w)?
enns AF1)

23’3(%1 f _a_umu Qeb/0)tfy = /@ a7 1y (@)
Wi 1+ VY [0® VB0 e iTTB @) > o? (1-b/w)f+bm

A possible contour C:d starts from @ = = i» and procccds torards
W = i~ passing to the right of the singularities of the intcgrands,
These lat'bcr are branch points at @ = 0, b and - 1/t and it can be verified
that the C uescribed above can be rc.placcd by a contour which coaxs
from W = o exp(-—:l. ) y,loops around @ = b and returns to o exp(+ i),
This second form of C will shortly bc found uscful,

Bach intcgral in cq. 91 is now tackled scparately. Taking the
first of thesc fivrst, it should be noted that this is the w- planc
version of the "exp(a x)“ integral in thce s-planc which has bocn shorm to
contribute to O(x,t) For all %t > 0. Since the second or "cxp( a,x)‘
integral is zero f‘or x> t/ Y' the first integral in eq. 91 gives the
wholc solution for this condition. Ve now write

w = (& -1)/b, (92)

which transforms the first integral of eq, 91 into

Z2~
: 1 148 -“‘;-19 .
o(x,t) . oY Lo f (2-1>5 [ a +wa}7‘ <é ~1 } ' l (Z,a_y\ca x\

x > t/wfy i ‘s oy \ ﬁ’/
> 2_1

zi : (95)

1
i
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The contour C, in the é-p]a.n\, is illustrated in rlg. 54! the singularitics
of the integrand being branch points at & = +/y 1 vith a2 simple
pole at £ = 0,

When x < tA) y' it is necegsary to consider the contribution fron
the second, or "exp(a,x)" integrel in eq. 91. Writing

0w = -bAZT ~1) (o)

it can bc shown that the integrand transforms into precisely the form
giveﬂ in c¢g. 93. The contour of intcgration for this second integral
will be different from C, , howevcr, Making use of the second form of G&J

contour described above 11: can be shovm that an appropriate & =planc

contour joins the points ABCODEF on Fig. 5, in the order written. The
points A and F lic on the lower and uppcr halves of the branch cut

between & = VY' and 1, just to the right of the singularity at % = 1.

To find the solution for x <tAy it is now necessary to add the integrals
taeken along C, and the contour L to F, Sincc their integrands are
identical it is clear that the parts of C, between BC and ED are cancclled
so that mteg,ratlon should take place along the new contour C_ which is
illustroted in Fig, 5, (i.c. replace the symbol > by < in cqs 93).

The difference between the contours which are necessory here and in
the case trcated by Cole and Wu is apparcnt, As will be uhor'tl;y scen,
and as may be inferred from their rcsults, the difference is associated
with the presence of wawve-like phenomena in the region x < t/Vy' as
well as when x > t/ Vv,

S(x,t)  for x < #/V/' and % large

The part of C. to the left of & = 1 can be deformed into the Imd
axis, retaining the indentation at & = 0, of course. This lattor pact
of the contour is then a semi-circle and contributes an amount
Q T./(1 +Q) to 6(x,t) for x < t/VY' ., Vriting Im& = N and

1

‘(7?2-5-)')/(7?2-!—1) 2=f ;O‘f‘:—"=0’

for brevity, the remaining contribution to €@ from C_ reduccs to the
recal integrals

280, j{ £2(£40°) 4 (14 20 o (
T (f 1\ 2 2 ! ;2
+ Q)% n*(1 + ]'F y
(95)

- £(1 + S5 o | 31°£Y  an
f-l-%‘;%n 1+f0)2 T?COSG-;%f)JexP<_ yzz)‘?'f °
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When t »>> 4 the principal contribution to the integrals 95 comes
from the region n ~ 0, In fact £ = 0 and Re & = O are a saddle point
and steepest path for the original integral, as can be easily verifiecd.
In this case £ = Vy' and the expression 95 is approximately

Q Tm o U 2 =
G2 2 f Sk i sin( me/Yy )™ an

LZ_E(B.E_ % j e-—tn/chs(Wﬁa)dn (96)

Vy'(1+Q)*

In morc familiar terms, the part of C_, to the left of & = 1 contributcs

ff”’Q {1 - erf(x/2V% ) - )- 7’“9‘%’.5/4-1 SN

o

to 6 (x,t). The errors in 97 are negligible when t>> 1 provided x is
not too ncar t/Yy'.

The solution for x < t/Vy is completcd by evalu_atz,ng the integral 93
along the contour ABEF, The circle surrounding & =Vy' contributcs zZero
to 6 in the limit as its radius epproaches zero and writing Re & = &,

the atralght line parts of the contour yield

2@.&450[ ( )" E(E+ Q)E® = 1) + (¥ = ED(4 +EQVF) j
-5%/ (& = 1)(E+ QW] + (v - E)(1 +8QWV']

Y-8 (g2 .zc_.,)d;'

This integral can be transformed to an infinite one by substituting

P =
y2+ 1

whence, writing

1
_ .l
[G2ey )2+ )| 5 = &6 5 oW = ¢

for brevity, we have

29 (y= 1)L, “[;«m’) e oxp [ (% - E‘%QLY

(g+ V% y11+ )" (y2+ 1)(y :;)

sivieh39)

A row rowEa Em ST

r



w2 =

Once again this integral has a significant contribution mainly near y =
when t >>1 and this, to a first order, is

L=l gt 5[6@[(5 -3)7 v

- .S..Z: .1.2.'.."_%'1. PRSI0 (100)
1+Q E }(I{'E_‘;“}E)\ ¥

The crrors arc small so long as x is not too near tAy’ , for £>> 1,

The whole solution for x <t/Vy' is made up from the sun of the
expressions 97 and 100, namely

6lt) .. . 6%, o(v-u exp(x /i) (Y1)
x <t/Vy T+Q [1 i/ | = s );,p t = ‘f""ﬁ:x)ﬁj

ssane (I00)

To a first order of approxzmatlon then, this solution is identical with
the "small x" solution for o = §, as can be scen from egs. 101 and 66,
despite the apparently very different exact solutions (egqs. Ll and 88)
It is worth noting that there does exist a certain similarity betwecen
the contours which have been used to obtain these results, however.
Differcnces between the o = 0 and £ cases would arise in h:Lg,n.cr order
terms than thosc presented here, but these differences are clearly of

no great physical significance at large times,

It is pcrhaps a little surprising that the egrcement betieen the two
scemingly so different cases should bc as good as has Jjust becen demonstrated
here; in fact we shall find that it is not quite so good when the x™~
regions are compared. The "small x" region is one in which diffusion
sffcets predominate, however, and presunably Prandil number is of less
significance in these circumstances.

6.2, 0(x,t) for x >t/Vy' and t larce

To examine ©6(x,t) in the region x~ t write
x = t+90
so that the exponential term in eq, 93 becomes

exp[(i-if%). %(E— )|

1
‘<\I.P(
W iCn
ra
&'F
n ™
%
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Then £>>1 and O4is small the mothod of stcepest descents can be uscd
to find an appropriate integretion cantour which has a rapidly decrcasing
valuc of the first exponcntial factor in in expression 102 along i‘l‘:)s_‘
len;th, A saddle point for the function of & in this term is L =ty
and. the stcepest path of descent lies between this point and the points

Z =Vy"/2 * iw , A small semi-circular indentation of this poth is
necessary to avoid the singularity at £ =Vy' which occurs in eq, 93, but
this contributes rero to the final value of 6(x,t). It can be verified
that the steepes' path with this indentation is equivelent to G .
Writing

(PN LT Ul = « & (103)

and thereby defining the real vagxiable of integration ¢ on the steepest
path, it is observed that expansien of & in ascending powecrs of @ begins

ey |
Z =y * 1\]1»-!2'-% & * sane B (104)

The upper sign in 104 refers to the upper half of the path and vice versa,

The first order eslimatc of eq. 93 when x ~ t and t >>1 can now be
written as

1 s " .
o(x,8) ~ = ?j‘; 2y =12 d f e-t¢2/fcos<ﬁ..§’.¢.l...i i E).Cl?i
vy y(y=1)? ¢2

o

vesew  L165)

Putting t9¢°%/® =y°/2 this becomes
6(x,%) ~ -9_33 . L&_:ﬁ_}r f B“yefzco.-;;(_ﬁ_x“ +£> S
i +* (y-A)¥ vy
ews 0w (106)

which is recognizablc as the parabolic cylinder function form found in
Section 5,2, In other words

N _QTm. " ;:_; $ ...__., -
8(x,t) o %;Lﬁ exp(=52/uy=1)¥)D_, , (& (V=0)¥), (107)

0

a result which should be compared with the first term of eq. 67 in
Section 5.3. They are seen to be identical if yt in eq. 67 is replaced

by (y=1)t.
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When M = O then, the form of the disturbance in the regions around
the wave front is the same as in the more practical cise for which H
is retained, but the shape of the disturbance is much sharper at a given &
and +, This is hardly swprising, since in the © = 0 case the dispersive
effects of viscosity are absent, It appears from the results 107 and 101,
when compared with the corresponding o= I; solutions, that they =0
approximation is indeed not as drastic as might be supposed in the first
place, provided t is large enough. Also the effects of Prandtl nunber
seem to be of most importance in the wave-front zone and of little significance
near to the interface, certainly as far as temperature is concerned,

6.3. Pressure and Velocity Disturbances

The disturbance to the initially uniform pressure and velocity
fields cen be found in a similer menner to the o= § case, although by
reason of the conditionu = O here, the velocity problem is in fact
somewhat siipler to solve, We will not give the details here to avoid
wearisome repetition, but merely quote the results.

Thus it is found that, when x < t/Vy' and x is not too nearly
equal to t/Vy'

. e%  (y=1)
- = - G e = e )
P B s %o TV e (108)

whilst vhen x ~t

P = R = P Cp e(x:t) F (109)

a(x,‘b) being given by eq. 107.

Eq. 108 is identical with eq. 74 and 109 is the equivalent of the
result 73, to which it reduces if (y = 1)% is replaced by Yt.

Likewise, the velocity u is exactly the same as eq. 78 vhen x < t/Vy’
and a result equivalent to 79 is obtained when x ~t, To the order of
accuracy of these results, the similarity between the 6(x,t) values for
o =0 and -‘E is retained for the other flow varisbles therefore,

It can also be showm that the t = O+ values of © and p are identical
in the two cases, so that the transition from constant volume to constant
pressure heat trensfer occurs when o = 0, too., Some idea of the extent
of the difference between the two sclutions at the interface for lorge t
can be gained by comparing eq. 85 with the corresponding result for ¢ = 0,
In the latter case T(O,t) is given by an equation exactly like €5 in which
the coefficient B is now

s - $5 B[ () s s |
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For typical values of ¥ and Q of 1,4 and 100, B gbove equals 1,94 whilst
B in eq. 85 equals 0,49, but, since the result is only valid when t >4,
the effect of this difference on T(0,t) is very small,

The difference between the o= 0 end o= 5 cases has been found to
be very small at large times, the principal effects arising in the wave
front region vhere viscosity acts to disperse the disturbance more renidly
than can be accomplished by conduction alone, Consequently the intuitive
feeling, expressed in Section 4 (ii), that the omission of viscosity will
still lead to a reasonsble picture of the flow field has received some
support in this case., Puttingo = 0 does not simplifly the oroblem, however,

7.  Conclusions

The processes which take place in a ges, initially in a wniform
state, when it is placed in sudden contact with a solid at a diffcerent
temperature have been examined for two values of Prandtl number, ncmely
2 and zero, The characteristic time for the esteblishment of the resulting
flow hes been f'ound to be of the order of the mean time between collisions
of the gas molecules whence, since the formulation treats the gos as a
continuum, the main effort has been concentrated on finding solutions
valid for large times,

In these circumstances it has been found that the flow field divides
into two regions in a rough sense. Some distance from the inlterface the
disturbances propagate oul into the gos as a wave motion travelling at the
ambient isentropic sound speed (in this linearised treatment), upon
which are superimposed the dispersive and dissipative effects of viscosity
and heat conduction, When the gas is intially hotter than the solid the
wave front is of an expansive character which tends to flatten as time
proceceds, If the gas should be colder then the solid initially, the wave
front will represent a compression, This front will still flatten and
decey with increasing time in the linear theory presented here, but in
practice none=linear convective effeccts will oppose these processes and a
shock wave may be expected to appear.

In the regions near to the wall the heat diffusion processes dominate,
but, as the temperature of the gas changes, corresponding changes of pressure
and velocity will occur and these give rise to a wave motion which is
superimposed on the main process of diffusion,

Thebuild up of the flow field can be explained as follows, Assuming
the gas to be hotter than the solid, at the initial instant, the layer of
gas molecules immediately adjacent to the wall lose some of their energy
and momentum to the solid, but as yet there has been no time for any
appreciable mass motion of the gas to occur and the density remains at its
ambient value, The pressure pulse so produced then begins to propagate out
into the gas, dropping the gas temperaturc below that which could be attained
as a result of heat diffusion alone, and accelerating the gas towards
the interface. Since the solid is impermeable, this motion must be resisted
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and the gas will recompress more and more as the interface is approached,
This recompression will give rise to same reheating of the gas and the
temperatures near the wall will begin to rise back towards the wvolues
appropriate to pure heat conduction at constant pressure, Molecular
velocities cover the whole range of magnitude from zero to infinity, so
that changes such as those arising at the interfaoce can be signalled to the
furthest cormers of the flow field instantancously. However, the strength
of this signal and the extent to which the gas will react to it at any
given point depends on the nirher of molecules which reach the point with
the necessary information, Significant chenges in gas properties are
expected to oceur only when a bulk of the molecules from an affected
region reach the point in question thcrefore, In other words the bulk

of the disturbance must travel ot some average molecular speed, which is
the meaning of the isentropic sound speed here,

It seems clear from the results derived above that the compressibility
effects are very small near to the wall for times of order, say, 100
collision intervals from the start of the processes, Experimental
observation of wall temperatures could hardly be expected to reveal them,
therefore, since it is difficult to resolve times of less than obout 0,01
microscuonds, in which intervel most of the effects have vanished, If an
experimental set-up equivalent to the theoretical model studied here eould
be devised, however, it may be possible to sce the wave front,

Reflection of a shock wave from the closed end of a conventional shock tube
would not be an adequate experimental model with which to examine the
predictions of the present theory, since the shock wave itself is a front
extending over a few molecular mean frece paths, across which the gas
properties change to their new values, The instanteneous initiation condition
demanded by the present theory would therefore be lost, ond furthermore
interaction between the reflected shock wave and the heat-transfer-induced
pressure disturbances would arise to complicate the picture.

It scems plausible to suggest , however, that even in this more
complicated problem the "ideal" inviscid shock reflection state would be
pretty well established in obout the same time interval as it takes for
the conotant pressure heat transfer state to arrive in our simple theoretical
model, This conclusion is not without signifiicance, since it follows
that the reflected shock technique may perhups be used to produce a slug of
hot gas which can then be employed to study other important proverties of
gases, By thesc we mean the effects of molecular structure, wvhich have
been explicitly excluded from the present work, Thus, for example,
excitation or de-excitation of the vibrational modes of diatomic molecules
is knoim to take sceveral thousand collisions, so that any effects which
may arise as a result of this relatively long rclaxation time could be
examined in the reflected shock region on the assumption that compressibility
effects behind the shock wave are negligible, The simple theoretical
model of a semi~infinite gas and solid may then be adequate for a study
of, say, interface temperatures in such a relaxing gas, the pressure being
substantially constant,
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The witer would like to thank Lir, G. M, Lilley for numecrous helpful
suggestions during the course of the work deseribed above and, indeed,
for pointing out that the 0 = § case could be solved.
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