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SUMMARY

Suitable formms of the equations for the flow of an inviseid, nen-
heat~-conducting gas in which chemical reactions are occurring are derived,
The effects of mass diffusion and non-equilibrium amongst the internal
modes of the molecules are neglected,

Speclal attention is given to the speeds of sound in such a gas
mixture and a general cxpression for the ratio of frozen to equilibrium
sound speeds is deduced, An example is given for the ideal dissociating
gas, The significance of the velceity defined by the ratio of the convective
derivatives of pressure and density is cxplained. It is the velocity
vhich exists at the throat of a convergent-divergent duct under maximum
nass flow conditicens, and it is shown that this velocity depends on the
nozzle geometry as well as on the 'reservoir' conditions,

As an illustration the phenomena of sound absorption and dispersion are
discussed for the ideal dissociating gas, The results can be concisely
expressed in terrms of the frozen and eguilibrium sound speeds, the
frequency of the (harmonic) sound vibration and a characteristic time Car
the rateé of progress of the reaction,
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IJST CI* SYIROLS

Ratio of a, to a
i e

Equilibrium sound speed

Frozen sound speed

Chemical formula of @ -th species

Mass fraction of O=th species

Specific heat at constant pressure and frozen composition
Enthalpy per unit mass

Specific reaction rate constant for the r~th forward reaction
Speecifiic reaction rate constant for the r-th rcverse reaction

Mass rate of production of &-th species per unit volume
in the r-th reaction

Overall mass rate of production of a~th speciecs per

N
unit volume (% 5 K&?) )
r=1

Def'ined in equation 12

Defined in equation 7

Number of scparate chemical species

Number of atomic species

Number of molecular spccies and of rcactions
Partial pressure of «~th specics

Total pressure

Universal Gas Constant

Fate of r-th reaction

Entropy per unit mass

Absolute teuperature

Tdme

u, (1 =1,2,3) Flow velocity vectar

L



LIST OF SYROLS (Continued)

W Molecular Weight of a~th species

&, _ Mole - fraction of «th species

Xy (i = 1,2,3) Position vectar in Cartesian coordinates

IS’f Volume expansion ceoefficient at constant (frozen) composition
Z Defined in equation 75

a Defined in equstion 74

?"a Defined in equation 43

H Chemical potential of C-th specics (per unit mass)

Stoichiometric coefficients of «~th species in r-th
reaction; recactants wnd products respectively

E Streanwise coordinate
p Density
Ua Defined in equations 32 ard 37

Characteristic chemical time far r-th reactiom (see eq,11)

7; Defined in equation 62
W Angular frequency of sound wave

Suverscripts

(r) Refers to r-th reaction
: Refers to a disturbance quantity

Subscripts

a Refers to a-th chemical species
e Refers to chemical equilibrium

f Reflers to chemicelly frezen state
o Refers to an undisturbed quantity

Other syrbols arc defined in the text



1. Introduction

The advent of flight through the atmosphere at stagnation enthalpies
sufficient to cause chemical changes in the air surrcunding the bedy has
introduced a new complication into the study of gas flows, The chemical
reactions which cccur in the gas are thermcedynamically irreversible
processes amd, as such, lead to the creation of entropy. A further souwrce of
dissipation therefore exists in the flow, in cddition to the normnl transpoert
phenomena which, formerly, we have had to face only in the interior of boundary
layers and shock waves, The important difference between entropy production
due to chemical reaction (or, indeed, due to changes in the internsl states
of polyrtomic molecules as well) and that due to transport processes lies in
the fact that the latter are explicit functions of gradients in the flow
variables(velocity, temperature and concentration) whercas the former is not.
For this reason, the significant dissipative action of chemical changes may
be important throughcut the flow field,

In the present paper the gas flow equations are devcloped far flows in
which transport processes can be neglected, Chemical reactions are included
but it is ossumed that the internal states of the molecules are in equilibriwn
with the translationnal modes, The treatment of the reaction equations
follows Boa=Teh Chu (1957) and density gradients are climinnted from the
overall mass conscrvation equation in favour of presswre gradicents in the
manner shown by Kirkwood and Wood (1957). The latter peper derives the
general flow equationsineluding also the effects of internal relaxation
phencmena,

In the course of rcarranging the mass conservation equation it is
necessary to introduce the derivative ( 9p/9p ) taken at constant centropy
and composition (p is pressure, £ is density) and this is idcertified as the
'frozen! speed of sownd, a,. The question of which among the meny speeds of
sound which can be defined in a reacting gas mixture (indeed, as is shown in
Section 7, there are an infinite number) is the most significant in a general
flow ficld has been answered by Kirkwood and Vood ard Chu in the papers cited
and also by Broer (1 958) 211 of vhom show that the chaoracteristic directions
arc defined in terms of locol velues of a,. However, thc sound spced in the
other limiting casc where chemicnl composition is assumed to follow its
cquilibrium value through the (weak) sound disturbance is not without
significance and scme discussion of it is given in Section 5,

Recently Resler (1957) proposed that the velocity defined by the ratio
of the coenvective derivatives of p and ¢ should be used to dcfine
characteristic dircetions, The reasons for the failure of this proposal
have been stated by Broer and these are reinforced by the treatment of
Section 6 below, It is shown there that the peculinr significance of
(Dp/Dt)/(De/Dt) in 2 steady flow lies in its definitieon of the flow velocity
at the throat of & convergent-divirgent streamtube,

Tinally, in Scction 7 a simple example of sound abscrption and dispersion
is given for an ideel dissociating gas, '

It is hoped that the present paper may supplement those menticned above and
go some woy towards clearing up somc of the diffiicultics assccinted with reacting
gus flaws, particularly with reference to the question of the speeds of sound,
N,B, Cartesion tensor nototion is uscd in the development of the general
equations, but the translation to standsrd vector notation may readily be
made if desired).



2, The Basiz Equrtions

We shall censider a pas mixture consisting of n  seporate chemical species
vhose chemicel farmulae pre dencted by £, (@ = 4 5 & .»n), In decling with
rcgions of the flowr cutside boundery leyers Lmd tne interior of shock frents
we shall neglect viscosity and theormael conductivity and, in oddition, assume

T

that the components of the a;"ii*.:ion velocity vector, u ., arc ﬁnell compared
with those of the muss LJn,r'\ (or flow) velocity veotor, u.. Thot is,
we assume that }u [< < u T (i =1,2,3) for each value of

The overall mss conscrvation requirement is unoifected by the possible
occurrcnce of chemnical reactions in the gas and coan be varitten in the fam

ou,
—D.‘{:-j- e p '5-:}}‘;. = O f (1)
L

Likewise the momentum and energy relotions are the some as they are in an
ordinary inert gas flow (within the confinecs of the asswmpticns made previocus 1)
and arc written as

P2u , O 0 2
Dt ox. = (2)
il
Dh_ Dp "

( o = density of the mixture, p = pressure ard h = ‘Twc,‘f‘ifio ernthalopy,
D/D-t; is the conveetive derivative snd, in Cartesisn tensor nototion,

D ;) o
Dt = Bt * Y5 ox. )

J

In additian, there are n  continuity equations which nuct be satisficd
by ecach of the chanical species Ag » These are readily shown to be

'Dca
o
= = Kg (% 1,2,30.0),
within the franmework of the genersl assun

fraoction of the a=th @ecuﬂ and K, de tl“-z-, net
thet species per wnit volume., K, must toke accou
chemieal reactions which can ccecur between the compencn

In tho ge‘ieral case the mixture consists cf N seporate r.;"::-:‘:.tic

specices (Eﬂ, ;;2, A5, see .ELT ) plus N separate molcoul r specics (_Ir 3
5 o ':“.—!-‘1
_fxl, 4 s B J+ The nmolecules ore¢ formed fromoorbinations cmong the L8

“:.;.2 a4 n
different types of f_htors Plainly N + E‘-.Tn = n and the total possible number

of elerentary, indcpendent re: ‘GJC:LOYL: ik W . The chewiecal equation for the r-~th

I
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where vg ) and Vgt ) are the apyroprinte stocichiometric coefficicnts of
the reactants and products respectively., Both quantities are integers.
r 2 ; — ’
ki(' ) and. kn(:' ) are the forwvard and reverse specific reaction rate constants
respectively for the r-th reaction.

It is common in physiecc-cheanical wark to speeify concentrations of species
in terms of moles par unit volume of the mixture., Ve shall dencte this
wit by the symbol [ﬁa]. It is found (see, c.g, Moclwyn-fughes, 1957,
™. 986 - 988') thnt the rote of progress of apwrticular chemical process,
in a homogencous mediuvm like a gas mixture, is proportionnl to the product
of the concentration of the reactants coch raiscd to its appropriate
stoichiometric ccefficient, Thus in equation 6 the forward reaction proceeds
at a rate proportional to

n \v(r) B
I F& J“
g s

and the reverse reaction at a rate proportional to

" v(r) "
=1 E
Measuring the rate of progress of the recctions in meoles per unit

L]

volume per unit time and ncting the opposing eflfects of forward and reverse
reactions, the net rate of progress of the r~th reaction in the forward
direction is given by g\T/ vhere

el (x)"

(r) () n i r) n Yo
R = ok [Ra] - ki) 7 [eg ¢ (7
=

e

(Note that the direction in which & reaction proceeds is spocified by the
condition that

n n
)& ,1 "o
I GO LR AN SR GO
a G "0 el a e
ct=1 =1
for a naturcl process, M is the chanical potential of ILE, per uvnit mass and
W, the molecular weight of A, o Bce, cog. Guzrenheim, 1949).



The observable effcet of any reaction is the net rate of production of
a g(r,ivon species in the mixture, Since the r-th reacticn, for example, yields

W\ 4 !
val) - vE{r) molecules of Ac' from the original rcoctants it is apparent
that the mass rate of production of A, ~ in the r-th renction (vritten Kgr)) is
given Dby
B () ( =) L&)
r) : r)” ()¢ r)Y n o ya (r) n a

a=1 a=1

The mess fraction ey, is related to [Am :]Iby

0o, = Wy (A1, : (9)
vhence we can rearrcngce equation 8 to read (r)’ (r)"
W v v
(x) fa [ () (r)"}[ (¢ n ¢ . m o }
i = : v - Vv K c it Cq (‘1 O)
" _T_(I) B & cuz’i . c'g"a “
where (I‘) - p n 5 - U(E)” .
T = I') Il ( /“ra) (Ji 1 )
k:c a=1
ﬂrld- ) i
( ) k_gr) n v(r) - U(r)
r - & a
K = Il R/ 12
O L =

Tt can be scen that kﬁ_r) has the dimensions of (mass per unit volume)

‘ n
s sod 2 v(r)# \ . (r)
raised to the 1 - P power, per unit time., Thus 7 has the
dimensions of time and is, indecd a choracteristic time by which to measure
the rate of progress of the r-th reaction, ™

Tf o gos mixture is in ckemical equilibrium, there is no net rate of
producticn of sny partioulsyr specics; the forvard and roverse reacticns
exactly cancel one snother and a dynmumic balance is achicved, the systan shcwing
no tendency to change its state, Telking the r-~th reaction as typical, this

means that I{C(;r) = 0 for chemical equilibrium for all & and r.

k]

T( ) is proporticnal to the time token for a given =anll deviction fram
cquilibrium to fall to 1/e of its originel velue as a result of the r-th
rcaction alone,



Denoting this special state by a suffix e, equation 10 shows that

N €S N ¢ ST
NI (13
a=1 '

vhile equation 12 shows that

() (=) _ (=)
-k n v -y
2wty 8 O (12)

Thus, from equations 12, 13 and 14,
(I\)H (r)f
v -y
a

8 E <_p_9._c.£_5‘_—..> “ ] ' (15)

a=1 p

Now the state of the gas at any point is completely specified thermo-
dynamically by, say, the density p, tamparature T and the set of n numbers,
. For the porticuler values of p aud T there will always exist one set of

n numbers = which specify the equilibrium composition, If we choose, as

we are quite at liberty to do, to specify the Coe 28 the equilibrium compesition
arising at the local p and T then Pe = P in equation 15 and K(r) = Kér).
Hovrever, rathcr more convenient relations arise later if we choose p ard T

&5 the thermodynamic variables and specify that e shall be the equilibrium
composition arising at the local p and T, 1In that case Py £ p and K(r)

is given by equation 15 as it stands, However p is known as a function of
p, T and the ¢, from the cquation of state for the mixture and, at the same

p and T, we can always climinzte the density ratio in terms of actual and

(r)

equilibrium concentrations, In either case, X can aliwvays be expressed in

terms of corcentrations alone,

It is noted that the net rate of producticn of A, in all the N réactions,
nomely K, is given by '

K, = 2 K&r). | : (16)
r=1

With the aid of equaticons 10 and 16 we con now rewrite equation 5 in
the T
the form

N

Dc m W ” ! ¢ !

=\ 7 =1 =1
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Suppose now that all the Nm reactions occur extremely rapidly under

the conditions prevailing in a given gas flow, Then it is apparent that the
B2 £ gLven & rp

local vodues of ¢, will differ but little from the locnl cquilibrium values,
For a chemicel rcaction is a natural precess, procceding always in a direction
tawards cquilibrium, and a rapid reaction rate implics swift correetions of
any devictions fran local equilibrium in any particular element of gas,
Thus De, /Pt = De /ot in equation 17 and the term in brackets there is

" is determined by the local p and T

or p end T values, however, and nced not be small, In such cascs, therefore,
it is apparent that all the T\Y) rust be very small in magnitude. The
limiting case in which the () are imagined to be zero, so that o, = ¢

2y smoll in magnd
very sm in magnitude, .‘Dcth /D

ae?

is an abstraction which camnot occur in practice, but it mey, ncvertheless,
give rcsults which are sufficiently accurate for many purposes and in arny case
could f'orm the first step in f_n iterative process in the right ccnditions.

The case for which 211 the T r) con he assumed effectively zcro (the reactions
are &ll 'infinitcly fast!) is called chemical equilibriwm flow,

At the other extremc , all the T(r) may be so large that we my imagine
tham to be infinite for all practical purposes, Then all the Doy /Dt

quantitics are zero and all the ¢, are constant throughcut the rdgion. The

o4
gas is, cffcctively, chanically inert and we refer to the flow as chemically
frozen flav,

Finally in this scetion we will deal with the consecquences arising from
the relation between the thermodynamic variates,

n
e E e - B
Tds = d~ -dp = Bou do, . (18)

8 is the specific entropy of the mixture and the n  quantitics U . are

the chanieal potentials of the species in the mixture per unit mass of' each
particuler species, Since the 'a' in equetion 18 denotes a general differentin
T the variables we my particularise it and follow the change in entropy

of a particle of fluid as it travels through the region, That is, we can
replace @ by D/Dt, From equaticon 3 it immediantely follews tho

n
TDs = = b 14 :ua Dog

Dt =1 Dt
n
But Do, /Tt = K/p , from equation 5, and we note that, since 2 % =1
n
(by definiticn), 3 de, = O, Thus we can always eliminate cne term from the
a=1
sumaticn and, choosing to eliminate dcn we von vwrite
: n=1
T Ds
P = i | e ) -
Dt = o (Hy =) By (19)

Equotion 19 can now be used in place of the energy egquation, equaticn 3.
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An alternative form of equation 19 will be found useful and can be
deduced as follows, Xliminating Hp from the right hond side of the equation

in favour of the suwmrntion fram a=1 to n for the time being wc note that
N n
n n m (I‘) m n (I‘)
K = K = K
Z H, " I u Z 0 = Z Z By ™y @

o =1 =1 % =] r=1 q=1

by reason of equation 16, Vriting this in the form

L ()" ,(x)y ()
5 Lo, (vr* - vg )‘uc' ¥ Ke
r=1 a1 ' : )

7, OB S

the last term here is equal to the reaction rate R(r) £ar the r~th reaction
and is therefore independent of the velue of @ (sec cquaticns 7 and 8),
Thus we can now vwrite

N
n m n ) I -
su, K o= % r(F) (ugf) - vc(f)) B,
=1 =1 =1
where Ea & W, Ho, s i.e, the chemical petential per mole of A o

We will only deel with mixtures of perfect goses, so that

Ha L= ha - TSCL s

where h, is the specific enthalpy of specics a , a functicn of T only, and
8, is its specific entropy, o function of T and the prrtisl pressure P,
At constant T, thercfore

- =T ds= = w
du, = =-Tds, = %g d(1og p, ),
o
by reason of the thermal equation of state for Aa roaely, P, \-"0 = pC, RT,
(R is the Universal Gas Constent), Corsequently

e (By ) = ﬂa' + RT log P /"

vhere pE is some convenient stondord pressure and ﬁaﬁ is the potential per
molecule of ﬂ‘c; at pyE and T, Ve can naw write

TR T Y @

2 My By = BB ci1(v~ ~ve " N~ +RT logp /%) (20)
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The general requiranent for chemicel equilibrivm is

s (u&l‘)ﬂ_ vgf')i A, = 0 ' (20¢)

- o=1

(see e. g, Guggenheim,? 949), or in terms of the standard values

A

n : T T

z (v NG E L Rrag ™). ~RTlog T oD (2t)
» Y i e

;~'1 i ) , =1

for each value of r, where Py is the equilibrium partisl pressure of Aa
in the mixture, (Eq, 21 is the Lﬂur of Moss Action),
Tliminating the standard values from equation 20 with the aid of cquation

21 we have

52

, S ()

n
I S SLCORNN I log L (Pa/ ) o
a=1 r=1 ' e=1 ac

If wviec now choose Pac _ to be the cquilibrimmporticl pressurce at the prevailing

pressure mﬁ. tmpcraﬁuo we can write

Pae e
vhecre x is the mole fraction, and these may be written in terms of mass
fractions, Ve will not go to the se lengths here, but simply notc that

=1 ar1 a=1

. »
It can now weadily be seen that when all the T( ) = 0, Ds/Dt = O becauce
-

Ta = Tgo and also that Ds/Dt 4 0 as all the T( ) - m‘r, In the two
extrceme, limiting cases, therefcre, the entropy of a fluid particle remmins
constent, For :Lntcnn{.cll?ﬁx, condi t.."" ens the sccond law of thermodynarics denands
that s shall increase, since, in the absence of transport phenomenn, the fluid
particle constitutes a clesed systen,

Note, however, that for any piven deviation of concentration from the
chosen lecal eou:.l“ erium, velues, the rate of entropy inerease is grenter
for smaller volues of (r, vide equaticn 76 in Sceticn 7.

T(r) 0 is cssentiolly a singular cose,
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3. The Symmetrical Dintcmic Gos.

As a simple and useful cremple of the equaticns derived in the previous
section, consider the dissccinticn reaction in a symmetrical distomic gas,
The atoms are dencted by the chanical formula A 1 and the molccules by Az.

A2 consists of two A’i atoms,

Lissuming that the dissoclation of A, into two 1‘;1 atoms follows a proper

2
encountcr between an Az molccule and sane other second bedy and that re-

combination follows a simultanecus encounter betweeon two A’i atoms and some

other body we vrite the chemical equotion (eq.6), as
k
_ £
Ay + A3 — 2Ly + Ay (23)
K
r

s ; s : P
(Since there is only one reaction we drep the supcrscript ( )). A3 has been
written for the "other" body mentioncd above, In the pure gas 113 will be

either .{-11 or A,, but it is convenicnt to trect it as o separate chemical

25
species in writing the chanical equation, In this way we aveid having to

specifly l:f and l{r for both an ﬁ‘q and an A 5 "other" bhody reaction, Although

k:f‘ and I:r could be coleulated (from quantum mechanics) for each type of reactiom,
it is with the overall effcet of both types that we must deal in a gas flow
problem,

We note, howevar, thnt C_‘§ = 01 + 02 =1, Also 2"J1 = \’-.’2 and. T.'."3 = Wz',/’ (1 » 01).
Then equation 17 shows that

T

Dc W ‘
2 (.
D_L“-“—‘Jl = ?‘”[I{(ﬂ '-(3_1) -012J (2)_*_)
where
T = wg /,q. k| o £ Y c,I) - (25)
and ‘ 5 '
K = (0(_3/()).(0_{c /1 = 8 )5 (26)

from equations 44 and 415 reepectively,

The thermal eguation of ztate for the mixture is

P = p(1+0c) (R0 (27)
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so that choosing e to be the equilitrium carposition at the lecal p and T

we have ﬂe/p = 14 01/1 ¥ 010 and

2 2 ‘.
K = (14 01) cw/“! - (28)

The equation for Dcz/Dt follows immediatcely fran Cy + Cp = A%

L, The Mass Ceonservation Fouation

In dealing with the flow of an inert gas for vwhich viscous, heat cenduction
and mass diffusion effects are negligible, the entrepy cf a gas particle
rcmains constant, Since the concentrations of the varicus camponent gases
in the mixture do not change, the state of a gas particle is wholly specified,
thermodynaunicslly, by any two thermodynamic wariables, In particular we
cen say that p = p(D’ s). Then, since s = cocnstant everywhere in the

regicn, Op/%x, = (9p/3p) oo (99/2 x )and the pressurc grodient temms in
equaticn 2 can be climinated in favour of op/ a}:i‘ Finclly p dis elimincted
between equaticns 1 and 2, ( Op/9p )s is identificd as the speed of sound

propagaticn through the gns,

The situation is not so simple in the case of gzs flows in which cherical
reactions cccur, for s is not constant in generel, as we have scen, and the
chanical conposition mey change in a marmer which will depend on the nature
of the flow. In these circumstances it is slightly mere convenient to
eliminate the density gradients fram equation 1 in favour of pressurc grodicnts,
Neting that

p =0 (p, s, Cys Cpy wee cn-‘i)’

n
(since vie can always eliminate one of the ¢ & frem I ¢ a = 1) we have
=1
- :
ne (89 ) Dp 9p Ds N 8p De,
= = O s B B2 s 5o+ 2 (D) . (29)
e P 78,8 Dt o Ps% I =1 acﬂp,s,cﬁ Dt

The suffixes dencte which of the voriables aore held conatant, Suffix

¢, dmplics thot all the ¢ crc constont, suffix s that all c, &xXcw
S 3 s i i

¢, itself arc held constant. The derivotive ( ap/ap)s & is identified in
- el -4

Secticn 7 below as the sguarc of the speed of sound under frozen flow
conditicns, Ve write

@& - LP (30)
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Also, since

ap op o0 s
@), -(#),. (%, o
@ /p,s,cp PsCy wp, p

we have,‘ using equations 5 and 19,

I'\l-
Db _ .2 Do, (o [-.1_ 3
Dt ¥ Dt Cs Y T 1

55 o
’cm 3 Jo.l ,{)
The quantity
-1 ap 3 s '
w = (8w @) ] o
PyCq™

Py P50 )

is a function of the thamodynumic variables only and docs not depend explicitly
on the gas flow itself. Thus we can write

-
Dp 2 By .
Dt = % Bt * 051 o Ke (33)

where the last term does not depend explicitly on the actual flow,
Accordingly, we con revrite the mass conscrvation requirement, cquation 1,

in a form more convenient for our present problem, nonely
ou. 1o
I8 o a My . wf W e (34)
Dt 4 e i3 i « o
xj. 0=

Equation 32 is not the most convenient form for cvclwtion of o,
The thermodynamic nature of the gas dis generally sunmarised in the
thermal and caloric ecuations of state, Since the component gases of the
mixture are generally assumed thermally perfect, the former equation is
n
P = p I Go e 4, (35)
a=1 :

and the lotter gives, for cxmple
h =i h(p’ T’ 01, 02, eae Gl‘l“"}i)’ (56)

the form of the function depending on the actunl gas mixture, o, can be

rearranged, with the aid of equation 18, to read

a h ) 1 (a {z )
c = pp_/C ——— — i 7'
@ ( f/ Pf) dey p,T,cp e \D Ca (57)

P:Tacp
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shere ) , )
P i 1
L a

o

the volume expansion ccefficicnt with frozen gas compesition ond

h
Gpi' = @E‘) s (39)
PyC,,

the spccifiic heat at constent pressurc vith frozen campcsiticn, All the
derivatives ampearing in equotions 37 to 39 are readily cvelunted from equations
35 end 36, (The derivation of equation 37 from equaticn 32 is pgiven in the
Appendix).

5. The Bguilibrium Speed of Scund

We cun readily demonstrate thet, f'ar a £low which is in complete

chemical cquilibrium, the speed of sound is given by ( op/op ). F’I', suffix
s dmplying cmstont cntropy and suffix e that the chemical ¢éiposition shall

follow its cquilibriuvm value during the diffcerentintion at constont entrepy,
The equilibrium speced of sound is written as

2 dp
2 . (ﬁ) , (40)

c
8,e

and the ratio of al._, to ae con be found as follows

Since o is a function of p,s and the . quentitices a general increment
4

in p is given by
=1
—2 0p “ apn
P,Cq

adbyequation 30a this ecan be rewritten ns

-2 ap . 2 e 6E
(119 = c'lf dp = ( 3 S) g = x 'a-s 'E'j*é' , de o« °
P =1 P,C “p, pycp

C i
2 (a4 LN [

But equation 32 shows that
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Putting ds = O will give us dp at constent entropy. Now consider the
summation in the last tam of equation 3 ; we can write

n=A ( n 2 &

r (#, ~f)de, = Z g dec = X g do,

=1 I a e c e A 24 TT-E
e d

But doy /Wy is the change in the number of moles of Ay in unit mass of

mixture, dng . The change RIS brought abecut by the I \Im reactions cccurring in

the mixture so that dn, = zm dng ¥/ vhere ang ( ) is the contribution from
r=1
the r-th rcaction., Thus
n ; Nm n - (I‘)
£ op,de = 3 2 () an
=1 & g gt G

" !
But in each reaction r.'lngr) must be proportional to ”S;r) = "’Etr) S0

that each term in the swmntion with respect to r is proportional to

no_ "

5 B, ( v{(tr) - (r)) If the mixture is in complete chemical equilibrium,

0= n-1

each of these tcrms is zero (sce equation 20a), so thot in that case I (ua - ’Un)dc'{;.
=1

is also zoro,
From 4 therefore
5 n-i
i'/a = 14+ pag I o A (42)
g aa

A - *
where the ¢, have their local cquilibrium values, Cre? ard

_ (ﬁﬁa) - (fﬁ.@) (43)
L op s,€ % Js

4 It sheuld be noted that p, % and o'r are all to be cvaluated at loeal
equilibrium values of C et To this extent they will diff'cr in magnitude
winc e 08 op and o, in equation 39, vhich are evaluated at the actual

loc21l wvalues of the Cp o
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The ratio (af/ae) is orly unsmbiguously defined by equation 42 if the actual

state of the gns a2t which the ratio is evaluated corresponds to an equilibrium
stote, faor then o o is consistent with all of, say, p, p and T, If the gas

is not in chemicnl equilibrium then we are at libearty to choose whether we

shnll refer te an equilibrium state at the lecal p and T cr at the local p

and T, for exmmple, and the velue of ¢, used in the evaluaticn of (a ae)
& _

will vary acccrdingly. In view of the remrks made in previous sections, it

secms advisable to choose p and T as the variables from which to determine € et

The reason for the ambiguity is the impossibility of defining an equilibrium
sound speed in a gas which is nct at equilibrium, (remembering that the speed
of sound is the speed at which small pressure pulses propagate into an
undisturbed fluid:; by undisturbed we necessarily imply, also, chemical
equilibrium),

As with o in equation 32, ?La in equation 43 is not in the most

convenient form for evaluation in a practical case, However

( %o, ) ( 8% g6 \ © e ) or ) (1)
= +\"57) « \&: -
8 p o 9P )T T - dp 5.

®..-6-®. /& . . as)

so that, knowing the equilibrium composition as a function of p and T and h
from equation 36, the derivative can be evaluated., (In passing, it shculd

be noted that there will he Nm cquilibrium relations between the c te terms,

one far each reaction, The remaining N{l relations nccessary to evaluate a
particular C,o Ore provided by the conscrvation of atoms requirements for cnch

atomic species),

The derivation of equation 42 relies entirely on the thermodynamics cf
the gns mixture and is in no way connected with the flow equations, In this
sense it differs fran the derivation of equation 34 frem equation 29, although
the results ere of a similer style, However, in so far as the term in
brackets in equation 44 is alweys zerc for a perticle of fluid which fcllows
the mction, it is clear that the speed of sound under equilibrium conditicns
is an attribute of a particular fluid clement, rather thon of 2 particular
position and time in the flow field., By the scme token this is true also cf
the frozen scund speed a,, or indeed of any cther scund speed which we core
to define. Arperents basced on these lines have led lunk (1955) to propese
thot scund speed sheould be defined as the ratio of the convective derivatives
of p and p, ard this definiticn has been employed by Resler (1957) in
writing the equations for the flow of a general gos mixture, Ve shall rcturmn
to this topic below, where we hope to explain the significcnce of (Dp/Dt)/( Do/bt),



The dissocintion reacticrn deseribed in Secticn 3 (equation 23) is a
simple exemple of o receting gas mixture, the treatment of which is rendered
yet more simple if it is assuascd to be an idecl disscciating gos in the sense
defined by Lighthill (1957). Using the notation of Scction 3, the equilibrium
compositicn of the ideal gas is given by

5 °

e ) _p_'r;t,e_D/R2T (16)
1"010 = o)

vhere py is a (constent) characteristic density, D is the energy required

to dissccicte unit mass of molecules completely and R, is written for R,/‘\-'-fz.

2
The enthalpy is

h = (4 s 01) BT + c,D (47)
and equation 35 for the gos mixturc is
p =p (14 c, )RzT. (48)
Using equations 46 to 48 the values of o, and A, can be found,

The result for the rotio of the frozen to equilibriwn sound spceds in an
ideal dinsociating gas is

(19)

(af/ae> 2 - tao, (1 = c‘le) [(D}"' )1 & 010) - (4 016) 12

ke / 2 P
@'+ 1)%,, (1 = o) + 84 20,
vhere D/ has been written for D/RzT. The ratio is shovm plotted against T

for four values of p in Fig, 1, the gos being an "oxygen-like" ideal

dissociating gas, with pd = 150 go/c.,c. and D' = 59,000/T. Its maximm
value is in the region of 1.3 to 1.4 cccurring when cbout three-gquarters cof
thce molecules arc dissceinted under equilibrium conditions,

6. low Velocitv at a Nozzle Throot

The mass flow rate per wiit area, m, in the steady flow thraugh a stream-

tube is given by

3

m =p u, (50)

u being the modulus of the velocity vector, The value of the velceity (u)
vhen m has its maximum value can be faund by putting dm/du = 0, Frem
equaticn 50 then,

L. &
N dp

the darivative being evalunted along the streamtube, Thus
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'U.}E L ‘(;JEL@;'}
- P (C'D/ctt_,) 2

£ being the cocrdinate measured along the streamdube, Bub the steady flow
momentun equaticn is

pu_g_a.}m an
dg ~ dg

vhence

%2 Adp/dE, '
- G &)

The significance of the ratio of the convective derivatives of p and p
is now spparent; it is the square of the £low velocity which would cceur ot
the throat of a Level nozzle,

I'rom equation 41 it can readily be scen thet

' - 1 15
uﬁ2 32 -1 o nz‘i de _/,(_,_, = e
= f 4+ P < - O’{ /-[ £
¢
Thus, sincc p (dcc_/di” ) = by cquation b, W~ deopends on the ratio of
the mass rate cof 'p‘l"Od.lC'L:I onof species to the pressurce gradient, In general,

this ratio will depend on the shape of the nozzle frem the "reserveir" end
to the throat, so that U~ in o chamieall ¥ reacting pos mixture is not solely
a function of the rescrveir comliticns, (The appearance of the ratio (de /&Q’(&y’c‘ﬁ
" L 74 ¥ S A

in u™° explains why u- cannot be used to define churceberistic directions as

in Resler's (1957) thcory (ou, Broer, 1958) ).

T Sound Prepacetion in an Tdenl Dis

ohdng Cas

hs tn example of the usc of the eqinitions derived above we consider the
propogetion of weale disturbarces \smm-\‘_) throuph en dideal di sccia'tin;_; gns,
dealing only with plane wvaves. In thot cvent, the not: t“mr' can he simlified
somevhat, since there will be only one velceity componant, u, end one spz,‘.cc( )

ok vr* 1 1 s ) i
coordinate x. There is ondy onc reacticn (eg, 23) so that tno supcrseript
can be dropped, In Scetion 3 on ateom was designanted by a subs f“'“p't1 and

1JJ>-J\-/|..I.

a molccule by subscript o Since we can alweys eliminate 5 in favour cf c,
we may drop the subscrint on e y ard nd eall it, s 'r_'.;_vft}“; c, Harever, the subscripts

Will bo retained on ¥, the molecular we

vidld rossible
confusicn between atoms and molecules,
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The momentum equations (eq,2) reduce to

ou &
poT + AU 73-1:% + % = 0, (53)
and, by equation 24, the continuity relatim for atoms is
. W
de oc 2 2
5o+ u e T B [K("l —C) - C ] (54)
The mass conservation equation (eq.3)4) becomes
W '
ap e 2 a2 ' - :
R u =+ P2 oz t P O % K (1 c) c = 0 (55)

and the entropy equation (eq,22) is now

2 2
Os u 9s R 2 c 1 -0 :
CIRE - {K“ 'C)"C’} 10%[-@-__.._-2@ ] ,  (56)

o 1 =¢C

e .
since the mole fraction of atoms, z = 2¢/1 4 c in the present case, Cq

is the otom mass fraction under equilibrium conditicns at the local p and T.

The characteristic chemical time (eq, 25) is

T = W‘; / k kz‘ 02 (1 4+ ¢) (57)
and K is given by (eq, 28),
K = (14 c¢) ci /(1 - cg) (58)

We shall consider small disturbances in a gas which is unifcrmly at
pressure p, , density p,, entropy s, ond camposition ¢, befare the

disturbance arrives, (Note that C, 1is an equilibrium state)., The
undisturbed gas is at rest, Triting
7
. ! ! " i !
P=Dy, +P 3 P=p_+0 58=8,4+8 j;c=c 40 50, =0, +c,, (59)

substituting these rclations into the eguations above and neglecting sguares
and products of the distuwrbance (primed) quantitics gives the following
rcsults

ou’ / ?

e T o+ B = O, (60)

g 9 ! ! ’

Tm'gpﬁ'(c +GC)+C =0, (61)
oy’ & Gue(. B ol |
B * P %Pe ox 0 %, % T = O, (62)

i [ee]
vhere 7-; = .(-CW /*,;2{1 -c )) -3 « =i g
Te N

and ds o
36 = O, . (63)



to the first order in small quantities, u! is written for the velocity to
emphasise that it is a small quentity. A suffix o indicates that the
.quantity concerned shall heve its undisturbed value,

Bauation 63 indicates that, to first order the entropy is ccnstant
throughout the flow ficld, Since the cquilibrium compesition c:e is a function
of p and s

5 ,
dc ) dc
de = < e dp 4+ ( e)
e v ds ,
%p 5 ds s

so that, to first order

!

Ce = hw]’_.')' » (6}4’)
where A = ( oc C/ dp) . evaluated in the undisturbed fluid, by reason of
cquation 63, Thus equation 61 can be rewritten

dc ! op’

; Cc ! ! Opr
Te B OFE & T A& F o= 0. (€5)

The pressure disturbance p’ ond change in compositicn ¢/ can be
eliminated between equation 60, 62 and 65 resulting in

-

: 2 } 2 ! 2 ! ‘
T’% 81; _ag Bug "'(1""000&? U&au g 8u2: 0o (66
s 9t © 0 x ot” 9 x
But from cquation 42 in Section 5 we readily identify 1 + . ’1? o ?\m
as (ap /a ., )2, so thet, finally
82 ! 22y " 2 o2 o2’ ¢
= ] em ] = o # 0O ( 7)
9x ot ox
That & ap ond o as defined in equations 30 and 40 are in fact the frozen
and equilibriuwn speeds of socund is at once apparent from equation 67,
T'or putting T:g = o shows thot W propagates at & wave speed Qo and putting
7/ = 0 shows that it propagates ot speed & .

In practice 0 < 7/ < e and the wave motion is morce complicatced,
co
(In passing we note that 70 4 « asc_ - Oand 7/ . 0 asc_ . 1,
(=]

However, in these cases the ehmnges in gas cmumwl’cion hecome extremely small,

cven IOI' quite large disturbances, and the distincticn wetween an and a,

becames of no proctical significance, In such cases it is sufficient to define
2 . . .
a” as ( 9p/0n ), The recason far e v Ay An the cases quoted is that, in
- - - - - - -

both instances, ?'cw » 0 wvery rapidly), As a simple example of wave motion in



the region of dissccinticn consider the hormonic motion of a piston about

x = 0 with a velccity U exp(iwt), If it is assumed that the motion has been
initiated at some considerable time previcusly, transients in the flow field
should be negligible and we can vrite

iwt

wo o= v(x) e " (68)
Substituticn in equation 67 shows that v satisfies
3> 53 o7 + iw T" '
dx2 fco (1 v=0 ’ (69)
+ iw T’ :

. . . . . Sl
whence it is readily secn that an appropriate solution for w in the
circumstances is

) a.2+in’
w o= Uexp |iw (t =] ———2 —) ; (70)
14-1&}7" B

=27

(a is written for the ratio af /a.e ). The radical tcrm is chosen to have a
o les]

positive real part, For convenience we can define

B e T P o
i el S | (7)
1 4+ iw 7/
o
where
' 11
_— alt + (@ 'rc*':‘):2 -
- (L)
14 (07 )°
and
0 =35 o™ (a2 -1)w o)
5 5 (71v)
+ (0 7)
Then the veloeity disturbance can be written
v =U exp [--Mma_'}| s:'mﬁ,x] exp]:iw (t—mag‘ cose,x)] (72)
feo f'eo

This represents an harmonic disturbance of frequency w propagating from
left to right at a speed apco s Yhere

G = Bp / m cos © (73)

and is ?’Llled the phase velocity, We note that © has a moxdmum va J.uc of
(a = a™")/L, when wr! = a, and since a is not greatwr than 1,2 (sce Fig.1),
certainly at pl‘bSS’L»I‘eS in the region of one atmosphcre, O is never very large,
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Thus, roughly

. " afm<1+(mr;)2>% o

Peo
&l‘- ES (C&) T:o)2

and it con be scen that a <€ a < a_, according to vhether 0 € wT! € «
Coo Peo oo o

The quantity w 7/ is the ratio of the choracteristic chemical time to the
co
choracteristic disturbance time, so that for given undisturbed conditions
(i.e. given a, and 2 ) the phase velocity depends orly on this perometer,
—Ca [e2e]
The dependence of a.p on frequency represents the phenomenon of sound dispersion,
L]

From the first exponential foetor in equation 72 it can be seen that the
amplitude of the disturbance is decaying with inereasing distonce from the
piston. This is the phenomenon of sound abscrpticn due to the chemical reactions

occurring in the gas, The arplitude decay factor is wm a'i: sin O(= &, say)
[#+]

and, sincc sin 6 ®* ©  we cen write
2 2
L 1 \2 . E 0 (2% =) W
W T 5
- (“"*( w)) : = (75)
s, "

2 T \2
foo 1+(w'r:0)2 8”4 (0 7))

For given undisturbed conditicns 7/ is known as well as 2 and dp o
[ee] (=) ca

Then it can be seen that & . 0 as w 4 O whilst

2
g . saed) (76)

i
T
2 ‘:’“f‘m .

as ® 4 o, (N,B, In proctice 0 < 7/ < o ), The lower frequencies
(£} .

therefore persist over a grenter distance than do the higher values,
Contributicns to sound absorption and dispersicn arise from all transport
phenomena (i.¢. viscosity, hent conducticn =nd mass diffusion) as wcll as
from relaxeticn effects in the interncl modes of polyntemic molccules, It is
frequently the case, however, thot absorption and dispursicn due to chemical
reoction is much greator than the combined effects from the cther scurces
(vide e.g, Hirschfelder et al, 1954).

As iz otherwise obvicus, equaticm 75 shows that & . O beth as 77 4 0
e
and as T:O + ® , The distinction betwecen 7/ 4, @ ond w 4, »  should be
o

noted here, In the first case the chendcal rencticn nroceceds so slowly that,
irrespective of the noture of the disturbrnce, the rote of entropy increase
of a fluid element is insignificont whilst in the sccond case the disturbance
ceours so rapidly thot devistions from the local equilivrium state (and hence
the rate of entropy production) bicome relatively lerge,



w25 =

A smll disturbance of gencral shape con be built up by Fourier synthesis
(since the system is a lincar cnc) and will eontain clowments of both high and
low frequency. Frem the forepoing discussion 11: can be scen thot Lhe high
frequency perts of tle disturbance will run on at the (1*1{; cr) frozen sound

speed Qo s being followed sase while latcr by the lower {requency clements
[ae]

travelling ot the equilibrium scund speed o » The hesd of the disturbance

Ceo

will be mcre rem:tf‘ly attenuated then the ports which follow it and, at some

distance x which is large campered with 2 o, T’ /(2% = 1) (sec equa

the bull of the disturbance will be travel l;rh at a speed approaching S
=0

In particular, if T" is very smnll, this condition moy arise very ncar to the

piston, In the major part of the disturbance field thern, the flow is effectively

in chamical cquilibrium,

Howcver, in all cases except the singular and, practically, not rcalisable
case of 1‘; = O the disturbance front propagntes at i (unlczs the

L U2
disturbancc is confincd to be a Fourier sum of finite ""r'mucncv cxtent), The
importance of 2o, in defining the zone of influence of a point in the flow

field of a chemically rcacting gas is apparent, a point i
by the work discussed in the Introduction which shows tho

characteristic directions in such a case,

The topic of sound ebsorption and dispersion is not a new one, having
been first treated by Einstein (1920) for the case of the iilssuc"v"'i'icm_
reaction, Numcrcus cther papcrs have appearcd on the sulject, but the
interested reader is porticularly referred to a recent *rt_r_c e by tazo (1958)

which gives a more detailed account rather on the lines of the presont
simple examyple.
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APPEIDIX

The quentity o, is defined in equation 32, In crder to make calculation
of o, froma Imawrledge of the therm:d and caloric eguations of state ecasier
we now preceed as follows,

Dealing £first with thc tam in brackets in equation 32, the thermo-
dynamie cquetion, equaticn 18 shows thot

T (Os ch
(‘a:;, = <'§En> - (Mg =8
s & p,P ,Qp P, p,cﬁ

Thus the bracket tarm is equal  to (8 h/ dc, ) 8
¢ “p, D,cﬁ

[e2]

Since, in general

n-1" s
w ) @ @) w3 () e
T.c A g

Py O »Cg “p,T,0p

it can be scen that

(ah ) ) (@) o , (&

azﬁ Py p,CH o P, Cy (?ca) P, ﬂ!?ﬁ '§“Ca p,T,cp
Dince

& - %) &+ (g% o 4 3 (—%) do,,
psCa PyCy =1 @/ Py PyCq

we have

@z) . (@31 ) (9.9. )

oc,, 0, 5,0, - op p,ca' de P,T,Cﬁ E

Thue finally

o ~\aT ( ) ° 3]
9 Ps 0,3 \ p,C - 0p P,€, C p,T,Cﬁ

Ve nowr deal with (8p / as)p B * For increments st constont compositicn
L g

+ \7
va /p,T,e

& ] ‘6‘

o4

cquaticn 18 shavs that

Tds = mg}f) i€ o4 (9-}3> & - < ap,
i AP/ p
PsC, T,0

ra



o [T] -

Thus

T <_§§> _@3) ar)
ap = \& * \ap
PsCq PsCq ¢ PsCq

Intrcducing the definiticns given in equations 38 and 39,

), @, % &)
oc - 2 ) 3
&P, psCp * »Tep o ﬁf P p,Tep

and

@) p2 ==
a.s = = _....__.....__....f.‘. :
PyCq c

jold

The form of ” given in equation 37 follows inmediately,
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CORRIGENDA ATD ADDENMDA

P.9 Eq. 1L et seq should read

y @ n () ()"
Moo Ke(a) = o g (pe/wa> © | (1)

=1 .
@ °
kre

Thus, frem equations 12, 13 and 1k,
i !
FOMINE)

K G (%)t T (1)

o="1 @

G NONNG / ()
provided fe re; ¢ ¥ “r , The speeific reaction rate
constants are functions of T only, so that this conditicn will be satisfied

if %o is evaluated at the actual local temperature T (i.e, if Te = T),"

P,11 Line above eq,20 should read

W e BT D;E is the potential per mole of A  at pEE and T."

P.21 In eq,62 read T; for T e The line bolow eq, 62 should read

"where 7. = E(“i X - /2 c, W :le o



Corrigenda and addenda (Contd.)

P.22 Eq.64 implies that ¢’ is evaluated at local pressure and entropy,
and not local pressure and témperature as is required by ecgs,60 £0 63,

In order to employ the simple relation eq.6bl therefore,we must redefine
Ce in egs, 59 to be equilibrium composition at local pressure and entropy.

The chemical recaction rate terms are assumed to be proportional to the
new c’ quantity divided by a new T;o wnich cannot be evaluated a pricri),

The new value of 77 can be found for any specific problem, however,
co

because values of ¢  and ¢’ etc can be found at corresponding points
in the flow field and the new T:o is then the mean value of

o K“E/TX K(1 - 02) - o2 ]:|—1

over the region of interest., Except for this re-definition of 7/
the theory and conclusions from eq.64 onwards are unaffected.



