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The effects of mass diffusion and non-equilibrium amongst the internal 
modes of the molecules are neglected. 

Special attention is given to the speeds of sound in such a gas 
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derivatives of pressure and density is explained. It is the velocity 
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nass flow conditions, and it is shoun that this velocity depends on the 
nozzle geometry as well as on the 'reservoir' conditions. 

As an illustration the phenomena of sound absorption and dispersion are 
discussed for the ideal dissociating gas. The results can be concisely 
expressed in term al' the frozen and equilibrium sound speeds, the 
frequency of the (harmonic) sound vibration and a characteristic time fcr 
the rate of progress of the reaction. 

3111 811111911111373  

November , 1958.  

THE  COLLEGE OF AERONAUTICS  

CRANFIELD 

The Flow of Chemically Reacting Gas Mixtures 

- by - 

J. F. Clarke, B.Sc., Ph.D. 

SLIVIARY 

Suitable forms of the equations for the flow of an inviseid, ncn-
heat-conducting gas in which chemical reactions are occurring are derived, 
The effects of mass diffusion and non-equilibrium amongst the internal 
modes of the molecules are neglected. 

Special attention is given to the speeds of sound in such a gas 
mixture and a general expression for the ratio of frozen to equilibrium 
sound speeds is deduced. An example is given for the ideal dissociating 
gas. The significance of the velocity defined by the ratio of the convective 
derivatives of pressure and density is explained. It is the velocity 
which exists at the throat of a convergent-divergent duct under maximum 
nass flow conditions, and it is shoun that this velocity depends on the 
nozzle geometry as well as on the 'reservoir' conditions. 

As an illustration the phenomena of sound absorption and dispersion are 
discussed for the ideal dissociating gas. The results can be concisely 
expressed in term al' the frozen and equilibrium sound speeds, the 
frequency of the (harmonic) sound vibration and a characteristic time fcr 
the rate of progress of the reaction. 



CONTENTS 

Sumary 

List of Symbols 

Page 

1 

3 

1. Introduction 5 

2. The Basic Equations 6 

3. The Symnetrical. Diatomic Gas 13 

4. The Mass Conservation Equation 14 

The Equilibrium Speed of Sound 16 

6. Flaw-  Velocity at a Nozzle Throat 19 

7. Sotnd Propagation in an Ideal Dissociating Gas 20 

8. References 25 

Lppendix 26 

Figure 1. 

CONTENTS  

Summary 

List of Symbols 

Page 

1 

3 

1. Introduction 5 

2, The Basic EqtrAtions 6 

3. The Syr me 	Diatomic Gas 13 

The Mass Conservation Equation 14 

5. The Equilibrium Speed of Sound 16 

6, Ficil velocity at a Nozzle Throat 19 

7. Sound Propagation in an Ideal Dissocilyting Gas 20 

8. References 25 

Lppendix 26 

Figure 1. 



-3 

LIST OF SYITOLS  

a 	Ratio of a
f to ae 

ae 	Equilibrium saand speed 

of 	Frozen sound speed 

Acc 	Chemical formula of a -th species 

ca 	Mass fraction of a-th species 

Pf 	
Specific heat at constant pressure and frozen composition 

h 	 Enthalpy per unit mass 

1•
(r) 

Specific reaction rate constant for the r-th farmyard reaction 

( hr
r) 
	Specific reaction rate constant for the r-th reverse reaction 

Kcc  (r) 	Mass rate of production of Lth species per unit volume 
in the r-th reaction 

Overall mass rate of production of a-th species per 

) unit volume 	 (r) 

r (7 Em  =1 

Defined in equation 12 

Defined in equation 71 

n 	 Number of separate chemical species 

Na 	Number of atomic species 

Nn 	Number of molecular species and of reactions 

Pa 	Partial pressure of a-th species 

p 	 Total pressure 

Universal Gas Constant 

R(r) 	Pate of r-th reaction 

s 	 Entropy per unit mass 

T 	 Absolute torAperature 

t 	 Time 

u. (i = 1,2,3) Flow velocity vector 
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LIST OF Ma-301S (Continuedl 

Via 

c 

Molecular Weight of a-th species 

Mole 	fraction of ath species 

xi  (i = 1,2,3) Position vector in Cartesian coordinates 

"f 
	Volume expansion coefficient at constant (frozen) composition 

Defined in equation 75 

0 	Defined in equation 7i 

Xa 	Defined in equAtion 43 

Pa 	Chemical potential of a-th species (per unit mass) 

(r)/  Mil v. 	,a 	Stoichiometric coefficients of 0-th species in r-th 
 reaction; reactants Lnd products respectively 

Streamwise coordinate 

P 	Density 

Defined in equations 32 and 37 Cf 

(r) 	Characteristic chemical time for r-th reaction (see eq.11) 

TI 	Defined in equation 62 

Angular frequency of sound wave 

Sunerscrirts  

(r) 	Refers to r-th reaction 

I 
	

Refers to a disturbance quantity 

Subscripts  

a 	Refers to a-th chemical species 

e 
	

Refers to chemical equilibrium 

f 
	

Refers to chemically frozen state 

o 
	

Refers to an undisturbed quantity 

Other symbols arc defined in the text 



1. Introduction 

The advent of flit through the atmosphere at stagnation enthalpies 
sufficient to cause chemical changes in the .air surrounding the body has 
introduced a new complication into the study of gas flows. The chemical 
reactions which occur in the gas are thermodynamically irreversible 
processes and, as such, lead to the creation of entropy. A further source of 
dissipation therefore exists in the flovr, in addition to the normal transport 
phenomena which, formerly, we have had to face only in the interior of boundary 
layers and shock waves. The important difference between entropy production 
due to chemical reaction (or, indeed, due to changes in the internal states 
of polyatomic molecules as well) and that due to transport processes lies in 
the fact that the latter are explicit functions of gradients in the flow 
variables(velocity, temperature and concentration) whereas the former is not. 
For this reason, the significant dissipative action of chemical changes may 
be important throughout the flow field. 

In the present paper the gas flow equations are developed for flows in 
which transport processes can be neglected. Chemical reactions are included 
but it is assumed that the internal states of the molecules are in equilibrium 
with the translational modes. The treat/aunt of the reaction equations 
follows Boa-Teh Chu (1957) and density gradients are eliminated from the 
overall mass conservation equation in favour of pressure gradients in the 
manner shown by Ki2.-ltwood_ and. Wood. (1957) The latter paper derives the 
general flow equationsincluding also the effects of internal relaxation 
phenomena. 

In the course of rearranging the mass conservation equation it is 
necessary to introduce the derivative ( appp ) taken at constant entropy 
and composition (p is pressure, P is density) and this is identified. as the 
/frozen' speed of sound, af. The question of which among the many speeds of 
sound which can be defined in a reacting gas mixture (indeed, as is shown in 
Section 7, there are an infinite number) is the most significant in a general 
flow field has been ans -tered. by Kirkwood and ';:bod. and Chu in the papers cited 
and also by Broor (1958) all of whom show that the characteristic directions 
are defined in terms of local values of af. However, the sound speed in the 
other limiting case where chemical composition is assumed to follow its 
equilibrium value through the (weak) sound disturbance is not without 
significance and some discussion of it is given in Section 5. 

Recently Resler (1957) proposed that the velocity defined by the ratio 
of the convective derivatives of p and P should be used to define 
characteristic directions, The reasons for the failure of this proposal 
have been stated by Brcer and these are reinforced by the treatment of 
Section 6 below. It is shovna there that the peculiar significance of 
(DP/Dt)/(DP/Dt) in a steady flow lies in its definition of the flow velocity 
at the throat of a convergent-divergent streantube. 

Finally, in Section 7 a simple example of sound absorption and dispersion 
is given for an ideal dissociating gas. 

It is hoped that the present paper may supplement those mentioned above and. 
go some way towards clearing up some of the difficulties associated with reacting 
gres flows, particularly with reference to the question of the speeds of sound. 
(N.B. Cartesian tensor notation is used in the develope.lent of the general 
equations, but the translation to standard vector notation may readily be 
made if desired). 

1. Introduction 

The advent of flight through the atmosphere at stagnation enthalpies 
sufficient to cause chemical changes in the .air surrounding the body has 
introduced a new complication into the study of gas flows. The chemical 
reactions which occur in the gas are thermodynamically irreversible 
processes and, as such, lead to the creation of entropy. A further source of 
dissipation therefore exists in the flow., in addition to the normal transport 
phenomena which, formerly, we have had to face only in the interior of boundary 
layers and shock waves. The important difference between entropy-production 
due to chemical reaction (or, indeed, due to changes in the internal states 
of polyatomic molecules as well) and that due to transport processes lies in 
the fact that the latter are explicit functions of gradients in the flow 
variables(velocity, temperature and concentration) whereas the former is not. 
For this reason, the significant dissipative action of chemical changes may 
be important throughout the flow field. 

In the present paper the gas flow equations are developed for flows in 
which transport processes can be neglected. Chemical reactions are included 
but it is assumed that the internal states of the molecules are in equilibrium 
with the translational modes. The treatment of the reaction equations 
follows Boa-Teh Chu (1957) and density gradients are eliminated from the 
overall mass conservation equation in favour of pressure gradients in the 
manner shown by KIrkwood and Weed (1957). The latter paper derives the 
general flow equationsincluding also the effects of internal relaxation 
phenomena. 

In the course of rearranging the mass conservation equation it is 
necessary to introduce the derivative ( ap/ail ) taken at constant entropy 
and composition (p is pressure, P is density) and this is identified as the 
tfrozent speed of sound, a f , The question of which among the many speeds of 
sound which can be defined in a reacting gas mixture (indeed, as is shown in 
Section 7, there are an infinite number) is the most significant in a general 
flow field has been ansWered by Kirkwood and Toed and Chu in the papers cited 
and also by Broer (1958) all of whom show that the characteristic directions 
are defined in terms of loeal values of a f . However, the sound speed in the 
other limiting case where chemical composition is assumed to follow its 
equilibrium value through the (weak) sound disturbance is not without 
significance and some discussion of it is given in Section 5. 

Recently Resler (1957) proposed that the velocity defined by the ratio 
of the convective derivatives of p and P should be used to define 
characteristic directions. The reasons for the failure of this proposal 
have been stated by Broer and these are reinforced by the treatment of 
Section 6 below. It is shown there that the peculiar significance of 
(Dp6t)/(iee/bt) in a steady flow lies in its definition of the flu w velocity 
at the throat of a convergent-divergent streamtube. 

Finally, in Section 7 a simple example of sound absorption and dispersion 
is given for an ideal dissociating gas. 

It is hoped that the present paper may supplement those mentioned above and 
go some way towards clearing up some of the difficulties associated with reacting 

as flews, particularly with reference to the question of the speeds of sound. 
(N.B. Cartesian tensor notation is used in the development of the general 
equations, but the translation to standard vector notation may readily be 
made if desired). 



2. 	The Bc,sic Equations 

We shall consider a gas n,ixturc consisting of n separate chemical species 
whose chemical farmlae are denoted by L0  (a 1,2,...n), In dealing with 
regions of the flcg outside boundary layers and the interior of shock fronts 
we shall neglect viscosity and thermal conductivity and, in addition, assume 
that the components of the difTnsion velocity vector, u ci , arc small compared 
with those of the rfLsr, avera;e (or floy,-) velocity vector; ui, That is, 
ire :IS M= that luaik: < lu- 	(i = 1,2,3) for e=11 value of-  a. 

The overall sass conservation requirement is un2ffected by the possible 
occurrence of chmical reactions in the gas and can he written in the farm 

au. 
= 0 	 (1) 

P — 

	

Dt 	 ax. 

Likewise the momentum and energy relations are the same as they are in an 
ordinary inert gas flow (within the confines of the assuyriptins made previously) 
and arc written as 

Du. 

	

Dt 	ax. 

	

p 111.1. 	Dp 

	

Dt 	Et 

( P = density of the mixture, p = pressure and h = specific enthalpy. 
D/Dt is the convective derivative and, in Cartesian tensor notation, 

	

. D 	 a 	a 
Dt = 	at + 

3 

In addition, there are n continuity equatins which just be satisfied 
by each of the chemical species tea  . These art, readily shown to be 

Dca  
K 	c =  1,2, 3 „ n) , 

	

Dt 	a 

within the franrework of the general assui:,-Aons mf,d,7.  above. ca  is the mass 
fraction of the u-th species andKc  iP 	not raslI rate ef-ruction rf 
that species pc:4r unit volume. Icc  :rust teke account rf all the possible 
chemical reactions which can occur between the cc,:-- ponents of the mixture. 

In the general case the rlxture consists of J\7 separate 
species (Al' 

A
2' 

A3, 	A,T  ) plus N separate moleoultr S17OCiQZ (L.
,f r1.4.1 

AN , • • • AN 	
). The molecules are foriled frc,n=hinations among the N a 

a+2 	a + Nn  
difforent types orators. 	Nam 	h = n end to total possible number 

of elementary, independent react ions is 7 N. The ch,:r.ical equation for the r-th 
El 

0 

= 0. 

(5) 
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reaction (r 	1,2,3, ... 17m) is 
k(r) 

n  (r) I 	 t n  (r)n  2  va  A a 	 Z va. 
a..=1 

r 
'where va 
	and  r) 	v(011  are the appropriate stoichiometric coefficients of a 

the reactants and prodrcts respectively, Both quantities are integers. 

k ,r} end k(r) are the foraz.l.rd and reverse specific reaction rate constants 

respectively for the r-th reaction. 

It is colivion in physico-chemical -wca-k to specify concentrations of species 
in terms of moles 	per unit volume of the mixture. Vie shall denote this 
unit by the syrrbol rhal 	It is found (see, e.g. Iloolvi;vn-HugIns, 1957, 
pp. 986 - 9E3) that the rate of progress of ap•rticular chemical ;process, 
in a homogenottus medium liko a gas mixture, L.3 proportional to the product 
of the concentration of the reactants each railed to its appropriate 
stoichiometric coefficient. Thus in equation 6 the fory'arci reaction proceeds 
at a rate proportional to 

v 
IA 
• 	ct 

a=1 cd 

and the reverse reaction at a rate proportional to 

II 
N a=1  

Yeasuring the rate of progress of the reactions in moloF.; 	per unit 
volume per unit time and noting the opposing effects of forward anCl. reverse 
reactions, the not rate of progress of the r-th reaction in the fonmrd 
direction is given by R(r) 	e-.-. wh0 

v 
(r) 	(r) n , 1°' v(0

it 
... k(r) 	n 	a, R 	= kf 	LA a  I 	

t ) n  1.1c., 	 (7) n 	- 	r 	 • 

(Note that the direction in which a reaction proceeds is specified by the 
condition that 

# 1 (r)t 	
n 	( 

v 	17 	
- 

11 	> 	Y.' 	v 'L  I 	1-  r , • 
a 	a a 	 a 	a 

,11
a 

	

a=.1 	 a=1 

(6) 

,v
(r)  

for a natural process. tic  is the chemical potential of Au  per unit mass and 

VTa the molecular weight of A 	See, e. g. GuzT;onlioirn, 19)0). 



The Obscxvable effect of any reaction is the net rate of production of 
a given species in the mixture, Since the r-th reaction, for example, yields 

(r" va ' - v(a
r)1molLeules of A 

from the original reactants it is apparent 
 

that the mass rate of production of a in the r-th reaction (written gar
}) 
 ) is 

given by 	 t 	
,(r)

a 
v
(r) 

K(r) 	( (r)" 	(r)i [ (r) , 'W  k v(r)"  •-• Va j 	k
1' 	

n n  [A al C4  - k(r)  n E 	] a 	 r 	n , a 	(8) a=1 

The mass fraction ea  is related to [ Act 3by 

P 
	= 	rA j 

when to can rearrange equation. 8 to read 

KT = I5'k) 	r)il 	
n 	a 

r 	 c.-21 	u.:=i 	.. 
[ 1)(  

a 	a 
- v(r)I][ K(r) 	Frli  °a 	

. 11 ca 

(17)
: 	

(r)
,/ 

va 	 v 	-, 

	

whore n 	- v(r)11  
(r)

=.  
. 	0 	 a 

-.' Tcr) 	II 	( P/i ) ;.' r 	a=i 
and 

v 
(r) 
	

a 	a 	 (12) 
- kir)  a=1 	Wa 

r 

It can be seen that k(r)  has the dimensions of (moss per unit volume) 
r 

raised to the 1 _ 	v(r)" ,er, per unit tie. 
	has the a  pov. ime. Thus 

dimensions of time and is, indeed a charact_cristic time by which to measure 
the rate of progress of the r-th reaction:2'.  

if r  gas mixture is in chemical equilibrium, there is no not rate of 
production of any particular species; the forward and reverse reactions 
exactly cancel one another and a dynamic balance is achieved, the system s'noldng 
no tendency to ch7.nge its state. Taking the r-th reaction as typical, this 

(r) 
means that Ka  = ❑ for chemical equilibrium for all as and r. 

m ( 
7-0')  is proportional to the time taken for a given =all deviation from 

couilibrium to fall to 1/e of its original value as a result of the r-th 
reaction alone, 



Thus, from equations 12, 13 and 14, 

K(r)  
a=1 

( pe 0ae  
0 

v(Oil  v ) ( / 
) a 

r 

(15) 

Denoting this special state by a suffix e, equation 10 shows that 

K(r)  = 	c a 	a 

a=1 ae.  

while equation 12 shows thrt 

k(r) v
(r)/ (r)" 

K(r) 	f 
( °Ala) a  

va 
—Tr) kr 	at-41 

(13)  

(14)  

Now the state of the gas at any point is completely specified thermo-
dynamically by, say, the density p, terrporature T and the set of n numbers, 
o . For the p-rticular values of p aid T there will always exist one set of cc 
n numbers cae  which specify the equilibrium composition. If vie choose, as 

we are quite at liberty to do, to specify the cae as the equilibrium composition 

arising at the local p and T then p
e 

= p in equation 15 and K(r) = Ke
(r) 

 . 
However, rather more convenient relations arise later if we choose p and. T 
au the thermodynamic variables and specify that c shall be the equilibrium ae 
composition arising at the local p and T. In that case pe  p and K(r) 

is given by equation 15 as it stands, However p is known as a function of 
p, T and the ca  from the equation of state for the mixture and, at the same 

p and T, we can always eliminate the density ratio in ter= of actual and 

equilibrium conccntration 	 K(r)  s. In either case, 	can always be expressed in 
terms of core entrations alone. 

It is noted that the net rate of production of lea  in all the N reactions)  
namely Ka  , is given by 

Nm  

Ka 	K(r) 	 (16) ct 

;nth the aid. of ecruations 1 0 and 16 we can now rewrite equation 5 in 
the form 

N
m Dca 	 Jr) / n 	l ")  (r)" (r) 	 n, 

II c c.  a 	n 	Cr)a 
Dt 	-Tr) 

a 	
"a - va ) r=1 (17) 

Denoting this special state by a suffix e, equation 10 shows that 

(I.)" 	(r)4  
va 	va 

K(r)  = 	c 
a=1 ae. 

 

while equation 12 shows that 

k(r) 	n 	 v 	- v (r)' 	(r)" 

K(r) 
	_....7.7.f , 	n 	(P eAra  ) a 	a 

. (12 ) e 
kV.)  at-A r 

Thus, from equations 1 2, 13 and I 4_, 
v(r)"- 

v 
 (r)' 

K(r) = fl 
n (e cae ) 	

a 
. 

a 

=1 	0 

New the state of the gas at any point is completely specified thermo-

dynamically by, say, the density p, terrperature T and the set of n numbers, 

o For the p-rticular values of p aid T there will always exist one set of 
cc 

n numbers c
ae 

 which specify the equilibrium composition. If vie choose, as 

we are quite at liberty to do, to specify the cce  as the equilibrium composition 

arising at the local p and T then p
e 

= p in equation 15 and K
(r) 

 = ICe
(r) 
 . 

However, rather more convenient relations arise later if we choose p and. T 

as the thermodynamic variables and specify that c shall be the equilibrium 
ae 

composition arising at the local p and T. In that case pe  p and K(r) 

is given by equation 15 as it stands. However p is known as a function of 

p, T and the ca  from the equation of state for the mixture and, at the same 

p and T, we can always eliminate the density ratio in ter= of actual and 

K(r) 
. 

	

equilibrium concentrations. In either case, L. 	can always be expressed in 
terms of core entrat ions alone. 

It is noted that the net rate of production of fia  in all the Nil, reactions)  

namely Ka  , is given by 
N 

m  (r) Ka = 	K 	 (16) 
r=1 

;nth the aid. of ecruations 10 and 16 we can now rewrite equation 5 in 

the form 

N
m wa rt 	 n 	( Do 	 il) 

E D. 	--rr) (v(ar)//  v(ar)f) 	K(r) 	c v
(r)' 
 n  c l a

r) 
 

r=1 	
a 	

C,:=1 

(13) 

(15) 

( 7) 
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Suppose now that all the NEI  reactions occur extranely rapidly under 

the conditions prevailing in a given gas flow, Then it is apparent that the 
local values of ca  will differ but little from the local equilibrium values. 

For a chemical reaction is a natural process, proceedilv, always in a direction 
towards equilibrium, and a rapid reaction rate implies swift corrections of 
any deviations fran local equilibrium in any particular element of gas. 

Thus Dca  /IA rz, Do
ao 	

in equation 17 and the temp in brackets there is 

very small in magnitude. Deco 	is determined by the local P and T 

or p and T values, however, arA need not be small. In such cases, therefore, 
it is apparent that all the 7, 1",) must be very small in magnitude. The 
limiting ease in which the r(r) are imagined to be zero, so that ca  = c aeP 
is an abstraction ithich cannot occur in practice, but it may, nevertheless, 
give results which are sufficiently accurate for many purposes and in any case 
could, form the first step in 9n \ ite.rative. process in the right conditions. 
The case for 'which all the 	can be assumed effectively zero (the reactions 
are all 'infinitely fast?) is coiled chemical equilibrium flow. 

At the other extreme, all the 7' (r) may be so large that we ray imagine 
than to be infinite for all practical purposes. Then all the DealDt 

quantities are zero and all the ca  are constant throughout the region. The 

gas is, effectively, chunicany inert and we refer to the flow as chemically 
frozen flow. 

Finally in this section we trill deal with the consequences arising from 
the relation between the thorn_ °dynamic variates, 

n 
(18) 

s is the specific entropy of the mixture ani the n quantities pc  are 	- 

the chalical potentials of the species in the mixture per unit mass of each 
particular species. Since the 'al in equation 18 denotes a general differential 
of the variables we rrv,y particularise it anq follow the change in entropy 
of a particle of fluid as it travels through the region. That is, we cen 
replace (-1 by D/Dt. From equation 3 it irarediately follows that 

n 

	

T Ds 	 Z 	Pa Dcla 

	

Dt 	a=1 	Dt 

But Dca  trt Koh.) , from equation 5, and we note that, since
1  a

s  =1 
(4= 

(by definition), E dea  = 0. Thus we can always eliminate one term from the 
ct,=1 

sunnation and, choosing to eliminate don  vie oan write 

n-I 
Z 	 Ka 	 (19) 

a=1 

Equation 19 can now be used in place of the energy equation, equation 3. 

T ds = 	1 ap 	do • p 	Cwt a a 

T Ds 
= 
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An alternative form of equation 19 will be found useful ana can be 
deduced as follows. Eliminr,ting tin from the right hand side of the equation 

	

in favour of the summation frc3n 	a=1 to n for the time being w,e note that 

N' 

	

n 	 n 	ill 
(r) 	 (r) p K

a 
 = E ji 	E K 	

Nm n 

a =E E p El , 
A a 

	

a =I 	 a=1 a  r=1 	r=1 a=1 a a  

by reason of equation 16. Writing this in the form 

n 
E 	E 

r=1 a=1 
TIr

a 
 ( V(r)"  V(r  ) a IC( r)  

  

(v (r}" v(Ct r)) a a 

the last term here is equal to the reaction rate R(r) for the r-th reaction 
and is therefore independent of the value of a (see equations 7 and 8). 
Thus we can now write 

N 

= 	Em  R( r) E (v(r)" (r
)

)/ Ka a 	 - va 	a a=1 	 r=1 	a=1 
OEM 

where Pa  = ZTa  pa  , i.e. the chemical potential per mole 

We will only deal with mixtures of perfect gases, so that 

of A 
a
. 

Pa 	.= ha - Tsa 

where ha is the specific enth,alpy of species a. , a function of T only, and 

sa 
is its specific entropy, a function of T and the partial pressure p

a 
. 

At constant T, therefore 

d 	= 	T dscc  =RT d(log pm  ), 

a 

by reason of the thermal equation of state for Act  namly, pa  Wa = pca. 
 RT. 

(R is the Universal Gas Constant). Consequently 

/la  (pa  ,T) = Ma + RT log pa/pm 

where 	is some convenient standard pressure ond a*" is the potential per 

molecule. of A.  at pm and T. be can now write 

• N n 	 m (r)  n , 0?)" 	(r)' (- 3,7 z g 	K 	= E 1- I 7. ( .... 0) 	- v 	)01 	4. RT to E;  1 	) 	(20) a a 	 a 	a • a 	 VPH  a'l 	 1-.1 	a=1 
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Nm n 
m  (r) 

	

E
A 

p
a 

K
a 

= E g 	E K 	=E 	Ep K
( 

 

r)
,  

A a a 

	

m =1 	 a=1 a 	a 	r=1 a= 

by reason of equation 16. Uniting this in the form 

	

E jn 
	

E 	W 
/ )11 
- 

( 

c• I- 
	 a • 

cz .1 
(r)" 	(r)

,  

	

(v 	va ) 
a a 

the last term here is equal to the reaction rate R(r) for the r-th reaction 

and is therefore independent of the value of a (see equations 7 and 8). 

Thus we can now write 

N 

	

m 	(r) 	
E  
n 	(r)" 	(r)  

E µC4  Ka 
= 	R 	(v 	v 	) 

a. 	/la 
c1 	 r=1 	ct=1 

where pa = Via  pa 	i.e. the chemical potential per mole 	of A 
a
. 

Vie will only deal with mixtures of perfect gases, so that 

µa  .=ha Ts
a 

where ha  is the specific enthalpy of species a. , a function of T only, and. 

sa  is its specific entropy, a function of T and the p:-rtial pressure 

At constant T, therefore 

d 	T dsa  = RT d(log pa  ), 
VI a  

by reason of the thermal equation of state for Aa  munely, pa  Vfo, = Pea.  RT. 

(R is the Universal Gas Constant). Consequently 

•-• 
Fla  (Pa  ,T) 	ticc 	RT log pciipm 

where 	some convenient standard pressure nnd
a 

is the potential per R 

molecule of Aa 	p and T. Ire can now write 

N 
n
Z µ K 	E

m
R

(r) n 	(r)„ 	(r)1 	3.!  
(v
a 	

v )( 	 + RT log p
c 	

(20) 

a;1a;1 a a 	 a=1 	a 	• a 

K(r) 
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The general requirement fcr chemical equilibrium is 

( va. v(r)) 	0 	 (20a) 2 	 a 	.17 a  
- 

(see e.g. Cluggenheim,1949), or in terms of the standard values 

F, ( (r)" 	r,\/- ( 
	ti(r)" - 

v
a 	- v " AP 	

- R T log pm) = -R T log E p a. 	
a14- 

ae
m  

a---1 	 a=1 

v(r) 

( 21 ) 

for each value of r, where pup  is the equilibrium partial pressure of Au  

in the mixture. (Eq. 21 is the Law of Mass t,.ction). 

Eliminating the standard values from equation 20 with the aid of equation 
21 vm have 

	

v(r)/1 	(r)/  v
a E 	K = 	R(r) 	T log E (Pa/ ) a  

	

a.=1 " 	r=1 	 a=1 	ae 

Ifile now choose pao  to be the equilibriumnlIrkassure at the prevailing 

pressure and temperature we can write 

Pcv 	xa/

xae 

where x is the mole 	fraction, and these may be written in terms of mass 
fractions. Vie will not go to these lengths here, but simply note that 

N ►  
m 	 n 	 (r) /  v(ry v(r)/ 	n v(,r)' --, 	n 	v Ds 	 i 	r ,(r)  - R 	Z 	 fl c a  - 110 ' 	log n X  L / 	 CL 

Dt '= 	 ;Tr) L k a 	,a 	 (22) 

	

r 	 CC.--A 	 CL=" I 	-, 	Cf.-.1.-1 	1 X 

It can now readily be seen that when all the r(r) = 0, Ds/Dt = 0 because 

xa  = xae  and also that Ds/Dt w 0 as all the T (r) co 	In the two 

extreme, limiting cases, therefore, the entropy of a fluid particle remains 
constant. For intermediate conditions the second law c±' thermodymracs demands 
that s shall increase, since, in the absence of transport phenomena, the fluid 
particle constitutes a closed system. 

Note, however, that for any r!iven deviation  of concentration from the 
chosen local equilitrium,v;aucs, the rate of entropy increase is greater 
for smaller values of r( 1, vide equation 76 in Section 7. 

(r) = 0 is essentially a singular case. 

ae 
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n 
( 

v(r)" 	v(r) i  
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n 	- 	a 

E 	v
a 	
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N 	 (r)" 	(r) /  
n 
zgK = 

a=1 	
Em  R(r) T log PA (ct/ ) 

V 	V a 	a 
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pressure and temperature we can write 

PC1J/ 	= 	a1' Pae 	ae 

where x is the mole 	fraction, and these may be written in terms of mass 
fractions. We will not go to these lengths here, but simply note that 

N 
Ds R 
Dt 	 71-) r=1 	T  

(r) v 

 - a 

v  (T y 
u(r) 	n 

K.( 	E 	 EC
a 

r) n  E
C 
 
a 	

log n x a / 

)  

(22) 
a=1 	cr,-A 	d 	a=1 ae 

It can now readily be seen that when all the 	= 0, Dis/Dt = 0 because 

xa  = xac  and also that Ds/Dt 4 0 as all the T(r)   .* co , In the two 

extreme, limiting cases, therefore, the entropy of a fluid particle remains 
constant. For intermediate conditions the second law cf therrodynardcs demands 
that s shall increase, since, in the absence of transport phenomena, the fluid 
particle constitutes a closed system. 

.t 
Note, however, that for any given deviation of concentration from the 
chosen local equilibrium/ vlucs, the rate of entropy increase is greater 
for smaller values of 7Ar), vide equation 76 in Section 7. 

(r) = 0 is essentially a singular case. 
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3. The Symmetrical Diatonic  

As a simple and useful e=plo ef the equaticns derived in the previous 
section, consider the dissociation reaction in a synlmetrical diatomic gas. 
The atoms are denoted by the chemical formula A

l 
and the molecules by A2. 

A2 consists of two .A'I atoms. 

Assuming that the dissociation of A2  into two Ai  atoms follows a proper 

encounter between an A
2 molecule and simo ether second body and that re-

combination follows a simultailecus encounter between two A
l 

atoms and some 

other body we write the chemical equ:tion (eq.6)„ as 
k 
 A

2 

 

	

+ A3 _......4  2 Al  + A
3 ' 	

(23) 
t--- k
r 

(Since there is only one reaction we drop the superscript (0). A3  has been 

written for the "other" body mentioned above. In the pure gas A
3 
udll be 

either Al or A2, but it is convenient to treat it as a separate chemical 

species in writing the chemical equation. In this way we avoid having to 

specify hf  and kr  for both an Al  and an A2  "other" body reaction. Although 

kf  and h
r could be calculated (from q_rzlturn mechanics) for each typo of reaction, 

it is with the overall effect of both t;ipes that we must deal in a gas flow 

-problem. 

We note, however , that 	- c 3 " 	0c
2 
 - - 1 ° Also 2VT1 
	2 
=17 a 	3 W2 

	+ ndli= I (1 	0) • 
- 	

+  

Then equation 17 shows that 

Do
1  172( 	 2 
7 	= "(1  - ) 	al 75  

where 

= 173  if  k 	r4-(1 	c ) r 	1 

and 
2 

(Pe/P)*(cle // 

from equations 11 and 15 respectively, 

The thermal equation of 2tate for the mdxture is 

(2k) 

(25) 

( 26) 

(27) 



12+  

so that choosing oic  to be the equilibrium composition at the local p and T 

we have 	1:)./P = 1 + c
1
/1 	c 

e 
 and 

2 	2 
K 	4_ c.) cle / 	0le 

(28)  

The equation for Do t follows immediately Fran 0
1 

+ 02 = 1. 

4. The Mass Conservation Eouation  

In dealing with the flow of an inert gas for which viscous, heat conduction 
end mass Oiffusion effects are negligible, the entropy of a „as particle 
remains constant. Since the concentrations of the various component gases 
in the mixture do not change, the state of a gas particle is wholly specified, 
thannodynalidcally, by any two thermodynamic 7ariables. In particular we 
can say that p = p(Po s). Then, since s = constant everywhere in the 

region,ap/ax,Wa0e (b/ax.ard the pressure gradient terms in 

equation 2 can be eliminated in fawur of ap/ axi. Finally P is eliminated 

between equations. I and 2. ( ap/ap )s is identified as the speed of sound 

propagation through the gas. 

The situation is not so simple in the case of gas flows in which chenical 
reactions occur, for s is not constant in general, as vie have seen, and the 
chemical composition may change in a manner which will depend on the nature 
of the flow. In these circumstances it is slightly more convenient to 
eliminate the density gradients from equation 1 in favour of proz1sure gradients. 
Noting that 

P = P (1)0  s, al , o2, 	on-1 ), 

(since vie can. eiVrayS eliminate one of the ca  from E ca  = 1) we have 
.0=1 

DP 	8p 	D-o 	ap 	Ds 	
n-1 
	Dolt 

Dt 	(7) )s,c • 5-F, + (as)p, • Ft + 	2 (ac)p,s,cfl Dt 

	

4 	a 

The suffixes denote which of the variables are held constant. Suffix 
0a implies that all the ca  are constant, suffix c, that anc excoTt  

Ct 
itself are hcad. constant. The derivative ( ap/ap) ca  fiz identified in 

, 
Sc:ction 7 below as the square of the speed of sound under frozen flow 
conditions. 1::e 

aP S, Ca 
 = ,,f 	 (30) 

(29)  
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Also, since 

(Co  b-3 c )p,s,c0  
( 00 	( s 
\ 	 act  

p,ca  ▪ P; c A 

(30a) 

we have, using equation:t 5 and 19, 

n-1 
DP 	-2 	(an 	[— j_. 	F. 
Dt = of Dt ▪  OS 	 PT a=1 

P) 0a  

 

(31) 

 

The quantity 

  

ap 

111 m 	P 

 

cra 
- 

pT (32) 

    

PP P,c0 

is a function of the thermoduntunic vosiables only and does not depend explicitly 
on the gas flow itself. Thus vie can write 

-2 a  
Et = a 	Dt 	E 	a rc 

C,=1 
(33)  

where the last term does not depend explicitly on the actual flow. 
Accordingly, we can rewrite the nn.ss conservation requircmcnt, equation 1, 
in a form more convenient for our present problem, namely 

p a 2 	Cu.. 2 n-I 
Dt E ci-cc  Ka  = 0. 

0x. a=1 

Equation 32 is not the most convenient fern for evauation of 0-a. 
The thermodynamic nature c the gas is generally surmarised in the 
thermal aril caloric ecuations of state. Since the component gases of the 
mixture are generally assumed thermally perfect, the former equation is 

n 
P p E 	 R T. 	 (35) 

ce.=1 	
ctyga . 

and the latter gives, for example 

h = h(p, T, c1, 02, 	cn-1 ) / 
	 (36) 

the form of the function depending on the actual gas mixture. crCC can be 

(34)  

rearranged, with the aid of equation 18, to read 
= 143 	(Oh 	 1 are 

a
'a 	 + p" oc a p,T,C,0 

(37) 
p,T,c40  
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Also, since 

lap 
ac )p,s,cp

- ,  

we have, using equation' 5 and 1 9 , 

pp \ 	( s\ 
cs 

P, ca 	 P, 

(30a) 

	

n-1 	 (an 
DP 	,-2 	 an 	 z 	a7 n 	T 	 lc_ a 	( ) 
Dt 	 Dt 	a) 	PT 	a= 	

c 
P, n, c13 

P, ca  

The quantity 

	

- 1 	( ap 	
(32) ca 	

1 	p 
n 

T 
(8: 

	

pr.r 	FS) 	
12

a. 
PPca - PY PY°,19 

is a function of the thcrmoeunamic variables only and does not depend explicitly 
on the gas flow itself. Thus we can write 

n-1 
DP 	- 	Dp 
Dt 	aft 
	 E cr 

aKa  Dt i c'.1 
(33)  

where the last tern does not depend explicitly on the actual flow. 
Accordingly, we can rewrite the mass conservation re.qpirement, equation 1, 
in a form more convenient fer our present problem, namely 

a + p a2 	au. 	2 	n-1 
+ a Z 0-

a 
K

a 	
0. 

Dt 	f 	
f, 

 
ox. 

1 	 a=1 

Equation 32 is not the most convenient form for evaluation of (re  
The thermodynamic nature of the gas is generally sumarised in the 
thermal and caloric equations of state. Since the component gases of the 
mixture are generally assumed thermally perfect, the former equation is 

n 

	

p = p Z 	cah7 • R T. 	 (35) 

	

a=1 	ik'cc 

and the 1:%tter gives, for example 

h = h(p, T, ci , 02, 	cn_i ), 
	 (36) 

the form of the function depending on the actual gas mixture. Cra  can be 

rearranged, with the aid of equation 18, to read 

\ ( h 

a 	i,T 

,) 	/br a-ct 	Pf3i /c re  ) 	 (37) 
p,

4. -P7  77 
p,T,op 

(34)  



— 16 — 

u 	
= 	--7': 	T 

r,c 

	

_ 	(.1. Pf 	 a) 
P 	Ia 

here 	 1 

the volvme expansion coefficient with frozen gas composition and 

= Cps, 	32 
rah 

P,0  

the specific heat at constant pressure: with frozen 3a-nposition. All the 
derivatives ;.,...-cpearing in equations 37 to 39 are readily evaluated from equations 
35 and 36. (The derivation of equation 37 from equation 32 is given in the 
Appendix). 

5. The Equilibrium Speed of Sound 

T[e c$2.11 readily demonstrate that, for a flow which is jla complete 
chemical equilibrium, the speed. of sound. is given by ( 8p/Op ). 0  suffix 
s implying, constant ontr cry and suffix e that the chemical 6t1].position shall 
follow its equilibrium value during the differentiation at constant entropy, 
The equilibrium speed of sound is written as 

 
a 	= 

Op 	 (40) 
S Y  

and the ratio of a, to a
e 

con be ftund as follows 

Since p is a function or p,s and the c
a 
 quantitiesa general increment 

in p is ,i_ven by 

-2 	 p 
dp 	 dp 4_ -00 as 	 ao, , 

a0 pca 	a=r 	a)1A s c 

crylizrequation 30a this can he revrritten as 

-2 n--1ni ap 	 (7) 	(3. s  ) af  up 4.. 
0 	

a.s 	z s 	 do a 
0 ct 	cf,=1 	P cc,. 	c" PP Py°0 

But ecf,lation 32 shows that 

(ap) 

, 
	a 0 	

P,cp. 
	

I
Pga 	+ / - gni (17) 

p,c a  

so that 

-2 	 n-1 (ke. 	 n.-1 
dp 	 dp 	0 	 do  	 [ds 	 - ri) do .1(4i) 

	

4 	a 	 s 	 a 	a c 

	

a=$ 	 P.,3a 

(38)  

(39)  
a 

See Section 7 below- 
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Putting ds = 0 will give us dp at constant entropy. Now consider the 
summation in the last term of equation 41; we can write 

n-I 	 n 	 n 
E (P a - p

n 
 ) dc a = E pa  de = E ga  do  a a,...--1 	 cc=1 	 a=I 17 a 

But (Ica  A7a  is the change in the number of moles of Acr_ in unit mass of 
mixture, dnc4  . The change 11s brought about by the N„, reactions occurring in 

(r) m  the mixture so that dna  = E
m 

dna
(r) 

where dna 	is the contribution from 
r=1 

the r.-th reaction. Thus 

N n 	 M n 
E p (IC = E E r ) an ( r) 

a=1 a a 	r=1 	a=1 	a 	ap 	• 

But in each reaction dna (r) must be proportional to  v(r)" - v(r)/ so 

that each term in the summation with respect to r is proportional to 
n 	 / - 	" E pa 

( v(r)  - v(r)). If the mixture is in complete chemical equilibrium, 
ct.....1 	 n-1 
each of these toms is zero (see equation 20a), so that in that case E (Pct  - Pn  de cL a=1 
is also zero. 

From 44 therefore 

2 	 n-i 
(7f 	 4. /ae 
) 	 2 

= 1 	paf 	E 	ace  7La  
a=1 

( 42) 

where the ca  have their local equilibrium values, ea°, and 

ac 

Cc" 	
P
ae ) 	 (3) ha 

	
=  aP 	 a 

5,0 

1 It should be noted that p, of 
and"a 

are all to be evaluated at local 

equilibrium values of ea°. To this extent they will differ in magnitude 

from p, af  and cra  in equation 39, which are evaluated at the actual  

local values of the e
a 



ao \ 
) 

s, e 

a0  

8 p s  ab  ) 

and 

ar8p) 

0 ao 
TT 	

(ai 

(8571,1)) 	(4)..) 

T, 	P, e 
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The ratio (ee
r
ls,e  ) is only unambiguously defined by equation 42 if the actual  

state of the gas at which the ratio is evaluated corresponds to an equilibrium 
state, for then cae 

is consistent with all of, say, p, p and T. If the gas 

is not in chemical equilibrium then we are at liberty to choose whether we 
shall refer to an equilibrium state at the local p and T cr at the local p 
and T, for example, and the value of ca used in the evaluatien cf (ar/ae) e  
will vary accordingly. In view of the remarks made in previous sections, it 
seems advisable to choose p and T as the variables frem which to determine cae. 

The reason for the ambiguity is the impossibility of defining an equilibrium 
sound speed in a gas which is not at equilibrium, (remembering that the speed 
of sound is the speed at which small pressure pulses propagate into an 
undisturbed  fluid: by undisturbed we necessarily imply, also, chemical 
equilibrium). 

As with aa in equation 32, %a  in equation 43 is not in the most 
convenient form for evaluation in a practical case. However 

so that, knowing the equilibrium composition as a function of p and T and h 
from equation 36, the derivative can be evaluated. (In passing, it should 
be noted that there will he mequilibrdin relations between the c 	terms, ae 
one for each reaction. The re:mining Na  relations necessary to evaluate a 
particular cao  are provided by the conservation of atoms requirements 

for each 

atomic soceice). 

The derivation of equation 42 relies entirely on the thulmodynamics cf 
the gas mixture and is in no way connected with the flow equations. In this 
sense it aiffers fram the derivation of equation 34 from equation 29, although 
the results are cf a similar style. However, in so fax as the term in 
brackets in equation 41 is always zero for a particle of fluid which follows 
the motion, it is clear that the speed of sound under equilibrium conditiens 
is an attribute of a particular fluid element, rather than of a particular 
position and time in the flew field. By the same token this is true also of 
the frozen sound speed af, or indeed of any other sound speed which we care 
to define. Arguments based on those lines have led!.lunk (1955) to propose 
that sound speed should be defined as the ratio of the convective derivatives 
of p and )9, and this definition has been employed by Rosier (1957) in 
writing the equations for the flow of a general gas mixture. Vie shall return 
to this topic below, where we hope to explain the significeenee of (Dp/Dt)/( Di )•  

The ratio (a
r
Ja 

e
) is only unaMbiguously defined by equation 42 if the actual  

state of the gas at which the ratio is evaluated corresponds to an equilibrium 
state, for then cae 

is consistent with all of, say, p, p anal T. If the gas 

is not in chemical equilibrium then we are at liberty to choose whether we 
shall refer to an equilibrium state at the local p and T cr at the local p 
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The reason for the ambiguity is the impossibility of defining an equilibrium 
sound speed in a gas which is not at equilibrium, (remembering that the speed 
of sound is the speed at which small pressure pulses propagate into an 
undisturbed  fluid: by undisturbed we necessarily imply, also, chemical 
equilibrium). 

As with a'cc in equation 32, %a in equation 43 is not in the most 

convenient form for evaluation in a practical case. However 

acac a  ac  
— 8p a  

s 	1T 

and 

°P) s e 	P 	an
- 

( 1  (") e) / (0) T, 	1),e 

so that, knowing the equilibrium composition as a function of p and T and h 
from equation 36, the derivative can be evaluated. (In passing, it should 
be noted that there will be mequilibrium relations between the c 	terms,  

Me 

one for each reaction. The re:mining Na  relations necessary to evaluate a 

particular cao  are
 provided by the conservation of atoms, requirements for each 

atomic species). 

The derivation of equation 42 relies entirely on the thermodynamics cf 
the gas mixture and is in no way connected with the flow equations, In this 
sense it aiffers frcm the derivation of equation 34 from equation 29, although 
the results are cf a similar style. However, in so fax as the term in 
brackets in equation 41 is always zero for a particle of fluid which follows 
the motion, it is clear that the speed of sound under equilibrium conditiens 
is an attribute of a particular fluid clement, rather than of a particular 
position and time in the flew field. By the same token this is true also of 
the frozen sound speed af, or indeed of any other sound speed which we care 
to define. Arguments based on those lines have led!.lunk (1955) to propose 
that sound speed should_ be defined as the ratio of the convective derivatives 
of p and )9, and this definition has been employed by Rosier (1957) in 
writing the equations for the flow of a general gas mixture. Vie shall return 
to this topic below, where we hope to explain the significence of (Dp/Dt)/( Diytt)• 

coo  
) 

-77-)(aP e 
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The dissociation reactiin described in Section 3 (equation 23) is a 
simple example of a reacting gas mixture, the treatment of which is rendered 
yet more simple if it is assumed to be an ideal dissociating gas in the sense 
defined by Lighthill (1957). Using the notation of Section 3, the equilibrium 
composition cf the ideal as is given by 

c2
e 	

Pa  .-D/R
2
T 

l  e = 	 (46) 1 -c1e 
where pa  is a (constant) characteristic density, D is the energy required 
to dissociate unit mass of molecules completely and R2  is written. for WW2. 
The enthalpy is 

h = (4 + c1) R2T c1D 	 (47) 

and equation 35 for the gas mixture is 

p = P 	c
1
)R2T. 	 (48) 

Using equations 46 to L.8 the values or o and 	can be found. 
The result for the ratio of the frozen to equilibrium sound speeds in an 
ideal diLsociating gas is 

(a
f/ae
) 

= 1 e10 	 

 

c4 e) (b'.4- 1)(1 + c1 	e)- (4 + ci d ']2  

(11.1. 1)20 	(1 	c2  ) 	8 ÷ 2c 
10 	1 e 	1 

(19) 

 

.3 

 

where D' has been ~mitten for D/R2T. The ratio is shown plotted against T 

for four values of p in Fig. 1, the g-_-s being an "oxygen-like" ideal 

dissociating gas, with Pa  = 150 gq/c.c. and 	= 59,000/T. Its maximum 

value is in the region of 1.3 to 1.4 occurring when about three-quarters cf 
the molecules arc dissociated under equilibrium conditions. 

6. 	Plow 'Velocity at a Nozzle Throat 

The mass flow rate per unit area, m, in the steady flaw through a stream-
tube is given by 

m = P 
	

(5o) 

u being the modulus of the velocity vector. The value of the'velocity (us) 
when n has its maximum value can be found by putting an/du =,0. From 
equation 50 then, 

P 
du 

the derivative being evaluated along the streamtuhe. Thus 
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(afi/ae  )
 2  = 10 (19 ) 
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(anidEL ) 

being the coorcHmte measured along the streanti..lbe, But the steady flow 
momentum equation is 

	

p u du 	etri 
cLF = 

whenC e 

Irc2 	 ) 
U 	= 	 ) 

The sioificarce of the ratio of the convective derivatives of p and p 
is nov7 apparent; it is the square of the flow velocity which would occur at 
the throat of a Laval nozzle. 

From equation 2+1 it can readily be soon that 

(51) 

( + P of 

do 

VIDATV (52) 

Thus, since p (dc Idij; ) = K 	 a? by oquatic 	u 	door 	on the ratio of 
the mass rate of proauction of species to the preptIre gradient. In general, 
this ratio rr ell depend 92 the shape of the nozzle fror9 the "reservoir" et-n:1 

e to th throat, so that u in a chemically reacting gas mixture is not solely 
a function of the reservoir conditions. (The appoaranco of the ratio (dcc/aPV(dpd6. 

5.€2 
in u explains why u cannot be used to dofine characteristic directions as 
in Roslorts (1957) theory (see Broer, 1953) ). 

7„ 	Sound Propa',-,:ation in an Leal Dissoc:iftinr  

As an example of the use of the et-du 
proix,r2Tttion of weak disturbances (sound) 
dealing only with plane waves. In that 
somewhat, since there gill be only one v 
coordinate x. Therc is only-  one roacti(‘I 
can be dropped. In Section 3 an atom w' 

a molecule by subscript 
2•

Since we con 

we may efrop the subscript on ci  and call it, sinply, o. However, the subscripts 

will be retained en 17, the molecular weight, in ordu- to  avc-id rossible 
confusion between atoms and ::iolecules. 

derid above we consider the 
throat ,h an ideal dj.socciating vs, 

cycnt, thL notation can ho 
z1. 1 cc ity 	n cat u, and. one space(r)  

(eu. 23) s:_) that the superscript 
to design:It:Y.1 by a subscript

1 
and 

c
2 

in favour of c 
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The momentum equations (eq.2) reduce 

	

au 	au 

	

p w 	PU Tx. 	ax  

and, by equation 24., the continuity relation 

	

ac 	ac 
—T2 

to 

vl  

[ K (1 

becomes 

Vt 2 

for 

- c) 

[Akl  , I, 

02 

atoms is 

c2 

-c) 	c2 

- 	2 1 	co . 

= 0  

(53)  

(54)  

(55)  

(56)  

u ax 

The mass conservation equation (eq.34) 

2 	au 	2 .P.2 CT t 	+ 	u 	.... aK + ref 	—  ax + 	paf 

and the entropy equation (eq.22) is now 

u as 
= 	•- E 

— r 

l 
, -7g 	 T 	 -- og [K (1 — c) 	c2 + 	-0.7c. L --2 

ce 1 - -72  

since the mole fraction of atoms, 	= 2o/1 + c in the present case. ce 
is the atom mass fraction under equilibrium conditions at the local p and T. 

The characteristic chemical time (eq. 25) is 

r = V/  / r p
2 (1 + c) 	 (57) 2 

and K is given by (eq. 28), 

K Y (1 + c) c2 	- 	 (58) 

We shall consider small disturbances in a gas which is unifenTOT at 
pressure pro 	density 100,, entropy so, and composition co, before the 

disturbance arrives. (Note that co, is an equilibrium state). The 

undisturbed gas is at rest. ;7riting 
I 

P = Poo 	; P =P00 + P' 	S = Soo 	s 	c = cc
+ 	O

e
=c 	c' 	(59) 

substituting these relations into the equations above and neglecting squares 
and pr (-ducts of the disturbance (primed) quantities gives the follov.ing 
results 

P co 
_au/  81-)/ 

ax 0 

T 
a 

Tri
(c' 
 + cc) = 0 , 

121 P 	
2 	auir , 	2 	0' 

8x t Pm fog 4°-'00 	= 0 at 	co `fog 
co 

v;here  
co 

and 0 (63) 
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The momentum eauations (eq.2) reduce to 

au 	au 

	

P 	 pu --a-s-c 	
ax

0
A 

—  

and, by equation 21k, the continuity relation for atoms is 

ac 	ac 	V/2 	 2 
61- 	u Tcz  =  K(1 - c) - 

The mass conservation equation (eq.34) becomes 

lil 
2E + u -.-. 

ax at 	4. 	 + pa par 	--,- 	f  (3-  

	

2 au 	2 	
r
2 [ K (1 - c) - c2 	, 0 (55) 

and the entropy equation (cq.22) is now 

2 
	2 	A 	2 

as 	u as 	R 
-7.  + 	-0-)1.  = - 7 71 	K (1 - C) - O 	log 	---.0  . I  "" co  

i 	0e 	
1 - -c2  ..a 

since the mole fraction of atoms, x = 2c/1 c in the present case. c c  

is the atom mass fraction under equilibrium conditions at the local p and T. 

The characteristic chemical time (eq. 25) is 

T = 	/ 4 k r  p2  (1 	c) 
	

(57) 

and K is given by (eq. 28), 

	

K = (1 + c) c 2c  /(1 	ce2) 	 (58) 

We shall consider small disturbances in a gas which is uniformly at 
pressure p c°  , density pw, entropy 	and composition c o, before the 

disturbance arrives. (Note that c o, is an equilibrium state). The 

undisturbed gas is at rest. ';:riting 

1  
P = Poo 4-p ; P =Pm  + PI  ; s = sm  + s 	; c = ce  + c1 ; 0e 

 = c,
xi 
 -1, c 

' 	
(59) 

substituting these relations into the equations above and neglecting squares 
and products of the disturbance (primed) quantities gives the following 
results 

au' 

	

.0._
t 	

+ 
- a 	ax 	0 

 

 
T1 	

, , 
-57 	 c1 ) 	C 

co 
	 = 0 , 

	

2 	auir' 	 0/ 
at + CoP afc, axt PO -fc, c T 

00 

where 	Ti 	= (C Co  AT 	c
CO 	 T  )) 

00 	 2 	 co 

and 	as ,  
= 	 (63) 

(53) 

(5) ) 

(56) 

= 
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to the first order in small quantities. ul is written for the velocity to 
emphasise that it is a small quantity, A suffix 0„ indicates that the 

.quantity concerned shall have its undisturbed value. 

Equation 63 indicates that, to first order the entropy is constant 
throughout the flow field. Since the equilibrium composition ce  is a function 
of p and s , 

de
e - acct OP + ( ace 
( '''-- a 	

as) 	as , 
p 

so that to first order 

(60 

	

whore X 	. ( ace/ ap)s evaluated in the undisturbed fluid, by reason of 00 
equation 63. Thus equation 6i can be rewritten 

Co 	co 
T: 	421 4. 0:  4. 	r/ W 	44r = 0

g 	
(65) 

co 	dt 

The pressure disturbance p' and change in composition c' can be 
eliminated between equation 60, 62 and 65 resulting in 

1.1 

 

a 	02u1  . a2 0 u 	+ ( i+p a2 0_ x\  8
2u1 . a2 a2u, . 0  (66 

m bt 	
at2 

	

[ 	

eb.2 1 

c a x2 	 . fico co 60 
at 	f̀°  a x2  

But from equation 42 in Section 5 we readily identify 1 + pc.  aL o'co  Xix,  

as (afjacco  )2, so that, finally 

T 	
a2u, i a 	[ -2 a2u! 	 -2  a2u' 	a2ut  

t677 	afc°  a t2 	ex2 	aec° ate 	ax2  = 
(67) 

That af  and ae 
as defined in equations 30 and 40 arc in fact the frozen 

and equilibrium speeds of souna is at once apparent from equation 67, 
For putting a' = co shoves that u' propagates at a wave speed af.  and putting 

0 shcxs that it propagates at speed ate. 

In practice 0 < ri < 	and the wave riot ion is more complicated. 
CO 

(In passing we note that 	4 00 as ca,  4 0 and T:0  4 0 as c 4 1. 

However, in these cases the changes in gas composition bosome extremely smAll, 
even for quite large disturbances, and the distinction between af 

and ae 
becomes of no practical significance. In such cases it is sufficient to define 

a
2 
as ( 0p/00 ) 	The reason for a

f 
a
e 

in the cases quoted is that, in 

both instances$ 	 ill  % .1 0 very rapiy). As a simple example of wave motion in 



.23 

the region of dissociation consider the harmonic motion of a piston about 
x = 0 with a velocity U exp(iwt). If it is assumed that the motion has been 
initiated at some considerable 
should be negligible and 

	

u! 	= 	v(1) 

Substitution in eqUation 

	

d2v 	w 

time previously, transients 
we can write 

iMt e 

	

67 shows that 	v satisfies 

2 
(a2 	iw T co 

in the flow field 

(68)  

(69)  

for u 	in the 

( 7o) 

axe 
	afc) 

whence it is readily seen 
circumstances is 

= U exp 

v= o, 
1W T1  

ca 

that an appropriate solution 

2  
a 	+ iW  T '  

	

co 	x 	) (t  [iw 
iw T1 	of  

co 

(a is written for the ratio a /a ). The radical term is chosen to have a fm em 
positive real part. For convenience we can define 

where 

and 

2 	
i a 	+ 	w T/ co = m e 

1 / %2 	4 W TC) 

( 	) 

(71a)  

(71b)  

1 4. iw 

111 

=;-12-  

(7-4  

T/ 
co 

4. 

1 + (W 

rui-1  

T1 )
2 

( 2 a 	- 1)w r' 

2 	/ 	) 2 a 	( w T co 

Then the velocity disturbance can be written 

. 	 -1 U exp 	w 2n af. sin0 x exp 	(t maf. cos 0 x) 

This represents an harmonic disturbance of frequency w propagating from 
loft to right at a speed a „ where pp 

aPop =
co / m cos 0 	 (73) 

and is galled the phase velocity. We note that has a maximum value of 
(a -- a- )/4, when WTI  = a, and since a is not greater than 1.2 (see Fig.1), 
certainly at pressures in the region of one atmosphere, 0 is never very large. 

(72) 
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the region of dissociation consider the harmonic motion of a piston about 

x = 0 with a velocity U exp(iwt). If it is assumed that the mot ion has been 

initiated at some considerable time previously, transients in the flow field 

should be negligible and we can write 

iMt 
u! = v(1) e 	 (68) 

Substitution in eqUation 67 shows that v satisfies 

d
2
v 	w )

12 
a

2 4. iw ri 
ax2 	 ) v 0 

+ 1W  74  

( 69 ) 

CO 

whence it is readily seen that an appropriate solution for u! in the 

circumstances is 

r 2 
a 4. iw 

Tco  
uf = U exp [iw (t - 	 • 	 (70) 

t.1_iw r' 	Z 
- 
x 
- 7,,, ) ] i 

co 

(a is written for the ratio a /a ). The radical term is chosen to have a 
fm em ' 

positive real part. For convenience we can define 

2 	. 
a + 2.6) ri 

co  = me 
1 + 	r' 

Co 

where 

(71 ) 

71  F ( w Tc) 

1 + (w rl  )2 

1 
4 

(71a) 

and 

0 = ;12- t - 

(a
2 

- 1)w 74  
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Then the velocity disturbance can be written 

-1 
U exp 	(i) 2n

fc 
a-1  sin 	x exp [1w ( t mafco cos 	x) 	(72) 

This represents an harmonic disturbance of frequency w propagating from 

loft to right at a speed a
1300 

 where 

apm  = af 	m cos 0 

and is 9 	the phase velocity. We note that has a maximum vat 

(a -- a-  )4, when WT' = a, and since a is not greater than 1.2 
certainly at pressures in the region of one atmosphere, 0 is never 

(73) 

ue of 
(see Fig.1), 
v-cry large. 



Thus, roughly 

7' 

a
f 	

1 

a 
oo 	c„, (

1 4. ( w  T2 

)1- 	1. 0  

W 

P 
a 	4. OJ 	) 

2 	 (7 
co 

and it can be seen that a
coo 	P 

4 a 
c° 

< afr.,according to whether 0 6 WTIco 
< oo . 

The quantity w r/ is the ratio of the characteristic chemical time to the 
co 

characteristic disturbance time, so that for given undisturbed conditions 
(i.e. given aem  and afm 

) the phase velocity depends only on this parameter. 

The dependence of a
P 
 on frequency represents the phenomenon of sound dispersion. 

From the first exponential factor in equation 72 it can be seen that the 
amplitude of the disturbance is decaying with increasing distance from the 
piston. This is the phenomenon of sound absorption duo to t

1
he chemical reactions 
- occurring in the gas. The amplitude decay factor is w ma
fm 

sin 0(=  4, say) 

and, since sin 0 = e 	we can write 

ail_ 	(w 7./ )2 (a2  —1) W2T1  

2 	
)2 a 4. (w T' 

, 
2a

foo 
' (1 	(w)2 co 

(75) 

For given undisturbed conditions 74  is known as well as a 	and a, . 
co 

 
coo 	J. CO 

Then it can be seen tht 4 4  0 as w , 0 whilst 

4 -, 
(a2  — 1) 	 (76) 
2 a.„ TI  

lc.) co 

as 	6) 	. (N.B. In practice 0 < T' < co ). The lower frequencies 

therefore persist over a greater distance than do the higher values. 
Contributions to sound absorption and dispersion arise from all transport 
phenomena (i.e. viscosity, heat conduction and mass diffusion) as well as 
from relnxaticn effects in the internal modes of polyatemic molecules, It is 
frequently the case, however, that absorption and dispersion due to chemical 
reaction is much greater than the combined effects from the other sources 
(vide e.g. Hirschfelder et al, 1954). 

As is otherwise obvious, equntim 75 shows that 4 4  0 both as r/ „ 0 

CO . The distinction between T1  . co and w „ m should be 
CO 

noted here. In the first case the chemical reaction proceeds so slowly that, 
irrespective of the nature of the disturbance, the rate of entropy increase 
of a fluid element is insignificant whilst in the second case the disturbance 
occurs so rapidly that deviations from the local eaudlirium state (and hence 
the rate of entropy production) become relatively large. 

and as r/  co 

I  
0,14. 	(w T i ) 2 	4 	(a 2 - 1) w 2

74  

• ( . 	  ) 4 - 	 , \ 
1 4. (w T 	

2  

) 	

a2 + (w T ) 
2 

.  

and, since sin 8  == 6 	we can write 

(75) 
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frequently the case, however, that absorption and dispersion due to chemical 
reaction is much greater than the combined effects from the other sources 
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As is of 	obvious, equ ,etion 75 shows that 4 9 0 both as Ti M 0 

and as T1  4 CO • The distinction between TI  4  00 and w e  m should be 

noted here. In the first case the chemical reaction Drcceeds so slowly that, 
irrespective of the nature of thu disturbance, the rate of entropy increase 
of a fluid element is insignificant whilst in the second case the disturbance 
occurs so rapidly that deviations from the local eouilirium state (and hence 
the rate of entropy - production) become relatively large. 
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A small disturbance of general shape can be built up by Fourier synthesis 
(since the systam is a linear one) and will cmtain elewents of bA:h high and. 
low frequency. From the foregoing discussi::n it can be seen that the high 
frequency parts of the disturbance will run on at the (hirher) frozen sound 
speed afcc,  , being followed sane while later by the lower frequency elements 

travelling at the equilibrium sound speed a 	. The 	of the disturbance eco 
will be more rapidly attenuated than the parts which fellow it end, at some 
distance x which is large compared with 2 rL„ Ti /(a2  - I) (see equation 76) cg) 
the bulk of the disturbance will be travelling at a speed approaching ae  . co 
In particular, if r' is very small, this condition n-L-v arise very near to the 

piston. In the major pert of the disturbance field then, the fie-v.,  is effectively 
in chemical eauilibrium. 

However, in all cases except the singular and, practically, not, realisable 
case of T' 	0 the disturbance front propagates ata 	(unleris the 

disturbance is confined to be a Fourier sum of finite frequency extent), The 
importance of a1,co in defining the zone of influence of a point in the flow 

field of a chemically reacting gas is apparent, a point cfnich is emphasised 
by the work discussed in the Introduction which shows that 1.  defines the 

characteristic directions in such a case. 

The topic of sound absorption and dispersion is not a now one, having 
been first treated by Einstein (1920) for the case of trio dissociation 
reaction. Numerous other papers have appeared on the Eul.jcct, but the 
interested reader is particularly referred to a recentarticle by I.:azo (1958) 
which gives a more detailed account rather on the lines of the present 
simple example. 
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APPEI MIX 

The quantity as  is defined in equation 32. In order to make calculation 

of a from a knowledge of the thorrza and caloric equations cf state easier 

we now proceed as follows. 

Dealing first with the term in brackets in equation 32, the thermo-
dynamic equation, equation 15, shows that 

T (a,  s 
O0 	

ah \ 	- 
) p, p 	 w p P c , 

= ( ao_ 	 (g  — gn)  
P Cp 	 , 	1,3 

Thus the bracket term is equal 	to ( a 11/ aca  
Since, in general 

= (!-9 an oT 
p„ca 	T,c 

it cAn be soon that 

n-1 (ah op 4. 	E 	 dca. 
a-1 

clh 

(;'. 
Pt P c6 P, ou 	a) P, 10,cp 

(bh 
crc a  

Since 

we have 

dT = aT 
dP 	 dp 

c (PP) 	Op p,a 
(-fa 

a) p, 
dca 

P,oa  

 

(Pe p,T , op  P,Ca  a p 

Thus finally 

ac 
(el) OT Pc , , aP 

P, ca 	
ac
aP,T,cp P,i,op 

     

e now deal tith (ap / Os) 	. For increments at constant composition, 
P,ca 

equation 1 8 shcvis that 

(ah) 
arz  

P, 
0.p dp. 

ap  T 
P a 

Tds 
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.APPITIDIX  

The quantity cra  is defined in equation 32, In order to make calculation 

of crCC from a 'mewledge of the thermal and caloric equations cf state easier 

we now proceed as follovis. 

Dealing first with the term in brackets in equation 32, the thermo-
dynamic equation, equation 18, shows that 
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Op 	 do a 

	

OT 	 c)P 	 (0e ) 

	

P, ca 	T cc. Cr 	 cf.  p9T,cr, 
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aT 	 ah 
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•• 

a IpIT,cp  

	

P, Cu 	ac 
 a) P, p,co P,cp 
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n-1 al  . (OT) 	ao 	(aT) 

dp 	 Of; 	dc a a0 
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Int-ccduelng the definitions elven in equations 38 and 39, 

all 	 IL  ( 

ao p,Ticg 	p2g 	V3a) p,Top 

(2) 	

P2 T /3f  •  as 
P, °a 

The form of act given in equation 37 follows irine.cliately. 

and 

( 

ae 	p, 0p 



1.4 

1.3 

1 2 

1 • 1 

0 

PRLSSURE 	--= 0.01 

(A.T.1.4) 	0 • 10 
1 • 0 

10.0 

A.,,, 

, 

. 
_Z1 

i 

' 1 

• 
e! 	t  

e• 	- 
I i 

2 
	

3 
	

4 	 5 
	

6 
TEMPERATURE, °K x KO 

FIG. I. RATIO OF FROZEN TO EQUILIBRIUM SOUND SPEEDS 

FOR AN `OXYGEN - LIKE' IDEAL DISSOCIATING GAS. 

2 
(at  I a 

1.3 

1.4 

1.2 

1 • 1 

1•0 

PHLSSURE = 0.01 

(AT 1.4) 0.10 

1 • 0 

10 • 0 

2 
	

3 
	

4 	 5 
	

6 

TEMPERATURE, °K x 10-3  

FIG. I. RATIO OF FROZEN TO EQUILIBRIUM SOUND SPEEDS 

FOR AN `OXYGEN — LIKE' IDEAL DISSOCIATING GAS. 



REPORT NO. 11 7 
November, 1958  

THE COLLEGE OF AERONAUTICS  

CRANFIELD 

The Flow of Chemically Reacting Gas 34ixbures 

- by - 

J. F. Clarke, B,Sc., Ph.D. 

CORRIGEMA AT':D ADDS g.DA 

P.9 Eq. 14. eE seq should read 

I 	 k(r) 
e 	fe 	 e it.7  ) 

k(r)  re 

Thus, from equations 12, 13 and 14., 

v (r)" v  (r)/  n 
() 	 e 	ae 0 c ) a 
	a 

Ic(r = 	n 	 , 	 ( ) 15 
a -7-- I 	p 

• 

k(r) 
 /k(r) 

 - 
k(r}' k(r} 

p_r_:rd 	fe 	re - f 	r . The specific reaction rate 
constants are functions of T only, so that this condition will be satisfied 
if cae  is evaluated at the actual local temperature T (i.e. if T

0 = T)." 

P. 1 1 Line above eq. 20 should read 

, and pa is the potential per mole of Aa at pm  and T." 

P.21 In eq.62 read r' for T , The line below eq.62 should read op 

"where 	 I.k1 	c 2  )/2 c W 
1 
 r ." 

oo 	 co 	2 	Co 



Corrigenda and addenda (Contd.) 

P.22 Eq.64 implies that cl  is evaluated at local pressure and entropy,
and not local pressure and  t

e
anperature as is required by eqs.60 to 63, 

In order to employ the simple relation eq.64. therefore,we must redefine 
ce in eqs. 59 to be equilibrium composition at local pressure and entropy. 

The chemical reaction rate terms are assumed to be proportional to the 
new c' quantity divided by a new r,77/17713 cannot be evaluated a priori) 

The new value of r' can co 
because values of c ' and 
in the flow field and the 

be found for any specific problem, however, 

c' etc can be found at corresponding points 
new r' is then the mean value of 

 

(w 2/ 
 

 

  

C' K(1 - 02) - 02  

  

  

over the region of interest. Except for this re-definition of T1  
ocy 

the theory and conclusions from eq.64 onwards are unaffected. 
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