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The exact flow behind a yawed conical shock wave is investigated. 
A 	nume:ric,a1 method of solving the differential equations of motion 
behind the shock wave is evolved. 

This method is applied to the case of the flow of aoperfect 
gas behind a conical shock of semi-'pox angle 30 yawed at 20 to a free 
stream of Mach number 10. The shape of the body which would produce such 
a shock wave is determined. The properties of the flow between the shock 
wave and the body surface are investigated particularly with respect to the 
variation of entropy and the streamline pattern. 

The existence of a singular generator on the body surface in 
the plane of yaw and on the "leeward" side, at which the entropy is many-
va:cled is brought out. It is found that, downstream of the shock, all 
stream lines curve round and tend to converge to this singular generator. 

The body obtained by the present investigation is compared to 
the yawed circu3ar cone which according to Stoners first order theory 
would produce the same shock wave dealt with in this particular case. 

n Based on a thesis submitted in partial fulfilment of the requirements 
for the Diploma of The College of Aeronautics. 
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LIST OF SYlvDOLS 

a 	 Speed of sound. 

C
P 	

Specific heat at constant pressure. 

Cy 	Specific heat at constant volume. 

CP 	 _ y 
Pressure coefficient 	 (P/Pi  - 1). 1 

2

42   
i 

h Enthalpy 	 = C
P 
 T. 

h 	 Interval between successive values of the independent 

variable x . . h , x 1  - xn  (in Appendix A) 14 

p 
	 Pressure. 

Flow velocity. 

Absolute velocity (of gas discharging into vacuum) 

Mach Number. 

✓ radial co-ordinate in Spherical polar system. 

R 	 gas constant = Cp  - 

S Entropy, 

T 	 Absolute temperature. 

VI 	 Freestream velocity. 

x 	 independent variable. 

y 	 dependent variable. 

(r, 	w) 	Spherical polar co-ordinates. 

(u, v, 	 Components of velocity. 

Component positive in direction r increasing, 

Component positive in direction * increasing. 

Component positive in direction W increasing. 
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1. 	INTRODUCTIOTT. 

The problem of supersonic flow around a yawed circular cone has 
received considerable attention in recent times but is still only partially 
solved, A comprehensive survey of the existing state of knowledge in this 
field was given in 1956 by Woods (Refence 1.).  Several methods of solution 
have been proposed, but the first and second order theories developed by 
Stone seem to have had the widest application. 

In a paper published in 1948 Stone (Ref.2)  dealt with the problem 
by treating the flaw as the sum of the non-yaw flow, exactly solved by 
Taylor and Maccoll in 1933 (Ref, 3)  and a small perturbation due to yaw 
(included in the solutions as first order terms in a, the angle of yaw). 
In a later paper, published in 1951 (Ref. 4)  he developed a second order 
theory, Extensive tables based on Stone's theory have been prepared at 
M.I.T. by Kopal and published as companion volumes to the tables of axi-
symmetric flow around cones. (Refs. 5, 6, 7).  These tables cover a wide 
range of Mach number and cone apex angle. 

Stone's work has met with a certain amount of criticism mainly on 
two counts. One objection was on the grounds that the system of co- 
ordinates (using wand axes) used originally by Stone and subsequently 
by Kopal in the preparation of the M.I.T. tables was inconvenient to employ 
in practice. A detailed discussion of this aspect of the problem was given 
by Roberts and Riley (Ref. 8)  who also laid down a procedure to modify 
the Stone solutions (as tabulated by Kopal) to more practical co-ordinates 
(using body axes). 

The other was an important theoretical objection. Stone's first order 
theory implies a periodic variation of entropy around the circumference of 
the yawed cone. Thus the entropy varies from amaximum value at the "wind- 
ward" generator to a minimum value on the "leeward" generator. Ferri 
pointed out in 1950 (Ref.9) that this contradicts the requirement that the 
solid cone surface must be a stream surface and therefore itself a surface 
of constant entropy, He discussed the flow around the cone in the general 
case and showed the existence of singular points along the "leeward" 
generator on which the entropy is many valued and to which all stream surfaces 
converge. Ferri also introduced, for the case of the slightly yawed cone, 
the concept of the "vortical layer" through which the entropy changes from 
its constant value on the surface of the cone to the value predicted by 
Stone's theory and gave a method for correcting Stone's first order solution 
near the cone surface. Stone's solution however, is valid through most 
of the flow field between the shock and cone surface, Also, it has been 
pointed out by Roberts and Riley (Ref. 8)and Woods (Ref, 1) that although 
the entropy corrections set out by Ferri are logically necessary they may 
be neglected in practice. It has been found that though Stone's theory 
was originally intended to be applicable to owes of small yaw, its use 
for comparatively large values of yaw give reasonably satisfactory results. 
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In the course of his investigation of the supersonic flow around a 
yawed cone Woods observed (Ref. 1)  that Stone's first order theory broke 
down in predicting the entropy behind the shock at remarkably low values of 
yaw. He found that this theory used in conjunction with the NLI.T. cone 
tables predicts for certain cases a decrease in entropy through the 
ehock wave, which is a phenomenon physically impossible. This aspect of 
Stone's theory does not seem to have been noticed prior to Wood's work. 

From the above considerations it becomes obvious that although Stone's 
theory is quite satisfactory in respect of many practical applications, 
a correct and complete solution of the supersonic flow around a yawed cone 
has not yet been achieved. 

The present investigation was carried out in order to make an effort 
to understand the problem better. One of the assumptions of Stone's 
theory is that when the cone is yawed, the shock wave continues to be 
conical with the same semi apex angle as in the non-yaw case; the only 
difference being that now the shock cone axis will be yawed with respect to 
the axis of the conical body also. The present investigation was intended 
to demonstrate how far this assumption was justified by considering the 
exact flow behind a yawed conical shock wave. The problem essentially 
consists of positioning a conical shock wave with its axis inclined to the 
free stream and then investigating the flow behind the shock cone in order 
to determine the solid body which would produce this particular configuration. 

In the present case this is achieved by using a numerical procedure 
for solving the differential equations of motion, which are set out in 
Section2. The procedure adopted for the numerical solution and results of 
the application of this procedure to a particular case is set out in 
Section 3. A discussion of this solution follows in Section 4. 

A comparison between the body shape obtained by the solution of 
this particular case and the corresponding first order yawed cone solution 
is made in Figure 15.  

The terms"conical body" and "Conical shockwave" will be used to 
indicate respectively bodies and shockwaves of circular cross sections. 
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2. PROPERTIES OF THE FLOW 

2.1. System of Co-ordinates and Nemencl-Aure 

We employ spherical polar co-ordinates r, Y', w based on the apex 
of the conical shock wave as origin and the axis of the shock wave coinciding 
with the axis of the co-ordinate system * = 0, The plane of yaw (or 
symmetry) is defined by w= 0 w= 	Adiagram of the co-ordinate system 
is given in FiL220 	v, w are the components of the velocity and they 
are defined to be positive in the direction r increasing, * increasing 
and 	w increasing respectively, The free stream of velocityNr, is 
considered to be inclined to the shock axis at an angle a such that the 
part of the plane of symmetry defined by w = 0 is on the "leeward" side 
and 	W = IT on the "windward" side. 

2.2, Conical Flow 

In a steady supersonic conical field of flow no fundamental length 
is involved and the physical properties of the flow are functions only 
of angular variables. The equations of motion are independent of r . 

2.3. Differential equations of motion, 

The steady "conical" flow of an inviscid compressible gas with 
constant specific heat and with no heat conduction satisfies the following 
equations, 

Euler's Equations can be expressed as 

- ir2 - 	174'2  = 0 as 

u au 	aw 	w 	aV 	 a s - -a7 - w a* + sin ,y Tr- + uv - W2  cot 1,  7  T 4  
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where S = Entropy 	T = Temperature, 

Equatiein of Continuity 

u(va + w2  - 2a2  ) - a2 V cot lif + 	
av ,..„2 

	

k 	- a2  ) 

1 	as 	 , w 	1 	au ) n 	to  
+ sin * 	Ow (w2  - a 2  ) ) -1. V W k 

	

a * 	+ sin* 	aw i ... - 	'9./ 

where a = speed of sound, 
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It is convenient to combine equations (1), (2) and (3) to give 

as 	w 	as  o + alp 	Sinv. 	3w 

Equation of Energy 

2 
C T 	2-• = constant 

where q2 = u
2 4. v2  w2  

Cp 
= specific heat at constant pressure 

Equation (5) is general for any conical flow and in fact defines the 
lines of constant entropy which correspond to the streamlines. If L is 
the streamline projection on the sphere r = constant, 

dS 	as 	d 	as 	do) 
dL = a TE 	) 	71, • 

Using equation (5) we have 

idw 

L 	V Sirill• 
	 (7) 

2.4. Conical -now without axial symmetry 

In reference 9 Ferri has discussed in detail the properties of super-
sonic conical flow without axial symmetry and has shown that singularities 
must exist in any such flow, He considers a conical body placed in a 
free stream inclined to its axis and by physical reasoning shows that the 
entropy must be constant on the surface of the cone or must change in a 
discontinuous manner, It has been shown by Ferri that such a discontinuity 
occurs along the generator of the cone on the "leeward" meridian plane 
( w = 0) at wh.ch the entropy is many valued, The character of the flow 
is such that stream lines downstream of the shock cone curve round and 
converge to this singular generator, The entropy on the cone surface is 
equal to that on the "windward" meridian plane ( w 	}. 

3. METHOD OF SOLUTION 

3.1, Procedure for numerical solution  

The differential equations of motion set out in paragraph 2.3 can be 
integrated step-by-step with respect to P making use of numerical differentiation 
to obtain derivatives with respect to w 	The method in brief, is as follows: 
Consider the circle of intersection ( * = *w) of the shock cone and sphere 
r = constant. Choose a large number of azimuthal stations around this circle. 
The quantities u, v, w, S and T and their derivatives with respect to w are 
known on this circle from the shock wave equations, Substituting these values 

(5)  

(6)  



9• 

in the equations we obtain the values of the derivatives with respect 
to * at each azimuthal station, 	New consider 
a small inward step A* in * (along the sphere r = constant). Making 
use of numerical integration we obtain values of u, v, w, S and. T on 
the circle * = * -6* . Derivatives of u, v, w, S and T with respect 
to w can be foun by numerical differentiation around this circle making 
use of the values at the various azimuthal stations. Now the derivatives 
with respect to I* can be found by substitution in the equations of 
motion. The process followed above is repeated to carry on the integration 
as far as is required Details of the procedure adopted are given in 
Appendix d.. 

3.2. Accuracy of Method  

The accuracy of the method depends mainly on two factors. The first 
is the choice of The interval between azimuthal stations. The accuracy 
of the process of numerical differentiation which has to be used to 
determine the derivatives with respect to w at each step in * depends 
mostly on the interval between the stations used in the differentiation: 
the smaller the interval, the more accurate the method will be. 

The second factor is the magnitude of AV which is chosen for the 
step-by-step integration The accuracy of the method will be enhanced 
by using as small a step in V as is possible. By a suitable choice of AV 
and use of the process of successive approximations described in Appendix k it 
is possible to obtain a satisfactory accuracy. In general, the choice 
of AV should be consistent with the choice of the interval between 
azimuthal stations. 

3.3. Details of the solution for a particular case. 

The numerical procedure was applied to a particular case with the 
following initial conditions; Free stream Math 	VL1  = 10 Shock wave 
semi-apex angle Vw  = 300  Angle of yaw a= 200.  0  

Eleven azimuthal stations at intervals of 15 were chosen between 
w = 0 and w = v- around the shock cone. It was thought that this choice 
of the interval in w would give satisfactory results. 

Numerical differentiation formulae given by Bickley (Ref.10) were 
used. Since the derivatives of u, v, w and S with respect to w could 
be obtained analytically on the shock wave itself, it provided a check 
on the accuracy of the numerical differentiation at the start of the 
solution, Five-point and seven-point formulae were tried along with a 
central difference formula using up to 7th differences. It was found 
that the 5-point formula was quite satisfactory in all cases though the 
7-point formula was found to be more accurate in the case of a s . 
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Hence, the 5-point formula was used for finding au 
aw 	aw 

av , aw 
aw 

and the 7-point formula for s . In all cases, for finding the derivative 
w 

at any point an equal number of points on either side of the point were 
chosen and differentiation formula for the derivative at the middle 
ordinate were used, since this involved the minimum of error This 
procedure could be applied even to points near w = 0 and w =ir by 
virtue of the symmetry of the flow about the plane w = 0, w =IT. 

Commencing at the shock wave the step-by-step procedure of * -wise 
numerical integration as detailed in Appendix A was carried out using 
increments A* = .0°30'. It was found that differences between the first 
approximations and second approximations obtained by invoking the 
trapezoidal rule were not of great significance (the differences were, 
in the case of velocities much less than 0.1% and entropy, less thanl%) 
and hence no attempt was mn_de to obtain further approximations. 

The same procedure was repeated using increments of Z4 = 1°  and 
this gives values which wEre found to agree very closely with th8se 
Obtained using half this increment. Thus it was observed that 1 
* -wise increments would be quite satisfactory. 

The solution of the equations proceeded in a very satisfactory 
manner till a value of 'P = 26 30' was reached. At this stage it was 
Observed that Iv' on the "leeward" meridian plane w = 0 had reached a 
value very nearly zero and that any further step would take the solutions 
on this plane beyond the singular point discussed in the previous 
section. It was also clear that with further steps 'v' would reach 
zero at other azimuthal stations on the "leeward" side, crence the 
solution in the neighbourhood of u = 0 and beyond 'P = 26 30' was 
difficult to obtain. 

It was Observed that when v tended to zero the derivatives with 
respect to 'P changed in magnitude rapidly This was particularly true 
about aw and a s . This rapid increase in the value of a w seemed to 

1,  
indicate reversals in the azimuthal component of velocity w for the small 
increment of A* = 0°30/ from beyond * = 26°30' in the neighbourhood 
of w=  0. 

Hence as a first step, azimuthal stations were omitted at which large 
magnitudes of aw indicated reversals in the sign of w, and the solution 

was carried on for the rest of the stations in steps of A* e 10. 
By proceeding in this manner it was possible to continue the process 
until stages of * were reached at which the values of entropy at each 
azimuthal station (from w = L.5°  to co = 180°) had reached the magnitude 
of the entropy on the meridian plane 6.1  = 7r, thereby indicating the 
surface of the hypothetical body. The point at which v became zero in 
the plane w = ir located the position of the intersection of the solid 
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manner till a value of 'P = 26 30' was reached. At this stage it was 
Observed that Iv' on the "leeward" meridian plane w = 0 had reached a 
value very nearly zero and that any further step would take the solutions 
on this plane beyond the singular point discussed in the previous 
section. It was also clear that with further steps 'v' would reach 
zero at other azimuthal stations on the "leeward" side, crence the 
solution in the neighbourhood of u = 0 and beyond 'P = 26 30' was 
difficult to obtain. 

It was Observed that when v tended to zero the derivatives with 
respect to 'P changed in magnitude rapidly This was particularly true 
about aw and a s . This rapid increase in the value of a w seemed to 

1,  indicate reversals in the azimuthal component of velocity w for the small 
increment of A* = 0°30/ from beyond * = 26°30' in the neighbourhood 
of w=  0. 

Hence as a first step, azimuthal stations were omitted at which large 
magnitudes of aw indicated reversals in the sign of w, and the solution 
was carried on for the rest of the stations in steps of A* = 10. 
By proceeding in this manner it was possible to continue the process 
until stages of * were reached at which the values of entropy at each 
azimuthal station (from w = L.5°  to co = 180°) had reached the magnitude 
of the entropy on the meridian plane 6.1  = 7r, thereby indicating the 
surface of the hypothetical body. The point at which v became zero in 
the plane w = ir located the position of the intersection of the solid 



surface with that plane. This follows from the boundary condition that 
the velocity component normal to the surface should be zero. On the 
plane w = 0, w = it 1114 	by symmetry, the normal component of velocity. 

To obtaig some knowledge about the region between w = 0 ed. w = 45°  
beyond * = 26 30', the solution was started again from *0= 26 30' 
using only the five stations at w = 0, 25°, 30°, 4; , 60 	The integration 
procedure was repeated using increments of 6* = 0 15'. During this 
investigation it was observed that the indication of reversal in sign of 
w found earlier were due to the choice of increments of ' and that it 
was possible to continue the solution without meeting this difficulty 
by proceeding in very small steps in * . This, as mentioned above, was 
undertaken and this set of calculations gave reasogable results. 
It was found thet the values at w = 14.5 and w= 60 obtained in this 
latter calculation were in agreement with those obtained earlier. 

The variation of entropy, temperature and the three velocity 
compolleul:s behind the yawed conical shook is presented in the following 
Figures. , Non-dimerisional values of u, v, w, S and T as set out in Appendix 
A are used. 
Fig. 7  ;- 	S 	* for various w. 
Fig. 8  :- 	S 	w for various *. 
Fig.,  9  :- 	T 	* for various w. 
Fig.10 	T 	w for various 11/. 

Tfe11 	u 	w for various *. 

Fig.12 	v 	w for various *. 
Fig.13 	w 	w for various '. 

By cross plotting from the above figures the projections of constant 
value lines on a sphere with centre at the origin of the co-ordinate 
system (apex of shock cone) and radius r = constant were obtained and 
arc shown in the following figures. 

	

Fig. 2 :- 	Lines cf constant entropy (i.e streamlines) 

	

Fig. 3  :- 	Lines of constant temperature. 

	

4 :- 	Lines of constant 11 

	

Fig. 5  ;- 	Lines of constant Ir. 

	

Fin, 6 :- 	Lines of constant lie 

From Fig, 2 we get the shape of the body surface which is defined 
by S = 1.307. 

surface with that plane. This follows from the boundary condition that 
the velocity component normal to the surface should be zero. On the 
plane w = 0, w = /7* 1114 	by symmetry, the normal component of velocity. 

To obtaig some knowledge about the region between w = 0 d = 45°  sn  
beyond * = 26 30', the solution was started again from *0= 26 30' 
using only the five stations at w = 0, 25°, 30°, 4; , 60 	The integration 
procedure was repeated using increments of 6* = 0 15'. During this 
investigation it was observed that the indication of reversal in sign of 
w found earlier were due to the choice of increments of ' and that it 
was possible to continue the solution without meeting this difficulty 
by proceeding in very small steps in * . This, as mentioned above, was 
undertaken and this set of calculations gave reasogable results. 
It was found thet the values at w = 14.5 and w = 60 obtained in this 
latter calculation were in agreement with those obtained earlier. 

The variation of entropy, temperature and the three velocity 
compolleul:s behind the yawed conical shock is presented in the following 
Figures. , Nen-dimensional values of u, v, w, S and T as set out in Appendix 
A are used. 
Fig. 7  ;- 	S 	* for various w. 
Fig. 8  :- 	S ' w for various *. 

Fig.,  9  :- 	T 	* for various ue 

Fig.10 	T 	w for various 11/. 
Tfe11 	u 	w for various *. 

Fig.12 	v 	w for various *. 

Fig.13 	w 	w for various '. 

By cross plotting from the above figures the projections of constant 
value lines on a sphere with centre at the origin of the co-ordinate 
system (apex of shock cone) and radius r = constant were obtained and 
arc shown in the following figures. 

Fig. 2 :- 	Lines cf constant entropy (i.e streamlines) 

Fig. 3  :- 	Lines of constant temperature. 
4 :- 	Lines of constant 11 

Fig. 5  ;- 	Lines of constant Ir. 
Fin, 6 :- 	Lines of constant ve 

From Fig, 2 we get the shape of the body surface which is defined 
by S = 1.307. 



-12- 

Having obtained the body shape, the distribution of pressure on 
the surface could be found, The values of 91,, the pressure coefficient, 

at the various azimuthal stations around the body surface are compared 
with the values just behind the shock in Fig. 14- 

The head lift and drag coefficient of the body as defined in 
Appendix B have been calculated. 

The lift coefficient CL  = 0.410 

The drag coefficient 9D  = 0.545 

4, DISCUSSION 

4.1. Method of Solution.  

As mentioned earlier, the nupericalgrocedure was found to work in 
a very satisfactory manner up to 'P = 26 30', when the solution was in 
the neighbourbood of the singular point in the "leeward" meridian plane 
w = 0. The main difficulty from this stage onwards was that the value 

of v tended towards zero and a subsequent change in sign (the change in 
v itself was quite regular throughout), This factor was highly critical 
since the evaluation of au, aw andaS involved division by v. 

a 	a 4, 	a * 
This meant that whilst the value of v passed through zero and changed 
sign, it was possible to get large magnitudes of the above derivatives 
changing in sign quite rapidly However, this was found to be highly 
critical only in the case of the evaluation of a w It was this feature 

a4, 
vihich was responsible for the extreme care necessary to continue the 
solution beyond >V= 26 30' in the vicinity of w = 0. 

As mentioned earlier, thls highly critical region between w = 0 
and (as it turned out) w = 45 was investigated separately using smaller 
values of A* than that used for the remainder of the azimuthal stations. 
Here it may be mentioned that the above stated difficulties encountered 
when Nr--- 0 and changes sign, were avoided in the case of the "windward" 
side. This was Because the surface of the solid body (as represented 
by the line of constant entropy of magnitude equal to that of the entropy 
on the "windward" plane w = n) was obtained before the critical region 
(v- ---)0) was reached, The solution was not carried any further because 
the behaviour of the flow inside the body surface was of no special interest 
in the present case. 
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4.2. Properties of the  flow. 
4_.2.1. Velocity. 

It is found that the variation of the velocity components is quite 
regular and exhibit no peculiarities. However, the variation in the 
values of u and particularly w in the vicinity of the singular point 
needs some consideration. Some difficulty was experienced in the finding 
of the numerical values of w and u in the region 60°3 w > 0

o 
 for 

values of t smaller than 26 301. Although it appeared that the values 
of u and w behaved regularly in this region it was considered that 
accurate numerical values could only be obtained if smaller intervals of 
w were used in the numerical method, 

The component v is found to vary in a very regular manner, This 
is quite understandable since the evaluation of a v depends on (v2  - a2  ) 
yr]thv2  « a2, 	 a t 

4.2.2. Temperature. 

The variation of temperature follows from the way in which the 
velocity changes, It is found that the variation in temperature 
throughout the field is quite regular. 

4.2.3. Entropy and streamlines. 

The distribution of entropy in the flow behind the shock cone is 
represented in Fig, 217,8, The projections of constant entropy lines 
(they correspond to streamlines) on the sphere r = constant are represented 
in Fig. 2. 	The location of the singular point, on the "leeward" 
meridian plc= w = 0, at which the entropy is many valued is also 
indicated in the figure, It is found that the streamlines, after leaving 
the shock cone, curve round and converge to the singular point. The 
surface of the hypothetical solid body (corresponding to the constant 
entropy line having the same entropy as a plane to = 7r) which will 
produce the shock wave dealt with here is also indicated in the figure, 

One feature in the pattern of the streamlines near the singular 
point may be pointed aut. From equation (5) we have 

a s 	NV a s v -07  + 	--- s 	 -  - 0 to 	0 from which we have as equ. (7) in t  

Iv  

	

streamline 
	v sin* 

or more conveniently 

	

(1.7 streamline 
	v sin t  



Ekcept in the meridian plane when v = 0 (and when w = 0) the equation 
is indeterminate, the above equation holds good generally. Hence, 
when v--4. 0 and changes sign (but w 	0) the streamlines will tend to 
"flatten" out and become parallel to the line e = constant at v = 0 
and then "curl up" when v becomes positive. This is illustrated in 
the accompanying diagram. 

w  
This happened in the case 	 = 0  
of a few streamlines on 
the "leeward" side. ve_ 	 

v 	0 

ve 

Streamline" 

4,2.4, Pressure distribution on surface.  = 

The pressure distribution on the body was worked out and a comparison 
with the values on the downstream side of the shock wave is made in Fig.14. 
This indicates that there is an expansion in the flow between the shock 
wave and body except in a small region w = 140 to 180 on the "windward" 
side where a slight compression of the flow takes place. 

4,2.5. Comparison with first order solution, 

The body shape obtained by the present method is compared here with 
the first order yawed cone solution (Ref. 2.6) in Fig. 15. It is 
Observed that the body is smaller than the corresponding cone in the 
fist order solution, The body is not wholly circular; however, it is 
noted that it is mostly circular with a small hump on the "leemwrd" 
side. The smaller size of the body as noted in the case 
Of the present solution 	might mean that in actual practice 
the assumption of the first order theory at comparatively large yaw 
with respect to shape of the shock cone may be valid but that it may be 
necessary to make a correction for the change in size of the shock cone. 

The head lift and drag coefficients of the conical body (of non-
circular cross section) obtained by the present method have been calculated 
using expressions defined in Appendix B. 

Head lift coefficient 

and a 	Head drag coefficient 

CL  0.410 

CD  = 0.545 

  



These first order values were obtained only as a means of checking 
the orders of magnitude of C

L 
and CD 

obtained for the body of the 

present solution, A direct comparison between the two sets of values 
cannot be considered to have any conclusive significance. 

4.5. Method of numerical solution.  

It is felt that, in general, the numerical investigation was 
satisfactory. However, the difficulties involved in carrying on the 
solution near the singular point on the "leeward" side have shown that 
extreme care has to be exercised in the choice of the interval between 
azimuthal stations and steps in * 	In the present investigation 
the region between w = 0 and w = )5 was studied separately by carrying 
out the solution at five equispaced azimuthal stations, It is felt that 
this is not a very satisfactory method and could be improved upon to 
a considerable extent. For investigation of the flow in this regionoit 
is necessary to have azimuthal stations closer to each other than 15 
It may perhaps be best to choose a larger number of azimuthal stations 
on the "leeward" side than on the "windward" side. For future work it iso  
suggested that azimuthal stations should be spaced at intervals of cio.)  = 5 
from w = 0 to w = 75 and at intervals of 15

o 
 from w = 75 to w= 180 

5. CONCLUSIONS 

It has been found that the numerical method adopted for the 
investigation of the exact flow behind a yawed conical shock is simple 
to use and produced reasonably satisfactory results. The accuracy of 
the method can be improved by choosing a smaller interval between 
azimuthal stations, 

As s particular case,  the flow behind a conical shock of semi-apex 
angle 30 inclined at 20 to a free stream of Mach Number 10 has been 
investigated and the shape of the conical body (of non-circular section) 
which would produce such a shock wave has been determined and compared 
with the yawed cone solution. In this case, it has been found that the 
shape departs from circular only to a small extent on the "leeward" 
side. More significantly, it is noted that the size of the body is 
smaller than that of the circu3ar.cone which according to Stone's 
first order theory (Ref.2,6)  would produce the given shock wave. 

The properties of the flow between the shock cone and the solid 
body surface have been determined and the pattern of the streamlines 
has been studied. The existence of a singular generator on the body surface 
in the "leeward" meridian plane w = 0, at which the entropy is many 
valued has been well brought out. 
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a  

Vi 
and 

ATP-MIX A. 

DETAILS OF SOLUTION.  

A.1. Procedure for numerical solution. 

The differential equations of motion (1) to (6) set out in 
paragraph 2.3 can be expressed in non-dimensional form by effecting the 
following substitutions. (Primes denote non-dimensional quantities). 

S 

u 
-

- 

V1 ' 

S = 0 	, T 

V 
W = 

- 

T  = 	 where VI  = free stream velocity 
Vi2/0  

2 	 2 

Vi )
a2 = (a' V ) - all T' 

V
1  = 

Cp  

(al)2 	= (y-1) Ty 

using the above relations we have 

v, 	11, 

	

a 	+ sin* a w 

- 

v2  - W2 = 0 	 (1)A 

t a u, 	a u, 	 ao 

	

a 	

▪  

sin* av w  u' vT — wT cot * =T? a* 
as, 
— (2)A 

awl 	u= 	a v= 

	

v4  Sin* 	ul 	v' 	4. -a' 1,0 Sin* 4- v' w ' cos* = Tla s,  aw 	aw 	 (3) -- aw 	A 

a  u' (v'
2 
 + w12  - 2 	T') - ( ct-1)T' v' cot *4.- 	,, -- 	2r TI) 

	

a TO 	 v,  . +sin 	(w' 
2  Ca-11 T' ) 	

aw, 
v,  w' ( 	I 	a 77--) = 0 	(OA- 

a 	s, 	110 a sl 

	

v, 	+ . 

	

sing. a w 	
0 	 (5)A 

2 

	

T' 	 constant 
2 V = Tt 	= T' 1  i 	2 

1 	2 

Hereafter these non-dimensional quantities will be used and the primes 
will be omitted. 

(6)A 
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The above Tne:ntioned differential equations can be integrated step-
by-step, for small steps in , proceeding inwards from a large number 
of azimuthal stations on the shock cone defined by various values of w. 
The procedure is as follows ; 

(i) Choose a sufficiently large number of azimuthal stations (preferably 
equally spaced) around the shock wave from w = 0 to w = Ir. Since 

the flaw is syninetrical about the plane of yaw it is sufficient to consider 
only the region on one side of the plane. The physical properties of the 
flow just behind the shock wave are known fran the shock wave equations. 
Vie will use the subscript '2' to indicate conditions just behind the 
shock wave. (Subscript '1' is used for free stream condition), From the 

s
hock wave equations the values of u2, v2, w2, T2 , S2  and au , av 
,2 	a s2  

aw 	aw 	can be calculated at each azimuthal station. These values 

can be substituted in equations (I), (3), (4) and. (5) (it is sufficient to 
use either (2) or (4)) to give a u2  , a y, , a w2  and a S2  

• 

8* 	a* 	a* 

(ii) Now choose a sufficiently small increment in 	, L* say, and obtain 
a first approximation to the values of u3„ v3, w3, Sx  at 	= 

at each azimuthal, station. This is achieved by the use of the simple 
point-slope formula which in general terms can be written as 

yn+1 = y
n  hyn , where y = f(x), yl = 

Yr41 = f(xn4.1 ) / 5rn f(  n) 

h = 1 - xn 

The first approximation to the value of r; can be obtained by substituting 
the values of u3, v3, w3  obtained above in equation. (6). 

(iii) Having obtained the values of u3, v3, w3, S3  at the -zarious 
a u 	a y 	a w 	a s azimuthal stations for * =0, P 	 0 

3 	
3 • 	3 0 	3 

aw 	act) 	a 	ao) 
can be obtained by numerical differentiation, 
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(iv) Now the differential equations can be used to obtain 

a u3 	a 7 	aw3 	a S3  
a v, 	a * ' 	a 4, , 	a v, 

and using these values of the derivatives with respect to Vi  at 0,3  , 
and those at * 

3 
, the trapezoidal formula 

h 
Yni.1 = Yn + 	(y o + yr: ) 

can be used to give a second approximation to the values of u 	v , m 
and S at * . This also provides a check on the numerical accuracy of 
the first approximation. 

(v) The process detailed above can be repeated to give successive 
approximations to the values at Vi until no changes in the values occur 

3 to the aooliracy required . 

(vi) Having satisfactorfly completed the first step (from *to *3) 
a further step can be taken. Consider another increment 6*

2 
 and obtain 

a first approximation to the values (of u, v, w, S) at 14  = *3  - 
by the more accurate formula 

2 h 4. 	. 
Yn4.1 	yn-1 

The same procedure which was used for the first step is repeated and the 
derivatives with respect to Vi at each of the aximuthal stations calculated 
for * =40 . The trapezoir9n1 rule can be invoked to give a second 
approximation to the values at 404. The whole process can be repeated if 
necessary to give further approximations. 

(vii) The same procedure is used to carry the solution forward for as 
many stops in * as is required. 
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(iv) Now the differential equations can be used to obtain 

	

a u 	a v 	a 17 	a s 

	

3 	 3 	 3 	 3 

	

a * 	a* , 	a* , 	a* 

and using these values of the derivatives with respect to * at Ifr3  
and those at k  , the trapezoidal formula. 

3 
h 

	

Y/14- 1 	= Yn 	2 (Y 1 	Yn ) 

can be used to give a second approximation to the values of u)  , v) w 
and S at 11/3. This also provides a check on the numerical accuracy of

3  

the first approximation. 

(v) The process detailed above can be repeated to give successive 
approximations to the values at Y' until no changes in the values occur 

3 to the aco- wacy required 

(vi) Having satisfuoterAy completed the first step (from *to *3) 
a further step can be taken. Consider another increment L*

2 
 and obtain 

	

a first approximation to the values (of u, v, w, S) at * 	* 

	

4 	3 by the more accurate formula 

2 h yi . 4. Yn.4.1 = Yn-1  

The same procedure which was used for the first step is repeated and the 
derivatives with respect to * at each of the aximuthal stations calculated 
for *= . The trapezoi8n1 rule can be invoked to give a second 
approximation to the values at. The whole process can be repeated if 
necessary to give further approximations. 

(vii) The same procedure is used to carry the so:intim forward for as 
many steps in 'k  as is revired. 
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APPENDIX B  

CALCULATION OF TTFT AND DRAG COrIT'ICIENTS,,  

(90-w) 

 

,-------- 	R 

4¢-(90-Ti 

      

      

    

• 
	 d G7 

consider a length x of the body  
(a cone of general cross section 
measured from the apex at origin 0, Weuse in addition to the spherical 
co-ordinates (r, *,w ) 	 a cylindrical polar co-ordinate system 
(x, Rw ) such that r = x cos and r = R sin V. Now consider an elemental 
length ds along the circumference of the general shaped cross section. 
Let ds be inclined to the vertical at an angle 0 . Then 

ds 	
Rd  

cos CO -(90 - 4.1 

Force on (the triangular) elemental area (r, ds) 

- 2 

component of the above force perpendicular to an axis (i,e. the component 
force lies in the plane x = constant). 

=f cos * = prds cos *= p ds 
2 	 2 

component of this force normal to the axis and parallel to the plane of 
symmetry w = 0, w = 180°  is 

0- 	2 	
x sin 0. 

[The  components perpendicular to plane of symmetry cancel each other 
acting from the two sides of the planet] 

= (f cos *) sin 

.' 	Normal force on body length x, 
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CALCULATION OF TTFT AND DRAG COrIT'ICIENTS,,  
(90")) 

• 

consider a length x of the bod  
(a cone of general cross section 
measured from the apex at origin 0, Weuse in addition to the spherical 
co-ordinates (r, *,w ) 	 a cylindrical polar co-ordinate system 
(x, R,w ) such that r = x cos ' and r = R sin *. Now consider an elemental 
length ds along the circumference of the general shaped cross section. 
Let ds be inclined to the vertical at an angle 0 	Then 

R d w  
ds _ 

cos CO-(90- 4.1 

Force on (the triangular) elemental area (r, ds) 

f = 2 

component of the above force perpendicular to an axis (i,e. the component 
force lies in the plane x = constant). 

=f cos * = prds  cos *= pds x 
2 	 2 

component of this force normal to the axis and parallel to the plane of 
symmetry w = 0, w = 180

o 
 is 

= (f cos *) sin 0_ 2-i-12 x sin 0. 2 

[The  components perpendicular to plane of symmetry cancel each other 
acting from the two sides of the plane3 

.4  Normal force on body length x, 



N = 2x f sin 95  = 2x f (P Pi}  sin 9') ds, say -p a El  
2 0 	2 

2x f 	 R sin 	a- w 
0 	2 cos C.0-(90 -f.1) 
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77" 

• 
• • 

since RI  is constant, 

Normal Force coefficient 

CN = 2 
= 	2x 

Aof 2 sin 0 	where A = base arca. 
A 72- pivi  

IT 

nomonent of the force f parallel to axis 

= f sin O.  = I1212- sin 0. 	s  2 
	x tan 

Hence vre get the 
Axial force coeffeient 

?_x R tan *  CA  = A  0.1 	2 	 d w  
cos [5.5490- w):1 

From the above we have if P is the angle of yaw 

Lift coefficient CL  = CN  cos /7 - CA sin 	(Head Lift Coeff.) 

Drag coefficient CD  = CA  cos P CN  sin p 
	

(Head Drag Coeff.) 

The coefficients C
NP  CA'  CL and CD pertain to complete cone from 

apex to the section considered and do not include base pressures. 
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I p ds
si

n
0= 2x N = 2x 2 

- Pi ) 	 sin 95 ds, say 
2 

since pi  is constant, 

Normal Force coefficient 

C 

N 	 2 

N 	2x 
C 	 A 	

sin 7  ds , where A = base area. 
 2 

	

A 2  p1v1 	
0  

2x 	 R sin ¢ d w 
A 	2 cos V-(90 -w 

The ("CimiJonent of the force f parallul to axis 

=f sin *= 1") 	r
2
a  3  sin =

2 	
x tan if .  

Hence we get the 

Axial force coeff;cient 

2x ir 	tan * 	d C A = A 0 	2 cos D5-(90- (41 

From the above we have if 	is the angle of yaw 

Lift coefficient C
L 

= C
N 

cos /7  - CA.  sin p 	(Head Lift Coeff.) 

Drag coefficient OD  = CA  cos p ON  sin p 	(Head Drag Coeff.) 

The coefficients C
N' 

C
A' 

C
L 
and C

D 
pertain to complete cone from 

apex to the section considered and do not include base pressures. 
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Lift and Drag of Equivalent Cone, 

The semi-apex angle of L circular cone that will in axi-symmetric 
flow at 114.  =01 0, produce a conical shock wave of semi-apex and iirw  = 

300 

is vs  = 26.6 (approx). This was obtained from chart 5 in Ref. 11. 

Making uze of the 1st order theory of Stone (Ref.2) we have that 
when the cone is yawed with respect to the free stream (at an angle 0) 
the shock will retain its size and shape but its axis will be inclined 
to the free stream at an angle (in general not equal to 0). From 
part II of Ref. 6 we have that for fp

s 
= 26.6°, 1.1.1  = 10 (by graphical 

interpolation) a = 1 (-46. 

. . p 	19.1°. "Re have further that 

= 0.628 and Kr)  = 0.1 67 where Kal. and Kip  are coefficients of normal 

and drag forces defined according to wind co-ordinates in Ref. 6. The 
transformation to the more practical body co-ordinate system can be 
effected as follows, This method was pointed out by Young and Siska 
in Reference 12  who give the following formulae for the transformations. 

Normal Force Coefficient 

a 	( 80
) 
 Kn  8 x .333  ° 623x

N  
= 0.533 

P = 19.1 = 0.333 radians 

cosh = 0,945 

    

Axial Force Coefficient 	 sinp = 0.327 

°A 

CL  

OD  

= 

= 

= 

8 
5- KD 

CN  cos j2 

CA  cos 

8 x .1 67 

= 

= 

0.365 

24  0,5 

CA  sin P = .504_ - .139 

ON  sin (= .4.02+ .1 72+ 0.576 



V-0  

CA) =0 

ci.) = TT 

FIG. I . THE COORDINATE SYSTEM AND NOMENCLATURE 
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