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The exact flow behind a yawed conical shock wave is investigated,
A simple numerical method of solving the differential equations of motion
behind the shock wave is evolved,

This method is applied to the case of the flow of a perfect
gas behind a conical shock of semi-apex angle 307 yawed at 207 to a free
stream of Mach nurber 10, The shape of the body which would produce such
a shock wave is determined. The properties of the flow between the shock
wave and the body surface are investigated particularly with respect tc the
variation of entropy and the streamline pattern.

The existence of a singular generator on the body surface in
the plane of yaw and on the "leeward" side, at which the entropy is many-
valued is brought cut., It is found that, downstream of the shock, all
gtream lines curve round and tend to converge to this singular generator.

The body cbtained by the present investigation is compared to
the yawed circular cone which according to Stone's first order theory
would produce the same shock wave dealt with in this particular case,

# Bosed on a thesis submitted in partial fulfilment of the requirements
for the Diploma of The College of Aeronautics,
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IIST OF SYMBOLS

Speed of sound,

Specific heat at constant pressure.

Specific heat at constant volume,

s 2
Pressure coefficient = yEYe (P/P1_ 1).
1
Enthalpy = Cp T,
Interval between suceessive values of the independent
variable x , . N = xm_1 ™ (in Appendix A)
Pressure,

Flow velocity,

Absolute velocity (of gas discharging into vacuum)
Mach Number.
radial co=ordinate in Spherical polar system,
gas constant = C_ ~ C_,
ho) v
Entropy.

Absolute temperature,

Freestream velocity.
independent variable,
dependent variable,

Spherical polar co-ordinates,

Components of velocity.

Component positive in direction T increasing.
Component positive in direction ¥ increasing,

Component positive in direct.on ® increasing.



List of Symbols contd,

a Angle of yaw or incidence,
Y Ratio of specific heats = EE %
€ Equivalent shock wave zmgle.cv
p Density.
WW Shock cone semi-apex angle,
SUBSCRIPTS,
w Pertaining to shock wave,
8 Pertaining to solid body surface,
o} Pertaining total or stagnation conditions,
1 Pertaining to freestream (and upstream side of shock wave).
2 Pertaining to downstream side of sholck wave,
3.4, 5,ete, Pertaining to successive V¥ -wise steps chosen for

numerical process of solution of differential equations.



1. INTRODUCTION,

The problem of superscnic flow around a yawed circular cone has
received congiderable attention in recent times but is still only partially
solved, A comprchensive survey of the existing state of knowledge in this
field was given in 1956 by Woods (Refence 1.). Several methods of solution
have been proposed, but the first and second order thecries developed by
Stone seem to have had thc widest application,

In a paper published in 1948 Stone (Ref,2) dealt with the problem
by treating the flow as the sum of the non-yaw flow, exactly solved by
Taylor and Maccoll in 1933 (Ref, §) and a small perturbation due to yaw
(included in the solutions as first order terms in a, the angle of yaw).
In a later paper, published in 1951 (Ref, L) he developed a second order
theory. Extensive tables based on Stone's theory have been prepared at
M.I.T. by Kopal and published a2s companion volumes to the tables of axi-
symmetric flow around cones, (Ref‘s, 5, 6, 7). These tables cover a wide
range of Mach number and cone apex angle,

Stone's work has met with a certain amount of criticism mainly on
two counts, One objection was on the grounds that the system of co-
ordinates (using wand axes) used originally by Stone and subsequently
by Kopal in the preparation of the M,I.T. tables was inconvenient to employ
in practice, A detailed discussion of this aspcct of the problem was given
by Roberts and Riley (Ref. 8) who also laid down a procedurc to modify
the Stone solutions (as tabulated by Kopal) to more practical co-ordinates
(using body axes),

The other was an important theorctical objection. Stone's first order
theory implies a periodic variation of entropy around the circumference of
the yawed cone, Thus the entropy varies from ameximum value at the "wind-
ward" generator to a minimum value on the "leeward" generator, Ferri
pointed out in 1950 (Ref,9) that this contradicts the requirement that the
s0lid cone surface must be a stream surface and therefore itsclf a surface
of constant entropy. He discussed the flow around the cone in the general
casc and showed the existence of singular points along the "leceward"
generator on which the entropy is many valued and to which all stream surfaces
converge, Ferri also introduced, for the case of the slightly yawed cone,
the concept of the "vortical layer" through which the entropy changes from
its constant value on the surface of the cone to the value predicted by
Stone's theory and gave a method {or correcting Stone's first order solution
near the cone surface, Stone's solution however, is valid through most
of the flow field between the shock and cone surface, Also, it has been
pointed out by Roberts and Riley (Ref. 8)and Woods (Ref. 1) that although
the entropy corrections set out by Ferri are logically nccessary they may
be neglected in practice, It has been found that though Stone's theory
was originally intended to be applicable to cases of small yaw, its use
for comparatively large values of yaw give reasonably satisfactory results,



In the course of his investigation of the supersonic flow around a
yawed cone Woods observed (Ref, 1) that Stone's first order theory broke
down in predicting the entropy behind the shock at remarkably low values of
yoaw. He found that this theory used in conjunction with the M.I.T. cone
tables predicts for certain cases a decrease in entropy through the
shock wave, which is a phenomenon physically impossible, This aspect of
Stone's theory does not seem to have been noticed prior to Wood's work,

From the gbove considerations it becomes cobvious that although Stone's
theory is quite satisfactory in respect of many practical applications,
a correct and complete solutién of the supersonic flow around a yawed cone
has not yet been achieved,

The present investigation was warried out in order to make an effort
to understand the problem better, One of the assumptions of Stone's
theory ig that when the cone is yawed, the shock wave continues to be
conical © with the same semi apex angle as in the non~yaw case; the only
difference being that now the shock cone axis will be yawed with respect to
the axis of the conical body also. The present investigation was intended
to demonstrate how far this assumption was justified by considering the
exact flow bchind a yawed conical shock wave. The problem essentially
consists of positioning a conical shock wave with its axis inclined to the
free strcam and then investigating the flow behind the shock cone in order
to determine the solid body which would produce this particular configuration.

In the present case this is achieved by using a numerical procedure
for solving the differential equations of motion, which are set out in
Section2, The procedure adopted for the numerical solution and results of
the applicaticn of this procedure to a particular case is set out in
Section 3., A discussion of this solution follows in Section 4.,

A comparison between the body shape obtained by the solution 6f
this particular case and the corresponding first order yawed cone solution
is made in Figure 15.

The terms 'conical body" and "Conical shockwave" will be used to
indicate respectively bodies and shockwaves of circular cross sections,



2. FROPERTIES COF THE FLOW

2l System of Co-ordinates and Nomenclature

We employ spherical polar co-ordinates r, v, @ Tbased on the apex
of the conical shock wave as origin and the axis of the shock wave coinciding
with the axis of the co-ordinate system ¥ = O, The plane of yaw (or
y'TiF‘IC,‘f‘I‘y) is defined by W =0 W= 7, A diagram of the co-ordinate system
is given in Figure 1. u, v, w are the components of the veloc:n.ty and they
are defined to be ‘pObl‘tl‘V‘e in the direction r dincreasing, v mcreas:mg
and ® increasing respectively. The free stream of vcloc::.ty v
considered to be inclined to the shock axis at an angle a such %hat the
part of the plane of symmetry defined by « = O is on the "leeward" side
and W=7 on the "windward" side,

P Conical Flow

In a steady supersonic conical fiecld of flow no fundamental lcngth
is invclved and the physical properties of the flow are functions only
of angular variables., The equations of moticn are independent of r ,

2.3, Differential equations of motion.

The steady "conical" flow of an inviscid compressible gas with
constant specific heat and with no heat conduction satisfies the following
equations,

Buler's Equations can be expressed as

au W (5,51 2 2
v v + Sy v e = F = W = 0 (1)
du ow W ov_ a S
SE o W RS Agne vy o +U - w? cot y = aw (2)
vsinsb%;-u a_auw —V%+UVISI&1‘#+V?‘TGOQ¢&T8MS (3)

where 5 = Entropy T = Temperature,

Equatitn of Continuity

w(v® + w* ~22% ) = a® vecot v+

v
1 Owr 0 2
, o -é'a('wa -az).}.vw(av; + o u):O (4)

where a = speed of sound,



It is convenient to combine equations (1), (2) and (3) to give

2,8 Blo (5)

V By *Siny "

Equation of Energy

2
" S
GP T+ -5 = constant (6)

where q2 - u? + v2 + W
Cp = specific heat at constant pressure
Bquation (5) is general for any conical flow and in fact defines the

lines of constant entropy which correspond to the streamlines, If L is
the streamline projection on the sphere r = constant,

a4 88 4y 95 dw _ g
an = oy a. T Y & %7

Using equation (5) we have

@) = Temy (7)

2.4, Conical flow without axial symmetry

In reference 9 Ferri has discussed in detail the properties of super-
sonic conical flow without axial symmetry and has shovn that singularities
mist exist in any such flow, He considers a conical bedy placed in a
free stream inclined to its axis and by physical reasoning shows that the
entropy must be constant on the surface of the cone or must change in a
discontinuous manner, It has been shown by Ferri that such a discontinuity
occurs along the generator of the cone on the "leeward" meridian plane
( W= 0) at wh.ch the entropy is many valued. The character of the flow
is such that stream lines downstream of the shock cone curve round and
converge to this singular generator. The entropy on the cone surface is
equal to that on the "windward" meridian plane ( w =m ).

2 METHCD OF SOTUTION
3,1, Procedure for numerical solution

The differential equations of motion set out in paragraph 2,3 can be
integrated step-by-step with respect to ¥ making use of numerical differentiation
to obtain derivatives with respect to @ , The method in brief, is as follows:
Consider the circle of intersection ( ¥ = # ) of the shock cone and sphere
r = constant, Choose a large number of azimuthal stations around this circle,
The quantities u, v, w, S and T and their derivatives with respect to w are
known on this cirecle from the shock wave equations, Substituting these values
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in the equations we obtain the values of the derivatives with respect

to ¥ at each azimuthal station. Now consider

a small inward step Oy in y (along thc sphere r = constant). Making
use of numerical integration we obtain values of u, v, w, S and T on

the circle ¥y = ¢ _=0¢ , Derivatives of u, v, w, S and T with respect

to @ can be found by numericel diff'erentiation around this circle making
use of the values at the various azimuthal stations. Now the derivatives
with respect to v can be found by stbstitution in the equafions of
motion, The process followed above is repeated to carry on the integration
as far as is required Details of the procedure adopted are given in
Appendix A,

3.2, Leocuracy of Method

The accuracy of the mcthod depends mainly on two factors, The first
is the choice of the interval between azimuthal stations, The accuracy
of the process of numerical differentiation which has to be used to
determine the derivatives with respect to ® at each step in ¥ depends
mostly on the interval between the stations used in the differcntiation:
the smaller the interval, the more accurate the method will be.

The second factor is the magnitude of Av which is chosen for the
step-by-step integration The accuracy of the method will be enhanced
by using as small a step in ¥ as is possible, By a suitable choice of by
and use of the proccss of successive approximations described in Appendix A it
is possible to obtain a satisfactory accuracy., In general, the choice
of O¢ should be consistent with the choice of the interval between
azimuthel stations,

3.3, Details of the solution for a particular case,

The numerical procedurc was applied to a particular case with the
following initial conditions. Free stream Mach No, M, = 10 Shock wave
seml=-apex angle Vv, = 30" Angle of yaw @ = 207,

Eleven azimuthal stations at intervals of '15O were chosen between
@ = O and W= 7 around the shock cone, It was thought that this choice
of the interval in @ would give satisfactory results,

Numerical differentiation formulae given by Bickley (Ref.10) were
used, Since the derivatives of u, v, w and S with respect to @ could
be obtained analytically on the shock wave itself, it provided a check
on the accuracy of the numerical differentiation at the start of the
solution, Five-point and seven-point formulae were tried along with a
centrsl difference formula using up to 7th differences., It was found
that the 5-point formula was quite satisfactory in all cases though the
7-point formula was found to be more accurate in the case of @ S ,

W
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Hence, the 5~point formula was used for finding g;& 3 g;v 3 gJN

and the 7-point formula fqr-%ia . In all cases, for finding the derivative
at any point an equal number of points on either side of the point were
chosen and differentiation formula for the derivative at the middle
ordinate were used, since this involved the minimum of error This
procedure could be applied even to points near w = 0 and w =7 by

virtue of the symmetry of' the flow about the plane w =0, w=7,.

Commencing at the shock wave the step-by-step procedure of ¥ =wise
numerical integration as detailed in Appendix A was carried out using
increments Oy = -0030'. It was found that differences between the first
approximations and second approximations obtained by invoking the
trapezoidal rule were not of great significance (the differences were,
in the case of velocities much less than 0,1% and entropy, less than17)
and hence no attempt was mnde to obtain further approximations,

The same procedure was repested using increments of v = 10 and
this gives volues which were found to agree very closely with thgse
obtained using half this increment. Thus it wos observed that 1

¥ =wise increments would be quite satisfactory.

The sclution of the equations proceeded in a very satisf‘actory
manner till o value of V¥ = 26°30' was reached. At this stage it wa
observed that 'v' on the "leeward" meridian plane @ = O had.reached a
value very nearly zero and that any further step would take the solutions
on this plane beyond the singular point discussed in the previous
section. It was also clear that with further steps 'v' would reach
zero at other azimuthal stations on the "leeward" side. Hence the
solution in the neighbourhood of @ = O and beyond ¥ = 26030‘ was
difficult to obtain,

It was observed that when v tended to zero the derivatives with
respect to ¥ changed in magnitude rapidly This was particularly true
cbout O wand @ S, This rapid increase in the value of O w seemed to

TV a v TV
indicate reversals in thc azimithal componcnt of velccity w fgf the small
increment of &¢ = O 30' from beyond V = 26° 30' in the neighbourhood
of W = O.

Hence as a first step, azimuthal stations were omitted at which large
magnitudes of @ w indicated reversals in the sign of w, and the scolution

was carried on for the rest of the stations in steps of &V = do.

By proceeding in this mamner it was possible to continue the process
until stages of ¥ were reached at whlch the valucs of entropy at each
azimuthal station (from ® = 15° to = 180 ) had reached the magnitude
of the entropy on the meridian plane w = T , thereby indicating the

surface of the hypothetical body. The point at which v became zero in
the plane W = 7 located the position of the intersection of the solid
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surface with that plane. This follows from the boundary condition that
the velocity component normal to the surface should be zero., On the
plane w =0, w= 7 'v' is§ by symmetry, the normal component of velocity,

To obtain some lmowledge about the region between w= 0 %nd W= -’4.50
beyond ¥ = 26°30!, the solution was started aggin from ¥ 26 30!
using only the fivc stations at w = O, 250, 307, }%o’ 607, The integration
procedure was repeated using increments of Ay = 0715', During this
investication it was observed that the indication of rcversal in sipgn of
w found earlicr were due to the choice of increments of y end that it
wns possible to continue the solution without meeting this difficulty
by proceceding in very small steps in y ., This, as mentioned above, was
undertaken and this sect of calculations gave reasonable results,
It was found that the values at w = 45 and @ = 60° obtained in this
latter calculation were in apreement with those obtained earlier,

The variation of entropy, temperature and the three velocity
components behind the yawed conical shock is presented in the following
Figures, ‘Non-dimensional values of u, v, w, S and T as set out in Appendix
A are used,

Pig, 7 s= 8~ for various w,
Pig, 8 := S ~ for various vy,
g, 9 1 i o for various w,
Fig,10 1~ for various vy,

Big,11 - u "~ for various v,
Fig,12 - v

Fiéw‘lj S W

for various v,

=
4
& E E £ & £ %

for various ¥,

By cross plotting from the above figures the projections of constant
value lines on a sphere with centre at the origin of the co-ordinate
system (apex of shock cone) and radius r = constant were obtained and
are shown in the following figures,

Pig, 2 &= Lines cf constant cntropy (i.e. streamlines)
Fig, i Lines of constant temperature,

Pig, L s~ Lines of constant u,

Pig, 5 1=~ Lines of constant v,

Pig, 6 := Lines of constant w,

From Fig. 2 we get the shape of the body surface which is defined
by 8 = 1.307.
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Having obtained the body shape, the distribution of pressure on

the surface could be found. The valucs of GP’ the pressure coefficient,

at the various azimuthal stations around the beody surface are compared
with the values Jjust behind the shock in Fig. 14.

The head 1ift and drag coefficient of the body as defined in
Appendix B have been calculated,

The 1if't coefficient GL =040 -

0.545

The drag cocfficient GD

L.  DISCUSSION

I Method of Solution.

4As mentioned earlier, the numericaloprocedure wes found to work in

a very satisfactory mamner up to ¥ = 26 30!, when the solution was in
the neighbourbood of the singular point in the "lecward" meridian plane

@ = 0. The main difficulty from this stage onwards was that the value
of v tended towards zero and a subsequent change in sign (the change in
v itself was quite regular throughout). This factor was highly critical
since the cvaluation of du, 9w and 8 § involved division by v,

oy ¢Cuy g v
This meant that whilst the value of v passed through zero and changed
sign, it was possible to get large magnitudes of the asbove derivatives
changing in sign quite rapidly. However, this was found to be highly
critical only in the case of the evaluation of_gﬂg . It was this feature
a ¥

which was responsible for the extreme care necessary to continue the
solution beyond ¥ = 26°30' in the vicinity of w = O,

4Ls mentioned earlier, this highly critical region between w = O
and (as it turned out) w = 450 was investigated separately using smnller
values of Ay thon that used for the remainder of the azimuthal stations,
Here it may be mentioned that the sbove siated difficulties encountered
when v —> 0O and changes sign, were avoided in the case of the "windward"
side. This was Because the surface of the solid body (as represented
by the line of constant entropy of magnitude equal to that of the entropy
on the "windward" plane @ = 7 ) was obtained before the critical region
(v-——=30) wnz reached, The solution was not carricd any further because
the behaviour of the floir inside the body surface wos of no special interest
in the present coase,
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L.2. Provertics of the flow,
4.2,1. Velocity,

It is found that the variation of the vclocity components is quite
regular and exhibit no peculiarities, However, the varietion in the
values of u and particularly w in the vicinity of the singular point
needs some consideration, Some difficulty was experienced in_the finding
of the numerical values of w and u in the region 50°% w > 0° for
valucs of ¢ smaller than 26030'. Although it appearcd that the values
of u and w behaved regularly in this region it was considered that
accurate numcrical values could only be obtained if smaller intervals of
w were used in the numcrical method,

The component v is found to vary in a very regular manner. This
is qu:te um'ierstﬂmlpblc since the evaluation of 9 v depends on (v = a?)
with v¥ << a?, EN

4,2,2, Temperature.

The variation of temperature follows from the way in which the
veloeity chnnges, It is found that the variation in temperature
throughout the field is quite regular,

4,2,5, Entropy and streamlines,

The distribution of entropy in the flow behind the shock cone is
represented in Fig. 2, 7s 8. The projections of constant entropy lines
(they correspond to struml:mes) on the sphere r = constant are represented
in Fag, 2, The location of the singular point, on the "leeward"
meridian plam@ w = 0, at which the entropy is many valued is also
indicated in the figure. It is found that the streamlines, after leaving
the shock cone, curve round and converge to the singular point., The
surface of the hypothetical solid body (corresponding to the constant
entropy line having the same entropy as a planc @ = ) which will
produce the shock wave dealt with here is also indicated in the figure.

One feature in the pattern of the streamlines near the singular
point may be pointed out, From equation (5) we have

0 ; a8
V7 ?,’ + si:'\lrw 5 = = 0 from which we have as equ.(7)
W
T = Ty
streamline
or more conveniently
v sin ¢
&Y . L=

streamline
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Except in the meridian plane when v = O (and when w = 0) the equaticn
is indeterminate, the above equation holds good generally. Hence,
when v—» O and changes sign (but w £ 0) the streamlines will tend to
"flatten" out and become parallel to the line y = constant at v =0
end then "curl up" when v becomes positive., This is illustrated in
the accompanying diagram,

This happened in the case
of a few streamlines on
the "leeward" side,

v

4.2,Yi, Pressure distribution on surface,

The pressure distribution on the body was worked oub and a comparison
with the values on the downstream side of the shock wave is made in Fig.1l.
This indicates that there is an expansion in the flowobetween the shock
wave and body except in a small region w = 140 to 180" on the "windward"
side where a slight compression of the flow takes place,

h,2,5, Cormparison with first order solution.

The body shape obtained by the present method is compared here with
the first order yawed cone sclution (Ref,2,6) in Fig, 15. It is
observed that the body is smaller thon the corresponding cone in the
fist order solution., The body is not wholly circular; however, it is
noted that it is mostly circular with a small hump on the "leeward"
side. The smaller size of the body as noted in the case
of the present solution might mean that in actual practice
the assumption of the first order theory at comparatively large yaw
with respect to shape of the shock cone may be valid but that it may be
necessary to make a correction for the change in size of the shock cone,

The head 1ift and drag coefficients of the conical body (of non-
circular cross secction) obtained by the present method have been calculated
using expressions defined in Appendix B,

Head 1if't coefficient CL

and a Head drag coefficient CD

0,410

<H

0,545

i
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These first order values were obtained only as a means of checking

the orders of magnitude of CL and CD obtained for the body of the

present solution, A direct comparison between the two sets of values
cannot be considered to have any conclusive significance.

L,3, Method of numerical solution.

It is felt that, in gencral, the numerical investigation was
satisfactory, However, the difficulties involved in carrying on the
solution near the singular point on the "leeward" side have zhown that
extreme care has to be exercised in the cheice of the interval betwcen
azirmthal stations and steps in ¢ . In the present investigation
the region between w = 0 and w = L5 was studied separately by carrying
out the solution at five cquispaced azimuthal stations, It is felt that
this is not a very satisfactory method and could be improved upon to
a considershle extent, For investigation of the flow in this region it
is neccessary to have azimuthal stations closer to each other than 15,

It may pcrhaps be best to choosc a larger mumber of azimuthal stations

on the "leeward" side than on the "windward" side, For future work it is
suggested that azimutral stations should be spacec‘ at intervals of dw = 5
from w = O to W = 75 and at intervals of ‘15 from w = 75 to w = 180",

o

54 CONCTUSIONS

It has been found that the numerical method adopted for the
investigation of the exact flow behind a yawed conical shock is simple
to use and produced reasonably satisfactory results. The accuracy of
the method can be improved by choosing a smaller interval betwcen
azimuthal stations,

As 3 particular case, the flow behind a conical shock of semi-apex
angle 307 inclined at 20~ to a free stream of Mach Number 10 has been
investigated and the shape of the conical body (of non-circular scction)
which would produce such a shock wave hes been determined and canparcd
with the yawed cone solution. In this case, it has been found that the
shape departs from circular only to a small extent on the "lceward"
side, More significantly, it is noted that the size of the body is
smaller than that of the circular conc which according to Stone's
first order theory (Ref.2,6) would produce the given shock wave,

The properties of the flow between the shock cone and the solid
body surface have been determined and the pattern of the streamlines
has been studied., The existence of a singular generotor on the body surface
in the "leeward" meridian plane w = 0, at which the entropy is many
valued has been well brought out,
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APPENDIX A,

DETATIS OF SOLUTION,

A.41., Procedure for numerical sclution,

The differential equations of motion (1) to (6) set out in
paragraph 2,3 can be expressed in non-dimensional form by effecting the
following substitutions., (Primes denote non~-dimensional q&antitiegg.

u!t - -.1’..1'_. vl - ..v.. L j‘-r
Ty =T X2 TV
S = - T = . where V, = free stream velocity
6] ? 2 1
D W/0,
2
2
and a' :%— a® = (a' V) = aRT! Yy
e
P
(an)® = (y-1) 1
using the above relations we have
ou! w! aJ u!
ST * g Ba - Y 2 vt =0 (1)A
9 ut 9 w! w! av!
| i fue et 1 i 1 ! ¥ oo 1 _mt 1
L v oy ¥ giny oar™ V Wl Dok ¥ =% -—-—gi (2)a
. Ow! 2 ut o v! .
v! Sml}ra—- u’gj’-l-v' awv + u!' w!' Siny 4+ v' w! cosvxrz.-T'_E_i_g.'( )A

ow
0
ut (vt 4 wr? - z[a_ﬂ T!') = (@=1)T* v' cot #'.p-a-g'(v'z-[m-ﬂ T1)

1 3 w! 2 e Owr! 1 9 !
v o =[] T ) v (Fraggy o) =0 (A
o a gt w! 3 8! 0 (5)a
3y Y siny 20
12
d 1T 'g—z constant
712 y (6)a
= T: + i = T; + =
2

Hereafter these non-dimensional quantities will be used and the primes
will be omitted,
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The above mentioned differential equations can be integrated step-
by-step, for small steps in y , proceeding inwards from a large number
of azimuthal stations on the shock cone defined by various values of W,
The procedure is as follows

(1) Choose a sufficiently large number of azimuthal stations (preferably
equally spaced) around the shock wave from w = 0 to ® = @, Since

the flow is symmetrical about the plane of yaw it is sufficient to consider

only the region on one side of the plane, The physical properties of the

flow just behind the shock wave are known fram the shock wave equations,

Ve will use the subscript '2' to indicate conditions just behind the

shock wave, (Subscript 'M! is used for free stream condition). From the

shock wave equations the values of u,, v,, w,, T,, S, and ou, ov

s ¥y
) N aSa 2’ 27 2 2 1._Zm _s_.zw ’

e e 30 can be calculated at each azimuthal station. These values

can be substituted in equations (1), (3), (4) and (5) (it is sufficient to
use either (2) or (4)) to give 3 u ov 9w, and 95,

- 2 3

oy oy oy oy

(ii) Now choose a sufficiently small increment in y , Ay say, and obtain

a first approximetion to the values of u,, v,, w,, S, at ¥y = v, = Lv

at each azimuthal station, This is achieved by the use of the simple
point-slope formula which in general terms can be written as

2(x), y' =

Vpgw = Yp+hyy , wherey

ym‘l = f(xm_,l), y'n = f(Xn)

h-_-xmq-xn

The first approximation to the value of [ can be obtained by substituting

the values of u,, v,, W, obtained above in equation. (6).

(iii) Having obtained the wvalues of u,, vy, Wy, S, at the various
a 33
2

au av 9 Ws
ow ow ow oW

azimuthal stations for y :1,'!3 5 3 %
can be cbtained by numerical differentiation,




(iv) Now the differential equations can be used to obtain

a u, d v 3] W, 3 83

gy ? g ¢ 2 oy °? 2 v

and using these values of the derivatives with respect to y at v.&'
and those at IJr the trapezoidal formuls.

]

3
h ' A

Tt = 8 €3 B, + 30 )

can be used to give a second approximation to the values of u, , v, , W

and S at lIfJ This also provides a check on the numerical accuracy of”
the first approximation,

(v) The process detailed above can be repeated to give successive
approximations to the values at ¥ wuntil no changes in the wvalues occur
to the sconracy required , :

(vi) Having satisfactorily completed the first step (from ¥ ‘1:0 V)
a further step can be taken, Consider another increment 0y® and*obtain
a first approximation to the values (of u, v, w, S) at v, =¥ - by
by the more accurate formula %

Yot = Tou * 2RI
The same procedurc which was used for the first step is repeated and the
derivatives with respect to ¥ at each of the aximuthal stations calculated
for v = y¥,, The trapezoidal rule can be invoked to give a second
approximation to the values at ¥,, The whole process can be repeated if
necessary to give further approximations,

(vii) The same procedure is used to carry the solutiou forward for as
many steps in ¢ as is required,
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APPENDIX B

CAICULATICN OF LIFT AND DRACG COEFFICIENTS, =
!

|
cousider a length x of the bo IE
(2 cone of general cross sectioﬁ{
measured from the apex at origin 0. Weuse in addition to the spherical
co-ordinates (r, ¥,w ) a cylindrical polar co-ordinate system
(x, R,w ) such that r = x cos v and r = R sin ¢, Now consider an elcmental
length ds along the circumference of the general shaped cross section,

Let ds be inclined to the vertical at an angle ¢ , Then

y Rdow
cos [@-(90— w)]

Force on (the triangular) elemental area (r, ds)

£ Erds
= 2

component of the above force perpendicular to an axis (i.e, the component
fcrce lies in the plane x = constant),

= f cos ¥ = prds cos ¥= pds
2 2

component of this forceonomal to the axis and parallel to the plane of
symmetry w = 0, @ = 180" is

= (f cos ¥) sin ¢ = R—%—E x sin 9.
[:The components perpendicular to plane of symmetry cancel each other
acting from the two sides of the plane:]
.' Normal force on body length x,



ki

[ (p - p«;) sin ¢ ds, say

-
N = 2xf P—g‘-—s-sinaﬁ:Zx
0 0 2

since p  is constant,
iy

,'e Normal Force coefficient

ar
- N ox g
Cpp = — o s £ sin # ds where A = base area,
N 1 2 & 2 ?
Azp,v,
T

_g[ S Rsing auw
o o cos [‘;5-(90 ~w )]

Il
b

The compunent of the force f parallcl to axis

:fSiﬂW:‘P—r;"ESin‘?: P—g'-jx'tanl,{r.

Hence we get the

Axial force c oef‘f;)pient

C
CA - _i_x_ _22 R tan ¢ 5 a g
o cos [9}3-(90- w)J

From the above we have if f is the anglc of yaw

Lift coefficient Cp = Oy cos = C, sin g (Head Lift Coeff,)
Drag coefficient Cp = C, cos [ + Gy sin [ (Head Drag Coeff,)

The coefficients GN’ OA’ CL and CD pertain to complete cone from

apcex to the scction considered and do not include base pressures,



Lift and Drag of Equivalent Conc.

The semi-apex angle of a circular cone that will in ﬂxl—symnetrlc
flow at M, = 10 produce a conical shock wave of semi-apex and ur 30
is v, - 2%.6° (approx) This was obtained from chart 5 in Ref, 114

Making uac of the lst order theory of Stone (Ref,2) we have that
when the cone is yawed with respect to the frce stream (at an angle g)
the shock will retain its size and shape but its axis will be ineclined
to the free stream at an angle (in general not equal topg). From
part II of Ref. 6 we have that for y_ = 26,6, M, = 10 (by graphical
interpolation) _g = 1,046,

e 0 =19.1°, We have further that
KT\I 0,628 and KD = 0,167 where KN and KD are coefficients of normal

and drag forces defined according to wind co-ordinates in Rcf, 6. The
transformation to the more practical body co-ordinatc system can be
effected as follows., This mcthod was pointed out by Young and Siska
in Reference 12 who give the following formulae for the transformations,

i

Normal Force Coefficient

0 = (—'%f,i) B o §—}5-—;;3-3-§ x .628 £ =19.1° = 0,333 radians
= 0.533 cosf = 0,945
Axial Force Cocfficient sing = 0,327
8 8 x 167
Co =7 Bp = T = Q4%
OL = CN cos ﬁ - CA sin ,0 = .5024- - 1 39 =i O. 565
CD <) CA cCs ﬂ + ON sin ﬁ = ,L0? + .171{. = 0, 5?6
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THE COORDINATE SYSTEM AND NOMENCLATURE
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FIG. 3. VARIATION OF TEMPERATURE BEHIND YAWED CONICAL SHOCK
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FIG. 5. VARIATION OF <\ BEHIND YAWED CONICAL SHOCK
M=10 |, =30° o = 20° LINES OF CONSTANT



FIG. 6. VARIATION OF «r BEHIND YAWED CONICAL SHOCK
M=10 V,=30°L=20" LINES OF CONSTANT (¥



b

120°

&\ S=l
RN —

105°

-

°
Is
Q

|
,

22 23 24 25 Vﬂ 26 27 28 29

w
=]

FIG. 7. VARIATION OF ENTROPY BEHIND YAWED CONICAL SHOCK
M 10 Yy=30"L=20° § ~ Y

|

L=
|

]
AV

SR [Ty

| |
ZB
IS A T N -

w.
FIG. 8. VARIATION OF ENTROPY BEHIND YAWED CONICAL SHOCK
M=10 ¥,=30°eL =20 §~W

Hesv T 180°



—l—— —
/ [ —
! F‘“‘-‘..__""---...___L\
’
E // \ i85
BODY
mract\7>\ F\\L\
.‘-"""M._. Ll
o-a Q\ / \\“'-—»—...____ 4 e
’ T
W\ ,! \\ \J-‘___\ A
/ h\ 08
£
*\:; \-‘"“"—--
\
"'\\‘
01
oﬂl 22 23 24 23 V- 28 27 28 29 30
FIG. 9. VARIATION OF TEMPERATURE BEHIND YAWED CONICAL SHOCK
M=10 V,=230°L=20° T~V
|
’d
BODY SURFACE il
-
yest
o2
o
1—:9
— 28
—27
L 26° 20’
o1
(s ] 30 60 [0 m. 120 150 180 Pl

FIG. I0. VARIATION OF TEMPERATURE BEHIND YAWED CONICAL SHOCK
M210 230" o£=20" T~ w



BODY SURFACE

06
0-5
o-4 =
20 40 %0 , a0 150 180
("]
FIG. I, DISTRIBUTION OF W BEHIND YAWED CONICAL SHOCK
M=10 1,=30" «=20"° U~ W
4
0+l
uﬂ
3 90 15%¢ 100
o % - = g—‘:‘ A P
[ ———
35— »" ¥
-0l i — 29’ ‘
v --‘-"'-"—---_.________ a0®
-0-2
-0-3

FIG. 2.

DISTRIBUTION OF 1 BEHIND YAWED CONICAL SHOCX

M=10. ¥ =130° £=20° ¥~ w



|
o
|
|
—

(A 4 | {
Sy SRS m—| S— e

22 |

|

-0-3 S == = ‘

| 29 ‘

| [ ¥=30 !
| 1
. S . S — .

FIG. 13. DISTRIBUTION OF (% BEHIND YAWED CONICAL SHOCK
M=10 Y=30° o£=20° &0 ~0w

o8 SHOCK WAVE

ODY SURFACE

- S o3 i TR

120 180
— wd_' e

FIG. 14. FLOW BEHIND YAWED CONICAL SHOCK. PRESSURE DISTRIBUTION
M=10 ,=30° L =20" Co ~ W




am—— BODY SURFACE PRESENT SOLUTION 30—

- — FIiST ORDFR SOLN- CONE =266 - AXIS. A“
% (\’V =0- 90) 180
-—— —= CONE '%1?4°—A1k5 B ‘
(y=15°)

FIG. |I5. FLOW BEHIND YAWED CONICAL SHOCK
M=10 l#/ =30° of = 20° COMPARISON OF BODY WITH Ist ORDER SOLN.



