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ABSTRACT 

Soil is one of the most precious resources on Earth because of its role in storing 

and recycling water and nutrients essential for life, providing a variety of 

ecosystem services. This vulnerable resource is at risk from degradation by 

erosion, salinity, contamination and other effects of mismanagement. Information 

from soil is therefore crucial for its sustainable management. While the demand 

for soil information is growing, the quantity of data collected in the field is reducing 

due to financial constraints. Digital Soil Mapping (DSM) supports the creation of 

geographically referenced soil databases generated by using field observations 

or legacy data coupled, through quantitative relationships, with environmental 

covariates. This enables the creation of soil maps at unexplored locations at 

reduced costs. The selection of an optimal scale for environmental covariates is 

still an unsolved issue affecting the accuracy of DSM. 

The overall aim of this research was to explore the effect of spatial scale 

alterations of environmental covariates in DSM. Three main targets were 

identified: assessing the impact of spatial scale alterations on classifying soil 

taxonomic units; investigating existing approaches from related scientific fields 

for the detection of scale patterns and finally enabling practitioners to find a 

suitable scale for environmental covariates by developing a new methodology for 

spatial scale analysis in DSM. 

Three study areas, covered by detailed reconnaissance soil survey, were 

identified in the Republic of Ireland. Their different pedological and 

geomorphological characteristics allowed to test scale behaviours across the 

spectrum of conditions present in the Irish landscape. The investigation started 

by examining the effects of scale alteration of the finest resolution environmental 

covariate, the Digital Elevation Model (DEM), on the classification of soil 

taxonomic units. Empirical approaches from related scientific fields were 

subsequently selected from the literature, applied to the study areas and 

compared with the experimental methodology. Wavelet analysis was also 

employed to decompose the DEMs into a series of independent components at 
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varying scales and then used in DSM analysis of soil taxonomic units. Finally, a 

new multiscale methodology was developed and evaluated against the previously 

presented experimental results.  

The results obtained by the experimental methodology have proved the 

significant role of scale alterations in the classification accuracy of soil taxonomic 

units, challenging the common practice of using the finest available resolution of 

DEM in DSM analysis. The set of eight empirical approaches selected in the 

literature have been proved to have a detrimental effect on the selection of an 

optimal DEM scale for DSM applications. Wavelet analysis was shown effective 

in removing DEM sources of variation, increasing DSM model performance by 

spatially decomposing the DEM. Finally, my main contribution to knowledge has 

been developing a new multiscale methodology for DSM applications by 

combining a DEM segmentation technique performed by k-means clustering of 

local variograms parameters calculated in a moving window with an experimental 

methodology altering DEM scales. The newly developed multiscale methodology 

offers a way to significantly improve classification accuracy of soil taxonomic units 

in DSM. 

In conclusion, this research has shown that spatial scale analysis of 

environmental covariates significantly enhances the practice of DSM, improving 

overall classification accuracy of soil taxonomic units. The newly developed 

multiscale methodology can be successfully integrated in current DSM analysis 

of soil taxonomic units performed with data mining techniques, so advancing the 

practice of soil mapping. The future of DSM, as it successfully progresses from 

the early pioneering years into an established discipline, will have to include scale 

and in particular multiscale investigations in its methodology. DSM will have to 

move from a methodology of spatial data with scale to a spatial scale 

methodology. It is now time to consider scale as a key soil and modelling attribute 

in DSM. 

Keywords: Digital Soil Mapping, Digital Elevation Models, terrain analysis, spatial 

scale, pixel resolution, window size, spatial data mining, geostatistics, wavelet, 

multiscale. 
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”That’s another thing we’ve learned from 

your Nation,” said Mein Herr, “map-

making. But we’ve carried it much further 

than you. What do you consider the 

largest map that would be really useful?” 

“About six inches to the mile.” 

“Only six inches!” exclaimed Mein Herr. 

“We very soon got to six yards to the 

mile. Then we tried a hundred yards to 

the mile. And then came the grandest 

idea of all! We actually made a map of 

the country, on the scale of a mile to the 

mile!” 

“Have you used it much?” I enquired. 

“It has never been spread out, yet,” said 

Mein Herr: “the farmers objected: they 

said it would cover the whole country, 

and shut out the sunlight! So we now use 

the country itself, as its own map, and I 

assure you it does nearly as well.” 

Sylvie and Bruno Concluded, Lewis 

Carroll, 1893. 
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GLOSSARY OF TERMS 

Complex A mapping unit of two or more kinds of soil occurring in 

such an intricate pattern that they cannot be shown 

separately on a soil map at the selected scale of mapping 

and publication. Generally, the name of a soil complex 

consists of the names of the dominant soils, joined by a 

hyphen (USDA, 1990). 

Covariates A set of environmental attributes measured at any 

location across the area of interest used to explain soil 

variation improving digital soil mapping prediction. 

Typical examples are terrain attributes derived from 

DEMs, remote sensing data (land use, etc.), climatic 

variables and geological maps. 

DEM The representation of continuous elevation values over a 

topographic surface by a regular array of z-values, 

referenced to a common datum (ESRI, 2010). These 

digital elevation models are typically used to represent 

Earth’s terrain surface. 

DSM The creation and the population of a geographically 

referenced soil databases generated at a given resolution 

by using field and laboratory observation methods 

coupled with environmental data through quantitative 

relationships (Lagacherie et al., 2006). 

GIS An integrated collection of computer software and data 

used to view and manage information about geographic 

places, analyse spatial relationships, and model spatial 

processes. A GIS provides a framework for gathering and 

organizing spatial data and related information so that it 

can be displayed and analysed (Shekhar and Xiong, 

2008). 
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Great Soil Group Great Soil Groups are soils having the same kind, 

arrangement and degree of expression of horizons in the 

soil profile. They also have close similarity in soil moisture 

and temperature regimes and in base status (Gardiner 

and Radford, 1980a). 

Phase Soils of one series can differ in texture of the surface layer 

and in slope, stoniness, or some other characteristics that 

affect use of the soils by man. On the basis of such 

differences, a soil series is divided into phases (USDA, 

1990). 

Scale The physical dimension of a phenomenon or process in 

space expressed in spatial units (pixel and roving window 

sizes). 

Soil A natural, three-dimensional body at the earth's surface 

that is capable of supporting plants and has properties 

resulting from the integrated effect of climate and living 

matter acting on earthy parent material, as conditioned by 

relief over periods of time (USDA, 1990). 

Soil Series A group of soils, formed from a particular type of parent 

material, having horizons that, except for the texture of 

the A or surface horizon, are similar in all profile 

characteristics and in arrangement in the soil profile. 

Among these characteristics are colour, texture, 

structure, reaction, consistence, and mineralogical and 

chemical composition (USDA, 1990). 

Raster A spatial data model that defines space as an array of 

equally sized cells arranged in rows and columns, and 

composed of single or multiple bands. Each cell contains 

an attribute value and location coordinates. Unlike a 

vector structure, which stores coordinates explicitly, 

raster coordinates are contained in the ordering of the 

matrix. Groups of cells that share the same value 
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represent the same type of geographic feature (ESRI, 

2010). 

Resampling The process of interpolating new cell values when 

transforming rasters to a new coordinate space or cell 

size. In the case of bilinear interpolation for example, a 

weighted average of the four nearest cells is used to 

determine a new cell value (ESRI, 2010). 

Roving Window The roving-window approach can be considered the 

standard filter technique in raster GIS operations and in 

image processing. It determines the new value for a given 

cell in a raster map using a mathematical function (mean, 

mode, standard deviation, etc.) of the cells values inside 

a n x n neighbourhood (with odd n) centred in the cell of 

interest. The window is moved one cell at a time across 

the raster map, until the whole area is processed 

(Grohmann and Riccomini, 2009). 

Terrain Attributes Data characterising the land surface geometry derived 

from elevation data. The local terrain attributes are 

calculated using a fixed size window around each cell 

(slope, aspect, etc.), while the regional one consider 

relation between cells and study and not-fixed 

surrounding area for each cell (Hengl and Reuter, 2009). 
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1 INTRODUCTION 

In recent history, progress in information technology has resulted in increasing 

computational capacity, powerful Geographic Information System’s tools (GIS), 

remote and proximal sensors and a vast amount of data such as digital elevation 

models (DEM). Soil scientists in the 21th century are now able to study and 

describe soils as dynamic entities in an interconnected landscape context 

(McBratney et al., 2003; Lagacherie and McBratney, 2006; Grunwald, 2009; 

Kempen et al., 2012). 

Soil is an intricate system of interrelated physical, chemical and biological factors, 

much of it under human management. In order to gain a better understanding of 

this complexity, scientists have utilized both mathematical and statistical models 

for the quantification of its properties (Figure 1.1). This has created a new 

discipline in soil science termed “pedometrics”, the science of developing 

quantitative techniques to predict soil properties from landscape attributes 

(Minasny et al., 2008).  

 

Figure 1.1 - Concept of Pedometrics. 
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This way of blending field observations (e.g. point observations or existing soil 

maps) with statistical spatial prediction techniques has created a new branch of 

research in soil science called Digital Soil Mapping (DSM). DSM enables us to 

predict soil taxonomic units or specific soil proprieties (organic carbon, texture, 

bulk density, etc.) in areas where information is required by spatially extending 

point observations of individual soil properties using mathematical and statistical 

techniques as well as estimating the uncertainty of such predictions. DSM, by 

formalising the relationship between soil forming factors and the landscape, aims 

to capture and model the intrinsic spatial variability naturally observed in soils. 

After more than twenty years of intensive research and applications, DSM has 

emerged as a credible alternative to traditional soil mapping (Carre et al., 2007) 

due to its low costs and fast deployment in comparison to conventional surveying 

methods. Despite its short history, the development of DSM has consisted of a 

rapid series of advancements (improvements in data mining and knowledge 

discovery, better selection of terrain attributes and ancillary data, etc.) as soil 

scientists expanded the scope and prediction power of their modelling. However, 

one of the fundamental concerns since the foundation of this technique, that still 

remains unsolved, is the issue of scale (Addiscott, 1998, Lagacherie, 2008). 

Thomson et al. (2001) have also suggested that this will become increasingly 

important with the fast development and implementation of regional soil-

landscape models. 

The choice of scale will be even more significant in the evolution of DSM as 

spatial data infrastructure will offer increasingly detailed environmental 

covariates, thanks to the improvements of sensor techniques. GIS science is 

already developing complex spatial models embedding hierarchical reasoning 

which supports multiscale representations of data and uncertainty over space 

and time (Eaglesona et al., 2002). Scale frames the analysis and shapes the end 

result of DSM models suggesting that better attention and quantitative knowledge 

of the effects that soil forming processes have at different scales will improve our 

ability to map soils, thus enabling the up-scale or down-scale of soil information 
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at regional, national or global scale (Sanchez et al., 2009). It is the impact of scale 

on DSM processes that is explored in this thesis. 

 

1.1 Research context 

The draft EU Soil Framework Directive (COM(2006)232) was introduced by the 

European Commission seeking to harmonize and raise the level of soil protection 

across Europe. There is therefore a strong need to bring together soil data across 

Europe (Jones et al., 2005) to reach a common understanding of the available 

soil resources and the threats challenging their sustainable management. In 

order to do that, it is essential to ensure data comparability. The European Soil 

Bureau Network recommended and endorsed the preparation of a soil map and 

associated information system at 1:250,000 scale. This scale was chosen as a 

reasonable intermediate level between the existing Soil Geographical Database 

of Eurasia at 1:1,000,000 scale and detailed national studies. 

In Ireland, soil data exist at variable scales with a complete national coverage 

only available at 1:575,000 scale but with detailed information available at 

1:127,560 scale covering 44% of the country (An Foras Taluntais soil survey from 

the 1960s, 70s and 80s). To rationalise and harmonise this information at the 

European target scale of 1:250,000, the Irish Soil Information System (ISIS) 

project was established, employing advanced DSM techniques in combination 

with traditional field survey methodologies for validation. The project is funded by 

the Irish Environmental Protection Agency (EPA), run by Teagasc with the 

technical support of the National Soil Resources Institute (NSRI) at Cranfield 

University.  

By understanding the quantitative relationships between soil and environmental 

factors in the counties historically surveyed at detailed level, the project aims to 

create models to be used in the prediction of soil types in the remaining half of 

the country. In ISIS, the detailed soil maps were used as training for developing 
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soil-landscape relationships. The models were subsequently applied to similar 

areas for which no adequate soil information was available. At the same time a 

two and half years’ survey campaign (2010-2012) has provided soil data on 

approximately 10,000 auger bores and 300 new profiles which were used as a 

ground truth to calibrate and validate the predictive models. The project providing 

the required soil information at EU 1:250,000 scale will form the basis for future 

soil research, management and policy in Ireland. 

The present research work was conducted as part of the ISIS project, managed 

by Teagasc and co-funded by the EPA of Ireland through their Science, 

Technology, Research and Innovation for the Environment (STRIVE) 

Programme, as part of the National Development Plan 2007-2013. Therefore this 

thesis is concerned about the impact of spatial scale on mapping soil taxonomic 

units. 

 

1.2 Digital Soil Mapping 

As defined by the international working group on digital soil mapping of the 

International Union of Soil Science (IUSS), DSM is "the creation and the 

population of a geographically referenced soil databases generated at a given 

resolution by using field and laboratory observation methods coupled with 

environmental data through quantitative relationships" (Lagacherie et al., 2006). 

This definition, focused on the quantitative relationships between environmental 

covariates and soil information, is deeply rooted in the pioneering work of Hans 

Jenny that conceptualized soil formation as a function of independent factors of 

pedogenesis in the famous equation: 

� = � ���, 	, 
, �, �, … � (1.1) 

where S (soil property) is a function of cl (regional climate), o (potential biota), r 

(topography), p (parent material), t (time) and the dots express factors not yet 
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known or specific to particular situations (Jenny, 1941). This mathematical 

relationship connecting observed soil properties with independent factors 

responsible for soil formation has allowed, in conjunction with technological and 

computational advancements (computer science, statistics and geostatistics in 

particular, remote sensing, GPS, GIS and numerical environmental data), a fertile 

environment for DSM to establish itself as a new discipline in soil science. 

McBratney et al. in 2003 reviewed the development of this new branch of 

research and formalised DSM with the SCORPAN approach: 

�� = � ��, �, 	, 
, �, �, ��    ;    �� = � ��, �, 	, 
, �, �, �� (1.2) 

where Sc (soil classes) or Sa (soil attributes) are a function of s (other properties 

of the soil at a point), c (climatic properties of the environment at that point), o 

(organisms, vegetation, fauna or human activity), r (topography, landscape 

attributes), p (parent material, lithology), a (age, the time factor) and n (spatial 

position). This new formulation of Jenny’s soil formation function (expanded from 

the Vasily Dokuchaev equation) implicitly recognises the important missing 

aspect, that soils influence each other through spatial location. The new equation 

also better reflects the quantitative relationships between soil and soil forming 

factors, in light of the most recent techniques used in soil spatial prediction. It is 

centred around the idea that soil spatial variation can be estimated by statistical 

relationships, linking soil taxonomic units or soil proprieties with a set of 

environmental attributes at that particular location. If enough soil field 

observations and environmental covariates with a high data density are available, 

it is possible to use statistical techniques to exploit the existing relationships 

between the soil and its environment to subsequently extrapolate to unexplored 

locations. 

The relationship between soil properties and landscape attributes has been 

confirmed as a central concept in soil science (Hudson, 1992). Terrain attributes 

are the most widely used covariates in DSM because of their primary role in soil 

formation and the broad availability of DEM (Behrens et al., 2010b). DEMs are 
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representations of the endlessly varying topographic surface of the Earth, and 

they are a widespread data source for terrain analysis and other spatial 

applications. Terrain analysis provides a large number of high-resolution 

environmental information, quantitatively derived from DEM, including slope, 

aspect, plan curvature, etc. These topographic features are at the core of a wide 

range of landscape-scale environmental models (Gallant and Hutchinson, 1997). 

Terrain features describe the Earth’s surface shape, position and connectivity, 

mediating the influence of all the other environmental factors in soil formation. 

These features control the local climatic characteristics like precipitation, solar 

radiation, thermal balance and wind speed; the activity of soil organisms like 

earthworms, bacteria, fungi and others, regulating the movement of water, 

gasses and soil particles. The amount of water runoff and patterns of drainage 

are two important aspects controlled by terrain, as clearly confirmed by the 

sequence of soils in the catena concept (Milne, 1934). Each soil in the catena 

has different characteristics, despite the same overall parent material and 

climate, due to the slope type (Schaetzl and Anderson, 2005). On steep slopes 

the rate of erosion by runoff is high, forming thin and dry soils while at the foot 

soils are deeper as the material is accumulated. Soil depths, moisture content 

and acidity vary along the slope, as seen in Ireland on impermeable acid parent 

material, where wet bogs with deep peats on the flatter aspects become dry 

shallow peaty podzols on the steeper facets. This fact explains the prevalence of 

poorly drained soils in flat areas but, on the other hand, differences in parent 

material can inhibit water movement and cause the opposite effect. Topography 

also controls the soil use and management practice for farming, animal rearing 

or forestry directly, so influencing man made impacts on soil formation. 
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Figure 1.2 - Schematic representation of surface roughness changing with pixel 

and window sizes (from Grohmann et al., 2010). 

As presented by Grohmann et al. (2010) terrain features (roughness in this case) 

vary greatly with changes in pixel resolution and moving window size (Figure 1.2). 

These changes are going to have an effect on DSM analysis as the character of 

the terrain parameter changes with the alteration of scale, thus modifying the 

relationship with soil information. 

 



8 

 

1.3 The fundamental role of scale 

The scale of raster based environmental covariates can be represented in two 

ways, grid size and window size, of which grid size is the most commonly 

considered to represent scale. The determination of an optimal grid size for 

environmental factors to use in soil prediction is still an unsolved issue with only 

few empirical guidelines available. 

In DSM, the prediction power of soil attributes is highly dependent on finding the 

most suitable DEM resolution from which terrain attributes are derived. This 

presents major challenges because the DSM modelling scale has not only to 

encapsulate the scale at which the soil map units are represented on the map but 

also the scale at which the soil taxonomy characterises soil forming processes 

active in the landscape at a particular scale. 

This problem is connected with the determination of the spatial scale of 

environmental phenomena or processes involved in soil formation. This is a 

critical problem because different pedogenetic laws and landscape processes 

operate at distinctive spatial scales (Florinsky and Kuryakova, 2000) and thus 

analysis based on data of one scale may not apply to another scale. 

In statistical terms, observations made at a fine scale contain more variance than 

observations at a very coarse one. The greater assortment of observed 

processes and relationships at a detailed scale gives obviously more information, 

but also more noise. On the contrary, coarser scales can be too simplified and 

carry insufficient data. 

The level of detail represented by a raster dataset depends on the pixel size so 

that the cell is small enough to capture the necessary information without 

undermining the analysis. Fine resolution data have a smaller pixel size and a 

higher feature spatial accuracy that affect the processing time of models and 

require large storage capacity. In particular, the increasing availability of high 

resolution DEM (1 m LIDAR for example) has the consequence of increasing data 
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storage and processing time exponentially, but might not increase the quality of 

the DSM models. 

In DSM, a common approach is to use the finest DEM resolution available 

believing that this will improve the accuracy and precision of the prediction while 

on the contrary it is increasing the “noise” regarded as the unexplained variation 

inherently unpredictable. For example, it is likely that a lowland area could be 

represented effectively with a DEM of 100m resolution or more, whereas an 

upland or hill areas would probably need a much finer grid size (Pain, 2005). 

Furthermore, Thompson et al. (2001) have shown that higher-resolution DEM 

may not be necessary for generating useful soil-landscape models. Another 

concern is that most applications use algorithms running in small windows 

(usually 3 X 3 roving window) to perform terrain analysis, thus fixing the scale of 

resulting layers to the spatial resolution of the available DEM. This is expected to 

provoke mismatches between scale domains of terrain information and the 

environmental variable of interest (Smith et al., 2006; Dragut et al., 2009). 

 

1.4 Research question 

This research intends to explore the effect that environmental covariates have at 

different scales on our ability to map soils and to provide a guideline for the 

selection of the best DSM model inputs’ resolution enabling the up-scale or down-

scale of soil information at regional, national or global scale. This could potentially 

improve the ability of DSM to provide reliable soil data currently demanded by the 

scientific community, practitioners and policymakers to address the global 

environmental issues that are threatening the planet. 

1.4.1 Hypothesis 

The resolution of environmental covariates affects the accuracy of soil predictions 

in DSM; therefore an analysis of spatial scale will result in an improvement in the 

accuracy of DSM model predictions. 
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1.4.2 Aims 

The overall aim of this project is to explore a set of methodologies with which to 

identify the appropriate scale resulting in improved DSM performance in terms of 

predictive accuracy. The specific aims that have been identified are: 

- To evaluate the role of scale and its impact on generating soil taxonomic 

predictions. 

- To investigate and assess several methodologies suitable for the detection 

of scale patterns. 

- To enable practitioners to find a suitable scale to be used in DSM analysis. 

1.4.3 Objectives 

1 To investigate the effects of scale on DSM analysis. 

2 To assess the interaction between pixel and window sizes, with data 

mining classifiers, for the purpose of modelling soil taxonomic units. 

3 To identify, from published literature, methodologies that can be used in 

quantitative scale detection. 

4 To test these methods in the determination of the most suitable DEM pixel 

size for application in landscape-scale DSM. 

5 To develop a multiscale approach for DSM. 

6 To develop recommendations on scaling environmental covariates used 

for DSM. 
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1.5 Outline 

After explaining the motivations and goals of the current thesis, an outline is 

presented to briefly describe the structure and content of the following chapters: 

- Chapter 2 introduces the concepts of scale, its theoretical background and 

a review of the meanings of scale in the wider context of the environmental 

sciences. It then specifically reviews the current literature related to scale 

in DSM and pedometrics. 

- Chapter 3 presents the study areas chosen for this research, thoroughly 

describing their geomorphological and pedological characteristics. It also 

describes the soil maps and DEM used in the study, the reasons why they 

were selected and their overall quality. A methodological section of this 

chapter presents the methods, techniques and approaches applied in the 

study. 

- Chapter 4 is the foundation of the study, as an experimental methodology 

is applied to evaluate the effects of scale in DSM. The analysis of these 

results sets the benchmark for all the other approaches and techniques 

used in the following chapters. 

- Chapter 5 critically evaluates the most common empirical approaches 

developed and used in the environmental sciences to manage scale. In 

light of Chapter 4 results, an indication of scientific robustness can be 

concluded for the application of these approaches in DSM. 

- Chapter 6 presents wavelet decomposition, a technique capable to 

manage systems complexity. It is here applied to filter the DEM into a 

series of independent components at varying scales, to be then used in 

DSM analysis. 
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- Chapter 7 tries to tackle the challenge of developing a new multiscale 

approach using geostatistics. A moving window segmentation technique 

is developed and tested.  

- Chapter 8 concludes the study reviewing all the aims and objectives set at 

the beginning of the thesis. A perspective on the new findings made in this 

research, their limitations and future work needed to further develop scale 

analysis in DSM is also examined. 
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2 LITERATURE REVIEW 

This chapter provides the reader with a comprehensive literature review on the 

concept of scale. It introduces and describes the impact and importance of scale 

in DSM and the issues associated to its selection. 

2.1 Scale 

The concept of scale is perhaps best described by Levin (1992): “scale 

represents the window of perception, the filter or the measuring tool through 

which a landscape may be viewed or perceived”. The environment cannot be 

studied, modelled or visualized in its full complexity and details. Scale is then 

important because of its role in features selection and information generalization, 

it is essentially a form of simplification. 

Scale is a complex concept and has many different and often divergent 

meanings. It is also highly dependent on the context of study and its applications 

(Goodchild, 1997; Goodchild and Proctor, 1997, Wu and Li, 2009). Two main 

theoretical views conceptualising scale have emerged: 

- Conceptual 

- Functional 

The conceptual view (Meentemeyer, 1989) divides scale depending on the notion 

of absolute or relative space in which it operates. Absolute space can exist 

independently from what is in it, while relative space exists only in relation to 

things and processes. The former view is associated primarily with maps and 

inventories while the latter with forms, functions and patterns. 

The functional view (Cao and Lam, 1997; Marceau and Hay, 1999) focuses more 

on the uses and effects of scale and tries to use the interaction between absolute 

and relative scales in a more practical way. This has lead into the following 

classification of the meanings of scale according to spatial, temporal or spatio-

temporal aspects (Figure 2.1). 
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Figure 2.1 - Schematic representation of the concept of scale. 

In DSM, scale primarily involves space and this will be the focus of this research. 

A comprehensive review of the significance of spatial scale in geography and 

environmental sciences can be found in Lam and Quattrochi (1992) and 

Goodchild and Quattrochi (1997), defining four spatial meanings of scale: 

1. Representative fraction or cartographic scale 

The ratio used to scale a feature. It shows the relationship between one unit 

on the map and one unit on the ground. It is usually shown with a colon such 

as 1:250,000 meaning that 1 cm on the map represents 250,000 cm on the 

ground. 

2. Spatial extent or geographic scale 

The extent or scope of a study or project. Spatial extent defines the total 

amount of information relevant to a project (Goodchild and Quattrochi, 1997). 

It is generally defined in terms of area or length, for example for a project 

area with a square shape, it is represented either by the area measured as 

the second power of the side or as a length by the size of one of the equal 

sides. For irregular shapes, it can be either the total area or as a length, it is 

calculated as the square root of the area. 

3. Process scale or operational scale 

Process scale refers to the extent at which a phenomenon operates in the 

landscape. For example in the case of a complex process like erosion by 

water a range of scales can be identified. Rain splash redistribution and the 

CARTOGRAPHIC        GEOGRAPHIC        OPERATIONAL          RESOLUTION

SCALE

SPATIAL   SPATIO-TEMPORAL        TEMPORAL
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initiation of microrills occur at a scale of millimetres. Rill erosion on 

agricultural hillslopes operates at a scale of meters, while gully erosion can 

occur on a scale of hundreds of meters, or even kilometres. 

4. Spatial detail or spatial resolution  

Defined as the shortest distance over which change is noted and thus having 

a unit of length. For example, the representation of spatial variation described 

by spatial resolution in a raster dataset is the length of a cell side, as variation 

within cells is not supported. 

In GIS models the level of geographic detail cannot be fully represented in 

cartographic terms, for example the representative fraction loses significance 

because there is no set distance in the model to compare to the real world 

(Goodchild, 2001). In this context spatial resolution better encapsulates scale 

representing the level of spatial detail or the size of the smallest element in the 

dataset (in raster datasets pixel size). 

The typical effects of spatial scale are: 

- Accuracy and precision in both data and modelling. The real-world size of 

features may not be correctly represented within a GIS. For example, a 

soil boundary line with a width of 0.5 mm and map scale of 1:20,000 on 

the ground is actually an area with a width of 10 m. 

- The way to collapse and aggregate data in order to make them workable 

and relevant to the problem investigated. For example, small-scale 

mapping makes displaying small and fragmented soil series impossible, 

requiring the creation of a new mapping unit (soil complex) for selected 

mapping or publication scales. 

- The process with which to extract measures of variation and correlation, 

to make sense of the phenomena in question and to establish theories. 

Since spatial data are obtained through sampling with particular scales of 

measurement, the scales of variation observable in spatial data are 
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inextricably linked to the scales of measurement through which they were 

obtained (Atkinson and Tate, 2000). 

- The approach used to communicate science through graphical 

representations and visualization. Information is selected and represented 

in a way that adapts to the scale of the map’s display (screen, paper, etc.), 

not necessarily preserving real world details. Small-scale maps have more 

simplified features than larger-scale maps because they show a larger 

area in a smaller display. 

Spatial scale of geographic information is still an unsolved issue and a major 

obstacle both conceptually and methodologically in all the environmental 

sciences due to the lack of formal laws and rules. As indicated by Jarvis (1995) 

this is a real scientific challenge as spatial data are scale dependent because of 

the heterogeneity of processes operating at multiple scales and their non-linear 

behaviour. 

Models are created with a specific process scale in mind and need input data at 

a certain scale (Bierkens et al., 2000) therefore requiring the input data to change 

scale. Changing scale or scaling (Figure 2.2), involves transferring information 

from one scale to another essentially in two types of way: 

- Upscaling involves the generalization of information, coarsening the pixel 

size by interpolation reducing the resolution of the support.  

- Downscaling on the contrary involves the decomposition or disaggregation 

of information, increasing the resolution of the support through model 

based, regression or stochastic simulation. 



17 

 

 

 Figure 2.2 - Resampling. 

Another operation commonly used in the manipulation of DEMs is passing a filter 

over the raster to reduce or remove small variations, revealing small-scale 

patterns or trends in the data. The roving window approach can be considered 

the standard filter technique in raster GIS operations and in image processing. It 

determines the new value for a given cell in a raster map using a mathematical 

function (mean, mode, standard deviation, etc.) of the cell values inside a n x n 

neighbourhood (with odd n) centred around the cell of interest. The window is 

moved one cell at a time across the raster map, until the whole area is processed 

(Grohmann and Riccomini, 2009). 

In this research, scale will be regarded as the physical dimension of a 

phenomenon or process in space expressed in spatial units (pixel and roving 

window sizes). 
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2.2 Scale in DSM 

Soil scientists are still debating if soil can be better symbolized by discrete 

physical bodies large enough to be classified in taxonomic systems (intrinsic 

scale / taxonomic scale) or if soil should be considered as a continuum and 

represented by raster layers. The consensus is that soils occur as a continuum, 

but classes are still used to describe soil map units. Conceptually soil taxonomy 

is a useful way of describing spatial variability in terms of scale, implicitly 

embedding a scale into the data, where coarse resolution variations are 

represented in the orders, intermediate variations in the suborders and fine 

resolution variations at the series level. 

Traditional soil survey, based on categorical units, has elements of both science 

and art (Avery, 1987). Expert knowledge is intensively used to create 

classification maps generally produced during soil surveys in the field where 

surveyors would delineate soil classes on their survey sheets. The mix of expert 

knowledge, empirical data and supplementary data like aerial photographs or 

topographical maps, makes it challenging to produce replicable information. 

Moreover, as the definition of taxonomic units can be somehow interpretable, 

different soil surveyors could potentially create two different soil maps for the 

same area (Goodchild, 2009). Surveyors in the field need to balance the 

necessity to classify soils into taxonomic units that must be reasonably 

homogeneous with respect to the soil profile and at the same time are 

representative of a region appearing in reasonably large parcels of land. A 

compromise on the delineation of soil classes is generally made between spatial 

considerations to prevent fragmentation making the map of no practical value and 

representativity of the soil profiles to maintain data significance and quality 

(McBratney and Webster, 1981). Field soil investigations can involve free or grid 

surveying. The most widely used type of survey is “free”, where observations are 

made by the surveyor at irregular intervals and varying intensities reflecting the 

estimated complexity and predictability of the soil patterns. The consequence is 
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that the surveyor implicitly embeds a scale into their observations. How this 

expert knowledge on scale can be represented, should be of interest to scientists. 

Classifying and producing maps has always been the main focus of soil 

surveying, primarily to identify soil types or other soil properties at a particular 

point in the landscape. The purpose of a soil map is then to supply users with 

information regarding soil types or properties of a described region. Its value lies 

in the quality of the information represented and the soil units identified, as the 

variability of soil conditions within the soil map units must be less than the overall 

variability in the landscape. Soil surveyors have traditionally relied on the soil map 

unit concept which is a section of the landscape with similar soil properties, 

geomorphology, hydrology, ecology, land use and other landscape features (Brus 

and Lark, 2013). This approach is strongly scale dependent as soil map units are 

equivalent to a class in soil taxonomy only at large-mapping scales. In complex 

landscapes or small-scale mapping (which shows less detail), a map unit may 

only represent the union of spatially related classes, imposing limitations on the 

information available. 

2.2.1 Scale of soil spatial variation 

Spatial heterogeneity of soil parameters has proved to be a major problem in the 

representation of soil properties (Sinowsky and Auerswald, 1999) especially 

when spatial variability differs significantly between the scale of observations and 

the one in which processes are active (Geng et al., 2010). 
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Table 2.1 - The hierarchical levels of scale in soil science (from Addiscott, 1998). 

Scale Unit 

i + 4 region 

i + 3 interacting catchments 

i + 2 catena or catchment 

i + 1 field (polypedon) 

i pedon 

i - 1 profile horizon 

i - 2 peds, aggregates 

i - 3 mixtures 

i - 4 molecular 

 

In the context of soil science, the scale diagram (Table 2.1) shows the hierarchical 

levels of scale in soil systems, with the pedon as the base unit and defines other 

levels as a reference to it. Each element of level i is at the same time part of level 

i + 1 and includes element of level i - 1 as each pedon is part of a polypedon and 

includes profile horizons. Hierarchy theory allows to easily understand that scale 

affects not only how units are described by their characteristic list of descriptors 

but most importantly which units are described. Changing scale thus implies a 

change in organisational level as each component is nested within other levels. 

Nested hierarchies include levels which consist of, and contain, lower levels as 

presented in Table 2.1. 
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Figure 2.3 - Relationships between the level of soil unit, scale, grid resolution, 

taxonomy and auxiliary data (from Hengl, 2003). 

Hengl (2003) effectively encapsulates this concept with a hierarchical level 

diagram of DSM (Figure 2.3). In this diagram it is possible to link soil unit levels 

with approximate cartographic scales, potential grid sizes, soil classification 

levels (KST and WRB) and typical environmental covariates used in DSM 

analysis as auxiliary data. It is not clear, however, if the grid size proposed is 

indicative of the soil unit represented or of the resolution of the DSM model to be 

used in the creation of spatial soil information. 

Covariates, the environmental factors recognized as governing soil formation, 

vary at different scales and this spatial variation at some scales may be more 

strongly correlated with soil than at others (Lark, 2006). Soil forming factors have 

different domains with distinctive scales, for example geology operates at a 

coarser scale than land use.  

Within this multitude of different domains, processes relate to each other in five 

broad ways: 

- Joint processes that are equivalent across scales due to the hard links 

between them; 
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- Parallel processes that are consistent across scales due to the type of soft 

links between them; 

- Iterative processes that are coherent across scales due to the type of soft 

links between them; 

- Consecutive processes that are comparable across scales due to the type 

of soft links between them; 

- Independent processes that are complementary across scales because 

the absence of any link between them. 

Depending on the type of relation across scales of the processes, the strength of 

the scale link will differ: ranging from ‘Hard’ links for fully equivalent processes 

developed jointly across scales, through ‘Soft’ links with different degrees of 

linkage across one or more process scales, to ‘No’ links for processes developed 

independently that do not share any scale links between them. 

 

Figure 2.4 - Linkage between soil processes across scales (from Zurek and 

Henrichs, 2007). 

Soil forming factors fall in the ‘No’ links and the ‘Soft’ links category (Figure 2.4), 

with different degrees of linkage between them and the soil type resulting from 

their interactions. Despite the need for more research to accurately evaluate their 

linkage with soil and their overall interaction at different scales, some 

relationships start to become apparent especially between relief and soil types 

(Pain, 2005). Therefore some scales will be more powerful in prediction than 

others and this statement should be taken into account when applying DSM 

techniques. 
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McBratney et al. (2003) reviewed pedometric methods for soil prediction in 

literature and suggested three main resolutions of interest (Table 2.2), which are: 

- < 20 m (local extent);  

- 20 m – 2km (catchment to landscape extent); 

- > 2 km (national to global extent). 

Table 2.2 - Suggested resolution and extent of digital soil maps (modified from 

McBratney et al., 2003). 

Pixel size and 
spacing 

Cartographic 
scale 

Resolution              

'loi du quart' a 

Nominal 
spatial 
resolution Extent b 

< 5 x 5 m > 1:5,000 < 25 x 25 m < 10 x 10 m < 0.5 x 0.5 km 

5 x 5 to  
20 x 20 m 

1:5,000 – 
1:20,000 

25 x 25 to  
100 x 100 m 

10 x 10 to  
40 x  40 m 

0.5 x 0.5 to  
2 x 2 km 

20 x 20 to  
200 x 200 m 

1:20,000 – 
1:200,00 

100 x 100 to  
1,000 x 1,000 m 

40 x 40 to  
400 x  400 m 

2 x 2 to  
20 x 20 km 

200 x 200 to  
2,000 x 2,000 m 

1:200,000 – 
1:2,000,000 

1,000 x 1,000 to 
10,000 x 10,000 m 

400 x 400 to  
4,000 x  4,000 m 

20 x 20 to  
200 x 200 km 

> 2,000 x 2,000 m < 1:2,000,000 > 10,000 x 10,000 m > 4,000 x 4,000 m > 200 x 200 km 

a According to the French soil scientist Jean Boulaine (1980), the smallest area 
discernible on a map is 0.5x0.5 cm or one quarter of a square centimetre, hence, 
the term ‘loi du quart’. 
b Calculated as minimum resolution times 100 (pixels) up to maximum resolution 
times 10,000 pixels (McBratney et al., 2003). 

Despite the abundance of information on pixel size, spacing, resolution and scale, 

the table has only an indicative purpose being an expanded version of a previous 

classification of soil information extents presented by McBratney et al., (2000). 

The intent of the table was, and still is, to link soil demands with pedometric 

techniques: the local extent (< 2 km extent) answering precision agriculture 

demands, the catchment/landscape extent (2 - 200 km extent) for environmental 

and water management demands and finally the national/continental/global 

extent (> 200 km extent) answering climate change and food security demands. 
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The presented pixel size should be considered as a good approximation of what 

is expected by different audiences (policy makers, landscape managers and the 

wider scientific community) from digital soil maps as inputs for their policy, plans 

or analysis. 

2.2.2 The issue of scale in DSM 

Despite the recent growth and operational status of DSM, one existing and 

foreseeably growing issue for users of digital soil information is the disparity of 

spatial scales between what is required and what is actually available to 

adequately address soil-related questions posed to the soil science community 

(Grunwald et al., 2011). While the demand for soil information is growing, the 

quantity of data collected in the field is reducing, mainly due to economic reasons 

(Sanchez et al., 2009). In the absence of conducting new soil surveys and not 

being able to acquire the original legacy soil information (soil point data explored 

on the ground) as a means of creating user-specified soil information products, 

spatial scaling procedures will provide a useful solution (Malone et al., 2013).  

If the resolution of the output can be effortlessly identified and classified, the pixel 

size for environmental covariates used as inputs in DSM soil predictions is still an 

unsolved issue. DEMs are the finest resolution information currently available for 

DSM analysis; they are scale benchmarks directly influencing the scale of the 

model and the output. A common approach used by the DSM community is to 

apply the finest resolution available of DEM accepting that this will always 

improve the accuracy and precision of the prediction. As shown in Table 2.3 large 

scale DSM studies predicting soil taxonomic units from national to continental 

scale (from 900 km2 to 1,600,000 km2) use very fine resolution DEMs ranging 

from 25 to 100 m. 
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Table 2.3 - Summary of large scale DSM papers predicting soil taxonomic units 

(2007-2008) published in Geoderma and Soil Science Society of America Journal 

(modified from Grunwald, 2009). 

Reference 

(Year) 

Soil 

attribute 

Region Covariates Spatial 

Extent 

Spatial 

Resolution 

Grinand et al. 

(2008) 
unit France S, O, R, P 900 km2 50 m 

Minasny and 

McBratney 

(2007) 

class Australia 
S, O, R 

[RS] 
~ 3,500 km2 25 m 

Bockheim and 

McLeod (2008) 
type Antarctica S, R 6,692 km2 25 m 

MacMillan et al. 

(2007) 
eco type Canada 

S, C,O, R, 

P 
82,000 km2 25 m 

Hengl et al. 

(2007) 
group Iran S, O, R 1.6 mill km2 100-1000 m 

 
Scale analysis for DSM has not yet received the attention needed in the literature 

as stated by Behrens et al. (2010b), as only in the last ten years some scientists 

have started to focus on this critical aspect of DSM modelling (Malone et al., 

2013). As Papritz et al. (2005) suggested, soil information may be available at 

one spatial scale, but this might not be suitable for the purpose of the investigation 

and it may be required either at a finer or coarser scale. 

The influence of DEM pixel size on DSM models has been discussed by Thomson 

et al. (2001), who investigated quantitative soil-landscape modelling by using 

empirical models for the prediction of the spatial distribution of soil attributes (A-

horizon thickness, depth to secondary carbonates and a soil colour index related 

to soil organic carbon content). Smith et al. (2006) investigated which DEM 

resolution produced the most accurate digital soil surveys for a particular 

landscape, focusing on a GIS-based soil-mapping application. Their conclusion 

supported the idea that high resolution DEMs do not always produce the highest 

accuracy. On the contrary, Zhu et al. (2008) argued that for soil knowledge-based 
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soil mapping, DEM resolution was not as important as neighbourhood size in 

computing the required terrain attributes. Behrens et al. (2010a) adopted a data 

mining approach using random forest classifiers to assess scale properties of 

terrain attributes used in the prediction of soil types. Behrens et al. (2010a) 

concluded that each soil class was best predicted by different combinations of 

terrain attributes filtered at different scales. These findings suggest that the 

contradictory results presented in the literature still need re-examination with 

different data mining approaches and validation in larger areas with different soil 

landscapes. More research and time is still needed to answer this unresolved 

issue and to fully understand the complexity of scale, but intermediate goals such 

as improving prediction accuracy or reducing computational time and model 

complexity can be achieved. This can be done by applying existing techniques 

developed in other scientific domains to DSM or by creating a brand new 

approach capable of incorporating scale analysis in DSM, so ultimately 

advancing DSM and offering the possibility to improve knowledge of spatial 

variation on soil distribution.  
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3 MATERIALS AND METHODS 

3.1 Study areas 

Three study areas were selected in Ireland (Figure 3.1) in the counties of Leitrim, 

Meath and Tipperary North where detailed reconnaissance soil surveys had been 

carried out in the past. 

 

Figure 3.1 - Location of the three study areas in Ireland. 

Area 1 of 370 km2, located in the county of Leitrim, is situated in the Drumlin Belt 

and consists of hundreds of hillocks with an elongated shape formed by glacial 

movements on unconsolidated till.  

Area 2 of 337 km2, located in the county of Meath, is situated in the Central Plain 

and is a large low-lying region underlaid by limestone rocks and covered in glacial 

drift. 
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Area 3 of 374 km2, located in the county of Tipperary North, is situated in the 

Southern Hills where shale plateaux had been eroded leaving steep slopes. 

The selection of these three study areas was dictated by the fact that only few 

counties in Ireland were covered by the detailed reconnaissance soil survey (as 

presented in the Soil data section 3.2.1), so the chosen areas had to be within 

those surveyed counties. Moreover in order to accurately assess the effects of 

scale in DSM, sites with different soils and geomorphologies were selected, 

including fine resolution features like the drumlins in Leitrim, steep slopes in 

Tipperary North and coarse scale lowland in Meath, making these three areas 

ideal for the study. 

3.1.1 Soils and landscapes of Ireland 

Soils in Ireland are derived mainly from glacial deposits making the relationship 

between parent material and soil formation naturally complex (Gallagher  and 

Walsh, 1943; Cruickshank, 1997).  Transported drift is the main factor 

determining the landscape and soil types in Ireland in combination with the 

predominant temperate humid climate. As a result three pedogenetic processes 

have been described (Gardiner and Radford, 1980b) to have the strongest effects 

on soil formation: 

- Leaching, whereby soluble nutrients and colloids are eluviated down the 

profile by percolating water; 

- Gleisation, whereby ferric iron compounds in the soil are chemically 

reduced to ferrous compounds and segregated into mottles and 

concretions, under water-logged (anaerobic) conditions; 

- Calcification, whereby calcium carbonate from weathering of limestone 

rich parent materials precipitate and accumulate resulting in calcareous 

soils, which at the surface are mixed with organic matter. 
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The characteristic soil landscape in Ireland comprises: 

- large areas of fertile grey-brown podzolics soils (now termed luvisoils by 

Jones et al., 2011) in the well and moderately well drained areas of the 

plains; 

- less fertile acid brown earths where the drift material is derived from acid 

parent materials which is poor in lime; 

- gleyed soils where the internal soil drainage is poor because of 

impermeability or high water table; 

- on hills thin acid peaty soils are juxtaposed with blanket peat. 

In order to organize and systematically categorize soils based on common 

characteristics, a soil classification system was developed in Ireland based on 

the United States Department of Agriculture in 1938 (Gardiner and Radford, 

1980b). Establishing hierarchies of soils types, based on their distinctive 

properties, soil taxonomy allows soil scientists to rationalise and understand the 

relationships between soils. The original soil classification system used in Ireland 

was based on two levels: Great Soil Groups and Soil Series. The Great Soil 

Groups divide the soils according to their soil profile characteristics, type and 

arrangement of horizons, soil moisture levels, temperature regimes and base 

status. There are ten Great Soil Groups (Podzols, Brown Podzolics, Brown 

Earths, Grey-Brown Podzolics, Blanket Peats, Gleys, Basin Peats, Rendzinas, 

Regosols and Lithosols). These groups are further subdivided at series level 

based on texture, parent material and drainage status. Soil Series are defined by 

Gardiner and Radford (1980a) as “a collection of soil individuals essentially 

uniform in differentiating characteristics and in arrangement of horizons”. A series 

is usually named after the area in which it is most widely distributed or in which it 

is best expressed. The series can be separated into phases on the basis of 

certain features such as texture of the surface layer, slope, stoniness, or some 
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other characteristics that affect use of the soils by man. Soil series and phases 

of soils occur in an intricate pattern, making it difficult to be shown separately on 

a soil map. Therefore, they are joined into a soil complex. The name of a soil 

complex consists of the names of the dominant soils, joined by a hyphen. 

Under the ISIS project, a new classification framework has been developed with 

two extra levels between Great Soil Groups and Soil Series, namely Soil Groups 

and Soil Sub-Groups. The General Soil Map (Gardiner and Radford, 1980a) only 

delineates Great Soil Groups because of scale limitations. 

Table 3.1 - Soil classification of the three study areas by Great Soil Groups. 

  Leitrim Meath Tipperary North 

  [km2] [%] [km2] [%] [km2] [%] 
Podzols -  -  17.73 5% 

Brown Podzolics -  -  124.16 33% 

Brown Earths -  -  27.51 7% 

Grey-Brown Podzolics -  234.12 70% 130.22 35% 

Blanket Peats 30.25 8% -  11.79 3% 

Gleys 279.13 75% 91.97 27% 54.47 15% 

Basin Peats 53.99 15% 11.02 3% 8.24 2% 

Rendzinas 3.61 1% -  -  

Regosols -  -  -  

Lithosols -  -  -  

        

Water 3.89 1% -  -  

 

As shown in Table 3.1 the three study areas have a distinct soil landscape, 

according to the original soil county maps (Appendix C): 

- Leitrim with 75% of its area covered in gleys is characterised by grey/blue 

waterlogged soils with poor drainage and high water table with poor 

drained peats on the drumlins; 
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- Meath with 70% of its area covered in grey-brown podzolics is 

characterised by soils with a calcareous parent material which offsets the 

effect of leaching with loss of nutrients and restricts the resulting 

podzolisation process; 

- Tipperary North with 35% of grey-brown podzolics and 33% of brown 

podzolics is characterised by two distinctive areas the flat lowland with the 

grey-brown podzolics and the high relief area with the brown podzolics 

formed under the influence of podzolisation but less depleted and without 

iron pan. 

3.1.2 Leitrim 

Glacial movements had a great control over the undulating landscape of Leitrim, 

depositing huge amounts of drift and affecting the underlying geology. This 

material was transported only locally through lateral movements and maintains 

the same chemical composition of the bedrock (Aalen et al., 1997). Soils are 

relatively young as soil formation started only after the last glacial episode 

(Midlandian glaciation about 15000 years ago) when the earlier land cover was 

removed from the surface. 

Grasslands dominate the landscape with a dense network of hedgerows on the 

drumlins (Figure 3.2) and limited broad leaf woodlands along the main rivers. In 

between the drumlins in the narrowest strips, raised bogs are present and limited 

wetlands along the course of the Shannon. 
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Figure 3.2 - Leitrim characteristic drumlins (source: European Forum on Nature 

Conservation and Pastoralism). 

Drumlins are small elongated hills of boulder clay deposited by glaciers, the 

elliptical shape (up to 800 m in length, 300 m in width and 120 m in height),  

created by the movement of unconsolidated till beneath the ice, is parallel to the 

direction of ice flow (Stokes et al., 2011). The soils on the drumlins are poorly 

drained and impermeable due to the dense and compact clay of upper 

carboniferous shale composition (An Foras Taluntais, 1973). 

3.1.3 Meath 

Meath, with its relatively rich soils for agriculture and pasture, supports a diverse 

farming sector from potato production and grass growing to cattle rearing for beef 

or dairy. The agricultural landscape dominates with hedgerows, ditches and open 

drains delimiting fields (Figure 3.3). 
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 Figure 3.3 - Agricultural landscape of Meath (source: National University of 

Ireland Galway, School of Geography and Archaeology). 

The influence of carboniferous shales due to the glaciation movements of drifts 

from which limestone was dissolved out characterise the soil formation of Meath 

(Finch et al., 1983). The soils of this lowland region are mainly grey-brown 

podzolics with gley in the low-lying positions. 

3.1.4 Tipperary North 

Soils in Tipperary North are older than the other two study areas as the 

weathering process had more time for the development of soil horizons in the 

profile as the south of the country was not affected by the last Midlandian 

glaciation but only by the previous Munsterian 100,000 years ago.  

The underlying geology of Tipperary North is formed from two main rock 

formations associated with their own distinctive landscape. The limestone 

lowlands with their carboniferous series and covered by glacial sediments divided 

by the Silvermine Mountains (highest point at 468.8 m AOD) with mix composition 

(red sandstone, mudstone and slate) and different erosion rates (Finch and 

Gardiner, 1993). This has resulted in an extremely diverse soil landscape with 

seven different soil great groups present, dominated by brown podzolics and 
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grey-brown podzolics with gleys, podzols, brown earths, blanket peats and basin 

peats.  

 

Figure 3.4 - Tipperary North (source: ENFO Environmental Information Service). 

Grey-brown podzolics originated from the glacial till rich in limestone and have a 

heavy texture but good drainage so mostly suited to pastoral uses (Figure 3.4) 

while the brown podzolics located at the foothills of the Silvermine Mountains are 

well drained but poor in nutrients and very suitable for woodlands and forest 

plantations. 

 

3.2 Data sets 

3.2.1 Soil maps 

In 1959 a National Soil Survey (NSS) of Ireland was launched by the then 

agricultural institute An Foras Taluntais (now Teagasc) with the purpose of 

surveying, classifying and mapping soil resources of Ireland (Lee et al. 2005). 

The NSS had been operated at three levels of resolution: 

• Very detailed studies at field scale (1:2,500). 
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• Semi-detailed studies at county scale (1:126,720) with soil series as unit 

of mapping. 

• A combined detailed and general reconnaissance with the purpose of 

deriving a map at national scale (1:575,000) with soil association as a unit 

of mapping.  

These different levels of organization have resulted in a fragmented soil 

information system with partial coverage depending of the specific scale of study.  

 

Figure 3.5 – Counties covered by detailed reconnaissance soil surveys in Ireland 

(from Lee et al., 2005). 
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The Irish General Soil Map was first published in 1969, when only four counties 

and two regions had been surveyed at detailed reconnaissance scale, while 

surveys at reconnaissance level had been in operation in another ten counties. It 

lacked detail and precision for many areas (Gardiner and Radford, 1980a) and it 

was updated in a second edition released in 1980 (Appendix B) when further field 

work was completed. It covers the entire country at a scale of 1:575,000 with soils 

mapped in 44 associations (Gardiner and Radford, 1980a), while the detailed 

reconnaissance programme focused on soil series on a county basis that was 

discontinued in 1988 resulting in only 44% of the country surveyed (Figure 3.5) 

and the detailed studies were concentrating merely on individual agricultural 

experimental stations. 

 

Figure 3.6 - Original survey sheets drawn by the soil surveyors in the field 

delimiting the different soil series detected. 

Following the cessation of the field programme a new direction of research was 

soon taken involving the digitisation and data capturing of existing soil maps 
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(Figure 3.6) creating a soil information system and database. This plan was 

carried out on the detailed reconnaissance field maps drawn by the surveyors at 

a scale of 1:10,560 (6 inches to the mile) which were generalized to 1: 126,720 

for publication (Lee et al., 2005). 

In this research all the DSM analysis performed are based on the original six 

inches maps digitised and provided by Teagasc (Figure 3.7).   

Leitrim: 
14 units 

Meath: 
32 units 

Tipperary North: 
42 units 

 

Figure 3.7 - Six inches to the mile maps for the three study areas classified by 

Great Soil Groups.  

They contain a range of soil series, complexes and phases for each study area: 

- Leitrim - Allen, Ardrum, Aughty, Ballinamore, Ballyhaise/Corriga Complex, 

Clooncarreen, Corriga, Drumkeeran, Drumkeeran Peaty Phase, Garvagh, 

Howardstown, Mortarstown/Kinvarra Complex, Rinnagowna and 

Unclassified; 

- Meath - Allen, Ashbourne, Ashbourne Shaley Phase, Baggotstown, 

Baggotstown/Crush Complex, Ballincurra, Banagher, Boyne Alluvium, 

Burren, Camoge, Drombanny, Dunboyne, Dunboyne Gravelly Phase, 

Dunboyne Shaley Phase, Dunboyne/Ashbourne Complex, Dunsany, 

Feale, Glane, Gortnamona, Howardstown, Kells, Ladestown, 

Ladestown/Rathowen/Banagher Complex, Man Made, Patrickswell, 

0 5 10 20 30 

Km 
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Patrickswell/Baggotstown/Elton Complex, Patrickswell/Howardstown 

Complex, Rathowen, Rathowen/Street Complex, Street, Turbary, Urban; 

- Tipperary North - Allen, Aughty, Baggotstown, Ballincurra, Ballynalacken, 

Banagher, Borrisoleigh, Borrisoleigh Steep Phase, 

Borrisoleigh/Knockshigowna Complex, Burren, Burren Rocky Phase, 

Camoge, Camoge/Milltownpass Complex, Doonglara, Dovea, 

Drombanny, Elton, Feale, Gortaclareen, Howardstown, Kilcommon, 

Kilcommon Peaty Phase, Knockaceol, Knockaceol Peaty Phase, 

Knockastanna, Knockastanna Peaty Phase, 

Knockastanna/Knockshigowna Complex, Knocknaskeha, 

Knocknaskeha/Doonglara Complex, Large Rock Outcrop, Man Made, 

Patrickswell, Patrickswell Bouldery Phase, Patrickswell Lithic Phase, 

Patrickswell/Baggotstown/Elton Complex, Pollardstown, Puckane, 

Slievereagh, Turbary Complex, Turbary/Knockastanna Complex, 

Turbary/Mountainous Complex, Urban. 

As a simple rule of thumb, when a paper map is digitized in GIS to create a 

dataset, the spatial resolution of the data is approximately 0.5 mm at the scale of 

the map (the so called pencil line) so in the case study the map at 1:10,560 has 

a spatial resolution of about 5.3 m. 

3.2.2 Digital Elevation Model 

A DEM is a grid based digital dataset of the topography of an area and, as every 

raster model, is covering continuously an area providing an elevation value for 

each raster cell. All pixels of the dataset are covering a defined area (pixel unit) 

and depending on the pixel size their number can change (Burrough and 

McDonnell, 1998). DEMs play a major role in DSM by providing information on 

topography and local landforms which have a clear impact on soils by controlling 

soil forming processes such as water and sediment movement (Florinsky, 1998). 

The most detailed DEMs available at national level are traditionally derived from 

existing contour lines and survey data from historical paper maps or can be 

generated at lower resolutions from remote sensing data mainly satellite imagery. 
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As technology moves forward and radar technology becomes less costly and 

more available, high resolution LIDAR DEMs will become the norm in the near 

future. This remote sensing technology uses laser scanning to collect elevation 

data by emitting thousands of pulses every second collecting a cloud of heights. 

It offers great vertical accuracy between 0.15 m and 0.25 m (Leica ALS50) and a 

point density up to 10 heights per square metre (O’Neill, 2009). LIDAR is the 

finest resolution information available in Ireland but covers only 39.7% of the 

country mainly cities and mayor urban areas (Fealy, 2006). The three study areas 

selected for the project lie in rural areas and have been only partially covered by 

LIDAR flights: Leitrim (7.2%), Meath (60.2%) and Tipperary North (8.58%). Given 

the sparse coverage of LIDAR data in Ireland, this type of elevation information 

was not deemed ready yet for national mapping applications, such as the ISIS 

project. 

 

Figure 3.8 - LIDAR coverage for the Republic of Ireland (2005-2012 flights).  

The finest resolution elevation data available in Ireland covering the entire country 

and selected for the ISIS project is the Environmental Protection Agency (EPA) 

DEM at 20 m resolution. This DEM is a GIS dataset in raster format of elevation 
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data (ARC/INFO numerical floating point decimal) at national level created in 

2005 by the EPA using Ordnance Survey of Ireland (OSI) data and provided for 

this research by Teagasc. It was generated using the ANUDEM software 

(Hutchinson, 2007) by spline interpolation using OSI vector spot heights, 

drainage lines and contour data at scale 1:50,000 as inputs. The contour lines 

used had a 10 m vertical spacing (Preston and Mills, 2002). 

In terms of accuracy, the DEM has been corrected both hydrologically and 

morphologically. All apparent height anomalies have been removed creating a 

hydrologically exact drainage network and improving the description of terrain 

shapes. In conclusion, this DEM with spatial resolution of 20 m is a good 

compromise for DSM analysis and is deemed suitable for this research. 

The three study areas present different topographies recognizable from their 

unique descriptive statistics presenting measures of central tendency, statistical 

dispersion and shape of the distribution (Table 3.2). For example, the standard 

deviation of elevation is a measure of local relief, with the highest standard 

deviation found in areas with long and steep slopes such as on the hills of 

Tipperary North and on the drumlins of Leitrim. 

Table 3.2 - Descriptive statistics of the three study areas DEMs. 

  Leitrim Meath Tipperary North 

Average Height [m] 94.83 77.29 161.97 

Min Height [m] 7.73 29.00 47.00 

Max Height [m] 584.46 155.61 468.83 

Median Height [m] 74.77 71.20 138.67 

Standard Dev. [m] 70.25 20.22 78.71 

Skewness [ ] 3.26 0.84 0.84 

Kurtosis [ ] 14.81 3.06 2.85 

 

To visually appreciate the distributions of the three populations, histograms are 

presented in Figure 3.9. Tipperary North clearly shows two peaks characteristic 
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of a bimodal distribution suggesting that there are two separate populations: one 

with low values of elevation (flat area) and one with higher values and long tails 

possibly due to high variability (high relief). Meath has a very compact distribution 

with a small standard deviation and high frequency concentrated at the mean 

value typical of somewhat homogenous populations.  



42 

 

 

 

 

Figure 3.9 - Elevation histograms and distribution for the three study areas. 
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Tipperary North 
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Leitrim has a long tail distribution highly skewed towards high values of elevation, 

this was expected as a small area of high relief is included in the north-west sub-

catchment. 

3.2.3 Terrain attributes 

As already discussed in Chapter 2, the most suitable DEM resolution, from which 

terrain attributes are derived, depends on the scale of the processes controlling 

pedogenesis and this is landscape dependent. As a consequence there is a real 

need for a more landscape-scale pedology that could offer the connection 

between soil processes involved in soil formation and soil surveys, creating the 

foundations for up scaling soil information to regional, national and global scale 

(Pennock and Veldkamp, 2006). However, the predictive power of any soil-

landscape model that employs data derived from DEM is clearly dependent on 

their quality and scale. If these generalizations are within the scale threshold of 

the landscape processes that are operating in the environment under study there 

are no problems but if they are greater or finer than the spatial resolution of these 

processes, any result derived must be treated with caution. 

The DEM was used to derive eleven terrain attributes indicative of the soil-

landscape relationships controlling the spatial distribution of physical, chemical 

and biological soil properties: slope gradient, aspect, curvature, plan curvature, 

profile curvature, slope height, valley depth, normalized height, standardized 

height, mid-slope position and convergence index (Behrens et al., 2010b; 

Florinsky, 2011). The second-order finite difference algorithm of Zevenbergen 

and Thorne (1987) was used to calculate the local morphometric terrain attributes 

using SAGA GIS Terrain Analysis Morphometry library (Bock et al., 2008). 

 

3.3 Modelling techniques 

The different modelling techniques developed for this research have been 

implemented into a multitude of software environments such as R, Statistica, 
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SAGA, ArcGIS and Matlab; enabling the computation of several mathematical 

algorithms. 

3.3.1 Digital Soil Mapping 

The environmental covariates available for DSM in Ireland are presented in Table 

3.3, divided according to their SCORPAN characteristics and with a description 

of their spatial resolution or scale, depending on the type of information. 

Table 3.3 - SCORPAN covariates of relevance to DSM in Ireland. 

Covariates Data Scale or 

Resolution 

Soil  General soil map of Ireland 1:575,000 

  AFT county soil maps * 1:126,720 

  AFT survey field maps * 1:10,560 

Climate ICARUS baseline climatology 1,000 m 

  Met Eireann stations network        - 

Organisms CORINE 1990  100 m (25 ha) 

  CORINE 2000 100 m (25 ha) 

  CORINE 2006 100 m (25 ha) 

Relief EPA/Teagasc  DEM 20 m  

  OSI LIDAR * 1 m 

  ASTER DEM 30 m 

  GTOPO30 DEM 1,000 m 

Parent material  GSI bedrock geology 1:100,000 

  Quaternary map * 1:25,000 

Age Midlandian glaciation limits ~ 1:1,00,000 

N - spatial position  Landform mapping (SOTER) 1:250,000 

* partial coverage, not available for the whole country  
  

In this research, two datasets were extensively used: the AFT survey field maps 

and the EPA/Teagasc DEM. The AFT survey field maps which show the 

delineation of soil series, made in the field by the surveyors, was the most 
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detailed information available at landscape scale on the variability of Irish soils. 

The EPA/Teagasc DEM was the most detailed elevation dataset at national 

coverage in Ireland and was the elevation information chosen for the overall ISIS 

project. This DEM was used to generate terrain attributes for the DSM scale 

analysis presented in this study. 

3.3.2 Data Mining 

With the increase of large and complex datasets new methods and techniques 

have been developed to make sense of data and extract meaningful patterns. 

Statistics, mathematics and information theory have contributed to the 

development of a multitude of different approaches for mining data in the 

detection of hidden structure and useful information to be applied in advancing 

research. The ones that have receive the most attention in DSM are: Random 

Forest (Grimm et al., 2008; Behrens et al., 2010b); Artificial Neural Networks 

(Behrens et al., 2005; Lamorski et al., 2008; Scull et al., 2003; Zhu, 2000), 

Bayesian belief network (Marchant and Lark, 2007b; Reinds et al., 2008) and 

Classification And Regression Trees (Moran and Bui, 2002; Scull et al., 2005; 

Grinand et al., 2008). In this research the focus would be on two well established 

data mining classifiers artificial neural network (NN) and random forest (RF). As 

the two are based on different assumptions and treat the data in distinctive ways, 

this should allow to quantify the degree of uncertainty associated with the DSM 

model allowing the experiments to focus on the comparison between different 

resolutions. 
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Figure 3.10 - An example of an artificial neural network. 

Neural Networks are organised in a series of layers as presented in Figure 3.10, 

each input data is processed by the first layer, projected onto an intermediate 

hidden layer where each node is the weighted sum of the values in the input layer 

and finally re-projected to the output layer. The network is trained with the data 

entering in the input layer affecting both hidden and output layer so that the output 

layer starts to match the required output class. After the network has been trained 

each new input data will go through the network and be classified in one of the 

wanted categorises or if the network is uncertain to an intermediate value in 

between the most similar groups (Gershenfeld, 1999). This data mining technique 

has been successfully used in DSM to map soil properties (Ramadam et al., 

2005), to predict soil organic carbon across different land uses (Somaratne et al., 

2005), to model the spatial variation of soil loss from natural runoff (Licznar and 

Nearing, 2003) and by using terrain attributes derived from a DEM to map soil 

texture distribution (Zhao et al., 2009). 



47 

 

 

Figure 3.11 - An example of a classification tree used in DSM to predict soil map 

units (from Lagacherie and Holmes, 1997). 

The Random Forest approach, based on the ramifications of a decision tree 

(Figure 3.11), is commonly used in DSM to produce rules for predicting soil map 

units at unvisited locations from a set of covariates available for the entire study 

area (Lagacherie and Holmes, 1997).  The input data enters the tree and is then 

randomly divided into a smaller set belonging to a lower category based on the 

predictor variables which provide the best split, internally assessed with a 

function. It will then be divided up again into an even smaller set and so on till it 

reaches the final level previously set by the maximum number of trees. Once the 

training of the forest of trees is completed each data input will move down the 

each level being separated into smaller and smaller sets, finally reaching the 

wanted categorization (Breiman, 2001). 
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3.3.3 Empirical approaches 

Empirical approaches to identify scale according to rough and quick practical 

guidelines have been developed and used in the wider environmental sciences 

from cartography, geomorphometry, hydrology and remote sensing to GIS and 

computer science. These empirical rules used in the selection of an appropriate 

pixel size are based on either the intrinsic properties of the data or the 

characteristics of the final resulting map. They are related to cartographic 

concepts such as size of delineation (Rossiter, 2003) or objects representations 

(Hengl, 2006), soil surveying conventions as sampling support density (Avery, 

1987; McBratney, 1998), geomorphometric generalizations of terrain complexity 

(Hengl, 2006), hydrological characteristics of river networks and catchments 

(Sharma et al., 2011) and general statistics and information theory such as 

Shannon information content and Kolmogorov complexity (Hengl et al., 2013). 

Although some of these empirical approaches are associated or inspired by 

scientific concepts, they are based on experience and practical knowledge rather 

than derived from scientific theory. For example, to calculate the optimum pixel 

size, a rule of thumb currently applied in all raster operations by the most popular 

GIS software and industry standard ESRI ArcGIS is to divide by 250 the width or 

height (whichever is shorter) of the extent of the feature dataset. A selection from 

the literature of the most promising empirical approaches, some of which have 

been previously suggested to the DSM community (Hengl, 2006) were tested and 

compared with the experimental results of the experimental methodology. 

3.3.4 Wavelet 

Soil changes with space and its variability depends on the interaction between 

soil forming processes that operate on different spatial and temporal scales. 

According to Si (2007) these variations can be divided into two broad categories 

based on their frequency of change: 
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- High frequency that vary repeatedly in space or time (cartographically 

equivalent of a small scale process) 

- Low frequency that vary slowly in space or time (cartographically 

equivalent of a large scale process) 

In landscapes where landforms are repetitive such as hummocky, rolling or 

undulating terrains, the continuous variation of soil results in data series with 

repetitive cycles of highs and lows (Pennock et al., 2008). The examination of 

such data requires using techniques in which the total variance is partitioned by 

frequency. These techniques are referred to as spectral analysis (McBratney et 

al., 2002). Spectral analysis has always interested soil scientist, geographers and 

geomorphologists (Pike and Rozema, 1975) and has recently benefitted from the 

work of geophysicist Jean Morlet, physicist Alex Grossman and mathematician 

Stephane Mallat in the late ‘80s that developed the wavelet theory (Grossman 

and Morlet, 1984; Mallat, 1989). This technique, designed to separate data at 

different scales from noise that does not have any correlation, is becoming the 

analysis of choice for scale analysis trying to explain soil information variation 

(Lark and Webster, 1999). This mathematical model is capable of analysing 

processes in terms of trends and localised features by partitioning the variation 

into scales at precise locations (Lark and Webster, 2001). Soil science has made 

use of wavelet in the analysis of 1D spatio-temporal transects (Lark et al., 2004; 

Si and Farrell, 2004; Biswas et al., 2008) and 2D for terrain attributes (Lark and 

Webster, 2004) and DEM decomposition (Mendonca-Santos et al., 2007, Biswas 

et al., 2013). The wavelet transform method in essence consists of the 

decomposition of a signal into a hierarchical set of approximations and details for 

each scale. It allows quantifying signal changes from one scale to another 

through dilations and translations of a single function called mother wavelet. The 

wavelet transform is based on the convolution of the following function (Biswas 

and Si, 2011): 
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���, �� =   � ������,����  �x� dx (3.1) 

where y is the measured parameter, x is the spatial or temporal spacing along 

the transect,  s is the dilation factor, τ is the spatial or temporal translation of the 

function and ψ is the mother wavelet: 

��,� ��� =   1√�  ��,�  #� − �� % (3.2) 

There are many different mother wavelets with unique shapes and characteristics 

to better fit the signals analysed: crude wavelets (gaussian, morlet, Mexican hat); 

infinitely regular wavelets (Meyer); orthogonal and compactly supported wavelets 

(Daubechies, symlets, coiflets); biorthogonal and compactly supported wavelet 

(B-splines biorthogonal) and complex wavelets (complex Gaussian, complex 

morlet, complex Shannon, complex frequency B-spline) (Misiti et al., 2012). 

  

Wavelet function 
(detail part) 

Scaling function 
(approximation part) 

Figure 3.12 - Wavelet and scaling function of the db6 Daubechies wavelet (y = 

measured parameter and x = spatial or temporal spacing along the transect). 

In this research the wavelet analysis presented in Chapter 6 has been performed 

using the Daubechies wavelet with six vanishing moments (Daubechies, 1990). 

The Daubechies (Figure 3.12) is a family of asymmetric, biorthogonal 
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wavelets characterized by a high number of vanishing moments for given support 

width and widely used in solving a broad range of problems in the geosciences 

(Labat, 2005). 

3.3.5 Geostatistics 

Geostatistics, initially empirically developed to predict probability distributions of 

recoverable ore reserves by mining engineers (Matheron, 1965), has since 

developed into an established branch of statistics with applications in all 

environmental disciplines requiring the analysis of spatial data. The main 

principle underlying geostatistics is the theory of regionalised variables 

(Goovaerts, 1997) which acknowledges that spatial attributes observed on a 

specific point location are a single realisation of a regional process expressed as: 

&��� =  � �( 
)

(*+  �( ��� +  -��� 
(3.3) 

where Z�x� is the variable under consideration as a function of spatial location, fk 
is a known function of x related to its spatial location, ak is a coefficient related to 

the specific situation and ε�x� is the random residual from the trend. 

Matheron understood that the variance of the random component depended only 

on the relative distance between observations (h) and not on where the 

observations were made. This was conceptualised as the intrinsic stationarity 

hypothesis (Webster and Oliver, 2007) from which the semivariance is the direct 

expression: 

.�ℎ� =  12 1��ℎ� ��3��4
1�2�
4*! � − 3��4 + ℎ��0 

(3.4) 

where the semivariance γ(h) is calculated as half the variance of the increments 

with n(h) the number of paired data at a distance h (lag distance). From this 
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equation a variogram cloud can be created showing the spatial correlation of all 

the possible distances between paired points or averaging these values at each 

distance h. 

Figure 3.13 - Characteristic variogram model. 

The resulting plot (Figure 3.13) of the fitted model at increasing lag distances is 

called semi-variogram or just variogram. The essential components of a 

variogram are: 

- Nugget (c0) the intercept on the variance axis of lag distance values equal 

to 0. It represents variability at distances smaller than the sample spacing 

and measurement errors; 

- Sill (c=c0+c1) the maximum semivariance in the data at which the fitted 

model levels of, calculated adding the nugget to the partial sill (c1); 

- Range (a) the lag distance at which the variogram reaches the maximum 

semivariance, after this value points are not spatially autocorrelated 

anymore. 

Mathematical models can be fitted to the experimental variogram (Exponential, 

Gaussian, Spherical, Power) for visualization of the spatial variation. This is a key 

Range   a

Semivariance

γγγγ(h)

Lag distance  h

Sill  c=c1+c0

Nugget c0

Partial Sill  c1
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step in geostatistics as some authors still prefer to manually fit a model based on 

visual assessment and expert knowledge. The balance between accurately 

described correlation, especially a small lag distances, and the risk of overfitting 

needs to be found as the model has to correctly represent spatial variability 

(Webster, 2000). Variograms in this study were computed using the Residual 

Maximum Likelihood (REML) method (Patterson and Thomson, 1971; Marchant 

and Lark, 2007a) as it gives a better representation of the underlying variation in 

comparison to the classical method of moments especially when a regular grid 

sampling scheme is used (Lark and Cullis, 2004). 

In this research variograms were used to describe spatial patterns and structures 

of elevation for the three investigated areas. In Chapter 7 a moving window 

variogram approach was used to classify spatial variation and develop a 

multiscale methodology for DSM analysis. All the variograms were created with 

the R software (R Development Core Team, 2011) using the gstat package 

(Pebesma and Wesseling, 1998).  
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4 EXPERIMENTAL METHODOLOGY 

4.1 Introduction 

The most suitable resolution of DEM to apply in soil mapping depends on the 

scale of the processes controlling pedogenesis and this is landscape dependent. 

As a consequence there is a real need for a more landscape-scale pedology 

(Pennock and Veldkamp, 2006). The choice of scale frames the analysis and 

shapes the end result of DSM analysis indicating that a better understanding and 

quantitative knowledge of scale will help to improve soil predictions. 

The relationship between soil taxonomic units and landscape attributes has been 

confirmed as a central concept in soil science (Hudson, 1992). Terrain attributes 

are the most widely used predictors in DSM because of their primary role in soil 

formation and the broad availability of DEMs (Behrens et al., 2010b). DEMs are 

representations of the topographic surface of the Earth, and they are a 

widespread data source for terrain analysis and other spatial applications. Terrain 

analysis provides a number of high-resolution environmental information 

quantitatively derived from DEM including slope gradient, aspect, curvature, etc. 

and these topographic features are the core for a wide range of landscape-scale 

environmental models (Gallant and Hutchinson, 1997). 

Thompson et al. (2001) have shown that higher-resolution DEM may not be 

necessary for generating useful soil-landscape models. Another concern is that 

most applications use algorithms running in small windows (usually 3 × 3 roving 

window) to perform terrain analysis, thus fixing the scale of resulting layers to the 

spatial resolution of the available DEM. This is expected to provoke mismatches 

between scale domains of terrain information and the environmental variable of 

interest (Dragut et al., 2009 and Smith et al., 2006). 

The purpose of this chapter is to test and evaluate the role of spatial scale and 

its impact on generating soil class predictions by experimentally testing the 

interaction between pixel resolution and window size with two commonly used 
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data mining classifiers in DSM: Artificial Neural Network and Random Forest. The 

large number of scale combinations tested will allow an optimal scale to be 

established, providing the benchmark for comparing the results of the following 

chapters. 

 

4.2 Materials and Methods 

In order to address the problem previously described three different areas in 

terms of geomorphology and soil type were selected in Ireland. A detailed soil 

map obtained from legacy surveying was used as a dependent variable to train 

and test two separate DSM models. The soil information was classified at soil 

series level. The DEMs of the three areas were processed to obtain input terrain 

derivatives. A set of window and pixel size combinations was then run to obtain 

values for the model inputs, develop the DSM models on these values (and the 

soil map) and compare predictions to the mapped soil information. A measure of 

performance for each window by pixel size combination was obtained which was 

subsequently analysed using analysis of variance. As such the model behaviour 

can be experimentally described as a function of window and pixel size. Finally, 

the model performance by soil type was considered for the best and worst scale 

combinations tested, achieving the highest and lowest classification accuracy 

respectively. 

4.2.1 DEM 

The DEM was used to derive eleven terrain attributes: slope gradient, aspect, 

curvature, plan curvature, profile curvature, slope height, valley depth, 

normalized height, standardized height, mid-slope position and convergence 

index (Table 4.1) using SAGA GIS Terrain Analysis Morphometry library (Bock et 

al., 2008). They are indicative of soil-landscape relationships controlling the 

spatial distribution of physical, chemical and biological soil properties and the 

overall energy and water balances. A large number of terrain attributes is 
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analysed which have been chosen for their ability to describe soil classes as 

presented by Behrens et al. (2010b) and Florinsky (2011), including: 

- local morphometry attributes (slope gradient, aspect, curvature, plan 

curvature, profile curvature and convergence index); 

- relative height and slope position attributes (slope height, valley depth, 

normalized height, standardized height and mid-slope position). 

The selected terrain attributes have been recognised to affect pedogenesis 

(Florinsky, 2011) by governing the microclimate, the thermal balance, the water 

cycle, erosion processes, intra soil transport of nutrients and distribution of 

vegetation. For example, slope steepness drives erosion rate; slope position 

alters moist content; and aspect affects sun exposure and thermal regime. 

Topography is the result of both internal (geology) and external processes all 

operating at different scales, many of which are related to soil. 

To calculate local morphometric terrain attributes fundamental for all the other 

variables, the second-order finite difference algorithm of Zevenbergen and 

Thorne (1987) was used. The procedure for optimizing DSM prediction power of 

soil data with environmental covariates will focus on the selection of an optimal 

scale, represented as the interaction between window and pixel sizes, correlated 

to the pedogenetic processes active at the landscape scale. The statistical 

relationship between soil taxonomic units and terrain derivatives will be used to 

select the scale at which terrain parameters correlate better with soil data and 

predict the most accurate soil information. 
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Table 4.1 - Investigated terrain attributes. 

Terrain Attribute Unit Description 

Local Morphometry     

Slope Gradient [rad] The angle of inclination of the topographic 

surface between the tangent and the horizontal 

planes 

Aspect [rad] The clockwise angle from north of the projection 

to the horizontal plane of the topographic 

surface 

Curvature [m-1] The average of two orthogonal normal sections 

Plan curvature [m-1] The rate of change of the horizontal curvature 

Profile curvature [m-1] The rate of change of the vertical curvature 

Convergence index [%] The index of convergence/divergence regarding 

to overland flow 

Relative height and slope positions 

Slope height [m] The relative height difference to the immediate 

adjacent crest lines  

Valley depth [m] The relative height difference to the immediate 

adjacent channel lines 

Normalized height [ ] The height values are normalized to a range 

from 0 to 1 

Standardized height [ ] The height values are standardized to have a 

mean of 0 and standard deviation of 1 

Mid-slope position [ ] A classification of the slope position in both 

valley and crest directions  

 

In order to fully analyse and incorporate the effects of scale on terrain attributes 

used in DSM, two techniques were applied to the three study areas’ DEMs: 

smoothing (window size alteration) and resampling (pixel size alterations). 

Previous studies have shown the influence of pixel size alterations in computing 
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terrain attributes used in DSM analysis (Smith et al., 2006), the importance of 

neighbourhood size (Zhu et al., 2008) and a combination of both pixel and 

neighbourhood alterations (Roecker et al., 2008; Behrens et al., 2010a). In this 

study a standard 20 m resolution DEM was used to investigate the scale 

dependency of terrain attributes when converted to coarser resolutions. Thus the 

original DEM represents no smoothing (1 x 1 window) and a pixel size of 20 m. A 

series of DEMs were created from the original DEM. Firstly, the DEM was 

smoothed by applying different window sizes at 3 x 3, 5 x 5, 7 x 7, 9 x 9, 11 x 11, 

13 x 13, 15 x 15, 17 x 17, 19 x 19 and 21 x 21. The resulting smoothed DEMs 

were re-sampled at 30, 40, 50, 60, 80, 100, 120, 140, 170, 200, 230, 260 m pixel 

sizes using bilinear interpolation. This resulted in 143 distinct datasets: the 

original DEM; 10 smoothed but not re-sampled DEMs; 12 re-sampled and not 

smoothed DEMs; and 120 smoothed and re-sampled DEMs. Figure 4.1 shows 

the resulting effects of different window sizes and re-sampled pixel sizes on DEM 

resolution. 

 

Figure 4.1 - Original DEM of Ireland at 20 m re-sampled at 50, 100 and 500 m 

pixel sizes (right) and with a 3 x 3, 5 x 5 and 21 x 21 window sizes (left). 
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Terrain attributes were derived for each of the 143 datasets and 4 points per km2 

were randomly extracted and fed into data mining inference systems to find an 

optimal scale; starting from the original DEM and incrementally increasing 

window and pixel sizes. The density of four points per square kilometre was 

chosen to be representative of the likely observational density during the field 

programme to produce the county soil maps. 

A quantitative comparison has been made by calculating the validation 

performance of data miner classifiers. This will enable to better understand the 

role of scale and experimentally select an optimal scale to use as a benchmark 

in the second stage of the research. 

4.2.2 DSM model development 

The focus and final output of DSM are soil properties derived by a spatial 

inference system (Carre et al., 2007). Dealing with fine resolution data and large 

extents creates uncertainties. There are three main areas of concern affecting 

the accuracy of these predictions: soil reference information, environmental 

covariates and inference systems. The soil information (6 inch maps) is assumed 

to be correct and it provides the training data for the models. The mapping was 

based on field observations by the soil surveyor but is subject to the interpretation 

of the individual. The environmental covariates, in this case the terrain attributes 

derived by the DEM, are under scrutiny in this first stage of the research. The 

inference systems, including data mining classifiers, consist of analytical 

processes designed to explore data in search of consistent patterns and 

systematic relationships between variables. The resulting relationships are used 

for prediction of an optimal scale through the comparison of individual validation 

performances. In order to minimise the uncertainties associated with the 

inference systems two distinct techniques that operate on different statistical 

assumptions were used in this research: Random Forest and Artificial Neural 

Network. These are regularly applied in DSM (McBratney et al., 2003) and were 

chosen for their ability to handle datasets with many predictors, to deal with soil 
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predictors non-linear relationships and also to be robust to noise, outliers and 

overfitting (Viscarra Rossel and Behrens, 2010b). 

Random Forest (RF) is a collection of CART-like trees following specific rules for 

classification or regression (Breiman, 2001). The trees are created using a 

different bootstrap sample of the data and each node is subsequently split using 

the best among a subset of predictors randomly chosen at that node to prevent 

overfitting. The number of predictors to be selected in a subset is calculated as 

the logarithm in base two of the total number of predictors plus one. This strategy 

allows the reduction of the number of factors required to just two: 1) the number 

of variables tested at each node and 2) the overall number of trees in the forest 

that was set to 100. 

Artificial Neural Network or Neural Network (NN) is an interconnected group of 

artificial neurons processing information using a connectionist approach to 

computation. A dataset is used to train the neural network which discovers an 

approximate relationship, between a series of covariates and the response 

variable, by iteratively adjusting its parameters (Gershenfeld, 1999). In essence, 

a series of subsets with similar node arrangement creates an input layer, an 

output layer and in between a hidden layer, which weights the data to extract the 

significant information on its relationships. As presented by Nisbet et al. (2009), 

an automated network search with two strategies was used to develop the NN 

models: the most widely used Multilayer Perceptrons (MLP) with a maximum 

number of 15 hidden layers, and Radial Basis Function (RBF), a simpler network 

with faster learning algorithms set with a maximum number of 30 hidden 

networks. To prevent overfitting and increase performance, a weight decay of 

0.001 was adopted and the data were separated into training (70%), testing 

(15%) and validation (15%) subsets allowing testing of the hidden layers.  

Principal component analysis (PCA) was employed to detect structure in the 

relationships between the eleven terrain attributes and to assess their 

correlations and degree of redundancy. 
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Analysis of variance or ANOVA allows simultaneous comparison among means 

of several groups by partitioning the observed variance in a particular variable 

into components of different sources of variation. This was implemented using 

Statistica software (StatSoft, 2010) for the assessment of window, pixel and the 

interaction of the two showing their specific significance in optimal scale selection.  

 

4.3 Results 

The results are presented in Figures 4.2 - 4.6 and Table 4.2. Figure 4.2 illustrates 

how the most important six terrain attributes used in classification change 

according to scale. Figure 4.3 shows the PCA analysis of the terrain attributes 

used in the DSM models. Figures 4.4-4.5 summarise the validation performance 

results of both RF and NN across all the scale combinations tested.  Table 4.2 

contains the ANOVA analysis performed to discriminate between the effect of 

window, pixel or the interaction of the two and Figure 4.6 shows the classification 

accuracy by soil series for the best and worst scale combinations. 

4.3.1 Terrain attributes 

The effects of altering the spatial resolution of the DEM and window size are 

shown for the six most important classification attributes (slope gradient, aspect, 

curvature, slope height, mid-slope position and convergence index) by their 

change in dispersion calculated by the standard deviation (Figure 4.2). The 

random forest algorithm estimates the importance of a variable, by looking at how 

much prediction error increases when data for that variable are permuted while 

all others are left unchanged (Breiman, 2001). 
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Figure 4.2 - Standard deviation of the six most important terrain attributes. 
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Statistical variability of slope gradient is reduced with the increase of both window 

and pixel size. In Leitrim and Tipperary North values decrease respectively from 

0.058 to 0.026 and 0.076 to 0.045 with coarsening of spatial resolution and from 

0.058 to 0.034 and 0.076 to 0.059 with the increasing of window size. Meath 

followed the same pattern of reduction but with a lower intensity decrease from 

0.014 to 0.008 with pixel variation and from 0.020 to 0.014 with window variation. 

A similar declining pattern observed for slope gradient is followed by curvature. 

As expected the standard deviation of aspect does not change with scale since 

the full range of orientations can be anticipated at any scale. Convergence Index 

in contrast shows an unexpected divergent pattern: a sharp increase of standard 

deviation for all the three areas with the coarsening of pixel size and a low 

intensity decrease with the enlargement of window size. Slope height presents a 

clear difference between the behaviour of three tested areas with Leitrim 

characterized by the presence of the drumlins showing an increase from 17.78 to 

35.85 with varying pixel size and from 17.78 to 27.22 with changing window size, 

meanwhile Meath and Tipperary North appear scale invariant with no significant 

change of standard deviation despite having very different values, respectively 5 

and 25. Finally, mid-slope position follows the same sharp decrease observed 

with slope gradient and curvature at the increase of pixel size but unexpectedly 

not with window size in which results appear scale invariant. 

As described by Wilson and Gallant (2000) standard deviation of topographic 

features is a measure of variability associated with landscape roughness. The 

terrain parameters tested demonstrate that statistical dispersion changes with 

resolution and window size alterations. This might have an effect on their 

predictive power in DSM modelling, for example by removing redundant 

information (low values of standard deviation), so improving classification 

accuracy. 

4.3.2 Principal Component Analysis 

Principal component analysis, by converting the set of eleven terrain attributes 

into a set of linearly uncorrelated values, has allowed evaluation of their level of 
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redundancy. In this case, redundancy means that some of the variables are 

correlated with one another, possibly because they measure a similar 

characteristic or their change follows a similar trend. Figure 4.3 shows the 

projection of the original eleven terrain attributes onto the two components, with 

the principal component on the horizontal axis and the second component on the 

vertical axis. 

 

Figure 4.3 - PCA of the 11 terrain attributes used in the DSM models (highlighted 

are the six most important terrain attributes). 

Some terrain attributes appear to cluster together as curvature, profile curvature 

and plan curvature indicating a higher correlation and high degree of redundancy. 

In this case this is due to the fact that curvature includes both maximum slope 
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and perpendicular directions. The same happens with slope height, normalized 

height and standardized height with similar negative correlations on both 

components. All the other terrain attributes have different principal components 

with mid-slope position and valley depth in the first quadrant (positive principle 

component and positive second component), aspect in the second quadrant 

(positive principle component and negative second component), slope gradient 

and convergence index in the fourth quadrant (negative principle component and 

positive second component). The six most important terrain attributes (slope 

gradient, aspect, curvature, slope height, mid-slope position and convergence 

index) according to the two DSM models account for the most of the variance in 

the observed terrain attributes. 

4.3.3 DSM models 

Results of the scale analysis are shown in Figure 4.4, where the validation 

performance of data miner classifiers is shown with window and pixel size effects. 

This has resulted in 143 possible combinations ranging from the original 20 m 

pixel size in a 1 x 1 window to the 260 m pixel size averaged over a 21 x 21 

window. It should be noted that for the RF the validation performance has been 

calculated as (1 - misclassification rate) * 100 in order to provide a direct 

comparison with the value obtained for NN, where the validation performance of 

the best 5 networks was averaged to obtain a value for each scale combination 

of pixel and window sizes. 

The three morphologically different study areas behave in unique ways. Leitrim 

characterized by fine resolution drumlins achieves optimum performance for the 

unsmoothed but re-sampled DEMs at 30 m (58.5% for NN and 58.0% for RF) 

gradually decreasing towards 260 m (51.6% for NN and 50.6% for RF). For the 

smoothed but not re-sampled DEMs the optimum performance is reached in a 3 

x 3 window (58.0% for NN and 57.5% for RF) gradually decreasing towards 21 x 

21 (48.2% for NN and 50.9% for RF). Of particular interest for this area is the 

interaction between window and pixel sizes because at the increase of the latter 

it is possible to note an alteration of validation performance in coarser resolutions. 
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What seems peculiar is the quick shift recognizable at 5 x 5 in which the validation 

performance trend line becomes completely flat (averaging at about 54% for both 

NN and RF) and preserves this trend till 11 x 11. Then the trend completely 

reverses from a decrease of validation performance towards coarse resolutions 

to an increase. To summarise this Figure 4.4a and 4.4b show the validation 

performance against the window and pixel sizes clearly evidencing two areas 

achieving 60% of successful classification: fine resolutions with small window 

sizes and coarse resolutions with large window sizes. 
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Figure 4.4 - 3D surface plots of validation performance against window and pixel 

sizes (NN on the left and RF on the right) of the three study areas. 
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On the contrary, Meath characterized by a flat surface shows a constant increase 

of performance towards coarser resolutions (above 140 m) across all window 

sizes. It is clearly shown in Figure 4.4c and 4.4d that performance gradually 

increases with pixel size for both classifiers. Window dimension is almost 

unresponsive in the RF model and shows weak dependence in the NN classifiers. 

Tipperary North is equally divided between steep slopes and flat plains but seems 

almost indifferent to changes in pixel size and only marginally affected by 

alteration of window size (Figure 4.4e and 4.4d) with a magnitude of change in 

order of 2% from its distinctive 42.5% for NN and 45.0% for RF validation 

performances. The trend line is generally flat with the line oscillating between a 

slight increase for the Neural Network and a slight decrease for the Random 

Forest. Notably, the two models performed very poorly at all scales and window 

sizes tested, suggesting that none of the terrain parameters investigated were 

able to discriminate between the low and high relief components. To investigate 

this apparent scale independence, Tipperary North was split into two 

homogeneous subareas; one almost completely flat and the other with steep 

slopes.  The analysis was repeated and the results improved significantly (Figure 

4.5) confirming the two distinct behaviour already seen for Leitrim and Meath; the 

low relief improving validation at coarser resolutions and being limitedly affected 

by the change in window size and the high relief area preferring fine resolutions 

with the above seen alteration at large window sizes.  
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Figure 4.5 - 3D surface plots of validation performance against window and pixel 

sizes (NN on the left and RF on the right) of Tipperary North divided into low and 

high relief areas. 

4.3.4 ANOVA 

The effects of changing scale through the alteration of window and pixel sizes 

have been analysed with ANOVA and are presented in Table 4.2 showing 

respectively for Leitrim, Meath, Tipperary North the results of the analysis of 

variance. The null hypothesis is that there are no significant differences between 

the effects of pixel size, window size and the interaction of the two on the 

prediction of soil series using the two tested methodologies. 
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Table 4.2 - ANOVA results for the three study areas. 

Leitrim 

Source Nparm DF Sum of Squares F Ratio Prob > F 

NN      

Pixel 1 1 71.08 26.06 <.0001* 

Window 1 1 4.57 1.68 0.20 

Pixel x Window 1 1 245.47 90.01 <.0001* 

      

RF      

Pixel 1 1 162.24 53.60 <.0001* 

Window 1 1 13.50 4.46 0.036* 

Pixel x Window 1 1 159.10 52.56 <.0001* 

 

Meath 

Source Nparm DF Sum of Squares F Ratio Prob > F 

NN           

Pixel 1 1 2905.86 487.99 <.0001* 

Window 1 1 671.06 112.69 <.0001* 

Pixel x Window 1 1 6.55 1.10 0.30 

      

RF      

Pixel 1 1 3242.53 396.44 <.0001* 

Window 1 1 401.87 49.13 <.0001* 

Pixel x Window 1 1 4.42 0.54 0.46 

 

Tipperary North 

Source Nparm DF Sum of Squares F Ratio Prob > F 

NN           

Pixel 1 1 28.76 8.87 0.0039* 

Window 1 1 22.46 6.96 0.010* 

Pixel x Window 1 1 7.01 2.16 0.15 

      

RF      

Pixel 1 1 67.84 32.37 <.0001* 

Window 1 1 63.046 30.087 <.0001* 

Pixel x Window 1 1 12.43 5.93 0.017* 

 

The simultaneous comparison among means of several groups, by partitioning 

the observed variance in a variable into components of different sources of 
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variation, has allowed the comparison of window size, pixel size and the 

interaction of the two showing their specific significance in optimal scale selection. 

These results show the significance of pixel size as a valuable factor in 

influencing performance validation for Leitrim and Meath. Notably, Leitrim shows 

also that the interaction between window and pixel sizes is highly significant 

confirming the results previously discussed. Meath shows window size as 

significant but not the interaction of the two factors. Tipperary North behaves 

erratically with the two data mining classifiers obtaining significantly different 

results. As previously indicated, the terrain attributes seem to operate 

independently of scale in Tipperary North, giving similar results across all spatial 

resolutions. Once the high relief and low relief components were separated and 

the ANOVA analysis was repeated, the results (not shown) confirmed the two 

distinct behaviour already seen for Leitrim and Meath with pixel and window size 

highly significant for the low relief area and pixel and the interaction with window 

size highly significant for the high relief component. 

It is also worth mentioning that the two data mining techniques applied in this 

research generate almost identical patterns for Leitrim, Meath and Tipperary 

North divided in low and high relief areas, confirming reliability of the observed 

patterns. 
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Figure 4.6 - Classification accuracy of samples aggregated by soil series. Best 

case (right) and worst case (left). 
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The proportion of soil classification accuracy of the best and worst scale 

combinations is shown in Figure 4.6. It varies from 48.1% to 56.9% for Leitrim 

(8.8% variation), 41.7% to 58.8% for Meath (17.1% variation) and 47.7% to 51.1% 

for Tipperary North (3.4% variation).  

 

4.4 Discussion 

The results presented suggest that the scale of the soil-topography relationship 

varies for both different types of soils and different types of geomorphological 

areas. Terrain attributes have been shown (Figure 4.2) to be sensitive to the scale 

of the source DEM and behave in different ways to this alteration, ultimately 

affecting DSM analysis as suggested by Behrens et al. (2010b). The effects of 

spatial scale based on pixel and window size alterations to map soil classes were 

proved to be significant, and it was found that the best pixel and window sizes 

varied with geomorphology and soil complexity. 

In general validation performances ranging between 35% and 60% are 

comparable and consistent with previous studies that used machine learning 

models (Behrens et al. 2010b and Grinald et al. 2008). The results obtained by 

the two tested inference engines (NN and RF) are comparable and present the 

same scale behaviour for the three study areas.  As a guideline two main patterns 

of behaviour were observed:  

i) Flat homogeneous areas seem to prefer coarser resolutions (above 

140 m in this study) across all the tested window sizes and  

ii) Morphologically varied areas, with characteristic features such as the 

drumlins or abrupt changes in topography reflected in steep slopes, 

seem to prefer fine resolutions (30 m in this study) with small window 

sizes but also show good performance at coarser resolutions and large 

window sizes.  

This generally confirms some of the hypothesized scale behaviour by Pain (2005) 

and Thompson et al. (2001); with finer scales required only in morphologically 
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more complex areas. The ANOVA results reflect this behaviour, where the 

morphological flat areas generally show improvement for both larger window and 

pixel sizes, and there is no interaction between these effects. In morphologically 

more complex areas, varying window size has no impact on performance, 

whereas pixel size does impact; varying both results in the complex interaction 

represented in Figure 4.4 and 4.5.  

The presented experimental methodology, was not only instrumental in 

examining the effects of scale on spatial non-stationarity for soil-topography 

relationships, but also provided important insights on how scale affects a model’s 

explanatory power as some areas were never correctly classified, failing to be 

related to the local topography. The scale dependence of terrain attributes can 

account for the appropriate classification of soil taxonomic units in many cases in 

the study areas, but remain cases where the soil class is incorrectly classified, 

even at the most optimal scale combination (Figure 4.6). These areas are in 

locations where other soil forming factors such as parent material have a greater 

influence on soil class categorisation than terrain factors, as in the case of the 

southern extent of Leitrim. Here, misclassified areas include similar soils with 

subtle differences in soil parent material. In the north of Meath an area always 

misclassified by the model includes a peat complex where vegetation cover and 

land use might be the main factors controlling soil class categorization. Equally, 

for some areas in Tipperary North podzols might be better categorised by parent 

material composition or other environmental covariates that provide detailed 

information on soil moisture, as this is a critical aspect in soil series classification. 

In addition, subsequent rationalisation of the soil taxonomic units used in the 6 

inch mapping has indicated that some of the detailed criteria for the original 

differentiation in soil taxonomic units were not justified for the soil unit concept at 

this mapping scale. Thus misclassification can occur in the model if differentiation 

is expected from the 6 inch mapping but in practice the soils have very similar 

characteristics. General inaccuracy of the legacy soil data can also affect the 

overall classifier’s accuracy and might be responsible in particular for some of the 

areas being consistently misclassified by the two models. The 6 inch soil maps 
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currently represent the most accurate detailed soil information available at the 

large scale in Ireland and were selected as part of the ISIS project. 

4.5 Conclusions 

In this chapter the effect of fine scale DEMs in DSM proved to not always be the 

best choice, questioning the common approach used in the DSM community of 

using the finest available DEM in DSM analysis. This current practice implicitly 

relies on the assumption that the overall effect of scale should balance out but 

the results show this depends on the morphology of the examined landscape. An 

exploratory test at different scales, like the presented one, could improve the final 

prediction of soil taxonomic units and certainly provide useful knowledge of the 

intrinsic characteristics of the area under scrutiny.  

These experimental results set the scale benchmark for the next chapters in 

which different approaches will be tested and a new multiscale methodology 

developed. Two main patterns of scale behaviour have been described: flat areas 

obtaining the best classification accuracies at coarser pixel sizes and 

morphologically varied areas being influenced by the interaction of pixel and 

window alterations, obtaining the best accuracies at fine resolutions with small 

window sizes but also at coarser resolutions and large window sizes. This scale 

behaviour clearly indicates that the tested areas are not coherent in their scale 

response, as the scale of the soil-topography relationship varies for both different 

types of soils and different types of geomorphological area. The three areas will 

require further subdivisions needing an additional step in the DSM methodology 

able to segment the landscape. Moreover, this approach was computationally 

and labour intensive, so in the subsequent chapters alternatives will also be 

explored. 
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5 EMPIRICAL APPROACHES 

5.1 Introduction 

Despite the uncertainties related to choosing the most suitable pixel size to be 

used in DSM for analysis, visualization or modelling; DSM practitioners have to 

make a decision and select a pixel size. In the majority of cases, as seen in the 

previous chapter, the finest available DEM is chosen without proper consideration 

of its suitability for the data or process examined. This is probably due to the fact 

that common sense would suggest that using the most detailed dataset available 

will guarantee that the information needed to explain the process investigated 

must have been captured in the large amount of information stored and our 

models or statistical techniques will be able to exploit and make sense of that. 

Another reason might be the lack of a complete and definitive methodology to 

address the issue of scale with only empirical guidelines available. In order to 

guide the selection of an optimal pixel size, a series of empirical approaches have 

emerged in different applied fields from cartography, GIS, hydrology, remote 

sensing to computer science. The concept behind them is that they are easy to 

learn, straightforward to use and generally provide a unique or at least defined 

answer. Their use is general and extensive but has not been exhaustively 

evaluated yet with respect to DSM applications.  

In the previous chapter the optimal DEM resolution for the three test areas was 

established experimentally. In this chapter the hypothesis that empirical 

approaches can be transferred to DSM to identify an optimal DEM pixel size will 

be tested by comparing these approaches with experimental results. A set of 

eight empirical approaches has been selected from the literature (Avery, 1987; 

McBratney, 1998; Rossiter, 2003; Hengl, 2006; Sharma et al., 2011; Hengl et al. 

2013) which are representative of common empirical approaches based on: ESRI 

ArcGIS; sampling support; cartographic; object orientated; inflection points; 

information content; sink analysis and fractal dimension of stream networks. 
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These approaches are assumed to be quick ways to determine optimal scales 

and are based on very different assumptions.  

The selected approaches will be tested in the context of DEM pixel size selection 

for the test areas, investigating their potential utility in DSM applications by 

comparing them with the results of the experimental methodology.  

5.2 Theory 

The raster model in DSM is seen as a useful data structure in which most of the 

technical characteristics of soil information are controlled by a single measure: 

pixel size (McBratney, 1998). Pixel size has a spatially explicit location and 

contains a single value for the soil target attribute in addition to a given set of 

environmental covariates. Information content of raster DEMs, used in DSM as 

covariates to derive terrain attributes, progressively decreases with the 

coarsening of pixel size. As presented in Chapter 4 (Experimental Methodology), 

this has proved beneficial for DSM analysis as particular pixel sizes are better at 

classifying soil classes. As previously discussed, in the literature issues related 

to scale and the choice of an optimal pixel size have been investigated in different 

applied fields with emerging empirical approaches used as potential solutions. A 

detailed review of the literature has been carried out selecting eight approaches 

focusing on all aspects of DSM modelling: the GIS software (ESRI ArcGIS), the 

soil survey (sampling support), the soil map (cartographic), the soil polygons 

(object orientated), the DEM topographic characteristics (inflection points), the 

DEM data content (information and complexity) and the hydrological 

characteristics of the study area (sink analysis and fractal dimension of stream 

network). 

5.2.1 ESRI ArcGIS 

Soil information, DEMs and terrain attributes are commonly managed, analysed 

and visualised using GIS software. The algorithm used in raster pixel size 
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selection by de facto standard in GIS (ESRI ArcGIS, the software used for this 

research) was tested. 

5.2.2 Sampling support 

The main objective of a soil survey is to provide information on the soil resources 

in a particular area, but this information will only be as useful as the precision and 

accuracy of the soil data gathered by the surveyors in the field (Avery, 1987). Soil 

surveyors have historically based their efforts on the delivery of two main pieces 

of work: a soil report and a soil map. A map was created based on the field sheets 

drawn on site, supported by the soil samples collected in the field. Incorporating 

precision, accuracy and scale, soil surveyors generally refer to survey intensity 

or inspection density to assess the quality and reliability of a map. This concept 

can be easily transferred to DSM, estimating an optimal pixel size from the area 

of the investigated region and the likely inspection density of the soil survey. 

5.2.3 Cartographic 

Cartography has historically involved the study of maps and map making 

processes, and more generally is involved with the way in which spatial 

information is communicated (Visvalingam, 1990). Maps as representations of 

reality need processes of selection, classification, displacement, symbolization 

and exaggeration to effectively accomplish their purpose of communication. The 

fundamental aspects of research in cartography are related to the design and 

editing of maps, projection systems and generalization techniques. Eliminating or 

simplifying characteristics of features that are not significant to the map’s purpose 

has been the traditional focus of generalization. Another particularly interesting 

aspect, especially in the analysis of scale, is the area of generalization which is 

concerned with the reduction of features complexity at a particular scale. In 

cartography, fine pixel sizes are connected with large map scales and small 

areas, and coarse pixel sizes to small map scales and large areas. Both these 

aspects of scale have been analysed by Vink (1975) defining two metrics to 

quantify them: minimum legible delineation (MLD) and maximum location 
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accuracy (MLA). The work of Avery (1987) and Rossiter (2003) has used both 

these concepts to connect them with inspection density of soil surveys. More 

recently, Hengl (2006) has expanded this work to include optimal DEM pixel size 

selection for DSM applications using MLD and MLA. 

5.2.4 Object orientated 

Even though vector data formats are better suited to represent spatial objects, 

raster formats can be equally effective in the case of phenomena with abrupt 

changes or by using a thresholding operation. Pixel size influences the 

characteristics of objects, as these are scale dependent, controlling their number, 

size and shape which all vary with the coarsening of pixel size (Lillesand et al., 

2008). This concept can be extended to DSM for the selection of an optimal pixel 

size to represent soil polygons using DEMs. 

5.2.5 Inflection points 

DEMs are raster based data which describe the spatial distribution of elevation. 

Their data model is centred on GIS field-based ontology (Smith and Mark, 2003). 

The resulting raster data structure uses a regular grid of pixels to record the 

continuously changing elevation over an area, according to the variation of the 

phenomenon represented. In the literature there are approaches paying attention 

to the topographic characteristics of the DEM, like the inflection points (Kienzle, 

2004). Contour lines join points of constant elevation and are an effective way of 

illustrating the shape of a surface, highlighting the relevant geomorphological 

changes of a landscape (Mackaness and Steven, 2006). Pixel size controls the 

detail of information in a DEM allowing the detection of relevant features such as 

peaks or valleys. It also controls smoothing or even removing them with the 

coarsening of pixel size. The variability of the landscape dictates the needed pixel 

size to accurately preserve these relevant features. The optimal pixel size should 

allow keeping this variability and maintaining the majority of the relevant 

geomorphological features (Borkowski and Meier, 1994). 
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5.2.6 Information and complexity 

In computer science, information content or complexity has a central role in the 

relationship between information and computation, resulting from the 

combination of information theory with the mathematical foundation of computer 

science in algorithmic information theory. Shannon information theory (1965) and 

Kolmogorov algorithmic information theory of complexity (1965) were introduced 

with separate motivations but a similar aim to define and measure information. 

This work established a common unit of measurement, the bit (b). This unit, 

described as the amount of information in an object that could be explained by 

the length of the description needed to describe the object. These concepts 

underpinning modern computer science can be used to analyse the variability in 

elevation of DEMs. By considering complexity as a spatial phenomenon, Hengl 

et al. (2013) show how information content changes for soil polygon maps 

rasterized to different resolutions. This suggests that optimal pixel size could be 

determined by the size of compression algorithms (Allegrini et al., 2003) and 

information content entropy (Wise 2012). 

5.2.7 Sink analysis 

Hydrology studies the movement and distribution of water on earth. This 

discipline is deeply interested in the analysis of DEMs, as terrain determines how 

and where water flows (Bloschl and Silvapalan, 1995). To model the flow of water 

and perform quantitative analysis, any DEM must be pre-processed to remove 

sinks, as surfaces with uninterrupted flow are needed.  This is of extreme 

importance in hydrological modelling as sinks are areas that do not drain 

anywhere, causing the drainage network to be disconnected and have sections 

missing, essentially leading the flow algorithm into an endless loop of research. 

Tools have been created to deal with this problem, firstly analysing the DEM to 

locate any existing sinks and subsequently to fill the elevation of this incorrect 

depression (Maidment, 2002). Sinks can be generated by the interpolators used 

in DEM creation due to unsuitability of data density and spatial distribution 

(Sharma et al., 2011). Sinks are particularly important in DSM as these 
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geomorphological features influence the spatial distribution of wet / dry conditions 

in floodplain areas, water moisture due to water stagnation and the complex 

relationships between water and soil affecting characteristics such as soil depth 

and overall soil formation. This concept can be exploited for the analysis of scale, 

as the number and total area covered by sinks should give an indication of the 

optimal resolution that maximises the water flow, so indirectly assessing the 

suitability of the DEM. 

5.2.8 Fractal dimension of stream network 

The pioneering work of Mandelbrot (1983) describes natural forms and processes 

as mathematical sets that exceed their topological fixed dimensions in regular 

Euclidean geometry. Based on this work, the concept of fractal and fractal 

dimension has been intensely investigated and applied in hydrology and other 

environmental sciences (Lanza and Gallant, 2006). Fractals are characteristically 

self-similar in the sense that a feature is precisely or closely similar to a part of 

itself (Falconer, 1990). Fractals can be exactly the same at every scale or have 

characteristic scales in which the pattern repeats itself. This principle is exploited 

for the description of complex forms or processes where they allow reduction of 

information to just one descriptor. This is extremely effective in scale analysis as 

fractals imply that variability exists at a range of scales, allowing this relationship 

to be quantified and compared across a series of different scales (Bloschl and 

Silvapalan, 1995). The main use of fractals in hydrology is in the analysis of 

stream networks where fractals can be applied in the detection of critical scales 

and this concept might be extended to DSM for the selection of an optimal DEM 

pixel size. 

 

5.3 Materials and Methods 

The eight selected empirical approaches were applied to the DEM of the three 

test areas and compared with the experimental results presented in Chapter 4. 
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The pedological and geomorphological complexity of the three areas should allow 

a full exploration of the different empirical approaches and assess their suitability 

in the selection of an appropriate DEM pixel size to be used for DSM applications. 

5.3.1 ESRI ArcGIS 

The selection of a suitable pixel size for a raster dataset in ArcGIS is handled by 

the software in the background providing the user with only a specific resolution 

as a default (with the possibility to manually change the value). 
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Figure 5.1 - Extent of the three study areas DEMs used by ArcGIS for pixel 

selection. 

The provided pixel value is obtained with a simple rule, in which the system is 

taking the width or height whichever is shorter of the extent of the feature dataset 

(Figure 5.1) and divides it by 250. 

5.3.2 Sampling support 

A common rule of thumb in soil mapping (Avery, 1987) is to use an inspection 

density of four observations per square centimetre of produced map. This value 

is the average density that should be kept constant across the entire survey area 

to be able to uniformly inspect the soil resources ensuring consistency. 
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This concept can be exploited in the investigation of an optimal pixel size 

calculated as: 

� =  �4 ×  ND  × 100 

(5.1) 

where p is derived by the square root of 4 times the total area (A) divided by the 

number of samples (N) and all multiplied by 100. 

This can be further extended for the two most common approaches of surveying: 

random sampling (free survey, a) or systematic sampling (regular grid, b) 

obtaining: 

��   � = 0.25 ×  � ND                               @�    � = 0.5 ×  � ND 

(5.2) 

The difference between the two types of surveys depends on the fact that on a 

regular grid the distance between the point is predetermined and fixed but in a 

random sampling scheme there is a high probability to have clustered samples 

requiring roughly half the spacing between closest samples pairs (Hengl, 2006). 

5.3.3 Cartographic 

Cartographic techniques developed for a world of paper maps can be related to 

digital data represented in GIS systems (Goodchild, 2001) as national coverage 

DEMs are still obtained from interpolation of contour lines derived from digitised 

topographic maps. As previously introduced, scale as spatial resolution is 

strongly connected to traditional cartographic concepts of MLD and MLA. 

MLD, which is the smallest area that can be represented at a particular map 

scale, is calculated as a function of the map representative fraction or scale 

number (SN): 
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ABC = �D0 ∙ 0.000025 (5.3) 

According to Hengl (2006) MLD can be applied to calculate a suitable pixel size 

based on two assumptions: MLD can be considered equivalent to 4 pixel cells 

(Rossiter, 2003) and that MLD on the map is equal to 0.000025 m2 (Vink, 1975) 

The resulting pixel values are then calculated as: 

� ≤  �ABC4 = �D ∙ 0.0025 

(5.4) 

MLA, which is the smallest legible resolution, can range from a minimum 0.00025 

m to a maximum 0.0001 m on the map (Vink, 1975).  It is possible to use this 

range to estimate pixel size according to: 

� ≥  �D ∙ ABN = �D ∙ 0.00025 �0.0001� (5.5) 

5.3.4 Object orientated 

The correct representation of spatial objects, like soil polygons, with the smallest 

area and narrowest shape on the map is a function of pixel size. It is normally 

accepted that at least four pixels are needed to represent the object with the 

smallest area (aMLD) and two for the object with the narrowest shape (wMLD) 

(Hengl, 2006). This can be exploited in DSM to quantify the minimum pixel size 

necessary to correctly represent a soil map according to the formula: 

� ≤  
���
��O√�GHI4xGHI2  

 

S < 3 

S > 3 

(5.6) 

where S is the shape complexity index calculated as the perimeter of the object 

divided by the boundary ratio of a circle of equal area. 
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5.3.5 Inflection points 

A characteristic transect of 20km has been selected and extracted for the three 

study areas (Figure 5.2). 

Leitrim Meath Tipperary North 

  
 

Figure 5.2 - Characteristic transects for the three study areas overlying the DEMs. 

In order to calculate an optimal pixel size based on the terrain complexity, the 

elevation can be considered as the signal and the density of inflection points on 

the one dimensional transects the frequency of the signal, resulting in:   

� ≤  �2 × ���3� 
(5.7) 

where the pixel size (p) is calculated as the total length of the transect (l) divided 

by two times (half the average spacing) the number of inflection points (n�δz�). 

The inflection points used in the formula are points on a curve at which the 

curvature or concavity changes from being concave upwards to concave 

downwards or vice versa. In simple words, these are the peaks or valleys where 

topography rapidly changes from climbing to descending in the case of a peak or 

from descending to climbing in the case of a valley. These have been visually 

assessed and manually determined for the three areas. 
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The same concept applies to a two dimensional situation where pixel size can be 

determined from the total length of contour lines (l) according to:  

� =  N2 × ∑ � (5.8) 

where the total area (A) is divided by two times the summation of the contour 

lines (Σl). 
5.3.6 Information and complexity 

Kolmogorov complexity can be defined as the size of the smallest program that 

produces as output the raster investigated. This is closely related to compression 

algorithms (Kidner and Smith, 2003) where a sequence of numbers expressed in 

bits (lz�ω�) is compressed with an algorithm (z) to sequence (ω) of length (n) and 

the resulting complexity (K) can be calculated as: 

K�Y� = lim sup`→�
l� ��f�n   (5.9) 

For Shannon entropy was the measure of unpredictability in the random variable 

“elevation” corresponding to its information content expressed in bits. This was 

firstly applied for the analysis of DEMs quality investigating the scale effects on 

derived terrain attributes used in hydrological and soil erosion modelling (Vieux, 

1993; Vieux and Farajalla, 1994; Mendicino and Sole, 1997; Wang et al. 2001). 

These researches highlighted the potential of entropy as a measure of DEM 

quality proving the relationship with its information content, the effects of 

resampling at coarser pixel sizes and finally the effects of aggregation and 

smoothing on the reduction of entropy and loss of quality. 

The entropy (H) was calculated as: 
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H =  − ��i4 × log0 i4�l
!*!   (5.10) 

Where Pi is the probability of a pixel being classified as class type i and m is the 

number of classes. The theory suggests that entropy should decrease with the 

decline of information content. In the context of DEM analysis this should equate 

to minimum values of entropy for areas with low or null variability such as flat 

regions and maximum entropy for highly variable regions. According to Sharma 

et al. (2011) if a DEM is oversampled with fine resolution pixel sizes or 

undersampled with coarse one, the low spatial variation resulting from 

redundancy of information (fine resolution) or loss of micro relief (coarse 

resolution) should reduce the level of entropy thus the relevant information 

content and so relate to the variability observed in the DSM covariates. 

5.3.7 Sink analysis 

The number of sinks applied in this analysis will be determined using the sink 

algorithm developed for the Arc Hydro tool (ESRI, 2010), which does not require 

any parameterization. For each DEM pixel size tested, the number of sinks will 

be integrated with the total area of sinks revealing the hydrological alteration 

caused by that particular scale. 

5.3.8 Fractal dimension of stream network 

Fractal dimension, a scaling index of fractal nature, was calculated with the Box-

counting method (Sarkar and Chaudhuri, 1992; Taud and Parrot, 2005; Sun et 

al., 2006) in which datasets are collapsed into smaller pieces of information 

according to the box size and shape. Analysis based on this way of gathering 

data allows complex patterns to emerge and examine how observations of detail 

change with scale. The advantage of this technique is that rather than changing 

the magnification at which data are observed, box counting consent to change 

the size of the box used to inspect the data or process analysed (Abedini and 

Shaghaghian, 2009). This is very important for a scale analysis based on fractal 
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dimension as otherwise the scaling properties of the method would be imposed 

on the data and in the end would damage the analysis.  

As stated by Sun et al. (2006) the method to calculate the fractal dimension (FD) 

can be easily described using three main steps: 

- Counting the number of boxes (N) needed to cover all the stream network 

features and gradually increasing the size of the boxes using an iterative 

process in which each step (s) is determined following a power of 2; 

- Creating a scatter plot of the transformed (log) number of boxes versus 

the transformed (log) number of steps and fit a regression line; 

- Using the slope of the regression line to calculate the fractal dimension. 

The final two steps can be incorporated and resolved through a formula to 

calculate the fractal dimension: 

MI = log Dlog �  (5.11) 

The stream network of the three study areas was generated for the five tested 

pixel sizes (20 m; 80 m; 140 m; 200 m and 260 m) using the DEMs previously 

processed during the sink analysis approach. For each resolution a flow direction 

and a flow accumulation datasets were generated using the accumulation 

threshold method via the ESRI tool Arc Hydro from which the stream networks 

lines were then converted. The threshold, which is the number of pixels used to 

identify a stream, was selected according to the methodology presented by 

Sharma et al. (2011). Threshold values for each DEM were calculated as a 

proportion (1%) of the number of pixel sizes, e.g. the threshold for the 20 m DEM 

(Leitrim = 9272; Meath = 8428 and Tipperary North = 9352) is sixteen times as 

that of the 80 m DEM (Leitrim = 579; Meath = 527 and Tipperary North = 584); 

forty-nine times as that of the 140 m DEM (Leitrim = 189; Meath = 172 and 

Tipperary North = 191); and so on. The proportionate selection of accumulation 
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thresholds should avoid the chance of over-densification of the stream network 

for finer resolution DEMs. 

 

5.4 Results 

The results are presented in Figures 5.3 - 5.12 and Tables 5.1 - 5.8. Table 5.1 

illustrates pixel sizes estimated from sampling support. Table 5.2 illustrates pixel 

sizes estimated from MLD and their relationship with the relative scale numbers 

is presented in Figure 5.3; Table 5.3 illustrates pixel sizes estimated from MLA 

and their relationship with the relative scale numbers is presented in Figure 5.4; 

finally Figure 5.5 combines both MLD and MLA relationships summarising the 

results related to the cartographic concepts. Figure 5.6 presents the soil polygon 

patterns for the three study areas and Table 5.4 shows the pixel sizes estimated 

from aMLD and wMLD. Results from the inflection point approach are presented 

in Figure 5.7 (1D transects) and Figure 5.8 (2D contour lines). Complexity and 

information theory is presented in Table 5.5 (compression), Table 5.6 (entropy) 

and Figure 5.9 (normalized entropy behaviour). Based on the hydrological 

characteristics of the study areas, the last two approaches are summarised: 

Figure 5.10 illustrates the distribution of sinks for the three study areas; Table 5.7 

presents the sink analysis parameters; and Figure 5.11 shows the sink analysis 

overall trend at increasing pixel sizes for the number of sinks and total sink area. 

Figure 5.12 displays the derived stream networks for the three study areas, while 

Table 5.8 contains the fractal dimensions, networks length and density. The 

results for each approach are now analysed in detail. 

5.4.1 ESRI ArcGIS 

Leitrim with an extent of 33,360 m x 23,000 m according to the ArcGIS rule used 

for pixel selection should have a pixel size of 92.0m as the width is smaller than 

the height (p = 23,000 / 250). Based on the same principle, Meath should have a 

pixel size of 87.6 m, as the width in this case is smaller than the height (p = 21,900 
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/ 250), and Tipperary North a value of 108.4 m, as even in this case the width is 

smaller than the height (p= 27,100 / 250). 

5.4.2 Sampling support 

Pixel sizes for each study area were calculated according to the inspection 

density rule of thumb for both a free survey and a regular grid sampling (Table 

5.1). 

Table 5.1 - Pixel sizes estimated from sampling support. 

  
Area  
[m2] 

Samples p (random) 
[m] 

p (systematic) 
[m] 

Leitrim 370,877,182 1,483 125 250 

         

Meath 337,101,600 1,348 125 250 

        

Tipperary North 374,118,307 1,496 125 250 

 

As a result of the same sampling density of 4 points per square kilometre the 

three study areas obtain equal pixel size results: 125 m for the random sampling 

and 250 m for the systematic sampling. 

5.4.3 Cartographic 

An estimated pixel size according to MLD is presented in Table 5.2 for the 

1:10,560 detailed reconnaissance survey map, the 1:126,720 rationalised 

reconnaissance map and the 1:250,000 European target scale. 

Table 5.2 - Pixel sizes estimated from MLD. 

Scale SN MLD [m2] p [m] 

1 : 10,560 10,560 2,788 26.4 

1 : 126,720 126,720 401,449 316.8 

1 : 250,000 250,000 1,562,500 625.0 
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The results for the 1:10,560 scale are rather coarse with a MLD of 2,788 m2 and 

a pixel size of 26.4m, increasing to 401,449 m2 and 316.8 m at the rationalised 

reconnaissance map scale level and suggesting a suitable pixel size of 625 m 

and a MLD of 1,562,500 m2 for the European target scale (1:250,000). Using 

these results and expanding the equation, it is possible to generalize a 

relationship between pixel size and scale (Figure 5.3) highlighting a linear trend 

of the maximum pixel size according to MLD. The arrows in the figure show that 

pixel size should be equal or less than the pixel size, as represented by the trend 

line. 
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Figure 5.3 - Pixel size and scale number relationship using MLD. 

An estimated pixel size according to MLA is shown in Table 5.3 for the two 

extreme values of the resolution range (from a minimum of 0.00025 m to a 

maximum of 0.0001 m). The results suggest that for the detailed reconnaissance 

survey map a pixel greater than 1.1 m (0.0001) or 2.6 m (0.00025) will allow the 

correct visualization on the map of soil features. For the 1:126,720 scale pixel 

values will range between 12.7 m and 31.7 m and at the target European scale 

the pixel limit should be set no smaller than 25.0 m, or for best legibility no smaller 

than 62.5 m. 
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Table 5.3 - Pixel sizes estimated from MLA for both 0.00025 and 0.0001 values. 

Scale SN MLA [m] p [m] MLA [m] p [m] 

1 : 10,560 10,560 0.00025 2.6 0.0001 1.1 

1 : 126,720 126,720 0.00025 31.7 0.0001 12.7 

1 : 250,000 250,000 0.00025 62.5 0.0001 25.0 

 

As previously done for MLD a graph presenting the relationship between pixel 

size and scale has been created for MLA (Figure 5.4) illustrating the limits (0.0001 

m maximum limit of accuracy achievable on paper map and the 0.00025 

commonly considered value for the smallest legible resolution) of the minimum 

pixel size according to MLA. The arrows in the figure show that pixel size should 

be equal to or greater than the pixel size represented by the trend line. 
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Figure 5.4 - Pixel size and scale number relationship using MLA 

From the combination of the previously described relationships between pixel 

size and scale calculated for MLD and MLA a graph showing the optimum range 

according to cartographic concepts related to map design, visualization and 

generalization has been created (Figure 5.5). The arrows, in this case, show that 

pixel size should be contained between the pixel sizes represented by the two 

trend lines. 
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Figure 5.5 - Pixel size and scale number relationship combining MLD and MLA. 

According to these two cartographic concepts the 1:10,560 detailed 

reconnaissance survey map should have a pixel size value between 2.6 m and 

26.4 m; the 1:126,720 rationalised reconnaissance map between 31.7 m and 

316.8 m and the European target scale of 1:250,000 a pixel size between 62.5 m 

and 625.0 m.  

5.4.4 Object orientated 

The soil polygons with the smallest area (aMLD) and narrowest shape (wMLD) were 

selected from the 6 inches soil map for the three study areas (Figure 5.6), which 

have respectively 332 polygons (average size of 1.11 km2)  for Leitrim, 227 

polygons (average size of 1.48 km2) for Meath and 455 polygons (average size 

of 0.82 km2) for Tipperary North. 
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Leitrim Meath Tipperary North 

   

 

Figure 5.6 - Soil polygons patterns for the three study areas.  

As presented in Table 5.4, aMLD in the three study areas range from 3,382 m2 for 

Tipperary North, 4,960 m2 for Meath to 7,508 m2 for Leitrim. wMLD in the three 

study areas range from 38 m for Meath, 48 m for Tipperary North to 66 m for 

Leitrim. 

Table 5.4 - Pixel sizes estimated from aMLD and wMLD. 

  
aMLD  
[m2] 

p  
[m] 

wMLD  
[m] 

p  
[m] 

Leitrim 7,508 22 66 33 

          

Meath 4,960 18 38 19 

         

Tipperary North 3,382 15 48 24 

 

Leitrim has the soil polygons with the largest aMLD area and widest wMLD shape, 

resulting in a pixel size of 22 m and 33 m respectively. Meath has the soil polygon 

with the narrowest wMLD and an intermediate value for aMLD resulting in very 

similar values of pixel size of 18 m and 19 m. According to the formula, Tipperary 

North, characterized by the soil polygon with the smallest aMLD, requires a pixel 
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size of 15 m and to correctly represent the soil polygon with the narrowest shape, 

a pixel size of 15 m. 

5.4.5 Inflection points 

One dimensional 

Leitrim with the highest number of inflection points, a total of 61 over the 20 km 

transect obtains an optimal a pixel size of 163.9 m. Tipperary North presents 43 

inflection points with a corresponding pixel size of 232.6 m. Meath as expected 

has a very small number of inflection points, only 13 resulting in a pixel size of 

769.2 m, this large pixel value is a consequence of the flat landscape that does 

not have much variation, except for the river network creating alterations of the 

otherwise smooth terrain (Figure 5.7). 
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Figure 5.7 - Transects for the three study areas divided by the inflection points: 

a) Leitrim, b) Meath and c) Tipperary North. 

The distribution of the inflection points varies greatly through the three study 

areas: Leitrim presents a dense and homogeneous distribution as the drumlins 

characterising its landscape produce a recurring pattern; Meath has very few 

inflection points with an average distance of 1,500 m between them; Tipperary 

North has a dense distribution but less homogeneous than Leitrim as the 

inflection points appears more concentrated. 
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Two dimensional 

The same concept applies to a two dimensional situation where pixel size can be 

determined from the total length of contour lines (Figure 5.8) 

Leitrim Meath Tipperary North 

   

 

Figure 5.8 – Contour lines for the three study areas (5 m intervals). 

Figure 5.8 perfectly illustrates the extremely different landscapes investigated, as 

Leitrim which is characterised by the drumlin features presents a dense but 

homogenous distribution of contour lines with a total of 1,431 km resulting in a 

pixel size of 129.6 m. Meath with its flat homogeneous landscape has hardly any 

contour lines totalling only 490 km mainly across the river channel in the north 

side of the study area with a consequent pixel size of 344.0 m. Tipperary North 

presents a very dense area of contour lines in the middle of the study area 

characterised by the high relief contrary to the low relief areas at the two opposite 

sides in the north and in the south with only few sparse contour lines, resulting in 

an average pixel size of 116.9 m. 

5.4.6 Information and complexity 

The results of the compression, performed in R using the gzip compression 

algorithm according to the procedure presented by Hengl et al. (2013), are 
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presented in Table 5.5. For comparison a simplified dataset with the same 

number of pixels of the tested resolution but containing only a single value (1) 

was created to evaluate the amount of information stored.  

Table 5.5 - Results of the gzip compression algorithm for the tested resolutions: 

compression size for real data and simplified dataset, in brackets information 

density [B/km2]. 

  

Number of 
Pixels 

Compression size 
[B] 

Compression size 
of plain dataset [B] 

Leitrim      

20 m 927,190 2,962,717 (7,988) 12,318 (33) 

80 m 57,944 196,957 (531) 2,790 (7) 

140 m 18,932 65,125 (175) 1,691 (4) 

200 m 9,269 32,895 (88) 1,184 (3) 

260 m 5,478 19,748 (53) 980 (3) 

      

Meath      

20 m 842,754 2,711,131 (8,042) 9,488 (28) 

80 m 52,669 181,608 (538) 1,711 (5) 

140 m 17,214 60,469 (179) 1,508 (4) 

200 m 8,416 29,989 (89) 1,013 (3) 

260 m 4,988 18,234 (54) 925 (3) 

      

Tipperary North     

20 m 935,172 3,077,944 (8,227) 11,449 (30) 

80 m 58,469 205,896 (550) 1,876 (5) 

140 m 19,093 68,952 (184) 1,683 (4) 

200 m 9,349 34,867 (93) 1,208 (3) 

260 m 5,542 20,774 (55) 960 (3) 
 

The three study areas have different amounts of information according to their 

sizes, measured in bytes (B). Tipperary North, the largest of the three areas has 

more information than Meath, the smallest. This also depends on the information 

density (values in brackets) where Leitrim unexpectedly has the lowest 

information density with 7,988 B needed to describe each square kilometre, 

Meath a slightly superior value of 8,042 B/km2 and Tipperary North the highest 
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one with 8,227 B/km2. The plain datasets, the ones that have the same 

geographical shape and number of pixels of the original data but simplified 

information content with just one value for elevation, show a different picture. 

Here it is Leitrim that requires the largest amount of information despite the lowest 

area covered in comparison with Tipperary North. This probably affected by the 

more fragmented nature of this area, as it has the longest perimeter of the three 

and a more elongated shape. Also worth mentioning is the profound effect in 

terms of information content that resampling at a larger pixel size has on the 

DEM. 

Table 5.6 - Entropy and normalized entropy values for the different pixel sizes.  

  Entropy  Normalized Entropy Change 

Leitrim       

20 m 4.989 0.418 - 

80 m 4.986 0.523 10.5% 

140 m 4.985 0.583 5.9% 

200 m 4.985 0.577 -0.5% 

260 m 4.986 0.566 -1.2% 

        

Meath       

20 m 4.160 0.351 - 

80 m 4.158 0.440 8.9% 

140 m 4.162 0.491 5.1% 

200 m 4.156 0.529 3.8% 

260 m 4.157 0.562 3.3% 

        

Tipperary North       

20 m 5.977 0.601 - 

80 m 5.977 0.647 4.6% 

140 m 5.976 0.698 5.1% 

200 m 5.975 0.752 5.4% 

260 m 5.967 0.797 4.5% 

 

Vieux and Farajalla (1994) showed that resampling at coarser scales causes a 

loss of entropy in DEMs. The global entropy presented in Table 5.6 is influenced 

not only by the information content but also pixels number making it difficult to 
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assess the effect on information content from the reduction in the number of 

pixels. Stoy et al., (2009) suggest normalizing entropy by dividing it with two times 

the natural logarithm of the total number of pixels. The normalized entropy values 

differ between the three study areas with the completely flat Meath achieving the 

lowest value of 0.351 at the original 20 m resolution, Leitrim 0.418 and Tipperary 

North 0.501 and change according to pixel size variation. 

A coarser resolution will lead to a loss of information and hence a loss of 

normalized entropy. The resampling to a coarser pixel size should affect the 

elevation histogram distribution with fewer bins present, changing the relative 

proportions of remaining elevations, and ultimately leading to a loss of entropy. 
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Figure 5.9 - Normalized entropy behaviour at different pixel sizes. 

The areas behave very differently with the coarsening of window size as shown 

in Figure 5.9, Leitrim reaches the maximum level of normalized entropy of 0.583 

at 140 m of resolution after which the values start to decrease, while both Meath 

and Tipperary North present a constant increase with no sign of flattening in the 

investigated interval.          
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5.4.7 Sink analysis 

Leitrim presents a relevant number of sinks localized around the drumlins, this is 

probably due to the complex glacial formation of these distinctive 

geomorphological features that drives the runoff not to flow into a drainage 

network but to soak into the ground as infiltration. Meath with a characteristic flat 

landform and behaviour typical of alluvial plains shows a limited amount of sinks 

in the vicinity of the river and stream network probably due to the insufficient data 

density around these hydrological features created by the contours lines vertical 

spacing. With its composite landscape equally divided into lowlands and relief 

Tipperary North displays a limited amount of sinks in the alluvial plains and a 

good hydrological connectivity with a very restricted number of sinks in the more 

mountainous section (Figure 5.10). 

Leitrim Meath Tipperary North 

 
 
 

 

Figure 5.10 - Sink distribution at different pixel sizes for the three study areas. 

Results of the sink analysis are shown in Table 5.7, these confirm the visual 

assessment previously described. Leitrim with the highest number of sinks (486 

at 80 m) is definitely the area with the most challenging drainage network due to 

its complex glacial origin, the number of sinks at 20 m is 403 for a total area of 

Sinks 20m Sinks 80m Sinks 140m Sinks 200m Sinks 260m
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1,464,800 m2 covering 0.39% of the study area, it then spikes at 80 m to 486 for 

a total area of 6,585,600 m2 covering 1.78% of the study area. It later starts to 

display an opposite trend, a decrease of the number of sinks is associated with 

an increase of the total area. This pattern is caused by the growing pixel area 

coverage despite the fall in the number of pixels taken up by each sink, which is 

visible in the last column highlighting the number of pixels per sink. 

Table 5.7 - Sinks analysis: number, total sinks area, percentage of the overall 

study area, total number of pixels and number of pixels per sink. 

  Sinks Sinks Area 
[m2] 

Sinks on 
Total Area 

Total 
Pixels 

Pixels 
per Sink 

Leitrim   

20 m 403 1,464,800 0.39% 3,662 9.09 

80 m 486 6,585,600 1.78% 1,029 2.12 

140 m 253 17,404,800 4.69% 888 3.51 

200 m 179 18,640,000 5.03% 466 2.60 

260 m 115 19,536,400 5.27% 289 2.51 

      
Meath   

20 m 118 94,000 0.03% 235 1.99 

80 m 291 3,635,200 1.08% 568 1.95 

140 m 122 4,468,800 1.33% 228 1.87 

200 m 72 5,560,000 1.65% 139 1.93 

260 m 44 5,475,600 1.62% 81 1.84 

      

Tipperary North      

20 m 104 91,600 0.02% 229 2.20 

80 m 182 2,265,600 0.61% 354 1.95 

140 m 84 3,175,200 0.85% 162 1.93 

200 m 53 4,040,000 1.08% 101 1.91 

260 m 42 5,475,600 1.46% 81 1.93 

 

To some extent, a similar pattern can be seen for Meath despite important 

differences, the first is the very low number of sinks existing in this study area 

(118 at 20 m, 291 at 80 m declining to a modest 44 at 260 m) with three quarters 

less sinks compared to Leitrim, the second observation is the extremely 

pronounced rise from the 20 m to the 80 m pixel size in which the number of 
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sinks, the sinks area and total number of pixels almost treble despite the constant 

number of pixels per sink. Tipperary North has the lowest number of sinks across 

the tested pixel sizes for the three study areas, the smallest sink areas detected 

and therefore the lowest percentage of sinks in the total area.  

In order to clarify this behaviour, two graphs (Figure 5.11) were created, one for 

the number of sinks (a) and the other for the total sinks area (b). It is worth 

mentioning that all three areas have the highest number of pixels at 80 m for no 

obvious reason. This particular resolution seems to hold an amount of information 

that disrupt a uniform flow picked by the hydrological algorithm for sink selection. 

This effect could be not be based on interpolation artefacts created at this 

particular pixel size, it could have some physical or hydrological reason or simply 

be based on particular assumptions used for the selection of the number of cells 

used for analysis on which Arc Hydro is based on. The sinks area graph (b) shows 

a very similar trend for Meath and Tipperary North with the total area levelling off 

between 80 m and 140 m and between 140 m and 200 m for Leitrim. 

 

a)     b)         

 

 Figure 5.11 - Sink analysis overall trend at increasing pixel sizes for number of 

sinks (a) and total sinks area (b). 

Combining these observations does not suggest a conclusive answer on which 

pixel size satisfy hydrologically the three study areas as the coarsest resolutions 
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lower the number of sinks and pixels involved in the formation of these artefacts 

but at the same time increase the total area of sinks areas.    

5.4.8 Fractal dimension of stream network 

The results, presented in Figure 5.12 and summarised in Table 5.8, show that 

Leitrim has the longest and most dense stream network in comparison with the 

other two areas with a total of 411,963 km (EPA reference water features) and 

1.11 km/km2 expected from its geomorphology characterised by drumlins. Meath 

on the other hand has the shortest and sparse network with only 316,680 km of 

streams and a drainage density of 0.94 km/km2; Tipperary North with 

intermediate values of 384,055 km and 1.03 km/km2 reflects the basin 

characteristics of the area landscape equally divided between high and low 

reliefs. 

As shown on the right hand side of Figure 5.12, the magnified section of the 

drainage lines visibly illustrates the differences between the stream networks 

generated with different resolution DEMs. The shape of the drainage lines and 

the presence of artefacts are clearly visible expressions of the alterations that the 

topography experiences, such as more straight lines and less smooth bifurcations 

due to a flattening of local morphology.   
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Figure 5.12 - Stream network derived at different pixel sizes for the three study 
areas.  
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To better appreciate these changes Table 5.8 presents, for each study area and 

pixel size analysed, the values of fractal dimension, total length of the stream 

network the overall network density and the resulting number of features. 

Table 5.8 - Fractal analysis: fractal dimension, network length, network density 

and number of features. 

  

Fractal 
Dimension 

Network 
Length 

[km] 

Network 
Density 

[km/km2] 

Number of 
Features 

Leitrim     

EPA reference network 1.32 411,963 1.11 42,182 

20 m 1.37 323,470 0.87 6,572 

80 m 1.45 338,313 0.91 2,142 

140 m 1.52 486,937 1.31 1,921 

200 m 1.51 370,050 1.00 1,069 

260 m 1.50 303,060 0.82 672 

     

Meath     

EPA reference network 1.38 316,680 0.94 11,948 

20 m 1.33 147,551 0.44 3,091 

80 m 1.53 405,434 1.20 2,418 

140 m 1.57 394,377 1.17 1,466 

200 m 1.55 286,094 0.85 787 

260 m 1.57 345,035 1.02 752 

     

Tipperary North     

EPA reference network 1.31 384,055 1.03 41,059 

20 m 1.30 209,118 0.56 4,362 

80 m 1.46 429,697 1.15 2,515 

140 m 1.47 362,471 0.97 1,287 

200 m 1.50 380,229 1.02 1,035 

260 m 1.51 365,094 0.98 789 

 

Leitrim, with the highest number of stream features (42,182), has the longest 

(411,963 km) and most dense (1.1 km/km2) network in comparison with the other 

study areas, due to its complex drumlin landscape. Meath on the other hand has 

the lowest number of features (11,948), least dense (0.94 km/km2) and shortest 

network (316,680 km), as expected for its flat landscape. Tipperary North with its 
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varied geomorphology in which flat areas are interrupted by the steep slopes of 

the Silvermine Mountains has intermediate values with 41,059 stream features, 

and a stream density of 1.03 km/km2 and river length of 384,055 km respectively. 

The results of the fractal analysis, presented in Table 5.8, show at least three 

interesting effects observed in all three study areas regardless of their local 

morphology: 

- Fractal dimension of the stream network is increasing with pixel resolution 

and the trend appears to flatten above the 80 - 140 m pixel size; 

- The length of the network behaves erratically, sharply decreasing at 20 m (-

21% for Leitrim, -53% for Meath and -46% for Tipperary North) despite the 

fractal dimension of the network closely matching the EPA reference network; 

- The number of features (straight segments of the network) fall from the very 

precise digitised EPA network to the computed versions decreasing with the 

increase of pixel size. 

At a detailed visual inspection, the 20 m network closely matches the reference 

EPA network for the principal streams, but almost disappears completely for the 

secondary and minor streams, creating hardly any artefacts. This is surprising 

as the shape of the network better matches the EPA reference (Figure 5.11), 

supported by a very similar fractal dimension (Table 5.6), but just seems to prune 

the secondary and minor streams in the most flat and open areas. According to 

the fractal dimension, the three study areas should be best represented by the 

finest resolution tested at 20 m with the most similar fractal dimension value 

compared to the EPA reference network. 

 

5.5 Discussion 

The most promising empirical approaches, selected from the literature, were 

tested to identify an optimal DEM pixel size for DSM applications. They have 



108 

 

shown a diverse range of optimal pixel sizes accordingly to their inherent 

characteristics. Table 5.9 summarises the results obtained with the use of the 

eight empirical approaches allowing a detailed comparison with the optimal pixel 

sizes obtained in Chapter 4 using the presented experimental methodology. 

Table 5.9 - Pixel size results according to the eight tested empirical approaches.  

  

Leitrim 

[m] 

Meath 

[m] 

Tipperary North 

[m] 

Experimental methodology 
(no changes in window size) 
 

ESRI ArcGIS 

20 

 

92.0 

260 

 

87.6 

N/A 

 

108.4 

Sampling support: 

  - random 

  - systematic 

125.0 

250.0 

125.0 

250.0 

125.0 

250.0 

Cartographic 2.6 - 26.4 2.6 - 26.4 2.6 - 26.4 

Object orientated: ≥22.0 ≥18.0 ≥15.0 

Inflection points: 

  - 1D 

  - 2D 

163.9 

129.6 

769.2 

344.0 

232.6 

116.9 

Information and complexity: 

  - complexity 

  - entropy 

20.0 

140.0 

 

20.0 

N/A 

 

20.0 

N/A 

Sink analysis - - - 

Fractal dimension of stream 

network 20.0 20.0 20.0 

 

The first approach, which tested the GIS software ESRI ArcGIS rule, provides 

different resolutions for the three study areas appearing very detailed and precise 

at first glance. This can cause a false sense of security for the software user not 

aware of the simple rule used in the selection. The user could also be persuaded 
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to believe that the value provided is indeed the most suitable resolution for the 

data. The lack of scientific robustness of the ESRI ArcGIS formula (the shortest 

value between envelope width or length divided by 250) appears clear if 

confronted with the previous chapter results. Meath, which is characterised by a 

flat lowland landscape, preferred coarse pixel sizes while in this case obtains the 

finest resolution between the three study areas. 

The sampling support approach relies on the concept of inspection density. This 

directly links to the average number of inspections during a soil survey performed 

by the surveyors in which the “ideal” inspection density according to Avery (1987) 

is four observations per square centimetre of produced map. The resulting pixel 

sizes are the same for the three study areas as the value is calculated not taking 

into account the size or specific data content but estimated only from the map 

scale, making it an unreliable way to assess DEM pixel size for DSM applications. 

The cartographic approach based on MLD and MLA (Vink, 1975) allows selecting 

the smallest size area that can be represented on the map and the smallest 

legible delineation as presented by Rossiter (2003). The interaction between 

these two cartographic characteristics has allowed selection of the most suitable 

scale range for a particular paper map scale. This technique provides the same 

answer for the three study areas not taking into account their sizes and their 

specific data content. Although these are major limitations for DSM applications, 

the value of this approach lies in the selection of the finest theoretical pixel size 

below which a paper map loses its capacity of storing meaningful information and 

the increase of data content is simply redundant. This could be of some use in 

DSM, not for the selection of the optimal DEM pixel size to be used in modelling, 

but for the management of storage usage and processing power for the 

production of paper soil maps. 

The correct representation of the soil polygons with the smallest area and 

narrowest shape on the map is a function of pixel size. This concept presented 

by Lillesand et al. (2008) extends the finest legible resolution just discussed for 

the cartographic approach, redefining it with inherent data characteristics. The 
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pixel sizes calculated for the three study areas set the minimum pixel size needed 

in the representation of objects in maps already created, not in the selection of 

an optimal DEM pixel size for DSM modelling. 

The inflection points approach, based on the progressive smoothing of 

geomorphological features with the coarsening of cell size, has proved very 

successful in discriminating morphologically homogeneous or varied landscapes 

and assigning different pixel values accordingly as presented by Kienzle (2004). 

The 1D analysis conducted on characteristic landscape transects has resulted in 

a value of 163.9 m for Leitrim, 769.2 m for Tipperary North and 232.6 m for Meath. 

The 2D version based on 5m contour lines for all study areas obtained pixel size 

values of 129.6 m for Leitrim, 116.9 m for Tipperary North and 344.0 m for Meath. 

These results follow the behaviours already seen for the experimental 

methodology presented in the previous chapter, accurately distinguishing 

between different morphologies in line with results from Borkowski and Meier 

(1994) and Mackaness and Steven, (2006). Although the general 

geomorphological differences were detected, this approach was not precise in 

detecting the optimal pixel sizes observed in Chapter 4. The limiting factor might 

have been the approximation of relevant geomorphological features in the 

transect analysis and the choice of a large contour line spacing for the 2D version. 

The information and complexity approach (Hengl et al., 2013) focused on the 

DEM data content. According to this approach, the three study areas have an 

optimal pixel size at the 20 m resolution. The problem with this result can be due 

to the fact that Kolmogorov complexity is not related to the quality of information 

as it measures the quantity of information contained in a dataset (Allegrini et al., 

2003) and only indirectly accounts for its meaning. Also the compressed value is 

independent of the spatial distribution of the information and this has major 

limitations in DSM. On the other hand, the relationship between decreasing 

entropy and the decline of information content seems to capture the flattening of 

the curve at 140 m in the case of Leitrim. However, in the case of Meath and 

Tipperary North, the trend does not flatten in the investigated interval. 
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A disappointing lack of results characterises the sink analysis approach. It is not 

possible to find a pixel size value that hydrologically satisfies the three study 

areas as coarsening of pixel size lower the number of sinks and pixels involved 

in the formation of these artefacts but at the same time increases the total size of 

sinks areas. This contradiction does not allow obtaining any conclusive answer. 

This is in contrast with results presented by Sharma et al., (2011) for a large 

mountainous area in north-east India. The reason behind this could have some 

physical or hydrological explanation or simply be based on particular 

assumptions used by the Arc Hydro tool used in the sink analysis which is not 

possible to parameterise (Maidment, 2002). 

Finally, the application of the fractal dimension seems insufficient to accurately 

estimate an optimal DEM pixel size in this case. The three study areas obtain 

the same value of 20 m regardless of their size, data content or stream network 

characteristics. The 20 m network closely matches the EPA reference DEM for 

the principal streams with no artefacts created but at the same time almost 

completely misses the secondary and minor streams. The accumulation 

thresholds methodology chosen for the analysis (Sharma et al., 2011) may have 

a strong impact on the lack of results, as it fixes an arbitrary scale for the 

identification of streams. Sun et al. (2006) suggested that fractal dimension 

should be explored in conjunction with other classification approaches such as 

texture or spectral analysis. The idea first presented by Wood and Snell (1957), 

that relief measured over a range of sampling scales can be used to predict relief 

characteristics at other scales, is still valid (Lanza and Gallant, 2006). The use 

of fractal dimension to analyse relief still needs to be thoroughly investigated by 

the research community (Wood, 1996). 

 

5.6 Conclusions 

In this chapter an extensive review of the most established and frequently used 

empirical approaches to identify an optimal scale, in a wide range of disciplines, 
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have been tested and compared. Some have been proved not to have any useful 

role in the selection of DEM pixel size in DSM due to the lack of formal scientific 

principles behind them, as in the case of the ESRI ArcGIS, or failing to take into 

account the intrinsic characteristics of the data under scrutiny (cartographic, 

object orientated, sampling support and information & complexity). Others cannot 

be taken from their specific discipline and applied in DSM due to their limitations 

of applicability, as in the case of the sink analysis and the other hydrological 

approach. The inflection points approach based on the smoothing of terrain 

variability with the coarsening of pixel size has been demonstrated to provide 

evidence applicable in the context of DSM. This general application seems the 

most promising one despite the fact that at the moment it can only be used in the 

comparison of scale proprieties between different areas rather than in the 

selection of the optimal pixel size.  

In summary, comprehensive scale analysis of DEMs for DSM applications has 

appeared to be very demanding and beyond the scope of the tested empirical 

approaches. These approaches, which emerged from other scientific fields to 

address specific scale issues, cannot be transferred to DSM. More rigorous 

techniques are required in DSM to explore scale processes which are complex, 

localised and multiscale in nature.  
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6 WAVELET DECOMPOSITION 

6.1 Introduction 

Spatial variation in soil properties and processes is the result of complex, 

interrelated and scale dependent factors (Lark and Webster, 1999). In DSM, the 

drivers of soil variation are related to these factors through a set of inference 

models (McBratney et al., 2003). These models are applied to an area assuming 

that the spatial scale at which the model and the inputs operate is consistent 

across the entire geographic space. It is assumed that no scale dependency exist 

in that area and also stationarity in the relationships between the soil properties 

and covariates expressed in the model. It is evident from the results of Chapter 4 

that both these assumptions are unlikely to be met. As a highly scale dependent 

and non-stationary process, soil variation can be difficult to quantify and to model 

as the previous chapters showed. Fine resolution features can change with 

greater frequency or amplitude in some localised areas than in others or coarse 

resolution features can be recurring at much larger scales than the one analysed 

making it difficult to be fully captured and characterised. As soil predictions are 

scale dependent, in order to improve DSM models it is critical to find suitable 

scale relationships between environmental covariates and soil processes using 

a technique able to analyse variation in the frequency domain (Mendonca-Santos 

et al., 2007). 

In this chapter, one-dimensional wavelet analysis will be used to examine 

representative landscape transects and their relationship with the results of the 

DSM models presented in Chapter 4. In addition, two-dimensional wavelet 

analysis will also be used to spatially decompose the DEMs of Leitrim, Meath and 

Tipperary North to then derive terrain attributes and perform DSM modelling at 

each level of decomposition, with RF, as already presented in the experimental 

methodology (Chapter 4). As previously discussed, in nature soils variation is 

scale dependent, and this scale dependency is not random or equally distributed 

in a continuum but occurs as a function of interactive soil forming processes. 
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Wavelet decomposition is a method by which scale dependency at specific 

locations can be explored (Lark and Webster, 1999). This method should 

elucidate scale behaviour in a more straightforward and robust manner than the 

empirical approaches presented in Chapter 5. Soil as a complex system is the 

result of interconnected parts that as a whole exhibit properties not evident from 

the properties of the individual parts (Ibanez and Saldana, 2008). As DSM 

depends on finding the right relationships between soil and environmental 

covariates, the tested wavelet technique should be able to decompose DEMs into 

different scales, offering a valuable insight into the scale of variation of these 

covariates. 

Wavelet decomposition was developed for signal processing in geophysical 

explorations particularly suited to analyse non-stationary data with high 

fluctuations and physical processes operating at a broad range of scales. Wavelet 

is the tool of choice in signal processing for compression and de-noising 

operations, it is particularly suited in the analysis of signals characterised by a 

large number of scale dependent processes (Labat, 2005). The use of wavelet 

analysis is intended to separate the signal or “real” data information from the 

noise which does not exhibit any correlation (De Bartolo et al., 2011). The basic 

aim of the wavelet analysis is to determine the frequency content of a signal while 

measuring its spatial variation. By considering the noise levels separately at each 

wavelet frequency (scale), this type of analysis allows adjusting a de-noising 

algorithm accordingly, capturing signal variation locally at a scale that matches 

the local detail. 

In the field of pedometrics, since the late nineties, wavelet analyse has been 

applied for the investigation of scale properties of soil data (McBratney, 1998; 

Lark and Webster, 1999). The wavelet decomposition can address the problem 

of spatial dependency by partitioning separate spatial components (McBratney, 

1998) that can then be mapped independently to be used in DSM analysis as 

presented by Mendonca-Santos et al. (2007). Milne and Lark (2009) used wavelet 

analysis to determine the scale dependency in soil process models, identifying 
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scales at which particular models captured particular processes and thereby 

improving model predictive performance. They also demonstrated that particular 

models perform better at different points in the landscape, in effect illustrating 

non-stationarity in model configuration. Wavelets decompose spatial variability 

both in according to a particular scale and at a particular geographic location. 

This method is therefore ideally suited to determine whether optimising the 

geographic space and spatial scale at which the DSM model is formulated has 

consequences for DSM performance. 

 

6.2 Materials and Methods 

The Discrete Wavelet Transform (DWT) is a type of numerical analysis created 

for time/space frequency transformations in which a wavelet function is discretely 

sampled over a signal capturing at the same time frequency (scale) and location 

of the information. It is especially suited for the analysis of regularly sampled data 

as the DEM (Milne and Lark, 2009). The wavelet comprises a set of localised 

functions which are non-zero for only a narrow window having a compact support. 

Transforming a signal with a chosen basis function results in a wavelet coefficient, 

describing the local variation of the signal within a scale interval. 

Wavelet decomposition was applied to the three test areas presented in Chapter 

3. The pedological and geomorphological complexity of the three investigated 

areas was deemed appropriate for the purpose of the wavelet analysis. 

6.2.1 One-Dimensional DWT 

Representative transects of 20,000 m were extracted from the EPA 20 m DEM 

with a Northwest-Southwest direction (Figure 6.1).  
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Leitrim Meath Tipperary North 

  

 

Figure 6.1 - Representative transects for the three study areas overlying the 

DEMs and 6 inch soil polygon boundaries.  

The transects intersect the 6 inches soil maps of the study areas respectively: 

- Leitrim, 11 map units (Allen, Ardrum, Ballyhaise/Corriga Complex, 

Drumkeeran, Garvagh, Howardstown, Mortarstown/Kinvarra Complex, 

Rinnagowna and Unclassified); 

- Meath, 12 map units (Allen, Ashbourne, Boyne Alluvium, Drombanny, 

Dunboyne, Dunboyne Shaley Phase, Dunsany, Feale, Gortnamona, 

Patrickswell, Rathowen, Street); 

- Tipperary North, 10 map units (Ballynalacken, Borrisoleigh, Borrisoleigh 

Steep Phase, Borrisoleigh/Knockshigowna Complex, Doonglara, Elton, 

Feale, Gortaclareen, Kilcommon, Knocknaskeha/Doonglara Complex).  

From a geomorphological point of view the three profiles presented in Figure 6.2 

exemplify the underlying landscape characteristics of the study areas captured 

by the DEM. 

0 5 10 20 30 

Km 
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Figure 6.2 - Profiles of the one dimensional transects investigated. 

Leitrim (Figure 6.2a) characterised by a drumlins landscape shows a constant 

number of elevation fluctuations along the transect, similar in their periods and 

amplitude, as the drumlins have an almost constant 100 m height and 800 m 

distance from crest to crest. Meath (Figure 6.2b) situated in the Meath plain is 

characterised by a flat landscape interrupted only by a localised fluvial erosion 

formation creating an almost constant profile. Tipperary North (Figure 6.2c) 

located in the Southern Hills, where shale plateaux had been eroded creating 

steep slopes, is characterised by a varied profile with peaks reaching 300 m in 

height and valleys falling below 100 m. 

The representative transects for the three study areas were analysed with one-

dimensional DWT performed employing Daubechies wavelet with six vanishing 
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moments (db6) using the Wavelet toolbox of Matlab software (Mathworks, 2011). 

Wavelet decomposition was applied to the transects at four scales corresponding 

to pixel resolutions of 40, 80, 160 and 320 m, creating four levels of approximation 

(a1, a2, a3 and a4) with associated detail (d1, d2, d3 and d4). The limit of four scales 

was chosen as it is the closest match to the size of the largest pixel resolution 

tested in Chapter 4. 

A de-noising algorithm based on the thresholding method (Mallat, 1989) 

independently set with intervals using rigorous Stein’s Unbiased Risk Estimate 

(SURE) thresholds (Rosas-Orea et al., 2005) was applied to the decomposed 

signal. The SURE method allows direct approximation of the mean-squared error 

of an estimate from the data, without requiring knowledge of the true parameter 

values. Therefore, instead of postulating a statistical model for the wavelet 

coefficients, it is possible to directly parameterise the de-noising algorithm as a 

sum of elementary nonlinear processes with unknown weights (Rosas-Orea et 

al., 2005). The resulting de-noised profile with associated residuals, will then be 

compared with the original profile and visually evaluated against the transect 

classification accuracy of the DSM model developed in Chapter 4 (using the EPA 

20 m DEM). 

6.2.2 Two-Dimensional DWT 

Two-dimensional wavelet is a valuable technique for summarising and classifying 

sequences, functions and images. It can be used in DSM to explore 

environmental covariates used as inputs in predictive modelling (Mendonca-

Santos et al., 2007). Two-dimensional wavelets are outer products of three one-

dimensional wavelets. In essence, they are the result of extrapolating a matrix 

from the wavelet function (�) vector in the horizontal (6.1), diagonal (6.2) and 

vertical (6.3) direction and the scaling function (f) vector (6.4) of three one-

dimensional wavelets (Daubechies, 1992), according to: 
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�o��, �� =   ��x� f�y� (6.1) 

�I��, �� =   ��x� ��y� (6.2) 

�q��, �� =  f�x�  ��y� (6.3) 

f��, �� =  f�x�  f�y�   (6.4) 

The EPA 20 m DEM was analysed with two-dimensional discrete wavelet 

transform using the Wavelet toolbox of Matlab software (Mathworks, 2011). The 

procedure creates at each level an approximation (a) with associated horizontal, 

diagonal and vertical detail (dH, dD and dV). The original image can be 

reconstructed by combining the approximation and the detail (Original = a1 + d1). 

Each following level is the result of adding the subsequent approximation and 

detail (L1 = a2 + d2, L2 = a3 + d3, L3 = a4 + d4 and so on). The four resulting 

decomposition levels (L1, L2, L3 and L4) were used to derive eleven terrain 

attributes (slope gradient, aspect, curvature, plan curvature, profile curvature, 

slope height, valley depth, normalized height, standardized height, mid-slope 

position and convergence index) and develop DSM models at different scales 

(altering pixel and window sizes) using the methodology presented in Chapter 4. 

These results will be then compared with the classification accuracy of the DSM 

model applied to the original EPA 20 m DEM. 

 

6.3 Results 

The results are presented in nine figures (Figure 6.3 - 6.11) and one table (Table 

4.1). Figure 6.3 illustrates the wavelet 1D decomposition at four levels of 

approximation with associated detail and detail coefficients for the representative 

profile in Leitrim, while Figure 6.4 and Figure 6.5 show the wavelet 1D 
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decomposition results for Meath and Tipperary North respectively. Figure 6.6 

summarises the results of the de-noising operation (original profile, de-noised 

signal and residuals) matching them with the DSM model results for the same 

transect in Leitrim, while  Figure 6.7 and Figure 6.8 summarises the same de-

noising operation respectively for Meath and Tipperary North. Figure 6.9 displays 

the 2D wavelet decomposition of the DEM of Leitrim at four levels of 

approximation with associated detail component, while Figure 6.10 and Figure 

6.11 display the 2D wavelet decomposition for Meath and Tipperary North 

respectively. Finally, Table 6.1 presents the classification accuracy of the DSM 

model for the three investigated areas using the spatially decomposed DEMs. 

6.3.1 One-Dimensional DWT 

Decomposition 

The effect of decomposing the elevation profile of Leitrim with the one-

dimensional DWT technique is presented in Figure 6.3 where it is possible to note 

that the first decomposition (a1) at 40 m did not alter the profile significantly, while 

the detail (d1) shows only one area at approximately 6,000 m, corresponding to 

two drumlins very close to each other creating a steep valley, having a moderate 

level of noise. The second decomposition (a2) shows lower level of noise but 

more frequently and associated with the fluctuations in elevation related to the 

position of the drumlins. The third decomposition (a3) shows a similar alternating 

pattern of the noise but at greater magnitude, with four areas achieving high 

values (± 2) at approximately 2,500, 6,000, 11,000 and 16,000 m. Finally, the 

fourth decomposition (a4) shows a similar alternating pattern of the noise as a3 

but at greater magnitude, with four areas achieving high values (± 5) at 

approximately 0, 2,500, 6,000 and 10,000 m. 
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                                   Position [m]                                                          Position [m] 

Figure 6.3 - 1D wavelet decomposition of Leitrim representative transect (s) at 

four levels of approximation (a1, a2, a3 and a4) with associated detail (d1, d2, d3 and 

d4) and details coefficients (cfs). 

The final decomposition at level 4 (equivalent to 320 m pixel size) alters 

considerably the profile over-approximating the height of the drumlins at 0, 2,500, 

6,000, 11,000 and 16,000 m by more than 5 m. To summarise the detail 

significance, in the top right corner of the figure, the detail coefficients are 

presented divided by scale (1, 2, 3 and 4) with darker values indicative of higher 

values of the coefficients. In general, the most relevant noise events appear on 

the transect at scale 4 at 0, 2,500 and 6,000 m and at scale 3 at 16,000 and 

11,000 m. 
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Figure 6.4 - 1D wavelet decomposition of Meath representative transect (s) at 

four levels of approximation (a1, a2, a3 and a4) with associated detail (d1, d2, d3 and 

d4) and details coefficients (cfs). 

The one-dimensional wavelet decomposition for Meath (Figure 6.4) shows, as 

expected, very little noise at the four levels tested. The profile appears less 

homogeneous and more fragmented that what actually is in reality. This is due to 

the height exaggeration that makes the river channel, cutting the profile in the 

middle of the image, seem a prominent feature in the landscape. The difference 

in elevation between the river Boyne (42 m), its embankment (45 m) and the 

highest point in the floodplain (50 m) is lost over the transect length. In terms of 

noise, from the detail coefficients summary box it is possible to see two areas 

with high detail coefficients in the middle of the transect at approximately 10,000 

m, where the profile intersects the river Boyne. At both, scale 3 and scale 4 this 

section of the profile shows the highest detail coefficients. It is worth mentioning 
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that the colour palette is adapted to each transect and set with the highest (black) 

and lowest (white) values obtained during the transect decomposition analysis. 

 
                                   Position [m]                                                          Position [m] 

Figure 6.5 - 1D wavelet decomposition of Tipperary North representative transect 

(s) at four levels of approximation (a1, a2, a3 and a4) with associated detail (d1, d2, 

d3 and d4) and details coefficients (cfs). 

The result of decomposing the transect of Tipperary North with the one-

dimensional DWT technique is presented in Figure 6.5, where it shows very little 

noise at the first scale tested, obtaining low values (±0. 2) of detail. The second 

decomposition shows an increase in noise at about 9,000, 15,000 and 19,000 m. 

The third decomposition presents a marked increase (±2) at about 9,000 m and 

also a general increase of one area of the transect between 11,000 and 13,000 

m. The final level of decomposition, scale 4, shows four marked areas of noise at 

5,000, 9,000, 12,000 and 19,000 m. In conclusion, from the detail coefficients 
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summary box, it is possible to note 5 areas obtaining high values of detail: 15,000 

m (scale 2), 9,000 m (scale 3) and 5,000, 9,000 and 12,000 m (scale 4). 

De-noising 

The comparison shown in Figure 6.6 was employed to visually compare the de-

noised signal of Leitrim with the DSM model results obtained by RF for the EPA 

20 m DEM (Figure 6.6a), as presented in Chapter 4. The classification accuracy 

of the DSM model ranges from 0 to 100% and has been classified into five groups 

(0-20%, 20-40%, 40-60%, 60-80% and 80-100%) to facilitate its interpretation. 
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Figure 6.6 - Results of the de-noising operation on Leitrim representative 

transect: a) classification accuracy of the DSM model (Chapter 4) for the transect 

area; b) de-noised signal compared with the original profile and c) residuals of 

the noise removal process. 

Leitrim displays three areas of poor classification: 0-2,500 m, 8,000-9,000 m and 

17,500-20,000 m. The first area 0-2,500 m corresponds to an area detected by 

the 1D DWT with high noise values and partially reduced by the de-nosing 
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algorithm, as it is visible on Figure 6.6b, by removing a small peak at the 

beginning of the transect and raising the height of a valley at 2,500 m. For the 

remaining two areas of poor classification accuracy, two adjustments were made 

by the algorithm at 8,500 and 9,000 m reducing the height of the corresponding 

peaks and at approximately 19,000 m another peak was reduced in height. 
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Figure 6.7 - Results of the de-noising operation on Meath representative transect: 

a) classification accuracy of the DSM model (Chapter 4) for the transect area; b) 

de-noised signal compared with the original profile and c) residuals of the noise 

removal process. 

For Meath, Figure 6.7 shows very little change between the original profile and 

the de-noised one as previously shown in the 1D DWT decomposition where little 

noise detected on this transect in comparison with the other two investigated 

areas. Visually, it is very difficult to assess if the de-noising algorithm has 

changed the profile in a significant way as the two lines appear very close to each 

other. This is due to the fact that in order to facilitate the evaluation of findings, 

all the figures (Figure 6.6, Figure 6.7 and Figure 6.8) have been created with the 

same height scale to make the comparison with the DSM model results more 

realistic.   
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Figure 6.8 - Results of the de-noising operation on Tipperary North representative 

transect: a) classification accuracy of the DSM model (Chapter 4) for the transect 

area; b) de-noised signal compared with the original profile and c) residuals of 

the noise removal process. 

The comparison between the results of the DSM model with the de-noising 

operation for Tipperary North is presented in Figure 6.8. The DSM model shows 

four areas of poor classification: 4,000-6,000 m, 9,000 m, 12,000 m and 16,000-

20,000 m. The first area 4,000-6,000 m corresponds to a region on the transect 

previously detected by the 1D DWT with high noise values in which the 

thresholding algorithm has reduced the height of two peaks by more than 5 m 

reconstructing the profile from the four approximations and the processed details. 

Also, the peaks on the profile at 9,000, 12,000 and 12,500 m were modified by 
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the de-noising operation as well as raising the height of the valleys at 9,000, 

11,000 and 12,000 m. 

6.3.2 Two-Dimensional DWT 

As previously presented for the 1D DWT analysis, a visual assessment is 

effective in the examination of large profile changes, such as peaks, drumlins or 

valley bottoms but has limitations in the detection of minor alterations from the 

de-noising algorithm on the profile in the case of low relief transects. A more 

comprehensive way of analysing scale relationships in DSM is to extend the 

analysis to a full spatial decomposition performed with the 2D DWT. Using the 

spatially decomposed DEMs as input for the DSM models, developed in Chapter 

4, will allow a detailed comparison of classification accuracies. 

 

Figure 6.9 - Wavelet decomposition of the DEM of Leitrim at four levels of 

approximation with associated horizontal, diagonal and vertical components. 
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Figure 6.9 shows the two dimensional decomposition performed for Leitrim at four 

levels L1, L2, L3 and L4 generating four approximations with associated horizontal, 

diagonal and vertical details. The first and second level of decomposition did not 

alter the DEM significantly as already observed with the 1D DWT decomposition 

of the transect in Leitrim. The third level of decomposition presents a slight 

increase in the vertical detail as does the fourth one, mainly in the northwest and 

southeast corners of the DEM. These two areas denote the shift between the 

drumlin belt and area of higher relief (250 m in the northwest and 120 m in the 

southeast). 

 

Figure 6.10 - Wavelet decomposition of the DEM of Meath at four levels of 

approximation with associated horizontal, diagonal and vertical components. 

As previously discussed, the homogeneous DEM of Meath does not consent a 

visual assessment of the decomposition operation as the spatial variation of 

elevation is limited in a flat landscape with little abrupt differences in height. 
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Figure 6.11 - Wavelet decomposition of the DEM of Tipperary North at four levels 

of approximation with associated horizontal, diagonal and vertical components. 

The 2D DWT decomposition for Tipperary North (Figure 6.11) shows a more 

interesting pattern than the other two areas for L1, as the associated horizontal 

diagonal and vertical detail components appear to capture a fair amount of fine 

resolution noise. The horizontal component of L2 seems to have a low level of 

noise in comparison to the diagonal and vertical details. It is possible to observe 

a more structured level of detail in L3 as the three directional details have higher 

values for the Southern Hills slopes. This area of high relief crosses the 

investigated area from southwest to northeast leaving two parallel areas of low 

relief in the opposite corners. This trend continues in L4 where a large area of 

high relief seems to have even higher values of detail in comparison with the 

plain, also some of the prominent peaks obtain the highest values of detail. 
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In Table 6.1 the results of the DSM model performed with a classification tree 

(RF) are presented for the original EPA 20 m DEM and the four levels of 

decomposition (L1, L2, L3 and L4). 

Table 6.1 - Classification accuracy of the DSM model for the three study areas 

using the spatially decomposed DEMs. 

  
Leitrim              

[%] 
Meath               

[%] 
Tipperary North 

[%] 

Original DEM 56.9 38.8 44.6 

L1 58.1 39.8 44.7 

L2 56.5 41.5 44.9 

L3 56.1 43.9 46.0 

L4 57.9 46.3 45.8 

 

The classification accuracy in Leitrim increases from 56.9% of the original DEM 

to 58.1% at L1 to drop back to the previous value for L2 at 56.5% just below the 

original value, remaining at a comparable low value for L3 (56.1%) and increasing 

again for L4 (57.9%). Meath with the lowest initial value of classification accuracy 

for the original DEM at 38.8% increases slightly at L2 (39.8%) and again at L3 

(41.5%) to then remarkably rise to 43.9% at L3 and at 46.3% at L4, representing 

an improvement in accuracy by almost a fifth. Tipperary North shows no 

significant variation at L1 (44.7%) and L2 (44.9%) with only a slight rise at L3 

(46.0%) and L4 (45.8%). 

 

6.4 Discussion 

Wavelet decomposition performed with the 2D DWT has been proved effective in 

dealing with elevation information, in the form of DEMs. The DWT appears a 

powerful technique in soil science to quantify signal changes from one scale to 
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another through the dilations and translations of a wavelet function as suggested 

by McBratney et al. (2003) and Lark (2005). 

The one-dimensional technique applied to the three representative profiles was 

tested in very different pedological and geomorphological landscapes, such as 

the drumlin belt in Leitrim, the great plain of Meath in Meath and the Southern 

Hills in Tipperary North. It has shown to be particularly suited to areas with 

variable landscape like Leitrim with the periodic fluctuations typical of the drumlins 

or Tipperary North where the alternating peaks and valleys create a more 

fragmented signal with rapid changes in elevation. The profile of Meath was 

difficult to assess as the lack of abrupt changes in height made it difficult to 

visually appreciate the effects of the 1D DWT decomposition. 

The aim of the second phase of the 1D DWT experiment was to assess if the 

different level of approximation with associated detail were in some way related 

to areas of poor performance of the DSM model presented in Chapter 4. The 

transect of Leitrim was particularly interesting as the first 2,500 m performed 

poorly in terms of classification accuracy of the DSM model as well as having 

high detail coefficients at L4, suggesting a correspondence between the noise in 

the signal and the lack of predictive power of the model. The same happened for 

Tipperary North where the height of five peaks was reduced by the de-noising 

algorithm and three valleys were raised. The Meath profile has proved very 

difficult to visually asses as the lack of major morphological changes makes any 

variation undetectable.  

The spatial decomposition with the 2D DWT seems to select only a small fraction 

of the total variance present in the DEM while still maintaining the general 

structure of the spatial variation, in line with results of Lark and Webster (2004). 

During the decomposition at the first level, the size of the wavelet used in the 

analysis is relatively small, offering accurate location resolution of fine scale 

phenomena, while at the increase of the wavelet size, larger and larger processes 

can be captured leading to coarse scale phenomena. The comparison of the DSM 

model trained using terrain attributes created with the decomposed 
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approximations of the DEM, shows a large improvement in the value of 

classification accuracy for Meath, a rise of 7% at the increase of the wavelet size 

to L4. Also a minor increase of 1% was observed for Leitrim at L1 and L4 and for 

Tipperary North at L3 and L4 compared with the original EPA 20 m DEM. This 

seems to suggest that even a small reduction in variance, as in the case of Meath, 

can have a considerable impact on the classification accuracy of DSM models 

supporting the results that Mendonca-Santos et al. (2007) obtained for a flat area 

in NSW Australia. Removing redundant or artifactual information from the DEM 

2D DWT seems to improve the way in which DSM models link topography with 

soil variation. The source of this variation is uncertain, it could be due to artefacts 

introduced during the DEM creation with the ANUDEM software by spline 

interpolation of contour lines (Hutchinson, 2007). Alternatively it could be caused 

by uncertainties in the original height information used for the creation of the 

contour lines. Oksanen and Sarjakoski (2006) suggested that DEM errors appear 

to be caused by spatial variation in different frequency classes: low-frequency 

errors (systematic errors in contour data) and high-frequency errors (noise 

between the DEM and the real terrain). In addition, the uncertainty could simply 

be resulting from redundant information not useful in identifying soil-terrain 

relationships exploited by the DSM model. It is worth mentioning that the results 

of the experimental methodology (Chapter 4) showed better classification 

accuracies at the optimum resolution for the three areas. 

2D DWT decomposition is a robust tool to study the effect of scale on DEMs for 

DSM applications. This technique seems to avoid the problem of decrease in 

information content and of introducing artefacts due to changes in grid resolution, 

offering the possibility to create a DEM more suited in the creation of terrain 

attributes so important in DSM modelling. This use of the 2D DWT could offer an 

innovative way to gain new information from DEMs contributing to better 

predictions in DSM modelling. As Biswas et al. (2013) suggested, once the 

dominant scale has been identified using 2D DWT, the information could be used 

for scale-specific prediction of soil properties. 
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One limiting factor could be the restrictions on the scale size selection as this is 

implicitly imposed by the initial value as each subsequent level is its double. In 

light of the fast development of remote and proximal sensing technologies 

offering vast quantities of fine resolution data, spatial decomposition with wavelet 

could be extended to other environmental covariates used regularly in DSM such 

as climatic properties, land cover, land use or other soil properties.  

6.5 Conclusions 

In conclusion, 2D wavelet analysis has shown that by spatially decomposing a 

DEM it is possible to remove specific sources of variation, which might be 

unnecessary for DSM analysis, improving classification accuracy. The results 

obtained for the low relief homogeneous area seem to suggest that for this 

specific type of landscape wavelet decomposition could enhance the 

classification accuracy of DSM models used for soil taxonomic units. Although it 

improved classification accuracy in comparison with the original EPA 20 m DEM, 

the experimental methodology (Chapter 4) showed better classification 

accuracies at the optimal scale for the three study areas. The real contribution of 

wavelet decomposition was its ability to extract the relevant spectral scales for 

each area. However, this still leaves unresolved the issue of incoherent scale 

response observed for the three study areas. This issue might be better solved 

with a methodology capable of coping with multiple scales, confirming the 

assumption that an independent stratification approach is needed to 

appropriately take soil spatial variation into account. 
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7 MULTISCALE METHODOLOGY 

7.1 Introduction 

The soil forming processes that influence pedogenesis are composed of different 

nested features interacting with each other at various locations, with distinctive 

intensities and across multiple scales. These statistical relationships between soil 

taxonomic units or properties and environmental covariates are at the centre of 

DSM modelling (Lark, 2006). Corstanje et al. (2008a) used a nested analysis to 

determine whether a particular model form best represents soil processes at 

particular scales. It is clear from this work that scale at which a soil landscape 

model is formulated has consequences for the model performance and that the 

assumption that a single DSM model configuration across a unitary geographic 

space is one that needs exploring in more detail. 

As previously discussed a multiscale methodology seems particularly suited for 

the intricate organisation of soil formation, especially in the context of DSM 

analysis, where this approach could contribute to enhance the modelling of soil 

spatial variability. Lagacherie (2008) reviewing the proceedings of the first 

international workshop on DSM, suggested that more work was needed to 

develop functions able to deal with the multiscale variations observed in soils. 

Behrens et al. (2010b) suggested that attention to techniques able to address 

scale issues in DSM is still limited. The experimental results presented in Chapter 

4 showed that two main patterns of scale behaviour existed for the tested areas, 

the incoherent scale response across the areas suggested that further 

subdivisions were needed. 

In this chapter a multiscale methodology based on geostatistics and spatial 

clustering will be used to examine three study areas with distinctive 

geomorphologies and soil types. By spatially characterising local statistics 

through moving window variograms, a segmentation of the DEMs will be 

implemented with k-means clustering. Each area will then undergo DSM 

modelling with RF as already presented in Chapter 4. A final comparison between 
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these results and the ones obtained without segmenting the DEM will be made 

and discussed.  

 

7.2 Materials and Methods 

As previously discussed in Chapter 3, the variogram is a central concept in 

geostatistics as it is used to analyse the structure of spatial variation in data. The 

global variogram represents the overall variation in elevation of the DEM, while 

local variograms characterise deviations from this. In the global approach a 

variogram is produced including in the calculation all the cells of the DEM, as 

previously discussed. The produced values at a specific location are dependent 

on all the values in the DEM. If the assumption of stationarity is not satisfied it 

should be possible to observe differences in the properties of the variogram 

caused by local sources of variation. If this is the case a more local approach in 

the calculation of the variogram should be able to detect these differences. A 

technique offering the possibility to calculate these local changes is the moving 

window (Haas, 1990). 

A moving window variogram approach was used to classify spatial variation and 

develop a multiscale methodology for DSM analysis. Local variograms were used 

to describe spatial patterns and structures of the DEMs of the three investigated 

areas. The analysis was carried out using the EPA 20 m DEM for the three test 

areas presented in Chapter 3. All the variograms were created with R software 

(R Development Core Team, 2011) using the gstat package (Pebesma and 

Wesseling, 1998). K-means spatial clustering was performed in R with the 

package stats. The DSM models, created for each spatial cluster, were 

developed using RF as previously presented in Chapter 4. 

The multiscale methodology presented in this chapter is composed of three 

sections:  

- moving window variograms to compute local statistics; 
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- clustering of the computed parameters to segment the DEM; 

- multiscale DSM modelling. 

7.2.1 Geostatistics 

A variogram is commonly presented as a graph showing a mathematical model 

describing the variability of data in relation to distance. The semivariance γ(h) is 

calculated as half the variance of the increments with lag n(h) of the number of 

paired data from location xi  (z(xi) and z(xi + h)), as stated: 

.�ℎ� =  12 1��ℎ� ��3��4
1�2�
4*! � − 3��4 + ℎ��0 

(7.1) 

From the formula, it is possible to deduce that pairs of measurements with smaller 

values of h, in other words that are close to each other, have smaller variance as 

compared to measurements which are far apart. The variance gradually 

increases till the distance of separation reaches a value the range (a) beyond 

which the variance levels out and becomes independent of the distance. The 

maximum variance reached at that point is called sill (c=c0+c1), it is obtained by 

adding the variance realised with a hypothetical distance of 0 called the nugget 

(c0) to the partial sill (c1) that is the variance of the spatially structured component. 

Different mathematical functions (models) can be used to fit to the experimental 

semi-variance values. The variogram model used in this research is the spherical 

one, as according to Nanos and Rodriguez (2012) it has been proved in modelling 

practice as the most convenient for multiscale variation. The spherical model is 

an adapted quadratic function for which at some distance a (range), pairs of 

points will no longer be autocorrelated and the variogram reaches an asymptote, 

according to: 
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(7.2) 

Variograms in this study were computed using the REML method (Marchant and 

Lark, 2007a) as it gives a better representation of the underlying variation in 

comparison to the classical method of moments when used with data on a regular 

grid like the DEM in this case (Lark and Cullis, 2004). 

In geostatistics soil properties are treated as the realizations of a regionalised 

random function, implicitly assuming a certain degree of stationarity (Webster, 

2000). By assuming that the underlying stochastic process is stationary, the joint 

probability distribution of the random function is assumed independent from its 

geographic location (Corstanje et al., 2008b). In other words, it does not change 

over space but is the same for all the soil samples over an entire survey area. By 

computing a variogram selecting only a small number of cells of the DEM, it 

should be possible to obtain a local estimate of the variogram parameters for that 

specific neighbourhood. 

 

7.2.2 Moving window variograms 

A moving window technique to compute a variogram is, in essence,  a 

predetermined mask centred on a specific cell of the DEM and considering in its 

calculations only the cells included in that particular neighbourhood. The window 

will then move to the adjacent cell, computing another variogram and so on 

(Fotheringham et.al,1996). In this research a square of 500 m was regarded as 

a reasonable size, large enough to adequately capture spatial variability and 

small enough to be representative of the local area. The moving window 

contained 625 cells in the local neighbourhood that is a sufficient number to 

accurately compute the variogram.   
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Considering a cell with coordinates i , j and a square 3 x 3 mask, a moving window 

technique examines in its calculation all the cells included between the cell in the 

preceding column and row (i-1 , j-1) and the cell in the following column and row 

(i+1, j+1), as shown in Figure 7.1. 

 

Figure 7.1 - Moving window neighbourhood for a square 3 x 3 window centred on 

a cell with i,j coordinates (other shapes are also possible, such as circles or 

diamonds). 

For every movement of the window a set of new variogram parameters is created, 

as these estimates have coordinates, it is possible to map them displaying how 

they change over space.  By using a moving window method to locally estimate 

variograms, it is possible to define local statistics in terms of homogeneity of the 

data variation, including: 

- a local distance parameter (a), which represents  the maximum lag over 

which the random function is autocorrelated; 

- local variance (v), the sum c0+c1; 

- the spatial dependence ratio (s) calculated as  the proportion c1/(c0+c1). 

 

i-1, j-1    i-1, j    i-1, j+1  i-1, j+2

i, j-1       i, j       i, j+1     i, j+2 

i+1, j-1   i+1, j i+1, j+1 i+1, j+2

i+2, j-1   i+2, j   i+2, j+1 i+2, j+2
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7.2.3 Multiscale segmentation 

Clustering is a type of analysis used to group data into objects in such a way that 

data in one group are more similar to each other than to data in another group. 

The clustering method used in this research is k-means clustering (Hartigan, 

1975). K-means is an unsupervised method intended for minimising the mean 

squared distance between the objects and their nearest centroid, considered as 

the multivariate means of the clusters (Brus et al., 2006). The algorithm assumes 

that the data form a vector space and tries to find clustering around centroids mi∀i 
= 1…k which are obtained by minimizing the object, as follows: 

z =  � � ��4 − {4 �0
$|∈~� 

(
4*!  

(7.3) 

where there are k clusters Si,i = 1,2,…k and mi is the centroid of all the points xj v 

Si. To assess accuracy v-fold cross validation was performed. 

In unsupervised cluster analysis, one of the major challenges is to estimate the 

number of clusters. A technique used for assessing this is v-fold cross validation 

(Nisbet et al., 2009). It involves partitioning a sample of data into complementary 

subsets, performing the analysis on one subset and validating the analysis on the 

other subset. In order to reduce variability, multiple rounds are performed using 

different partitions, and the validation results are averaged over the rounds. 

By grouping the results obtained with the moving window variogram with k-means 

clustering, it should be possible to segment the DEM into areas characterised by 

similar local statistics in which the stationarity assumption is valid.  Each area will 

then undergo DSM modelling with RF as presented in Chapter 4 and finally a 

comparison of results with the ones previously obtained without segmenting the 

DEM. 
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7.3 Results 

The results are presented in five figures (Figure 7.2 - 7.6) and two tables (Table 

7.1 and Table 7.2). Figure 7.2 illustrates the spherical variograms for the three 

study areas. The distribution of local statistics parameters, for the investigated 

areas, calculated with the moving window is presented in Figure 7.3, Figure 7.4 

and Figure 7.5 showing the local distance parameter, variance and spatial 

dependence ratio respectively. Table 7.1 presents local statistics of the clustered 

areas for the investigated areas. Figure 7.6 displays the DEM segmented using 

k-means clustering of the local variogram parameters calculated with the moving 

window technique. Table 7.2 shows the classification accuracy of the DSM 

models created for the stratified EPA 20 m DEM of the three study areas. Table 

7.3 presents the classification accuracy of the multiscale DSM models (pixel and 

window sizes alteration and stratification) of the three study areas. Finally, Table 

7.4 summarises the classification accuracy of the study areas for the finest 

available DEM, pixel and window size alteration, stratification, and the new 

multiscale methodology. 

7.3.1 Variograms 

Spatial variability assessed using omni-directional variograms of elevation values 

(EPA 20 m DEM) was calculated for the three investigated areas and fitted using 

a spherical model (Figure 7.2). The figure contains considerably different 

variograms representing the underlying unique spatial structure of the three 

topographic areas. 
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Figure 7.2 - The spherical global variograms of elevation value (EPA 20 m DEM) 

for Leitrim (a = 12,270; c = 4,800; c0 = 10), Meath (a = 12,070; c = 650; c0 = 10) 

and Tipperary North (a = 18,980; c = 9,550; c0 = 260). 

Tipperary North has the largest value of range and sill respectively 18,980 and 

9,550 respectively, showing a strong long-distance correlation with a high degree 

of variance. It also has the largest value of nugget at 260, attributable to either 

measurement errors or spatial sources of variation at distances smaller than the 

elevation sampling interval. Leitrim is characterized by intermediate values of 

range and sill respectively 12,270 and 4,800 and also a very small nugget of 10.  

Meath has the same low value of nugget (10) and also has the lowest value of 

sill of 650 but an intermediate range (12,070) indicating low variance in the data 

caused by the homogenous flat topography. Despite the different spatial 

structures, with considerably different values of sill and range, all the three areas 

proved to have very similar values of spatial dependence calculated as the ratio 

between partial sill and the total sill (c1/ (c0+c1)) at 99.79% for Leitrim, 98.46% for 

Meath and 97.28% for Tipperary North. Since this ratio describes the proportion 

of the local variance which is spatially correlated these very high values show a 

strong spatial dependency. The examination of a soil-related environmental 

feature, such as elevation, through the analysis of its variogram is a valuable 
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guide for obtaining an order of magnitude of the scale at which covariates operate 

in the landscape, so influencing soil processes. 

7.3.2 Moving Window Variograms 

In order to spatially characterise local statistics in the three investigated areas, a 

moving window variogram technique was employed. For each cell of the original 

EPA 20 m DEM a local variogram was fitted and its parameters calculated. A total 

of 927,190 local variograms were computed for Leitrim, 842,754 for Meath and 

935,172 for Tipperary North. The average window contained 625 cells and the 

smallest number of cells in a single window was 104 due to the edge effect. The 

local parameters calculated with the moving window approach are presented in 

the following three figures. 

Leitrim Meath Tipperary North 

   

a [m] 

 

Figure 7.3 - Local distance parameter (a) for the investigated areas DEMs.  

The local distance parameter (a) (Figure 7.3) shows a strong difference between 

areas on the drumlins and the south of Leitrim with values in the inter-drumlins 

plain and in the area of high relief in the north of the investigated site. Meath 
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displays two areas with high values of the range, one corresponding to the river 

network to the east and the other related to the rise in the overall height of the 

plain, by approximately 10 m, in the south. A very significant variation is shown 

in Tipperary North where the site is literally divided into two areas. In the centre 

the high relief region obtains high values of the range while in the north and south 

the plain has much lower values.  

Leitrim Meath Tipperary North 

v [m2] 

 

Figure 7.4 – Local variance (v) for the investigated areas DEMs.  

In Figure 7.4 the local variance (v) is presented showing an interesting pattern in 

Leitrim, where the drumlins and the high relief area in the north obtain higher 

values than the inter-drumlin area and the south of the site. As the previously 

discussed global variogram indicated, the low value of sill (650) remains constant 

across the area. Tipperary North, on the other hand, shows a marked difference 

between the high relief area with high sill values and the low relief one with low 

sill values.  
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Leitrim Meath Tipperary North 

  

s [ ] 

 

Figure 7.5 - Spatial dependence ratio (s) for the investigated areas DEMs. 

Finally, in Figure 7.5 the spatial dependence ratio is presented. Leitrim shows a 

high degree of spatial dependence ratio (s), apart from an area in the south of 

the investigated site which shows a weaker spatial dependency. Interestingly, 

Meath has a marked distinction between the river network and the high plain area 

with strong spatial dependency and the rest of the site with low values. The low 

relief areas of Tipperary North display a low value of s, while the local variance in 

the centre of the site appears spatially correlated. 

The presented local variograms parameters (a, v and s) demonstrate no-

stationarity in the underlying stochastic process as they change over space. It is 

clear from Figure 7.3, Figure 7.4 and Figure 7.5 that spatial variation appears to 

have a structure over small areas where some regional patterns in these 

properties are evident. This has a direct consequence in terms of the soil 

processes controlled by topography that operate in the landscapes of the three 

study areas. 
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7.3.3 Multiscale DSM model 

K-means clustering with v-fold cross validation was used to group the results of 

the moving window variograms as presented in Table 7.1. The clustering was 

performed using 500 iterations for the k-means and validated with v-fold cross 

validation (10 iterations with a set minimum number of 2 clusters and a maximum 

number of 25 clusters). The training errors for the three areas were: Leitrim 

(0.016), Meath (0.094) and Tipperary North (0.020). These errors measure the 

performance of the clustering which corresponds to the probability of 

misclassifying the data in the determination of an optimum cluster number. 

Table 7.1 - Local statistics of the clustered areas DEMs for Leitrim, Meath and 

Tipperary North. Includes: local distance parameter (a), local variance (v) and 

spatial dependence ratio (s). 

Clusters a 
[m] 

v 
[m2] 

s 
[ ] 

Number 
of Cells 

Coverage 
[%] 

Leitrim           

1 42,537 6,253 0.99 806,578 86.99 

2 54,540 44,477 1.00 83,857 9.04 

3 10,686 230 0.57 36,755 3.97 

            

Meath           

1 18,046 858 0.82 703,684 83.50 

2 56,943 9,130 1.00 139,070 16.50 

            

Tipperary North           

1 52,623 42,001 0.99 544,832 58.26 

2 18,910 670 0.84 275,408 29.45 

3 21,920 240 0.59 70,979 7.59 

4 10,713,096 1,996,060 1.00 26,278 2.81 

5 7,327 130 0.27 17,674 1.89 
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Leitrim was divided into three clusters, the largest one covering 86.99% of the 

site with its centroid having high values of range (42,537) and similar values of 

variance (6,523) as indicated in the global variogram. The second area covering 

9.04% of the site has high values of both range and sill and the third smaller group 

had low values of range and sill. 

Meath was grouped into two clusters, a larger one (83.50% coverage) with similar 

values of range and sill as presented in the global variogram, 18,046 (a) and 858 

(v) respectively; and a smaller one (16.50% coverage) with much higher local 

distance parameter (56,943) and local variance (9,130). 

Tipperary North was divided into five clusters, with cluster 1 covering 58.26% of 

the area having high range and sill, 52,623 and 42,001 respectively and cluster 

2, on the contrary, having low values of range (18,910) and sill (670) and covering 

29.45% of the site. Cluster 3 has very similar values to the global variogram and 

as cluster 2, with a range of 21,920 and a sill of 240. The unreasonably high 

values of cluster 4 are most likely due to the fact that the moving window 

variogram did not achieve a value of sill in the neighbourhood and the algorithm 

returned a somewhat arbitrary number while fitting the model. 

The spatial distribution of the clusters is presented in Figure 7.6. Leitrim shows 

an interesting pattern with a considerable fraction of the high relief area in the 

north of the site categorised at cluster 2, including the top of the drumlins 

scattered across the landscape. The area outside the drumlins belt in the south, 

which proved a real hindrance for the RF, as discussed in Chapter 4, is mainly 

being grouped as cluster 3.     
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Leitrim Meath Tipperary North 

 

a)  
 
      Clusters 

      

b) 
 
      Clusters 

      

c) 
 
      Clusters 

      
Figure 7.6 - DEM segmentation using k-means clustering of the local variogram 

parameters calculated with the moving window technique. 

As expected, Meath looks divided accordingly to where the river network and the 

high plains are (red on Figure 7.6b). Tipperary North appears almost equally 

divided between cluster 1 for the high relief area and cluster 2 and cluster 3 for 

the plain. The group with the variograms that failed to achieve a sill, cluster 4, 

seems to follow cluster 1 as a contour line and separate it from cluster 2. 

The EPA 20 m DEM was then used to create terrain attributes for each cluster 

and to train a RF model. The results of the modelling are presented in terms of 

classification accuracy which varies between 0% (no samples correctly classified) 

and 100% (all samples correctly classified). The classification accuracy of 

individual clusters using the EPA 20 m DEM without any pixel or window size 

alterations is shown in Table 7.2, allowing the effects of stratification to be tested. 
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Table 7.2 - Classification accuracy of the DSM models created for the stratified 

EPA 20 m DEM of the three study areas. 

 

Classification accuracy of 

stratified EPA 20 m DEM  

[%] 

Leitrim  

Cluster 1 78.1 

Cluster 2 10.9 

Cluster 3 0.2 

Total (Clusters 1, 2 and 3)  68.9 

   

Meath  

Cluster 1 41.3 

Cluster 2 38.3 

Total (Clusters 1 and 2) 40.8 

   

Tipperary North  

Cluster 1 70.4 

Cluster 2 46.7 

Cluster 3 42.3 

Cluster 4 0.5 

Cluster 5 5.5 

Total (Clusters 1, 2, 3, 4 and 5) 58.1 

 

Leitrim shows a large difference in classification accuracy between the three 

clusters. Cluster 1, dominating the large drumlin area characterised by gley soils, 

performs extremely well (78.1%), while Cluster 2, in the north of the study area 

where the blanket peats are present, and Cluster 3, in the south basin peats, are 

extremely inaccurate with only 10.9% and 0.2% respectively. The overall 

accuracy of the multiscale methodology presented is 68.9%. 

Cluster 1 in Meath obtains 41.3% while Cluster 2, characterising the river network 

with a complex of grey-brown podzolics and gleys, achieves 38.3% of model 

classification accuracy, delivering a total of 40.8% for the entire study area. 
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The two largest clusters in Tipperary North, Cluster 1 and 2, perform very 

differently with the former achieving an extremely positive 70.4%, while the latter 

obtains a value of classification accuracy of 46.7%. Cluster 1 seems to represent 

the area of high relief where the brown podzolic soils are situated, while Cluster 

2 characterises the area of limestone lowland dominated by the grey-brown 

podzolic soils. Cluster 3 with the waterlogged gley areas maintains a reasonable 

42.3% while Cluster 4 and 5 achieve only 0.5% and 5.5%. 

Table 7.3 - Classification accuracy of the multiscale DSM models (pixel and 

window sizes alteration and stratification) of the three study areas. 

 

Classification 

accuracy 

[%] 

Pixel and window 

sizes combination 

of optimal scale 

Leitrim    

Cluster 1 79.3 40 - 3x3 

Cluster 2 10.9 20 - 3x3 

Cluster 3 0.2 80 - 21x21 

Total (Clusters 1, 2 and 3)  70.0  

    

Meath   

Cluster 1 68.6 260 - 19x19 

Cluster 2 38.6 40 - 3x3 

Total (Clusters 1 and 2) 63.6  

    

Tipperary North   

Cluster 1 71.2 40 - 3x3 

Cluster 2 74.1 260 - 13x13 

Cluster 3 48.6 260 - 11x11 

Cluster 4 0.5 140 - 5x5 

Cluster 5 5.6 40 - 3x3 

Total (Clusters 1, 2, 3, 4 and 5) 67.1  

 

Table 7.3 presents the classification accuracy of the multiscale DSM models 

created by integrating the experimental methodology introduced in Chapter 4 

(alteration of pixel and window size) with the previously presented stratification 

technique. In the case of Leitrim, the classification accuracy of Cluster 1 improves 



150 

 

only marginally by 1.2% (from 78.1% to 79.3%), while Clusters 2 and 3 do not 

change from the values obtained by the DSM models (10.9% and 0.2% 

respectively). Meath on the other hand, presents a sharp increase in classification 

accuracy with an improvement of 27.3% (from 41.3% to 68.6%) for Cluster 1, 

even though Cluster 2 does not present a considerable improvement, changing 

by only 0.3% (from 38.3% to 38.6%). Finally, Tipperary North matches the pattern 

observed for Meath, where Clusters 2 and 3 sharply increase to 74.1% and 48.6% 

respectively, while Clusters 1, 4 and 5 do not present any considerable change. 

Table 7.4 - Classification accuracy of the three study areas for the finest available 

DEM; pixel and window size alteration; stratification; and the new multiscale 

methodology. 

 

Classification 

accuracy 

[%] 

Leitrim   

Finest resolution DEM (EPA 20 m) 56.9 

Pixel and Window size alteration (Chapter 4) 56.9 

Stratification 68.9 

Multiscale methodology 

(pixel and window sizes alteration and stratification) 
70.0 

  

Meath  

Finest resolution DEM (EPA 20 m) 38.8 

Pixel and Window size alteration (Chapter 4) 58.8 

Stratification 40.8 

Multiscale methodology 

(pixel and window sizes alteration and stratification) 
63.6 

  

Tipperary North  

Finest resolution DEM (EPA 20 m) 44.6 

Pixel and Window size alteration (Chapter 4) 51.1 

Stratification 58.1 

Multiscale methodology 

(pixel and window sizes alteration and stratification) 
67.1 
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A summary table has been prepared to compare the classification accuracy of 

the three study areas using the different developed techniques (Table 7.4). The 

results obtained from the DSM models developed using the finest available DEM 

(EPA 20 m) are compared with the results of the experimental methodology 

presented in Chapter 4, the stratification analysis (Table 7.2) and the newly 

developed multiscale methodology (pixel and window size alteration in addition 

to stratification). In the case of Leitrim, results suggest that stratification on its 

own obtains similar classification accuracy (68.9%) in comparison to stratification 

and scale alterations (70.0%). For Meath, despite improving results by 2.0% (from 

38.8% for the EPA 20 m DEM without stratification to 40.8% for the EPA 20 m 

DEM with stratification) and 4.8% (from 58.8% for the experimental methodology 

without stratification to 63.6% for the experimental methodology with 

stratification), stratification was outperformed by pixel and window size alterations 

which offered the greatest values of classification accuracy at 58.8% (38.8% 

without stratification) and 63.6% (40.8% without stratification) respectively. 

Tipperary North shows a similar high level of classification accuracy at 67.1% 

with the multiscale methodology while with the original EPA 20 m DEM it could 

only achieve 44.6%. Stratification has a relevant role to play in the improvement 

of the results of the DSM models in Tipperary North. This is clearly shown by the 

increase of 13.5% of classification accuracy with the EPA 20 m DEM performed 

on each individual cluster when stratified (from 44.6% without stratification to 

58.1% with stratification) and the increase of 16.0% using the pixel and window 

size alterations (from 51.1% for the experimental methodology without 

stratification to 67.1% for the experimental methodology with stratification). 

 

7.4 Discussion 

Hutchinson and Gallant (2000) have recognised the need to identify appropriate 

DEMs scales for deriving various terrain processes and the need for effective 

methods to integrate terrain attributes and DSM modelling across different 

scales. The multiscale DSM methodology performed by clustering the local 
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variogram parameters calculated with a moving window technique and then used 

as an input variable for terrain attributes calculation, employed to train a RF 

model, has proved to increase the classification accuracy of soil taxonomic units. 

The proposed new methodology is a powerful technique for DSM, as it appears 

to support RF in the creation of more accurate relationships between terrain 

attributes and soil units, in comparison with the common practice of using a 

standard fine resolution DEM. 

As a more intuitive manner of appreciating the spatial structure of DEMs, the 

clustering has allowed to make a more intuitive connection between the 

topography and the soil taxonomic units being classified. In some areas the 

relationship is extremely strong, as results of classification accuracy close to 70% 

prove, especially considering that only terrain features were used as predictors 

without accounting for other environmental covariates. The presented results 

clearly show that for other units, such as Clusters 2 and 3 in Leitrim and Clusters 

4 and 5 in Tipperary North, the DSM models failed to relate terrain features to soil 

classes. This is possibly due to the fragmented nature of the areas, as the 

clusters appear too scattered to be modelled separately. Another explanation 

could be that the relationship between these clusters and topography, used as a 

predictor, is very weak and does not capture the soil formation processes active 

at particular locations. Limited areas, not accounting for more than 10% of the 

investigated sites and generally spatially concentrated, as in the south of Leitrim 

or some areas in the plain of Tipperary North, have posed a problem not only to 

the RF but also to the surveyors in the field. As the revised ISIS classification has 

demonstrated by rationalizing many of these areas. The different classification 

was simply not justified for the soil unit concept at this mapping scale in some 

areas, hence the different results between clusters. 

It is also clear from these results that stratification on its own had an important 

role in the improvement of classification accuracy obtained by the newly 

developed methodology, as shown in Leitrim and Tipperary North. By segmenting 

the landscape, stratification seems to offer a direct way to connect DSM models 
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to specific soil forms, something that a single DSM model configuration across a 

unitary geographic space does not provide. This is in line with previous work by 

Corstanje et al. (2008a) where nested analysis was used to assess model scale 

relationships with soil processes. The addition of systematic scale alterations by 

varying pixel and window sizes, further improves the results, as shown in Meath 

and Tipperary North. Combining stratification with scale alterations has produced 

a comprehensive multiscale methodology. As suggested by Behrens et al. 

(2010b), multiscale techniques for DSM seem particularly suited to the intricate 

organisation of soil formation. 

The experimental results presented in Chapter 4 showed that two main patterns 

of scale behaviour exist for the tested areas, suggesting that subdivision would 

address this scale incoherency. As previously discussed, the new multiscale 

methodology tackled that issue and also offered a way to identify the optimal pixel 

and window size combination for each cluster. This two-step approach is a way 

to address complexity and information generalization, while making the model 

computationally feasible. A remaining unsolved issue is how to make the model 

compute interacting pedogenetic factors at different scales within clusters. This 

might be solved by employing a mix of other SCORPAN factors, each operating 

on a different scale, so encapsulating the complexity of the soil forming processes 

operating. 

In terms of the clustering, the k-means unsupervised clustering algorithm was 

selected for the presented research, as the focus was to compare the overall 

accuracy of multiscale methodologies with the common practice, but supervised 

clustering or other segmentation techniques that can classify the DEM according 

to its spatial structure should also be considered as suggested by Behrens et al., 

2010b. Apart from the extensive computational time required by the moving 

window technique the main disadvantage of this approach, to calculate local 

statistics, is the selection of the window size that at the moment is rather arbitrary. 

The connection between the window size, dictating the neighbourhood of cells 

selected in the calculation of the local variogram, and its range, beyond which the 
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variance levels out and becomes independent, is not clear yet. It is worth also 

noting that for some cells, the variograms did not achieve a sill value, meaning 

that the spatial extent of the window was not large enough to capture the spatial 

variability at that location. For Leitrim and Meath this was not much of a concern 

as the total number of cells was insignificant, but for Tipperary North a total of 

2.84% of the cells failed to deliver acceptable variogram parameters. Further 

investigation is needed to determine an optimal window size for this type of 

operations or to explore the feasibility of adaptive windows like the ones used in 

remote sensing for change detection (Gong and Corpetti, 2013). This issue is 

particularly important with regards to the clustering technique used in this 

research, as the k-means algorithm is sensitive to outliers and extremely large 

values of sill may substantially distort the extent of the clusters.  

 

7.5 Conclusions 

In this chapter a new multiscale methodology based on the analysis of the local 

variogram parameters, calculated using a moving window technique and k-

means clustering with v-fold cross validation for segmentation of the DEM, was 

developed and tested. The results suggest that this methodology can achieve a 

higher level of classification accuracy in comparison with using the original EPA 

20 m DEM, or the experimental methodology altering pixel and window sizes 

without segmenting the landscape. The overall improvement is substantial and 

consistent across various pedological and morphological conditions as shown for 

the three tested areas. This new modelling approach, by segmenting the 

landscape into areas in which different processes are active at different scales, 

incorporates the scale issue into the model form, as the scale effects become an 

inherent part of the RF inference. 

 

  



155 

 

8 CONCLUSIONS 

The general conclusion of this research is that spatial scale analysis of 

environmental covariates enhances the practice of DSM, improving overall 

classification accuracy. The newly developed multiscale methodology can be 

successfully integrated in the current DSM analysis of soil taxonomic units 

performed with data mining techniques advancing the practice of soil mapping. 

By offering an innovative way to learn more about pedogenesis and soil variation 

in the landscape and by increasing the overall accuracy of DSM modelling, spatial 

scale analysis deserve and need more attention from the DSM community. 

 

8.1 Review of the objectives 

The hypothesis of this research was that the resolution of environmental 

covariates affected the accuracy of soil prediction in DSM and therefore spatial 

scale analysis would improve the accuracy of mapping soil taxonomic units. From 

the presented results it is possible to conclude that this is certainly true as 

demonstrated in Chapter 4 (experimental methodology), Chapter 6 (wavelet 

decomposition) and Chapter 7 (multiscale methodology). 

General conclusions are listed according to the objectives set out for this research 

in Chapter 1 as follows: 

Objective 1 - To investigate the effects of scale on DSM analysis. 

Scale has been proved (Chapter 4) having a significant role in DSM analysis of 

soil taxonomic units, directly influencing classification accuracy of soil taxonomic 

units. The common practice in DSM to use the finest resolution of DEM available 

has been shown to have a detrimental effect on the prediction accuracy of soil 

taxonomic units. 
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Objective 2 - To test the interaction between pixel and window sizes, with data 

mining classifiers, for the purpose of modelling soil taxonomic units. 

In order to characterise scale variation, both pixel and window size alterations 

were tested including their interaction (Chapter 4). Two patterns of behaviour 

emerged: flat homogeneous areas preferring coarser resolution DEMs 

independently of window size and morphologically varied areas preferring fine 

resolution DEMs with small window sizes but also coarser resolution DEMs 

associated with large window sizes. 

Objective 3 - To identify, from published literature, methodologies that can be 

used in quantitative scale detection. 

A set of eight empirical approaches, from related scientific fields, was selected in 

the literature and put to the test (Chapter 5) by comparing them with the results 

of the experimental methodology. Seven out of the eight failed to deliver 

meaningful results, some due to the lack of scientific principles behind them, 

others failing to take into account the intrinsic characteristics of the data or being 

too entrenched in their field of application and being inflexible. Although, the 

inflection points approach seemed the most promising one, it still needed some 

further refinement. 

Objective 4 - To test the identified methods in the determination of the most 

suitable DEM pixel size for application in landscape-scale DSM. 

2D wavelet analysis has shown in Chapter 6 that by spatially decomposing a 

DEM it is possible to remove specific sources of variation, which might be 

unnecessary for DSM analysis, improving classification accuracy. The 2D DWT 

could be introduced in DSM as a standard method to spatially decompose the 

DEM used in generating the required terrain attributes increasing model 

performance. 

Objective 5 - To develop a multiscale approach for DSM. 
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A new multiscale methodology based on the analysis of the local variogram 

parameters calculated using a moving window technique, and k-means clustering 

with v-fold cross validation for segmentation of the DEM was developed and 

tested (Chapter 7). The results showed the highest level of classification accuracy 

in comparison with all the other tested techniques, making it a relevant tool for 

data mining based DSM. 

Objective 6 - To develop recommendations on scaling environmental covariates 

used for DSM. 

A list of practical recommendations is presented further in this chapter, including 

three main areas of advice: scale affects the results of DSM models; incorporate 

scale into DSM models; and include scale information into metadata. 

 

8.2 Contribution to knowledge 

The original contribution to knowledge of this research has been combining a 

DEM segmentation technique (performed by k-means clustering of local 

variograms parameters calculated in a moving window) with an experimental 

methodology altering DEM scales. This has created a new multiscale approach 

in DSM. A number of new findings have been made during this research work 

that enhanced the knowledge of DSM in relation to spatial scale. These include: 

Improved understanding 

Terrain attributes are sensitive to the scale of the source DEM and behave in 

different ways to this alteration, affecting DSM prediction accuracy. Hence, fine 

resolution DEMs are not always the best choice in DSM for the modelling of soil 

taxonomic units. 

Two main patterns of scale behaviour have been described: flat areas obtaining 

the best classification accuracies at coarser pixel sizes and morphologically 

varied areas being influenced by the interaction of pixel and window alterations, 



158 

 

obtaining the best accuracies at fine resolutions with small window sizes but also 

at coarser resolutions and large window sizes. 

Assessment of existing approaches 

Generally accepted rules of thumb, commonly used to identify an optimum pixel 

size, have a detrimental effect on the final output of DSM modelling and could 

mislead practitioners. 

DEMs decomposed with 2D DWT improve accuracy of DSM models by reducing 

the source of variation (redundant information that makes it difficult to link 

topographical change with soil variation). 

Quantitative methodologies in scale detection 

An exploratory DSM exercise at different scales altering pixel and window sizes 

will provide relevant knowledge of the area investigated, improving the final 

prediction of soil taxonomic units for mapping exercises at the landscape scale. 

A new multiscale approach made by combining a DEM segmentation technique, 

including k-means clustering of local variogram parameters calculated with a 

moving window technique, with an experimental methodology altering DEM 

scales offers a way to significantly improve classification accuracy of soil 

taxonomic units. 

 

8.3 Limitations 

In terms of limitations associated with the results presented in this research, three 

main sources of constraints are identified as: the 6 inches soil map, the DEM and 

restrictions associated with the methodologies investigated. 

If possible, soil forming processes should be observed and measured at the scale 

at which they take place. This is not always possible or feasible, and very often 

the legacy information available (point samples, soil polygons, etc.) is a reflection 
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of small scale mapping projects. It is recognised that good quality soil data are a 

necessary requirement to create meaningful DSM functions and accurately 

evaluate the quality of their outputs. A common problem with soil taxonomic units, 

including the 6 inch maps used in this research, is the lack of intra class variability 

measurements and the crisp boundaries between classes that are interpreted by 

data mining techniques as two different entities, while in the field there is some 

sort of gradual separation rather than a clear division. This fact could be 

responsible for the poor performance of the techniques used (RF and NN) in 

some areas of the investigated sites that did not respond to the scale alterations. 

This type of qualitative and categorical information represents the great majority 

of legacy data in soil science. It is still currently used by a wide range of users, 

so methodologies need to be developed using this type of information. 

All the analyses were based on the EPA 20 m DEM created with the ANUDEM 

software (Hutchinson, 2007) by spline interpolation using OSI vector spot heights, 

drainage lines and contour data as inputs at the 1:50,000 scale. The DEM was 

corrected both morphologically, by removing all apparent height anomalies, and 

hydrologically, by enforcing a correct drainage network. Limitations in terms of 

accuracy might have affected low relief areas, where the 10 m contour intervals 

could have missed finer scale terrain features, limiting representation of 

topographic structures. The impact of this in DSM analysis using the 6 inch soil 

maps is considered negligible, as the soil surveyors in low relief areas would not 

have taken into account micro-topographic features in delineating soil series. This 

fact was stated by a soil surveyor involved in the ISIS project. The DEM used was 

a good compromise in terms of accuracy and spatial resolution, and was deemed 

suitable for the analysis of spatial scales in DSM, especially considering that it 

was the most accurate elevation information available at the national scale in 

Ireland. 

The results of the experimental methodology presented in Chapter 4 set the scale 

benchmark for all the other techniques tested. Although the developed DSM 

models could largely account for the appropriate classification of soil classes in 
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Leitrim and Meath, they failed to explain soil spatial variation in Tipperary North. 

The apparent scale independence suggested that the method needed a further 

stage to separate areas with distinctive landscape characteristics. This was 

confirmed after Tipperary North was sub-divided into high and low relief areas as 

the accuracy of the models improved matching the scale behaviours previously 

observed for Leitrim and Meath. The application of the experimental methodology 

was also limited due to its computational and labour intensive nature. For this 

reason empirical approaches were selected from the literature and tested in 

Chapter 5. On close scrutiny, all their limitations in terms of data handling, lack of 

adaptability and insufficient scientific credentials made their use in DSM 

inadequate, as they failed to improve the classification accuracy of models. 

A more established and increasingly popular technique in soil science, wavelet 

analysis, was tested with both 1D and 2D versions. The visual inspection of the 

1D DWT on characteristic transects proved difficult for interpretation and practical 

implementation in DSM modelling. Limitations on solving the issue of incoherent 

scale response, observed for the three study areas, were also apparent in the 2D 

DWT during implementation. This was solved with the newly developed 

multiscale methodology which segments the landscape into clusters with 

homogeneous spatial structures and identifies optimal scale combinations of 

pixel and window sizes for each cluster. The model cannot compute interacting 

pedogenetic factors at different scales within clusters and this will limit its overall 

accuracy. The clustering technique is also sensitive to extreme values that 

interfere with the extent and spatial distribution of clusters. Some of these outliers 

derive from the fact that the moving window technique was not able to correctly 

capture the variogram parameters. Consequently, the spatial extent of the 

window was not large enough to capture the spatial variability at that location. 

This might have affected the performance of small scattered clusters across 

Leitrim and Tipperary North. 
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8.4 Recommendations 

Supported by the results of this research, a series of recommendations are made 

to accurately incorporate spatial scale analysis into DSM operations. 

Scale affects the results of DSM models 

• It should not be assumed that fine resolution DEMs are always the best 

choice for DSM prediction of soil taxonomic units, as they are not. 

• Particular attention should be put in the interpretation of terrain attributes, 

extensively used in DSM, as they are scale dependent but behave in 

different ways to scale alterations. 

Incorporate scale into DSM models 

• An exploratory scale test analysis should be included into a preliminary 

knowledge discovery stage before creating any final DSM model. 

• In order to perform a multiscale methodology improving classification 

accuracy of soil taxonomic units, a strategy is to segment the DEM into 

homogeneous areas using k-means clustering of local variograms 

parameters calculated with a moving window and then performing DSM 

analysis on each cluster. 

• Rules of thumb, supposed to help in the selection of an optimal scale, 

could mislead offering a false sense of security and their results should be 

critically evaluated if not avoided. 

Include scale information into metadata 

• Metadata of spatial information should always include scale, resolution 

and accuracy of the content. 

• The current resolution of a dataset not always corresponds to the 

resolution of the information used to create it. It could have been 



162 

 

aggregated for visualization, smoothed to remove noise, interpolated to 

create a continuous raster or produced by a model with an embedded 

scale. This information should always be incorporated in the metadata to 

be then properly handled during analysis. 

 

8.5 Future work 

During this research project a number of questions for further investigation have 

emerged and are briefly discussed. 

8.5.1 Exploring additional study areas 

Further studies should be undertaken transferring the newly developed multiscale 

methodology to other parts of the world, validating the presented results on 

different pedological and geomorphological conditions. Moreover, areas with 

different types of human influence could be explored with the new methodology, 

testing if scale analysis can be used as a detection tool evaluating at what scales 

human activity is impacting the environment and which ecosystems and cycles 

are in more danger.  

8.5.2 Soil data 

Additional work is needed to understand how different soil classes behave at 

different scales. This could offer a new insight into the relationship between soil 

taxa and soil mapping units. The methodology developed for categorical soil data 

will have to be tested for quantitative soil properties exploring the role of scale 

analysis in the prediction of numerical variables with associated uncertainties. 

8.5.3 Environmental covariates 

In this research, terrain attributes derived from a DEM were used as 

environmental covariates. Further work needs to be carried out, when a suitable 

national coverage is achieved with Lidar. This will test whether the presented 
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results obtained with the interpolated EPA 20 m DEM can be transferred to DEMs 

derived from elevation points measured by remote sensing. 

In order to remove the embedded scale set by the pixel based moving window 

technique used in the analysis of terrain attributes, an object based approach 

should be applied to the newly developed multiscale methodology. 

It is also important to expand the scope of the multiscale spatial scale 

methodology to other environmental covariates valuable for DSM modelling such 

as climatic properties (temperature, rainfall, solar radiation, atmospheric 

pressure, etc.), biotic properties (land use, land cover, spectral indices, etc.), 

human activities (contamination, greenhouse gas emission, etc.) or other data 

that are rapidly being created with remote and proximal sensing technologies. 

8.5.4 Spatial soil scaling theory 

The complexity of scale will require more than the development of empirical 

methodologies in different scientific domains. This will need the establishment of 

a new multidisciplinary branch of research to create a theory of scale. This will 

certainly require advancements in theory and technology combined with a new 

statistical framework and experimental schemes to capture the complexity of soils 

as a system (Young et al., 2008). Understanding the scaling behaviour of soil will 

allow estimation of the behaviour of soil processes at all scales. This paradigm of 

complexity involving processes at small scales that determine properties at larger 

scales will overall help to better understand soil. 

 

8.6 Final remark 

The main challenge in DSM research is to connect the spatial scales at which 

processes happen with the larger scales at which soil functioning is observed and 

units mapped. This research has tested several existing techniques and 

developed a new multiscale methodology to include spatial scale into DSM 
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operations. Incorporating spatial scale analysis of environmental covariates in 

DSM modelling has been proved beneficial to better capture soil spatial variation. 

The results presented in this research suggest that the multiscale methodology 

is the most effective way to take scale into account in DSM. The classification 

accuracies obtained for all the test areas with this new methodology were the 

highest in comparison with all the other techniques. Multiscale offers a more 

intuitive manner of appreciating scale behaviour and the connection between the 

topography and the soil taxonomic units being classified, helping DSM 

practitioners with their mapping activities. 

The future of DSM, as it successfully progresses from the early pioneering years 

into an established discipline, will have to include scale and in particular 

multiscale in its methodology. DSM will have to move from a methodology of 

spatial data with scale to a spatial scale methodology. As stated by Burrough et 

al. (1994) “gradually the general nature of soil variation, and its unpredictability, 

have led us to see variability as a key soil attribute rather than a nuisance, though 

this enlightened view is certainly not shared by everyone”, it is now time to 

consider scale as a key soil and modelling attribute rather than a nuisance. 
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Appendix B – General soil map 
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Appendix C – County soil maps 
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