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ABSTRACT 

This thesis reports a summary of the PhD programme for the assessment of 

person‘s emotional anxiety using Electro-optical technology. The thesis focuses 

mainly on the understanding of fundamental properties of physiological 

responses to emotional anxiety and how they can be captured by using Electro-

optical (EO) imaging methods such as hyperspectral imaging (HSI) and thermal 

imaging (TI) techniques. 

The thesis summarises three main areas of work that have been undertaken by 

the author in the programme: (a) Experimental set up including HSI system and 

data acquisition software design and implementation, (b) fundamental 

understanding of physiological responses to emotional anxiety from the EO 

perspective and (c) the development of a novel remote sensing technique for 

the assessment of emotions without the requirement of base line information.  

One of our main results is to provide evidence to prove that the mean 

temperature in the periorbital region remains the same within 0.2°C during 

emotional anxiety. Furthermore, we have shown that it is the high temperature 

pixels within the periorbital, which increases in numbers by a huge amount after 

2 minutes of the onset of anxiety. We have also developed techniques to allow 

the assessment anxiety without the need of base line information. The method 

has been tested using a sample size of about 40 subjects, and achieved 

promising result. Technologies for the remote sensing of heart beat rate has 

been in great demand, this study also involves the development of heart beat 

detection using TI system. Moreover, we have also attempted for the first time 

to sense glucose concentration from the blood sample in-vivo using HSI 

technique remotely.  

.  
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1 Introduction 

1.1 Objective of Research 

This PhD project formulates part of the research programme towards the 

understanding of how human‘s physiological features can be captured from stand-off 

distances. This is a basic research and the ultimate objective of the overall research 

programme is to understand how these remotely acquired physiological features can 

be deployed for assessing one‘s emotions. In this study two main kinds of basic 

emotions have been considered: (1) Clam emotion and (2) Strong emotions 

specifically anxiety due to (a) panic and anxiety resulting from psychological 

pressure and (b) pain or fatigue resulting from physical demands. These two 

different kinds of emotions in (a) and (b) are denoted as mental (MSE) and physical 

strong emotions (PSE) in this thesis.  

This PhD project focuses on the remote sensing of physiological features in the 

facial region, together with heart beat rate (HBR) and a first attempt of glucose level 

assessment using Electro-Optical (EO) imaging technique. The research involves 

three main parts: (a) instrumentation design and experimental set up, (b) properties 

of physiological features in the facial region acquired by remote sensing technique 

and (c) how these physiological features can be used for the detection of strong 

emotions, such as anxiety, due to emotional or physical stimulations or stressors. 

The project was initially funded by the UK MOD and the Directed Research 

programme, and it was later partially supported by the InnovTech Solutions (ITS) Ltd 

particularly in the area of heart beat rate (HBR) detection development. 

Subsequently all publication related to this work needs the consents from both UK 

MOD and ITS. 

1.2 Motive of Research 

The research for the detection of human‘s emotional states from standoff distances 

without direct contact with the object, have been one of the greatest demands in 

biomedical, man-machine interfacing, and affective computing sectors. Conventional 

methods have largely been using facial expressions (Edwards, Jackson, & Pattison, 

2002)(Fasel & Luettin, 2003) for the remote sensing of people‘s emotional state, 
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however, the facial expressions can be suppressed by will, which makes this 

approach not robust enough for the detection of malicious intent. Involuntary 

physiological responses under the command of the sympathetic nervous system 

such as body sweat, heart rate, breath rate, body temperature, blood perfusion and 

oxygenations, have been proposed (Chen, et al., 2009)(Yuen P. , et al., 2009) as a 

tool to monitor the emotional states of people (Pavlidis, Levine, & Baukol, 

2001)(Pavlidis & Levin, 2002). 

One novelty in this work is the use of EO imaging technique for the detection, and 

subsequently classification, of human‘s emotional state from a stand-off distance for 

the very first time (Yuen P, 2009). The basis of the present work is based on the fact 

that elevated level of adrenaline is secreted into the blood stream when a person is 

experiencing extreme emotional or physical conditions causing anxiety or 

excitement, which in turn triggers an elevated heart beat and breathing rates 

resulting in an increased level of blood perfusion and StO2 in the body. This work 

serves as the first study in the field thus to allow other researchers in the community 

to continue the approach for a deeper understanding of how physiological features 

can be used for the classification of human‘s emotional states. 

1.3 Contribution and Achievements 

One innovation in this study has been using multiple physiological features extracted 

from thermal and hyperspectral imaging (HSI) technologies to assess people‘s 

emotional state semi-quantitatively from a stand-off distance for the very first time. 

The detection includes the remote sensing of HBR and the assessment of blood 

transfusion in the forehead region.  

The main contributions of this research have been: 

i) To produce new evidences to invalidate the deeply believed concept of an 

increased skin temperature in the perorbital region when strong emotional 

states such as anxiety is taking place. 

ii) The development of capability for the remote sensing of heart beat rate 

(HBR), facial physiological features and glucose level using imaging 

technique.  
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iii) The first attempt for using electrical optical (EO) technology for the remote 

sensing and classification of human‘s emotional state without the need of 

base line information. 

1.4 Thesis layout 

The layout of this thesis is arranged in the following manner: the motives and the 

objectives of the project are highlighted in chapter 1, which is then followed by a 

review of EO imaging techniques in chapter 2. The experimental set up and the 

methods for the data analysis employed in this work are described in chapter 3. This 

chapter includes a review of the principles and theories of thermal emission, diffuse 

scattering, Beer-Lambert law for the StO2 assessment and blood perfusion models 

adopted in this work. Subsequently a survey of remote sensing of emotions is given 

in chapter 4, followed by a description of the EO signatures found in this work in 

chapters 5. Chapter 6 outlines the main results for the clarification of the anomaly 

temperature induced by anxiety in the periorbital region, and chapter 7 describes the 

main technique developed in this study for the remote assessment of emotions 

without base line information. Chapter 8 address the issue for using EO data for 

emotion classification and finally the main conclusion of this work is summarised in 

chapter 9. 
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2 Introductions of Electro-Optical imaging techniques 

When an object is illuminated by light it is quite common that not all the incident 

energy is absorbed: part of it will be transmitted, and part will be reflected and some 

of the absorbed energy will be re-radiated. The electromagnetic band in the visible to 

near infrared (VNIR) ranging from 400nm-2500nm wavelength region is commonly 

termed as the reflective band, as most of energies in this waveband is scattered 

back into the space from the illuminated object. Longer wavelengths beyond 3m are 

known as radiative or emissive band due to the fact that they are the photon 

energies that are re-radiated from the body of the illuminated objects. 

In this study we have utilised sensors in both the reflective and emissive bands to 

capture the physiological features of people with a view to understand their 

emotional states without direct contact with them. These two classes of sensors and 

their operation principles are briefly outline in the next two sections.  

2.1 Sensing of emissive band by thermal imaging (TI) 

Thermal imaging (TI) senses predominantly the emission bands in the mid and long 

wave infrared (MWIR/LWIR) wavelengths to deduce the ‗temperature‘ of the 

emissive body. The amount of radiation emitted from various parts of an object 

keeps in pace with the temperature change across the surface of the object, thereby 

the thermal image presents an outlook of temperature variations over the object. 

With the advent of highly sensitive thermal camera off the shelf, temperature 

measurements can be made remotely during the day and at night. Thus TI has been 

deployed widely including geological mapping and military applications.  

Bounded by the visible and the microwave spectral bands, the infrared light spans 3 

orders of magnitude in wavelengths and it is normally divided into (a) the near 

infrared spans from 0.7 to 3 μm, (b) the middle wavelength infrared band 3-14 μm, 

and (c) the far infrared spans from 14 to 1000 μm, respectively. The near infrared is 

being used for telecommunications and remote sensing, e.g., to study land using and 

geological mapping. Long wavelength and middle wavelength infrared find its main 

use in thermal imaging. The wavelength range of interest in the present study has 

been the VNIR, MWIR and LWIR regions (figure 2-1). 
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Figure 2-1 Wavelength of interest of the electromagnetic spectrum in the present study: VNIR and 

LWIR. 

2.1.1 Overview of radiative theories 

Emissivity is a term describing a material‘s ability to emit thermal radiation and it 

varies considerably from substance to substance spanning anything from zero to one. 

It is noted that the black body has been a theoretical object which does not exist in 

real life and thus the extent of radiations from all objects are in fact less than their 

true temperatures. Further complication of the issue is that radiative emission is a 

property not only stemming from the material‘s temperature characteristic, but also 

that it depends on the spectral wavelength, as well as the angular emission angle 

which is hardly isotropic. In most engineering applications it is however assumed that 

the surface‘s spectral emissivity behaves like a constant and in this case it is 

commonly termed as the grey body assumption.  

Since many substances are capable to reflect or transmit a part of the incident 

radiation, the radiation energy that is absorbed and emitted will be less than that of 

blackbody. Non-blackbody emitter can only emit a fraction of radiation energy with 

respect to the blackbody at the same temperature. Therefore, the emissivity can also 

be defined as a measurement of the maximum amount of radiation that a substance 

is able to emit. 

2.1.1.1 Emissivity and Kirchhoff’s Law 

The emissivity   is defined as ratio of the radiant emittance 'W  of the source to the 

radiant emittance of a blackbody W at the same temperature: 

                                                                      '/W W                                                     Equation 2-1 



  

11 

Emissivity is a function that dependent on the wavelength and the temperature of the 

material. A more general expression in terms of the spectral emissivity ( )   is  
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Equation 2-2 

Where Wλ is the spectral emitted radiation, ε denotes the emissivity and T is the 

absolute temperature, σ is the stefan‘s constant. Note that the emissivity ( )   can 

be   =1, or   = constant, or varies with wavelength. 

Thermal radiation over a body is usually categorized into three portions: transmission, 

absorption, and reflection. When a given radiant energy is incident on a surface 

there are three situations that may happen: a fraction of the incident energy α may 

be absorbed by surface, a fraction p may be reflected to air and a fraction Γ may be 

transmitted through substance. Due to the fact that energy must be conserved, the 

sum of these terms must be equal to one:  

                                                                 
1   

                                                
Equation 2-3 

The absorptivity    is the ratio of the energy absorbed by the object to the incident 

energy for a particular wavelength. The absorbed energy will be proportional 

to           where        is the intensity of black body radiation at wavelength 

 and temperature T. The emissivity of the object is         where    is the emissivity 

at wavelength  . For a black body this yields: 

                                                                                                                 Equation 2-4 

                                                                    '/W W                                                     Equation 2-5 

This is also commonly known as ―good absorbers are good emitters‖ and the 

Stefan–Boltzmann law describes the total energy radiated from per unit surface area 

of a black body in unit time ( *j ) which has been shown to be proportional to the 

fourth power of the black body's absolute temperature T: 

                                                                    

4*j T
                                                    

Equation 2-6 

To combine the Kirchhoff‘s law with the Stefan-Boltzmann‘s law: 

                                                              
4 4/T T                                                 Equation 2-7 

http://en.wikipedia.org/wiki/Absorptivity
http://en.wikipedia.org/wiki/Emissivity
http://en.wikipedia.org/wiki/Energy
http://en.wikipedia.org/wiki/Area
http://en.wikipedia.org/wiki/Black_body
http://en.wikipedia.org/wiki/Time
http://en.wikipedia.org/wiki/Proportionality_%28mathematics%29
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From this it follows that  =  . Thus the emissivity of any material at a given 

temperature is numerically equal to its absorptions at that temperature. For an 

opaque material it does not transmit energy and thus (  ) = 1 and: 

                                                                  
(1 )  

                                                         
Equation 2-8 

2.1.1.2 Wien's law 

The temperature-dependent spectrum of radiation emitted by a black body is termed 

as black-body radiation and at room temperature it emits nearly all wavelengths 

which are mostly in the infrared. The peak of the blackbody radiation tends to move 

towards longer wavelengths with lower intensities when the temperature reduces 

(see figure 2-2). The Wien's displacement law has shown that the spectral 

distributions of blackbody radiation at different temperatures are in a trend according 

to an inverse relationship between the black body temperature and its peak 

wavelength of emission: 

                                                                

max

b

T
 

                                                   

Equation 2-9 

Where λ max is the peak wavelength in meters, T is the temperature of the 

blackbody in Kelvin‘s (K), and b, normally refers to Wien's displacement constant. 

 

Figure 2-2 shows the Wien‘s law of black body radiations which exhibits a characteristic peak of 
radiation intensity moving towards to shorter wavelengths as the temperature of the black body 
increases. 

http://en.wikipedia.org/wiki/Blackbody
http://en.wikipedia.org/wiki/Meter
http://en.wikipedia.org/wiki/Kelvin
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It is noticed that both the Wien‘s and the Rayleigh-Jeans law has got problems which 

seem to work well only in the short and long wavelengths respectively. Subsequently 

Planck proposed a radiation function based on quantum mechanical principle:  

                                                                         E hv                                                 Equation 2-10 
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Equation 2-11 

where  is spectral radiance, or energy per unit time per unit surface area per unit 

solid angle per unit frequency or wavelength (as specified),   is frequency,   is 

temperature of the black body,   is Planck constant,   is speed of light,   is 

Boltzmann constant. Planck function is only practically valid only when many 

photons are being measured.  

2.1.1.3 Angular dependence of emissivity 

Real objects are not perfect emitters and will therefore emit less radiance than a 

blackbody. The spectral emissivity    , is a measure of the effectiveness of an object 

as a radiator. For Lambertian surfaces, the emitted radiance is distributed equally 

into the hemisphere above the surface. The self-emission for Lambertian surfaces is 

defined as 

                                                                B(                                  Equation 2-12 

Most materials are not Lambertian and the emissivity term is modified to incorporate 

this dependence on viewing angle. The self-emission for non-Lambertian surfaces is 

then 

                                                                                           Equation 2-13 

Where (   ) indicate the direction of the sensor. The parameter          is known 

as the directional emissivity. 

The emissivity of a material is a function of the angular emission, wavelength and 

temperature. For example the emissivity of water varies considerably from band to 

band, and at wavelength of 10 um it is a perfect blackbody while it becomes a mirror 

at ‗low‘ angle of emission (ie ~90). Shown in figure 2-3 is the emissivity value 

simulated for human skin using a dielectric model (Shahram, 1992) at the 

wavelength of 10um using polarised (E & O) and unpolarised light as functions of 

http://en.wikipedia.org/wiki/Energy
http://en.wikipedia.org/wiki/Time
http://en.wikipedia.org/wiki/Surface
http://en.wikipedia.org/wiki/Solid_angle
http://en.wikipedia.org/wiki/Planck_constant
http://en.wikipedia.org/wiki/Speed_of_light
http://en.wikipedia.org/wiki/Boltzmann_constant
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angle of emission. It is seen that the emissivity spans from zero to one for the 

emission angles of 0 to 90 degree with respected to the normal of the plane.  

 

Figure 2-3 shows the angular dependence of emissivity in human skin simulated for 10um wavelength 
and note that the emissivity stays constant for the emission angles less than 60 degree with 
respected to the normal of the plane (Shahram, 1992). 

2.1.2 Infrared Detects 

There are two main different types of infrared detectors, namely the photon and 

thermal detectors.  

2.1.2.1 Photon Detectors 

Photon detectors directly convert incoming photons into photocurrents. In a 

photodiode, incoming photons are absorbed and generate electron-hole pairs that 

are given rise to a photocurrent. For the photons to be absorbed by the 

semiconductor, the band gap of the semiconductor must be higher than the photons‘ 

energy. For a given material, the achievable photodiode signal-to-noise ratio 

depends on the ratio α/G, where α is the absorption coefficient and G the rate of 

thermal generation of free charge carriers. In the LWIR range, i.e., the most suitable 

range for thermal imaging, it is required to cool down the semiconductor to cryogenic 

temperatures (≤ 77K) in order to obtain a good performance. 

2.1.3 Thermal Detectors 

Thermal detectors are one kind of photon detectors in which it firstly convert photons 

into heat before measuring the induced change in temperature. There are several 

physical mechanisms that can be used to measure this change in temperature.  
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2.1.3.1 Pyroelectric Detectors  

Pyroelectric detectors use pyroelectric materials to measure the temperature change 

caused by infrared radiation. Pyroelectric materials are materials that change 

polarization upon change in temperature. Pyroelectric detectors can only operate in 

AC mode, as free charges will cancel the obtained polarization in DC. The current 

flowing into or out of a pyroelectric detector is made out of two electrode in between 

which is a pyroelectric material and the current is given by 

                                                           
  

  
                                          Equation 2-14 

Where A is the area of the electrodes, p the pyroelectric coefficient, and dT/dt the 

rate of temperature change. 

2.1.3.2 Thermo-mechanical Detectors  

Thermo-mechanical infrared detectors use deflection of composite cantilevers made 

of two materials having different coefficients of thermal expansion. The deflection at 

the tip of the cantilever is given by 

                                                                                                        Equation 2-15 

Where C is a constant that depends on the materials‘ thicknesses and their Young‘s 

modulus, L is the length of the cantilever, and α1 and α2 are the coefficients of 

thermal expansion of the two layers. There are several ways this deflection can in 

turn be measured, e.g., optical reading (deflection of a light beam on the cantilever), 

capacitive sensing ,or piezoresistive sensing. 

2.1.3.3 Bolometers  

Bolometers are thermal sensors that use a thermistor to measure the temperature 

change induced by incident infrared radiation. The change in bolometer resistance 

due a change in temperature is given by 

                                                                                                                         Equation 2-16 

Where α is the temperature coefficient of resistance of the thermistor and    the 

temperature change due to the incident radiation. 
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2.1.4 Thermal Camera 

A thermal camera is a non-invasive device that detects IR energy and converts it to 

an electronic signal, which is then processed to produce a thermal image. Therefore, 

radiation energy from the object as sensed by camera can be accurately quantified. 

In order to operate thermal camera effectively without being affected by the noise 

arising from the dark current, most TI cameras normally employ a number of detector 

elements together with cooling system. There are also uncooled FPA-type (focal 

plane array) cameras which is more affordable but with a trade-off of having lower 

sensitivity. 

In the areas of imaging system analysis, image quality specification and sensor 

trade-off studies are most commonly refer to spatial resolution and sensitivity.  The 

sensitivity is normally defined as the noise equivalent parameter that would lead to 

the radiance difference of the target with respected to that of the background.  

A thermal camera can be characterised by its signal transfer function, noise 

equivalent temperature difference, contrast transfer function and minimum resolvable 

temperature difference. Signal transfer function (SiTF) is the slope of the linear 

portion of the response function of a system. The responsivity function is defined as 

the output to input transformation in which the target size is fixed and the target 

intensity is varied. It is typically S-shaped as shown in Figure 2-4. For many systems, 

the electronics have a limited dynamic range compared to the detector and the 

output is therefore designed to centre at about some average value. Saturation in the 

positive and negative directions about this average value is typically limited 

electronically by the dynamic range of an amplifier or analog-to-digital (A/D) 

converter.  

Noise is defined in the broadest sense as any unwanted signal components that 

arise from a variety of sources. The RMS noise voltage can be referred to the input 

that produces an SNR of unity. The noise equivalent differential temperature (NEDT) 

is a measure of system sensitivity. The system noise signal can be measured as the 

output signal when no useful input signal is applied. Once SiTF is obtained from the 

responsivity function, the NETD can be calculated as follows 

                                                                     
   

    
                                               Equation 2-17 
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Figure 2-4 Typical responsivity function illustrating the SiTF. 

2.2 Hyperspectral imaging (HSI) 

Hyperspectral imaging (HSI) is a spectral sensing technique which takes hundreds of 

contiguous narrow waveband images in the visible and infrared regions of the 

electro-magnetic spectrum (figure 2-2) (Shaw & Burke, 2003) (Smith R, 2006). The 

image pixels form spectral vectors which represent the spectral characteristic of the 

objects in the scene and therefore HSI has been mostly applied for material 

identifications and discriminations purposes. Although HSI was originally developed 

for mining and geology applications, its usage has quickly spread into other civilian 

sectors and more recently into the military sector due its capability of material 

discrimination (Goldberg, 2003). In military and security applications the technique 

has been specifically adopted for the detection and recognition of targets which are 

normally well camouflaged with respect to the background and hence HSI is 

designed as a counter-countermeasure allowing ‗look-alike‘ targets to be 

differentiated (Yuen, 2006). As illustrated in figure 2-5, which depicts the 

red/green/blue (RGB) image of an apparent green leafy plant (figure 2-6a) but in fact 

there is only one live leaf and the rest of them are fake leaves. This highlights the 

need of a technique like HSI which exploits information in high spectral resolutions 
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over a wide spectral range to allow the discriminative detection of targets even when 

they exhibit subtle spectral contrast with respect to the background.  

 

 

 

 

          

                     (a)                                                       (b) 

Figure 2-5. Highlights the common usage of HSI for material discrimination: in (a) it shows the 3-
broad bands of RGB picture of a green plant and in (b) it shows the image of the same plant but using 
a composite of 3 narrow wavebands in the visible and near infrared region, which is shown capable to 
discriminate the live leaf (in green) from the fake (in blue and red).  

 

Figure 2-6 Introduces the concept of hyperspectral imaging (HSI) which is literally a technique that 
takes many contiguous narrow waveband images instead of just the 3 broad bands of red, green and 
blue colours as in the conventional digital photography.  

2.2.1 HSI instrumentations: an overview 

HSI collects large numbers of contiguous narrow spectral bands for a scene forming 

a hyperspectral cube (figure 2-6) which contains two dimensions of spatial and one 

dimension of spectral content (Shaw & Burke, 2003) (Smith, 2006). In the heart of 

the HSI instrumentation is the spectral dispersion mechanism which is known as 

spectrograph (figure 2-7), and it exists in various different forms of which the most 

RGB imageRGB image

Fake leave 1

Fake leave 2

live leave

NIR composite  image
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common three categories have been the dispersive spectrometer, the Fourier 

transform interferometer and the narrow band tuneable filter. Details of these 

spectrographs can be found in the literature by Vagni (Vagni, 2007). 

 
Figure 2-7. Outlines the components of a typical HSI system which consists of a spectrograph and a 
2D CCD sensor as imaging device.  

(a) (b)  

Figure 2-8. (a) Shows the schematic ray diagram of the Offner convex spectrograph. (b) the very 
compact housing for the Offner spectrograph manufactured by the Headwall Photonics.  

2.2.2 Dispersive spectrograph 

Dispersive imaging spectrometer employs either a grating or prism for light 

dispersion. The hyperspectral cube is formed by sensing one line of image such that 

the spatial and spectral information is stored in each dimension of the 2D sensor 

array. This means that the system can only image a line of the scene at a time and 

this is commonly realised through a s

the objective lens (see figure 2-8). A prism has advantages of having high efficiency 

and low scatter, but their optical design tend to be considerably more complex than 

their grating-based counterparts.  
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Figure 2-9. Shows the schematic drawing of the PGP based spectrograph 

Gratings can be optimised to achieve high optical power for a certain order of 

interference within a specific wavelength region. The spectral resolution of a grating 

is proportional to the order and to the number of lines in the grating, and it is 

constant over the image plane for a constant incident angle of the radiation. In a 

grating spectrometer the prism is replaced by either a transmissive or reflective 

grating and in the all-reflective optical design the grating system can achieve high 

efficiencies of about 85%. There are two forms of gratings and the most common 

one has been the convex grating utilising the Offner spectrometer design as that 

illustrated in figure 2-9. The gratings of this type tend to be small, typically ~25mm 

diameter. The advantages of the Offner spectrometer are that it operates with a 

relatively low F-number (≥f/2) and it accepts a long slit while maintaining a compact 

size. The design can be very simple as it needs only three optical surfaces and it 

utilises only spherical and centred surfaces. Note the compact size of the 

spectrometer which makes it very suitable for some applications such as surveillance 

tasks.  

The other design of the dispersive imaging spectrograph has been using both the 

dispersing elements prism and grating in a single package. This is generally 

achieved using a special designed volume transmission grating which is cemented 

between two almost identical prisms, and it is commonly known as Prism-Grating-

Prism (PGP) (Aikio, 2001) as shown in figure 2-9. The PGP has the advantage of 

preserving the optical axis but with a penalty of losing transmittance due to the fact 

that materials with high dispersion also exhibit high absorption which results in a 

reduction of the overall throughput of the system. Due to the linear layout of the PGP 

the physical dimension of the PGP spectrometer is more extensive than that of the 

Offner design.  

PGP spectrograph
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(a) (b)  

Figure 2-10. In (a) it shows the schematic working principle of AOTF for MSI illustrated by using the 
TeO2 as the piezoelectric crystal and operated in a non-collinear configuration. One important 
characteristics of the AOTF MSI is the flexibility of tuning, which not only allowing the user randomly 
select the pass wavelengths in any spectral order, but also that it enables a variable band width of the 
passband as shown in (b), and all these features are not possible to be achieved by using the 
dispersive spectrograph system.  

One of the greatest drawbacks for using dispersive spectrograph in HSI 

instrumentation have been the requirement to operate the system in a line scanning 

mode like a push broom. Hence this design will require the movement of the imaging 

system or alternatively the need of an optical scanning device in order to capture the 

full hyperspectral cube of the scene. One way to avoid this shortcoming is the use of 

narrow band tuneable filters which ‗scans‘ along the spectral dimension. Filters like 

circular or linear variable filters, acousto-optical tuneable filters (AOTF) and liquid 

crystal tuneable filters (LCTF) (Gat N, 2000) (Rajwa B et al, 2005), (Vagni, 2007) 

have been implemented in step stare mode operations such that snap shots of the 

whole scene at the pass band wavelengths can be taken in a sequential manner. 

Amongst these filters, the AOTF and the LCTF have been the most popular (Fong et 

al, 2008) choices for multispectral imaging (MSI) implementation.  

The acousto-optical tunable filter (AOTF) makes use of light diffraction within a 

piezoelectric crystal such as TeO2, by passing an acoustic wave simultaneously with 

the light beam through the crystal. There are several different configurations and the 

acoustic wave can be propagated orthogonally or in parallel to the input light beam. 

When an acoustic wave is propagated through the piezoelectric crystal, the 

refraction index of the crystal is modulated by the alternating planes of compression 

and rarefaction of the travelling ultrasonic wave as it propagates through the crystal. 

As shown schematically in figure 2-10 the crystal behaves like a grating which 

diffracts light of specific wavelength into a beam stop or a polarizer, and the 



  

22 

diffracted beam is then sensed by the sensor. At a given wavelength of the acoustic 

wave a, the diffracted light at the passband of l can be given by:  

                                                                                      Equation 2-18 

where n is the birefringence of the crystal and is a parameter dependent on the 

design of the AOTF system. The diffraction efficiency of AOTF is proportional to the 

strength of the acoustic beam and it can achieve a maximum of ~90% split between 

the two polarised diffracted beams with a net throughput of ~30-45% in each beam. 

The spectral range of the AOTF depends very much on the characteristics of the 

crystal as well as on the size of the angular aperture, which, tends to reduce the 

overall useable spectral range when a large angular aperture is used. In practise the 

crystal utilises small aperture sizes of ~12x12mm with FOV of ~4 degree capable to 

deliver a spectral range of ~500nm-850nm (Pannell ,  2006) (Fong, 2008). In general 

the crystal is driven using a very small range of acoustic frequency fa centred at f 

and this effectively broadens up the transmission characteristic by l±l allowing a 

user selected bandpass width (figure 2-10b), which otherwise is fixed in the grating 

design (by the entrance slit). As in equation 2-18 the diffracted beam l can be 

changed by alternating the frequency of the acoustic wave, thus giving a complete 

electronically tuneable optical filter without any moving parts. Furthermore, the l can 

be tuned either sequentially or even randomly in any spectral order; something that 

the grating/prism based spectrometer could never attain. The tuning times are 

typically in the order of microseconds and consequently the AOTF system remains to 

be one of the most suitable candidates for catering applications which require high 

speed multispectral imaging (MSI), such as those in the surveillance applications 

where real time video recordings are required.  
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3 Experimental set up and data analysis 

A significant portion of this research has been devoted to the experimental 

instrumentation which consists of building up two HSI systems and one AOTF MSI 

system during the first 18 months of the PhD study. These HSI and MSI systems 

have been used to capture the saturated tissue oxygenation (StO2) of the 

participants and to deduce their emotional states. The hardware construction of 

these systems and the models used for extracting StO2 are briefly outlined in this 

chapter while the software design is presented in the Appendix. 

(a)  (b)  

Figure 3-1 (a) the VNIR HSI camera constructed by our group at DA-CDS which consists of the 
Headwall‘s spectrograph and a PCO camera, together with a home built mirror scanner assembly 
situated at the top of the spectrograph. (b) The two line scanning hyperspectral cameras made by our 
group and on the left is the PGP based SWIR camera and on the right is the Offner VNIR system, the 
red rectangles depict the physical dimensions of the two spectrographs showing how compactness is 
the Offner design compare with the PGP one.  

3.1 Home built HSI & MSI systems  

Two different types of hyperspectral cameras with spectral sensitivities in the visible-

near infrared (VNIR) and short wave infra-red (SWIR) have been extensively 

employed throughout this project. Commercially available hyperspectral imaging 

systems are extremely expensive to acquire and in many cases the performances of 

these off-the-shelf products are very limited. To tailor make for a fit-to-purpose 

instrumentation we opted to develop our own HSI systems by assembling 

Commercial-Off-The-Shelf (COTS) components together such as spectrographs, 

cameras, mirror scanners and device drivers. Unlike conventional push-broom type 

of hyperspectral cameras that have been frequently employed for the geographic 

information system and battlefield operation, all of our HSI cameras are designed in 

such a way that they are capable to acquire full hyperspectral cubes without the 

need to move the camera. One of the HSI cameras has been made using an Offner 
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convex gratings design (Bannon, 2007) as shown in figure 3-1, which depicts the 

spectrometer together with the home built mirror scanner (fig 3-1 a) for sweeping the 

image across the scene optically. This design has the advantages of being able to 

operate at a relatively low F-number (≥f/2) while maintaining a compact size. The 

other HSI camera has been using both the dispersing elements prism and grating in 

a single package known as Prism-Grating-Prism (PGP) (figure 3-1b).   

 

Figure 3-2. (a) Shows the AOTF system put together by our group for imaging in the VNIR spectral 
range using TeO2 as the active crystal The figure shows the associate steering optics together with 
the AOTF spectrograph (in red) which is made by the Gooch & Housego Photonics with transmission 
characteristics of ~35%, and therefore a high end EMCCD camera (Andor Ixon 897) with a peaked 
QE of ~90% is employed. Due to the small FOV (~4 ) a 50mm objective lens is deployed as shown in 
(b). The unit is powered via a separate driver box through standard BNC interface (c).  

Another camera which selects multiple narrow bands of wavelength using an 

acousto-optical tunable filter (AOTF) has also been deployed in this study. Shown in 

figure 3-2 is the AOTF multispectral imaging (MSI) system put together by our group 

and the system comprises of an AOTF filter (Gooch & Housego) together with an 

EMCCD camera (Andor Ixon 897). The system is capable to deliver ~50 frames per 

second at 512x512 pixel resolutions and it is sensitive for wavebands between 

450nm and 850nm. The instrumentation work for the HSI and MSI systems includes 

the mirror scanner construction, optical alignment, and the image acquisition 

software design and implementation.  

3.1.1 Mirror Scanner 

The optical scanner is designed by my supervisor and the housing assembly is made 

by an engineering company in Bristol. The scanner consists of a motor and a mirror, 

which scans the scene through a step motor. The camera captures one frame of 

C-mount adaptor

AOTF unit
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spectral information for every motor step position and it is then stored in the memory 

of the computer. After a sequence of mirror rotation the spectral information of 

various parts of the scene are then stacked together to form a hyperspectral image 

cube. A servo driver board and a dual-axis controller board with independent power 

supply have been used for driving the motors. The driver electronics and controller 

boards are housed in a custom-made cooled housing.  

 

Figure 3-3 (a) Outlines the construction of the step motor assembly of the mirror scanner.  (b) A 
schematic view of the motor housing and the optical axis of the spectrograph and the rotating axis of 
the step motor.  

The step motor is located just above the objective lens of the camera through a T-

shape aluminium frame as shown in Figure 3-3 (a), which is then in turn fixed on the 

top of the spectrograph. Eight adjustable scrub screws have been used for the 

alignment between the motor axis with respected to the optical path in the camera. 

The axis of the motor should be aligned perpendicular to the optical axis (Figure 3-3 

(b)). The alignment is achieved using a perspex dummy motor which has a hollow 

cavity in the centre to allow a laser beam to pass through.  
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3.1.2 Thermal imager 

This project requires a range of advanced equipment to maximise the probability of 

capturing the relatively ‗unknown‘ signature. A great deal of the project resources 

has been utilised in the equipment acquisition, including an upgrade of an existing 

HSI camera into a fast multispectral system. This programme has employed two 

different types of thermal imagers with thermal sensitivities of NETD 17mK (SC7600) 

and 40mk (SC640) working in the usable spectral ranges of 3-5um and 8-12um 

respectively. The sensors of both imagers are of large format (640x480) MCT 

semiconductor FPA. Figure 3-4 shows the range of the equipment that has been 

employed during the course of this work. 

 

Figure 3-4 shows the equipment that has been employed in this study: (from left to right) the LWIR 
FLIR SC640, the home built SWIR HSI using a PGP spectrograph, the VNIR AOTF MSI using Gooch 
& Housego‘s TeO2 AOTF unit, the home built VNIR HSI camera which utilises the Offner 
spectrograph, and the MWIR SC7600 FLIR thermal imager.  

3.2 Experimental procedures 

3.2.1 Stressor protocols & ethics approvals 

All stressor protocols and the conduct of experimental trials involved in this study 

have been approved by the IRAS Ethics Committee under the REC reference 

09/H0107/2. All participants in the study are required to comply with the conditions 

as stated in the health screening form and their consent is sought in terms of a 

written agreement as set out in the consent form. The experimental protocols are in 
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the order of i) mental stressor session (Triers Social Anxiety Test (TSST) (Yuen, 

2009), pattern recognition test and physical anxiety test.  

3.2.2 Outline of stressor sessions 

All of the experiments that have been carried out in this study follow the protocols 

and procedures according to the approved REC forms and they are largely 

implemented in the following three main steps. Firstly, the participant is asked to 

wear a heart monitor (Garmin and Miroxi type) beforehand, and then the subject is 

led to a well-illuminated room for her/him to sit down comfortably. Throughout the 

experiment the subject is asked to avoid substantial body movement and to sit down 

calmly as much as possible. Then a rest time of about 5 minutes is given to allow the 

subject to settle in the new environment and subsequently base line information 

together with the saliva sample is taken. Shortly afterwards a series of stressors will 

be given to the participant, normally beginning with emotional stressor TSST which 

consists of a 3-5 minutes of mental maths and pattern recognitions, then follow by a 

5 minutes rest during which another saliva sample together with a set of image is 

taken at this point.  

The second procedure involves a physical stressor which involves an endurance test 

by asking the participant to sit down but without chairs, this is known as ‗stand horse‘ 

(SH). The participant is encouraged to keep in the position as long as possible. In 

the final test it involves another physical exercise stressor which simply requests the 

participant to run upstairs a couple of times and then return to the room as quickly as 

possible. The participant is expected to be heavily loaded physically but not 

exhausted, and typically it takes only a minute or two to complete the test. Sets of 

images together with their saliva samples are subsequently taken prior to and after 

the stressor is applied.  

3.2.3 Experimental setups & calibrations 

A typical setup for the experiment is shown in figure 3-5 which consists of standard 

reflectance panels for spectral calibration in the 0.4-2.5um range, black bodies which 

are kept at constant temperatures of 30-40 C to serve as temperature calibrations, 

and mirrors for reflecting light within 0.4-20um wavelengths designed for viewing the 

side faces of the target from the front. A chair and a table have been provided for the 
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participants to rest and all cameras are set out at a range of about 3-5 meters from 

the target. The room is well illuminated by broad band halogen lamps diffusively 

scattered onto the target, and the participants are requested to wear a chest strap 

heart monitor (Garmin) as well as a finger probe (Miroxi) for measuring the StO2 and 

the heart rate (HBR).  

During the trial we have collected over ~6 Terabyte of data and all the TI and HSI 

data has been processed using third party software and also our own algorithms on 

Matlab platform respectively.  

 

Figure 3-5. (Left): shows the layout of the experimental setup for the anxiety assessment exhibiting a 
range of calibration panels and black bodies in the background. The room is well illuminated (~750 
lux) by diffused halogen lamps as shown in the picture on the right.  

3.2.4 Participants 

Participants in this programme have been recruited mainly from within the Defence 

Academy and Cranfield University. There are a total of 85 volunteers to participate in 

the experimental trials and amongst them there are mixtures of different skin colours 

(Caucasians, Indians, Chinese, Malaysian, South Africans) in both genders and they 

are in the age group of 22-55 with a median age of 25. Over two third of the 

participants come from military background and the remaining are research students 

and academic staffs. Figure 3-6 shows representative pictures of participants in this 

study highlighting their various skin types, gender and professions. 

The trial has been taken place both in the morning and afternoon during the 

Feb/March month and it is noted that the facial colours of the volunteers have 

exhibited substantial variations: ranging from brightly blush to rather pale. This wide 

range of facial flushness variations across this relatively small sample size has yet 
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again emphasised the significance of the large variability in individual‘s 

health/physiological conditions which emphasis the real difficulty for defining the 

exact ‗base line‘ level.  

 

Figure 3-6. shows the representative pictures of the participants involved in this study. Over 2/3 of the 
participants are from the military background and some participants have repeated the test several 
times in attempt to study the effects of diurnal variations and food/drink/smoking effects. Note the 
large variations of the facial flushness over these participants.  

3.3 HSI Data processing for StO2 assessment 

A small portion of this work involves the assessment of saturated tissue oxygenation 

(StO2) which is defined as the percentage ratio between the oxy-haemoglobin 

(HbO2) and the total haemoglobin (sum of deoxy-haemoglobin (Hb) and oxy-

haemoglobin (HbO2)). Throughout this study we have utilised the Beer-Lambert 

model for the extraction of Hb and HbO2 and the methodology and algorithm are 

briefly outline in this section.  

It can be seen in the following chapters that emotional anxiety induces predominantly 

an increase of heart beat and breathing rates, which in turn increase the tissue 

saturated oxygenation (StO2). In this study we have employed HSI technique for 

assessing StO2 through the optical absorption characteristics of the haemoglobin 

within the dermis layer. There are some reports on the remote sensing of StO2 using 

HSI technique (Cancio, 2006). However, there is an absence of work ever reported 

for assessing emotional anxiety using HSI.  



  

30 

 

Figure 3-7 Molar extinction coefficients of melanin, oxy-haemoglobin (HbO2), and deoxy-haemoglobin 
(Hb) (Prahl, 1999) chromophore in human tissue. 

3.3.1 Tissue chromophores absorptivity 

The main chromophores in skin tissues are melanin, oxy-haemoglobin (HbO2), and 

deoxy-haemoglobin (Hb). The molar extinction coefficients of these three 

chromophores, in the unit of cm-1M-1, as function of wavelengths are shown in Figure 

3-7 (Prahl, 1999). It is seen that melanin absorbs more photons in the shorter 

wavelengths region than that in the longer wavelengths, and the extinction coefficient 

of the melanin drops rather linearly from 200nm to 800nm wavelength. The Hb & 

HbO2 have nearly 40 times larger absorptivity in the ultra-violet than that in the near 

Infrared region. The absorption properties of HbO2 and Hb are quite close to each 

other but still discernible. In the region of 500nm to 600nm, Hb has one prominent 

absorption peak at about 556nm, while HbO2 has two absorption peaks at around 

542nm and 576nm. In the region of 610nm to 900nm, an absorption dip is observed 

at around 686nm for HbO2, while one peak is seen at around 756nm for Hb. Both Hb 

and HbO2 show the strongest absorption properties in the region of 400nm to 450nm 

with peaks found in 412nm and 434nm for HbO2 and Hb respectively. The Hb and 

HbO2 has the same extinction coefficient at the wavelengths (isosbestic point) of 

390nm, 442nm, 452nm, 550nm, 530nm, 545nm, 570nm, 584nm, and 797nm. 
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3.3.2 Beer Lambert (BL) models for StO2 assessment 

3.3.2.1 Basic BL model 

A great deal of work in the field of StO2 assessment has been based upon the Beer-

Lambert Law (BL) which relates the absorption of light to the properties of the 

material through which the light is travelling:  

                                                                    llcA                                              Equation 3-1 

where    is the absorbance,  is the molar extinction coefficient (cm-1(mol/L)-1)(or 

molar absorptivity) of the material,   is the molar concentration (mol/L) of the 

absorber,   is the distance (cm) where the light travels through the material,   is the 

absorption coefficient (cm-1) of the chromophores. Equation 3-1 implies that the 

absorbance is linear with the concentration of chromophores. If the path length   and 

the molar abosorptivity   are known and the absorbance   is measured, the 

concentration   of the substance can be deduced (K. J. Zuzak, 2001).  

However, in the HSI reflectance model, the path length    can hardly be measured. 

The product     in equation 3-1 is thus normally reduced to     , commonly known as 

effective concentration (10-3mol/cm2), which represents molar concentration of 

absorbers per unit area. 

If only HbO2 and Hb are taken as two main chromophores for the HSI data recorded 

in the range of visible to near infrared region, the BL formulation can be written as 

                                                        
effHbHbeffHbOHbO CCA   22

                       
Equation 3-2 

where           and        ,        are the molar absorptivity and the effective 

concentrations of HbO2 and Hb respectively. Equation 3-2 is commonly referred as 

basic Beer Lambert Law formulation (K. J. Zuzak, 2002). 

If HbO2, Hb, and melanin are taken as the main chromophores for the StO2 

assessment, then the basic BL model will be in the form of: 

                                      
effmelaninmelanineffHbHbeffHbOHbO CCCA   22

 
Equation 3-3 

where         and             are the molar absorptivity and the effective 

concentration of the melanin in the skin.  
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3.3.2.2 Extended Beer Lambert (EBL) Law 

In the basic BL model it is assumed that the photon passes through the material 

without being scattered. In practise photons are scattered into different paths inside 

inhomogeneous turbid material like the body tissue, and some of them are simply 

lost after multiple scattering leaving only a small fraction of photons following the 

pathways and they are then collected by the detector. The path lengths of these 

photons travelled is much longer than the inter-optical distance   of the detector 

probes, and it is typically 4-6 times of    in live body tissue (Delpy, 1988). Thus the 

basic BL law in equation 3-2 is commonly modified into (Delpy, 1988) (Sassaroli, 

2004): 

                                                              GDPFlcA                                      Equation 3-4 

where     is the ‗differential path length factor‘ to reflect the effective optical path 

length, G is the portion of photons that is lost due to the scatters.  Equation 3-4 is 

commonly known as the modified Beer Lambert (MBL) law (D. T. Delpy, 1988) (A. 

Sassaroli, 2004). Note that the DPF is not a constant and it exhibits wavelength 

dependence behaviour (Kohl, 1998).  

In many cases the effective photon mean free path       is unknown and many 

authors in the field (Zuzak, 2009) (Shaw, 2000) (Wolff, 1996) have approximated the 

    as a wavelength independent constant and to replace the         into 

effective concentration      turning equation 3-4 into (D. Yudovsky, 2011) (G. 

M.Palmer, 2012):  

                                                                   
GCA eff  

                                           
Equation 3-5 

Equation 3-5 is commonly known as the extended Beer Lambert (EBL) formulation. 

And for two chromophores of Hb and HbO2 as the main absorbers in dermis tissue 

within the visible to near infrared (NIR) region (Zuzak K. J, 2002) then equation 3-5 

becomes (D. Yudovsky, 2011) (K. J. Zuzak, 2007) (K. J. Zuzak, 2009): 

                                              
GCCA effHbHbeffHbOHbO   22

                    
Equation 3-6 

Where      ,    and        ,        are the molar absorptivity and the effective 

concentrations of HbO2 and Hb respectively. The parameter   has been treated as i) 

the collection of photons that have been scattered out of the angle of view of the 
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sensors (Yudovsky D, 2011), ii) those specularly reflected by the epidermis (Zuzak, 

2007) and iii) the regression offset residues (Zuzak, 2009) (Cancio, 2006). 

Due to the wavelength-dependent nature of the reflection from the melanin within the 

epidermis (Huang & Jacques, 1998), the   term in equation 3-6 (D. Hattery, 2002) 

(D. Yudovsky, 2011) (K. J. Zuzak, 2007) is often further split into two components 

(Yudovsky D , 2011) (Palmer, 2010) (Hattery, 2002): 

                       
GCCCA effmelaninmelanineffHbHbeffHbOHbO
  22

    
Equation 3-7 

where         and             are the molar absorptivity and the effective 

concentration of the melanin in the skin, and the term    represents all other factors 

not related to the tissue absorption such as specular reflection of the skin and the 

regression errors.  

All the StO2 analysis has adopted the EBL in equation 3-7 throughout this study. The 

effective concentrations of Hb and HbO2 are obtained through the absorptions at 

three wavelengths of 563nm, 577nm and 796.8nm, together with the extinction 

coefficients of these chromophores adopted from the literature.  This methodology is 

found simpler and sometimes more robust than that of the regression approach 

using a range of wavelengths (Yuen, 2012).  

3.4 TI processing: Blood perfusion model  

The other means for remote sensing of physiological features has been the use of 

thermal imaging (TI) technique. TI senses the skin temperature and it is necessary to 

translate the sensed temperature into physiological quantity, such as the blood 

perfusion. Blood perfusion is defined as the blood volume flow through a given 

volume or mass of tissue (in units of ml/ml/s or ml/100 g/min), and it represents local 

blood flow through the capillary network and extracellular spaces in the tissue. This 

section outlines the model that we adopted for translating the skin temperature into 

the blood perfusion rate. 

There are quite a few blood perfusion models and one of them is based on the Heat-

Conduction formulation (lwao Fujimasa, 2000). This model has been adopted by 

Ioannis Pavlidis for his Polygraph Testing research (Ioannis Pavlidis, 2002). 
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Specifically, at thermal equilibrium the heat balance equation for human skin tissue 

is modelled as: 

                                                                   Qr Qe Qf Qc Qm Qb                                    Equation 3-8 

Where Qr is the heat radiated from the subject to the air in units of calories; Qe is the 

basic evaporated heat; Qf gives the heat loss via convection into the air 

neighbouring the skin surface; Qc is the heat conducted by subcutaneous tissue; Qm 

gives the heat corresponding to the metabolic rate of cutaneous tissue; and Qb is the 

heat gain/loss via convection attributable to blood flow of subcutaneous blood 

vessels. After differentiating, the blood perfusion model is obtained in the following 

form: 

                                     
   
  

  
  (   

  
  
)  

            
 

   

  
               Equation 3-9 

where α = 0.8 (counter current heat exchange in a warm condition); pc = 0.92 

cal/mL/K (heat capacity of blood); TB =310K(blood temperature in the core); TS = the 

skin temperature; S = the thickness of the skin; Kc = 0.168 kcal/m/h/K (thermal 

conductivity of skin); and d = the depth of core temperature point from skin surface. 

C is constant. Cs = the heat capacity of skin. Figure 3-8 presents the sample images 

of blood perfusions from the thermal image (Ioannis Pavlidis, 2002). 

 

Figure 3-8  shows (a) Raw thermal image of subject when he starts to answer the question. (b) Raw 
thermal snapshot of subject when he almost finishes the question session. (c) The blood flow rate in 
subject‘s face as he start to answer the question. (d) Blood flow rate in subject‘s face as he almost 
finish the question session (Ioannis Pavlidis, 2002). 
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In order to avoid the situation that thermal pattern of face is highly affected by many 

factors, Wu simplified the blood perfusion model (Wu, 2006) as follows:   

                                       
        

  

         
                           Equation 3-10 

Where ω represents the blood perfusion in the unit of ml/S per unit weight of tissue, 

σ is Stefan-Boltzmann constant, ε is the Tissue/skin thermal emissivity 0.98, T 

defines the Skin temperature, Te is Ambient temperature, α defines the tissue/skin 

countercurrent exchange ratio (0.8) and Ta represents the artery temperature of 

312.15K. 

In this study we have adopt equation 3-10 for obtaining the blood perfusion from the 

thermal data throughout this work. 
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4 A survey of remote sensing of emotional states   

4.1 Emotions and physiological response 

4.1.1 Relevant emotional states in this study 

Emotion is a complicated psycho-physiological experience that potentially offer a 

status of mind that can interact with biochemical (internal) and environmental 

(external) influences. Since human emotion is highly affected by physiological 

arousal, expressive behaviours, conscious experience, and associated with mood, 

temperament and motivation, reliable assessment of the affective component is 

important.   

A classification of basic emotions was developed by Paul Ekman in 1972 and its 

model is categorized by: anger, disgust, anxiety, happiness, sadness and surprise. 

To focus on the difference of different emotions, Robert Plutchik proposed the ―wheel 

of emotions‖, suggested eight primary bipolar emotions: trust versus disgust, joy 

versus sadness, and surprise versus anticipation and anger versus fear.  

In this study we focus exclusively on strong emotions such as anxiety, happiness 

and sadness that are stimulated by both mental and physical stressors (see section 

3.2 for more information).  

4.1.2 Hormones and emotional states 

Two hormones, adrenaline and cortisol, are predominantly released by adrenal 

medulla and cortex respectively during the anxiety state. When the psychological 

stressors are identified as threat, the Hypothalamic–pituitary–adrenal (HPA) axis is 

activated and the cortisol is released from the adrenal cortex into the blood stream. 

Around 90% of cortisol in the plasma becomes bound by other tissues and 

membranes, and only the rest 5%-10% unbound cortisol travels in the blood stream 

to the target tissue and affect the metabolism there. Due to its light molecular weight 

and lipid-solubility, the unbound cortisol is capable to diffuse through the acini and 

the salivary gland. Thus it is widely accepted that the salivary cortisol concentration 

is a good biomarker of activation of HPA axis.  
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Figure 4-1Shows the time delay of hormone secretion upon anxiety (a) ACTH concentration (b) Total 
plasma cortisol concentration (c) Salivary free cortisol concentration (Kudielka, C, & Hellhammer, 
2004)  

However, there is a time lag between the increase of cortisol in the plasma and the 

increase of cortisol in the saliva. It has been reported that the concentration of 

salivary cortisol is observed to rise in the first minute of injecting 5 mg cortisol into 

the blood (Read, 1982), and the maximum salivary cortisol concentration appears 

after 1-2 minutes of injection. However, the release of the cortisol from the adrenal 

cortex is modulated by the adrenocorticotropic hormone (ACTH) from pituitary gland. 

There is about 10-15 minutes lag between the maximum secretions of these two 

hormones, despite of age, gender, and individual difference according to various 

reports (Federenko, 2004) (Kudielka, 2004). It is shown in Figure 4-1 that the ACTH 

exhibits a time lag of about 5 minutes after the stressor is applied, while the free 

cortisol in the saliva can have time lag of as long as 20-30 minutes after the stressor 

is applied (Federenko, 2004) (Kudielka, 2004) . It is also seen from Figure 4-1 that it 

will take a long time, and in some cases as long as 50 minutes, for the plasma 

cortisol and salivary cortisol to return to the normal state after the stressor is applied.  
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Figure 4-2 shows the use of a combined public speaking and cognitive task which can impose a more 
effective anxiety to the participants. (Dickerson, 2004) 

Some studies have attempted to identify the effective stressor through the cortisol 

response, and various psychological stressors including public speaking (Sauro, 

2002), cognitive task, (Condren, 2002) emotion induction (Berry, 2001) have been 

tried. Dickerson et al (Dickerson, 2004) conducted ~200 laboratory studies of acute 

psychological stressors and concluded that not all the stressors exhibited the same 

cortisol response. It was however indicated that the combination of public speaking 

and cognitive task might be more stressful to most people as evidenced by the 

higher concentration of cortisol as shown in Figure 4-2.  

4.1.3 Physiological response to emotional anxiety 

Emotional anxiety imposes direct effects over to the heart, lungs, and also in the 

circulation system which reacts by an accelerated heart rate and blood pressure. 

The lung tends to work overdrive by taking in more oxygen through an increased 

breathing rate, and at the same time the spleen releases more red and white blood 

cells allowing more oxygen to be carried to various parts of the body. A substantial 

leap increase in the blood flow particularly in the vessels to the muscles, lungs, and 

brain has been the forefront reaction upon the onset of emotional anxiety.  



  

39 

 

Figure 4-3 shows the variations of blood pressure, coronary venous flow, and oxygen extraction ratio 
and oxygen consumption of a dog under controlled injections of adrenaline (2ug/kg per min at the 
arrowed point) in an intravenous infusion experiment (Creates, 1980).  

In summary the following physiological reactions have been identified during 

emotional anxiety characteristics of a fight-or-flight symptom: 

 heart and lung action will increase 

 glucose and oxygenation will be released for muscular action 

 blood pressure increase 

 Redirection of blood to provide the highest perfusion and fuel to the aroused 
brain, heart   and muscles 

 Constriction of blood vessels in many parts of the body, such as skin, stomach 
& intestine 

 Acceleration of instantaneous reflexes 

 Dilation of pupil  

 Increase of sweat 

 Suppression of concentration, short term memory, rational thought and 
navigation ability 

 Auditory exclusion (loss of hearing), and general effect on the sphincters of 
the body and tunnel vision 

 Inhibition of lacrimal gland (responsible for tear production) and salivation 
(mouth dryness) 

 Inhibition of stomach and upper-intestinal action (digestion slows down or 
stops) 

 Relaxation of bladder, evacuation of colon, inhibition of erection 
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4.1.3.1 Increase of tissue saturated oxygenation during anxiety 

The combined first four physiological responses in the above list results in a 

remarkable elevation of blood oxygenation during anxiety: some ~100-200% 

increase according to previous clinical research [Creates et al, 1980]. The study has 

shown that the StO2 of the heart muscle of a dog increases substantially when 

2μg/kg per minute of adrenaline infusion is applied (Figure 4-3). It is observed that 

an increase of blood pressure by almost 2-fold, together with ~90% increase of 

oxygen content in the blood while the oxygen consumptions by tissues are seen to 

remain more or less constant after the adrenaline injection, resulting in an abrupt 

drop of overall oxygen extraction ratio to almost a half causing a net increase of 

blood oxygenation ~100 - 200% after the adrenaline injections. 

  

Figure 4-4(a) MBF is the blood flow of masseter muscle. AD represents adrenaline infusion. The 
transient increase of masseter blood flow caused by adrenaline is clear in both in 0.1ug/kg and 1ug/kg 
dose.  The larger dose decreases the blood flow lower than baseline after the initial rise. (Ishii, 2009) 

Another study on the blood flow of the rat‘s masseter muscle after intravenous 

infusion of adrenaline has been reported (Ishii, Niioka, & Izumi, 2009). It is shown 

that the masseter blood flow (MBF) exhibits a transient increase when 0.1ug/kg of 

adrenaline is injected (Figure 4-4), while the limb blood flow (LBF) and the blood 

pressure also exhibit a small increase upon the adrenaline infusion. 

The increase of superficial blood flow 1-2mm below the skin surface on human facial 

region upon the onset of emotional stressor has been reported recently (Drummond, , 

1997). The mean blood flow in the forehead (Drummond, 1997) (Drummond,  1994) 

(Drummond, 1987), and in the cheek (Drummond, 1994) (Drummond, 1987) are 
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seen to increase during the anxiety state. This result may imply an increase of tissue 

oxygen content in the facial regions during the anxiety state, although there is no 

direct evidence given in these reports. However, it is seen in next chapter that our 

HSI results have shown that it is indeed a substantial increase of StO2 especially in 

the facial region when one is in anxiety.    

4.1.3.2 Change of blood perfusions during anxiety 

4.1.3.2.1 Blood perfusions in the periorbital regions 

Distinctive heat pattern in the facial region has been found associated with specific 

emotion state. Thermal signature of anxiety was firstly observed by Pavlidis et al 

(Pavlidis, 2000) (Pavlidis, 2002)(Pavlidis, 2001) (Pavlidis, 2003) in 2003 who 

reported that a person‘s anxiety, alertness, and fear, can be disclosed by an 

increase of temperature at around periorbital region. Figure 4-5 shows the original 

work published by the Honey Well team which portraits a seemingly unambiguous 

hot spot feature in the periorbital region due to a startle anxiety. Subsequently the 

team went further and reported how this anxiety-induced signature in the periorbital 

can be differentiated from other stressors, such as that due to physical exercise. 

Figure 4-5 shows the thermal images of a subject after a sequence of light and 

vigorous running exercise. The work claimed that there was almost negligible 

increase of blood perfusion at around the periorbital region after the running 

exercise.  

However, other workers in the field have attempted the test on animals like the cow, 

and they found that their temperatures in the periorbital regions are fairly constant 

during the stressor experiment (Stewart, 2007).  

It can be seen from our work that the mean temperature in the periorbital region is in 

fact quite constant when the subject is under anxiety (see chapter 9 for more 

information). 
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Figure 4-5: shows the false colour image of a subject before (a) and after (b) a startle. Note that the 
temperature at around the periorbital region of the subject which is seen to increase by almost 1C 
after the startle (Levine, 2002). 

 

Figure 4-6: Highlights the Texas/Honeywell work which intended to demonstrate the ‗uniqueness‘ of 
the anxiety signature found in the periorbital region. Shown in the figure is thermal pictures of a 
subject after (a) Base line  b) walk for 1 minute c) walk for 5 minutes d) run for 5 minutes, Note that 
there is seemingly no increase of temperatures in the periorbital after physical exercising (Murthy, 
2006). 

4.1.3.2.2 Blood perfusions in the forehead 

It has been reported that an elevation of forehead temperature is observed when a 

subject is under anxiety (Levine, 2009). The experiment was performed using two 

types of emotional stressors, namely the Stroop test and mental arithmetic. The 

Stroop test involved the reading of a number of words such as ‗blue‘ or ‗green‘ etc 

but they were in different coloured fonts. The temperatures of the subject in the 

forehead under these two tests were found to be highly correlated, with correlation 

coefficient of 0.96 (Levine, 2009). Figure 4-7 shows the experimental data of the 

temperature change in the forehead region using TI, and the blood perfusion of the 

region of interest (ROI) in the forehead using equation 3-10. It is shown that the 

mean temperature of the forehead was seen increased substantially when in 

comparison with that of the base line.   

(a) At rest (d) After 5 mins joggling(c) After 5 mins walking(b) After 1 min walking(a) At rest (d) After 5 mins joggling(c) After 5 mins walking(b) After 1 min walking
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Figure 4-7 Shows the result of the strooping test performed by the Texas group: (Top) The forehead 
temperatures measured by TI technique showing an elevated temperature in the region throughout 
the test (red) comparing to the base line (blue). (Middle) The ‗interpreted‘ blood flow and (Bottom) the 
‗interpreted‘ blood volume calculated by using a computational transfusion model using the 
temperature as the input. 

4.1.3.2.3 Blood perfusions in the face 

Blushing face has been one of the most common features for the indication of having 

an elevated anxiety. Many studies, have reported work on using high resolution TI 

system for monitoring one‘s anxiety through the temperature changes in one‘s facial 

region (Pavlidis I, 2003) (Puri, 2005) (TSIAMYRTZIS, 2007). Furthermore, recent 

work in the field has attempted to classify different types of emotions from the 

temperatures in the facial region.  Jarlier et al (Jarlier, 2011) reported for the first 

time that distinctive heat pattern in the face can be associated with the activation of 

specific facial action unit (AU). The experiment was performed to monitor the change 

of face temperature with respected to that of the base line. The difference of these 

two sets of images for each activated AU is shown in Figure 4-8. It is seen quite 

clear that, the activation of these AU can be detected from the TI data, provided that 

the participants remain stationary or when a sophisticated image registration 

algorithm is available. Nevertheless, this result may open up new avenues for the 

detection of human emotions using thermal imaging techniques.   



  

44 

 

Figure 4-8 shows the heat patterns differences of a subject for the activation of different AU  in the 
face with respected to the base line (Jarlier, 2011)  

 

Figure 4-9  (a) illustrates the RGB image of a raging monkey. (b) shows the change of nasal 
temperature of the monkey (in step of 10s), before and after he was presented a video clip of a raging 
monkey. White rectangles within the thermal data represent the ROI for temperature measurement. 
(c) shows the ROI averaged temperature change in response to raging monkey video. It appears 
apparently that the nose temperature drop down significantly from the baseline after the raging video 
was presented to the monkey (Akio Nozawa, 2011). 

4.1.3.2.4 Blood perfusions in the nose  

It is found that the nose temperature of mammals like monkeys, is sensitive to 

anxiety (Kuraoka, 2011)(Nakayama, 2005). Koji Kuraoka (2010) and other workers 
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have observed a remarkable decrease of nose temperature in monkeys when they 

are in negative emotional state (anxiety). Figure 4-9 has shown that the nasal skin 

temperature of monkey can be reduced by ~2% (~0.8C) when it is under anxiety 

after a raging video is shown to it.  

We have also obtained similar result when a human subject is under anxiety: the 

nose temperature is found reduced by ~1.5% (0.4-0.6C) (see chapter 10 for more 

information).   

 

Figure 4-10.Thermal image of the dorsal side of the right foot during the stressor experiment 

4.1.3.2.5 Blood perfusions in hand and foot  

It has been reported that the dorsum of the foot is sensitive to the psychological 

status of individuals. It has been observed a rise in the peripheral skin temperature 

at the tips of the toes when one is under anxiety. Fig.4-9 shows the TI images of a 

subject after he is exposed to anxiety. It is seen that the temperatures at the tips of 

the toes exhibit a small drops as soon as the stressor is applied, and after a time lag 

of about 2 minutes the temperature at the toe is seen to rise by about 15% (~5C). 

(Akio Nozawa, 2011). 

There are other parts of the body which have been seen also sensitive to the 

psychological state. Vianna et al has investigated the temperature of the rat‘s body, 

back, tail, and paw when the rat is exposed to a stressor (Vianna, 2005). It is 

observed that remarkable drop of the temperatures in the tail and paw of the rat are 

observed when the rat is under anxiety, while the temperatures in the eyes, head, 

and back have seen a slightly increase after the onset of the anxiety.  
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Note that the physiological features given by the hands and feet are not particularly 

useful to some applications such as the homeland security.  

4.1.3.3 Glucose level during anxiety 

Glucose measurement has conventionally been carried out using absorption 

spectroscopy technique, mostly in the visible and near infrared (NIR) range of 

around 590–950 nm, 1212–1850 nm and 2120–2380 nm due to the low water 

absorptions in these wavebands. In 2004, Cho et al  has developed a method called 

the metabolic heat conformation (MHC) for the non-invasive measurement of blood 

glucose (Cho, 2004). The method employs a thermal and together with an optical 

sensor for fingertip measurement. It measures the thermal characteristics, the blood 

flow rate, haemoglobin (Hb) concentration, and oxy-haemoglobin concentration 

(HbO2), and through a multivariate statistical analysis to convert all these signals 

into a final glucose concentrations. Another approach in the area has been the use 

of thermal emission spectroscopy for probing serum glucose concentration (Carl, 

2002). Olesberg performed an in vivo measurements of near-infrared rat skin 

absorption in the 2.0-2.5 um wavelength range during a glucose clamp experiment in 

order to identify the presence of glucose specific spectral information. His 

experiment demonstrates a significant similarity between orthogonal variations and 

the signal of glucose (Olesberg, 2006).  

A rather interesting technique using temperature-modulated reflectance has been 

attempted (Shu-jen Yeh, 2003). The experiment consists of modulating the skin 

temperature between 22 and 38 °C to generate a periodic set of cutaneous 

vasoconstricting and vasodilating events and to induce a periodic change of light 

scattering in skin. This gives a period change of light absorption through the tissue 

and to give a more accurate glucose concentration.  

Direct measurement of glucose level for healthy and diabetes patients upon anxiety 

hormone infusion have been conducted by Werner et al (Werner, 1992). It was found 

that the measured glucose level (MGL) is increased by almost 1.5 times of the base 

line level when small amount of anxiety hormone is infused into a healthy subject 

(Figure 4-11). However, there is again a time lag of 1-2 minutes for the glucose level 

increases to its peak after the anxiety hormone is infused.  The amount of the time 
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lag seems to be very dependent on individuals: another study by Wing et al has 

shown that the glucose level is maintained to high level for another 30 minutes after 

the stressor is applied (Wing, 1985)[Figure 4-12].  

 

Figure 4-11. shows the measured blood glucose (MGL) response and the computer simulation (GL) 
during and after anxiety hormone infusion (SHI) in a healthy subject on intravenous somatostatin [250 
pglhr. SHI: 3 h] (Werner 1992). 

 

Figure 4-12: shows the long time lag (~30mins) of the blood glucose levels increase after the stressor 
is applied. The stressor is applied between 0 to 30 minutes (Wing, 1985). 

There is a difference between the upsurge of the StO2 and the glucose level upon 

the onset of anxiety: the change of the StO2 has a shorter time lag of 1-2 minutes 

while the glucose level can keep increasing for 20-30 minutes!  
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4.2 Review of anxiety detection using physiological features 

Anti-terrorism has been one of the greatest demands in the homeland security of the 

21st century. Novel ideas such as direct detections of improvised explosive devices 

(IED) using electromagnetic wave, and indirectly through one‘s behaviour, activity, 

contextual and body language (gestures and facial expressions), have been 

proposed for the extrapolation of one‘s motive via human factor computational 

models within the last decade. However, it would be a technical challenge to detect 

explosives directly especially when they are packed in a light and air tight manner. 

Indirect methods using ‗affective computing‘ approach relies a great deal on the 

concreteness of cognitive theories which itself remains to be a matter of intensive 

research.  

Other direct methods, such as to assess one‘s intent through physiological or 

neurological states are viable, but it has been a technical challenge to make it 

practical. Conventional means for the detection of physiological states have been the 

direct contacting methods such as polygraph and functional magnetic resonance 

imaging (FMRI), and unfortunately both cannot be deployed in busy public places. 

This section reviews previous work in the field for the remote sensing of strong 

emotions such as anxiety. 

4.2.1 Anxiety detection through HBR & blood perfusion assessment 

4.2.1.1 Texas/Honey Well laboratory [2003-present] 

Researchers in the Honey Well laboratory has been the first team to report the 

feasibility of sensing people‘s anxiety from a stand-off distance using thermal 

imaging method back in 2002  (Pavlidis, 2002) (Murthy,  2006). The exact signature 

discovered was a substantial increased amount of blood volume in the periorbital 

region as the result of adrenalins secreted into the blood stream upon the onset of 

anxiety (see section 4.1.3.2.).  

Due to the high maturity in thermal imaging (TI) technology, the Texas team has 

studied how physiological features such as the change of blood flow, cardiac pulse, 

and breath rate signals can be probed using TI technique. His group has concluded 

that emotional anxiety brings about an instantaneous increase in the periorbital blood 
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flow and sustained emotional anxiety normally keeps pace with elevated blood flow 

in the forehead (Pavlidis et al 2007). 

 

Figure 4-13.HBR measurement using TI: Steps 1-3 show the ROI tracking from the raw TI data. The 
FFT and the HBR and pulse estimation method are shown in step 4 to 6 (Pavlidis, 2007). 

The Texas team has published a series of papers during the 2005-2010 period to 

demonstrate how the human‘s cardiac pulse can be extracted from the TI video of 

superficial vessels. The procedure consists of tracking the superficial vessel in the 

neck and then to apply Fast Fourier Transform (FFT) of the temperature data to 

obtain the frequency of the pulse (HBR). It is claimed that about 90% accuracy for 

the estimation of the HBR can be achieved. Figure 4-13 shows the procedure of the 

HBR detection by the Texas team (Pavlidis, 2007).  

 

Figure 4-14Sample thermal images and overlays by the vascular maps in (a) near and (b) distant 
poses. The feature labelled by blue point is the ROI for further pulse extraction analysis (Gault, T.R, 
2010). 

Slightly different from the Texas team‘s HBR measurement approach, Gault et al has 

developed a wavelet based non-invasive assessment of human‘s facial vascular 

structure and arterial pulse rate using TI data [Figure 4-14] (Gault, T.R, et al, 2010). 

The vascular maps are firstly produced and the pulse information is then obtained 
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through a denoised continuous wavelet transform (CTW) and multi-resolution 

analysis. The pulse information is then filtered and subsequently the final HBR is 

reconstructed by using inverse continuous wavelet transform (ICWT). Typical HBR 

data obtained from this method is shown in Figure 4-15 and the accuracy of the HBR 

is claimed to be 89-99% accurate. 

 

Figure 4-15.shows the quality of the HBR estimation using CTW technique: (a) 250 frames of raw TI 
data (b) wavelet coefficients (c). Filtered coefficients, (d) HBR obtained by ICTW (Gault, T.R, 2010).  

4.2.1.2 US Army Research [2009-present] 

The other physiological based research for the remote sensing of intent in the USA 

involves the Physiological Computing department of the Texas University Houston, 

the Electro-Optical (EO) companies OKSI Inc and the Draper laboratory. The core 

programme utilises thermal imaging expertises of the Texas University (Shastri et al 

2009) which attempts to detect anomaly temperatures from the periorbital region, 

and to couple with HBR detections of moving targets in short ranges of several 

meters (Figure 4-16). This programme also utilises a ‗new‘ concept similar to ours for 

detecting the intent through the blood oxygenation in the facial region. This part of 

the work is being carried out by the OKSI team, who had a brief discussion with us 

for possible research collaboration back in 2011. Unfortunately due to the 

complication of classification issues in both sides and eventually the research 

collaboration did not materialise. 
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Figure 4-16: Shows the physiological based anti-terrorism consortium in the USA that includes the 
Texas University, OKSI and the Draper laboratory. We have been contacted by the OKSI for research 
collaboration in the area of remote sensing of blood oxygenation back in 2011.  

4.2.1.3 UK Lincoln University [2009-2010] 

Within the UK there have been a handful of research programmes about the remote 

sensing of intent initiated in the past five years. One of them is led by Dr Shigang 

Yue of the Lincoln University (Yue et al 2011) who has employed radar and thermal 

imaging for the detection of anxiety through facial blush and HBR. The research was 

funded by the Home Office in 2009. One great drawback in Dr Yue‘s work is the 

requirement of the prior baseline information for assessing the anxiety of individuals 

from standoff distances (Figure 4-17). Base line information is not always available in 

practical real situations.   

 

Figure 4-17: Highlights the Lincoln University work for the detection of anxiety from the face blush and 
the heart bit rate (HBR). Note that both techniques require the base line information in-prior for the 
anxiety interpretation. (Yue, 2011). 
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4.2.2 Facial expression & gesture classification 

4.2.2.1 Conventional facial expression detection research 

Many studies in this area have been using physical computing to extract the facial 

expression and/or gesture for emotions detection (Valstar, 2004) (Zhang, 

2008)(Tong, 2007). This approach relies on the identification of the local facial Action 

Units (AUs) and to identify the anxiety through the Facial Action Coding System 

(FACS) (Ekman, 2002). There are a total of 44 AU identified and some of them are 

shown in Figure 4-18. Each AU is characterised by the activation of a set of muscle 

network in the facial region.  

Note that facial expression and gesture can be suppressed by will and hence there 

are debates about the usefulness of this approach in real environment.     

 

Figure 4-18 Outlines some examples of facial Action Units for coding and identification of facial 
expression (Ekman, 2002).  

 

Figure 4-19: Highlights the Bradford University work for the lies detection using thermal imaging and 
physical computing of facial expression (Ugail,  2011).  

4.2.2.2 Bradford University: [2009-present] 

Prof Hassen Ugail of the Bradford university adopted the facial expression detection 

approach and couple with thermal imaging to formulate another means of polygraph 

assessment in 2009 (see Figure 4-19) (Ugail, 2011). Again, the thermography 

Eye temperature

13-9-2011 BBC news

http://www.bbc.co.uk/news/science-environment-14900800

= Lies?

Facial expression
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attempts to detect the onset of anxiety through the anomaly hot spots in the 

periorbital region which then prompts the computer vision algorithm to focus on the 

facial expression analysis. However, the effectiveness of this approach for intent 

detection has not been confirmed yet. 

 

Figure 4-20: Shows the behaviour detection by trained behaviour detection officers (BDO) in blue 
uniforms currently deployed in the USA airports. The methodology is under review due to the extreme 
in-effective of the approach for anti-terrorism.  

4.2.2.3 Human experts: SPOT & BDO in the USA [2006-present]  

The research efforts in the USA within the areas of remote sensing of intent have 

been a lot more intense than any other countries in the world. There are two main 

streams of research in this area in the USA: one approach relies on the cognitive 

power of human experts to spot abnormal behaviour of people (Figure 4-20). The 

programme SPOT (Screening Passengers by Observational Training) deploys huge 

number of human Behaviour Detection Officer (BDO) post at around key checkpoints 

such as check-in desks at airports. The current budget for this programme costs the 

US taxpayers ~$200M p.a., and during 2006-2009 period the BDO has referred 

~230,000 people for secondary screening and resulted in ~1700 arrests but none of 

them has been prosecuted for terrorism. The effectiveness of this approach for anti-

terrorism has been heavily criticised and the US government is looking for alternative 

more cost effective approach particularly for passenger screening. 
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Figure 4-21 Features extracted from multiple ROI for arousal classification: left supraorbital (LFH), 
right supraorbital (RFH), left periorbital (LPO), right periorbital (RPO), and nasal (NSP) (Nhan BR,, 
2009). 

 

Table 4-1 Shows the classification accuracies for the arousal states: high arousal(HA) versus base 
line(BASE), low arousal (LA) versus BASE, HA versus LA (Nhan BR,, 2009). 

4.2.3 Multiple physiological features 

4.2.3.1 Multiple features extracted from the facial region 

It have been reported that the detections of emotions such as the arousal (A. 

Nozawa, 2009), fear (J. A. Levine, 2001) and happiness (R. Nakanishi, 2008) are not 

good enough by using single feature such as facial muscles contractions (Sophie 

Jarlier, 2011). Thus it is emerged that the requirement of multiple features is 

essentially important for the remote assessment of emotional states robustly. Recent 

work (Brian R. Nhan, 2010) has utilised multiple features extracted from the face, 

such as left and right sides of the supraorbital and periorbital regions and nasal, 

blood volume, pulse and respiration data, to identify the high arousal anxiety state 

http://www.ncbi.nlm.nih.gov/pubmed?term=Nhan%20BR%5BAuthor%5D&cauthor=true&cauthor_uid=19923040
http://www.ncbi.nlm.nih.gov/pubmed?term=Nhan%20BR%5BAuthor%5D&cauthor=true&cauthor_uid=19923040
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(Figure 4-21). By using a genetic algorithm and a Fisher LDA classifier to analyse 

the time and time-frequency data of these physiological features, the author has 

obtained about 80% accuracy for the detection of anxiety with respected to the base 

line when 11 features are used (see Table 4-1). The detection accuracy is about 12% 

better when in comparison with that using only 2 features for the classification.   

 

Figure 4-22: Shows the mobile screening laboratory under the FAST programme: (a) mobile trailer lab 
(b) a trial in Maryland consisting of 140 paid volunteers, (c) the acquisition of base line information 
when participants enters into the trailer (d) participants are monitored by a group of experts who 
analyse various physiological features during the trial.  

4.2.3.2 Future Attribute Screening Technology (FAST) & Malicious intent 

screening (MALINTENT) [2008-2012] 

This is a 4 year $2M programme which was awarded by the US government to the 

Draper Lab back in 2008. The objective is to monitor HBR, breathing rate, face 

temperature, eye tracking, voice pitch and facial expression using EO imaging 

equipment from stand-off distances. The purpose is to detect ‗Mal Intent‘ by 

screening people for physiological indicators through a mobile screening laboratory, 

such as a trailer as shown in Figure 4-22 (Malintent, 2008).  The budget of the FAST 

and the MALINTENT programme is about $10M p.a. It is claimed that the accuracy 

for the detection of mal-intent and deception is about 80% although the validity of the 

claim has been questioned by the Federation of American Scientist. The system 

attempts to capture seven pre-defined emotions through various physiological 

features such as facial expression, speech tone and HBR [Figure 4-23].   
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Figure 4-23: Shows the Malintent programme (a) the EO equipment which consists of a thermal 
camera, a visible camera and a LIDAR. (b) typical thermogram of a participant who is being 
interrogated (c) typical voice pitch analysis.  

4.2.3.3 UK MOD projects: Cranfield University 

4.2.3.3.1 Counter Terrorism Centre CTC DSTLX-1000013688: [2009-10] 

This is a feasibility study awarded to our team in Cranfield University during 2009-

2010 period. The aim was to testify whether people‘s anxiety could really be 

detected using Electro-optics (EO) remote sensing technique. The study utilised 

hyperspectral (HSI) EO equipment in addition to the thermal imaging (TI) for 

capturing physiological features in the facial region that triggered by anxiety. It was 

found that four out of seven subjects involved in this short study had reacted 

positively to the applied stressor methods, and that their responses to the anxiety 

had been in the form of elevated temperature spots particularly in their forehead 

regions (Yuen, 2009) which had been detected successfully. It was also noted that 

the thermalgram patterns caused by emotional anxiety were seen quite different from 

that triggered by the physical one (Yuen, 2009) (Hong, 2009). This result appeared 

to be quite different from that previously reported by the Texas group (Murthy, 2006), 

and we have shown that the activities in the forehead region had been increased 

significantly when the anxiety began to set in, rather than just an increase of hot 

spots in the periorbital region according to their work (Pavlidis, 2002) ( Murthy, 

2006).  

In 2009 we have exploited hyperspectral imaging (HSI) technology to sense the 

haemoglobin tissue oxygenation (StO2) from the facial region and to use it to deduce 
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the mental states of people for the very first time in the homeland security research. 

The developed technique was immature at that time and a number of issues, such 

as illumination and shadowing factors, remained to be the most demanding issues to 

be solved. 

4.2.3.3.2 CTC DSTLX-1000030030 and DR RACR/025/09 RACR/001/10 [2010-12] 

These programmes were awarded to Cranfield University following the initial success 

in the feasibility project DSTLX-1000013688. The objectives of this programme are 

to extend previous findings particularly to focus more into the following two key 

areas: 

1. To investigate how the anxiety can be detected without base line information. 

2. To improve the robustness of anxiety detections for example the 
development of near real time heart beat rate (HBR) assessment. 

Several work packages have been implemented during the course of the study to 

meet the objectives:  

a. To expand sample sizes to over 50 subjects to improve the statistics of 
the result. 

b. To correlate the EO characteristics with physiological data such as 
heart beat rate (HBR) and the cortisol levels. 

c. To develop HSI detection algorithms with performances independent 
of illumination issues such as shadowing and viewing angle artefacts.  

d. To develop near real time heart bit rate (HBR) detection capability. 

This programme was carried out through two PhD projects and also subcontracting 
to third parties: 

i) Hyperspectral imaging for the remote sensing of blood oxygenation and 
emotions: PhD student Mr Tong Chen. 

ii) Remote sensing of strong emotions using Electro-optical imaging 
technique: PhD student Mr Kan Hong. 

iii) Subcontracts and collaborations with engineering companies: Advanced 
Equipment Solutions (AES) and InnovTech Solutions UK LTD (ITS). 

One characteristic of this programme is the use of multidisciplinary of physics, bio-

medical & engineering expertises through a joint programme amongst the 

neuroscience & endocrinology researchers at the Bristol Royal Infirmary (BRI), the 

discriminative imaging experts at DSTL, the Advanced Equipment & Solutions (AES) 

as well as the Innovtech Solutions Ltd (ITS) companies, to understand how the 

emotional state can be assessed in a quantitative or semi-quantitative fashion.  
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A great deal of the present work is associated with the above programmes and one 

of key achievement in this MOD contract work is the development of the capability 

for the detection of people‘s anxiety without the need of base line information. 

Furthermore, the detected anxiety can be classified into high and low categories with 

~90% accuracy. The features for the anxiety assessment include the blood 

oxygenation obtained from HSI technique, near real time detection of heart beat rate 

through RGB and TI video data, and the blood perfusions in the facial region as 

probed by TI. The detection range is about 5-10 meters and the anxiety assessment 

is not in real time as the data is processed after the event.  

Part of this research programme such as the remote sensing of HBR using video 

images and the exact methodology for the quantitative assessment of anxiety level 

has been classified to RESTRICTED. However the materials that have been 

presented in this thesis are unclassified.   

4.2.4 Direct contacted approach 

4.2.4.1  Direct brain activity probe: FMRI 

Functional magnetic resonance imaging (FMRI) has been one of the most important 

non-invasive technologies reported so far for the detection of brain activities due to 

emotional anxiety. The oxygen consumptions in some areas of the brain could be 

monitored readily as function of its activities such as that triggered by emotion, 

experience or any other stimulants. It has been postulated that the active area in the 

brain is proportional to the emotional stimulant. The FMRI detection method has 

been firstly reported by Kozel who has claimed a 90% accuracy of emotional anxiety 

detection. It is also reported that FMRI is capable to detect specific regions with 

reproducible activation when subjects attempt to deceive (Kozel ,2005). However, 

the detection result so far cannot be quantified and extensive research in this area is 

needed.  

4.2.4.2 Emotional anxiety hormones approach 

The detection of the emotional anxiety hormones adrenaline and cortisol which are 

released by adrenal medulla and adrenal cortex respectively can be used for 

emotional anxiety assessments. The level of hormones is claimed to be proportional 

to the emotional anxiety level and that they can be measured through the adrenalin 
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content in the blood using high performance liquid chromatography (HPLC) method. 

Alternatively, the measurement of cortisol content from saliva samples can be used 

as another means for emotional anxiety level assessment too.  

4.3 Summary 

A survey of remote sensing of emotions is given in this chapter. The survey includes 

what are the physiological responses to the emotional anxiety that has been reported 

in the field of research. Specific topics that are more relevant to this study such as 

the detection of the change of tissue of oxygenation and blood perfusion have been 

presented in more details.   
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5 Anxiety induced EO signatures found in this work 

5.1 Physiological features as detected by EO technique 

As outlined previously in Chapter 4 that EO imaging techniques such as HSI and TI 

have the capability to probe physiological features such as the saturated 

oxygenation as well as the blood perfusion in the dermis layer. This capability is 

illustrated in Figure 5-1showing the images of a subject when he was relax and also 

when he was under emotional anxiety. In the figure, it is seen that there is little 

differences between his base line and under anxiety state when it is revealed by the 

board band RGB images (Figure 5-1(a)). However, both the StO2 (Figure 5-1(b)) 

and the skin temperature images (Figure 5-1(c)&(d)) as revealed by the HSI and TI 

techniques respectively, the excited state is quite distinct and can easily be 

recognised. Note that the StO2 is deduced using the extended Beer Lambert law as 

outlined in section 3.3.2.2.  

The blood perfusion of the tissue in the facial region can be estimated using the 

models as depicted in section 3.3.2. According to the adopted model, it is noted that 

the perfusion rate is proportional to the skin temperature T4 and effectively the 

predicted perfusion image, as depicted in Figure 5-2, is a rescale of the skin 

temperature which emphasises the high temperature pixels while at the same time to 

suppress the low temperature ones. Typical perfusion rate for the liver is about 0.02 

ml/s per ml of tissue volume (Mudaliar, 2008), and rates of ~0.02-0.03ml/s per 100g 

of facial tissue in men and women under heated conditions have been reported 

(Mayrovitz, 1993). The model gave the perfusion in the order of 0.01ml/s which is 

almost half of Mayrovitz‘s work. The discrepancy may be due to the different 

measurement environment as we have performed our experiment under air-

conditioning and the room temperature is kept at ~19C all the time.   
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Figure 5-1. Highlight how EO imaging technique detects anxiety from a range of 5 meters. Left panel: 
Base line, Right panel: after applied emotional stressor. (a) RGB image, (b) StO2 image obtained by 
HSI, (c) TI false colour images, (d) threshold TI image at 34.4C with black pixel showing temperatures 
above the threshold. 
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Figure 5-2. shows the blood perfusions of a subject when he was in various emotional states (a) base 
line, (b) at maximum anxiety, (c) after 2 minutes of anxiety. The perfusion is estimated according to 
the model illustrated in section 3.3.2. 

5.2 Heart beat rate (HBR) and its detections 

Figure 5-3 shows typical heart beat rates (HBR) of two participants who have gone 

through a series of stressor sessions, highlighting the almost instantaneous increase 

of the HBR to the anxiety to cope with the situation. As mentioned before different 

subjects may response differently to the same stimulant, and it is very common to 

see very different physiological responses from various persons even for the same 

type of stressor is applied to them. For example, in the top and bottom traces of 
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Figure 5-3 the HBR exhibit a two and three peaked features from two different 

individuals during the same emotional stressor (ES) session. Note that the amount 

change of the HBR is not a straightforward function of the cortisol level as mentioned 

in section 4.1.2. 

5.2.1 HBR detection using thermal imaging (TI) data 

One contribution of this work has been the development of the HBR detection using 

TI data.  

Due to the relatively low frequency of the HBR which typically ranges from ~1-2Hz, it 

is possible to capture this slow frequency data through the thermalgram, HSI or even 

RGB viewcam video. Shown in Figure 5-4 is the HBR that deduced from the 

thermalgram for a subject who was exercising with a dumbbell. The feature is 

extracted from the temperature of pixels inside the periorbital region, and the 

algorithm has been developed on the Matlab platform. It is seen from Figure 5-4 that 

a very good agreement between the TI deduced HBR with respected to the 

measured data has been obtained.  

 

Figure 5-3. highlights the physiological response to anxiety through the raising of HBR when the 
anxiety begins to set in. Shown in the figure are the HBR of two persons responding to the same 
stressors (emotional and physical) but the HBR responses from these two persons are seen to be 
very different. 
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Figure 5-4. Shows the heart beat rate detection using thermal imaging (TI) technique: upper panel- 
false colour thermalgram of the subject who was sitting in front of the TI with a dumbbell in his hand. 
Lower panel: the measured HBR (red) and the HBR deduced from the periorbital ROI of the 
thermalgram (blue) when the subject is exercising the dumbbell.  

5.2.2 HBR detection using thermal Multispectral Imaging (MSI) 

The MSI system in our laboratory is capable to take 30 frames/sec of image and 

hence it is feasible to use it for capturing the slow changing HBR of human at ~1-2Hz 

frequency. Figure 5-5 shows the typical result of the HBR that deduced from the MSI 

for a subject who was exercising with a dumbbell. The feature is extracted from the 

intensity of the MSI video taken at 600nm and the algorithm has been developed 

exclusively by the AES/ITS company. It is seen from Figure 5-5 that a very good 

agreement between the MSI deduced HBR with respected to the measured data has 

been obtained. Unfortunately this program has been maliciously removed from our 

computers by an ex-PhD student who left Cranfield University at the end of July 

2012. 

5.2.3 HBR detection using RGB video 

The video frame rate for commercial off the shelf view cam is typically 20-30 frames 

per second (fps) and therefore it is feasible to detect the slow HBR of human. The 

feature is extracted from the intensity of the RGB-band video and the algorithm has 

been developed exclusively by the AES/ITS Company. We have obtained very good 

agreements between the view cam deduced HBR with respected to the measured 

data. The program is implemented in C++ and it is capable to detect the HBR in very 

near real time. Unfortunately this program has been maliciously removed from our 
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computers by an ex-PhD student who left Cranfield University at the end of July 

2012. 

 

Figure 5-5. Shows the heart beat rate detection using MSI technique: upper panel- false colour MSI 

image (=600nm) of the subject who was sitting in front of the MSI with a dumbbell in his hand. Lower 
panel: the measured HBR (red) and the HBR deduced from the face of the subject (blue) when the 
subject is exercising the dumbbell. This program was developed by AES/ITS and unfortunately it was 
maliciously removed from our computers by an ex-PhD student who left us at the end of July 2012. 

5.3 Blushing faces 

As outlined in the previous sections that blushing in the face has been considered as 

one of the most common physiological responses to anxiety. However, we have 

observed a time delay of the blushing to occur when one is under anxiety. This delay 

time is found variable from person to person, ranging from seconds to a few minutes. 

Typical time delays of this kind can be seen from Figure 5-6, which presents 

example false colour thermalgrams of four subjects who were at their peak HBR 

during the ES (Figure 5-6 (a)), and then the moment when a maximum flushness in 

their face is observed (Figure 5-6 (b)). The thermalgrams in (b) have been threshold 

and all pixels with temperatures exceeding the threshold temperature have been 

presented in black colour. Note that the blushing in the face has been almost 

unnoticeable to the naked eyes in most of the cases.  
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Figure 5-6. Shows the delay of facial blushing after the peak of the HBR during the ES session: (a) 
the thermalgram of 4 subjects when they were at their peak HBR during the ES, (b) the time when 
they exhibit a maximum flush in their faces. The thermalgrams are in false colours of temperatures, 
and the pixels exceeding the threshold temperature are presented in black. Note that the threshold 
temperatures for these subjects are different in each case. 

5.4 Paling in the hands 

The other signature of anxiety is the reduction of blood flow into the hands and skins 

inducing the commonly experienced ‗cold hands‘ when one is in anxiety. Cold or 

sweaty hands are not easy to be detected by conventional imaging technique, 

however, it is seen that both the TI and HSI can detect the paling and blushing in the 

face and hand extremely efficient, as demonstrated in Figure 5-7. The figure 

presents the RGB, false colour thermalgram and the false colour StO2 images in 

three rows for a subjects when he was (a) relaxed (base line), (b) after emotional 
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anxiety (ES) and (c) after physical anxiety (PS) by performing an endurance exercise 

(stand-horse).  

 

Figure 5-7. shows the RGB images, the thermalgram and the StO2 of subject A in the top, middle and 
bottom panels respectively. a) subject at rest, (b) after ES and (c) after PS. Note the change of 
temperatures and the StO2 in the forehead, hands and nose during the ES and PS. Both the 
thermalgram and the StO2 map have been threshold (in black colour) to aid visual observation of the 
change after the anxiety sets in. 

The most striking features that stand out from these figures are the observation of 

the cold hands during and after the ES session, and in many cases it accompanies 

with a colder nose and at the same time, a flush in the face. It is noted that the hand 

temperatures can drop by as much as 4-5°C during anxiety, and when in extreme 

anxiety the nose temperatures can be reduced by 1-2°C. However, the picture is 

seen very different when the subject is under physical anxiety (PS) for example after 

performing bodily exercise such as stand-horse (SH): frequently there is a 

substantial paling in the face particularly in the forehead, and in some cases the 

subject‘s nose will also get colder too.  



  

68 

The reduction of oxygenation in the hands during the ES is seen quite clearly from 

the StO2 map as depicted in the bottom panel of Figure 5-7. Note that all the 

presented StO2 maps in Figure 5-7 have been threshold at 56.8% to aid visualising 

the change of the oxygenation after the anxiety sets in. It is also seen that 

oxygenation levels in the mid-forehead areas has increased substantially, with 

negligible change of StO2 in the nose despite of the ~1° C drop as suggested by 

thermalgram when the subject is under ES. Note that both the thermalgram and the 

HSI images were taken at the same time and it is not certain why the two sets of 

data are not consistent here. One likely explanation is the increased respiration rate 

during ES may cool down the skin temperature at the nostril due to the increased 

convection in the area inducing a temporarily thermal in-equilibrium. In chapter 7 it is 

evidenced that external environmental effects, such as ambient temperatures, have 

imposed enormous impacts on the skin temperatures, which, seems not to be a 

detrimental factor for the oxygenation assessment using HSI technique (see chapter 

7 for more information). 

It can be seen later in chapter 7 that we have derived a simple method for assessing 

the level of anxiety using local differences of skin temperatures and blood 

oxygenations extracted from various ROIs in the facial region. The chosen ROIs are 

the forehead, nose and mouth. The differential of the forehead and mouth 

temperature, acronym as DFMT, and together with the differential of forehead and 

nose saturated oxygenation, acronym as DFNSO, have been shown sensitive to the 

emotional state of human subject (see chapter 7 for more information). The DFMT 

and DFNSO values of this data set is found to be 0.97 and 2.05 respectively, 

implying that subject A was in fact under very mild anxiety during the ES session. In 

chapter 7 it is found that strong anxiety will give index values of DFMT and DFNSO 

higher than 1.8 and 2.75 respectively. This classification of anxiety level is supported 

by the presence of relative low level of cortisol in the subject‘s blood stream 

(0.11pg/mL) after the ES session, together with the subject‘s own view that he was 

not nervous during the test, indicative of a correct assessment of the anxiety level in 

this case.  
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Figure 5-8. Shows the paling and flushing in the facial region during an ES session: (a)-(d) the 
thermalgram of the subject taken at a minute interval during the ES session, and note the acute paling 
in the face after 3 minutes into the ES session. (e-f) Flushing in the face. 

5.5 Paling & sweating 

We have observed one participant who has exhibited strong paling and perhaps 

perspiration during the ES in this trial. The subject is a Caucasian with strong 

academic background, and he has shown acute paling in the whole face together 

with cold fingers in both hands (see Figure 5-8) during the ES sessions. The StO2 

data however indicates an increase of StO2 in both of the hands and in the face, 

thus suggesting that the subject might have undergone strong perspiration during the 

test. The ES anxiety according to the DFNSO is found to be 3.2 suggesting that the 

subject might have been in high anxiety.  

It can be seen later that a very high level of flushness or paleness in the face do not 

necessary implies high level of anxiety. 
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Figure 5-9. Shows one incident of alternative paling and blushing during the ES session amongst the 
data that we analysed so far. Shown in the figures are the threshold (Tth=35.45°C) thermalgram of (a) 
base line of a subject (Caucasian), (b) the moment at the peak of the HBR during the ES, (c) one 
minute after (b) showing paling in the face, (d) finishes the ES session. 

5.6 Alternation of paling and blushing 

Amongst the analysed data we have found one incident of alternative paling and 

blushing during the anxiety session. Shown in Figure 5-9 is the threshold 

thermalgram of a Caucasian subject who is currently a military officer serving in the 

Force and the data is recorded during the ES session. The subject is in good health 

despite of being a heavy smoker, and it is seen a blush in the face as soon as the 

ES begins to step in (Figure 5-9 (b)). Within one minute after his heart beat rate is 

peaked at 138 beats per minute (bpm), his face is seen getting pale rather 

remarkably (Figure 5-9 (c)). It is not sure for certain whether it is due to the secretion 

of enormous amount of cortisol by the adrenal cortex to inhibit the corticotropin-

releasing hormone (CRH) at the peak of his HBR during the ES session. There was 

no HSI data recording during this period of time and therefore further experiment is 

needed for a better understanding of the phenomenon.  
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Figure 5-10. Shows the temperature change in the periorbital region during and after the ES session: 
(a) thermalgram of a subject:  before (left), during (middle) and after (right) the ES session. The 
maximum temperature and hot pixels (threshold to 35.4°C) in the periorbital region have been 
depicted as white and blue colours respectively. (b) the heart beat rate (red), the maximum and mean 
temperatures in the periorbital region before, during and after the ES session. Note that neither the 
maximum nor the mean temperature in the periorbital region has increased during and within 2 
minutes after the anxiety sets in. Note that this subject is under mild anxiety condition. 

5.7 Anxiety induced anomaly temperature in the periorbital region  

Greatly influenced by the Texas/Honey Well work (Pavlidis, 2002), most researchers 

in the remote sensing of intent field have commonly adopted the anomaly 

temperature in the periorbital region as the signature and indication of having 

anxiety. We have performed more detailed analysis for a number of participants but 
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unfortunately we cannot repeat their result. Shown in Figure 5-10(a) is a subject who 

has taken part in the ES session and the hot pixels in his periorbital region threshold 

to 35.4°C are depicted in blue while the maximum temperature is located by the 

white pixel.  It is seen from Figure 5-10(b) that neither the maximum nor the mean 

temperatures in the periorbital region are seen to increase during and after the 

anxiety sets in.  

 

Figure 5-11. Shows the temperature profiles of the periorbital region of the same subject during and 
after the ES session: it is cleared from previous figure that the maximum temperature in the ROI has 
not been increased but the number of hot pixels in the perorbital region, is seen to increase in 
numbers after a few minutes of the peaked HBR. Note that this subject is under mild anxiety only. 

However, it is seen that the number of the hot pixels, which are labelled in blue in 

Figure 5-10(a), is seen to increase in number. Figure 5-11 shows the temperature 

profiles of the periorbital region of the same subject during and after the ES session: 

it is quite clear that the maximum temperature in the periorbital ROI has not been 
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increased but the number of hot pixels, is seen to rise in numbers after a few 

minutes of the peaked HBR.  

More detailed analysis of this anxiety induced anomaly temperature in the periorbital 

region will be presented in chapter 6. 

5.8 Preliminary Study of glucose detection during anxiety 

5.8.1 Glucose signature 

Due to the ‗transparent‘ nature of glucose when it is in solution such as water, the 

spectroscopic characteristic of the solution has been obtained through the reflection 

of a spectralon as shown in Figure 5-12. This means that the reflected light double 

passes the sample and then it is collected by the sensor, thereby effectively this set 

up measures the absorption characteristics of the sample.   

 

Figure 5-12 shows the setup of glucose spectroscopic experiment. The sample is placed directly onto 
a spectralon which exhibits a flat reflectance of 0.98 over the 300-2500nm wavelength region. 

The spectral characteristic of the solid samples as measured in our laboratory is 

shown in Figure 5-13, and it is seen that solid glucose powder exhibits rather flat and 

almost negligible absorption in the visible spectrum (Figure 5-13(a)). In the SWIR 
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region there are 3 rather strong absorption peaks at about 1.25m, 1.5m and 2-

2.5m wavelengths (Figure 5-13(b)). Hence the useable waveband that may allow 

us to detect glucose by using our equipment in the laboratory is restricted to the 

SWIR band only.  

 

Figure 5-13 depicts the reflectance spectra of solid samples of glucose, salt and white sugar that 
measured in our laboratory using the HSI.  

 

Figure 5-14 shows the typical water absorption in the visible and swir region (G. M. Hale, 1973). 

Since we are concerning with the detection of glucose in blood, which contains 

predominantly water, it is necessary to understand the signature of glucose in water. 

As it is seen in Figure 5-14 the water absorptions in the SWIR region [1-2.5um] is 

about 4 orders of magnitude higher than that in the visible region (G. M. Hale, 1973). 

As such it is expected that the EO characteristics of water will be significant in the 

SWIR waveband. Figure 5-15 shows the reflectance spectra in the SWIR region for 

various concentrations of glucose in water. The solution is contained in a Perspex 
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box (12cm3 in volume) and the control spectra of the container and the pure water is 

also presented in Figure 5-15 to help the analysis. One spoonful of glucose in the 

Perspex container is equivalent to 0.075g/cm3 concentration. It can be seen in 

Figure 5-15 that the presented spectra all showing a common 3 valley structure, 

characteristic to the absorption peaks of water at about 1200nm, 1400 and 1900nm 

(see Figure 5-14). All wavelengths above 1400nm are observed strongly absorbed 

by water, and in the longer wavelength region the spectra appear to dip below zero 

which is caused by dark current subtraction and calibration accuracy artefacts. 

Figure 5-14 also shows that the SWIR HSI system is capable to sense the presence 

of 0.075g/cm3 of glucose in water (red triangle trace). The glucose in the blood of 

human is about 5-10mmol/l which is equivalent to 0.001-0.002g/cm3, and hence it 

may be a technological challenge for a direct detection of such small amount of 

glucose from the blood sample using HSI technique.  

 

Figure 5-15 shows the reflectance of various concentrations of glucose in water solution in the SWIR 
region. The solution is contained in a Perspex box, and note that all the features in the spectra shown 
are in fact dominated by the water absorption peaks.   
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5.8.2 Physiological features in the SWIR band 

This is the first attempt, as far as the author aware, to probe physiological feature of 

human subject using HSI in the SWIR waveband. Figure 5-16 shows the typical 

SWIR band spectra for various ROI within the facial region of a human subject. All 

spectra are seen to be dominated by a three-valley structure located at the 

characteristic water absorption peaks as mentioned in the last section. One 

important observation from Figure 5-16 is the significant absorptions at around the 

periorbital and lip regions (ROI 4, 5 & 8) in comparing with that of other ROIs in the 

face. Whether this is caused by the differences of the blood perfusions and water 

content underlying in these ROIs, is something to be confirmed in the future 

research.  

 

Figure 5-16 Shows the typical reflectance spectra in the SWIR waveband extracted from various ROI 
in the facial region of a human subject. The inset shows the false colour image of the subject. The 
spike point is the noise of the camera. 

It is of interest to see if there is any spectral difference that can be observed from 

these ROIs when a person is in his base line and to compare with that when he is 
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under anxiety. It is found that there is some spectral changes for the ROIs in the 

periorbital regions (ROI 4&5), in the lip (ROI 8), and relatively small amount of 

difference in the nose (ROI 6), when the subject is under anxiety. This is illustrated in 

Figure 5-17(a), and otherwise there is almost negligible change of reflectance for all 

other ROIs (Figure 5-17(b)) between the excited and base level states. The HBR of 

the subject was 76, 92 and 72 for the three events of base line (‗base‘ in the figure), 

ES (‗math‘) and after ES during rest (‗rest‘), respectively. The spectral differences of 

the periorbital and mouth regions after emotional excitation are seen to be very small 

in comparison to the base level, and thus intuitively a differential between the excited 

state and the base line is made and the result is shown in Figure 5-18.  

 (a) (b)  

Figure 5-17 highlight the spectral difference from the ROI in the face when a subject is under anxiety 
(math session) and to compare it with his base line level (base). (a) typical spectra for ROIs in the 
periorbital and lip regions (b) typical spectra of the forehead and mouth. 

One common feature of the differential spectra shown in Figure 5-18 is the negligible 

differences in wavelengths longer than 1400nm, presumably it may be because of 

the strong absorption of water which dominates the effect. However, there is one 

observation from Figure 5-18 which is unclear to us for the moment: the change of 

the spectra between the rest state and the base line is positive, ie, an increase of 

reflectance from the ROI of the periorbital region; but it is just opposite for the mouth 

which exhibit a reduction of reflectance in these spectral region during anxiety! It is 

speculated that this may be related to the surplus of adrenaline and cortisol during 

the rest state after the ES session, which may cause an increase of blood perfusion 

into the perorbital region (see section 5.7 and chapter 7 for more information). The 

increased blood supplies in this region may well increase the glucose concentration. 
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Our data that showed in Figure 5-15 has demonstrated a higher reflectivity in the 

region of 1-1.4m when a higher concentration of glucose is presented in the water 

solution.  Hence it is plausible but without proof that, the behaviour that has been 

observed in Figure 5-18 may well be related to the increased glucose concentration 

in the periorbital region during the anxiety state.  

 

Figure 5-18 shows the differential reflectance between emotional anxiety state with respected to the 
base line for (a) periorbital region (b) mouth ROI. Diff(M,B) stands for differential of MS and base line.  
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5.9 Summary 

This chapter investigates the electrical optical signatures that have been obtained 

during the course of this research. The chapter presents how human heart beat rate 

(HBR), glucose level in the face, blood perfusions in the facial region, hands and in 

the periorbital regions, are changed upon the onset of anxiety. All data presented in 

this chapter is recorded remotely using EO technique during experimental trials 

taken place in our laboratory.  
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6 Anxiety induced hot spots in periorbital region: revisited 

6.1 Background 

It is quite well-known that the temperature in the periorbital region can give 

information such as fever and anxiety in animals (Shylo R. Johnson, et.al, 2011, M. 

Stewart, et.al, 2007). Furthermore, the work published by the Texas team (Pavlidis et 

al., 2007) has claimed that emotional anxiety can bring about an ‗instantaneous‘ 

increase in the periorbital blood flow. This surge of blood volume in the periorbital 

region has been measured by TI at the onset of anxiety (Pavlidis, 2001). Figure 6-1 

shows the temperature profile in the periorbital region of a subject after he is given 

an emotional stressor. Pavlidis et al claimed that this is the hall mark of a ‗fight or 

flight‘ syndrome and that the substantial increased of blood flow in the periorbital 

region can be considered as a signature for the instantaneous detection of emotional 

anxiety (Pavlidis et al., 2008) (Pavlidis, 2001).  However, as it can be seen from 

Figure 6-1 that there is no indication of when the stressor was initiated and therefore 

it is difficult to verify the ‗instantaneous‘ increase of blood flow upon anxiety as 

Pavlidis‘s team has claimed! 

 

 

 

 

 

 

Figure 6-1 outline one of Pavlidis‘s work about the ‗instantaneous‘ increase of temperature in the 
Periorbital region when one is under anxiety (Pavlidis et al., 2007). Left: temperature profile of the 
periorbital region, Right: depicts the location of the ROI in the periorbital region in red. 

6.2 ‘Hot’ spots in periorbital region 

We have conducted a detailed analysis hoping to gain more understanding of the 

blood perfusions mechanisms in the periorbital region when one is under anxiety. 

Presented in Figure 6-2 is the false colour images of 3 subjects who have undergone 
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an emotional stressor (ES) session. The figure depicts the high temperature pixels in 

the periorbital through threshold the ROI in the eye region, and the threshold 

temperatures for the 3 subjects are 34.8, 34.4C and 34.4C respectively. The 

threshold temperature is arbitrary set and the exact value is dependent on 

individual‘s health conditions. The purpose is to observe any changes of temperature 

in the ROI while keeping the threshold temperature fixed throughout the experiment.  

 

Figure 6-2: presents the hot spots in the periorbital region when one is under anxiety. Shown here are 
the TI images of 3 subjects (a) subject H, (b) subject P, (c) subject N. Left column: base line, Mid 
column: when the subject is at the peak HBR during the ES session, Right column: 2-3min rest time 
after the peaked HBR. All pixels higher than a threshold are labelled in black and the max 
temperature point is depicted in white. Note that the size of the hot spots has NOT been increased 
during ES. 
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Figure 6-3: shows the number of hot pixels above the threshold in the periorbital ROI for (a)subject H, 
(b)subject P, (c)subject N. The 3 zones of baseline, under ES and rest are clearly identified. Note that 
substantial increase of hot pixels counts in the periorbital region happens only a few minutes AFTER 
the peak of the HBR. 
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It is observed from Figure 6-2 that the sizes of the hot spots above the threshold 

temperatures within the periorbital region are seen fairly constant when their HBR 

are surged to the peak during the ES. The hot spots have been labelled in black 

colour and the maximum temperature in the ROI is depicted in white. However, the 

sizes of the hot spots are seen to increase, only 2 to 3 minutes AFTER the peak of 

the anxiety when the HBR are surged to their maxima.  

Figure 6-3 shows the pixel counts in the periorbital ROI of the participants throughout 

the complete experiment. The figure includes three zones of i) the base line when 

they are introduced to the trial, ii) the ES session where they are given the mental 

stressor and iii) the rest time after the ES session is over. The plot shows the HBR 

together with the hot spot pixel counts. 

It is quite clear from the above figure that the number of hot pixels in the periorbital 

ROI has not been increased during the short ES session which lasts for ~5 minutes. 

The hot pixel count is seen to climb up 2-3 minutes AFTER the peaked HBR which 

may represent the moment when the anxiety has reached to its peak. Note that the 

amount of increase in the number of pixels is in the order of 100-400%!   

This result appears to be not quite the same as Pavlidis‘s reported work. It is intuitive 

to follow through the temperature change in greater details for more understanding 

of what has happened exactly in the periorbital region during anxiety.  

6.2.1 Temperature profiles in the periorbital: max and mean temperature 

Figure 6-4 depicts the temperature profiles in the periorbital ROI of the three 

representative participants during the complete ES session. The maximum and the 

mean temperatures in the ROI shown in the figure have revealed that they are fairly 

stable and hardly changed during the 5 minutes ES session! There is even a 

temperature drop in the ROI which can be observed from subject N (Figure 6-4(c)).  

The temperature in the ROI is seen to increase during the rest session, somewhat 2-

3 minutes after the peak of the HBR during the ES session. 
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Figure 6-4 shows the temperature profile (max and mean) of hot pixels in the periorbital ROI for (a) 
subject H, (b)subject P, (c)subject N. Note that temperature in the periorbital hardly increase during 
the 5 minutes ES session. 
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6.2.2 Temperature profiles in the periorbital: temperature zones 

The result that presented in Figure 6-4 however cannot explain the exact nature of 

the hot pixels that are seen increased in number after the ES session (see Figure 

6-3). To understand this we have analysed the data by segmenting the periorbital 

ROI in several temperature zones and to monitor the pixel counts in each zone 

during the complete ES session. The temperature zones are segmented in steps of 

0.1C from the threshold right up to the maximum temperature of the periorbital ROI.  

The evolution of the hot pixel counts in each temperature zone for the 3 subjects 

throughout the ES session is presented in Figure 6-5. In common to all these 

participants, it is seen that the number of pixels in the higher temperature zones are 

very stable, while those in the lower quartile of the mean of the threshold 

temperature are observed to increase steadily after the peaked heart beat occurs. 

The behaviour of the pixel counts in these lower temperature zones can be seen 

from the blue and red star traces in Figure 6-5. It is interesting to see from Figure 

6-5(c) that the number of pixels in the high temperature zones is reduced during the 

ES session, and only the lower temperature ones are seen to increase in number 

slightly. This explains the observation of the apparent drop in pixel count for this 

participant during the ES session (see Figure 6-4(c)).   
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Figure 6-5: shows the hot pixel counts for each temperature zones in the periorbital ROI for (a) 
subject H, (b)subject P, (c)subject N throughout the ES session. Note that in most cases it is the 
pixels in the lower temperature zones that are increasing in number after 2-3 minutes of anxiety. 
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Figure 6-6: shows the false colour TI images of the periorbital ROI of subject H during the ES session 
((a)-(h)). The TI image is overlaid by the hot pixels which are colour coded according to their 
temperature zones. The hot spots evolve like a growing pyramid with the highest temperature in the 
centre after the anxiety sets in. 

Figure 6-6 shows the false colour TI image of the periorbital region of subject H 

during the ES session. The TI image overlays the hot pixels which have been colour 

coded according to their temperature zones.  The hot spot begins with a small dot in 

the periorbital region, and it evolves and gets bigger in ~2 minutes after the peaked 

HBR occurs (Figure 6-6(c)). The growth of the hot spots is seen in the form of a 

pyramid, with highest temperature in the centre. This may explain why the number of 

the high temperature pixels in the ROI remains more or less constant throughout the 

ES session. 
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6.3 Hot spots in periorbital region: prolonged ES and long rest time 

The data that presented in the previous two sections seems to be quite different from 

Pavlisdis‘s report which claimed a steady increase of temperature in the periorbital 

region as soon as the anxiety sets in. The time duration of the data that published by 

Pavlisdis‘s group in Figure 6-1 spans for ~6 minutes and it is slightly longer than the 

ES session that we conducted (~5 minutes). Subsequently we repeated another 

experiment to involve a stressor in terms of an interview presentation which lasted 

for about 15 minutes to see if we can repeat their data. 

 

Figure 6-7: shows the mean temperature of the hot pixels in the periorbital ROI for subject H during a 
prolonged ES session. It is seen that the mean temperature of the hot spot begins to increase in 
about 2 minutes AFTER the peaked HBR occurs. 

Figure 6-7 shows the mean temperature of the hot pixels in the periorbital ROI for 

subject H during a prolonged ES session. It is seen that the mean temperature of the 

hot spot begins to increase in about 2 minutes AFTER the peaked HBR occurs, thus 

this result confirms our previous findings presented in the last two sections. 

However, we have now observed a steady increase of the hot spot temperature after 
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2 minutes of the peaked HBR. The temperature in the periorbital region is seen to 

rise by about 0.2C (~0.5%) and it arrives to a plateau in about 10 minutes after the 

peak of the HBR. Furthermore, it is also seen that this elevated temperature in the 

periorbital region stays at the same level for very long time lasting for over 30 

minutes! 

The number of hot pixels in the periorbital region for this data set can be seen from 

Figure 6-8 that there is a huge increase of almost 10-fold after the ES: from a 

minimal of ~20 hot pixels in the base line and it increases to ~200 by the end of the 

presentation session. It is very likely that this huge amount of increase in hot pixel 

numbers may have given misleading information for the researchers to believe a 

significant increase of temperatures in the periorbital regions have been triggered by 

anxiety!    

Again, this huge number of hot pixels has been seen to persist for over 30 minutes 

after the ES session! 

 

Figure 6-8: shows the number of the hot pixels in the periorbital ROI for subject H during a prolonged 
ES session. Note that the amount of increase in pixels is about 10 times of the base line! 
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Figure 6-9 shows the temperature profile of this data set which exhibits similar 

behaviour as that presented in Figure 6-5: the number of hot pixels in the lower 

temperature zones begins to increase in about 2 minutes after the peak of the HBR. 

However, the pixels in the higher temperature zones are seen to increase in number 

after about 5 minutes of the peaked HBR. The increased number of high 

temperature pixels induces an elevation of the mean temperature over the ROI, 

resulting in a steady increase of the mean temperature in the periorbital region as 

observed in Figure 6-7. This prolonged ES session data set thus explains why there 

is an absence of temperature rise in the periorbital region in the previous result 

presented in Figure 6-4 which involved short duration of ES session data less than 5 

minutes!  

 

Figure 6-9: shows the hot pixel counts for each temperature zones in the periorbital ROI for subject H 
in the prolonged ES session. Similar to the previous results it is noted that the lower temperature 
pixels are increasing in number after 2-3 minutes of anxiety. 
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Figure 6-10: shows the long time lag (~60mins) of the blood glucose levels increase after the stressor 
is applied. The stressor is applied between 0 to 30 minutes (Wing, 1985). The surplus glucose can 
change many physiological responses in the body which can be very misleading as far as remote 
sensing of emotion as concern.   

The persistent hot spots in the periorbital region even after ~30minutes of the anxiety 

(see Figure 6-7) is thought due to the surplus of the glucose left over in the ROI after 

the ES event. Recall the clinical work performed by Wing et al (Wing et al 1985) 

presented in Figure 4-12 and it is repeated here for the convenience of the 

discussion, that, the glucose level can sustain for about an hour after the trigger of 

the anxiety (see Figure 6-10). This surplus level of glucose will induce a number of 

metabolically and physiologically change in the body for a prolonged period of time. 

This artefact can be very misleading as far as the remote sensing of emotion as 

concern.  
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6.4 Physical stressor 

Most research in the field has focused on the studies of physiological responses due 

to the mental stressor only. For completeness we have performed trials involving 

physical stressors such that the stressors impose direct impact to the body 

physically, with a view to understand whether there are any similarities or differences 

in the physiological responses to the mental ones.  

6.4.1 PS induced temperature rise in the periorbital region 

All the physical stressors involve physical exercise by requesting the participants to 

run 6-flights of stairs up and down in one or two minutes. This rigorous exercise 

impose heavy load to the participant‘s bodily strength and normally an increase of 

heart beat by 40-50% have been commonly observed. The EO imaging was 

performed shortly after the running was completed. 

Figure 6-11 shows the mean temperatures of three participants who had performed 

the running after the completion of the ES session and a rest time of typically 20-30 

minutes. The physiological responses of these participants due to the ES have been 

presented in the last two sections.  

It is observed from Figure 6-11 that the temperatures in the periorbital regions of 

these participants exhibit very small increase with respected to that of the base line, 

typically less than 0.1C (~0.2%), after they have performed the running exercise and 

rest for ~5 minutes (Figure 6-11 (a)&(b)). In the previous section 6.3 it is realised that 

a long rest time may be needed so to give enough of time for the body to regain 

equilibrium. Figure 6-11 (c) shows the data after long rest of ~10 minutes, and similar 

result of very little increase of temperatures in the periorbital region with respected to 

the base line has been seen after the PS session.  

6.4.2 PS induced number of hot pixels in the periorbital region 

Figure 6-12 shows the number of the hot pixels in the periorbital region after the PS 

session. Again, it is seen that the number of hot pixels has increased from 2-5 times 

of the base line behaving very similar to that of the ES case presented in previous 

sections.  
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Figure 6-11: shows the mean temperature of the hot pixels in the periorbital ROI for (a) subject H, 
(b)subject P, (c)subject N during the PS session. Note that there is a long rest time of ~10minutes in 
(c). 
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Figure 6-12: shows the number of the hot pixels in the periorbital ROI for (a) subject H, (b)subject P, 
(c)subject N throughout the PS session. 
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Table 6-1: A summary of the temperature in the periorbital region after the ES session. 

6.5 Summary 

We have performed a detailed investigation about the anomaly temperature in the 

periorbital region upon the onset of anxiety. Previous work performed by Pavlidis 

group has claimed an ‗instantaneous‘ increase of temperature in the periorbital 

region when anxiety sets in, but this claim cannot be validated according to our data. 

We have found that, the mean temperature in the periorbital region hardly increase 

within 5 minutes AFTER the initiation of anxiety. However, the number of pixels in 

the lower quartile of the mean temperature in the periorbital region is seen to 

increase after 2 minutes of the peaked HBR. The evolution of the hot pixels in the 

periorbital region during the ES session is seen to occur in the form of a pyramid with 

high temperature pixels located at the tip (centre) of the structure.  

We have observed a small increase of the mean temperature in the periorbital region 

after 5 minutes of anxiety, but the amount of increase is very small in the region of 

0.2C (0.5%) which is quite hard to detect in real environment. On the other hand, the 

number of hot pixels is seen to increase by a huge amount after 2 minutes lag of 

anxiety. In some cases, we have observed a ~10-fold increase of the number of hot 

pixels within the periorbital region in comparison to that of the base line (see Table 

6-1). The number of hot pixels in the periorbital region can persist for long time, and 

in many cases it can sustain for 30 minutes and even longer! It is speculated that this 

huge number of hot pixels triggered by anxiety may have given misleading 

information to the researchers to believe the occurrence of a temperature rise in the 

periorbital region when one is under anxiety! 
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7 Detection of anxiety without base line information 

7.1 Introduction 

During this work it is commonly observed an increase of blood perfusions in the 

facial region particularly in the prefrontal forehead areas for almost ALL subjects in 

this study. The increased blood perfusions induce a rise in skin temperatures as well 

as accelerations of heart beat rate (HBR). The amount of increase varies from 

person to person and it is believed the variation is related to individual‘s cultural 

background, health conditions, and activities prior to the test and also genetic details.  

 

Figure 7-1. Shows the representative MWIR thermalgram of four different ethnical origins of 
participants before (left hand panel) and during the MS session (right hand panel). The thermalgram 
is in false colours representing the temperature, and the black pixels are those above the threshold 
temperature, which are NOT constant. (a) Male Caucasian b) Female Caucasian c) S American male 
d) Far-East Asian. 
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Figure 7-1 shows typical thermalgram of four different ethnical origins of participants 

before and after the stressor is applied to them. It is quite clear that an increase of 

skin temperatures at around their foreheads, periorbital regions and sometimes in 

the neck have been observed. These ‗hot‘ pixels are labelled as black colour on the 

right hand panel of Figure 7-1. Note that the increased blood flow at around the 

forehead can be detected even through the hair obscures the forehead as it is 

demonstrated in Figure 7-1b, and some parts such as the nose and the mouth, have 

been found a reduction of blood flow when the participants are under anxiety.  

Note that the presentation of the graphics in Figure 7-1 is made through a very 

careful selection of the threshold temperature, which is not a constant! Different 

people in different environment will need a complete different set of threshold 

parameter! Furthermore, the ‗correct‘ parameter is obtained through a non-principle 

way of ‗trial and error‘! Therefore it is necessary to develop a more principle way to 

assess the people‘s emotional states. 

7.2 Comparison of anxiety assessment by TI and HSI 

Thermal imaging (TI) relies on sensing the skin temperatures in order to deduce the 

increased blood flow underneath the epidermis to assess one‘s anxiety state. This is 

quite different in the hyperspectral (HSI) technique which detects the oxygenation of 

the blood within the tissue directly. Shown in the upper panel of Figure 7-2 is the 

images of a subject in his base line relax state, and the image of the same subject 

under emotional anxiety (ES) is shown in the lower panel. The figure has exhibited 

some similarities between these two techniques, showing the StO2 detection maps 

in (b), the threshold StO2 level (above 55%) in black colour as depicted in (c), and 

the thermalgram of the subject in (d). The thermal image has been threshold at 

34.34°C and the hot pixels are presented in black. The figure presents an almost one 

to one correspondence between the StO2 map and the thermalgram, both showing 

the significantly increase of blood flow at the corners of the forehead and at the neck 

regions when the subject was under anxiety. However, the figure also highlights 

some differences between the TI and the HSI technique for sensing the blood flow: it 

is seen that the StO2 map shows an appreciable increase of oxygenation level in the 

centre of the forehead, somewhere at around the centre of forehead, while the 
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thermalgram shows very little increase (~0.3°C) of the temperature in this region of 

interest (ROI). Although there is substantial increases of temperature in the face and 

chin regions (>1°C with respected to the base line), however, these areas have been 

avoided for further analysis due to various medical and physiological reasons.  

 

Figure 7-2. highlights the similarities between the TI and HSI techniques for anxiety assessment. 
Upper panel: base line, Lower panel: under anxiety. (a) RGB image of a subject, (b) the false colour 
StO2 map in scale of [30 60]%, (c) the thresholded StO2 map at 55% of StO2 and the high StO2 
pixels are presented in black colour, (d) the threshold thermalgram at 34.34C and the hot pixels are 
presented in black. While both techniques are found capable to detect the change of blood flow that 
triggers by anxiety, the HSI seems to be more sensitive in detecting StO2 particularly at around the 
strategic ROI in the mid forehead (red circle in (c)). 

7.3 Variable base lines issues 

7.3.1 Environmental and dietary effects 

It is well-documented that environmental effects such as ambient temperatures, 

humidity and air qualities can impose impacts to individuals and subsequently 

affecting one‘s psychological, emotional and physiological well-beings. The data 

presented in Figure 7-3 highlights how much of these ambient issues can affect 

one‘s skin temperatures and oxygenation levels apart from the emotional factors. 

Figure 7-3 depicts the EO data of a subject recorded (a) early in the morning before 

his coffee, (b) at mid-day before food, (c) just after a sandwich lunch and (d) after 

food and just been outdoor for a cigarette. It is not too surprising to see a very rapid 
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change of the skin temperatures during one‘s normal routine activities, but the extent 

of the change is quite alarming: the skin temperatures in the face can fluctuate by as 

much as 5 °C (~15%) in one‘s normal daily life. Note that the anxiety induced change 

of temperature is in the region of ~1-5% of the body temperature. 

 

Figure 7-3. Outlines the variations of skin temperature and oxygenation in one‘s normal daily routines 
(a) thermalgram before coffee in the morning, (b) before food, (c) after food, (d) after food and had a 
cigarette outside. (e)-(h) are the StO2 maps thresholded at 54% (black pixels) corresponding to the 
thermalgrams presented in (a)-(d). Note the large fluctuation of the skin temperatures in the face and 
hand even when one is performing normal work in everyday‘s routine activity.  

The oxygenation level in the facial region and hand are seen to be slightly less 

dependent on one‘s activity than that of theskin temperature. The StO2 presented in 

the figure is overlaid by the threshold StO2 at 54% (black pixels in Figure 7-3 

e,f,g,h). However, as it can be seen in the following few sections that it is not quite 
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possible to assess emotional information using EO technique even for very small 

errors of ~ 1% uncertainty in the oxygenation data.  

Furthermore, it is rather alarming to observe that the temperatures of the hands, as 

well as that in the facial region such as in the nose and the forehead, have exhibited 

large variations in the range of ~2-3C differences even though the subject was in fact 

very calm and relax. Table 7-1 & Table 7-2 tabulate the temperature change in the 

hands/fingers as well as in the forehead, nose and mouth under these conditions, 

and in the extreme cases a massive ~10% change of temperature in the finger is 

seen. Thus it can be concluded that although the skin temperatures of the hand are 

sensitive to the emotional anxiety, however, it is also strongly affected by external 

factors such as dietary and weather conditions too. The forehead temperature is 

seen to have 2% changes under these circumstances.  

Furthermore, the skin temperature and the StO2 can also be affected by many other 

factors, such as sweating and change of ambient temperatures. In cases when the 

skin temperature is modulated by a sudden change of sweating or environmental 

factors, the assessment of anxiety without base line information can be very 

unreliable! 

 

Table 7-1: Highlights how sensitive is the temperature of finger/hand to dietary and weather 
conditions other than that triggered by anxiety. Noted the very large standard deviation in these 
figures. 

 

Table 7-2: shows the variation of nose and mouth temperatures due to other environmental factors. 
Noted the very large standard deviation in these figures. 
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Figure 7-4. presents the base line images of 14 representative participants in two columns and each 
contains the RGB on the right, the false colour StO2 map presented in a fixed scale of [30-55]% in the 
middle and the thermalgram in the scale of [20 -37.5C] on the left. Note the wide range of the skin 
temperatures and StO2 variations in their foreheads across these 14 participants. 

7.3.2 Personal health conditions 

Given the wide range of people with enormous variations of cultural and ethnical 

backgrounds and health conditions, the physiological ‗base-line‘ conditions for a very 

small sample size of people like the one we have (85 people), are found to be 

impossible to generalise. A good example can be seen from Figure 7-4 which shows 

the extremely large variations of the facial StO2 and skin temperatures across these 

14 participants. The maximum oxygenation in their foreheads possesses a standard 

deviation of over 30% and therefore any attempt trying to detect a change of ~3% 

using their ‗gross or face values‘ without given the base line information sounds like 

an impossible mission!  
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7.4 Emotional anxiety assessment given base line information 

With the presence of baseline information it is very straight forward to assess one‘s 

emotional state using EO technique. For instance, the change of the skin‘s electrical 

resistances such as that in the thumb has been traditionally regarded as one of the 

hallmarks for being under emotional anxiety. Given base line information to compare 

as it is shown in Figure 7-5(a), the emotional state such as anxiety can be readily 

assessed. In this case the hand‘s temperature is seen to drop by as much as 3 

degree which amounts to a massive ~9% change when one is under emotional 

anxiety (Figure 7-5(b)). Other places such as the forehead temperature of the 

subject, is seen to rise rather extensively when the subject is under emotional 

anxiety. It is also noted that the temperatures at the nose and around the mouth 

regions, are seen to reduce too.  

 

 

 

 

 

 

Figure 7-5 showing how straight forward it is for assessing one‘s emotional state when the base line information 

is given. The figure shows the false colour thermalgram of a subject (a) at rest and (b) after ES. The hand 
temperature is seen to reduce by as much as 3C (~9%) indicating that the subject is in anxiety unambiguously. 

Figure 7-6 displays a collection of thumb and forehead temperatures of 20 

participants when they are in their base lines and under anxiety. It is quite clear from 

the figure that the thumb temperatures fluctuate greatly with very large standard 

deviation across the sample size. However, the forehead temperatures seem to be 

rather stable amongst these 20 participants and furthermore, all of them appear to 

rise in temperature above their base line levels when they are in anxiety. This is 

depicted by the pink trace in Figure 7-6.  

Note that the analysis in this chapter will be exclusively using TI data due to the 

reason that the HSI cannot record images when the subjects are in motion. In other 

(a) (b)
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words, the HSI can only take snap shots of images when the subjects are requested 

to sit still, and it is not possible to record HSI images during the session.  

 

Figure 7-6 shows the forehead and thumb temperatures of 20 participants when they are in their base 
lines and under anxiety. Note the large variation of the thumb temperatures across this small sample 
size of participants.   

7.5 Emotion assessment without baseline 

7.5.1 Dynamic change of forehead temperatures during & after anxiety 

As it can be seen from Figure 7-6 that the forehead temperatures are relatively 

stable amongst a sample size of 20 participants, it is of interest to look at how the 

forehead temperature behaves during and after anxiety sets in. 

Figure 7-7 shows the evolution of forehead temperatures of three representative 

participants during the ES session. The change of the forehead temperatures is seen 

to be relatively small within the boundary of 0.2-0.5°C during the complete ES 

session. Note that the spread of the absolute temperatures of the forehead is about 

2°C for this sample size of participants (see Figure 7-6 and Figure 7-7).  

The forehead temperatures are seen to rise a few minutes after the peaked HBR, 

and the temperature is kept increasing for long time similar to the persistent 

increasing numbers of hot pixels in the periorbital region after anxiety sets in. 

However, this ‗memory‘ effect in the forehead is not as extreme as that seen in the 

periorbital region and the temperature change is in the region of ~1%.   
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Figure 7-7 shows the behaviour of the forehead temperatures upon the trigger of anxiety: (a) subject 
B, (b) subject L and (c) subject N. The forehead temperatures are seen relatively stable with changes 
less than 0.5°C throughout the ES session.  
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Figure7-8 shows the behaviour of the nose temperatures upon the trigger of anxiety: (a) subject B, (b) 
subject L and (c) subject N. The nose temperatures are seen very responsive to the HBR. Unlike in 
the forehead it shows very small residual memory effect. 
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7.5.2 Dynamic change of nose temperatures during & after anxiety 

Figure7-8 shows the dynamic change of the nose temperatures of the same 

participants during and after the ES session. Unlike the time lag and the residual 

memory behaviours that have been seen in the forehead and periorbital regions, the 

nose temperature is observed to be very responsive to the change of heart rate 

throughout the trial. There are still time lags between the peak of the HBR and the 

minimum temperatures in the nose, but the lags are much shorter in the region of 

from 10‘s of seconds to ~100 seconds.  

The responsiveness of the nose temperatures to the HBR is very fast: it begins to 

drop as soon as the HBR begins to increase (see Figure7-8(a-c)). The nose 

temperature also behaves very differently from that of the forehead and the 

periorbital region: the temperature reduces upon anxiety. The reduction of 

temperature in the nose AFTER the anxiety event has not been found from all the 

investigated participants during the course of this work. This unique property of the 

nose to the emotional state has been one of the most important findings in this 

research. Note that there are substantial reductions of the temperatures in the nose 

during the anxiety: reductions of 1.5C to 3C amount to ~4.5% to 9% change have 

been observed! This large amount of change can be readily detected without 

problem. However, the base line temperatures in the nose region amongst all the 

investigated participants are seen to span widely in the region of 5-10% variations 

(see Figure 7-4). Thus to detect the change of nose temperatures due to emotions 

will need some reference points.      

7.5.3 Dynamic change of mouth temperatures during & after anxiety 

Figure 7-9 displays the dynamic change of the lips (mouth) temperatures of the three 

participants during and after the ES session. It is seen that the behaviour of the 

mouth‘s temperature is very similar to that of the nose: it is also quite responsive to 

the change of HBR due to anxiety and temperature reductions of around ~2C (6%) 

have been seen from all the participants investigated in this study. Again, the base 

line of the lips temperature have a scatter of ~5% amongst the investigated 

population and therefore a reference point is needed in order to extract the net effect 

due to anxiety from the EO property of the mouth.   
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Figure 7-9 shows the behaviour of the mouth temperatures upon the trigger of anxiety: (a) subject B, 
(b) subject L and (c) subject N. The mouth temperatures are seen not as responsive as that of the 
nose to the HBR, and about ~6% reduction in the mouth‘s temperature due to anxiety has been 
observed.  
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Figure 7-10  shows TI of three participants in four columns of: i) when they are in their baseline ii) 
during ES and at their peaked HBR, iii) after 2 minutes of the peaked HBR, and iv) after 5 minutes of 
the peaked HBR. 

7.5.4 Summary of forehead, nose and mouth responses to anxiety 

Figure 7-10 shows the representative TI images of 3 participants of different ethnic 

origins to provide supports of the data materials that have been presented in Figure 

7-6 -Figure 7-9. Shown in the figure are the false colour images of TI before, during 

and after their ES sessions. Our main interest is the detection of the emotions when 

they are in extreme tension, and this is the moment as depicted by the red box in 

Figure 7-10 when their HBR are surged to the maximum.  The immediate responses 

to the anxiety, as given by the features from the face that can be captured using EO 

imaging techniques, are the nose and mouth temperatures which are seen to react 

and drop instantaneously. The response from the nose is more acute as it can be 

seen quite clearly from the TI image shown in Figure 7-10.  
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A summary of these responses from a number of participants is presented in the 

following tables (Table 7-3, Table 7-4 and Table 7-5).  It is obvious from Table 7-5 

that there is an absence of direct correlations between the change of the heart rate 

and the change of the EO properties for the anxiety state with respected to the base 

line.  

 

Table 7-3 tabulates the variations of the HBR and the mean nose temperatures for a number of 
participant during ES session.  

 

Table 7-4 tabulates the variations of the HBR and the mean lip temperatures for a number of 
participant during ES session. 
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Table 7-5 tabulates the change of the HBR, the mean nose and lip temperatures for a number of 
participant between the baseline and when they are under anxiety. 

To summarise, we have observed the following properties of EO features in 

response to the emotional anxiety in this study: 

1. The temperature in the periorbital region is quite stable within 0.5%. 

2. The number of hot pixels in the periorbital region begins to increase after a 

time lag of about 2 minutes upon the onset of anxiety. The hot pixel can 

keep increasing in numbers for 30-60 minutes after the triggering of 

anxiety, and the total hot pixels can be increased up to about 10 times of 

the base line level. This is one of the most undesirable memory effects to 

the remote sensing of emotions.   

3. The forehead increases its temperature after a time lag of about 1-2 

minutes upon the onset of anxiety. The amount of temperature increase is 

in the region of about 1%. 

4. The temperatures in the nose and lip (mouth) regions are found very 

responsive to the anxiety induced change of HBR. The responses are 

found fairly instantaneous, and they start to drop in temperature as soon 

as the HBR begins to surge. The amount of the temperature drop is in the 

range of ~5-9%.  

5. There is no direct correspondence between the change of the HBR and 

the change of temperatures in the facial region. 
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6. Environmental and variable base lines due to different physiques of 

individuals impose ~5-10% variations on the temperatures and StO2 in the 

facial region. 

7.6 Differential temperature & oxygenation for emotion assessment 

According to the neuroscience research, the behaviour of blood transfusions 

particularly in the facial region, is found very different when under anxiety. Thus it is 

possible to employ local differentiation method to eliminate this large and unsteady 

base line residue using a technique similar to that of ‗lock-in‘ technology. During the 

course of this work we have developed two local differentiation techniques hoping to 

quantify the anxiety assessment. The objective of the method is to obtain a measure 

which ideally follows a net change of physiological responses to anxiety independent 

of individual‘s base line conditions.  

 

Figure 7-11. highlights the spread of the base line (at t=0) temperatures in (a) the nose and (b) mouth 
regions for a selection of subjects. This data implies the need of a reference point in order to relate 
the change of these temperatures to the degree of anxiety. 

Figure 7-11 illustrates the appreciable spread in the base line levels of the nose and 

mouth temperatures amongst the selected four subjects as an example. The spread 

of the base line temperature, in many cases is far greater than the amount of the 

change due to emotional influences and therefore a reference point is needed before 

one can interpret the data sensibly.  
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Figure 7-12. highlights the more stable of the temperatures in (a) the forehead and (b) eye regions for 
a selection of subjects during the ES session. Note that the base line temperatures of (a) & (b) are 
found closely correlated.  
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Figure 7-12 shows the fairly stable forehead and periorbital temperatures for a 

number of subjects during the ES session. Again the base line temperatures exhibit 

substantial spread like that of the nose and mouth as presented in Figure 7-11. It is 

observed from Figure 7-12 that the variation of the base line temperatures in the 

forehead is very similar to that of the periorbital: for example, subject H has the 

highest base line temperature within this group of people in his forehead and at the 

same time also in his periorbital. Thus one can choose either the forehead or the 

periorbital temperature as the reference point. In this work we opt to select the 

forehead temperature as the reference point due mainly to the ease to locate. 

Furthermore, the forehead is geometrically ‗flatter‘ and therefore a bigger area of 

ROI can be selected so to minimise errors due to viewing angle dependent emission 

issues.  

7.6.1 DFMT and DFNSO 

After exhaustive data analysis we have developed two analytic techniques, one for 

the TI using differential temperatures of two selected ROIs in the facial region: the 

Forehead and the Mouth. This Differential Forehead Mouth Temperature (DFMT) 

has been tested for ~25 subjects and reasonable results have been obtained. Note 

that the DFMT works on a single frame of data without the need of base line 

information. DFNSO is the similar technique that has been developed for the HSI 

utilising the differential StO2 in two selected ROIs close to the Forehead and nose 

tip. Note that both the DFMT and DFNSO methods are designed for the elimination 

of artefacts due to external factors such as dietary, ambient temperatures, health 

conditions and activities (Yuen Peter, Hong Kan, Chen Tong, 2010). 

It is hoped to calibrate the DFNSO and DFMT through some physiological properties 

such as the amount of cortisol or HBR. To achieve this we select four participants 

who experience various degrees of anxiety during the ES session as a test case. 

The details of their physiological properties together with the DFNSO and DFMT 

values are given in Table 7-6.  A plot of their cortisol levels against their percentage 

ratio changes of HBR with respect to their HBR baseline (RHBR) is given in Figure 

7-13.  An attempt to plot between DFMT against the RHBR or cortisol level also 

results in failure.  
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Although there is no obvious relationship between the DFNSO/DFMT with respect to 

the cortisol level or HBR, however, it may be possible to ‗classify‘ the anxiety level 

into ‗high‘ and ‗low‘ category according to their EO physiological feature values. 

 

Table 7-6  Anxiety assessment data for 4 selected subjects (Yuen Peter, Hong Kan, Chen Tong, 
2010).  

 

 

Figure 7-13. shows the ill-defined relationship between the physiological properties such as the 
change of the HBR with respected to the amount of the cortisol in the saliva for four participants who 
experience various degrees of anxiety during the ES session Correlations between DFMT & DFNSO. 

It is intuitive to testify the validity of the two differential methods by using a number of 

data sets collected from various subjects of different backgrounds before and after 

performing a range of non-stressful activities. In all cases the participants remain 

claim and relax during the data collection, and their cortisol levels are measured via 

collection of their saliva samples in regular time intervals. The results processed by 

using the DFMT and DFNSO analytic techniques for these base line data sets, 

together with the gross-values of skin temperatures and StO2 measured during the 

experiment, are tabulated in Table 7-7. 

RHBR vs Cortisol content

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.2 0.4 0.6 0.8 1.0

Cortisol [pg/mL]

R
H

B
R



  

115 

 

Table 7-7 Presents the base line data of several subjects and they are analysed by using the DFMT 
and the DFNSO method as a test bed. Scores of below 1.8 and 2.75 for the DFMT and DFNSO  
respectively imply the absence of anxiety. Yellow colour: Civilians subjects, green: military subjects, 
orange: high blood pressure subject, red: alcoholic test, pink: false alarm (Yuen Peter, Hong Kan, 
Chen Tong, 2010). 

There are mixtures of civilian and military personnel ranging from 25-55 participating 

in this experiment, and they are all in good health except for one who has high blood 

pressure problem (coloured in orange in Table 7-7). Amongst them, there are male 

and female with various skin types (white, yellow and black) and of different 

professions.  

As shown in Table 7-7 the standard deviations of the gross-data such as the StO2 at 

the Forehead and nose ROI are seen to be rather large (~3) in this experiment, but 

the DFNSO which exploits a simple differentiation technique manages to reduce this 

by over 50%. More importantly, this simple technique avoids the need to guess for a 

‗suitable‘ threshold value to fit for a situation during the anxiety detection process. 

Note that all the DFNSO values tabulated in Table 7-7 are quite small except for two 

‗outliners‘ data points (the pink data in Table 7-7) which belong to two rather nervous 

subjects. Obviously further effort is needed for a better understanding of the 

phenomena underlying the model.  
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Figure 7-14. By using labelled data sets one can deduce the relationship between the EO quantities 
with respected to the level of anxiety. The figure plots the DFNSO & DFMT obtained from highly 
stressed subjects (see Table 7-6) together with those of the base line (see Table 7-7), and it results in 
a very well-defined two clusters representing two regimes of high and low anxiety. The boundary at 
the DFNSO of 2.75 which corresponds to the DFMT of 1.8 may then be used for anxiety classification 
into high and low categories (Yuen Peter, Hong Kan, Chen Tong, 2010).  

7.6.2 Quantitative anxiety assessment using DFNSO and DFMT 

It can be seen from the last section that although the exact location of the ROI and 

perhaps the correct way for the manipulation of EO quantities are still needed further 

refinement and optimisation, it is intuitive to explore if the EO quantity such as 

DFNSO/DFMT can be related to the anxiety level such that one can apply them for 

emotion assessment. This is one of the main objectives to achieve in this project. 

Despite of the unsuccessful attempt trying to correlate the measured physiological 

response of the EO quantity (DFNSO) with respected to the biological properties like 

the change of the heart beat rate (RHBR) that triggered by anxiety, it may be still 

possible to classify the DFNSO and the DFMT values to represent a high and low 

anxiety regime. 
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One method to achieve this is to analyse the data sets that belong to the highly 

stressed people, together with those of the base line data sets obtained from the 

subjects who are in their clam and relax states. In machine learning research this is 

termed as ‗labelled‘ data. Through the cortisol assessment and the participant‘s 

questionnaire sheet, one can label the data into two groups of high and low anxiety 

sets. The data sets that presented earlier in Table 7-6 contains 3 subjects who are in 

acute anxiety during the ES session, and all of the data that presented in Table 7-7 

are the bases line data sets. Thus a plot of the data using both Table 7-6 and Table 

7-7 should exhibit a two regime plot with two clusters representing a high and low 

anxiety category.  

This result is shown in Figure 7-14 which indeed exhibits a well-defined two cluster 

areas: the red squares in the plot belongs to the 3 highly stressed subjects, and the 

rest are those with low level of cortisol characteristic of having low anxiety. An 

extrapolation from these high anxiety data points is seen to coincide very nicely with 

the blue triangle base line data points, exhibiting an amazing consistency. The 

yellow box in the figure represents the boundary of the high and low anxiety clusters, 

suggesting that a DFNSO value of 2.75 which corresponds to the DFMT value of 1.8, 

can be used as threshold values for anxiety classification into a low and high regime 

in a semi-quantitative manner.  

7.6.3 Anxiety detections using DFNSO & DFMT: an acid test 

In the previous two sections it has been pointed out that while the principles of the 

differential technique that established from this work may represent a valuable tool 

for the remote sensing of emotion in a semi-quantitative manner; however the 

methodology in its present form needs further development and optimisation. 

Nevertheless it is still worthwhile to acid test the presently developed technique as 

the first result for future improvement.  

Table 7-8 summarises the anxiety assessment results that have been performed at 

the time of writing the report. The result is colour coded, with green colour implying a 

positive positive detection and yellow implies a negative negative result. The level of 

anxiety is assessed through the level of the cortisol, and the heart beat change rate 

as well as through a direct consultation with the subject straight after the test.  
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Table 7-8 Shows the anxiety assessment results without the base line information using the 
classification method that has been developed in this project.  The anxiety is classified as high when 
the DFNSO and DFMT values are over 2.75 and 1.8 respectively; otherwise the anxiety status is 
classified as low or no anxiety. The result is colour coded, and the ground truth is based on the 
cortisol level together with a consultation with the subject. Green=positive positive, Yellow=negative 
negative, Pink=positive negative, red=negative positive, purple=high cortisol above 0.17mg/mL (Yuen 
Peter, Hong Kan, Chen Tong, 2010) 

The DFNSO result has shown to be very promising giving apparently ‗1‘ false alarm 

out of 41 subjects, while the DFMT scores 15 false alarms which mainly due to the 

difficulty of extracting the desire ROI particularly when the subject is in motion.  

Subjects 'Date'

Cortisol 

[Base] 

pg/mL

Cortisol 

[Mental] 

pg/mL

HBR 

[base]

Max HBR 

[mental]

(MaxHBR 

menta l- Base 

HBR ) / Base 

HBR

DFNSO 

[mental]

DFNSO 

[base]

DFMT 

[Mental]C

DFMT 

[Base]C

1 '08/03/2010' 0.34 0.30 85.00 127.00 0.49 5.00 0.10 2.74 1.14

2 '10/02/2010' 0.18 0.38 70.00 100.00 0.43 4.80 2.80 1.45 -0.13

31 '02/03/2010' 0.12 0.11 70.00 86.00 0.23 4.28 3.78 3.66 2.93

24 '09/02/2010' 0.17 0.13 87.00 105.00 0.21 3.85 2.96

3 '04/03/2010' 0.32 0.83 75.00 112.00 0.49 3.50 1.20 2.08 2.11

4 '10/03/2010' 0.13 0.37 85.00 128.00 0.51 3.20 -2.00 1.75 0.50

5 '04/03/2010' 0.14 0.19 66.00 93.00 0.41 3.20 2.50 1.62 0.29

20 '03/02/2010' 0.11 0.16 75.00 86.00 0.15 3.01 3.85 1.92 0.80

6 '03/02/2010' 0.08 0.12 72.00 100.00 0.39 3.00 0.70 1.17 0.15

16 '05/03/2010' 0.19 0.28 63.00 90.00 0.43 2.85 1.44 3.43 4.02

39 '09/03/2010' 0.05 0.06 95.00 98.00 0.03 2.79 1.09 2.35 2.84

7 '09/02/2010' 0.09 0.17 93.00 125.00 0.34 2.75 0.60 3.25 3.07

8 '09/03/2010' 0.45 0.62 86.00 120.00 0.40 2.70 -2.00 0.28 0.37

15 '04/03/2010' 0.40 0.31 90.00 122.00 0.36 2.39 1.51 1.58 1.28

19 '10/03/2010' 0.14 0.20 86.00 120.00 0.40 2.07 -1.00 1.82 0.60

9 '09/02/2010' 0.11 0.11 88.00 112.00 0.27 2.05 -1.50 0.97 -0.20

10 '09/03/2010' 0.10 0.09 91.00 99.00 0.09 1.70 0.40 1.9 2.47

14 '23/02/2010' 0.10 0.36 1.58 -1.37 2.69 2.84

11 '03/02/2010' 0.12 0.13 56.00 86.00 0.54 1.40 0.40 1.80 0.43

17 '25/02/2010' 0.16 0.25 75.00 103.00 0.37 1.31 -0.87 4.56 1.73

38 '24/02/2010' 0.06 0.06 70.00 93.00 0.33 1.14 -2.14 1.04 -0.10

33 '10/02/2010' 0.06 0.08 65.00 85.00 0.31 0.89 -0.33 2.62 1.19

29 '02/02/2010' 0.06 0.12 88.00 106.00 0.20 0.86 0.18 2.28 3.24

18 '09/02/2010' 0.34 0.23 90.00 109.00 0.21 0.30 0.10 2.39 4.16

26 '10/02/2010' 0.08 0.13 70.00 92.00 0.31 0.15 2.07 5.13 2.45

42 '10/02/2010' 0.05 0.05 82.00 102.00 0.24 -0.11 -2.80 2.21 1.16

21 '24/02/2010' 0.17 0.16 60.00 76.00 0.27 -0.20 -4.49 0.81 -0.16

25 '24/02/2010' 0.09 0.13 60.00 83.00 0.28 -0.35 -2.12 4.34 5.02

40 '05/03/2010' 0.13 0.06 73.00 81.00 0.11 -0.36 -1.77 2.75 1.64

27 '24/02/2010' 0.11 0.12 70.00 88.00 0.26 -0.72 -3.39 0.56 0.26

28 '05/03/2010' 0.11 0.12 90.00 127.00 0.41 -0.97 1.13 1.37 2.18

37 '03/02/2010' 0.09 0.06 64.00 79.00 0.23 -1.09 -3.58 1.95 1.09

12 '03/02/2010' 0.09 0.13 70.00 90.00 0.29 -1.20 1.00 1.29 0.23

13 '10/03/2010' 0.13 0.17 85.00 99.00 0.16 -2.20 -0.50 0.78 0.90

30 '05/03/2010' 0.11 0.11 88.00 91.00 0.03 -2.20 -2.23 1.34 2.03

32 '04/03/2010' 0.11 0.09 75.00 81.00 0.08 -2.25 -2.52 2.31 0.85

23 '03/02/2010' 0.16 0.14 77.00 103.00 0.34 -2.50 -2.35 0.35 0.73

36 '02/02/2010' 0.09 0.06 71.00 76.00 0.07 -2.75 -1.99 0.28 -0.32

22 '02/03/2010' 0.11 0.14 49.00 64.00 0.31 -3.04 -3.47 0.56 1.10

34 '10/02/2010' 0.08 0.07 67.00 77.00 0.15 -3.25 -3.37 0.29 -0.12

35 '10/03/2010' 0.05 0.06 94.00 128.00 0.36 no data

41 '02/02/2010' 0.05 0.05 75.00 103.00 0.37 hair problem

PP NP NN NP High cortisol high blood pressure
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7.6.4 The reliability of DFMT for assessing physiological property 

If EO quantities like the DFMT and the DFNSO truly reflects the physiological 

properties then it is possible that they may correlate well to other physiological or 

biological functions, such as the heartbeat. Since the DFMT is based on the 

measurement of skin temperature at a rate of 50 frames/sec, it is of interest to study 

the dynamic change of the DFMT as a function of time. To achieve this the TI data is 

manually analysed frame by frame to obtain the measurement of skin temperatures 

at the two selected ROI, and typical results together with the heart beat plot for a 

subject is shown in Figure 7-15. 

 

Figure 7-15. Showing how the DFMT can be correlated to physiological properties such as the heart 
beat rate. The figure presents the DFMT and the HBR of one subjects during the ES session, and it is 
seen that the DFMT follows the HBR with a small time lag as mentioned in previous sections.  

7.7 Summary 

This chapter concerns with the assessment of strong emotional state such as anxiety 

without the need of base line information. The study involves a detailed investigation 

and understanding of the EO features that can be extracted from the facial region. It 

is found that not all EO features response to emotions in the same way: some reacts 
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positively and some behave in a negative manner. The EO features from the 

forehead, periorbital region and face responses to strong emotions positively in 

terms of increasing blood perfusions into these parts of tissues. However, the nose 

and the lip (mouth) reduce blood perfusion upon anxiety.  

The timing of the responses also vary from region to region: the blood perfusions into 

the periorbital region can persists for long time and in many cases over an hour after 

the anxiety sets in. The nose and the mouth part however response almost 

instantaneously.  

By extracting EO features from different parts of the facial region, it is feasible to 

arrive at some quantity which can be related to the physiological property or 

functionality. In this study we have derived a methodology for cancelling out artefacts 

due to environmental, ambient and health influences to the integrity of the EO 

features. The method has been tested using a sample size of about 40 subjects, and 

the accuracy for the detection of anxiety is about 99% and 80% by using the HSI and 

TI based techniques respectively. The highly successful rate stems from the fact that 

the manipulated EO quantity agrees with the physiological heart beat data very 

closely.  
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8 Classification of emotions using EO imaging technique 

8.1 Introduction 

Roger Sperry initiated the research of the relationship between brain‘s left side and 

right side (Roger Sperry, 1980). He demonstrated that left half brain is used to 

process information through analytical, logical, rational, sequential method. However, 

the right half of the brain tends to understand outside information by recognising 

relationships, integration and synthesis of information, and also for arriving at 

intuitive insights. His study then further explained how the right and left side of brain 

is used in our daily life. His theory postulates that the left brain mainly deals with 

information that requires rational thinking and logical analysis. However, the right 

side of the brain mainly to processe the same information with intuitive insights and 

perceptions. Because of this fundamental difference the left side brain tends to split 

information into small pieces for further analysis, while the right half of the brain is 

able to digest all the information as a whole. 

 

 

 

 

 

 

 

 

Figure 8-1 outline the functionality of right and left brain according to Sperry‘s theory. (Sperry, 1980) 

Further Research into the brain‘s function was enhanced by Ned Hermann (Ned 

Hermann, 1996), the former manager of management education at General 

Electric‘s Management Development Institute. He developed an instrument for 

assessing the usage of brain at brain-dominance profile. He then concluded that 

people tend to be a half brain oriented dependent on their occupation. For instance, 
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CEO may use their left brain a lot more than their right side brain, as they have to be 

particularly organized and systematic. But social workers tend to be right-brain 

oriented, simply because of the fact that they need to concentrate on the insights 

about situations. 

Humans transform visual targets into action order through the visual--motor 

integration. In order to under this process, Patrick Bedard assessed the brain 

activation, together with gaze orientation, using functional magnetic resonance 

imaging (Patrick Bedard, 2010). He found fixated gaze to left or right side from 

centre is a sign of goal-directed movements for visible or remembered targets.  He 

then further demonstrated the strong effects of gaze orientation on brain activation 

during planning, and the interactive effects of target visibility.  

The new evidence for distinct right and left brain systems, base on deductive versus 

probabilistic reasoning, has been exploited by Lawrence M. Parsons (Lawrence M. 

Parsons, 2001). These two definitions are poorly understood if placed in the context 

of cognition for functional neuroanatomy underlying them. He further illustrated that 

deduction gives a simulation on the area of right brain homologues, inferior frontal 

cortex and basal ganglia, as well as right amygdale. By contrast, probabilistic 

reasoning tends to activate left hemispheric areas.  Deduction and induction are then 

further classified as two distinct processes, because of the fact that probabilistic 

reasoning mostly associate with left brain movement whereas right brain is often 

activated by deductive reasoning.   

The purpose of this chapter is to investigate different natures of stressful tasks 

whether they can be classified using the EO imaging data? 

8.2 Experimental procedure 

The procedures of this experiment are as follows: 

A. The participant is asked to wear a heart rate monitor before the experiment, 

and then the subject is led to a good lighting conditions room for a short time 

relaxation. 
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B. The subject is requested to stay still as much as possible during the 

experiment. A set of baseline images are taken after the subject 

accommodates the new environment.  

C. The participant is then asked to do mental mathematics for few minutes, 

allowing the heart rate increase significantly.  

D. The participant is requested to take a break and let the heart rate back to the 

baseline level. 

E. Shortly, the participant is then asked to perform recognition-memory task for 

few minutes, allowing the participant get stressed and heart rate increase 

significantly again.  

F. Following the recognition-memory task and rest, participant is asked to play a 

game for a few minutes. 

G. Finally, the participant is requested to take a break and let himself back to 

baseline. 

8.3 Results and discussion 

TI images have been utilised throughout this experiment due to the higher quality of 

the data. Figure 8-2 outlines the locations of the four ROIs on the forehead of a 

subject, and together with the typical skin temperatures of these ROI as measured 

by the TI is shown. Note that there is indeed some temperature differences across 

these ROIs, and the differences are seen to be very dependent on the specific tasks. 
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Figure 8-2 (Left) Shows the false colour TI image of a subject and the assignment of the ROI on his 
forehead. (right) typical skin temperatures of the 4 ROIs while they are performing different natures of 
tasks.  

Figure 8-3 plots the differential temperature between ROI1 and ROI4 for the four 

different task. It is seen that the differential temperature between the left and right 

forehead seems to be very small when all the participants are performing the 

recognition/memory task. This observation appears to be much clearer when the 

data is plotted against the HBR, as it is shown in Figure 8-4. The almost equal blood 

perfusions in both left and right forehead may suggest an equal use of the left and 

right brain when the pattern recognition task is performed. 

The maths data cluster is found at the centre of Figure 8-4, which suggests that both 

sides of the brain may have been used for performing the mental mathematics task.  

 

 

 

Figure 8-3  shows the differential temperatures between the left (ROI 4) and the right (ROI 1) for a 
number of subjects after they performed 4 different kinds of tasks. Note that the temperature 
difference seems to be very small for the recognition task. 
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Figure 8-4 plots the differential temperatures between ROI1  and ROI4 against the HBR. The data 
due to the recognition/memory task seems to be well clustered (in black) with clear boundary well 
separated from the mental maths task (in red).   

8.4 Summary 

Previous medical research has demonstrated the correlation of left brain and right 

brain. It has also been suggested that this relation can be classify through the usage 

of brain. The purpose of this chapter is to investigate different natures of stressful 

tasks whether they can be classified. The idea has been based on the fact that skin 

temperature is heavily modulated by superficial blood flow. Furthermore, the 

superficial blood flow is greatly affected by brain activity. Two different types of 

anxiety inducing experiments are established: mental math and pattern recognition 

experiment. The equal blood perfusion data extracted from facial TI data suggest an 

equal use of the left and right brain when the pattern recognition task is performed. 
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9 Conclusions and future work 

Emotional anxiety can be defined as a temporarily-induced physiological or 

psychological imbalance that is caused by any action/ situation which an individual 

regards as a possible danger or threat.  A physical emotional stress is one that has a 

direct effect on the body. This may be the reaction to an external environmental or 

the physiological request of the human body to cope with the stimulant. Mental 

emotional stress can be a situation when information is passed into the brain without 

direct physical effect on the human body. It is well-known that both emotional and 

physical stressors will induce a surge of adrenaline in the blood stream under the 

command of the sympathetic nerve system. The response is involuntary which 

means that it cannot be suppressed by training. The onset of this alleviated level of 

adrenaline triggers a number of physiological chain reactions in the body, such as 

the dilation of pupil and an increased feed of blood to muscles etc.  

One area of the present work has been the understanding of how the EO 

characteristics of physiological responses that triggered by these two different kinds 

of emotional stressors can be assessed and/or classified. In 2008 we were the first 

group within UK to initiate a programme for assessing people‘s intent through one‘s 

physiological or neurological states, for example via the detection of people‘s 

anxiety.  

Previous work performed by Pavlidis group has claimed an ‗instantaneous‘ increase 

of temperature in the periorbital region when anxiety sets in, but this claim cannot be 

validated according to our data. We have performed a detailed investigation about 

the anomaly temperature in the periorbital region using TI and HSI techniques in this 

study. We have found that, the mean temperature in the periorbital region is hardly 

increased during the anxiety state. However, the number of pixels in the lower 

quartile of the mean temperature, is seen to increase in the periorbital region after 2 

minutes of the onset of anxiety. The evolution of the hot pixels in the periorbital 

region during anxiety is seen to occur in the form of a pyramid, with high temperature 

pixels located at the tip (centre) of the pyramid structure. The number of hot pixels 

within the periorbital region can be increased by ~10-fold in comparison to that of the 
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base line. The hot pixels in the periorbital can persist for long time, and in many 

cases it can sustain for 30 minutes and even longer!  

We have observed the following EO characteristics from the facial region during 

emotional anxiety: 

1. The temperature in the periorbital region is quite stable within 0.5%. 

2. The number of hot pixels in the periorbital region begins to increase after a 

time lag of about 2 minutes upon the onset of anxiety. The hot pixel can 

keep increasing in numbers for 30-60 minutes after the triggering of 

anxiety, and the total hot pixels can be increased up to about 10 times of 

the base line level. This is one of the most undesirable memory effects to 

the remote sensing of emotions.   

3. The forehead increases its temperature after a time lag of about 1-2 

minutes upon the onset of anxiety. The amount of temperature increase is 

in the region of about 1%. 

4. The temperatures in the nose and lip (mouth) regions are found very 

responsive to the anxiety induced change of HBR. The responses are 

found fairly instantaneous, and they start to drop in temperature as soon 

as the HBR begins to surge. The amount of the temperature drop is in the 

range of ~5-9%.  

5. There is no direct correspondence between the change of the HBR and 

the change of temperatures in the facial region. 

6. Environmental and variable base lines due to different physiques of 

individuals impose ~5-10% variations on the temperatures and StO2 in the 

facial region. 

We have also developed techniques to allow the assessment of strong emotional 

state such as anxiety without the need of base line information. The study involves a 

detailed understanding of the EO features that can be extracted from the facial 

region. It is found that NOT all EO features response to emotions in the same way: 

some reacts positively and some behave in a negative manner. The EO features 

from the forehead, periorbital region and face responses to strong emotions 

positively in terms of increasing blood perfusions into these parts of tissues. 

However, the nose and the lip (mouth) reduce blood perfusion upon anxiety.  
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The timings of the responses also vary from region to region: the blood perfusions 

into the periorbital region can persists for long time and in many cases over an hour 

after the anxiety sets in. The nose and the mouth part however response almost 

instantaneously.  

By extracting EO features from different parts of the facial region, it is feasible to 

arrive at some quantity which can be related to the intrinsic physiological property or 

functionality. In this study we have derived a methodology for cancelling out artefacts 

due to environmental, ambient and health influences to the integrity of the EO 

features. The method has been tested using a sample size of about 40 subjects, and 

achieved promising result. The highly successful rate stems from the fact that the 

manipulated EO quantity agrees with the physiological heart beat data very closely.  

During the course of this study, we have also developed a technique that allows the 

detection of HBR directly using TI data. The technique involves the monitoring of the 

frequency change of the skin temperature signal and it is then converted into time 

signal. Furthermore, we have also attempted for the first time to sense glucose 

concentration from the blood sample in-vivo remotely using HSI technique.  

We have obtained some encouraging results and further works are needed for more 

understanding of the remote sensing of strong emotions technology. The study of 

glucose detection method by using hyperspectral imaging system needs further 

investigation as it is speculated that the water absorption may dominate and obscure 

the interpretation. Further analysis particularly the robustness for the local differential 

methodology for assessing emotions using EO data is needed. In particular the 

evolutions of blood perfusions in various parts of the facial regions needs to be 

monitored for much longer time than the ~30 minutes duration as it was performed in 

this study. There is a number of affective sensing research being taken place world-

widely, unfortunately none of it addresses the assessment of the instantaneous 

emotions and all the reported results is in fact due to the after-maths of having strong 

emotions such as anxiety which has happened quite a while ago. New methodology, 

such as the one that proposed in this thesis, may suggest an alternative new 

direction to realise the assessment of human‘s emotions in real time.  

 
  



  

129 

10 Appendix I 

10.1 Software design: VNIR, SWIR & AOTF MSI systems 

All camera control software undertaken by the author has been developed on the VS.NET 

platform and all the basic camera functions, such as spectral and spatial binning, mirror 

controls and image acquisitions, have been established and subsequently implemented in 

the very first version 1.0 of the package for both the VNIR and SWIR cameras. Typical GUI 

for the two cameras are shown in figure 10-1. The MSI control software has been written in 

Visual basic due to historical reasons, and data can be captured at the camera speed 

without any time wasted for data storage etc. Figure 10-2 shows the GUI of the MSI and 

samples of typical images taken by the three spectral cameras are outlined in figure 10-3. 

 

 

 

 

 

 

 

 

                      

(a)                                                                                     (b) 

Figure 10-1: shows the set up menu of the HSI control software designed and developed by the 
author: (a) VNIR HSI camera. (b) SWIR HSI. 
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Figure 10-2:shows the setup menu for the control of the AOTF MSI system that has been developed 
by the author. 

 

Figure 10-3:Shows the typical ‗composite‘ images collected by the three spectral cameras (a) VNIR 
HSI (b) SWIR HSI (C) AOTF MSI using the acquisition software established by the author. 

10.1.1 Software configuration 

The software for controlling the systems are developed by the Kan Hong using C++ 

based on the Software Development Kit (SDK) of the hardware. The VNIR, SWIR 

and MSI AOTF camera systems software are designed through the Vc++.net and 

Vb.net platform. The SDK are provided by camera system, which are shown at figure 

10-4 and 10-5 and can be further developed in practical application.  

 

(a) (c)(b)
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Figure 10-4: gives the SDK layout of VNIR and SWIR 

 

Figure 10-5: highlights the flow chart of MSI SDK 

In this section, the configuration of SWIR and VNIR software will be presented in details. 

Multi-threading platform and the improvement of frame rate will be given as well. 

10.1.2 The configuration of SWIR and VNIR 

Unlike the MSI system, two identical optical scanners are employed to acquire 3D 

hyper-spectral image cube in SWIR and VNIR. Each scanner, including a motor and 

a mirror, can capture the light from different spatial positions where only one frame 

data can be acquired. Therefore, the software must be built up in conjunction with 

Readme file with additional 

information 
Readme.txt 

DLL with SDK calls for PixelFly Pccam.dll 

Library File for Microsoft Visual++ 

Compiler 6.0 
pccam.lib 

SDK defines and macros pccamdef.h 

SDK-function definitions pccam.h 

Programs / Digital Camera ToolBox / PixelFly SDK 



  

132 

the framework of motor. The configuration of SWIR and VNIR are similar with each 

other, as the fundamental working procedure is almost the same. The figure 10-6 

shows the configuration of SWIR and VNIR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10-6highlights the flow chart of VNIR and SWIR 

10.1.3 Multi-threading configuration for AOTF MSI system  

A thread is a type of context where code is running. It will not affect the process with 

whatever code is in the thread. All the thread in the context must follow the program 

flow. Within the operating system, there is only one thread running for each process 

before the invention of multi-threading technology. Multi-threading can works in a 
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real-time sense when multi-processor box have more than one processor. The multi-

thread may still ―available‖ when the context runs like a substitute sequence: 

20%code for thread A, then 20% code for thread B, then back to thread A for another 

20% code etc. Actually, this is not the real multi-thread process. But it still works in 

an inefficient situation. Nevertheless, if both threads are ―compute bound‖ then multi-

threading will not speed up the program at all but push the operating system 

switching resource between two threads.  

Once the start method is invoked, the thread is available but may not actually be 

running as it requires the operating system to give the thread time to run. In fact, it 

would be desirable if running threads can occasionally pause to make other threads 

valid. All the thread scheduling is dependent on the operating system. Each runnable 

thread will be given a slice of time to implement its process through the preemptive 

scheduling systems. Once the time slices are finished, the sleeping thread will be 

activated. All the operating systems rely on this structure. 

Therefore, multi-processor machine could enable each processor run a thread and, 

then multiple threads can run in parallel. However, if the processor is less than 

thread, the scheduler has to perform time-slicing, which driver the thread from one 

state to another state. The following figure shows the possible states that a thread 

can have. Whenever a thread is blocked, another sleeping thread can be activated. 

Whenever a blocked thread is worked, the scheduler will check whether this thread 

is the most significant thread. If not, the operating system preempts the current 

thread and activates a new thread to run. Figure 10-7 gives the possible states of 

thread that OS may give.  

In the view of this, all the softwares for our hyperspectral imaging system are built up 

in this configuration. There are two computers running the SWIR, VNIR and MSI 

systems. The running computers in the project all have dual core processor. 

Therefore each computer can run 2 threads in parallel. It is applicable to run SWIR 

and VNIR in one software but, the programme needs further development due to 

some historic reasons. This chapter uses MSI system as an example to show how 

multi-thread works in the software and how this configuration improves the 

acquisition speed. 
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Figure 10-7: exhibits the possible states of thread that operating system may give 

As one of the most fast hyper-spectral imaging system, MSI system requires more 

robust software to support its near-real time speed. The exposure time and 

transmission speed has been fixed by the operator and hardware. Therefore, it is 

significant to arrange acquisition and transmission thread. The following figure shows 

the general procedure of probing image by using single thread software.  

 

Figure 10-8: shows the single thread software procedure 

According to the above image, the single thread procedure requires the data storage 

after the image acquisition.  This procedure may waste many times in the data 

storage. Therefore, multi-threading is employed in this software. The following figure 

gives the flowchart for multi-threading configuration of our MSI system, which 

specifies the two multi-threads for acquisition and data storage, respectively. 
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Figure 10-9: gives the flowchart of multi-threading configuration of MSI imaging system 

10.2 Angular variation of thermal emissivity 

As described in the previous section that the emissivity of a material is a function of 

the angular emission, wavelength and temperature. For example the emissivity of 

water varies considerably from band to band, and at wavelength of 10 um it is a 

perfect blackbody while it becomes a mirror at ‗low‘ angle of emission (ie~90).  

Substantial interests in the field of biomedical area have been drawing on the human 

skin energy absorption and reflection. In the thermal radiation range, the angular 
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emission and its emissivity can introduce bias to determine the temperature of the 

skin. Therefore, it‘s necessary to understand how its angular emissivity works.  

The participant with mask ROI is sit in front of the camera comfortably. Throughout 

the experiment the participant is asked to avoid substantial body movement and to 

sit down calmly as much as possible. Then a rest time of about 5 minutes is given to 

allow the subject to settle in the new environment and subsequently the skin 

temperature information as functions of the angular emission is taken. In order to 

locate the angle properly, the mat with calculated angle curve was placed in front of 

participant. Specifically, the participant rotates the head according to the angle 

marked on the mat, and the temperature was measured simultaneously from both 

Lwave and Mwave camera.The schematic diagram of the experiment is shown in the 

following figures. 

 

 

 

 

 

 

 

(a)                                          (b) 

Figure 10-10 Shows the sample thermal image of participant and the experimental setup of angle 
measurement. 
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Figure 10-11: Shows the sample thermal image of black body and the experimental setup for the 
black body temp measurement. 

Similar to the human skin temperature measurement, the black body temperature is 

captured by using both Lwave and Mwave simultaneously.  The black body is placed 

at a rotation platform with accurate angle meter. The cameras are then capture 

sequentially images after the black body is rotate to the target angle from 0 to 40 

degree (in steps of 10 degree).The mask is used to accurately locate the ROI from 

the thermal image.  

10.3 Result analysis and discussion 

The effect of angular dependence in the emissivity can be seen in the 

aforementioned experiment which measures the ‗apparent‘ temperature of a 

subject‘s forehead as functions of emission angle. Shown in figure 10-12 is the 

temperature measurement by using a TI with a ‗fixed‘ emissivity (skin: 0.98 & 

blackbody: 1) as functions of the angular emission. The result of this temperature 

measurement is also shown in figure 10-13. Linear regression analysis was 

performed on the temperature data in both blackbody and human forehead region to 

produce a proper relationship with viewing angle. The differences in the Lwave and 

(a) (c)(b)

(d) (e) (f)
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Mwave regression analysis were characterized empirically, and least squares were 

also employed to study linear regression. 

10.3.1 The relationship between angle and temperature 

The black body and human forehead temperature (Mwave) appearing in figure 3-4 

correspond to the temperature value investigated in the different viewing angle. For 

Y axis, the value of cosine at various degree of angle was plotted on a linear scale to 

allow simultaneous viewing of the relationship between angle and temperature. The 

least-squares regression lines were also overlaid together with real data value (blue 

star on the figure). 

 

 

 

 

 

 

 

Figure 10-12: Shows the least-squares regression line for blackbody and human forehead 
temperature (Mwave) and the value of cosine angle.The blue star illustrates the real temperature 
value against the cosine value of angle. 

To better quantify the relationship between viewing angle and temperature, the least-

squares regression line for blackbody and human forehead are given and it appears 

that higher R2 value could be observed for both two equations. This means 

regression line is a good fit for the points. 

Unlike the temperature value presented in the above graph, figure 3-5 gives the 

regression analysis of temperature change percentage and the value of cosine angle 

data. This result demonstrates that a similar interpretation of the regression analysis 

infrared information.  
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Figure 10-13: illustrates the least-squares regression line for blackbody and human forehead 
temperature change percentage (Mwave) and the value of cosine angle. The blue star shows the real 
temperature change percentage value against the cosine value of angle. 

In order to further understand the source of the discrepancy between the measured 

data (fig. 10-13), another set of data which was recorded at the same time but using 

a LWIR (FLIR SC640) TI is analysed (see figure 3-6).The linear regression model 

was also used to calculate relationship from the viewing angle and temperature data 

captured from the Lwave thermal imaging system. The as-measured temperature as 

function of emission angle given by the LWIR TI is shown in figure 10-14 10-15, 

which shows remarkably the same trend as that depicted in figure 10-13. Again, this 

data set also exhibits a linear relationship between cosine angle and temperature, 

and it is consistent with the MWIR data but in contradict to the slop of the least-

squares regression line. Although this data set is recorded using an integrated 7-

14um wavelength, however it shows the same trend as that of the MWIR result, 

suggesting that the emissivity difference between black body and human skin needs 

further investigation. 

Within the field of optics, Lambert‘s cosine law describes the radiant intensity 

captured from a Lambertian radiator (or surface) is proportional to the value of 

cosine angle between the surface normal and viewing line. Although the Lambertian 

radiator is not an incident energy-dependent emitter, its emission depends upon the 

radiation originating in the emitting body itself. A black body is an example of a 

Lambertian radiator. Again, our TI data prove that skin is also a near Lambertian 

radiator. 
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Figure 10-14: Shows the least-squares regression line for blackbody and human forehead temperature (Lwave) 

and the value of cosine angle. The blue star illustrates the real temperature value against the cosine value of 
angle. 

 

 

 

 

 

 

 

 

Figure 10-15: illustrates the least-squares regression line for blackbody and human forehead temperature change 
percentage (Lwave) and the value of cosine angle. The blue star shows the real temperature change percentage 
value against the cosine value of angle. 
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10.4 The correlation between long wave & middle wave thermal 

data 

Thermal imagers have been established as the primary tool used in military and 

securityactivities that involve surveillance, targeting and tracking, and night-time 

operations. Unlikeimage intensification (I2) devices, which depend on ambient light 

levels, thermal imagers exploitthe fact that all objects with a temperature above 0 K 

emit thermal radiation by creating apseudo-image of the scene based on this thermal 

emission. The two thermal imaging windowsare the mid-wave IR (MidIR), 3–5 µm, 

and the long-wave IR (LWIR), 8–14 µm, both chosen forthe relatively low amounts of 

absorption from atmospheric species, such as carbon dioxide (CO2)and water (H2O). 

Contrast between the objects within a thermal image is determined by their 

temperatures, which also reflect a characteristic that describes how efficiently an 

object radiates absorbed energy as compared to a blackbody. 

In order to understand the difference between long wave and middle wave data, the 

temperature of blackbody is set from 26 to 45 and measured by both long wave and 

middle wave camera. Figure 10-16 illustrates the result and linear relationship 

between long wave and middle wave thermal data.  
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Figure 10-16shows an example of the black body temperature measured by a cooled MwaveTI camera (NETD 

~20mK and LWIR uncooled TI camera (NETD~35mK). The blackbody temperature is set from 26 to 45 degree, 
shown in the x axis. The y axis gives the corresponding temperatures Measured by the two TIs. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10-17Shows the hot pixel number of periorbtial region of the subject H measured by LWIR uncooled TI 

camera (NETD~35mK). 
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Figure 10-18Shows the nose Mean temperature of the subject N Measured by LWIR uncooled TI camera 

(NETD~35mK). 

Figure 10-17 Shows the hot pixel number of periorbtial region of the subject H 

measured by LWIR TI camera. The hot pixel maintain in a low level, but increase 

sharply after the anxiety is taken from the participant, which demonstrates the same 

conclusion as the data of MWIR. The same conclusion could be achieved by using 

subject N‘s LWIR data. The nose and mouth temperature drop down greatly during 

the emotional anxiety session, as shown in the figure 10-18. 
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