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Manufacturers are under increasing pressure from stakeholders and stricter 

regulations to reduce the environmental impact of their activities. The research on 

sustainability in general and on sustainable manufacturing in particular is rapidly 

developing and crossing disciplinary boundaries. There are numerous well-

developed concepts for industrial sustainability which can contribute to sustainable 

manufacturing, but there is a gap in knowledge on how to achieve the desired 

conceptual aims at operational level. There also is a growing volume of industrial 

cases on sustainable manufacturing practices, but little is known on how these 

improvements were conceived. Additionally, the means by which improvement 

options can be reproduced and modelled is lacking. This paper presents a tactics 

library to provide a connection between those generic sustainability concepts and 

more specific examples of operational practices for resource efficiency in factories. 

Then a factory modelling approach is introduced to support the use of tactics by 

combining the analysis of building energy and manufacturing process resource 

flows. Finally a step-by-step guide in the form of a workflow for factory modelling 

and resource flow analysis is presented and tested via a prototype tool. The aim was 

to provide guidelines for manufacturers to undertake the sustainability journey by 

guiding them through the steps of factory modelling, resource flow analysis and 

improvement opportunities identification. The paper has implications for 

researchers and practitioners as it demonstrates how factories can sustainably be 

improved in a structured, systematic and cross-functional way. This contributes to 

the need for expanding the scope of analysis beyond functional boundaries to apply 

sustainability at factory level.  

  

1. Introduction 

Industry has typically been associated with a negative impact on the environment: over the last 

decades, the natural environment degradation due to population growth and its associated increase 

in resource consumption (Holdren and Ehrlich, 1974), economic growth and the associated 

intensification of industrial activities (Meadows and Club of Rome, 1974) have become an 

undeniable global issue (World Commission on Environment and Development, 1987). With the 

need for sustainability now widely recognised as a great challenge for society, industrial companies 

have become part of the solution to change the way society operates (Erkman, 1997; Jovane et al., 

2008).  

There are many well-established concepts and approaches which address environmental issues 

at a systems level, such as industrial ecology (Graedel, 1994), green supply-chain management 

(Beamon, 2008), and the ‘Rs’ strategies of Reduce-Reuse-Recycle (Sarkis and Rasheed, 1995). 

Additionally, sustainable strategies and policies (Kerr, 2006) as well as supporting metrics (Figge et 

al., 2002; Labuschagne et al., 2005) to assess performance and quantify the contribution to the triple 

bottom line—people, planet and profit (Elkington, 1997)—are well-developed.  

This research takes particular interest in sustainability in manufacturing as it has a major role to 

play in moving society towards more resource-efficient industrial systems. There are concepts for 

sustainability applicable to manufacturing (Robèrt et al., 1997; Lovins et al., 1999) and numerous 

examples of sustainable manufacturing practices such as waste minimisation (Clelland et al., 2000), 
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energy efficiency (Bunse et al., 2011) through monitoring (Ameling et al., 2010) or through 

technology substitution (Compressed Air Challenge, 2011). However there is a lack of information 

on how to move from these high-level sustainability concepts to the selection of appropriate 

practices. The numerous examples of successful sustainable manufacturing practices in various 

industrial sectors demonstrate that there are benefits in implementing sustainability improvements 

(Rusinko, 2007; Menzel et al., 2010). However, the adoption of sustainability practices is not 

systematic (Madsen and Ulhøi, 2003). The literature and the case studies fail to provide the means 

by which improvements can be identified for more sustainable manufacturing operations and 

resource flows from a manufacturer’s perspective. Examples of good practice are largely context 

specific and relate to specific problem situations. Thus it is difficult to understand how such 

improvements can be reproduced by others. 

Critical elements for sustainable manufacturing are the production system as well as the 

buildings and facilities which are servicing manufacturing operations and provide heating, 

ventilation, air-conditioning (HVAC), lighting, power, water, and waste removal. Driven by 

increasingly tighter building energy regulations and voluntary green rating systems, methodologies 

have been developed to guide design and reduce resource use, including modelling and simulation 

tools. However, buildings and manufacturing facilities are typically managed separately and use 

different performance metrics. Historically, buildings in many industrial situations have lifetime 

values that are low compared to the production process; as a result little emphasis has been placed 

on buildings. Statistical energy consumption data for 25 industrial sectors in the UK highlighted 

that for some manufacturing industries (e.g. manufacture of motor vehicles, electrical machinery, 

radios, medical equipment), building related energy (i.e. space heating and lighting) contributes to 

approximately 40% to 60% of the overall energy consumed (DECC, 2012). Thus there is significant 

potential for resource efficiency improvement by integrating these disciplines and viewing the 

factory as an ecosystem (Despeisse et al., 2012a).  

Additionally the need for resource efficiency in manufacturing is driven by cost, regulations 

and stakeholders’ pressures. Sustainable manufacturing research area spans multiple disciplines and 

the move towards sustainability can only take place through wide changes, from behavioural to 

technological, and through holistic perspective as well as local solutions. Sustainable building 

design has been evolving with a practical approach and measures for over two decades (BRE 

Group, 2012). In sustainable manufacturing the issue is magnified by the greater resolution and 

complexity of activities involved and the wider diversity between facilities. Some manufacturers 

have considered integrating buildings and process, but there is a lack of tools to support such 

integration and thus manual analysis is limited in complexity and completeness.  

To tackle the magnified problem, powerful IT tools have been developed to enable the analysis 

of ever more interconnected and complex systems. Various modelling and energy analysis tools 

have shown tangible benefits towards sustainable manufacturing (Heilala et al., 2008; Gutowski et 

al., 2009; Herrmann and Thiede, 2009; Michaloski et al., 2011). However, while these tools are 

helpful to support improvements, they do not provide a practical approach and overall structural 

framework for the users across functions to identify inefficiencies or improvement options for 

resource efficiency. Therefore, guidance is required on how to achieve sustainable improvement in 

manufacturing. 

This paper examines work carried out in the research field of sustainable manufacturing and 

presents a novel approach to systematise the identification of improvement opportunities in 

factories. It introduces a library of tactics providing the generic rules for resource efficiency in 

manufacturing. It also presents a cross-functional factory modelling tool and its associated 

workflow for mapping and modelling manufacturing systems in order to support improvement 

activities. The work uses cross-functional factory modelling to integrate material, energy, water and 

waste (MEW) flows at factory level by combining buildings, facilities and manufacturing 



 

 

operations analysis. The research method used entailed bringing together discipline experts to 

undertake literature review, tool conceptual design, software development, and prototype testing.  

2. Research Programme 

The work presented in this paper is part of a wider project called THrough-life Energy and 

Resource Modelling (THERM Project, 2011) which aims at supporting sustainable manufacturing 

improvement (Ball et al., 2011). The research is collaborative as it brings together universities, 

manufacturing industries and software development to create a modelling, simulation and analysis 

tool which integrates sustainable building design and process MEW flow analysis. In other words, 

the tool will support sustainable manufacturing plant design and improvement. In this paper, a 

workflow is introduced to identify improvement opportunities in a methodical way using modelling 

of MEW resource flows through a factory and a tactics library.  

The work is exploratory and inductive. It starts with the development of a tactics library 

rationalised and structured according to an improvement hierarchy derived from waste/energy 

hierarchies and sets of sustainability principles, concepts and strategies. The tactics aims at bridging 

the gap between high-level concepts and observed industrial practices for sustainable 

manufacturing. These tactics can guide manufacturers through the steps of translating sustainability 

concepts into tangible actions while the improvement hierarchy can support decision-making as 

prioritisation is needed to select appropriate improvements. A workflow is then proposed to embed 

the elements of the tactics library into a practical application framework; in the case of THERM this 

takes the form of a Navigator (Quincey and McLean, 2011). It is a step-by-step approach based on 

factory modelling integrating the structured library of tactics to improve the resource flow by 

viewing the factory as an ecosystem. A factory modelling prototype tool integrating buildings, 

facilities and manufacturing operations is presented to test the integrated methodology. 

3. Improvement Hierarchy and Tactics for Sustainable Manufacturing 

This section presents research findings in the form of a tactics library for sustainable 

manufacturing. The tactics library is structured using the improvement hierarchy which prioritises 

options. Sustainable manufacturing tactics were formulated based on the mechanisms of change 

observed in practices collected and analysed in a previous study (Despeisse et al., 2012b). In this 

work, tactics form the link between the high-level sustainability concepts mentioned previously and 

the specific operational practices which manufacturers can employ to improve their industrial 

systems. They are verb–noun formulations to specify the type of change (remove, replace, add, 

optimise, etc.) and the focus of the change (resource flow or technology). Tactics are thus both 

generic enough to be applicable in multiple environments, but are also specific enough to be 

actionable in those environments and disciplines leading to specific process-level improvements.  

3.1 Prioritisation of improvement options 

The energy and waste hierarchies (Sarkis and Rasheed, 1995; Lund, 2007; Dovì et al., 2009; 

Blackstone, 2011) can help to prioritise tactics by identifying at which stage an improvement should 

be implemented. The material waste hierarchy is well-established and is typically represented by a 

pyramid with disposal at the bottom rising up though recovery, recycling, reuse, reduction (or the 

so-called ‘Rs’ strategies) and finally prevention at the top. Prevention is the preferred option with 

disposal the least favoured.  

Analogous energy and low-carbon hierarchies also exist to prioritise improvements in energy 

use avoidance at the top, going down through the levels of technology for energy efficiency and 

shift to renewable energy sources, and finally at the bottom of the hierarchy, offsetting techniques 



 

 

and carbon sequestration considered as the last resort (London Energy Partnership, 2004; Hope, 

2008). 

It is therefore appropriate to structure the library of tactics based on a similar improvement 

hierarchy for resource efficiency (Table 1). It incorporates existing sets of principles and strategies 

for industrial sustainability (Lovins et al., 1999; Allwood, 2005; Abdul Rashid et al., 2008) in 

addition to the waste/energy hierarchies mentioned earlier.  

The development of the improvement hierarchy was strongly influenced by the Toyota 6 

attitudes which is an industrial approach to energy reduction developed by Toyota (Hope, 2011). 

This approach has allowed the company to achieve significant reduction in energy consumption 

over the past two decades (Evans et al., 2009) and is now being used elsewhere (Lunt and Levers, 

2011). The major steps Toyota is taking to reduce the CO2 emissions from the manufacturing 

processes include the careful consolidation of production processes to match production level 

fluctuations, improved process management, facility size reductions, and operating rate 

improvements. These steps are bundled in 6 attitudes that represent the different actions taken 

according to the specific situation in which energy minimization is aimed for (greenfield or 

operational improvement project).  

These 6 attitudes are: Stop (“Just because it’s operating doesn’t mean it’s working.”), Eliminate 

(“Why is this equipment needed?”), Repair (“Are we losing energy as a result of the breakdown?”), 

Reduce (“Why do we need so much?”), Pick-up (“Don’t throw it away. Can’t you use it 

somewhere?”) and Change (“Is there any cheaper source of energy?”). Within an operational 

context, the energy minimization activities can be split in 3 stages. At stage 1, the focus is to reduce 

energy consumption during non-production periods. In this stage Toyota applies the Stop and 

Eliminate attitudes. At stage 2, the Repair and Reduce attitudes are used, focusing on reducing the 

fixed energy in the processes. Only when stages 1 and 2 are completed by going through the 

required amount of C-PDCA (check–plan–do–check–act) loops (Shewhart, 1939), Toyota is 

moving to Stage 3. In this stage the focus is on energy savings through advanced equipment 

improvement and efficient machine installation using the Pick-up and Change attitudes. All these 

steps are already implemented in Toyota’s manufacturing operations through the development of 

Toyota’s internal Energy Service Company (ESCO) which promotes energy savings and 

conservation activities as well as conducts energy audits that are according the above mentioned 

steps. 

Following the hierarchies and attitudes to identify improvement is an iterative process: Pick-up 

attitude / recovery strategy (e.g. waste-to-energy) and Change attitude / substitution strategy (e.g. 

renewable energy sources) join with Stop and Eliminate attitudes / prevention strategy (e.g. 

eliminate the significant item by deletion or substitution). The prioritisation of preferred options can 

be based on practical considerations (i.e. the “easy” things first) or based on philosophical ideas (i.e. 

the “right” things first).  

Additionally, which attitude or strategy is chosen first depends on whether a new process is 

being designed or existing equipment is being improved or refurbished. In the case of new process 

design or refurbishment of an old process, there is no current investment and the best environmental 

option can be considered, e.g. installation of high efficiency equipment, corresponding to Change 

attitude / substitution strategy. However, if improvement activities are conducted on an existing 

process, the capital investment is already made and therefore the prioritisation starts at prevention 

and then proceeds around the loop to finish with substitution strategy. Also, by conducting 

improvements at the top of the hierarchies (prevention) on existing processes, some of the 

improvements lower down cease to be necessary, e.g. if resource use of a particular process is fully 

prevented, then there is no need to reduce input or substitute the process.  

Each level of this improvement hierarchy can be further detailed into tactics as proposed in the 

next section and provides actionable steps to improve resource efficiency in manufacturing 

operations.  



 

 

3.2 Sustainable manufacturing tactics for resource efficiency 

Table 1 describes the sequence in which improvements should be implemented – however it is 

not usually the sequence in which improvements are identified. Additionally, it is often more 

difficult to identify an improvement than it is to implement it. In some cases more data is required 

to identify “low-hanging fruits” (e.g. switch off and repair equipment) whereas replacing elements 

of the system at high cost can be identified quickly (e.g. replace fossil fuels by renewable energy 

sources or old inefficient equipment by best available technology). Keeping this challenge in mind, 

this section presents a library of tactics following the prioritisation order of the improvement 

hierarchy rather than the first potential improvement identified. The tactics listed in Table 2 provide 

the missing link to move from sustainability concepts to concrete actions for sustainable 

manufacturing operations. 

To access the prevention tactics, it is important to note that the two first tactics (“remove”) can 

be difficult to identify as they require expert knowledge to recognise the unnecessary process which 

can be removed. The two following prevention tactics are comparing patterns between resource 

usage or process controls and production schedule (or product profile) to identify when equipment 

can be stopped or put in stand-by mode. The data collected in this instance comes from multiple 

sources requiring close collaboration of multiple functions. For example, the production schedule 

data will come from Planning or from Manufacturing Operations, whereas the resource 

consumption data may come from Facilities Management. Data may also be automatically 

connected (or there may arise a requirement to automatically collect data) which would involve IT 

functions. 

The waste reduction tactics focus on waste outputs to reduce waste and losses or to maintain 

the value of the output through adequate treatment and management. These improvements are 

considered as relatively easy since they allow quick savings in resource and cost compared to the 

efforts invested. But manufacturers’ knowledge about their waste is often limited and thorough data 

collection must be conducted to identify waste patterns. Such improvement would preferably target 

the largest or specific (e.g. based on toxicity, scarcity or cost) resource consumers and waste 

generators.  

The resource use reduction tactics focus on the inputs to increase process efficiency. The most 

difficult improvements can be to challenge the set points or alter production schedules as these can 

only be done with deep knowledge of the processes and production system. This knowledge will 

involve yet more functions in the analysis. Manufacturing Engineering or Industrial Maintenance 

may have an in-depth understanding of the process and the equipment, and any changes to the 

process must involve appropriate Quality functions. This type of improvement compares patterns in 

demand and supply profiles both in a static (logic tests) and dynamic (simulation) way. The logic 

tests are comparing the magnitude of supply to the minimum requirements to better match the 

demand-side. Typical examples include compressed air pressure and cooling water temperature. 

Simulation is also used to optimise the timing of the resource flow which can result in overall 

efficiency improvements (avoid peak consumption or reach the optimum demand level to match 

equipment high efficiency point of use). The simulations require a large amount of data, thus those 

improvements can be identified only based on advanced analysis of the system.  

The reuse tactics focus primarily on the waste flows and look for opportunities to reuse waste 

output as a resource input. The use of a simulation tool is an important asset to allow systematic 

search for compatible waste and demand in the system taking into account the complexity of the 

system modelled, the timing of the flows and the spatial dimension. These improvements must be 

done after the prevention and reduction improvement are exhausted as wastes must be eliminated or 

minimised before looking for reuse opportunities. Reuse improvements are the hardest of all to 

implement; in industrial processes the sheer extent and grades of material, energy and water make 

this aspect a significant and iterative challenge.  



 

 

The substitution tactics can be identified at early stage of the modelling by recognising 

inefficient components (based on equipment information such as capacity, efficiency and age) or 

black-listed resource inputs (e.g. toxic, non-renewable, non-reusable). This type of improvement is 

the most commonly found in industrial practice: replacing a piece of equipment or a process by a 

more efficient one or a less environmentally damaging one is a quick way to increase the 

sustainability performance but likely at high cost. It involves large scale changes by improving the 

source of supply and using high efficiency technology. Similarly to reuse tactics, the prioritisation 

of these substitution improvements must be done after other types of improvement are exhausted to 

avoid replacing a technology when a process can be stopped or to avoid oversizing equipment when 

the demand can be reduced. 

The improvement hierarchy and tactics can help manufacturers to find out about what to do. 

However, it does not tell the user how to identify improvements and it does not provide the 

quantitative assessment required. Such quantitative analysis can be achieved with modelling as 

discussed in the next section. 

4. Need for Quantitative Analysis 

Quantitative analysis is needed to assess the environmental impact of manufacturing activities 

as well as the benefits of potential improvements. The analysis can be applied at different resolution 

levels to derive opportunities incrementally as effort is increased.  

Existing modelling tools provide energy analysis in building modelling (Clarke, 2001; Pérez-

Lombard et al., 2009), product flows and timing of process flows in manufacturing (Pandya, 1995), 

but none covers all aspects to account for all resource flows, intermittency of processes and spatial 

dimensions. They also do not provide the means to find opportunities directly, many of which 

involve complex data manipulation and visualisation. The inclusion of buildings and facilities in 

manufacturing process analysis has been considered by manufacturers such as Toyota (Hope, 2008). 

However, the analysis is largely manual and limited in complexity and completeness due to the lack 

of supporting tools. Therefore buildings and manufacturing facilities are still typically considered 

separately (Oates et al., 2011b). 

As with lean/green approaches and manufacturing modelling tools, new methodologies and 

techniques require incremental development to be refined and to include all elements needed to 

support the design and analysis of sustainable manufacturing systems (Jahangirian et al., 2010). 

Tools supporting sustainable manufacturing must capture the interactions not only within the 

manufacturing system, but also with its physical environment, i.e. the manufacturing processes, 

their supporting facility, the surrounding buildings as well as some influential external factors 

(weather conditions and neighbouring industries and infrastructures). The analysis has to account 

for location and time in a manner that is not supported by either manufacturing process simulation 

tools or building energy tools. There are currently no tools commercially available for 

manufacturers to assess environmental performance, identify improvement areas and help 

suggesting specific actions across the breadth of the application area just described. There are 

examples of manufacturing research (Hesselbach et al., 2008; Heilala et al., 2008; Herrmann and 

Thiede, 2009; Michaloski et al., 2011; Ball et al., 2009) to bring these domains together. Such work 

presents conceptual design and narrow simulation but does not offer as much benefit as the 

combination of improvement methodologies and integrated buildings, facilities and production 

system modelling. 

The next section presents the workflow and prototype tool showing the use of the workflow to 

guide the analysis to methodically identify improvements.  



 

 

5. Prototype Tool 

In this section, an integrated modelling approach and associated workflow are proposed to 

adopt an integrated systems view of a factory. It combines various techniques to form a modelling 

tool which can support the design and analysis of sustainable manufacturing systems. 

5.1 Factory modelling and process data 

The conceptual manufacturing ecosystem model (Despeisse et al., 2012a) used in this research 

identifies three sub-systems: manufacturing operations, supporting facilities and surrounding 

buildings. All three sub-systems are linked by resource MEW flows. The MEW flows within and 

between these sub-systems are crossing functional boundaries and therefore promote an ecosystem 

view of the factory. The aim is to reduce the overall input associated with resource depletion and 

undesirable waste and pollutants outputs of the complete system rather than the efficiency of 

individual components of the system. There is potential to extend beyond the factory gate to 

suppliers, neighbouring industries and other economic sectors. The inherent difficulty with factory 

modelling is the complex nature of MEW flows. These difficulties are exemplified when MEW 

flows cross functional boundaries. The systematic approach presented here aids in identifying 

functional boundaries and collection of data.  

Prior to data collection discussed below, a factory model that brings together research 

disciplines is required. An integrated factory approach consists of inputting model data from the 

three sub-systems and combines modelling functionalities from both building and manufacturing 

disciplines: 

 Manufacturing operations: manufacturing process systems (boundaries and connections), 

associated equipment (links to process systems), material flows (added value product, non-

value added waste, and process system flow paths); 

 Supporting facilities: facility equipment, inputs to manufacturing operations (e.g. 

compressed air, steam, cooling water), outputs (e.g. returned mediums, exhaust fumes, waste 

heat); 

 Surrounding buildings: building geometry, construction data, weather data, HVAC systems 

and internal gains. 

To create the factory model and represent the three sub-systems and links introduced above, 

process data must be defined. The elements modelled are the buildings, the equipment and process 

technology components placed in and near the buildings, and the resource flows linking all 

elements of the model. These resource flows can be energy and material inputs or product and 

waste outputs. All elements of the system are characterised by process data. The right-hand column 

of Table 3 shows the list of model process data and the corresponding information collected by the 

user. 

These sub-systems and links can be graphically represented (Oates et al., 2011a). Figure 1 

illustrates energy flows that occur within a factory environment. The figure seeks to couple 

traditional building energy flow paths with those generated in a factory environment. Within the 

factory environment the manufacturing process system is split into two categories: thermal and 

electrical. Other forms of energy can be created by processes that create friction, impact, laser 

cutting, etc. These are to be represented as internal gains. Dependent upon the medium inside, a 

thermal process may resemble air-based processes such as ovens and furnaces, or liquid-based 

processes such as tanks and vats. Material flowing through a factory environment from process to 

process will absorb or release thermal energy to its surrounding environment. For example, thermal 

energy will be transferred when a component leaves a furnace or a refrigerator within an enclosed 

manufacturing process system, factory or external environment. The amount of energy absorbed or 



 

 

released is dependent upon temperature, geometry and material properties of emissivity, absorption, 

specific heat capacity, and thermal mass. 

The improvement identification must follow a sequence that links the tactics to the process data 

used to model the manufacturing system. The next section presents the workflow with an industrial 

case application to illustrate this sequence. 

5.2 Workflow and case application 

The tool is developed in the context of the THERM project and is based on an existing 

modelling and simulation software: IES Virtual Environment (VE). The VE is specialised in 

building design and energy analysis. The THERM project aims at extending the software 

capabilities to include manufacturing processes into the building model and to perform a combined 

analysis of MEW resource flows through the buildings, manufacturing facilities and operations 

(Oates et al., 2012). 

The workflow (Figure 2) has been developed to support a structured, systematic and cross-

functional identification of sustainable manufacturing improvements (using tactics) and combines 

factory modelling and improvement hierarchy. It requires involvement of multiple actors to collect 

the data, and to validate and implement the output. Thus although it is possible to perform the 

workflow computationally with a single user, the overall process is a highly collaborative one. 

The five tactic groups from Table 2 are all applied to some extent at all stages of resolution 

through an analysis as evidenced in the workflow shown in Figure 2. As encoded in the workflow, 

it is possible to find quantitative improvements as the data resolution builds up – at each stage 

resolution is increased to find more opportunities. This is a key outcome because it shows a 

stepwise approach with increasing investment of effort; it also shows that some easy wins are 

possible with minimal invested effort.  

The following sub-sections describe the process of developing, testing and validating the 

workflow, based on data obtained from the industrial partners of the THERM project. Data from a 

drying tank process has been used for the development of a prototype (Lunt and Levers, 2011). The 

testing highlights the collaborative nature of the work as it brings together manufacturing and 

facility engineers, shop-floor technicians, and energy managers: 

5.2.1 Getting started & settings 

The first step of the workflow is Getting started & settings to define the scope of the analysis 

by setting system boundaries and targets. A factory “walkthrough” and detailed description of the 

processes by a specialist are conducted at this stage to gain deeper understanding of the processes 

selected for the analysis. Typical system boundary definition is delimited by specific processes with 

multiple equipment or machines and physical areas of the factory such as buildings. 

A formulated team of industrial operations and facility engineers working in collaboration with 

the industrial, academic and software developer defined the focus of the study. Figure 3 summarises 

the possible options for the analysis in the THERM software. Although the analysis can support the 

design of new factories, the case application focused on the analysis of an existing one. The 

assessment was carried out at the factory gate level first and then progressed into static process 

analysis noting that subsequent dynamic simulation capability was not used. The focus and 

measurement was energy reduction as water, materials, carbon and cost were considered to be the 

consequences of improvements in this particular case. 

Help files are available at each phase within the workflow to provide generic advice based on 

the principles and approach of the workflow, a glossary to overcome the integration of two 

disciplines, and the collection of information and data, i.e. building and process data. 



 

 

5.2.2 Factory gate analysis 

For the Factory gate analysis the system would ideally correspond to the complete factory and 

the flow map would stop at the factory gate. This is achieved by taking a top-down approach with 

details being added by “zooming” on the processes of interest and through iteration where 

subsystems are put together until a complete model of the factory is obtained.  

Early stage analysis focuses on the collection and examination of utility metered data to focus 

the analysis on specific resource flows or specific processes such as large energy consumers (Figure 

4). This data usually consist of half hourly and hourly meter readings, logged by utility suppliers for 

billing purposes, e.g. electricity and gas. During early stage analysis there is no need for building 

geometry, process mapping or high resolution data. Sustainable manufacturing tactics and help 

prompts identify the drying tank as a large energy consumer in the focal area. 

5.2.3 Building geometry 

In the third step of the workflow, the building is modelled by creating building geometry and 

assigning construction data. Due to the nature of the integrated approach covering building design 

and manufacturing process simulation tools, the building is included as a representative boundary 

surrounding the drying tank and supplementary equipment as illustrated in the building model in 

Figure 5.  

5.2.4 Process mapping 

In the fourth step, the qualitative process model is created by mapping processes, i.e. placing 

technology components in the building model as illustrated with the yellow components in Figure 5. 

The resource flows are also added to link all elements of the model. The inputs include energy, 

material, water and chemicals whilst the outputs included products and wastes in the form of 

physical waste accumulating in bins and energy waste. The elements within the system boundaries 

previously defined are mapped against the factory layout to integrate spatial aspects into the model. 

The list of processes and equipment as well as their sequence for various flows are also defined: the 

most common way of defining the process sequence is to follow the product flow, but other 

sequences must be defined to follow the utility flows such as compressed air, steam and cooling 

water. Inputs and outputs are documented so that each flow clearly links to the processes it goes to 

or comes from. It is important to consider the resource flows as individual entities in themselves, 

not simply as being assigned to equipment and processes as an input value with no origin and an 

output value with no destination. Doing so will bring into focus the links and interactions between 

processes across functional boundaries and enable the user to adopt an ecosystem view of the 

manufacturing system studied.  

In this case application, the drying tank consists of material flow, tank, supplementary 

equipment such as fan, heat exchanger (HX) and air re-circulation ductwork. Air is drawn into the 

fan from the factory environment represented by the perimeter blue box in the graphical 

representation of the process in Figure 6. The air temperature increases due to the transfer of 

thermal energy from the heat exchanger and the input of work from the fan prior to entering the 

drying tank. A proportion of the air is re-circulated, and mixed with air drawn from the factory 

environment. The HX is a closed-loop water circuit connected to a combined heat and power (CHP) 

source. Material in a wet state enters the process, is dried and moved back into the factory 

environment. The process is repeated for each batch that passes through the drying tank. The 

connections and links between the technology components and the resource flows are illustrated in 

Figure 6. 

5.2.5 Design & measured analysis 

The design & measured analysis is an iterative, non-simulation phase of the workflow. The 

quantitative model is created by adding process data and creating profiles, i.e. metered data and 

characteristics of resource flows and technology components. All elements of the system must be 



 

 

characterised by process data. This stage can be repeated to add more data as they become available 

and increase the level of detail of the model. The list of model process data and the corresponding 

sources was introduced in the previous section (Table 3). To enable the design & measured analysis 

and identification of improvement opportunities, some process data are defined as constraints, 

mainly production schedule and set points. These constraints determine the minimum input 

requirements for the manufacturing processes to achieve the correct product quantity and quality. 

Additional variables characterise the technology components: capacity or equipment rating, running 

load (including the minimum demand or base load, and maximum demand or peak load), the 

performance or efficiency curve which define the ratio output/input as function of running load. 

Optional information can be added to increase the quality of the analysis, such as equipment 

depreciation and operating cost. 

At this stage operational profiles are derived from sub-metered data. and assigned to the fan, 

HX and drying tank process components discussed in step 4. Material flow profiles are derived 

from production schedules and assigned to the material component. The assignment of quantitative 

process data enables the workflow to iterate through the manufacturing sustainable tactics. At this 

non-simulated stage of the workflow, all of the tactics (Table 2) are activated with exception to 

reuse. A first pass of the tactics identified potential improvements. The prevention tactic was 

flagged due to a mismatch between the operational and production profiles. For example, the energy 

consumption profile of the equipment can be compared to the material flow through the process as 

highlighted in Figure 7. The prevention tactic advises to switch off the fan when there is no product 

being processed. Reduction tactics were also identified based on material drying times, tank 

temperature set points, equipment flow rates and ratings. The alteration of equipment set points and 

reduction in material drying times to conform to minimal design condition need to be investigated 

in the future. 

 

5.2.6 Building mapping and simulated analysis 

In the seventh step, the process data is used to simulate the system’s performance. When parts 

of the model are complete, simulation can be used to analyse a selection of process data locally. 

This stage of the analysis identifies local improvement opportunities to prevent and reduce the use 

of resources, increase efficiency and reduce waste. With the example given in Figure 7, the 

operational profiles of the fan and HX were modified in conjunction with the prevention tactic. 

There are potential energy savings when there is no product being dried within the process, 

illustrated in the figure by the filled areas: fan (green) and HX (blue). Simulated results predict a 

74% energy savings from one week of data. Further potential savings could be achieved by 

restricting the drying time of the material to the minimal design condition and reducing set points. 

Due to the varied production flow of material that occurs on-site as a consequence of a batch 

process, the industrial partner has reduced the operation usage of the drying tank in line with shift 

hours and turned the process off outside these hours (e.g. weekends). Future work is to be carried 

out in line with the reduction recommendations, following consultations with operations and facility 

engineers. Outcomes from this prototype are also to be cascaded across other similar processes, 

resulting in further energy saving opportunities.  

When the system model is completed, the analysis identifies system-wide improvement 

opportunities with reduction in resource use by following a chain of constraints from process to 

process or potential reuse of waste output from one process elsewhere in the system. This phase of 

the work requires a fully functional simulation model, being developed as part of the THERM 

project. The building mapping requires that the user assigns HVAC data to factory thermal zones, 

and construction properties, weather data, room temperature set points, internal gains from lighting 

and room occupancy to the building. The simulated aspect of the works activates all of the 

sustainable manufacturing tactics. Following the same principle outlined in the non-simulation 



 

 

approach, the workflow cycles through the tactics identifying potential improvements. Further work 

will include enhanced functionalities to identify reuse opportunities such as highlighting processes 

in operation as illustrated in Figure 8 and highlighting based on thermal gradient, energy type, etc. 

6. Discussion and Conclusion 

This paper addresses the challenge of sustainability from a manufacturer’s point of view. The 

literature on the topic is growing fast and there are numerous concepts for sustainability applicable 

to manufacturing as well as examples of sustainable manufacturing practices to demonstrate the 

benefits of sustainability improvements. However there is a lack of information on how to move 

from these high-level concepts to the selection of appropriate practices. Various modelling and 

analysis tools have been developed and proved helpful to support improvements (Heilala et al., 

2008; Gutowski et al., 2009; Herrmann and Thiede, 2009; Michaloski et al., 2011), but they do not 

provide guidance for identifying inefficiencies and improvement opportunities for resource efficient 

manufacturing. Therefore, guidance is required on how to achieve sustainable improvement in 

manufacturing. Additionally, sustainable manufacturing requires the combined analysis of buildings 

and facilities supporting the manufacturing operations, but these disciplines are typically managed 

separately resulting in missed opportunities to improve these areas in an integrated way. 

Sustainability by its very nature involves the collaboration of all parts of the ecosystem, and thus it 

is essential that this guidance combines disciplines. 

This collaborative research has brought together universities, manufacturing industries and 

software developer to build a cross-functional modelling and simulation tool which demonstrates 

that the conceptual design is valid: the prototype tool and workflow show that the sustainable 

manufacturing tactics (Despeisse et al., 2011) and factory modelling approach (Despeisse et al., 

2012a) can be combined to apply sustainability concepts across disciplines in factories and guide 

the analysis through methodical improvement opportunities identification. The workflow takes the 

user through the steps of modelling, analysing and improving manufacturing systems. The approach 

adopted helps to jointly analyse manufacturing processes, facilities and buildings, and guide the 

various parts of a manufacturing organisation step by step towards sustainability. The improvement 

hierarchy synthesises and prioritises existing strategies for sustainability in industry and applies 

them to a single manufacturing unit. Each level in the improvement hierarchy is further detailed into 

tactics, i.e. generic rules for sustainable manufacturing which can be widely applied independently 

of the system’s specificity, and bridges high-level concepts for industrial sustainability and specific 

actions for sustainable manufacturing. The tactics were formulated to cover a wide range of 

sustainable manufacturing practices and dictate the rules for identifying improvement opportunities 

in the resource flows following the improvement hierarchy. The workflow provides tangible 

guidelines for manufacturers to approach sustainability at an operational level. In turn broader and 

more informed decisions could be made on improving overall resource flows, regardless of 

ownership and functional boundaries, by reducing inputs and wastes and by closing the flow of 

resource through reuse of waste. 

The analysis focuses on what happens within the ecosystem of a factory (gate-to-gate). The 

authors recognise the need for a more holistic perspective on industrial systems and on the whole 

society if sustainability is to be achieved. However, the boundaries have been drawn around the 

elements on which the manufacturing organisation has full control. Additionally the resources 

considered in the analysis are energy, material, water, chemicals and not capital, employees, etc. 

The analysis accounts for location and time as well as manufacturing process in a manner that is not 

supported by the independent disciplines of either manufacturing process simulation or building 

energy analysis tools. The work showed that it is possible to identify sustainable manufacturing 

improvement opportunities in a structured and systematic way using modelling of manufacturing 

system across disciplines. 



 

 

Future work includes reposition the research activity as a result of the tool development for 

integrated modelling of resource flows to identify sustainable manufacturing improvement 

opportunities through combined analysis of manufacturing operations, supporting facility systems 

and production buildings, and integration of best practices available from manufacturers. 
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Table 1: Improvement hierarchy for resource efficiency (Despeisse et al., 2012a)  

1 Prevention by avoiding resource use: eliminate unnecessary elements to avoid usage at the source, stop or 

stand-by equipment when not in use. 

2 Reduction of waste generation: good housekeeping practice, repair and maintain equipment. 

3 Reduction of resource use by improving efficiency: optimise production schedule and start-up procedures, 

match demand and supply level to reach best efficiency point of use of equipment or improve overall efficiency 

of the system. 

4 Reuse of waste as resource: look for compatible waste output and demand, understand where and when waste 

are generated and whether it can be used as resource input elsewhere considering the complexity of the system. 

5 Substitution by changing supply or process: renewable and non-toxic inputs, replace technology and resource 

for less polluting or more efficient ones, change the way the function is achieved to allow larger scale 

improvements. 

 

 

Table 2: Library of sustainable manufacturing tactics (Despeisse et al., 2012b) 

1 Prevention (avoid usage) 

 Remove unnecessary resource usage 

 Remove unnecessary technology  

 Align resource input profile with production schedule 

 Switch off/standby mode when not in use 

2 Waste reduction  

 Waste collection, sorting, recovery and treatment 

 Repair and maintain  

3 Resource use reduction  

 Optimise production schedule to improve efficiency 

 Optimise resource input profile to improve efficiency 

 Change set points/running load 

 Monitor performance 

 Control performance 

 Change resource flow layout 

 Change technology layout 

4 Reuse (waste as a resource) 

 Synchronise waste generation and resource demand to allow reuse 

 Reuse waste output as resource input 

5 Substitution (new resource or technology) 

 Replace resource input for better one 

 Replace technology for better one 

 Add high efficiency resource 

 Add high efficiency technology  

 Change the way the function is accomplished 

 

  



 

 

 

Table 3: List of process data for modelling and the corresponding data sources 

Model process data Data source 

Building model: Drawing the infrastructure  

Building geometry / thermal zones Factory layout (technical drawings) 

Construction data  Building construction materials  

Qualitative process model: Mapping manufacturing operations & facilities  

Technology (process/equipment) geometry Equipment technical drawings 

Technology layout Factory layout (technical drawings) 

Technology attributes/characteristics Process/equipment specifications 

Resource layout Energy & material path/network layout/ routing specification 

Resource characteristics Energy & material characteristics 

List of processes (qualitative product flow)  Manufacturing routings  

Quantitative process model: Modelling manufacturing operations & facilities  

Production profile (factory-wide), equipment/process 

operations profile (local), product profile 

(quantitative product flow)  

Production schedules & actual planning schedule 

Technology set point / demand profiles Equipment and process set points, demand, running load 

Technology control profiles Controls (controllers, valves, etc.) 

Resource usage profiles Facility equipment &manuf. process consumption (metered 

data) 

Resource supply profiles Facility equipment generation (metered data) 

Waste profiles Facility equipment &manuf. process waste generation 

Total inputs to the system (check model completeness) Total inputs to the system (energy/water bills and BOM) 

Energy and mass balance (for missing data) Thermodynamics for resource transformation process 

HVAC systems Building Service System documentation 

Link technology to HVAC system Thermal transfer to space / building 

Link technology to bins (waste profile, energy and mass 

balance)  

Waste data (if available)  

Optimised process model: Improvements implementation  

Controller functions (for simulation purpose)  

Bins / recycling repositories  

Modification to technology (process/equipment) 

Modification to resource flow 

Control strategy  

 

 



 

 

 

 

 

Figure 1: Schematic of the overall energy flow paths of a factory environment (Oates et al., 2011b) 

 

 

Figure 2: Workflow for factory modelling and resource efficiency 
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Figure 3: Options in the setting for the analysis 



 

 

 

Figure 4: Processes ranked by annual power consumption 

 

 

Figure 5: Building geometry (wired frame) and technology components (yellow elements) 
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Figure 6: Graphical representation of a drying tank and its subsequent equipment coupled to its 

location (factory environment) (Oates et al., 2011a) 

 

 

 

Figure 7: Fan and HX energy savings using prevention tactic ‘Switch off when not in use’ 
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Figure 8: Simulated analysis with red highlight for operating processes and blue for non-operating 

processes to identify opportunities for reuse of waste between processes 
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