

CRANFIEID

Independence of helicopter rotor derivatives under non-unifomity of induced velocity distribution at low forward speed -by-
W.W. Bryce, B. i.Sc.(Torn), D.C.Ae.

SUMIARY

A radial parabolic induced velocity distribution agreeing closely with flight measurements has been used for the hovering case. To this has been added a second induced velocity distribution, varying linearly from the front to the rear of the rotor disc, to allow for the effect of forward speed. The magnitude of this second induced velocity term depends on the advance ratio μ.

Values of the force coefficients C_{H} and $C_{Y S}$, the flapping coefficients a_{0}, a_{1} and b_{1}, and the rotor derivatives $x_{q}, z_{q}, y_{P}, x_{u}, z_{u}, x_{W}, z_{W}$ and y_{v} have been calculated for a typical case for the low forward speed region ($\mu=0-0.14$) for both uniform and non-uniform induced velocity and the results compared. Additional values of the flapping coefficients have been calculated for the speed range $\mu=0.14-0.24$ and the results compared with flight measurements and with values based on the liangler induced velocity distribution. Good agreement has been obtained.

The volues obtained for the rotor derivatives show that the effect of non-unifom induced velocity is alnost negligible except in the case of z_{q} which is a very small derivative.
List of Symbols 3

1. Introduction 6
2. Notation 6
3. The Flow Relative to the Rotor Disc 7
4. The Flow Relative to a Blade Element 8
5. The Induced Velocity 9
6. The Thrust Coefficient 15
7. The Feathering Coefficionts 15
8. The H Force Coefficient 17
9. The Side Force Coefficient C_{YS} 18
10. The Rotor Ste.bility Dorivatives 19
11. The Force-Angular Velocity Derivatives 20 $\mathrm{x}_{\mathrm{q}}, \mathrm{y}_{\mathrm{P}}$ and z_{q}
12. The Force-Velocity Derivatives x_{u} and z_{u} 22
13. The Force-Velocity Derivatives x_{v} and z_{w} 23
14. The Force-Velocity Derivative y_{v} 25
15. Calculation of Force Coefficients, Flapping 26
Coefficients and Rotor Derivatives for a Typical Case
16. Discussion 27
17. Conclusions 30
References 30
Ampendi.ces 32
Pigures 41

	$\begin{gathered} c-3- \\ \text { IJST OF SYMBOIS } \end{gathered}$
a.	Blade section lift curve slopo
a_{0}	Blade coning angle
a_{1}	First hamonic longitudinal flapping coefficient
A	Parameter in expression for $\lambda_{\text {TT }}(5-16)$
A^{1}	Parameter in expression for $\lambda_{U}(5-16 A)$
${ }_{\text {Ho }}$	Blade collective pitch angle
A_{1}	Coefficient of $-\cos \psi$ in expression for cyclic feathering
b	Number of blades
b_{1}	First hammonic lateral flapping coefficient
B	Paraneter in expression for $\lambda_{T}(5-16)$
B^{1}	Porameter in expression for $\lambda_{U}(5-16 \Lambda)$
B_{1}	Coefficient of $-\sin \psi$ in expression for cyclic feathering
c	Blade chord
C	hrbitrary constant
$\mathrm{C}_{\text {L }}$	Blade section lift coefficient
C_{H}	H force coefficient $=H / \pi R^{2} \rho(\Omega R)^{2}$
$\mathrm{C}_{\text {T }}$	Thrust coefficient $=T / \pi R^{2} \rho(\Omega R)^{2}$
$\mathrm{C}_{\text {IS }}$	Lateral force coefficient $=Y_{S} / \pi R^{2} \rho(\Omega R)^{2}$
D	Drag force on blade
F	Aerodynamic force on blade
H	Drag force in plone of rotor disc
i	Incidence of rotor disc
I_{1}	Blade moment of inertia about flapping hinge
L	lift force on blade
M_{A}	Moment of aerodynamic forces about flapping hinge M \quad...

$-4-$

List of Symbols (Contd.)
II_{D} Eioment of dynanic forces about flapping hinge
$P \quad$ Rate of roll (positive $O Y \rightarrow O Z$)
$q \quad$ Rate of pitch (positive $O Z \rightarrow O X$)
r Radial distance along blade from hub
R Blade radius
T Rotor thrust force
u, v, w Disturbance velocities along $O X, O Y, O Z$ respectively
U Resulant air velocity relative to blade element
$U_{P} \quad$ Air velocity component perpendicular to blade and to the rotor cone
$U_{T} \quad$ Air velocity component perpendicular to blade and tangential to the rotor cone

V Velocity of forvord flight
V' Resultant air velocity relative to rotor disc (5-11)
X, Y, Z Forces along $O X, O Y, O Z$ respectively
$X_{u}, Y_{v}, Z_{w} \frac{\partial X}{\partial u}, \frac{\partial Y}{\partial v}, \frac{\partial Z}{\partial w}$ respectively
$x \quad$ Fractional distance along blade, $x=r / R$
x_{u} etc. Non-dimensional form of derivative, $X_{u}=X_{u} / \rho(\Omega R)\left(\pi R^{2}\right)$ etc.
x_{q} etc. Non-dimensional form of derivative, $x_{q}=X_{q} / \rho(\Omega R)\left(\pi R^{2}\right) R$ etc.
$a \quad$ Angle of attack of blade element, $\quad a=\theta-\varnothing$
$\beta \quad$ Instantaneous blade flapping angle, neasured from no-feathering plane
$\gamma \quad$ Lock's inertia number, $r=\frac{\rho a c R^{4}}{I_{1}}$
$\delta \quad$ Blade section drag coefficient
θ Instantaneous blade pitch angle measured from the tip-path plane
λ Inflow factor

$-5-$

Iist of Symbols (Contd)
λ_{0}, λ_{1} etc. $\frac{\nu_{0}}{\Omega R}, \frac{\nu_{1}}{\Omega R}$ etc.
$\lambda_{\mathrm{W}} \quad \lambda_{\mathrm{W}}=\frac{\mathrm{W}}{\Omega \mathrm{R}}$
$\mu \quad$ Advance Ratio, $\mu=\frac{V \cos \text { i }}{\Omega \mathrm{R}}$
$\nu \quad$ Induced velocity through the rotor disc at any point (x, ψ)
Miom induced velocity, $\nu_{\mathrm{I}}=\frac{1}{\pi R^{2}} \int_{0}^{R} r d r \int_{0}^{2 \pi} \nu d \psi$
$v_{\mathrm{T}} \quad$ Value of the induced velocity at $r=R$ in hovering, and $r=R, \quad \psi= \pm \frac{\pi}{2}$ in forvard flight
$\nu_{u} \quad$ Uniform induced velocity
$\nu_{0} \quad$ Radial induced velocity distribution, $\frac{\nu_{0}}{\nu_{\mathrm{T}}}=-x^{2}+2 x$
$\nu_{1} \quad$ Paraneter in expression $\nu_{1} x \cos \psi$ for the induced velocity distribution due to forward speed
$p \quad$ Air density
$\sigma \quad$ Solidity factor, $\sigma=\frac{b c}{\pi R}$
$\varnothing \quad \varnothing \approx \frac{U_{P}}{U_{T}}$
$\psi \quad$ Blade azinuth angle measured from the downwind position in direction of rotation
$\Omega \quad$ Angular velocity of rotor

1. Introduction

Although it is well know that the induced velocity distribution through a rotor is for from uniform, little has been written concerning the effect of this non-uniformity on blade flapping coefficients and rotor derivatives.

Glauert (1) suggested a triangular distribution of induced velocity fron the front to the rear of the rotor disc. This distribution gave values of the lateral flapping coefficient b, agreeing more closely with experimental measurements than values predicted using a uniform distribution.

Mortin (7) used the induced velocity distribution colculated by IIancler (10), who treated the rotor disc as a circular wing, to obtoin values of b_{1} which compared favourably with flight moasurements by liyers (13). By considering the effect of this greater lateral tilt on the force coefficients he concluded that there would be a significant effect on the rotor derivatives.

Tho liangler induced velocity distribution was calculatod on the assurption that the perturbation velocities due to the rotor disc were shall compared with the freestrean velocity. It is, thercfore, not applicable at low forward speeds, (below $\mu=0.1$ say).

To investigate the effect of non-uniform induced velocity at low forward speeds a parabolic radial distribution has been chosen which agrees well with flight measurements by Brotherhood (9) on a hovering helicopter. To this has been added a distribution varying linearly from the front to the rear of the rotor disc and depending in magnitude on the advance ratio μ. Values have been calculated for the flapping coefficients, the force coefficients and the rotor derivatives. Those have been corapared with values obtained assuming a uniform distribution of induced velocity over the rotor disc, and with the results obtained by Vartin (7) and the filight measurments by Myers (13).

2. Notation

The British systen of notation has been adopted i.c. all forces and monents aro referred to axes attached to the tip-path plane. The angle of incidence of the rotor disc is taken as being positive when the disc is tilted forward with respect to the direction of flight. The systen of axes is shown in Fig. 1.

The exprossion for the cyclic feathering of the blades with respect to the tip-path plone is

$$
\theta=A_{0}-A_{1} \cos \psi-B_{1} \sin \psi \ldots \ldots \ldots \ldots(2-1)
$$

where ψ is the azinuth anglc in the plane of the disc and is measured from the downstream direction in the direction of rotation of the blades.

The expression for the blade flapping angle with rospect to the no-feathering plane is

$$
\begin{array}{r}
\beta=a_{0}-a_{1} \cos \psi-b_{1} \sin \psi+\text { terms in } \\
 \tag{2-2}\\
\text { higher hamonics } \ldots \ldots \ldots \ldots \text {. } 2 \text {. }
\end{array}
$$

It has been show by Lock (2) and others that, for the flapping and feathering systens to be equivalent, the first harmonic flapping coefficients are related to the cyclic feathering coofficients by the following expressions.

$$
\left.\begin{array}{l}
a_{1}=B_{1} \\
b_{1}=-\Lambda_{1} \tag{2-3}
\end{array}\right\}
$$

3. The Flow Relative to the Rotor Disc

For the rotor with forward velocity V, the component of V in a plane parallel to the tip-path plane is given by

$$
\mu \Omega R=V \cos i
$$

where

$$
\mu=V \cos i \Omega R
$$

................(3-2)
is known as the 'advance ratio'.
The velocity perpendicular to the tip-path plane is

$$
\begin{equation*}
\lambda \Omega R=V \sin i+\nu \tag{3-3}
\end{equation*}
$$

where v is the induced flow through the rotor disc, and λ is the 'inflow factor'.

4. The Flow Relative to a Blade Elonent

For purposes of estimating derivatives the rotor is assumed to have a pitching velocity q and a rolling velocity 1. Using the expression for cyclic feathering given by $(2-1)$ the following expressions are obtained for the velocity components relative to a blade element at radius $r=x R$.
(i) The velocity component perpendicular to the blade in a plane parallel to the tip-path plane.

$$
\begin{equation*}
U_{T}=(x+\mu \sin \psi) \Omega R \tag{4-1}
\end{equation*}
$$

(ii) The velocity component perpendicular to the blade and to the cone surface

$$
\begin{array}{r}
U_{P}=\left(a_{0} \mu \cos \psi+\lambda-\frac{P}{\Omega} x \sin \psi-\frac{q}{\Omega} x \cos \psi\right) \Omega R \\
\ldots \ldots \ldots \ldots(4-2) \\
\text { Where } a_{0} \text { is the base angle of the rotor cone. }
\end{array}
$$

(iii) The spanvise velocity along the blade is
$\left(\mu \cos \psi-\lambda a_{0}\right) \Omega R$
The effect of this spanwise velocity is not considcred in the subsequent analysis since the dominant term $\mu \cos \psi$ will be small at low forward speeds.

The angle of incidence of the rotor blade element is

$$
\begin{equation*}
\alpha=\theta-\varnothing \tag{4-3}
\end{equation*}
$$

where $\quad \varnothing=\tan ^{-1} \frac{U_{P}}{U_{T}} \approx \frac{U_{P}}{U_{T}}$ since $U_{P} \ll U_{T}$
Hence
$a=A_{0}-A_{1} \cos \psi-B_{1} \sin \psi-\frac{a_{0} \mu \cos \psi+\lambda-\frac{P}{\Omega} \times \sin \psi-\frac{q}{\Omega} \times \cos \psi}{x+\mu \sin \psi}$
/5. ...
5. The Induced Velocity

5.1. The Induced Velocity in Hovering

Ileasurements by Brotherhood (9) show that the incuced velocity in hovering is far from uniform over the rotor disc. His experimental values agree well with values calculated from propeller strip theory.

It was found that the induced velocity distribution, as measured by Brotherhood, could be approximated very closely (see Fig. 4) by the following simple expression.

$$
\frac{\nu_{0}}{\nu_{T}}=-x^{2}+2 x
$$

where ν_{T} is the value of the induced velocity at the edge of the rotor disc and $x=r / R$. This expression represents a parabolic distribution varying from zero at the centre of the disc to a maximum value at the odge of the disc.

The following integrals are now evaluated for later reference. Note that $\lambda_{T}=\nu_{T P} / \Omega R, \lambda_{0}=\nu_{0} / \Omega R$

$$
\left.\begin{array}{l}
\int_{0}^{1} \lambda_{0} d x=\frac{2}{3} \lambda_{T} \tag{5-2}\\
\int_{0}^{1} \lambda_{0} x d x=\frac{5}{12} \lambda_{T} \\
\int_{0}^{1} \lambda_{0} x^{2} d x=\frac{3}{10} \lambda_{T} \\
\int_{0}^{1} \lambda_{0} x^{3} d x=\frac{7}{30} \lambda_{T}
\end{array}\right\}
$$

5.2. The Induced Velocity at Hioderate Forward Speeds ($\mu>0.14$

Following Glauert (1) it was decided to superimpose an induced velocity distribution, varying linearly from the front to the rear of the rotor disc, on the induced velocity distribution in hovering, to account for the effect of forward speed. This linear induced velocity distribution is given
in non-dinensional fom by

$$
\begin{equation*}
\lambda_{1} \times \cos \psi=\left(\frac{\nu_{1}}{\Omega R}\right) x \cos \psi \tag{5-3}
\end{equation*}
$$

This represents an induced velocity varying linearly from a value $-\lambda_{1}$ at the front of the disc to $+\lambda_{1}$ at the rear of the disc.

The choice of the value for λ_{1} is arbitrary. Glauert (1) suggested letting it have the same value as λ_{0} which, in his paper, represented an induced velocity uniform over the whole of the disc. It was decided to let $\lambda_{1} \doteq \lambda_{T}$, for $\mu>0.14$ and later colculations of the flapping coefficients a_{0}, a_{1}, and b_{1} showed good agreenent with experimental values given in Ref. 13, and also with values calculated by Martin (7) using the Mangler induced velocity distribution (sce Figs. 7-9).

The effect of the angle of incidence of the tip-path plane on the induced velocity distribution has been ignored since the incidence is sizall in practice ('Gyrodyne condition').

5.3. The Induced Velocity at Low Forward Speeds

At zero forward speed λ_{1} is zero and at moderate and high forward speeds the choice of $\lambda_{1}=\lambda_{T}$ appears to give good agreement with flight measurments for the flapping coefficients. To cover the low forward speed range it was decided to assume an exponential increase, from $\lambda_{1}=0$ to $\lambda_{1}=\lambda_{\text {T }}$, given by

$$
\lambda_{1}=\lambda_{T}\left(1-e^{-C H}\right)
$$

and to choose c such that $\lambda_{1}=0.9 \lambda_{T}$ for $\mu=0.10$. This gives $c=23$ and

$$
\begin{equation*}
\lambda_{1}=\lambda_{\mathrm{T}}\left(1-e^{-23 \mu}\right) \tag{5-5}
\end{equation*}
$$

Again this expression for λ_{1} is somewhat arbitrary but gives the proper end conditions (i.e. $\lambda_{1}=0$ for $\mu=0$; $\lambda_{1} \div \lambda_{T}$ for $\mu>0.14$).

5.4. The Variation of λ_{T} with μ

For hovering, the value of λ_{T} may be determined from momentum theory.

The thrust T is given by
$T=\int_{0}^{R} \rho 2 \pi r d r \cdot 2 \nu^{2}$
Putting $x=r / R$ and substituting for ν from (5-1)

$$
T=4 \pi R^{2} \rho \nu_{T}^{2} \int_{0}^{1}\left(x^{5}-4 x^{4}+4 x^{3}\right) d x
$$

whence $T=\frac{44}{30} \pi R^{2} \rho \nu_{T}^{2}$
Now the thrust coefficient $C_{T}=\frac{T}{\rho \pi R^{2}(\Omega R)^{2}}$
therefore $\lambda_{T}=\sqrt{\frac{30}{44}} \mathrm{C}_{T}=0.826 \sqrt{\mathrm{C}_{T}}$
The corresponding expression for uniform induced velocity is

$$
\begin{equation*}
\lambda_{U}=0.707 \sqrt{\mathrm{c}_{\mathrm{T}}} \tag{5-6A}
\end{equation*}
$$

where λ_{U} is the non-dimensionel form of the uniform induced velocity.

For moderate and high forward speeds Glauert (1)
has developed the following formula for the thrust, by treating the rotor disc as a. circular wing of span $2 R$, and having elliptical loading.

$$
\begin{equation*}
T=\left(\pi R^{2} \rho V^{\prime}\right) \nu_{m} \tag{5-7}
\end{equation*}
$$

where V^{\prime} is the resultant velocity at the rotor disc given by

$$
V^{\prime}=\left[\left(V \sin i+v_{m}\right)^{2}+(V \cos i)^{2}\right]^{\frac{1}{2}} \ldots(5-8)
$$

and ν_{m} is the mean induced velocity given by

$$
\begin{align*}
& \nu_{m}=\frac{1}{\pi R^{2}} \int_{0}^{R} r d r \int_{0}^{-12-} \nu d \psi \quad \ldots \ldots \ldots \ldots(5-9) \\
& \text { Substituting } \nu=\nu_{T}\left(-x^{2}+2 x\right)+\Omega R \lambda_{1} x \cos \psi \text { into } \tag{5-9}
\end{align*}
$$ (5-7) gives

$$
\left.\begin{array}{rl}
\nu_{m} & =5 / 6 \nu_{T} \tag{5-10}\\
\text { or } \lambda_{m} & =\frac{\nu_{m}}{\Omega_{R}}=5 / 6 \lambda_{T}
\end{array}\right\}
$$

(5-8) can be written as

$$
\begin{equation*}
V^{\prime}=\Omega R\left(\lambda^{2}+\mu^{2}\right)^{\frac{1}{2}} \tag{5-11}
\end{equation*}
$$

and by substituting ($5-10$), ($5-11$) and the expression for the thrust coefficient in $(5-7)$ the expression for $\lambda_{T T}$ becomes

$$
\begin{equation*}
\lambda_{T}=\frac{6}{5} \quad \lambda_{m}=\frac{3}{5} \frac{C_{T}}{\left[\left(\mu i+\lambda_{m}\right)^{2}+\mu^{2}\right]^{-\frac{T}{2}}} \tag{5-12}
\end{equation*}
$$

This leads to a quartic equation for $\lambda_{T T}$ which cannot be solved in general terms. However for high forward speeds and low angles of incidence, i.e. $\mu^{2} \gg\left(\mu i+\lambda_{m}\right)^{2}, \quad \lambda_{T T} \quad$ is given by the simplified expression

$$
\begin{equation*}
\lambda_{T}=0.6 \frac{C_{T}}{\mu} \tag{5-13}
\end{equation*}
$$

The corresponding expression for uniform induced velocity is

$$
\lambda_{U}=\frac{1}{2} \frac{C_{T}}{\mu}
$$

Due to the difficulty in solving (5-12) for λ_{T} and also to the doubtful validity of this expression at low forward speeds it was decided to use an empirical expression for λ_{T} of the form

$$
\begin{equation*}
\lambda_{T}=\frac{A}{B+\mu} \tag{5-14}
\end{equation*}
$$

and to choose A and B to satisfy the following conditions:

$$
\begin{array}{ll}
\lambda_{T}=0.826 \sqrt{\mathrm{C}_{T}} & \text { for } \mu=0 \tag{5-15}\\
\lambda_{T}=0.6 & C_{T} / \mu \\
\text { for } \mu=0.25
\end{array}
$$

A and B are then given by

$$
\left.\begin{array}{l}
A=\frac{0.6 C_{T}}{1-2.9 \sqrt{C}_{T}} \tag{5-16}\\
B=\frac{0.727 \sqrt{C}_{T}}{1-2.9 \sqrt{C}_{T}}
\end{array}\right\}
$$

Similarly for uniform induced velocity

$$
\lambda_{U}=\frac{A^{\prime}}{B^{\prime}+\mu}
$$

and

$$
\left.\begin{array}{ll}
\lambda_{U}=0.707 \sqrt{C_{T}} & \text { for } \mu=0 \\
\lambda_{U}=0.5 \mathrm{C}_{\mathrm{T}} / \mu & \text { for } \mu=0.25
\end{array}\right\} \ldots \ldots \ldots \ldots(5-15 \alpha)
$$

giving

$$
\begin{aligned}
A^{\prime} & =\frac{0.5 C_{T}}{1-2.83 \sqrt{C_{T}}} \\
B^{\prime} & =\frac{0.707 \sqrt{C_{T}}}{1-2.83 \sqrt{C_{T}}}
\end{aligned}
$$

Curves of λ_{T} and λ_{U} against μ for a thrust coefficient $\quad C_{T}=.0055$ are presented in Fig. 5.
5.5. The Derivatives of λ_{T}, λ_{1} and λ_{U}
5.5.1. The Derivatives of $\lambda_{\text {II }}$

$$
\lambda_{T}=\lambda_{T}\left(\mu, C_{T}\right) \text { where } C_{T}=C_{T}(\mu)
$$

therefore

$$
\frac{\partial \lambda_{T}}{\partial \mu}=\frac{\partial \lambda_{T}}{\partial \mu}+\frac{\partial \lambda_{T}}{\partial C_{T}} \cdot \frac{\partial C_{T}}{\partial \mu}
$$

where $\frac{\partial \lambda_{T}}{\partial \mu}$ and $\frac{\partial \lambda_{T}}{\partial C_{T}}$ are obtained by differentiating (5-14), giving

$$
\frac{\partial \lambda_{T}}{\partial \mu}=-\frac{\Lambda}{(B+\mu)^{2}}
$$

and

$$
\frac{\partial \lambda_{T}}{\partial C_{T}}=\frac{1}{\left(1-2.9{\sqrt{C_{T}}}\right)^{2}(B+\mu)}\left[0.6\left(1-1.45 \sqrt{C_{T}}\right)-\frac{0.364 \lambda_{T}}{{\sqrt{C_{T}}}}\right]
$$

5.5.2. The Derivatives of λ_{U}

The corresponding expressions for uniform induced velocity are

$$
\begin{array}{lc}
\frac{d \lambda_{U}}{\partial \mu}=\frac{\partial \lambda_{U}}{\partial \mu}+\frac{\partial \lambda_{U}}{\partial C_{T}} \cdot \frac{\partial C_{T}}{\partial \mu} & \ldots \ldots \ldots \ldots(5-17 \mathrm{~A}) \\
\frac{\partial \lambda_{U}}{\partial \mu}=-\frac{A^{\prime}}{\left(B^{\prime}+\mu\right)^{2}} & \ldots \ldots \ldots \ldots(5-18 A) \\
\frac{\partial \lambda_{U}}{\partial C_{T}}=\frac{1}{\left(1-2.83 \sqrt{C_{T}}\right)^{2}\left(B^{\prime}+\mu\right)}\left[\begin{array}{r}
0.50\left(1-1.42 \sqrt{C_{T}}\right)-\frac{0.355 \lambda_{U}}{\sqrt{C_{T}}}
\end{array}\right] \\
\ldots \ldots \ldots \ldots(5-19 \mathrm{~A})
\end{array}
$$

and
where $\quad \frac{\partial \lambda_{U}}{\partial \mu}=-\frac{A^{\prime}}{\left(B^{\prime}+\mu\right)^{2}}$
5.5.3. The Derivatives of λ_{1}

$$
\lambda_{1}=\left(1-e^{-23 \mu}\right) \lambda_{T}=\lambda_{1}\left(\lambda_{T}, \mu\right) \text { where } \lambda_{T}=\lambda_{T}(\mu)
$$

therefore

$$
\frac{\mathrm{d} \lambda_{1}}{\mathrm{~d} \mathrm{\mu}}=\frac{\partial \lambda_{1}}{\partial \lambda_{T}} \frac{\mathrm{~d} \lambda_{T}}{\mathrm{~d} \mathrm{\mu}}+\frac{\partial \lambda_{1}}{\partial \mu}
$$

giving

$$
\begin{align*}
\frac{d \lambda_{1}}{d \mu} & =\left(1-e^{-23 \mu}\right) \frac{d \lambda_{T}}{d \mu}+23 e^{-23 \mu} \lambda_{T} \ldots \ldots(5-20) \\
\text { Also } \quad \frac{\partial \lambda_{1}}{\partial C_{T}} & =\left(1-e^{-23 \mu}\right) \frac{\partial \lambda_{T}}{\partial C_{T}} \quad \ldots \ldots \ldots \ldots(5-21) \tag{5-21}
\end{align*}
$$

6. The Thrust Coefficient

The thrust T is given by the double integrol

$$
\begin{equation*}
T=\frac{b}{2 \pi} \int_{0}^{1} d x \int_{0}^{2 \pi} \frac{d T}{d x} d \psi \tag{6-1}
\end{equation*}
$$

The resultant force on a blade element of area
$c R d x$ is

$$
\begin{equation*}
d F=\frac{1}{2} \rho a c \Omega^{2} R^{3}\left(\frac{U}{\Omega_{R}}\right)^{2} a d x \tag{6-2}
\end{equation*}
$$

where U is the resultant of U_{T} and U_{P} and $U \approx U_{T}$ since $U_{T} \gg U_{P^{*}}$
Λ iso the resultant force F is very nearly perpendicular to the tip-path plane so that

$$
\begin{equation*}
d T \approx d F=\frac{1}{2} \rho a c \Omega^{2} R^{3}\left(\frac{U_{T}}{\Omega}\right)^{2} a d x \tag{6-3}
\end{equation*}
$$

By substituting $(6-3),(4-4)$ and $(4-2)$ in $(6-1)$ the expression for the thrust coefficient becomes (sec Appendix I)

$$
C_{T}=\frac{a \sigma}{2}\left[\frac{\Lambda_{0}}{3}\left(1+\frac{3}{2} \mu^{2}\right)-\frac{\mu i}{2}-\frac{5}{12} \lambda_{T}-\frac{\mu B_{1}}{2}+\frac{\mu P}{4 \Omega}\right]
$$

and for uniform induced velocity

$$
C_{T}=\frac{a \sigma}{2}\left[\frac{A_{0}}{3}\left(1+\frac{3}{2} \mu^{2}\right)-\frac{\mu i}{2}-\frac{\lambda_{U}}{2}-\frac{\mu B_{1}}{2}+\frac{\mu P}{4 \Omega}\right](6-4, A)
$$

7. The Feathering Coefficients

For equilibrium of the rotor disc the cyclic feathoring must be such that the aerodynamic moment produced on a blade balances the dynamic moment about the flapping hinge given by

$$
I_{D}=I_{1} \Omega a_{0}^{2}-2 q \Omega I_{1} \sin \psi+2 p \Omega I_{1} \cos \psi \ldots(7-1)
$$

where I_{1} is the blade moment of inerti i about the flapping hinge.

The aerodynanic moment about the flapping hinge is
given by

$$
\begin{equation*}
M_{\Lambda}=\int_{0}^{1} x \frac{d P}{d x} d x \tag{7-2}
\end{equation*}
$$

Substituting for $\frac{d F}{d x}$ from (6-3) the following expression is obtained for II_{h} (see Appendix II)

$$
\begin{aligned}
I_{\Lambda} & =\frac{1}{2} p a \Omega^{2} R^{4}\left[\left(-\frac{3}{10} \lambda_{T}-\frac{\mu i}{3}+\frac{\Lambda_{0}}{4}+\frac{\mu P}{6 \Omega}-\frac{\mu B_{1}}{3}+\frac{\mu^{2} A_{0}}{4}\right)\right. \\
& +\sin \psi\left(\frac{P}{4 \Omega}-\frac{\mu^{2} i}{2}-\frac{5}{12} \mu \lambda_{T}-\frac{B_{1}}{4}+\frac{2}{3} \mu A_{0}-\frac{3}{8} \mu^{2} B_{1}\right) \\
& +\cos \psi\left(-\frac{\mu a_{0}}{3}-\frac{\lambda_{1}}{4}+\frac{P}{4 \Omega}-\frac{\Lambda_{1}}{4}-\frac{1}{8} \mu^{2} \Lambda_{1}\right)
\end{aligned}
$$

+ terms in higher harmonics]
Comparing (7-1) with (7-3)

$$
\begin{aligned}
& a_{0}=\frac{r}{2}\left[\frac{A_{0}}{4}\left(1+\mu^{2}\right)-\frac{3}{10} \lambda_{T}-\frac{\mu i}{3}-\frac{\mu B_{1}}{3}+\frac{\mu P}{6 \Omega}\right] \quad(7-4) \\
& A_{1}=-\frac{4}{1+\frac{1}{2} \mu^{2}}\left[\frac{\mu a_{0}}{3}+\frac{\lambda_{1}}{4}-\frac{q}{4}+\frac{4 P}{r \Omega}\right] \cdots \ldots \ldots(7-5) \\
& B_{1}=\frac{4}{1+\frac{3}{2} \mu^{2}}\left[\frac{2}{3} \mu A_{0}-\frac{\mu^{2} i}{2}-\frac{5}{12} \mu \lambda_{T}+\frac{P}{4 \Omega}+\frac{4 q}{\gamma \Omega}\right] \\
& \ldots \ldots \ldots \ldots(7-6)
\end{aligned}
$$

where $\gamma=\frac{\rho a c R^{4}}{I_{1}}$ is known as Lock's inertia number.
The corresponding expressions for uniform induced velocity are

$$
\begin{aligned}
& a_{0}=\frac{r}{2}\left[\frac{\Lambda_{0}}{4}\left(1+\mu^{2}\right)-\frac{\lambda_{U}}{3}-\frac{\mu i}{3}-\frac{\mu B_{1}}{3}+\frac{\mu P}{6 \Omega}\right] \ldots\left(7-4 A_{i}\right) \\
& A_{1}=-\frac{4}{1+\frac{1}{2} \mu^{2}}\left[\frac{\mu a_{0}}{3}-\frac{q}{4 \Omega}+\frac{4 P}{\gamma^{\Omega}}\right] \ldots \ldots \ldots \ldots(7-5 A) \\
& B_{1}=\frac{4}{1+\frac{3}{2} \mu^{2}}\left[\frac{2}{3} \mu A_{0}-\frac{\mu^{2} i}{2}-\frac{\mu}{2} \lambda_{U}+\frac{P}{4 \Omega}+\frac{4 q}{\gamma^{\Omega}}\right] \quad(7-6 A)
\end{aligned}
$$

8. The H Force Coefficient

The H force is the drag force in the tip-path
plane. From Fig. 2
$d H=(d D \cos \phi+d L \sin \phi) \sin \psi-(d L \cos \phi-d D \sin \phi) \sin a_{0} \cos \psi$(8-1)

Now $\quad a_{0}$ and \varnothing are both small angles so that

$$
\partial H=\partial D \sin \psi+\varnothing d L \sin \psi-a_{0} \partial L \cos \psi \quad . .(8-2)
$$

The term $a_{0} \varnothing d D \cos \psi$ is neglected since a_{0} and ϕ are both small and $d D$ is small compared with d.

Now
$\partial L=\frac{1}{2} \rho c C_{L} U^{2} d r$
...............(8-3)
where C_{L} is the local blade lift coefficient $=a(\theta-\phi)$
and
$d D=\frac{1}{2} p o \delta U^{2} d r$
where $\delta=$ blade section profile drag coefficient, assumed constant.

Substituting ($8-3$) and ($8-4$) in (8-2) and putting $U=U_{T}$ and $\varnothing=U_{P} / U_{T}$ $\partial H=\frac{1}{2} \rho c U_{T}^{2}\left\{\left[\delta+a \frac{U_{P}}{U_{T}}\left(\theta-\frac{U_{P}}{U_{T}}\right)\right] \sin \psi-a_{0} a\left(\theta-\frac{U_{P}}{U_{T}}\right) \cos \psi\right\} R d x$
ilartin (7) neglected terms involving ϕ^{2} but retained such terms as $\phi \theta$, a \varnothing and $a_{0} \theta$. Since ϕ, θ and a_{0} are all of the same order this simplification was not considered to be justifiable, and the terms involving ϕ^{*} have been retained.

The H force is given by the double integral

$$
\begin{equation*}
H=\frac{b}{2 \pi} \int_{0}^{1} d x \int_{0}^{2 \pi} \frac{d H}{d x} d \psi \tag{8-6}
\end{equation*}
$$

Substituting (8-5) in (8-6) the following expression /for the ...
for the H force coefficient $C_{H}=\frac{H}{\operatorname{PrR}(\Omega R)^{2}}$ is obtained (see Appendix III)

$$
\begin{aligned}
C_{H}=\frac{a \sigma}{2}\left[\frac{\delta \mu}{2 a}\right. & +\frac{\mu A_{0}}{2}\left(\mu i+\frac{2}{3} \lambda_{T}\right)-\frac{B_{1}}{4}\left(\mu i+\frac{5}{6} \lambda_{T}\right)+\frac{A_{1} a_{0}}{6}+\frac{\mu a_{0}^{2}}{4}+\frac{a_{0} \lambda_{1}}{6} \\
& \left.-\frac{\mu A_{1} \lambda_{1}}{16}+\frac{P}{2 \Omega}\left(\mu i+\frac{5}{6} \lambda_{T}-\frac{A_{0}}{3}+\frac{3}{8} \mu B_{1}\right)\right] \ldots(8-7)
\end{aligned}
$$

The corresponding expression for uniform induced velocity is

$$
\begin{aligned}
C_{H}=\frac{a \sigma}{2 a}\left[\frac{\delta \mu}{2}\right. & +\frac{\mu A_{0}}{2}\left(\mu i+\lambda_{U}\right)-\frac{B_{1}}{4}\left(\mu i+\lambda_{U}\right)+\frac{A_{1} a_{0}}{6}+\frac{\mu a_{0}^{2}}{4} \\
& \left.+\frac{P}{2 \Omega}\left(\mu i+\lambda_{U}-\frac{\Lambda_{0}}{3}-\frac{3}{8} \mu B_{1}\right)\right] \ldots \ldots \ldots \ldots(8-7 A)
\end{aligned}
$$

9. The Side Force Coefficient $C_{Y S}$

From Fig. 2

$$
\begin{equation*}
d Y_{S}=-\left(a_{0} d L \sin \psi+\phi \partial L \cos \psi+d D \cos \psi\right) \tag{9-1}
\end{equation*}
$$

Substituting as in expression for H force $d Y_{S}=-\frac{1}{2} p o U_{T}^{2}\left\{\left[a_{0} a\left(\theta-\frac{U_{P}}{U_{T}}\right)\right] \sin \psi+\left[a \frac{U_{P}}{U_{T}}\left(\theta-\frac{U_{P}}{U_{T}}\right)+\delta\right] \cos \psi\right\} R d x$ (9-2)

Performing the double integration as before gives (see Appendix IV)

$$
\left.\begin{array}{rl}
C_{Y S}= & \frac{a \sigma}{2}\left\{\frac{a_{0}}{2}\left[3 \mu^{2} i+2 \mu \lambda_{T}+B_{1}\left(\frac{1}{3}+\mu^{2}\right)-\frac{3}{2} \mu A_{0}\right]+\frac{\lambda_{1}}{2}\left(\mu i+\frac{5}{6} \lambda_{T}\right)\right. \\
+ & \frac{\Lambda_{1}}{4}\left(\mu i+\frac{5}{6} \lambda_{T}\right)
\end{array}\right)-\frac{\lambda_{1} \Lambda_{0}}{6}-\frac{\mu B_{1} \lambda_{1}}{16}-\frac{P}{2 \Omega}\left(\frac{a_{0}}{3}+\frac{\mu{A_{1}}_{1}}{8}\right) .
$$

The corresponding expression for uniform induced
velocity is

$$
\begin{aligned}
C_{Y S} & =\frac{a \sigma}{2}\left\{\frac { a _ { 0 } } { 2 } \left[3 \mu^{2} i+3 \mu \lambda_{U}+B_{1}\left(\frac{1}{3}+\mu^{2}\right)-\frac{3}{2} \mu_{0}+\frac{\Lambda_{1}}{4}\left(\mu i+\lambda_{U}\right)\right.\right. \\
& \left.-\frac{P}{2 \Omega}\left(\frac{a_{0}}{3}+\frac{\mu \Lambda_{1}}{8}\right)-\frac{a}{2 \Omega}\left(\mu i+\lambda_{U}-\frac{\Lambda_{0}}{3}+\frac{\mu B_{1}}{8}\right)\right\} \ldots \ldots(9-3 \Lambda)
\end{aligned}
$$

10. The Rotor Stability Derivatives

The rotor derivatives of importance, for the case of zero flapping hinge offset, are.-
(i) The force-angular velocity derivatives
x_{q}, z_{q}, y_{p}
(ii) The force-velocity derivatives
$x_{u}, z_{u}, y_{v}, x_{W}$ and z_{w}
Russell (6) and others have shown the basic equations for estimating rotor derivatives to be

$$
\begin{array}{ll}
\Delta X=-T \Delta a_{1}-\Delta H & \cdots \ldots \ldots \ldots(10-1) \tag{10-1}\\
\Delta I=T \Delta b_{1}+\Delta Y_{S} & \ldots \ldots \ldots \ldots(10-2) \\
\Delta Z=\cdots \cdots \cdots(10-3)
\end{array}
$$

These relations follow inmediately from Fig. 3.
For the case of controls fixed a change in longitudinal flapping Δa_{1} results in a change of incidence of the disc $\Delta i=-\Delta a_{1}$ i.e. $\frac{\partial i}{\partial a_{1}}=-1=\frac{\partial i}{\partial B_{1}}$.

In estimating the rotor derivatives the change in induced velocity in the disturbed motion was taken into account. This was done by assuming equations (5-17) and (5-18) to apply in the disturbed state. This assumption seens reasonable provided the disturbed motion takes place s.lowly.

In the expressions for the derivatives, in the following sections, A_{1} is replaced by $-b_{1}$ and B_{1} by a_{1}, from (2-3). Equations with the suffix ' A ' refer to the uniform induced velocity case.
11. The Force-Angular Velocity Derivatives x_{q}, y_{p} and z_{q}

The force-angular velocity derivatives follow from equations (10-1) and (10-3)

$$
\begin{align*}
& x_{q}=\Omega\left(-C_{T} \frac{\partial a_{1}}{\partial q}-\frac{\partial C_{H}}{\partial q}\right) \tag{11-1}\\
& y_{P}=\Omega\left(C_{T} \frac{\partial b_{1}}{\partial p}+\frac{\partial C_{Y S}}{\partial p}\right) \tag{11-2}\\
& z_{q}=\Omega\left(C_{H} \frac{\partial a_{1}}{\partial q}-\frac{\partial C_{T}}{\partial q}\right)
\end{align*}
$$ (8-7) respectively. ${ }^{C_{T}}$ are obtained from equations (6-4) and ${ }^{\text {a }}$ and fives are

$$
\begin{array}{ll}
\frac{\partial C_{T}}{\partial P}=\frac{\mu a \sigma}{8 \Omega\left[1+\frac{5}{24} a \sigma \frac{\partial \lambda_{T}}{\partial C_{T}}\right]} & \ldots \ldots \ldots \ldots(11-4) \\
\frac{\partial C_{T}}{\partial P}=\frac{\mu a \sigma}{8 \Omega\left[1+\frac{1}{4} a \sigma \frac{\partial \lambda_{U}}{\partial C_{T}}\right]} & \ldots \ldots \ldots \ldots(11-4 A) \\
\frac{\partial C_{T}}{\partial q}=0 & \ldots \ldots(11-5),(11-5 A) \\
\frac{\partial a_{o}}{\partial p}=\frac{\gamma \mu}{12 \Omega}-\frac{3 \gamma}{20} \frac{\partial \lambda_{T}}{\partial C_{T}} \cdot \frac{\partial C_{T}}{\partial P} & \ldots \ldots \ldots \ldots(11-6) \\
\frac{\partial a_{0}}{\partial p}=\frac{\gamma \mu}{12 \Omega}-\frac{\gamma}{6} \frac{\partial \lambda_{U}}{\partial C_{T}} \cdot \frac{\partial C_{T}}{\partial p} & \ldots \ldots \ldots \ldots(11-6 \Lambda) \tag{11-6A}
\end{array}
$$

$$
\begin{aligned}
& \frac{\partial a_{0}}{\partial q}=0 \\
& \frac{\partial a_{1}}{\partial P}=\frac{1}{1-\frac{1}{2} \mu^{2}}\left[\frac{1}{\Omega}-\frac{5}{3} \mu \frac{\partial \lambda_{T}}{\partial C_{T}} \cdot \frac{\partial \mathrm{C}_{T}}{\partial \mathrm{P}}\right] \ldots \ldots \ldots(11-8) \\
& \frac{\partial a_{1}}{\partial \mathrm{P}}=\frac{1}{1-\frac{1}{2} \mu^{2}}\left[\frac{1}{\Omega}-2 \mu \frac{\partial \lambda_{U}}{\partial \mathrm{C}_{T}} \cdot \frac{\partial \mathrm{C}_{T}}{\partial \mathrm{P}}\right] \ldots \ldots \ldots \ldots(11-8 \Lambda) \\
& \frac{\partial a_{1}}{\partial q}=\frac{16}{\gamma \Omega\left(1-\frac{1}{2} \mu^{2}\right)} \\
& \frac{\partial \mathrm{b}_{1}}{\partial \mathrm{p}}=\frac{4}{1+\frac{1}{2} \mu^{2}}\left[\frac{\mu}{3} \frac{\partial a_{0}}{\partial \frac{0}{P}}+\frac{1}{4} \frac{\partial \lambda_{1}}{\partial \mathrm{C}_{T}} \cdot \frac{\partial \mathrm{C}_{T}}{\partial \dot{p}}+\frac{4}{\gamma^{\Omega}}\right] \ldots \ldots \ldots \ldots(11-10) \\
& \frac{\partial b_{1}}{\partial p}=\frac{4}{1+\frac{1}{2} \mu^{2}}\left[\frac{\mu}{3} \frac{\partial a_{0}}{\partial p}+\frac{4}{\gamma \Omega}\right] \\
& \frac{\partial b_{1}}{\partial q}=-\frac{1}{\Omega\left(1+\frac{1}{2} \mu^{2}\right)} \\
& \partial \lambda_{T} / \partial C_{T} \text { etc. are obtained from equations (5-18) and } \\
& \text { (5-19). } \\
& \frac{\partial C_{H}}{\partial q}=\frac{a \sigma}{2}\left[\frac{\partial a_{1}}{\partial q}\left(\frac{\mu a_{1}}{4}-\frac{\mu^{2} \Lambda_{0}}{2}-\frac{1}{4} \mu i-\frac{5}{24} \lambda_{T}\right)+\frac{\partial b_{1}}{\partial q}\left(\frac{\mu \lambda_{1}}{16}-\frac{a_{0}}{6}\right)\right] \\
& \frac{\partial C_{H}}{\partial q}=\frac{a \sigma}{2}\left[\frac{\partial a_{1}}{\partial q}\left(\frac{\mu a_{1}}{4}-\frac{\mu^{2} A_{0}}{2}-\frac{1}{4} \mu i-\frac{1}{4} \lambda_{U}\right)-\frac{a_{0}}{6} \frac{\partial b_{1}}{\partial q}\right] \ldots(11-12 A) \\
& \frac{\partial C_{Y S}}{\partial \Phi}=\frac{a \sigma}{2}\left\{\frac{\partial a_{0}}{\partial p}\left[\frac{3}{2} \mu^{2} i+\mu \lambda_{T}+\frac{a_{1}}{2}\left(\frac{1}{3}+\mu^{2}\right)-\frac{3}{4} \mu h_{0}\right]+\frac{\partial a_{1}}{\partial p}\left[\frac{a_{0}}{2}\left(\frac{1}{3}-2 \mu^{2}\right)\right.\right. \\
& \left.-\frac{7}{16} \mu \lambda_{1}+\frac{b_{1}}{4}\right] \\
& -\frac{\partial b_{1}}{\partial P}\left(\frac{1}{4} \mu i+\frac{5}{24} \lambda_{T}\right)+\frac{\partial \lambda_{T}}{\partial P}\left(\mu a_{0}+\frac{5}{12} \lambda_{1}-\frac{5}{24} b_{1}\right)+ \\
& \frac{\partial \lambda_{1}}{\partial \mathrm{P}}\left(\frac{\mu \mathrm{i}}{2}+\frac{5}{12} \lambda_{T_{1}}-\frac{\Lambda_{0}}{6}+\frac{\mu a_{1}}{4}\right)-\frac{1}{2 \Omega}\left(\frac{a_{0}}{3}-\frac{\mu b_{1}}{8}\right) \ldots \ldots(11-13)
\end{aligned}
$$

$$
\begin{align*}
\frac{\partial C_{Y S}}{\partial p} & =\frac{a \sigma}{2}\left\{\frac{\partial a_{0}}{\partial p}\left[\frac{3}{2} \mu^{2} i+\frac{3}{2} \mu \lambda_{U}+\frac{a_{1}}{2}\left(\frac{1}{3}+\mu^{2}\right)-\frac{3}{4} \mu a_{0}\right]+\frac{\partial a_{1}}{\partial p} \frac{a_{0}}{2}\left(\frac{1}{3}-2 \mu^{2}\right)\right. \\
& \left.-\frac{\partial b_{1}}{\partial p}\left(\frac{\mu i}{4}+\frac{\lambda_{U}}{4}\right)+\frac{\partial \lambda_{U}}{\partial p}\left(\frac{3}{2} \mu a_{0}-\frac{b_{1}}{4}\right)-\frac{1}{2 \Omega}\left(\frac{a_{0}}{3}-\frac{\mu b_{1}}{8}\right)\right\} \tag{11-13A}
\end{align*}
$$

12. The force-Velocity Derivatives x_{u} and z_{u} From equations (10-1) and (10-3)

$$
\begin{align*}
& x_{u}=-C_{T} \frac{\partial a_{1}}{\partial \mu}-\frac{\partial C_{H}}{\partial \mu} \tag{12-1}\\
& z_{u}=C_{H} \frac{\partial a_{1}}{\partial \mu}-\frac{\partial C_{T}}{\partial \mu} \tag{12-2}
\end{align*}
$$

The expressions for the partial derivatives are

$$
\begin{align*}
& \frac{\partial C_{T}}{\partial \mu}=\frac{a \sigma}{2\left[1+\frac{5 a \sigma}{24} \frac{\partial \lambda_{T}}{\partial C_{T}}\right]}\left(\mu \Lambda_{0}-\frac{i}{2}-\frac{5}{12} \frac{\partial \lambda_{T}}{\partial \mu}\right) \tag{12-3}\\
& \frac{\partial C_{T}}{\partial \mu}=\frac{a \sigma}{2\left[1+\frac{1}{4} \alpha \sigma \frac{\partial \lambda_{U}}{\partial C_{T}}\right]}\left(\mu A_{0}-\frac{i}{2}-\frac{1}{2} \frac{\partial \lambda_{U}}{\partial \mu}\right) \tag{12-3A}\\
& \frac{\partial a_{0}}{\partial \mu}=\frac{\gamma}{2}\left[\frac{\mu \Lambda_{0}}{2}-\frac{3}{10} \frac{d \lambda_{T}}{d \mu}-\frac{i}{3}-\frac{a_{1}}{3}\right] \\
& \frac{\partial a_{0}}{\partial \mu}=\frac{\gamma}{2}\left[\frac{\mu A_{0}}{2}-\frac{1}{3} \frac{d \lambda_{U}}{d \mu}-\frac{i}{3}-\frac{a_{1}}{3}\right]
\end{align*}
$$

$$
\frac{\partial a_{1}}{\partial \mu}=\frac{4}{1-\frac{1}{2} \mu^{2}}\left[\frac{2}{3} \Lambda_{0}-\mu i-\frac{5}{12} \lambda_{T}-\frac{5}{12} \mu \frac{d \lambda_{T}}{d \mu}-\frac{3}{4} \mu a_{1}\right] \ldots(12-5)
$$

$$
\frac{\partial a_{1}}{\partial \mu}=\frac{4}{1-\frac{1}{2} \mu^{2}}\left[\frac{2}{3} A_{0}-\mu i-\frac{1}{2} \lambda_{U}-\frac{1}{2} \mu \frac{d \lambda_{U}}{d \mu}-\frac{3}{4} \mu a_{1}\right] \ldots(12-5 A)
$$

$$
\frac{\partial b_{1}}{\partial \mu}=\frac{4}{1+\frac{1}{2} \mu^{2}}\left[\frac{a_{0}}{3}+\frac{\mu}{3} \frac{\partial a_{0}}{\partial \mu}+\frac{1}{4} \frac{d \lambda_{1}}{d \mu}+\mu b_{1}\right]
$$

$$
\begin{align*}
& \text {-23- } \\
& \frac{\partial b_{1}}{\partial \mu}=\frac{4}{1+\frac{1}{2} \mu^{2}}\left[\frac{a_{0}}{3}+\frac{\mu}{3} \frac{\partial a_{0}}{\partial \mu}+\mu b_{1}\right] \\
& \frac{\partial C_{H}}{\partial \mu}=\frac{a \sigma}{2}\left\{\frac{\delta}{2 a}+A_{0}\left(\mu i+\frac{1}{3} \lambda_{T}\right)-\frac{a_{1} i}{4}+\frac{a_{0}^{2}}{4}+\frac{b_{1} \lambda_{1}}{16}+\right. \\
& \frac{\partial a_{0}}{\partial \mu}\left(\frac{\mu a_{0}}{2}+\frac{\lambda_{1}}{6}-\frac{b_{1}}{6}\right)+\frac{\partial a_{1}}{\partial \mu}\left(\frac{\mu a_{1}}{4}-\frac{\mu^{2} A_{0}}{2}-\frac{\mu i}{4}-\frac{5}{24} \lambda_{\mathrm{T}}\right) \\
& \left.+\frac{\partial b_{1}}{\partial \mu}\left(\frac{\mu \lambda_{1}}{16}-\frac{a_{0}}{6}\right)+\frac{d \lambda_{T}}{d \mu}\left(\frac{\mu \Lambda_{0}}{3}-\frac{5 a_{1}}{24}\right)+\frac{d \lambda_{1}}{d \mu}\left(\frac{a_{0}}{6}+\frac{\mu b_{1}}{16}\right)\right\} \\
& \frac{\partial C_{H}}{\partial \mu}=\frac{a \sigma}{2}\left\{\frac{\delta}{2 a}+\Lambda_{0}\left(\mu i+\frac{\lambda_{U}}{2}\right)+\frac{a_{0}^{2}}{4}+\frac{a_{1} i}{4}+\frac{\partial a_{0}}{\partial \mu}\left(\frac{\mu a_{0}}{2}-\frac{b_{1}}{6}\right)+\right. \\
& \frac{\partial a_{1}}{\partial \mu}\left(\frac{\mu a_{1}}{4}-\frac{\mu^{2} A_{0}}{2}-\frac{\mu i^{2}}{4}-\frac{\lambda_{U}}{4}\right) \\
& \left.-\frac{a_{0}}{6} \frac{\partial b_{1}}{\partial \mu}+\frac{d \lambda_{U}}{d \mu}\left(\frac{\mu \Lambda_{0}}{2}-\frac{a_{1}}{4}\right)\right\}
\end{align*}
$$

13. The Force-Velocity Derivatives x_{w} and z_{W}

$$
\text { From equations }(10-1) \text { and (10-3) }
$$

$$
\begin{align*}
& x_{w}=\Omega R\left\{-C_{T} \frac{\partial a_{1}}{\partial w}-\frac{\partial C_{H}}{\partial w}\right\} \tag{13-1}\\
& z_{w}=\Omega R\left\{C_{H} \frac{\partial a_{1}}{\partial w}-\frac{\partial C_{T}}{\partial w}\right\}
\end{align*}
$$

The effect of a disturbance velocity w in the positive z direction is to cause a uniform flow w through the rotor disc in the negative z direction. The inflow through the disc then becomes

$$
\lambda \Omega R=\Omega R\left(\mu i+\lambda_{0}+\lambda_{1} x \cos \psi\right)-w
$$

or non-dimensionally

$$
\begin{equation*}
\lambda=\mu i+\lambda_{0}+\lambda_{1} x \cos \psi-\lambda_{w} \tag{13-3}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{\mathrm{W}}=\frac{\mathrm{W}}{\Omega \mathrm{R}} \tag{13-4}
\end{equation*}
$$

It follows, therefore, that

$$
\begin{equation*}
\frac{\partial}{\partial w}=\frac{1}{\Omega R} \frac{\partial}{\partial \lambda_{W}}=-\frac{1}{\Omega R} \frac{\partial}{\partial(\mu \mathrm{i})} \tag{13-5}
\end{equation*}
$$

Equations (13-1) and (13-2) may then be written as

$$
\begin{equation*}
x_{W}=-c_{T} \frac{\partial a_{1}}{\partial \lambda_{\mathrm{w}}}-\frac{\partial c_{\mathrm{H}}}{\partial \lambda_{\mathrm{W}}} \tag{13-6}
\end{equation*}
$$

$z_{w}=C_{H} \frac{\partial a_{1}}{\partial \lambda_{w}}-\frac{\partial C_{T}}{\partial \lambda_{w}}$
where

$$
\begin{equation*}
\frac{\partial}{\partial \lambda_{\mathrm{w}}}=-\frac{\partial}{\partial(\mu \dot{i})} \tag{13-8}
\end{equation*}
$$

The relevant partial derivatives are

$$
\begin{align*}
& \frac{\partial C_{T}}{\partial \lambda_{W}}=\frac{a \sigma}{4} \frac{1}{\left[1+\frac{5 a \sigma}{24} \frac{\partial \lambda_{T}}{\partial C_{T}}\right.} \tag{13-9}\\
& \frac{\partial C_{T}}{\partial \lambda_{W}}=\frac{a \sigma}{4} \frac{1}{\left[1+\frac{a \sigma}{4} \frac{\partial \lambda_{U}}{\partial C_{T}}\right]} \\
& \frac{\partial a_{o}}{\partial \lambda_{W}}=\frac{\gamma}{2}\left[\frac{1}{3}-\frac{3}{10} \frac{\partial \lambda_{T}}{\partial C_{T}} \cdot \frac{\partial C_{T}}{\partial \lambda_{W}}\right] \\
& \frac{\partial a_{0}}{\partial \lambda_{W}}=\frac{\gamma}{2}\left[\frac{1}{3}-\frac{1}{3} \frac{\partial \lambda_{U}}{\partial C_{T}} \cdot \frac{\partial C_{T}}{\partial \lambda_{W}}\right] \\
& \frac{\partial a_{1}}{\partial \lambda_{W}}=\frac{4}{1-\frac{1}{2} \mu^{2}}\left[\frac{\mu}{2}-\frac{5}{12} \mu \frac{\partial \lambda_{T}}{\partial C_{T}} \cdot \frac{\partial C_{T}}{\partial \lambda_{W}}\right] \\
& \frac{\partial a_{1}}{\partial \lambda_{\mathrm{W}}}=\frac{4}{1-\frac{1}{2} \mu^{2}}\left[\frac{\mu}{2}-\frac{1}{2} \mu \frac{\partial \lambda_{\mathrm{U}}}{\partial \mathrm{C}_{\mathrm{T}}} \cdot \frac{\partial \mathrm{C}_{T}}{\partial \lambda_{\mathrm{W}}}\right]
\end{align*}
$$

$$
\begin{align*}
& \text {-25- } \\
& \frac{\partial b_{1}}{\partial \lambda_{W}}=\frac{4}{1+\frac{1}{2} \mu^{2}}\left[\frac{\mu}{3} \frac{\partial a_{0}}{\partial \lambda_{W}}+\frac{1}{4} \frac{\partial \lambda_{1}}{\partial \mathrm{C}_{\mathrm{T}}} \cdot \frac{\partial \mathrm{C}_{\mathrm{T}}}{\partial \lambda_{\mathrm{W}}}\right. \tag{13-12}\\
& \frac{\partial \mathrm{b}_{1}}{\partial \lambda_{\mathrm{W}}}=\frac{4}{1+\frac{1}{2} \mu^{2}}\left[\begin{array}{ll}
\frac{\mu}{3} & \frac{\partial \mathrm{a}_{0}}{\partial \lambda_{\mathrm{W}}}
\end{array}\right] \\
& \frac{\partial C_{H}}{\partial \lambda_{V V}}=\frac{a \sigma}{2}\left\{\frac{a_{1}}{4}-\frac{\mu A_{0}}{2}+\frac{\partial a_{0}}{\partial \lambda_{W}}\left(\frac{\lambda_{1}}{\sigma}+\frac{\mu a_{0}}{2}-\frac{b_{1}}{\sigma}\right)+\right. \\
& \frac{\partial a_{1}}{\partial \lambda_{W}}\left(\frac{\mu a_{1}}{4}-\frac{\mu^{2} \Lambda_{0}}{2}-\frac{\mu i}{L_{p}}-\frac{5}{24} \lambda_{T}\right)+\frac{\partial b_{1}}{\partial \lambda_{W}}\left(\frac{\mu \lambda_{1}}{16}-\frac{a_{0}}{6}\right) \\
& \left.+\frac{\partial \lambda_{T}}{\partial \lambda_{W}}\left(\frac{\mu A_{0}}{3}-\frac{5}{24} a_{1}\right)+\frac{\partial \lambda_{1}}{\partial \lambda_{W}}\left(\frac{a_{0}}{6}+\frac{\mu b_{1}}{16}\right)\right\} \\
& \frac{\partial C_{H}}{\partial \lambda_{W}}=\frac{a \sigma}{2}\left\{\frac{a_{1}}{4}-\frac{\mu \Lambda_{0}}{2}+\frac{\partial a_{0}}{\partial \lambda_{W}}\left(\frac{\mu a_{0}}{2}-\frac{b_{1}}{6}\right)+\right. \\
& \left.\frac{\partial a_{1}}{\partial \lambda_{W}}\left(\frac{\mu a_{1}}{4}-\frac{\mu^{2} \Lambda_{0}}{2}-\frac{\mu i}{4}-\frac{1}{4} \lambda_{U}\right)-\frac{a_{0}}{6} \frac{\partial b_{1}}{\partial \lambda_{w}}+\frac{\partial \lambda_{U}}{\partial \lambda_{V}}\left(\frac{\mu \Lambda_{0}}{2}-\frac{a_{1}}{4}\right)\right\}_{(13-13 \Lambda)}
\end{align*}
$$

14. The Force-Velocity Derivative y_{v}

A velocity v in the positive y direction causes the H force vector to rotate through an angle $\mathrm{V} / \mathrm{V} \cos \mathrm{i}$ giving a component $-\mathrm{Ffv} / \mathrm{V}$ cos i in the y direction. In addition there is a change in the lateral tilt of the rotor disc $\Delta b_{1}=-a_{1} \frac{v}{V \cos i}$ giving rise to a force $-T a_{1} \frac{v}{V \cos i}$ in the y direction.

Therefore

$$
\begin{equation*}
\frac{\Delta Y}{V}=-\frac{1}{V \cos i}\left(H+T a_{1}\right) \tag{14-1}
\end{equation*}
$$

whence $y_{V}=-\frac{1}{\mu}\left(C_{H}+C_{T} a_{1}\right)$
This expression is not applicable for the hovering condition where $\mu=0$, but by symmetry in hovering

$$
\begin{equation*}
y_{v}=x_{u} \tag{14-3}
\end{equation*}
$$

$$
/ 15
$$

15. Calculation of Force Coefficionts, llapping Coefficients and Rotor Derivatives for a Typioal Case

Values of force coefficients, flapping coefficients and rotor derivatives have been calculated for a typicol case using values given in ref. 13. The details of the configuration are given in Appendix V.

Velues have been worked out for both uniform and non-uniform induced velocity distribution. The results of the flapping coefficients at moderate forward speeds are compared with results calculated by Martin (7) using the iiangler induced velocity distribution, and with flight measurements given in ref. 13.

The results of the calculations are presented as follows.-

$$
\begin{aligned}
& \text { Fi己. 7. a } a_{0} \text { vs } \mu(\mu=0.14-0.24) \\
& \text { 18. } a_{1} \text { vs } \mu \text { (' ' ') } \\
& \text { ' 9. } \mathrm{b}_{1} \text { vs } \mu \text { (' ' ') } \\
& \text { '10. } a_{0}, a_{1}, b_{1} \text { vs } \mu(\mu=0-0.14) \\
& \text { '11. } \mathrm{C}_{\mathrm{H}}, \mathrm{C}_{\mathrm{YS}} \text { vs } \mu \text { (1 ' ') } \\
& \text { 1 12. } x_{q} \text { vs } \mu(\mu=0-0.14) \\
& \text { '13. } \mathrm{y}_{\mathrm{P}} \text { vs } \mu \text { (1 ' ') } \\
& \text { '14. } z_{q} \text { vs } \mu \text { (' ' ') } \\
& \text { ' 15. } z_{u} \text { vs } \mu \text { (' ' ') } \\
& \text { ' 16. } x_{u} \text { vs } \mu \text { (' , ') } \\
& \text { '17. } z_{w} \text { vs } \mu \text { (' ' ') } \\
& \text { ' 18. } \mathrm{x}_{\mathrm{W}} \text { vs } \mu \text { (' ' ') } \\
& \text { ' 19. } \mathrm{y}_{\mathrm{v}} \text { vs } \mu \text { (' , ') }
\end{aligned}
$$

16. Discussion

Referring to Figs. 7-9 it can be seen that the flapping coefficients, as calculated from the induced velocity distribution adopted, give good agreement with the flight measurements of ref. 13 and Martin's results (7), based on the IIangler induced velocity distribution. In particular the values of the lateral tilt of the disc, b_{1}, compare favourably, whereas those for the uniform induced velocity distribution considerably underestimate the actual case.

The values of a_{1}, the longitudinal flapping coefficient are underestimated by all three theoretical induced velocity distributions. This is due to the fact that no account is taken of lateral asymmetry of the flow through the rotor disc. Certainly such asymnetry must exist since the effect of cyclic blade feathering (and/or flapping) is to produce a different lift distribution over the retreating blade than over the advancing blade. However at low forward speeds this difference will be small and its effect on the induced velocity distribution can probably be ignored. At higher forward speeds it could possibly be taken into account by introducing a torm $\lambda_{2} \mathrm{x} \sin \psi$ into the expression for the induced velocity, where λ_{2} would be a function of the advence ratio μ. It would probably be difficult to find an expression for $\lambda_{2}(\mu)$ analytically, but an empirical expression based on experimental results might well be used.

It is doubtful if the expression adopted for the induced velocity actually represents in any detail the true flow distribution through the rotor disc, except at or very near the hovering state. What it does represent is the overall trend of an increase in induced velocity from the front to the rear of the disc, which has been observed. This appears to be sufficient for the estimation of flapping coefficients and hence also of rotor derivatives. The liangler induced velocity distribution, on the other hand, probably gives a much truer picture of the details of the flow through the rotor. Measurements by Fail and Eyre (11) and by Falabella and lieyer (12) appear to confim that the prediction of upflow over a region of the forward pert of the disc is correct. Hovever the liangler distribution involves somewhat complicated exprossions and it would appear that the much simpler representation of the flow used here is sufficient for the purpose of estimating rotor derivatives.

Fig. 10 shows the values of the flapping coefficients over the low forward speed range. a_{1} is the same for both uniform and non-uniform induced velocity. b_{1} is much greater
for the non-uniform induced velocity distribution because of the tem $\lambda_{1} / 4$ which takes account of the longitudinal asymmetry of flow through the rotor disc. A. is slightly smaller for the non-uniform induced velocity cose indicating that the resultant aerodynamic force acts closer to the blade root than for the uniform induced velocity case.

Fig. 11 shows the variation of the drag force coefficient C_{H} and the side force coefficient C_{YS} with μ for the two cases. It is interesting to note that C_{H} is somewhat smaller for the case of non-uniform induced velocity than for the case of uniform induced velocity. This is due to the term $\Lambda_{1} a_{0} / 6$ being greater in magnitude than the additional terms involving $\lambda_{1} \cdot C_{Y S}$ is negative for both cases but is considerably greater in magnitude for nonuniform induced velocity. This is due to the larger values of $A_{1}-=b_{1}$ and also to the terms involving λ_{1}.

The force-angluer velocity derivatives are shown in Figs. 12-14. The derivative x_{q} is the sare for both cases in as much as $C_{T} \partial a_{1 / \partial q}$ is the same and the contribution from $\partial C_{H} / \partial q$ is small and very nearly the same. Y_{P} is also unaffected by non-uniform induced velocity since
$C_{T} \quad \partial b_{1 / \partial P}$ and $\partial C_{Y S} / \partial P$ are virtually identical for the two cases. The derivative z_{q} is slightly different for uniform and non-uniform induced velocity. It is proportional to C_{H} since $\partial a_{1} / \partial q$ is the same for both cases and $\partial C_{T} / \partial q=0$. This derivative is exceedingly small and would probably be ignored in most stability calculations.

With regord to the force-velocity derivatives it can be seen from Figs. 15 and 17 that z_{u} and z_{w} are virtually the same for uniform and non-uniform induced velocity. The expressions for $\partial C_{T} / \partial \mu$ and $\partial C_{T} / \partial \lambda$ are very nearly the same for the two cases and the $C_{H} \partial \alpha_{1 / \partial \mu}$ and. $\mathrm{C}_{\mathrm{H}} \partial a_{1} / \partial \lambda_{\mathrm{w}}$ contributions to these ' z '. derivatives are negligible.

The derivatives x_{u} and x_{w} are also virtually identical for uniform and non-uniform induced velocity. The $\mathrm{C}_{\mathrm{T}} \partial a_{1} / \partial \mu$ and $\mathrm{C}_{T} \partial a_{1} / \partial \lambda_{\mathrm{W}}$ terms are dominent in the
expressions for these ' x ' derivatives so that the smoll changes in $\partial \mathrm{C}_{\mathrm{H}} / \partial \mu$ and $\partial \mathrm{C}_{\mathrm{H}} / \partial \lambda_{\mathrm{w}}$ for the two cases are relatively unimportant.

The derivative y_{v} is also very nearly the same for both uniform and non-uniform induced velocity. The dominant term in the expression for y_{v} is $\mathrm{G}_{\mathrm{T}} \mathrm{a}_{1}$ which is identical for the two cases. The small differences in C_{H} have little effect.

Sumnarising it can be said that the only derivative appreciably affected by non-uniform induced velocity is z_{q} which is very small and relatively unimportant.

It appears that, at low forward speeds, non-uniform induced velocity has no significant effect on rotor derivatives. At higher forward speeds it is possible that its effect might be more significant. Certainly if a lateral asymmetry of flow through the rotor disc were taken into account the values of a_{1} and its derivatives would be different for uniform and non-uniform irduced velocity. This would affect all derivatives to some extent and particulorly $\mathrm{x}_{\mathrm{q}}, \mathrm{x}_{\mathrm{u}}, \mathrm{x}_{\mathrm{w}}$ and y_{v}. For a highly loaded rotor at high forward speeds it would be expected that C_{H} would be larger relative to C_{T} than for the case of the lightly loaded rotor at low forward speeds considered here. This would mean that the $C_{H} \partial a_{1 / \partial \mu}$ and $C_{H} \partial a_{1 / \partial \lambda_{W}}$ contribution to z_{u} and z_{w} would be significant and the effect of non-uniform induced velocity might be important. There is some doubt about this last statement, however, for at high forward speeds and high disc loadings, the main contributions to C_{H} would probably come from the μA_{0} and μa_{0}^{2} terms with the result that C_{H} would be very nearly the sane for both uniform and non-uniform induced velocity.

$$
-30-
$$

17. Conclusions

1) An important effect of non-uniform induced velocity is to increase considerably the magnitude of the lateral flapping coefficient b_{1}.
2) The value of C_{H} is somewhat less fcrs the case of non-uniform than for uniform induced velocity and the value of $C_{Y S}$ considerably greater.
3) The effect of non-uniform induced velocity on rotor derivatives at low forward speeds is almost negligible except in the case of z_{q} which is a very small derivative.

REEFEREMCES

1. Glauert, H.
2. Iock, C.N.H.
3. Squire, H.B.
4. Zbrozek, J.K.
5. Sinon, Hi.
6. Fussell
7. Martin
8. Hofner, R.
9. Brotherhood, P.

A general theory of the autogyro. A.R.C. R. and II. No. 1111.

Further development of autogyro theory. A.R.C. R. and in. 1127.

The flight of a helicopter. A.R.C. R. and it. 1730.

Investigation of lateral and directional behaviour of a single rotor helicopter (Hoverfly). A.R.C. R. and in. 2509.

Unpublished College of Aeronautics Thesis.

Unpublished College of Aeronautics Thesis.

Unpublished College of Aeronautics Thesis.

Rotor Systens and Control Problens in the helicopter. Anglo-American Acro. Conf. 1947.

An investigation in flight of the induced velocity distribution under a helicopter rotor when hovering. A.R.C. R. and M. 2521.
10. Mangler, K.W., The induced velocity field of a rotor. and
Squire, H. B.
11. Fail, R., and Eyre, K.
12. Falabella, G. and Meyer, J.R.
13. Miyers, G.C.

Downvash measurements behind a 12 ft . dianeter helicopter rotor in the $24 f t$. wind tumel.
A.R.C. 12,895. A.R.C. R. and 12642.

Determination of inflow distributions from experimental aerodynamic loading and blade-motion data on a model helicopter rotor in hovering and forward flight.
N.A.C.A. T.N. 3492.

Flight measurements of helicopter blade motion with a comparison between theoretical and experimental results. N.A.C.A. T.N. 1266.

APPENDTX I

Derivation of Thrust Coefficient for Non-uniforn Induced Velocity

$$
T=\frac{b}{2 \pi} \int_{0}^{1} d x \int_{0}^{2 \pi} \frac{d T}{d x} \cdot d \psi
$$

From (4-1) and (6-3)

$$
C_{T}=\frac{T}{\rho \pi R^{2}(\Omega R)^{2}}=\frac{a C}{4 \pi} \int_{0}^{1} d x \int_{0}^{2 \pi}(x+\mu \sin \psi)^{2} d d \psi
$$

Substituting for a from (4-4)
Integrand
$=(x+\mu \sin \psi)^{2}\left[A_{0}-A_{1} \cos \psi-B_{1} \sin \psi-\frac{a_{0} \mu \cos \psi+\mu i+\lambda_{0}+\lambda_{1} x \cos \psi-\frac{p}{\Omega} x \sin \psi-\frac{q}{\Omega} x \cos \psi}{x+\mu \sin \psi}\right]$
$=-(x+\mu \sin \psi)\left(a_{0} \mu \cos \psi+\mu i+\lambda_{0}+\lambda_{1} x \cos \psi-\frac{P}{\Omega} x \sin \psi-\frac{q}{\Omega} x \cos \psi\right)$
$+\left(x^{2}+2 \mu x \sin \psi+\mu^{2} \sin ^{2} \psi\right)\left(A_{0}-A_{1} \cos \psi-B_{1} \sin \psi\right)$
$=\sin \psi\left(\frac{P}{\Omega} x^{2}-\mu^{2} i-\mu \lambda_{0}-B_{1} x^{2}+2 \mu A_{0} x\right)+\cos \psi\left(-\mu a_{0} x-\lambda_{1} x^{2}+\frac{q}{\Omega} x^{2}-A_{1} x^{2}\right)$
$+\sin \psi \cos \psi\left(-\mu^{2} a_{0}-\mu \lambda_{1} x+\mu \frac{q}{\Omega} x-2 \mu A_{1} x\right)+\sin ^{2} \psi\left(\mu \frac{P}{\Omega} x-2 \mu B_{1} x+\mu^{2} A_{0}\right)$
$-\mu^{2} B_{1} \sin ^{3} \psi-\mu^{2} A_{1} \sin ^{2} \psi \cos \psi-\lambda_{0} x-\mu i x+A_{0} x^{2}$
$\therefore C_{T}=\frac{a \sigma}{2} \int_{0}^{1}\left\{-\lambda_{0} x-\mu i x+A_{0} x^{2}+\frac{\mu P x}{2 \Omega}-\mu B_{1} x+\frac{\mu^{2} A_{0}}{2}\right\} d x$

$$
C_{T}=\frac{a \sigma}{2}\left[\frac{A_{0}}{3}\left(1+\frac{3}{2} \mu^{2}\right)-\frac{\mu i}{2}-\frac{5}{12} \lambda_{T}-\frac{\mu B_{1}}{2}+\frac{\mu P}{4 \Omega}\right]
$$

APPINDIX II

Derivation of Expression for 11

$$
M_{A}=\int_{0}^{1} x \frac{d F}{d x} d x
$$

From (4-1) and (6-3)

$$
M_{A}=\frac{1}{2} \operatorname{pacR}^{4} \int_{0}^{1} x(x+\mu \sin \psi)^{2} a d x
$$

Substituting for a from (4-4)
Integrand

$$
\begin{aligned}
= & -\lambda_{0} x^{2}-\mu i x^{2}+A_{0} x^{2}+\sin \psi\left(\frac{P}{\Omega} x^{3}-\mu^{2} i x-\mu \lambda_{0} x-B_{1} x^{3}+2 \mu A_{0} x^{2}\right) \\
& +\cos \psi\left(-\mu a_{0} x^{2}-\lambda_{1} x^{3}+\frac{q}{\Omega} x^{3}-A_{1} x^{3}\right)+\sin \psi \cos \psi\left(-\mu a_{0} x-\mu \lambda_{1} x^{2}+\mu \frac{q}{\Omega} x^{2}-2 \mu A_{1} x^{2}\right) \\
& +\sin ^{2} \psi\left(\mu \frac{P}{\Omega} x^{2}-2 \mu B_{1} x^{2}+\mu^{2} A_{0} x\right)-\mu^{2} B_{1} x \sin ^{3} \psi-\mu^{2} A_{1} x \sin ^{2} \psi \cos \psi
\end{aligned}
$$

Now

$$
\begin{aligned}
& \sin ^{2} \psi=\frac{1}{2}-\frac{1}{2} \cos 2 \psi \\
& \sin ^{3} \psi=\frac{3}{4} \sin \psi-\frac{1}{4} \sin 3 \psi \\
& \sin ^{2} \psi \cdot \cos \psi=\frac{1}{4} \cos \psi-\frac{1}{4} \cos 3 \psi
\end{aligned}
$$

so integrand

$$
\begin{aligned}
= & -\lambda_{0} x^{2}-\mu i x^{2}+A_{0} x^{3}+\frac{\mu P}{2 \Omega} x^{2}-\mu B_{1} x^{2}+\mu^{2} \frac{A_{0}}{2} x \\
& +\sin \psi\left(\frac{P}{\Omega} x^{3}-\mu^{2} i x-\mu \lambda_{0} x-B_{1} x^{3}+2 \mu A_{0} x^{2}-\frac{3}{4} \mu^{2} B_{1} x\right) \\
& +\cos \psi\left(-\mu a_{0} x^{2}-\lambda_{1} x^{3}+\frac{q}{\Omega} x^{3}-A_{1} x^{3}-\frac{1}{4} \mu^{2} A_{1} x\right)
\end{aligned}
$$

+ terms in higher harmonics

Therefore

$$
\begin{aligned}
& M_{A}=\frac{1}{2} p a c \Omega^{2} R^{4}\left[\left(-\frac{3}{10} \lambda_{T}-\frac{\mu i}{3}+\frac{A_{0}}{4}+\frac{\mu P}{6 \Omega}-\frac{\mu B_{1}}{3}+\frac{\mu^{2} A_{0}}{4}\right)\right. \\
& +\sin \psi\left(\frac{P}{R \Omega}-\frac{\mu^{2} i}{2}-\frac{5}{12} \mu \lambda_{T}-\frac{B_{1}}{4}+\frac{2}{3} \mu A_{0}-\frac{3}{8} \mu^{2} B_{1}\right)
\end{aligned}
$$

$+\cos \psi\left(-\frac{\mu a_{0}}{3}-\frac{\lambda_{1}}{4}+\frac{p}{4 \Omega}-\frac{A_{1}}{4}-\frac{1}{8} \mu^{2}{h_{1}}_{1}\right)$

+ terms in higher harmonics.

APPMNDIX III

$\underline{\text { Derivation of } \mathrm{C}_{\mathrm{H}} \text { for Non-Uniform Induced Velocity }}$

$$
H=\frac{b}{2 \pi} \int_{0}^{1} d x \int_{0}^{2 \pi} \frac{d H}{d x} d \psi
$$

From (4-1), (4-4) and (8-5)

$$
\begin{aligned}
& C_{H}=\frac{\sigma a}{4 \pi} \int_{0}^{1} d x \int_{0}^{2 \pi}(x+\mu \sin \psi)^{2} \\
& \left\{\left[\frac{\delta}{a}+\left(\frac{\mu a_{0} \cos \psi+\mu i+\lambda_{0}+\lambda_{1} x \cos \psi-\frac{P}{\Omega} x \sin \psi-\frac{q}{\Omega} x \cos \psi}{x+\mu \sin \psi}\right)\right.\right.
\end{aligned}
$$

$$
\times\left(A_{0}-A_{1} \cos \psi-B_{1} \sin \psi-\frac{\mu a_{0} \cos \psi+\mu i+\lambda_{0}+\lambda_{1} x \cos \psi-\frac{P}{\Omega} x \sin \psi-\frac{q}{\Omega} x \cos \psi}{x+\mu \sin \psi}\right) \sin \psi
$$

$$
-a_{0}\left(A_{0}-A_{1} \cos \psi-B_{1} \sin \psi-\frac{\mu a_{0} \cos \psi+\mu i+\lambda_{0}+\lambda_{1} x \cos \psi-\frac{P}{\Omega} x \sin \psi-\frac{q}{\Omega} x \cos \psi}{x+\mu \sin \psi} \cos \psi d \psi\right.
$$

$$
\text { Integrand }=\left[-\left(\mu a_{0} \cos \psi+\mu i+\lambda_{0}+\lambda_{1} x \cos \psi-\frac{P}{\Omega} x \sin \psi-\frac{q}{\Omega} x \cos \psi\right)^{\overline{2}}\right] \sin \psi
$$

$$
+(x+\mu \sin \psi)\left\{\left(\mu a_{0} \cos \psi+\mu i+\lambda_{0}+\lambda_{1} x \cos \psi-\frac{P}{\Omega} x \sin \psi-\frac{q}{\Omega} x \cos \psi\right)\left[\left(A_{0}-A_{1} \cos \psi-B_{1} \sin \psi\right)\right] \times \sin \psi\right]
$$

$$
\left.+a_{0}\left(\mu a_{0} \cos \psi+\mu i+\lambda_{0}+\lambda_{1} x \cos \psi-\frac{P}{\Omega} x \sin \psi-\frac{q}{\Omega} x \cos \psi\right) \cos \psi\right\}
$$

$$
+\left(x^{2}+2 \mu x \sin \psi+\mu^{2} \sin ^{2} \psi\right)\left[\frac{\delta}{a} \sin \psi-a_{0}\left(A_{0}-A_{1} \cos \psi-B_{1} \sin \psi\right) \cos \psi\right]
$$

$$
=\left[-\left(\mu^{2} a_{0} \cos ^{2} \psi+\mu^{2} i^{2}+\lambda_{0}^{2}+\lambda_{1}^{2} x^{2} \cos ^{2} \psi+\frac{p^{2}}{\Omega^{2}} x^{2} \sin ^{2} \psi+\frac{q^{2}}{\Omega^{2}} x^{2} \cos ^{2} \psi+2 \mu^{2} a_{0} i \cos \psi\right.\right.
$$

$$
+2 \mu a_{0} \lambda_{0} \cos \psi
$$

$$
\begin{aligned}
+2 \lambda_{1} \mu a_{0} x \cos ^{2} \psi-2 \mu a_{0} \frac{P}{\Omega} x \sin \psi \cos \psi & -2 \mu a_{0}
\end{aligned} \begin{aligned}
& \frac{q}{\Omega} \cos { }^{2} \psi+2 \mu i \lambda_{0}+2 \mu i \lambda_{1} x \cos \psi \\
& -2 \mu i \frac{P}{\Omega} x \sin \psi
\end{aligned}
$$

$$
\begin{array}{r}
-2 \mu i \frac{q}{\Omega} x \cos \psi+2 \lambda_{0} \lambda_{1} x \cos \psi-2 \lambda_{0} \frac{P}{\Omega} x \sin \psi-2 \lambda_{0} \frac{q}{\Omega} x \cos \psi-2 \lambda_{1} \underline{P} x^{2} \sin \psi \cos \psi \\
\left.-2 \lambda_{1} \frac{q}{\Omega^{2}} \cos ^{2} \psi+\frac{P q^{2}}{\Omega^{2}} \sin \psi \cos \psi\right] \sin \psi
\end{array}
$$

$$
+\left(x+\mu \sin _{\psi}\right)\left\{\left(\mu i+\lambda_{0}\right)\left(A_{0} \sin \psi-A_{1} \sin \psi \cos \psi-B_{1} \sin ^{2} \psi\right)+\left(\lambda_{1} x+\mu a_{0}-\frac{q}{\Omega} x\right)\right.
$$

$$
\left(A_{0} \sin \psi \cos \psi-A_{1} \sin \psi \cos ^{2} \psi+B_{1} \sin ^{2} \psi \cos \psi\right)
$$

$$
\begin{aligned}
-\frac{P}{\Omega} x\left(A_{0} \sin ^{2} \psi-A_{1} \sin ^{2} \psi \cos -B_{1} \sin ^{3} \psi\right) & +\mu^{2} a_{0} \cos ^{2} \psi+\mu i a_{0} \cos \psi+a_{0} \lambda_{0} \cos \psi \\
& +a_{0} \lambda_{1} x \cos \psi-\frac{a_{0} P}{\Omega} x \sin \psi \cos \psi-\frac{a_{0} q}{\Omega} x \cos \psi
\end{aligned}
$$

$+\left(x^{2}+2 \mu x \sin \psi+\mu^{2} \sin ^{2} \psi\right)\left(\frac{\delta}{a} \sin \psi-a_{0} A_{0} \cos \psi+a_{0} A_{1} \cos ^{2} \psi+a_{0} B_{1} \sin \psi \cos \psi\right)$
$=\sin \psi\left(-\mu^{2} i^{2}-\lambda_{0}^{2}-2 \mu i \lambda_{0}+\mu i A_{0} x+\lambda_{0} A_{0} x+\frac{\delta}{a} x^{2}\right)+\cos \psi\left(a_{0} \mu i x+a_{0} \lambda_{0} x-a_{0} A_{0} x^{2}\right)$
$+\sin \psi \cos \psi\left(-2 \mu^{2} a_{0} i-2 \mu a_{0} \lambda_{0}-2 \mu i \lambda_{1} x+2 \mu i \frac{q}{\Omega} x-2 \lambda_{0} \lambda_{1} x+2 \lambda_{0} \frac{q}{\Omega} x-\mu i A_{1} x-\lambda_{0} A_{1} x\right.$
$\left.+A_{0} \lambda_{1} x^{2}+A_{0} \frac{q}{\Omega} x^{2}+\mu a_{0} A_{0} x+a_{0} \frac{P}{\Omega} x^{2}+\mu^{2} i a_{0}+\mu \lambda_{0} a_{0}+a_{0} B_{1} x^{2}-2 \mu_{0} a_{0} A_{0} x\right)$
$+\sin ^{2} \psi\left(2 \mu i \frac{P}{\Omega} x+2 \lambda_{0} \frac{P}{\Omega} x-B_{1} \mu i x-B_{1} \lambda_{0} x-\frac{P}{\Omega} A_{0} x^{2}+A_{0} \mu^{2} i+A_{0} \mu \lambda_{0}+2 \frac{\delta}{a} \mu x\right)$
$+\cos ^{2} \psi\left(\mu a_{0}^{2} x+a_{0} \lambda_{1} x^{2}-a_{0} \frac{q}{\Omega} x^{2}+a_{0} A_{1} x^{2}\right)+\sin ^{2} \psi \cos \psi\left(2 \mu a_{0} \frac{P}{\Omega} x+2 \lambda_{1} \frac{P}{\Omega} x-\frac{P q}{\Omega^{2}} x^{2}\right.$
$-\lambda_{1} B_{1} x^{2}+B_{1} \frac{q}{\Omega} x^{2}-\mu a_{0} B_{1} x+A_{1} \frac{P}{\Omega} x^{2}-\mu^{2} A_{1} i-\mu A_{1} \lambda_{0}+\mu A_{0} \lambda_{1} x-\mu A_{0} \frac{q}{\Omega} x+\mu \mu_{0}^{2} a_{0}$
$\left.-\mu a_{0} \frac{P}{\Omega} x+2 \mu a_{0} B_{1} x-\mu^{2} a_{0} A_{0}\right)+\sin \psi \cos ^{2} \psi\left(-\mu^{2} a_{0}^{2}-\lambda_{1}^{2} x^{2}-\frac{a^{2}}{\Omega^{2}} x^{2}-2 \lambda_{1} \mu_{0} x+2 \mu a_{0} \frac{a}{\Omega} x\right.$
$\left.+2 \lambda_{1} \frac{q}{\Omega} x^{2}-\lambda_{1} A_{1} x^{2}+A_{1} \frac{q}{\Omega} x^{2}-\mu a_{0} A_{1} x+\mu{ }^{2} a_{0}^{2}+\mu a_{0} \lambda_{1} x-\mu a_{0} \frac{q}{\Omega} x+2 \mu a_{0} A_{1} x\right)$
$+\sin ^{2} \psi \cos ^{2} \psi\left(-\mu \lambda_{1} A_{1} x+\mu A_{1} \frac{q}{\Omega} x-\mu^{2} a_{0} A_{1}+\mu^{2} a_{0} A_{1}\right)+\sin ^{3} \psi \cos \psi\left(-\mu B_{1} \lambda_{1} x+\mu B_{1} \frac{q}{\Omega} x\right.$
$\left.+\mu A_{1} \frac{P}{\Omega} x-\mu^{2} a_{0} B_{1}+\mu^{2} a_{0} B_{1}\right)+\sin ^{3} \psi\left(-\frac{P^{2}}{\Omega^{2}} x^{2}+B_{1} \frac{P}{\Omega} x^{2}-\mu{ }^{2} B_{1} i-\mu \lambda_{0} B_{1}-\mu A_{0} \frac{P}{\Omega} x+\mu^{2} \frac{\delta}{a}\right)$
$+\mu B_{1} \frac{P}{\Omega} x \sin ^{4} \psi$
Now
$\int_{0}^{2 \pi}\left(\cos \theta, \sin \theta, \sin \theta \cos \theta, \sin ^{2} \theta \cos \theta, \cos ^{2} \theta \sin \theta, \sin ^{3} \theta, \sin ^{3} \theta \cos \theta\right) d \theta=0$
$\int_{0}^{2 \pi}\left(\sin ^{2} \theta, \cos ^{2} \theta\right) d \theta=\pi, \int_{0}^{2 \pi} \sin ^{2} \theta \cdot \cos ^{2} \theta d \theta=\frac{\pi}{4}, \int_{0}^{2 \pi} \sin ^{4} \theta d \theta=\frac{3 \pi}{4}$

$$
\begin{aligned}
& \text { Therefore } \\
& C_{H}=\frac{a \sigma}{2} \int_{0}^{1}\left\{\mu i \frac{P}{\Omega} x+\lambda_{0} \frac{P}{\Omega} x-\frac{B_{1}}{2} \mu i x-\frac{B_{1}}{2} \lambda_{0} x-\frac{P}{2 \Omega} A_{0} x^{2}+\frac{A_{0} \mu^{2} i}{2}+\frac{\mu A_{0} \lambda_{0}}{2}\right. \\
&+\frac{\delta}{a} \mu x+\frac{\mu a_{0}^{2} x}{2}+\frac{a_{0} \lambda_{1} x^{2}}{2}-\frac{a_{0} q x^{2}}{2 \Omega}+\frac{a_{0}}{2} A_{1} x^{2}-\frac{\mu \lambda_{1} \Lambda_{1} x}{8}+\mu A_{1} \frac{q}{8 \Omega} x \\
&\left.+\frac{3}{8} \mu B_{1} \frac{P}{\Omega} x\right\} d x
\end{aligned}
$$

$$
\begin{aligned}
& \text { Finalıy } \\
& \begin{aligned}
\mathrm{C}_{\mathrm{H}}= & \frac{a \sigma}{2}\left[\frac{\delta \mu}{2 a}\right.
\end{aligned}+\frac{\mu A_{0}}{2}\left(\mu i+\frac{2}{3} \lambda_{T}\right)-\frac{B_{1}}{4}\left(\mu i+\frac{5}{6} \lambda_{T}\right)+\frac{A_{1} a_{0}}{6}+\frac{\mu a_{0}^{2}}{4} \\
&\left.+\frac{a_{0} \lambda_{1}}{6}-\frac{\mu A_{1} \lambda_{1}}{16}+\frac{P}{2 \Omega}\left(\mu i+\frac{5}{6} \lambda_{T}-\frac{A_{0}}{3}+\frac{3}{8} \mu B_{1}\right)\right] .
\end{aligned}
$$

APPETNDX IV

$\underline{\text { Derivation of } C_{Y S} \text { for Non-Uniforn Induced Velocity }}$

$$
Y_{S}=\frac{b}{2 \pi} \int_{0}^{1} d x \int_{0}^{2 \pi} \frac{d Y_{S}}{d x} \cdot d \psi
$$

From (4-1), (4-4) and (9-2)
$C_{Y S}=-\frac{2 \sigma}{4 \pi} \int_{0}^{1} d x \int_{0}^{2 \pi}(x+\mu \sin \psi)^{2}\left\{a_{0}\left(A_{0}-\Lambda_{1} \cos \psi-B_{1} \sin \psi\right.\right.$
$\left.+\frac{-\frac{\mu a_{0} \cos \psi+\mu i+\lambda_{0}+\lambda_{1} x \cos \psi-\frac{P}{\Omega} x \sin \psi-\frac{q}{2} \cos \psi}{2}+\left(\frac{\mu a_{0} \cos \psi+\mu i+\lambda_{0}+\lambda_{1} x \cos \psi-\frac{P}{\Omega} x \sin \psi-\mu \sin \psi}{x \cos \psi}\right) \sin \psi}{x+\mu \sin \psi}\right)$

$$
\left.\left(A_{0}-A_{1} \cos \psi-B_{1} \sin \psi-\frac{\mu a_{0} \cos \psi+\mu i+\lambda_{0}+\lambda_{1} x \cos \psi-\frac{P}{\Omega} x \sin \psi-\frac{q}{\Omega} x \cos \psi}{x+\mu \sin \psi}\right) \cos \psi\right] d \psi
$$

Integrand $=-\left(\mu a_{0} \cos \psi+\mu i+\lambda_{0}+\lambda_{1} x \cos \psi-\frac{P}{\Omega} x \sin \psi-\frac{q}{\Omega} x \cos \psi\right)^{2} \cos \psi$
$+(x+\mu \sin \psi)\left[-a_{0}\left(\mu a_{0} \cos \psi+\mu i+\lambda_{0}+\lambda_{1} x \cos \psi-\frac{P}{\Omega} x \sin \psi-\frac{q}{\Omega} x \cos \right) \sin \psi\right.$
$\left.+\left(\mu a_{0} \cos \psi+\mu i+\lambda_{0}+\lambda_{1} x \cos \psi-\frac{P}{\Omega} x \sin \psi-\frac{q}{\Omega} x \cos \psi\right)\left(A_{0}-A_{1} \cos \psi-B_{1} \sin \psi\right) \cos \psi\right]$
$+\left(x^{2}+2 \mu x \sin \psi+\mu^{2} \sin ^{2} \psi a_{0}\left(A_{0}-A_{1} \cos \psi-B_{1} \sin \psi\right) \sin \psi+\frac{\delta}{a} \cos \psi\right]$
$=-\left(\mu_{0}^{2} a_{0}^{2} \cos ^{2} \psi+\mu^{2} i^{2}+\lambda_{0}^{2}+\lambda_{1}^{2} x^{2} \cos ^{2} \psi+\frac{p^{2}}{\Omega} x^{2} \sin ^{2} \psi+\frac{q^{2}}{\Omega^{2}} x^{2} \cos ^{2} \psi+2 \mu^{2} a_{0} i \cos \psi\right.$

$$
+2 \mu a_{0} \lambda_{0} \cos \psi
$$

$+2 \lambda_{1} \mu a_{0} x \cos ^{2} \psi-2 \mu a_{0} \frac{P}{\Omega} x \sin \psi \cos \psi-2 \mu a_{0} \frac{q}{\Omega} x \cos ^{2} \psi+2 \mu i \lambda_{0}+2 \mu i \lambda_{1} x \cos \psi-2 \mu i \frac{P}{\Omega} x \sin \psi$ $-2 \mu i \frac{q}{\Omega} x \cos \psi+2 \lambda_{0} \lambda_{1} x \cos \psi-2 \lambda_{0} \frac{P}{\Omega} x \sin \psi-2 \lambda_{\circ} \frac{q}{\Omega} x \cos \psi-2 \lambda_{1} \frac{P}{\Omega} x^{2} \sin \psi \cos \psi$ $\left.-2 \lambda_{1} \frac{g}{\Omega} x^{2} \cos ^{2} \psi+\frac{P q}{\Omega^{2}} \sin \psi \cos \psi\right] \cos \psi$

$$
\begin{aligned}
& +(x+\mu \sin \psi)\left\{-a_{0} \mu \sin \psi \cos \psi-a_{0} \mu \sin \psi-a_{0} \lambda_{0} \sin \psi-a_{0} \lambda_{1} x \cos \psi \sin \psi\right. \\
& +a_{0} \frac{P}{\Omega} x \sin ^{2} \psi+a_{0} \frac{q}{\Omega} x \sin \psi \cos \psi \\
& +\left(\mu i+\lambda_{0}\right)\left(A_{0} \cos \psi-A_{1} \cos ^{2} \psi-B_{1} \sin \psi \cos \psi\right)+\left(\mu a_{0}+\lambda_{1} x-\frac{q}{\Omega} x\right)\left(A_{0} \cos ^{2} \psi-A_{1} \sin \psi \cos ^{2} \psi\right. \\
& \left.-B_{1} \sin ^{2} \psi \cos \right) \\
& -\frac{P}{\Omega} x\left(\Lambda_{0} \sin \psi \cos \psi-A_{1} \sin \psi \cos ^{2} \psi-B_{1} \sin ^{2} \psi \cos \psi\right)+\left(x^{2}+2 \mu x \sin \psi+\mu^{2} \sin ^{2} \psi\right) \\
& \left(a_{0} A_{0} \sin \psi-a_{0} A_{1} \sin \psi \cos \psi-a_{0} B_{1} \sin ^{2} \psi+\frac{\delta}{a} \cos \psi\right) \\
& =\sin \psi\left(-a_{0} \mu i x-a_{0} \lambda_{0} x+x^{2} a_{0} A_{0}\right)+\cos \psi\left(-\mu^{2} i^{2}-\lambda_{0}^{2}-2 \mu i \lambda_{0}+\mu i A_{0} x+\lambda_{0} A_{0} x+x^{2} \frac{\delta}{a}\right) \\
& +\sin \psi \cos \psi\left(2 \mu i \frac{P}{\Omega} x\right. \\
& \left.+2 \lambda_{0} \stackrel{P_{0}}{\Omega_{2}-\mu_{a_{0}} x-a_{0} \lambda_{1} x^{2}+a_{0}} \frac{q}{\Omega} x^{2}-\mu i B_{1} x-\lambda_{0} B_{1} x-\Lambda_{0} \frac{P_{0}}{\Omega^{2}}+\mu^{2} i \Lambda_{0}+\mu \lambda_{0} \Lambda_{0}-a_{0} A_{1} x^{2}+2 \mu \frac{\delta}{a} x^{2}\right) \\
& +\sin ^{2} \psi\left(a_{0} \frac{P}{\Omega} x^{2}-\mu^{2} a_{0} i-\mu a_{0} \lambda_{0}-a_{0} B_{1} x^{2}+2 \mu a_{0} A_{0} x\right)+\cos ^{2} \psi\left(-2 \mu^{2} a_{0} i-2 \mu a_{0} \lambda_{0}-2 \mu i \lambda_{1} x\right. \\
& \left.+2 \mu i \frac{q}{\Omega} x-2 \lambda_{0} \lambda_{1} x+2 \lambda_{0} \frac{q}{\Omega} x-\mu i A_{1} x-\lambda_{0} A_{1} x+\mu_{0} L_{0} x \mu_{1} \lambda_{0} x^{2}-A_{0} \frac{q}{\Omega} x^{2}\right) \\
& 4 \sin ^{2} \psi \cos \psi\left(-\frac{P^{2}}{\Omega^{2}} x^{2}+B_{1} \frac{P}{\Omega} x^{2}-2 \mu a_{0} A_{1} x+\mu^{2} \frac{\delta}{a}-\mu^{2} a_{0}-\mu_{a_{0}} \lambda_{x_{+}} \mu_{a_{0}} \frac{q}{\Omega} x-\mu^{2} i B_{1}\right. \\
& \left.-\mu \lambda_{0} B_{1}-\mu A_{0} \frac{P}{\Omega} x\right)
\end{aligned}
$$

$+\cos ^{2} \psi \sin \psi\left(2 \mu a_{0} \frac{{ }_{0}}{P^{2}} x+2 \lambda_{1} \frac{P}{\Omega} x^{2}-\frac{P q}{\Omega^{2}} x^{2}-\mu a_{0} B_{1} x-\lambda_{1} B_{1} x^{2}+B_{1} \frac{q}{\Omega} x^{2}+A_{1} \frac{P}{\Omega} x^{2}\right.$

$$
-\mu^{2} \dot{-} A_{1}-\mu \lambda_{0} A_{1}
$$

$\left.4 \mu_{2}^{2} a_{0} A_{0}+\mu \lambda_{1} A_{0} x-\mu A_{0} \frac{q}{\Omega} x\right)+\sin _{3}^{3} \psi\left(\mu_{0} \frac{P}{\Omega} x-2 \mu a_{0} B_{1} x+\mu_{2}^{2} a_{0} A_{0}\right)$
$+\cos ^{3} \psi\left(-\mu^{2} a_{0}-\lambda_{1}^{2} x^{2}-\frac{q^{2}}{\Omega^{2}} x^{2}-2 \lambda_{1} \mu a_{0} x+2 \mu a_{0} \frac{q}{\Omega} x+2 \lambda_{1} \frac{q}{\Omega} x^{2}-\mu \Lambda_{1} a_{0} x-\lambda_{1} A_{1} x^{2}\right.$ $+\Lambda_{1} \frac{q}{\Omega} x^{2}$
$+\sin ^{2} \psi \cos ^{2} \psi\left(-\mu^{2} a_{0} B_{1}-\mu \lambda_{1} B_{1} x+\mu B_{1} \frac{q}{\Omega} x \mu A_{1} \frac{P}{\Omega} x\right)+\sin \psi \cos \psi\left(\mu B_{1} \frac{P}{\Omega} x-\mu^{2} a_{0} \Lambda_{1}\right)$
$+\sin \psi \cos ^{3} \psi\left(-\mu^{2} a_{0} A_{1}-\mu \lambda_{1} \Lambda_{1} x+\mu A_{1} q_{x}\right)-\mu^{2} a_{0} B_{1} \sin ^{4} \psi$
Now $\int_{0}^{2 \pi}\left(\cos \theta, \sin \theta, \sin \theta \cos \theta, \sin ^{2} \theta \cos \theta, \cos ^{3} \theta \sin \theta, \sin ^{3} \theta, \cos ^{3} \theta\right.$,

$$
\int_{0}^{2 \pi}\left(\sin ^{2} \theta, \cos ^{2} \theta\right) d \theta=\pi, \quad \int_{0}^{2 \pi} \sin ^{2} \theta \cos ^{2} \theta d \theta=\frac{\pi}{4}, \int_{0}^{2 \pi} \sin ^{4} \theta d \theta=\frac{3 \pi}{4}
$$

Therefore

$$
\begin{aligned}
C_{Y S}= & -\frac{a \sigma}{4} \int_{0}^{1}\left\{\frac{a_{0} P}{\Omega} x^{2}-\mu^{2} a_{0} i-\mu a_{0} \lambda_{0}-a_{0} B_{1} x+2 \mu a_{0} A_{0} x-2 \mu^{2} a_{0} i-2 \mu a_{0} \lambda_{0}\right. \\
& -2 \mu i \lambda_{1} x+2 \mu i \frac{q}{\Omega} x-2 \lambda_{0} \lambda_{1} x+2 \lambda_{0} \frac{q}{\Omega} x-\mu i A_{1} x-\lambda_{0} A_{1} x+\mu a_{0} A_{0} x+\lambda_{1} A_{0} x^{2} \\
& \left.-A_{0} \frac{q}{\Omega} x^{2}-\mu^{2} a_{0} \frac{B_{1}}{4}-\mu \lambda_{1} B_{1} \frac{x}{4}+\mu \frac{B_{1}}{4} \frac{q}{\Omega} x+\frac{\mu \lambda_{1} P x}{4}-\frac{3}{4} \mu^{2} a_{0} B_{1}\right\} d x
\end{aligned}
$$

Finolly

$$
\begin{array}{r}
C_{Y S}=\frac{a \sigma}{2}\left\{\frac{a_{0}}{2}\left[3 \mu^{2} i+2 \mu \lambda_{T}+B_{1}\left(\frac{1}{3}+\mu^{2}\right)-\frac{3}{2} \mu A_{0}\right]+\frac{\lambda_{1}}{2}\left(\mu i+\frac{5}{6} \lambda_{T T}\right)\right. \\
+\frac{A_{1}}{4}\left(\mu i+\frac{5}{6} \lambda_{T}\right)-\frac{\lambda_{1} A_{0}}{6}+\frac{\mu B_{1} \lambda_{1}}{16}-\frac{P}{2 \Omega}\left(\frac{a_{0}}{3}+\frac{\mu A_{1}}{8}\right)-\frac{q}{2 \Omega} \\
\left.\left(\mu i+\frac{5}{6} \lambda_{T}-\frac{A_{0}}{3}+\frac{\mu B_{1}}{8}\right)\right\} .
\end{array}
$$

$$
-40-
$$

AFPEMDIX V

Data. Used in Computing Force Coefficients, Flapping ingles and Rotor Derivatives

The values of the rotor derivatives etc. were calculated for a typical single rotor helicopter, the Sikorsky HNS-1 (Army YR-AB). The required data was obtained from Ref. 13. The values of A_{0} and i used were the actual measured flight values given in this reference. These values were extrapolated over the low forward speed range (Fig. 6). This procedure is considered satisfactory since it is only necessery to have these values of the right order for purposes of showing the effect of non-uniform induced velocity.

Other relevant data is listed below.
$C_{T}=0.0055$
$\Omega=225$ R.P. $\mathrm{Mi}_{\text {. }}$
$\gamma=12.1$
$\sigma=0.06=\frac{b c}{\pi R}$ at 0.75 R
Blade aerofoil section $N \cdot A \cdot C \cdot A \cdot 0012\left\{\begin{array}{l}a=5.73 / \mathrm{rad} \\ \delta=0.006\end{array}\right.$

FIG. I. ROTOR DISC AXES

FIG. 2. ROTOR DISC FORCES

FIG 3 EFFECT OF CHANGES IN LONGITUDINAL AND LATERAL FLAPPING

FIG. 4.. INDUCED VELOCITY IN HOVERING

FIG $7 \mathrm{a}_{\circ}$ vs μ

FIG 8 a.vs u

FIG $9 b_{1}$ vs u

FIG $12 x_{8}$ vs μ

FIG $13 \quad y_{p} v_{s} \mu$

FIG $143_{8}{ }^{2}$ v μ

FIG 15 $3 u$ vs μ

FIG $16 x_{\mu v s}$

FIG. 18. x_{w} vsu

