Coin Peport MO. 109 October 1956.

THECOLLEGHOFAEROHAUTICS

CRAMPIRID

A Theoretical and Erperimental study of the Boundary Layer

$$
\text { Flow on a } 45^{\circ} \text { Swept Back Wing }
$$

by .
F. in. Burrows, D.C.Ae.

SURINRY

In. Wis papar on scoount is prosented of a thooreticol and experimontal study made in relation to the bounciary layer flow on a 4.5° siert bock wing. Particuler attention is given to the onsct of bumacry layer instability and its association with critical values of cocundary flow Reynulds zurbers as dofined by Owon and Randall (Ren, 17).
sotral aspects of the wroblen are considered, each in some dotail, an scme intoresting results both theoretical and experinental are proconted.

Zo satisfy the need for tests at Reynolds nurbers compatible with Rull. scole, the experinents wore perfomed, in flight, on a lorge whemored, untwisted, 45° swopt back he If wing mounted as a dorsal the pon the wid uppor fuselugo of on ivro Lanonster (D.i.474), the
 62. Loot.

Curos aro presonted giving dotails of the mossured distributions 0f atatic pressure, chordwise loadings, and the boundary leyer flow, the Intter in extgnsive detail, for wing geonetric incidences in the renge $0^{\circ}-10^{\circ}$, upper and lover surfaces, and for tost Reynolds muborsin the range defincd obove.

Yo laninar flow was found to exist on cithor the upper or lower surface of the wing for Roynolds numbers at, and in excess of 1.55 x 10^{6} per foot thus showing the noed for sone form of boundory layer control to suppress the effects of sweep instability.

COMPENMS

Page
Freface 1
Iist of Symbols 3
i. INPRODUCTION 5
1.1. Turpose of this mork 5
1.2. Range and Extent of the Investigations 5
1.3. Linitations of Present Work 6
1.4. Outline of the General Problen 7
1.5. Final Introductory Note 9
2. TETORETICII CONSIDERATIONS 10
2.1. Choice of wing Section 10
2.2. The Co-ordinate Systoms Used 11
2.3. Theoretical Distributions of Velocity and Pressure for the Sirept Back Wing 11
2.4. The Potentiol Flow Stremline over the Infinite Chotred ing 13
2.5. The Boundary Layer in relation to the External Strean Tinc 14
2.6. The Calculation of the Three Dimensional Boundary Layer in Steady Hlow 16
2.6.1. General notes 16
2.6.2. The boundary layer ct the loading edfe of the svept back wing 18
2.6.3. The boundary layor flow for a ${ }^{1}$ vodge' profile 19
2.7.Secondary Flow Volocity and ussociated Reynolds iumbers 20
2.8.Secondery Flow: Goneral Notes 21
3. EYए-TT ZNTN CONSTDERITIONS 23
3.1. Fut t-330 Test 1ethods 23
3. Choice uf Exmertmontol IIm. tochmílios ond ix.eodusco 24
4. FIFERTMMTI EOUIETBNT 25
4.1. The inceraft 25
4.2. The Prossure Plotting ilast 25
4.3. The I.ing and Installation 26
4.4. Instrumentation: The Finonoter and Recordine: Amparatus 27
4.5. Directional Yawneter 28
4.6. The Boundary Layor Combs and Transition Indicators 28
4.7. Pressure Ieads and Piping 29

THECOLLEGEOFAEROTAUTICS

A Theoretical and Experimental Study of the Boundary Layer

$$
\text { HIow on a } 4.5^{\circ} \text { Swept Back ving }
$$

by
F. in. Burrows, D.C.Ae.

SURTARY

In Wis papar an account is prosented of a thooretical and experimental sfudy made in relation to the bounciary layer flow on a 4.5° sregt back wing. Particular attention is givon to the onset of bountary layer instability and its association with critical values of secondary flow Reynulds wubbers as dofined by Owen and Randall (R02, 17).

Schonal aspects of the Zroblen are considered, each in some dotail, an sane intoresting results both theoretical and experinental are proconted.

Io satisfy tho need for tests at Roynolds nurbers compatible with full scole, the experinents wore pexfomed, in flight, on a lorge urtwored, untwisted, 45° swopt back helf wing mounted as a dorsal The won the mid uppor fuselugo of an ivco Lononster (D. . . 474), the
 1) Yout.

Curros aro presented giving details of the moasured distributions CI Btatic pressure, chordwise loadings, and the boundary leyer flow, the Intter in extgnsive detail, for wing gecnetric incidences in the renge $0^{\circ}-10^{\circ}$, upper and lover surfaces, and for tost Reynolds mubbersin the range defined obove.

Yo laninar flow vas found to exist on cithor the upper or lower surifce of the wing for Roynolds numbers at, ond in excess of 1.55 x 10^{6} per foot thus showing the noed for sone form of boundery layer control to suppress the effocts of sweep instability.

CONTENTS

Page
1
Ereface
3
List of Symbols
5
i. IMPRODUCMION 5
1.1. Eurpose of this work 5
1.2. Renge and Extent of the Investigations 6
1.3. Linitations of Present Work
7
7
1.4. Outline of the General Problon
1.4. Outline of the General Problon 9
2. THEOREMTCII CONSIDERATIONS 10
2.1. Choice of Wing Section 10
2.2. The Co-ordinate Systoms Used 11
2.3. Theoretical Distributions of Velocity and Pressure for the Sirept Back Wing 11
2.4. The Potential Flow Streanline over the Infinite Shosiod iling 13
2.5. The Boundary Layor in relation to the External Stream Jina 14
2.6. The Calculation of the Three Dimensional Boundary Layer in Steady Flow 16
2.6.1. General notes 16
2.6.2. The boundary layer at the loading edfee of the surept book ving 18
2,6.3. Tho boundary laycr flow for a 'trodge' profilo 19
2.7.Secondary Flow Volocity and associated Roynolds numbers 20
2.8.Secondery Flow: Goneral Notes 21
3. EYDET ENTI L CONSTDERITIONS 23
3.1. Guitrkle Test rethods 23
3.-. Choice of Exmertmontol Elon. Techicuos and Envevduco 24
4. TVERRI WMTL EOUIENTENT 25
4.1. The ijrcraft 25
4.2. The Pressure Plotting Fast 25
$\div 3$. The Iing and Installation 26
4.4. Instrumentation: The Fanometer and Recordinc Apporatus 27
4.5. Directional Yawmeter 28
4.6. The Boundary Layor Coribs and Transition Indicators 28
4.7. Pressure Leads and Piping 29

Pargo

5. DETATLS OF EXPERIIGNTS PERFORAGD 29
5.1. Choice of Test hititudes and Tirspecds 29
5.2. Measurenent of S.P.E.C. and Calibration of the Fuselage Flow Ficld 30
5.3. Incidonce Zoro-Daturn Setting of the Holf Wing 30
5.4. Fiossurenents of the Static Pressure Distribution over the Swept Back Half Winc 31
5.5. Flow Visualisation on using the 'Iuft Technique 31
5.6. Explorations of the Boundery Layer 31 31
6. PRESENTATION OF EXPERTIENTAL RESULIS 33
7. DISCUSSION OF THE EXIERTIENTAL RESULISS 33
7.1. Behaviour of the Aircraft and Equipment under Exporinental Conditions 33
7.2. Accuracy of Results 33
7.3. Distributions of Static Pressure 34 34
7.4. The Flow over the Ving: Tuf't Observations
7.4. The Flow over the Ving: Tuf't Observations 35 35
7.5. Boundary Layer Measurcinents 36
7.5.1. Vclocity profiles 36
7.5 .2 . Boundory layor transition 37
7.5.3. Displacoment thickness, momonturn thicknoss, and 38
shape poraneter voriation
shape poraneter voriation
7.6. The Critical Roynolas Murber for the Secondary Flow 38
8. CONCINSIONS 39
Tist of Reforences 41
Appendix I 4.5
Apperdix II 45
repor 10 IXI 50
irpendix IV 53
Tables I to III

PRERACS

The oxperimental progrmme of work discussed in this report wes mado possible by a Ministry of Supply Contract（M．o．S．6／Aircraft／ 9807／CB／6a）．

The experiments were performed during the early summer of 1956 ， following the design construction and installation of the required model and equipmont into the aircraft used as test vehicle （Jancaster P．A．474，）this work being almost entirely carried out at the College of Aeronautics．

To some extent the programme has been one of a previously untried nature，but the quality of the experimental results obtained would appear to suggest that the particular methods of test adopted might be more fully exploited in the future in order to facilitate aero－ dynamic investigations and explorations at Reynolds numbers compat－ ible with full scale，

The author is however awnere of the existence of some minor short－ comings in the details of the techniques omployed for the boundary layon axplorations，but sugcests that these are by no means as serious as might at first be supposed．Refinoments to these techniques， if considered necessary，might follow as logical developments．

The exporimental programme was completed in a comparativoly short lon．th of time，this boing mode possible by the enthusiusm and close suncret of a numbor of persons，all of whom the author would grate－ Thi．thank．Spooe considorations do not pomnit the presentation of a complete list of separately detailod reforences to all those dirsetly and indirectly involved，and in moking mention of but a few nomos the author implies roforences to all associates，

The piloting of the aircraft was performed in the main by lir．B．F． Russell and to a lesser extont by Wing Comander C．G．B．McClure，A。To．C． Ite uxeting skill exhibitcd by both pilots（assistod by G．Longland， ILA（ncincer）iri consistently and socuratoly roproducing the no．n expertnertal flight conditions，at all timos left nothing to be cusired，whilst the ready availability of the aircraft and its equiment：is to be attributed to Mr．H．W．Gover，Chief Aircraft Engineer，Mr．W．Abbott，Chiof aircraft Inspector，and their stoff。
The experiments were supervised by Mram，C．Wilson，A。 $\mathrm{H}_{\mathrm{o}} \mathrm{C}_{0}$ ，Scnior Lecturer in the Department of Flight，on whose experionce in the field of flight testing the author was allowod at all times freely to draw，whilst the laborious task of reduction of the experimental results to the required form was to a large extent porformed by Nr． J．Walton，who also flew with the author as on observer．
The design of the experimental wing and its installation was performed by Mr．A．MacDonald，working under the direction of Mr．A．F．Newell， Deputy Head of the Department of Aircroft Design．These designs received pre－filight approval from the Resident Technical Officer of

Abstract

$-2-$

Messrs. A。V. Roe Itt., Ianchoster. Helpful discussions with members of the staff of the Department of Acrodynamics are also gratefully acknowledged, as is the assistance of Mr. S.W. Ingham in performing numerical computations.

By close cooperation between all concemed it has been possible to perform the experiments as reported and it is hoped that these will form the basis for future but more elaborate work of this kind at the College of Acronautics, Cranfield.

ITSP OR SYRBOIS USED

OnIy the principal symbols used ore listed, other symbols beine aceinod as and where they occur in the toxt.
x, y, z, orthogonol cartosian coordinate systen (sce para. 2,2 and fig. 14)
x_{1}, y_{1}, z_{1}, orthogonal cartesion coordinate system
$X_{2}=J_{2}, Z_{2}$,
$\mathrm{u}, \mathrm{V}, \mathrm{w}$,
orthogonal curvilinear coorainate systen
velocity components in the boundory layer referred to $\mathrm{x}, \mathrm{y}, \mathrm{z}$
u_{1}, v_{1}, w_{1}, velocity components in the boundary layer referred to x_{1}, y_{1}, z_{4}
u_{2}, v_{2}, w_{2}, velocity components in the boundery layer referred to $\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}$
$\mathrm{q}(\mathrm{x}, \mathrm{y})$ potential flow veiocity at the wing surface in the plane x, y
$q_{1}\left(x_{1} v_{1}\right)$ potontiol flow velocity at the wing surfece in the plene $x_{1} y_{1}$
$\mathrm{U}, \mathrm{V}, \boldsymbol{H}$, etc. velocity components just outside the boundery layer along x, y, z, etc. (sufficos denote axes of referonco)
totol local velocity along stromline just outsido the boundary layer
E. , ζ_{4}^{-}, stremlino coordinete systen (see ficio 16)
$\theta_{2}=\frac{U_{2}\left(x_{2}\right)}{U_{2} \cos \Lambda}$
$U_{0} \quad$ velocity of the undisturbed strean
\therefore mazlo of smeerback (or shos.)
$\%$ = Ü sin A Wulodiv componont pousliol ut wing leading edgo
p locol static pressure
Do free stream static pressure
$C_{p}=\frac{P-P_{0}}{\frac{1}{2} P U_{0}^{2}} \quad$ static prossure coofficient
$\Delta C_{D}=C_{p_{L}}-C_{p_{U}} \quad \begin{gathered}\text { (I denotes lower surface of wing, } U \text { denotes upper } \\ \text { surface of wing }\end{gathered}$
R
Reynolds number (particular cases are separately denoted)
x
Sccondary flow Reynolds number air density strean geonetric incidence of wing
streanline curvature in the plane $x_{2} z_{2}\left(y_{2}=0\right)$ angle between the streamline and the axis X_{2}
wing chord measured porallel to the undisturbed
wing chord measured nomal to wing leading edge
boundary layer thickness (absolute physical volue)
$\varepsilon_{i}=\int_{0}^{\delta}\left(1-\frac{u}{U}\right) d y$ boundory layer displacement thickness
$\delta_{2}=\int_{0}^{\delta} \frac{u}{\tilde{U}}\left(1-\frac{u}{U}\right) d y \quad$ Boundaxy layer momentum thickness
$\delta_{3}=\frac{\delta_{1}}{\delta_{2}}$
shape paranoter

- 5 -

1。 ITMPODUJOIION

1.1 Purpose of this work

The reason for and purposo of this work was to furthor the study of the swopt wing boundary laycr, bogun by W.E. Gray (rof 28) with particular reforcnoc to the onset of boundary layor instability, and subsequont transition, and its association with "oritical" volues of the Reynolds number ascribed to the sccondary flow as defined by Owon and Randall (ren. 17)
Since the scale effoct is of prime importance in such a study, the idea of constructing the equipment and conducting an experiment at something approaching full scale Reynolds numbers was exploited, resulting in the tosting of a large model swept back half wing mounted as a dorsal fin upon the mid upper fusclage of an Avro Iancaster $\mathfrak{i t h}$.VII, the aircraft boing suitably adapted and modified to accormodate the necessary equipment.
By a. suiteble choice of both experimontal equipment and techniques, it has boen possible to make an cxtcnsive yet rapid exploratory survey of the boundry layor in this way for a number of conditions of Reynolds numbors and incidences, and a number of interesting results so obtained are to be discussod.

1.2. Egnco end Extent of the Investigations

The exporiments were perfomed on an untapered, untwisted, 45° Strept back half wing of genoral dimensions as given in figs. 3 \& 4, It will be notod frem fige.4. that tho wing was of unconventional section, and the vencons for this choice of soction are discussed in pura. 2.1.
The range of tho tests was to incluade measuroment of the static pressuace distribution over the model from the position of maximun thickness to the Iea ling cage for a Reynolds number range of from 0.88×10^{6} per foot to $1,92 \times 1.0^{6}$ per foot, and for a geometric incidence range of from $\alpha=0^{\circ}$ to $\alpha=10^{\circ}$, both uppor and Iowor surfaces boing considered.
Poundery Inyor velocity protilos wore moasured at three spanwise stations, Win the distrifutions of total hoal at, and noor to, the wing
 chorci exconding from near to tho lowding edge to the position of maximum thiclmess, and for selected values of Reynolds number and geometric incience in the ranges 0.88 to 1.92×10^{6} per foot and $\alpha=0^{\circ}-10^{0}$ rospoctively for both upper and lower surfaces.
Thooretionl considaration is giver to the boundary layor flow near to the leading edge of the infinite sheared wing at zero incidonce, the stendy boundary layer flow being calculated using the method of Prandtl (rof,19.) and Sears (ref. 20) for the spanvise flow and the Blasius series for the chordvise (normal to the leading edge) flow, the calculations being poriormed on the basis of both the theoretically and exporimentally derived velocity distribution for the section. Consideration is olso given to
the secondary flow occurring in the boundary. layer of a wedge shaped profile using the methods of Hartree (rcf.31) and Cooke (ref.32).
The experimental results quoted give details of the generol nature of the boundary layer flow found to exist on the wing, and summarising quite generally, show to the further support of already existing evidence (refs. 6, 26, 29) that without the application of some form of boundary layer control the possibility of maintaining rogions of laminar flom of any appreciable magnitude on either the uppor or lower surface of a swept back wing at full scale Reynolds numbers, is remote.

1.3. Limitations of Present Work

The investigation of the flow in tho boundary layer on a swept back wing by the methods of test with which we are to be concerned, leads to a number of problems which would not arise in the case of similar experiments conduc in a wind tunnel. The main difficulties arise from the fact that the bound leyer is essentially threc dinensional in cheracter and strictly speaking does not permit the use of techniques established for two dimensional flows for its measurement. For a dotailed and precise exploration a traversing mechanism with at least four degrees of freedom is required, and this need togethor with the problem of pilot fatigue which is very closely related to the satisfactory use of such reor in flight (soc para. 3.2.) loads to the adoption of more simple mothods for measurement.
Now the number and degree of the simplifications made to the oxperimontal techmiques will depend upon the general nature of the flow to be investiget ond upon the information so required. Hence if wo can distinguish two types of flow, the one in which three dimensional effects are knom to be o first ordor importence end which dorinitely requires a three dinensional tochnique for its moasurement, end the othor in which three dimensional effects are of lesser significance and which can be measured to a good firct approximation using simplified techniques, then if we concern ourselv with the latter we are in a position to make a number of useful measurement by methods which can be easily simply and rapidly applied in flight experim
For the work to be discussed it was observed from wool tuft observations th for certain regions on the wing a fairly wide range of wing incidence \sim sp onfigurutions oxistad in which three dimensional effocts coull be consider $0 s$ veing small, such on obscovation loing mace understonding the livits to which the flow directions as indicated by wool tufts could be intorpreted (ref.9). Consequently it was assumed that techniques for measurement of the boundary layer, strictly correct for the two dimensional case only, cot be applied in the above regions on the wing and which could be expected to yiold results accurate to a very good first order approximntion. (sce pare 3.2. for further details).

Such an assumption does however constitute a limitation which must be impos upon the interpretation and valiaity of the experimental results quoted and the reader should quite clearly understand that taken all in all these ress give only a general picture of the boundary layer on the swept beck wing.

It is positible that there were cases in which the effects of trensverse 110\% essumed greater significance thom has hore been assignec, but until such time as a great deal of effort has been expended in making more detailed and accurate measurements, then experimental results such as those quoted will be of volue with regard to the assessment of the swept wing boundrry layer.
As Iar as the theoretical work is concemed so little is lmom of the behnvicur of the swept wing boundary layer that for its coloulation we may only apply existing theories with some resexvation. By means of the Independence Principle however (ref.4.), calculations of the steady boundary layer flow over sufficiently short distances of the wing surface con be mado using existing methods ($0 . \mathrm{E}_{\mathrm{o}}$ ref. 20), and since the effcets of scocndary -1:. in which we are interested occur in the neighbourhood of the leading evec we may accordincly toke steps leading to results of interest. Such a proccdure does lead to approximations, and hence, wo must endeavour to make sure that these are both roasonably accurate and valid.
Thus with regard to the interpretation of both the theoretical and experimentel vesults quoted the reader should quite clonrly understond the limitations and assumptions which it has been found necossary to impose and make in this trentment of the problom. Thoy will accordingly bo detailod as and whon troy occur in the text.
1.4. Outline of the Generol Eroblem.

Although it is some time nom since the swept back wing wes introduced in Aroneft design, thoro is Iittle known as yot rolating to the characteristics of the strictly throe Zimonsional boundany layer associatod with this type of \#n. Fe can generolise by soying that aJ.thouch the conpressibility drag risc coecmponying tho attainment of the eritionl hach number can be successfully delayed by using a wing of swept planfom, othor phenonens are lmown to cocur winch affect the boundaxy layer flow over the wing to such an extent that the skin friction and hence profile dreg bcoome increased to the dotriment of the low spoed charactoristics. By low speed characteristics we do of course make reforonce to spoeds below that range in which compusuaibility effocts must be tolcon into account, speeds which might

 Whi thtory a sound undorstanding and appreciation of the nature and mechanics of the flow in the boundary layer on the swept back wing at low speed may bo cotainea then it becones possible to give consideration to further associated problens such as the possibility of using devices incorporating distributed or discreetly applied boundary layor suction, for its improvement.
It was the observations of $W_{0} \mathcal{Z}_{0}$ Gray (ref. 28) that first brought to light the prosence of swept wing boundary layer phenomena of a special nature and his investigations at full scale Reynolds number suggested that for most flight conditions the possibility of mainteining any appreciable areas of Inminar flow upon the upper surface of a swept back wing might be more
then somewhat remote. Gray's observations (ref.33) of the striations occurring in the laminar boundory layer above certain values of Reynolds numbor (subsequently to become termed critical Reynolds numbors) were to provide in subsequent years an experimentally determined basis for more elaborate studies of the flow problems of the three dimensional boundryy layer with special reference to its stability. The trend in this direction was towards a theoretical investigation of the effect of small perturbetions of the type $u(x, y, z) e^{i \lambda}$. , (where λ is in general complex and dopendent on timeiupon the equations of motion for steady flow in the three dimensionnl boundary layer. These investigations performed by Owen and Randall and by Stuart (refs. 16, 17.) have quite clearly show that undor certain conditions of the flow just outside the boundary layer we can expect the development of systems of vortices, (of a type similar to thet considered by Gortler. in a study of the boundary layer flow over a concave surface), within the boundary layer itself, which, for certain external flow conditions tend to result in a drastic change over from lominar to turbulent flow occurring. The vortex formation to be expected differs from the usual Gactier formation in that the rotation of the flow about each vortex axis, is in the some sense (ref: 17) as compred with the opposite rotation of adjacont vortices which occur in the flow over concave surfaces.
The alignment of the axes of the vortices is such that they are vory nearly parallel to the strem lines at the outor edge of the boundary layer and ireil downstrem as show in fif. 16 a . It is due to the presonco of such a system of vortices that striations may be observed in the surface patterm on c. swept wing when making liquid film studies of the boundnyy layer flow, the spacing of the striations comesponding to the spacing of the vortices on more partioulerly to one disturbance wavelongth (ref. 17.).
The theoretion 1 studies of Stuact and Owen and Rendall showed that whilst for steady boundary layer flow in three dimensions the independence principle may be applied, in the case of the disturbed flow there is no longer an independence of the main and spenwise flows and the study of the disturbences resolves itself into an eigen value problem for the compounded motion.
Following the initiation of these preliminary idoas on the cause and offoct of svent wing boundery layer instability a number of exporiments have been zonntice thpovice furthur dota (rotis. 6,29). These experimonts hove in cuacel provicied inform tion of great value but perhaps the most noticcable fecture of all was the surprising result, obtained from both theoretical and experimental consideration, ($0.8 \cdot$ ref. 29) that an increase of inoidence or Poynolds number, the latter to boyond values Rorit. is accompanied by boundary layer instability of considerable intensity giving rise to rapid formard movements of the transition fronts on the lower surface of a swopt back wing. Similor results in flight experiments were also observed by Sillen and Burrows (ref. 26.).
Fith regard to the flow conditions on the lower surface, the formord movement of the transition fronts occurring with incrase of incidence is of course contrary to what would normally be expected for wings of zero sweep
on which favourable pressure eradicnts cxisted, and it is here thet the true significance of the possible consequences of a threo aimencionsl boundary layer flow is illustratod. Thet such a phonotionon con cocur in the presence of favcurcble prossure gradients clso gives scme idee cी the magnitude of the destabilising influence.
The root of the problem moy be found in tho flow conditions are the neas Cr the wing as it is in this region that for both unerer and 2 wore sumpsese the curvature of the stroom linos just outside tho bouncory leyen is Isere. If we resolve the stcady boundery laycr flow into components along and rormi to this streamline, we find that whilst the componont distribution of volocity elong the streamline is well craerca, the component distribution normal to the strcamlinc contains a point of inflexion (sce firg.16.) the velocity of this scoondary flow reaching a moximum at some fraction ($i .0 .0 / \delta<1$) of the boundary layer thickness from the wing surface. Owen ond Rorzi-11 have zut forvare sound physicel orguments for the existence of this type fillow which have beon strongly substontiated by coloulation.
Thus given the existence of such $X l o w$ conditions we cre further led to suppose ($\mathrm{e} . \mathrm{B}$. ref. 34) that since this secondory flow profilo contains a point of inflexion then for values of sccondary flow Reynolds lumbor x ecove the critical it is inherently unstable to the effect of empll disturtonces, such a supposition following on noturally from a study of the flow in lariner wes.
We can therefore argue to show that since the secondary flow proifile deponds upon the local streamine curvature, (just cutside the bcundary layer.) End the magnituce of the local velocity, it in tum depends upon the Eisitribution ce velocity along the spen and along the chord (normal to the lencing edige) which again and in themselves depend upon the nose radius of curvature ane upen the angle of sweep.
Since due to the magnitude of the secondory flow Reymolds number required for instability to occur, the general effect on the swopt wing boundnry layer is one of full scale then it is only by systematic tosts at something approaching or even at full scale (c.g. Gray's experiments) that we can hope to obtain further experimental information to meve fcr a bettor understending of the behaviour of the swept wing boundary layer, and it was thus to tris and thet the experiment to be discussed was directed.

1.5. Finei Introductory note.

Tho work presented is essentially divided into two sections: cne devoted to a theorctical discussion of the problem, the other to oxperimertol
considerotions etc. In genorol, only results are quoted in the text, the dotails of their ecrivation being roleçated to appondiecs to winich attentice is drain as and where necossery.
2. Thocretion Consicerntions.

2.1. Choice of Jing Section.

The three dimensionsl boundray layer instability phenomen in which we are interested requires a study of the flow over and near to the leading edge of the wing at something in the region of full scale Reynolas numbers for an understanding of its essential detrils. Consequently if we suppose that we can simulate the flow conditions in this region by using a ropresentative or effective wing section hevine a forcshortened trailing odge rithout so incurring any undesirable effects in the genoral flow over the wing, then ideally we need only concerm oursclves with the flow over the formard jortion of such a representative ving (i.e. from the position of moximum thickness to the leading edge) in making our study of the boundary lajer. Moreover, when considered in the absence of sweep instability, the boundary layer flow characteristics depend upon the Reynolds number refermed to the distance from the stagnation point (two dimensional case) or line (three dimensionel case) to the plane considcred, and so in attempting to reduce tho effects of scale to a minimum we ondeavour to construct our test model with the largest possill dimensions consistont with the experimental facilities available.

The acrofoil soction choson for this exporinontel work is shom in fix. 4 . and was intended to form a compromise betweon the above two fectors. It was made up of two semi ellipses, one of which constituted a faired or foreshortencl trailing edge, tho other comosponding to the londing odge portion of a 10, thickness to chord ratio acrofoil of some 130" chord (monsured in the froe strom direction) . This 10\% thicknoss to chord ratio, $130^{\circ 1}$ chori corofcil
 this section that the representation, by doublc cllipse and partinl ciord, wos directod. Tho wing section usod we shell refer to as the "acturl" soction.

By the use of a foreshortened or faired trailing edge the maximun test Reynolds Nualvor, basch on the longth betwoen the leading edge and tho position of moximum thicknoss (which for wines of conventional section corresponds to the distance to moximum suction at zowo incidonce) my be obtained for a wing of relutivoly mall wos wh which whem ot incidence ne thus providing lift Wolla provile socoptolle conditions with womel to tho dircraft rusulage design load limitations and also from the point of view of aircraft hending in flight.

It micht be argued that in using what really amounts to a "bluff" trailing edge some difficulties might be encountered due to woke instability, but as we shall see loter, experimentel evidence has show (pra.7.4) that for this particular wing no trace of such a flow condition could be detected.

It is evident both from the present series of tosts and from previous woris of a more qualitative nature (ref. 26.) on a sweptback wing of similur section, that this supposed representation of en effective section constitute an erroneous argument as far as the simulation of flow conditions is concome This we shall show later by recourse to both theory and experiment.

At the some time however, it does not morn that the omporincntal rosults obtaincd are invalideter. It simply monns that the rosults quoted myy be compared, with reservation as dictatcd by circumstonce, to those for wings on which similar distributions of pressure mey be found to erist in the regions considered.

2.2. The Co-ordinate Eystems Used.

For both the theorotical and experimontal woxk it is convenient to use three orthogonal co-ortinate systems of refercree, these buing as shom in fig. 14. The systom x, y, z, has its origin at a point along the chord line corresponding to the position of maximum thickness of the wing and the axis x is nlong the direction of the undisturbed stronm. The axis z is nombl to x end lies in the plane of symmetry of the wing scction, and J is orthogonn with z and z.

The second system of ares, x_{1}, y_{1}, z_{1}, has the axis x_{1} along the direction of the wing chord nomm to the loning edese and its origin coincident with thet for $x, y, z: z_{1}$ and y_{1} are orthogonsl with x_{1} as before.

To describe the boundryy laycr flow wo sh" 11 roquire an orthoconn curvilincon system of ares x_{2}, y_{2}, z_{2}; the axis x_{2} having its origin on the stronation line at the londing ouge of tho wing and following the contour of the wing surface in a plane nommal to tho leading edge. The axis z_{2} will be token paralel to the leading edge enc lies in the plone of tho wine surfoce whilst y_{2} is
orthogonel with x_{2} anc $z{ }_{2}$.
Components of velocity etc. referred to in one or other of the above systems of axes will unless otherwise dofined bear the same suffix as the axes to which they may be referred.

Tho physical visunlisation of these systems of axes in reletion to the wing is simplified by reference to two plones (plane x y and planc A) these boing as shom in fig. 14.
2.3. Theoreticel Distributions of Volocity and Pressure for the Swept Beck Wing-

To facilitate the study of the boundary layce flow end to make comperison betweon the results of theory and experimont we requiro to know the distributions of velocity and stetic pressure over tho swopt back half wing. If this requirement is rostricted to the zero incidence and hence zero circuletion (symmetrical section) case then it is possible to mole the necessary calculaticns to a sufficiently hich dogree of cocuracy by constioring the wing to be of infinite span onc representing the section thickness by a systcm of sources distributed alone the chord line. In this wey the perturbation potential takes the form:-

$$
\begin{equation*}
\overline{\mathrm{v}}=-\frac{1}{2 \pi} \int_{\mathrm{L} \cdot \mathrm{E} \cdot}^{T \cdot E \cdot} \sigma^{\prime}(\xi) \ln (\bar{z}-\xi) \mathrm{d} \xi \tag{2.3.1}
\end{equation*}
$$

- in which the total source strength along an elementary longth $d x$ is Given by $\sigma^{\prime}(x) d x$. For the wing of infinite spen shecred by an angle Λ and having the "actual" section of fig. 15 . it onn be show (see appendix II.) that the velocity distribution is given by an equation of the form:-

$$
\begin{equation*}
q\left(\frac{x, y)}{J_{0}}=\sqrt{\left(\frac{q_{1}}{U_{0}}\right)^{2}+\sin ^{2} \Lambda}\right. \tag{2.3.2}
\end{equation*}
$$

where

$$
\frac{q_{1}}{U_{0}}\left(x_{1}, y_{1},\right)=\frac{1}{B_{x_{1}}}\left\{\cos \Lambda+\frac{b}{\pi} \sum_{n=1}^{2}(-1)^{2-n} \cdot \frac{1}{n}\left(\frac{\pi}{2}+\frac{(-1)^{n} \frac{x}{a_{n}}}{\left.\sqrt{1-\frac{x^{2}}{2}} \operatorname{sech}^{-1} \frac{x}{a_{n}}\right)}\right.\right.
$$

and the pressure coefficient by:

$$
\begin{equation*}
C_{p}(x, y)=1-\left\{\frac{q(x, y)}{U_{0}}\right\}^{2} \tag{2.3.4}
\end{equation*}
$$

- in which expressions tho co-ordinates are as defined in para. 2.2 and shown in fies. 14 and 15.
An edoquate eccount ruleting to the derivetion of the above expressions is given in apponitx I. Whoro both the two dimonsional and the intinite shomel anses wre fiscuese . The "offective" section (ri..15) retiomed to pra.2.1. is also considered in appendix II
The pressure distribution colculated from (2.3.4.) is show in $f i \underline{G}$.17. Where it is compared with that calculated for the "effectivc" section the marked differences in the two distributions being very evident.
We may at once decluce thet provided frood agreement is to be obtained between the colculated ($\mathrm{e} .3 \cdot 2.3 .4$.) and measured distributions of static pressurc for the actual wing section then we should no longer concern ourselves with the ider of on effective section as discussed in para. 2.1. is wo shan see this is subsequently confirmed.

2. The Potential Flow Streamlino Ovor the Infinito Sherred Wing.

For the sheared wing at incidence the components of the froe stream velocity U parallel to and normal to the leading edge are respestively (ref. 5):-

$$
\begin{align*}
& U_{0} \cos \alpha \sin \Lambda \\
& \text { and } \left.\quad U_{0} \sqrt{\cos ^{2} \alpha \cos ^{2} \Lambda_{+} \sin ^{2} \alpha}\right\} \tag{2.4.1}
\end{align*}
$$

where the true wing incidence is given by:

$$
\begin{equation*}
\beta=\tan ^{-1}(\tan \alpha \sec \Lambda) \tag{2.4.2}
\end{equation*}
$$

For sufficiently small values of incidence $\alpha,(2.4 .1)$ and (2.4.2) reduce to

$$
\begin{align*}
& U_{0} \sin \Lambda=V_{0}, \\
& U_{0} \cos \Lambda, \\
& \beta=\alpha \sec \Lambda, \tag{2,4.3}
\end{align*}
$$

Now the effect of the wing thickness distribution is to cause the Sler velocity along the wing surface in a direction nomal to the leading edge to vary with chordrise position, whilst the spanwise component remains constant since the wing surface in this case is a. strean surface. Hence, using the orthogomal curvilinoar co-ordinate systen $\gamma_{2} \bar{y}_{2} z_{2}$ (fig. 14.) as a frome of reference, for any streomline in potential flow we have

$$
\begin{equation*}
\frac{d z_{2}}{d x_{2}}=\frac{\Pi_{0}}{U_{2}\left(x_{2}\right)} \tag{2.4.4}
\end{equation*}
$$

- sirce the stroamline lies wholly in the plane $x_{2} z_{2}$ (i.e. the wing suchocs). Ttus any strearlana is given by

$$
\begin{equation*}
z_{2}=\int \frac{W_{0}}{U_{2}\left(x_{2}\right)} d x_{2}+c \tag{2.4.5}
\end{equation*}
$$

- Where c is an arbitrary constant of integration depending on the spanwise position of the streanline.
If we now define the non dimonsional velocity ε_{2} as

$$
Q_{2} \Delta \frac{U_{2}\left(x_{2}\right)}{U_{0} \cos \Lambda}
$$

then (2.4.4.) tekes the form:-
together with

$$
\begin{align*}
& \frac{d z_{2}}{d x_{2}}=\frac{\tan \Lambda}{G_{2}} \\
& \frac{d^{2} z_{2}}{d x_{2}^{2}}=\frac{-\tan \Lambda}{Q_{2}^{2}} \cdot \frac{d G_{2}}{d x_{2}}
\end{align*}
$$

- so that for the curveture of the streanline we obtein -

$$
\begin{equation*}
\frac{1}{\rho}=\frac{-Q_{2} \tan \Lambda}{\left\{Q_{2}^{2}+\tan ^{2} \Lambda\right\}^{3 / 2}} \cdot \frac{d Q_{2}}{\mathrm{dx}_{2}} \tag{2.4.8.}
\end{equation*}
$$

It can be seon from (2.4.8) that, since the velocity gradiont $\frac{d,}{d x_{2}}$
is relatively largo for regions cloce to the stagnetion line at the lodaing odge, the stremline curveture will also be lorge in that rogion (ros. 17.). That this is true for tho swopt bock wing under consideration moy be suen from in inspection of figs. 20 cad 23b., the curve show in fig. 20 beine derivad by noting that if ϕ is the cnslo betweon any streamline and the axis x_{2}, thon from (2.4.4.)

$$
\phi=\tan ^{-1-} \frac{\Pi_{0}}{\Pi_{2}\left(x_{z}\right)}
$$

The significence of this strempline curvature "in relation to the boundory layer flow is one of major inportance for it gives rise to the secondery Slow with which wo hove learned (refs. 16 and 17) to associate the phenomena of sweep instionility.

The streantine just outside the boundary layor we chooso to rogard as a detum to which the flow in the boundory layer noy be roforrod. It is, to a very close approximation, curved according to the ralationship (2.4.8.) and it is convenient to sot up a right angled plonar co-orainotc Eystom ξ_{1}, ζ_{1}, with its origin at eny arbitrarily chosen position on the streanline as shom in Fis.16. If the totol local velocity along the streanlino is q_{s} thon togother

[^0]with tho cnclo ϕ eclculetod from (2.4.9), we my wito
\[

\left.$$
\begin{array}{l}
{\overline{v_{\xi}}}_{1}=\frac{u_{\varepsilon_{1}}}{q_{S}}=\frac{W_{2}}{q_{S}} \sin \phi+\frac{u_{2}}{q_{S}} \cos \phi \\
\bar{w}_{b_{1}}=\frac{\bar{w}_{1}}{q_{S}}=\frac{\bar{W}_{2}}{q_{S}} \cos \phi-\frac{u_{2}}{q_{S}} \sin \phi
\end{array}
$$\right\}
\]

in which $u_{\varepsilon_{1}}$ and $w_{y_{1}}$ are the compononts of the stoady boundery layer flow rosolvod clong and nomal to the stremino rospectively, and u_{2} and $\bar{\pi}_{2}$ are the corponents of the steady boundary layer flow referred respectively to the axes x_{2}, z_{2}, and which may be calculated fron equation (1.3.7.)

No: Sturat (Ref. 23) and Oron and Rondoll (Rof. 17) have indopendently shom tint tho boundray layor velocity distribution chareaterisod by $\bar{u}_{\varepsilon_{1}}$ yiolds a profile of the usurl fom, whilst thot given by $\bar{F}_{b_{1}}$ (wocondory flow) contains a point of irslexion, the tivo profile foms being illustrated in ilig.16. in
 togotion :ith its inhorcnt inflorional inistebility fomed the becis for theoretioci ftaCios of a throe dimensional boundary lnyon flow of this laind 50 the rove outhore (Refs. 23 and 17). It appeors that we con convoniontly relats the onset of the inflexiond instability of the socondery flow to the extorma ficor conditions by on expression or the form -

In wich x is the Roynolds Number reforred to the secondory flow end which tokes the fom -

$$
x=\left|\frac{\pi_{1} m_{1} x^{\delta}}{v}\right|
$$

tho modulus being teken since wiy is in gencral negrtive with rospoct to the co-ordinates ξ_{1}, ζ_{1}, of Pig. 16 .

With the onset of this type of instebility, a system of vortices is formed, in the outer region of the boundary layer, which trail approximately downstream from the disturbance origin and the effect of their growth is to lead to an ultimate breakdow of the flow into turbulence. The axes have discreet spacing corresponding approximately to one disturbance wave length (ref.17) and are so aligned as to be very nearly parallel to the external stream lines.

Experimental observations of the initial formation of striations in the laminar boundary layer using the liquid film ~ china clay technique, (e.g. ref. 6) and the association of these striations with the vortex formations referred to above have led to the possibility of fixing a value for \mathbb{N} in equation (2.5.3) (see ref. 34). On the supposition that the initial appearance of the striations coincides approximately with the initial formation of the vortices, it has been suggested that N lies somewhere in the region of $100-150$ which is of the same order of magnitude as that found in the case of a laminar wake. Thus from a knowledge of the distribution of x over the surface of the wing under consideration, it would appear possible to ostimate the Reynolds number $\mathrm{R}_{\text {crit }}$ refomed to the extemal flow above which laminar flow may be expected to break down.

The restriction imposed at present on the use of such an empirically derived relationship is the lack of evidence available with regara to its generality. Furthermore, the evidence obtained from the present experiments does not permit an attempt to give confimation to the above chosen value for \mathbb{N} sinco the techniques required to illustrate the presence of the striations were not and could not readily be employed. From a knowledge of the extent of laminar flow observed, together with the external flow Roynolds number, we are, however, in a position to infer both an upper and lower bound to the value of \mathbb{N} as we shall see later, (para 7.6)
2.5. The Calculation of the Threo Dimensional Boundary Layer in Steady 110 w

2.6.1 General Notes

The difficulties to be encountored in attempting a calculation of threc dimensional boundary layers cannot readily be surmounted because, since so little is accurately known of their behaviour, any approximations made must inevitably be associated with some degree of uncertainty. As far as the yawed cylinder and the sheared wing of infinite span is concerned, it has been suggested (ref.4) that since the equations of motion for the boundary layer finow show no interdependence between the chordwise and spanvise component expressions, then we may calculate the
boundary layer giving sopmato considoration to each component flow. is to how the actual celculations are porformed is a question of chosice in relation to the degrce of accuracy required together with tho mothods available, but it is novertheless usual to encounter * sovere restrictions in applying more exact methods to the problem.

Pranditl, Sears and Cooke (refs, 19, 20 and 32) have given considcration to the equations for three dimensional laminar boundary layer flow and the calculations due to Soars (which were lator extended by Gortler, Ref. 10) have facilitated the application of a solution by mothod of series. This latter method reccived a thorough treatment by Fowarth (rcf. 7) for the two dimensional case and the extension to throo dimensional flow is for convenionce summarised in Appendix III.

In practice we find that to apply this mothod to the calculation of tho three dimonsional swept wing boundary layer, the problem reduces to one of expressing the velocity nomal to the loading edge as a power series in the arc length from tho stagnation line, the form being

$$
U_{2}\left(x_{2}\right)=\sum_{n=0}^{m} A_{2 n}, x_{2}^{2 \cdot i}: n=0,1,2, \ldots m
$$

- the upper bound in the sumation ocourcing by virtue of the at Yosunt restrioted range of tabulatod functions $f(\eta)$ and $g(\eta)$ (see :ppendic III) necessary for the calculation of the required flow componcnts.

Although a number of flow configurations exist which can be accurate$2 y$ described by putting $0 \leqslant m \leqslant 4$, the type of velocity distribution $\sigma_{2}\left(\sigma_{2}\right)$ in wich we aro interosted (i.e. swopt wing, Iow incidonce Boes rot in genorn Ious itscre to crpassion in the above
 A. We ace to procued for any approciawle distance from the stagnation line, and the difficultios (ooth anolytical and numerical)

* The supposition that the principlo of independence is true can only be assertod for the steady flow case as is show by Stuart (ref.16) who has studicd the equations of motion for disturbod flow.
become more serious as the thickness to chord ratio is decreascd. However, if we restrict oursclves to a considcration of relatively short distances from the stagnation line, then the calculations not only become possible but can in fact be made quite simple. In passing we may note that the extension of the Von Karman-Pohlhausen approximate two dimonsional solution to the three dimensional case has bcen performed by Mild (ref. 35) and Rott and Crabtree (Ref.36) have shown that the calculation of the laminar boundary laycr to an adequate degree of accuracy may be accordingly simplified. We shall not however concern ourselves with a discussion of these methods here.

F'or the present work two methods of calculating the lominar boundary laycr over the leading edge of the swept wing were tried which we shall now discuss.
2.6.2. The Boundary Layor at the leading edge of the Sweot Back Wing. For an enquiry into the nature of the secondory flow occurring near to the leading edge of the swept back wing at zoro incidence used in the present experiments we rofor first to the measured and calculated. Cistributions of velocity, between which there is excellent agreement (see Fig.19). Ideally we require to calculate the boundary layer cvor an extensive region of the wing, but the shape of the velocity distribution (Fig.19) does not lend itself to expression as a series OA tho ruquina som (sG0 A.3.5.) having small number of tems, We cen howevor, ropresent the distribution over the leading edge very accurately by an expression of the form

$$
\sum_{n=0}^{m} A_{2 n+1} x_{2}^{2 n+1}=\frac{\eta x}{5}-\frac{1}{6}\binom{\pi}{5}^{3} x_{2}^{3}+\frac{1}{120}\left(\frac{\pi}{5}\right)^{5} x_{2}^{5}
$$

(ace A.3.12) for $0 \leqslant x_{2}<2.5$ (where x_{2} is in dimonsional form (inches) since we ore considcring a particular case) and hence procoed to a calculation of the boundary layer by the mothod of series. The chosen procedure is given adequate discussion in ippendix III.

Resolution of the coiculated chordwise and spenwise boundury leyor velocity components on to the co-ordinatc systom ξ_{1}, ζ_{1} of the extemal streamino (Fig.16) yields the primry and secondory distributions show (Fig.21) and in this case the secondary flow Reynolds number is given by:
in which $\bar{q}_{S}=\frac{q_{S}}{U_{0}}$, and where η_{δ} is the value of η choson to reprosent tho boundnry layor thickness. In this case it is conventent to toke the value of η corresponding to $\bar{u}_{\tilde{\xi}_{1}}=0.99$ thus roforming the secondary flow Reynolds number to a "physical profile wiath". It would no doubt prove more suitable to choose values for η cosresponding to the boundary layer displacenent or momentum thickness along the stromline since these quantities are more roadily defined procisely. Howver, as stated above, the choice was made for convenionce, and tho rosulting distribution of $x / R^{\frac{1}{2}}$ is shoum in fig. 2l.

Peferring again to $\pm i \mathrm{~g} .19$. it oan be seen that to the exclusion of resions in the immedinte vicinity of the leading odge an approxi--mately similor velocity distribution to that existing over the formard part of the wing is represented by an expression of the form :

$$
Q_{2}=\Lambda_{1} \frac{x_{2}^{m}}{m}
$$

for which the boundary layor may be raadily calculated following the methods of Hartree (ref.31.) and Cooke (ref.32), (see Appendix IV for details). More particularly a velocity distribution of this kind describes the flow in the neighbourhood of the loading odge of a wedge shaped profile (for which in the plene Λ, the wedge angle β is given by $\beta \frac{2 m}{m+1}$, and the nose radius is vanishingly small) and hence does not strictly bear any relation to the present work as far as the experinents are concerned but is nevertheless an intoresting example worthy of some considcration from a theoretical point of view. We use it here together with the results of para. 2.6.2. to illustrate (para. 2.7.) the effects of nose radius upon the secondary flow for regions very close to the loading cage.
The calculations (performed as outlined in Appendix IV yield the velocity distributions shown in fig. 22., whilst the Reynolds numbers for the secondory flow (fig.24) are given by:

$$
\begin{equation*}
\frac{\underline{x}_{1}}{R^{\frac{1}{2}}}=\left|\overline{\vec{W}}_{1} \max \right| \bar{q}_{s} \frac{\eta_{\delta}}{\sqrt{\frac{m+1}{2}}} \sqrt{\frac{x_{2}}{0_{0}}} \cdot \sqrt{\frac{U_{0}}{U_{2}\left(x_{2}\right)}} \tag{2.6.2}
\end{equation*}
$$

2.7. Sccondary Flow Velocity and Associatcd Rcynolds Numbers.

The calculsted distathotions of the muximun valuos of the seconionty flow velocities associated with the two types of extornal strean considerod, exhibit very difforent properties in the neighbourhood of the leading edge, as was expected. The results clearly show the important influence of the absolute magnitude of the lcading edge nose radius upon the maximum velocity attained in the secondary flow and its corresponding influence upon the profile Reynold's Numbers. Illustration of this effect in relation to the velocity along the
owomal stromline is focilitrated by reforonce to the curvos show in -12. 2.24 .

From the calculations made for the boundery layer flow over the wing leating ofige (according to the method of para.2.6.2) it may be seen that tha secondary flow Reynolds Number reaches a peak value $\left(\frac{x}{n^{2}}=\right.$ 0.0485) at a short distance from the stegnation line, this
trend agreeing qualitatively with that given by tho colculations of OFen and Randall (ref.17.).

The calculations do not unfortunately give any definite indication of the behaviour of $\frac{x}{\mathrm{R}^{\frac{1}{2}}}$ for regions further dowmstroan than those considereä, To obtain such information using the more exset methods of boundary layer theory would involve a step by stop integration starting from some chosen calculated velocity profile, from thence procecding the requisite distonce dovnstreem. However, on the assumption thet tho poak shom (fig. 24) roprescnts tho maxinum value atteined by $\alpha / R^{\frac{1}{2}}$, then following OwCn and Rondall (roi.17) the condition fire instability to occur in the secondary flow may be writton as:-

$$
\begin{equation*}
\frac{x_{\max }}{R^{\frac{1}{2}}}=\frac{N_{1}}{R_{\text {crit. }}^{\frac{1}{2}}} \tag{2.7.1}
\end{equation*}
$$

With $\frac{x_{\max }}{p^{\frac{1}{2}}}=0.0485$ from the enlculations.

Oonit. 0_{0} (ht whan the first inutution of sosondary flow
instability is epparent, N can be fixcd.
2.8. Sccondrxy F1ow: General Notes

The calculation of the boundary layer by the mothod of para.2.6.2. yields an accurate representation of the flow conditions occurring
over a short distonce from tho stagnation linc. It has shom the principal effects of the socondary flow to be confined woll within the region considored, thus rendering thom roadily calculable. Furthermore, since the distribution of $x / R^{\frac{1}{2}}$ is accurately knowm with regard to distance along the wing surface then the regions in wioh some form of boundory layer control should be applied to suppross the secondary flow instability are correspondingly well defincd.

The calculations for the wedge profile suggest that, since for the case considered $\frac{x_{1}}{R^{\frac{1}{2}}}$ increases continuously with increase in x_{2} then a detailed study of secondexy flow instability together with the subsequent vortex formation in its relation to the Reynolds number of the oxtemn strenm, is possible.
3. EXPMRTIENTLL CONSTDERATIONS.
3.1. Suitablo Test Methods

In para.1.4. we have made reference to the fact that the study of the three dimensional boundory leyer occurring on a swept beck wing is one in which the effects of scale are of groat significance ond it was pointed out that the needs were, therefore, for experiments enquiring into the nature of this flow to be conducted at something approaching full scale Reynolds Numbers. To achieve this object we can proceed in one of two wrys; we can choose ofthor to perform our tests using a very largo wind tunnel or by mounting the test wing on to a suitable aireraft as tost vehicle, in the manner dozoribed. The problem wes reviewed by Britland (Ref.15.) and the various probloms associated with eithcr tochnique briefly outlined.
hs for as wind tunnel tests are concorned, in the case of a swept wing of finite span we are very much morc iestricted than would be the case with the two dimensionel wing. Briefly, this is manily due to the compounded efrect of sidewash and wind tumel constraint, the result being that a relatively large working section is requircd for the satisfectory testing of a model of relatively smoll spen. Thero is also the added offect of Wind tunnol turbulence which is necessarily related to and has an effect upon the behaviour of boundrry layor transition. On the other hand, if we mount our test wing in the moner to be described and in fact moke free ilight tests, we have firstly the odded advantare of on easily obtained hich value of Reynolas number and secondly the further advontace of a zeesumbly small degree of froe air turbulence. Arcuments will inevitcibly arise that the effects of propeller noise on the stobility of the boundory laver might lead to promatuce movement of the transition fronts, but in roclity littlo is known of the precise signifionoc of such on effect. Nowever, in some previous experimental test work performed in flight on the boundary layor characteristios of a swopt back wing (Ref.26.) it was found possible to achieve appreciable oreas of lominar flow and we may conclude thet the effects of propeller noise and the distwabance effects of the slip stroom tubes did not influence the behaviour of boundary layer transition to env pararent oxtent. In tocts on the 'King Cobra' wing, Gray observed also thet therc eppored to be no apporent effocts of any simificance, arising

Consideration of both the advantages and disadvantages inherent in either method of test led. to the choice of testing in free flight (using an Avro Iencaster lik VII as test vehicle), the experimental wing being mounted as a dorsel fin upon the mid uppor fuselage. Tested in this way the wing may be considered free from any constraint whatsoever on its induced side wesh. Such a procedure howevor nocessitated the derivotion of a simplified test technique for the measurement of the boundory layer so thet the expuriments could easily, simply and rapidly be accomplished with the minimum of flying timo ond whilst, in view of these simplifications, we are noccssorily restrictod to some dogrec in our intorpretation of the oxperimentel results so obsainca, it has nevertheless beon found that the chosen tust method was most satisfactory in its application.
3.2. Chcice of Experimentol Plen, Techniques and Procedure

In the initial stages of the conception of this experimental work it wos hoped that pressure trensducers could be used for the requirod. acrocynamic mensurements, but lack of exporionce with this type of ecuipment resulted in reverting to the usual liquid manometor methods for the recording of pressures. In view of the roletively high tost Roynolds Numbers to be encountored and the liquids available as monometric fluids, together with the derroo of accurecy roguired in measurement, it was necessery to use a very lorge vertical manomoter installed in the aircroft. Although at first this presonted a problom of somo cifficulty it was eventually overcome end as describod in Ref. 25 a 50 tube menometer, some 7 ft . in hoicht, was installod in the renr fuselage of the aircraft togethor with eamera obsorvation unit. This latter is a necessity for experiments of this kind when conducted in flight for although the requirel experimental conditions can be set with a hich docree of accuracy and stability by the pilot, such conditions cen only be set and maintainod for a rolatively short space of time duc to the combincd effects of pilot fatigue and natural Cisturbences to the stoady flitght of the noroplane. Thus the requiremont is for monsurine apparatus in which pressures can be displayed and rocordod with on absolute minimum of time delay so as to climinate as nearly as possible the inoviteble discrepancies which would occur in measuroments of this lcind macio over relatively long periods of time. Experience had previously shom thet a maximum time dolay of 10 seconds was all that could bo allowed betweon the initial establishment of the required experimental conditions and the recording of the displayed pressures if the degree of cocuracy aimed at was bo be cohicved. To this end, therefore, tho desien cad construction of the oxperimontal equiprent was directed from the outsot.

The mensurement of the static pressure distribution over the swept wing model presented no difficulty at all, the pressures being measured in the usual wry and displayed on the monometer. However, for the measuremonts in the boundary layer, the cnoicc of a suitable experimentol technique was at first one of some difficulty becouse of the very nature of the boundory layer flow to be expocted on a wing of this kind. Nevertheless stated in Frowgrn 1.3, it was thought possible for the uing under ocosiacration to greatzy simlitify the bouncry layor measurements by applying techniques strictly correct for the two dimonsional case only, to cortain regions of the wing. The nctual techniques choson were similar to those used in the flight experimont of Stovens and Haslam, (Ref.11) the type of boundary leyer combs usod in this case being as shown in Figs. 12 and 13. The method of exporiment was to study first the boundnexy inyer at the moximum thiconess of tho wing by attnching a number of the boundory layer combs to the wing surface by monns of Scllotape at various positions along the span, from thence procceding in stages of chosen length towards the leading edge of the wing. In this way it was possible to conduct the experiment with the best possiblo surface finish alwys oxisting in rogiona ahoad of the plane of measurement. With the combs in position at any ono chordwise station, on one surface of the wing a flight whs made and the bourir ory layer measured for a number of configurations of speed and wing incidonce, The meesuremonts were referred to both upper and lower surfaces of the wing;
this being possible because the wing was of symmetrical section and the iratalletion in the aircreft permitted its rotation in sither direction cbout tho ais of the main spix catension to on oxtont of $\dot{-} 100$. Thus since the . asuromonts wore mado using ono sile of tho ting oniy, tho effects of ay contour irrogularitios would thus bo comon to the Icsults ontainod for both wper and lower surfacos. With a vicy to pilot and crew fatiguc, a. bounday layor oxploration of this kind was found to constitutc suffieient exporimontal :ork for one flight, those occupying on the avorege about $1 \frac{1}{2}$ hours flying from toke-orf to landing and roughly involving moasuroments in some 230 boundory layors. Provided the limitations imposod upon the rosults so obtcinod by the nature of the technique used aro understood, it cen bo seon thest the mothod doos nevertholess constitute a. vory rapidly detomined assessmont of tho boundary layer flow.

By wey of cormparison we rofor to a number of othor swopt wing boundery layer tosts winich have been conducted at the Colloge using a travorsing gear as doscribod in Ref.26, the measuremont of all components of the boundary layer flow in curvilinoar planes adjacent to the ving surfaco boing possible with this geir. It was found that, to explore the boundiry layer at one chordvise station for ono valuo of wing inciance ond tost Roynolds IFumbor, a flight of aporimetoly 30 minutes duration was required (inclusive of take off má inding. .

L.1. The ircraft

The afereft uscd as vohicle for tho series or tosts under considerition :as -i. vo joncastcr wT 7 P.A. 474. This aircraft was subjucted to a number of a cuctural modifications in ordor that the wing could bo mountod above tho fia upper fuselage. Tho position choson for the mounting of the ving on the wia uppor fusclage was a compromise betwoon fuselage structural design considorations and the resulte of proliminary oxploratory tests relating to tho roure of tho flow field over the fusclage. .ie shall not concern oursclues with a discussion of tho vorious design foatures in this report, the peaden:s attention boirs duram to Ilof, 23 for a dotriled discussion of the - wio nurlva.

4.2. The Prossure Plotting Hast

Consiacration of the nature of the flow ficla over tho mid upper fuselage of the aircraft into which the wing was to be irmorsed has beon the subject of aiscussion in Rof. 24 in which the equipment aothods and techniques employed for calibrating this ficld wcre troated. Since a full doscription of the pressure plotting mast is thorein containod, furthor consideration in this work is unnecessory.

4.3. The Wing and Installation

The swept back half wing constructed for the tests under discussion was of ceneral dimensions as show in Figs. 3 and 4. It was of 45° sweep, untapered and untwisted and its streamwise section was intended to effectively represent a 10% thickness to chord ratio aerofoil of 130 inches chord (as discussed in paragraph 2.1.), the represcntation being attempted by geometrically constructing the wing section of two somi ellipsos each of minor axis 13 inches and of major axes 104 inches and 68 inches for the forward and rear portions respectively. Although the leading edge itself was detachable so that differont nose radii could be fitted if so desired, only one value of leading edge nose radius has been considered in the prosent series of tests, this value being 0.822 inches.

Consideration of the structural design and surface finish requirements together with the constructional problems involved led to the choice of a composite wood metal structure for the wing. Basically it consists of a conventional metal spar, having birch ply bonded to each face of the wing, and leading and trailing edce beans of spmuce. The wooden ribs wore closely spaced (at Ginches centre line to contre line), and the skin was 16 Sol.Go Light Alloy Sheet bonded to birch ply. The skin was attached to the ribs using the normol slueing tochnique and during assembly an intemol humidity seal was effected by spraying tho woodon morbers with phono loze G. 300 as and whore necessary. The leading and trailing dede mombers themselvos were of lominated mohocony construction, these also being conted with phenoglaze,

Fow attachment of the wing to the airoraft, two heavy stecl jcint plates cre used to cermy the sper boom end loods into both the root end rib and. the wing spar extonsion, the iatter of which is attached to intomal mombers of the aircreft fusclage (see Ref.23) and is suitably hinged to permit rotation of the wing about the axis of the spor extension so that the axis of symmetry of the wing scction may be moved to any desired angular position relative to the plone of symmetry of the circraft vithin the range $\pm 10^{\circ}$ (see Fig.6b). The angular position of the wing in relation to the plene of symmetry of the airoraft (i, e. wing geometric incidence) coutat be fixed as destred by means of two simplo spirot clamps as shom सA E-g. 6 . Setweon the forward spigot clom and a suitably chosen Puselage membur a heevy incicence actuating jack was attached, and the arragement of the whole assembly was such that the wing geometric incidence (i.e. engular position relative to aircraft plane of symmetry) could be conveniently adjustod to any desired position in the renge $\pm 10^{\circ}$, indexing being achieved by reference to the incidence sector plate and pointer as show in Fig. 6c,

To reduce the interference effects of the aircraft fuselage boundary layer upon the flow over the wing, a wide boundnry layer fence was fitted as show in Fig.6c. This fence was not large enough however to consitute a reflection plate.

For pressure distribution mensuremont chordwise rows of static prossure topings were built into the wine at three spanwise stations. There were thirteen tappings in each row and their positions along both the spen and chord of the wing are givon in Table I and Fig.3. The leads from the ste.tic pressure tappings wore of $5 / 32^{\prime \prime}$ diameter copper tubing and passed through the interior of the wing adjacent to the main spar and from thence into the interior of the aircreft fusclage and so on to the manometer. Provision for a number of additional static pressure tappings positioned around the nose of the wing was made by means of neoprone tubing let into the leading edge as shown in Fig. 6a. In this way a number of closely spaced static pressure tappings could be obtained by simply drillinc into the neoprene tubes at chosen chordwise positions, each hole so formed being senled with beeswax upon becoming rodundent.

The wing suriace was finished usind: Titanino Iacquers (colour, black) and to meet the requirements for surface waviness in relation to laminar flow a number of measurcments were made during the preparetion of the surfocc for the purpose of locntinc "high spots" otc., so to direct the course of the "rubbing down" and filling processes. Initial measurements were made to this ond by means of o curvature gauge of the usual type, Jut difficulties encoutered with the interpretation of such measurements tocether with the times roquired to so inspect the surface led to the chaice of an oblique lighting technique not unlike that devised. by Gray (Def.27). In this case a fluorescent strip light was suitably mountcd clongside the wing in the painting room and by observing an oblique reflection of this light in the wing surface local high spots and surface woviness could be simply and mpidly detected. Using this technique the sprayine, rubbing dorm and filling processes became one of continuity, and by much careful work the desired results wore oventwally achieved.

For the convenience of surface position reference on the wing, a white "cric" was sprayed onto the surface (see Fig.10.) this being made possible by suitably masking the wing and proceeding in the usual way. Only an extromoly thin coat of paint was required to achieve this object and so Whilst in fact each line of the "grid" does constitute a discontinuity of surface contour, the menitude of this discontinuity was considered 20.Il enouch to be nerleoted. is a finnl mensure the wing surface was ZHishat to very high loss uatng wer polish.

The wing structure and assembly weighs approximately 500 lbs . and was ocnstructed by and under the dircction of Mr.Martin in the workshops of the Department of Flight at the College of Acronsutics.

4.4. Instrumentation: The Manometer and Recording Apparatus

A fifty tube manometer, some 7 feet in height and 30 inches wide, complete with camera observer unit, was installed in the rear fuselage of the aircraft as indicated in Fig.2. A detailed description of the design, construction, and installation of this large instrument in the relatively confined interior of the aircraft fuselage may be found in Ref. 25 and
we shall not therefore concerm ourselves with the various design features of the unit here. Suffice it to say thet static and dynamic pressures supplied from connections made in the usual way to the chosen pressure sources, were displaycd as required on the instrument, the free stroan dynamic head (uncorrected for S.P.E.C.) boing dircetly indicated on a soparate ' U ' tube unit incorporated in the monometer and connected to the aircraft pitot static systcm. Two further tubes, one at each side of the manometer face were connected to the aircraft static system for the purpose of providing under tost conditions a datum to which all meesurements could be roforred. By this meens allowance could be made for the effect of small angles of bank occurring during tests and the corresponding settling of the fluid to its gravitational level, Dopending upon the range of prossures to bo measured two different manometric fluids were used as required. These were:-

> Carbon Tetrachloride S.G. $=1.599$
> Distilled Water (using fluorescene for colouration)

Observations of the manometer were facilitated by means of an F. 24 comera in a form slightly modified for improved film economy, illumination of the manometor being accomplishod in a most satisfactory manner by means of a system of back lighting (see Ref. 25 for full details) supplied from one of the 24 V . power circuits available on the aircraft.
4.5. Directional Yawmeter

Since one of the basic requirements of the tests performed was for steody, straicht and level flught at predetermined angles of sideslip a vane type yormoter was fitted to tho starboard wing tip of the aircroft as show in Fig.2. This yavmeter was comnected to a Desynn type indicator mounted on the pilot's instrument panel, and following a suitable calibration provided an accurate means of consistently reproducing the required angles of siceslip (to approximately $\pm \frac{1}{4}^{0}$) in steady flight.

1. 6 The Boundnuy Tayer Combs and Transition Tndicators

Bor an explawation on the boundoxy layer on the wing, two types of comb were used, these being as show in Figs. 12 and 13, the one for the purpose of determining the boundary layer velocity profile (Fig. 13 and the other (Fig. 12) for the purpose of measuring the distribution of total head, at, neor to, and along the wing surface respectivcly. They were designed to give satisfactory operation for a fairly wide range of experimentel conditions and were conveniently and simply attached as and where required to the wing surface by means of Sellotape, the brass strap and moveable brass stirrup (see Fig.13) of the boundary leyer comb serving not only as a. brace but also as a datum fixing for the tube assombly, A full description of both types of comb together with details of some simple vind tumel tests performed to assess their usefulness may be found in Ref. 25 .

4, 7. Pressure Ireads and Pipinc

The pressure leads from the boundery layer combs ctc., positioned on tho wing surfece to the manometcr inside the aircraft were for convenience split into two stages as show in Fig.9, each stage being united via the thorourhfare tube assembly units positioned at the trailing odge of the wing at a number of spanwise stations. The leads from the boundary leyer combs to the trailing edge of the wing were of $3 \mathrm{~mm}, 0 . \mathrm{D}$. neoprene tubing (which by virtue of its resistrnco to kinking was found to be very suitable) and were initially mado of sufficient length to enable the traverse to the leoding odre to be completed without further attention being given to the lead length, the excess tube length during intermediato tests being coiled and "stored" at the trailing edge.

For the pipe work from the thorouchfare tube assembly units to the menometer a number of 'tapes' of tubes were used. These tube 'tapes' were approximately $3^{\prime \prime}$ wide and each consisted of ten plastic (P.V.C.) tubes of $3 / 16^{\prime \prime} 0_{0} D_{0}$. They were rigidly fixed to the trailing edge of the تing by means of a number of $18 \mathrm{So} \mathrm{N}_{\mathrm{G}} \mathrm{G}_{0}$ brass fixing straps scrowed in zlace and the whole of this pressure lead assembly was completed by an entire covering of Sellotape which proved vory satisfactory under test comitions.
5. DEIAIIS CE TMPMERIAENTS PTERTORMID
zol. Ohoice of Test ATtituctos nn firspoeds
Excm previous experience of experiments of this kind togothor with a constienotion of the aircraft operating conditions and the requirements of the test led to tho selection of a basic test altitude of 10,000 feet (I.C.A.N.) with provision for tosting at either 5,000 feet or 7,000 feet the fima choice depending upon the suitability of weather conditions. (no corroctions for non standard tomporature conditions were made.) The test airspeeds were chosen to give the moximum attainable range of Zumoles numbers oonsistent with both anse of operation and with design Wuatozions tmpeed by the syeed - incidenoe boundery curve for the dirorast (300 上2e.0).
The acturl Reynolds number rongo achieved was from 0.88×10^{6} to 1.92×10^{6} per foot and for Lancaster P.A. 474 this corresponds to a spoed range of from 90-195 lenots (I.A.S.) at a tost altitude of 10,000 feet (I.C.A.No) tho altimeter prossure error correction being neglectod in all cases. -t is or intorest to noto that although flaps wore not used for those experiments it was found possible to increase the workable speed range of the aircraft dow to a minimum safe comfortable flying speed of $90 \mathrm{knots}\left(I_{0} \Lambda_{0} S_{0} 10,000\right.$ feet $I_{0} C_{0} i_{0} N_{0}$) against the value of 100 knots (I.A.S. 5,000 feet I.C.A.No) quoted in Ref. 24.

Although for such a variation in aireraft formard speed the directional choracteristics of the flow over the fuseloge in the pitchinc plene might possibly attain considerable proportions, initiol tests performed to determine these changes showed thot in the vorst case the directional chenge did not in fact become one of significance (the maximum observed variation being one of $\pm 2^{\circ}$ for the entire speed range) and hence the angle of sweep of the half wing was treated as being sensibly constant at 45° (see Ref.24).

Full details of the tests performed to determine both the S.P.E.C. curve and the nature of the flow field above the mid upper fusclage into which field the wing was inmersed, have been reported elsewhere (ref.24) and hence will not receive further attention here.
5.3. Incidence Zero Detum Setting of the Half Wins

Although as pointed out in paragraph 4.3. the geometric incidence of the wing could be accurately set by rotation about the axis of the spar extension and reference to the incidence scotor plate, such a sotting doos not of course nocessarily correspond to an equivalent incidence setting in flight due to the small but almost inevitable conditions of assymetry which arise. To make allowance for these conditions and to make for ease of ropetition of the roquired test configurations the following method of setting the wing geonotric incidence was adopted.

It was docided to rcior the wing geometric incidence at all times to an cxact reading on the incidunce sector plate and by suitably fixing the angle of sideslip of the aircraft (at a value corresponding to that giving zero aerodynamic incidence with the wing geometric incidence at zero according to the sector plate reading) it was possible to achieve experimentel conditions which could be accurately and consistently reproduced.

The angle of sideslip roquired for a zero verodymmic incidence setting of tho hale wing vas determined by obsorving the static pressure differuntial across six static twibes pairet. off on opposite surfaces of the Wing and conwectul to tho monombter. With the Fing set at zero geomutric incidence, the pressure differential across each pair of tubes was bolanced in flight by sideslipping the aircroft the requisite amount, and the corresponding reading on the pilot's sideslip Desynm indicator (see paragraph 4.5) noted. At chosen speeds throughout the range required for experiment this reading was found to be constent and correspond very nearly to zero sideslip as was hoped for.

This particular test provided occasion to observe the manometer fluid columns very closely indeed, and this subsequently gave an indication of the accuracy which might be achieved in future experiments. It was found that experimental conditions could be set and maintained such that the fluctuation of the fluid colums in the instrument did not exceed $1 / 32^{\prime \prime}$
aiven favcurable atmospheric conditions，and it was thus to achicve a．similar stendard of accuracy thet the aims of subsequent exporimental czorntions were directed．

5．2．Measurements of the Stetic Pressure Distribution over the Swept Back Half Ting

W．：th the static pressure tappings in the swept back half wing connecticd to the monometer and using carbon tetrachloride as the manometric fluid a Flicht wes made to detemine the distributions of static pressure over the holf wing for incidences of $0^{\circ}, 2,44^{\circ}, 6^{\circ}, 8^{\circ}$ and 10° ，and for Reynolds rumbers in the range $0.88 \times 10^{\circ}-1.92 \times 10^{\circ}$ per foot，for both upper and lowor wing surfoces．Manometer readings were recorded photographically using the 5.24 observer cemera，and from these rocords the required readings ：̈धre cbtained，corrected for S．P．E．C．and reduced to yield the non dimensional pressure coefficients．

5．5．Fion Visualisation on using the Tuft Technique

The neture of the flow at and near to the surface of the swept back wing together with its relation to the boundary layer and the techniques cmloycd for moasuremonts has received some consideration in paracraph 1．3． To aseess the nature of tho flow over the perticular wing under consideration， cre surfiace of tho wing was extonsivcly tufted using white 3 ply wool tufts．
－thourh it wos possible to observe part of the wing surface from the ainorat ccokpit，a satisfactory ammengent for moking the required flow atuilios such as the fatting of romotely controlled observer comera or atuez eriscope combination could not conveniently be contrived and achuzucrily the wool turt obscrvations of the flow over the wing wore －Mformod frcm a second airoroft（D．H．Dove G－iLVE）flying in close formation With Iencester P．A．474．The observations were of course made photographically using both a 35 mm ，camera fitted with a long focus Iens and a 16 mm ．cine comsm．By working to a systemntic schedule and by close co－operation そうtoon the pilots（in radio commmicetion）and obscrvers in both aircraft this zert of the erperimental prorrerme was successiully completed and tho mecess wy results obtained．

Shwe there was somo difforence between tho operating speed ranges of both ciroraft the tests were in foct only performed at one nominal air－ S上eed（approximately 120 knots I．A．S．at a test altitude of approximately $7,000 \mathrm{ft}$ ．）this being chosen as the most suitable compromise for flying the two aircraft in close formation．

5．6．Explorations of the Boundary Iayer

The boundary layer on the swept back holf wing was explored extensively using the two types of comb discussed in paragreph 4.6 ，measurements in the boundary layer being mode at a number of stations along the chord commencing at the position of maximum thickness to regions close to the leading edge and at spanwise stations as indicated in Fig．3．For each
flight undertaken the measuremonts wero made ot one choscn chordrise station for incidence values of $0^{\circ}, 2^{\circ}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$, upper and lower surfaces, and for Reynolds numbers of $1.08-1.92 \times 10^{6}$ per foot with edditional tosts at a Reynolds number of 0.88×10^{6} per foot for incidence of $0^{\circ}, 2^{\circ}$ and 4 .
The restriction of the winc incidence to 4° at the Reynolds number of $0.88 \times 10^{\circ}$ per foot was by reason of problems encountered in the honding of the aircraft at the forward flicht speed ($90 \mathrm{lnots} I_{0} A_{0} S$.) required to give this Reynolds number, for whilst flight at this low specd was under normal circumstoncos quite casily achieved, the effect of the wing itself, when at the higher values of incidence (i.e. $\alpha=6$ approximntely) upon the handling of the aircroft was quite noticeable to the extent that it wes considered inadvisable to a.ttompt to consistently and accurately reproduce experimental conditions in which the wing incidence exceedod values of $\alpha=4^{\circ}$.

To determine whethor or not flow soporation ves occuring at the leading edge of the boundary layer fonce and consequently disturbing the flow noer the wing root, two tronsition indicators (Fiç.12) were attached to the upper and lower surfacos respoctivcly. Thoy woro positioncd approximatoly 3 inchos from the leading adgo and "piped" to adjacont tubos on the manometer. By observing the difforence between the readings given by the total head tubes the presonce of any sorious flow soparation could, if it occurred, be detccted. No such conditions were howevor observed for the flight test configurntions.

Throughout the tosts, observations of the manancter werc recorded photoGrophically and from the filln records so obtained the requircd rozaings were taken, corrected as and where nocessary for S.P.E.C., and ruducod to yicld the boundary layer velocity profiles together with the distributions of total head at, near to and along the wing surfece for the various chosen test configurations.
During two of the initial flights in which the boundary layer was being moncurod an attampt was mado to obtain some idea of the extent of laminar Glow to be expectod to tho lowor Reynolds numbors on at on incilence α $=\mathrm{C}$ by making use of tho hernical sublimation tochnique. Puior to flicint the forward portion of the wing was sprayed with a 3% solution of acenapthene in petroleum ether and observations of the wing were made during the climb to, and for a flight of some fifteen minutes duration at, test altitude. On neithor of the two occasions could any discernible patterns be observed from the aircraft flight deok blister and hence the method was not subsequently tried. It is true to say that perhaps more extensive and claborate tests could have been performed using this technique, but the idea was abendoned in favour of the boundery layer explorations detailed above. The actual chemical sublimation tests performed do therefore constitute little more than a 'by the way' experiment conducted in eddition to the main boundary layer exploration.

The above experinents (peragreph 5) have yieldod a fairly comprohensive rongo of rosults of which a lerge seloction is prosented in Figs. $25-35$. lany of these have been left in dinensional fom for convenience.

The measured distributions of static pressure and the corresponding chordivise locdings are presented in both tabuler (Teblos II and III) and Graphical (Figs. 25 and 26) form: the boundary layer masumants only grephically, these boing grouped according to the test Reynolds number ($R=U_{0} c_{0} / \nu$) and chordwise position $\left(x / c_{0}\right)$ of invostigation. Reforonce to the various figures is made as ond when thoy receive discussion.

7. DISCUSSION OF THE EXPEATIENPAL RESUIRS

7.1. Behaviour of the Airoroft and Equipment under Experimental Conditions

Tho bohaviour of Inencastor P.A. 474 together with its ancillory oquipmont during the sories of tests described was at all timos vory good, and the simplicity of tho tochniques onployed permittod the completion of the experinental programo in a gencrally trouble froe namner.

By working to a systematic schedule in the air a lorge amount of oxporincntal work could be comploted in a short ilying tine, but to cohtieve this a groat decl of time was howver required for 'ground work' to ensure as nearly as possible a faultless bohaviour of the oquipnent whilst airborne.

Now that this method of test has satisfactorily proceeded through the initiol stages it is hoped that future nore elaborate experinonts of a similor laind will be porformod at the Colloge,
7.2. Accurcoy of Bosults

In assessing the accuracy of the results obtained the principal factors to be considered are:

1. the linitations of the methods employed for measurement
2. the attainable stability of experimental conditions
3. the accuracy involvcd in the reading of the observer camora film records
4. and 2. ere discussed in paragraphs 1.3 and 5.3 whilst 3. rocoives consideration in Ref. 25 .

The only serious influence is likely to orise from 1. in relation to the boundory layer measuremonts. Howevor, a coreful scrutiny of tho various oxperimentally derived curves shows that the degree of point scatter is, almost without exception vory small, oach curve being well represented by the expurimental points to which it is fitteci. Ioreover, no irmediato effects indicating the unsuitability of the apporatus to fulifil the purpose were apporent, and hance thore is reason to suppose that the quotod results roprosent a. good deal more then just a generalised qualitative assessment of tho boundery layer flow.

The accuracy of particular sots of results will be mentioned as thoy receive discussion.

7.3. Distributions of Static Prossure

The distributions of static prossure as measured for the swept back holf wing may be seen in Fig. 25 .

Thon plottod out as individual curvos (at constant incidence) for cach of the test Reynolds numbers considored, small differonces were found to exist between them. This was not due to point scatter, as each curve was too well defined, but to a generalisod displacement of the curve as a whole away from its noighbour. This displeconont was as stated above quite small and since it did not show any perticulor trend with chenge in Reynolds number could not definitely be attributed to any apperont cause, Iloreover i.t was found that the measured chordvise loadjings $\Delta C_{p}=\left(C_{p_{L}}-C_{p_{U}}\right)$ yiclded identicol (within
cocoptebly senll livits) curves for different Reynolds numbers. It was therefore assumed quite in order to represent the measured distributions of static pressure as mean talues for the Reynolds number range considercd. In this way the curves shown in Fig. 25 together with the pressure coefficients quoted in Table II were obtainod,

It can be sucn that the curves (Fig.25) ore very well defined and it is of particular intorest to note the distribution of the experimental points in the neighbourhood of the leading edge, where both the suction peaks (upper surface) and the stagnation lines (lower surface, $C_{p} \simeq+0.5$) ere clearly indicated. It is eppreciated that
the curves for the lower surface as depicted in Fig. 25 appear sonewhat congested near to the leading edge and are thercfore not readily interpreted but the trends under discussion were observed from plots to approximately four times the scale shown. With regard to the suction peaks, the very fact that these are defined so well is a direct indication of the accuracy and stability to which the experimental conditions could be set and maintained whilst measurements were being made. This is realised by considering a moll monentary
disturbence to the tost aircreft rasulting in sideclip end the cocompanying change in incidonee or the s.ept back ving. For zogions nocr to tho lewaing edge such a condition results in the Cevelopmont of oscillations of considorablo mplitude in the fluid colums at the monometor and the required moasuronents connot thus be made.

The distribution of statio prossure colculcted on the basis of the infinite shearod tring at zero inczdence (see poragraph 2.3 and eq. 2.3.4) is ompored with the monsured distributions in Fig.27. The agroment between theory and measurements at the mid seni spon station is good and the tip and root station measurenonts shor the type of departure to be expected when moking such a comporison, e.g. croctor concontration of suction near the nose with increasing Cistance outboard along the spen. This latter efiect is also illustratod by the neasured chordwise locdings which are shom in Figs 26.

Tho trensition to tarbulence of the flow in the boundury leyer on the upper duriece of a swept back wing is inf"luencea both by the onsat of srreep instouilitu (also comon to the lorer surioce) and O_{y} the dovolormont of nose suction peaks. For the wring under considoration tho nose suction peak is well developed at ecch of the chosen ppewise stations whe the ving inoidunco roaches $a=6{ }^{\circ}$. scoordingly, ot this $(a=6)$ ail highor volues or incidonce lititle, if our, leminor flow may be oxpeotod. This is subscquontly shom to be tha caso.

7.1. Tho Flow orer the Finge Tuett Obsorvations

The RIo: ovor the wing as indiocted by wori tuits may bo stuadied on rovering to Pic. 286 whore a solection of rosults are prosentce. Zere it is nocessory to distinguish betweon on actucl chonge in flow (Inaticatod by an oriontation of the tuft about its point of attachment to tho wing surface) and on appticont chenge due to unequal spociag of: the oufts upon the wing sumpace in the spawise direotiono

 azon existing cine film ruconcie.

It zero incidonce the flow over the wing appeared to be porfectily steady with no indication whatevor of the formation of an unstable roko ato the trailing edge. The tuets aftached to the trailing odge wero long (about 12 inches) and their genoral behoviour suggested a flow of the type show in Fis. 28 c , Is t'or as could be determined, separation occurred quite close to the tratiling edge

For the forward portion of the wing the streanline curvature is most serions in the neighbourtiood of the stegnation line and this is well illustrated in the cose for $c_{6}=10^{\circ}$ lowor surfaco. The prosenco of the tip vortex is clso clecrly indicatec in generol.

Some iden of the sensitivity of the tuits to chonges in flow direction may be obtained from corcful scrutiny of the fllow at the wing root (below the boundary layer fence, botton row of tuits) for $a=8^{\circ}$ upper surface. Herc the flow appears to soperate from tho vertical supporting nomber for the boundory layer fence which is positionod at the leading edge of the wings, end to subscquently rosult in a very disturbed flow formation in tho region of the troiling edge.

The tufts did not indicate the prosence of ony disturbance in the flow over the wing which might be associated with a leading edge seporation off the boundary layer fonce. This is in agreoment with the explorations mede using transition indicators positionod noer to the leading edge of the fence and mentioned in peragraph 5.6.

The tuft obsorvations show that for c. substenticl portion of the wing surface (in particular for a region extending approxinately fron the 5 per sent chord position to the position of maxirum thicknoss) thore are no substential dopartures in flow deviation from that of the undisturbed streon which is a necossary condition for the successful application of the techniques chosen for the boundory layor mensuroments.

7.5. Boundory Invor Ionsurgnonts

7.5.1. Velocity profiles

A seloction of tho boundory layer velocity profilles as measured using the combs (Pir.13) is prosented in Piess.29 to 31. It can bo soon thot, although the number of experinontal points obtained for each profile is small in comparison with the number usually taken durting nomol boundary lajec oxplorntions in which trevorsing goor is com-ayod, the curves as shom are mevertheless vory vell dertined in gonoral.

In sone simple tests porformod to assess tho usefulness of the boundary layer combs (sce Ref.25) the effect of yawing tho comb in relation to the strean direction was discussed. It was found that under such conditions the measured profile was seriously affected with the angle of yow fixed for example at 10°. No such effects could be detected in the results obtoined from the present series of experiments thus indicating that the method employed for measurement was adaquate. It is true that in some cases the odd experinental point has been igrored in the fioting of the curves, but the discrepancies in such coses have been attributed to the occurence of oxporimental error. It is useful
here to point out the great difficulty of checking the experimental obsorvations with regard to individual points as thoy aro mado in flight. Such a task bocomos impossible when a lerge nuriber of roadings is toing simultoneously recorded for each test configuration es was the case during the sories of experinents deseribed. Horeover the incviteble delay associated with the interprotation of the obsocver comora film records usually meons that the experiment hes momwhile progressed through meny further stages so that the chocling of occasional results of doubtful accuracy boconos prohibitive for conomical reasons. By careful work howover, both in the proparation of the experimontal equipment and in performing the actuel oxperiment, such occasions seldom arise as may be seen from an overall and general inspection of the results quoted in this papor.

The measured volocity profiles show quite generally that very little leminar flow existed on the wing for the test configurations considered. In particular the occurrence of trensition very close to the leading edge is indicated for all values of wing incidence, both uppor and Iower surfaces, with the tost Reynolds number at, and above 1.55×10^{6} por foot. The latter result appears to be quito definitely linked with the phonomena of sweep instability. At the some tine however, it appooss evident, that whilst following tho onset of sweep instability at low inciunce the boundary layer thickness δ rapidly inoreases With distance clong the chord, this increase is not neorly so great as that accomponying the prosence of an unfavourablo pressure gradient. Hore dotailed measuronents may therefore show the corresponding increase of friction at tho wall in the destabilised layor to be similarly affocted.
in) atterpt has been made at this stage to give detailod considerotion to the measured velocity profiles as a whole since it has been considored of greator irportance to illustrate trends rather than to direct the course of the work along the lines of detailed analysise
7.5.2, Boundory Inver tros sition
O.O. the moasuage distrioutions of total hoad at, near to, and along the Vhe surae (of mick opocimon rosults wre shom in Iig. 34) togethor with the boundery liyor volocity profiles of Fif. 29 to 3i, it was possible to obtain a general picture of the position and behaviour of boundery layor traneition as it occurred on the wing. The curves so obtained, and shown in Fige35, strictly corrospond to the ond of the transition region for they are defined by the positions at which the total head rise occurring in passing from the leminer to the turbulent bcundery layor was completed. Consequently on making a comporison betwoen the curves showing the positions of transition with the boundary layer velocity profiles, semi turbulent or 'transitionol' profiles will be found corresponding to given trensition froxt positions.

As stated in paragraph 7.5.1. very lititie laninar illow was found to exist on the wing, and for Reynolds numbers of 1.55×10^{6} per foot and above, transition was observed to be very close to the loading edge for all incidonce configurations and for both upper and lower surfaces. This behaviour of the trensition front illustrates well the physical consequences of sweep instability.

7.5.3. Displacoment thickness, momontum thicknoss, and shape parameter variation

A selection of curves showing the variation of the boundary layer displacemont thickness δ_{1}, momenturn thickness δ_{2}, and shape parameter δ_{3},
with wing incidence and test Reynolds number at different chordvise stations is presented in Figs. 32 and 33. These curves were dorivod. from the velocity profiles as measured at the mid somi span station and are thus approximately independent of tip and root effects. The usual distinctions for the laninor and turbulent boundary layor are in genoral quite clearly shown but in particulor it may bo noted that at the maximum test Reynolds number considered (1.916×10^{6} per foot) at which the boundory layer was overywhore turbulent, the shape parameter appears to be very nearly independent of incidence.

7.6. The Critical Reynolds 1umber for the Secondary Flow

From the test results it is not possible to make a precise evaluation of the number \mathbb{N} (cq. 2.7.1.) since we cannot determine the flow conditions for which the secondory flow instability is initiated. We can however infer both an upper and lower bound by noting that since virtually no laminar flow existed for a test Reynolds number of 1.552×10^{6} per foot, then reforring conditions to the wing chord along the stream (i.e. $c_{0}=86$ inches) we have on taking
\dot{x}.
$\frac{x_{\text {max }}}{R^{\frac{1}{2}}}=0.0485$ and substituting in eq. 2.7.1. that

$$
N \simeq 160
$$

Now the critical Reynolds number for the secondory flow strictly rolates to the onset of the instability and subsequent vortex formation - it does not correspond to and accompany, but procodes boundary laycr transition, so that firstly wo conclude that

N cannot exceed 160
Secondly since laminer flow existed (i.e. to $\frac{x}{c_{0}}=30 \%$) at the lowest test Reynolds number considored (i.c. 0.884×10^{6} per foot) we derive the second although somewhat less definite condition
that (again with $\frac{x_{\max }}{R^{\frac{1}{2}}}=0.0485$ and eq.2.7.1.)

$$
N \quad \leqslant 120
$$

Thus the conditions for sweep instability are given by an equation of the type

$$
\frac{x_{\max }}{R^{\frac{T}{9}}}=\frac{N}{R_{\text {crit }}^{\frac{T}{2}}}, 120<N<160
$$

which is in very good agreoment with the original work due to Owen and Randall (ReI.17)

8. COMCLUSIONS

I. A series of experinonts relating to the boundery layer flow on a swept back wing mounted as a dorsal fin upon the mid-upper fuselaçe of Lancaster P.A. 474 have been successfully completed by flight test methods.

At all times the behaviour of the aircraft used as test vehicle, torgether with its equipment ctc. was found to be porpectly satisfactory.
II. Colculations for the boundory layer flow over the loading odge of the wing using the method of Sories have show the offects of secondary flow in relation to the instability of tho laminar boundory layer to be confined within a vory short distance from the stagnation line, as also found by owen and Randall (Ref.17). Reference to the experimental results has show the conditions for instability of the secondary flow to be given by an equation of the type

$$
\frac{x_{\max }}{R^{\frac{1}{2}}}=\frac{N}{R_{\text {crit }}^{\frac{1}{2}}}, \quad 120<N<160
$$

III. Pressure distribution measurcments heve been made on the swopt back wing for a geometric incidonce rance of $0^{\circ}-10^{\circ}$ and Reynolds number range $0.88 \times 10^{6}-1.92 \times 10^{6}$ per foot upper and lovor surfaces being considered.

The measured distributions arc in close agreonent with calculations bascd on the infinite shoored wing and an cquivalent source distribution for the zero incidence case (symetrical section).
IV. Tuft explorations giving details of the flow over the ving on both upper and lower surfaces have show that for incidences in the ronge $0^{\circ}-10^{\circ}$ three dimensional effects do not achieve first order importance, thus permitting the use of strictly two dimensional techniques for boundoxy layer moasurements.
V. A large number of boundary layor explorations have been successfully made showing that for both upper and lower surfaces virtually no laminar flow existed for Reynolds numbers (bascd on the wing chord in the free strem direction) at and in excess of 1.55×10^{6} per foot.

For all incidonce configurations, this is due to the occurenco of instability in the secondary flow at the leading edge, and to a combination of secondary flow instability and the adverse pressure gradient following the developmont of (upper surface) suction peaks at an incidence of 6° and above.

The experiments have show to the further support of already existing evidonce (Rofs.6, 26 and 29) that without the application of some fom of boundery layer control, the possibility of maintaining regions of loninar flow of any appreciable magnitude on eithor the upper or lower surface of a swopt back wing at full scale Reynolds numbers, is romote.

List of Reforencos and Bibliorranhy of Works Consulted

1. Goldstein, S. (Editor)
2.
3. Keuthe, A.M. McKic, P.B.
Curry, $\mathrm{Wo}_{0} \mathrm{H}$.
4. Jones, R.T.
5. MoKoen, C.H.
6. Anscombe, A. Illingworth, $L_{0} N_{\text {o }}$
7. Howarth, L.
8. Kuchomann, D.
9. Kuchemann, D.
10. Gortler, H.
11. Stevens, A.V. Haslam, J.A.G.
12. Head, M.R. Johnson, D. Coxon, M.

Modem Developments in Fluid Dymanics Vols. I \& II Oxiord 1952.

Boundary Layer Eifects in Aerodynomics

Measurements in the Boundnry Layer of a Yawed Wing.
NoA.C.A. Tech. Note 1946. 1949.
Effects of Sweopback on Boundary Layer and Separation. $N_{\text {e }} A_{e} C_{0} \Lambda_{0}$ Tech. Note 1402.

Resolution of Velocity for the Swept Back Wing at Incidence. R.Ae.S. Joumnl, 1953.

Boundary Layer transition on a Wing at various angles of sweepback. R. A. I. Tech. Note Aero. 2170. 1952.

On the calculation of Steady Flow in the Boundary Layor near the surface of a cylinder in a Stream. A.R.C. R \& M. 1632. 1935.

Boundary Layers on Swept Wings. R.A.E.Tech. Note Lero.2370. 1955.

Types of Plow on Swept Wings. RoA.E.Tech.Note Lero.2234. 1953.

Zur Iaminaren Grenzschicht am schiobonden Zylinder. I. Arch. Math.3, 216-231, (1952)。

Flight Exporiments on Boundory Layer Transition in Relation to Profile Drac. A.R.C. R \& M. 1800. 1938.

Flight Exporiments on Boundary Layor Control for Low Dras.
Rois.E. Report Aero 2541. 1955.

13.	Emslie, K. Hosking, I. Marshall, W.S.D.	Some Experimonts on the Flow in the Boundary Layer of a 45° Swoptback Ving of hspect Ratio 4. College of foronatics Report No. 69. 1953.
14.	Gray, W.E.	A. Laminar Flow Experimont in Flight on a Swept Wing. R.A.E. Tech.Note Aero 2240. 1953.
15.	Britland, CoM.	Techniques for laminar flow Research at high Roynolds Number. R.A.E. Tech Memo Aero 101.
16.	Stuart, J.T.	An Interim Noto on the Stability of the Boundary Layor on a Swept Wing. A.R.C. Report 14,991. 1952.
17.	Owen $P_{0} R_{0}$ Randall, $D_{0} G_{0}$	Boundnry Layer Transition on a Sweptback Wing: A Further Investigation R. A.E. Tech Nemo Aero. 330. 1953.
18.	$\begin{array}{ll} \text { Byrd } & \text { PoF. } \\ \text { Freidman, } & \text { Mo } D_{0} \end{array}$	Handbook of Elliptic Integrals for Engineers and Physicists. Springer-Verlag. Berlin 1954.
19.	Prandtl, $L_{\text {d }}$	On boundary layers in three dimensional flow. M. Λ_{0} P. Volkenrode Reports and Translations No.64. 194.6.
20.	Sears, Woro	The Boundary Layer of Yawed Cylinders Joumal of Aero Sciences 15, 491948.
21.	Weber, J.	A simple Method for Calculating the Chordwise Pressure Distribution on Two Dimensionsl and Swept Wings. Reite. Report Aero. 2391. 1950.
22.	Schlichting, H.	Boundary Layur Theory. Pergammon Pross. London. 1955.
23.		Liddendum to Type Record. Avro Lancaster P. i. 4.74. Dept. of Aircraft Design. College of Aeronautics, Cranficle 1956.

		-43
24.	Burrows, FoM.	Characterjisties of the Flow Field over the mid upper Fuselage of Lancaster P.A.4.74. College of Aeronautics Note No. 36 . 1956.
25.	Burrows, F.M.	Equipment Used for Boundary Layer Measurements in Flight. College of Lieronnutics Note No.49. 1956.
26.	$\begin{array}{ll} \text { Allen, } & L_{0} D_{0} \\ \text { Burrows, } & \text { FoM } \end{array}$	Flight Experiments on the boundary layer characteristics of a swopt back wing. College of heronautics Report No. 104. 1956.
27.	Gray, W.E.	A Quick Method of reducing the surface weviness of laminar flow wings. R.A.E. Tech.Notc Aero.2078. 1950.
28.	Gray, W.E.	The effects of wing sweep on laminar flow. RoA.I.Tceh. Mcmo Liero.255, 1952.
29.	Butlor, S.F.J.	Transition on a Swopt Back Wing. R. $\mathrm{H}_{\mathrm{o}} \mathrm{E}_{\mathrm{o}}$. Tech. Noto Acro 2324. 1954.
30.	Anscombe, A. Butler, S.F.J.	The Effect of Sweopback on the Laminar Boundury Layer. R. $\Lambda_{0} \mathbb{E}_{0} T_{0} N_{0}$ Aero 2335.
31.	Hartree, $\mathrm{D}_{0} \mathrm{R}$ 。	Procs, of Cambridge Phil.Soc. 33. Part II. 223. 1937.
32.	Cooke	Procs. of Cambridge Phil.Soc. 46. 645. 1950.
33.	Gray, W.E.	The nature of the boundary layer Flow at the nose of a swept back Wing R.A.E. Tech. Memo Lero 256. 1952.
34.	$\begin{array}{ll} \text { Owen } & P_{0} R_{0} \\ \text { Randall, } & D_{0} G \text {. } \end{array}$	Boundary Layer Transition on a Swept Back Wing. Rolice. Tech Memo hero 277. 1952.

$$
-2,4
$$

j5. Wild, JoM.
36. Rott, N. Crabtree, I.F.

The Boundryy Layer of Iawed Infinite Wings. Joumal of Aero. Sc. 16. 41. 194.

Simplified Lominar Boundary Layer Calculations for Bodies of Revolution and for Yamed Wings. Journal of fero. Sc. 19. 553. 1952.

APFTNDTX I

Pilot's Hendling Techniques
 by
 B. F. Russell.

1. The Effects of the Experimental Wing on the Fandling of Iancaster P. 1.474.

The Loncaster hanales nomolly in the air with the wing set at zero incidence, except that it is more directionally stable and the rate of roll is reduced.

2. The Effects of Cross-Wind

In the presence of a cross wind, both take off and landing are more difficult than normal. Take off in such conditions requires a large amount of differential throttle, whilst on landing it was found that "kicking the drift off" had to be left vory late since although the aircraft will respond initially tb the rudder, it tonds to return to the original heoding. The maximum cross wind in which a landing was made was 25 KMS at 20° to starboard.

3. The Wing at Incidence

It was found that the aircraft could be trimmed to maintain zero sideslip with the wing set at any incidence within -10° to $+10^{\circ}$ and for speeds (I.A.S.) in the range $90 \mathrm{KTS}-195 \mathrm{KPS}$. A combination of large incidence and high speed gave rise to vibration and slight rudder buffet.
4. Technique
-
Leave engine r.p.m. constont, and adjust boost to maintain height at the required speed; trim elevator, rudder, and ailerons. Check A.S.I. altimeter, sideslip indicator, and directional ayro.
(Note: A small continuous change of heading is permissable providing the yawneter is maintained at zero).

APPTNDIX II

A.2. Colculation of the Distributions of Vclocity and Prossure Ovor the Winc at Zoro Incidonce
4.2.1. The Actunl Wint Section: Two Dimonsionnl Case. (Incomprossible Flow)

It is sufficiert for our purpose to consider the wing at zero incidence and hence since the section is symmetrical the circulation in such a configuration is also zero. Under these conditions the wing thickness distribution my be represented by an equivalent source distribution such that along an elementary length $d x$ of the chord line the total source strength is $\sigma^{1}(x) d x$.
Thus for the actual wing section in two dimensionnl flow and in the coordinate systom show in fig. 15, we may write the perturbation potential in the form :-

$$
\overline{\mathrm{w}}=-\frac{1}{2 \pi} \int_{-a_{1}}^{a} \sigma_{\sigma^{\prime}}^{2}(\xi) \ln (\bar{z}-\xi) d \xi
$$

where $\bar{z} \triangleq x+i y$.
The velocity components at the chord line are given by:-

$$
\begin{equation*}
u(x)=-\operatorname{Re}\left\{\frac{d \bar{w}}{d \bar{z}}\right\}=\frac{1}{2} \pi \int_{-a_{1}}^{a_{2}} \frac{\sigma^{\prime}(\xi) d \xi}{(x-\xi)} \tag{A.2.2.}
\end{equation*}
$$

and $v(x)=\operatorname{lin}\left\{\frac{d \bar{v}}{d s}\right\}=\operatorname{Lt} \mathrm{y}_{\mathrm{y} \rightarrow 0} \frac{1}{2 \pi} \int_{-a_{1}}^{a} \frac{y \sigma^{\prime}(\xi) d \xi}{(x-\xi)^{2}+y^{2}}$

$$
\text { i.e. } \quad v(x)=\frac{1}{2} \sigma^{\prime}(x) \operatorname{sign} y
$$

Now the boundary conditio? for the wing section contour to be a streamline is given by:

$$
\frac{v(x)}{U_{0}}=\frac{d y}{d x}
$$

and if the section ordinates are given by:

$$
\begin{equation*}
y_{t}=f(x) \tag{4.2.5}
\end{equation*}
$$

then from (A.2.4.) and (1.2 .5.) we easily obtain:

$$
v^{\prime}(x)=2 U_{0} f^{\prime}(x)
$$

Thus equation (i.2.2) may be written in the form:-

Nov/

$$
\begin{aligned}
& \frac{U(x)}{U}=\frac{1}{\pi} \int_{-a}^{a_{1}} \frac{y_{t}^{\prime}(\xi) d \xi}{(x-\xi)} \\
& y_{t n}^{\prime}=\frac{-b \xi}{a_{n}^{2} \sqrt{1-\frac{\xi^{2}}{a_{n}}}} \begin{array}{ll}
\text { (A.2.7) } & n=1 . \text { for }-a_{1} \leqslant \xi \leqslant 0
\end{array}
\end{aligned}
$$

and on substituting for y_{t}^{\prime} in (1.2.7.) we obtain:-

$$
\frac{U(x)}{U_{0}}=\frac{b}{\pi} \sum_{n=1}^{2} \left\lvert\,(-1)^{2-n} \frac{1}{a_{n}} \int_{0}^{1} \frac{\xi d \xi}{\left.\sqrt{1-\xi_{2}}\left\{\xi+(-1)^{n-1} \frac{x}{a}\right\}\right|_{\left(\Lambda_{0} 2.9\right)}}\right.
$$

This expression (i.2.9.) may be integrated and yields

$$
\begin{equation*}
\frac{U(x)}{U_{0}}=\frac{b}{\pi} \sum_{n=1}^{2}(-1)^{2-n} \frac{1}{a_{n}}\left|\frac{\pi}{2}+\frac{(-1)^{n} \frac{x}{a_{n}}}{\sqrt{1-\frac{x^{2}}{a_{n}}}} \operatorname{sech}^{-1} \frac{x}{a_{n}}\right| \tag{A.2.10}
\end{equation*}
$$

- so that the total velocity at the chordline is given by.

$$
\begin{equation*}
\frac{q(x, 0)}{U_{0}}=1+\frac{U(x)}{U_{0}} \tag{4,2.11}
\end{equation*}
$$

To calculate the velocity et the wing surface, $q(x, y)$, we note from ref.21. that the two integrals:

$$
\oint_{q}(x, y) \sqrt{d x^{2}+d y^{2}} \quad, \quad \oint^{q}(x, 0) d x
$$

which give the values of the circulation round the aerofoil, must be equal. Hence it is plausible to assume that locally

$$
\begin{equation*}
\therefore q(x, y) \sqrt{d x^{2}+d y^{2}}=q(x, 0) d x \tag{1}
\end{equation*}
$$

so that the velocity at the surface is given by

$$
\begin{equation*}
q(x, y)=\frac{q(x, 0)}{\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}}=\frac{q(x, 0)}{B_{x}} \tag{1.2.43}
\end{equation*}
$$

Thus on combining $(\Lambda .2 .10),(A .2 .11)$, and (1.2 .13), we obtain the following expression for the velocity distribution over the actual section:-
$\frac{a}{U_{0}}=\frac{q(x, y)}{U_{0}}=\frac{1}{B_{x}}\left\{1+\frac{b}{\pi} \sum_{n=1}^{2}(-1)^{2-n} \frac{1}{a_{n}}\left(\frac{\pi}{2}+\frac{(-1)^{n} \frac{x}{a_{n}}}{\sqrt{1-\frac{x^{2}}{a_{n}}}} \operatorname{sech}^{-1} \frac{x}{a_{n}}\right)\right\}$
(A.2.14.)

- in which:

$$
B_{x}=\sqrt{1+\frac{b^{2} x^{2}}{a_{n}^{2}\left(a_{n}^{2}-x^{2}\right)}}, \quad \begin{aligned}
& n=1 \text { for }-a_{1} \leqslant x \leqslant 0 \\
& n=2 \text { for } 0 \leqslant x \leqslant a_{2}
\end{aligned}
$$

The calculation of the pressure coefficient is performed using the relationship:

$$
\begin{equation*}
C_{p}(x, y)=1-\left\{\frac{q(x, y)}{U_{0}}\right\}^{2} \tag{A.2.15.}
\end{equation*}
$$

A.2.2. The "Effective" Wing Section. Two Dimension el Case (Incompressible Flu:) Referring to fig. 15. we have in this case:

$$
y_{t_{2}}^{v}=\frac{-b}{a_{2}^{2} \sqrt{1-\frac{\xi^{2}}{a_{2}^{2}}}} \text { for } 0 \leqslant \xi \leqslant a_{2} \text {, for the rear ellipse (shown }
$$

dotted), and for the trailing edge fairing
so that

$$
\mathrm{y}_{t_{3}}^{\prime}=-\tan a
$$

$$
\begin{equation*}
d=\frac{a_{2}^{2}}{1} \tag{A.2.16.}
\end{equation*}
$$

giving the necessary conditions for surface continuity.
There are three domains of intigration to be considered in the evaluation of the perturbation component $U(x)$ and we find on proceeding as in (i.2.1.) that :-$\frac{U(x)}{U_{0}}=-\frac{b}{\pi_{a_{1}}} \int_{-1}^{a} \frac{\xi}{\sqrt{1-\xi}\left\{\frac{x}{a_{1}}-\xi\right)}-\frac{b}{\pi} a_{2} \int_{0}^{d} \frac{\xi d \xi}{a^{2}-\xi^{2}(x-\xi)}-\frac{\tan a}{\pi} \int_{a}^{1} \frac{d \xi}{(x-\xi)}$

The integral terms in (A.2.17) may be evaiuated and after some manipulation the following expression for $q(x, o)$ my be derived:

$$
\begin{array}{r}
\frac{q(x, 0)}{U_{0}}=\left\{1-\frac{b}{\pi_{a_{1}}}\left(\frac{\pi}{2}-\frac{x}{a_{1} \sqrt{1-\frac{x^{2}}{a_{2}^{2}}}} \operatorname{sech}^{-1} \frac{x}{a_{1}}\right)+\frac{b}{\pi_{a}}\left(\sin _{2}^{-1} \frac{d}{a_{2}}+\frac{x}{a_{2}} I_{n_{n}} \cdot D\right)\right. \\
\\
\left.\quad+\frac{\tan a_{0} \frac{x_{2}^{2}}{a_{2}}}{\pi} I_{n_{0}}\left|\frac{x-1}{x-d}\right|\right\}
\end{array}
$$

- where D is given by:-

$$
D=\frac{\left(1+\sqrt{1-\frac{x^{2}}{2}}\right)\left(1-\frac{a^{2}}{1 x}\right)}{\left(1-\frac{x}{1}+\sqrt{1-\frac{x^{2}}{a^{2}}} \sqrt{1-\frac{a^{2}}{a^{2}}}\right.}
$$

Here also the velocity at the surface is given by (A.2.13.) with

$$
\begin{array}{ll}
B_{x}=\sqrt{1+\frac{b^{2} x^{2}}{a_{n}^{2}\left(a_{n}^{2}-x^{2}\right)},} & n=1, \text { for }-a_{1} \leqslant x \leqslant 0 \\
n=2, \text { for } 0 \leqslant x \leqslant d \\
B_{x}=\sqrt{1+\tan ^{2} a} & \text { for } d \leqslant x<1 . \\
B_{x}=\infty & \text { for } x=1 .
\end{array}
$$

- and the pressure coefficient is calculated from (A.2.15.)
23.3. The Infinite Shenred Wing, at Zero Incidenco (Actual \& "Effective"Sections)

Tor the wing of infinite span sheared by an angle Λ (the section ramaining
3 tered in the direction of the undisturbed strean) the undisturbed stream
$\because 3$ components $U_{0} \cos \Lambda$ and $U_{0} \sin A$ normn to and parallel to the leading
\$. O respectively. Since the wind surface is a stream surface to the flow
$\therefore \sin \Lambda$ which is consequently unaffected by the wing thicmess distribution, © velocity perturbation will thus depend upon the streaming of the
:ponent $U_{0} \cos \Lambda$ over the surface charactorised by the ordinates $Y_{i}=f_{1}\left(x_{1}\right)$.
No calculation procedure used in dctermining tho volocity distributions for
Th the actual and "effective" sections, each being rospectivcly considered
\because the strearmise section of a wing of infinite span, is identical in
Criciple with that in paras M.2.1. and A .2 .2 , the results obtained in this
*so boing as follows:

For the actual section we have:-

$$
\begin{equation*}
\frac{q_{1}\left(x_{1}, y_{1}\right)}{U_{0}}=\frac{1}{B_{x}} x_{1}\left\{\cos \Lambda+\frac{b}{\pi} \sum_{n=1}^{2}(-1)^{2-n} \cdot \frac{1}{a_{n}}\left(\frac{\pi}{2}+\frac{(-1)^{n} \frac{x}{a_{n}}}{\sqrt{1-\frac{x}{a_{n}^{2}}}} \operatorname{sech}^{-1} \frac{x}{a_{n}}\right)\right\} \tag{A.2.19}
\end{equation*}
$$

- where in this case $\mathrm{B}_{\mathrm{X}_{1}}$ is given by:-

$$
\begin{equation*}
B_{x_{1}}=\sqrt{1+\frac{1}{\cos ^{2} \Lambda}\left(\frac{d y}{d x}\right)^{2}} \tag{1.2.20}
\end{equation*}
$$

The tots velocity at the wing surface is given by:

$$
\begin{equation*}
\frac{q(x, y)}{U_{0}}=\sqrt{\left(\frac{q_{1}}{U_{0}}\right)^{2}+\sin ^{2} \Lambda} \tag{A.2.21.}
\end{equation*}
$$

and the pressure coefficient by:-

$$
\begin{equation*}
C_{p}(x, y)=1-\left\{\frac{g}{\vec{U}_{0}}(x, y)\right\}^{2} \tag{A.2.22.}
\end{equation*}
$$

For the "effective" section we have:-

$$
\begin{align*}
\left.\frac{a_{1}\left(x_{1}, 0\right.}{U_{0}}\right) & =\left\{\cos \Lambda-\frac{b}{\pi_{a_{1}}}\left(\frac{\pi}{2}-\frac{x}{a_{1} \sqrt{1-\frac{x^{2}}{a_{1}^{2}}}} \operatorname{sech}^{-1} \frac{x}{a_{1}}\right)+\frac{b}{\pi_{2}}\left(\sin _{2}^{-1} \frac{a}{a_{2}}+\frac{x}{\sqrt[2]{1-\frac{x^{2}}{a^{2}}}} \ln D\right)\right. \\
& \left.+\frac{\tan \alpha}{\pi} \ln \left|\frac{x-1}{x-d}\right|\right\} \tag{A.2.23.}
\end{align*}
$$

with $q_{1} \frac{\left(x_{1}, y_{1}\right)}{U_{0}} C_{p}(x, y)$, determined using (A.2.20) and (A.2.22).
The distributions of pressure $C_{p}(x, y)$ calculated for the two sections may be seen in fig. 17.

APFEMDIX III

A. 3 The coloulntion of the Steady Stato Threo Dimensional Boundrary Lajer for the Sheored Wing of Infinite Span by the Hiethod of Series

A. 3.1 The General Case

Referring to the coordinate system $x_{2} y_{2} z_{2}$ (see fig 14) we may, according to several authors (e.g. ref. 22), write dowm the equations of motion for the three dirnensional boundary layer in the form

$$
\begin{gathered}
u_{2} \frac{\partial u_{2}}{\partial x}+\frac{\partial u_{2}}{\partial v_{2}} \frac{\partial y_{2}}{\partial y_{2}}+\frac{\partial u_{2}}{w_{2}} \frac{1}{\partial z_{2}}=-\frac{1}{\rho} \frac{\partial p}{\partial x_{2}}+v \frac{\partial^{2} u}{\partial y_{2}^{2}} \\
u_{R} \frac{\partial w_{2}}{\partial x_{2}}+\frac{\partial w_{2}}{\partial y_{2}}+\frac{\partial w_{2}}{\partial z_{2}}=-\frac{1}{\rho} \frac{\partial p}{\partial z_{2}}=+v \frac{\partial^{2} w_{2}}{\partial y_{2}^{2}} . \\
\frac{\partial u_{2}}{\partial x_{2}}+\frac{\partial v_{2}}{\partial y_{2}}+\frac{\partial w_{2}}{\partial z_{2}}=0
\end{gathered}
$$

in which the boundory conditions aro

$$
\begin{array}{ll}
y_{2}=0, & u_{2}=v_{2}=W_{2}=0 \tag{A.3.2}\\
y_{2}=\infty, & u_{2}=U_{2}, \quad W_{2}=W_{2}
\end{array}
$$

Now for the sheared wing we have to close isproximation

$$
\begin{gather*}
U_{2}=U_{2}\left(x_{2}\right), W_{2}=W_{0}=\text { onstont } \tag{A.3.3}\\
\text { and } \frac{1}{\rho} \frac{\partial p}{\partial x_{2}}=U_{2} \frac{d U_{2}}{\overline{d x}_{2}}
\end{gather*}
$$

so that the system of equations (A.3.1) may be reduced to

$$
\begin{aligned}
u_{2} \frac{\partial u_{2}}{\partial x_{2}}+v_{2} \frac{\partial u_{2}}{\partial y_{2}} & =U_{2} \frac{\partial U_{2}}{\partial x_{2}}+v \frac{\partial^{2} u}{\partial y_{2}^{2}} \\
u_{2} \frac{\partial w_{2}}{\partial x_{2}}+v_{2} \frac{\partial w_{2}}{\partial y_{2}} & =v \frac{\partial^{2} v_{2}}{\partial y_{2}^{2}} \\
\frac{\partial u_{2}}{\partial x_{2}}+\frac{\partial v_{2}}{\partial y_{2}} & =0
\end{aligned}
$$

with the boundary conditions again as given by (A.3.2)

Now the three dimensional boundary layer on a sheared wing at zero lift may be calculated in a sirnilar way to that for a cylinder whose axis is at right angles to the main stream, by treating the chordwise (normal to the leading edge) and spanwise flow components separately. Such a procedure is assumed permissible since the equations for steady flow in the boundary layer ($\mathrm{A}, 3,4$) show no dependence upon z_{2} (ref.4). It is important however to note that in applying this principle of independence we are referring strictly to steady flow. In the case of disturbed flow, a dependence upon z_{2} is implicitly inferced in the equations of motion (ref. 16).
Thus following the usual procedure we take

$$
\begin{aligned}
U_{2}\left(x_{2}\right) & =\sum_{n=0}^{m} A_{2 n+1} x_{2}^{2 n+1}, n=0,1,2, \ldots m \\
& \text { and } W_{2}=W_{0} \quad \text { constant }
\end{aligned}
$$

and if the stream function is expressed in the form

$$
\begin{gather*}
\psi\left(x_{2}, y_{2}\right)=\sqrt{\frac{\nu}{A_{1}}} A_{1} x_{2} f_{1}(\eta)+4 A_{3} x_{2}^{3} f_{3}(\eta)+\cdots \tag{A.3.6}\\
\text { where }=y \sqrt{\frac{A_{1}}{\nu}} . \tag{A.3.6a}
\end{gather*}
$$

then according to ref. 22 the velocity components $u_{2}\left(x_{2}, y_{2}\right)$, $\mathrm{v}_{2}\left(\mathrm{x}_{2} \mathrm{y}_{2}\right)$ may be expressed as a Blasius' series, the flow being independent of z_{2} such that

$$
\begin{align*}
& u_{2}\left(x_{2}, y_{2}\right)=A_{1} x_{2} f_{1}^{\prime}(\eta)+4 A_{3} x_{2}^{3} f_{3}^{\prime}(\eta)+ \\
& v_{2}\left(x_{2}, y_{2}\right)=-\sqrt{\frac{V}{A_{1}}\left\{A_{1} f_{1}(\eta)+12 A_{3} x^{2} f_{3}(\eta)+\ldots \ldots\right.} \tag{A.3.7}\\
& w_{2}\left(x_{2}, y_{2}\right)=W_{0}\left\{\begin{array}{l}
g_{0}(\eta)+\frac{A_{3}}{A_{1}} x^{2} g_{2}(\eta)+\ldots \ldots
\end{array}\right.
\end{align*}
$$

in which the prime denotes differentiation with respect to η, and the functions $\varepsilon_{0}, g_{0}, \ldots .$, satisfy the differential equations

$$
\begin{align*}
& g_{0}^{\prime \prime}+f_{1} g_{0}^{\prime}=0 \tag{A.3.8}\\
& g_{2}+f_{1} g_{2}^{\prime}-2 f_{1}^{\prime} g_{2}=-12 f_{3} g_{0}^{\prime}
\end{align*}
$$

the boundary condition to be satisfied being

$$
\begin{array}{lll}
\eta=0 & g_{0}=0, & g_{2}=0 \\
\eta= & g_{0}=1 & g_{2}=0 \tag{A.3.9}
\end{array}
$$

Now according to Prandtl (ref.19) the equation for g_{0} may be solved by direct integration to yicld

$$
g_{0}(\eta)=\int_{0}^{\eta} \exp \cdot\left\{-\int_{0}^{\eta} f_{i} d \eta\right\} \cdot d \eta
$$

The functions $f_{1}, f_{3}^{\prime}, \ldots f_{1}^{\prime}, f_{3}^{\prime}, \ldots$, are extensively tabulated (refs. 1, 7.22 for example) whilst g_{0}, g_{2}, \ldots, may be found in refs. 20 and 22. The problem of calculating the three dimensional boundary layer is therefore one of expressing the cxtemal velocity distribution (as given by theory or experiment) as the power serics given by A.3.5. i.c. as

$$
U_{2}\left(x_{2}\right)=\sum_{n=0}^{m} A_{2 n+1} x_{2}^{2 n+1}
$$

- the summation having the upper bound m imposed by the at present somowhat restricted range of tahulated values for the functions g_{0}, g_{2}, \ldots, and by the extent of mechanical work involved in performing the necessary computations in cases where the boundary layer is required over a considcrable distance from the stagnation linc. If however we need only concern ourselves with relatively short distances from the stagnation line then by a judicious choice of the expression for the above series, satisfactory to the degree 0: accuracy required, the boundary layer may be readily calculated.

A.3.2. Application to the Particular Case.

For the wing under consideration it can easily be show that since the leading edge portion is of clliptic section (fig.4.) the distance along the wing surface (from the stagnation line at zero incidence) in a direction normal to the leading edge is given by an integral of the form

$$
\begin{equation*}
x_{2}=b \int_{n}^{\phi} \sqrt{1+n^{2} \sin ^{2} \theta} \cdot d \theta \tag{A.3.11}
\end{equation*}
$$

- where $n^{2}+\left\{\frac{a^{2}}{b^{2}}-1\right\}>0$

Which is an incompletc olliptic integral of the second kind (written in Legendres notation) and which may be cvaluatod following a reduction of the integrant to a Jacobion elliptic function, i.c. by writing

$$
x_{2}=b \int_{0}^{\phi} \sqrt{1+n^{2} \sin ^{2} \theta} \cdot d \theta=b k^{\prime} \int_{0}^{u_{1}} n d^{2} u d u
$$

- In the notation of ref. 18.

Thus wo find x_{2} given by

$$
x_{2}=\frac{b}{k},\left\{\mathbb{E}\left(u_{1}\right)-k^{2} \operatorname{snn}_{1} \text { cd } u_{1}\right\} \quad \begin{aligned}
& 0<k<1 \\
& 0<\phi<\frac{\pi}{2}
\end{aligned}
$$

the calculation being facilitated by reforence to tables of the elliptic functions. The results obtained are shown in fig. 18.
We note in passing that the integrand of (A.3.11) could altornatively be expressed as a series in θ using a Binomial expansion and x derived following a temn by term integration, but the mothod offers no adventage in the circumstances.

It is indeed evident that there is no simple way of anolytically expressing $U_{3}\left(x_{2}\right)$ as a raadily calculable function of x_{2}. satisfying the fom requiroments of $(\AA .3 .5$.) and so at the expense of accuracy we may approxinate by reducing the problem to one of mechenical curve fitting.

The measured and calculated distributions of velocity over a section nomal to the leading edge are show in fig. 19, the measured distribution being doduc from the experimental results obtained for the mid semi spen station. The agreement between theory and experiment is excellent so that we may expect the external streamline of the viscous flow case to approximate very closely in dircetion to that calculated for notentiol flow. (see fig. 20) over the sheared wing of infinzte spon. This leads to the obscrvation that the external streamine is only curved to any significant extent for a very short distance along the wing surface (cf.pera,2.4.) and thus the secondary flow effects in which we are interested may be expected to achieve prime significance in a region of similar longth (Ref.17). On the supposition that such a condition is true we note that for a very short distance along the loading edge both the experimental and theoretical distributions of velocity may be very accu:ately represonted by an expression of the form
$Q_{2}=\frac{U_{2}\left(x_{2}\right)}{U \cos \Lambda}=\sin \frac{\pi x_{2}}{5}=\frac{\pi x_{2}}{5}-\frac{1}{6}\left(\frac{\pi x}{5}\right)^{3}+\cdots \quad, \quad 0 \leqslant x_{2}<2.5$.
(sec fig. 19 for comporison), whore x_{2} is quoted in dimensional form (inchos) since we are only concorned with a particular case.
Thus the external flow conditions may be expressed as

$$
\frac{1}{U}{ }_{0} \cos \Lambda \sum_{n=0}^{m} A_{2 n+1} x_{2}^{2} n+1=\frac{\pi x_{2}}{5}-\frac{1}{6}\left(\frac{\pi}{5}\right)^{3} x_{2}^{3}+\frac{1}{120}\left(\frac{\pi}{5}\right)^{5} x_{2}^{5}-\ldots
$$

so that;

$$
\begin{equation*}
\Lambda_{1}=\frac{\pi}{5} \times U_{0} \cos \Lambda, A_{3}=-\frac{1}{6}\left(\frac{\pi}{5}\right)^{3} U_{0} \cos \Lambda, A_{5}=\frac{1}{120}\left(\frac{\pi}{5}\right)^{5} U_{0} \cos \Lambda . \tag{A.3.14}
\end{equation*}
$$

and honce the two components of intcrest in the boundory layer are given by substituting for A_{1}, A_{3}, etc. into (A_{0}. .7)
The distribution of volocity calculated on this basis together with the profiles obtained by resolution on the co-orainato systom $\xi_{1} \zeta_{1}$ of the oxternal streamline, may be seen in Fig.21. They receive discussion in para 2.6.

APPEEDIX IV

The Three Dimensional Boundary Laver for the Potential Fiow
$Q_{2}=\frac{U_{2}\left(x_{2}\right)}{U_{0} \cos \Lambda}=A_{1} x_{2}^{m}$.
A porticulor case of a laminar boundory layer flow which is amonable to anclytical treatment is that associated with a potential velocity distribution of the type

$$
Q_{2}=\frac{U_{2}\left(x_{2}\right)}{U_{0} \cos \Lambda}=A_{1} x_{2}^{m}
$$

where A_{1} and m are constants.
Such a distribution is a little more than just of acadomic interest in relation to the present wrok for we note that both A_{1}, and n can be chosen to not only permit the colculation of the boundary layer (by the usc of oxisting tables), but also to approximately represent the velocity distribution over the swopt back wing at zero incidence. (Sec Fig. 19)
Since $Q_{2} \sim x^{m}$, the velocity distributions at various positions (x_{2}) may be univor ${ }^{2}$ sally represented (Ref.22.) following the choice of suitable scaling factors for u_{2}, w_{2} and y_{2}. The choice for three dimensional flow being

$$
\begin{equation*}
\eta=y_{2} \sqrt{\frac{m+1}{2} \cdot \frac{U_{2}}{v x_{2}}} \tag{A.4.2.}
\end{equation*}
$$

- With the velocity components given in the form

$$
\left.\begin{array}{r}
-56- \\
u_{2}=U_{0} \cos \Lambda Q_{2} f^{\prime}\left(\eta_{1}\right) \cdot \\
W_{2} \quad W_{0} G\left(\eta_{1}\right) \cdot
\end{array}\right\}
$$

$$
(1.4 .3 .)
$$

The differential equations of the boundory layor obtcined for this type of flow have been studied by Hertree (ref.31) and Cooke (rof.32.) who provided tables of the functions $f^{\prime}\left(\eta_{1}\right)$ and $G\left(\eta_{1}\right)$ for a range of values Choosing $A=0.89$ and $m=\frac{1}{9}$ (which is convenient for our purpose), the calculated distributions of velocity in the boundery layer together with the profiles obtained by resolution on to the co-ordinate system ξ_{j}, ζ_{1} of the external stremline (calculated for $Q_{2}=A_{1} \frac{x_{2}^{m}}{2}$) may be seeh'in fig.22. They are discussed in para. 2.6.3. ${ }^{2}$

TABLE I

THE CHORDWISE LOCATION OF THE STATIC PRESSURE

TAPPINGS IN THE SWEPT BACK HALF WING

Hole number	Distance from tine leading edge along axis of	$\frac{x}{c}_{o} \%^{*}$
1	0	0
1a	0.325	0.378
1b	0.650	0.756
1c	0.975	1.135
2	1.3000	1.512
3	2.6000	3.03
4	5.2	6.04
5	7.8	9.06
6	10.4	12.10
7	13	15.12
8	19.5	22.70
9	26	30.25
10	32.5	37.80
11	39	45.40
12	45.5	52.90
13	50.6	58.80

.
The reason for the numerically inconvenient values of $\frac{x}{c_{0}}$
is due to the distances along x as tabulated in the second colunn being referred, during the wing design stage, to the 'effective' chord, and not to the actual chord as is here chosen. Thus for example hole number 10 corresponds to a chordwise position of $37.8 \% \times \frac{36}{130}=25 \%$ referred to the
'effective chord'.

TABLE II

DISTRIBUTION OF STATIC PRESSURE OVER SWEPT BACK WING. REYNOL. NUMBER RANGE: 0.884-1.916 $\times 10^{6} / \mathrm{If}$.
The suffix U denotes upper surface
The suffix L denotes lower surface

	nole No .	$a=0^{\circ}$	$\alpha=2^{\circ}$		$\alpha=4^{\circ}$		$\alpha=6^{\circ}$		$\alpha=8^{\circ}$		$\alpha=10^{\circ}$	
		$\mathrm{C}_{\mathrm{P}_{\mathrm{U}}}$	$\mathrm{C}_{\mathrm{P}_{\mathrm{U}}}$	$\mathrm{C}_{\mathrm{P}_{\mathrm{L}}}$	$\mathrm{C}_{\mathrm{P}_{\mathrm{U}}}$	$c_{P_{L}}$	$\mathrm{C}_{\mathrm{P}_{\mathrm{U}}}$	$\mathrm{C}_{\mathrm{P}_{\mathrm{L}}}$	$\mathrm{c}_{\mathrm{P}_{\mathrm{U}}}$	$c_{P_{L}}$	$c_{P_{U}}$	$\mathrm{c}_{\mathrm{P}_{\mathrm{L}}}$
	1	+0.473	+0. 463	+0. 387	+0.333	+0.182	+0.147	-0.080	-0. 209	-0. 552	-0.642	-0.949
	\%	+0. 425	+0. 278	+0. 442	+0. 019	+0. 357	-0. 318	+0.283	-0.822	+0. 105	-1. 297	+0.119
	- 4	+0. 291	+0. 115	+0. 375	-0.161	+0. 448	-0. 501	+0. 436	-0.919	+0. 344	-1. 387	+0. 196
	1 c	+0. 183	-0. 080	+0. 312	-0. 329	+0. 412	-0.614	+0. 445	-1. 001	+0. 437	-1. 466	+0. 390
है	2	+0.124	-0.092	+0. 276	-0. 336	+0. 393	-0. 583	+0. 448	-0.944	+0. 482	-1. 306	+0. 468
	3	-0.005	-0.180	+0. 150	-0. 379	+0.273	-0. 569	+0. 349	-0.835	+0. 432	-1. 098	+0. 467
\%	4	-0.087	-0. 228	+0.027	-0.366	+0.138	-0. 504	+0. 212	-0.680	+0. 307	-0.854	+0. 360
	5	-0.154	-0. 265	-0.088	-0.385	+0. 044	-0. 496	+0.116	-0.635	+0. 209	-0.770	+0. 265
6	6	-0.150	-0.247	-0.067	-0.339	+0. 015	-0. 428	+0.078	-0. 540	+0. 161	-0.644	+0.213
	7	-0.158	-0.238	-0.087	-0. 318	-0.013	-0. 392	+0.039	-0. 485	+0.113	-0. 569	+0.164
	8	-0.190	-0. 249	-0.141	-0. 300	-0.087	-0. 348	-0.044	-0. 416	+0.016	-0.467	+0. 056
	9	-0.184	-0.222	-0.150	-0.261	-0.106	-0. 292	-0.078	-0. 339	-0. 029	-0. 380	+0.002
P	10	-0.188	-0.216	-0.160	-0.245	-0.130	-0.272	-0.104	-0. 302	-0.068	-0. 331	-0.042
\%	11	-0.186	-0. 208	-0.166	-0.227	-0.144	-0.249	-0.127	-0. 270	-0.093	-0.291	-0.071
	12	-0.205	-0. 217	-0.185	-0. 228	-0.167	-0.236	-0.154	-0. 263	-0.129	-0.276	-0.108
	13	-0. 212	-0.223	-0.199	-0. 231	-0.183	-0.233	-0.172	-0. 259	-0.144	-0.262	-0.133
	1	+0. 391	$+0.478$	+0.415	+0. 340	$+0.211$	$+0.150$	-0.050	-0.228	-0.528	-0.675	-0.934
	1 a	+0. 452	$+0.305$	$+0.481$	+0.034	+0. 422	-0.306	+0. 326	-0.825	$+0.131$	-1. 304	+0.165
	1 b	+0.304	$+0.118$	$+0.422$	-0.179	+0. 477	-0. 537	+0. 561	-0.981	$+0.371$	-1. 477	+0.217
5	1 c	+0.199	-0.032	+0.340	-0.337	+0. 444	-0.648	+0.479	-1. 058	+0.466	-1. 556	+0. 428
\%	2	$+0.140$	-0.085	$+0.287$	-0.339	+0.413	-0. 588	+0. 472	-0. 960	$+0.513$	-1. 330	+0.500
	3	+0. 026	-0.159	+0.166	-0.367	+0. 298	-0. 556	+0. 378	-0.833	$+0.466$	-1.098	+0.500
${ }^{6}$	4	-0.064	-0.209	$+0.052$	-0. 365	+0.166	-0.501	+0.243	-0.693	$+0.347$	-0.877	+0. 401
\%	5	-0.119	-0.248	-0.020	-0.371	+0.084	-0. 482	+0.158	-0.628	$+0.259$	-0. 771	+0.316
5	6	-0.131	-0.240	-0.047	-0. 344	+0.047	-0. 439	+0.114	-0. 560	$+0.209$	-0.677	+0.266
$\stackrel{3}{4}$	7	-0.144	-0.237	-0.066	-0.328	+0.015	-0.408	+0.078	-0.514	$+0.166$	-0.612	+0.220
\%	8	-0.183	-0.242	-0.121	-0.318	-0.054	-0.382	-0.003	-0.452	$+0.071$	-0.522	+0.121
\%	9	-0.190	-0.234	-0.141	-0.292	-0. 089	-0.338	-0.043	-0.395	$+0.019$	-0.448	+0.061
E	10	-0.210	-0.240	-0.169	-0.287	-0.124	-0.325	-0.091	-0.369	-0.035	-0.407	+0.001
8	11	-0.212	-0.231	-0.178	-0.272	-0.145	-0.298	-0.113	-0.328	-0.069	-0.358	-0.038
2	12	-0.219	-0.234	-0.197	-0. 269	-0.167	-0.286	-0.143	-0. 310	-0.106	-0.326	-0. 077
	13.	-0.243	-0.260	-0.221	-0.279	-0.200	-0.295	-0.181	-0. 314	-0.149	-0.323	-0.120
	1	+0. 524	+0. 501	+0. 485	+0.382	+0. 298	+0. 224	+0.096	-0. 086	-0.290	-0. 455	-0.610
5	1a	+0. 460	+0.338	+0.493	+0.108	+0.464	-0.199	+0. 398	-0.650	+0.223	-1. 062	$+0.047$
	1 b	+0. 316	+0.144	+0. 428	-0.118	+0. 487	-0.432	+0.497	-0.827	+0.438	-1. 241	+0. 326
\%	1 c	+0.231	+0. 025	+0. 356	-0.247	+0. 454	-0.511	+0. 499	-0.850	$+0.503$	-1. 269	$+0.453$
\%	2	+0.138	-0.081	+0. 279	-0.311	+0. 406	-0. 539	+0. 467	-0.874	+0. 527	-1.175	+0.531
\%	3	+0.040	-0.139	+0.168	-0. 322	+0. 296	-0. 494	+0.374	-0.738	+0.471	-0.977	+0.510
6	4	-0.058	-0.196	$+0.053$	-0.331	+0.168	-0. 457	+0.243	-0.627	+0. 348	-0. 792	$+0.405$
E	5	-0.079	-0.193	+0.012	-0. 299	+0.113	-0.400	+0.186	-0.532	+0. 282	-0.659	+0.335
E	6	-0.102	-0.200	-0.019	-0. 293	+0. 068	-0.381	+0.134	-0. 492	+0. 226	-0. 597	$+0.281$
\%	7	-0.112	-0.197	-0.039	-0. 282	+0.044	-0.358	+0. 102	-0.451	$+0.190$	-0. 541	$+0.243$
\%	8	-0.150	-0.214	-0,089	-0.278	-0. 024	-0. 333	+0. 026	-0.403	+0. 104	-0. 469	+0. 152
\%	9	-0.163	-0.219	-0.115	-0.269	-0. 061	-0.315	-0.017	-0.371	+0.050	-0. 420	+0. 091
\%	10	-0.186	-0.229	-0.149	-0.271	-0.099	-0.308	-0.063	-0.352	-0.001	-0. 392	+0.033
	11	-0.206	-0.239	-0.168	-0.271	-0.127	-0.299	-0.099	-0.334	-0.047	-0. 369	-0.013
	12	-0.234	-0.261	-0.206	-0.291	-0.173	-0.317	-0.150	-0.338	-0.107	-0. 367	-0.075
	13	-0.255	-0.277	-0.228	-0. 302	-0.203	-0.323	-0.179	-0.339	-0.138	-0. 364	-0.113

MEASURED CHORDWISE LOADINGS CORRESPONDING TO TABLE II

	$a=2^{\circ}$	$\alpha=4^{\circ}$	$\alpha=6^{\circ}$	$\alpha=8^{\circ}$	$\alpha=10^{\circ}$	$\alpha=2^{\circ}$	$a=4^{\circ}$	$a=6{ }^{\circ}$	$c r=8^{\circ}$	$a=10^{\circ}$		$a=2^{\circ}$	$\alpha=4^{\circ}$	$a=6^{\circ}$	$\alpha=8^{\circ}$	$=10^{\circ}$
1	+0.076	+0.151	+0 226	$+0.343$	$+0.307$	+0.063	+0.128	+0. 200	+0. 300	+0. 259		+0.030	+0. 084	+0, 128	+0, 204	
1 a	+0.164	+0.338	+0.601	+0.927	+1. 416	+0.176	+0. 388	+0.632	+0.956	+1. 469		+0.155	+0.356	+0. 597	+0.873	+1.109
1 b	+0. 260	+0.609	+0.827	+1. 263	+1. 583	+0. 304	+0.656	+0.998	+1. 352	+1.694		+0. 284	+0.605	+0.929	+1. 265	+1. 567
1 c	+0. 392	+0. 741	+1. 059	+1. 438	+1.856	+0. 372	+0.781	+1.127	+1. 524	+1.984		+0. 331	+0.701	+1.010	+1. 353	+1. 722
2	+0.369	+0.728	+1.031	+1. 426	+1.774	+0. 372	+0.752	+1.060	+1.474	+1.830		+0. 360	+0.717	+1.006	+1. 402	+1.706
3	+0.330	+0.652	+0.918	+1. 267	+1. 565	+0. 325	$+0.665$	+0.934	+1. 299	+1. 599		+0. 307	+0.618	+1.867	+1. 208	+1. 487
4	+0. 255	+0. 504	+0.715	+0.988	+1. 214	+0. 261	+0. 531	+0.744	+1.040	+1. 278		+0. 249	+0. 499	+0.700	+0.975	+1. 197
5	+0.211	+0. 431	+0.613	+0.844	+1.036	+0.229	+0.454	+0.636	+0.887	+1.087		+0.204	+0.412	+0. 585	+0.813	+0.994
6	+0.176	+0. 354	+0. 506	+0. 701	+0.857	+0.193	+0. 391	+0. 550	+0.769	+0.943		+0.182	+0.361	+0. 515	+0.718	+0.878
7	+0. 152	+0. 305	+0.432	+0.603	+0.733	+0.170	+0.343	+0. 486	+0.630	+0.832		+0.158	+0. 326	+0.459	+0.641	+0.817
8	+0.108	+0. 212	+0.304	+0. 432	+0. 523	+0. 121	+0. 263	+0. 380	+0. 524	+0.643		+0.125	+0. 254	+0. 359	+0. 508	+0.621
9	+0.072	+0. 155	+0.213	+0. 310	+0. 383	+0.094	+0. 202	+0. 295	$+0.418$	+0.509		+0.104	+0. 208	+0. 298	+0. 421	+0. 511
10	+0.056	+0.115	+0.160	+0.234	+0. 289	+0.071	+0.164	+0.237	+0. 334	+0.408		+0.080	+0.171	+0. 245	+0.352	+0.425
11	+0.042	+0. 083	+0.122	+0.178	+0. 220	+0.053	+0.126	+0.185	+0.259	+0. 320		+0.070	+0.144	+0, 201	+0. 286	+0.356
12	+0,032	+0. 061	+0. 082	+0.135	$+0.168$	+0.037	+0. 102	+0.137	+0. 204	+0.249		+0.055	+0.118	+0.167	+0.234	+0. 292
13	+0.024	+0.045	+0.057	+0.115	+0.130	+0.039	+0.080	+0.114	+0.165	+0. 202		+0.049	+0. 100	+0.144	+0. 200	$+0.251$

FIG. 1. ARRANGEMENT OF AIRCRAFT \& WING

FIG.2. LAYOUT OF EQUIPMENT IN AIRCRAFT.

FIG.3. GENERAL PLANFORM DIMENSIONS OF WING.

FIG.4. GENERAL DIMENSIONS OF SECTION.

FIG 5a. THE WING DURING CONSTRUCTION.

FIGURE 5 b . THE SWEPT WING NEARING COMPLETION AND IN

FIG. 6a. STATIC PRESSURE TAPPINGS AT LEADING EDGE OF SWEPT BACK WING.

FIG 6b. SWEPT WING INCIDENCE SETTING.

FIG. 6c. INCIDENCE ACTUATING JACK \& SECTOR PLATE.

FIG.7. STATIC PRESSURE ERROR CORRECTION CURVE FOR LANCASTER P.A. 474.

FIG. 70. . VARIATION OF AIRCRAFT INCIDENCE WITH INDICATED AIRSPEED AT 44,000 t5. A.U.W

FIG.8. AIRCRAFT SPEED ~ WING INCIDENCE BOUNDARY CURVE.

FIG.9.PIPE WORK AT THE TRAILING EDGE.

LANCASTER P. A, 474 IN FLIGHT

FIG.I2. TRANSITION INDICATOR.

FIG.13. BOUNDARY LAYER COMB.

FIG.14. SVSTEMS OF AXES USED.

THE ACTUAL SECTION.

THE "EFFECTIVE" SECTION.

FIG.I5. WING SECTIONS CONSIDERED IN 子2.3.

FIG. 16. THE BOUNDARY LAYER IN RELATION TO THE EXTERNAL STREAMLINE.

A.A. INSTRBILITY DEVELOPS IN THE SECONDARY FLOW. A.A.-B.B. GROWTH OF VORTEX FORMATION. B.B. BOUIVDARY LAYER TRANSITION EBEGINS.

FIG.16a. GENERAL ELEMENTS OF THE LEADING EDGE VORTEX FORMATION PRODUCING INSTABILITY IN THE LAMINAR BOUNDARY LAYER.

FIG.17. CALCULATED DISTRIBUTIONS OF PRESSURE.

FIG.18a.

FIG.I8b.

FIGS. 18 .THE DISTANCE x_{2} AS CALCULATED FROM EQN.A.3.II.

FIG.19. DISTRIBUTIONS OF VELOCITY: CALCULATED, MEASURED, \& APPROXIMATIONS.

FIG. 21a. THE CALCULATED LAMINAR BOUNDARY LAYER FOR FLOW ALONG THE AXIS x_{2}, CLOSE TO LEADING EDGE

FIG. 21b. THE CALCULATED LAMINAR
BOUNDARY LAYER FOR FLOW ALONG THE SPAN (PARALLEL TO L.E.), CLOSE TO L.E.

FIG. 2Ic. THE CALCULATED LAMINAR BOUNDARY LAYER REFERRED TO THE EXTERNAL STREAMLINE.

FIG. 2Id. THE CALCUL ATED LAMINAR BOUMDARY
LAVER NORMAL TO THE EXTERNAL STREAM LINE: SECONDARY FLOW.

FIG.21. THE LAMINAR BOUNDARY LAYER FOR $U_{2}\left(x_{2}\right)=U_{2} \cos \Lambda \sum_{n=0}^{m} A_{m+1} x_{1}^{2 n n}-$

FIG.22a. THE LAMINAR BOUNDARY LAYER FOR $Q\left(x_{2}\right)=A, x_{2}^{m}$.

[^1]

FIG.22b. THE CALCULATED LAMINAK BOUNDARY LAVER REFERRED TO THE EXTERNAL STREAMALINE.

FIG.23. DISTRIBUTION OF $\left|\bar{w}_{3 \text { max }}\right|$.

FIG. 24. SECONDARY FLOW REYNOLDS NUMBERS \& VELOCITY ALONG THE EXTERNAL STREAMLINE.

FIG. 25 a.
$0.884 \times 10^{6}-1.916 \times 10^{6}$ PER FOOT. UPPER AND LOWER SURFACES.

FIG. 25.6.

STATIC PRESSURE DISTRIBUTION OVER THE SWEPT BACK HALF WING FOR THE REYNOLDS NUMBER RANGE
$0.884 \times 10^{6}-1.916 \times 10^{6}$ PER FOOT. UPPER AND LOWER SURFACES.

WING ROOT STATION
FIG.25.c.

STATIC PRESSURE DISTRIBUTION OVER THE SWEPT BACK HALF WING FOR THE REYNOLOS NUMBER RANGE
$0.884 \times 10^{6}-1.916 \times 10^{6}$ PER FOOT. UPPER AND LOWER SURFACES.

FIG. 26. MEASURED CHORDWISE LOADINGS: $\triangle C p$, ON SWEPT BACK HALF WING FOR THE REYNOLDS NUMBER RANGE $0.884 \times 10^{6}-1.916 \times 10^{6}$ PER FOOT.

FIG.27. COMPARISON OF MEASURED AND CALCULATED DISTRIBUTIONS OF STATIC PRESSURE UP TO MAX ${ }^{M}$ THICKNESS POSITION.

FIG.28a. TUFT OBSERVATIONS IN FLIGHT.

FIG. 28c. FLOW AT THE TRAILING EDGE. (LOWER SURFACE SHOWN).

$\alpha=0^{\circ}$. BOTH SURFACES.
$\alpha=4^{\circ}$. UPPER SURFACE:
$\alpha=8^{\circ}$ UPPER SURFACE.

FIG. 28 b. TUFT OBSERVATIONS: SPECIMEN RESULTS.

FIG. 28 b. TUFT OBSERVATIONS: SPECIMEN RESULTS.

FIG 29. BOUNDARY LAYER VELOCITY PROFHLES. WING ROOT STATION.

FIG 29. BOUNDARY LAYER VELOCITY PROFILES. WING ROOT STATION.

FIG 29. BOUNDARY LAYER VELOCITY PROFFLES. WING ROOT STATION.

FIG 29. BOUNDARY LAYER VELOCITY PROFILES. WING ROOT STATION.

FIG 29. BOUNDARY LAYER VELOCITY PROFLES. WING ROOT STATION.

FIG 30 BOUNDARY LAYER VELOCITY PROFILES. MID SEMI-SPAN STATION.

FIG 30 BOUNDARY LAYER VELOCITY PROFILES. MID SEMI-SPAN STATION.

(3)

(e)

(i)

(k)

FIG 30 BOUNDARY LAYER VELOCITY PROFILES. MID SEMI-SPAN STATION.

FIG 30 BOUNDARY LAYER VELOCITY PROFILES. MID SEMI-SPAN STATION.

$(+)$.

(t)

(q).

(s)

FIG 30 BOUNDARY LAYER VELOCITY PROFILES. MID SEMI-SPAN STATION.

FIG 31 BOUNDARY LAYER VELOCITY PROFILES. WING TIP STATION.

FIG 31 BOUNDARY LAYER VELOCITY PROFILES. WiNG TIP STATION.

FIG 31 BOUNDARY LAYER VELOCITY PROFILES. WING TIP STATION.

FIG.32. DISPLACEMENT \& MOMENTUM THICKNESS VARIATION. MID SEMI-SPAN STATION.

FIG.33. SHAPE PARAMETER VARIATION. MID-SEMI-SPAN STATION.

[^2]

[^0]: * Note here that wo mey with sufficient accurecy associate the potontial ilow streanline with the streomline in viscous flow just external to the boundory 1a yer.

[^1]: FIG.22c. THE CALCULATED LAMINAR
 BOUNDARY LAYER NORMAL TO THE
 EXTERNAL STREAMLINE: SECONDAFY FLOW.

[^2]: FIG.34. TOTAL HEAD DISTRIBUTIONS: SPECIMEN RESULTS FROM TRANSITION INDICATOR READINGS. $\alpha=0^{\circ} . \quad R_{0}=0.88 \times 10^{6} / \mathrm{FT}$.

