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NOTATION  

b 	 half depth of box 

c 	 half width of box 

1 	 length of box 

t 	 skin thickness 

t 	 thickness of internal webs w 

to 	
thickness of end webs 

A 	 area of internal booms 

A 	 area of end booms 
0 

number of cells (n 1 = number of webs) 

i 	 web or skin panel identifioation number 

x,y,z 	coordinates defined in Fig.1 

applied shear force 

T1,S,T2 	stress-resultants defined in skin z = b 

P. 	 lead in boom i 

qi 	 shear flow in web i. 

Qi 	 modified web shear flow (eicE.1(2) ) 

isolac=ent _v-mnonents in -01 , rle of skin z = b. 

UvflOQta-11. in 

Pi G. 	functions defining spanwise constraint stress distribution Pi
, 
C. 

2i functions defining chordwise constraint stress distribution 

constants defining web shear flow distribution 

Young's Modulus 

Poissons Ratio 

f t 



• = q/2(1 a) 

• t city(  

a = n4/2ct 

a = nAo/2ct 

c' = c (n 1)A/2t ▪  Aa/t 

= cz/abot 

= ctvAlbt 

..8 	= (0/2) 

- -I 

= nx/2c, = ny/2c, 	= 	1, 	= nVa; 

= Binh 
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Introduction 

A form of construction for thin aircraft -wings which is 

widely used at the present tine is that which makes use of a 

nuMber of shear webs to stabilise the compression surface. This 

uultiplicity of shear-carrying material provides a higher order 

of redundancy than that associated with a single--cell box, and 

various methods  have been proposed for dealing with this complexity 

(References 2,3). 

A common method of dealing with a continuous structure 

reinforced by a largo number of discrete elements (e.g. fuselage 

reinforced by stringers) is to replace the discrete elements by 

a continuous distribution of material having the same overall 

properties. Hemp ( Reference 1) has used this technique in 

dealing with the multi-web box, in that he replaces the discrete 

:=heir webs by a shear-carrying continuum. The solution obtained 

rdvos a chord-,wise variation of shear in this continuum which is 

exnenential, and it is natural to enquire as to the accuracy with 

which the continuum can reproduce the behaviour of the finite 

:ff.:7:1= of webs carrying such a rapidly varying loading. The 

present invostir,ation deals with a particular case dealt with 

in Reference 1, namely that of the uniform rectangular multi-web 

under shear load applied centrally at a ri.sid tip rib. This 

'ing case is considered under exactly the same assumptions as 

:nat the  (7....ntinuum 

the dicrete 

2. The Rectangular multi-Treb Box under Tip Shear 

The box is shown in Figure 1, which gives the overall 

dimensions and shous the co-ordinate system used, and the 

direction of action of the applied force 2; which acts through 

the line x = 1, y c. The root x = 0 of the box is assumed 
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to bo ririr11y built in. The box has (n+1) webs, and web 'i' 

is in the plane y = 2ic/n. 	',Iebs 1,2,3,!. ..., n-1 have thickness 

t and boom, area A, while webs 0, n have thickness to and boam 

area A. All the webs are assumed to have no bending stiffness, but 

to carry a unifom shear flow qi. The contribution of the web 

material to the bending stiffness is allowed for in the boom areas 

A and A
o. The skins z = ±b have thickness t, and we identify 

panel 	of the skin as lying between webs 	and 	The 

stress-resultants Ti , S, T2  illustrated in Figure 1 have the positive 

airections shown in the skin z = +b. 

The analysis of Appendix A leads us to the following 

expression for the distribution of the applied shear force Z 

between the webs. 

Vilere 1  is, - 

2./%.-1+2i.a-2a0-(n+2/,-1)T 
(1)  

(2)  

'2+0 n-1-(1+20 ) 

defined as 	r 	(i = 1,2,3, 

it 
1T 

qi 
(i = 0,n) 

+, 	

) 

(1) 	
+pn-3-)71 

n-1) 

The various parameters are defined in the list of notation, 

but we may examine the important parameter 0, which defines 

p= 	0 _„\1((2 + 0)) 

0 	 etk!bt = ( /na () (4- 	aw  is the web • . 
,fcre ossent-1.:_ilyi. "cdt.uo,;" parameter, describing 

the Leemetry of the internal cells, and vie shall find that the 

distribution of web shear flow given by (1) is noticeably sensitive 

to 0. Another important parameter in (1) is v = c/2(1 f c). 

If the web shear distribution is evaluated by the usual "Batho" 

method of equating the twist in each cell to zero, as in Refs. 2,3, 

the solution is given by equation (1) with T zero. As will be seen 

1 
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later the ton: in T has an important effect on the magnitude of the 
departure of the -shear distribution from the uniform. The term 

in z arises because the skin shear strain, which has to correspond with 

the stress obtained using equilibrium considerations, contains a 

term arising from the chordwise Poisson contraction due to the linearly 

varying bending stress. It is clear that if the box is built in to 
a completely rigid root then this Poisson contraction will be restrain-
ed and so the importance of the error in T will be reduced. This is a 
matter for experimental investigation. 

Comparison with the 'Continuum' Theory  

If we write y = 	liog pl 	(2) may be thrown into the 

fog 

Qi  = FA_B cosh(2i-n)y cosh ny(2X-1-Etanhny/tanhy)) 

whore A = (1-1-a-T), B = 2X-ii-2?.c-2a
0 

-(n+2X-1)T 

':-u may transform the expression (in equation (28) of Reference 1) 
f.-.2 tho shear stress in the continuum into our notation 
(uL,2-, i as a runnircr, co-ordinate = ny/2o) to give 

ri = (r /2c) [A- Bcosh(2i-n)5i//(cosh n5M-1-1-tanh n8/8)Y.I 
.1. 

where 8 = (e/2)2  = sinh y 

TI-le close relationship in form between equations (3) and (4) 

:-..- _:1, 	- -H-  u Li - - 1.-; compal-e y and 8 '-'2- 

_.-7-_,-L.; e tu fin.: unc dj_I .. .._'tom. _ in tn4; I zhz„p' of the shear 

distribution given by the two methods. 

The six-cell box which provided the experimental results 
noted in Reference 1 had 13 = 4 ins., c = 18 ins., t = 0.159 ins., 
tv  = to  = 0.0575 ins., a = ao  = 0.1406. lie thus have 0 = 0.2712, 
and so y = 0.3604, 8 = 0.3682. In this case, then, the 
'continuum' method gives a two per cent variation in the 

(3) 
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exponential term in the web shear distribution, which is certainly 
satisfactory. 

It will be seen that in both (3) and (4) the term in B 
indicates the departure of the web shear distribution from the 

uniform and that this departure is greatest when i = 0 or n. 
We may compare the difference in this term between the two 
expressions for the extreme cases n = 2 and n large. 

For n = 2 	01 + tanh zy Aanhy) = 0.3589 
01 tanh 25/s) = 0.3700 (3.1%difference) 

For n large 11(1 + 1/tanhy) = 0.2568 

01 + 1A) , 0.2691 (4.8;; aifference) 

Thus for this value of e the continuum theory gives a reasonably 

close appro;:imatian to the departure frozi uniform shear in the 

webs, which does not vary greatly in accuracy with number of cells. 

In the above discussion we have comparodwdb Shear flaw 
given ty this paper with (one web pitch) x (local value of 
col.'L,lauvan sn.,.:x stress -t-h web lino) given by Reference 1. 

Strictly speLking, one should integrate the result of equation (4) 

over one half web-pitch either side of the web line, adding in 

the case of webs 0 and n the contribution of the 'special' edge 
viobs. If this is done the differences noted above are increased 

7111:;-, it may -10 	that in 

Li 	 thou-711 

logically incorrect, to multiply the local value of the ccntinuum 

shear stress by the appropriate wvb pitch. This artifice, 

however, will lead to a distribution of web shear flowlthich does 

not exactly balance the applied shear force Z. 

It should be noted that the percentage 'errors' given 

above aro only c]ifferences in the term multiplied by the constant 
B. If we return to the example of Reference 1, and evaluate 

and B numerically (n = 6) we find that if a = 1/3, 
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B 0.1250<< A = 1 .0156 and We shall expect the differences in 

the final results of equations (5)and (1) to be proportionately . 

less. RemeMbering that in this case n = 6, equation (3) gives 
go = 0.9827 4. The local value of shear stress in (4) leads to 
go  = 0.98114(0.1: difference), while tho 'integrated' value gives qo  
= 0.980C4 (0.55difference). Thus the overall difference 'between 

the t7iro methods is much reduced in this case. It iii; * he rauarkod 

that this masking of the difference between the tuo methods is most 

apparent when n =27 and that in the torsion case (equation (25), 

Reference 1) there is no constant term present and thus the original 

figures given ore more appropriate. We may note that if ,c = 0 

("Math° Theory") B = 1.000 and so A and B are strictly comparable 
in -nitudo and the above reduction does not occur. 

The above example provides quite close agreement betueon 
ha results of the two methods. IL value of 0 equal to unity is 
not at all unreasonable structurally, and if we take a ton cell 

box for which 0 = 1, a=a =0.10,?=.1   we have y = 0.6585, 
5 = C.7071 ( 	8 = 1.075ay) 	ici  

C = 1.1132 

= 1.1505; by (11) (local) 
	

(1.55) 
= 1.15784 by (11) (integrated) (2.2%) 

=or a four cell  bra of the sr,:ae gometry 

by 	:; 

= 0.8081,4 by (11) 	(integrated) (3./4 

For the torsion case the above differences would be increased 

to the order of 	. Vie may thus conclude that the accuracy 

of the continuum in following the behaviour of the discrete sheer 

webs of a multi-web box is quite reasonable for a box having 

practically sisnificant geometry. It may be said that the 
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number of webs is less significant than the geometry of the cells as 

reflected in the parameter 6.  

All the foregoing maybe said to be concerned with the 

'beam theory' solution of the multi-,ueb box built in at its root 

under a shear load applied at a rigid tip rib. The solution could 

have been obtained by finding the vertical deflection at the tip of 

each web with the tip rib absent and some simple distribution of the 

applied shear among the webs, and then seeking the statically zero 

web shear distribution necessary to make all the tip deflections 

equal. This approach to the problem will be found useful when 

considering constraint effects at the root. 

It is clear from the expression for u in Equation (A.9) 

that the solutianue have obtained involves an .0(1.101 warping of all 

cross-sections and that the distribution of shear flow between the 

webs will affect this warping. Since the bending stresses corres-

ponding to T, must be reacted at the root of any box, it is clear 

that there must Jpe a greater or lesser amount of restraint of the 

wareing of the root section. This restraint is incompatible with 

the results of equation (A.9) and so a statically zero modification 

to the elementary stress distribution must be added in order to make 

the root deformations consistent with the boundary conditions. Hemp 

in Reference 1 suglests a moaification to T
1 

which varies parabolically 

the ch,ordwise deLrecti:m and has an arbitrary sDanuise variation 

17hich 	!"ice 	 methods. 	sclutIcn 

no shear in the webs, and is correct for a box where 1 is large. 

However, since there is now variation of bonding stress across the chor 

there must be a corresponding differential benaing of the webs (equatiol 

(A.9) with qi  = 0), .and this is incompatible with the assumption of a 

rigid tip rib. 

4. Root Constraint in Shear  

Following a remark made earlier, it would seem that a 



reason-2110 approach to the problem of the root constraint of a 
multi-web box under tip ;.-:hear is to solve first the root constraint 
problem for an arbitrary distribution of the applied shear between 
the webs. The web shear distribution is then chosen to make the 
web tip deflec.,.tions including those due to the constraint stresses  

compatible with the conditions applied by the tip rib. The method 
chosen has boon the familiar one of specifying a distribution of 
bending stress across the cross-section with spanw-ise variation 
dotermined variationally using the Theorem of Minimum Strain Energy. 
It is clear that the choice of the cross-sectional variation of 
stress mist be sufficiently general to allow for effects arising 
from the as yet unknown we} shears. 

Extendin7 the method of Reference 1 to allow T1 to vary 
with y as an oven order polynomial brings considerable algebraic 
difficulty because of the effect of the nob booms in disturbing 
the sir.plicity of the skin shoal- stresses. It was decided to allow 
T, to -.-f,ry linearly between arbitrary values at the web linos. For 

box this will mean that the L.:onst-raint stresses aro 
by c•-ither r.,/2 or (n-1)/2 un-no-:.n. functions of x, the 

equti-..ns governing, which must be obtained by minimising the strain 
energy under appropriate conditions. This will lead to linear 
diffcrc.-,ntial calaations each involving all of the unkrtow-n. functions. 
It 	therefore profitablo 	endeavour to minimise the coupling 

_ 	J 2 • 

rioutiens 	-tIlenselves each statically zero 
=2..,  which cover a minimum number of skin bays. 

In Appendix B such distributions are derived and a method 
of solution is indicated. Calculations of this type have been 
performed in the case of the six-cell box already mentioned and the 
results arc plotted in Figure 2. Section A is at 4..5 in, and 
section B at 27 in. from the root of the box whose length is 54- in. 
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The conclusions of this necessarily crude approach should be treated 

with caution, but they indicate that the effect of Ueb sheer distri-

bution on the constraint stresses is not negligible. 

5. Further Developments 
The results of a simplified calculation such as that just 

described will serve as a lead in the solution of the complete 
constraint problem involving the functions Fi  (d of Lppendix B as 

well as the G. (). The methods of this paper are eminently 
suitable for examining the effect of flexibility of the tip rib; 
and they will also handle without extra difficulty the problem 

of the =1U-web box carrying concentrated loads applied to its 

webs at stations distant from ribs, a case -which has proved unsuit-
-able for the continuum approach. The methods of the first part of 
the paper may also be used to investigate the accuracy of the 
continuum approach for further loading cases (e.g. the box under 
distributed normal pressure). 

6. Conclusions  
For the simple loading case discussed, namely the box 

under uniform shear, the method of replacing uniformly spaced 
webs by a -shear continuum' is sufficiently accurate for the 
purposes of stress analysis. The effect of stresses due to 
any constraints must, h=aver, be taken into account when 

evaluatirrYr the shear distribution in the webs. 
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APPENDIX A,.  

Analysis of Feb Shear Distribution 

The bending stresses are distributed as in the Engineer's 

Beam Theory, to give 

T1 	.-z( e - x)/)bet ; T2  = 0 

where 

c' 	c (n-1 )A/2t Ao/t 

The(oonstan-Oshearflwinweb'i'is.and since we are q,  
dealing with a loading case which is symmetrical about y = c 

we have 	 rt  

U 

*p
 	

'
'
 
,
 	

•?
fP

 

- • 

qn-i 	(all i) 	qi = 

We may integrate the equation of x-wise equilibrium in the 

skins (DTI/ax aS/ay = 0), and allow for the 
equilibrium 

conditions applying at the web booms to find that the shear 

flew in skin panel 'i' is given by 
1,1  

S.(y) = (Z/bc') y Alt (i-1)A/t) 
qj 

j=d 
It 	notod tiu-t, this ex.17?..-es:-.,- ien satisfies the s:r,-.-xte,try 

conditions Sn+1 -i (2(a y) = - S. (rr) a 	The stress resultants 
given by (1), (3) automatically satisfy the requirements of 
cavatibility of displacement. The strains in this skin 
panel are given by 

) x 

1 = 2(1±q) 
` xyl 	Et 	q") 	

(14,T)Z A° (e i 
0 	2F,tbc' (7  

a=0 

Integrating the first two of (A 4) wo obtain 

(A3) 

4) 

111161001mmialimilli1111111111•11 11111111111111111111111111111111111111111111111111PROSEP"- 



u.(x 	Z(ex tx(o 
 
1,74,Etbo' f. ia. 	 3_(Y) 

v(x,y) = 	D (y-o)/Etbo' 

where fi(y) is an as yet unknown function of y. substitute 

from (A 5) into the last of (A 4). 

i-1 	 AO -Gg7-0) 
Luria 	

-T/  
= 	Et 	• - TET-bc ! 	+ qJ 

(1=1,2,3 ...,n) 

Integrating f!(y) between 2(i-1)c/n and 21c/n, and using 

(A 5) we fina that 

(A 5) 

(AG) 

(!ic\ la  (2(i-1)c) 
i u n ) 1 \. n 

' 1-1 
2(14-) ( \—. 	Z 	(2i-1 c  A0 	NA 	(2i-n-1)c  

	

+ -.E—• + % 
(
.3--1 ir 	7 -rm T  .L, 	/ Cli 	4130 	n 	 u 	n 

-- ;3 
(i . 1,2,3, ...., r) 

-.-,ere r= Cr/2(1 

Cn 	 of ta%:, above process it will bo scaiL that 

tcrm in r in ((A7) which leads tothnt in eqw..tions (3), (4) 

referred to in the main text, derives from the shear strain 

;Lich Irises fran the Poisson contraction varying with 

in the second of (L. 5). 

i 7) from  472 	Iry find 

 

--- i---1 

(

nAo 
—c-  + opia 	 CU 

  

( 
= 	1T7r- 

n(i-1)A 
2ct 

 

(1=1,2,3, n) 

'.7e may again note that symmetry is satisfied since 

u -i  (x' 
 2(n-i)c/n) ui  (x, 2io/n). 

n  
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Tie must nog consider the shear webs. Tie assume that they 

experience ne dire,ot strain in the z-airection, and we have 

already postulated that they carry no direct stress in the 

x-direction though naturally they must extend in that direction 

w-iTh the sk:Ins. Clearly, then, the web shear strains are given by 

2(140-)0./Et a,,,./ax u.i(x,2ic/n)
~ yr

,/o
1. 

 

(i = 1,2,3, ..., n-1) 

2(1-Hp--)c100/Eto = Ongpx r uo(x,0)/(b 

where w. is the z-wise displacement at web I. Since the 

root is built in vie have u = v1= 0 at x . 0 and since we 
assume that the load Z is applied at a rigid rib we must have 

&Way = 0 at x = 2. Substituting from (5) in (6) we find 

that aw,,/ax - 1-1 ia 	ind.c.2ef,dent of x and so the above 

conaiticn :1217olies tliat 

(A 9) 

17 

0 = EN7
1
/ax at,c/Ux 

 

n (2±-1 2 ;:t.-1 1A (2i-n-1)c 
- 741 

(i 	2,3,/f, ...0 n-1) 

ritA _A / 

 

• A o 	r — 	0.-1) --(3 1 
11 

  

 

L  

  

If we define Q. . qi(i = 1,2,3, ...,n-1) 

= twqi/to(i . 0,n) 

and write 0. oty/nbt = at.1142bt (aw = web pitch) 

PM.11,-"N 
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and 	cW2nbcT, cc niV2ct, ao nA.0/2ct, 	h = t jt w 

then 

-2(1+0)Qi  + Qi+1  + 20 (1+ c--T) 

(i = 1,2,3, 	n-1) 

-(1+2 Xu)Q0  + Qi  + 0 (1+2a0+(n-1 )7 ) 	0 

7.".'e may solve the recurrence relations of (7) to give 

lY  

(A 10) 

0i  =`, (1 +a -  T ) + C\fl 
	n-i, 	

(A 11) 
(i,-_, 0,1,2, ..., n) 

where 

ar_cl we choozQJ the rooto = 1 +0 --,\1 6(2 +0 ) <1. 	V,re find_ 

the -uricr..13-.-Tri constant C by :_p_ibstiLuting in the ec_pation. involving 

Q,.. cu lci C,',
1 

only,=_-_-•:_r.).d. so ob t: ,...i.n. equation (1). ..., 

- 	-Es) p-0-1 	o 
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Constraint 	Dist L•ibut 

In k IL v,as sugfeste.d that a constraint stress distribution 
could be conveniently built up as a combination of "locaT1 
statically 7.cro distributions varying vrith x. If we assume 

T-1 vari:s linearly with y between web lines we may r.roceed 
as fo11073. 

If 	nx/20, n = ny/123, 

vie may write 

77n 	- (B 1) 

n-1 

T 

	

1(x 	▪  ( ▪ . 
1 i 

1=1 
n-1 

• • 

	

' 	 ( 	'la( 77) 

(:.K) 	; 

where F . ( ) ( )n 	1 i(77) etc, are defined by 

(B 2) 

(1 	 n-2) 
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- o 77 ou-11n )-(7+3fl -15/724.7773)-283.(1-T1 )3  

	

,-1 	, 	, -2 
30 	j 	1 6  0 	2 	2 2 	3 

• ;1  
-- 82:(11.3n1.4-3TIi-37M-81-1-1.(4-677. ,4-3T1 	)-8i42(1-71. _.!..,,)') 1 i 	1+i i+1 j a 

1 

e 12 = -81 1 3RD  

  

(i- 2 3' • 0 0 

1 when k 	'L 

0 when k 

The above distributions are illustrated in Fig.3. 

Such a distribution of Ti satisfies equilibrium conditions, 

is statically zero, and covers at the most four skin bays. 
It thus is suitable for our purpose and reduce.s the coupling 

betwen the functions Fi( ) which describe its sl=nwise variation. 

7c account has so 11' - r boon taken of the constrairt stresses 
LI the vrc_;b-boems. 	Since 4.11:::se derive from the strains due to the 

stress-Listr:Lbutiens, the relation between them is not 

It is more convenient to spc:LI.yti...L.boomloadsP.(x) 

ii,,ndently in terms of unknown functions Gi(8) 
( 	(E) as follows \rn-i 

2.G1 (8) 	P1 	n 	o ()4-2G (E)), 

2rr 	(6) pioj 	 . 

    

(B L) 

E.1 (x,Y) = IGIM 	 ( , Si(x,Y) = -!z -GI_ ( 
	

G!)_(6) (i = 2,3, ..., n-2) 

T21 Cx,Y) = 4- 72,1 N M, T2iix,Y) 	-1 ( (1-ri)C-jui( 	-01.1 C-1M) 

(i = 2,3, ..., n-2) 
a. . 0 



G-` 1!", (6- 12(1+0")(- 1.1 Gi-1  (E)-1. 2G "(E)-  GL.1() 

4G1_1( )+ 61M— 01+1 W+ Gi4.2(d) 	, 0 

(i = 3,4, 	n-3) 

B 3 

The condition of minimum energy may be used to enforce 
thenecessarycompatibilityrelationshipbetweentheF.and the 

G.. 

Our constraint system is now specified by the functions 
F.(t) G.(0 which automatically ensure that the constraint 
stresses are self-balancing. Unfortunately, although much has 

beerl ame toreduceaneccalplingbetTfeen theF-and G., a 
typical differential equation resulting still contains seven 
F.andfiveG..We may reduce this complexity by ignoring 

the F.1, concentrate the bending-stress carrying properties 
of the skins (so far as the constraint stresses are concerned) 
into the suitably enlarged web booms, and allow the skins to 
carry only sher.r (s) and chordvrise direct stress (12). 

IL statically correct distribution of stress which reacts the 

tip shear Z and which is expressos in terms of unknown constants 

H1 , H2, (Ti . ..., - F  11-1 - n-1 = Hi) is as follows 

nP (x)/20
a 
 Ykl nPi/2c = -ath r-) (i = 1,2,3,...,n-1) 
- 

(X 3r) = ''•4( '" Tli  

Si(x,Y) = -4(77i4) 

T 2 .(x y) - 0 

(i = 1,2,3, 	n) 

(B 5) 

= 	), 	a. 	1  .1_,1) 
	

(i = 1,2.3, ...,n-1) 

, 

Combining (B 4) and (B 5), writing down the strain energy 
and minimising it with respect to the Gi  we obtain equations 

of the tyre 

G'!" (r)-1- 1-1 	I 

(6/a)(Gi_2(0- 
(B6) 



B !4_ 

with typical boundary conditions 

Gi".1(0)± 4G1(0)+ G±:0)- 12(140--)(-Gi..1 0).4. 2Gi(0)- G14_1(0)-1. 

- 2H.+ H. 	0 

K(0) -7 a-J.(10 = G.1(11) z: 0  

It should be noted that In equations such as 0 6), though not 
in (B 5), a and a  should be augmented to include the effective 

skin area. The determinant which must vanish to make these 

equations consistent is a regular one, and a recurrence relation 

may be found which leads to its evaluation for general n. 
The F.  (j may then be found in terms of the as yet unknown H., 

and fin:ally the tip deflections cf the webs found in terms of the 

H. .̀-e then chosen to make these deflections consistent 
with -,1].e conditions at the tin ri:). 

(B 7) 
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