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Summary

This report is concerned with the synthesis of
3=terminal RC networks according to three specifiied network
functions. Some necessary conditions for physical resl-
izability are derived from first principles by an algebraic
method, The possibility of synthesis is shown to depend
upon a certain inequality but the weakest conditions
required in order to satisfy it are not yet known.
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Notation

the voltage rise from node o to node a

a

ia the current entering node @ from sources external
to the network

iqﬁ the current flowing from node ¢ to node f in
the branch joining nodes ¢ and £

vﬁ’Ia’Iaﬁ the Laplace transforms of Ve 1, laﬁ respectively

t time

A the complex frequency, independent variable of the
Laplace transform

b a linear or bilinear function of A

C the network capacitance matrix

G the network conductance matrix

P = _G-_ + )\g

2 the thwree pole (Strecker-Feldtkeller) impedance
matrix

AQ R=matrices

,l,F square matrices

F the transpose of E

detE the determinant of E

gk the k™ compound of E

2355 the k™ adjugate compound of B

(ad,jg)(k) the kP compound of the adjugate of E

ggg) the element in the i*® row, ;™ colum of E(¥)

1 the direct sum

1k unit matrix of order k

L5 ,% transformation matrices

L o)
Uk - P‘I 1
. (k=1)
W = By
6,6i;m;mi,Rij,ei,e,a,b,m constants

£455 585HyH, 0,0,

5 1,r,ri,S,T,h polynomials in M

(H)lc-‘l’ (f)k-1 etce the polynomials corresponding to H, f
etce in the succeeding cycle
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hi zeros of polynomials in A or A\!

£L a diagonal matrix

U»>o0 the coefficients of powers of N\ in the polynomial
U are =21l non-negative

u//fv the poles of;?; separate the zeros Of%

figri(mod,Uk) f; is congruent with r;, modulo U, .

On the synthesis of 3-terminal RC networks

Introduction

Rapid developments in the fields of commnications
and servamechanisms have in recent years emphasised the need
for a study of networks containing no transformers. Servo=
mechanism engineers have been specially interested in trensfer
function synthesis, and since their requirements have generally
been for low frequency characteristics, resistance capacitance
networks have received particular attention, In 1952
Fialkow and Gerst (Ref. 3) gave a general solution of the
problem of realizing a given transfer function by means of
either a three terminal or two terminal-pair resistance
capacitance networky and two years later (Ref. k)
succeeded in extending their method to give a realization by
means of networks composed of resistances, capacitances, and
(self) inductances.

On the other hend, for communications purposes it
is of'ten desired to realize a network not only for a specified
transfer function, but also for specified input and output
impedances (or admittances)s Furthermore, three terminal
networks are of particular engineering interest in that the
input and output have a common terminal which it is often
convenient to earth,

The present work is concerned with the synthesis
of such networkse It is assumed that the input, output and
transfer impedances are given, and the problem then is to
obtain a realization by means of a network containing two
kinds of elements only, Some necessary conditions for
physical realizability have been derived from first principles
by an algebraic method, These conditions are themselves
generally well known, but the method of derivation was
adopted because it suggested the approach to synthesis, The
possibility of synthesis is showm to depend upon a certain
inequality, but it is not yet known what are the weokest
conditions required in order to satisfy it. By way of
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illustration two numerical examples are worked outy it is
shown that for each of them the method is capcble of yielding
an infinity of solutions,

14 Analytical Preliminaries

Consider a network containing two kinds of elements
and having n+1 nodes, Three of these nodes are to be
regarded as input, output, and common earth respectively.

For the basic case we shall take the two kinds of elements

to be resistance and capacitance} other cambinations may be
obtained by a simple transformetion of the basic case, as will
be shown in Sect. 4+ Let the nodes be numbered so that the
input is node n, output n-1, and earth (reference) node 0.

INFPUT QUTFUT
) LINEAR PASSIVE oy i
! > RC NETWORK "‘6""”"1_' o

v v
n s a8 n=1
1+
o
0
Pige 141

Teke the positive direction of voltage and current
as shown in Fig.1¢1s Denote the branch joining nodes a and
B by (a8)e Then the equation for the current in (gf) is

B
Caﬁ g‘f (Va - B) + Ga,@ ('Va - ﬁ) = iaﬁ u.-ot(1.1)

« Sumation on repeated suffices is not implied.



where

Caﬁ is the capacitance in (af)

Gaﬁ is the conductance in (apB)

ia{:? , & function of time, is the current in (eB),
the positive direction being from node a to
node B

v, @& function of time, is the voltage rise from
node O to node a,

--...ooooco-(1-2)

Now take the "=multiplied! Laplace transform of (1.1) defined
by
y D

l
V(l) &= N ! V(t) E-Kt dt Il...ll.l.l'(1l3)

“o

and neglecting the initial conditions, obtain
(maﬁ + G'aﬂ) (Va - Vﬁ) = Iaﬁ 00.010.--...(1-4)

(The more usual s or p symbol for the Leplace transform variable
has here been replaced by N to agree with the established
notation for complex frequency and for A\-matrices).

When Kirchhoff's current law, in the form

I

:%;g Iaﬁ = Ia Q@ ="1y sosnseyll g 010000000000(105)
Pfa

where Ia is the current entering node e¢ from sources
external to the network, is applied to (1.k4), there resultst

o | v,
0 ; V2
. =‘2 . 000010100000(106)
. &
n-1 vn-‘l
".In | L?n '
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where Pop (the element in row a, colunn # of P) = P -
== (A0 p+Cp) a#fPp
e
Pﬂa = (}. Cﬂﬁ + GGB) qncuoooloooo('i.?)
p=0
Bta

From lemma 1, it follows that P is pos:.tlve definite for all
A>0, if and only if the linear graph = of the network consists
of only one separable part. In what follows we shall suppose
this condition is satisfied so that the Strecker-Feldtkeller
impedance matrix always exists, The treatment of the deg-
encrate case, in which P is singular, calls for some device
such as the scattering matrix, whi ch, however, will not be
discussed here,

Under the conditions of lemma 1, then, it is now
valid to write

H l F
vn | =iZ11 Z12E ] n ! ......'."‘.(1l9)
Unea] " %21 229 =
where
(n=1) , o(n)
29 = i1 /P11 ; =
-1 n
Zip = By == BE / Bi4
(n=1) , o(n)
222 = P22 /P"|1 .QQ..Q.I.li.(1.10)

where P?(Ll;) is the element in row i, column j, of the K

campound of the matrix P * %,

If the network is now regarded as a 'black-=box' with
three accessible terminals, then its properties are determined
completely by the functions Z‘H’ Z12, 222. The actual

performance will of course depend on the values of current and
voltage at time % = O3 but these will have no effect on the
circuit parameters of a linear network., It will henceforth
be assumed that all physical information has been reduced to

« For a more detailed discussion see Ref, Ba

## A discussion of compound matrices may be found in Ref. 1
ch, 5,



a form expressible in terms of the 2 functions; clearly the
Z functions must be rational functions,

24 R=llatrices

The discussion in this section is purely algebraic,
but is of such importance to the derivation of the synthesis
algorithm that it has been included in the main body of the
text and not relegated to an appendix.

The concept of R=matrix was introduced into network
theory in 1937 by Burington (Ref., 2)sy it provides a method of
formulating purely topological properties in algebraic terms,
The argument advanced here hinges on the key theorem of
Secte 2.2, Some of Fialkow and Gerst's results are cbtained
as corollaries of this theorem, in Sect, 24

2e1e Definition

If A 1is matrix, with elements Aij’ such that

(1) A is square, of order n x n, say
£ 3 i -
(i1) hiy =hy <0
= Rij = - Rji’ say (143
(iii) Aiifa 0
= Rii’ say

(iV) f’,_ A:.LJ-"} 0 e 1, snes Il

3

9 = 5i sy S8y .l.l.l.l.'l.(Qt‘i)

then A is said to be an R-matrix., This definition differs
from that of Burington who instead employed the condition **

n

T !
‘?;;1 iAij|‘“‘(‘:2 Aii ...bs.l.l.tl(zlz)

Conditions (2.1) are implicit in the work of Fialkow and Gerst,
and will be found more menageable than (2.2), It will now be

# Ref, 5, Part (ii),

## This arose from his use of mesh instead of nodal
equationg,
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clear from (1.7) that C, G, and P, for A=.0, are all
R-matrices provided all resistors and capacitors are positive -

a condition certainly satisfied by passive networks.,

Moreover,

if P is an R-lMatrix for all A\ 2 0, then P is the admittance
matrix of a physically realizable network,

il.24

2424 Theorem
If A is en R-matrix, end 4, =R, £ 0, then
Q = E ALK, is en R-matrix where
T Rp/Ryy Ryg/Ryyeees R /Ry,
0 1 CJ saew 0
— LR NN 2.3
K, = (2.3)
L L LR L
0 0 0 1
]
and 51 denotes the transpose of 2(_1
Proof
By simple multiplication, Q is seen to be
R11 .8} 0 0
Ris R R, R B, B
12 "2 12 13 12 "Mn
0 (By R ~(Ryz + =% coes =(Boy + —F—=)
11 11 1
R.» B R.. R Riu R
. 12 713 B 5 Mo | " 13 1n
0 (Rﬁ3 iy kSt ) (333 9 voue (Rjn iy, )
11 11 11
aw LA awae LE R
R, R R R R, R
0 —(R ) 12 ‘in) -(R + 12 1n _— (R in 11’1)
R Ryq E Riq - B9




=10=

A11 0 0 o 2 h“’
0 (2)/1111 A(z)/A“ 531)1_1 /8,
= v (2)/‘“11 (2)/A11 gl)l- /Ay,
(2 2) (2)
¥ /840 B pea/ By eee Bd /By !
......"....(2.}4‘)
then
(1) Q is square
.. 1 .
(ii) Q.. = jS = - -ﬁ: (R11 Rij + Ry R1j)$- 0
1#3

in virtue of (ii) and (iii) of (2.1)

Qij

1

Since

(/R4 (Ry4By5 -

i ef (ﬂ
=2

0, if either 1 or j =1, i # J.

K5
BygRy3) = 0y

from (2,1), (iv)

R” = R

R.. > R
e

13

"

8; + Ryg + (B13/R,)(8,

by + Ry 8,/R,,

> 0, in virtue of (2.1), (iv).

Hence @ is an R-matrix,

i, J =2 ees n,

1>,

11 13/R11), :L} J ?{1

Ryy)s from (241), (iv)

noo--ooa.-on(E.B)
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Iet A be positive definite, and let K, be defined as"

1t & e /A(k) (k) /A§1)

0 4 0

0 0 1

0 0 0
then

Bt Bep o KAKK
= aieg |4, B

A(z) /A,H

A(B)/A(z) $ 1/11(1{‘1)

A(k-1)/h(k-2)

is an R-matrix,

T ﬁgk) Jei ] /ﬂ(kjll
ave 0
voe 0
“ee 1 |
“oe 5&:—-1
rﬂ(k) af) . A1(1:z)1—-k+1
k
‘“1(1‘2:) *‘5}2:) Aé,:r)l-kn
K (k)
i 1 yn=k+1 soe n-k+1 ,n—k+11

This follows immediately by induction from the proof
of the main theorem, and in virtue of lemma 2,

The condition 'A is positive definite' ensures that

4 4o

= 2, seny Ile

243 Inverse K Transformations

Suppose now that the R-matrix @ is given.

The

question then arises, how may an R-matrix A be obtained from

Q such that A(z) /hy, = Qs

(25 ) provides the clue.

i+1,3+1

1’;'-

= 1, aee) n-1?

# The symbol <+ denotes the direct sum,

of order k=1,

Jyet

is unit matrix
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.
Let o, = = Q.
g=2
5 6i + R1i 61&11 '--.ao.-oto.(2.5)
a].SO »::_:"_;ﬁ- R‘1i = R11 e 61 I ............3(2.6)

from (241), (iv) and (ii),
We are given w; and R11 3 we wish to determine

Ryys Bys 845 811 positive, such that

Qij +(R1iR1j) /R11 'G;O, i#j t-c--o-t-ovo(207)

i, J = 2, .l.,n.

Summation on i in (2.5) yields, in virtue of (2.6),

-2 S 6, 4 82, - 8
- . W=~ o b, 4+ 06,/R, -5
e 1 i 1 i G 1
or pu*ting
A I
‘;‘--:—-- Zb’i = Wy and ;::L,, 51 =0 0.-.0-.-0..-(2;8)
A2 i=
obtain
2 ;
6‘] = R‘i-‘l 61 + RJI'I (EU' = 6) =0 ...Q-....o..(2¢9)

In order to satisfy (2.7), suppose we now demand that Rﬁ_ is

less than the minimum value of

=4
(—Rl1 Qi'])z = N R11’ say i, j = 2, eee Il .-00(2-10)
i#3

-then 6‘1 —:: 311 e 1‘11(11""1) R11 fI‘CCI'J. (2.6) ...........g(2.11)

~1/2
and 51/311 =1/2 1+ r*l - lg-({b'-f))/Rﬂi from (2.9 )

N ............(\2.12)
(24 1) and (2.12) now imply
em (1) £ 1/2 1 & (1oh (0=8)/R, )

4 a
iees either 1=k (w=8)/R,, 2 (1 = 2m (n=1) )2, if m(n=1)<1/2
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or 1 =4 (w—&)/R”;{. (1=2m (n=1) )2, if m(n-1) > 1/2
subject to the condition 1 - 4 (w—())/RH F0 sansensreennlosiy)

Hence a solution always existsg in fact as (2,13)
shows an infinity of solutions can be obtaihed, & can be
suitebly chosen, thus fixing & 4» @8 a result of (2.12),
Finally R,, dis chosen to satisfy (2,6) and (2,10),

This then completes the inverse XK, tronsformation,

1
Inverse _Ijk transformations can be similarly treated.

2elts  A=Re=llatrices

Consider P =N + G. As we have scen, G and C
are R=matrices, so that P is an R-matrix for all A 20, Ve
shall call P a MR-matrix, The K trensformation theory of
Secte 242 Will now apply if we put A =P and qualify all
statements with the remark, 'for 211 A.> 0Of,

lloreover, since R, 1Qij’ i # 3, is formed from non=-

negative quantities by the operations of addition and multipli-
cation only, it is clear that all the coefficients of powers

of A\ in -ij , i =3, are nonenegative, Following
Pialkow and Gerst we shall denote this by

- p2)9 .
Pia ;})0. i ?{ Je esscene (2013&)
Similarly
n
a0
M1 255 Yy = Ry (B« By 8/Ryy)

involves only positive quantities and the operations of
addition and multiplication, so that

n=1
'q:'n. P(2) \\'\ O
o R - Ve
J=1 i ot
Therefore ) el ot
(2) & (2) & (2)
B m %1 B3’ + > (- By, ). 0, from (2,132)
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It now follows by induction that

k).

P> 0 :

x) ty G 5%y eww D=k 3 1

Pij {% - & # j i....l.'.l!i(2d£+)

where the last statement means
(k) \

luch of the theory of the preceeding sections can now be

carried over to A-R-matrices, if we replace the sign 2 by

}?'_‘,. . However, the '6-equations' of (2.5), canmot in general
b; solved by the methods of Sect., 2,3+ It is in fact necessary
to employ some additional algebraic device, In the next section
the solution of the d-equations will be discussed in terms of the
algebra of c:ong,r’u.e.nces,"I and the problem of synthesis reduced to
finding polynominals to satisfy a certain inequality. Vhether,
however, this inequality condition can always be satisfied is

not proven.s All that can be said at present is that it can be

satisfied in many cases.

Dis Synthesis

The problen of synthesis may now be formally stated

| z Z 12%

thus: given Z = 7 g i find a \=-R=matrix P of
i_...12 22|

order n (say) linear in A such that

P(n‘1 )/P‘(!Eil) s Doy = (n—'i )/P(n)

nonnu.oto.oo(3-1)
Once P is known, the network can easily be constructed,
Clearly P can be determined by applying the inverse

7 = P(n"'1 )/P(n) 7,

11 12 =

*« Ref, 6, Chapter 8, 10,
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££_1, Eﬁyz, see Eﬁ transformations in succession on the
matrix .. -
219 24
A

provided such transformations are possible when the quantities
involved are rational functions, It will be sufficient to
consider the general case of an inverse Ek transformation,
but before doing this we shall see what conditions Zy19 2409
222 must satisfy if they are to have a network representation,

3¢1« The Conditions of Physical Realizability

First it is clear from lemma 4, note 2, and (2.14)
that the poles and zeros of Zy43 25, ore real, non-positive,
distinct and that the zeros must separate the poles, Also from

lemma 4, corollary, the degree of the numerator of 2 is one

11
less than or equal to the degree of the denominator, and

similarly for 222.

Since from (2.,14) =~ Eﬁﬁ) is never negative for
N2 0, it is evident that 212

real axis, However, there is no restriction on the zeros

hes no zeros on the positive

being elsewhere in the complex plane, as can be seen by replacing

; (k=1) (k1) , (k) (k) .
J5 in lema L by v rs Y /us) v, wnioh can be

positive, or negative or zero, Observe that since E§2’1) and
Eﬁ?) may have comon factors, it is not necessary that (2,1%4)
should apply (in practice it very often does not) to the
numerator of 212. However, since the zeros of Iﬁi) are all

real and non-positive, then this condition does apply to both

mumerator and denominator of Z11 and. 222.
Since 211 '212 mist be an R-matrix, A > 0,
e T
I
th.En 211 - Z12 = ; 0, “-1-‘ 0, II.(3I2)

o
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so that, for example, the coefficients of the highest and

lowest powers of N in Z11 must not be less than the

corresponding coefficients in 212 3 with of course a similar

result for 2 This raises the interesting point that it

22°
is not sufficient for only the R-matrix property to holdg
separation of the poles and zZeros of the input and output

impedance functions is required as well,

Next, since from Jacobi's Theorem

-1 =1 -1 -1 -2
I UL R PR T

we mist have
(nr2) (n)
Z11 222 - Z12 Z12 /P -tcun..o--cn(E.})
(n“z)/P(n) det g

" (n 2) (n—1) 20 B
so that P /P = (n_”/P(n) =7

snsueanelIals)

By lemma 4, the poles and Zeros of this function are real,
non~positive, distincty the poles must separate the zerosj
and the degree of the mumerator is equal to or one less than
the degree of the denominator. Ve can of course interchange
the roles of Zyy ond Zo, 3
ience as to which way the nodes should be numbered,

it is purely a natter of conven=-

Because of the possibility of factors common to the

mmerator and denominator of a Z function, we cannot

uniquely identify the various Eﬁg) polynominals with the

corresponding polynominals derived from the Z functions.

However, it will be most convenient to equate P51) to the

lowest common multiple, L, of the denominators of 211, —Z12,

222 and det Z, Ve then put
(n=1) _
By = Bay
n-1) _
1352 1) &. T %
ple=1) _
Fog "= L&y
Pgﬁlﬂz) = L det _Z_ 100000000101(3l5)
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From lemma 3, it follows that if rﬁi) is divisible by the

P(k-1 )

factor (A + A, )s, then, provided is a minor deter-

minant of P,glflc), Pc(zE“l) is divisible by (A + 'Aj)x , where

x 2 s=1s A corollery of the result is that Zy5
simple poles only, as can also be seen from the proof of lemma 4,

must have

To summarize we have the following?

Theorem
The necessary conditions that
I Z Z12|
L2 Z S0}
should be the Strecker-Feldtkeller impedance matrix of a 3=
terminal RC network ares

]
det Z
(1] The functions 2,,, Zyos Dpys det Z, 7,
det Z
haye the properties,=-
Zy4+2p=22,,

(2) The poles are simple, real and non-positive

(b) The degree of the mumerator is not greater than
that of the denominator.

# Observe that in the special case when Pc? 1) 52-1), Pﬁ?)
are co-prime, we have from

AR -y oyt ) o)

that 1r B0 //p(0) | gpen p{m=1) sy ~2) r§§’1)/7Tﬁ?).

P’
Also, provided Eﬁ? 1) P(nri) E£2’1J are not equal
simultanecusly, for same value of A,

(P'E?~1 ) P£2—1 ) P(n - ))// P(n"'z) "

However, in general if common zeros occur, it does not follow
from P(n 1)// P(n) alone that the other functions quoted

possess this separation property,
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det 2 det Z

» » -
22" &y, Ly +lno=27, 0

(i) The functions Z,,, 2 have

1
the properties,.-
() The zeros are simple, real and non-positive

(b) The poles separate the zeros.

(ii1) Zyy 20
Zy, 20 all A20
%52 0
(iv) Zya = 2,,20
11 12 3-11 ?\-? Oo 0-0000000000(3.6)
figg = Fyg &0

Observe that (i)b and (ii)b ensure that the difference between
the degrees of dencminctor and numerator is not greater than

unity.

3e2s Solutions of the d-equations

Suppose that we are given P:%j“ )/Pﬁ), 10 = 15 eesy n=ks

We wish to determine P:(Ll;)/ P,El:-”, i, J =15 eeey n=k+1, ILet

(k) _
By B
(k=1) _ o
Ky Wy

=k
() & o .
Pl i-1 ? ——=1 fJ 8
n=lc+1 n=k
e Pg. W, s =, W=
e =g di=1 324 J
Bk (k+1) &k
o BV og , S m=m
= By e = Ry
n=k+1
= plk
s§"- Pg )': g -o...co--voc(}.?)
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then the &-equations of (2.5), when interpreted for the

case of the inverse gk transformation, become

. &%

“ (5.0)
=+ = £ e sspessensses 3.3
Ek Uk wk Uk
i + g = Uk cl..cbl.!lt.(3|9)
hence r g - g (1’30[1. Uk) . ..-.-..c.ao.(j.‘iO)
g fi Hi Wk
Now (Di + T = T s-ooooo.o.o.(3011)
k k
so that o
g fi = Hi Wk (IDOd. Uk) -.to.l.c..l.(3l12)
and gl g H Wk (1':10(1. Uk) .it.t.l.lll.(3.13)
Also Uk 0, & fj_
e + T = H. ll..ll.lll!.(3'1h‘)
L |I l
k k
s0 that Uk Wy S g fi (mod, Wk) sessevenesnal e l5)
and Uk w g - g g (IIlOd. Tl'-lrk) ..lll..l...!(3016)

Now let £, = es U + r;y Where e; 1s a constant and ry is
of lower degree than U,, so that g = (1-g) Uy = T

n-k
:

where R E: = &
E= e

It
il

. 1 ,] = I ...-.......-(3.17)

Vie now proceed to express the R-matrix condition
of (241) in terms of e; and e. Thus

U, 2f, 20, 220 svsnnssassveldelB)



so that 1 = I'i/Uk:_.:"Ei b I' k ? '}t:_) 0 uaonuo-otocc(3019)

For this to be possible, we must have

(ri/Uk) = (ri/Uk) 2 -g"j! 7\'20 .oc--u‘o----(3.20)
. mex min

Similarly U > g 20 implies sennspenevialient)

1 "'r/Uk,;;B__}h" I'/Uk » ?\2’;0 olo.uo..cnoo(3-22)

and (I‘/Uk) - (r/Uk) ) g'], ?\-2 0 ccl.-l-t-n-o(3¢23)
max min

Next, from (3.11) and (3.17), the condition w, ;= 0 dimplies
Mo h et

iae. k 1381 ng'l'r g 0-0000'00010(5.2}-}-)

H. W
so that e, <= r./U - T -

+ -
i AR ’
U, L(‘t-a) U, —rl

Similarly w <0 implies

AZ0  sesel(3625)

“k H;’_’g £ I.lt!..'t...(3-26)
ieee W, H_E’:?_“_(1—e) U, - r_! (U, +7)y NZ20  4seee(3427)

. 2.2 2
ieee €70y = eUk(Uk- 2r) +W H+x" =0 r 20, seans( Fe28)
whence either

(U, = 2r)%< W(W Ha+ 1 = Ur), N0

l.e4 (Uk)zg !4-‘.“"}{ H, K;::O .uuu.....(}.ZQ)
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or €21/2 = 1:-/'Uk + (/4 - Yka,/Uf__)ﬂ/z, A2 0
.l...llll..!(j.jo)

or e L1/2 = x/u_ - (1/k WkH/U§)1/2, A0 o
Peacssvessnesn 5-

In order that (3.30) and (3.31) be consistent with (3.22) we
must have

Lm - W DA Lt G - G &

......l....l(3032)
and for (3.25) to be consistent with (3.19) we mst have

H, W N
. - M) - (),
U, | (1=e) Uk-ri! _ 1 e (.’:..lf).rf“.‘r.‘...u.ﬁ)
F- 2 e b i g )

We now proceed to examine the congruence conditions,Fram (3.13)

no

HW

e g £ (mod, Uk)

1o

- £ (mod. U) by (3.10)

no

- 2% (mod, U) by (3.17) end (3.7)

then if H and Uk are co-prime, by Euclid's Algorithm there

exist polynominals S, T such that

HT + U8 =1
ieee HTE1 (mods U, ) denasesseonnal 53
leesy, H has an inverse with respect to modulo Uy« Hence

W, £ -1° 1 (nod, U,) ssasasavassnlSsiB)

It then follows from lerma 5 that the zeros of Uk separate
those of Wk provided r and Uk are co-prime, Henceforth
we shall denote this by Uk.//'Wk.‘l If, however, U, eand H
are not co-prime, we have, from lemma 5, that it is possible
to choose r so that the poles of Uk/“a'fk separate the zeros,

i.es admitting the possibility of U

% and Wk having common

# The notation is borrowed from Geametry,



zeros, This relationship will also be denoted by 'LTk//"‘;';'k.
Next, it is required that the remaining paremeters fi be
expressed in terms of r. TFrom (3.13) and (3.12) we have

no

g fi Hi Wk (mod Uk)

S H W .
gf = H W (mod, Uk)
G 57 9 -r
hence Hgf; = L HW = Hgf (mod., Uk)
and so H fi g Hi i (1'.'10-(1. Uk) .lll.t.l.t..(3056)

Strictly speaking this condition is not the most general
relationship, it being necessary only if Ulc and g are

co~-prime, However, it is sufficient for our purposes. Hence
H ri g Hi Ir (IEJOd. Uk) ..ll..l!l’..(3.57)
which enables Ty to be determined,
Finally, P:E_l;) is determined from the relation

i o)
1]

.-k + fl fj = U P(k) ..--n.o.oo..(jtja)

T Tk TiH g4
That this is possible, i.c. that the relation

(k+1 )
Tik Pij

1no

- £, £; (mod, Uk)

no

- Ty (mod., bk)
is valid, is proved in lemma 64

Clearly from (5.38) we must have also the inequality condition
. ket . s .
fi fj -I-Wk P§.j )‘: O, ?\;}'-0' 1¥ja-onncauoco-(3039)
Equations (3.7) to (3.39) state the condition which any
solution of the 6~-equations rmst satisfy. The congruence
relaticons enable us to calculate any of the desired paremeters

in terms of r. But there are still the inequality conditions
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to meets With the restriction that r, r;s €5 &; etc. mst
satisfy the inequalities and that r may have certain res-
trictions on the location of its zeros these quantities may

be chosen arbitrarily.

The success of this method as a general synthesis
procedure depends on finding a method of choosing r and e

subject to the inequality conditions, At the present time it

is not known whether this is always possible i.e. whether the
conditions of the theorem of Sect. 3.1 are also sufficient.
Certainly it appears possible in a large mumber of mumerical
cases and especially so if H and U, have a common zeroe

k
The inequality conditions may be more simply expressed asg-

WkH_;,g f, A>0 iece @20

W H, 2g £., 220  dees 0,20

£, f._»:-wkrﬁ”). A2 0 dees BE) . <o

TR TS 141,341 ™
i# e
The central problem would appear to be o find £ such that

Fr, can be made arbitrarily large, for N\ 7 0, subject to
13

0 -{.‘fi KU, It is possible to guarantee the first inequal-
ity by suitably positioning the zeros of r, but more than
this is not yet knowm.

3e3e Exanmples
(i) Synthesise

1

E =

There are no common factors so that we have

’ | 160733 TAEOM12
IHUENT200M86 | A 41812 14300420

|
?
!
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Pﬁ-q) = 1687 4 47 + 33 Pﬁr{") = = (D% + 18\ + 12)
P o aZazme20 2P o 33 s ue® 4 200 4 62
(n=1) (n1) (n—‘l)
P P P |
g?ﬁz) = L e L. B\ + 6 + (zero
P(H) remainder)

P(l’l-"l )//P(n‘z) P( )//P(n-2)

1(1111)+P(n'1)> 0, Pg;-*) (n*)po &2 O

Hence the necesscry conditions are satisfied,

9h2 + 29\ + 21

U1=5?\.+6 H1

H

H

712 + 16N + 8

167\2+ L5 + 29,

Since the functions PS? ~1) P;g‘_” P(n ~1) are of degree 2,

only a single inverse K, transformation is requiredy we may

_1

take T.F1 = Ty

By direct computation from Buclid's Algorithn we
find T=- 0,510, But W,HE - r° (modU,). Hence

2
r = 1,96 and so r = 1.4
r,H = ri, (mod., U1) Hence 7, = 046
c -
r H = rH, (mod. U1) Hence 1, = 0.8

observe thot W1H,> 1/L‘U$

Tie now choose

g, = 0Oui, €, = 0.3, =0 thet e = Oult

1

Then f1 0ebN + 1,2, f2 = 145N + 2,6

£,£, = 0750 + 341% + 3412 < 0,51 (7A% + 18 + 12)

I
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Thus all the inequality conditions are satisfied and the
network is physically realizeble,

2
1

. (2)
Prom the relations IH1 Ebz IH1 + f

. w(2)
Pyq Boz = Byt + 4,5,
_ (2) 2
Fyq F33 = Fop® + £
Pio = = £y
P -
13 %2
we obtain — i -
P a6 <42 56 | 5 =05 1.5 |
=162 Be7h =148 + N | =05 3,25 =1,25
(2206 =148 k6] | =15 -1.25 3,25

and the final network is as shown if Fig, 3.1(&).

Fige 341(2)

A second solution with 2 capacitors fewer than before

may be obtained by putting &, =€ =€ = O Then

f1 = 0.6' I2 = 0.8’ f1f2 = O.ll-B,



Id
t

5 0 0 _] 6 w08
0 %2 oAkl %@
‘_9 "10}4- 2._8~§

0.8 |
0.6 5456 =1,92|

""008 -1 -92 3.-’-&-11-.!
' e )
and the network is as shown in Fige 3.1(b)e

Fige 341(b)

In general, however, the number of elements

required cannot be reduced any further for a 4-node system if

Uk and H are co=prime,

(ii) Synthesise

5. o o2 . T 3 & 1o 5.2
14 A1 ’ 12 7 A+ ’ 20 = (?\.+1)(2-A+1) .
2
s Do ™ B 2
W Pind 11 22 12 _ 2"+ 60+ 3
1 2(n+1) (2241)

Hence we take
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ng) = 2(M1) (2M1)
ng) == (M1) (2)n1)
rég) = (A1) (N2 + 2)

Pﬁf) = (1) (2a+1)

Iﬁf) 2% & BN+ 3,

It is easily verified that
3 L 3 L)
Eﬁ1)/7?$1)’ B,

SR et

s 50 that the necessary conditions
(3) (3) are satisfied.
P + P o)
12 22 ~

First cycle?

H = (M+1) (22+1)
B, = (m1)3 Uy, = 2% 4 6) + 3
H = (A1) (lQ + N+ 2),

Choose r = 1. Then from W,H + 2 g 0 (mod, U2)

we find Wé = 12\ + 28,

{le]

Also from ryH rH; (mod. U2)

we find r, = 2, r, ==1,

Ve choose f1

i

2, £, =1/2 U, + r, = A% o By 0.5

2

no

Prom the relation 1, £§§)+ £,£, 20 (mod. U),

we find PL2) -

23 (12n + 9)



and similarly

2 3
Eb2 =
(2) _
P11 =
(2) _
P33 =
so that
K PR & e
~ == T 12\28
Second Cyvecle
H
H3 -
H =

2N +

2K2+

20

6N + 3

6.512 + 275N + 18475

212+6R+3

|

Again we choose r = 1

inequality conditions,

amended to r = 14, Then
W1 = 1946
r, = 1.48
r, = 26,6
r3 = =140
We choose f1 =Ty, f, = Toy f3 =
= 148 = 2645 = 64,0\

1;:(l

-2

2+3?x+0.5)

A = %° % B 4 0.5

12 + 9

=2 =(A°+340.5)

et St il

2\ + 20  =(12) + 9)

~(12049) 6,50+ 27,5\ +18.75 |

5,502 + 12,5\ + 9425

U1 = 12 + 28

6.532 + 275N + 18475

s but find that in order to meet the

r needs to be larger, The choice is

In a similor manner to the first cycle we find

Wiy Byz =0
W, By, = = (1463\ + 0435)
W, Pgy = 3942

W, Py - 6.31

W = 1946

1

W, P.. = 3260 + 2,17

1 722

n

13,62\ + 2044



Hence e —_
B = | 0.61M1.43 0,076 1433 =0.3061 |
l-o.o76 041670404111 0 -(0,083)\+0,018) i

|=1033 0 2 -0.322 |

{=04,306\ =(0,0830+0,018) =0,322  (04695M0.67) l

[em—

The final network is as shown in Fige. 3.2, However, this

network is by no means the simplest possible realization of
the given functions,

L, Lambda=Transformations

So far we have considered only resistance-capacitance
networks. However, the results of the previous sections can
be taken over directly to other combinations of network elements
provided the admittance matrix of the network can be expressed
as a linear cambination of two independent matrices, (This is
essential for the validity of lemma 4), Possible combinations
are tabulated below,



Network matrix

k§_+'—l— }?1

Ao —

-
{@]
+
>

I
i

>l
1

-30=~

Physical Interpretation

Capacitance and inductance
networksy every inductor
has a resistor in series
with it and of value prop-
ortional to that of the
inductor,

capacitance and inductence
networks every capacitor
is shunted by a resistor

of value inversely
proportional to the capac=-
itance,

capacitence and inductance
networkg every capacitor
has a resgistor in series
with it of value inversely
proportional to the cepac-
itance.

capacitance inductance
networks every inductor
shunted by a resistor of
value proportional to the
inductance .

resistance capacitance
networks every inductor
in series with a capaci-
tor of value inversely
proportional to the
inductance.

capacitance inductance
network

inductance resistance
network

=Transformation
A= AM+a)
A = ]

’Kl‘

}&l

?\1

'hl

R!

A2

i+a12

>|=

Iny linear combinations of the sbove combinations,

provided the same two matrices appear in each sub-combination
chosen, can also be treated by the preceeding method,



ship for 1953-55.
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Appendix
Temma 1
If, in the notation of Sect, 2, A is an R-matrix such

that, for each i =1, «se n, there exists at least one

sequence

R )

R, xy, Ry3, sessenes RSJG’ 2

ix?

no member of which is zero,* then 4 is positive definite,

.ll'll....‘.(A1.1)
Proof
(i1e1) and (2.1) ensure that
Rii: 0 no-ooo.cono-(f&"oz)
Further,
S Qij & Rij + 31.1 E1j/R“,> Oy if Rij Ay £ £ 3,
and

ik

. Qg =0y + Ryy 5,/Ry>0, if 8; #0.

iece provided no suffix in (41.1) is unity, Q@ also satisfies
condition (A141).

If, however, R81 is a member of the sequence, then
the next member is

either 61, in which case

or Ryts in which case = Q_, >0, s # t.

Hence in all cases Q satisfies (A141)s Therefore, by (41.2),
Qli:l‘ 0 = 2; esey Ile
Q11 =R11_>O|

# If A is the conductance matrix of a network, this condi-
tion is necessary and sufficient that there be a conducting
path between the earth node and every other node, i.e. the
linear graph consists of only one separable part.
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It then follows by induction that

K' !

S e 1 ecee él

1 éK Kzueo.o ‘J}T

is also a matrix satisfying (A1.,1) and (A1.2), so that in

particular,

ﬂgl‘;)} 0] k = 1, sose Ile

Hence A dis positive definite,

Note 1
If P dis the adnittance me atrix of a network whose

linear groph consists of only one separable port, then F
clearly satisfies (AM.1) for 211 A >0, so that P is
positive definite, N X O,
Note 2

This result is normally obtained from physical con-
siderations dcpending on the conservation of energy. However,
this algebraic derivation is instructive in that it reveals
enother property of R-matrices (viz. the inwveriance of (A1.1)
under X transformations) which is closely connected with the
topology of the network,

Iemma 2
If E is a square natrix of order n such that

?1‘) E(k 1) 4 o, then

(2)
@@ pl-1)), 0 wlet)
moy E(k—-1)J = =l 1o 3= 1 seee ok

11

(A similer result holds for rectangulor matrices with suitable

restrictions on i, j, k)

Proof
Iet M be a submatrix of E of order (k+1) x (k+1),
formed by adjoining to the leading k x k sub=-matrix of E



the elements of $
column (k+j), TOWS 1, seese k, row (k+i)
row (k+i), column 1y..ee k, column (k+j)

and such that the lexical order of row and column suffices

appearing in E is preserved. Then

1 k k+)

A\

k+

2)

1

CV R (
@A) = a®ade),

1(k) 3(k) _ (k) y(k)

14.1 1 1122 - 111 2 1.121
17(k"1 ) % T(k- 1 ?
=41 449

I

which, on putting N = adj. L

—

s
Iql{+‘1 k1 Nk.k B I\"k+‘l =i Nk |
I,.,—(k“") 1;(]{—1 )
& & M

11511‘"1) det 1 .

- P s 1

= 1) (k=1) by Jacobi's Theorem
My M

w i.e, (2dj E)(S)m (det g)(s“” ad,j(s)l._l_. (Refs 1y che 5)e
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(k) (-. 1))2_ E§1§+1)
(k)/ E(k 1). Hence & / e 79 31,351 5een=k

20

Lemma 3

If E is a real symmetric matrix of order n, then
A, is a zero of multiplicity k of det(E - 7»_111) if and only
if the renk of (E -, 1 ) is n-k.

This result is well-knowny it is proved in Ref, 8.

Corollary 1
If E + AF is a real symmetric matrix of order n,

such that either (i) ©F is positive definite

or (ii) E + aF, where a is real and a scalar,
is positive definite

then A, is a zero of multiplicity k of det(E + A\F) if and
only if the rank of (E + ,F) is n-k,

This is easily seen to be a re-statement of the lemma
3 if the transformations
(1) A==, X'FX=1

=T
or (ii) x:(a-}*) s X' (&F + E) X = 1 Dbe made,
Corollary 2

Ir (E + 7@)1(1;) has a zero \; of multiplicity s, then

A, is also a zero of (E + ?@'_)3(.1;-1) of multiplicity at least s=1
1,5 = 1,2

This follows immediately from the fact that (E + 1i§)§k_“1) is

a minor determinant of (E + \.F _)( ) which can thus have rank

not greater than k-s.

Terma L
If E+ M\ is a real symetric matrix of order n,
such that either

(i) F is positive definite
or (i1) F is positive semi-definite and E + aF is
positive definite, where a is a real gcﬂ.lar,
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@+ i

(B + m)(k)
real and simple; i = 1,2,

then (2) the poles and zeros of are 211

(b) the poles separate the zeros.

Proof
It is evident that the leading k x k sub=-matrix of
E + \F must also satisfy (i) and (ii).

The reality of the zeros of (E + lb)( ) is well-

knovmg a proof is given in Ref, P
To esteblish the separation property put,

in case (i), A' =1,

in case (ii), A =7+ 2
and transform the matrices E, For (E + aF), F simultaneously
to diagonal matrices, It is then valid to set the leading
k x k sub-matrix of E + \F equal to

either (1) X' (G+ M )X
or (1) ' a» » L) ¥
where {1 is diag (A,; Nyy seeee ')\k) and Y is non-singular,

Hence, by the Bmet—Chucm Theorem »

(§+1F)(k-1) = either (i) J‘:- s Jg " — le{

(Z + m)(k) AN, AN

1 2 "
7 3 %

s 1 2
or (ii) + + ooe +
! 1 ]
A l1+1 A 12+1 A lk+1

where J = Y(k 1), Y(k) 15 Tesl,

It follows immediately that the poles are simple,
Now arrange the ?\.J. in order sco that

» Chap, 3, Ex, 9.

s l.e, (11 N)(k) 1(k) (k) (Refe 1, Chape 5)e
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in case (1) N Mg My i wnee N,

in case (ii) LIPS VS ?\5 2 eese 2N 20,

The last requirement is possible as a result of F being
positive semi-definite, Then

@+ w5

20 if A' = - Ay, cose (i) At = - 1/7\1, case (ii),
£0 if A' ='- My case (i) A' = - 1/?&2, case (ii),
20 if A! = - Agp case ()3 ' = - 1/7\5, case (ii),

eta, ees

where the equality sign occurs only if Ji = 03 i.e, nunerator
end denominator then have a common factor which can be cancelled
out,

It follows there is at least one zero between consec—
utive poles, Since the degree of the mmerator cannot exceed
that of the denominator, it follows that the poles separate the
zeros.,  Since the poles are simple, then the zeros must also
be simple,

Note that in the event of some of the ?\i being
coincident, the corresponding J]z_ coefficient is replaced by a
sum of squares,

Corollary 1

In case (i) the degree of the mmerator is one less
than that of the denominator. In case (ii), this olso holds
unless for a particular Js # 0, Ay =0, in which case the
degrees are equal,

Note 1

This result is usually attributed to Routh (Ref, 7)
although it was effectively cbtained by Salmon®™ some twenty
yeers earlier and wes probably also known to Sylvester.

* Iessons in Higher Algebra,
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However, Routh's treatment of the case of multiple zeros of
(E + ]\E)gl,? can hardly be regoerded as satisfactorye. The
Binet-Cauchy Theorem provides a method which treats all cases
equally easily. In conjunction with lemma 3 it is then
possible to give an adequate account of the degeneracies that
can occur in a network, non-existant impedance matrices

excepted,

Note 2

If P=(G+ N\) is the admittance matrix of a
network end det P £ 0, N >0, then P satisfies the condi-
tions of the lemma., Here 'a' is any positive number., G
and C are both positive semi-definite, as can easily be
shown by adapting the proof of lerma 1 to the case of linear
graphs congisting of several sepaorable parts,

Corollary 2

If (B + @(k -1) has a zero, ?\i, of multiplicity =,
then ?xi is also a zero (B + ?«.I‘) (k) of mltiplicity at least
g=1, This follows directly from the separation property and
the partial fraction expansion,

Corollary 3

The matrix formed from (E + \F) by adding the ko
row to the (k=1)" row and the k™ column to the (k=1)%™
column also satisfies the condition of the lerma, For, this
transformation is non-singular and so does not affect the
positive definite character., The leading element of the kth

compound of this matrix is easily seen to be
€&+ WE v @+ DE e 2@ + ) EY

by a Cauchy e}qpansion* according to the (k—-‘l)th row and

column, Hence the poles of the function

#« Ref, 1, Ch, Le
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@+ ®E v @ wED 2 @ o

(k-2)

separate the zeros,

Lemma 5
In the notation of Sect. 3.2, r can be so chosen
that the zeros of Uk/Wk seperate the poles, for 1< k< n-1,

Proof

The proof proceeds by induction, Suppose first
that the poles of U, /H separate the zeros, We shall denote
this by Uk//H' Then

o e
W H+ 2% 20 (mods U )

Case 1
Ir Uk and H are co-prime, then at zeros of Uk’
W, must toke the opposite sign to H, if we choose r co-

k

prime to U_. It then follows that the zeros of Y."k are real
and that Wk//Uk. It also follows that the leading coefficient
of T.’k must be positive since the degree of Wk
than that of H and since H has a positive leading coeffic-

ient, Then W, = 0,

is two less

Case 2
i 5 4 Uk and H have a cormon factor h, so that
Uk = h (Uk)O »
H = hH
o
then we take
r = h Y.,
hence o
WH +hry 2 0 (mode U ).
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Iet T  be the imverse of H  with respect to modulo (U, )
f o

d C

ies HT = 1 (mod. (Uk)o)a
Then

. & 2 i

i = BT, 3 (mod., (Uk)o)

and the general solution of the congruence is

(T')+X()

where (wk) is a particular solution and X is a polynominal
of degree one less than the difference between the degrees of

U, end (Uk)o.

Ve can ensure separation of the poles and zZeros of

Wk if we take the particular solution

W, =h (Wk)o.

The proof then proceeds as for case 1, DNext, from the necessory
realizability conditions we have that

(Ein -1) Pégr1) . (n 1)) // P(n—2)

so that the first H which arises satisfies the separation
condition,

The proof will be completed if we can show that
H/yﬁk implies

Ut/ ey

NN W /7 (gww)
Ukm g - g £ (mod, Wk)
< :
s w U + g (mods Wk)

5 2 -
lees UL (g + w) £ g° (mod, Wk).



.
Then if Uk, Wk, g (end hence r) are co-prime (w + g) tokes

the opposite sign to Uk at zeros of Wk.

In the case of common factors the proof proceeds as
in case 2 for H, 1i.es g may then be suitebly chosen to

endure seperation, Hence, in both cases,

(2 + w) // W

and w+ g >» 0,

Ierma 6

In the notation of Sects 3.2 it is always possible
to calculate

k+1)

v, B f,
p. (k) ki *fits
i+, 341 U 2
k

Proof
The proof is by induction. Suppose the result is
true for k. Then

(k) - w plk+1)

Uk Pi+1’j+1 = wk Pij + fi fJ- .l..l..‘ll.!(a)

1ece y, pk) € f, £. (mods W)
k "i+1,541 : * Tk
Fron (315)

Uk U.}i g .- 0 fi (EIOd. Wk) ...t--oouoot(b)
and Uk (UJ o+ g) -_'c- 82 (mod. lwk) Olooclooooll(C)
so that (a) becomes

2 (k) 2
Uy & Pi+1,j+1 = g £ fj (mod., Wk)

no

2
UE oy o, (mod., Wk)* fran (b)

Hence from {c)

k .
(U.J + g) Pis-1 23"'1 g (Di (.OJ. (TJOd. Wk) .ln'.i(d)
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From (3.12) W B = g (120d. Uk)

and from (3.10), (3413)

c 2
W H=-g (mod. Uk)

2 .t®  (mod, U, )
From (3036) Hi rig g H fl (mOd. Uk) ..locooonooo(e)
Similerly W _, (), , g (8)eq (£3)y (mode W)
= c 2 .
‘r"fk_1 (H)k-"l = - (g)k—1 (mod. Wk)
g - (f)2 (mod, W, )
k=1 * Tk
c .
(B q(Bhq = (E)y (£3)y (mode W)
.tnoioucuo'.(f)
But

(H)k-‘i =w+g and o = (Hi+1 )k-‘]

Now (d) becomes

(@ + g) P&%,jﬂ S (g (gl (mode W)
- (), Pg;) S (A, (), (mod W)

Then if (H)k— and W, eare co-prime, let (H)k-1 (T)

1 k k=1

€ 1 (mod. Wk) and s0
k) ¢ () (1.) T (03s T.) eeel(g)
150 = Wilpeq UWyheq Tpoq (m0de ) e

Therefore

., Bl g 2 2 _.
Mg By’ == (g By (B g Ty (mods W),

from (f),

e . (fi)k_1 (fj)k_1 (mod. 'i:a'k).



=l

but this is simply a re-statement of (a) for k-1,

If w+ g and W, contain a common factor, the
argunent can similarly be edapted as in lerma 5, The proof
by induction will be completed if we can show the lerma to hold
for k = n-2, That is, we require to show fram (g) that

(sz?-‘l) % P(n '1) P P(n 1)) PSn-‘I) c (P(n—‘I) P(n 1))

(P‘“n" ) + 5; 1)) (mod, P (n 2))

1.ea Pﬁl—” ng‘ ) (P(n_1))2

no

0 (mod, P‘(I ':?-2 ) )

but this is guaranteed by the realizability conditions. Hence
the lemma is true for all k in 1 < kg n-2,



