
11 1 IIH IH I II I 	I 
0 "• 	3 8006 10058 6315 

Low 11 \„) 

THE COLLEGE OF AERONAUTIC S 

CRANFIELD 

On the synthesis of 3-terminal RC networks*  

by 

K.H. Adams, B.Sc., 	D.C.Ae. 

Summary 

This report is concerned with the synthesis of 

3-terminal RC networks according to three specified network 

funo.E.ons. Some necessary conditions for physical rf.:El-

izability are derived from first principles by an algebraic 

method. The possibility of synthesis is shown to depend 

upon a certain inequality but the weakest conditions 

required in order to satisfy it are not yet known. 

REPORT NO, 96  

JANUARY, 196  

a Based on a thesis submitted to the Department of Aircraft 
Electrical Engineering, The College of Aeronautics, in 
partial fulfilment of the requirements for the Diploma of 
The College of Aeronautics. 



Contents  

Notation 	 3 

Introduction 

1.-  Analytical preliminaries 	 5 

2. R-matrices 	 8 

2.1 Definition 	 8 

2.2 Theorem 	 9 
2.3 Inverse K transformations 	 11 

2.4 W-R-matrices 	 13 

3. Synthesis 	 14 

3.1 The conditions of physical realizability 	15 

3■2 Solutions of the 8-equations 	 18 

3.3 Examples 	 23 

4. Lambda-transformations 	 29 

Acknowledgements 	 31 

References 

Appendix 	 32 

Lemma 1 	 32 

Lunma 2 	 33 
Iemma 3 	 35 
Lemma 4 	 35 
Lemma 5 	 39 
Lemma 6 	 41 



-5- 

Notation  

va 	the voltage rise from node o to node a 

is 	the current entering node a from sources external 
to the network 

aP 	the current flowing from node a to node p in 
the branch joining nodes a and 

Vaa aP the Laplace transforms of va, ial  igo 
 respectively 

t 	time 

X 	the complex frequency, independent variable of the 
Laplace transform 

Xt 	a linear or bilinear function of X 

C 	the network capacitance matrix 

the network conductance matrix 

p = 	G + XC 

Z 	the t'lree pole (Strecker-Feldtkeller) impedance 
matrix 

Apa 	B-matrices 
square matrices 

Et 	the transpose of E 

detE 	the determinant of E 

E(k) 	the kth  compound of E 

adj(k)E the kth adjugate compound of E 

(adjE)(k)  the kth  compound of the adjugate of E 

the element in the ith row, j column of E(k)  Eck) 	
.th 

the ("iirect sum 

unit matrix of order k 

K K Y 	transformation matrices 

Uk 	
p(k) 
11 

= 	r(k-1) 11 
constants 

flfilg,13.,Hilua,coi,r,ri,S,T,h polynomials in X 

(H)k_i, Mk...1  etc. the polynomials corresponding to H, f 
etc. in the succeeding cycle 



X. 	zeros of polynomials in X or 7N. 1  

4- 	 a diagonal matrix 

Uri o 	the coefficients of powers of X in the polynomial 
U are all non-negative 

the poles of Y; — separate the zeros of -T- 

f-z=r-(mclU)f.iscongment.witlar.moduloUk 
. 

I 	k 	1 	 1,  

On the synthesis of 3-terminal RC networks  

Introduction 

Rapid developments in the fields of canmunications 
and servomechanisms have in recent years emphasised the need 
for a study of networks containing no transformers. Servo-
mechanism engineers have been specially interested in transfer 
function synthesis, and since their requirements have generally 
been for low frequency characteristics, resistance capacitance 
networks have received particular attention. In 1952 
Fialkow and Gerst (Ref. 3) gave a general solution of the 
problem of realizing a given transfer function by means of 
either a three terminal or two terminal-pair resistance 
capacitance network; and two years later (Ref. L) 
succeeded in extending their method to give a realization by 
means of networks composed of resistances, capacitances, and 
(self) inductances. 

On the other hand, for communications purposes it 
is often desired to realize a network not only for a specified 
transfer function, but also for specified input and output 
impedances (or admittances). Furthermore, three terminal 
networks are of particular engineering interest in that the 
input and output have a common terminal which it is often 
convenient to earth. 

The present work is concerned with the synthesis 
of such networks. It is assumed that the input, output and 
transfer impedances are given, and the problem then is to 
obtain a realization by means of a network containing two 
kinds of elements only. Some necessary conditions for 
physical realizability have been derived from first principles 
by an algebraic method. These conditions are themselves 
generally well known, but the method of derivation was 
adopted because it suggested the approach to synthesis. The 
possibility of synthesis is shown to depend upon a certain 
inequality, but it is not yet known what are the weakest 
conditions required in order to satisfy it. By way of 



INPUT 
nif  _ 

  

TJNEAR PASSIVE 

RC NETWORK 

  

v
n-1 

OUTPUT 
n-1 

< 4:1-1  

illustration two numerical examples are worked out it is 
shown that for each of them the method is capable of yielding 
an infinity of solutions. 

1. 	 linalytical Preliminaries  

Consider a network containing two kinds of elements 
and having n+1 nodes. Three of these nodes are to be 
regarded as input, output, and common earth respectively. 
For the basic case we shall take the two kinds of elements 
to be resistance and capacitance; other combinations nay be 
obtained by a simple transformation of the basic case, as will 
be shown in Sect. 4. Let the nodes be numbered so that the 
input is node n, output n-1, and earth (reference) node O. 

Fig. 1.1 

Take the positive direction of voltage and current 
as shown in Fig. 1.1. Denote the branch joining nodes a and 
# by (a0). Then the equation for the current in (ap) is 

C 	(v - v ) + G (v 	v ) = i Cad' dt a 	0 	a# a 	 aP 

* Summation on repeated suffices is not implied. 
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where 

CaP is the capacitance in (a9) 

Gap is the conductance in (aP) 

aP a function of time, is the current in (43), 
the positive direction being fran node a to 
node 0 

v
a 

a function of time, is the voltage rise from 
node 0 to node a. 
	 (1.2) 

Now take the 'X-multiplied' Laplace transform of (1.1) defined 
by 

n ;,) 
1 
i 

	

V(X) = X i 	v(t) e■Xt dt 
; 

0 o 

and neglecting the initial conditions, obtain 

(XCG ) (V - V ) = I 
AO 	ai3 	a 	0 	afl 

 

(1.3) 

 

  

(The more usual s or p symbol for the Laplace transform variable 
has here been replaced by X to agree with the established 
notation for complex frequency and for ?'-matrices). 

When Kirchhoff's current law, in the form 

n 

	

I P a = I a 	a = 1, 	„n „ 6 	  

0/a 

where Ia is the current entering node a from sources 

external to the network, is applied to (1.4), there results: 

0 	
r 
V, 

o V2  

(1.5) 

(1.6) 

Vn-1 
Vn 
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where 	Pad (the element in row a, column (3 of F) = PRA 
 

= - (x Cafi + a,
0) 	a 	0 

aa . 	 (x c + -afi) fi=o 
p/a 

 

(1.7) 

 

From lemma 1, it follows that P is positive definite for all 
X>01  if and only if the linear graph * of the network consists 
of only one separable part. In what follows we shall suppose 
this condition is satisfied so that the Strecker-Feldtkeller 
impedance matrix always exists. The treatment of the deg-
enerate case, in which P is singular, calls for some device 
such as the scattering matrix, which, however, will not be 
discussed here. 

Under the conditions of lemma 1, then, it is now 
valid to write 

Tv 1 
n 	= 

L. 

v 

 n-1 	1 621 

"12i I 

T  

Z 

 22; I 	n.-1i 

 

(1.9) 

 

where 
Z 11 

Z12 

Z 22 

- 	P(11-1)  - 

Z21 

p(1-1) 
- 	22 

/ p(n) 
' 	'11 

P'(II21-1)  / P(21)  11 

/p(n) 
/ 	11 	(1.1o) 

() where Pi.
k
. is the element in row i, column j, of the kth 

compound of the matrix P * * 

If the network is now regarded as a 'black-box' with 
three accessible terminals, then its properties are determined 
completely by the functions Z11' Z12,  Z22• The actual 

performance will of course depend on the values of currant and 
voltage at time t = 0; but these will have no effect on the 
circuit parameters of a linear network. It will henceforth 
be assumed that all physical information has been reduced to 

* For a more detailed discussion see Ref. 5. 

** A discussion of compound matrices may be found in Ref. 
ch. 5. 
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a form expressible in terms of the Z functions; clearly the 
Z functions must be rational functions. 

2. 	 R-Eatrices  

The discussion in this section is purely algebraic, 
but is of such importance to the derivation of the synthesis 
algorithm that it has been included in the main body of the 
text and not relegated to an appendix. 

The concept of R-matrix was introduced into network 
theory in 1937 by Burington (Ref. 2)1 it provides a method of*  
formulating purely topological properties in algebraic terms. 
The argument advanced here hinges on the key theorem of 
Sect. 2.2. Some of Fialkow and Gerst's results are obtained 
as corollaries of this theorem, in Sect. 2.4. 

2.1. Definition  

IfAismatrli,withelementsA..ij,such that 

(i) A is square, of order n x n, say 

(ii) Aij  = A..z.": 0 

= R.. =- 	 say 
012  

(iii) 0 

= 	say 

j=1 	13  =8. s say 

i = 1, sass n 

	 (2.1) 

then A is said to be an R-matrix. This definition differs 
from that of Burington who instead employed the condition ** 

11. 	<"... 2 Aii  1j 3=1 
	 (2.2) 

Conditions (2.1) are implicit in the work of Fialkow and Gerst, 
and will be found more manageable than (2.2). It will now be 

* Ref. 5, Part (ii). 

c* This arose from his use of mesh instead of nodal 
equations. 
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clear fram (1.7) that C, G, and E, for X7?. 0, are all 
R-matrices provided all resistors and capacitors are positive - 
a condition certainly satisfied by passive networks. Moreover, 
if P is an R-Matrix for all W-3? 0, then P is the admittance 
matrix of a physically realizable network. 

2.2. Theorem 

If A is an R-matrix„ and Ail  = R11 / 0, then 

= K' A K is an R-matrix where -1 

1 	R12Ai'11 

0 

• • 	• • 

Rin/Ri  

0 

• • 	 • • 
....(2.3) 

0 	0 

and Kt denotes the transpose of K 

Proof 

By simple multiplication, Q is seen to be 

R11 	0 	 0 	 0 

R12RR12  ) -(R23 4. .4.712
RR ) .... _

(R  + 0 	(R22 	
R12 Pln ) 

II 	 11 	 ' 2n 	Rli 
/ 

R 	

P13 	R13  \ D... 	-IR 0 	-CR23 -4-- 
.-11 	

R13  Rin  

Rii ) 
	(R33 	RII 

I 	 3n + 	R11 
) 

0 	-(R 2n 
	Rin  ) 	R -(H 	11 

R
11 ) 

	

/ 	6,000 

	

2n 	R11 	3n 	R11 
( 	

Rin R1 n ) Rnn  
R11 

i.e. 
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P A
11 	 0 

(2) 
i
(2

1 	 A 
( 2) 

n 
• Ail /All 	112

)
/ 111 	11 -1 	111 

O I"
(2 
 )/A ll 	A22 )/A 

 

	

ll  	,12
2
1n -1 /A11 

.. 	 .. 	 .. 	 00 

2 	/A 	
-
(2  O 

( 	
A 1,n ) -1' 11 2,n ) -1/  11 	n-1 	'11 

then 

(i) a  is square 

, 
(ii) Qij = Qji = 	-a-1-1 R.. 

	Rii R1j) 	o  
- 11 

i/ j 

iy j = 2, Imo . Sly 

in virtue of (ii) and (iii) of (2,1) 

Q.. = 0, if either i or j = 1„ 	j, 

(iii) Qii
(R11Rii 	 0, i 	1, 

Since from (2,1)1  (iv) 

R 	. 
11 - 	1 A_ 

Rii 	R . 

0 = R 	0. 11 	1'1 

.4-) 

( iv Q. • = 
j-J1 	j=2 

A. -R.R13 ./R11  ) 
2 	

/1 13.  

= 	+ R13.  + (R
1i

/R11 )(81  - R11), from (2.1), (iv) 

= 3. + rrii 
8

I 
/R.

11 	 (2.5) 

0, in virtue of (2.1), (iv). 

Hence a  is sn R-ristrix. 



— 
= diag A 

Corollary  

Let A be positive definite, and let Eic  be defined as.  

_A 12(k)
' 11 	1
/A(k) _A(

3
k) jA( 

' 11
k) 
	'"A1,?-k+1 

IA(k) 

0 1 • • • 0 

0 0 • • • 0 

0 	0 0 	• • • 

." 11 21 E1.12 "• 4-1 

then 

i /A(-1)  
11 

r(k) 	(k) 
	A(k) Al 1 	Al2 	Al ,n-k+1 

,(k) 	,(k) 	,(k) 
'112 1122 ". A2„n-k+1 

all 	0,0 	00, *00 

A(k)  1 in-k+1 A(k)  n-k+1,n-k+1 

is an R-matrix, 

This follows immediately by induction from the proof 
of the main theorem, and in virtue of lemma 2. 

The condition 'A is positive definite' ensures that 

(k-1) A11 	/ 0 	k = 2, •011,, n. 

2.3 Inverse 	Transformations  

Suppose now that the Rmatrix 
question then arises, haw may an R-matrix 

(2 such that A.) /A11 	Q. 	is  j At?) 	11 	i+1,j+1 

(2.5) provides the clue. 

is given. The 
be obtained from 

1, le•mo, n-1? 

* The symbol 4 denotes the direct sum. -1  is unit matrix 

of order k-1. 
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Let ur. = 	Q.. 
1 0=2 

= 8 1  . 	R . 1i 

 

( 2 ,5 ) 

 

also 	R1. = R11 - 61 ' i=2 
	. (2.6) 

fram (2.1), (iv) and (ii). 

We are given Wi and R11 
 ; we wish to determine 

Rli, 8i, 5i , all positive, such that 

Q.. 4- ( R 	.) /R 	/j 
11.R  10 	11 

 

(2,7) 

 

j = 2, ...,n. 

Summation on i in (2.5) yields, in virtue of (2.6);  

5. 	82/R - 1 	11 	I i=2 	i=2 

or pu4-ting 

MI = W, and 	5  = 5 	 (2.8) 
i=2 	 i=2 

obtain 
 

8
1 
 -- 

R11  51 	RII (b 	5) = 0 
	(2, 9 ) 

In order to satisfy (2.7), suppose we now demand that Rli is 

less than the nimimum. value of 

(-R11 Q..)2  = m R11' ' srg 	j = 2, 	n 
1 

a.0  

then 	51
Ril 	m(n-1) R11  from (2.6) 	 (2.11) 

-1 1/2 
and 	81/Ril  = 1/2 1 	1 - 4.(8)/R11 , 	from (2.9 ) 

	 2,12) 

(2. 1) and (2.12) now -i reply 

m (n-I ) 4 1/2 	1-4 (w...5)/Ri 4)1/2  

i.e. either 1-4- (a1-5)/R11 7 (1 - 2 n (n-1) )2, if ra(n-1) N1/2 



or 	1 — 4 (o.)-5)/R11 	(1 — 2 m (n-1) ) 2 , if m(n-1) _> 1/2 

subject to the condition 1 - 4 	 11  	0 	
 

( 2 . 13) 

Hence a solution always exists; in fact as (2.13) 

shows an infinity of solutions can be obtained. 8 can be 

suitably chosen, thus fixing 81 , as a result of (2.12).  

Finally Rli  is chosen to satisfy (2.6) and (2.10). 

This then completes the inverse K1  transformation. 

Inverse Eic  transformations can be similarly treated. 

2.4. W-R-ilatrices  

Consider P = WO + G. As we have seen, G and C 

are R-matrices, so that P is an R-matrix for all ?. 

shall call P a X-R-matrix. The K transformation theory of 

Sect. 2.2 will now apply if we put A = P and qualify all 

statements with the remark, 'for all X...? 0/. 

Horeover, since -R O.. i A  j, is formed from non-11 -la 
negative quantities by the operations of addition and multipli-
cation only, it is clear that all the coefficients of powers 

) (2 of X in -P 	= j, are non-negative. Following j 
Flail:ow and Ger-A we shall denote this by 

(- P..2)  '>'^ 	i 	j. 
1J 

41- 
--- 	0. R 	- 	= R (Si  +R . 8/R ) 11 	'ij 	11 	a. 	11 1 	11 j=2 

involves only positive quantities and the operations cf 

addition and multiplication, so that 

Dr1 
P. 	C. j=1 	ij 

	 (2.13a) 

Therefore 
n- 	 11— 

P(2) 
	1 

1D(2) 	1 	
) 	

Os 

j=1 	 j=1 	
1J 

from (2.13a) 



It new follows by induction that 

j = 1, 	n- k 

	 (2.14) 

where the last statement means 

(k) 
- P. . 	0 . 

 

Iluch of the theory of the preoeeding sections can now be 

carried over to X-R-matrices, if we replace the sign 	by 

• Ho...rever t  the '6-equations' of (2.5), cannot in general 

be solved by the methods of Sect. 2.3. It is in fact necessary 

to employ same additional algebraic device. In the next section 

the solution of the 6-equations will be discussed in terms of the 

algebra of congruences,*  and the problem of synthesis reduced to 

finding polynominals to satisfy a certain inequ-31-ity. Lbether, 

however, this inequality condition can always be satisfied is 

not proven. All that can be said at present is that it can be 

satisfied in many cases. 

3. 	 Synthesis  

The problem of synthesis may now be formally stated 
F 	- 
I4j ; 11 Z12 12 I 

thus: 	given G= 	 find a X-R-matrix P of i Z12 Z221'  
 

order n (say) linear in X such that 

z 	,(nr-1)/p(n) 	z 	- 1)(21-1)/P(n) 	gn-1 	(n) 
11 - -`11 	11 	/ 	12 	12 	11 / 	22 	J- 22 	11 

	 (3.1) 

Once P is known, the network can easily be constructed. 

Clearly P can be determined by applying the inverse 

s Ref. 6, Chapter 8, 10. 
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K -2, 	Kl  transformations in succession on the 

mtrix 
Z11 	-Z12 I 

	

-Z12 	Z22  

provided such transformations are possible when the quantities 

involved are rational functions. It will be sufficient to 

consider the general case of an inverse K. transformation 

but before doing this we shall see what conditions Z11' Z12,  
Z22 must satisfy if they are to have a network representation. 

3 . 1 	The  Cond  tions of 

First it is clear from lemma 4-, note 2, and (2.14) 

that the poles and zeros of Z
11, Z22  are real, non-positive, 

distinct and that the zeros must separate the poles. Also from 

lemma 44  corollary, the degree of the numerator of Zil  is one 

less than or equal to the degree of the denominator, and 

similarly for Z22. 

Since from (2.10 	pc ) is never negative for 
ij 

it is evident that Z12  has no zeros on the positive 

real axis. However, there is no restriction on the zeros 

being elsewhere in the complex plane, as can be seen by replacing 
(kck 	(kk J2  in lemma 4. by 1  -1) y32-1) / Y11

) 
 Y11
() 	which can be 

positive, or negative or zero. Observe that since n 	and 
p( n) 	

12 
may have camon factors, it is not necessary that (2.14-) 11 

should apply (in practice it very often does not) to the 

numerator of Z12. However since the zeros of P
(k) are all 

real and non-positive, then this condition does apply to both 

numerator and denominator of Z11  and Z22. 

Since I Z11 	-Z12 	must be an R--matrix, X 0, 

	

L-z 12 	Z22 •  

I
' 	P 
(n-1) 	(n-1) 

then 	Z
11 - Z12 - 	

11 	12 	
. 0, X 	0, 	...(3.2) 

p( n)  
11 
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so that, for example, the coefficients of the highest and 

lowest powers of X in Zil  must not be less than the 

corresponding coefficients in Z12  ; with of course a similar 

result for Z22. This raises the interesting point that it 

is not sufficient for only the R-matrix property to hold; 

separation of the poles and zeros of the input and output 

impedance functionr, is required as well. 

Next, since from Jacobi's Theorem 

1 ) p (n-1) 	 p(n-1) = p(n) p (n-2) 
11 	22 	12 	12 	II 	11 	/ 

we must have 

Z Z-Z Z - P11 	'1  11 22 	12 12 - 11 	'11 

   

(3.3) 

   

p(1 	P11 
so that P (n-2)/p(n-1) 	

' 11 	det Z 

11 	f'11 	 z (n-1)/p(nj 	11  F 	
1-11 

  

(3.4) 

By lemma 4, the poles end zeros of this function are real, 

non-positive, distinct; the poles must separate the zeros; 

and the degree of the numerator is equal to or one less than 

the degree of the denominator. Yk-e can of course interchange 

the roles of ZII and Z22 2 8  it is purely a natter of conven-

ience as to which way the nodes should be numbered. 

Because of the possibility of factors coon to the 

numerator and denominator of a Z function, we cannot 

uniquely identify the various P(k)  polynominals with the 
3.3 

corresponding polynaminals derived from the Z functions. 

However, it will be most convenient to equate 4111)  to the 

lowest common multiple, L, of the denominators of Z11, -Z12, 

Z22 

P(n-1) = L Z 11 	 11 

P(n-1) = L Z12 12 

P(11-  22 1)  = L Z22 

P(11-2) = L det Z 
11 

 

(3.3) 

 

and det Z. We then put 
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From lemma 3, it follows that if P(. is divisible by the 

(k- factor (X + )3 	 1) i then, provided 	P 	is a minor deter- aP 

minant of P( )
1  P(k1)  is divisible by (x + )3c  where 

	

11 	aP 

x„?. s-1. A corollary of the result is that Z12  must have 

simple poles only, as can also be seen from the proof of lemma 4. 

To summarize we have the following: 

Theorem  

The necessary conditions that 
_- 

	

Z - 	Z11 2121   ; 
Z12 	2221 

should be the Strecker-Feldtkeller impedance matrix of a 3-

terminal RC network are 

det Z 
(i) 

	

The functions Z11, Z12$ Z22, det Z 
	

Z11 
detZ 
	  hare the properties.- Z11+Z22-2Z12 

(a) The poles are simple, real and non-positive 

(b) The degree of the numerator is not greater than 
that of the denominator. 

Observe that in the special case when P11 	,(n-1) 

	

1 	"12 	
$ P(n) 

11 arc co-prime, we have from 

p(n-1) P 	- P 
(n-1) 	

12 
(n-1) p(n-1) 	(n) p(n-2) 

22 	 12 	
= p

11 	11 

that if P(n1)//P )  then P,(11-1)  "P(n-2)  and P(n-1)//P(n)  

	

11 	11 $ 	 " 11 	22 	" 11 • 

(n(n (n Also, provided P11-1), P22-1), / 	' 
p12-1)  are not equal 

simultaneously, for some value of "X, 

(p(n-1) 	
2 

p(n-1P
22-1)+2 p(

2
n-1))/

/  / 
	

p( -2)  11 	2 	1 	// 	1 	• 

However, in general if common zeros occur, it does not follow 

from P( -1)// P(n)  alone that the other functions quoted 11 	/ 	11 

possess this separation property. 



det Z 	det Z 
(ii) 	The functions Z111 Z22,  Z 	Z +Z -2Z 

11 	11 	22 	12 
the properties.- 

(a) The zeros are simple, real and non-positive 

CO The poles separate the zeros. 

( iii) 	z11 	° 

zi 2 ❑ 
	

all XI?: ❑ 

Z22 o 

(iv) 	Z11 - Z12 	0 
all ?■. 	❑. 

Z 	Z 	--- 0 22 	12 

 

(3.6) 

 

Observe that (i)b and (ii)b ensure that the difference between 

the degrees of dennminator and numerator is not greater than 

unity. 

3.2. Solutions of the 5-equations 

Suppose that ue are given I414-1)/10Ws  isj = ls 	n-1(4, 

We wish to determine t),/ P -1), is  j = 1, ...I  n-k+1. Let 

P(k) 	u 
11 	k 

p(k-1) 
= 	

r, 
11 	j/C 

P1 	
i 

( k ) 	 P'.1C 
= f

-1 	f. = f 
j=1 

nzk±1 

3.  

(k) 
= w. 	 . = cv  

j=1 	
0 	 3 

j=1 

p(k+1  
j=1 

n--k+1 .47.7 	(k) 
P- • = g 	(3.7) 

i=1 	
10 

have 

n-k 
H. s 	Hi  = H 

j=1 
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then the 6-equations of (2.5), when interpreted for the 

case of the inverse Isic  transformation, become 

and 

Liao 

and 

	

g f. 	H. 
-7.- 

	

Uk Vk 	U
k 

f + g = Uk  

• fi  2 HI  TIk  (rood. Uk) 

g f = H 'lc (mod. Uk) 

U
k 
 co. 	g f. 
c- 	+ it "k 

-H. 

Uk 	- g f (mod. 	) 

	 (3.9) 

	(3.9) 

	 (3.10) 

	 (3.11) 

	  (3.12) 

(3.13) 

	 (3.14) 

	 (3.15) 

	 (3.16) 

hence 	f 2 - g (mod. 	. 

	

g f, 	H. 
col 	

Uk 	Uk 
Now 	. 

so that 

so  that Uk  (k). 	g 	(mod. 

k 
of lower degree than Uk, so that g = (1-e) Uk  - r, 

n-k 
where 	 = a 

1fi. 

n-k 
and 
	 r . _ 

j=1 

1::e now proceed to express the R-matrix condition 

of (2.1) in terms of ei  and a. Thus 

(3.13) 



-20- 

so that 1 - r./U > e. 	r./U k 	 k 

For this to be possible, we must have 

   

(3.19) 

   

) k 	- (r./U ) 
max 	 rain 

   

( 3 . 20) 

   

Similarly Uk} g >0 implies 	 (3.21) 

1 - r/Uk 	r/Uk  3  7■. 73_ 0 	 (3.22) 

and (r/Uk) 	- (r/Uk) 	C 1, ?\.,? C 	 (>.23) 
max 	min 

Next, from (3.11) and (3.17), the condition wi. 0 implies 

k Hi 

i.e. 1:4.k  Hi 	ei  Uk  g + ri  

 

(3.2k) 

 

H. Wk k  
so that c. < - ri/Uk  + 	 X 7%0 	....(3.23) i P 	.." 1 	a. k 	- 

U ' (1-e) Uk  - rl 

	

U
k L 	k i. 

k H g f 

- 1 
i.e. 	Wk  H.:›1 (1-e) Uk - ri (eU

k + r): 	 *****(3.27 ) 

i.e.c 2 
	

eUk (Uk  - 2r) + Wk  H + r
2 

- Uk  r .?,0; 	 3.28) 

whence either  

(Uk  - 2 
2 : 	

+ r
2 

- U r) 

i.e. 	(Uk)2 , 24. Wk  Ho  'X 	 (3.29) 
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or e 1/2 - r/Uk  (1/4 - 2 1/2 ) '0 k 
(3.30) 

    

(3.31) 

In order that (3.30) and (3.31) be consistent with (3.22) we 

must have 

1(1 2   01 /4   -   Ek   H/Uk)  	!   max    (r/Uk)max    -   (r/U k)min.  	3-  

and for (3.25) to be consistent 

H. 	7-  'k 

with (3.19) we must have 

(ri/ijk)max 	
(ri/Uk)min  

	 (3.32) 

(3.33)  
U
k .„

(i-E) Uk 	
_rain 

We now proceed to examine the congruence conditions. Fran (3.13) 

H Wk g g f (mod. Uk) 

c f
2  = f (med. Uk) by (3.10) 

g - r2  (mod. Uk) 	by (3.17) and (3.7) 

then if H and U
k are co-prime, by Euclid's Algorithm there 

exist polynominals S, T such that 

H T UkS = 1 

i.e. 	H T g 1 (mod. Uk ) 

 

(5.34) 

 

i.e■1  H has an inverse with respect to modulo Uk. Hence 

• E - r2 
T (mod. Uk) 

 

(3.35) 

 

It then follows from lemma 5 that the zeros of Uk  separate 

those of .5
k provided r and Uk are co-prime. Henceforth 

we shall denote this by Uk/Ark.* 	If, however' Uk and H 

are not co-prime, we have, from lemma 5, that it is possible 

to choose r so that the poles of Uk/7k  separate the zeros, 

i.e. admitting the possibility of Uk  and Wk  having common 

* The notation is borrowed from Geometry. 

or 	r/Uk  - (1/4 - UOtk)1/2  



zeros. This relationship 'All also be denoted by IT11 k
„ 

Next, it is required that the remaining parameters fi  be 

expressed in terms of r. From (3.13) and (3.12) we have 

g fi  g H. Wk  (mod■  Uk) 

g f 2 H 	(mod. Uk) 

hence 	H g fi  g H. H 	2 hi  g f (mod. Uk) 

and so 	H fi 	Hi  f (mod. Uk) 

Strictly speaking this condition is not the most general 

relationship, it being necessary only if Uk  and g are 

co-prime. However, it is sufficient for our purposes. Hence 

H ri  = H1  r (mod, lik) 

which enables r. to be determined. 
ti 

 

(3.37) 

 

(k) i 
Finally, P 	is determined from the relation ij 

': P(k+1)  + f. f . = U Pck)  . 
k 	 j 	k 1+1 ,j+1 ee 

 

(3.38) 

 

That this is possible, i.e. that the relation 

(k
1: 4-1)  2  Tr"k 	

- f. f. (mod. Uk) 

2 ri  rj  (mod. Uk) 

is valid, is proved in lemma 6. 

Clearly from (3■38) ,..ro rmst have also the inequality condition 

fz r -. 	.m(k+1) k 	O p  X 	Op i jL j. 	 

Equations (3.7) to (3.39) state the condition which any 

solution of the 6-equations must satisfy. The congruence 

relations enable us to calculate any of the desired parameters 

in terms of r. But there are still the inequality conditions 

(3.39) 
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to meet. With the restriction that r, ri, e, ei  etc. must 

satisfy the inequalities and that r may have certain res-

trictions on the location of its zeros these quantities may 

be chosen arbitrarily. 

The success of this method as a general synthesis 

procedure depends on finding a method of choosing r and e 

subject to the inequality conditions. At the present time it 

is not lalown whether this is always possible i.e. whether the 

conditions of the theorem of Sect. 3.1 are also sufficient. 

Certainly it appears possible in a large number of numerical 

cases and especially so if H and Uk  have a common zero. 

The inequality conditions may be more simply expressed ass- 

Ti
k 	g f 
	

X 	0 	i.e. c..) 	0 

W H. 	X .2: 0 	i.e. (1). - 0 

(+1) 	 (k) 
f. f < - 7 	

k 	
X 0 i.e. P. 	< 0 j 	k ij 	- 	 1+11j+1 -- 

i/j. 

The central problem would appear to be to find f such that 
VikH 
17f  can be made arbitrarily large, for X "(70, subject to j 

0fi-5..11k. It is possible to guarantee the first inequal-

ity by suitably positioning the zeros of r, but more than 

this is not yet known. 

3.3. Ex'Imples  

(i) Synthesise 

17 1 	16X
2
+47X+33 

35-0+148X2+200X+86 	, 7X
2 +18X+12 

77,
2
+10A+121 

14X
2+341+201 

There are no common factors so that we have 



(n-1) 	2 p 	= 1 Gx + 4:7X + 33 12 
P(11-1)  = 	(7X

2 
 + 18 X + 12) 

bi-1) = 14X
2 
+ 34W + 20 P(n) = 357s.3 

 + 1487%.2 + 200X + 82 12 	 1 

.D(n-1) p(n-1)_ p(n-1) 
gn-2)  22 12  
"1-11 = 5k + 6 + (zero 

remainder) p(n) 
11 

p 	/.0  
11 
(n-1)/-2) 	p(n-1)//

'
,(n-2) 

12 	'1 

.1,(n-1),‘  n 	.p(n-1) 	(n-1) 
-11 	+ -12 	 '22 	+ P12 	0, 	

0. 

Hence the necessary conditions are satisfied. 

111  = 5X 	6 	Hi  = 9X2  A. 29X 4- 21 

H2  = 7X
2 

+ 16X + 8 

H = 16X-4- 4-5X + 29. 

Since the functions P1n1 	1222(-1) p(n-1) p(n-1) 
are of degree 20  

only a single inverse jaii  transformation is required; we may 

take 7 = 1. 

By direct computation from Euclid's Algoritiri we 

find. T = - 0.510. But yi1  H - r2  (mod.U1). Hence 

r
2 

= 1.96 and so r =1.4 

r
1 
 H = rH1  (mod. U1) Hence r1  = 0.6 

r2H g rE2  (mod. U1) Hence r2  = 0.8 

observe that NI H1/24- U
2 
1 

roe now choose 

= 0.1 0  e2  = 0.30  so that s = 0.4. 

Then 	f1  = 0.5X + 1.2, 	f2  = 1.5X + 2.6 

f
1
f

2 = 0.75X2 
+ 3.1X + 3.12 < 0.51 (7X2 

+ 18X + 12) 



Thus all the inequality conditions are satisfied and the 

network is physically realizable. 

From the relations P P22  P(2)  f2  11 	- 11 	1 

	

P P = P(2) 	f1f2 11 23 	12 

(2) 
2  F11 P33

=  P22 + f2 

= - f 
12 	1 

P13 	
= - f

2 
we obtain. 

P = 

  

6 	-1.2 	-2.6 

-1.2 	5.74 -1.48 

-2.6 	-1.48 	4.46 . 

1--5 	-0.5-1 	I 
? 	-0.5 	3.25 	-1.251 

! -1.5 	-1.25 	3.25) 

 

and the final network is as shown if Fig. 3.1(a). 

Fig. 3.1(a) 

A second solution with 2 capacitors fewer than before 

may be obtained by putting el  = e2  = e = 0. Then 

fi  = 0.6, f2  = 0.8, f1f2  = 0.48, 
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6 -.0,6 -0.8 1 

X + -0.6 5.56 -1.92! 

-0.8 -1.92 3.44! 

and 
P 0 	0 1 

0 	3.2 -1.41 

0 -1.4 2.8 

 

and the network is as shown in Fig. 3.1(0. 

Fig. 3.1(b) 

In general, however, the number of elements 

required cannot be reduced any further for a 4-node system if 

Uk and H are co-prime. 

(ii) Synthesise 

2 	 I 	 X
2 

+ 4X 4. 2  Z = --- Z = — Z - 11 	X.1-1 ' 	12 	X+1 ' 	22 	 ■  (X+1)(2X+1) 

We find. 

2 ZII Z22 - Z12 2 	
6X 3  

ZII 2(x+1)(27v4-1) 

Hence we take 
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p(3)  = 2(h+1) (2W+1) 

P12)  = - (171.1) (a+i) 12 

F,(3) = (h+1) (h2+4W + 2) 22 

P()  = (h+1)2  (2h+1) 11 

P(2)  = 2h2  + 6h + 3. 

It is easily verified that 

p(3)//p11(4) / p22 
	11

(3)//p(4) 
11  

111)" 11,' P2)//P(11)  

P(3} 	p(3)- 
 0 

11 	12 

(3) 	(3) - 
P12 	P22 ./.° 

so that the necessary conditions 
are satisfied. 

First cycle: 

= (h+1) (2h+1) 

H2  = (h+1)3  U2 = 2h
2 + 6W + 3 

H = (h+1) (h2  + 4X + 2). 

Choose r = 1. Then from W2H + r2 c= 0 (mod. U2) 

we find Lr2  = 12h + 28. 

Also from riH 2 rH (mod. U2) 

we find r1  =2, r2  = - 1. 

Vie choose f1  = 2, f2  = 1/2 U2  + r2  = X2  + 3 X ;4 0,5 

From the relation L2  EiV+ f1f2  g 0 (mod. U2)„ 

we find P(2)  = - (12X + 9) 23 



and similarly 

P(2)  -- 24X + 20 22  

P(2) = 2x2+ oX + 3 

so that 

P 
—1 — = 

P(2
3
)  = 645X2  

1 

27,571, + 18.75 

2+6X+3 	-2 

-2 	24X + 20 

X2+3X+0.5) 	-(12X+9) 

-(X2+3X+0.5) 

-(12X + 9) 

60'0+  27.5) +18.75 

12X+28 

_ . 

Second Cycle 

H1 = X
2 
+ 3X + 0.5 

H2  = 12X + 9 U1  = 12A + 28 

H
3 

= 5.5W2  + 12.5w + 9.25 

H = 6.5W2  + 27.5W + 18.75. 

Again we choose r = 1, but find that in order to meet the 

inegunlity conditions, r needs to be larger. The choice is 

amended to r = 14. Then 

▪ = 19.6 

r1  = 	1.18 

r2 = 26.6 

r
3 

= -14.0 

Tie choose fl  = ri, f2  = r2, f3  = r3  + 0.50 U1  

= 1.48 	= 26.5 	= 6.0X . 

In a similar manner to the first cycle we find 

• E = 0 	 171 P
22 = 3.26X + 2.17 

• P2 	- (1.63X + 0.35) 

711 P33 = 39.2 ▪ P
34 - 6.31 

= 19.6 	 VT1  P44  = 13.62w + 20.4 



Hence 

.12 = i 	o.61x+1.43 

-0.076 

-1.33 

-0.306x 

-0.076 

0.1677`+0.111 

0 

-(o.o83x-ro.018) 

-1,33 

o 
2 

-0.322 

-0.306X 

-(0.083X+0.018) 

-0.322 

(0.695X+0.67) 

The final network is as shown in Pig. 3.2. However, this 

network is by no means the simplest possible realization of 

the given functions. 

4, 	 IraMbda-Transformations  

So far vie have considered only resistance-capacitance 

networks. However, the results of the previous sections can 

be taken over (IirectV to other combinations of network elements 

provided the admittance matrix of the network can be expressed 

as a linear combination of two independent matrices. (This is 

essential for the validity of lemma 4). Possible combinations 

are tabulated below. 



hi = 
1-FaX

2 
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Network  matrix 

1 1" 
7%.0 - 
- h+a -  

Tbysical Interpretation 	h-Transformation 

Capacitance and inductance 	= X(W+a) 
network: every inductor 
has a resistor in series 
with it and of value prop-
ortional to that of the 
inductor. 

I T-1  (h+a) C + 1 h. I - X .7777-a-) capacitance and inductance 
networks every capacitor 
is shunted by a resistor 

of value inversely 
proportional to the capac-
itance. 

+ F 	capacitance and inductance 1+N 	
m _+W 

network: every capacitor 	 N
2 

has a resistor in series 
with it of value inversely 
proportional to the capac- 
itance. 

2 
h h+a capacitance inductance 

network: every inductor 
shunted by a resistor of 
value proportional to the 
inductance. 

resistance capacitance 
network: every inductor 
in series with a capaci-
tor of value inversely 
proportional to the 
inductance. 

WC + (1+ 

G+ 1+aN2 

c + 	 capacitance inductance 
	

X1  = W. 
 

network 

inductance resistance 
network 

= 

Lily linear combinations of the above combinations, 

provided the same two matrices appear in each sub-combination 

chosen, can also be treated by the preceedin method. 
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:Appendix  

Lemma  

If, in the notation of Sect. 2, A is an Rmatrix such 

that, for each i = 1, 06. n, there exists at least one 

sequence 

Rix, Rxy, Ry3, 	 Rst, St  

no member of which is zero,*  then A is positive definite. 

	 (A1.1) 

Proof 

(L1.1) and (2.1) ensure that 

R13... 	0 	 (1,.1.2) 

Further, 

Qij  Rij  111 5_ 10.1 .1  s> 0, 	R. / 	i j• 

and 
w41

0, if 
j2 	aj 

= Si1i 1 ii' 	Si = 

i.e. provided no suffix in (A1.1) is unity, a also satisfies 

condition (A1.1). 

If, however, Rs1  is a member of the sequence, then 

the next member is 

either  S1, in which case 	
j=2 

or 	Bit, in which case - Qst  >0, s t. 

Hence in all cases a  satisfies (A1.1). Therefore, by 0.2), 

Qii > 0 	i = 2, 	n. 

Q
II 

= R
11 ' O. 

• If A is the conductance matrix of a network, this condi-
tion is necessary and sufficient that there be a conducting 
path between the earth node and every other node, i.e■ the 
linear graph consists of only one separable part. 
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It then follows by induction that 

K' 	 A K K, 

	

0980 L1 	200000 

is also a matrix satisfying (A1.1) and (A1.2);  so that in 

particular;  

I (k  
11

) ''' 0 	k = 1;  •0.. n. 

Hence A is positive definite. 

Note i  

If P is the aalittanco natrix of a network whose 

linear graph consists of only one separable part;  then P 

clearly satisfies (A1.1) for all 7%, -NO;  so that P is 

positive definite; 	D. 

Note 2  

This result is normally obtained from physical con-

siderations depending on the conservation of energy. However;  

this algebraic derivation is instructive in that it reveals 

another property of R-matrices (vi2,. the invariance of (A1.1) 

under K transformations) which is closely connected with the 

topology of the network. 

Lemma 2 

If E is a square matrix of order n such that 

E(k)  E(k-1)  / 01  then 11 	11 

(E(k)„ 	
( 	E 

(-1),(2 ) 	_(k+1) 
("" 1  

E' (k)/ E  (k-1) 	k) 11 	11 	E
11 

11 j 	1, 09410 n-k. 

(A similar result holds for rectangular matrices with suitable 

restrictions on i, j, k.) 

Proof 

It 	be a subnatrix of E of order (k+1) x (k+1);  

formed by adjoining to the leading k x k sub-matrix of E 



the elements of : 

column (k+j):  rows 1, 	1-, row (k+i) 

row 	(k+i):  column 11.... k, column (k+j) 

and such that the lexical order of row and column suffices 

appearing in E is preserved. Then 

k k+j 

k+i 

(R(k)/m( 	
) 

'-11
k_i) 

)ii = 
dk)4k..1) (2) 

1-11 	)11 

F(k) 22 
7(k) 

11 	" 

-11 

v(k) 11(k) 
- "12 '21  

-11 

which:  on putting N = adj. II 0  

Nk+1,k+1 Nick Nk+1  k Nk k+1 

4k-1) 

	

1,11 	det /1 by Jacobi's Theorem' 
1.,(k-1 )11(k-1)  

	

11 	'11 

* i.e. (adj 11)(8).= (det 1)(8-1)  adj(s)1.1. 	(Ref. 1:  ch. 5), 

_((-1) 
1111 
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(
. 

k) 
 /-

,,,(k-1) )1J 
i = Ei

(
i  
+1 ) 

= E(.)/ E11-1)'  Hence 	   ;1„jf19..n-k 
 (k) (k-1) 

E(k) Eil  /t11 	
11 

lemma 3  

If E is a real symmetric matrix of order n, then 

X1  . is a zero of multiplicity k of det(E - X1 ) if and only 

if the rank of (E Xi  i) is n--k. 

This result is well-known; it is proved in Ref. 8. 

Corollary 1  

If E + XF is a real symmetric matrix of order n, 

such that either (i) F is positive definite 

or 	 (ii) E + clE„ where a is real and a scalar, 
is positive definite 

then. X. is a zero of multiplicity k of det(E + XF) if and 

only if the rank of (E + Xil) is n-k. 

This is easily seen to be a ru-statement of the lemma 

3 if the transformations 

(i) X = - X', 	X' F X = 1 

or 	(ii) X = 	, X' (aF + E) X = 1 be mar!. 

Corollary 2  

If(E+XL),(11VhasazeroX.of multiplicity s, then 

W. is also a zero of((E + XF).(k-1)  of multiplicity at least s-i ij 

i,j = 1,2 

This follows immediately from the fact that (E + X.2)c -1)  is 0 

a minor determinant of (E + WiF)(11  which can this have rank 

not greater than k-s. 

Lemma 4  

If E + XF is a real symmetric matrix of order n, 

such that either 

(i) F is positive definite 

or 	(ii) F is positive semi-definite and E + aF is  
positive definite, where a is a real scalar, 
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(E + XFa-1)  
then 	(a) the poles and zeros of 	 

(E + 'LTV)  11 

are all 

 

real and simple; i = 1,2. 

(b) the poles separate the zeros. 

 

Proof 

  

   

It is evident that the leading k x k sub-matrix of 

E + ?F must also satisfy (i) and (ii). 

The reality of the zeros of (E + XF)
(k) 

is well- -11 
known, a proof is given in Ref. 1.*  

To establish the separation property put, 

in case (i), 	X' = X, 

in case (ii), X' = W + a 

and transform the matrices E, F or (E + aP), F simultaneously 

to diagonal matrices. It is then valid to set the leading 

k x k sub-matrix of E + XF equal to 

either (i) 	Y' (J + 	1k) Y 

or 	(ii) Y' (`i x' +1.k ) Y 

where ai  is ding (X11  X2/ 	 X,R  ) and Y is non-singular. 

J2 

c. xio) 	- either (i) 	I 	2 	+ [11  

)11 X.14-X2 	7\* I-°̀ k 1 

J
2 

or 	(ii) 	1 	+ 

MX14-1 	MX2+1 	X'1 ic-41 

where J. = k-1)  Y( / v(  ji 	4)  is real. 

It follows immediately that the poles are simple. 

NowarrangetheW.inerder so that 

* Chap. 3, Ex. 9. 

** i.e. On 11)(k)  = Pi(k)  :N(k)  (Ref. 1, Chap. 5). 

Hence, by the Binet-Cauchy Theorem 

(E .)a-1) 	J
2 
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in case (i) X < X 1-4 

in case (ii) X N X 	X- , 0*.40 > 	- 0. 1= 	2 %— 

The last requirement is possible as a result of F being 

positive semi-definite. 	Then 

(E xF)11-1 ) 

%'.0 if X' = 	Xi, case (i); X' = 1/X10  case (ii). 

if X' =- X2, case (i); = 1/12, case 	(ii). 

0 if X' = - X„ case (i); ?) = - 1/1 3, case (ii), 

etc . 	 1..0 

where the equality sign occurs only if Ji  = 0; i.e. numerator 

and denominator then have a common factor which can be cancelled 

out. 

It follows there is at least one zero between consec-

utive poles. Since the degree of the numerator cannot exceed 

that of the denominator, it follows that the poles separate the 

zeros. Since the poles are simple, then the zeros must also 

be simple. 

Note that in the event of some of the X. being 

coincident, the corresponding J. 
_2 
 coefficient is replaced by a 

sun of squares. 

Corollary 1  

In case (i) the degree of the numerator is one less 

than that of the denominator. In case (ii), this also holds 

unlessf0ro.particularJ./O, X. = 0, in which case the 

degrees are equal. 

Note 1  

This result is usually attributed to Routh (Ref. 7) 

although it was effectively obtained by Salmon.  some twenty 

years earlier and was probably also known to Sylvester. 

xkl 

• Lessons in Higher Algebra. 
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Bowever, Rauth's treatment of the case of multiple zeros of 

(E XI) )  can hardly be regarded as satisfactory. The 

Binet-Cauchy Theorem provides a method which treats all cases 

equally easily. In conjunction with lemma 3 it is then 

possible to give an adequate account of the degeneracies that 

can occur in a network, non-existant impedance matrices 

excepted. 

Note 2  

If P (G X.C) is the admittance matrix of a 

network and dot P 0, X > 0, then P satisfies the condi-

tions of the lemma. here 'a' is any positive number. G 

and C are both positive semi-definite, as can easily be 

shown by adapting the proof of lemma 1 to the case of linear 

graphs consisting of several separable parts. 

Corollary 2 

-1) 
If CE X.21)ii 	has a ze

(
ro

)
, Xi, of multiplicity s, 

then X. is also a zero (E XI')
11 
 of multiplicity at least — — 

s-1. This follows directly from the separation property and 

the partial fraction expansion. 

Corollary 3  

The matrix formed from (E AF} by adding the kth  

row to the (k-1 )th row and the kth  column to the (k-1 )th 

column also satisfies the condition of the lemma. For, this 

transformation is non-singular and so does not affect the 

positive definite character. The leading element of the kth 

compound of this matrix is easily seen to be 

(E X.2)(k-1) (E X1)( k-14 2(E XF)(k-1}  11 	 22 	12 

by a Cauchy expansion* according to the (k-1)th row and 

column. Hence the poles of the function 

* Ref. 1. Ch. 4. 
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(E +)(k-1)  + (E + Ar )22-14 2 (E + h.')12_
1)i)  11  	12  

(E + 7F)(k2) — 11 

separate the zeros. 

Lama 5  
In the notation of Sect. 3.2, r can be so chosen 

that the zeros of Ukk separate the poles, for 

Proof 

The proof proceeds by ineuction. Suppose first 

that the poles of Uk/H separate the zeros. We shall denote 

this by Uk//H. Then 

Wk H + r2 c= 0 (mod• Uk). 

Case 1  

If Uk  and H are co-prime, then at zeros of Uk, 

Uk must take the opposite sign to H, if we choose r co-

prime to Uk. It then follows that the zeros of Tik are real 

and that Yik//Uk. It also follows that the leading coefficient 

of Wk  mist be positive since the degree of Wic  is two less 

than that of H and since H has a positive leading coeffic-

ient. 	Then tick 	0. 

Case 2  

If Uk and H have a common factor 114  so that 

Uk = h (Uk)o $ 

H = h Ho 

then we take 

r = h ro 

VkHo  + h ro  = 0 (mod. Uk  ) 
hence 

r
2 c 



Let To be the inverse of Ho  with respect to modulo (U,) It. 0  

i.e. H
o  T 
	2 I (mod. (Uk} )0 

Then 
o  

ihk = 	h T0 o r
2 

(mod. (Uk} 
0
} 

and the general solution of the congruence is 

(wid i 	(uk),, 

where 0)i is a particular solution and ,)( is a polynominal 

of degree one less than the difference between the degrees of 

U
ic 

and  (Uk)o 

;.re can ensure separation of the poles and zeros of 

Wk if we take the particular solution 

T:k  = h (Uk) • 

The proof then proceeds as for case 1. Next, from the necessrlry 

realizability conditions we have that 

(p(n-1) p(n-1) 9 n(n..m1)) // 19(/12) 

11 22 4' - 	/ II 	'11 

so that the first H which arises satisfies the separation 

condition. 

The proof will be completed if we can show that 

Wuk  implies 

Ult-1// (11)1(-1 

i•e• 

From (3.16) 

Ukco 	g f (mod. :1) 

2 Ukg g
2 
(mod. 17k) 

i.e. Uk  (g co) 	g2  (mod. Vic). 



Then if Uk
, 	rl W 	(and hence r) are co-prime (w + g) takes 

the opposite sign to Uk  at zeros of Wk. 

In the case of common factors the proof proceeds as 

in case 2 for H. i.e. g may then be suitably chosen to 

endure separation. Hence, in both oases, 

(g + w) 

and 	w + g ).> O. 

1.4r_na 6  

In the notation of Sect. 3.2 it is always possible 

to calculate 

P (k) 	'  
1_
lc i 

(k+1) + f. f. 
ll 	1  

i+1 2j+1 Uk 

Proof 

The proof is by induction. Suppose the result is 

true for k. Then 

U P(k) 	_ vr pck+1 )+ f  . 
k i+1,j+1 	k ij 	1 	 (a)  

•e. 
Uk 	g f. f (mod. Wk) i 
k i+12j+1 	1 a 

From (3.15) 

Uk  wi  2 - g fi  (mod. Wk) 	.. 	(b) 

and 
	

Uk 	 c k (w + g) = g2  (mod. Wk) 

so that (a) becomes 

2 Uk g2 
Pi+1  
(k) 

j+1 
 c 

= g f. f. (mod. Wk) , 

9-7 U2  w w (mod. Wk) k 	j , from (b) 

Hence from (c) 

(w 	) P 	
+1 

g) 	 2 wi  wj  (mod. Wk) 	(d) i+10 
(k 

(c) 
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From (3.12) Wiz  H1  g g fi  (mod. Uk) 

and from (3.10), (3.13) 

c  Wk  H 	g2  (mod. Uk) 

c 	2 
= f 	(mod. Uk) 

From (3.36) Hi f 2 H fi  (mod. Uk) 

iilarly 
	

(71.i)k-1 2 (g)k-1 (fi)k-1 (mod. vo 

ic-1 
(H)

k-1 
(mod. wk) 

(mod. WO 

(Hi)k -1(f)k-i 	(H)k_i  (fi)k-1  (mod. 7k) 

(f) 

But 

"k-l =w+gallacH  1 	i+1)  k-1 

Now (d) becomes 

(W + g) Pc 	c  

	

i+1,j+1 = 	 (19j-1-1)k-1 (mod.  Uk) 

(e) 

or (k) (H), 	P. x-1 ij 2 (H. )k-1 	(Hj)k-1 	(mod. ic) 

Then if (H)k-1  and Wic  are co-prime, let (H)k...1 (T)k-1 

2 1 (mod. Wk) and so 

(k) c Pii 	(hi)k_i  (11j)k-1  Tk_i  (mod. 

Therefore 

from (f), 

P(k) 	 N2 	 2 
1 (mod, W 	(j

) c 	(f)k 	(H.) 	(H) 	 Wk)„ k-1 i -1 	k-1 	j k-1 Tk- 

(f ) 	(fj) 	(mod■  = 	k-1 	k-1 )• 



but this is simply a re-statement of (a) for k-1. 

If w g and WI(  contain a common factor, the 

argument can sinilarly be adapted as in lemma 5. The proof 

by induction will be completed if we can show the lemma to hold 

for k = n-2. That is we require to shoo from (g) that 

(P(1 1) + P(n-1)+ 2 P(n-1)) p(n-1) 2 (p(n-1) 	p(n-1)) 11 	22 	12 	2 	11 	-I-  12 

(P22-1) + P(-1)) (mod. P(11-2)) 
P12-1)} 	

11 

i.e. 	in-1) p(n-1) (p(n-1))2  2 
0 	(mod P(n-2)) i1 	22 	12 	 • 	11 	• 

but this is guaranteed by the realizability conditions. Hence 

the lamma is true for all k in 1 k n-2. 


