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S U 	ARY 

A method is presented whereby the 'Slender Body 
Theory' can be applied to the determination of the unsteady 
aerodynamic forces acting on slender wings and wing-body 
combinations experiencing harmonic deformations in a com-
pressible flow. The analysis holds for subsonic 
and supersonic speeds, subject to restrictions which are 
stated and discussed. 

A simplification of the method is also introduced 
which is applicable to many practical cases and calculations 
are performed on this basis which lead to numerical results 
for: 

1. 'Equivalent Constant Derivatives' for a deforming 
slender delta wing using modal functions which are 
polynomials of the span wise parameter; 

2. 'Rigid' Force Coefficients for a pitching and 
plunging, slender, wing-body combination. 

These results are given as closed expressions and 
in tabular form and some of the results are also shown in 
graphioal form. 

Both the de-ivatives and the 'Rigid' force coeff-
icients are defined in such a way as to agree with the usual 
British Sign Convention. 
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(1z)rs/(1!)rs;: 
equivalent constant derivatives 	Appendix II 

(1a)rs*(1drs, 

1 	 distance of reference section from wing 
root 	 Fig. 2 

/B 	 length of body of revolution 	 Fig. 3  

(r ‘z)rst
(.
1 r +' 

(r" 	 P(" )rs 	
equivalent constant derivatives 	Appendix II 

c rs 

mlmosmb 	factors giving position of reference 
axis for wing, tiring-body combination 
and body respectively 	 Appendix VI 

n 	 constants in series expansion for 0 	3 

Pt P,e, 	local and freestream pressures 	 2 

61) 	differential pressure 	 3 

qs 	 Lagrangian generalised coordinates 	4 

r 	 polar, radial, coordinate 	 7 

r)s 	indices and suffices in modal functions 4 

s(x) 	 local wing semispan 	 Fig. 1 



so 	
112 

se 	 lIathieu function (periodic) 	 3 

t 	 time 

ulviw 	perturbation velocities 	 2 

tiv 	 with suffices - various upwash 
conditions 

xlysz 	right-handed Cartesian coordinates 	Fig. 

xo(Y) 	equation of reference axis 	 4 

zo 	amplitude at reference section in 
flexural mode 	 4 

I ` (x) 	local cross-sectional area of body 	7 

n 	factor giving length of conical nose 
on body 	 Fig. 4  

II 	 = - .7.71. 	 7 

ao 	 amplitude at reference section in 
torsional mode 	 4. 

pr 	 functions of X 	 Appendix III 

y ssb ,e 	flutter force coefficients 	 4 rs rs 

8 
	

non-dimensional spanwise parameter 	4. 

diriensionless amplitude or thickness 	2 

elliptical coordinate; polar angle 	3 and 7 

elliptical coordinate 	 3 

2k 
7 a - 

7%, 	 delta planform factor 	 Fig. 2 

v 	 angular frequency 	 3 

P 	
local and free stream densities 	 2 Ps  or, 

= —o  ratio of max. body radius to s
o max. wing span 	 7 
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position of reference section 

= T.b/2 	 Appendix I 

0 	perturbation velocity potential 	 2 

wowr,  ,w 	local, root and mean frequency 
parameters 	 2 

vc 

we = wr  = U r  , etc. Suffix c is used. for fx) 	 wing-body combination 
in place of 'r' 	 Appendix V 

1. Introduction 

In this paper a method is given whereby the aero-
dynamic forces can be calculated for slender, low aspect 
ratio wings deforming harmonically in a compressible flow. 

The method is applied to a slender, cropped, delta 
wing and certain flutter modes are assumed which take the 
form of polynomials in the spa vise parameter. Freedom 
of the wing root is allowed for so that body freedoms can 
be included. In the latter part of the paper the aerodyn-
amic forces on a pitching and plunging, slender, udng-body 
combination are evaluated. 

The basis of the method is the 'Slender-Body Theory' 
which has been applied in connection with the (quasi-steady) 
stability derivatives for slender, wings and wing-body com-
binations (refs. 1,2,3,45,6). 

The application to an oscillating and defaming 
wing has, very recently, been studied by lierbt and Landahl 
(ref. 8). 

The solution of the 'cross-sectional' problem, 
for the wing, is analogous to that of a two-dimensional 
flat plate oscillating in a compressible flow and has been 
treated. by Ti mane  (ref. 9) and Reissner (ref. 10). 

The use of the 'Slender-Body Theory' allows the 

s Only the regular part of their solution is reouired 
in this case. 
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analysis to apply at subsonic 	 and supersonic 
speeds subject to u-rtain restrictions on Aspect Ratio, Llach 
number, Frequency Parameter, Slenderness. Validity at subsonic 
Speeds depends on an approximate satisfaction of the Kutta-
Jowkowski condition. 

The assumptions of linearised, thin aerofoil theory 
are used, the fluid is perfect, the flow irrotational and 
harmonic motions are considered throughout. 

2. The Slender-Body Theory  

The coordinate system used is shown in Figure 1 
where right-handed rectangular axes are drawn from an origin, 
0, fixed in the wing, with the x-axis parallel to the main 
stream and the z-axis upward. It is assumed that the wing 
is a thin, flat plate oscillating about its position of zero 
incidence in the plane z = 0, but always lying in the 
immediate vicinity of the plane. 

The perturbation velocity potential, 0, satisfies 
the equation 

2d 	1

a 	

, a 	
2 

—1 0 

	

2 	Oc Ox + 
dt 
	(2.1) 

The conditions holding at the surface of the wing 
are specified by a prescribed tdownwashi w(xly,01t) and 
the stipulation that the relative normal velocity of the a-ir  
and of the wing is zero. 

Applying the assumptions of the 'Slender Bo 
Theory' implies that the x-derivativesin equation (2.1) are 
neglected and the two-dimensional flow at any cross-section 
is then given by the wave equation, 

91)'yy 	°zz = 12 	°-tt a 

The approximation equation (2.2) is satisfied 
(ref. 13,5) if: 

' 2  
-e" ' I 	dx) a;  (2.3)a 

where IT is the freestream 	number and s is the -09 
local semi-span, or for a triangular wing if 

11 - 	I AR 2  < < 16 	 (2.3)b 

where AR. is the aspect ratio. 

	 (2.2) 



If the influence of the time-derivative term in 
(2.2) is so small that it can be neglected the equation 
reduces to Laplace's equation, as for steady flow, and the 
difference between the unsteady and steady flow cases mani-
fests itself entirely in the linearised Bernoulli Pressure 
equation, 

r roo = - R90 ,:t.)ax 	at 

 

(2.4) 

 

This implies that the root frequency parameter 
must be small (see ref. 11 cases 2 and 5). 

3. Solution of the Potential Equation  

Assuming harmonic motion of angular frequency, v, 
equation (2.2) becomes, 

2 
7
YY 

+ 7zz  + ?2 	= o 	 (3.1 ) 
a 
 

where 
ivt e  7 (x,y,z) 	= 0(x,y0z,t) 

 

(3.2) 

 

The potential 0 is subject to the following 
boundary conditions' 

 

(a) 0  is bounded everywhere in the flow and at 
infinity all disturbances should. disappear in the 
proper manner, thus, 

i) 0, 0, 	0 as v/ y2 + z2 

ii) 

 

The solution at infinity should represent 
waves travelling outwards from the origin. 

(b) At any point on the wing the prescribed normal 
velocity must be equal to the normal derivative 
of QS at that point. 

Let the motion of the point, (x,y) on the 
wing be represented by, 

z = f(x,y,t) 

T(x,y) eivt 

 

(3.3) 

 

7(x,y) will be referred to as the 'deformation 
function.' 



(3.4) Z.(x,y) = iv T(xly) + 7_ ilx(x,y) 

?x(x,Y) .•(3.5) 7/(x0 y) = k(xly,0) = iv?(x,y) U 

with ..(3.7) k 	vs 
2a 
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According to the usual assumptions of the 
linearised theory the vertical velocity of the point 
(x,y) is given by, 

az 3z 	az w - 	- 	+ U dt 	tat 	470 ax 

r- 	-1 
ivil(x0y) + U T (x y) f e ivt 00 x ' 

or, 

The condition is satisfied overihe projection of the 
wring in the plane z = 0 and takes the form, 

(c) Outside the wing and outside the wake 0(x0y,z,t) 
must be continuous in planes, x = constant, and 
since it is antisymmetric in z must satisfy the 
condition, 

0(x„y10,t) = 0 . 

By transforming equation (3.1) to the Miptical 
Coordinates, (,71), where;  

y= s cosh 1-1 cos 4') 

z = s sinh T1 sin 

and s(x) is the local semi span, Merbt and Landahl (Ref 8) 
have derived a solution in terms of Mathieu functions. 

the notation 
takes the form, 	r. 

7(x,T1,4) = 	pn n=1 

* The use of a 'bar' over a symbol denotes that it is the 
amplitude of the harmonically oscillating quantity represented 
by the symbol itself. 

of reference 18 the solution 

Ne(2)  (11,k) sen (4k) 

(3.6) 
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where the coefficients, pn, are to be determined from 
boundary condltion ;b), 	equation (3.5) which becomes 
in elliptical coordinates, 

7 (x,0,4) = s(x) I7 (xo s cos 4) sin 

 

(3.8) 

 

Differentiating (3.7) with respect to n  and 
putting T1 = 0 (on the wing) gives.- 

7 (x,0,4), pn' r
Nen
(2)(11 k)j sen( ok) ;i an n=1 

71=0  

 

•a,f.} 

= 	Pn  se
n(r,,k) n=1 

writing, 

  

(3.9) 

  

P (k) = p 	(Ere(2)(Ili k)' 	 (3.10) n al 	n 
1==0  

Now if w(xg) is bounded and is a continuous 
function of 	the series representing 7 (x,014) in (3.9) 
will be uniformly convergent. 

Multiplying (3.9) by se (?,k)and integrating over 
the range, 0 to 7c, the coefficients P may be determined 
in an analogous manner to Half-Range Fourier Coefficients 
since an orthogonality relation exists for the liathieu 
function Ee

n
(4,k) (see ref. 16). 

The Fn  are thus given by; 

P
n(k) = acs  ; w(x.7 	s sen(1,k) d 1  (3.11) 

and finally the pn  from (3.10). 

The solution, (3.7), is now completely determined 
and the yressure distribution on the wing will be given from 
(3.7) with rl = 0. 

As discussed in section 2 it is possible, under 
certain conditions, to suppress the time- dependent term in 
equation (3.1) and,ti-e solution (3.7) then reduces to.- 

n1 
= 	e 

:1
lin  sin n4 

n=1 
(3.12) 



where the Ln are given by, 

H7L 

2s 
-n lin  = 1:"(x) = 	i 	a. sin 41. sin x-1;1. d i  

	(3.13) 

On the wing, 
Ft 
n  

= 	ez.‘ 	. sin nc, 
n--  n .= A 

 

 

(3.14) 

  

The differential pressure across the wing plane 
is given as, 

...... 	 . 	. iv 	.m,A 
Lip = 2p U, (ff 7 + - • ,00.) 	(3.15) .1r! . 
	

-,,, N X 	U , 
(.1 	' 	Z=A-0 

4. Symmetric Flutter Characteristics Typical of a Slender  
Delta i4-1E.  

The simplest, pointed, low aspect ratio wing 
satisfying the assumptions of the 'Slender Body Theory' is 
the slender delta wing. 

Accordingly the analysis as developed in section 3 
is applied to the wing shown in Figure 2. 

To describe the possible flutter modes of the wing 
a reference axis, xo(y) is used (see Fig. 2) given by the 
equation, 

4.0 

xo  racr 	b + 	- X) (1 - m) 150 	(4.1) 

The applicability of an axis such as this to delta 
wings is discussed by ',00dcock (ref. 17). 

For any particular flutter motion it is then 
prescribed that sections parallel to the line of f31g12-1, 
twist about the reference axis according to some modal 
function, such sections remaining themselves undistorted, 
whilst the reference axis itself translates according to 
another modal function, each degree of freedom so involved 
being associated with a Lagrangian generalised coordinate, q,. 

• Details of the wing are given in Appendix I. 
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The generalised coordinates are defined at reference 
sections given by 

ly; 	= I 	 (4.2) 

and all motions are measured relative to the :moan position 
of the wing (plane, z = 0). 

A non dimensional spanwise parameter, 8, is 
introduced such that 

y = 8/ 

and 16 = 1 at the reference sections. 

 

(4.3) 

 

Each degree of freedom will lead to an equation of 
motion and a generalised force, . which can be expressed 
conveniently in terms of force coe ficionts as (omitting eivt), 

Qr2 
= 	(-Yrs wm 	brs 	crs)  p6c  

	(4.4) 

on the assumptions of the linearised theory, where, 

s = r = number of degrees of freedom 

and 	wm = mean frecuency parameter 

vc
m 	

Note.-  c
m 

is the mean chord of the 

1J,J  ' c 	half-wing. See Appendix 

In ;hat follows the suffices + and - will indicate 
whether a fuaction applies only for y > 0 or y 0 
respectively. 

4.1. Uncoupled Liodes  

Let there be one uncoupled M0012 in flexure and one 
uncoupled mode in torsion described by the modal functions, 
h(5) and H(8) respectively, so defined that, 

h(+ 1)! 	 1)) 	= 1 . 

If zeivt  
represents the translation of a point 

on the reference axis, measured from the mean position, 

* The generalised coordinates and forces are amplitude 
functions but the bar notation is not used in their case. 

(4.5) 



z = zoh(5) 

a = oH(S) 
	(4.6) 

and 

and 

z o 
q1 = T 

ern 
q2 = 1 ao 

. ( I4 8) T =lhg1 (x-x ) 1  Hq c 	2 
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positive upwards, and ae
ivt the rotation, positive leading 

edge dawn, of the :action through that point, then, 

where zo and ao 
are the amplitudes at the reference 

sections, y = ± Z. 

Now, if the generalised coordinates are chosen so 
that, 

then the deformation function P(x,y) of equation 13.3) takes 
the form, 

It will be convenient, for the aerodynamic problem, 
to consider the functions, h and H, each to be polynomials 
in 8: thus, for symmetrical modes; 

h = 	gr  Sir  
r 	

(4.9) 
II 	 1 IS = ir" G 

s s 
r s = 0 1 2 0 	/ 

Equation (4.8) becomes, for the half-wing for 
which y.>-0, 

rs"7. ' 	s) r,  - G5 k o+ c 	s r 	 ni • 	s 	
i. 

	(4.10 

It is now required to find the two generalised 
forces Q

1 and Q2. 

Thus, 

* Q1  8q 	Ap. (ST ) dx dy 	(4.11) 
1.• 

* IS ? indicates that the area of integration is over the 
wing planform for which 0-e_s(x)(y only, 

and 



where L ,dr p dx cly; is -Lae total (incremental) aerodynamic 
force at the poin?., (x,y) on the wing and is given by 
equation (3.15) when the velocity potential derived for the 
assumed deformation function is substituted. 

From (4.10), 

r 

	

(ar" ) 	Z., g..„8 	8q, + qi 	 r 
• 

and the force, Q1, is seen to be built up from a sum of 

integrals of the form, 
71  _1  

! 

1 	= l2  I 	p. gr  8
r
. dx 13-5 	 (4.12) 

S+ 

In the same way the force, Q2, is expressed as a 

sum of integrals of the form 

r' -I 	2
! 

1 ,Q2! 
	= 	! 	(x-x0+) Ap. Gs. 8". dx a6 (4.13) 

	

s 	m 

It will be clear that many of the integrals (4.12) 
and (4.13) will be identical, apart from constant factors. 

4.2. Coupled Modes  

The deformation function, f , now takes the form: 

1 
= 	ih(5) + (x-x o+ c ) 	H(5) • qr, 	..(4.14) 

r 

there now being r degrees of freedom. 

The functions h and H are as defined before in 
equation (4.9) with r = s so that equation (4.14) becomes, 

= 	q_ 7  gr  + \x-x 	— G 	81.  ...(4.15) 
r -r 1 o+ c

m 
r; 

and Q is given by 

Qr, 	'qr, = 13P (a+)qr  dx dy • 
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Finally, from (4.15), 

2 	 (x-x ) o+'  11A 
Qr  = 	! 	IP 11.  gr 	cra 

S+ 

. G,1  5r. dx a8 

	 (4.16) 

This is a sum of integrals like (4.12) and (4.13). 

5. Calculation of the Velocity Potential and the Generalised 
Forces for the Assumed :lodes of Paragraph 4  

The coefficients, 

of 7 are given by (3.11) 
in polynomials of lb!, and 
following type are met with: 

n in the series representation 

and since P(x,y) is expressed 
hence of !yl, integrals of the 

icoss  41 sin 41  se n (41' k) (i 
 

 '1 • 

 

(5.1 ) 

 

Such integrals can be -written as the sum of integrals 
of the form 

; sin 
• sen(1/k) a41 

 

(5.2) 

 

Using the Fourier Series expansion of sen( lk) 
integrals such as (5.2) become, 

-- 	 i `-> ,) 
,z.--:..., 	JJ 	(k) I sin r.r16 

sin  p•
11 4' 	r r=1 

s is even (equation 5.1), the limits on 
(5.3) are 0 to 	quite straight forwardly, as indicated 
by equation (3.11) and only a finite number of terms is 
obtained for (5.1). When s is odd, owing to the 
assumption of symmetry, the limits on (5,3) reduce to 0 to 7V2 
(or 70 to 70 and en infinite series is obtained for (5.3), 
and hence for (5.1). However, only a few terms need be 
retained in practice. 

The velocity potential on the wing, jc is now 
fully determined and the corresponding loading is given by 
equation (3.15). 

The generalised forces give rise to integrals like 
(omitting constants), 

f'0 / 

x 
+ Uv 

v 	
Or  dx do 

(5.3) 

(5.4) 



and 	x x  1-1- tir7) 	(5.5) 

S
+ 

These integrations must, in general, be done by a 
graphical or numerical means, except when the time-dependent 
term in the potential eauation (3.6) is suppressed and the 
Mathieu functions take on their degenerate forms. 

The application of the analysis to antisymmetrie 
flutter nodes follows the same general lines as given for 
symmetric modes. 

5.1. Eauivalent Constant Flutter Derivatives 

By analo with the flutter derivatives of two-
dimensional (strip) theory it is possible to define a set 
of 'equivalent constant derivatives'. 

These derivatives are constant over the span of 
the wing and give the correct generalised forces when inter-
preted in the conventional sense. 

The lift and moment on a strip of unit width are 
defined in terms of derivatives such as 

/ 	/ 
s' 2" a' 

TaZ, m!, 	Mr! 
(ref. 1o) 

where the 'stiffness' derivatives include the 'inertia' 
derivatives, 7.!  , nt. , 1.. , 

Equivalent constant derivatives, 

(1  ) 	(10) 
rs 	rs 

etc. 
(M ) 	, (ms) 	p 

rs 	rs 

are defined from the force coefficients of equation (4.4) in 
Appendix 

As with the force coefficients the first suffix 
refers to the generalised force and the second to the mode. 

* See Appendix II for discussion of sign convention. 
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Apart from the analogy with 'two-dimensional,  
derivatives the coucept of equivalent constant derivatives 
is useful in that it facilitates airect comparison of sets 
of derivatives derived for different modes. For example, 
direct derivatives in one freedan are rar.de independent of 
the modes in other freedoms. (See Appendix III). 

6. Representative Results  

The preceding analysis has been applied to the 
case of a triangular wing (Fig. 2,T = 0) using uncoupled 
modes. 

Equivalent Constant Derivatives have been calculated 
for the flexural modes; 

h(5) = 	; r = 0, 1, 2. 

and torsional modes; 

H(8) = I8 	; s = 0, 1. 

Lodes such as these have been taken 	pairs, one 
in flexure, 1811'1  and one in torsion, 151

s 1 
	giving six 

'sets' of derivatives. 

The accompanying table of numerical results (Table I) 
shows the order of the derivatives and their signs (for m = 
and a set of general expressions for the derivatives is given 
in Appendix III together with the results of a calculation on 
a cropped delta for r1  = si  = 0 only. 

The 'damping' derivatives /a  ma  and ma  are 

plotted against 'm' in Figs. 8 9 and 10 

By taking r1  = si  = 0 and n = 1 the derivatives 

are obtained for a rigid pitching and plunging wing referred 
to the trailing edge - use of the usual transformation 
formulae then refers the derivatives to any other axis. 

This has been done for a triangular wing ("X = 0), 
a cropped delta (x = 1/7) and a rectangular wing (7■. = 1) 
for an axis at 0.500 cr and the results are presented in 
Table II. 

In Fig. 11 the'cross-daving' derivatives ma  , 
1a  have been plotted against 	for these wings. 

In this case of a pitching and plunging wing the 
generalised forces Ql  and 02  have simple interpretations ' 



and do in fact represent the unsteady lift and moment 
amplitudes on the complete wing, i.e., 

,r7,2 

2   x 	(+vc upwards) 
p U.S. 	U2 Z3 r 

2  11 	 2 	T
2 / 2 	 (+ve nose dc,..ni.-rtrds) 

U. Sc 	U
2 3 cr r 	v 
	 (6.1) 

The expressions for lift and moment will be in 
terms of the dimensionless amplitudes, 

Z 

i-21  and a 
c r  

and the relevant frequency parameter vall be, 

ye
r 	 2 \ 

W = 	 W - I r 	U 	 +X J 

It is convenient in this connection to define a 
set of force coefficients for rigid motions only since in 
later paragraphs unsteady lifts and moments on rigid bodies 
and wing-body combinations arc considered. 

Coefficients Lz, L .., etc. are defined by the expressions; 
z \ 

9 
S 
- - (Lz  iWr z 	c11

r 
-! - ((La + L ori,8) ao / 

I 	 z  
iwr112).; + 	+ iwr 	ao  

P S 

and these will be referred to as 'Rigid' force coefficients. 

As for the definitions giving the equivalent 
constant derivatives (Appendix II) these rigid force coeff-
icients are signed to agree with the normal British flutter 
sign convention 

and 

and 

	 0,0 ( 64 2 ) 



+ 
	

I  

r 

0 	
I 

.0530  1 .0550 1 .0530 
.0334 	.0334' .03341 

2 

r 
s 

0 1 	2 

- 	(.2r.)-1  

	

.114 	.114 i .114 

	

.195 	.195 1 .195 

int  (pR  )--1 

0 	1 .0542 —.0225 —.135 I 
1 	I.0900 J 	 L-.0405 	1  

0 
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TLDIE 

+ /
a (AR)-1  

r 

0 

.0296 	.00763i.00374 	1 

	

.0296 i .007684.00374 	0I .781 	.996 	1.18 

2 

	

11,00 	.955 ! 1.00  

	

1 	1 	2 

(PR ) -1  

1 	2 

o 	.003761 .00431.0045o1 
1 	i .002624-1 .00214-'.00200 

r 
s 	0 ►  

r 1 	2  

	

1 	2 
0 •786 f  .954 ..981 
1 	

0 	•735 	1,02 	1.30 .786 	I .954 	1.981 	1 	1 	.915 	; 	•905, .817 

0 

Derivatives for m = 1. 2) 	ctin  = 0.2 



TABU. II 

Equivalent Constant De:civatives  frrizi .nanund 

pitching about an axis at  r 

Equivalent 	1 	Triangular 	Cropped 	Rectangular 	1 

Constant 	i 	Ang 	Delta 	 Ling 
Derivatives 	

1 
1 	X=0 	 'N...=-1 	 (7X=1) 	4 

1z 	 - 	
2 

.585 wm 

T. 	2 	 - it 	2 	I 
- T win 	 27 Wia 	1 

(.52L) 	 (.785) 	
1 
i 

l 
	7 7. 	 it 

+.735 
(.735) 	 (.735) 

1 

1 
	

-.245wm +.v-L, 

T. 	2 	T. 

 

- if wm + 7 	 2 	+ 	7,- 

(.262) 	(.785) 	 (.785) 

It 

+ 
iir 

Z 	 +1.07 
(.931) 	 (1.18) 

.2Lt + 

-7. 	2 
12 

mt 	
wm 	

.245 wm2 
	

0 

(.262) 

m 	 -.(345 

it 	 it  

(.197) 	 (.392) 

7z 	2 	at 	2 	 lc 	2 	71 
20 wm 	- 7 	

.137will -.0845 	7wra 	+ -7, 	i 

ma  

I

(.157) 	(.197 	 (.o655)(.392) 

	

IIc 	 It  

	

m 	
- 7 	 - 7 	1 

-.386 

	

	

(.392) 	 (.197) 	
I 
t 
! 

NOTE: Figures in brackets are decimal equivalents of 
fractions of it 
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7. The  Pitching and  Plunging Slender lioc T of  Revolution 

A set of flutter force coefficients for a pointed 
slender body of revolution can be calculated in an analogous 
manner to those of the wing by adopting polar coordinates 
instead of elliptical coordinates when solving the potential 
equation and in the specification of the boundary conditions. 

Probably the only case of interest is the rigid 
pitching and plunging body and accordingly this case will 
be dealt with. The cartesian coordinate system for the 
bony is the same as for the wing and is shown in Figure 3 

In each cross-section, x = const., take polar 
coordinates; 

y = r cos 4 ) 

z = r sin 4 C 

then the potential equation (3.6) transforms to 

L 1 	-
2 v2 m 

r 	r 	= ar 	or/ + — 2
• 7  . c 	  

r g a 

(7.1 ) 

(7.2) 

Consider the body movements to consist of a 
vertical translation (+ve upwards) and pitching about an 
axis, 

x = xo = mB  IB 

 

(7.3) 

 

parallel to the y-axis (nose-down pitching +ve). 

By analogy with equation (4.6) we define zo  to 
be the amplitude of the displacement of the point, 
x = xop  on the body axis and ao to be the amplitude of 

the inclination of the body axis to the Ox axis. Then 
the motions produce at a point, x, on the body axis the total 
upward displacement, 

(zo + (x-x°) a o) elvt 
•

Taking the body length, /B, as a reference 

length the vertical velocity (equation 3.4) is, 
zo 	( - 	!Le-. 

17(x) = iv /1E t  ---1 +; x—x
o 
 + . 	a c. 	 (7.4) 

writing r(x) for the local cross-sectional area 
of the body, the potential near the body takes the form', 



The pressure at any point on the surface of the 

r ---.R 
(7) 	= - 77(x) 	1'r.  . sin •)u. (7.1-  ) 
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body is 

where 

( an iv 	, sin Y  
P  = RX 	)a x 

11(x) 	w(x) 11(x) 	 (7.6) 

The unsteady lift and moment, L and 	follow 
by integration of (7.6) along the body. 

The 'rigid' force coefficients of equations (6.2) 
have been calculated for a cylindrical body, with a conical 
nose as shown in Fig. 24, These are based on the Aspect 
Ratio of the geometrically similar ting having its root-chord 
equal to thJ length of the body ana 

o R 
= 	(see Figure 7) 2 	c 

where Ro is the maximum (base) raclius of the body. 

The coefficients are given in Appendix IV. 

By putting Cr = 1 and 1.\ = (1-x) it will be 
seen that the expressions of Appendix TV are identical with 
those that would be given for the rigid cropped delta wing 
using the equivalent constant derivatives of Appendix III 
with B = 0 and equations (6.1). 

8. The SlenclarLLIa.:22qy Combination 

8.1 The rigid pitching and 1)1ml:fling combination 

A set of 'rigid' force coefficients will now be 
derived. for the slender wing-body combination shown in 
Figure 8. 

This problem will be dealt with rather differently 
from the wing and slender body cases in that the velocity 
potential will be found, not directly as a solution of 
Laplace's auation, but from the two-dimensional potential 
for incompressible flow normal to a flat plate. 

The required potential will not generally satisfy 
the two-dimensional wave equation (2.2) and hence the 
solution will be subject to similar restrictions as the wing 
solution for k 	O. 
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Using the Joukowski Transformation (see Fig. 6) 
the velocity potential for the flow around the body config-
uration of Fig. 6 (see ref. L) due to a motion w of any 
section in a fluid at rest oan easily be found and conven-
iently expressed in two parts, 

-------------------- 

R2  / 	1 2  13(0)=-1-,,/ s2 c 1 4. --- 	- 4,y2 + wl
/ 	

y
2 

s2i 

/ 2 1  
s4. 

(8.1) 

where B(0) is the potential on the body (r=R) and 140 
is the potential on the wing (Z; = 0 or 7Z, y = r). 

It will be clear that the force coefficients for 
the wing-body combination of Fig. 5 can be considered to be 
the addition of two sets of force coefficients; viz., 

(i) the force coefficients for a triangular wing on 
a cylindrical body, downstreall of the lateral 
plane through the wing leading edge and body junction. 

(ii) the force coefficients for a pointed body upstream 
of the wing leading edge. 

The coefficients (ii) have been calculated in 
section 7 ( 

The coefficients (i) can be calculated using (8.1) 
with the axes and notation of Figure 7. 

For the combination, the velocity, TT, will take 
the some form as for the body alone, i.e. equation (7.4), 
thus, 	 . ..... 	 , 

I 
i-  zo‘ 	 U. , -  

w(x)=ivl lo '--- 1  -xa +"-a 1+ax' (8.2) 
f ‘ 1 r \ c r; 	o o 	iv o' 	o J 

The loading distribution is given by the pressure 
equation (3.15) and lift and moment by: 

1 

	

r 	4:  i R 	 '.:7  

L = i 	1 	( l'.1 13)B•dY + 	(op)N7. CV f ; dx 

at 	! ...) 0 	 I.,  R 
r 

:Is 
. 	i cx. 	r i'li  1 	,  

11 = I 	;  
1 	, 	 w 

	

;..:ob 	; :..1  o 	 '-'• R 	„,i r -...   (6.3) 

and 

Appendix IV). 

and 



Complete expressions for lift and moment on the 
clyindrical body Ea.:1 triangular wing lead to the 'rigid' 
farce coefficients which are given in Appendix V. 	These 
coefficients like those of the body are based on the 
triangular wing having root chord, cr, and maximum 
semispen so  = b/2 = Rob'. 

The force coefficients for the whole wing-body 
combination of Figure 5 are given in Appendix VI and the 
variation of the 'damping' force coefficients L , L. a 
lid with o-  is shown graphically in Fig. 12. 

In adding the appropriate coefficients of 
Appendices IV and V the definitions of Figure 5 and Appendix 
VI were used and again the triangular wing is used as a basis. 

9. Discussion 

The use of the 'Slender Body Theory' for unsteady 
flow problems leads to a solution for the aerodynamic forces 
which does not involve long computation and many geometrical 
and other parameters can be carried along in the analysis 
without having to be specified definitely at the outset. 

The restrictions of the theory as discussed in 
section 2 seem to be somewhat severe but there is evidence 
to show (ref. 8) that for a rigid triangular wing of aspect 
ratio, 1, at a Each number of 1.25 and far a frecuency 
parameter, w 	up to 6, the theory appears to be quite 
valid. PurtEermore„ results for an aspect ratio of 0.5 show 
that when the time derivative terms are neglected the results 
differ from those given by the complete solution only if 
w ›. 2 for a Each number range of 0 - 1.25 (rigid triangular 

Owing to the need to evaluate several terms of 
the :Eathieu function series when deriving the full solution 
it is such longer than the simplified case (for a: allroot 
frequency pa'rar_leter) and it would always be worthwhile to 
question whether the full solution is really necessary in 
any specifiedcase. 

With the type of wing to which this analysis can 
be applied, it is very unlikely that the root frequency 
parameter will exceed about 0.5 so that in many cases the 
simplified approach would suffice. 

The force coefficients yi,b,c of equation (4.4) 
are dependent on Liach number and frequency only through the 
parameter, k, in the general solution, consequently, in 



the simplified case which implies that k 	0, the coeff- 
icients are independent of frequency and IJach number. 

It has been found, both experimentally and 
theoretically that the variation of flutter force coefficients 
with frequency decreases as aspect; ratio decreases so that 
this is not a surprising result from a theory which is correct 
for 1R---0. 

The preceding remarks can be taken to apply equally 
well, in principle, to the wing-body combination. 

It is interesting to note that the analysis used 
by Lawrence and Gerber (ref. 1 -.5) (subsonic) when taken to 
the limit A2----R.0 gives results for a rigid wing which 
agree with those found here and by Garrick (ref. 1/0. 

In this connection it is also interesting to study 
their results when plotted rAgainst aspect ratio. The slopes 
of the curves (force coefficients) at zero aspect ratio are 
correctly those given by /Slender Body Theory' but, in 
general, the curves depart from their original tangents 
extremely rapidly. It might be suggested therefore that 
force coefficients derived using 'Slender Body Theory', if 
applied outside their range of reasonable validity, will 
give magnitudes which, in general, will be very different 
from the 'true' values. 	(See also refs. 20 and 21 for which 
AR = 3). 

Fig. 10 shows that for an axis at the trailing 
edge of the wing, no matter which torsional modes are chosen, 
the direct damping derivative ml  is zero indicating that 
an undamped pitching oscillation would be possible - for all 
axis positions 0 -.4:m .1 the derivative gives positive 
damping. 

\Then co---71:. 0 the /rigid' force coefficients give 
the values of lif and moment for the steady case as found 
by Jones, Spreiter and others (refs. 7 and 2A-.) 
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APPEDIX I  

The Cropped Delta -

Definitions  and Geometrical Properties 

See Figure 2  : - 

flean chord, cm  = 2 cr  (1 + X) 

Area 	S = b cm 
0 

Aspect Ratio, AR = -s-- = 

thus, 

and 

Local semispan, s   .x for, 
2c (1-.X) 

0 (x <(1.-X)c 	(4) 

Reference section position, 1 = rt. 7 	(5) 

Spanwise parameter, 8 = 	 (6) 

2c 
Local chord, c = 	

ra  . (1 - T(1-7)5) 	(7) 
(1+?.) 

Ratio, 	 "E 	
(0) 2 

2c 
Reference Axis, xo  = mcr  + b  r  (1-.X)(1-m) hr 

= A + B 

A 	2m 
c

m 	1+?, 

bB h  (1- 
/0 	- 	

-0  (1-m) 
(1+1■.) 

vc 
Fresuency parameter, cora  = ff-----  

(11ean) 
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APPENDIX II  

Equivalent Constant Derivatives - Definitions  

The following equivalent constant derivatives are 
appropriate to a system with the usual British sign convention 
i.e. z•axis downward, lift positive upwards, moment and angle 
of attack positive nose-up. 

(a) Uncoupled Kodes  

i. One mode in flexure, one node in torsion 

0/T 
I  (-1,11 211  "11) = z 	h

2 	d3 
1 0  

/T 

(-y w2 
+ 
	= 	I 	2- h.H. do 

	

12 m 019) 	 C 
,.t 0 

2 	
.117-E 

c  
(-Y21% 021)  = (-mz 	H.h do 

m 

2 2 
(-Y.22% c22)  = (—na ) 	(-.\) H2. 

 (18 
c- 0 

017-c 

b11 
	=com. 1 	—.h

2 d5 11 m 	 c 
0  

/I- 2 
( b12 wm = wm I8 

t/ 	

h.H. dO c ! 
o 

2 
b21 wm = wm (-u/)  j I 	H.h. as 

7-u 

b22 wr a = w  (—Lie) 	c 	3  ° 
. .0 	1 

ii. r modes in flexure, s modes in torsion  

Derivatives such as (/z) 4  and (mz) 
rr 	 sr 



will be defined in the same manner as in (i) by integrals 
such as, 

10/T 

h
r 

h
r' do and 1 	

Hs., d5 respectively. 
rj 0 	 o 

(b) Coupled Modes 

WT 

etc. 

(-y 	w
2 + c 	) rs 	m 	rs lz 

2 
(-yrs w 	+ c 	) m 	rs la 

(b  rs 	) 	m = w 	(l.0 rs 	m / a 

= 

= 

) 
rs 

(1z) 	i 

	

rs 	: : 0  

(1a) 

	

rs 	, , . 

r/T 

(2-) ,c 
i 	L -, .  

h 

'OA 

I 	--- 
0   

2 

# ., 

. r 

n 

h r 

h 	(18 s 

hr  Hs  dO 

H 	d5 s 

etc. - 	by analogy -s,/ith (a)i■  

A term such as (-y w2 + crs) 	is obtained from rs m /z 
the real part of the term in the total expression for Qr  

which involves both hr and hs ; and (brs wm)/ is obtained 

fram the imaginary part of the same tern: other terms are 
obtained in a similar manner. 
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AFFENDIX III  

Results of a calculation using uncoupled modes  

(a) Equivalent Constant Derivatives for Triangular Lang (7\.=0)  

Flexural mode h(s) = 15f 	r = 0,1,2 

1 
Torsional mode 11(&) = 15, 

i s 
	s = 0,1. 

x.=0, s=0 

It 2 2
z 	- Twin Al  

= 

2 
	

(.863 - 1.36n) w2 
	

AR 

(1.82 - 1.15m) AR 

m 
z 

rah 

n 

= 

= 

= 

2 
2 	(.288 - .455m) tom • LP 

(.121 - ■288m) 	AR 

.22=2(.0710 - .200m + .158m2) w2  

— (.243 — .5761 

m , 	(—•353 + .703m — .354m2) A2  

-1, s_ 0  

- z 	5.x m 

- L _ 

lc 	3t(— .139 + .2050 w2 	
.333

5  
1  R 

.  



m
a 

= 4 2(.0711 
• 
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+ 3 (.516 — .349m) AR 

= 3 ( . 139 — 	 205m ) AR 

= — 3 (.182 — .3491) AR 

ma 	11((.142 	.40Cm + .317m2) w2  4 ) 

+ (— .121 + .288m) AR 
J 

ml  = 	.353 + .703m — .3542) AR 

r = 2, U =0 

1z — 	168 
57c 	2 AD  

l 	+ 
1 

/
a = — 	)1.71  (.490 	.690m) 	— 

m 

1. 
— 
- :12_7c (

.690 — .49cm) IR a 	16 

m
z 	 ( .082  — 115m) w J. 

12E

- 

4 	6  ( 0730 — .123m) AR 

 AR .06251 

- .200m + .15812) 

- ( .121 — .288m); Al 

m8 	— 7c (.178 — .354m + .17612) 

r = 0, s = 1.  

I z =-6 
com  AR 7C 2 

m
z 



/a =— 3 

la = + 3 

mz = 3 

= - 3 

j-,( .220 - .353m) w2  - .333 
{. 

(.)r/12 - .274m) AR 

( .110 - .176) wri2  

(.107 - .274 ►) AR 

m
a 

= :18  (' 00359 - .0100m + .00800m2 ) w2  2 	'  
, ) t. 

— --- ( .°24.3C — . 0930m) L AR lc 

MI = 30 (—.0250 + .04.92m — 	) 

r= 1, s = 1.  

1
z 

2 
5n • wm JR 

= 	. 

la = - 4 ( .0592 - .0911m) w2 	fR la 	it i 

18 	(0.51+,0 - 0.355m) AR 

nz  = 6 (.0395 	.o612m) w2  . AR 

= — 	(.0540 — .1 1 8m) IR 

) 	 2 ( . 02 	— .080Cm + 064-0m2 
 ) wm. ) 

.) 
(„oz,3o - .093orap 

2 N ma  = 30 (- .0250 + .04.92ra - .0243m ) 



r = 2  s = 1. 

1 	- 1 168 wm 

/a  - 	I 2  (.0792 - .117m) w2 	1.00(  Al 2 

16  = 	(.206 - .194m) AR 

mz  = - 40 (- '600495 	.00733m) w2 AR 

. 	30  (- .0359 	.0691m) AR 

I 	 2 	2 ma - 2 0.  0287 - .0800m .0640m ) in 

- 	(.011-30 - .0930m 	AR at 

ma  = 30 (- .0250 + ■0492m - .0243m2) 

(b) E ivalent Constant Derivatives far Cr 
X, general  

  

d Delta 

 

• SO 

   

   

r  = 0Lzz9...zalL  
2 

15 = 	" fit lum 

7 = - AR  

bB 	.1., ) 	2 	'lc 	m  
1  = - I 70 - '8'  0 a 	 3 	in  1 - n/cm P2I cum - 77 -- (. 

Di-m2  ( 2 	A 

1+X -i-X2 	-14- 	1 	c 	3 + "w

hi7 

 - 
m 
- .nic ;
2bB) Al  

in' 

,7  1 0 	L 	_ b B 	N 2 	j, 
' 3 	cm '1 	.x / cm '2) wm ''' 

za  = 

= 



(1▪ 

	 	

+

.,02  ) + 	b B + LI 

	

- 	4.cra 	-A /e ra; 

	

1+X+X2 	

1.7
4.  

( 1 --  (1+X) 2  ) 	' 	r,2 b B _ 	P 14. 	2 	3 	c 	3 	/ cm 9/ 

b B 
3 

	

P. 	 is 	'p2 M 
c  , 	c 	1 	7tc 

11 

\ B 	A 	b B 	2 
Ric

-:1 	
- 7A17 fl910) w  Q6 c Q2 

L 	F" 	.fa 
-... 

0 

iA. 	bB .) ( m + 	 , -.r +  
‘.. 4 	2.1% +  67t lc ) c  

	

f 	 .., 

	

7c(11-7,,,)- 	i _ 	A 	., - b B 	i ma  = 	 n -, \ 	(07+1-73  - 7—  p24_ 	.Ricra • P5) 2(1-ovi-N`+x-') , 	 -.7. 

2 b B 2 
4cM 	1+X. + 	

; 
cn 	37. corn  

bB;  ; 2 
c; 	

A ,3 b B  6, 
• 1+X

+ 
 P2 	c

1:1 	
Locle 

1 + 2 where; 	/3
1 - 71+7

X 
 

1 + 3X 
- 12(1+X) 

1 + 	-  

4-(1+X) 2  

1 - X 
3 • 5 3(1+X) 

1 + 8X 	2  

15(1+X)2  

3 - 2X +  

4(1 + X.)2  

(1 + 21. - 	+ 2/3  X.21 

5(1+X)3 

P, 

2 

'616 

Q7 

P8 



_77_ 

(1 	5x 7.2/2 2, 
9 — 	 ,2 

15(1 + X) 

1 	4X 
1310 — 7577) 

Expressions for the above derivatives when 	= 1/7 are 

2 .585 wm AR /z = 

1 A  = 

1a = 

Ea  = 

z = 

7Z 
4 

f7z(.141 - .226m) 2 
 

.211(1.86 1.120 AR 

R(.141 - .226m) 0),1  AR 

n2  
- .8457c (.0944- - .281m) AR 

Ta = .845 1(.159 --.38m + •284m
2
) w

2 
a  Ta 

- (.0944 - .2814 	AR 

ma  = .6457-c (- .325 + .650m - .5251a2) AR 



APPENDIX IV 

'Rigid' Force Coefficients  for a Slender Body of Revolution 

with conical  nose 

(see Figure 4) 

Definitions;  

Length of body = 113  

Length of conical nose =e\ ZB  

Reference axis at distanco mB  ZI3  from nose 

Frequency Parameter wB  = v/,AJ. 

The force coefficients are based on the wing having 
a geometrically similar plsnfom to the body, thus; 

Ro = 	and lB  = cr, 

z 	z 	 Va 
so that 	o = (--o  \ and co' 	U,_ 

r 
cl  D 	r, 

2 10 2 =- —47 cst— 	 (11B  . JR 

L 	= 	.11R 

7c 2 ' 2AmB 

	

L = — 	) 

	

4 	
.(!_ 

--5-- + a  

7c  / 2 	 t\\ 

	

- 	 2 - raB 	̀..3 ) JR 

2 
1/ AR 

/ 2n  IC 2 A2 

4 	3 	2 ; 	 _ r, _  
•  

. JR 

a 

_ 	2 (\  
- 4 ' 

7 
 3 

7c 2 = 	( 1 

	

3 
i \ 	2 	ralf) 	2/1mB  ) 2  

2 \ 

---- - raB  + raB 	
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APPENDIX V 

'Rigid' Force Coefficients f2EItL221211EiLag_11112E1 12(1111a9.4  
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(see Figure 7) 

w w c — r 
vcr 	L 	- 	(:1- - 0-2  - 	4- .L 03) (02  IR ti 	z 	3 	 3 

LI  . 	(1 - cr2)2  AR 

L
a 	

- 	 11  ( - 2o-2 	crk  - 2404  2no--) 4_ 

- ma  k 
if  1 _ 02  .1, 	5  _ 

c 3 	3 .-, 
- (1 - 02)2 I. IR 

i 
La  =+ 47 f i (2 - 30-2  + 0-3) - Tric  (-I - 0-2  

li 	= 	1- ( I  (1 ..- 2C2  -1- a4  - 40)'-  Lac') z 	-4. 7  

— LI i — — 0- + 	or (1 	2 	_3- 

- 

0 ) co2 . .lipt  
3 	i f c c ;4,  3 

_., 
i 	El 	 1 

7C S 1 	, 	. .3 	I-N 	c 	2 21 II == - 	7  0 — 40— + 3s ) - — (1 - s ) 	Al 2 

i 171 	G3 	0-4-  - 12 cy5) 
lic = ii  1 — r + 	15 i 

 
— 

m

211  (1 — 2a2  + s4  - 404  LIT) 

I- 
2 L I - u2 + L 0,3 — o- 

	
we  
 ma 	

3 

- 2 Li  (1 _ ,4.3 + 364.) - 79- (1-02 2  

1.1a 	 ( - 02) - rao  (1 - o - 	o-4) 
m 2 
-2-  —-- (1 - 2 

)
2  

J2 wc 



APFETIDIX VI  

'Rigid' Force Coefficients for a Slender 'Ang..,:aly Combination 

(see Figure 5) 

Definitions.- 

Total length of caribination = Vcr 	 (1) 

Ratio of body length to wing root chord = ---= T c1
B 
r 	(2)  

But Ver = (/B cr(1-0 ) I  see figure 5, 

so that from (2), 

T = V - (1 - 5) 

Also , 	(-0\ 	izo 	/z0■1  

= 

	

r, 	B 	r' 

and 

wB = T  • we 
ye 

w = 	- c 	r U 

It is essential that the position of the reference 
axis should be unique when measured from the apex of the wing 

c c r) and from the nose of the body (ni .
B

)
• 

This 

requires that (see figure 5) : 

DB 13 = IB ccrc c  • r 
(5-m) 

i.e. 	mB  = 1 

V - 11-m 
or DB - V - 1 5 

Length of conical nose = AlB -Tc
r 	(3) 

This gives nose-length as a constant proportion of body length 
ahead of wing root. If c_ nose length which is a constant, 
proportion of total combination length is stipulated then I \ 
must be replaced by an expression of the form; 

iv 
	0-1 

V 	= const. 	 (9) 

Note: 	In the above definitions: T # 0 
V * (1-5) 	(10) 

T 
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'Rigid' Force Coefficients, based on the triangular 
wing, for the wing-body combination of figure 5 are then: 
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SLENDER DELTA WING 

FIG. 2. 

SLENDER BODY OF REVOLUTION 

FIG. 4. 
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RECTANGULAR CO-ORDINATE SYSTEM 

FIG. I. 

CO-ORDINATE SYSTEM 

FOR SLENDER BODY 

FIG. 3. 
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THE TRANSFORMATION 

XI =X+1-cz  

FIG. 6. 

CROSS' DAMPING DERIVATIVES 

FOR DEFORMING WING [?, 0] 

FIG. 8. 
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REAR PART OF WING-BODY COMBINATION 

FIG. 7 

WING-BODY COMBINATION 
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