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SUMMARY 

Using oblique coordinates, integro-differential 

equations of motion of aircraft with swept wings are 

deduced from Hamilton's Principle for the dynamic 

problems of aero-elasticity, i.e. for the problems of 

free vibrations, flutter, dynamic stability and gust 

loads. By use of a concise notation the final equations 

are presented in a form specially suited for 

fundamental as well as for practical investigations. 

They are discussed in some detail and their solution 

by numerical methods, conventional in aero-elastic 

workv is indicated. All important assumptions made 

are summarised and will be seen to agree with those 

commonly made . 
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NnTATTO7 

Ay B C 

C. .(yI  ) ij  

Cf 

F9 G 

Axial Moments of inertia of aircraft referred 
to axes 01x1' 01 Y l  y 01 z 1 (see 1A2, section 1.2) 

Influence functions for wings (see 4.6) 

Torsional stiffness of fuselage 

Products of inertia of aircraft (see 1A2) 

	

Ef 	 Young's modulus of material of fuselage 

TY Second moments and product of area of 

	

Y 	Y lf 	z f' Tz f 1 1 	1 	fuselage sections 

I
x 9 

 Tx '1 	9 Iz 1 1 	1  
Moments and product of inertia of wing 
sections 

1 N K C 

Polar moment of inertia of wing sections 

Polar moment of inertia of fuselage sections 

Loading coefficient for lift distribution 
under steady conditions 

Aerodynamic coefficients defined by (6.4.8) - 
(6.4.27) 

Oblique components of couple applied to wings 
about 01 X1s' 01 Yls (see Pig.3) 

Aerodynamic lift and moment 

Total mass of aircraft 

Lift slope distribution of finite wing 
(see 5.3.10) 

J
Y1 

Jx i f 

cCZ  
K -- ccL 

Ka y Ma  etc. 

L1' M 1 

dL, dM 

00 x0Yoz o 	Orthogonal rectilinear 	( space 
right-handed coordinate 01 x 1 Y1 z 1 	systems fixed in 	 aircraft 

0 1 x1 ylez 1 	Oblique rectilinear (right handed 	starboard coordinate systems ( 	 for 	wings pz i  fixed in aircraft (left handed 	portside 

P9 Q9 R 
	

Angular body motion of aircraft referred to 
01 x1 Y1 z 1 

Qr 
	 Non-conservative forces 

T 
	

Kinetic energy 

Uo 
	0 0 0 0 0 0 
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0 

U, v 9  W 

Constant mean forward velocity 

Coordinates of 0 1 relative to OcxoYz o° 

U Potential energy 

Wg 	 Gust velocity 

= 
5112 Y1 E 1 	Position of centre of mass of aircraft relative to 0 1 (see 1A2) 

Position of centre of mass of fuselage sections f9  z1f 

Z 	 Downward load at wing section 

a 12 a 1 
	

Lift slope of wing section and of whole aircraft 

c 	 Wing chord 

r 2 ct Root and tip chord of wing 

c 

i91 1 2i2j 1 2k 

 ka p kb 

m(Y1) 

mf (xl )  

ma 2 mb 

k12 k2 

P f 

P9 q 

P 9 q S 	s 
P cl P P 

Mean chord of wing 

Unit vectors (see Fig.3) 

Lift flutter derivatives 

Mass distribution of wing 

Mass distribution of fuselage 

Moment flutter derivates 

Wagner and Ktssner functions 

Torsional displacement of fuselage 

Components of rotation of wing sections 

s 	 Non-dimensional time for gust loads 

t 	 Time 

1 u 9 v 9 w 	Displacements of points of wing sections 

11
S
2V

S
2W 

Up 2 Vp 2 wp 	relative to 01 x1 Y1 z 1 

v f 2 vf 
Lateral displacements of fuselage relative to 
0

1
x

1
Y

1
z

1 



Position of centre of mass of wing sections 

General displacements of wing section (see 
section 5.3) 

Influence functions (see 4.7) 

Bending deflection of wing section 

a 	 Complement of angle of sweep back of reference 
axis 01 Y1 

0 	 Free stream Mach number 

8 U2 etc. 	Arbitrary displacements 9  forces etc. 

v 	 Frequency of oscillation 

Air density 

Shear deflection of wing section 

Reduced frequency 

Additional notation of a more special character is defined 

in sections 6.2 and 6.3 

Time 	 ( dots 
derivates are indicated by 

Space 	 ( strokes 

Z 9  

r j 
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1. INTRODUCTION 

1.1 General Remarks  

All the subjects which will here be classed as dynamic 
problems of aero-elasticity have been developed independently 
over many years 9  mostly as the result of the discovery of 
actual phenomena requiring theoretical explanations. For this 
reason s  aero-elasticity still lacks a unified notation, and 
the transference of results from one problem to another often 
presents great difficulties. 	The lack of a coffimon notation 
is probably also to some degree responsible for the fact that 
up to date no attempt has been made to develop a general theory 
of dynamic aero-elasticity. 

The advent of swept wings once again has introduced 
into aero-elasticity a new aspect which this time is due to 
affect all the problems coming under that heading. This event 
thus appears to offer a good opportunity of filling the gap 
and it is one of the objects of this report to present a 
unified theoretical treatment of dynamic aero-elasticity. 

For this purpose dynamic aero-elasticity will be 
conceived as the theory of the free and forced vibrations of 
aircraft 9  so that ab initic there exists no need for further 
sub-dividing the subject. 	Nevertheless a natural subdivision 
is suggested by the different tyres of forcing functions which 
give the problems of aero-elasticity their special character. 
In this way one arrives at the following throe types of 
problems:- 

i) Free vibrations in vacuo 
i.e. no external forces exist 

ii) Flutter and dynamic stability 
i.e. external forces occur due to harmonic 
motion of the wings 

iii) Gust loads 
i.e. external forces occur due to arbitrary 
motion of the wings. 

Obviously the basic equations of motion corresponding to 
these groups will only differ by terms representing the 
external forces. 	Only reasons of tradition and convenience 
make it advisable to distinguish between the problems (ii) 
and (iii). 

On the whole, the notation of the present report will 
differ from that used in almost all other aero-elastic work. 
Apart from the general reason indicated above, this state of 
affairs has been caused by two facts: the use of integral 
equations and of oblique coordinates. 	Both of these may be 
considered unnecessary innovations, and thus it becomes the 
final object of this report to offer convincing evidence that 
their introduction leads to a clear and simple form of the 
relevant equations of motion. In the remaining part of this 
sub-section an attempt will be made to justify these steps on 
more general grounds. 

/ Aircraft .... 
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Aircraft like any other bodies occurring in nature, are 
continuous mass systems which exhibit from the theoretical as 
well as from the practical point of view features typical for 
such systems. 	In mathematical terms this means that the 
equations of motion will be integro-differential equations, 
the kernels of which involve the continuous distributions of 
massocrodynamic loading, etc. 	The normal type of equations 
will contain time and space derivatives of the independent 
variables representing displacements. 	Combined with initial 
and boundary conditions such equations will define uniquely 
the state of the aircraft at any one instant. 

However there exists yet a simpler set of equations 
of motion, the solutions of which automatically satisfy the 
boundary conditions. 	These integro-differential equations 
can be obtained in var i ous ways; for example by integrating 
the traditional equations and using the boundary conditions. 
Here a different approach has been adopted in that these 
equations have been deduced directly from Hamilton's Principle. 
For this purpose it is only necessary to make a judicious 
choice of the independent variables, some of which will be seen 
to be space derivatives of the displacements used normally. 
Obviously this last step will only be possible if the 
continuous character of the structure is preserved. 	In 
physical terms these new variables will be seen to represent 
the curvatures and space rates of twist of the deformed 
structure. 	With these new variables the final integro- 
differential equations of motion will be found to involve only 
time derivatives. 	Thus in the case of the problems (i) and 
(ii) above, when the aircraft is subject to harmonic motion 
the characteristic equations determining frequencies, modes 
and flutter speeds are Fredholm integral equations of the 
second kind. 	Exact solution of these last equations in any 
practical application may present unsurmountable difficulties, 
so that it will become necessary to introduce some 
approximation such as replacement of the integrals by finite 
sums. 	It is easily realized that by this method the 
equations of motion become matrix equations of a type well 
known in any applied dynamic or aero-elastic work. 
Alternatively, experimentally determined modes may be used as 
in the standard practice of flutter investigations. 	But it 
should be understood that either of these methods are 
computational expedients which are little related to the 
fundamental problems. 

As far as the introduction of oblique coordinates is 
concerned, there can be no doubt that they are in the first 
place suggested by the special nature of swept wings, and that 
any objections to their use will arise from the fact that they 
have not been used before. 	W.S. Hemp (4,5) has developed an 
elastic theory of structures consisting of spars, ribs and 
stressed skins which uses oblique coordinates, and which is 
very well suited for application to problems of the type 
considered here. 	It will be shown that the use of oblique 
coordinates for the wings does not introduce great 
complications, and that it eliminates the necessity of 
distinguishing between swept and straight wings, the latter 
simply being a special case of the former. 

/ In Ref.6 	Ctao n Oa 



- 6 

In Ref.6 a comparison has been made between the theoretical 
and experimental influence functions, indicating that the 
agreement will be quite satisfactory. 	Hence the present acre- 
elastic theory can already be applied at the design stage. 

The remaining part of this section outlines the most 
important assumptions underlying the theory of this Report, 
and it will be seen that they fully agree with those 
customarily made. 	Section 2 gives a detailed discussion of 
the choice of coordinate axes and the basic notation referring 
to these axes. 	The following three sections are concerned 
with the deduction of expressions for the potential and 
kinetic energies and for the external forces. 	Section 6 
gives the equations of motion for the three groups of problems 
stated above* 	Section 7 indicates possible ways of solving 
the equations of motion, and it will be seen that most methods 
of solution used hitherto in work of this kind are applicable. 

1.2 Assumptions  

A complete statement of all assumptions in the case of 
work as complex as the present offers great difficulties. 
Dynamic aero-elasticity, as its title suggests, draws on 
results and methods of the following three well defined 
branches of mathematical physics:- 

1) General Dynamics 

2) Aerodynamics 

3) Elasticity 

so that such a summary of assumptions would be widely spread, 
and demand very thorough knowledge of three large subjects, 
although it may be said that only certain special parts of 
some of these subjects are relevant to aero-elastic work. 
For this reason when giving a list of assumptions for the 
composite subject of aero-elasticity, those customarily made 
in the component subjects will not be stated in detail. 

These assumptions will be grouped under the three 
headings given above: 

1) Dynamics 1AI The theory of small vibrations is applicable. 

1A2 The quantities depending on the mass 
distribution of the aircraft as a whole 
do not vary as a result of deformation. 

1A3 Rotations of the aircraft as a whole are small 

IA4 Structural damping is neglected. (Introduction 
of a dissipation function could be easily 
effected. 	See section 5). 

1A5 The effect of gravity is neglected. 

IA6 The potential energy of the deformed 
aircraft is satisfactorily given by the 
strain energy (see elasticity). 

/ 1A7 



1A7 The mass distribution is adequately 
described by piecewise continuous 
functions of the coordinates along 
the span and the fuselage. 

1A8 The fuselage and the wings are rigidly 
connected and no internal vibrations 
in the direction of flight occur. 

1A9 The mass of the tail unit is included 
with that of the fuselage. 

2) Aerodynamics 2AI The results of linear two-dimensional 
unsteady aerofoil theory are applicable 
in connection with a weight function 
which is based on the steady state span 
wise distribution of lift-slope for 
finite wings. 

2A2 The forward speed of the aircraft is 
constant and no yawing takes place. 

2A3 The gusts are assumed to be uniform 
across the span of the wings. 

2A4 The fuselage does not contribute to the 
lift and the wings form a lifting 
surface extending from tip to tip. 

2A5 Aerodynamic terms due to the tail plane 
have been omitted. (They can however 
easily be added provided due 
consideration can be given to 2211). 

2A6 The effect of ailerons r  flaps, etc. has 
been neglected. (Obviously 
consideration of these effects 
introduces further complications which 
do not involve new principles.) 

2A7 The forward speed of the aircraft is such 
that the wing leading edges are 
"subsonic". 

2A8 The reference points for the moments 
lie on the theoretical axis 0y 1  of the 

wing. (In the work here the axis has 
been assumed along the mid chord line.) 

3) Elasticity 	311 The results of the theory of Refs. L. 
and 5 are applicable to the wing 
structure. 

3A2 Simple beam theory is applicable to 
the fuselage. 

/ 2 6000000 
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2. COORDINATE SYSTEMS  AND NOTATION  

Because of the proposed use of oblique coordinates ; 
 two coordinate systems will be required as far as the wings 

are concerned. 	In this way it becomes unnecessary to 
introduce from the start assumptions restricting the 
permissible type of deformation of the wings. 	An alternative 
approach would have been to deal only with one half of the 
aircraft and to consider separately symmetric and anti-symmetric 
deformations as has been done for example in Refs. 1 and 2. 

In order to obtain the most general equations of 
motion ;  body motion has to be taken into account. Hence two 
further orthogonal coordinate systems will be required, one 
of which will be fixed in space and the other at a suitable 
reference point in the aircraft. 	The latter will be placed 
at the intersection of the wing axes, and will also be used to 
describe the deformations of the fuselage. 

Thus use will be made of the following coordinate 
systems:- 

i) 0ox0Yozo9  an orthogonal rectilinear right-handed system 

fixed in space to which the translatory motion of the 
refererce point 0 1  of the aircraft will be referred by 

the displacement vector (U, V o  VI), the components of 
which are functions of the time t. 

ii) 01x1y1z1' an orthogonal rectilinear right-handed system 

with its axes fixed in the aircraft to which the angular 
motion of the aircraft will be referred by the angular 
displacement vector (p 9  Q, R), the components of which 
are functions of the time t. 

iii) 01x1y1sz12 an oblique rectilinear right-handed system 

to which the "internal" motion of the starboard wing 
about a mean position will be referred by the 
displacement vector (us , vs , - w,) ;  the components of 

which are functions of x 1'  y1 s, z 1 9 t. 

iv) 01x1y1pz 1" an oblique 

which the "internal" 
a mean position will 
vector (u5  p V5 9 Ws 

 )9 

functions of x1 "  y11) 

rectilinear left-handed system to 

motion of the portside wing about 
be referred by the displacement 
the components of which are 

Z 1 9  t,  

These systems are shown in Fig.1 in which are also indicated 
the positive directions of rotation about the "internal" axes 
of the aircraft which are given by the vectors (p 5 9  q s 9 0 ) 

and pp 9 qpp  0) respectively. 	
These directions of rotation 

are in agreement with the convention for rectilinear systems 
by which cyclic clockwise or anticlockwise rotation gives the 
positive directions for right or left handed systems 
respectively. 

/ Compatibility 	• 0 0 0 • 
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Compatibility of the coordinate systems is obviously 
insured, and it is easily seen that all internal 
displacements and their first derivatives will be zero at the 
reference point 01 . 	Further, it is seen from Fig.1 that if 

p s  o5  and ppp  qp 
 are equal in magnitude and have equal or 

opposite signs, the corresponding displacements will be 
symmetric or anti-symmetric respectively. 	Throughout most of 
the work of this Report there will be no need to distinguish 
between the starboard and portside wings, so that the 
subscripts s, p can be omitted. 

As mentioned earlier in this section, the system (ii) 
may also serve as reference system for deformations of the 
fuselage and tail unit, provided the latter does not involve 
swept t 4 .1 planes. 	However, in the pre.J.nt Report only the 
fuselage qill be taken ;ate account in cider to illustrate the 
inclusion of such additional components in the analysis, and 
all quantities referring to the fuselage will have the subscript 
f. 

3. KINETIC ENERGY 

Using the notation of section 2, the velocity of a point 
of the aircraft is given by 

177) + (Pp Q,  k) X (X
1 ,  Y1, z 1 	+ (ti, ;Ipw ) ---- (3.1) 

where it should be remembered that each of the vectors is 
referred o to e a different coordinate system; in particular the 
vector (u, v, w) is referred to one of the oblique coordinate 
systems whenever the wings are being considered and, further, 
notice must be taken of the fact that the forward component 
of the translatory body motion is large. 	The kinetic energy 
of the aircraft will involve the scalar product of this vector 
with itself, and it is most easily determined in four steps. 

The first of these requires the square of the vector 
in curly brackets. 	As in the later steps, multiplying this 

(x i 
 9 Y1 9 Z 

2 	
1 

square by 	 ' , the local mass density, and 

integrating over all points of the aircraft, one finds, using 
1A2, the kinetic energy of the aircraft considered as a rigid 
body; 

0,, 	V  2 .,•,2 •,2( AX4,2 	a  _ t2 	It T = 2 	+ 	+ 2 tr 	 x 	2EL-d 	2FQR 	2G164) 

+ 	 fryeT) + ((e  ),(2j1 - "Tt i l:-11) + R(f.cj - 

5JR(E 1 P 	 + 0,(71 P 	 ---- ( 3 .2 ) 

where higher order terms have been neglected. 

/ Although ..... 
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Although several of the constants above will be zero in most 
practical cases, they will be retained here in order to ensure 
that the final equations of motion are as general as possible. 

Next consider the kinetic energy of the wings vibrating 
when the aircraft is in steady motion (or at rest). 	In 
Ref.3 the kinetic energy of a swept box has been deduced using 
oblique coordinates* 	For application to the present problem, 
the work of Ref. 3 requires some minor modifications which 
are necessitated by the use of different coordinate systems 
and notation. 	The system used in Refs. 3-5 is shown in 
Fig.2. 	The system (iii) of section 2 is obtained from it 
by an interchange of the parts played by the axes Ox and 0y 9  
and by incret&ng the angle a of Fig.2 beyond 7c/2. 	It will 
be seen from the first part of Rof.4 that the general work 
done there on kinematics in oblique coordinates is still 
applicable. 	With the sign convention of section 2 it is 
obviously unnecessary to distinguish between starboard and 
portside wings. 

Comparing Figs. 1 and 2, it is seen that the a of 
Refs. 3 and 4 has now to be replaced by 7t - a. Making the 
appropriate changes in notation in equation (9) of Ref. 4 9 

 the displacements of a point P(x1 , y1,  z 1 ) are given by 

= Z
1 

^ p cota + q cosec a 

v = - 	p coseca - q cota 	 ---- (3.3) 

w = 	+ 0 - q x1  sina 

where p, q, 	and 0 will now be assumed to be functions of 
y1 and t only. 	The corresponding velocity components are 

c 
- p cota. + q cosec a )- 

= -z 1 	coseca - q 
cot 	 ---- (3. 4) 

w 	(1) + 0 - qx 1  sina 

Since this velocity vector is referred to an oblique 
coordinate system (e.g. (iii) of section 2), the square of 
this vector is given by 

.a2 + w2- 2uv .. 	 .cosa = z21 Cp.2- 2p'' cali cos a + q. 	+ 	q2  sin
2  a 

- 2x1 	+ 	.sina + 	+ f7i 2 
	

---- (3.5) 

/ Multiplying 
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and integrating with regard 

p(x19 3 19 z 1 ) 
Multiplying (305) by 	  2 
to x1  and z i  over a wing section y i  = const. one finds the 

kinetic energy dT 2  of a wing element: 

dT 2  = 1  CI (, 	2M coca 	le) 	- / 7  ..2 sing  2 	2 	XY1/" 	 a 

2m(y1 ) 1 (yl )q(!5 + :0) sine + m(y 1 )( + :6) 2 i dy i  -- (3.6) 

Using (3.6) the required kinetic energy of the wings becomes 

T2  = j (dT 2s  + dT 2p ) 	 -- (3.7) 
0 

where the subscripts indicate that in (306) y 1  is to be 

replaced by y ls  or ylp  respectively. 	In the sequel it will 

often be convenient to write integrals of the type (3.7) 
in the following manner 

T2 = dT 
j 	2 
0 

-- (3.7') 

where it will be assumed that the integral extends over both 
wings. 

Next consider the fuselage vibrating under the same 
conditions as the wings above. 	Using 1A8 the relevant 
kinetic energy is:- 

p2 

	

N/02 	w2 	 No • T 3 - - 	(x Aw + v + 2Y11,xl )wfp f  - 21f(xi)Mf)f 

+ J 	(x ) P 2  x 1 f 1 	f 
dx1 -- (3.8) 

Finally the contributions to the total kinetic energy 
arising from arbitrary motion of the reference point of the 
aircraft will be deduced. 	In the case when normal 
coordinates are being used 9  such contributions will not occur 
but it is easily seen that the variables p 9  q are not such 
coordinates and that the introduction of normal coordinates 
in terms of these variables would be difficult. 

First consider the contribution coming from the wings. 
Using 1A3 it may be assumed that the axes 0 0x0Y0 z 0  and 
0 1 x1 Y1 z 1 for the purpose of the present calculation are 
parallel. 	The relevant cross term in the square of the 
velocity vector (3.1) is then: 

/ 2.0.0.0.0 
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r 
 2 

1  U 
	

, 	

▪ 	

, 	•  p_,(  . • 
a.)u-vcos ÷Uo ( Q.*-Riisina) +Vvsina+Vm+ 

where use has been made of the formula 

P 	Q 	•
R 

x1 --y 1  cosy yi  sina z i 

 cosa v sina tvj 

--- (3.9) 

= -I cosa 	j i  sin m 	 --- (3.10) 

expressing' the oblique unit vector j in terms of the 
orthogonal unit vectors i and j i  (see Fig.3). 

Substituting for 11 9  '1T , 17/ from (3.4), multiplying by 

V (x1 ' y1' 7' 1 )  and integrating as before when deducing 
2 

(3.6) one finds: 

f— 0. 	 — 0 	 . 0 • „ t 0 — . 	
. • 

cla l.=
I 
miz, uqsina +z i  ( qcosa—p) (v—uoR)+ (o+Ø—xi  qsin a) (W+U t. 	' 
• • c 	41,. a _ a 	 a a 	1 

+ P r  37., MSilla (q+0-x1  qsina)-1. I
xl 

(p—cicos c0c 
J 

0 j 

+ 	mil  yl  qsinacosa+ J
371 

q sina—m(71  -y 1  COS a) (4+0) 
/ 

( 	 .1 
R tMYJ1 1.3"Sa+ (I XI Z i "Sa-MY11 )71-I X1 Z il aYi 

And hence the required kinetic energy 

- 
= dT 

Towj 4 

--- (3.11) 

- -- (3.12) 

Corresponding to (3.9) the cross term for the fuselage is 

2k-Rk)(Y z 1  ff)+644) 
17,  
x 	Y1 	z 1 

0of 
z 	Y f 1 	f f 1 

j 

   

   

- - (3.13) 

and its contribution to the kinetic energy: 

T4f  
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2 
rt" 

T4f = 	1 °-RUo ) (v  f- 	lape  f )+ 	 (;f+ 	flp r ) ,11  
0`• 

+P + J fwfY 	m 1f 	frit"' x1 fPf; 

Cmfx1 wf 	mfxl i 1 f P  f 
Of 	0 

+ R mt f  v _x1  . - mfx1  z i  f p f --- (3. 1 4) 

The total kinetic energy of the aircraft is thus given by: 

T = TI  + T2  + T3  + T4w  T4f 	 --- (3.15) 

using (3.2), (3.7), (3.8), (3.12) and (3.14) 

4. POTENTIAL ENERGY  

The potential energy of the deformed aircraft, using 
1A5 and 1A6 consists of two parts: 

i) Uf  the strain energy of the fuselage 

ii) Uw the strain energy of the wings 

By 3A2 the first of these is given by 

il, 

12 1  It 

	

1 :; 	.- 	”2 	 2 .1  Uf = -2. jiEf IY f wf + 21y z fq vil, + Tz  v;. s+ cfp f  j 	l  da 

	

L 	1 	 1 1 	 1 
41 

--- (4.1) 

The strain energy of the wings may be obtained in a 
manner similar to that adopted in Ref.3; however the shear 
energy will not be included and use will bu made of formulae, 
analogous to those given in Ref.., which have lately been 
developed for the case of a uniform two-cell swept box (Ref.5). 
By assuming the influence coefficients given there to vary 
along the axis Oy l , the theory of Ref. 5 may be extended to 
non-uniform structures by the same reasoning used in the 
similar extension of simple beam theory. (For experimental 
evidence see Ref. 6) 

/ In order 	 



= 	[sina 	dy 	dy 	dYi 2 	
1 

m 
	Z 	aYi 

1 

- -- (4. 4) 
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In order to illustrate the modifications required by the 
introduction of the oblique systems of section 2, Fig.3 shows 
the system referring to the starboard wing together with the 
auxiliary axes used in refs. 4 and 5. 	With the unit vectors 
of Fig.3, the moment and force acting at a wing section may 
be written: 

L1 i 1 + M1 j 1 9 	Zk 	 --- (4.2) 

To this load system corresponcf the displacement vectors 

dpi + dqj - -- (4.3) 

so that the strain energy is given by 

1 	 . 
 dU = 7  [1 Li  11 	1 m. 1  . f sdpi + dqj ;  + Zddk2  

since by Fig.3 

i 1 a 	= j l 	j = sin , k • k = 1 p 	j = 	 = C (Lte 5 ) 

But by the theory of Ref.5, after appropriate changes in 
the notation, 

1 - C11 
	0 

11 012 013 clY  
IL _ - -coseca d2  

c17 1 2  
dy1 

--- (4.6) 

021 C22 0 

33 o 31 

where physical considerations will easily verify that the 
Cij  play the same parts as in Ref.5. Solving (4.6) for 119  

M1 and Z one finds 

dy 1 

dO 

dy1 

   

= 	( L  --- (4.7) 

  

   

   

/ where *see 
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where 

r°1 1 = 011 033 - 013031 P ° 
	-C2i  C33  9 ro 1 j 3 = 021 013 

r° f 21 y 	C33 rcr- ;) C C 	 = -C 22 32, 2  - -23 	-022013 

9 
tn. 	= 

'31 	012 031 

and 

f32 = - 022031 9 • . 33 = C 11 C 22 

-012 021 

- (4 8 ) 

= - C2  ) 	C22013031 j 	= C33 (C11 C22 	12 - -- (4.9) 

Substituting from (4.7) in (4.4) gives the strain energy 
stored at a station yi  

1 dU = 7  12 	p, 
sinalq1 P 	( '12 	1-21 ) Pq i  

   

+ 	sin g. + 	4. (7'23  sine + t32 ) q'O'i dY113 

(4.10) 

and hence the total potential energy of the wings 

Uw = 	dU 	 --- (4.11) 

By (4.1) and (4.11) the total potential energy of the 
aircraft is 

U = Uf + 
	 --- (4. 12 ) 

/ 	5 0 • 0 0 • 0 • • 
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5. NON-CONSERVATTVE FORCES 

5.1 General Remarks  

In the Introduction the dynamic problems of aero-elasticity 
have been divided into three groups which differ from each 
other by the character of the external forces acting on the 
aircraft. 	It ic also indicated there that these problems 
will be studied under the two headings of free and forced 
vibrations, and it becomes the object of this section to 
write down expressions for the impressed forces in the different 
cases. 

However, before turning the attention to the external 
forces, there is one other feat , 7!,e which is common to all the 
dynamic problems of aero-elasticity, i.e. elastic dissipation 
or structural damping. Although by 1A4 this phenomenon will 
be neglected, it will be worthwhile to give it some consideration 
here. 	In most applied problems the existence of a dissipation 
function is assumed, nevertheless this discussion has been 
intentionally included in this section which deals with non-
conservative forces, because the real mechanism of structural 
damping has not yet been satisfactorily explained. 	Thus the 
use of a dissipation function is mainly justified by the 
convenience it offers. 	In actual problems the coefficients 
of such a function are subject to estimates based on experience 
and, if possible, experiments, and in general their values are 
unreliable, since they even tend to vary among aircraft of the 
same type. 	The use of oblique coordinates therefore does 
not in any way affect the general position, and a dissipation 
function may be defined in exactly the same way as it is done 
in other work. 

5.2 Vibrations in Vacuo and Still Air  

It is customary to refwto vibrations taking place in the 
absence of external forces as still air vibrations. 	However, 
this terminology is not quite correct, and it has been 
realised for some time that the effect of still air damping 
may be quite important. For example, when performing 
fatigue tests (Ref.7) of wings by exciting them at one of their 
natural frequencies, knowledge of the amount of energy 
absorbed by this type of damping would offer the possibility 
of estimating the energy absorbed by the wing structure during 
the tests. Knowledge of the latter quantity in its turn would 
not only help in the study of fatigue but also provide a more 
rational approach to the problem of structural damping. 
However, to the author's knowledge, no theoretical or 
experimental evidence on still air damping is at present 
available, and for this reason its effect will not be studied 
here. 

/ 5.3 
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5.3 Flutter and Dynamic Stability  

In Refre,  a strong case has been made for the use of 
unsteady derivatives in problems of dynamic stability, since 
the use of quasi-static derivatives which are independent of 
the frequency of oscillation is no longer justifiable. 	Once 
this point of view has been accepted it is obvious that the 
equations of motion for the two hitherto separate problems 
become identical. 	However since the frequency of oscillation 
in stability problems is usually very low, it will be possible 
to use values of the derivatives obtained from the simple 
approximate formulae of Ref.9 which deals with the problem 
of a two-dimensional aerofoil oscillating slowly in a subsonic 
air stream. 	For the problem of flutter mostly the exact 
derivatives of Ref012 will have to be used since the frequency 
will be too high. 

Apart from the link due to the use of common derivatives, 
there is also a physical reason for which the problems of 
stability and flutter should no longer be treated separately. 
Because of the presence of swept wings, new types of flutter 
have arisen which by former standards would have been considered 
to belong to the domain of stability work, i.e. phenomena 
involving body motion. 	Thus the only distinction between 
the two problems remains the fact that usually the resilience 
of the aircraft is neglected in stability work while it is 
essential to flutter, but even this difference no longer holds 
entirely. 

The use of different notations in stability and flutter 
work so far has been the strongest impediment to the union of 
these two subjects. 	This point was raised strongly during the 
Anglo-American Aeronautical Conference in 1951 only to draw 
the comment that apart from notational conflict between subjects 
there was also one between countries such as England and the 
U.S.A. 	In particular :  there exists a great diversity in 
notation and presentation of flutter derivativesa Because 
Refs.9 and 12 contain all the necessary numerical data, which 
would be required in applications of the present work, and 
because tl.e notation used in these reports is the simplest 
possible, it will be adopted in this report. 	This notation 
has been in use for many years in Holland as well as Germany, 
and it can easily be shown that in a disguised manner it has 
also been applied elsewhere, 

After this introduction consider the thin aerofoil 
shown in Fig. 4. 	Let the translatory displacement of the half- 
chord point 

A c e  ivt  2 -- ( 5. 3.1) 

and its rotational displacement (nose up) about that point 

e = B eivt 	 -- (5.3.2) 

/ then 
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then the corresponding aerodynamic forces on a unit strip of 
the infinite aerofoil are given by 

liffi 	 c  = 27tp v2 ei vt [Aka  + Bkb  

2 
moment = 27t pv2  el vt  1Am

a 
 + Bmb  

-- (5.3.3) 

-- (5.3.4) 

The derivatives ka , kb , ma , mb  are complex functions of the 

reduced frequency 

_ vc 
- 2v 

and the free stream Mach number 

= 7v.  

-- (5.3.5) 

-- (5.3.6) 

exact and approximate values of which for various values of 
w and p are tabulated in Refs.12 and 9 respectively. It will 
be seen in these references that the general expressions for 
the derivatives reduce for p = 0 to Kassner's formulae for 
incompressible flow. 	In Ref.11 the exact theory has been 
extended to the case of wings with flaps with open and closed 
gaps. 	But in the present report by 2A6 no consideration will 
be given to such effects. 

Before giving attention to the manner in which it will 
be proposed to use the above results for three-dimensional 
wings, consider one term of the expressions above, e.g. 

c 2 	ivt k
a 2r1 	v A e 

4 

It has already been noted that ka  is complex, i.e. let 

ka 	kl + 	k" a a  -- (5.3.7) 

as it is done in Refs.9 and 12 for the purpose of tabulation. 
By (5.3.1) the translatory velocity and acceleration are 

0  

2 i V e
i vt z = "•• 	 e c 	2 ivt 

2 

respectively, so that the corresponding lift can be written 

v2 - v2  1 2 7. p 	z + ka  " El 	or 27 p -2 	a 2 + k" v 	-- (5.3. 8 ) v 	 . 	v  

both expressions being equivalent and real. 

/ Admittedly 	 
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Admittedly this presentation of the flutter derivatives no 
longer retairr3 the division into aerodynamic stiffness, 
damping and inertia, 1;ot in any case such a division increases 
the notation without offering any advantages. 	In addition, 
it is easily seen from the exact theory of Ref.11 that for 
subsonic derivatives such a division is even more artificial 
than for the incompressible derivatives, since their general 
expressions involve series of Mathieu functions, so that the 
separation of a term representing e,g0 aerodynamic inertia 
would not necessarily be unique, 

Next consider the problem of finite wings. 	The great 
difficulty experienced in obtaining easily interpolated results 
applicable to all types of wings for any Mach number and 
frequency of oscillation causes the use of the two-dimensional 
derivatives in most practical applications. 	The procedure 
to be adopted here is indicated in 2111, and the weight function 
to be used will be based on the lift distribution along the 
spoor. of a wing under steady conditions. 	By the help of Ref.13 
such a function can be estimated in a matter of minutes with 
an accuracy, comparable with that obtained from lifting 
surface theory after computations which may extend over weeks 
or even months. 	From the loading function 

c CL K
1 

= — CL  

of Ref.13 follows immediately that 

85'1 0 = K 
1 	 C 

-- (5.3.9) 

-- (5.3.9') 

But it is known that the lift slope of the two-dimensional 
thin aerofoil is 2% and that the factor 2% in the expressions 
(5.3.3) and (5.3.L1) may be interpreted as referring to this 
quantity. 	Hence when using the two-dimensional results for 
finite wings ;  the factor 2% will be replaced by what will now 
be called the weight function 

The use of the weight function N in actual fact implies 
that under unsteady conditions the character of the lift 
distribution does not vary. 	Its application brings about 
compatibility with the work of the next section which deals 
with the problem of gustloads, because it can be shown that 
the indicial lift function k (s) describing the growth of 

2 

lift on a wing subsequent to a sudden lateral or rotational 
movement of the wing, can be obtained from the unsteady 
derivatives corresponding to harmonic motion by means of a 
Fourier integral (Ref.14). Thus the expression to be used 
here for the lift on the oscillating wing, after application 
of such a Fourier transform, will lead to an indicial lift 
function which eventually produces the steady lift slope 
distribution on the wing. 

/ There 
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There is still one point which requires mentioning 
although little can be done here towards its solution. This 
concerns the fact that the wing will be deformed and in 
particular, twisted. 	A partial solution of this problem 
could be obtained by complementing the weight function N 
by a corresponding expression deduced from the basic lift 
distribution of RefA5 9  which assumed. the wing to have 
uniform twist (Ref.6). 	But normally the twist experienced 
by a wing in flutter will neither be uniform nor known before-
hand, so that such a procedure would require a step by step 
process, and hence would be lengthy. 

Under these conditions the lift and moment at a wing 
station y1  are given by 

2 

	

.p 	
Iz

k 	+ 2 efkbi N sing dy1 	
—

( 5 3 ,1 I ) 

v2. -2 

	

= p 	iz ma 	-2 e 	N -c sine dy 1 	-- (5.3.12) 2 

The corresponding arbitrary displacements to the first order 
are by (3.1) and (3.3) 

817 + yl  sina, SP + y l  coca 8 Q+ 8 e? 	8 0 
-- (5 .3. 13) 

+ sin a S q 

Note that in this work it has been assumed that the axis 0y 4 
 lies along the half-chord of the wing. 	If this condition 

0y1 

is not satisfied g  the aerodynamic moment will have to be 
transferred to the position of that axis in the wing (see 2A8). 

When applying (5.3.11) and (5.3.12) in the problems 
considered here one has to substitute for z and 0 expressions 
corresponding to (5.3.13) 9  viz: 

W + yi sina P + yl cosa Q + Q+ 0 	-- (5.3.14) 

0  = Q + sine q 

while by 2A2 

v 	17J 	const 	 -- (5.3.15) 

along the span of the wing 

The assumption 2A2 is required as one of the basic 
assumptions of unsteady aerofoil theory which takes only 
account of small lateral motions. 	Thus the present theory 
does not allow for yawing motion of the aircraft since it 
would introduce spanwiso variation of the forward speed. 
This limitation is due to the lack of a suitable unsteady 
theory by which such effects could be superimposed on those 
due to lateral motion. 

/ 5.4 
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5.4 Gust Loads  

In the work of the present section assumptions2A1 and 
2A2 will apply as well as the remarks made above. Thus the 
same weight functions will be used in conjunction with the 
two-dimensional results referring to arbitrary unsteady 
motion of an aerofoil in a flow disturbed by gusts. To the 
author's knowledge the relevant incompressible results have 
not yet been fully extended to the subsonic range, although 
they are known for the supersonic range (Ref.17). 	Only the 
indicial lift function k1 (s) has been investigated throughout 

the entire range (Refs.14-16). 	For this reason the present 
section will in principle be confined to cases in which the 
effect of compressibility may be neglected. However this 
restriction only applies to the actual gust case involving 
disturbances in the free air stream. 

An important feature of the arbitrary unsteady motion 
is the introduction of the non-dimensional time variable 

s = 2 v t 
	

-- (5.4.1 ) 

which in the case of a non-rectangular wing will vary along 
the span. 	In particular, when dealing with a tapered wing, 
one has 

s(Yi p t) 	
2vt 	 2vt  4) (cr-ct) ) 7-1) 	

.2 (5. 
r 

r k 

, 	 1 where 	A - ct/c r 

so that 	 s
r  

s(Yip t) 	 ( 1 - t%) 
-- (5.4.3) 

The presence of sweepback introduces a further complication 
in that it will be necessary to allow for the fact that the 
gust reaches the tip of the wing some time after its root. 
By Fig.5 the intersection of the leading edges of the wings, 
i.e. the point (g

r, 
0) is (ie.COSM 	g

t 
g
r
) ahead of the 

leading edge at the tins, and hence any point (y 1 , c/2) of the 

leading edge will be reached 

later by the disturbance than the point (g 
r , 0). 

/ Hence 	 
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Hence by Ref.18, the lift and moment at a station y1  are given 
by 

dL = 	v2  d2z 	c de "-- o 	 / 
2 ---Z 
	d2 z 	c (de 	d2 

ds 	 17102 	-2- 'd. + 2 do. 
Cr 

- ?v lk
2 

 (s 	cr) 
damdog  N si na dy 1 
	-- (5 .4. 5) 

s ii 
am  = _ ay2 c de 	c d2 e 	 d2z  1 	, 1 	i 

	

critp. 	1 d - k1 (s  -T)i 	2  + 7,-,k„ o- + 2 --7 2 	7 ds 4' --i-6 ds2 	0 ' 	I,do- 	 da. J e a 
0 

s-As 

+ 	k2 (s 	 do-  N 2  - sing dy 1 	(5.4. 6 ) 
do- 	2  

In (5.4.5) and (5.4.6) the displacements z and 0 arc again 
given by (5.3.14) and their corresponding arbitrary 
displacements by (5.3.13). 

6. THE INTEGRAL EQUi..TIONS OF MOTION  

6.1 General Remarks  

In the earlier suctions the foundation has been laid 
for the deduction of the equations of motion by one of the 
analytical methods of general dynamics. 	In view of the 
complexity of the expressions for the energies, it is not 
proposed to present here the analysis in full detail. 
In Appendix 1 the most important steps will be described 
in order to allow a better understanding of this part of 
the work. 

It has already been pointed out in the introduction 
that the equations of motion will be deduced in the form 
of integro-differential equations in terms of independent 
variables, some of which will represent the curvatures and 
rates of twist of the deformed aircraft. 	Such equations 
are most easily obtained from Hamilton's Principle which 
in the presence of non-conservative forces takes the form 

t 2 
 

• 

s (T — U) + 	(,),
r 
 8 q

r 
 dt = 0 
	

-- (6.1.1) 

/ The independent 
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The independent variables qr  to be used here will be those 

describing the rigid body motion of the aircraft 

U, V9 W 
	

PSI 	R 
	 -- (6.1.2) 

the first spanwise derivatives of the functions pertaining 
to the wing deformation 

a 
	 - Pi 

22 , q , 
aYi 

2 	 = O f 	9 
8371 

-- (6.1.3) 

the curvatures of the lateral fuselage displacements 

a 2v 	 a 2w, f 
'f 9 	2 = 8 xi2  a x 

w" -- (6.1.4) 

and the rate of twist along the fuselage 

a pf  
a)7—  -- ( 6.1.5) 

The equations obtained from (6.1.1) using these 
variables will only involve these functions and their time 
derivatives and the solutions of these equations will 
automatically satisfy the boundary conditions normally required 
in connection with differential equations. 	The latter 
equations can be obtained from the integral equations by 
differentiations and by integrating certain tevilis by parts. 

In the next subsection the above mentioned integro-
differential equations will be given for the case of natural 
vibrations of the aircraft in vacuo. Various special cases 
of these equations will be discussed which arise as the result 
of simplifying assumptions, in particular, one of these will 
illustrate application of the present work to aircraft with 
straight wings. 

The remaining subsections give the terms which must 
be added to the equations of section 6.2 in order to obtain 
the equations of motion for the aero-elastic problems of 
stability, flutter and gust load. 

6.2 Free Vibrations in Vacuo 

The most general equations of motion of the type 
discussed above and obtained by the analytical process, some 
details of which are explained in appendix 1, are: 
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+ isina z ay1 = 0 

0 

'4'1 
t 	 419 

G. •_qt 	., f 	 s r 	l'i 	ir  
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-- (6.2,1) 

-- (6.2.2) 

-- (6. 2.3) 
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0 

I, 	1 
vf zf + 15ft jf 
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(B;1-0-111+1/1 a1  (14711 
 iJ 

o 
 is) + 	 a111 x)  pi sina (j+oos 	(µx-cosap. ) +IS sina (t.L 1  -cosap.1  ) 

"e2 ,, I  
+to  (f) sina ? pl461  p.+41  p. 	[ y 1 riC' 	131 	fi ?ffn p.1  + bi  .... xsina) a , 	1 	fp  lf+ fp  17Lf+ 	( o f f f

u  If) 	
= 0 -- (6. 2. 5) 

_ 1  

di -A-G13+191 (57:1  V-I 1  1.1-11 P)+ i -1(C1 1 cosa-y f )i
XZ 	 -I 
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0 	.e.  
2 
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ixz)  
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t 
Wsinapx  

N ,- 	- , 	 . 	-1 , . 14 . - ) 	 •1
an + Usinap z+ vcosap 

•• 

	

lq
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 ,ki.x+ sin2  a i _ ) - 15 
r 

(cosct Ix- sin2  allx)- p sinap.x  i 	 z- 
z 

0 

- P (sin2a IU. A x+ cost: ix) + Q (sina j + cosa sina µ1x) + R (cosa ixz- 1.1 1 z) 
 •• 
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+ kcosap. z) +( 

	

2 	P' 	r 2 	sina + 	  2 
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y(ix_ .in2ap. 11)  

z 	 2 
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q l  = 0 	-- (6.2.9) 

(6.2. 1 3) 

(6.2.14) 

(6. 2.1 5) 

(6.2.16) 

(6.2.17) 

(6. 2.18) 
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Yi 	I  
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z i 
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d 

(6.2.19) 

(6.2.20) 

(6.2.21) 
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ik 
where the integrals are to be extended over both wings (see 3.7 1 ). The 

0 

coefficients p, j and i are functions of the relevant coordinates and physical 

data, as defined by the following formulae: 

Y1 
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To =1 

Fix  (Y1 , 	T) ) 
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x
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(6.2.26) 

(6. 2. 27) 

(6. 2. 28) 
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(6. 2. 32)  

= 	rlf, 	f d 4 zf (xi ) 
(6.2.33) 

a 

illYft (xi ) 	mf 	i•-•if a 4 
	

(6. 2. 34) 

a 

111 zf (xl 	Elf 4 

	
a. 4 
	

(6. 2.35) 

a 
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It may be noted that the coefficient functions just 
defined are Green's functions for the mass system. The 
notation introduced here is suite self-explanatory in that the 
sub- and super scripts contain all the essential information 
required for the re-construction of the integrals defining these 
functions. 	Thus 

the base letters  119 iy j refer to physical data such as 
mass and section moments of inertia 

subscript numerals  

subscript letters  

indicate the presence of the integration 
variable as a factor. 

indicate the positions of the centres of 
gravity or the axes to which the 
moments of inertia refer at each section. 

superscript numerals indicate the number of linear terms 
involving differences of the 
integration and actual variables. 

bars indicate the special type of integration limits, the 
cause of which is explained in Appendix 1. 

The same principle will be applied to the notation in the later 
parts of section 6. 

For the purpose of the subsequent discussion, the 
equations of motion have been written in Table 1 in the form of 
a scheme using matrix representation. 

It may be reasoned that these equations are too general 
and therefore too complex to permit a clear understanding of 
the meaning of the various terms. 	The main reason for retaining 
full generality lies with the fact that over and over again it 
has been found necessary in recent years to extend aero-elastic 
investigations to take account of special features, formerly 
considered unimportant. 	The availability of completely 
general equations may therefore be of considerable assistance 
at such occasions. 	For example, it is customary to assume 
that the aircraft is symmetrical with respect to the plane 
0x1  z 1  and for this reason to put the product of inertia E equal 
to zero. 	On the other hand, an occasion may arise when interest 
will be concentrated on the behaviour of an aircraft which 
carries all its fuel in one wing; under those conditions the 
assumption E = 0 is obviously no longer satisfied* 	While 
this example is of a rather simple nature so that the extension 
of the equations to cover this case could be easily effected, 
other more complicated problems could be thought of for which 
this is no longer the case. 

In all aero-elastic investigations which are known to 
the author an assumption has been introduced by which shear 
deflections have been neglected. 	The only reason for the 
inclusion here of the relevant terms, as far as the wings are 
concerned, is that they might be of interest in dealing with 
wing vibrations. 	It is easily seen that introduction of this 
assumption will cause the disappearance of equation (6.2.9) 
and of other relevant terms. 

/ Next ..... 
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Next to this assumption the most reasonable one refers 
to the terms involving the position Ylf  of the centres of mass 

of the fuselage sections. 	Asymmetry of the fuselage of this 
kind will rarely arise. 	If in addition it is assumed that 
the axis Ox 1  is one of mass symmetry of the fuselage all along 

its length, the terms involving Elf  and Iv z f  will likewise 
-L i 1 

disappear, i.e. the corresponding columns of Table 1 will be 
free from inertia coupling between the various modes of 
deformation of the fuselage. 	In addition several terms 
involving the body motion will vanish in equations (6.2.10) 
to (6.2.12). 

Since in many investigations the fuselage is of 
secondary importance, the above assumptions will very often 
be made. 	Although the introduction of similar assumptions 
for the wings, i.e. 51 1  = E. = Ixlz  = 0, will rarely be 

justifiable, it will be of inters to compare the equations, 
corresponding to these conditions, with those of Ref.3. For 
this purpose it will also be assumed that the origin 0 /  of the 

system 0 1 x1 y1 z 1  is at rest, and that there is no fuselage 

present. The dynamic equations of a two-cell box with a fixed 
root then become:- 

, 	 1 1 2+  r21  sina, cif  1--4 1  s ina p 4- 	2 	 z... f- 15 10.
x

+ sin a 13. 2 )-i- 'el' I. cosa-dy 
1 	I 

o 	 (6.2. 45) .1, 
r12 + f421  sins p  , + 

12 
-I 	 .7.. ti I; -1 11 

2 	 I2 2 
sina q' 	T. cosa - Fi: ci + i sin2a `. dy 

J t, 	X 	 X 	z 	1 
0 

It is easily seen that these equations are in agreement with 
the equations (4.9) of Ref.3, if due notice is given to the 
changed notation, coordinate system and the fact that in the 
present work the angle between the coordinate axes is - a 
instead of a. 	Note, however, that the function f 4 (E 1  x) 
defined by (4.10) of Ref.3 should read 

ck-kr.. 0 
f(1 x) = ilk`Y  coseca 	sins (11 x)( 

Finally consider the case of straight wings when = 
In Ref.19 the integro-differential equations have been 
deduced for the case of gust loads on aircraft with straight 
wings. The assumptions made there with reference to the 
aircraft structure are similar to those made above when 
obtaining (6.2.L5). 	In addition, only symmetrical motion 
is considered, but body motion is allowed for, although the 
rotation of the body fixed system relative to the space 
fixed system has been neglected. 	Under those conditions 
one finds from (6.2.3), (6.2.5), (6.2.7) and (6.2.8):- 

oe 
/ MW owe(' 
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0 0 ' 	1 ory 
MIN - 	p dY1  = 0 

00 	0  
 BQ +1 j °,g7
/ 
 dY1  = 0 

leo 1

2+11,1 p dY 	+ q i  p + 
0 

1-712 4-  C2 -1  
2 	a 0 

as 	
■t■ est 

+ 
v 
 j q dY 

0 

1 12 	17'21  
2 	 122 cl  0 

(6.2.40 

Since by (4.6) in the present case 

t 1) 
 

it is easily seen that the above equations agree with the 
dynamical terms of the equations (5.215) - (5.218) of Ref.19 9 

 where it has been assumed that there is also no elastic 
coupling between the translatory and rotational deformations 
of the wing. 	Comparison with the equations of Refo•9 also 
gives a straight forward interpretation of the elastic 
constants ij  which could also have been obtained from 

Ref.4. 	Thus f is the bending and f422  is the torsional 

stiffness of the wing when there is no sweep back. 

6.3 Flutter and Dynamic Stability  

Using the results of section (5.3) one obtains after 
the appropriate transformations 9  analogous to those explained 
in Appendix ly the following aerodynamic terms which have 
to be added to the corresponding equations of section (602) 9 

 which have been indicated in square brackets 

VT K
a 

(0) + P sing K
al 

(0) + Q ,cosa K (0) + Kb  M.- + 	p I sina. Ki  
al 	 1 	 a 

0 

+ 	sine 	+ 
OTKa! 

 ayi 

1(. 
i -  

r 
1 11 K (0) + P sine K

a2 (0) + Q.C:cosa K
a2 

(0) + K.
l 
 (0)1 + 	p'sine  K1  

b  

-- (6. 3.1) 

16. 2.31 

q' 	• 	T + q sine K. dy1  I  sine -- (6. 3. 2) 

16. 2.4.1 

/ 	 



p' sina K2  + q' sina 

-- (6. 3. 3) 
[6. 2. 51 

-- (6. 3. 3) 

[6. 2. 51 

-- (6.3.4•) 

6.2.71 

-- (6.3.4•) 

6.2.71 

-(..• 

..1 

- 30 

.cosa at 
) 	 N (0) 	P sina: cosa Ka2 (0) 	1,1 0)1' 

	

a , 	 al 

r 	2 	 Hal  (0) 	M, (0 )'; + Q -loos a Ka2  (0) + cosa Kbi  (0) + cosa 
D 

(sina cosa K1  + sina Ma1 ) + q (sina cosa Kbi  + sina lib ) 

0 

al 

+ ecosa Kal  + Ma) dy1  

-1 
ri + P sina Nat + Q fcosa H

al + H.:1+ - p' sina a 11 + q' r1b 
 a 

L'
• 	 0 

Putting 2 N sina = -- (6 . 3 . 7 ) -(      

• 	• • • 

- - (6 . 3 . 7 ) 

the coefficients appearing in the above terms are defined by the 
following formulae 

Ka  (3r1  ) 	= ka  d (6.3.8) K1 a1 (yi ) =I Yi )d- (6.3.12) 

Y1 

Kai 6r1 ) 4.4 ka a  4 (6  . 3. 9) (y 	2 	"km- 	4 a. 	1
) 	= 

j  2 	a 
d (6.3.13) 

y1 Yi 

9  r? 

Ka2 (Y1 ) = 1 r)ka 
 d. 

j   (6.3.10) Hal  (yi ) 	=I i 4 ),_ ma  d. (6. 3. 14.) 

y y1 

Ka  (y1 ) 	= ka  (4 - ) a 4 (6. 3.11) Mal  (y1 ) 	=
j 

'A% (4 - d 
j 
	'A% (4 - 	d 	(6. 3.15) (6. 3.15) 

YI  YI 

-LW K1  + P sina Ki  + Q cosa K1  
a 	al 	al 

+ 0 / a 
 dry '  I sina j 

K K 
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(6.3.16) 	1r.bi  (yi ) = j 	.-)1  kb  a 	 (6. 3. 22) 

Ibi (3ri) 	9:UCb ( - 71 )a 4 

Yi 

'j 2 
(yi ) = () XI% a 

J . 

;D (Y1' )  = 	kb d 

Y-1 0  

1  
Kb W.1, 111 1 7/ kb 	yi )d 

YP T1  

Kai 	= 	ka 	3r1 ) 
	

(6.3. 17) 

Yprrl 

Za2  (y-i , 	= I 	) (-Ti)dZ 
	

(6. 3.18) 

Y.1 , 71 

lc (71 ,  1) =j bJu.a a  t 
	

(6.3. 19) 

3r1 ,1  

ma (5r1 , ^ ) 	 Yi )a 	(6 ' 3. 20)  
Y.1 ,1 

(6.3.23 ) 

(6. 3. 24) 

(6.3.25) 

(6.3.26) 

1% (y1 ) 	Lj. kb a  
1 

(6.3. 21) 
2 

.1.13  (Y1 , 11) 	(2') .X 11)0  a 4 (6.3.27) 

When evaluating these coefficients for any particular case 
notice must be taken of the fact that the derivatives 

ka , ma  , 	mio  

are functions of the reduced frequency (cf 5.3.5) 
V C 

= 
2 U 

(6.3.28) 

which normally will vary along the wing. Further, 
will be complex functions of co and the Mach number 
when writing down the final equations in real form, 

term Map' has to be presented in analogy with (5.3. 

these derivatives 
p and therefore 
for example, the 

8), i.e. 

la p1 = 11"  p' 	fi l " a 	a (6.3.29) 

/ 6.4 



_ 32- 

604 Gust Loads 

The formal work which leads to the terms which have 
to be added to equations (6.201) - (602.12) is very similar to 
that necessary for the deduction of the expressions given in the 
preceding sections. 	The fact that the non-dimensional time 
coordinate varies along the span does not introduce any 
principal difficulties, although it tends to complicate the 
analysis. 	Due to the complex nature of the theoretical 
expressions for the aerodynamic forces (5.3.5) and (5.3.6) 
the most general case corresponding to the freedom of motion 
considered in the earlier sections leads to a large number 
of terms. 	For this reason and because it is customary in the 
study of gust loads to introduce additional assumptions 
restricting the mode of motion of the aircraft, it is not 
proposed to give here the general expressions. 	On the basis 
of Appendix 1 and of the earlier work given in this report, it 
is felt that these expressions could be deduced without great 
difficulty by anyone requiring them. 

However a few remarks will be made with regard to the 
choice of a suitable time variable since this may be of great 
help to anyone wanting to obtain these expressions. 	In Ref.20 
the problem of gust loads has been treated for the case of 
straight wings and a dimension less time variable sm  has been 

introduced by using for c of (5.4.2) the mean chord of the wing. 
As a result the time derivatives of the equations of section 
6.2 had to be multiplied by appropriate conversion factors. 
It is shown in that reference that such a procedure tends to 
over-estimate the loads inboard of the wing station 
corresponding to the mean chord and to under-estimate them 
further outboard. 	This is easily seen to be true because k 1  (s) 
is a monotomic increasing function and s is inversely 
proportional to the wing chord (assuming, of course, that the 
wing is of conventional plan form with outward taper). 

When it is desired to avoid the above simplification 
referring to the time variable, it will in general be 
preferable to use the dimensional time t throughout instead 
of s. 	It will be easily seen that one can transform the 
integrals involving the function k 1  in the following manner: 

s
2 	

t 
,  

■ 0 z i k
1  (s - cr) --- du.  -A k a  aa.2 

0 o 

2 
2U \6 z(Y 1 2T) c(37 1 )  

cOl1 )) 	6T2 	0U 	LIT  

Thus when integrating expressions containing integrals of the 
above type over the span, the order of integration can be 
inverted without difficulty as the integration variables will 
refer to time and space coordinates which are independent of 
each other. 	Such a procedure then leads to special types of 
Wagner and KUssner functions allowing for three-dimensional 
effects. 	These modified functions will result from the 
integration of all terms, depending on the spanwise 
coordinate, over parts of the span, since, as before, further 
inversions of the order of integration will be caused by the 
introduction of the new independent variables discussed in 
section 1. 

/ 7 . 0 0 0 00 0 
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7. METHODS  OF SOLUTION 

In all but the very simplest cases an exact solution 
of the equations of motion, deduced here, cannot be expected. 
However, this is a fact which holds true in whatever form the 
equations of motion may have been obtained. 	Thus in most 
practical cases approximate methods of solution have to be 
used and it has already been pointed out earlier that all such 
methods used in Aero-elasticity when dealing with the 
conventional types of equations will likewise be applicable to 
integral equations. 

In Ref.6 some space has been devoted to the conversion 
of integro-differential equations into matrix equations, and 
it has been shown there that the latter can be solved by the 
common iteration processes. 	The main difference between 
the matrix equations obtained from the integral equations and 
those obtained by sectioning the aircraft from the start lies 
with the variables occurring in both types of equations. 

On the other hand, if it is proposed to use natural 
modes which either have been chosen suitably in the form of 
Polynomials or which have been obtained from vibration tests, 
there is no need to perform the transition to matrix equations. 
The modes which are to be used may be introduced directly into 
the integral equations, although it may become necessary to 
evaluate the integrals using approximate methods such as 
Simpson's rule. 

Consider, for example, the procedure for a binary flutter 
investigation of the wings. 	If it is assumed that all the 
relevant coefficient functions of sections 6.2 and 6.3 are 
known and that the principal response will be shown by the 
wings, it will onl,be necessary to investigate equations 
6.2.1 and r.2.8 , augmented by the aerodynamic terms 
6.3.4 and 6.3.5 . 	Substituting in these equations for the 

independent variables linear combinations of the appropriate 
modes, obtained from experiment, i.e. replacing, for example, 
p' by 

r1 	I  p' 4, 
r2 2 

 p' 	 -- (7.1) 

where pi 9 p are now known functions of the spanwise 

coordinate and r
I 

and r
2 are the corresponding normal 

coordinates, one deduces finally two simultaneous differential 
equations in r /  and r2  and their time derivatives. Assuming 

harmonic motion, these equations will lead to a characteristic 
equation involving flutter speeds and frequencies. 	Since 
the aerodynamic terms depend on these latter quantities, 
some of the coefficients of the characteristic equation may 
have to be calculated several times before it is satisfied. 

/ In a 
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In a similar manner, a procedure for ternary calculations 
can be developed by introducing, for example, also equation 
(6.2.3) + (6.3.1), referring to the vertical body motion, 
into the consideration. 	A similar approach has often also 
been applied to the problem of gust loads, but in that case 
the normal coordinates will be arbitrary functions of the time 
and systems of differential equations have to be solved. 
However, it should be realised that such a procedure introduces 
a constraint, since normally an infinite number of modes will 
be involved. 

Finally a short remark will be made with regard to the 
specification of the gust loading process. 	It is customary 
to make certain assumptions with regard to the "gust profile", 
although all investigators are well aware of the fact that 
it is very difficult or almost impossible to reproduce such 
theoretical gusts in order to check on the results of the 
theory. 	On the other hand, it is possible to use the vertical 
acceleration for this purpose and to consider the gust velocity 
one of the unknown quantities to be determined in the process 
of solution. 	The main advantages of such a step are that it 
is easy to measure accelerations suffered by the aircraft and 
that in this way gust structure can be investigated. 

8. CONCLUSIONS  

The equations of motion of aircraft deduced in this 
report are the most general within the assumptions stated in 
section 1.2. 	They are integro-differential equations 
involving only time derivatives of the independent variables, 
some of which are themselves space derivatives of the 
displacements commonly used. 	The use of such variables has 
only been possible because the continuous character of the 
aircraft structure has been retained throughout. In addition, 
this fact has led to a concise notation in terms of the 
physical data specifying the aircraft as an elastic mass 
system and aerodynamically, which will be found to be very 
lucid and suitable for fundamental aero-elastic work. 
The final equations of motion are obtained by combining the 
dynamic terms given in section 6.2 with the relevant 
aerodynamic ones of section 6.3 as far as problems of flutter 
and dynamic stability are concerned. 	In section 6.4 a few 
remarks have been made explaining how similar equations can 
be deduced for the problem of gust loads. 

In section 7, procedures have been outlined for 
solving these equations in any practical case, and it is 
seen there that all conventional methods used in aero- 
elastic work are applicable. 	In particular, the equations 
lend themselves to iterative processes and to the use of 
experimentally determined modes. 
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APPENDIX 1 

Remarks on use of  Hamilton's Principle 

In section 6 of the main part of this report the eauations 
of motion have been given in the form of integro-differential 
equations obtained directly from Hamilton's Principle. 	It is 
the purpose of this Appendix to give some detail of the 
analytical work leading to these equations. 

It has already been pointed out in the Introduction that 
a special feature of the way in which Hamilton's Principle has 
been applied here lay in the particular choice of independent 
variables. Instead of using actual displacements, as has been 
done in most work of this nature, it has been found preferable 
to introduce as new variables curvatures and rates of twist 
whenever the customary variables are functions of space 
coordinates as well as of time. 	The analytic procedure is best 
explained by the presentation of the complete process which 
leads to one of the equations of section 6.2 9  e.g. equation 
(6.2.7). 	This is the equation which involves the most 
complicated preparatory work, because of the fact that by (L.6) 

P }  = - coseca 0 
	

-- (A1.1) 

so that in the application of Hamilton's Principle this 
equation arises from two arbitrary displacements op' and Cfs 
By considering the deduction of this equation it will be 
assured that all different steps, occurring in the deduction 
of the complete set of equations are demonstrated. 

Applying Hamilton's Principle r.1.1 and writing down 
only the terms relevant for equation 6.2.7 one finds from 
(3.15) and (L1..12) 

t 	r 
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1  
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1 12 -21 , 	sina + 
- sina ( 	p - + 	 ) + 	3 	 1  ) 

2 	 2 dy1 

, 	• 	• + m + 	- 1.6( sinaci + mi71 + y
I m sina - m

1 - y
1 cosA + mQU t.qay sii) c 	 oi 

0 	
-- (A1.2) 

But 	 



But by a condition fundamental to Hamilton's Principle 

= 0 for t = t
1 	

t = t 2 
	- ( Ai •3 ) 

and hence, integrating in (A1.2) those terms, involving time 
derivatives of the arbitrary displacements,

J  by parts W334 
respect to time, one finds: 
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b 

-- (1, 1 .4) 

since by (A1.3) and (Al .11) the integrated terms vanish. 

Next the dependent displacements bp, q will be 
transformed into Op', so that the above equation only involves 
one independent arbitrary displacement Sp'. 	By the choice of 
the coordinate systems and variables (sco section 2) it is 
obvious that 

1-  (o) = o '  (0)= 0 and hence p (o) = 0 (A1.5) 

at all times. Therefore 
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where several inversions of the order of integration have occurred. But 
by (M.1) the last expression becomes 

k 	
t 

.‘ .- 
P.,.., 

2 '-' 
(.„. 

1' '''' 
4.0 	

17.1 = 
A a.,,  sin a 18p • dyi  1 F, (E, t) (E-Y 1 )d 	 -- (Al .7) F2 	- 	J 	 2 c3  0 

Y 1 

Introducing the transformations (A1 .6 and (A1 .7) into (A1 .4) one finds 
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For (A1.8) to be true it is necessary and sufficient that the expression in 
square brackets is zero. However the equation of motion thus obtained still 
contains 	4;0, and space derivatives of p, q and 0. For this reason 
transformations of the types (A1.6 t)  and (A1.6 12) -1/4-rill be applied under the 
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Equation (M .9) agrees with (6. 2.7) after introduction of the additional 
notation used. there. 

Finally it may still be of interest to explain in detail the 
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as is easily confirmed by use of Fig. G, showing the area over which the 
double integral extends. 
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where the coefficients are d.efined. in section 6. 2. 
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