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SUMMARY

Using oblique coordinates, integro-differential
equations of motion of aircraft with swept wings are
deduced from Hamilton's Principle for the dynamic
problems of aero—elasticity, i.e. for the problems of
free vibrations, fluttery, dynamic stability and gust
loadse By use of a concise notation the final equations
are presented in a form specially suited for
fundamental as well as for practical investigationse
They are discussed in some detail and their solution
by numerical methods, conventional in aero-elastic
work, is indicated. A1l important assumptions made
are summarised and will be seen to agree with those
commonly mades
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Lys M,

Axial Moments of inertia of aircraft referred
to axes O,%,5 0,Y,, 0,2, (see 142, section 1.2)

1
Influence functions for wings (see L.6)
Torsional stiffness of fuselage
Products of inertia of aircraft (see 1A2)
Young's modulus of material of fuselage

5 P Second moments and product of area of
1 fuselage sections

Moments and product of inertia of wing
1 sections

Polar moment of inertia of wing sections

Polar moment of inertia of fuselage sections

TLoading coefficient for 1lift distribution
under steady conditions

Aerodynamic coefficients defined by (6.4.8) -
{EeltaZ?)

Oblique components of couple applied to wings
about 0,X, .5 0,Y¥, (see Figo3§

Aerodynamic 1ift and moment
Total mass of aircraft

Lift slope distribution of finite wing
(See 5.3.10)

Orthogonal rectilinear space
right-handed coordinate
systems fixed in aircraft

starboard
wings
portside

Oblique rectilinear (right handed
coordinate systems ( for
fixed in aircraft (left handed

Angular body motion of aircraft referred to

01x1Y1z1

Non-conservative forces

Kinetic energy
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UO Constant mean forward velocity
Us Vo, W Coordinates of O1 relative to OOXOYOZO
U Potential energy
Wg Gust velocity
§1, ?1, E1 Position of centre of mass of aircraft
relative to O, (see 1A2)
T1f, E1f Position of centre of mass of fuselage sections
Z Downward load at wing section
8y 51 Lift slope of wing section and of whole aircraft
2 Wing chord
Cns Cyt Root and tip chord of wing
c Mean chord of wing.

iyi,5d5345k Unit vectors (see Fige3)

ka’ kﬁ Lift flutter derivatives
m(y1) Mass distribution of wing
mf(x1) Mass distribution of fuselage
m s My Moment flutter derivates
kys Ky Wagner and Klssner functions
Pe Torsional displacement of fuselage
Ds g
Pgs qS Components of rotation of wing sections
Pps qp
s Non—-dimensional time for gust loads
t Time
Ve ¥ aw Displacements of points of wing sections
Ugs Vg Wy |
;5 I vp, Wb relative to O1x,1Y,1z1
Veos W Lateral displacements of fuselage relative to
‘i 4
O1x1Y1z1
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Position of centre of mass of wing sections

General displacements of wing section (see
section 5.3)

Influence functions (see L.7)

Bending deflection of wing section

Complement of angle of sweep back of reference
axis 013;1

Free stream Mach number

Arbitrary displacements, forces etce.

Frequency of oscillation

Air density

Shear deflection of wing section

Reduecegd freqguency

Additional notation of a more special character is defined

in sections 6.2 and 6.3

Time

Space

derivates are indicated by E

dots

( strokes
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1. INTRODUCTION

1«1 General Remarks

All the subjects which will here be classed as dynamic
problems of aero-elasticity have been developed independently
over many years, mostly as the result of the discovery of
actual phenomena requiring theoretical explanations. For this
reason, aero-elasticity still lacks a unified notation, and
the transference of results from one problem to another often
presents great difficulties. The lack of a common notation
is probably also to some degree responsible for the fact that
up to date no attempt has been made to develop a general theory
of dynamic aero-elasticity.

The advent of swept wings once again has introduced
into aero-elasticity a new aspect which this time is due to
affect all the problems coming under that heading. This event
thus appears to offer a good opportunity of filling the gap
and it is one of the objects of this report to present a
unified theoretical treatment of dynamic aero-elasticity.

For this purpose dynamic aero-elasticity will be
conceived as the theory of the free and forced vibrations of
airceraft, so that ab i1nitio there exists no need for further
sub-dividing the subject. Nevertheless a natural subdivision
is suggested by the different types of foreing functions which
give the problems of aero-elasticity their special character.
In this way one arrives at the following three types of
Problems:-

i) Free vibrations in vacuo
i.¢e no external forces exist

ii)  PFlutter and dynamic stability
i.e. external forces occur due to harmonic
motion of the wings

iii)  Gust loads
i.es external forces occur due to arbitrary
motion of the wings.

Obviously the basic equations of motion corresponding to
these groups will only differ by terms representing the
external forces. Only reasons of tradition and convenience
make it advisable to distinguish between the problems (ii)
and (iii). ,

On the whole, the notation of the Present report will
differ from that used in almost all other aero-clastic work.
Apart from the general reason indicated above, this state of
affairs has been caused by two facts: the use of integral
equations and of oblique coordinates. Both of these may be
considered unnecessary innovations, and thus it becomes the
final object of this report to offer convinecing evidence that
their introduction leads to a clear and simple form of the
relevant equations of motion. In the remaining part of this
sub-section an attempt will be made to justify these steps on
more general groundse.
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Aircraft like any other bodies occurring in nature, are
continuous mass systems which exhibit from the theoretical as
well as from the practical point of view features typical for
such systems. In mathematical terms this means that the
equations of motion will be integro-differential equations,
the kernels of which involve the continuous distributions of
mass,aerodynamic loadingsetce The normal type of equations
will contain time and space derivatives of the independent
variables representing displacementse Combined with initial
and boundary conditions such equations will define uniquely
the state of the aircraft at any one instant.

However there exists yet a simpler set of equations
of motion, the solutions of which automatically satisfy the
boundary conditions. These integro-differential equations
can be obtained in various ways; for example by integrating
the traditional equations and using the boundary conditionse
Here a different approach has been adopted in that these
equations have been deduced directly from Hamilton's Principle.
For this purpose it is only necessary to make a judicious
choice of the independent variables, some of which will be seen
to be space derivatives of the displacements used normallye.
Obviously this last step will only be possible if the
continuous character of the structure is preserved. In
physical terms these new variables will be seen to represent
the curvatures and space rates of twist of the deformed
structure. With these new variables the final integro-
differential equations of motion will be found to involve only
time derivatives. Thus in the case of the problems (i) and
(ii) above, when the aircraft is subject to harmonic motion
the characteristic equations determining frequencies, modes
and flutter speeds are Fredholm integral equations of the
second kinde. Exact solution of these last equations in any
practical application may present unsurmountable difficulties,
so that it will become necessary to introduce some
approximation such as replacement of the integrals by finite
sums » It is easily realized that by this method the
equations of motion become matrix equations of a type well
known in any applied dynamic or aero-elastic works
Alternatively, experimentally determined modes may be used as
in the standard practice of flutter investigationse. But it
should be understood that either of these methods are
computational expedients which are little related to the
fundamental problems.

As far as the introduction of oblique coordinates is
concerned, there can be no doubt that they are in the first
place suggested by the special nature of swept wings, and that
any objections to their use will arise from the fact that they
have not been us=d before. WoSe Hemp (h,5) has developed an
elastic theory of structures consisting of spars, ribs ana
stressed skins which uses oblique coordinates, and which is
very well suited for application to problems of the type
considered here. It will be shown that the use of oblique
coordinates for the wings does not introduce great
complicationsy, and that it eliminates the necessity of
distinguishing between swept and straight wings, the latter
simply being a special case of the formere.

/In Refo6 esosoe



In Ref.6 a comparison has been made between the theoretical
and experimental influence functions, indicating that the
agreement will be quite satisfactory. Hence the present aero-
elastic theory can already be applied at the design stage.

The remaining part of this section outlines the most
important assumptions underlying the theory of this Report,
and it will be seen that they fully agree with those
customarily made. Section 2 gives a detailed discussion of
the choice of coordinate axes and the basic notation referring
to these axes. The following three sections are concerned
with the deduction of expressions for the potential and
kinetic cnergies and for the external forces. Section 6
gives the equations of motion for the three groups of problems
stated above. Section 7 indicates possible ways of solving
the equations of motion, and it will be seen that most methods
of solution used hitherto in work of this kind are applicable.

12 Assumptions

A complete statement of all assumptions in the case of
work as complex as the present offers great difficulties.
Dynamic aero-elasticity, as its title suggests, draws on
results and methods of the following three well defined
branches of mathematical physics:-

1)  @General Dynamics
2) Aerodynamics
3) Elasticity

so that such a summary of assumptions would be widely spread,
and demand very thorough knowledge of three large subjects,
although it may be said that only certain special parts of
some of these subjects are relevant to aero-elastic worke.

Por this reason when giving a list of assumptions for the
composite subject of aero-elasticity, those customarily made
in the component subjects will not be stated in detail.

These assumptions will be grouped under the three
headings given above:
1) Dynamics 41A1 The theory of small vibrations is applicable.

1A2 The quantities depending on the mass
distribution of the aircraft as a whole
do not vary as a result of deformation.

1A3 Rotations of the aircraft as a whole are small

1AL Structural damping is neglected. (Introduction
of a dissipation function could be easily
effected. See section 5).

1A5 The effect of gravity is neglected.

1A6 The potential energy of the deformed
aircraft is satisfactorily given by the
strain energy (see elasticity).

Vg S



2) Aerodynamics

3)

Elasticity

1A7

1A8

1A9

2A1

2A2
2A3

244

2A5

2A6

2A7

248

341

342

The mass distribution is adequately
described by piecewise continuous
functions of the coordinates along
the span and the fuselagee.

The fuselage and the wings are rigidly
connected and no internal vibrations
in the direction of flight occur.

The mass of the tail unit is included
with that of the fuselage.

The results of linear two-dimensional
unsteady aerofoil theory are applicable
in connection with a weight function
which is based on the steady state span
wise distribution of lift-slope for
finite wings.

The forward speed of the aircraft is
constant and no yawing takes place.

The gusts are assumed to be uniform
across the span of the wings.

The fuselage does not contribute to the
1lift and the wings form a lifting
surface extending from tip to tipe.

Aerodynamic terms due to the tail plane
have been omitted. (They can however
easily be added provided due
consideration can be given to 241),

The effect of ailerons, flaps, etce. has
been neglected. (Obviously
consideration of these effects
introduces further complications which
do not involve new principles.)

The forward speed of the aircraft is such
that the wing leading edges are
"subsonic".

The reference points for the moments
lie on the theoretical axis Oy1 of the

wing. (In the work here the axis has
been assumed along the mid chord line. )

The results of the theory of Refs. L
and 5 are applicable to the wing
structure,.

Simple beam theory is applicable to
the fuselage,

/2 6oo0cooco0aw



2e COORDINATE SYSTEMS AND NOTATION

Because of the proposed use of oblique coordinates,
two coordinate systems will be required as far as the wings
are concerned. In this way it becomes unnecessary to
introduce from the start assumptions restricting the
permissible type of deformation of the wingse /An alternative
approach would have been to deal only with one half of the
aircraft and to consider separately symmetric and anti-synmetric
deformations as has been done for example in Refs. 1 and 2.

In order to obtain the most general equations of
motion, body motion has to be taken into account. Hence two
further orthogonal coordinate systems will be required,; one
of which will be fixed in space and the other at & suitable
reference point in the aircraft. The latter will be placed
at the intersection of the wing axes, and will also be used to
describe the deformations of the fuselage.

Thus use will be made of the following coordinate
systems:-

i) OOXOYOZO, an orthogonal rectilinear right-handed system

fixed in space to which the translatory motion of the
reference polnt O1 of the aircraft will be referred by

the displacement vector (U, V, W), the components of
-which are functions of the time te.

3 01x1Y1z1, an orthogonal rectilinear right-~handed system

with its axes fixed in the aircraft to which the angular
motion of the aircraft will be referred by the angular
displacement vector (P, @, R), the components of which
are functions of the time t.

i131) 04%4¥ 4245 8n oblique rectilinear right-handed system

to which the "internal" motion of the starboard wing
about a mean position will be referred by the

displacement vector (uS, vs,'ws), the components of

which are functions of Xys Jqgo z1F te

iv) O1x1y1§z1, an oblique rectilinear left-handed system to

which the "internal' motion of the portside wing about
a mean position will be referred by the displacement
vector (us, Vs ws), the components of which are

functions of Xy y1pg 21, te

These systems are shown in Fig.1 in which are also indicated
the positive directions of rotation about the "internal" axes
of the aircraft which are given by the vectors (p89 Qg » 0)
and p_, Q., O) respectively. These directions of rotation

P P
are in agreement with the convention for rectilinear systems

by which cyclic clockwise or anticlockwise rotation gives the
positive directions for right or left handed systems
respectivelye.

/ Compatibility eesce
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Compatibility of the coordinate systems is obviously
insured, and it is easily seen that all internal
displacements and their first derivatives will be zero at the
reference point 01. Further, it is seen from Figei that 1f

Pgs Qg and Pp’ qP are equal in magnitude and have equal or

opposite signs, the corresponding displacements will be
symmetric or anti-symmetric respectivelye Throughout most of
the work of this Report there will be no need to distinguish
between the starboard and portside wings, so that the
subscripts s, p can be omittede.

As mentioned earlier in this section, the system (ii)
may also serve as referernce system for deformations of the
fuselage and tail unit, provided the latter does not involve
swept t:3i1l planese. However, in the prec..cnt Report only the
fuselage will be taken into account in ocrder to illustrate the
inclusion of such additional components in the analysis, and
all gquantities referring to the fuselage will have the subscript
fe

KINETIC ENERGY

Using the notation of section 2, the velocity of a point
of the aircraft is given by

{(ﬁp ﬁs ﬁ) b o (ﬁs és i) X (X19 Y1s 51)2 + (ﬁ, G: %) PHESENE (3¢1)

where it should be remembered that each of the vectors is
referred to a different coordinate system; in particular the
vector (u, v, w) is referred to one of the oblique coordinate
systems whenever the wings are being considered and, further,
notice must be taken of the fact that the forward component

of the translatory body motion is largee. The kinetic energy
of the aircraft will involve the scalar product of this vector
with itself, and it is most easily determined in four steps.

The first of these requires the square of the vector
in curly bracketse. As in the later steps, multiplying this
b(xYy,2,)
square by 5 s the local mass density, and

integrating over all points of the aircraft, one finds, using
1A2, the kinetic energy of the aircraft considered as a rigid
bodys

b
P = %{ + Vo4 W2}+ %jAP2+ BQ2+ CRQ— 2EPQ - 2Féﬁ o QGﬁﬁf

g7 = Ay ).

| e (342)

where higher order terms have been neglected.
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Although several of the constants above will be zero in most
practical cases, they will be retained here in order to ensure
that the final equations of motion are as general as possible.

Next consider the kinetic energy of the wings vibrating

when the aircraft is in steady motion (or at rest) . In

Ref.3 the kinetic energy of a swept box has been deduced using
oblique coordinates. For application to the present problem,

the work of Ref. 3 requires some minor modifications which
are necessitated by the use of different coordinate systems
and notatione. The system used in Refs. 3=5 is shown in
Fige2, The system (iii) of section 2 is obtained from it

by an interchange of the parts played by the axes Ox and Oy,

and by increaging the angle o of Fig.2 beyond x/2. It will
be seen from the first part of Ref.l4 that the general work
done there on kinematics in oblique coordinates is still
applicable. With the sign convention of section 2 it is
obviously unnecessary to distinguish between starboard and
portside wings. : .

Comparing Figs. 1 and 2, it is seen that the a of
Refse 3 and 4 has now to be replaced by x - a . Making the
appropriate changes in notation in equation (9) of Ref. U,
the displacements of a point P(x1, Tys 21) are given by

u = 2z, }-Dpcota + q coseca ]

-2z, fp eogeca =~ g cotat -t

v i
3

i

W d+8 -q x, sing

where py, q, @ and @ will now be assumed to be functions of
Iy and t only. The corresponding velocity components are

] ¢ L] . ]
;s SRR z1 i = D eova + 'O COSSCG}

v o= —51{ D coseca = § cotal ——
i 4

O+ 8 -4 x, sina

=

°
W

Since this velocity vector is referred to an oblique
coordinate system (e.ge (iii) of section 2), the square of
this vector is given by

2, ¥ e oB%cosa + i x1a25in2a
2

J
- 2x1a {@ + ﬁ 'sina + E@ 4 ﬁj LT

o -]
LA ey

ey

& - 2t%eosa = zf-ﬁ

/ Multlplying cogoe
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J.l(x1sy1sz.1) ] )
Multiplying (3.5) by 5 and integrating with regard

to x1 and z1 over a wing section y1 = const. one finds the
kinetic energy dT2 of a wing element:

ar, = %%hlx1(y1)(ﬁ2— 288 cosa + §°) + IZ1(y1)a2 sinq

e

< 2m(yy)x, (3,)8(8 + B)sina « nly,)(§ + §)2 4y, == (346)

Using (3.6) the required kinetic energy of the wings becomes
X

T2 = J (dTQS + 4T
0

op) == (3e7)

where the subscripts indicate that in (3.6) v, is to be
replaced by y1s or y1p respectively. In the sequel it will

often be convenient to write integrals of the type (3.7)
in the following manner

2 - (3.7")

where it will be assumed that the integral extends over both
wingse.

Next consider the fuselage vibrating under the same
conditions as the wings above. Using 1A8 the relevant
kinetic energy is:-

%

it
1 H °D 0?2 - e © o8 - e o
Ty = 2 | %%Ix1)(wf + Ve o+ 2Y1f(x1)wfpf 2z1f(x1)vfpf)
N7 |
o 2 ' =
s+ J}{1f(x1) Pf j'dxal (3"8)

Finally the contributions to the total kinetic energy
arising from arbitrary motion of the reference point of the
aircraft will be deduced. In the case when normal
coordinates are being used, such contributions will not occur
but it is easily seen that the varisbles Ps g are not such
coordinates and that the introduction of normal coordinates
in terms of these variables would be difFipults

First consider the contribution coming from the wings.

Using 1A3 it may be assumed that the axes OOxOYon and

O1x1Y1z1 for the purpose of the Present calculation are

parallel. The relevant cross term in the square of the
velocity vector (3.1) is then:

/ 2{9....,..
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P Q R

Q{ﬁ(ﬁ-%cosaJ+ﬁo(Q&—R%sina)+ﬁ%sina+ﬁﬁﬁ-

?1jy1cosa ¥1Sina Z,1 1
u~-v cosa V sina W
sl (3:9)
where use has been made of the formula
j = -icosa + j,sina -== (3.10)

expressing the oblique unit vector j in terms of the
orthogonal unit vectors i and j, (see Fige3)e

Substituting for U, v, W from (3.4), multiplying by
Ll(K‘I" Tqs Z1) and integrating as before when deducing

2
(3.6) one finds:

ar = [m{Eiﬁasinu +z1(QCOSQ—ﬁ)(%—ﬁoR)+(§+B-E%ésinaJ(ﬁ+ﬁoa)}

L] ) & ° - o . o o ?

+ Piy,msino (¢+@-x,asina)+ I_ (P-gcos a)i
I’i 4 1 Xy

+ éfm§ v, Qsinocosa+ J_ q sina-m(X, -y cosa)(¢+é)
|k e 1794 !

¥ ﬁ{@y1§Aﬁ005a+ (IX1Z1COS“'mY1E})§f1x1z1ﬁ}%631
~== (3e11)
And hence the required kinetic energy
4
Ty = | 0Ty, . ——= (3412)

1
J
0

Corresponding to (3.9) the cross term for the fuselage is

o o ° ® 8o ° ® % é

23(V-RU_) (Vo= 2,Dp)+(W+UQ) (Wo+¥ Do)+ %, Y, z,
L

e

o)

O VgPgy Wetbply

——= (3.13)

and its contribution to the kinetic energy:
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L |
T . ® ° —— ° ° ° » ==, » [
T . =§Emf{(v-RUO)(vf~ Zy )+ (W + U Q) (wet Y1fpf)j
-8
‘f ol 3 N i & 1
: Q{me1Wf + meX ¥y 0 Dol
gc.  ® k = &3
e e L LT —== (3.14)

!

o
The total kinetic energy of the airecraft is thus given by:

T = T1 + Tz + T3 +- T)-]-W + TL!-f TR (3'15)

using (3¢2), (3.7'), (3.8), (3.12) and (3.1L)

POTENTIAL ENERGY

The potential energy of the deformed aircraft, using
1A5 and 1A6 consists of two parts:
i) Up the strain energy of the fuselage

1) U, the strain energy of the wings
By 3A2 the first of these is given by

g ' T n2 "ot ¥ gull 12
Pt ™ Y S IO S Y0 ges ¥Pel 1P

Ty

The strain energy of the wings may be obtained in a
manner similar to that adopted in Ref.3; however the shear
energy will not be included and use will be made of formulae,
analogous to those given in Ref.l, which have lately been
developed for the case of a uniform two-cell swept box (Refe5).
By assuming the influence coefficients given there to vary
along the axis Oy1, the theory of Refo. 5 may be extended to

non-uniform structures by the same reasoning used in the
similar extension of simple beam theory. (For experimental
evidence see Ref. 6)
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In order to illustratc the modifications required by the
introduction of the obligue systems of section 2, Fige3 shows
the system referring to the starboard wing together with the
auxiliary axes used in refs. 4 and 5. With the unit vectors
of Fige3, the moment and force acting at a wing section may
be written:

5 Zk e (Us2)

To this load system correspond the displacement vectors
dpi + daqj ’ agk === (L4e3)

so that the strain energy is given by

-

4 5 {
g = % {Iﬂi1 N {dpi + aqdf + Zdﬁk2!
- % sina EL1 %%1 + M1 %%5% + 2 %51} dy1 - (Lel)

gsince by Fig.3

i1oi=j1cj=Sin ,k.k=1,i1oj=j1qi=0(}_|..5)

But by the theory of Ref.5, after appropriate changes in
the notation,

2
aq | _ e w &b .
.1
ap
ay, Coq Cpp O Ly
ag
oy, | 033 0 031 Z

where physical considcrations will easily verify that the
Cjy play the same parts as in Ref.5. Solving (Le6) for Lys

M, and Z one finds

1
( i &
L1 = ([‘i;]) o %1 ER i (}4'07)
dg
My dy,
Z ag
-
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Feli1 = 044033 = 043059 o [ [p = =C4C33 » 33 = 05405

e e el Bk b B 4Ty e i)
O g » [el3p = =0pp03y o L'sfis = Gy 0y,
=205,
=== (Ls8)
and
-4 e i o oy o2 _ r
F= ,} k13 ﬂ § 033(011022 012) 504 3C3y (4.9)

Substituting from (4s7) in (L4el4) gives the strain energy
stored at a station I4

fL 12

: " . R T
dU = 81110.}_.1_11 P . ({_1‘2 + 121 )P'q! + .r22 q -}' e i33 lg

Mo

1
* (L3 sine + [5,)0'8" + (fp; sine + 13;) o'p'] ay,

wes (4.10)
and hence the total potential energy of the wings
U, = {JdU —e= (Lo11)
By (4o1) and (L4e11) the total potential cnergy of the
aircraft is
U = Up+ U, === (4e12)
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5. NON-CONSERVATTIVE FORCES

5.1 General Remarks

In the Introduction the dynamic problems of aero=-elasticity
have been divided into three groups which differ from each
other by the character of the external forces acting on the
aircrafte. It is also indicated there that these problems
will be studied under the two headings of free and forced
vibrations, and it becomes the object of this section to
write down expressions for the impressed forces in the different
cases.

However, before turning the attention to the external
forces, there is one other featire which is common to all the
dynamic problems of aero-elasticity, i.c. elastic dissipation
or structural damping. Although by 1AL this phenomenon will
be neglected, it will be worthwhile to give it some consideration
here. In most applied problems the existence of a dissipation
function is assumed, nevertheless this discussion has been
intentionally included in this section which deals with non-
conservative forces, because the real mechanism of structural
damping has not yet been satisfactorily explained. Thus the
use of a dissipation function is mainly justified by the
convenience it offers. In actual problems the coefficients
of such a function are subject to estimates based on experience
and, if possible, experiments, and in general their values are
unreliable, since they even tend to vary among aircraft of the
same types The use of oblique coordinates therefore does
not in any way affect the general position, and a dissipation
function may be defined in exactly the same way as it is done
in other work.

5.2 Vibrations in Vacuo and Still Air

It is customary to refr to vibrations taking place in the
absence of external forces as still air vibrations. However,
this terminology is not quite correct, and it has been
realised for some time that the effect of still air damping
may be quite important. For example, when performing
fatigue tests (Ref.7) of wings by exciting them at one of their
natural frequencies, knowledge of the amount of energy
absorbed by this type of damping would offer the possibility
of estimating the energy absorbed by the wing structure during
the tests. EKnowledge of the latter quantity in its turn would
not only help in the study of fatigue but also provide a more
rational approach to the problem of structural dampinge.
However, to the author's knowledge, no theoretical or
experimental evidence on still air damping is at present
available, and for this reason its effect will not be studied
here.
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Bia 2 Flutter and Dynamic Stability

In Refe8 a strong case has been made for the use of
unsteady derivatives in problems of dynamic stability, since
the use of quasi-static derivatives which are independent of
the frequency of oscillation is no longer justifiable. Once
this point of view has been accepted it is obvious that the
equations of motion for the two hitherto separate problems
become 1ldenticals, However since the frequency of oscillation
in stability problems is usually very low, it will be possible
to use values of the derivatives obtained from the simple
approximate formulae of Ref.9 which deals with the problem
of a two-dlmensional aerofoil oscillating slowly in a subsonic
air stream. For the problem of flutter mostly the exact
derivatives of Ref.12 will have to be used since the frequency
will be too highe.

Apart from the link due to the use of common derivatives,
there is also a physical reason for which the problems of
stability and flutter should no longer be treated separately.
Because of the presence of swept wings, new types of flutter
have arisen which by former standards would have been considered
to belong to the domain of stability work, i.e. phenomena
involving body motion. Thus the only distinction between
the two problems remains the fact that usually the resilience
of the aircraft is neglected in stability work while it is
essential to flutter, but even this difference no longer holds
entirely.

The use of different notations in stability and flutter
work so far has been the strongest impediment to the union of
these two subjectss This point was raised strongly during the
Anglo-American Aeronautical Conference in 1951 only to draw
the comment that apart from notational conflict between subjects
there was also one between countries such as England and the
UcSehe In particular, there exists a great diversity in
notation and presentation of flutter derivatives. Because
Refs.9 and 12 contain all the necessary numerical data, which
would be required in applications of the present work, and
because tl.e notation used in these reports is the simplest
possibley, it will be adopted in this reporte. This notation
has been in use for many years in Holland as well as Germany,
and 1t can easily be shown that in a disguised manner it has
also been applied elsewhere,

After this introduction consider the thin aerofoil
shown in Fige.l. Let the translatory displacement of the half-
chord point

A % g- Vb == (503¢1)

and its rotational displacement (nose up) about that point

ivt

g = B e i (5.3.2)
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then the corresponding aerodynamic forces on a unit strip of
the infinite aerofoll are given by

et = 2xp §v° otV |ax, + Bic,| == (52343)
2 4
moment = 2m:p§-v2 elvt {ﬁma -+ me} —= (5e30ls)

The derivatives ka’ kb, m,y m, are complex functions of the
reduced frequency

0 = 2 & Hi54%5)

and the free stream Mach number

v
ﬂ = 3 g (5-3-6)

exact and approximate values of which for various values of

w and B are tabulated in Refs.12 and 9 respectively. It will
be seen in these references that the general expressions for
the derivatives reduce for g = O to Kussner's formulae for
incompressible flowe. In Refe11 the exact theory has been
extended to the case of wings with flaps with open and closed
gaps. But in the present report by 246 no consideration will
be given to such effects.

Before giving attention to the manner in which it will
be proposed to use the above results for three-dimensional
wings; consider one term of the expressions above, €8

iyt
2xp % v2 &g ka

It has already been noted that ka is complex,; le.ce let

k

i

. LR 5 == (543.7)

as it is done in Refs.9 and 12 for the purpose of tabulation.
By (503.1) the translatory velocity and acceleration are

z = A % 1y etVt s Z = = A % y B Qi

respectively, so that the corresponding lift can be written

N

2 a v

2 2 2 { z .
b4
2'Jtp% [k;l 2 i k;_l - or 2« p% = ké T k" E] == (5.348)

both expressions being equivalent and real.
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Admittedly this presentation of the flutter derivatives no
longer retains the division into aerodynamic stiffness,
demping and icertia, Lut in any case such a division increases
the notation without offering any advantages. In addition,
it is easily seen from the exact theory of Ref.11 that for
subsonic derivatives such a division is even more artificial
than for the incompressible derivatives, since their general
expressions involve series of Mathieu functions, so that the
separation of a term representing e.g. aerodynamic inertia
would not necessarily be unique, :

Next consider the problem of finite wings. The great
difficulty experienced in obtaining easily interpolated results
applicable to all types of wings for any Mach number and
frequency of oscillation causes the use of the two-dimensional
derivatives in most practical applications. The procedure
to be adopted here is indicated in 241, and the weight function
to be used will be based on the 1lift distribution along the
spen of a wing under steady conditions. By the help of Ref.13
such a function can be estimated in a matter of minutes with
én accuracy, comparable with that obtained from lifting
surface theory after computations which may extend over weeks
or cven monthse. From the loading function

(55

K, = = _L ~= (5e3.9)
c CL

of Refe.13 follows immediately that
ca
¥
a, = K —gi == (54349 )

But it is known that the 1lift slope of the two-dimensional
thin aerofoil is 2% and that the factor 2« in the ¢xXpressions
(5¢3.3) and (5.3.4) may be interpreted as referring to this
quantity. Hence when using the two-dimensional results for
finite wings, the factor 2« will Dbe replaced by what will now
be called the weight function

G A"

ca
e

— (543.10)

The use of the weight function N in actual fact implies
that under unsteady conditions the character of the 1lift
distribution does not vary. Its application brings about
compatibility wiih the work of the next section which deals
with the problem of gustloads, because it can be shown that
the indicial 1ift function k1(s) describing the growth of

2
1ift on a wing subsequent to a sudden lateral or rotational
movement of the wing, can be obtained from the unsteady
derivatives correspondi to harmonic motion by means of a
Fourier integral (Ref,1n§= Thus the expression to be used
here for the 1lift on the oscillating wing, after application
of such a Fourier transform, will lead to an indicial 1ift
function which eventually produces the steady 1lift slope
distribution on the winge.

/ There esao
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There is still one point which requires mentioning
although little can be done here towards its solution. This
concerns the fact that the wing will be deformed and, in
particular, twisted. A partial solution of this problem
could be obtained by complementing the weight function N
by a corresponding expression deduced from the basic 1ift
distribution of Ref.15, which assumed the wing to have
uniform twist (Ref.6). But normally the twist experienced
by a wing in flutter will neither be uniform nor known before-
hand, so that such a procedure would require a step by step
process, and hence would be lengthy.

Under these conditions the 1ift and moment at a wing
station yy are given by

2 :
aL = % [2 %, + = (ikh] N sina 4y, == {Be3.11)
2
am = p % lz m, % 6 mb} N % sina 4y, == {B.3.12)

The corresponding arbitrary displacements to the first order
are by (3.1) and (3.3)

W + y1sina &P + y cosa 5Q + 5@ + 8 8

| m= (503:13)
5Q + sinadg ;

Note that in this work it has been assumed that the axis Oy1
lies along the half-chord of the wing. IT this condition

is not satisfied, the aerodynamic moment will have to be
transferred to the position of that axis in the wing (see 2A8) e

When applying (5.3.11) and (5.3.12) in the problems
considered here one has to substitute for z and o expressions
corresponding to (5.3.13), viz:

7 W+ yysina P + y4c08a Q + @ + 0 -= (50301L)

3] Q + sina g

while by 242

v = U = const == (5+3+15)
along the span of the wing

The assumption 2A2 is required as one of ths basiz
assumptions of unsteady aerofoil theory which takes only
account of small lateral motionss. Thus the present theory
does not allow for yawing motion of the aircraft since it
would introduce spanwise variation of the forward speed.
This limitation is due to the lack of a suitable unsteady
theory by which such effects could be superimposed on those
due to lateral motione.
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In the work of the present section assumptions2/i1 and
2A2 will apply as well as the remarks made above. Thus the
same weight functions will be used in conjunction with the
two—-dimensional results referring to arbitrary unsteady
motion of an aerofoil in a flow disturbed by gusts. To the
author's knowledge the relevant incompressible results have
not yet been fully extended to the subsonic range, although
they are known for the supersonic range (Ref.17). Only the
indiecial 1ift function k1(s) has been investigated throughout

the entire range (Refs.14~-16). For this reason the present
section will in principle be confined to cases in which the
effect of compressibility may be neglected, However this
restriction only applies to the actual gust case 1lnvolving
disturbances in the frec air stream.

An important feature of the arbitrary unsteady motion
is the introduction of the non-dimensional time variable

s = 2vt = (5e¢l4e1)
c

which 1in the case of a non-rectangular wing will vary along
the spane. In particular, when dealing with a tapered wing,
one has

_ 2vt " 2vt ==
S(y19 t) i cr“c.t) = crf1 _.(1 __}_‘.)_nj (50)—]-02)
. y Y
PN g 1
J4
where A= c /e, , M = v 5
so that &
s(yys t) = 7= (11'_ 5 —= (5eL63)

The presence of sweepback introduces a further complication
in that it will be necessary to allow for the faect that the
gust reaches the tip of the wing some time after its roote.
By Fige5 the intersection of the leading edges of the wings,
i.e. the point (gr, 0) is (Xcosa - g+ gr) ahead of the

leading edge at the tips, and hence any point (y1, ¢/2) of the
leading edge will be reached

({cosa - g, + g.)m

As = g 7 ._'(1 _}:)'T] i (5-4»”-)

later by the disturbance than the point (gr, 0)e
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Hence by Ref.18, the 1ift and moment at a station yy are given
by

s
21 2 i [ 52 2
(?u'.;:-—-%1 g—-g—-i--%-(l%-i-jk,‘(s —-c')l-d-—?z-+§(§-§_+%g~—a-)tdo'
ids - tddf do” ¢
S48
f aw
s a2 o —t e
e Jk2(s o) ie d4o(N sina dy, (5elie5)
o) -
2 2 [ 2 e
a ¢ d%e 48  g.dp . 1 8%l
M = = BL C_+ - ik, (s -0‘){——-—+°-(——-+§ ) ade
2 [5'0e™*96 0 ‘101 Aol 2 aw aet |
s=Ag _
c dwg e .. 6
. e Ikz(s -c) T 4o|N 5 sina dy, — (50l4.6)
0 Jd

In (5.4.5) and (5.4.6) the displacements z and 6 are again
given by (5.3.14) and their corresponding arbitrary
displacements by (5.3.13).

THE INTEGRAL EQUATIONS OF MOTION

6.1 General Remarks

In the earlier sections the foundation has been laid
for the deduction of the equations of motion by one of the
analytical methods of general dynamicse In view of the
complexity of the expressions for the gnergies, 1t is not
proposed to present here the analysis in full detail.

In Appendix 1 the most important steps will be described
in order to allow a better understanding of this part of
the work.

It has already been pointed out in the introduction
that the equations of motion will be deduced in the form
of integro-differential equations in terms of independent
variables, some of which will represent the curvatures and
rates of twist of the deformed aircraft. Such equations
are most easily obtained from Hamilton's Principle which
in the presence of non-conservative forces takes the form

6(T iy U) +2QI‘ 6qrj dt = O N (6.101)
i€
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The independent variables dp to be used here will be those
describing the rigid body motion of the aircraft

U, Vo W ; Py, Qs R -~ (6c142)

the first spanwise derivatives of the functions pertaining
to the wing deformation

_@=pt’ E_:ql i@_=£§r

37, 3y, 37, " e (6 0 3)

L]

the curvatures of the lateral fuselage displacements

2

a~v 3w
8 = " £ - ——
§ o= wL , 5 = wi (6e1sli)

and the rate of twist along the fuselage

(=)

Pe

-3-':;' = p%, . (6u"!.5)

o

The equations obtained from (6.1.1) using these
variables will only involve these functions and their time
derivatives and the solutions of these equations will
automatically satisfy the boundary conditions normally required
in connection with differential equations. The latter
equations can be obtained from the integral equations by
differentiations and by integrating certain terms by partse.

In the next subsection the above mentioned integro-
differential equations will be given for the case of natural
vibrations of the aircraft in vacuo. Various special cases
of these equations will be discussed which arise as the result
of simplifying assumptions, in particular, one of these will
illustrate application of the present work to aireraft with
straight wingss.

The remaining subsections give the terms which must
be added to the equations of section 6.2 in order to obtain
the equations of motion for the aero-elastic problems of
stability, flutter and gust load.

62 Free Vibrations in Vacuo

The most general equations of motion of the type
discussed above and obtained by the analytical process, some
details of which are explained in appendix 1, are:
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4
p 9 o9 as L] L
j{@”ﬁ - $'sina [.E1 - 4 'sina ﬁxi&n + W + Psina p, + 0 (cosa y = px) + UOQ m
5]
¢ [i;5ina + 2 oeing +
+ [3'3 7 + 15 5 2 p' + 22 5 22 q' =0 - (6.2.9)
1
f |' =1 ] 1 =9 n - "
ll - ﬁfpzf} an + fo N Rp,!f- ] Rpf +E (IY + Iz1f Vo ) =0 - (6.2.10)
-1
f
2 o 1 RN
f“f 2 ﬁf“ﬁrfgd”' + Vg + P“‘I;E‘ Qg+ UlRp + By W + TI 2 =0 - (6.2.11)
€ - o
. — o ! -—
i {'Pfjf Wellye~ Vs }d"’ - Vgt Voppr Pipm Qupyem Buyppr U (R Quyg)+ Ogpf = 0
4 — (6.2.49)
‘IJt 1
where the integrals J are to be extended over both wings (see 3.7 ). The
0
coefficients p, J and i are functions of the relevant coordinates and physical
data, as defined by the following formulae:
L 4
He» =J'maz; (6.2.13) iy, &) =Jmé§1 az (6.2.19)
Y, ¥
) ¢
by &) = mZdyg (6.2.14) u &,) =j1m'§.1(23‘-y1) az (6.2.20)
5 g
- o
W) =|n(-y,)dz (6.2.15) uy &7y) =Jm; -y, az (6.2.21)
Iy ¥, ;
{___ " &
p.x(‘y'1) =Imx1 azg (6.2,16) ix(y1) =J Ix1 dZ (6.2.22)
Y, ¥,
2 {
Y1 'Y_.l
R £
M1 Oy) J mg% dag (6.2.18) ib,) =ij1 az (6.2.24)
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L b
g(y1, 1) =\! md g (6.2.25) ué(x1) = }nfz,(z - x1) az (6.2.37)
3’1971 a
¢ b
5,0, M) =fm X, 4% (6. 2. 26) p}f(x1) ﬂj Lol ~x,) @ 2 (6. 2. 38)
y1!'n a
R4 L
]
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j b
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It may be noted that the coefficient functions just
defined are Green's functions for the mass system. The
notation introduced here is quite self-explanatory in that the
sub- and super scripts contain all the essential information
required for the re-construction of the integrals defining these
functionse. Thus

the base letters p, i1, j refer to physical data such as
mass and section moments of inertia

subscript numerals indicate the presence of the integration
variable as a factors.

subscript letters indicate the positions of the centres of
gravity or the axes to which the
moments of inertia refer at each section.

superscript numerals indicate the number of linecar terms
involving differences of the
integration and actual variables.

bars indicate the special type of integration limits, the
cause of which is explained in Appendix 1.

The same principle will be applied to the notation in the later
parts of section 6.

For the purpose of the subsequent discussion, the
equations of motion have been written in Table 1 in the form of
a scheme using matrix representation.

It may be reasoned that these equations are too general
and therefore too complex to permit a clear understanding of
the meaning of the various terms. The main reason for retaining
full generality lies with the fact that over and over again it
has been found necessary in recent years to extend aero-elastic
investigations to take account of special features, formerly
considered unimportant. The availability of completely
general equations may therefore be of considerable assistance
at such occasionss For example, it is customary to assume
that the aircraft is symmetrical with respect to the plane
Ox1z1 and for this reason to put the product of inertia E equal

to zero. On the other hand, an occasion may arise when interest
will be concentrated on the behaviour of an aircraft which
carries all its fuel in one wing; under those conditions the
assumption E = O 1is obviously no longer satisfied. While

this example is of a rather simple nature so that the extension
of the equations to cover this case could be easily effected,
other more complicated problems could be thought of for which
this is no longer the case.

In all aero-elastic investigations which are known to
the author an assumption has been introduced by which shear
deflections have been neglected. The only reason for the
inclusion here of the relevant terms, as far as the wings are
concerned, is that they might be of interest in dealing with
wing vibrations. It is easily seen that introduction of this
assumption will cause the disappearance of equation (6.249)
and of other relevant terms.

/ NexXt soavas



- 28 -

Next to this assumption the most reasonable one refers
to the terms involving the position Y1f of the centres of mass

of the fuselage sections. Asymmetry of the fuselage of this
kind will rarely ariseo If in addition it is assumed that
the axis Ox1 is one of mass symmetry of the fuselage all along

its length, the terms involving E1f and.IY&Z1f will likewise
disappear, i.e. the corresponding columns of Table 1 will be
free from inertia coupling between the various modes of
deformation of the fuselagee. In addition several terms
involving the body motion will vanish in equations (6.2.10)
to (6e2412)

Since in many investigations the fuselage is of
secondary importance, the above assumptions will very often
be madeo Although the introduction of similar assumptions
for the wings,; i.ce. i1 = 21 = I, , = 0, will rarely be

Jjustifiabley, it will be of interés% to compare the equations,
corresponding to these conditionsy, with those of Refe3. For
this purpose it will also be assumed that the origin O1 of the

system O,Xx,y,Z, is at rest, and that there is no fuselage
11

presente. The dynamic equations of a two~-cell box with a fixed
root then become:-

'I'r(l ’
o+ I / ’ "
q‘l sina p' + _%_%1_ sina q' = ?.- ‘ﬁ'(ix+ sin2a. p2)+ 'c§_' ixcosa}dy1
& o, (6.2.45)
* {2 P 1
12 21 . t - 1 -} 2ol == oo | gom - 2
5 sina p' + I'2'2 sina g _,ip icosa - g <lx+ isin a)% dy,

It 1s easily seen that these equations are in agreement with
the equations (L«9) of Refe.3, if due notice is given to the
changed notation, coordinate system and the fact that in the
present work the angle between the coordinate axes is x - q
instead of a. Note, however, that the function fu(g1 x)

defined by (lte10) of Refo3 should read
' " k
iky coseca + sim (n - x)(& - x){dn
i 3
EE

Finally consider the case of straight wings when « =
In Refe19 the integro-differential equations have been
deduced for the case of gust loads on aircraft with straight
wingse The assumptions made there with reference to the
aircraft structure are similar to those made above when
obtaining (6.2e45). In addition, only symmetrical motion
is considered, but body motion is allowed for, although the
rotation of the body fixed system relative to the space

fixed system has been neglecteds. Under those conditions
one finds from (6.2.3), %6.2.5), (6e2e7) and (66268) ;=

fL«i-(E1 X) =

]

(S
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(6.2046)

since by (4e6) in the present case

L 1"

p = -0
it is easily seen that the above equations agree with the
dynamical terms of the equations (50215) = (5.218) of Refe19
where it has been assumed that there is also no elastic
coupling between the translatory and rotational deformations
of the winge. Comparison with the equations of Refesi9 also
gives a straight forward interpretation of the elastic
constants [;. which could also have been obtained from

Refolio Thus [?1 is the bending and féz is the torsional
atiffness of the wing when there is no sweep backe

643 Flutter and Dynamic Stability

Using the results of section (5.3) one obtains after
the appropriate transformationsy analogous to those explained
in Appendix 1, the following aerodynamic terms which have
to be added to the corresponding equations of section (6e2),
which have been indicated in sgquare brackets

L

z |
o t i
] l‘ P Sina I{a

0

{
{
t

w Ka(O) + P sina K, ) + Q,Ecosa Ka'l (0) + B’.b(o)fl- +

+ q' sina K'b R ga" Ka% dy1 - (6,3,-1)

£ 16.2. 31

[W E . (0) + P sina K, ©) + Q%cosa I (0) + X, (o)} +E-_ p'sina 1{1an

+ q' sina KD,[ * glKaﬂé dyd sina - _(6.3.2)
6. 2.4
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r ~ 1
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+Q {cos%. Ka2 (0) + cosa Kb‘l (0) + cosa Ma‘l ©) + Mb(O)E:
.
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i
o

o
+ #(cosa Kq+M )t dy, -~ (6.3.3)
. l6.2.5|
"I.W K:i + P sina K:ﬂ + QZcosa K;j + K.:)-i,-l-':: - p! sina Ki + q' sina 17\".;
| ; _ d
+ @ K;% dn| sina - (6.3.4)
! f6. 2.7]
.!.W M + P sing Ma'l + Q.g'coso, M, + N.b' [ - p! sina ITI; + q' ﬂb
* 1 . uo
+ @ ﬁa_% dﬂj sina -~ (6.3.5)
y 6.2.8
WK +Psina K, + Q::osa, K, + K‘bf’ J p'sing & .+ a'sina Kb-l- Kaj-dn
- '(Gn 3.._6)
l6.2.9;
Putting 1'12 -
£~ N sina =% -~ (6.3.7)
the coefficients appearing in the above terms are defined by the
following formulae
¢ "t
.{'r“ 1 - “ L]
K, &,) = Xk, 4 ¢ (6.3.8) x,G,) =J Lik (5 -y,)az (6.3.12)
¥4 ¥y
P{ ﬁ{
Koq 0y) =] Lik, 4% (6.3.9) M, (7,) .~.j g-'x,ma ag (6.3.13)
y1 2
of
C v
K, ;) J;zxk az (6.310 1, G,) =J S xm az (6.3.14)
g 9
1 ! . A
Eb,) = Jx k (£ -y)az ©3.4) M G,) =|Lxm (- v 2% (6.3.15)
7 ¥,
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K;(v1, M) =J‘ 'xka(é - y1)d &

(6.3.16)

(6.3.17)

(6.3.18)

(6.3.19)

(6.3.21)

o
o
Ry, ) = | 0k, (Gy,) (Gm)az
Fom
oL
i, G7ys ) ’:3 'g'}ima 4%
Fyrn
A
ﬁym,ﬂ)=J§X%_@-yQaz (6.3.20)
o
K.
&, &) =J Sxk ax
I

oX

Tt &) =) 5 £, 4%

j?
&‘i-“

2
ﬁb(yﬁ’n) =J ('%);t'mb d ;

Y1’n

When evaluating these coefficlients for any particular case
notice must be taken of the fact that the derivatives

ka,m

a’kb’mb

are functions of the reduced frequency (cf 5.3.5)

which normally will vary along the wing.

[ra———

21U

=

will be complex functions of w and the Mach number B and therefore

when writing down the final equations in real form, for example, the

term ﬁ;p’ has to be presented in analogy with (5.3.8), i.e.

PG Suei

Further, these derivatives

(6.3,22)

(6.3.23)

(6.3.24)

" (6.3.25)

(6.3.26)

(6.3.27)

(6.

Je

28)

(6.3.29)
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N Gust Loads

The formal work which leads to the terms which_have
to be added to equations (662e1) = (6.2.12) is very similar to
that necessary for the deduction of the expressions given in the
preceding sectionse. The fact that the non-dimensional time
coordinate varies along the span does not introduce any
principal difficulties, although it tends to complicate the
analysise Due to the complex nature of the theoretical
expressions for the aerodynamic forces (5.3.5) and (5.3,6?
the most general case corresponding to the freedom of motion
considered in the earlier sections leads to a large number
of terms. For this reason and because it is customary in the
study of gust loads to introduce additional assumptions
restricting the mode of motion of the aircraft, it is not
proposed to give here the general expressionse. On the basis
of Appendix 1 and of the earlier work given in this report, it
is felt that these expressions could be deduced without great
difficulty by anyone requiring them.

However a few remarks will be made with regard to the
choice of a suitable time variable since this may be of great
help to anyone wanting to obtain these expressionse. In Refe20
the problem of gust loads has been treated for the case of
straight wings and a dimension less time variable Sy has been

introduced by using for c of (5.4.2) the mean chord of the winge
As a result the time derivatives of the equations of section

602 had to be multiplied by appropriate conversion factorse

It is shown in that reference that such a procedure tends to
cver-estimate the loads inboard of the wing station
corresponding to the mean chord and to under-estimate them
further outboard. This is easily seen to be true because k1(s)

is a monotomic increasing function and s is inversely
proportional to the wing chord (assuming, of coursey; that the
wing is of conventional plan form with outward taper).

When 1t is desired to avoid the above simplification
referring to the time variable, it will in general be
preferable to use the dimensional time t throughout instead
of 8. It will be easily seen that one can transform the
integrals involving the function k1 in the following manner:

8

-k

2'& \‘azz(-}?'-‘s") C(y1)

g 2

i aZ i

| Byl ~ o)== 8¢ =|k ((t-ﬂ .
4 1 3P $ TR c3y1U 2 2U

drz

3

on

Thus when integrating expressions containing integrals of the
above type over the span, the order of integration can be
inverted without difficulty as the integration variables will
refer to time and space coordinates which are independent of
each othere. Such a procedure then leads to special types of
Wagner and Klssner functions allowing for three-dimensional
effects, These modified functions will result from the
integration of all terms, depending on the spanwise
coordinate; over parts of the span, since, as before, further
inversions of the order of integration will be caused by the
introduction of the new independent variables discussed in
section 1.
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METHODS OF SOLUTION

In all but the very simplest cases an exact solution
of the equations of motiony; deduced here, cannot be expectede.
However, this is a fact which holds true in whatever form the
equations of motion may have been obtained. Thus in most
practical cases approximate methods of solution have to be
used and it has already been pointed out earlier that all such
methods used in Aero-elasticity when dealing with the
conventional types of equations will likewise be applicable to
integral equationse

In Refeb some space has been devoted to the conversion
of integro-differential equations into matrix equations, and
it has been shown there that the latter can be solved by the
common iteration processese The main difference between
the matrix equations obtained from the integral equations and
those obtained by sectioning the aircraft from the start lies
with the variables occurring in both types of equations.

On the other hand, if it is proposed to use natural
modes which either have been chosen suitably in the form of
polynomials or which have been obtained from vibration tests,
there is no need to perform the transition to matrix equations.
The modes which are to be used may be introduced directly into
the integral equations, although it may become necessary to
evaluate the integrals using approximate methods such as
Simpson's rule.

Consider, for example, the procedure for a binary flutter
investigation of the wings. If it is assumed that all the
relevant coefficient functions of sections 6.2 and 63 are
known and that the principal response will be shown by the
wings, 1t will only be necessary to investigate equations
?6.2¢73 and E6.2.8§, augmented by the aerodynamic terms

6e3elt) and (6s3¢5)e. Substituting in these equations for the
independent variables linear combinations of the appropriate
m?dgs, obtained from experiment, i.e. replacing, for example,
b 4
ry Bi + rp DS mt (7e1)

where pi . pé are now known functions of the spanwise

coordinate and ry and r, are the corresponding normal

coordinates, one deduces finally two simultaneous differential
equations in r, and ry and their time derivativese. Assuming

harmonic motion, these equations will lead to a characteristic
equation involving flutter speeds and frequencies. Since

the aerodynamic terms depend on these latter quantities,

some of the coefficients of the characteristic equation may
have to be calculated several times before it is satisfied.
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In a simllar manner, a procedure for ternary calculations
can be developed by introducing, for example, also equation
(6s2e3) + (6s3e1), referring to the vertical body motion,
into the consideratione A similar approach has often also
been applied to the problem of gust loads, but in that case
the normal coordinates will be arbitrary functions of the time
and systems of differential equations have to be solvede
However, it should be realised that such a procedure introduces
a constraint, since normally an infinite number of modes will
be involvede

Finally a short remark will be made with regard to the
specification of the gust loading processe It is customary
to make certain assumptions with regard to the "gust profile",
although all investigators are well aware of the fact that
it is very difficult or almost impossible to reproduce such
theoretical gusts in order to check on the results of the
theory. On the other hand, it is possible to use the vertical
acceleration for this purpose and to consider the gust velocity
one of the unknown quantities to be determined in the process
of solutione. The main advantages of such a step are that it
is easy to measure accelerations suffercd by the aircraft and
that in this way gust structure can be investigatede.

CONCLUSIONS

The equations of motion of aircraft deduced in this
report are the most general within the assumptions stated in
gsection 1.2. They are integro-differential equations
involving only time derivatives of the independent variables,
some of which are themselves space derivatives of the
displacements commonly usedo The use of such variables has
only been possible because the continuous character of the
alrcraft structure has been retained throughoute In addition,
this fact has led to a concise notation in terms of the
physical data specifying the aircraft as an elastic mass
system and aerodynamically, which will be found to be very
lucid and suitable for fundamental aero~elastic work.

The final equations of motion are obtained by combining the
dynamic terms given in section 6.2 with the relevant
aerodynamic ones of section 6.3 as far as problems of flutter
and dynamic stability are concerncd. In section 6.4 a few
remarks have been made explaining how similar equations can
be deduced for the problem of gust loadse.

In section 7, procedures have been outlined for
solving these equations in any practical case, and it is
seen there that all conventional methods used in aero=-
elastic work are applicable. In particular, the equations
lend themselves to iterative brocesses and to the use of
experimentally determined modcs.
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APPENDIX 1

Remarks on use of Hamilton's Principle

In section 6 of the main part of this report the equations
of motion have been given in the form of integro-differential
equations obtained directly from Hamilton's Principle. It is
the purpose of this Appendix to give some detail of the
analytical work leading to these equationse.

It has already been pointed out in the Introduction that
" a special feature of the way in which Hamilton's Principle has
been applied here lay in the particular choice of independent
variables. Instead of using actual displacements, as has been
done in most work of this nature, it has been found preferable
to introduce as new variables curvatures and rates of twist
whenever the customary variables are functions of space
coordinates as well as of time. The analytic procedure is best
explained by the presentation of the complete process which
leads to one of the equations of section 6.2, e.ge equation
(6e247)s This is the equation which involves the most
complicated preparatory work, because of the fact that by (L4.6)

p' = - coseca Q" i Chfat)

so that in the application of Hamilton's Principle this
equation arises from two arbitrary displacements &p' and 6@"3
By considering the deduction of this equation it will be
assured that all different steps, occurring in the deduction
of the complete set of equations are demonstrated.

Applying Hamilton's Principle 6.1.1; and writing down
only the terms relevant for equation (6.2.7) one finds from
(3.15) and (Le12)

{ e . v - 2 - T
J = f?II‘H (p. G q) —z1mV % Ix1 e R(y1 i ikt Ix z ) ’ mZ‘IRUo%SPd‘V‘I
t 5" e i
1 .
) 2o+ [ osing + |. ¥
5, y 3127 124 13 ol R
J) 81n@(£?1p + ) q') . ( 7] ) gi SP' 63’1
4

Af @ J4) X, si ! v 2 < . A T
+.lf.,m + - mx,sinaq’ + o + yym sina P - m(x,l— y,lcosc.)Q + mQUOjE)@dy‘l‘

0 e .0
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But by a condition fundamental to Hamilton's Principle

5¢ = O for t = t, , t=t, —= (A143)

- and hence, integrating in (A1.2) those terms, involving time
derivatives of the arbitrary disPlacementsi by Parts ith

respect to time, one finds:

J “{I (ﬁ) - cosa §f) - mz V + I P + (y z meosa, = I )ﬁ + mE,IIiI.IO'i 5pdy1

', 1 P ;
{ 0ot f21 : f‘f sina +f",5f1 "
ot (g v+ DR g0 (TR0 gl g
0
f . ]
+Jm‘1@ )= %,sinad + W + ¥, sinaP - (x1- y1coscr.)Q + QUO} 5@'@1] = 0

"T" (1’1\.1 ° L‘-)

since by (A1.3) and (Al.1) the integrated terms vanish.

Next the dependent displacements 6p, 6@ wlill be
transformed into 8p', so that the above equation only involves
one independent arbitrary displacement § p'e. By the cholce of
the coordinate systems and variables (see section 2) it is
obvious that

o (0) = @'(0) = O and hence p (0) = 0 (A1.5)

at all times. Therefore

r_z ‘? y1 n;:'\ n.'e
)F1 (y1,t)6p a, iF @1,t)ay i I !6p’dy1 1F1 (z,t)ae (A1e6)
5 % 5 ¥,
¢ E {3"{1 :"g.. A :y:| "
sz(.vﬁt)E@ &y, =jF2@1st)dY1 az jﬁ@ an =JF2®1,t)dv1 jéé (,= m)an
0 fa} ‘0 0O o} o
: S %3
ja§ dy1 |F (g;t) (E 3"1)65 - (A1 .611)
0 y1

/ WHEre essees



_39—

where several inversions of the order of integration have occurred. But
by (A1.1) the last expression becomes

{ 2
iF26’1st)5 @ dy.1 = - 8in o }51)' dy1 by (gst) (E-y1)dE, ¥ (A.? o?)

0 1

b B

Introducing the transformations (41.6) and (A1.7) into (A1.4) one finds

- ¢ g
-|2 '\{ r '|< e .. .‘
at }dy,l Sp! i % EI (iﬁ-cos a Q)-my V+I P+(y zym cos a=I_ )R+mz,RU_ | &
1 *1%9 .
% P9
4 ol 2 wd o =~
o fa o Bt iR 1 [HaEno s 113_) '
+s:1.ncr,1fj|'1p + _'é—'“'q'j +!\ 5 7
fz r L] -
- sin o j nl@ Qf)-x sin a Q+W+y sin o P-(% 4=Y4cos G)Q+QU L (E‘"Y1)5-§ =0
: °) !
4 i

(A1.8)

For (A1.8) to be true it is necessary and sufficient that the expression in
square brackets is zero. However the equation of motion thus obtained still
contains @, o q,;d and space derivatives of p, q and @. For this reason
transformations of the types (A1.69) and (A1.6%)will be applled under the
integrals of the equation of motion just deduced. It is easily verified that
this will lead to the following equation:

Jf . 2 \ s e S Ao,
: “i’q ( ; Ix dZ+sin"a ; m (Z-n) (é—y1 )d.é) +4! l\?in a } mx, (Z;—x1 )dé—cosa}% X dZ)
o .')ZT;"FI ; 37:'_,'71 Yyo y.._.}.:‘l.[

od &

Kl :
& ﬁfs:'_n a i (?=—3r1 )de. dﬂ—V J mz az + i (t HE 162;-511120. mé(é‘.‘)’ﬂd%}

P R

Yq2 9 3’1 1
ae }'2— e "i
- Wsina | m(é—yﬂ% + Qsin a ( | oz (é"y1)d§-005 a } i(é-y.l )md&)
4 ¥y '
, 2 i.zi K ok .
s l I_ = ) . - 5 g E
+ R \?os a ] mz1é az i Ix1 z1d?.f,) - Uo(R ] mz, dZ-sin o @ 5 m(é—y”dé’}
¥y Y4 : g ¥y
_ ’ ia® I3 - z8in o + {3 '
+ sin a (fj",lp' b Tabempeicd 5 &l q'} + - 5 i ge0

(A149)

Equation (A1.9) agrees with (6.2,7)after introduction of the additional
notation used there.

Finally it may still be of interest to explain in detail the

/ origin ...



...}_l_o..

origin of the limit of integration YoM occurring sbove,

For example,
the first term is
.‘-j{ -,\j"' ?\ ' NE {‘-{ |
1T % &= ;I d& [PdE= '[P | I _d& -= (A1.10
gy J % d ! g %, ( )
y1 Y1 o 0O Y,.l,'ﬂ

as is easily confirmed by use of Fig. 6, showing the area over which the
double integral extends.,
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where the first integral is to be taken over both wings and the coefficient
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where the coefficients are defined in section

6.2,
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