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SUMMARY

L T ™

The small perturbation theory of the stability of
the laminar boundary layer, as first considered in detail
by Tollmien and Schlichting for incompressible flow and
applied to compressible flow by Lees and Lin, is extended
in this paper to include compressible flows with a pressure
gradient in the main stream.

The analysis shows that if normal modes of
perturbationsof the boundary layer are considered, the
approximate solutions for the perturbation flow in terms
of the steady velocity and temperature distributions of
the boundary layer, as developed by Lees and Lin for
compressible flow without a pressure gradient, hold to
the same order of approximation in the presence of a
pressure gradient. The solutions are valid for large
values of the Reynolds number R and the parameter aR,
where a is the wave number of the disturbance considered,
with the additional restriction that o should lie between
the extreme limits, R and R-1, The Reynolds number
referred to here is based upon the boundary layer thickness.
Moreover, it is found that for a given boundary layer pro-
file, the differential equations governing the behaviour of
the disturbance in an inviscid fluid are independent of the
pressure gradient. Thus the general criteria established
by Lees and Lin for the stability of inviscid flows can be
taken over with little or no modification in proof.

The boundary layer velocity and temperature
distributions for the compressible flow were obtained by
transformation of the general 'similar velocity profile’
incompressible solutions, in which the incompressible
main stream velocity in the x¥ direction is taken as

; e m =
U§1 = c(x%) s Where c and m are constants. In applying
this method,; the viscosity was taken to be proportional

to the absolute temperature and the Prandtl number was
taken to be unity.
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Calculation of the neutral stability characteristics
gave the following general results:

(1) Por any given free stream Mach number, an increasing
negative pressure gradient (m > 0) increases the
stability of the laminar layer, i.e. the value of
the stability limit (defined as the Reynolds nunber
below which there is laminar stability) increases,
and the range of unstable disturbance frequencies
and velocities becomes smaller.

(11) With a positive pressure gradient the stability
decreases as the Mach number increases.

(iii) For a sufficiently large negative pressurec gradient
there is g rangé of Mach number, varying from
about 1.3 to 2.4, for which the boundary layer
is completely stable for all Reynolds numbers;
however, the stability l1imit always decreases at
large enough values of the Mach number.
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In general asterisks will denote mean values
of dimensional guantities,; while unstarred symbols will
denote the corresponding non-dimensional quantities.
A prime will denote differentiation with respect to distance
normal to the solid surface, unless stated otherwise.

A suffix o will refer to conditions at the solid
surface.

A suffiz 1 will refer to local values in the main
stream, except for y¥, which will
denote the boundary 1ayer thickness.

A suffix 10 will refer to adiabatic stagnation in
the main stream.

A suffix i will refer to the incompressible variable
obtained from the corresponding com-
pressible variable using the transforma-
tion (11), given on page 12.

Dimensional Dimensionless Dimensional
Quantity Quantity Measure

Co-ordinate measured along surface
]
x= X L

Coordinate measured perpendicular to surface

v y £
Time e . };uf
Velocity components in the x and y directions respectively

u* w(x,y)+f(x,y)eia(x'°t) uf

. v(x,y)+a¢(x,y)eia(x"0t) uT
Density

o o (x,3)4+r (x,y)el0X-0t) 2
Pressure

¥ p(x,y)%&{x,y)eia(x“Ct) Df
Temperature

¥ T(x,y)+8(x,y)eia(x"0t) Tf
Viscosity

Vs b (x,3) 48 (x, 5 )e 0 (x-ct) wy
Kinematic viscosity

7 u*/pﬁ " Vf

Conductivity

k* k(x,y)+)ﬁx,y)eia(x'0t) Cpuf
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Dimensional Dimensionless
Quantity Quantity
Wave number of disturbance
%
a a

Phase velocity of disturbance

CEE c

Specific heats

Gv’ Cp f = Cp/Cv
ufﬂ
R = = Reynolds number.
v
1
8 = ﬁ/§§TE local velocity of sound, R = gas constant,
My = uf/a1 local Mach nunber at edge of boundary
layer.
g = Cpu!/k* Prandtl nunber.
fS) boundary layer thickness.
5= boundary layer displacement thickness.
W boundary layer momentum thickness.
m external pressure gradient parameter,
. ® - %0
defined by uy, c(xi) 8
W index in the viscosity-temperature
W
relationship u® = (7%) .
2m
B a1

The characteristic measure £ will in general

Dimensional
Measure

1/4

be taken as the boundary layer thickness . When
is taken as A% or 5% the non-dimensional quantities

will be written with a suffix 9% or 6%

respectively.




Introduction

The mechanism of the transition from laminar
to turbulent flow is one of the oldest fundamental
problems of hydrodynamics that remains unsolved. The
perturbation method is an attempt, which is only par-
tially successful, to explain transition by finding the
conditions under which the viscous equations of motion
admit of non-uniform unsteady solutions in the form of
either damped, neutral or amplified disturbances, the
normal modes of which are usually considered separately.
Amplified, self-excited disturbances, when they exist,
mean that the boundary layer is in a state of unstable
dynamic equilibrium, and that transition will occur when
the disturbance amplitudes become sufficiently large.

The restriction of the method to small
disturbances (introduced to make the mathematics tractable)
reduces the value of the results, since there is left a
large gap in our knowledge of the behaviour of the flow
between the beginning of the amplification of a small
disturbance and the onset of full scale turbulence.® In
consequence, it is found that turbulence develops much
later than i® given by the condition that a small distur-
bance should be just amplified. In spite of this, once
verified, the theory can be of great interest in giving
an insight into the origin of transition and in providing
at least a sufficient condition for the stability of
laminar flows. '

This method of dealing with laminar stability
was first applied to boundary layer flow by Tietjens
(reference 1), followed by other German investigators,
notably Tollmien and Schlichting (references 2 and 3).
However, the theory was held in doubt by many, chiefly
because of the simplified and approximate mathematical
approach that had to be made to deal with the problem,
and the success of G.I. Taylor's theory of transition
(reference U4). Taylor ascribed the instability of the
laminar boundary layer to the presence of finite, non-
selfexcited; disturbances, which in most cases would
arise from the external turbulence of the main flow.

A more satisfactory approach to the small perturbation
theory has now been given by Lin (reference 5) for
incompressible flow, and verification of the asymptotic
expansions used by him has been given by Wasow (reference 6).
Moreover, full experimental confirmation of the theory has
been made by Schubauer and Skramstad (reference 7), and
there is now no doubt that in the absence of such sources
of finite disturbances as surface imperfections and
external turbulence, a major cause of transition to
turbulence in boundary layers derives from their inherent
instability under certain circumstances. Presumably,
when disturbances present are large enough, whether self-
excited or imposed by external turbulence or surface con-
dition, transition ensues. From this point of view,
Taylor's approach and the approach in the small perturba-
tion theory can be reconciled, although a complete linking
of the two approaches is still to be made.

* German investigators (references 8 and 9) have
calculated the amplification of the disturbances for
incompressible flow and have attempted to correlate the
rate of amplification with the occurrence of transition,
in spite of the restriction of the theory to small dis-
turbances. Two estimates thus made for the amplification
factor required to give transition on a flat plate differ
by over 100 percent.
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The extension of the theory to parallel
compressible flows was made by Lees and Lin (references
10 and 11), and in the present paper it is found that in
all essentials the theory developed by them is applicable
to flows with an external pressure gradient, and that the
stability again depends on the local velocity and tempera-
ture profiles of the boundary layer only. In both cases
there is a Reynolds number, based upon the boundary layer
thickness, above which the laminar flow is inherently
unstable, and self-excited disturbances appear. Below
this so-called minimum critical Reynolds number, which
depends on the Mach number and pressure gradient in the
main stream, all disturbances are damped out,; and the
boundary layer is completely stable.

The physical reason for the behaviour of the
disturbances can bé seen in a study of the interchange
of energy between the disturbance and the mean flow.
If a normal mode of the disturbance, of non-dimensional
(real) phase velocity cp is considered, it is found-that
across a critical section of the boundary layer, where
the mean flow velocity u* equals the disturbance phase
velocity, there is a phase shift in the x component of
the disturbance velocity f. This results in an apparent
stress, the value of which is

7.2 :

‘T* 2 x(ux)z a, CI. I-d. W')
8 ROPyRuY GOk sekmdT 9 .
(Wcr) & w=e,

where
w 1is the non-dimensional mean velocity parallel to
the surface in the x-direction,
T 1is the non-dimensional temperature,
p 1s the density;

o 1is the wave number of the disturbance,

suffices 1 and cp refer to values at the wall and
at the critical layer.

According as Tgr is greater or less than zero, energy is
absorbed or lost by the disturbance, whilst if Tg, = O,

there is no transfer of energy. A further apparent shear
stress is introduced by the action of viscosity near the
wall; this, however, is always positive; and through its
action energy is gained by the disturbance from thé mean
flow, Finally, the disturbance loses energy throughout
the boundary layer by the action of viscous dissipation.

If a disturbance is to be damped, the shear
stress T?r must be sufficiently large negatively to ensure

that the energy absorbed by the mean flow at the inner

eritical layer at w = ¢, together with the energy dissipated

by the viscous forces is greater than the energy added to

the disturbance through the destabilising action of viscosity

near the wall.

/Generally ...
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Generally speaking, therefore, if the quantity

d w'
i [_ﬁ (—-T_)]W=Cr

which is a function of the shape of the velocity and
temperature profiles of the boundary layer, is large
enough, the boundary layer will be stable. The principal
effect of pressure gradient can thus be seen in the way
that it changes the shape of the boundary layer velocity
distribution.

However, for main stream Mach numbers .greater
than unity, an additional factor enters into the problem.
The disturbances for which

1

where M, = uf/af (the local Mach number of the main stream),

are termed subsonic disturbances (the phase velocity of the
disturbance relative to an observer moving with the velocity
of the free stream is less than the local velocity of sound),
and for some values of R such disturbances can be made to
satisfy the differential equations and boundary conditions
for the disturbance. However, the amplified supersonic
disturbances for which
1

CI' £ 1 = E
do not exist, for it is found that they cannot satisfy the
boundary conditions at the ‘'edge' of the boundary layer.
Thus, for a given boundary layer profile; if the only
values of c¢ required to make

l}%§ (%r{]w=c

sufficiently large to enable the disturbance of this phase
velocity to gain energy, are such that
c B 8
r & M,

P

there can be no solution of the disturbance equations for
amplified disturbances; and the boundary layer is completely
stable for all Reynolds numbers.

For an insulated surface and flow with no
pressure gradient; this condition is in fact never
obtained. But for some lach numbers and with a nega-
tive (favourable) pressure gradient or by withdrawing
heat away from the boundary layer, it is possible to
obtain complete laminar stability, and it is this
eventuality which is of particular practical interest.

The latter case has been calculated by Lees (reference 14 )
and the former is dealt with in this paper.

An attempt to make the present paper completely
self-contained in all mathematical details would make it
prohibitively large, and, in any case, would only be
repeating much of Lees' and Lin's work. The author has,
therefore tried to make the main section of the paper
intelligible without reference to Lees' and Lin's reports,
keeping the mathematics to a minimum, whilst the mathematical
analysis that is original has been included in appendices, but it
will be found that the latter can only be studied to advantage in
detail if reference is made to Lees and Lin.
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Outline of the Mathematical Theory of Stability

2.1 The perturbation equations

Except in special cases, the only method of
finding the conditions under which the viscous equations
of motion admit of a solution in the form of a perturba-
tion is by linearisation of the equations. This can be
done by considering the harmonic components of a small
gisturbance. Thus, we take a typical normal mode in the

orm

a(x, y) exp ia(x - ct) i 2o 8-

where ¢ = 8. +, I¢ c. and
» g2, Oy n c1 real

a is real and positive
g may be complex.

It has been shown by Squire (reference 12) that
for parallel incompressible flow three-dimensional
disturbances are more stable than two-dimensional
disturbances; the restriction of the mode (1) to two
dimensions is thus justified for incompressible flow.
This result has not been proved for compressible flow,
but physical considerations lead us to expect that there
cannot be any fundamental difference in the behaviour of
disturbances in this respect between the compressible and
incompressible case.

Such a two-dimensional stability theory can be
applied formally to approximately parallel flows or flows
over slightly curved surfaces, where the velocity in the
boundary layer normal to the surface is small. The
validity of such applications can be assessed in the
light of work done by G3rtler (reference 13), who has
studied the three-dimensional disturbance problem for
incompressible flow over curved surfaces. Gortler found
that boundary layer profile had relatively little effect
on three-dimensional disturbances, but that a convex sur-
face was stabilising and a concave surface devastatingly
destabilising. In general, two-dimensional disturbances
determine the stability of flow over flat or convex sur-
faces, with a positive or negative pressure gradient, but
for concave surfaces instability is first brought about
by three-dimensional disturbances. In particular, when
considering the stability of the laminar boundary layer
on normal aerofoils the two-dimensional theory is usually
applicable.

Returning now to equation (1), we see that the
disturbance is damped if cj € O, is amplified 1if c4j > O,
and is meutral' if ¢; = 0. The neutral disturbance forms
the boundary between stability and instability of the
laminar layer, and the occurrence of the latter will
eventually lead to transition. It is assumed that
transition occurs when the amplification of the distur-
bance reaches a certain level, this corresponding to a
larger Reynolds number than for the neutral disturbance,
a8 the analysis shows.

To obtain the perturbation equations, the
disturbance quantities in the form (1) are introduced
into the full viscous equations of motion,; which are
then linearised by neglecting squares and products of
the disturbances, and applying the normal boundary

/layer ..

- (1)
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layer approximations to the mean flow quantities, for which
the boundary layer equations are also assumed to hold.
Because of the boundary layer approximations the theory is
essentially applicable for large Reynolds numbers only, and
the large R condition is also made use of in obtaining the
solutions as series expansions.

The details of this procedure are given in
Appendix A1, where it is found that the additional restric-
tion that

wtodel igld) &R B,

where R is the Reynolds number based on the boundary layer
thickness, is needed to obtain the perturbation equations.
We can write this alternatively, though less precisely, as

a = 0(1)

or a* = 0(1/5),

i.e. the wave length, Zx/a*, of the disturbance is of the
order of magnitude of the boundarq layer thickness. This
is the assumption made by Pretsch'? in his treatment of

the incompressible case of flow with a pressure gradient.
From the various numerical calculations that have been made,
it appears that this assumption is correct.

We find that in the limit R~» oo, the differential
equations for the disturbances reduce to those with no
pressure gradient. In particular, the equation for ¢

&Lﬁel(X'Ct) is the non-dimensional disturbance velocity
normal to the surface),

g_{(W-c)ﬁ'-W'ﬁ b ﬁ(Mlg, Lt )
' T

Fir o w el

is the same as the basic equation used by Lees and Lin
(reference 10) in their treatment of the inviscid case
of stability without a pressure gradient.

The equations of motion, of continuity, of energy
and of state yield five linear differential equations for
five disturbance quantities f, @, w5 r, 6, which are
equivalent to six homogeneous equations in six independent
variables, with six linearly independent solutions. The
six variables chosen are

£, £y @, %5 , 6, 0", ve e w0

By

Three methods of solution of these equations are
considered: convergent series solution in powers of

(aR)"1/3, and asymptotic series solutions in powers of

(aR)—1 and in powers of (aR)™Z. In each case the initial
approximation as a function of the mean flow quantities is
found to be independent of x, and is thus not directly
dependent on “he pressure gradient. The influence of the
pressure gradient is brought about entirely through its
effect on the mean flow, i.e. by its effect on the loecal
steady boundary layer velocity and temperature distributions.

The boundary conditions to be satisfied by the

disturbances at the 'edge' of the boundary layer and at the
surface form six homogeneous equations in the variables (3)-

/Since .,.
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Since these must also satisfy six homogeneous differential
equations, there must be a restriction on the values of the
parameters occurring in the equations (viz. a, ¢, R and M1)
in the form of a secular or characteristic equation . The
derivation of the secular equation is the same with or with-
out a pressure gradient and need not be entered into hsre
(for details see Appendix A3 and reference 10 7. For a
given boundary layer profile and chosen values of M4 and c4
(the amount of damping or amplification), the secular equation
gives a relationship between o and R, and a and Cpe There
are, however, important exceptions to this when the main
stream flow is supersonic. In the first instance, for the
neutral supersonic disturbance, i.e. for

c, = 0y cr{1—1/M1,
the boundary condition for @ at the edge of the boundary
layer is automatically satisfied by both solutions of the
differential equation (2) for @, see Appendix AlL. Hence
there is no characteristic equation to be satisfied and a
disturbance of any wave length and velocity can exist for
all Reynolds numbers. However, for an amplified supersonic
disturbance, cj » 0, the secular equation exists, but has no
solution, i.e. there is no amplified solution to the distur-
bance equation which can satisfy the boundary conditions,
and the boundary layer must then be stable to small
disturbances of all wave lengths and velocities.

2.2 The inviscid case

The differential equation for ¢ in the case
R=>o0 1is

.@_{ (w—c) @' - w'¢f } = o? {Ee) g, W)

iy . M12 (w=c)®

the same as given by Lees and Lin for flow without a pressure
gradient. Two particular integrals are

(2]
ﬁ}(y;azsc;mf) = (W—C)%; a?nhzn(y;c,mfz) z

“ - 2 w5 vuige 1)
g2(¥§a2:Cst )==(W-°)§; q,nk2n+1(y;c,M1 )J

where
y 2 2 o fw—c}z 1)
oy = (=g - 4" )as ) =€) n, ., dy
n (wec)2 1 " n-
3TO o
hD = | g 1}..(6)
¥ e Ay -
K, = e uYay | Rl dy
2n+1 2 1 T 2n-1
ot (W=c) Y.
y 5
k = y WL ety ® “) dy o
1 ; 5 1
vy, (w-c)

As shown by Lin (reference 5) the path of integration in
(6) must lie below the singular point y = y. (where w=c)
in the complex y-plane.

/A study ...
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A siudy of the characlteristics of the solution
of (4) has been made by Lees &nud Lin (reference 10), and
the only modification of their analysis required for the
case of flow with a pressure gradient is a minor one that
occurs in the proof of the disturbance energy relations,
and involves the mean flow equations of motion. A summary
of the more important results which they obtained that are
relevant to the present discussion are given here.

There is a transfer of energy between the main
flow and the-disturbance motion at the critical layer
where w = ¢. This occurs through a change in the relative
phase of the x- and y-components of the disturbance motion
at y = ¢ and the appearance of a Reynolds stress there,
S8ince; for the neutral disturbance; this shear stress is
proportional to

—

a /w'y .
W T, ' el

it 18 found that if

_ i
(1) !%5 (%r) 50 energy passes from the mean)
- ~w=c flow to the disturbance,
. mﬁ w'q1
(ii) .0 (TF) =0, there is no exchange of
- ~w=c energy between the mean .p. (7)
and disturbance motions,
- A
(iii) %— (%r] a4 the disturbance loses
& J ¢ lw=c energy to the mean flow.

These results can be correlated with the three
cases of amplified; neutral and damped disturhances:

Amplified disturbances ci > O.

The subsonic disturbances take the form of
outgoing waves exponentially attenuated for large y.
A sufficient condition for their existence is that

d rw'
a5(%_)=o for some w > 1 - 1/M,.

Neutral disturbances cj = O.

Subsonic disturbances take the form of waves
travelling parallel to the x-axis, exponentially attenuated

in y for large y. A necessary and sufficient condition
for their existence is that

d w'"

E(T—) = 0 for some \ﬂ.r>‘l--‘i/M1 = Cgs 8ays

and then the phase velocity of the disturbance is Cgq

_ In the case of supersonic disturbances both
incoming and outgoing disturbances exist and are not
attenuvated. The characteristic equation does not exist
ap& we may say that the characteristic values are con-
tinuous. Note that in this event any of the three cases

(7) can hold, since the ingoing and outgoing disturbances
can be of different amplitudes.

/Damped ...
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Damped disturbances 5 £ )

The disturbances travel inward and are attenunated
with y as y =00 .

These results for the inviscid case show that the
stability depends essentially on the variation of the
quantity

S (%) - 1w 1 awar
dy \ T T dy2 e Ay dy
across the boundary layer. For flow past an insulated

surface we can apply the transformation given in section 3,
so that

. 2 2
(W' _ of1 a%w . 2(r-1)M°  gw 2}
7 (F) - K(T3 e S Y
R
where ¢ =ﬁfm§ / *l -~ yf 9 and K » 0.
- N V4o ¥

For a main stream flow given by
¥ _ —, x0
Uiq = o (x3)

we have the following results (Appendix B1),

d : d
H% b Tl T a%.a-o as %> 80}

}Z_’: 2 A
__2.=_-&Z‘Jowdz;+6(w - 13

where B = 2m/(m+1).

We can thus draw the following conclusions
: ad it 10
about the behaviour of 53’(T* .

If B £ O (positive pressure gradient)

L
%"j(‘;—) is always positive at ¥ = 0, and negative if
¢ is large enough*. Hence it is zero for some w = cg, and

provided cs‘¢;1 - 1/Mq, the inviscid boundary layer will be
unstable for all values of Mq.

If B> O (negative pressure gradient)
1
%§ (%‘) is negative at £ = 0, and will remain

negative for all ¢ if M4 is small enough or B large
énough, but it will become positive for some ¢ if M4
is made large enough. Hence for small Mq and large B
the boundary layer will be stable, but if M4 is chosen
large enough 1t can always be made unstable.

The intermediate case with B = 0 always has the
degenerate neutral solution at w = cg = 0, which gives
@ =¢ = 0; apart from this; the general behaviour is
as for B,> % JThe .. .
IS 4 ddw d_W % 5 g
ince -0, for £-» 60, as - a ¢ but the positive Mach

2t

number term - 0 as G%%).
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The foregoing conclusions apply only for the
subsonic disturbances; if, however, cg £ 1 - 1/Mq, we
have a supersonic disturbance and only neutral and
damped disturbances can exist, so that the boundary
layer is stable. This is dealt with more fully in the
Appendix. Numerical calculations are required to
determine the values of Mq and B for which this occurs,
and such calculations have been carried out in the
present paper (see section 3). The effect of a non-
insulated surface is also important in this connection,
and the values of the ratio of the temgerature at the
wall to the main stream temperature, T%/7¥% , which give
stability have been calculated by Lees (reference 115
for zero pressure gradient.

2.3 The viscous solution

Tt has already been mentioned that the initial
approximations for the solution of the stability problcm
for a viscid boundary layer with a preéssure gradient
depends only on the local velocity and temperature dis-
tributions of the boundary layer flow. The general
conclusions and expressions obtained bv Lees (reference 11)
are therefore applicable to the case being considered in
this paper of flow with a pressure gradient.

In particular, Lees' considerations of the
energy balance in the boundary layer; which have been
summarized in section 1, hold good; and the characteristic
equation for the neutral disturbance obtained by him can
be used in our case. For proof of the existence of
neutral or amplified disturbances 'adjacent' to the in-
viscid neutral disturbances (the Heisenberg criterion)
and other mathematical details the reader is referred
to his paper.

The secular equation for the neutral subsonic
disturbance, as obtained by Lees; 18

B(a, o0 M2) = F(z), o, > 1 -1/l 08 ¥al¥sy

r’(‘LRWé 1/3
== (5522) [ %

where v is the non-dimensional kinematic viscosity.

Here F(z) is the Tietjens function (equation @L);

Appendix A), and E is a function of the inviscid solu-
tions only, equation(5). E and P are complex, and
equation (8) is equivalent to two real equations. The
form of the equation when expressed as 2 function of

the boundary layer temperature and velocity distributions,
and suitable for numerical solution; is given in section 3
of Appendix A.

I,S

The relation between o and the Reynolds number
Rep obtained from the neutral characteristic equation (8);
forms a curve having two branches extending to R = 00,
meeting at gcine minimum Reynolds number, Rcrmin’ below

which the boundary layer is stable. The interior of the

curve corresponds to values of a and R for which dis-
turbances are amplified. An approximate formula for

Rep. .. 18
= 25T ()] wy ,
= SIIARRE(T)

c”,j; u2 (1-c)?

Clmpin

send. v



and ¢ is determined by

(Tr=n2M) . 7fe) =:0.58, ATy
where iy &

! !

v (o) =" "RFAX L arifw N ,
i T
3 (W.):ady( )_W:c
T
w,(y,)
P Wi i 1, the suffix o refers to surface

c
values.

If (8) has no solution for any ¢ > 1 - 1/M19
only damped or neutral supersonic disturbances can

exist and the boundary layer is stable for all Reynolds
numbers.

Numerical Methods and Results

Solution of the characteristic equation (8)
for the neutral disturbance enables us to assess the
effect of Mach number and pressure gradient on the
boundary layer stability. For this we need to know
the variation of velocity and temperature across the
boundary layer quite accurately. The common approximate
methods for calculating the boundary layer velocity,; such
as the Pohlhausen, do not usually give sufficient accuracy,
s can be seen by comparing the results of Pretsch
(references 15 and 16) for incompressible flow stability.
who used the exact boundary layer profiles calculated by
Hartree (reference 18), and those of Schlichting (re-
ference 17), who used the Pohlhausen method. This state
of affairs arises from the fact that the solution of the
stability problem depends principally on the variation of

2
Q;% across the boundary layer, and not merely on the
dy
velocity w. In this paper, thercfore, the exact similar

flow solutions calculated by Hartrec for the incompressible
boundary layer with a main stream veloclty
it = g B
ugy = ¢ (x7) e s vams (10

have been used to obtain the compressible boundary
layer profiles. For an insulated surface, with the
Prandtl number o taken as unity and the viscosity
taken proportional to the absolute temperature fa=1),
this can bg done by means of the transformations¥®

1, *®

—_-“]-:_,_.E_o
W e R A e

g 410 Ny

Y+1 Y+1

4 T s X ' oA *
amen bR N hs pE 00 Ao g Wi top¥ay | o
"rih a 0 dy~ = q T-dy

\"10, sl *10 0

Byod

XE - X fa1 el ; 4
iH a""i"'_ 2 S -o-.ua.(11)

O O

Application of these transformations to the
Hartree solutions gives the compressible boundary layer

*rhese are the same as the equations given by Illingworth
(reference 19), and very similar to those given by
Stewartson (reference 20).
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velocity distributions having a main stream velocity
-given by the transformation of equation (10) using (11),
and this is

x - g { (10m+1) Jalxx)m ?
111 =C(X ) {1 —10(2m+1) x 2 ; +.-.E~.--.....(12)
10 /) 3

The boundary layer temperature distribution
for an insulated surface, as obtained by Croceco, is

TE/TT = I—%—l M12(1 - Wz).

Recently, Lees (reference 21) has made some
cilculations of the stability limit for flow over s
circular arc aerofoil, using formula (9) for the minimum
critical Reynolds number¥®, He employs the Dorodnitzn
transformation (reference 22), ard uses a modification
of tih:e Pohihausen method to obtain the velocity in the
boundary layer. In place of the index m which determines
the pressure gradient he employs a modified Pohlhausen
parameser

*
62 du,l

A\ Rg o,
vT ax*

The relationship between m and /\ is
2

/ Y =1 2
K.ex + 35— M" K.+ K )
/\:m{ S M W iy } sl {183
I, (A)
where
I, = .30+ .4175 Y-‘é'l M_12-(_.OO83+.009L[. 1-5—1- M12 B!
Yied . DU 2
- . 0001 - M1 I\ s
and Kﬁ.and Kéﬁ are defined by equation (15).

Using these formulae it was found that the few
calculations Lees has made for Rop.min., @8ree approximately

with the results of those made in the present paper.

A detailed solution of the neutral characteristic
equation (8) using the transformation (11), has been made
for a moderate, favourable, pressure gradient with m = . 429
(B =.6), and Mach numbers up to 1. 3. The results are
given in Table I and illustrated in Figures 1 and 2.
Details of the mathematical working involved is given in
Appendix B,

In addition; approximate neutral stability

curves for the same pressure gradient were drawn (Figure 3),
using approximate formulae for the uppér and lower branches
of' the curves (see Appendix B6) and formula (9) for Rise inidn.
This approximate method was also applied to flow with a
positive pressure gradient, m = -.0477, B = -.1, and the
results are shown in Figure . For comparison, the neutral
curves obtained by Pretsch (reference 15) for M4 = 0, using
a different method of solution of the characteristic equa-
tion have been included. It should be mentioned that the

/approximate

o1l (reference 2%) has used the same method to calculate
the stability over a biconvex aerofoil, but only for two
Mach numbers, M1 = 1.5, and M,l = 4, 0.
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approximate method cannot give the shape of the upper
part of the curve at the smaller Reynolds numbers, and
these portions have been sketched in using the accurate
calculations as a guide.

The minimum critical Reynolds number given by
equation (9) was calculated from the Hartree incompres-
sible boundary layer solutions using the transformation
(11) for a full range of values of m, and lMach numbers
up to 3. The resulting curves are shown in Figure 5,
whilst the corresponding solutions of (9a) for ¢ are
plotted in Figure 8. The discrepancy between these
values of Rd&cr.min. and those obtained from the accurate

calculations (Wigure 2) is due to the extreme sensitivity
of Rep,min. to the values of ¢ when c approaches 1 - 1/M4.
The small errors in the values of ¢ obtained from
equation (9a), resulting from the assumption that ™ is
small, can then cause large errors in Rep, pin. -

It was found that the most suitable non-
dimensional length to employ was the boundary layer
momentum thickness % Since numerous stability cal-
culations use the displacement thickness 6%, we include
here the formula relating ~¥and &%,

Y =1 2
B == MS(K, + Kig)+ K
At . e i N R " -
i - 3 2 = LB+ H) + Hyeeea.. (1)
B o
3K
H - E@-E—E-“i-
5 '

where K& and K632 are defined by

x x *x

I ci i o T T

K — ——————— e r— — — yi:.

Py S ® x ( * ) 3
d Vio ¥i Yo %4 949

@ 5 8 ¥ ®» 8 8 15)
| o & sow [ ;
i ( i N L%
K = =———— 1 - == dar,
5 j yib o B e erd ) L
10 1 (0] 19 d

and their values are plotted against B in Figure 9,
B = 2m/ (m+1).

These neutral stability caleculations confirm
the general conclusions drawn in section 2. 2. Thus,
for the inviscid case; R = 0o, with B = 0 and B = =0.1;,
the boundary layer is unstable, and the range of a which
gives instability increascs as the Mach number increascs;
but when B > 0, it is stable until the Mach number ex-
ceeds a certain value, which increases as B increases.
Thus, for B = 0, this Mach number is O (see Lees' results,
reference 11), whilst for B = 0.6, it is about 2.8.

For finite wvalues of R the results show that
the stability decreases as B is reduced and My is incrcased,
except for a restricted range of Mach numbers varying
between the limits 1.3 and 2.4 and a favourable pressure
gradient (B greater than about 0.6). In this region
the values of

o o e RS

/are ...
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are never large enough to enable the disturbance tc gain
energy, there are no subsonic amplified disturbances and
the boundary layer is stable for all Reynolds numbers.
The critical values of B above which this happens are

plotted against Mach number in Figure 6. A similar
state of affairs can occur when heat is withdrawn from
the boundary layer. This cas€e has been calculated in

Lees' paper for zero pressure gradient, and it is
interesting to note that the shapes of the graphs of
critical temperature ratio T, ,, versus M4 (as plotted

by Lees) and the critical values of B versus M4 are very
similar (Figures 6 and 7).

This effect is important because it leads to
the possibility of obtaining complete laminar stability
over entire flying surfaccs at some supersonic speeds.

In this respect, stabilisation of the boundary layer by
heat withdrawal appears to offer greater possibilities
than stabilisation through favourable pressure gradients.
For example, calculations made by Lees show that, at a
Mach number of 3 and at a height of 50,000 ft., the heat
radiated from the surface under conditions of thermal
equilibrium is sufficient to give completec stability of
parallel laminar flow without a pressure gradient. In
contrast, even for the highest favourable pressure
gradients, the possible range of Mach numbers for which
complete stability is attainable on an insulated surface,
8 only Trom 1.5 o 2.k,

This general conclusion is confirmed by some
calculations recently made by Lees (refercnce 21) for
the stability of flow over an insulated circular arc
aerofoil, using equation (9) to obtain R.p min, - He
found that the stabilising effect of a negative pressurec
gradient gave laminar stability only at the mid-section
of the aerofoil, with a Mach number of 1.5; above and
below this Mach number the flow was unstable.

Conclusions

The analysis carried out shows that the solution
of the stability problem for the laminar boundary layer
with an external pressure gradient depends only on the
local temperature and velocity distributions in the boundary
layer, Thus the general criteria and formulae obtained
by Lees and Lin for compressible flow without a pressure
gradient can be applied to flow with a pressure gradient.
The only restrictions to this conclusion are that the
Reynolds number should be large; and that only the initial
approximations to the solutions of the stability equations
should be used.

Both theory and numerical calculations show
that an increasing negative (favourable) pressure gradient
is always stabilising, and that increasing Mach number is
always destabilising if large enough. The minimum
critical Reynolds numbéer below which the boundary is
stable for disturbances of all velocities and wave lengths,
decreases as the Mach number increases, except for m % O
(favourable pressure gradient), and Mach numbers between
1«3 sad 2.4, In this region the boundary layer will be
completely stable for 2ll Reynolds numbers if m is made
large. enough.

/Apvlication ...
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Application of these results to obtain a lower
limit for the transition Reynolds number is possible,
provided the free stream turbulence is low. Thus,
transition cannot occur below a Reynolds number equal to
Rep.min, » 88 calculated from the theory; however, it
will normally occur at a considerably higher Reynolds
number. This is because transition is a large scale
perturbation phenomenon, whilst the stability theory
applies strictly to vanishingly small disturbances. The
appearance of small amplified disturbances does not en-
sure transition. In spite of this it may be possible to
calculate transition by pnstulating that it will occur if
the degree of amplification of a small disturbance of the
theory reaches a certain level. However, a full explanation
of the transition to turbulence cannot be given without
investigating the stability of finite disturbances of the
boundary layer. At present the mathematical difficulties
of this problem seem to be insurmountable.

Finally, it should be stated that there has been
no attempt to verify the compressible small perturbation
theory by experiment. Thus, although the incompressible
theory cannot now be held in doubt, there is need for a
check on the validity and accuracy of the compressible
theory, especially in predictions that are not physically
obvious, such as the non-occurrence of amplified super-
sonic disturbances.
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APPENDIX A

Mathematics of the Theory of Stability.

The modifications that are introduced into the
mathematical theory of compressible boundary layer
stability by the presence of an external pressure gradient
are dealt with here in detail. The analysis follows that
of Lees and Lin (refcrences 10 and 11) very closely, and
constant reference will be made to their work.

The differential equations for the disturbance

The complete viscous compressible flow equations
in two dimensions® are:

the equations of motion,

% % % /2 & 2_% 2 %
% ou* ® 9u % 0u p ® 9% 193%v L 3%u
(Fmw + W5 = + ¥ == ) & - + U — - ;
P 3t ax*% Ay® ax® \ay*Q 3 ax;‘:ay’IE 3 ax*2
» .a,f(a a_u*_a Lurfar® | ou®
ax™ 3 9x" -2 0p IV 9% /
.l!ll“(1)
S kS *® # * 2 % 2. E
p*(ﬁi a8 &2 m ap~ |, ¥ oY 13 u N T e ah
at* ax* ay* Ay ax®°  J ax®ay® 2 ay®e/
L E * X\ L X %
o ‘&xi% _Xk"%'_gx)+ alx(avx "Eﬁ>
oy oy X"/ 93X WX oy
L) ."I(2)
the equation of continuity,
# . *
JQ + u¥ ng + v ng + p;‘e”'g—qF + QK*):={J, s ey k5
at 0X oy WOX oy
the equation of energy,
= * * %
Jp cv<aT§ a QEE X ~z*) + pra_k + Qxx>
ot X oy 4 \ax oy
Jlk*ﬁazT* £ BETﬁﬁ a ox® o7* . ok® 7%
= = 5 |
L_ Rax‘z ayEE i axEE ﬁxE ay* ay*!
3 o EQ \ x2 b 2
. 2 2 fou* g 2L ) 2(9—1-1-*! + 21"'-17-3511 +/§-Y-JE+ au™ 1
1 3E@XE 3y \ax®, kay*ﬁ \ox* ay™ I
--cn-l(J—l.)

*We have not included gravitational effects here, as Lees and
Lin have done in their discussion of the general equations.
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and the equation of state,

px/pszT*. .......(5)

We now suppose that a perturbation is intro-
duced into the boundary layer in the form of a small
two-dimensional disturbance. We consider the distur-
hance to be resolved into its normal modes, one of
which we take to be of the form

qQ(x, ¥) exp 1a(x -~ ot), o veePONE )

corresponding to a dependent variable Q, in acecordance
with the scheme given in the list of symbols. In
particular, it should be noticed that the non-dimensional
perturbation velocity in the y~-direction is taken ss

aff (x5 7) eia(x-ct)_

We shall take our dimensional length measure to
be the boundary layer thickness 6; so that

X e 855, ¥ = a7 %

1l

-+
XT = X/Rg V' = RVp

in place of x and v, then, according to boundary layer
theory, all the non-dimensional mean guantities and
their derivatives will be of order unity.

The equations to be satisfied by the
disturbances (6) are found by substituting the
quantities

Qx, ¥) + alx, y) eto(x-ct)

into equations(1) to (5), neglecting terms of order
higher than the first in the disturbances; and applying
the boundary layer equations and approximations for
steady flow to the mean quantities Q.

Following this procedure, we £ind for the
first equation of motion expressed in non-dimensional
form

cx,phi(w—C)f + %—;i qu} # %{r(wg‘%ﬁ V'%H o (f%% * W%i—n & V"g";, )jf
o AEe - LTl o
" iﬁ[%:i(f%%,+ ﬁ%%,- 21 %gf)- %(%% %%r +1im g;')

ox' ay ox'oy i
2 2 2 - .
$ 144l a°v! e 3°f  —=0°w , am aw ou af
+ == + ( = EM Rk = 2= ¢ 2=, S
R3L§ ox'ay % ax2 BEE X X x X
2om 2v' om dv'
3 3x' 3y T 3y ax'1 ceeeeee (7)

+The prime will be used only in this section to denote the new
variebles as defined by these equations. Elsewhere it will always
denote differentiation with respect to the coordinate normal to

the surface.
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In general we require that the order of magnitude
N of each disturbance q and its derivatives be much less
than the order of magnitude of the corresponding mean
quentity @ and its derivatives, which are themselves of
order unity in terms of the non-dimensional quantities b 4l
¥, ete. Thus

dlg) = N KLo@y"="1.

Therefore, the maximum order of megnitude of the
1ast two brackets on the right hand side of eguation (7)
are aR™° and R"B, whilst the remaining terms are of
maximum order &2 R"1, a; and g, Thus, without going
into detailed considerations of the magnitudes of each of
the terms forming the equation, it can be seen that for
large Reynolds numbers these last two brackets can be
neglected provided

2l detg Ké R,

or

1/a¢< a® ¢« d/Bz, where d is a typical geometrical
length.
Less rigorously we may say that

ot = O{148))

. so that the wave length of the disturbance must be of the
order of magnitude of the boundary layer thickness. It
is just this condition that Pretsch introduced when con-
sidering the stability problem for the incompressible casc

with a pressure gradient (reference 15). Making the sams
assumption, we find for (7)
: ow 19 ow oW aw af af
04 1 — f e — v t a e ——a—— mrr—— !--c-o
p(L(W-)f + Z0#) + gir(w 53 + V' gy)* olf g + W gzt ¥ ay)}
2 3
ign’ , 1] _1_ ow s e 4. o8 2]
= s .-2+R|_ 2'8'3.51'4‘}-1-“"'—2":4'31[1. g%“%aff
¥ M, LY, Loy J
% 2 "
~ 937w ompaw  au Bf . ; 2
+m ay2 + fE e v (ay + ia l
LI B .(8)

If we proceed to the limit R-» oo , equation (8)

gives
k3 W i
ap (Ll(w—c)f + %Er' Qf} & & _______1(1.‘{5
YMJI

and this is the same as the inviscid equation for com-
pressible flow without a pressure gradient given on
page 24 of reference 10.

The procedure for dealing with the remaining
equations (2) to (5) is precisely similar. For the

/second ...
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second equation of motion we get

2, 4G 1, sy av', a0 BN 1§ e ov!, Lav' ,ovi)
a p}.vl(w.vv-c)gélf_1 - Iiig oy tVsy t W ax'| * REEPf x.+r(wax,+v ay)j
i 2
il B . B gy oW . hogou 2. o
5 23y "RiZH 5+ 51 y ~Had +im 2 3 3y ay "3 35|
YM1 i~ oy &,
e ;1a2 og l( Sk + & 2% )+ Q(E _EE'+ om QK')
=1 ox'™ IW XT3y ax'oy’" 3 - y oy
2 (@ 2f _ am pw °p S . 2u 3Ff . 9m aw
"3 (ay ax't 3y X1 )+ 1Y az't 3% vy *ax ayJ
82@ ou  ag —ayv'| 1 |- %% a@ ov']
+""3"LL 2 +§}}—{, axr'!‘ im ?ll +"“Z"I.!m 5] +"“'}""c'1 "'5:'7_[
R ax! 4 RY ax

Taking g~ < a << R, for large Reynolds numbers, this
yields

o ™
o @ vipe Slcagtgic ity ngeio g by @li= 0w L g au 2
T U e o doom ow o G re SHm &S, - =1
"er Ay RS ay° 3 Ay J R ¥ /139y 8%~ 3

The equation of continuity (3) vecomes

ol 28y srye gR8e p 28, - 28, L or g
QR[}(W c)r + p(ay + if)+ ¢ &y |* & 3x'T P FEit W X't 55
aw av!
+ P(gi' o )
= 0
and for large R this is
gl B0 in Vs BB
i(wee)r + p(ay # 18 ) 4+ 5y ? = 0. seseses (14)

We shall take the Prandtl number o, = cpu*/k*g
to be constant, so that, with Cp constant, k*ﬁﬂlx. Under
these circumstances the perturbation equation corresponding

/to the ...
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to the energy equation (L) is

P

ap(ﬁ 2 4 i(w-c)o)+ ll?(w %2, - v‘%§)+ p(f %%,+ W i%,+ v'%%)
rr-apt @ + 10)e TrZE - 21 2]
2
o Ml @58 | 2gy, 220 2 —@T}
‘R[{(ayz“ae) 3y oy ' oy )

+ Y (r=-1 )1&*112 {fﬁ(-g-—g-) + 20 a“’ ( + mgg)}

3" ox'"ay Y 3" 9% oY
of owi
+20 ax! yj
2 2 -
i L dp 8wy @ 8098 QL . &k RR
+§3[° {m yxr? o gx ke DE' x'" ox' X'}
2 — 2
2{h —fow" owav' &\ L 3Ff , AW 2V
+ Y (v-1)M, Em@"a:_crera- ;’*3“‘3::'(2 = 3
2.4 %' av' = ow . 3Ly}
+ 2ia“pg T * 2 ax,(m 5y HH ay)}
VN 2., of "o
+RL|- 2Y(Yﬂ1)M1 QL BX1 %!
= 1 2
+LY(Y‘1)M2 m (a__g") (] nlluntl(12)
B9 1 z

For large R, with g~ £& o <& R again, this reduces to

a7 . T aT gg ,aa'}
op (@ 3+ i(w-c)6 RL?(W éx'+ v'ay)+ o(f TRl S TR ?J
= ~a(¥=1) pT(—g+lf) ﬁ}:;il[m-(%g, )+p ]
. o 88 L 2 (2ol
[ ae)+ay,y+ay(my)
L L) gw\2  , aw Af ;02
5 1’:n (ay) + 2 37 ( 5+ 1o l. Rasaadds
Finally, the equation of state gives
w r 0
iz = - + = s --nn-.-1
5 = T (14)

Equations (8), (10), (11), (13), and (14) are the
linearised disturbance equations for flow with a pressure
gradient. It is of particular interest to note that for
infinite Reynolds number they reduce to the equations with
no pressure gradient (cf. the equations given in reference 10),

JEBUE s
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thus the inviscid stability problem is independent of
the external pressure gradient, except in as far as it
affects the local boundary layer distributions of
velocity and temperature. In particular, the differen-
tial equation for @ (equation (112) of reference (10))
in inviscid flow

I'd g'g -d—.‘?. i
a i(w'c)dy = gy # { e a2 W 7 (15)
a—'{ 2 ) 2; = T ¥ = s % s 8 8w
y{ T ~-M, (w-c) ]

is the same with and without a pressure gradient.

The next step in the analysis is to introduce
a& new system of dependent variables defined as

= o &E "
Gy T bp dy ? ZE A
S - L B9
e wae © TBER o Bge RS

1

With the aid of these transformations it will be possible
to reduce the perturbation differential equations to a
system of six linear homogeneous first order differential

equations in the variables Zq,...,Z6. Thus we obtain
immediately

97 9z

e S il -

ay -—22, ay -—Z6 ..l..l.(16)

whilst equation (11) becomes

2

9% M
i i e ik
55 i7 == Zy =7 Bg e eeeeees (17)

L8 s i)
§ =58 Z3 - i(w c)z

Using equations (8) and (17), we can find the value of
6Z2/ay; equation (8) gives

0Z 0% )
uio%s @ apn @l a 1
Pi§§— 3 1a” 55=1= ap .i(w—c)z1 + =7 7 + 1aZu

tY o 3y
92 : aw
Yol o + LN 5, 5 )

) i
b 427 (2w omaw, au {2
* SuaTz-m 5+ % +ay(Z + ia Zj)mgt ’

T%king ui to b2 a single valued function of the temperature,

T"s so that m = © %%, we can write the last equation as
G
0%Z YA . i
$ JA..27 gl ow 1o ‘ o
37 * 3 ia e pLi(W—c)Z1+ 3y Za} + ¥ N +0(1) ,

& s SR

where 0(1) stands for a linear function of the perturbation
quantities ZyeeZgs az1/ax' and BZu/ax', which is of order

unity in R and is regular in M 2, and is thus of maximum

1

/order ...
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2 2 : 8% !, s
order of magnitude a“ or 1, assuming that s 0(z).

Eliminating az3/ay between (17) and (18) we find that

%2 _ R |
oy = N ip

The only difference between this equation and the
corresponding equation with no pressure gradient
(equation (69) reference 10%), lies in the terms
forming the expression written as 0(1), and it is
found that for all the methods of solution considered
the latter expression can be neglected. This is
dealt with in greater detail in the next section.

_i(w-c)z,‘ +%§Z3]+%izu}+ BELY cressan {19)

-

In an exactly similar manner it can be shown -
that the remaining equations for azh/ay and az6/ay are

of the same form as found by Lees and Lin. For com-
pleteness they are included here.

2
8% -Ria“(w-c)p Z;, + a O(1)
é'y_LL“Y — PP 25 "y veeee (20)
+31(1.LLTT1
9% s -
6 . 0oR ! - aT
5 i Matil,l(w-c)Z5+a 25_]
~(r=1) g% Zs-ri(w—c)M12Z4] e R ) s £84

In these equations 0(1) again denotes a function linear
in ZysesssZgs aZ1/ax‘, aZB/ax', azu/ax'y and 825/ax',

which is of a maximum order of magnitude u2 ar 1,

Solution of the perturbation equations

There are three principal methods cf solving
the perturbation differential equationsy 1in each case,
as is shown by Lees and Lin, the terms denoted by 0(1)
in the equations are negligible to the first order of
approximation. The first order solutions are in fact
the only ones that are considered. Through the dropping
of these terms the dependence of the differential equa-
tions on x and v is lost, and the equations may be
solved for any given distribution of wvelocity and
temperature along the y-axis in exactly the same fashion
as given by Lees and Lin for parallel flows. We shall
summarize the methods developed by Lees and Lin here.

/In the %

ENote that this type of relation does not hold for
derivatives normal to the surface, due to the rapid
variation of the importance of viscosity in the y-
direction at the critical layer.

+A number of minor errors will be found in at least
some copies of this report.
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In the first method solutions are found as
power series in the small parameter

& = (a' R)_1/-3
and in terms of the new dependent variable
mn = (y - YC)/S where w(yc) T

The initial approximation solutions for Z1 and Z., are
as follows * 3

1) | 1 1
X11 = JH-](/; %“ (iZ..)B/Q g2 ag,

el

2) fi s [ iy
[2) £ (10)%2) % a,
e

o = L)H1/3 .
X13 = ol
Ly = Xy = Xyg = 05

: w1/3 : 4 ' £ il
Sy ia(%g) { 2; JH,I(}%[%(:'L&)V zjaidg-JHf};L £12)% .

g i
372 gyt
w \/3 @)2,. \3/2].1. (L@
X32 A ia(;;) % H1/3[3(1§)5/- éedéj}ﬂ1/3[3(ié
£3/2 az
w_"-1/3
T e (Fﬁ) “ s
Rago=3gp =1 X3g0m000
where fwc' )‘I /3
L = | =— 1
Aot

and where the suffix ¢ denoies values at the critical
layer where w = ¢, and X1i and XBi are the init%?%

2
approximations to Z1 and 23 respectively, and H1/3, Hg/%
are Hankel functions of the first and second kind of
order 1/3.

Another set of solutions is obtained by
expanding the solutions in power series in (QR)’ﬁ.
This gives a pair ofasymptotic series, and the initial
approximation depends on the inviscid equation (i15)
only. Since this does not depend directly on the
pressure gradient,; the same results expressed as
functions of w and T, are obtained for the solutions
with or without a pressure gradient.

/The third ..



o

The third set of solutions is obtained by
putting

lﬂ
Zi=fi exp{(GR)QJgG.Y}, i=1yno-y6

1
and expanding f, as a power series in (aR) 2. The

initial approximation in terms of w and T is again
independent of the pressure gradient. The method
gives four independent solutions, but the expansions
are valid only in the regions given by

- Ecargx) <}, -L& Carg(zoc!/2)¢E Liiii. (22)

in the complex Z-plane. These solutions are
o

(2, ,ZBQZM,ZB) (1 ,O,OSO)GXP{i(uR)% J .

I

feme) )
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; 1 W . —ry
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c E
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The characteristic equation

In the preceding sections it has been shown
that all the initial approximations for the solution of
the disturbance equations, and also the exact differentilal
equation for the inviscid case, depend only on the local
velocity and temperature distributions in the boundary
layer, and do not depend directly on the pressure gradient.
We can thus say immediately that the bulk of the stability
theory proved for compressible flow without a pressure
gradient by Lees and Lin will hold for the case in which
we are interested at present. In fact, the only proofs
given by them which cannot be taken over exactly are those
in which recourse is made to the boundary layer equations
of the mean motion.

In particular, the boundary value problem and
its solution can be quoted directly from their work.
Thus in reference 10 it was shown that the boundary
value problem leads to a characteristic equation in
cs a, Mgy, and R. Expressed in terms of the perturbation

velocity & it is
E((lp Cs M12) = F(Z),

where F(z) is the Tietjens function and has been
calculated (reference 11), and
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P = (gu) L - % is the value of v at y = 0,
c

and E is a function depending on the inviscid solution
only, namely
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where ¢r1 and gr2 are the values of the two solutions

of the inviscid equation (15) at the wall and at infinity
respectively (see equation (5) on page 8).

Equation (25) holds provided
2 2
1 - M1 (1—-01‘) $ Oy

corresponding to the neutral supersonic and sonic
disturbances. The significance of this restriction
will be dealt with in section .

The complex characteristic equation leads to
two equations relating Cis Cps Qs M1 and R. It is

usual to consider chosen values of cy (representing the

amount of damping or amplification of the disturbance)
«nd M4, and to plot the relationship between o and R
given by these equations. In particular, if c4 is
chosen to be zero the neutral stability curves are
obtained. In this case the calculation of the solu-
tions of the characteristic cquation is not too
laborious and Lees (reference 11) gives the following
modified form of (25) for computational purposes, when
solved for o as a function of R and M.
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and the corresponding value of R is given by
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Here u is determined from

w'e /¥, + B d
u+iv=1+g 22 _22‘_-,
0

Fio + B Byp.
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Here the integration must be carried out in the
complex plane, and then, because of the condition (2), the

path of integration must lie below the point y = Yo
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For inviscid flow the secular equation
reduces to

2% Pio + B 2y, i ol
Poq Poo + B Foy i Ao
and since gy, = 0, this is
Bos + B By = 0. A

The supersonic disturbance

The boundary conditions for the disturbance
velocity are that @ = 0 at y = 0, and @ is bounded as

V- 00, For the latter case we need only consider the
inviscid equation
caad i 1 5
%{(w c)sz WQQ} - LWT__lC g, el a {30)
the solution of which becomes
+....
QIN e_By 5 as y")cﬁ. o-n.-na(31)

Here B = aﬂﬁﬁj = aa/(1~M12(1-c)2), a ) 0, and we define
B uniquely by making a cut along the negative real axis.

The boundery condition imposed on (31) msans

that we must have @ »v =Py, Then if we put

2 = LSEl(cos Ok d BIn 0)s i Kty B,

we get

2 S
CcoSs: _A/§(1 + cos 0)

ain

e e

= i;/%(# -~ cos 8), + forx >0 >0
- for 0>6 > -x

therefore,

1}
S:‘l -fgr ¢+ for .‘Qi}o
- for _‘:"Ziti.o

B8 =Jﬁ;{5/l§2|+-ﬁ?rl . ;j

....... (32)
Qr = KD ~ M12 !:(1-01,)2 - ciz:l
R, = &) =2m2 ¢, (1-c,).

/These ...
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These results show that if

(1) c, 2 0 (i.e. the disturbance is amplified),

fL > Oy B » 0, and we have disturbances in

the form of y attenuated waves travelling
outwards.

(i1) c; £ 0 (damped disturbance), 52,40, Ei 40, we
have a damped disturbance travelling inwards.

(1ii) c; = 0, and.52r;>0 (a subsonic neutral disturbance),
then Ei = 0, and the disturbance is attenuated in

the y-direction, and travels parallel to the
surfacs.

(iv) c; =0, and £?P¢:O (a supersog%p neutral disturbance),

E} = 0, and both solution e~ " satisfy the boundary
conditions at y = &, so that both inward and
outward travelling waves, of constant amplitude
in the y-direction, can exist.

In the last case (iv) the boundary condition at
¥y = oo is automatically satisfied by both solutions of (30),
and therefore the six boundary conditions to be satisfied
by the solutions of the six differential equations (16) to
(20) are reduced to five. There is; therefore, no
characteristic equation (25) to be satisfied by a, ¢, M
and R. It is then apparent that neutral disturbances af
any wave length and frequency with

¢, £ 1 = /My 5 ¢, =0y
can exist for all Reynolds numbers.

In the calculation made by Lees (reference 11)
it has been assumed that neutral and amplified supersonic
disturbances have no significance in the stability problem.
This can be confirmed by investigating the secular equation
for the supersonic disturbances.

Thus, for the inviscid case, the secular equation
is

Qféz + Eﬁzg w0 .......(33)

The first order approximation in a for Q gives (see
equation (5) in the main text)

ggz = (1“0) K1 (C)

i

A
\
1_M2(1_ )21 ; oc--.-.(BL]_)
g = (1=0) { A} |

(1~c)
69 T o qu(w—c)2
0 (w-c)

and the path of integration lies below the point y =y

in the complex y-plane. &
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Taylor expansion about the point y = ¥4 gives
2

il S} wl
- 0 da
K1(c,m1 ) = o= Sute + (wc)j [dy ig j& (En]c§ EER) ¥ oo

c

Thus neglecting the higher powers of ¢, (33) can be
written

' 2
3 5[ T, Te T2 fw'y | _
aJ1-M1 (1-c) 1— “5is + (WZ)BLB-&—(-T«‘LW:C(@n.PcE -iqc)}

1T = M12 (1~C)2
(1-c)?

w B ; .......(35)

To study an amplified disturbance we suppose
that the phase velocity ¢ has a small imaginary component
80 that e = By, # i c;s 8ay. In this case if Ccy is small

enough it is clear that (35) is approximately

Bir Te 1-1,° (1-c,, )2
0
- wie, o 3 [dy T )]W ('e‘n-(" Y 1"‘} J 1 2
L %% (w) ) (1-c,
= 0. . wain s v s K96 )
For supersonic disturbances and 5?1 small
J1—M (‘l—c) wr-— -1 ,\/
LI 2 5
TSy g C(.i“/M,{ (1-—01‘) —19 s fOI‘ ci ) O
- for cy <& 0.

Thus considering the supersonic case and taking the real
and imaginary parts of (36)
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Therefore
T q To + 2 2
- “af M, (1-cr) -1 = 0, +forecy, >0
.{‘ n ]
(cr) Wolr - for cy & B,

Since a > 0,~2n(cr) £ 0, and excluding the sonic case
c,=1- 1/Mﬁ, this has no solution for c; > O. Thus,
at least for small values of o and ¢, amplified super-
sonic disturbances cannot exist, for they cannot be
made to satisfy the boundary conditions as y -y a0,

It is to be expected that the same result will
hold for the viscid case; since the breakdown in the
boundary conditions occurs in the main stream, where
viscosity can be neglected.

The mathematical analysis of the supersonic
disturbance thus predicts that neutral disturbances with
continuous characteristic values and damped disturbances
with discrete characteristic values should exist; but
amplified, self-excited, disturbances cannot exist.

The physical significance of these results is not clear.

The abrupt change from continuous to discrete characteristic
values does not seem to be physically reasonable; and since
only small non-amplified supersonic disturbances are
mathematicaly possible their existence could not be
established experimentally. We note that the former
difficulty can be removed by altering the boundary con-
ditions from

?@ is bounded as y - oo, to @ = 0, as y-> o,

Since the whole mechanism of laminar instability is
considered to arise from small perturbations within

the boundary layer, this revised boundary condition
seems plausible. If it is used the secular equation
will hold for the neutral supersonic disturbance, and
it may be considered as the limiting case of the damped
supersonic disturbancs.
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APPENDIX B

- ma s s e e

Calculations of the Neutral Stability

Characteristics

The transformation of compressible boundary layer flow
into a corresponding incompressible flow

When the Pprandtl number o and the index w in

the viscosity temperature relationship u*cc ™  are

taken to be unlty s and when the surface is insulated,
the compressible boundary layer equations can be trans-
formed into the incompressible equations in the new

variables uf, yf, xf, defined by

& 7% 1Y
x x
u u
i1 1
_,__:_._:M u-nunnn(}?)
a, ay 1
. 3y -1
nX e
a =
Xf e 'aq_),\fqu* .l..ll.(38)
ity

fh1 -1  go®
='l‘1\8.—16> jo‘—Tx. v--o.oo(59)

Note that in these equations

e ELE x
W= u /u1 » Wy o= U /ui1,
suffix 1 refers to values at the edge of the

boundary layer;

suffix 10 refers to stagnation in the main
stream.

With an insulated surface the boundary layer
temperature distribution is dependent only on the local
main stream Mach number and the velocity ratio w = Wy
and is given by the Crocco formula

E
TE"‘_‘—?-H‘=1 +I':2-"'1N11 (1—‘“(‘). -l...ll(L|-O)

/Proof ...

x w is about 0.8 for air under normal conditions.
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Proof of the transformation formulae (37) - (39)
have been given by Stewartson (reference 20) and Illing-
worth (reference 19).

For finding the steady compressible boundary
layer velocity distribution we shall use the exact
solutions of the incompressible equations for the main
stream velocity distribution

11 = c(x ) ¢ constant . sanass e (1)

The differential equation that arises for this

case is
3 2 [/
a-F d"F B
+F B _"'") —1 .-;--..().].2)
ay> ar2 ,’_\d ) :\
B = 2m/ (m+1)
- ® ) %
F= (2-8)"%¢, 2 (qi) = ui/ui,} = Ws
— 2 x
Z = (2"‘8) o NER "'Ii -(1111/\)10 1) 1 .
This equation has been solved by Hartree
(reference 18), and his results are the basis for the
calculations made in this paper.
In solving the stability problem we shall
have need to use the derivatives of w with respect to
Ve These can be obtained from (39) using the following
results obtained from (42)
( ) " U4 j’]l o jmji )
2-B) T = - W Wdﬂ-"‘\jw‘i"} + 8 W—1 an
My io & 7~ «¥p
2 vig
(e-p) £, o8 [y an +opmio1),
a My .
My 1)
3 Raner
(2-B) d W3 _— wg‘} wan, + W %E—(2B-1),
an. an.“Jo 4
i il
alhy 5 i g a°w aw
(2-B) —— A \ dei + 2w 2(5-1)+ ( ) (2g£1 ).
dni dni Y0 dni

Derivatives of w up to the fourth are required in
solving the secular equation, but for the determination
of Rop. min. Only the first and second derivatives are

needed. These have been calculated for a number of
values of B by Pretsch (reference 15), and can be used
conveniently in obtaining the approximate values of
these derivatives. His results are reproduced in
Figures 10 and 11.

JThe ...
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The Hartree solutions of (42) expressing w ac a
function of w;., can be transformed into the compressible
solution in the variable

y = Y%/Yf =y*/s , say.

Then, using (39),

T dn Ta
0 i i
¥y = —_— = —— , say, seveens (43)
41 b
T d'qi :
)
41
where b = I T dny-
0

For the 'edge' of the boundary layer we take v. i1 such
that

*
Uy (1'111 )
x

Y1

« 9995

The compressible boundary layer distribution w(y)
thus obtained corresponds to the transformation of the
incompressible main flow velocity distribution

- m
u§1 - c(x?) ; given by equations (37) and (38). We find

in fact that

o, .2 xoMm
52 a0 Xy ,
" =
2 Yul W2 _x:2m
84 * BT C %y
I
) %40
i B i i | op S
-— o *
&10 + B) C Xl
3y _1
g i 5r=1)
ax ] Yl & Eem
= + X
dX_* 2 !,ra )2 ki
i 840

In general there is no exact solution of these equations,
but we can obtain the solution as a power series in
T(*)"a,,  Thusyif ¥ = 1.l

Vi m"\. 2
(10m+1) fox*

- i w . -.olnoo(}-il}.)
10 (2m+1) \ 210/

” Normally we reguire the compr6851ble velocity
u* as a function of ¥y /5 v /&, where 6* is the
boundary layer dlsplacement thickness and +% is the
momentum thickness. Now

/‘ﬁo--
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%_j {um 6' D}dy*

ﬂ"“ 5 uy
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- 35 M4
11 L‘

N4
T d’qi
V.0
e
= Ki}/b’ where K, = JO w(1-w)dni ....... (45)
'I’].
and b =S“Tdni,
v 0
and therefore
®
I = v B 6
T (L46)
Similarly 00
Qf. Jn(1 - pw) @L;E
x %
371 y1
-
(T W)d'rii
- Y0
41 Pise
e
0
jm Yod o P ¥
(1-we 5= 1w (=w)+ (4 W)_g)dni
b
s o
B KQE + e Wy (K@_ + K&E)
e . = 8 & 8 @ (LL?)
b
where K _ = [ (1-w)dn..
GBE ‘0 1
Therefore
Myb/(KE'"_ M I—K +K6¥])- --.-..-(!.].8)
From tﬁese results it follows that
i W 0
- b
K LI I I (11.9)
Rg= R4
*
remembering here that a = a8, R = --:E- :
V4
/Pretsch ...
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Pretsch has also calculated the wvariation of
E& and Kéx with B for the Hartree solutions, and these

are shown in graphical form in Figure 9.

2, Numerical solution of the neutral stability equation

The method of solution of the neutral secular
equation (26)has been given by Lees (reference 11), and
his method is quoted here. Once the coefficients of a
in (26) have been obtained (see AppendixB3) from the
velocity and temperature distributions of the boundary
layer, ths procedure for solving (26) is as follows.

From the Tietjens function F(z), the function
§(z) = 1/(1 - P(2))
is plotted (Figure 12).
For a given Mach number and a chosen value of

e > 1 -1/My, the value of v (see equation (26)) is
calculated from

1
% T wé c Tc (ﬁé' EE)
- - -
TO (Wé)Q WC TC
w! ¢
g §K1, 00003-0(50)
o)

i

1l

where f'K1 is the imaginary part of K1.

|
% w Vo Yo : .
= S 1, is usually small, and the first order

approximations for @ and @i’ the real and imaginary

r
parts of @, are

@) = v

sevssendB)
59 @) = W,
r

Using the values of v obtained from {(50) z° and u°

are found from Figure 12, and these give the value of
v, z W 3
aR = 3 2 s
wy, (1+3)

The first order approximations for u and 2z
can be improved by using

(1) (1) (1+ M)v
9 (2 ) = ,
. (14 A u(n))24-h2v2
@) 5 @) (1) | (1da () )2+ A2y 2 N v2
u = § (z ) ) ,
. A (1@ | 1@

using always the value of v given by (50).
JEIOATIYY o s
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Finally the value of o is given by (26), which
can be solved by an iteration process; the whole pro-
cedure is repeated for a number of values of c > 1-1/M1

to obtain the complete neutral stability curve of a
versus R.

Evaluation of the integrals appearing in the
characteristic equation

In the method given in the last section for
solving the neutral characteristic equation, the values
of the coefficients, H, X, M, N, of a were required.

The evaluation of these coefficients, which are multiple
integrals of the boundary layer velocity distribution,
constitutes the bulk of the work needed in numerical
solution of the neutral stability problem. In the
present case it was found advantageous to alter the
method of evaluating these integrals in some details
from that given by Lees (ibid).

Following Lees in equation (26) for a, we
neglect powers of a higher than the second. The coef-
ficients that have to be evaluated are, therefore

E
LO 1
Ay ) 5 8 5
T-M W~C -
N2 = H2 =J 1 ( . ) dyj WTC dy
0 (W-—C) 0
y 2 2
T roM& (w-c)
K, :J L g f(52)
0 (w-c) i
;
2 2 y v o 2 i
y &l f :
S po1 TN, (w-c) dy\] (W-Clz dy‘J T-M, (w=c) dﬁ
3= 2 g N |
o (W) o o (@-c) |
T )2 7 T ee)® 0T 2 |
. b Ty | - JeNsagtyatyes iy
0 V) 0 (W—C‘-) v _J

The general method of evaluation is to split
egech of the integrals into two portions, from y = 0 to
Yy = yj say, and from y = yj oy = Y45 80O that the first

region always contains the singularity of the integral
et w = o, This is then calculated by expansion in
Taylor series about the point y = Yo and integrating

term by term (bearing in mind that the path of integra-
tion always lies below the point y = ¥ in the complex

y-plane. The second part of the integral can be found
by a straightforward method of numerical integration,
such as the Simpson parabolic rule. In general, we

/shall ..,
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shall denote the two integrals thus formed by the

additional suffices 1 and 2. Thus, for example
g
J
K14 =j iy A7
0 (W—C)

4
i)
oLt R B
- (w=c)

J
Then
b 2

3.1. Evaluation of K, (c)

We put
gy OR | T
S 2 2at Y
(-c)®  (-0)2 -y )2 ¥
Where Wf‘ Wll! 2
V) =1 + 5or 7=y )+ —=— (F=5.)° + «v.
2w c S c
c 'w
Cc
and expand m/ﬁrz in a Taylor series
. l ] te 2
; R 4 o\ (v-v5)
v E\) \«fﬁ/ (=3¢) + 1 2>—-9——+.
* e c ¥ S o

where the suffix ¢ denotes values at y = yc.

() We therefore get
a
f j - ‘'
K11(c) = -lg\! -2 ( (Y—Y (- el
"e Jo (y—yc) 7“;0 / c 2

The real and imaginary parts of K11 are

g . 1 T o 1 fT \ll (y—-yc)
5{1( w g foif e} wnoe. 5] By ¥ V=Y .1+ =5 -
11 Wéz 5 ) T34 {Wz A c| 1,!,2_’_)0 51

BT F o B
¥ it 0
= lA(y)' j, say,
0
= A(yy) - 4(0),

/and ...
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and
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11" )2 ﬁi)c

This integral has been shown by Lees to be the only -
effective imaginary contribution of the coefficients
K1, H1, etc.

The method of evaluating the derivatives of
is given in section 3.6 of this appendix.

I
2
Y
(b) To calculate K,, we use the transformation (43)

given on page 3L, to express it as an integral of the
incompressible boundary layer velocity distribution;
thus

igy o 141 op JLE S T b
o g 7 8 T i
Kio = 5 J wg d’r}i+20j gd‘l’]i+30 j ;Ed?]i+...s_
i3 43 L E o
i 44 41
- %{ Loag, +2n|  @z-1)an +1 (L5 - 2+ w)an,
w W ik
=L b o
~ 41 4 41 1 g 44 1 5 “
+ 2¢ J — dny + QhJ (——;-w)&qi+h B (—-3-;r+w)dqi|
w w w __]
= Wy i3 b T
5 41
+ 3c - an + .
n
w
4 ‘\']ij
- }
where W o —%1 M12
UER|
and b = j T d‘l’]i.
0

The nunber of terms of this expression that need to
be taken varies with Mﬁ, ¢ and the pressure gradient

parameter 8. For the calculations made in the
present paper it was found necessary to go as far as
the tenth power of c¢ in some instances.

The integrals forming the terms of this
expansion can be calculated directly from Hartree's
incompressible boundary layer solutions (reference 18),
using Simpson's rule.

i
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5.2. Evaluation of Hy(c)

This integral can be transformed immediately
into cne in the compressible variables:

3 18 41 MR
Hy(e) = ¢ j wodn, - 2c wdn, +c ni1j
0 Yo :
V4
“.|B(5’)io , say.

3.3. Evaluation of Hz(c) = NQ(C)

We can split the integral up into the following
terms (see Lees): :

a5
~
0
p—
i
e
cq
.
3
o
o
e
Ly
_Qf-".
=
Q@
no
T}
~

=
N
N
)
T
i
i

Y5 (w=c)* y
Then
R Hy(e) =Ry (o)- MEH, (c)+ K, ,(e)H, (c)- P(c)
§a,0c)e 0.
(a) We fing that ;
244 :«}FOJT"# e {:‘y(w——%ﬁ - |B(y),zc}

Cc

where B(y) has already been calculated in finding Hy.

After expansion of the integrand in powere of
(y-yc) and neglecting powers of y_, and (yj-yc) greater

than the fifth, we finally get

/H211(c) T
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Hzﬂ(c) = ¥ T+ ¥5 %C{\?)c g+ iﬁ\_T—)c(;i}c
. 2 2 0 (y-y )u 1f2 1
3.1t c Yy ia
T 20 (T )C(vg)c i + {%’ ( /i )C (]Fz)c )
- ( )2 (L (_T_> L*’ff _T_>'3L -3 |
20 \T/e \¥2)e \yP)e ~ ONT/c \§2/ J T 5 X
+ K, ,B(7,) |
e lc( |yj
= | C(y) + K,4B(y,), say

(b) With the same procedure as for finding H

1?
we get
"Tli'i tnj_ ni*] Tli
H, (e) = i ( an . w2dq. + h (1-W2)dn. Wqu.
22 b2 L i i i i
~0 0 0 0

(c) There is no singularity in P(c), and we can
therefore transform it into the incompressible form in
the same manner as we did for Hop . The final formula
obtained is 2

| g| 1 yP
viid i1 i1 ntid
P(c) = %5{1 lidnij wedn, + 2hj (15 =1)an, | woan,
w w
M 5 n 04 'J"'i
41 (41
+ 0% (-2 +wP)an, l wlan
’ J
e 7 4
154 41 & 44 T4
+ 2¢ I g -2 j wodn; - "‘éd“:.J wodng
w w %
ﬂij ﬂi ﬁij ﬂl
| T m up -
n'il 1 1 r'id 5 Bk 5 1 i1 }
R " i — i
- 2h§l ( 3‘—W)dni.j w dﬂi |j ( 5 1)dﬂi[ w dﬂi-
Inij ﬂi ﬂij tﬂi

N4 4 144 111 41 5

ol 1 1 2 1 2

+ h .{j' (_3“2§+W)dnij‘ W dqi..J (;2 -24+w )dnjj wdni}l
Ny il
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3.4. Evaluation of Mz

It is found that

(RM5(°) = R_M311 (e)+ H, (c)[K12(c)H1 (c)-2P(c)]+ Q(e)- M12M32 (c)
iMB(c) = 0,
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3.5. Evaluation of Nj

The expanded form of N3 is

N, (e) = N311(0)+ K12(c)!:éH211(c)+ H, (c)Km(c)-P(c):i M 313(")
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3,6. Evaluation of (T/Wy?}:and its derivatives

\y?

approach from that given by Lees, and express the
derivatives directly in terms of the 1ncompr8881b?e
boundary layer velocity distribution and its derivatives,
using the transformation (43).

f o \(n)
To calculate — we use a rather different
c

Thus we find firstly that
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Ly Calculation of the Minimum Critical Reynolds Number

The following estimate of R i
Lees (reference 11), cr.min.

25 [T(c)]1+w wé
Mf1 -2 (1-0)?

where ¢ is determined by

is given by

o

vtin n i LBIR)

RCI'mfln

v(c)(1 =20\ (¢)) = 0.580

2
vie)= -t | o 4 oy
© (w') w=c
w! y
Wie) = 28 _ 4,

We can express the derivatives occurring in
these equations in terms of the incompressible derivatives
using (43); thus
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B Apvroximate Calculation of the Upper and Lower Branches
of the Neutral Stability Curve.

Expressions for the shape of the neutral
stability curve for large Reynolds numbers have been
obtained by L=zes. These have been used in the present
paper with an important modification of one of his
results. From the neutral stability equation (26)
Lees approximates a by

w'e
ot ijq I 0 S (PO (5L )

for large Reynolds numbers and small values of a and c.

/However ...




= B

o However, when c becomes appreciable the factor
(1=c)® in (26) can no longer be neglected, and we must
write for a

/ 2 3

w'oc A1 - M (1-c)

o ... -T-Q-—- l 1 5 T R e (5_))
o )

o (1-c

For many of the stability curves this modification
is of minor importance, but when a remains finite as R- ¢o
(the unstable inviscid case), the effect of neglecting

(1-0)2 can become overwhelming. Thus for g = -0.1, at

R = 8o, the formula (54) predicts that for the upper branch
o decreases as the Mach number increases, whilst according
to (55) it decreases. Confirmation of equation (55) is
given by calculations made by Pretsch (reference 15) for
the incompressible case with B = -0.1, with which it agrees,
as can be seen in Figure L. In contrast, the values of a
for the upper branch calculated from (54) are half the
Pretsch values.

We shall give here the formulae used to calculate
the branches of the neutral stability curves in terms of
the incompressible derivatives of w, including the modifica-
tions introduced by using (55) in place of (54). A1l the
equations hold for ¢ = 1 only.

5.1. Subsonic main stream velocity

Lower branch

s w15 (1-u2)Y
Red D . Bty S (56)
TO6 c:,Ll'

Upper branch

(a) 1If %E (2%) vanishes for w » 0,
1 8
8 i) 1 1
:R1 -b 20 8- ‘15 2 Lot (5?)
ex™ T, 2 ac’ (o=c.)
ae ‘1
=y Lo )
Ayt N E JO
w! e '
2 2 2
a & Db i02 ,\‘/‘I-—M,1 (f=2)" & ([({82)® . iceven (58)
g

(i

: ’ d w!
where ¢y is the value of ¢ for which ]_E§ (1f$]c =0,
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2 4
The aporopriate formula for Q—E (%F) in terms of the
; . . i O

lncompressible variables is

~
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—s (= + +
ayc T 7l 72 72
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where h = 5 M1 ‘
(v) o506 L
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o . 5/2
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AR
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6.2. Supersonic main stream velocity
B3 22 S= @) £ 0 Por my il dal
dy \'T ® = 1
2 o 3
(w, 'Y< =z
Ra p° 10 13 aiaisen LG
(1-1/My)”a

The two values of Uy and Z, corresponding to the upper

and lower branches are given by the solution of the
equations

@i(a) =vie) =v( - 1/u,) .{
) —xwio(‘i N 1/M1) pD & (EL;I ll
- T02 _(w{)3 o A Jw=c=1-1/u, (

w =9 (z)

cwsveve kB1)

where @(z) is the modified form of the Tietjens function,
and is plotted in Figure 12.

1
b) It %E(%r = 0 for some w ) 1-1/M1, the lower branch
is given by the single solution of (61) for u, and z,, and
equation (61). The upper branch is given by equations (57), (58).
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Reynolds Number, disturbance wave nuwnber and

Insulated surface, B = 0.6.

phase velocity for neutral stability.

4 =0
c a R 0 g RmP

.0L4905 | 0.1011 | 1.938 x 107 | .00808 | 1.549 x 10°
04905 | 0.2169 | 6.372 x 107 | .01974 | 5.004 x 10°
.0966 | 0.2270 | 1.250 x 10° | .01815 | 0.999 x 10°
0966 | 0.5316 | 3.054 x 10° | .on250 | 2,442 x 107
1426 | 0.3805 | 2.623 x 10° | .03042 | 2.097 x 10%
1426 | 0.8306 | L.1055 x 109 | L0661 | 3.282 x 10%
.1872 | 0.6028 | 8,873 x 10% | .ou819 | 7.093 x 107
.1872 | 1.0710 | 1.196 x 102 | .08563 | 9.562 x 10°
1959 | 0.6366 | 7.742 x 10%* | .05089 | 6.190 x 107
1959 | 1.1074 | 9.549 x 1ot | .08854 | 7.634 x 107

4y =0

(s a, R q& R&

04905 | .0800 | 2.503 x 107 | .006313| 1.975 x 10°
04905 | .1945 | 8.933 x 107 | .01535 | 7.049 x 10°
0966 | .1826 | 1.591 x 10° | .o1441 | 1.255 x 107
0966 | .4066 ' 3.944 x 10° | .03208 | 3.112 x 10°
1426 | 03111 | 3.366 x 109 | .o2us55 | 2.656 x 10M
1426 | .6592 | 5.926 x 10° | .05202 | L.676 x 10k
1872 | 4847 | 1.105 x 102 | .03825 | 8.719 x 10°
1872 | .8536 | 1.571 x 10° | .06736 | 1.240 x 10
2046 | .5818 | 7.889 x 10% | .ou591 | 6.225 x 107

2046 | .8954 | 1.0314x107 | .07066 | 8.139 x 10°




TABLE I (contd.)

=GR &

s Bl 4
cC Q. R Cg, R&
.04905 | .0633 | 3.171 x 107 | .00493 | 2.471 x 10°
04905 | .1457 | 1.298 x 108 | .01135 | 1.012 x 107
.0966 | .1491 | 1.982 x 10° | .01162 | 1.545 x 107
L0966 | .33 | 5.085 x 10° | .02606 | 3.963 x 10°
SAU26 | 2478 | 4171 x 102 | .019%31 | 3.251 x 10l
1426 | 5460 | 7.447 x 102 | .ou255 | 5.80L x 10M
.1872 | .4000 | 1.365 x 10° | .0%118 | 1.06 x 10l
1872 | .6895 | 2.069 x 10° | .05374 | 1.613% x 10o™
.2132 | .5478 | 8.753 x 10% | .ou270 | 6.808 x 107
2132 | 7463 | 1.0948%10° | .05817 | 8.533 x 107
M, = 0.9
e a R %o, R&
04905 | .05931| 5.399 x 107 | .00%01 | L.140 x 10°
.04905 | .08999| 1.935 x 10® | .00690 | 1.u8y4 x 107
.0966 | .0960 | 3.17% x 10° | .00736 | 2.1433 x 109
.0966 | .2187 | 7.886 x 10° | .01677 | 6.048 x 10°
1426 | 1728 | 6.134 x 102 | .01325 | L.70L x 10H
426 | .3523 | 1.2006x 10 | .02702 | 9.207 x 10%
.1872 | .261L4 | 2.080 x 10° | .02005 | 1.595 x 10%
L1872 | L4694 | 3.138 x 102 | .03600 | 2.406 x 10%
2132 | .3479 | 1.166 x 10° | .02668 | 8.942 x 107
2132 | .5562 | 1.651 x 10° | .04265 | 1.266 x 10™




Table I (contd.)

o B

L
v c a R 0,“9_ R_&
.0966 | .01614 | 1.9135 x 107 | .00121 | 1.437 x 10°
.0966 | .03623 | 5.220 x 107 | .00272 | 3.919 x 10°
1426 | 0773 | 1.412 x 10® | .00580 | 1.060 x 107
1426 | L1599 | 2.798 x 10° | .01200 | 2.101 x 10°
1872 | .1636 | 3.353 x 109 | .01228 | 2.517 x 10
1872 | .2951 | 5.3705 x 10° | .02216 | 4.032 x 104
2218 | .2612 | 1.464 x 102 | .01961 | 1.099 x 10t
2218 | 4014 | 1.951 x 107 | .03014 | 1.465 x 10b
My = 1.3
c a R Q'-g» R.g-
.2333 | .00350 | 1.009 x 107 |.000257 | 7.411 x 10°
.2333 | .00485 | 1.u43 x 107 | .000356 | 1.060 x 10°
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Auxiliary functions used in the calculation of the

neutral stability characteristics.

Insulated surface, 8 = 0.6.
rﬁ1 i % v L H1 H2=N2 MB N3
0 }.04905].0214].1023| .2086|.6604}.2903|.1243 |.1902
. 0966 |.0377(.2261| .3929|.5895|.28,42}.1085 | .2041
1426 |.0543|.3600| .6357|.5252].2782|.0945 |.2186
. 1872 1.0709}.5219| .8879!.4675!.2732].0822 |.2366
. 1959 |.0745]1.5571 ] .9429|.4560].2718]|.0798 | .2405
0.5].049051.0181].1006| .1532!.6518|.2232|.0936 |.1227
.0996 |.0340]|.2160| .2813%.5818].2243|.0839 |.1%78
. 1426 [.0501(.3697| .L4276].518L).2248|.0748 | . 1565
. 1872 |.0663{.5031| .6037{.4575].2212]|.0645 | .1676
. 2046 [.0731|.5687| .6631|.04395{.2170{.05945! . 1645
0.7|.04905|.0165(.1000{ .0702|.6438].1638!.0680 | .0771
.0966 |.0323|.,2132| .1685!.5747|.1718].0621 |.0892
1426 [.0L70}. 342,  .2590{.51211.1758!.0569 | .1059
. 1872 1.0629.4859| .3%778|.4519|.1807|.0507 | .1235
«2132 |.0729|.5879 | .L4625].42%9;.1900|.0493 | .1383
0.9{.04905}.01521,0993] .0269|.6335|.0778!.0268 | .0219
. 0966 |.0306{.2098| .0332{.5654|.1036(.0351 | .0346
<1426 |.04u66}1.3338| .0569{.50%8{.11711.0369 | .0459
. 1872 |.06221.4770| .0551|.4446]|.1248(.0336 | . 0636
.2132 |.0718|.5543| .0815|.4171].1349].0332 | .0712
1¢1]1.0966 |.0305|.1805|-.0889!.5536!.0235!.0049 |-.0136
<1426 [.04581. 324711747 1. 4933 .0469].0116 L.00L6
. 1872 |.0613|.4555|-.0488.4353|.0629|.0143 | .0053
.2218 |.0743|.5695{.01186(.3986|.0805{.0177 | .0129
1e3{+2333 |.0775{.5799|-.4979]|.3706].0183].0000 |~-.0193




COLLEGE OF AERONAUTICS
REPORT No. 48.

Grp

08

I
PRETSCH CALCULATION
D =
\ ]

‘04 \

- \

O

] 2 ) 6 8 {®) 2 R.‘,,xio-ﬂ
FIG. |. NEUTRAL STABILITY CURVE FOR INSULATED
SURFACE WITH 8= 06.
(@) MI = Q.

Qy

06 \\

\
Rh‘"“‘-
'04 \
Ty
\
02 \P~I=—h
O
O 2 4 6 8 1] 12

=4
Rx IO

FIGURE . CONTINUED.
(b) Ml:" O-5.



COLLEGE OF AERONAUTICS
REPORT No, 46.

Qs
006 r
\ S ——
0.04 “"E‘n—
002
O
o) 2 4 6 8 10 12 Rux10?
FIGURE . CONTINUED.
(c) Ml=0'7'
Ay
0-04 !“\
\“5-‘-—2__
0-02 \
(0]
O 2 4 6 B 10 12 Res XIO—4
FIGURE I CONTINUED.
(d) MlEO'Q.
G
0-04
ﬂ“*_#‘
0-02 i
O |
o 2 A 6 8 10 2 RexiGH

FIGURE {. CONTINUED.
(e) Ml= i 1.




'9.0= ¢/ HLIM 30VRINS QILVINSNI 04 SIAHND ALTNEVLIS TWHLNIN ‘2 "Did

mO_ aO_ . mO_ o ¢Ol

W e —TTe a=m
ll_..r B e i g -
....h.......f.f”......un 5
........_.......__......_.rl ._.r_..._... [~
,.n....,/.,‘//f‘, s w
/ ....._..._...Ill / Icl/ /
/.. !IIJH/ ?.._...l[
_..l__l ®
N B ™
N
//_...
|
b /,/ "N 6-0=i
./ N TS
MhVEs
\ //
N\
./ N
/m.o.n_z
o=\
I
N/

COLLEGE OF AERONAUTICS

REPORT No. 48,




COLLEGE OF AERONAUTICS

REPORT No.48.

‘90 = g/ HLIM FOVRNS QILVINSNI ¥O4 S3IAMND ALIMNSVYLS TIVHLNIN ILVAIXOdddV '€ "Sid

O

co:-

vrOo:

9GC-

80:




COLLEGE OF AERONAUTICS

REPORT No.48.

T—==¢) HLM 3DY44NS GILVINSNI dO03 S3AEND ALITEVLS IVALN3N ILyWiXOodddy + oid

vy
oo O O ¢© el Ql i
N B s . H..l/ O
| _ L P
NOIWYINDIVD Ium»maa,/ _ |
polngy _ m
y derdeclened ]..
o=W et bt 2-
| /N |
o ] .\..Ouwm 7 _‘__
| T S =T T
1 ll‘T- rea— M ! £
=14 v : :
n_uufmln_nz P eed | [T / ‘
/
TTH A1
S=WTT . \ L4
/
7 ﬂ.”.__..“_.__r s L | : G-
«eo
|




COLLEGE OF AERONAUTICS
REPORT No, 48.

R"?Er. mi;.
o
B=20 B=20 —
i0* £0 ,’/; —
— e Rt - i .
B=-6 ‘\ ’
103 . \‘ \
AA—\
N\ X A\
‘\\ \\ N\,
<\
2 B=0 \\\T
e — \ - \h‘:ﬁl
B =— ‘\ B
sy x
.  —
"\‘*
10

O i -
< 3M;

FIG. 5. MAXIMUM REYNOLDS NUMBER FOR STABILITY AGAINST MACH NUMBER,




COLLEGE OF AERONAUTICS
REPORT No, 48.

Ber

20 /

16 /

-4

-2

7

06
1O 1-5 2.0 2.5
M,

FIG. 6. THE CRITICAL PRESSURE GRADIENT COEFFICIENT 2B,
FOR COMPLETE STABILITY FOR ALL REYNOLD'S NUMBERS
WITH AN INSULATED SURFACE.
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FIG. 9. VARIATION OF THE PARAMETERS Ky AND Kg# WITH
PRESSURE GRADIENT, (TAKEN FROM REFERENCE IS)
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DERIVATIVES OF THE HARTREE VELOCITY PROFILES FOR THE
INCOMPRESSIBLE BOUNDARY LAYER. (TAKEN FROM REFERENCE 15).
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FIG. 12. THE REAL AND IMAGINARY PART OF THE
MODIFIED TIETJENS FUNCTION @ (2)
(TAKEN FROM REFERENCE |1)




