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SUMMARY 

The small perturbation theory of the stability of 
the laminar boundary layer, as first considered in detail 
by Tollmien and Schlichting for incompressible flow and 
applied to compressible flow by Lees and Lin, is extended 
in this paper to include compressible flows with a pressure 
gradient in the main stream. 

The analysis shows that if normal modes of 
perturbationsof the boundary layer are considered, the 
approximate solutions for the perturbation flow in terms 
of the steady velocity and temperature distributions of 
the boundary layer, as developed by Lees and Lin for 
compressible flow without a pressure gradient, hold to 
the same order of approximation in the presence of a 
pressure gradient. 	The solutions are valid for large 
values of the Reynolds number R and the parameter aR, 
where a is the wave number of the disturbance considered, 
with the additional restriction that a should lie between 
the extreme limits, R and R. 	The Reynolds number 
referred to here is based upon the boundary layer thickness, 
Moreover, it is found that for a given boundary layer pro-
file, the differential equations governing the behaviour of 
tle disturbance in an inviocid fluid are independent of the 
pressure gradient. 	Thus the general criteria established 
by Lees and Lin for the stability of inviscid flows can be 
taken over with little or no modification in proof. 

The boundary layer velocity and temperature 
distributions for the compressible flow were obtained by 
transformation of the general 'similar velocity profile' 
incompressible solutions, 	which the incompressible 
main stream velocity in the xi direction is taken as 

- 	 - u il  = c(xi) ril where c and m are constants. 	In applying 
this method, the viscosity was taken to be proportional 
to the absolu+e temperature and the Prandtl number was 
taken to be unity. 
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Calculation of the neutral stability characteristics 
gave the following general results: 

(i) For any given free stream Mach number, an increasing 
negative pressure gradient (m >. 0) increases the 
stability of the laminar layer, i.e. the value of 
the stability limit (defined as the Reynolds number 
below which there is laminar stability) increases, 
and the range of unstable disturbance frequencies 
and velocities becomes smaller. 

(ii) With a positive pressure gradient the stability 
decreases as the Mach number increases. 

(iii) For a sufficiently large negative pressure gradient 
there is a range of Mach number, varying from 
about 1.3 to 2.4, for which the boundary layer 
is completely stable for all Reynolds numbers; 
however, the stability limit always decreases at 
large enough values of the Mach number. 
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SYMBOLS 

In general asterisks will denote mean values 
of dimensional quantities, while unstarred symbols will 
denote the corresponding non-dimensional quantities. 
A prime will denote differentiation with respect to distance 
normal to the solid surface, unless stated otherwise. 

A suffix ❑ 	will refer to conditions at the solid 
sul.face. 

A suffix 1 	will refer to local values in the main 
stream, except for yT, which will 
denote the boundary layer thickness. 

A suffix 10 	will refer to adiabatic stagnation in 
the main stream. 

A suffix i 	will refer to the incompressible variable 
Obtained from the corresponding com-
-,Dressible variable using the transforma-
tion (11), given on page 12. 

Dimensional 
Quantity 

Dimensionless 	Dimensional 
Quantity 	 Measure 

Co-ordinate measured along surface 

x x 

Coordinate measured perpendicular to surface 

Time 
t m "Yu 1 

Velocity components in the x and y directions respectively 

	

um 	 w (x,y)+f(x,y)e ia(x-ct) u 1 

vm v(x,y)A-a0(x,y)e ia(x-ct)  um 1 

Density 

	

P x 	 p(x,y)-1-r(x,y)e-a (x-ct)  

Pressure 

	

Px 	 p(x,y)+tr(x,y)(1 10,(x-ct ) 

Temperature 

	

Tx 	 T(x,y)-1-0(x 9 y)cia(x-ct) 

Viscosity 

	

m 	
4(x,y)+E(x ,Y)u 
	x-c t) 

Kinematic viscosity 

/ 
V = 

X
/p

X 
 

Conductivity 

km k(x,y)-1- ).1p,y)e ia(x-ct)  
Cpp.1 
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Dimensional 	 Dimensionless 	Dimensional 
Quantity  Quantity_ 	Measure 

Wave number of disturbance 

a a 

Phase velocity of disturbance 

Specific heats 

C 9  C 	 Y 	C v p 	 p/C  v 

Reynolds number. 

a = JYRt x 	local velocity of sound, 7 = gas constant. 

141 = 14/a l 

= C c.1, 31/k 

local Mach number at edge of boundary 
layer. 

Prandtl number. 

boundary layer thickness. 

o 	 boundary layer displacement thickness. 

boundary layer momentum thickness. 

m 	 external pressure gradient parameter, 
K  m 

defined by u
11 

= c(x) . 

index in the viscosity-temperature 

relationship 	= (T) 
 

2m =  
m + 1 

The characteristic measure 4, will in general 
be taken as the boundary layer thickness 6. 	When € 
is taken as 	or 6 the non-dimensional quantities 
will be written with a suffix 4 or (5 m  respectively. 
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1. 	Introduction 

The mechanism of the transition from laminar 
to turbulent flow is one of the oldest fundamental 
problems of hydrodynamics that remains unsolved. 	The 
perturbation method is an attempt, which is only par-
tially successful, to explain transition by finding the 
conditions under which the viscous equations of motion 
admit of non-uniform unsteady solutions in the form of 
either damped, neutral or amplified disturbances, the 
normal modes of which are usually considered separately. 
Amplified, self-excited disturbances, when they exist, 
mean that the boundary layer is in a state of unstable 
dynamic equilibrium, and that transition will occur when 
the disturbance amplitudes become sufficiently large. 

The restriction of the method to small 
disturbances (introduced to make the mathematics tractable) 
reduces the value of the results, since there is left a 
large gap in our knowledge of the behaviour of the flow 
between the beginning of the amplification of a small 
disturbance and the onset of full scale turbulence. x  In 
consequence, it is found that turbulence develops much 
later than 	given by the condition that a small distur- 
bance should be just amplified. 	In spite of this, once 
verified, the theory can be of great interest in giving 
an insight into the origin of transition and in providing 
at least a sufficient condition for the stability of 
laminar flows. 

This method of dealing with laminar stability 
was first applied to boundary layer flow by Tietjens 
(reference 1), followed by other German investigators, 
notably Tollmien and Schlichting (references 2 and 3). 

However, the theory was held in doubt by many, chiefly 
because of the simplified and approximate mathematical 
approach that had to be made to deal with the problem, 
and the success of G.I. Taylor's theory of transition 
(reference 4). 	Taylor ascribed the instability of the 
laminar boundary layer to the presence of finite, non-
selfexcited, disturbances, which in most cases would 
arise from the external turbulence of the main flow. 
A more satisfactory approach to the small perturbation 
theory has now been given by Lin (reference 5) for 
incompressible flow, and verification of the asymptotic 
expansions used by him has been given by Wa sow (reference 6). 
Moreover, full experimental confirmation of the theory has 
been made by Schubauer and Skramstad (reference 7), and 
there is now no doubt that in the absence of such sources 
of finite disturbances as surface imperfections and 
external turbulence, a major cause of transition to 
turbulence in boundary layers derives from their inherent 
instability under certain circumstances. 	Presumably, 
when disturbances present are large enough, whether self-
excited or imposed by external turbulence or surface con- 
dition, transition ensues. 	From this point of view, 
Taylor's approach and the approach in the small perturba-
tion theory can be reconciled, although a complete linking 
of the two approaches is still to be made. 

i------ German investigators (references 8 and 9) have 
calculated the amplification of the disturbances for 
incompressible flow and have attempted to correlate the 
rate of amplification with the occurrence of transition, 
in spite of the restriction of the theory to small dis-
turbances. 	Two estimates thus made for the amplification 
factor required to give transition on a flat plate differ 
by over 100 percent. 
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The extension of the theory to parallel 
compressible flows was made by Lees and Lin (references 
10 and 11), and in the present paper it is found that in 
all essentials the theory developed by them is applicable 
to flows with an external pressure gradient, and that the 
stability again depends on the local velocity and tempera-
ture profiles of the boundary layer only. 	In both cases 
there is a Reynolds number, based upon the boundary layer 
thickness, above which the laminar flow is inherently 
unstable, and self-excited disturbances appear. 	Below 
this so-called miniaum critical Reynolds number, which 
depends on the Mach number and pressure gradient in the 
main stream, all disturbances are damped out, and the 
boundary layer is completely stable. 

The physical reason for the behaviour of the 
disturbances can be seen in a study of the interchange 
of energy between the disturbance and the mean flow. 
If a normal mode of the disturbance, of non-dimensional 
(real) phase velocity c r  is considered, it is found that 
across a critical section of the boundary layer, where 
the mean flow velocity u equals the disturbance phase 
velocity, there is a phase shift in the x component of 
the disturbance velocity f. 	This results in an apparent 
stress, the value of which is 
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where 

w is the non-dimensional mean velocity parallel to 
the surface in the x-direction, 

wi 	aw/ay, 

T is the non-dimensional temperature, 

is the density, 

a. is the wave number of the disturbance, 

suffices 1 and c r  refer to values at the wall and 
at the critical layer. 

According as T! ,..  is greater or less than zero, energy is 

absorbed or lost by the disturbance, whilst if 	= Oy 
there is no transfer of energy. 	A further apparent shear 
stress is introduced by the action of viscosity near the 
wall; this, however, is always positive, and through its 
action energy is gained by the disturbance from-the mean 
flow. 	Finally, the disturbance loses energy throughout 
the boundary layer by the action of viscous dissipation. 

If a disturbance is to be damped, the shear 
stress T must be sufficiently large negatively to ensure 

r 
that the energy absorbed by the mean flow at the inner 
critical layer at w = c, together with the energy dissipated 
by the viscous forces is greater than the energy added to 
the disturbance through the destabilising action of viscosity 
near the wall. 

/Generally .. 

The extension of the theory to parallel 
compressible flows was made by Lees and Lin (references 
10 and 11), and in the present paper it is found that in 
all essentials the theory developed by them is applicable 
to flows with an external pressure gradient, and that the 
stability again depends on the local velocity and tempera-
ture profiles of the boundary layer only. 	In both cases 
there is a Reynolds number, based upon the boundary layer 
thickness, above which the laminar flow is inherently 
unstable, and self-excited disturbances appear. 	Below 
this so-called miniaum critical Reynolds number, which 
depends on the Mach number and pressure gradient in the 
main stream, all disturbances are damped out, and the 
boundary layer is completely stable. 

The physical reason for the behaviour of the 
disturbances can be seen in a study of the interchange 
of energy between the disturbance and the mean flow. 
If a normal mode of the disturbance, of non-dimensional 
(real) phase velocity c r  is considered, it is found that 
across a critical section of the boundary layer, where 
the mean flow velocity u equals the disturbance phase 
velocity, there is a phase shift in the x component of 
the disturbance velocity f. 	This results in an apparent 
stress, the value of which is 

T
c
2 

	

P1' 1 	ric 	r 	Fd  r  2 ] dy 
2 

T3t 	x (um } a  

(v`i r )  

where 

w is the non-dimensional mean velocity parallel to 
the surface in the x-direction, 

wi 	aw/ay, 

T is the non-dimensional temperature, 

is the density, 

a. is the wave number of the disturbance, 

suffices 1 and c r  refer to values at the wall and 
at the critical layer. 

According as T! ,..  is greater or less than zero, energy is 

absorbed or lost by the disturbance, whilst if 	= Oy 
there is no transfer of energy. 	A further apparent shear 
stress is introduced by the action of viscosity near the 
wall; this, however, is always positive, and through its 
action energy is gained by the disturbance from-the mean 
flow. 	Finally, the disturbance loses energy throughout 
the boundary layer by the action of viscous dissipation. 

If a disturbance is to be damped, the shear 
stress T must be sufficiently large negatively to ensure 

r 
that the energy absorbed by the mean flow at the inner 
critical layer at w = c, together with the energy dissipated 
by the viscous forces is greater than the energy added to 
the disturbance through the destabilising action of viscosity 
near the wall. 

/Generally .. 

The extension of the theory to parallel 
compressible flows was made by Lees and Lin (references 
10 and 11), and in the present paper it is found that in 
all essentials the theory developed by them is applicable 
to flows with an external pressure gradient, and that the 
stability again depends on the local velocity and tempera-
ture profiles of the boundary layer only. 	In both cases 
there is a Reynolds number, based upon the boundary layer 
thickness, above which the laminar flow is inherently 
unstable, and self-excited disturbances appear. 	Below 
this so-called miniaum critical Reynolds number, which 
depends on the Mach number and pressure gradient in the 
main stream, all disturbances are damped out, and the 
boundary layer is completely stable. 

The physical reason for the behaviour of the 
disturbances can be seen in a study of the interchange 
of energy between the disturbance and the mean flow. 
If a normal mode of the disturbance, of non-dimensional 
(real) phase velocity c r  is considered, it is found that 
across a critical section of the boundary layer, where 
the mean flow velocity u equals the disturbance phase 
velocity, there is a phase shift in the x component of 
the disturbance velocity f. 	This results in an apparent 
stress, the value of which is 

T
c
2 

	

P1' 1 	ric 	r 	Fd  r  2 ] dy 
2 

T3t 	x (um } a  

(v`i r )  

where 

w is the non-dimensional mean velocity parallel to 
the surface in the x-direction, 

wi 	aw/ay, 

T is the non-dimensional temperature, 

is the density, 

a. is the wave number of the disturbance, 

suffices 1 and c r  refer to values at the wall and 
at the critical layer. 

According as T! ,..  is greater or less than zero, energy is 

absorbed or lost by the disturbance, whilst if 	= Oy 
there is no transfer of energy. 	A further apparent shear 
stress is introduced by the action of viscosity near the 
wall; this, however, is always positive, and through its 
action energy is gained by the disturbance from-the mean 
flow. 	Finally, the disturbance loses energy throughout 
the boundary layer by the action of viscous dissipation. 

If a disturbance is to be damped, the shear 
stress T must be sufficiently large negatively to ensure 

r 
that the energy absorbed by the mean flow at the inner 
critical layer at w = c, together with the energy dissipated 
by the viscous forces is greater than the energy added to 
the disturbance through the destabilising action of viscosity 
near the wall. 

/Generally .. 



Generally speaking, therefore, if the quantity 

aL]_dy 'T w=cr  

which is a function of the shape of the velocity and 
temperature profiles of the boundary layer, is large 
enough, the boundary layer will be stable. 	The principal 
effect of pressure gradient can thus be seen in the way 
that it changes the shape of the boundary layer velocity 
distribution. 

However, for main stream Mach numbers greater 
than unity, an additional factor enters into the problem. 
The disturbances for which 

1 c r  > 1 - 

where M1 	1 1 = 1.13 /a*  (the local Mach number of the main stream), 

are termed subsonic disturbances (the phase velocity of the 
disturbance relative to an observer moving with the velocity 
of the free stream is less than the local velocity of sound), 
and for some values of R such disturbances can be made to 
satisfy the differential equations and boundary conditions 
for the disturbance. 	However, the amplified supersonic 
disturbances for which 

cr (1 - 

do not exist, for it is found that they cannot satisfy the 
boundary conditions at the 'edge' of the boundary layer. 
Thus, for a given boundary layer profile, if the only 
values of c required to make 

Dirr W= cr 

sufficiently large to enable the disturbance of this phase 
velocity to gain energy, are such that 

1 
C r 4,. 1 - 

there can be no solution of the disturbance equations for 
amplified disturbances, and the boundary layer is completely 
stable for all Reynolds numbers. 

For an insulated surface and flow with no 
pressure gradient, this condition is in fact never 
obtained. 	But for some Mach numbers and with a nega- 
tive (favourable) pressure gradient or by withdrawing 
heat away from the boundary layer, it is possible to 
Obtain complete laminar stability, and it is this 
eventuality which is of particular practical interest. 
The latter case has been calculated by Lees (reference 11) 
and the former is dealt with in this paper. 

An attempt to make the present paper completely 
self-contained in all mathematical details would make it 
prohibitively large, and, in any case, would only be 
repeating much of Lees' and Lin's work. 	The author has, 
therefore tried to make the main section of the paper 
intelligible without reference to Lees' and Lin's reports, 
keeping the mathematics to a minimum, whilst the mathematical 
analysis that is original has been included in appendices, but it 
will be found that the latter can only be studied to advantage in 
detail if reference is made to Lees and Lin. 
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2. 	Outline of the Mathematical Theory of Stability  

2.1 The perturbation equations  

Except in special cases, the only method of 
finding the conditions under which the viscous equations 
of motion admit of a solution in the form of a perturba-
tion is by linearisation of the equations. 	This can be 
done by considering the harmonic components of a small 
disturbance. 	Thus, we take a typical normal mode in the 
form 

q(x, y) exp ia(x 	et) 

where c = c r  + icy  cr  and c i  real 

a is real and positive 

q may be complex. 

It has been shown by Squire (reference 12) that 
for parallel incompressible flow three-dimensional 
disturbances are more stable than two-dimensional 
disturbances; the restriction of the mode (1) to two 
dimensions is thus justified for incompressible flow. 
This result has not been proved for compressible flow, 
but physical considerations lead us to expect that there 
cannot be any fundamental difference in the behaviour of 
disturbances in this respect between the compressible and 
incompressible case. 

Suda a two-dimensional stability theory can be 
applied formally to approximately parallel flows or flows 
over slightly curved surfaces, where the velocity in the 
boundary layer normal to the surface is small. 	The 
validity of such applications can be assessed in the 
light of work done by Gbrtler (reference 13), who has 
studied the three-dimensional disturbance problem for 
incompressible flow over curved surfaces. 	G6rtler found 
that boundary layer profile had relatively little effect 
on three-dimensional disturbances, but that a convex sur-
face was stabilising and a concave surface devastatingly 
destabilising. 	In general, two-dimensional disturbances 
determine the stability of flow over flat or convex sur-
faces, with a positive or negative pressure gradient, but 
for concave surfaces instability is first brought about 
by three-dimensional disturbances. 	In particular, when 
considering the stability of the laminar boundary layer 
on normal aerofoils the two-dimensional theory is usually 
applicable. 

Returning now to equation (1), we see that the 
disturbance is damped if ci< 0, is amplified if ci > 0, 
and is beutraltif ci = O. 	The neutral disturbance forms 
the boundary between stability and instability of the 
laminar layer, and the occurrence of the latter will 
eventually lead to transition. 	It is assumed that 
transition occurs when the amplification of the distur-
bance reaches a certain level, this corresponding to a 
larger Reynolds number than for the neutral disturbance, 
as the analysis shows. 

To obtain the perturbation equations, the 
disturbance quantities in the form (1) are introduced 
into the full viscous equations of motion, which are 
then linearised by neglecting squares and products of 
the disturbances, and applying the normal boundary 

/layer ... 
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layer approximations to the mean flow quantities, for which 
the boundary layer equations are also assumed to hold. 
Because of the boundary layer approximations the theory is 
essentially applicable for large Reynolds numbers only, and 
the large R condition is also made use of in obtaining the 
solutions as series expansions. 

The details of this procedure are given in 
Appendix Al, where it is found that the additional restric-
tion that 

R -1 ‹.‹. 0(a) KC R, 

where R is the Reynolds number based on the boundary layer 
thickness, is needed to obtain the perturbation equations. 
We can write this alternatively, though less precisely, as 

a = 0 (1 ) 

or 	a3E  = 0(1/6), 

i.e. the wave length, 2qL/a* , of the disturbance is of the 
order of magnitude of the boundary layer thickness. 	This 
is the assumption made by Pretsch l5  in his treatment of 
the incompressible case of flow with a pressure gradient. 
From the various numerical calculations that have been made, 
it appears that this assumption is correct. 

We find that in the limit R-4 400, the differential 
equations for the disturbances reduce to those with no 
pressure gradient. 	In particular, the equation for QI 
(0, Oei (x-ct) is the non-dimensional disturbance velocity 
normal to the surface), 

di  (w-c)P - w'9(  ) - G2(w_c) 

d Y T - M12 (w--c ) 2 .1  
 V)9  

T 
	 (2) 

is the same as the basic equation used by Lees and Lin 
(reference 10) in their treatment of the inviscid case 
of stability without a pressure gradient. 

The equations of motion, of continuity, of energy 
and of state yield five linear differential equations for 
five disturbance quantities f, 0, 	r, 6, which are 
equivalent to six homogeneous equations in six independent 
variables, with six linearly independent solutions. 	The 
six variables chosen are 

f; f t ; 0; 	2  9 
M 1 

0, 0 

 

(3) 

 

Three methods of solution of these equations are 
considered: convergent series solution in powers of 

(aR) -1/3 , and asymptotic series solutions in powers of 

(aR) 1  and in powers of (aR) 	In each case the initial 
approximation as a function of the mean flow quantities is 
found to be independent of x, and is thus not directly 
dependent on ;Ale pressure gradient. 	The influence of the 
pressure gradient is brought about entirely through its 
effect on the mean flow, i.e. by its effect on the local 
steady boundary layer velocity and temperature distributions. 

The boundary conditions to be satisfied by the 
disturbances at the 'edge' of the boundary layer and at the 
surface form six homogeneous equations in the variables (3). 

/Since . 
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Three methods of solution of these equations are 
considered: convergent series solution in powers of 
(aR) -1/3 , and asymptotic series solutions in powers of 
(aR) 1  and in powers of (aR) 	In each case the initial 
approximation as a function of the mean flow quantities is 
found to be independent of x, and is thus not directly 
dependent on ;Ale pressure gradient. 	The influence of the 
pressure gradient is brought about entirely through its 
effect on the mean flow, i.e. by its effect on the local 
steady boundary layer velocity and temperature distributions. 

The boundary conditions to be satisfied by the 
disturbances at the 'edge' of the boundary layer and at the 
surface form six homogeneous equations in the variables (3). 

/Since . 
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Since these must also satisfy six homogeneous differential 
equations, there must be a restriction on the values of the 
parameters occurring in the equations (viz. a, c, R and M1) 
in the form of a secular or characteristic equation . 	The 
derivation of the secular equation is the same with or with-
out a pressure gradient and need not be entered into hare 
(for details see Appendix A3 and reference 10). 	For a 
given boundary layer profile and chosen values of M1 and ci 
(the amount of damping or amplification), the secular equation 
gives a relationship between a and R, and a and c r . 	There 
are, however, important exceptions to this when the main 
stream flow is supersonic. 	In the first instance, for the 
neutral supersonic disturbance, i.e. for 

C = 0, 	C r < 1 - 1/M 1 , 

the boundary condition for 0 at the edge of the boundary 
layer is automatically satisfied by both solutions of the 
differential equation (2) for 0, see Appendix A4. Hence 
there is no characteristic equation to be satisfied and a 
disturbance of any wave length and velocity can exist for 
all Reynolds numbers. 	However, for an amplified supersonic 
disturbance, ui 	0, the secular equation exists, but has no 
solution, i.e. there is no amplified solution to the distur-
bance equation which can satisfy the boundary conditions ; 

 and the boundary layer must then be stable to small 
disturbances of all wave lengths and velocities. 

2.2 The inviscid case  

The differential equation for 0  in the case 
R---) 0c) 	is 

cd  i.A (w-c) t' - w'02   I - a2 	09 
 

Y(  T - M 1 	(w-c) 

the same as given by Lees and Lin for flow without a pressure 
gradient. 	Two particular integrals are 
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( 5 ) 

where 
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	= 1 
	

(6) 

2n+1 =
SY  ( T  

0 	m 2 )cly 3 y 	T 
( -c ) 2 

k 2n-1 dy 
yo \ (w- c 

nY 
k 1 	= 0 	M1 ) dy 

'yo ((14r--c)  

As shown by Lin (reference 5) the path of integration in 
(6) must lie below the singular point y = Yc (where w = c) 
in the complex y-plane. 

/A study .. 
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A s:; dy of the chal.acAeristics of the solution 
of (4) has been made by Lees End Lin (reference 10), and 
the only modification of their analysis required for the 
case of flow with a pressure gradient is a minor one that 
occurs in the proof of the disturbance energy relations, 
and involves the mean flow equations of motion. 	A summary 
of the more important results which they obtained that are 
relevant to the present discussion are given here. 

There is a transfer of energy between the main 
flow and the-disturbance motion at the critical layer 
where w = c. 	This occurs through a change in the relative 
phase of the x- and y-components of the disturbance motion 
at y = c and the appearance of a Reynolds stress there. 
Since, for the neutral disturbance, this shear stress is 
proportional to 

dy %, T-  wc 

it is found that if 

. , rd
dy VT '  > 0 p 

w=c 

(c = c r ), 

-) 

energy passes from the mean 
flow to the disturbance, 

d 
 (Ti (..rv ) 	° w=c • 

there is no exchange of 
energy between the mean 
and disturbance motions, 

(7) 

rw'\1 
dy T 	0 

w=c 
the disturbance loses 
energy to the mean flow. 

These results can be correlated with the three 
cases of amplified, neutral and damped disturbances: 

Amplified disturbances ci > 0. 

The subsonic disturbances take the form of 
outgoing waves exponentially attenuated for large y. 
A sufficient condition for their existence is that 

d w 
Ty (T ) ° for some w > 1 - 1/M 1 . 

Neutral disturbances ci = 0. 

Subsonic disturbances take the form of waves 
travelling parallel to the x-axis, exponentially attenuated 
in y for large y. 	A necessary and sufficient condition 
for their existence is that 

dy L T 
	 for some w >1-1/M 1  = c s , say, 

and then the phase velocity of the disturbance is c
s 

In the case of supersonic disturbances both 
incoming and outgoing disturbances exist and are not 
attenuated. 	The characteristic equation does not exist 
and we may say that the characteristic values are con- 
tinuous. 	Note that in this event any of the three cases 
(7) can hold, since the ingoing and outgoing disturbances 
can be of different amplitudes. 

/Damped ... 
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The intermediate case with p = 0 always has the 
degenerate neutral solution at w = c s  = 0, which gives 
a = c = 0; apart from this the general behaviour is 
as for p > 0. 

/The ... 
dw Since ddw  --7 -30, for r,--- 00, as - 	, but the positive Mach 

d4- 	 2 	d4 
number term -4 0 as (dw ) . ci. 

- 1 0 - 

Damped disturbances  c i 4 O. 

The disturbances travel inward and are attenuated 
with y as y-*oc. 

These results for the inviscid case show that the 
stability depends essentially on the variation of the 
quantity 

d 1 d2w 	1 dw dT 
dy\T) 	T dy2 T2 dy dy 

across the boundary layer. 	For flow past an insulated 
surface we can apply the transformation given in section 3, 
so that 

d fw") _ K /1 d2w 	2(Y-1)M1
2 	

dw , 2  
dy \,.T ) -

T 3 d42 + 	T 	w (737) 4  

fm+1  	uil   where 4 = ,-- 	 Y. , 	 and K) 0. .N! 2 	x 	x 	1 
4v 	xi "10  

For a main stream flow given by 
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we have the following results (Appendix B1), 

Z
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%-/ 9 	cTZ 	as 	; 

,2 a w _ _ dw w 	5(w2 - 1); 
de dY 0 

where (3 = 2m/(m+1). 

We can thus draw the following conclusions 
d about the behaviour of -cry- t, ,17.--) :- 

If (3 L 0  (positive pressure gradient) 

c1y (1-,) is always positive at 4 = 0, and negative if 

is large enough. 	Hence it is zero for some w = c sY  and 
provided C 3 ,44 1 - 1/M1, the inviscid boundary layer will be 
unstable for all values of H1. 

If p 	0 (negative pressure gradient) 

dy T r) is negative at = 0, and will remain 

negative for all Y if M1 is small enough or p large 
enough, but it will become positive for some 4 if M1 
is made large enough. 	Hence for small M1 and large p 
the boundary layer will be stable, but if Mi is chosen 
large enough It can always be made unstable. 
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The foregoing conclusions apply only for the 
subsonic disturbances; if, however, c s  < 1 - 1/MI, we 
have a supersonic disturbance and only neutral and 
damped disturbances can exist, so that the boundary 
layer is stable. 	This is dealt with more fully in the 
Appendix. 	Numerical calculations are required to 
determine the values of M1 and p for which this occurs, 
and such calculations have been carried out in the 
present paper (see section 3). 	The effect of a non- 
insulated surface is also important in this connection, 
and the values of the ratio of the temperature at the 
wall to the main stream temperature, TS/TT , which give 
stability have been! calculated by Lees (reference 11) 
for zero pressure gradient. 

2.3 The viscous solution  

It has already been mentioned that the initial 
approximations for the solution of the stability problem 
for a viscid boundary layer with a pressure gradient 
depends only on the local velocity and temperature dis-
tributions of the boundary layer flow. 	The general 
conclusions and expressions obtained by Lees (reference 11) 
are therefore applicable to the case being considered in 
this paper of flow with a pressure gradient. 

In particular, Lees' considerations of the 
energy balance in the boundary layer, which have been 
summarized in section 1, hold good, and the characteristic 
equation for the neutral disturbance obtained by him can 
be used in our case. 	For proof of the existence of 
neutral or amplified disturbances 'adjacent' to the in-
viscid neutral disturbances (the Heisenberg criterion) 
and other mathematical details the reader is referred 
to his paper. 

The secular equation for the neutral subsonic 
disturbance, as obtained by Lees, is 

E(a, cr9  M 1 2  ) 	F(z), c r  > 1 - 1/M i , 

fea, R vf)1  /3/ 
z 	 Ye v c 

(8) 

where v is the non-dimensional kinematic viscosity. 
Here F(z) is the Tietjens function (equation(40, 
Appendix A), and E is a function of the inviscid solu-
tions only, equation(5). 	E and F are complex, and 
equation (8) is equivalent to two real equations. 	The 
form of the equation when expressed as a function of 
the boundary layer temperature and velocity distributions, 
and suitable for numerical solution, is given in section 3 
of Appendix A. 

The relation between a and the Reynolds number 
Rcr  obtained from the neutral characteristic equation (8), 
forms a curve having two branches extending to R = too, meetingater,aerninimarnizernoldsnumber,Rermin 

 ,below 

which the boundary layer is stable. 	The interior of the 
curve corresponds to values of a and R for which dis-
turbances are amplified. An approximate formula for 
Rcrmin  is 

25rT(C)1 1+W  1111 1  ,0  

R ermiy1 
(1 ....c  

/and ... 
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E(a, cr9  M 1 2  ) 	F(z), c r  > 1 - 1/M i , 

fea, R vf)1  /3/ 
z 	 Ye v c 

(8) 

where v is the non-dimensional kinematic viscosity. 
Here F(z) is the Tietjens function (equation(40, 
Appendix A), and E is a function of the inviscid solu-
tions only, equation(5). 	E and F are complex, and 
equation (8) is equivalent to two real equations. 	The 
form of the equation when expressed as a function of 
the boundary layer temperature and velocity distributions, 
and suitable for numerical solution, is given in section 3 
of Appendix A. 

The relation between a and the Reynolds number 
Rcr  obtained from the neutral characteristic equation (8), 
forms a curve having two branches extending to R = too, meetingater,aerninimarnizernoldsnumber,Rermin 

 ,below 

which the boundary layer is stable. 	The interior of the 
curve corresponds to values of a and R for which dis-
turbances are amplified. An approximate formula for 
Rcrmin  is 

25rT(C)1 1+W  1 111 1  ,0  

R ermiy1 
(1 ....c  

/and ... 

(9) 
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and c is determined by 

(1 - 2A) v(c) = 0.58,   (9a) 

where 

v(c) wn C 	T2 	d 	yr' 
T o 	(wi ) 3 dy Yri ji 	

9 

W=C 

W 	) C 
- 1, the suffix o refers to surface 

values. 

If (8) has no solution for any c > 1 - 1/M 1 , 
only damped or neutral supersonic disturbances can 
exist and the boundary layer is stable for all Reynolds 
numbers. 

3. 	Numerical Methods and Results  

Solution of the characteristic equation (8) 
for the neutral disturbance enables us to assess the 
effect of Mach number and pressure gradient on the 
boundary layer stability. 	7or this we need to know 
the variation of velocity and temperature across the 
boundary layer quite accurately. 	The common approximate 
methods for calculating the boundary layer velocity, such 
as the Pehlhausen, do not usually give sufficient accuracy, 
as can be seen by comparing the results of Pretsch 
(references 15 and 16) for incompressible flow stability, 
who used the exact boundary layer profiles calculated by 
Hartree (reference 18), and those of Schlichting (re-
ference 17), who used the Pohihausen method. 	This state 
of affairs arises from the fact that the solution of the 
stability problem depends principally on the variation of 

d2w --- across the boundary layer, and not merely on the 
dy2 

velocity w. 	In this paper, therefore, the exact similar 
flow solutions calculated by Hartree for the incompressible 
boundary layer with a main stream velocity 

m 
r- c (x7)   (10) 

have been used to obtain the compressible boundary 
layer profiles. 	?or an insulated surface, with the 
Prandt1 number o taken as unity and the viscosity 
taken proportional to the absolute temperature (co =1), 
this can 13Q. done by means of the transformations 

	

u i 	um w = 	= --- • 

	

um 	m 9  u 1 

	

Y+1 	 Y+1 
y-1 1•,ym 

dyI 	' 	 1 dym Yi yr 

	

.. 	10 	j 0 	1 a 10 . 	0 

3Y-1 
Y-1 

a  
xi  = 

( 

	

a 10

1 	dxm    (11) 
e 0 

Application of these transformations to the 
Hartree solutions gives the compressible boundary layer 
mThese arc the same as the equations given by Illingworth 
(reference 19), and very similar to those given by 
Stewart son (reference 20). 
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velocity distributions having a main stream velocity 
given by the transformation of equation (10) using (11), 
and this is 	 m  2 

111 	(10m+1) 	Ic(x  ) 	) 
u l  = c(x ) 	- 10 Ca+1 ) ' 	 

a 10 

(1 2 ) 

The boundary layer temperature distribution 
for an insulated surface, as obtained by Crocco, is 

	

T 	= 1  IL- 	2 mi 	w 2 ).  

Recently, Lees (reference 21) has made some 
calculations of the stability limit for flow over a 
circular arc aerofoil, using formula (9) for the minimum 
critical Reynolds number/ E . 	He employs the Dorodnitzn 
trare,formation (reference 22), and uses a modification 
of the PohIhausen method to obtain the velocity in the 
boundary layer. 	In place of the index m which determines 
the pressure gradient he employs a modified Pohlhausen 
pag=e. 	per 

3 2 du1  
-X 

-cT; 
• 
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The relationship between m and Cris 
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and K and K
u
m are defined by equation (15). 

19-  
Using these formulae it was found that the few 

calculations Lees has made for Rcr.min. agree approximately 
with the results of those made in the present paper. 

A detailed solution of the neutral characteristic 
equation (8) using the transformation (11), has been made 
for a moderate, favourable, pressure gradient with m = .429 
(5 = .6), and Mach numbers up to 1.3. 	The results are 
given in Table I and illustrated in Figures 1 and 2. 
Details of the mathematical working involved is given in 
Appendix B. 

In addition, approximate neutral stability 
curves for the same pressure gradient were drawn (Figure 3), 
using approximate formulae for the upper and lower branches 
of the curves (see Appendix B6) and formula (9) for ` ter. min. 
This approximate method was also applied to flow with a 
positive pressure gradient, m = -.0477, 5 = -.1, and the 
results are clown in Figure L. 	For comparison, the neutral 
curves obtained by Pretsch (reference 15) for M1 = 0, using 
a different method of solution of the characteristic equa- 
tion have been included. 	It should be mentioned that the 

/approximate 
. 

'Ocil (reference 23) has used the same method to calculate 
the stability over a biconvex aerofoil, but only for two 
Mach numbers, M

1  = 1.5, and M 1  = L..0. 
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approximate method cannot give the shape of the upper 
part of the curve at the smaller Reynolds numbers, and 
these portions have been sketched in using the accurate 
calculations as a guide. 

The minimum critical Reynolds number given by 
equation (9) was calculated from the Hartree incompres-
sible boundary layer solutions using the transformation 
(11) for a full range of values of m, and Mach numbers 
up to 3. 	The resulting curves are shown in Figure 5, 
whilst the corresponding solutions of (9a) for c are 
plotted in Figure 3. 	The discrepancy between these 
values of R and those obtained from the accurate 
calculations (Figure 2) is due to the extreme sensitivity 
of Rcr.min. to the values of c when c approaches 1 - 1/M1. 
The small errors in the values of c obtained from 
equation (9a), resulting from the assumption that ) ,Nis 
small, can then cause large errors in R cr . min .• 

It was found that the most suitable non-
dimensional length to employ was the boundary layer 
momentum thickness N9: 	Since numerous stability cal- 
culations use the displacement thickness 6 m , we include 
here the formula relating Wand O m , 

o = 	M12 
Y-1 	

+ K )+ K 2 	 -3E Y-1 	2 (1 + H) + H, 	 2 	'1 	 (1/0 
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and their values are plotted against l in Figure 9, 
p = 2m/(m+1). 

These neutral stability calculations confirm 
the general conclusions drawn in section 2.2. 	Thus 
for the inviscid case, R = op, with 5 = 0 and (3 = -0.1, 
the boundary layer is unstable, and the range of a which 
gives instability increases as the Mach number increases; 
but when R > 0, it is stable until the Mach number ex-
ceeds a certain value, which increases as 5 increases. 
Thus, for $ = 0, this Mach number is 0 (see Lees' results, 
reference 11), whilst for 3 = 0.6, it is about 2.8. 

For finite values of R the results show that 
the stability decreases as R is reduced and M1 is increased, 
except for a restricted range of Mach numbers varying 
between the limits 1.3 and 2.4 and a favourable pressure 
gradient (5 greater than about 0.6). 	In this region 
the values of 
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are never large enough to enable the disturbance to gain 
energy, there are no subsonic amplified disturbances and 
the boundary layer is stable for all Reynolds numbers. 
The critical values of 3 above which this happens are 
plotted against Mach number in Figure 6. 	A similar 
state of affairs can occur when heat is withdrawn from 
the boundary layer. 	This case has been calculated in 
Lees' paper for zero pressure gradient, and it is 
interesting to note that the shapes of the graphs of 
critical temperature ratio T o cr  versus M1 (as plotted 
by Lees) and the critical values of p versus M1 are very 
similar (Figures 6 ancl 7). 

This effect is important because it leads to 
the possibility of obtaining complete laminar stability 
over entire flying surfaces at some supersonic speeds. 
In this respect, stabilisation of the boundary layer by 
heat withdrawal appears to offer greater possibilities 
than stabilisation through favourable pressure gradients. 
For example, calculations made by Lees show that, at a 
Mach number of 3 and at a height of 50,000 ft. , the heat 
radiated from the surface under conditions of thermal 
equilibrium is sufficient to give complete stability of 
parallel laminar flow without a pressure gradient. 	In 
contrast, even for the highest favourable pressure 
gradients, the possible range of Mach numbers for which 
complete stability is attainable on an insulated surface, 
is only from 1.3 to 2.4. 

This general conclusion is confirmed by some 
calculations recently made by Lees (reference 21) for 
the stability of flow over an insulated circular arc 
aerofoil, using equation (9) to obtain R cr.mins . 	Be; 
found that the stabilising effect of a negative pressure 
gradient gave laminar stability only at the mid-section 
of the aerofoil, with a Mach number of 1.5; above and 
below this Mach number the flow was unstable. 
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Application of these results to obtain a lower 
limit for the transition Reynolds number is possible, 
provided the free stream turbulence is low. 	Thus, 
transition cannot occur below a Reynolds number equal to 
Rcr. 	as calculated from the theory; however, it 
will normally occur at a considerably higher Reynolds 
number. 	This is because transition is a large scale 
perturbation phenomenon, whilst the stability theory 
applies strictly to vanishingly small disturbances. 	The 
appearance of small amplified disturbances does not en- 
sure transition. 	In spite of this it may be possible to 
calculate transition by postulating that it will occur if 
the degree of amplification of a small disturbance of the 
theory reaches a certain level. 	However, a full explanation 
of the transition to turbulence cannot be given without 
investigating the stability of finite disturbances of the 
boundary layer. 	At present the mathematical difficulties 
of this problem seem to be insurmountable. 

Finally, it should be stated that there has been 
no attempt to verify the compressible small perturbation 
theory by experiment. 	Thus, although the incompressible 
theory cannot now be held in doubt, there is need for a 
check on the validity and accuracy of the compressible 
theory, especially in predictions that are not physically 
obvious, such as the non-occurrence of amplified super-
sonic disturbances. 
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APPyNDIX A 

Mathematics of the Theory of Stability. 

The modifications that are introduced into the 
mathematical theory of compressible boundary layer 
stability by the presence of an external pressure gradient 
are dealt with here in detail. 	The analysis follows that 
of Lees and Lin (refcrences 10 and 11) very closely, and 
constant reference will be made to their work. 

1. The differential equations for the disturbance 

The complete viscous compressible flow equations 
in two dimensionsE  are 

the equations of motion, 
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xWe have not included gravitational effects here, as Lees and 
Lin have done in their discussion of the general equations. 
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and the equation of state, 

px/px  = R T . 	 (5) 

We now suppose that a perturbation is intro-
duced into the boundary layer in the form of a small 
two-dimensional disturbance. 	We consider the distur- 
bance to be resolved into its normal modes, one of 
which we take to be of the form 

q(x, y) exp ia(x 	ct),   (6) 

corresponding to a dependent variable Q, in accordance 
with the scheme given in the list of symbols. 	In 
particular, it should be noticed that the non-dimensional 
perturbation velocity in the y--direction is taken as 

a0 (x, Y) eia(x-ct)  

We shall take our dimensional length measure to 
be the boundary layer thickness a, so that 

x = x3E/o, Y = ? 	t = t u 1 /' /59 	 R = u3E  o/VT, 1 

and if we write 

x' = x/R, 	v' = Rv, 

in place of x and v, then, according to boundary layer 
theory, all the non-dimensional mean quantities and 
their derivatives will be of order unity. 

The equations to be satisfied by the 
disturbances (6) are found by substituting the 
quantities 

im(x-ct) 
Q0c, 	+ cl(x, Y) e 

into equations(1) to (5), neglecting terms of order 
higher than the first in the disturbances, and applying 
the boundary layer equations and approximations for 
steady flow to the mean quantities Q. 

Following this procedure, we find for the 
first equation of motion expressed in non-dimensional 
form 
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+-The prime will be used only in this section to denote the new 
variables as defined by these equations. Elsewhere it will always 
denote differentiation with respect to the coordinate normal to 
the surface. 
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In general we require that the order of magnitude 
N of each disturbance q and its derivatives be much less 
than the order of magnitude of the corresponding mean 
quantity Q and its derivatives, which are themselves of 
order unity in terms of the non•dimensional quantities x', 
y, etc. 	Thus 

0(q) = N e< 0(Q) = 1 . 

Therefore, the maximum order of magnitude of the 
last two brackets on the right hand side of equation (7) 

-2 	-3 are aR 	and R 9  whilst the remaining terms are of 

maximum order a2 R-1 , a, and R-  . 	Thus, without going 
into detailed considerations of the magnitudes of each of 
the terms forming the equation, it can be seen that for 
large Reynolds numbers these last two brackets can be 
neglected provided 

R 1  <,< a  4< R, 

or 
1/d<< ax 	d/c5

2 , where d is a typical geometrical 
length. 

Less rigorously we may say that 

ax  = 0(1/5 ),  

so that the wave length of the disturbance must be of the 
order of magnitude of the boundary layer thickness. 	It 
is just this condition that Pretsch introduced when con-
sidering the stability problem for the incompressible case 
with a pressure gradient (reference 15). 	Making the same 
assumption, we find for (7) 

aw 	1 	a 	 aw 	af ap(i(w-c)f + 	0) + ir(w —w  + v? 	pf 	+ w 	+ ay 	 a3-Et 	ay 	ax' 	axt 	ay , .; 

a -ref 	aZtr 	a`T 	1 	2 ag 	2 

Y NI 
2 ± 71 — 	2 )CT H2 + i a a y  - 3 a' r  

L Y M 	'Lay 

ay 2 	ay =ty 	ay \ay 	la w) ,' 
2w  y  am ow 	(af 	• 2,( , I 

(8) 

If we proceed to the limit R-400 , equation (8) 
gives 

( 2 	\, 	aw 	late 

	

ap 1 kW-C p. 	 =-- — 
aY J Y 

and this is the same as the inviscid equation for com-
pressible flow without a pressure gradient given on 
page 24 of reference 10. 

The procedure for dealing with the remaining 
equations (2) o (5) is precisely similar. 	For the 

/second ... 
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second equation of motion we get 

r1 	 a a‘.  i i(w—c) °1 	R 	
ay' 

v
'2 	v 

 a 

I 	atff 	al4 a 20  
= ---7 	713 	2 Y M 	 aY 1 

ar 	2 	agf, a,u. 	2 . f  +im 	+ 3 ay  -air- 	t ay 

+ 1 2 I2ia2 21  + l(p ax' 3 ' Tg-5-7 + E 5447)+ 4 32v'  4 '.-F 0 15') 
R  	ay 

2 
 - .m.5" (ki 40- q gi,)-4- ia20 I'L 11 al  + ax + am 3w---1 

	

ax' 	'ay 	5-7' T571 

 a 20  
+  R 3 	ax  ,2 	ax' ax 

',.... 

	

-"1 	! 
4 	avt 	1 ( 	;-- a 2v' 	ai7 av'l im -- ' + ---m ---- + --  ax l  

	

ax'i 	41 	,2 	ax' 	.j .  

	

J 	R .... ax 

(9) 

a 

Taking R -1  <( a <X R, for large Reynolds numbers, this 
yields 

 c , , 	an 	,..1  av 	+ v' ' al p  1 ov-c)91.1,  + — -, y, -- R 	ay 	.0  + w 1 	8 '  } ay 	ax 

2 = 	I 	227 4, 	

ay 

	

g, 4.  LA 	1 . all 	2d1 +  2 cliTi. aw .4.  1.1. 4 aate, 2. f  fl, 1  

M - 	2 ay 	R 13 	2 1-  3 1  ay - a  '" 	R I 	ay ' 3 ay ay - 7 1-  ay, 

  
.• 	k, 

1 

The equation of continuity (3) becomes 

aRI-1(w-c)r + 	+ if)+ 0 	f 2R 	 w  ar 	tar 
ay 	 3x 	P  ax' 	73-1 ,+v  ay 

	

,aw 	avt, + rky7, + 	)ay 

=0 

and for large R this is 

i(w_c)r + p( 	+ if ) + 	— ay 	 ay 	- 

We shall take the Prandtl number a, = C 1/k 3E , 
x xP to be constant, so that, with C constant, k c<J, . 	Under 

these circumstances the perturbation equation corresponding 

/to the ... 
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to the energy equation (Li.) is 

aT 	 aT 	aT 	as 	un. vdf4 
a p ( 	 (w-c)e)-1- 	(w 21 + v'-)+ p (f 	w 	v 

ay 	 R 	fix , 	 dy )  
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— a8 
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a ) + 
L. 	ay 	 aY ay 
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N 2 	3w 2  + ^11  (y-1 )1i1 	m ( ay ) 	Tr 24 3w of + i°  

a IYil 	as 	au, 	--aT 1 + 	 + "" 	 m 77 , 2 1  0 L 	,fix, 	ax , 
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1 	3 

ate , axt  771j 

e Y 	a 2  T + 26 	am aT 	al. 30 1 ) rn—  
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For large R, with RT 1 <4, a 4,(R again, this reduces to 

 

ap (0 11  + i (w-c )0 )+ RL  ] r (w ax 11-  V In) aY   
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Finally, the equation of state gives 

r 	a 

Equations(8), (10), (11), (13), and (14) are the 
linearised disturbance equations for flow with a pressure 
gradient. It is of particular interest to note that for 
infinite Reynolds number they reduce to the equations with 
no pressure gradient tcf. the equations given in reference 10); 

/thus . • • 

(13) 
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thus the inviscid stability problem is independent of 
the external pressure gradient, except in as far as it 
affects the local boundary layer distributions of 

	

velocity and temperature. 	In particular, the differen- 
tial equation for 0 (equation (112) of reference (10)) 
in inviscid flow 

(- (w-c) 1Z - 11  X t dy dy  • 	a2  ia=a1 0 d 
dy 	T 	b112  (w-c) 2 	 T 	s  

is the same with and without a pressure gradient. 

The next step in the analysis is to introduce 
a new system of dependent variables defined as 

af z I = f 	y 	Z2 . dy 1 	Z 3 . 0 , 

tr.  Z 	 30 - —75- y 	= 0 9 	Z 	''' . 
— tif c" 	

Z5 	
6 

= 3y 
- 1 

With the aid of these transformations it will be possible 
to reduce the perturbation differential equations to a 
system of six linear homogeneous first order differential 

	

equations in the variables Z 1 p.9.yZ6. 	Thus we obtain immediately 

(15) 

az i  Z  ay 	2  
(16)  

(17)  

whilst equation (11) becomes 

az, 
= — \ ivi l

2 
, 	1 .7 	ap iz_, 	••• 	 1■V 	•-••• 

0Y 	 I 	aY 3 - 
i ( C 	

P 	4  
Using equations (8) and (17), we can find the value of 
az2/ay; equation (8) gives 

F TT 3  l 	 4. (w-c)Z + 1  Pify2- Z3j 	iaZ . aZ2 	1 	a  . 2 aZ 3 

1 r1 aZ4 	Z 	Z 2 	 OW 	v' coy ) TIT ax' 	P°V1 1 p 	T ) 	ax ,  ay )  
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+ p (w —r 	IT' Z 2  + 73-c , 	) ax 

2 	— 
+p..ct2 Z i 41 w  +:57 7 	2 	3 8111  3w,- (Z+ icx.2Z ) P.

1 	
• 

3 	ay 

Taking 4 m to 1)7 a single valued function of the temperature, 
T , so that m = 6 d  - , 

- we can write the last equation as 

TT  + 3 	ay 	(114-PSI (w-c)Z i + a-71: -L 3‘ 	y i aZ 2 	1 . 2 	 = 	 aw 	 + 0(1) 

(18) 

where 0(1) stands for a linear function of the perturbation 
quantities Z 1 ...Z 6' az1 • /ax t  and aZ h /ax', which is of order 

unity in R and is regular in M 24i  , and is thus of maximum 

/order ... 
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where 0(1) stands for a linear function of the perturbation 
quantities Z 1 ...Z 6' az 1 • /ax t  and aZ h /ax', which is of order 

unity in R and is regular in M 24i  , and is thus of maximum 
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thus the inviscid stability problem is independent of 
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order of magnitude a 2 or 1, assuming that ate, 	o(z)! ax - 
Eliminating az

3
/ay between (17) and (18) we find that 

az 2 	a:1-z r 	a7 ay 	77 ioli(w-c)Z, + 	Z I+ - . 7  / ay 3 y  

The only difference between this equation and the 
corresponding equation with no pressure gradient 
(equation (69) reference 10 + ), lies in the terms 
forming the expression written as 0(1), and it is 
found that for all the methods of solution considered 
the latter expression can be neglected. 	This is 
dealt with in greater detail in the next section. 

In an exactly similar manner it can be shown 
that the remaining equations for aZ4/ay and az6/ay are 

of the same form as found by Lees and Lin. For com-
pleteness they are included here. 
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In these equations 0(1) again denotes a function linear 
in Z1"'"6' az 1 /ax' 9  az3

/ax , , az
4
/axi, and az

5
/ax 1 9  

which is of a maximum order of magnitude a 2  or 1. 

2. Solution of the perturbation equations  

There are three principal methods cf solving 
tne perturbation differential equations; in each case, 
as is shown by Lees and Lin, the terms denoted by 0(1) 
in the equations are negligible to the first order of 
approximation. 	The first order solutions are in fact 
the only ones that are considered. 	Through the dropping 
of these terms the dependence of the differential equa-
tions on x and v is lost, and the equations may be 
solved for any given distribution of velocity and 
temperature along the y-axis in exactly the same fashion 
as given by Lees and Lin for parallel flows. 	We shall 
summarize the methods developed by Lees and Lin here. 

/In the ... 

Note that this type of relation does not hold for 
derivatives normal to the surface, due to the rapid 
variation of the importance of viscosity in the y-
direction at the critical layer. 

+A number of minor errors will be found in at least 
some copies of this report. 

(19)  

(20)  

( 2 1 ) 
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In the first method solutions are found as 
power series in the small parameter 

= (a R) -1/3  

and in terms of the new dependent variable 

=(y - Yc )/s 	where w(y e ) = c. 

The initial approximation solutions for Z I  and. Z are 
as follows - 
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and where the suffix c denotes values at the critical 
layer where w = c, and X li and X.51. are the initia l 

	

( 1 ) 	(2) approximations to Z l  and z3  respectively, and H 1/3 , H1 / 3  

are Hankel functions of the first and second kind of 
order 1/3. 

Another set of solutions is obtained by 
expanding the solutions in power series in (aH) - . 
This gives a pair of asymptotic series, and the initial 
approximation depends on the inviscid equation (15) 
only. 	Since this does not depend directly on the 
pressure gradient, the same result's expressed as 
functions of w and T, are obtained for the solutions 
with or without a pressure gradient. 

/The third ... 
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The third set of solutions is obtained by 
putting 

rl 
Z. = f i  exp 	(dR)fj g dy 	i = 1,...,6 

and expanding f i  as a power series in (aR) -7 . 	The 

initial approximation in terms of w and T is again 
independent of the pressure gradient. 	The method 
gives four independent solutions, but the expansions 
are valid only in the regions given by 

7L 1 /3 - 6  < arg (?" c 	<   (22) 26-7.  4 arg(L;) < 

in the complex r,-plane. 	These solutions are 

(Z Z ,Z 0 Z ) = (1,0,0,0)expit(aR) 7  
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12 (la-c))ex41- (aR) -f 	l ic (w-c) aq. 
v 

Ye 
 

3. The characteristic equation  

In the preceding sections it has been shown 
that all the initial approximations for the solution of 
the disturbance equations, and also the exact differential 
equation for the inviscid case, depend only on the local 
velocity and temperature distributions in the boundary 
layer, and do not depend directly on the pressure gradient. 
We can thus say immediately that the bulk of the stability 
theory proved for compressible flow without a pressure 
gradient by Lees and Lin will hold for the case in which 
we are interested at present. 	In fact, the only proofs 
given by them which cannot be taken over exactly are those 
in which recourse is made to the boundary layer equations 
of the mean motion. 

In particular, the boundary value problem and 
its solution can be quoted directly from their work. 
Thus in reference 10 it was shown that the boundary 
value problem leads to a characteristic equation in 
c, a, Mi, and R. 	Expressed in terms of the perturbation 
velocity 0  it is 

E(c,, c, M 2 ) 	F(z), 

where F(z) is the Tietjens function and has been 
calculated (reference 11), and 

,\; v 

/F(z) 
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where 0r1 and 0r2 are the values of the two solutions 
of the inviscid equation (15) at the wall and at infinity 
respectively (see equation (5) on page 8). 

Equation (25) holds provided 

• 1 - iv1 12 (1-c r ) 2 	0 9  

corresponding to the neutral supersonic and sonic 
disturbances. 	The significance of this restriction 
will be dealt with in section 4. 

The complex characteristic equation leads to 
two equations relating c i , c r , a, M i  and R. 	It is 

usualtoconsiderchosenvaluesofc.(representing the 
amount of damping or amplification of the disturbance) 
and M i , and to plot the relationship between a and R 
given by these equations. 	In particular, if ci is 
chosen to be zero the neutral stability curves are 
obtained. 	In this case the calculation of the solu- 
tions of the characteristic equation is not too 
laborious and Lees (reference 11) gives the following 
modified form of (25) for computational purposes, when 
solved for a as a function of R and M 1 . 
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where 0r1 and 0r2 are the values of the two solutions 
of the inviscid equation (15) at the wall and at infinity 
respectively (see equation (5) on page 8). 

Equation (25) holds provided 
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corresponding to the neutral supersonic and sonic 
disturbances. 	The significance of this restriction 
will be dealt with in section 4. 

The complex characteristic equation leads to 
two equations relating c i , c r , a, 	and R. 	It is 

usualtoconsiderchosenvaluesofc.(representing the 
amount of damping or amplification of the disturbance) 
and M i , and to plot the relationship between a and R 
given by these equations. 	In particular, if ci is 
chosen to be zero the neutral stability curves are 
obtained. 	In this case the calculation of the solu- 
tions of the characteristic equation is not too 
laborious and Lees (reference 11) gives the following 
modified form of (25) for computational purposes, when 
solved for a as a function of R and M 1 . 
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path of integration must lie below the point y y 0 . 
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For inviscid flow the secular equation 
reduces to 

011 	°12 	7 0 12 	= 

°21 	°22 7 022 

and since X21 = 0, this is 

7 022 - °. 

L. The supersonic disturbance 

The boundary conditions for the disturbance 
velocity are that 0 = C at y = 0, and 0 is bounded as 

-* 00. 	For the latter case we need only consider the 
inviscid equation 
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These results show that if 

(i) c. 	0 (i.e. the disturbance is amplified), 
1 c2 7 0, R i  > 0, and we have disturbances in 

the form of y attenuated waves travelling 
outwards. 

(iA) c i f 0 (damped disturbance), n..40, T. .c.0, we 
have a damped disturbance travelling inwards. 

(iii) c i  = 0, and .S? r > 0 

then T = 0, and 
the y-direction, 
surface. 

(a subsonic neutral disturbance), 

the disturbance is attenuated in 

and travels parallel to the 

(iv) c. = 0, and f?
r
40 (a supersonic neutral di sturbance) , 

./1 
= 0, and both solution e

±By 
satisfy the boundary 

conditions at y = tAo, so that both inward and 
outward travelling waves, of constant amplitude 
in the y-direction, can exist. 

In the last case (iv) the boundary condition at 
y = DO is automatically satisfied by both solutions of (30), 
and therefore the six boundary conditions to be satisfied 
by the solutions of the six differential equations (16) to 
(20) are reduced to five. 	There is, therefore, no 
characteristic equation (25) to be satisfied by a, c, M l , 
and R. 	It is then apparent that neutral disturbances Of 
any wave length and frequency with 

cr  < 1 - 1/M 1 , 	C = 09 

can exist for all Reynolds numbers. 

In the calculation made by Lees (reference 11) 
it has been assumed that neutral and amplified supersonic 
disturbances have no significance in the stability problem. 
This can be confirmed by investigating the secular equation 
for the supersonic disturbances. 

Thus, for the inviscid case, the secular equation 
i s 

9 22 4- 17  9522 - 0. 
.. 	  (33) 

The first order approximation in a for 0 2  gives (see 
equation (5) in the main text) 

°22 - (1-c K 1 (c ) 

2 ( 1-hi 	(1-c) 2  1  
22 = (1-c)  t 	)2 

= 	 2 T - M (w-c) 2 

	  dy 1 (w-c) 2 

and the path of integration lies below the point y = y c 
 in the complex y-plane. 

/Taylor ... 

(34) 
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To study an amplified disturbance we suppose 
that the phase velocity c has a small imaginary component 
so that c = c r + i c 1, say. 	In this case if c i is small 

enough it is clear that (35) is approximately 
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Therefore 

T 
7 	o 	 2 1-c r ) -1 	0, + for c. 	> 0 

&.(c ) w 'c r 	o r 	 - for c. 	< 0. 

Since a > 0, -&L(c r ) 	0, and excluding the sonic case 

c r .1-1/41 ,thishasnosolutionforc.>0 . 	Thus, 

at least for small values of a and c, amplified super-
sonic disturbances cannot exist, for they cannot be 
made to satisfy the boundary conditions as y---).0c. 

It is to be expected that the same result will 
hold for the viscid case, since the breakdown in the 
boundary conditions occurs in the main stream, where 
viscosity can be neglected. 

The mathematical analysis of the supersonic 
disturbance thus predicts that neutral disturbances with 
continuous characteristic values and damped disturbances 
with discrete characteristic values should exist, but 
amplified, self-excited, disturbances cannot exist. 
The physical significance of these results is not clear. 
The abrupt change from continuous to discrete characteristic 
values does not seem to be physically reasonable, and since 
only small non-amplified supersonic disturbances are 
mathematicaly possible their existence could not be 
established experimentally. 	We note that the former 
difficulty can be removed by altering the boundary con-
ditions from 

0 is bounded as y-0 o‘", to 0 -1,0, as y-> ora 

Since the whole mechanism of laminar instability is 
considered to arise from small perturbations within  
the boundary layer, this revised boundary condition 
seems plausible. 	If it is used the secular equation 
will hold for the neutral supersonic disturbance, and 
it may be considered as the limiting case of the damped 
supersonic disturbance. 
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APPENDIXB 

Calculations of the Neutral Stability 

Characteristics 

1. The transformation of compressible boundary layer flow 
into a corresponding incompressible flow  

When the Ptandt1 number (1 and the index w in 
w m  m the viscosity temperature relationship 4 cc 	are 

taken to be unity m , and when the surface Is insulated, 
the compressible boundary layer equations can be trans- 
formed into the incompressible equations in the new 

m ' variables u, y 1  x, 	by 

AV . = W 1 
x 	A u
il

u 1 
710 ' TT = mi 

,* 	3Y-1 
—7=T 

	

x 	) 	dx 
o 

m 
3i  _ (a . rY (0  \\ ay, 

Yi  - V10j o ,P11:)) ) 

Y4.1 
(a l VFIT 1.4. /a  \ 2  m do 

 0 - 

Y-F1y 
(a l  \Y-1 	in 

lY = 
a/ 	 T \ 10/ 	u 0 

Note that in these equations 

. 	127/113! W 	13, / 11, 
1 	1 

suffix 1 refers to values at the edge of the 
boundary layer, 

suffix 10 refers to stagnation in the main 
stream. 

With an insulated surface the boundary layer 
temperature distribution is dependent only on the local 
main stream Mach number and the velocity ratio w = w i , 
and is given by the Crocco formula 

	

,m 	Y-1 _2 	2, = 	= I 	mi  ki-w ). 
T 1 

/Proof ... 

m w is about 0.8 for air under normal conditions. 
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Proof of the transformation formulae (37) - (39) 
have been given by Stewartson (reference 20) and Illing-
worth (reference 19). 

For finding the steady compressible boundary 
layer velocity distribution we shall use the exact 
solutions of the incoir.pressible equations for the main 
stream velocity distribution 

x m  u l 	c 	
) c constant 

The differential equation that arises for this 
case is 

d 31_ 	F  LEE 	R I r(d.F\ 2 -  
de 	dY2 	L 1\.d) 	J 

p = 2m/(m4.1) 

F , (2-p) 	 f , (ni ) 	uT/uT i 	w, 

K X X 	X 
= ( 2-43 ) 4  n i , 	ni 	 Yi. 

This equation has been solved by Hartree 
(reference 18), and his results are the basis for the 
calculations made in this paper. 

In solving the stability problem we shall 
have need to use the derivatives of w with respect to 
y. 	These can be obtained from (39) using the following 
results obtained from (42) 

dw (2-6) — 	= 
0 

111 2  w 	6 J (e.-1)dri , 
o 

   

n- 
(2-0) d27.2 	dw w dry 	p(w2 -1), 

, 1 
0 

dw d3 	 2 w 	 dw (2-6) ---7 	= - 

	 w 	w 7,77. (26 -1 ) 
dni -) 	deg. +.1 0 

dw 3 	 d 	
P-/

w 	(dw \ 
(2-6) 

d w 	= 4 	L 	
2 	2 

Ar 	w  ---77 	) 	 -1 ) 
dr; i  1 0 

Derivatives of w up to the fourth are required in 
solving the secular equation, but for the determination 
of  ncr.min. only the first and second derivatives are 
needed. 	These have been calculated for a number of 
values of p by Pretsch (reference 15), and can be used 
conveniently in obtaining the approximate values of 
these derivatives. 	His results are reproduced in 
Figures 10 and 11. 

/The ... 

(41)  

(42)  
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— ux  C X*m 
1 

The Hay tree solutions of (42) expressing w as a 
function of r 	can be transformed into the compressible 
solution in the variable 

Y = 31. /Y,1i  = Ym/O $ 	say. 

Then, using (39), 

Y 

T T dn. 
0 	1 say,   (43) 

Tdrl i  

 

0 

:9 11 
whereb=j 

For the 'edge' of the boundary layer we take 	such 
that 

u 	i )  = .9995. 
uii 

The 
thus obtained 
incompressible 

m 
uil 	c(x.) 

in fact that 

compressible boundary layer distribution w(y) 
corresponds to the transformation of the 
main flow velocity distribution 

given by equations (37) and (38). 	We find 

....2 	2 x2m c a 10 x2 	10 i  u 1 	- 2 Y-1 2 x 2m 

	

a10 	---Z x. 

	

10 	2 	1 

a l 0 
L. 

2
+ 

 - 1 —2 x2m a l°  + 7-- c xi  

3Y-1 
 2(Y-1) 

aX Y-1 7' 	m2m 
--5F 	—7— -----f  xi  
dx. 	 'a 	) 10 

In general 
but we can 

7F (xm  ) m/a 1 0 . 

there is no exact solution of these equations, 
obtain the solution as a power series in 

Thus, if Y .,-. 1.4, 

0 

2 a 1 

11-0.2 
(10m+1) (ExE  

1 	 ... 	• 

10 (2m+1 ) 	a10/ 

Normally we require the compressible velocity 
um as a function of ym/o or yA/0,, where 15 is the 
boundary layer displacement thickness and 19- is the 
momentum thickness. 	Now 
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Pretsch has also calculated the variation of 
K and K 

6
x with (3 for the Hartree solutions, and these 

 
are shown in graphical form in Figure 9. 

2, Numerical solution of the neutral stability equation 

The method of solution of the neutral secular 
equation (26)has been given by Lees (reference 11), and 
his method is quoted here. 	Once the coefficients of a 
in (26) have .been obtained (see AppendixB3) from the 
velocity and temperature distributions of the boundary 
layer, the procedure for solving (26) is as follows. 

From the Tietjens function F(z), the function 

= 1/(1 - F(z)) 

is plotted (Figure 12). 

For a given Mach number and a chosen value of 
> 1 - 1/M1, the value of v (see equation (26)) is 

calculated from 

W C 	T 
2_ v = 	 

To (WC) (W I ) 2 	1  c 	i c 

wr 
„. 2 	K 

T o 	1' 

where i#K 1 is the imaginary part of K 1 . 

W. y 
>. _  °C c - 1, is usually small, and the first order 

approximations for 6 1, and b i , the real and imaginary 

parts of i, are 

Via) (z°) 
	= 	

(51 ) 

uo ir 	(z ) = 	• 

Using the values of v obtained from (50) z °  and u° 
 are found from Figure 12, and these give the value of 

c 	(z a R 
w r (1 +.,A,) 

The first order approximations for u and z 
can be improved by using 

n+1) (z 	)_ 	 (1+ X)v 

2 (1 + 	u (r1 )) 	)\21,,2 

(50 ) 

u(n+1)_ 6(n+1)(z(n+1)) 2 v 
----T-T' 1+Xu n  

(1 4)1a (n)) 2 +  x2v2 

(1+)...) (1+ 'Nu (n) ) 

using always the value of v given by (50). 	
/Finally ... 
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Finally the value of a is given by (26), which 
can be solved by an iteration process; the whole pro-
cedure is repeated for a number of values of c> 1-1/M1 
to obtain the complete neutral stability curve of a 
versus R. 

3. Evaluation of Vie integrals appearing in the  

characteristic equation  

In the method given in the last section far 
solving the neutral characteristic equation, the values 
of the coefficients, H, K, M, N, of a were required. 
The evaluation of these coefficients, which are multiple 
integrals of the boundary layer velocity distribution, 
constitutes the bulk of the work needed in numerical 
solution of the neutral stability problem. 	In the 
present case it was found advantageous to alter the 
method of evaluating these integrals in some details 
from that given by Lees (ibid). 

Following Lees in equation (26) for a, we 
neglect powers of a higher than the second. 	The coef- 
ficients that have to be evaluated are, therefore 

H1  = (w-c) 2 dy  

0 

Y 1 	2 	y 2 	14Y , N 	H  _ 	T 	kw-C 	t 
2 	2 -1   dy 	 dy

v 0 
	

(w
- c} 2 

2of 0 

T-M 12 (w-c) 2  
K1 =   dy 

V 0 	(w-c)2 

n Y1 T-M 2  (w-c} 2 	f' Y 	 T-H 1 2  (w-c} 2  
N

3 
  dy 	(w ;17 e)

2 
dy 	 dy 

	

(w-c )2 	'• 0 	 j  0 	(w-e )
2 

2 
PY1/

W-C 
\2 	T-M (w-c)2 	OY (w.c) 	2 1  C 

	

dy 	 dy 	 dy. 
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T  
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The general method of evaluation is to split 
each of the integrals into two portions, from y = 0 to 
y=y.say,andfronly.. Y o  .to y = y 1 , so that the first 

region always contains the singularity of the integral 
at W = C. 	This is then calculated by expansion in 
Taylor series about the point y = y c  and integrating 

term by term (bearing in mind that the path of integra-
tion always lies below the point y = y c  in the complex 

y-plane. 	The second part of the integral can be found 
by a straightforward method of numerical integration, 
such as the Simpson parabolic rule. 	In general, we 

/shall ■ .. 
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shall denote the two integrals thus formed by the 
additional suffices 1 and 2. 	Thus, for example 
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This integral has been shown by Lees to be the only 
effective imaginary contribution of the coefficients 
K1 9 H1  , etc. 

T The method of evaluating the derivatives of 
2 is -- 	given in section 3,6 of this appendix. 

(b) To calculate K12 we use the transformation (43) 

given on page 34, to express it as an integral of the 
incompressible boundary layer velocity distribution; 
thus 
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9i1 
and 	b = 	T 

0 

The number of terms of this expression that need to 
be taken varies with M1, c and the pressure gradient 
parameter 0. 	For the calculations made in the 
present paper it was found necessary to go as far as 
the tenth power of c in some instances. 

The integrals forming the terms of this 
expansion can be calculated directly from Hartree's 
incompressible boundary layer solutions (reference 18), 
using Simpson's rule. 

/3.2. . 
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3.2. Evaluation of H 1 (c) 

This integral can be transformed immediately 
into one in the compressible variables: 
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After expansion of the integrand in powere of 
(y-yc ) and neglecting powers of yc and (y.3 -yc ) greater 

than the fifth, we finally get 
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3.5. Evaluation of N 3 

The expanded form of N
3 

is 

N 3  (c) = N 31 1 
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4. 	Calculation of the Minimum Critical Reynolds Number 

The following estimate of R
cr.min. is given by 

Lees (reference 11), 
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5 Approximate Calculation of the Upper and Lower Branches 

of the Neutral Stability Curve.  
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2 in However, when c becomes appreciable the factor 
(1-c) 	n (26) can no longer be neglected, and we must 
write for a 

V/ c 	iv, I 	12  (1-c 1 2 
a es., 
   

T o u 
(1-c) 2 

For many of the stability curves this modification 
is of minor importance, but when a remains finite as R-.“;0 
(the unstable inviscid case), the effect of neglecting 

. (1-c) 2 
can become overwhelming. 	Thus for p 	-0.1, at 

R = 	the formula (54) predicts that for the upper branch 
a decreases as the Mach number increases, whilst according 
to (55) it decreases. 	Confirmation of equation (55) is 
given by calculations made by Pretsch (reference 15) for 
the incompressible case with 0 = -0.1, with which it agrees, 
as can be seen in Figure Li.. 	In contrast, the values of a 
for the upper branch calculated from (54) are half the 
Pretsch values. 

We shall give here the formulae used to calculate 
the branches of the neutral stability curves in terms of 
the incompressible derivatives of w, including the modifica-
tions introduced by using (55) in place of (54). 	All the 
equations hold for o = 1 only. 
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where f(z) is the modified form of the Tietjens function, 
and is plotted in Figure 12. 
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TABLE1 

Reynolds Number, disturbance wave number and 

phase velocity for neutral stability. 

Insulated surface, 8 = 0.6. 

M , =0 

c a R (1 ..3, 
--1 

R 
.156  

.04905 0.1011 1.938 x 10 .00808 1.549 x 106  

.04905 0.2469 6.372 x 107  .01974 5.094 x 10 6  

.0966 0.2270 1.250 x 	106  .01815 0.999 x 105  

.0966 0.5516 3.054 x 106  .04250 2.442 x 105  

.1426 0.3805 2.623 x 105  .03042 2.097 x 104  

.1426 0.8306 4.1055 x 105  .06641 3.282 x 104  

.1872 0.6023 8,873 x 104  .04819 7.093 x 10 3  

.1872 1.0710 1.196 x 	105  .08563 9.562 x 103  

.1959 0.6366 7.742 x 104  .05089 6.190 x 10 3  

1959 1.1074 9.549 x 104  .08854 7.634 x 103  

0,5 

c a R a 
,9^ 

R 

.04905 .0800 2.503 x 10 7  .006313 1.975 x 10 

.04905 .1945 8.933 x 107  .01535 7.049 x 106  

.0966 .1826 1.591 	x 	106  .014'4.1  1.255 x 105  

.0966 .4066 3.344 x 106  .03208 3.112 x 	105  

.1426 .3111 3.366 x 10 5  .02455 2.656 x 104  

.1426 .6592 5.926 x 105  .05202 4.676 x 10 

.1872 .4847 1.105 x 	105  .03825 8.719 x 10 3  

.1872 .853 1.571 	x 	105  .06736 1.240 x 104  

.2046 .5818 7.889 x 10 4  .04591 	6.225 x 10 3  

.2046 .8954 1.0314x 105  .07066 	8.139 x 103  
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TABLE1 

Reynolds Number, disturbance wave number and 
phase velocity for neutral stability. 

Insulated surface, 8 = 0.6. 

M , = 0 

c a R (1 ..3 , 
--1 

R .19 ,  

.04905 0.1011 1.938 x 10 .00808 1.549 x 10 6  

>04905 0.2469 6.372 x 10 7  .01974 5.094 x 10 6  

.0966 0.2270 1.250 x 	10 6  .01815 0.999 x 10 5  

.0966 0.5516 3.054 x 10 6  .04250 2.442 x 10 5  

.1426 0.3805 2.623 x 10 5  .03042 2.097 x 10 4  

.1426 0.8306 4.1055 x 10 5  .06641 3.282 x 10 4  

.1872 0.6023 8,873 x 10 4  .04819 7.093 x 10 3  

.1872 1.0710 1.196 x 	10 5  .08563 9.562 x 10 3  

.1959 0.6366 7.742 x 10 4  .05089 6.190 x 10 3  

1959 1.1074 9.549 x 10 4  .08854 7.634 x 10 3  

0,5 

c a R a 
,9^ 

R 

.04905 .0800 2.503 x 10 7  .006313 1.975 x 10 

.04905 .1945 8.933 x 10 7  .01535 7.049 x 10 6  

.0966 .1826 1.591 	x 	10 6  .014'4.1  1.255 x 10 5  

.0966 .4066 3.344 x 10 6  .03208 3.112 x 	10 5  

.1426 .3111 3.366 x 10 5  .02455 2.656 x 10 4  

.1426 .6592 5.926 x 10 5  .05202 4.676 x 10 

.1872 .4847 1.105 x 	10 5  .03825 8.719 x 10 3  

.1872 .853 1.571 	x 	10 5  .06736 	1.240 x 10 4  

.2046 .5818 7.889 x 10 4  .04591 	6.225 x 10 3  

.2046 .8954 1.0314x 10 5  .07066 	8.139 x 10 3  
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TABLE T (contd.) 

M
1  = 0.7 

c a R a.9, R
-3- 

0 49 05 .0633 3.171 	x 	107  .00493 2.471 	x 10 6  

04905 .1457 1.2)8 x 	108  .01135 1.012 x 	107  

0966 .1491 1.982 x 106  .01162 1.545 x 105  

0966 .3344 5.085 x 106  .02606 3.963 x 10 5  

1426 .2478 4.171 	x 105  .01931 5.251 	x 104  

1 426 .5460 7.447 x 105  .04255 5.804 x 104  

1872 .40(1)0 1.365 x 105  .03118 1.064 x 104  

1872 .6895 2.069 x 105  .05374 1.613 x 104  

2132 .5478 8.753 x 104  .04270 6.808 x 10 3  

2132 .7463 1.0948x 10 5  .05817 8.533 x 10 3  

i^ri
1 

= o.9 

c c. R 11 
19. 

.04905 .05931 5.399 x 107  .00301 4.140 x 106  

.04905 .08999 1.935 x 	108  .00690 1.434 x 10 7  

.0966 .0960 3.173 x 106  .00736 2.433 x 105  

.0966 .2187 7.886 x 10 6  .01677 6.048 x 10 5  

.1426 .1728 6.134 x 105  .01325 4.704 x 104  

.1426 .3523 1. 2006 x 10 6  .02702 9.207 x 104  

.1872 .2614 2.080 x 105  .02005 1.595 x 104  

.1872 .4694 3.138 	x 	105  .03600 2.406 x 104  

.2132 .3479 1.166 x 	105  .02668 8.942 x 103  

.2132 .5562 1.651 	x 105  .04265 1.266 x 	104  
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TABLE T (contd.) 

M1  = 0.7 

c a R a.9, R '- 

0 49 0 5 .0633 3.171 	x 	10 7  .00493 2.471 	x 10 6  

04905 .1457 1.2)8 x 	10 8  .01135 1.012 x 	10 7  

0966 .1491 1.982 x 10 6  .01162 1.545 x 10 5  

0966 .3344 5.085 x 10 6  .02606 3.963 x 10 5  

1426 .2478 4.171 	x 10 5  .01931 5.251 	x 10 4  

1 42 6 .5460 7.447 x 10 5  .04255 5.804 x 10 4  

1872 .4000 1.365 x 10 5  .03118 1.064 x 10 4  

1872 .6895 2.069 x 10 5  .05374 1.613 x 10 4  

2132 .5478 8.753 x 10 4  .04270 6.808 x 10 3  

2132 .7463 1.0948x 10 5  .05817 8.533 x 10 3  

i^ri
1 = o.9 

c c R 11 ,64.  
19.  

.04905 .05931 5.399 x 10 7  .0c301 4.140 x 10 6  

.04905 .08999 1.935 x 	10 8  .00690 1.434 x 10 7  

.0966 .0960 3.173 x 10 6  .00736 2.433 x 10 5  

.0966 .2187 7.886 x 10 6  .01677 6.048 x 10 5  

.1426 .1728 6.134 x 10 5  .01325 4.704 x 10 4  

.1/426 .3523 1. 2006 x 10 6  .02702 9.207 x 10 4  

.1872 .2614 2.080 x 10 5  .02005 1.595 x 10 4  

.1872 .4694 3.138 	x 	10 5  .03600 2.406 x 10 4  

.2132 .3479 1.166 x 	10 5  .02668 8.942 x 10 3  

.2132 .5562 1.651 	x 10 5  .04265 1.266 x 	10 4  
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Table I (contd.) 

M = 1.1 

c 
----- 

a ,) u a.,51. 
1 

R,k5v 

.0966 .01614 1.9135 x 107  .00121 1.437 x 10 6  

.0966 .03623 5.220 x 1n7  .00272 3.919 x 106  

.1426 .0773 1.412 x 	106 .00580 1.060 x 10 5  

.1426 .1599 2.798 x 10 6  .01200 2.101 	x 	105  

.1872 .1636 3.353 x 105  .01228 2.517 x 104  

.1872 .2951 5.3705 x 105  .02216 4.032 x 104  

.2218 .2612 1.464 x 10 5  .01961 1.099 x 10 4  

.2218 .4014 1.951 	x 	105  .03014 1.465 x 104  

M 	1.3 

c a. R a 
-a' R 

40' 

.2333 

.2333 

.0050 

.00485 

1.009 x 107  

1.443 x 10 7  

.000257 

.000356 

7.411 	x 105  

1.060 x 10 6  
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Table I (contd.) 

M = 1.1 

c a ,) u a.,51. 
1 

R,k5v 

.0966 .01614 1.9135 x 107  .00121 1.437 x 10 6  

.0966 .03623 5.220 x 1n7  .00272 3.919 x 106  

.1426 .0773 1.412 x 	106 .00580 1.060 x 10 5  

.1426 .1599 2.798 x 10 6  .01200 2.101 	x 	105  

.1872 .1636 3.353 x 10 5  .01228 2.517 x 104  

.1872 .2951 5.3705 x 105  .02216 4.032 x 104  

.2218 .2612 1.464 x 10 5  .01961 1.099 x 10 4  

.2218 .4014 1.951 	x 	105  .03014 1.465 x 104  

M 	1.3 

c a. R a 
- a' R 

40' 

.2333 

.2333 

.0050 

.00485 

1.009 x 107  

1.443 x 10 7  

.000257 

.000356 

7.411 	x 105  

1.060 x 10 6  
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TAHLE II 

  

Auxiliary functions used in the calculation of the 

neutral stability characteristics. 

Insulated surface, 	9 . 0.6. 

).% L H
1  H2-N

2 
M

3 

0•••••■•■••■••• 

3 

0 .04905 .0214 .1023 .2086 .6604 .2903 .1 243 .1902 
.0966 .0377 .2261 .3929 .5895 .2842 .1085 .2041 
.1426 .0543 .3600 .6357 .5252 .2782 . 0945 .2186 
.1872 .0709 .5219 .8879 .4675 .2732 .0822 .2366 
•1959 .0745 •5571 .9429 .4560 .2718 .0798 .2405 

0. 5 . 049 05 .0181 .1006 .1532 .6518 .2232 .0936 .1227 

.0996 .0340 .2160 .2813 .5818 . 2243 .0839 .1378 

.1426 .0501 .3697 .4276 .5184 22)48 .0748 .1565 

.1872 .0663 .5031 .6037 .4575 . 2212 .0645 .1676 

.2046 .0731 .5687 .6631 .4395 . 2170 .05945 .1645 

0. 7 .0490 5 .0165 .1000 .0702 .6438 .1638 .0680 .0771 

.0966 .0323 .2132 .1685 .5747 .1718 .0621 .0892 

.1426 .0470 .3424 .2590 .5121 .1758 .0569 .1059 

.1872 .0629 .4859 .3778 .45 1 9 .1807 .0507 .1235 

.2132 .07 29 •5879 .4625 .4239 .1900 .0493 .1383 

0. 9 .04905 .0152 .0993 .o269 .6335 .0778 .0268 .0219 
.0966 .0306 .2098 .0332 .5654 .1036 .0351 .0346 

- 1426 .0466 .3338 .0569 .5038 .1171 .0369 .0459 

.1872 .0622 .4770 .0551 • )4)446  .1248 .0336 .0636 

.2132 .0718 .5543 .0815 • 4 1 71 .1349 .0332 .0712 

1 . 1 .0966 .0305 .1805 -.0889 .5536 .0235 .0049 - .0136 

.1426 .0458 .3247 -.1747 .4933 .0469 .0116 -.0046 

.1872 .0613 .4555 -.0488 .4353 .0629 .0143 .0053 

.2218 .0743 .5695 .01136 .3986 .0805 .0177 .0129 

1.31.2333 .0775 •5799 -•4979 .3706 . 0183 .0000 -.0193 
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TAHLE II 

  

Auxiliary functions used in the calculation of the 

neutral stability characteristics. 

Insulated surface, 	9 . 0.6. 

).% L H
1  H 2 -N2 

M
3 

0•••••n •n ••n••• 

3 

0 .0490 5 .0214 .1023 .2086 .6604 .2903 .1 2 43 .1902 
.0966 .0377 .2261 .3929 .5895 .2842 .1085 .2041 
.1426 .0543 .3600 .6357 .5252 .2782 . 0945 .2186 

.1872 .0709 .5219 .8879 .4675 .2732 .0822 .2366 

• 1959 .0745 • 5571 .9429 .4560 .2718 .0798 .2405 

0.5 . 0 49 0 5 .0181 .1006 .1532 .6518 .2232 .0936 .1227 

.0996 .0340 .2160 .2813 .5818 . 2243 .0839 .1378 

.1426 .0501 .3697 .4276 .5184 22)48 .0743 .1565 

.1872 .0663 .5031 .6037 .4575 . 2212 .0645 .1676 

.2046 .0731 .5687 .6631 .4395 . 2170 .05945 .1645 

0.7 .04905 .0165 .1000 .0702 .6438 .1638 .0680 .0771 

.0966 .0323 .2132 .1685 .5747 .1718 .0621 .0892 

.1426 .0470 .3424 .259 0 .5121 .1758 .0569 .1059 

.1872 .0629 .4859 .3778 .4519 .1807 .0507 .1235 

.2132 .07 29 • 5879 .4625 .4239 .1900 .0493 .1383 

0.9 .04905 .0152 .0993 .0269 .6335 .0778 .0268 .0219 

.0966 .0306 .2098 .0332 .5654 .1036 .0351 .0346 

- 1 42 6 .046 6 .3338 .0569 .5038 .1171 .0369 .0459 
.1872 .0622 .4770 .0551 • )4)44 6  .1248 .0336 .0636 

.2132 .0718 .5543 .0815 • 4 1 71 .1349 .0332 .0712 

1.1 .0966 .0305 .1805 -.0889 .5536 .0235 .0049 -.0136 

.1426 . 0458 .3 2 47 -.1747 .4933 .0469 .0116 -.0046 

.1872 .0613 .4555 -.0488 .4353 .0629 .0143 .0053 

.2218 .0743 .5695 .01136 .3986 .0805 .0177 .0129 

1.31.2333 .0775 • 5799 -•4979 .3706 .0183 .0000 -.0193 



2 8 6 4 0 12 10 
x 10 

COLLEGE OF AERONAUTICS 

REPORT No. 4 f3. 

•08 

•06 

•04 

•02 

0 

0 	2 	4 	6 	8 	10 	12 
R,15, x10 4  

FIG. 1. NEUTRAL STABILITY CURVE FOR INSULATED 

SURFACE WITH /3= 0.6. 

(a) MI = 0. 

FIGURE I. CONTINUED. 

(b) M I= 0.5. 
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FIGURE I. CONTINUED. 
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Pcr 

mi 

FIG. 6. THE CRITICAL PRESSURE  GRADIENT COEFFICIENT  gIcr. 

FOR COMPLETE STABILITY FOR  ALL  REYNOLD'S NUMBERS 

WITH AN INSULATED SURFACE. 
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FIG, 7. THE CRITICAL TEMPERATURE RATIO  To cr  FOR 

COMPLETE STABILITY OF THE LAMINAR BOUNDARY 

LAYER  WITHOUT A PRESSURE GRADIENT. (AFTER LEES : REFERENCE II), 
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FIG. 9. VARIATION OF THE PARAMETERS K.y AND Ks* MTH 

PRESSURE GRAD1EW. (TAKEN FROM REFERENCE 15) 
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DERIVATIVES OF THE HARTREE VELOCITY  PROFILES FOR  THE 

INCO1v1PRE5SIBLE BOUNDARY LAYER (TAKEN FROM REFERENCE 15). 
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