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Abstract 21 

 22 

This study describes a method to obtain parameter confidence intervals from the fitting of 23 

non-linear functions to experimental data, using the SOLVER and Analysis ToolPaK Add-24 

In of the Microsoft Excel spreadsheet. Previously we have shown that Excel can fit 25 

complex multiple functions to biological data, obtaining values equivalent to those returned 26 

by more specialized statistical or mathematical software.  However, a disadvantage of 27 

using the Excel method was the inability to return confidence intervals for the computed 28 

parameters or the correlations between them. Using a simple Monte-Carlo procedure 29 

within the Excel spreadsheet (without recourse to programming), SOLVER can provide 30 

parameter estimates (up to 200 at a time) for multiple ‘virtual’ data sets, from which the 31 

required confidence intervals and correlation coefficients can be obtained.  The general 32 

utility of the method is exemplified by applying it to the analysis of the growth of Listeria 33 

monocytogenes, the growth inhibition of Pseudomonas aeruginosa by chlorhexidine and 34 

the further analysis of the electrophysiological data from the compound action potential of 35 

the rodent optic nerve. 36 

  37 
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1 Introduction 38 

 39 

We have previously described the use of the Microsoft Excel spreadsheet to conduct non-40 

linear regression (NLR) analysis of biological data [1]. Direct fitting of the dose response 41 

curve, for example, through the use of NLR techniques has been widely advocated, but 42 

access to, and comprehension of, commercial software are often at odds with the direct 43 

needs of the researcher. We recognised the ease of access and understanding that most 44 

researchers have of Microsoft Excel [2], which could allow even those with an elementary 45 

understanding of the spreadsheet to conduct relatively sophisticated data analyses, 46 

without the expense of purchasing and learning a new statistical or advanced 47 

mathematical package. 48 

 49 

The SOLVER Add-In package of Excel allows the user to conduct investigations of non-50 

linear (NL) functions using the minimization of the sum of squares of the errors between 51 

the observed and modelled values [1]. We further described the use of the technique for 52 

the modelling of multiple Gaussian functions, which described the observed 53 

electrophysiological data from the compound action potential of the rodent optic nerve [3]. 54 

One particular failing of the SOLVER package was the inability to return parameter 55 

confidence intervals. It was noted that this requires the use of the Hessian matrix, whose 56 

calculation and use would invalidate the aim of making NLR open to anyone [1]. Hence the 57 

error analysis of the modelled and observed data was terminated at the calculation of the 58 

standard error of the fit. 59 
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 60 

Confidence intervals can be calculated from knowledge of the Hessian but can also be 61 

estimated using either the Bootstrap technique of re-sampling errors between the 62 

modelled fit and the observed, or from Monte-Carlo (MC) simulation [6]. The MC technique 63 

uses the standard error of the fit of the non-linear model to the observed data to produce 64 

sets of ‘virtual’ data. These data are modelled using the same non-linear model and a new 65 

group of parameters obtained for each virtual set. From the statistical distribution of these 66 

parameters, confidence intervals as well as correlation coefficients can be obtained.  67 

 68 

We describe here the use of NLR within the Excel environment and augment our original 69 

method with a simple MC analysis, and show its general utility by applying it to analyse the 70 

growth of Listeria monocytogenes, the growth inhibition of Pseudomonas aeruginosa by 71 

chlorhexidine and the further analysis of the electrophysiological data from the compound 72 

action potential of the rodent optic nerve. 73 

 74 
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2 Computational Methods and Theory 75 

 76 

For a given data set and a particular model (yfit), the sum of squares of the errors is given 77 

by 78 

         
 
         

   79 

In a regression analysis the value of SSE is minimised by changing the parameter values 80 

of the model yfit, resulting in the best estimates of these parameters. In linear regression 81 

this is solved analytically, but if using non-linear regression this is carried out numerically, 82 

based on the input of initial parameter estimates. The square root of the mean of the 83 

square of the error (RMSE) is the standard error of the fit. For a given set of conditions the 84 

model will return the expected value of yi , E(yi) = ŷi. With linear regression, if all the 85 

prerequisite conditions are met, then the reported 95% confidence intervals will contain the 86 

true value of the regression parameters 95% of the time. With non-linear regression 87 

confidence intervals are found using linear approximations and the labelled 95% 88 

confidence intervals may not contain the true interval as often.  89 

 90 

If the conditions required for regression are met, e.g. constant variance of error 91 

(homoscedasticity), normal distribution of errors, then the RMSE is an unbiased estimator 92 

of the standard deviation of the fit. A virtual data set can be calculated by adding random 93 

error to the expected value of y; 94 

Y’i = ŷi + N(0,RMSE)  95 
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This virtual data set can be analysed by NLR to give another set of parameters (the best fit 96 

estimates for this virtual data set). 97 

        
             

   98 

Another set of virtual data can be generated and the NLR fitting repeated. In the procedure 99 

outlined here the sum of squares of the errors from multiple data sets are summed and the 100 

fitting of m-sets of data are conducted simultaneously 101 

               
       

  
   

 
     102 

From the m-sets of parameters obtained, frequency analyses of the parameter values are 103 

performed and the 95% confidence intervals obtained from the normal quantiles; 104 

covariance between parameter pairs can be found by calculating the parameters’ 105 

correlation coefficient. 106 

 107 

2.1 FITTING THE MODIFIED GOMPERTZ EQUATION TO MICROBIAL GROWTH DATA 108 

The modified Gompertz equation is a standard empirical model for the fitting of microbial 109 

growth data [5].  110 

                                 (1) 111 

Where A is the asymptotic number (log cfu ml-1) as t tends to negative infinity, A+C = 112 

maximum population density as t tends to positive infinity, B is a measure of the slope and 113 

M is the time of maximum slope. From these fitted parameters the growth rate and lag are 114 

calculated, respectively, as  115 

CB/exp(1)      (2) 116 

M-1/B      (3) 117 
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Data for the growth of Listeria monocytogenes at 30oC in growth media (Tryptone Soya 118 

broth) containing 9% salt in terms of log cfu ml-1 over a period of 100 hours were obtained.  119 

2.2 FITTING THE LAMBERT-PEARSON MODEL TO MICROBIAL GROWTH INHIBITION DATA  120 

The time taken for a microbial culture to reach a specific optical density (also known as the 121 

time to detection, TTD) in the presence of an inhibitor is dependent on the concentration 122 

and dose response of that inhibitor. The Lambert-Pearson model (LPM, equation 4) [4] 123 

describes the visual growth of a culture as an exponential decay function of the 124 

concentration of the applied inhibitor. A plot of the log concentration against the relative 125 

rate to detection (RRTD, the ratio of the time to detection of the uninhibited culture, or 126 

positive control, to the time to detection of the test culture) gives a characteristic sinusoid, 127 

with inflexion at RRTD = 1/exp(1).  A linear extrapolation from this point to the log 128 

concentration axis allows the estimation of the minimum inhibitory concentration (MIC, 129 

equation 5), and a linear extrapolation to the RRTD = 1 axis allows the estimation of the 130 

non-inhibitory concentration (NIC, equation 6), the concentration below which normal 131 
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visual growth is observed even in the presence of the inhibitor.     132 
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Where RRTD = relative rate to detection, [x] is the concentration of the given inhibitor, P1 134 

is the concentration of inhibitor giving a relative inhibition of 1/e, where e is the exponential 135 

of 1,  and P2 is a slope parameter which has been defined as the dose response due its 136 

similarity with the Hill model.  137 

Two biologically important parameters can be obtained from the LPM; the minimum 138 

inhibitory concentration (MIC) and the non-inhibitory concentration (NIC) and are defined, 139 

respectively, as 140 
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Data from the growth inhibition of Pseudomonas aeruginosa (ATCC 15442) in the 143 

presence of chlorhexidine at 37oC was obtained using standard, published, methods 144 

(Lambert and Pearson 2000). 145 

 146 

2.3 FURTHER ANALYSIS OF COMPOUND ACTION POTENTIAL OF THE RODENT OPTIC 147 

NERVE 148 

The compound action potential from the rodent optic nerve typically has three peaks 149 

(indicating the presence of three populations of axons with different conduction velocities) 150 

with a rapidly decaying transient or artefact from the initial stimulus. Originally this 151 

phenomenon was modelled using the sum of four Gaussian functions, one for each feature 152 

of the CAP (Brown 2006).  153 

          
  

      
       

    

  
 
 

  
    154 

             (7) 155 

where Ai is the area under the curve, wi the width at half the maximum amplitude and ci is 156 

the latency to the maximum amplitude of peak i. This equation models the artefact as a 157 

Gaussian; a secondary model which has some desirable features as described in this 158 

report, models the artefact as a simple decay, modelling from the initial recording time of 159 

1.04 ms. 160 

                         
  

      
       

    
  

 
 

 

 

   

 

             (8) 161 

Where D1 and D2 are parameters describing the decay of the initial stimulus. 162 
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3 Program description and sample runs 163 

The method can be split into 3-stages: Stage 1 fits the given NL model to the observed 164 

data using SOLVER. This generates the initial best fit parameters and the RMSE value of 165 

the fit. Stage 2 uses the RMSE to generate a set of random numbers based on 166 

N(0,RMSE), which are added to the predicted data from Stage 1. The NL model is then 167 

applied to multiple virtual data sets simultaneously (using SOLVER) to generate multiple 168 

values of best-fit parameters. In stage 3 these values are statistically analysed to provide 169 

the mean of the best-fit parameters, their standard errors, 95% confidence intervals and 170 

parameter correlations. The data can also be used to provide confidence intervals for 171 

parameters calculated from the regressed parameters, which are often dependent on the 172 

magnitude of the correlation between those parameters. 173 

3.1 NLR: EXCEL ANALYSIS OF THE GROWTH OF LISTERIA MONOCYTOGENES AT 30OC 174 

IN HIGH SALT MEDIA 175 

3.1.1 Monte-Carlo: Excel Analysis 176 

Stage 1. The initial part of the procedure generally follows that given previously [3] except 177 

in this case the modified Gompertz model (1) was used. The data used and the initial NLR 178 

are shown in Figure 1. The sum of the squares of the errors (SSE, Cell E39) was 179 

calculated using the inbuilt “SUMXMY2(data range 1,data range 2)”, where the first data 180 

range was the modelled values and the second data range was the observed values. Cell 181 

E41 divides this by the degrees of freedom (Cell E40) and takes the square root to give 182 

the root mean square error (RMSE). This is the standard error of the curve fit. The 183 
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SOLVER Package was used to minimise this value, by changing the values of the four 184 

parameters A, C, B and M. Figure 2  shows a plot of the observed data and the modelled 185 

function. 186 

 187 

Stage 2. Generation of random numbers with a distribution of N(0,RMSE): (It is assumed 188 

the user has installed the Analysis ToolPak Add-In). On a separate worksheet, the 189 

Random Number Generator was used to generate an array of 50 columns of 33 random 190 

numbers using the RMSE of the fitted model as the standard deviation (Figure 3). The 191 

number of columns used is set by the maximum number of values that SOLVER can 192 

handle (200) divided by the number of parameters in the model. A random seed number of 193 

2 was used for illustrative purposes as the use of this seed number will allow any reader to 194 

recreate the exact procedure carried out here. 195 

 196 

Generation of virtual data: The random data was added to the modelled log cfu ml-1 data to 197 

produce a set of 50 virtual observed data. On the spreadsheet these were conveniently 198 

located below the random number array. 199 

 200 

Stage 3. Fitting multiple models simultaneously using SOLVER: Below each set of virtual 201 

data the modified Gompertz model was entered (Figure 4). The regression parameters 202 

were placed below this:  the initial parameters for each set used the parameters from the 203 

initial model fit, although it is advised to check that the parameters do not represent a local 204 

rather than the global minimum). The SSE between the virtual data and the modelled data 205 

was calculated per data set (Cells C115 to AZ115). The SSE from each data set was 206 
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summed and this total value placed in cell C117; SOLVER was used to minimise this total 207 

SSE by changing all the 200 parameters concurrently. This procedure gave 50 sets of 208 

modelled parameters per run. A target SSE of 50 times the SSE obtained from the initial fit 209 

(cell B118) was used to monitor the progress of the fitting.  210 

After the minimization procedure, from the fitted parameters the mean and standard 211 

deviations were found. The 95% confidence intervals were calculated from the 95% 212 

percentiles using the syntax ‘=PERCENTILE(array, 0.025)’, and ‘=PERCENTILE(array, 213 

0.975). The correlation coefficient was found using the “CORREL(data range 1, data range 214 

2)” function. Tables 1a and 1b give the results of this MC analysis. 215 

 216 

3.1.2 Calculation of Biological Parameters 217 

The growth rate, maximum population density and the lag before the onset of growth are 218 

important biological parameters and have to be calculated from the parameters obtained 219 

from the fitting of the modified Gompertz. However, a singular problem is the calculation of 220 

the confidence interval of the calculated parameter. For example the MPD = A + C, but the 221 

variance is given by  222 

                                  

Knowledge of the correlation between parameters allows the covariance to be calculated. 223 

However in more complex cases such as the calculation of the growth rate ( given by 224 

BC/e), the calculation of the confidence interval  becomes complex. The confidence 225 

intervals for these biological parameters, however, can be estimated from the parameter 226 

data of the MC analysis. For each parameter set the particular biological parameter was 227 
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calculated, giving 101 values (including the original fitting parameters).From these values 228 

the required percentiles were calculated.  In this particular case a re-parameterized 229 

version of the modified Gompertz [5] was used to show that the ranges obtained by 230 

running a non-linear analysis using JMP were equivalent to those obtained directly from 231 

the MC analysis (Table 2). 232 

 233 
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4 Samples of Program Runs 234 

4.1 INHIBITION OF PSEUDOMONAS AERUGINOSA BY CHLORHEXIDINE 235 

The LPM (Eqn. 4) can be written in Excel as a nested series of IF-statements (e.g. see 236 

Figure 6). Initial estimates for the regression parameters can be obtained from an analysis 237 

of a plot of the chlorhexidine concentration against the RRTD (Figure 5). Using SOLVER 238 

estimates for parameters P1 and P2 and the RMSE were obtained. The fitted parameters 239 

and the RMSE were used to prime the MC analysis.  The results of the Excel MC analysis 240 

are given in Table 3 and Figure 6 shows the spreadsheet used. 241 

 242 

A table (81x100) of random numbers based on N(0, RMSE) was produced (cells C4 to 243 

CX84). These random numbers were added to the modelled values (cells C88 to CX168), 244 

and the non-linear fitting repeated (C172 to CX252) by regressing all 200 parameters at 245 

once (Cells C255 to CX256). Figure 6 shows a portion of the calculation performed. Cell 246 

C259 sums the SSE for each regression performed (cells C258 to CX258). Cells B262 to 247 

CX262 and C263 to CX263 calculate the MIC and NIC values from the regressed 248 

parameters respectively. 249 

  250 
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4.2 FURTHER ANALYSIS OF COMPOUND ACTION POTENTIAL OF THE RODENT OPTIC 251 

NERVE 252 

The stimulus-evoked compound action potential from the mouse optic nerve was 253 

successfully modelled using multiple Gaussian functions (Brown 2006). The original work 254 

used four Gaussian functions to simulate the three peaks of the CAP and the brief stimulus 255 

artefact (Eqn.7). This model was set up in Excel and the 16 parameters regressed. The 256 

sum of squares obtained was 0.09987; the parameter values for Peaks 1,2 and 3 were 257 

essentially identical to those published (nb., a typographical error in the publication gave 258 

the area of peak 1 as 7.663, whereas it should have read 0.633). The estimated parameter 259 

values for the artefact were, however, different from those published. The peak area found 260 

in this analysis was 5.577 vs. 7.180 found previously and a calculated amplitude of 30.8 261 

vs. 38.042. 262 

 263 

The standard error of the fit (0.02986) was used to produce an array (96 x124) of normally 264 

distributed random numbers. These values were added to the modelled data (on a 265 

separate Excel sheet) to produce 96 virtual data sets (Cells DH5 to GY128), Figure 7. (nb 266 

columns and rows have been ‘hidden’ to show the full sheet).  The model was added to 267 

each cell M5 to DD128, the parameters were placed below each set of modelled data: 268 

cells M132 to DD143. The calculated SSE between the modelled data and their respective 269 

virtual data set was placed in cells M145 to DD145. The sum of these SSE was calculated 270 

in Cell L146.  Due to the SOLVER limit of 200 parameters, the MC analysis had to be done 271 

in batches of 16. The results of the Monte-Carlo analysis (96 runs; 6 runs of 16) are given 272 
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in Table 4a. The values obtained for the parameters are very similar to that previously 273 

published, apart for the values for the artefact. The confidence interval for the area of the 274 

artefact ranged from 4 to 10.7 and all correlations between parameters A4, w4 and c4 had 275 

magnitudes greater than 0.994,  suggesting  that the model was over-parameterized.  276 

 277 

A NLR analysis using the JMP statistical package gave an estimate for A4 of 5.5788 (95% 278 

CI of 2.595 – 21.835), and correlations greater than 0.994 between A4, w4 and c4. 279 

 280 

 In a second Excel MC study, the artefact was modelled by a simple exponential decay, 281 

replacing the Gaussian for the artefact by the function D1Exp(-D2(t-1.04)). A similar MC 282 

analysis was undertaken;  the parameter estimates found for the three principal peaks 283 

were relatively unchanged, but the parameter estimates for the artefact now had narrower 284 

confidence intervals and the correlation between D1 and D2 = 0.246 (Table 4b) 285 

4.3 CAVEATS TO USING MC ANALYSIS WITHIN EXCEL 286 

The MC analysis within Excel is initially primed using the parameter estimates from the 287 

initial SOLVER minimisation procedure.  It is possible that the estimates relate not to a 288 

global minimum but to a local minimum, especially if there is a high degree of correlation 289 

between given parameters (as was observed in the first analysis of the CAP data). One 290 

method to overcome any such possibility is to use different initial parameter estimates for 291 

each virtual dataset. This can be done using Excel’s  “RANDBETWEEN(a,b)” function, 292 

where the user generates a scaled value of a parameter between two integer extrema (a 293 

and b), and rescales to accommodate the desired magnitude of the initial parameter. 294 
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 295 

4.4 COMPARISON OF THE EXCEL NLR AND MC ANALYSIS WITH MATHEMATICA 296 

The non-linear regression capability of JMP  was used to fit the three sets of sample data; 297 

Tables 1, 2, 3, and 4c give the parameters, and their confidence intervals obtained using 298 

this sophisticated software; Table 1b also compares the parameter correlations obtained 299 

between the Excel MC and JMP NLR analysis.  A small program was written to conduct a 300 

Monte-Carlo analysis within Mathematica (Version 8) with the subsequent analysis of 301 

10,000 virtual data sets (approx 2 to 5 minutes per 10,000 runs) for each of the fitted 302 

models. The results of these MC analyses are also given in Tables 1a, 3, and 4d. The NLR 303 

analysis using JMP essentially gave the same parameter estimates as that from the NLR 304 

Excel analysis; the confidence intervals calculated using the Excel MC technique closely 305 

agree with those calculated using the Hessian method within JMP. A comparison of the 306 

results of the MC analysis of Mathematica also compares well with the Excel output. It 307 

should be noted that the confidence intervals obtained from the MC analysis and the direct 308 

NLR analysis using JMP do not completely agree with each other and this simply reflects 309 

the differences in the techniques used. Each is equally correct. 310 

 311 

The comparison between the parameter estimates and their confidence intervals as 312 

obtained from the Excel MC analysis with either the direct NLR or the MC analyses using 313 

JMP or Mathematica demonstrates the capacity of Excel to produce results equivalent to 314 

those from more sophisticated packages. 315 
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5 Hardware and software specification 316 

 317 

The method was carried out on a basic desktop computer with an AMD Phenom 9750 318 

Quad core processor (2.4GHz), using Microsoft Excel 2007 under Windows 7. Non linear 319 

regression comparisons were carried out using the JMP (4.0.4) Statistical Software (SAS 320 

Institute Inc, Cary NC) and Monte-Carlo comparisons were carried out using Mathematica 321 

Version 8.0.0.0 (Wolfram Research Inc, Champaign IL, USA). 322 

 323 

 324 

 325 
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6 Program availability 326 

Spreadsheets with the worked examples are available from the author on request. The 327 

Mathematica coding used to produce the NLR fits and Monte-Carlo simulations are also 328 

available from the corresponding author. 329 

 330 
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Tables 352 

 353 

Table 1a. Excel MC (100 iterations), JMP (non-linear regression) and Mathematica MC 354 
(10,000 iterations) analyses for the fitting of the modified Gompertz equation to Listeria 355 
monocytogenes growth data  356 

Method Parameter Estimate StdErr LCL UCL 

Excel MC 

A 3.948 0.0278 3.906 3.999 

C 4.896 0.0520 4.801 4.977 

B 0.095 0.0033 0.090 0.101 

M  30.318 0.2617 29.766 30.792 

JMP NLR 

A 3.951 0.0279 3.892 4.008 

C 4.900 0.0486 4.802 5.000 

B 0.095 0.0033 0.089 0.102 

M 30.341 0.2858 29.738 30.937 

Mathematica 
MC 

A 3.95 0.0279 3.895 4.0048 

C 4.9003 0.0481 4.807 4.995 

B 0.095 0.0033 0.089 0.102 

M 30.340 0.2833 29.776 30.882 

Units: A and C: log10cfu ml-1; B: 1/hr M: hr 357 

Table 1b. Parameter Correlation Table Obtained using Excel MC  358 
and JMP NLR analysis (brackets) 359 

 
A C B M 

A 1 
   

C 
-0.697 

(-0.675) 1 
  

B 
0.347 

(0.357) 
-0.658 

(-0.650) 1 
 

M 
0.546 

(0.499) 
-0.135 

(-0.088) 
0.0122 
(0.161) 1 

 360 
  361 
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Table 2. Calculation of Biological Parameters from the modified Gompertz using 362 
Excel MC, compared to the JMP NLR fitting of the re-parameterised modified 363 
Gompertz equation for the growth of Listeria monocytogenes at 30oC in high salt 364 
(9%). 365 

Method Parameter Estimate StdErr LCL UCL 

Excel MC Growth rate 0.172 0.005 0.162 0.182 

 Lag 19.806 0.470 18.733 20.589 

 MPD 8.845 0.039 8.765 8.918 

JMP NLR Growth rate 0.171 0.005 0.162 0.182 

 Lag 19.829 0.499 18.765 20.878 

 MPD 8.850 0.036 8.778 8.924 

Units: Growth rate: log10 cfu ml-1 hr-1; lag: hrs; MPD log10 cfu ml-1 366 
  367 
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Table 3. Excel MC (100 iterations), JMP (non-linear regression) and Mathematica 368 
MC(10,000 iterations) analyses for the fitting of the LPM to the inhibition of 369 
Pseudomonas aeruginosa in the presence of chlorhexidine. 370 

Method Parameter Estimate StdErr LCL UCL 

Excel MC 
P1 7.265 0.093 7.109 7.455 

P2 1.150 0.022 1.107 1.187 

JMP NLR 
P1 7.257 0.085 7.092 7.430 

P2 1.149 0.019 1.114 1.185 

Mathematica MC 
P1 7.257 0.085 7.095 7.427 

P2 1.149 0.019 1.113 1.186 

Excel MC 
MIC 17.34 0.428 16.61 18.18 

NIC 1.630 0.044 1.550 1.709 

Mathematica MC 
MIC 17.333 0.372 16.62 18.09 

NIC 1.626 0.037 1.554 1.698 

Units; P1, MIC and NIC (mg/l); P2 dimensionless. 371 
  372 
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 373 
Table 4a. Excel MC (96 iterations) analysis of CAP data (Eqn. 7) 374 

Peak Parameter Estimate Stdev LCL UCL 

Pk1 

A1 0.633 0.007 0.620 0.648 

w1 0.243 0.002 0.238 0.247 

c1 1.397 0.001 1.394 1.398 

Pk2 

A2 1.552 0.017 1.517 1.579 

w2 0.418 0.004 0.410 0.423 

c2 1.875 0.001 1.872 1.877 

Pk3 

A3 1.288 0.013 1.262 1.313 

w3 0.609 0.006 0.598 0.621 

c3 2.566 0.004 2.559 2.574 

Artefact 

A4 8.214 2.675 4.002 10.697 

w4 0.152 0.009 0.135 0.162 

c4 0.883 0.021 0.863 0.920 

 375 
Table 4b: Excel MC analysis (96 iterations) of CAP data (Eqn. 8) 376 

Peak Parameter Estimate Stdev LCL UCL 

Pk1 

A1 0.621 0.008 0.606 0.636 

w1 0.238 0.002 0.234 0.243 

c1 1.397 0.001 1.394 1.399 

Pk2 

A2 1.564 0.019 1.522 1.595 

w2 0.421 0.005 0.411 0.427 

c2 1.874 0.002 1.871 1.877 

Pk3 

A3 1.283 0.015 1.254 1.313 

w3 0.607 0.007 0.596 0.621 

c3 2.568 0.004 2.559 2.577 

Artefact 
D1 4.996 0.034 4.928 5.058 

D2 30.906 0.194 30.447 31.455 

 377 
  378 
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 379 
Table 4c: JMP NLR analysis of CAP data (Eqn. 8) 380 

Peak Parameter Estimate ApproxStdErr LCL UCL 

Pk1 

A1 0.620 0.009 0.603 0.637 

w1 0.238 0.003 0.233 0.243 

c1 1.396 0.001 1.394 1.399 

Pk2 

A2 1.566 0.019 1.529 1.603 

w2 0.421 0.004 0.413 0.430 

c2 1.874 0.002 1.871 1.877 

Pk3 

A3 1.281 0.015 1.252 1.312 

w3 0.607 0.007 0.593 0.621 

c3 2.568 0.004 2.560 2.576 

Artefact 
D1 4.997 0.034 4.931 5.063 

D2 30.907 0.414 30.124 31.712 

 381 
Table 4d: Mathematica MC (10,000 iterations) analysis of  382 
CAP data (Eqn. 8) 383 

Peak Parameter Estimate ApproxStdErr LCL UCL 

Pk1 

A1 0.621 0.008 0.603 0.636 

w1 0.238 0.002 0.233 0.242 

c1 1.397 0.001 1.394 1.399 

Pk2 

A2 1.564 0.018 1.530 1.601 

w2 0.421 0.004 0.413 0.430 

c2 1.874 0.016 1.871 1.877 

Pk3 

A3 1.282 0.015 1.253 1.312 

w3 0.607 0.007 0.594 0.621 

c3 2.568 0.004 2.560 2.576 

Artefact 
D1 4.997 0.034 4.931 5.063 

D2 30.925 0.413 30.141 31.752 
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Legends to Figures 385 

 386 

Figure 1.  Non-linear regression analysis of the observed growth data for Listeria 387 

monocytogenes at 30oC in 9% salt from an initial cellular density of 7.586x103 cfu ml-1.  388 

The growth was monitored over a 90 hour period. The observed numbers as their decimal 389 

log were modelled using the standard modified Gompertz equation [5]. 390 

Figure 2. Plot of the growth data of L. monocytogenes  at 30oC in 9% salt (symbols) with 391 

the fitted modified-Gompertz model (line). 392 

Figure 3.  A portion of the (50 x 33) random number array generated using the random 393 

number feature of Excel’s Analysis Addin with a distribution of N(0, 0.09047), using a  394 

random seed number of 2. 395 

Figure 4. A portion of the (50 x 33) NLR array; column B reproduces the NLR fitting of the 396 

original data, with cells B111 to B114 reproducing the regressed parameters. Well C77 397 

shows the syntax used for the formula, which is reproduced over the array. Cells C115 to 398 

AZ115 calculate the SSE between the modelled data and the respective virtual data set. 399 

Cell B117 sums all the 50 individual SSE values. This value is then minimised using the 400 

SOLVER utility. 401 

Figure 5. A plot of chlorhexidine concentration (mg l-1) against the observed relative rate to 402 

detection for the growth of Pseudomonas aeruginosa (ATCC 15442) in TSB at 37oC 403 

(symbols) and the fitted NLR model (line). 404 

Figure 6. Spreadsheet used for the Excel MC analysis of the fitting of the LPM to the data 405 

for the growth inhibition of Ps.aeruginosa by chlorhexidine. 406 
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Figure 7. Spreadsheet used for the Excel MC analysis of the fitting of a multiple Gaussian 407 

function (Eqn. 7) to CAP data. 408 
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Figure 1. 410 
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Figure 2 416 
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Figure 3 421 
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Figure 4 426 
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Figure 5 431 
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Figure 6 436 



 

 

 

 

Page 34 

 437 

 438 

 439 

Figure 7 440 
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