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Introduction and Sunmary

As far as the suthor is aware the derivation of the
equations of motion and energy for a turbulent boundary layer in
a compressible fluid have not as yet been given in detail in any
publication, To me=t o possitle need in this connection this
paper puts on record tliz analysis underlying the equations
quoted by the author in Chapter X of the forthcoming Vol.III of

- Lo sz ; 1
Modexn Developments in Tluid Dynemics,
8 RS

In the abrencz of further experimsntal data and of an
adeguate Imowledge of the physics of ﬁurbulehoe, rarticularly
in high speed flow, 1t is impossible to make use of these
equations except in a few simple cases. One of these cases is
considered here viz,, mean paraliel flow in the boundary layer

on & flat plate witn Prardtl nuber equal to unity. The

object was to invegil the effect of coaprzesibility and
heat transfer on the form of ths velecity profile of the bound-
ary layer. The erule method that serves for a theory in der-
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iving the well knom 'log! law in an inc
o

adapted herc to a compressible fluid, the undsrlying justifica-
tion Loing that since the meilcd gives something close to the

esuit in ngt irstonce, it should indicate wit

e e

ki

right

due to cuapressibility.
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reasonable accurazy any change that arize

I% 46 conciiled that Por liach numberes of the ordsr of

for o widz roage of heat transfer conditions
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the form of the velosily profile in the twrbulent boundary

or leso &

1

layer will differ very little frcm that for an incompressible
fluid and the =ame Reynolds number. This result is in agree-
ment with existing Eiperirental resulis. For higher Mach

fferences will become apparent

r)

nmmber-, however, esr.ll
particularly for cases cf considerable heat transfer from the

surface,
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2 IList of principle notation

Vi V@, vé total, mean and fluctuating velocity components, in
tensor notation
X, coordinates of reference in tensor notation
U5 uw mean and fluctuating velocity components parallel
to x-axis (2 dimensional Cartesian axes)
N5 mean and'fluctuating velocity components parallel
to y-axis
u U/U1
gt lMach number
* distance dowmstream from leading cdzgs alons surface
N distance normal to surface
o) density
t time
1 coefficient of viscosity
pa@ stresg tensor component
p pressure (mean of principal stresses)
©aB strain tensor component
cp coefficient of specific heat at constant pressure
J mechanical equivalent of heat
k coefficient of thermal conductivity
i & temperature
_§ dissipation function
q resultant velocity
TH total temperature =T + Egj_b
P
o Prandtl number = p cp k
) boundary layer thickness.

Suffix o refers to the undisturbed stream, suffix 1 to the
free stream just outside the boundary layer, and suffix w
refers to conditions at the wall, Dashes are used to denote
turbulent components, and a bar is used to denote an average
that is taken over an interval of time large compared with the
periods of the turbulent fluctuations. Other terms used are

defined in the text,
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5. Eguations of motion and continuity for a turbulent, com-
gxresgible riuid

Using conventional tensor notation and neglecting

body forces the equations of motion may be written

v !
[} —..._.r'.l'.' - .....[.3.... s vV - v an
3t~ % Pap ~ Pg Q o ot
Where §o] e - p 4+ "2- u‘& 6 e
' af 5 af = af *
av{L
AR el G e amace WA
(oF
avLL av,
e . = = -——}-‘-'-_
ap &xs 51q
b = O if a fp
= '1, if o = ::‘3
If now in equation (1) we substitute Voo v fap v, s
o + o' for p, ete., where the dashed terms denote the fluctuating

components and the undashed terms denote the mean components, and

the mean of the equation is taken, we obtain

oV av: " /
—_— e > 3 i % U8 -t
[0} ot P ot ~ aXO kpc’[q + PL..,? 9] th VU [ x{LvB
5]
- nly! o gt el T L et
P Vo Vg = P Vg Vg = pivg Vg
do ' dp '
_VG. at‘vu‘l “‘tS """"'--o-(z)
Here p!

op Tepresents the terms in p B arising from
& Q
the fluctuations not obviously zero when the mean is taken,

viz,,
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Lthe equation of continuity similarly yields

28 4 B (ol 3
5t (bv) + 3 (p'v!) = 0. Ciaae niena i)

It will be seen that the fluctuations introduce
effective stresses into the cquations of motion insofar as
they produce changes in the mean rates of transport of com-
ponents of momentum across a surface, These stresses not

only inelude those met with in incompressible flow theory ,
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vig, p v& v, (usually called Reynolds stresses) but also

include termz involving the mean of products of »' and the
velocity fluctuation components. These latter terms are prob-
ably small compared with the former at low Iiach numbers, but

in the absence of experimental data to guide us they cannot in
general be ignored. Further it will be noted that the viscous
stress terms now include terms involving the fluctuations in
viscosity. However, in cases where the eddy stresses dve to
the velocity and density fluctustions are large compared with
the viscous stresses, as in a turbulent boundary laycs caceps
very near the wall, it may be assumed that the fluctuating vis-

cosity terms can be neglected with those involving the mean

viscosity.

L. Boundary laver equations of motion (2 dimensions)

In two dimensions, equation (2) becomes

U, ,du'_ _ 2 .@_|_2 oy
P TP F T T T x _3“ﬂ"2“ax
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oy ay ax oy [ P ) B '
P f: /an! & B_\g'_ i u! 9! (1)
T E,ly e (asr g {jt a't 3 LU A A A A N ]

and

oV, &' _%p 2 |2 50 2 12 '
Pa-a+pat"ay"ayE“A'guag"ayEv of calld e

S R )

—%;Emfuouv +pu’V+pv'U+puv [(g; gi]

-V %% - v! 3!

ol R )

The equation of continuity becomes

30 . 8 ) \
_..E._I_ ...-}—C- (p U) 4 -:_;; (P V_J' -+ g-‘- (p'u‘) -+ %’5}' (p"ﬂ") =_O. ............(6)

If we now make the usual boundary layer assumptions,

; /%iz. o
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viz., the boundary layer thickness (6) is small compared with

%, and % =0 9};) s and the rates of change of the mean velocity
components and their derivatives in the direction parallel to the
surface are small compared with the corresponding rates of change

normal to the surface then equation (4) reduces to

DU, w3 LR
ot PTG G- T A SRS - [: (- ;]
- -g-}-{- I—B- * 4 2p'u' U] - %37 au'v' + p'v'U + o'u’v:zi

3 127y L pprdd |, & |, &
ax[;pé" 2“(3}:*'6:,;'L'l ay+ax

1

I
E

8p ¢ Op'
-0 - 3¢ »

and using (6) this becomes

o N
pﬁg-t--g;c-(pu*): ax+ay[( E)u +puli]

..‘?.. o 0 .....-_ fvl .(_ﬁ_q
- - —E'L'I.V + D UV p 'll D ay
|2 A S e fom, o
= ax 3 L A e 2f-l P ]"“ [ (y + 63{ P (?)

If we now assume

(1) o'v' and p'u' are of the same order so that 2p'u' %g- s

be neglected compared with p'v' .‘.2..3. :

——

(2) p'u'v' is swall compared with pu'v',

|2 ; Eu B""—l
(3) y Eu:ar - 2u —:— and ﬂy[ ( = }J can be

neglected on the grounds that they are small compared with
the corresponding terms arising from mean quantities, which
in turn are small compared with the eddy fluctuation terms

except very near the wall,

(%) %‘}g (o u’z) is small compared with *3'}: Eu'v] and

S (Tt ; . i ~o1 U
% (p'u'U) is small compared with p'v 3y

then equation (7) becomes

_D-g ..a..._ Faq ! — i f.__..-
PEE* T2 (p'a') = - ay ay[ ] ay[uv_, o'v vriene s (B

/ and if the ...
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and if the motion is steady this becomes

DU 0 d agU ou
p—'-t-=_-a§+hc:,|; ps’;—pu’v' —-p'V'S’;. --c.-oon.ort(9)

Equation’ (5) yields the usual result that if the curvature of
the wall is not large the pressure change across the boundary
layer is small and may be neglected.

5. Egquation of energy*

The equation of motion (1) can be written

ov BV
e 8. 28 o
PoE "8 % & (hay) + 52 < ox
a Q B Xa
£ _ ie
- axB(pova) Vo 3t
or

& _ _9 _ . E_ .2 8
PoE = ox_ " Vo f3t " 3, (F"’ﬁ) 3 ax Ll

3 av

* axB s av

S.% 2 3 2 s
_.-ax _3 a !-l‘él)+ [( X)’ .-.-a-o.-cla(10)

o *a o

using the equation of continuity.

The equation of energy for a perfect gas with constant

specific heats is

R A
chth-Dt_Ja]{a kaXC)-}.E lchl.c.ao-.(11)

where EE- is the dissipation function

- _.E_a _Ji Ef&+i\i§
2 ax "{ ox ox '
B a p a

Multiplying (10) by v, s We geb

2 ov ov
D {a ). R o 2 2. &, B
PD‘c(Q)"—ch ox, =3 Vadx WA + v, oy | axﬁ“"axa

/where ...

« The treatment here is based on that of Squire in Appendix I
of his dragt of Chap. XIV of liodern Developments in Fluid Dynamics,
Vol. III.
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where q is the magnitude of the resultant velocity.
Adding this last equation to (1), we get

Dlie T 4 9—2- -2 .8 In oL 9 gf_ X (
P Dt p 2 ot T ox o v TR D thy vesemsaeAiEd
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a, axﬁ dx BKB B axa axa :

- 0 ov av
JRAR . 8 O . RN Gt - g
= 3& + U 3 ox (A) + U dx_ * Ox dx " dx
a B B

ov

su | ke

+axB VBA+ N ax&] isien vk )

An examination of the orders of magnitude of the various
quantities in the above expression for lwhe_n the usual assump-
tions of boundary layer theory are accepted, will readily reveal
that A_ = 0(s), at the most, i.e. A= 0(6%) at the most and is

therefore small.

6. Boundary laver energy equation

We can write (12) in the form

PDt(J"T)"ax{“é”aiECT‘*("‘ﬂ ;[F *

where T, =T + E%-—— (the total temperature),
B

md o =p cp/k (Prendtl Number).

Expressing each term as the sum of its mean and fluctuating

components and taking means we get

..:.Q- '.Q._ ! !,__a_ L 1
th(JcpTH)+p 6’5(JcpTH)+pvaaxa(JcprlH)+pv (Jc )
e ' ' l_é._ T _.9 Jk _°o._ 1 - _}?_’
* vu, P axa (@ cp TH) P BN (9 Cp H” ()xa cp é}:lcCL J c : +(G 1) [

a«» °p Ty wlos139) Wy ?zat K.

/Here ...
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Here J cp TH denotes the mean total energy per unit mass and
includes the mean kinetic energy associated with the turbulent
veleoeity fluctuations, The term x represents the non-vanish-
ing components of X arising from the fluctuations when the mean
is taken. It has also beenassumed that fluctuations in viscosity

and conductivity follow directly from the temperature fluctuations

p'e
so that L— K’ and '—I&—,'P' 2

The equation of continuity is

' _a ! ! =
= (o' v ) =0
o a a, o

9p  8p' o B s 9
T PV V) v = (v

i 0 dp'
Hence EI‘II—C:!;_E)V'FPV + p'! v:lz ég%

The left hand side of the above energy equation can therefore be

written

th(JcT)-t-%c- 'JoT] {(ov+pV+p v)

Jde T
(p

+ p! v!

a& H)
a

Now, making the usual boundary layer assumptions and
further assuming that X (and preswnably?[') involve small

terms which can be neglected, we obtain

2
D k @ : ; U
th(Jc T)_ay cp?"; Jcp’lH+(c”——‘f)—-2]+

' g |
k' 2, Ec ™! + (o=1) u'UJ- ov' (J c )
c p

H
- L _E.:._ _a_P_ 2o 9 T
piv' 55 U, Ty) + 5F at[ ]

If we assume also that the term involving k' can be
neglected compared with the term involving k, and that the

mean motion is steady, then

2
D_ =9 )k 3 q oy Bl i :
(g &, TH) b - E e, Iy + (o=1) 2J ov' (J c, TH)

P

me'v 5 el Ty | snene esni VUKD

/7. Some ...
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7. Scme deductions

If o =1, equation (14) becomes

&1 c T

o)
th H) 'a"_(JCpT)—”v JCT-l

ar

——

> f__'-'v' —gh— (J CU TH) ,.-..o-a-.-o(15)

I

For zero external pressure gradient, the equation of

motion (9) becomes

-

D _2 | ew . e U
PBE = ol el S } - p'v! T ey 1

Comparing equations (15) and (16) we see that they are similar and
since Ty - T (suffix w denotes the value at the wall) and U

have analogous boundary conditions they permit the solution
T_ = = ! o= T ¥
Ty = B n K, 0, B 2K ¥, FRPIRRRIPRRNE . &)

where K1 is a constant determined by the boundary values of

?H and U,

aTH
If the wall is insulated { ——

514
= 0, and hence since [=— 0
ey W ’ ( ay) ’.ﬁu’?{

in general, K,| =0, it follows that TH = const, = THW through the
boundary layer and Té = 0, e may conclude therefore that when

o =1, and the external pressure gradient is zero the relation
between total energy and velocity in the turbulent boundary

layer is precisely the same in form as that in the laminar bound-

ary laver, Further, when o = 1, and there is no heat transfer
at the wall a solution of (15) is TP = const., = THT, and

il
T. = 0, whether or not there is an external pressure gradient.

8. Turbulent boundary layer on infinite flat plate in steady
parallel flow

From (9) the effective stress t satisfies

™ 5 -1 s
aT a U l'-'(h" '__E.}:[i R O R A R R B ) 18
‘5§=BVE-€3—F.&V“— PV ay- . ( )
But 7 = const. = 7_ in steady parallel flow.

The equation of continuity is
3 2 It S I e
Len+L 6 +L )+ GV =0

Tn parallel flow the rates of change of mean quantities with

/respect to ...
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respect to x are zero, and V = 0, hence

B aFndh
57 il =0
or p'v' = const. = O, since v' = 0, at the wall. .

3y g
B o= = pai'v

Hence from (18) T 5y

= - p u'v', except near the wall.

On the basis of a mizing length theory, as in incom-

pressible flow, we can write

- 2
! = - J° 9
uvt = ’E(ay

Hence 5
P =22 2(—‘:’—[1)“ .
T Py oy oy

=3

But from the gas law for a perfect gas % =T—1- , and if we assume
' 4
o =1, we have
Ty = Tpy =5y Uy or
JcpTH=K1U+JcpTHw=K‘iU+K2’ say,
U2
or JcpT=K1U—2—-O+K2
U%”
and JcpT1=K1U1—?—+K2.
2
T1 K‘i U---Q—*-;-I{2
Hence g = == 3
T UZ
K‘I U--2—-+K?
vl '
Whera KA' = JcpT1+T-Jcp1W U_1 l..l.l"ll!l(19)
and . =-J e T,
2 D Tw

o o j_
‘ i 2 |'2
dau 1 [§)
Hence U': "’P(dy) K‘| U‘l - E-—-+ KQ/(K1 U - 5 - Ka .

If we assume, as in incompressible flow, that

’P = 0-1 y’ Say-’

where C‘l = const. then
2 %
U b 2 =
SR A . i
g ‘g ° K,1 U1 5 + 1{2)/611 U 5 + K; ., dau

Jor ...
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U12 02 ‘
K o L < gy L s ¢ EEREER 20
B, kb s KU -5 +KJ . a (20)

where A is a const.

On integrating the right hand side of (20) and meking

use of (19), we eventually obtain

-

it BN
U a(ﬁ i 2) fore

A4+ =—1logy= El - 8in g (21)

01 'j? 4.
1 =i \] =
(E\_ . o’8” o “w " o8°
B L\m 2

R
where o = QLél) Mf , ard B = [E +a” - Eﬂi]/;2.
| 1

Therefore, if we write O for the thickness of the boundary layer
so that when y =6, U = U,, we obtain from (21)

1
He 5 Yy -1 0’("%) -1 d'/“"%>
= log = = =/ Sin ' - 8in | el Joees (22)
1 S 5 5
2_2“ (E’i’i;,@zi:j
L \Tro b

where we have written u for U/Uq,
For incompressible flow and no heat transfer we have similarly

o bt ¢ (25)

_10 —'=U 1'_11) EEEEE R 23

B, 0™ M

where 02 is the appropriate constant linking the mixing length

zf and the distance from the wall.

Uriting Y = for /8 in compressible flow, U,
for the frictional velocity in compressible flow, likewise
Y, and U, for y/® end the frictional velocity in incom-

pressible flow, we obtain from \99) and (23 \ for the same value

of u (
of v S
I =%, N, 2 /0,000 5/C0e)

-~ . e

C1U11 ’ » m(-%) i r_1,u-ﬁ
where‘?\_ Sin e N - 8in (21)

C,U. 0 a(1-u)
(i,
L\ L A T 4
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Hence, if we have the non-dimensional velocity profile for in-
compressible flow, i,e. u as a function of Yi, vhich is of
course a function of Reynolds number, we can determine the corres-
ponding velocity profile for any specified Mach number and ratio

of wall tempersture to stream temperatﬁre ifcwe can specify or

determine the corresponding value of 532 . ﬁl :
2 TC

A preliminary investigation assuming the latter quan-
tity was unity and that no heat was transferred at the wall
showed that 1%5r1?\ﬁm£ an increasing monotonic function of u
rising to unity when u = 1.0 and decreasing slowly with increase
of Mach number. For I = 2.5 it was found that ?\‘maried from
0.75 when u = 0 to 1.0 when u = 1.0, and the resulting velocity

profile was barely distinguishable from the incompressible vel-
ocity profile. Tor I = 5.0 the values of ?\ rose from 0,51 when
= 0 to 1.0 when u = 1,0 and the resulting velocity profile was
then appreciably different from the incompressible velocity
profile, These results are illustrated in FlgU‘l The calcu-

lations demonstrated that unless the ratio % was con-

c, U
TR T
siderably less than vnity the resulting profile given by equa-

tion (24) was unlikely to be markedly different for Mach numbers

less than about 2.5 from that for incompressible flow.

In an attempt to allow for this ratio it was assumed
that 02 = 01* Further, the results obtained by Honoghan3
suggested that a gocd epproximation to the ratio of UTi/UTc at
a given Reynolds nutber is given by

0.2
UTi / :

il it el
e kT1

With these assumptions, the function.P\becomes

=
“'—‘- —

4 “fa> f_ p_T

4 o (1 u -

0.2 {
?\:(-@T) m)\ Sin /ﬁ o - Sin (25
e |
. T, L
e e

Calculations cf the resulting velocity profiles have been made

—

for M1 = 2.5 and 5.0 for zero heat transfer and for values of
EE of 0.25 and 10,0, these latter values were chosen as

IE
representing somewhat extreme cases of heat transfer to and

from the wall.
/The results ...

# In incompressible flow this is Karman's constant.
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The results are shown in Fig., 2. It will be seen
that for M1 = 2,5 the variations of the velocity profile from
that for incompressible flow are small in all the cases considered
¢xcept possibly in the extreme case when TW/T1 s 10,0, This
agrees with the few available experimental results for velocity
profile measurements in turbulent boundary layers at lach
numbers of the order of 2,5 and less under conditions approxi-
mating to zero heat transfer at the wall, These latter results
show variations from incompressible flow profiles within the
order of the experimental errors of measurement, For M1 = 5L,
the calculations lead to variations from the incompressible
velocity profile that are rather larger than for M, = 2.5, but
again, except in the extreme case of TW/T1 = 10,0 they are by no
means very marked,

Conclusions

It is concluded that for Mach numbers of the order of
2.5 or less and for a wide range of heat transfer conditions the
velocity profile in the turbulent boundary will differ very little
from that for an incompressible fluid and the same Reynolds number.
For higher liach numbers, however, small differences will become
apparent particularly for case of considerable heat transfer
from the surface to the fluid,
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