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1. Introduction end aural 

As far as 1:1:e author is aware .  the derivation of the 

equations of motion and energy for a turbulent boundary layer in 

a compressible fluid have not as yet been given in detail in any 

publication. 	To meet a possible need in this connection this 

paper puts on record the analysis underlying the equations 

quoted by the author in Chapter X of the forthcoming Vol.III of 

Modern Developments 	Fluid. Dynamics. 1 

In the abeenoe cf further experimental data and of an 

adequate kno7ledge of Lhe physics of :;urbulehce, particu.l.arly 

in higl,  speed flow, it js impossible to make use of these 

evuations e2:cept in a few simple cases. 	One of these cases is 

considered here vire. mean parallel flow in the boundary layer 

on e flat plate -7i -Lh th; Frardt1 nuE:1-,er equal to unity. 	The 

object was to jr.vectigate the effect of ocepe.e.ee .ibility and 

heat transfer on  the f777 of the velocity profile of the bound- 

ary layer. 	cruelo method that serves for a theory in aer- 

iving the well len= 'leg' leer in on i-eeolereesible fluid is 

adaped hero to a cov.e-ceeible fluid, the unLerlying justifica-

tion leing cti t sineP the mei -%ed gives soeeeLling close to the 

right result jn 	ffe7st ir-4 1:en.-;e, it shoela ln(1:eate with 

reasonable accurnev 	C2''.11'a tat arice3 clue to cenprossibility. 

It 	uene-euled 	 numbers 	ordar of 

2.5 er lees' and for n 	r:nge of Loat transfer conditions 

the fcim of the veloei -,,y orofile in the turbulent boundary 

layer will differ very little frond tl'at for an incompressible 

fluid c -ed the one Reynolds number. 	This result 13 in agree- 

ment with eiisting eenerie2ental results. 	For hiE'L- er Hach 

number - , however, s',-,71 dfferences will beealo apparent 

particularly for caees cf considerable heat transfer from the 

surface. 

/2 Li 
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2 List of principle notation  

va' Va' v' 	total, mean and fluctuating velocity components, in 

xa 	coordinates of reference in tensor notation 

U , u' 	mean and fluctuating velocity components parallel 
to x-axis (2 dimensional Cartesian axes) 

V v' mean and fluctuating velocity components parallel 
to y-axis 

U/U1 
1.1 	Each number 

x 	distance downstream from leading 	 ev-r -racr,  

y 	distance normal to surface 

o 	density 

t 	time 

coefficient of viscosity 

paP 	stress tensor component 

p 	pressure (mean of principal stresses) 

eap 	strain tensor component 

cp 	coefficient of specific heat at constant pressure 

J 	mechanical equivalent of heat 

k 	coefficient of thermal conductivity 

T 	temperature 

dissipation function 

q 	resultant velocity 2 
T
H 	total temperature = T 2 

 -9--
J 

p 

Frandt1 number = u c 

8 	boundary layer thickness. 

Suffix o refers to the undisturbed stream, suffix 1 to the 

free stream just outside the boundary layer, and suffix iv 

refers to conditions at the wall. 	Dashes are used to denote 

turbulent components, and a bar is used to denote an average 

that is taken over an interval of time large compared with the 

periods of the turbulent fluctuations. Other terms used are 

defined in the text. 

tensor notation 

/3. Equations ... 



3. Equations of  motion  and continuity  for a turbulent com-
Erpssible fluid, 

Using conventional tensor notation and neglecting 

body forces the equations of motion may be written 

av a 	a 	 ao 
P 	 (11)4  - pvp9 vaat 	axe 

where 2 
Pap = 	+ -3-  I) b ap  + eap 

av 
tO■ = axa  

va  av, __L  
cad 

= 
ox 	dx P 	a 

= 0, if a i 0 8
aP 

= 1, if a = p 

  

(i ) 

  

If now in equation (1) we substitute Va  + va for va  , 

p + p' for a, etc. where the dashed terms denote the fluctuating 

components and the undashed terms denote the mean components, and 

the mean of the equation is taken, we obtain 
rm.001.•••••.•••••• 

aVa 	av' p 	+ 	a = 	pa, + p', - p Va  Vp 	p vi' at 	at 	ax 	P pad; 	 a
v  p 

- p'v' Vp 	p - ' v' V
a 	

p - 'va  l v' 

do 	do' - V 	- v l  
Va at 	a at 

Here p41  represents the terms in pao  arising from 

the fluctuations not obviously zero when the mean is taken, 

viz., 
•••••1•1•••• 

P t  = - 	u ap 	(10 	p, 

ay' 	ay' 	ay' 
- 	

a e - 

	

ax ' ap ax 	axa  P 

The equation of continuity similarly yields 

a 	a 
at + 7;)"7- ( p Va ) 	( P 	0.  

a axa  

It will be seen that the fluctuations introduce 

effective stresses into the equations of motion insofar as 

they produce changes in the mean rates of transport of com-

ponents of momentum across a surface. 	These stresses not 

only include those met with in incompressible flow theory, 

/viz 

(2)  

(3)  
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viz, p v v iI3  (usually called Reynolds stresses) but also 

include terms involving the mean of products of 	and the 

velocity fluctuation components. 	These latter terms are prob- 

ably small compared with the former at low ilach numbers, but 

in the absence of experimental data to guide us they cannot in 

general be ignored. Further it will be noted that the viscous 

stress terms now include terms involving the fluctuations in 

viscosity. 	However, in cases where the eddy stresses due to 

the velocity and density fluctuations are large compared with 

the viscous stresses, as in a turbulent boundary ic_p-_;.L• 

very near the wall, it may be assumed that the fluctuating vis-

cosity terms can be neglected with those involving the mean 

viscosity. 

4.. Bounaurd 	layer equations of motion (2 dimensions) 

In two dimensions, equation (2) becomes 

, du' 	a 	p 0 	+ p 	- 	 9„  aU 
at 	at - 	3x 	ax 	3 	- I-  3x 

au] i  2 	2 a 'u' u _ .,....a 	2. 	 Ec  
r- 	

ja16, 
- 2p 1  _ 	pU 2  -!.- n u 	+ ,- 9 	 ax 3 ax 

a 	1_ .  au , av 	a 	r- 1._ 	..._ 	■11•1•10 	 .111.1■ 

Tr.' 	WS7 .1.  5'. 

	

a-s7 	+ p u lv i  + o 	+ r-. -,  v _ 	-7 
EIN 	

' 1ff 	1 TT + o l u r1  

+ /._. ri  p ( au: al 	an 	, 22 ' 
6Y r- -a-3-r + —67 	— u  T.."'E — u at '   () 

and 

p 	p at 	- ay 	: -Fc 3  111_1— 2p. 	 p V 	pv 	p'v'V 
dir 	,av' 	a [ 	a] 	a [i 2 	1 2  

J 	 Y 
- ay 

[ 3 2 	1  l 	[ (au avA - — • - ,..1 ' n' - 211  aV- + a 	u — + ay 3 	 ay 	ax 	ay dx 

ou'v l  - ax 	 l u'V 	 p'u v 	+ 11 	ay  + x  a 	ea' )] a 

do 
- V 	ao v 	f . h 	at 

The equation of continuity becomes 

-a37 (p 	+ 	(p IT) + 	(p l u') 	 = a 	 ... (6)ay 

If we no-,r mace the usual boundary layer assumptions, 

(5) 

. /viz. ... 
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viz, the boundary layer thickness (5) is small compared with 

x, and TT = 0 	, and the rates of change of the mean velocity 

components and their derivatives in the direction parallel to the 

surface are small compared with the corresponding rates of change 

normal to the surface then equation (4.) reduces to 

DU 	pall' 	au ' 	- U 	(. V) + 	(-82-
)

- 	- P Dt 	P at = 
	(p U)  ax 	u  77: 	oy ' 	ay ' ay 

	

a
x 	 aY 

a 
— p ul 2  + 2plul U - 	pu'v' 	piv'U 	o'u'v' a  

a  
- - 2-Pc 

au 	P 
5;,;' 

72 —7--- 	l 
ax 3 	

au' av) 

	

ap 	ao ,  
— U- u' -- 

	

at 	at , 

and using (6) this becomes 

DU a ( 	_ 	E 	Eu,2 p d P Dt .151 sP 	ax 	ay 	\ay/ 	ax 

- oy  pu v f  +p f 	 n 
cuv 	— 2o 'u ' -67c 	P7 V ; -a3; a I-   

l] 

(T:.. 	-- 

	

, au' 	a [  au' 6  -y i.)1 	/_, 

	

. 	_ , 

	

— 	2  -- — 1 1 , ,,...N - 2u 7—  + 	ri 	ay 	74.. 	. .. m ax 3 	 ox 	ay 

If we now assume 

OU 
(1) n iv' and p i ll' are of the same order so that 2o 1 u.' 	can ax 

(2) p l u'vl is small compared with pu l v' , 

a 	Lies - 2 au' 
 and  8 
	, Cul +  

! u' -- 	— 	 LI can be ax 3 	 3x 	E)y 	ay 	ax if 
neglected on the grounds that they are small compared with 

the corresponding terms arising; from mean quantities, which 

in turn are small compared the eddy fluctuation terms 

except very near the wall. 

a
x   oy 

(4) a--- (0 u' 2 ) is small compared with -;-- pulvi and 

-kte: (pluT) is small compared vith p'v f  -6I-j-   ay ,  

then equation (7) becomes 

	

----7- - 0  77 all 	 (8) 
DU a (-TM _ — a2  + a 	, 2 .1.1 _ .. 3  	„iv , 

II P Dt 4-  at 0" ' / — 	ax 	ay  1  ay 	ay " 	 ay 

---- au 
be neglected compared with olvl 	, oy 

/ and if the 
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and if the motion is steady this becomes 

DU 
P Dt = - 2-2 	a 	a  II  

ax  + 	p ay 	pu v 	p v (-57 . I 	 aU 

Equation* (5) yields the usual result that if the curvature of 

the wall is not large the pressure change across the boundary 

layer is small and may be neglected. 

5. Ilqnation of enemy_  

The equation of motion (1) can be written 

(9) 

av aj...2 	2 a 	a 
GL A) — P at — 	axa 	3 axa ' ' 	ax 

av 	8v 
„ 

ax 	ox a 

a ( 
ax 'Pvpva )   va 

or 

Dva 	.O.2. 	( 	2 	A 

P 	ax - va 	t 	733- 'Pvp )  — 	ax f 
	\ 

a 	 3 	 a 
 

ax 	axa 

av, 
a .4.  

,-610011 

 

— 	0, 	 +   (io) 
a 	

xa ax 	 a 	a 3 ax 	)c 

using the equation of continuity. 

The equation of energy for a perfect gas with constant 

specific heats is 

 

P j  '10 7 — Dt _J -67 k  TO+  -a 	a 	-- 

DT 112 	a (: aT 

  

   

where is the dissipation function 

	

3 4-3 	aX 	axa 	axp 	axa 

	

2 A2 	ova 	-1,) (Ova  av:/) 

Yultiplying (10) by vn  , we get 

P Dt 	= va axa 3 a axa P" 	a ax 	ax , 	ax 
(an 	.L 	v. 	( .61) + v

- 	

Ova  avo :il 

P 	'a  
/where ... 

* The treatment here is based on that of Squire in Appendix I 
of his draft of Chap. XIV of 1A)dern Developments in Fluid Dynamics, 
Vol. III. 2  



k' a + ax c ax 
a p a 

J cp 
 T' +(a-1)v' V

P 
 +(o-- 

H 	P 

/Here 

a2 	 X. 
2 	at 
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where q is the magnitude of the resultant velocity. 

Addling this last equation to (1), we get 

1)7 j c T  + p 	21  - g3i = k jk a 	F + ax  11  ax (f-  + 2  P 	 .) X 	 ( 	 (12) 

where 	I - -2.  v 13-..- ( 11 ., 	
.va axp 

I,)_ [ axp (ava, + 9 
ax

a 

1 a r  , i  

3 a axa  . 	.1.  - 	 axa, 	 P-vi3 ax
a 

= E. A2 4.
ax 	- 2 

 p, 	
a ax 

- („a 
3 	

a 	 a 

a ava  ay 	a  [i ay.]   Cva  a:2) (ova  alr2i)  
va ax

P 
 ax + axa - -axa a axa 

+ 2 axp  axa 	axe  ax 
a 

av 	av 	 ay  
a ( 	

.....1.  _all 13  + v ) 2a 
vp axa  axa 

 7- + ax 	- a xp 	a 
ax

e 

u A2 	 a [av 	av 	airs  
- 

- 

za 	P- 3 -arc  (6) + ILL  7-C-; ' 
a 	 R 	a 	a 	f3 

.L 1._ 	 2.1 
ax 	f3 	a ax 	  (13 ) 

An examination of the orders of magnitude of the various 

quantities in the above expression for 	when the usual assump- 

tions of boundary layer theory are accepted, will readily reveal 

that X = OW, at the most, i.e. 	= 0(8 2) at the most and is 

therefore small. 

6. Boundnry layer energy equation  

We can write (12) in the form 

2 
0  P— 	c T) = 	 E c TH  + (a-1) 	+ 	+x, Dt 	p 	axa top ax 	

o 
a 

2 
where T

H 
= T +2 J. 
	

(the total temperature), 
p 

r.,.nd a = µ c /k (Prandtl Number). 

Expressing each term as the sum of its mean and fluctuating 

components and taking means we get 

aa p 137(J op  TH) +p .5Tdcp 	+qva (J cp H ) + 
P 
" va ax 

(J.  op TH ) 
a 	 a 

+ Va p 	c T1.1 ) + p i var -K—ca  (<3.  cp 	7-ca 	c ax 	p H  dx 	 a 	
a k 	 T+(a.-1)4 

P a Je  
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Here J.  c
p 

TH denotes the mean total energy per unit mass and 

includes the mean kinetic energy associated with the turbulent 

velocity fluctuations. 	The term 7' represents the non-vanish- 

ing components of Z, arising from the fluctuations when the mean 

is taken: 	It has also beenassumed that fluctuations in viscosity 

and conductivity follow directly from the temperature fluctuations 

so that 	t t , and -17- = T. 

The equation of continuity is 

ca_a 	' 	6 	/ 

	

+ 
<la 

 + 	(p V ) + a — (o
, 
 V) 	-2- (p v') + 	'17 1 ) = 0 at at tax

a 	
a 	ax

a 	a 	axa 	a 	dxa 	
a 

ii!E r  Hence 	9" 	 p' V 	p v' 	p 
-H axa 	a 	a 	

l 	= - i at ' 

The left hand side of the above energy equation can therefore be 

written 

D 	
r 	

a T ) 	[1 1 	+ --- P Pt 	H 7 P H 	ax a 
v' + p' Va 

+ 
a 	 a 

----- a  

+ r' v' 
ax 	

c T
H

)
• 

	

a 
a 	

p 
 

Now, making the usual boundary layer assumptions and 

further assuming that 7  (and presumably A') involve small 

terms which can be neglected, we obtain 

8 	lc 	[II 	UI 
P 	(3.  c TN) 	 J 	T-1) 	+ 

	

H
) 	ay c ay 	p 

T  H  + (  

c Ec a" + (0-1) 	— p v' (J c T' ay 	p H 	 p H 

- 	7—  (c.7 C 	 '1E• — a 	c 	TI] 
ay 	P A 	at 	at - 	p H • 

If we assume also that the term involving k' can be 

neglected compared with the term involving k, and that the 

mean motion is steady, then 

Dt 	p H 	ay 	.57 J co  TH 	(T-1) U 
2 	

- p v' (JP c T' p H 

	

0  -- ljoT) 	ka / 

a  - p tv Ty  (I  , cp  T H ) . 

/7. Some 
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7. Some deductions  

If o = 1, equation (14) becomes 

D 	
a 	 p 	c 	t )1 p 3:57 0-  cp  TH) = 	ay (J c p  T H)- v' ( r 	p 

a 
P ?v — ay (3.  c

p 
T
H

) 	  (15) 

For zero external pressure gradient, the equation of 

motion (9) becomes 

Dt = ay 	ay  p U V - p .  v . .7 . 
, 1 	f , 8U

* 	 (16 P 	 ) 
DU a 	au 

Comparing equations (15) and (16) -me see that they are similar and 

since TH - THw (suffix w denotes the value at the wall) and U 

have analogous boundary conditions they permit the solution 

TH  - TAw  = K1  U, TA = K1  u' , 	 (17 ) 

where K
1 is a constant determined by the boundary values of 

TH and U. 

aT au) 4 If the wall is insulate d ( 
. 	

= 0, and hence since (7 wr  

in general, K 1  = 0, it follows that TIT  = const. = Tliw  through the 

boundary layer and F 1.21  = 0. 	re may conclude therefore that when 

= 1, and the external pressure gradient is zero the relation 

between total energy and velocity in the turbulent boundary 

layer is precisely the same in form as that in the laminar bound-

ary layer. 	Further, when T = 1, and there is no heat transfer 

at the wall a solution of (15) is T
H  const. = T

T 7, and 

T' = 0, 'Aihether OT not there is an external pressure gradient. 

8. Turbulent boundary layer on infinite flat plate in steady 

parallel flow 

From (9) the effective stress T satisfies 

aT 8L au 
ay  = 3y 	ay 

  

----  
p iv' 

au  
ay 

 

E u' v'  	  (18) 

    

But T = const. = 	in steady parallel flow. 

The equation of continuity is 

ax (p U) 	47.  (p 	k (°'ut) 	(n'v') = 0. 

In parallel flow the rates of change of mean quantities with 

/respect to ... 
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respect to x are zero, and V = 0, hence 

ay (p l v t ) = 0 

or p 'v' = const. = 0, since v' = 0 at the wall. 

aU 
Hence from (18) T

o 
= 	- o u I v ay 

= - p u'v 1 , except near the wall. 

On the basis of a mixing length theory, as in incom-

pressible flow, T •e can write 

u 	
(

6U.1
2 

ay) 

Hence 

U2 = 	= 	2 0.1) 
T p1 p 1 	071  

T
1 But from the gas law for a perfect gas — = 	, and. if we assume 

p
i 	

T 

o-  = 1, we have 

T
H 

= T
Hw 

= K
1 
 U

, 
or 

J cp 
T

H 
= K

1 
U + J c

p 
T

Hw 
= K

1 
U + K

2' 
say, 

or 	Jo
p 
 T=K

1 
 ir- 2. 

0
+ K

2 
• 
2  

U - 
1 

and 	Jc
p  Ti 

 = K1 
 U1 	2 

 - 	+ K
2 

. 

U2  
.1 + K K U - ---:- T

1 	1 	2 	2 
Hence .T.,— = 	 , 

U  
K1  U - 7 + K2  

U 2 

where K
1 
 = ( c

p  T 1 
 4- 

2,1 
1  J 	 - J c

p 
Tw 

/U
1 

and 	K
2 

= J c
p 

T
w

. 

	

11 4" 	 U2 
Hence UT  = .4) (di) K 1  U1  — 	K2 	K1  U 	 K2  

If we assume, as in incompressible flow, that 

= C1  y, say, 

where C 1 
= const. then 

2 

(19) 

C 	y 



Sin Sin-1  

2.2.1 
-2-7  
T i 	24- 

a 11 
A r log y = -- 

a 
1 

Y
c 

, Y. 
 7(u,Tn/T1,1,01UTi/C2Urc) 

C U 
	 Sin 

 1 
where ?\= 	Ti 	I  

2
U
TO 

a (1- 
(24) 
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or 	 -1 
\U 	 U2  

U 	 U2 
y 	V TT IL  K A + , .4 . log y = 	E 	- i  Ui 	, i ÷ . 	 + 2)] 	K . du 	 (20) 
)/(-1-  ui 	

- ( 0  
where A is a const. 

On integrating the right hand side of (20) and making 

use of (19), we eventually obtain 

T 
where a2 =  	 wy a2 , 

2 
u1 , ard p 	- T I  

Therefore, if we vii  te 8. for the thickness of the boundary layer 

so that when y = 3, U = U1 , we obtain from (21) 

     

U h 

	

, U 	
a  (1  -  2 ) Sin

-1 	2  
C
- ,t lc w = — . y 	Cl 	 t 

Cw  1 22.-a-
T + 42" 

-- 	— 

a 	- 
Sin 
	2  

 

	 (2 2) 

 

Tw 
212_21 

1.1) 	• 
4 

     

where we have written u for U/Ul . 

For incompressible flow and no heat transfer we have similarly 

8 6- log 7  = u, (1-u) 
2 

where C 2 
is the appropriate constant linking the mixing length 

4 and the distance from the wall. 

' Writing Yc for y/5 in compressible flo'r, U 
TO 

for the frictional velocity in compressible flow, likewise 

Y. and U 
T1 

 . for y/5 and the frictional velocity in incom- 

pressible flow, vie obtain from (22) and (23) for the same value  

of u 

(23) 



(23 - Sin
-1  

)°' 2  
 Sin-,  

1 
rl 

a (1  

( w a2P)) 

T 1 4. 

w + 0,2 7 
T 1 	4 

_13_ 

Hence, if we have the non-dimensional velocity profile for in-

compressible flow, i.e. u as a function of 	which is of 

course as function of Reynolds number, we can determine the corres-

ponding velocity profile for any specified Mach number and ratio 

of wall temperature to stream temperature if0we can specify or 

determine the corresponding value of zi 1-  
C2 	U TO 

A preliminary investigation assuming the latter quan-

tity was unity and that no heat was transferred at the wall 

showed that then7\was an increasing monotonic function of u 

rising to unity when u = 1.0 and decreasing slowly with increase 

of Mach number. For 	= 2.5 it was found that ?‘ varied. from 

0.75 when u = 0 to 1.0 when u = 1.0, and the resulting velocity 

profile was barely distinguishable from the incompressible vel-

ocity profile. For M = 5.0 the value of 2\ rose from 0,51 when 

u = 0 to 1.0 when u = 1.0 and the resulting velocity profile was 

then appreciably different from the incompressible velocity 

profile. 	These results are illustrated in
iU 	

The calcu- 

lations demonstrated that unless the ratio 6--u
i

-- was con- 
2 To 

siderably less than unity the resulting profile given by equa- 

tion (20 was unlikely to be markedly different for Hach numbers 

less than about 2.5 from that for incompressible flow. 

In an attempt to allow for this ratio it was assumed 

that 0 2 = C 1 ' * 	Further, the results obtained by Monaghan 3 

suggested that a gocd approximation to the ratio of Usi/Utc  at 

a given Reynolds number is given by 

iT  NO.2 
Uzi 	( 17.0, 

To 
= .7/1  

Vith these assumptions, the fimotion 7'1 -becomes 

Calculations cf the resulting velocity profiles have been made 

for MI  = 2.5 and 5.0 fo7 zero heat transfer and for values of 
T 

tir of 0,25 and 10.0, these latter values were chosen as T 1 
representing somewhat extreme cases of heat transfer to and 

from the wall. 

The results ... 

th In incompressible flow this is Kaman's constant. 
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The results are shown in Fig. 2. 	It will be seen 

that for M
1 

= 2.5 the variations of the velocity profile from 

that for incompressible flow are small in all the cases considered 

except possibly in the extreme case when T, v/Ti  = 10.0. 	This 

agrees with the few available experimental results for velocity 

profile measurements in turbulent boundary layers atiach 

numbers of the order of 2.5 and less under conditions approxi-

mating to zero heat transfer at the wall. 	These latter results 

show variations from incompressible flow profiles within the 

order of the experimental errors of measurement. 	For LI1  = 5,0, 

the calculations lead to variations from the incompressible 

velocity profile that are rather larger than for K i  = 2.5, but 

again, except in the extreme case of Tw/T 1 = 10.0 they are by no 

means very marked. 

Conclusions  

It is concluded that for Mach numbers of the order of 

2.5 or less and for a wide range of heat transfer conditions the 

velocity profile in the turbulent boundary will differ very little 

from that for an incompressible fluid and the same Reynolds number 

For higher Mach numbers, however, small differences will become 

apparent particularly for case of considerable heat transfer 

from the surface to the fluid. 
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