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S U L 1 A R Y  

In this note, the equations of the flexural-torsional 

flutter of a swept wing are established, assuming the wing to 

be semi-rigid and fixed at the root. The general effect of 

sweepback, wing stiffness and position of the inertia axis are 

determined. The critical speeds for flutter and for wing div-

ergence are determined (i) for incompressible flow (ii) for 

compressible flov,r, assuming a modified Glauert correction. 

The critical flutter speed is in general higher for 

a sweptback wing having the same wing stiffness as the unswept 

wing; for a swept forward wing, divergence will occur before 

flutter. 

---oo0oo--- 
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NOTATION 

Dimensions and  Displacements of sling  (see Figure I) 

chord at distance y from root chord (parallel to the 
root chord) 

root chord 

mean Chord 

tip chord 

a 	= 0.9 s 

f and F define the flexural and torsional modes of oscillation 

chordwise distance from leading edge to inertia axis 

chordwise distance from leading edge to flexural axis 

chordwise distance from flexural axis to inertia axis 

e = 0.7 s = perpendicular distance from wing root to flex- 
ural centre of reference section 

perpendicular distance from wing root to tip 

s ' 	distance from wing root to tip, measured along flex- 
ural axis 

perpendicular distance from wing root to a given chord-
wise element 

angle of incidence of wing 

0 	= normal displacement of flexural centre rtt a given 
chordwise element 

slope of flexural axis at a given chordwise element 

6 	= angle of twist of a given section perpendicular to the 
flexural axis. 

angle of swoopback of flexural axis. 

Density 

E 	= air density/Wing density = Ply, 
air density in slugs per cubic foot 

aW 	wing density = wing mass per unit area/mean chord, in 
slugs per cubic foot. 

Stiffness coefficients  

= elastic moment about perpendicular to flexural axis 
for unit displacement 0r at the reference section 

m6 	elastic moment about flexural axis for unit displace- 
ment 0

r at the reference section 

V0.47 ,  

6 

Jac 2 

V 	= forward speed of aircraft 

Vc 	critical flutter speed 

o = 

co = 

cm = 

ct = 

go = 

ho = 

jo = 

LI 

-P0/  3 
r 	= 	 

dc2 

/Introduction ... 
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Introduction 

In this note, the equations of the flexural-torsional 

flutter of a swept wing are established, assuming he wing to 

be semi-rigid and fixed at the root. The general effects of 

sweepback, wing stiffness and position of the inertia axis are 

determined. The critical speeds for flutter and for wing 

divergence axe determined (i) for incompressible flow (ii) for 

compressible flow, assuming a modified Glauert correction. 

Data and .A.ssizap tions 

General  A straight tapered swept wing is considered (Figure 1). 

The flexural and inertia axes are taken at given constant 

percentage chord distances behind the leading edge. 

Principal Dimensions 

span (root to tip), perpendicular to root chord 

perpendicular distance from root to 'equivalent 
tip section' 

= 3.9s 

perpendicular distance from root to flexural 
centre of the 'reference section' 

0.7s 

	

c
o 	root chord 

	

c
t 	tip chord 

	

c
m 	mean chord 

distance of flexural axis aft of leading edge 
(measured parallel to root chord) 

go = distance of inertia axis aft of loading edge 
(measured parallel to root chord) 

	

1-T 	taper ratio = c t/co . 

angle of sweep back of flexural axis. 
corresponding distances along the flexural axis 

are indicated by dashes; thus 

= span measured along the flexural axis. 

Axes Ox, Oy arc ;akon parallel and perpendicular to the root 

chord through the point 0, where the flexural axis meets the 

root chord. Axes Ox', Oy' are taken perpendicular to and 

along the flexural axis. 

liodesof motionand disolacement coordinates 

The wing is assumed to be semi-rigid, the modes of 

displacement in flexure and in torsion being taken to be inde-

pendent of the speed; all displacements of either kind arc 

taken to be in phase wdth one another. The modes of a's;)lace-

mcnt are taken to be linear in torsion and parabolic in flenure; 

this approximates closely to the natural modes of the system. 

/The 



The displacement coordinates are defined as followst- 

The flexural coordinate 0 is the flexural displacement of the 

flexural centre at a given section divided by y' (positive for 

downward bonding). 

The torsional coordinate 0 is the angle of twist of a given 

section perpendicular to the flexural axis measured relative to 

the corresponding root section Ox', (positive When the trailing 

edge moves dun relative to the loading edge). 	0
r 

and 0r 
are the flexural and torsional coordinates of the reference 

section, (the section perpendicular to the flexural axis at 

70 per cent of the span, measured along the flexural axis). 

The wing is supposed to be placed at a small angle of 

incidence in a uniform airstream of speed V (Hach number M .) 

and the wing root is supposed to be rigidly fixed. 

The displacements 0, 0 of any point are related 

to the corresponding displacements at the reference section 

0 r $ 0r  by the equations 

where 

LL) . 
F (O 

Y' 

yte 	yyr. 
The symbols used in the equation of motion conform 

with those in references I and 2. 

Elastic stiffness coefficients 

The flexural and torsional coefficients are denoted 

by -e4 and m 0  respectively. The non-dimensional flutter 

speed coefficients arc plotted against the modified stiffness 

ratio r defined by 

y me 
02 

r =  
d dc2 a2 

Wing density 

The wing density e-  is defined to be the total (.k) 
wing mass in slugs divided by the product of the wing area in 

square feet and the moan chord in feet. 

Also 	E = 13/°-(4  

where p is the air donsir;y in slugs per cubic foot 

Lot cr be the wing densities for a swept and w ' 

for an unswept wing of the same area and mean chord. The swept 

wing will have a larger weight due to its larger span, measured 

along the flexural axis. It can be shown on theoretical grounds 

/that ... 

• 
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that the weight of a swept wing should vary approximately as 

sec
2p. 

T = T sec
2p 

o 

(-) 
and E = sec'P. o 

The inertial coefficients  

To find the inertial coefficient, we replace the given 

wing by the wing ABBIA', considering the section AA' to be 

rigidly fixed to the fuselage. 

As in references) and 2, we assume that the mass per 

unit span (measured along the flexural axis) is moc where 

c

- 

 = local chord perpendicular to the flexural axis and m rt  is 

constant for a given angle of aueepback. 

We have approximately c = c cos p 

where c = local chord measured 14  to the line of flight. 
S' 

.s . Total wing mass = 	2m 	6 dy' 

0 

2 
2m cos co s 1 3 

2 

For the unswept wing, total wing mass =2m o  c2  s 1 - r + 3 

Assuming as above that the wing weight varies as sec 2 i3, 

mp = rao sec
3p . 

[I For both aucpt and unswept wings, total wing area = 2s c o  1 - i 

and mean chord = c
o 

1 - -;-; 
] 
wing mass  Now c 

wing area x mean chord 
a
W 	 2 

0 	o = 
mo 	3 	2 

4-4-T+T 

77e also assume (as in references and 2) that the 

radius of gyration k6 of a chord wise section about a transverse 

axis through the inertia centre of the section is a constant 

percentage of the chord. (k = 0.294). 

Let 6m = ut of wing element Sx' by' at point 

(x',y'). 

As in references 1 and 2, the inertia coefficients 

are given by the following formulae:- 



m
o 

sec 3  p . c2  cos 2e'2 
r2 	, 

0 	 0 

js r  '110/7 

m
o

c 2 sec4p an 

, 	
2  t o y 

Al   ° M t  (7.5 
ri 

 2 
P ac o• 	a1 

C o 

n10/7 

where 	al  = 	 c; 
o 	

2—)
2 

f2  sec '(3an 
m 

(0 = anri .sr` = 	• 

S indiaray 	= G1 Y 	
\ r) 

m
a 

sec3
13.0

2
cos

2
13. et  fF. jc cosp dy- ' 

10/7 	 _ 0 2 3 

3 p2 	
p L o 5 

in° 	jfF sec
2p 

e 0  
L 0 

where 

.\10/7 

(2 )
3 

a3  = 	j 

Vc)) o Jo 
fF sec

2
13 an 

and the centre of inertia of any section is distance jE behind 

the flexurca. axis. 

   

las° G
3 

 

 

bra x' 

r‘s 
c2 cos2 (3.1,2 .  x2c2c0s2c3 ay , 

m
o 

sec3p 

0 

0/7 

	

-t F2  an 	
co  g)  

6 o 

	

10/7 / 
	4 

where 	g3  = )
N2 _ o F

2 
d 

	

LJ 	 o 
o o 

. 
and 	= k2 	02 • 

/Thus ... 
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Thus 	a
1 

varies as sec4p 	a3  (= g1 ) as sec
2p and 

g
3 

is independent of p. 

The aerodynamic coefficients 

7e consider the forces acting on a chorduise strip 

of the wing (parallel to the line of flight). The geometrical 

angle of incidence a and the downward displacement of the 

leading edge of this chordwiso strip are given by 

a= 0 cos p Oksin p 
z = 	— 0 he cos p 

where 'my./ is the slope of the flexural axis at the section 

considered, and any chordwise change of camber has been neglected. 

0 = 0r f/11 

y, = 0r of/a;] = 0 f' 
r 

0 = 0
r 

F 

	

f and F being functions of 	= y/.e. 

For the aerofoil element, the lift and moment coeff-

icients referred to the leading edge are given by 
acL 	acL 	. acL 

CI = 	--- .4- a --- 	--- 
as 	aa 

8C 	ac 	3C 
C

m 
= a --21 	 E 

as 	a& 

where a is the geometric angle of incidence and 1 is the 

downward velocity of the leading edge. 

In the standard notation, the downward norlIal force 

is given by 

8Z = 	p V2c 80 -edri 

= 	p v 	(a. v 	L' 	4- 	L/5,) 

. 4 . substituting for a, & and 	, 

8Z  _ 	(0 F cos p + 0r f'sin p) v 4? p v-ec an 	r 	 a 

_ r  he F cos p) 

▪ (t)rF cos 3  + r f'sin p) a 

= 0
r
F cos p v2 + 0 f' sin p v a 	r  

E

▪ 	

li cos is. e c - he F if. cos 

+ ;Or  rf sin 13 c + I" 441 
a, 

/Similarly . 
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Similarly if Sivi is the pitching moment on the strip, about the 

flexural centre, 

= 	p 1/2 ec2  (8Cm  + h SCL ) an. 

5i= 

 

PV -ee 2  (a Vm+ !7, r, a. + 	cm 5, 

h+ half-ea 
+ h ,P. + 	c P6) 	an . 

Substituting for a, 5, and z, 

81,i  

p V eel  
(Or  F cos (3 + Or

f' sin r3) (vma 	h v .ea,) 

+ Oir f (m. + h 	- ©r  ho F (m. + h -4) cos p 

+ 	F cos (3 + 	f" sin. 13) (mac 

Considering the work: done in a given displacement, 

Let 8L a. = increment in the flexural moment 

Shi
a = increment in the torsional moment 

Then 81,a = ,ef oz sec 13 + f' sin p 8 :id 

• 
• • 

= 

L
a 

- F 51ii cos p. 

sec C3 02 
 

0% 

f 
0 

O
r
FcospVP 	+O

:C
f i sin1.3\rf 

a p V 	co 1/4- 

+ t31..TF cos 13 
a 

 Pee - hc cos 1:3 F '  
-• 

• 

• 
+ [f i  sin i3 Aac 	'f 

- z 

+ --2- sin fi 	- 	f t  1.- 0
r
F cos 0 (Vm

a 
 + hV f

a 
 ) + O

rf" sin. p(Vm
a 

+ hvea  ) I 	a  
c 	 , 2 

L 	L. 
+ '6rip cos p (in

a.c he i ) - hc F cos 13 (m. + he Ti 
..... 	 - 	& 	z 

.0 	t 	— ) 
+ Sif

r [f' sin. 	p (mac + he -1:` 8, ) + 4 )' f vi ' z  .. + h ) ) 1n'  

and 
K

a 	
a 

2 = cos 	
c 

F 	21.0 F cos p (Vma + hVEa  ) + 0rf' sin p(Vm
a

+h-V-e) 
p TrI)  ° 0 	 o ) r  

L 
+ br EF cos 13 (m c + he f ) - he F cos 1-  (m. + h ,t2 . 

z 
] & 	&  

++01.,F 	a, sin p (m. c he -ea) + Pf(m. 	h 	an 

Now La  =
r

L
0 +0L +br.,.+0144. r 	r 0 Or  LO  

and 	= Or  + 	+ 	+  e 	r 0 	r  

.z 
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the non-climencional acrrodynamical coefficients are given by 

Lci• 
Y-1 	

ill 0/7 
f  2._ 10 1 = - 	_ co p Ve)  co  ui o 

_ 
 0/7 
o 
f  

f t  ( —cr 	f tan p 
,._ 

• 
• • 

r 	sec 21P + f' tan 3 e, 

2 

sin p 
0 	'7 11 0/7 

1 2 (c _)2 

c o 
Cm + h? c, 

L. r410/7 

= 	

? 0 

Li ° f  (2-0)  

:12 	- 
P Vr c

o
2 

  

- 	an t  

(10/7 	 ,i On 
L 	 c 	 2 

k
1 
 = -- - 	.-eaF f — c

o 
an 1  --

o  sin p 	f ,  ( 	F cos 13 
c o  

e 	 c 

p v - 0 (... o 	 u o 	

9 

 

+ h9 
 a, 	- cc 

-0 0/7 hi• c \ 2  '0 
3 V 2c2 	

--F  (
co

) [f (m. + he. ) + f' sin 13 cos 13 (mehea ) 

	

z 	z 

	

t 	-  
o 	to 0  

lito 	 c
o 	

i 	 2 vi 0/7 

	

V 4 	 o) c 	1g 	
F 2—  f 1 (n

a„ 
+ hP) an ' c 3  - 2 2 

	 - - 	sin p cos p 1 

	

- 	0 	 1_1 

ii 0/7 — 
. , 7 	- •-• 

 

cos ` o E. ' D 	 ir 	--- t M + he - h (m. + h-i)  ] (111 1  _2( c \ 

	

- 	 C6
p Vec. S... 0 	'-' 0) 	C.' 	 ,, 

0/7 

k — „20 3 	 r-  — 	+ ht)  ) an . 
(  

c
o 

0  
t c2 _ cos 	

F 

o 

It is to be noted that 0 1  and c
3 

are not in general 

zero for a swept back wing. 

For the assumed modes of flexure and torsion, 

f 	'n -  , f' 	, F = 

= 0 

'10i/ 
/C 

sin 13 cos E3 — 	 + hP ) -h(m. 	) 

i . ( 0 
. 

Cl 

ant 
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Derivation of critical flutter speed 

As in references 1 and 2, the equations of motion 

are 

AX+Di +CO +GU-1-.7 	+KO= 0 
lr 	1r 	1r 	lr 	l'r 	lr 

A
3 
 + + 0 30 + G

3
c + J3 br + 3 0

r 
= 0 

r 

Let 0r = 	
gilt 
	

e =edNt 

Substituting and eliminating°, I vie get 

l  )\' 2  + b igo N + X)(g3N 2  + j 3,(To N + Y) 

)

(g1 ;N I2  + j i  ic N + hi  a3 N 2  + 1) 3 	NA?  + c3 	0 

il I 
vhere N' = iNe Vi T . 

0 	0 

-P, Cl 	w  x . . ---- 	 + c = X r  + C ,I .,, ,7 

	

ir -t--1 	r v27.e 3 	1 	c 	1 

Y 
K
3  

LI'0 Y + _21/ - ,90 2 - p v co2  p v %co  

i. 	 , o. 	+ q ,i ry + a-2 	+ q3 	
+ q

tF
= 0 

Thor: 
go = al g3 a3g1 

ql = ( j̀'1 j3 `"3`11 	b1  g3 	b3g1)En 

q2  = [al  Y a3k1  + (b1  j 3 b 3 j 1 ) (70  + Xg3  

q3  = (b i  Y b3k + 	j3  

q = XT e7k 
1 

The test  function is 	= (1 '1 g 3 	o g 	3 	gl
2  

g/4. - 2  

T3  = 0 at the critical flutter speed V. 

q = 0 is the condition for ring diver once. 

Estimation  of the  aorocynauic coefficients  

Using references 1 and 2, the aerodynamic coefficients 

for incompressible flou over 	unswept ,ring arc givsn bs 

e r 	= 1.4, 	= 1.6 

- 	= 0.375, - ra.a  = 0 .7, - a = 0.4- 



The valuesof these coefficients have been derived 

from experimentally determined derivatives for a wing of finite 

span. 

The aerodymmic acceleration coefficients have been 

neglected in comparison with the structural inertia coefficients. 

For the calculation of wing divergence speeds, quasi 

static values of the derivatives are used. 

There is very little experimental data on the var-

iation of the derivatives with sweopback and with Teach number. 

For incompressible flow we assume that the coefficients vary 

as cos 	for the swept 	applying the Glath:rt correction 

as for the quasi static condition, the derivatives are :Julti-

plied by the factor 

Results  

The calculations were purforued for a wing of aspect 

ratio 5 ana taper ratio 	For the unswept wing, was 
o 

taken as 0.10, giving a wing density of 0.765 lb/ft. )  The 

flexural axis was ta':en at 0.4 chord and the inertia axis at 

(i) 0.5 chord, (ii) 0.4 chord. 	The sw-ecpback of the flexural 

axis was varied from 60 0  to - 60 0 . 

The non-dLaensional critical speed coefficient 

VC  Q1-17  
B - 	 

is plotted for various angles of sweepba c1. ana o7;epforward, 

showing the critical flutter speed and the critical speed for 

wing divergence. 

Curves are drawn for t1.-to values of the non-dL.:.:.nsional 

stiffness ratio 

r /do  er 	Ll 

Figures 2 and 3 are drawn for incompressible flow; 

figures 4 and 5 for compressible flow 	0.3). 

Conclusions 

Critical flutter speed. EfIC,,ctofLiack and swccfcrward 

From figures 2,3,4 and 5 we see that the mini...1 1 flutter 

speed occurs for angles of 5 °  to 20° . For highly swept-

back or svieptforward -dings the flutter spciJd. is double that for 
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unswept wings with the sore wing stiffness. :TOTE: In these 

calculations we have neglected the effect of any rigid body 

freedoms of the aircraft c.g. pitch and vertical translation. 

Recent theoretical and experi=tal work (reference 3) has 

shown that when these body freedoms are neglected, the calcu-

lated flutter speed_ is 	to be seriously overostLlated. 

The calculations in this report can be applied to an aircraft 

for which the fuselage is relatively heavy compared with the 

wings. For such an aircraft, both the inertia effect of the 

fuselage and damping due to the tailplane tend to suppress the 

body freedoms in pitch and vertical translation). 

Effect  of chan-c of flexural stiffness 0  and torsional  

stiffness  m 

The curves have been plotted against the non-dimon-

sional parameter B for two values of the non dimensional 

stiffness ratio r. 	Thus if the ratio of the stiffnusses is 

kept constant, the critical flutter speed is proportional to 

1.76 ' and thus increases as the torsional stiffness increases. 

Over the range of stiffness ratios considered (r = 1 to 2) the 

critical flutter speed is increased slightly when the flexural 

stiffness is decreased. 

Effect of variation of the position of the inertia axis 

The critical flutter speed increases rapidly as the 

inertia axis is moved forward. The effect is less beneficial 

with highly swoptback wings. 

Effect of compressibility 

In general, at a Each nufeer of ❑ .8, the critical 

flutter speed is some 15 per cent lower than in the incompress-

ible case. 

Wing  

Effect of swlecpback and swcenforwara 

Wing divergence is not important for sweptbach wings. 

The reverse is true for swept' forward wings, where for anl_s of 

swoop greater than 5°  to 15°  wing divergence will occur at a 

lower speed than the critical flutter speed.. 

Effect of change of flexural stiffness 	and torsional stiff- 

ncss r_s t  

As in the case of flutter, if the ratio of the stiff-

ness is kept constant, the divergence spec1 is proportional to 

171; , and thus increases as the stiffness increases. For highly 

swept forward wings, the wing divergence speed is almost inde- 

pendent of the torsional stiffness, while for unswept wings the 

/divergence ... 
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divergence speed is independent of the flexural stiffness. 

Effect of variation of the Losition  of the inertia axis 

The wing diver ,once speed is unaffected by a change 

in the position of the inertia axis, the flexural axis reeiain-

ing fixed. 

Effect of core rossibili 

At a .-taoh number of 0.8, the critical speed for wing 

divergence is 15 to 20 per cent lower than in the inco r.  

case. 

General conclusions  

From the above results it is seen that the critical 

flutter speed is in general higher for a swept back wing) for 

a swept forward wing, dlvrgenco will occur before flutter. 
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