CRANEIEID

Flutter and Divergence of Sweptback and Sweptforward Wings -by-
A.W. Babister, M.A., A.F.R.Ae.S.

SUMMARY

In this note, the equations of the flexural-torsional flutter of a swept wing are established, assuming the wing to be semi-rigid and fixed at the root. The general effect of sweepback, wing stiffness and position of the incrtia axis are determined. The critical speeds for flutter and for wing divergence are determined (i) for incompressible flow (ii) for compressible flow, assuming a modificd Glauert correction.

The critical flutter specd is in general higher for a sweptback wing having the same wing stiffness as the unswept wing; for a. swept forward wing, divergence will occur before flutter.

NOTATION

Dimensions and Displacements of Ting (see Figure 1)
$c=$ chord at distance y from root chord (parallel to the root chord)
$c_{0}=$ root chord.
$\mathrm{c}_{\mathrm{m}}=$ moan chord
$c_{t}=$ tip chord
$\mathrm{d}=0.9 \mathrm{~s}$
f and \mathbb{F} define the $\mathfrak{f l e x u r a l}$ and torsional modes of oscillation
$\mathrm{gc}=$ chordvise distanco from leading edge to inertia axis
hc $=$ chordwise distance from loading edge to flexural axis
jc $=$ chordwise distance from flexural axis to inertia axis
$\ell=0.7 \mathrm{~s}=$ perpendicular distance from wing root to flexural centre of reference section
$\mathrm{s}=$ porpondicular distance from wing root to tip
$s^{\prime}=$ distance from wing root to tip, moasured along flexural axis
$\mathrm{y}=$ perpendicular distanco from wing root to a given chordwiso oloment
$a=$ angle of incidence of wing
$\eta=y / \ell$
$\varnothing=$ normal displacomont of flexural centro at a given chordvise element
$\mathcal{Y}=$ slopo of flexural axis at a given chordwise cloment
$\theta=$ anglo of twist of a given section perpendicular to the floxural axis.
$\beta=$ angle of swocpback of flexural axis.
Donsity
$\epsilon=$ air density/wing density $=\rho / \sigma_{\omega}$
$\rho=$ air density in slugs per cubic foot
$\sigma_{\omega}=$ wing density $=$ wing mass per unit area/mean chord, in slugs per cubic foot.

Stiffness coofficients
$\ell_{\phi}=$ elastic moment about perpendicular to flexural axis for unit displacement ϕ_{r} at the reforence section
$\mathrm{m}_{\theta}=$ elastic moment about flexural axis for unit displacement θ_{r} at the reference section
$B=\frac{V_{c} \sqrt{p}}{\sqrt{\frac{\mathrm{~m}_{\theta}}{\mathrm{dc}_{\mathrm{m}}{ }^{2}}}}$
$r=\frac{\ell_{\phi} / \mathrm{d}^{3}}{\mathrm{~m}_{\theta} / \mathrm{dc}_{\mathrm{m}}^{2}}$
$\mathrm{V}=$ forward speed of aircroft
$V_{c}=$ oritical fluttor speod

In this note, the equations of the flexural-torsional flutter of a swept wing are established, assuming the wing to be semi-rigid and fixed at the root. The general effects of swoepback, wing stiffness and position of the inertia axis are determined. The critical speeds for fluttor and for wing divergence are determined (i) for incompressible flow (ii) for compressible flow, assuming a modified Glauert correction.
Data and Assumptions
General A straight tapored swept wing is considered (Figure 1). The flexural and inertia axcs are taken at given constant percentage chord distances behind the leading edge.

Principal Dimensions

s $=\operatorname{span}$ (root to tip), perpendicular to root chord
d $=$ porpondicular distance from root to 'equivalent tip section'
$=0.9 \mathrm{~s}$
$\ell=$ perpendicular distance from root to flexural
contre of the 'roference section'
$=0.7 \mathrm{~s}$
$c_{0}=$ root chord
$c_{t}=$ tip chord
$c_{m}=$ mean chord
he $=$ distance of flexural axis aft of leading odge (measured parallel to root chord)
gc $=$ distance of inertia axis aft of loading odgc (measured parallel to root chord)
$1-\tau=$ taper ratio $=c_{t} / c_{0}$.
$\beta=$ angle of swoep back of flexural axis. Comesponding distances along the flexural oxis aro indicated by dashes; thus
$s^{\prime}=$ span measured along the flozural axis.
Azes $0 x$, Oy are tolcon parallol and perpendicular to the root chord through the point 0 , where the flexural axis meets the root chord. Axes $0 x^{\prime}, \mathrm{Oy}^{\prime}$ are takon perpendicular to and along the flexural axis.

Hodes of motion and displacemont coordinates
The wing is assumed to be somi-rigid, the modes of displacoment in flexure and in torsion boing taken to bo independent of the speed; all displacoments of oither kind are teken to bo in phase with one anothor. The modes of displacement are taken to be linear in torsion and parabolic in flozure; this approximatos closoly to the natural modes of the systom.

The displacement coordinates arc defined as follows:-
The flexural coordinate \varnothing is the flexural displacement of the flexural centre at a given section divided by y^{\prime} (positive for downward bending).

The torsional coordinate θ is the angle of twist of a given section perpendicular to the flexural arts measured relative to the corresponding root section $0 x^{\prime}$, (positive when the trailing cage moves dom relative to the leading edge). $\quad \theta_{r}$ and \emptyset_{r} are the flexuroll and torsional coordinates of the reference section, (the section perpendicular to the floxural axis at 70 per cent of the span, measured along the flexural axis).

The wing is supposed to be placed at a small angle of incidence in a uniform airstream of speed V (inch number M) and the wing root is supposed to bo rigidly fixed.

$$
\text { Tho displacomonts } \theta, \varnothing \text { of any point are related }
$$ to the corresponding displacements at the reference section $\theta_{r}, \varnothing_{r}$ by the equations

$$
\frac{\phi}{\phi_{r}}=\frac{\ell_{1} f(\eta)}{y^{\prime}} ; \quad \frac{\theta}{\theta_{r}}=F(\eta)
$$

where

$$
\eta=y / \ell=y^{\prime} / \ell^{\prime}
$$

The symbols used in the equation of motion conform with those in references 1 and 2.

Plastic stiffness coofficionts

Tho floxural and torsional coefficients are denoted by l_{ϕ} and m_{θ} respectively. Tho non-dimonsional flutter speed coefficients are plotted against the modified stiffness ratio r defined by

$$
r=\frac{\ell_{\phi}}{a^{3}} / \frac{m_{\theta}}{d c_{m}^{2}}=\frac{\ell_{\phi}}{m_{\theta}} \cdot \frac{c_{m}^{2}}{a^{2}}
$$

Wing density

The wing density σ_{ω} is defined to bo the total wing mass in slugs divided by the product of the wing area in square feet and the mean chord in foot.

$$
\text { Also } \quad E=\rho / \sigma_{\omega}
$$

where p is the air density in slugs per cubic foot.

$$
\text { Let } \sigma_{\omega_{\beta}}, \sigma_{\omega} \text { be the wing densities for a swept and }
$$ for an unswopt wing of the same area and mean chord. The swept wing will have a larger weight due to its larger span, measured along the flexural axis. It can be show on theoretical grounds

that the weight of a swept wing should vary approximately as $\sec ^{2} \beta$.

$$
\begin{aligned}
& \therefore \sigma_{\omega_{\beta}}=\sigma_{\omega_{0}} \sec ^{2} \beta \\
& \text { and } \epsilon=\sec ^{2} \beta \cdot \epsilon_{0}
\end{aligned}
$$

The inertial coefficients

To find the inertial coefficient, we replace the given wing by the wing $A B B^{\prime} A^{\prime}$, considering the section $A A^{\prime}$ to be rigidly fixed to the fuselage.

As in references 1 and 2, we assume that the mass per unit span (measured along the flexural axis) is $\mathrm{m}_{\beta}{ }^{-2}$ where $\bar{c}=$ local chord perpendicular to the flexural axis and m_{β} is constant for a given angle of sweepback.

We have approximately $\bar{c}=0 \cos \beta$
where $c=$ local chord measured // to tho line of flight.
\therefore Total wing mass $=2 m_{\beta} \int_{0}^{S^{\prime}} \bar{c}^{2} d y^{\prime}$

$$
=2 m_{\beta} \cos \beta c_{o}^{2} s\left[1-\tau+\frac{\tau^{2}}{3}\right]
$$

For the unswept wing, total wing mass $=2 m_{0} c_{0}^{2} s\left[1-\tau+\frac{\tau^{2}}{3}\right]$
Assuming as above that the wing weight varies as $\sec ^{2} \beta$,

$$
m_{\beta}=m_{0} \sec ^{3} \beta
$$

For both swept and unswopt wings, total wing area $=2 s c_{0}\left[1-\frac{\tau}{2}\right]$ and mean chord $=c_{0}\left[1-\frac{\tau}{2}\right]$

Now $\sigma_{\omega}=\frac{\text { wing mass }}{\text { wing area } \times \text { mean chord }}$
$\therefore \frac{\sigma_{\omega_{\beta}}}{m_{\beta}}=\frac{\sigma_{\omega_{0}}}{m_{0}}=\frac{4}{3} \frac{3-3 \tau+\tau^{2}}{4-4 \tau+\tau^{2}}$
To also assume (as in references 1 and 2) that the radius of gyration $k \bar{c}$ of a chord wise section about a transverse axis through the inertia centre of the section is a constant percentage of the chord. ($k=0.294$).

Let $\delta m=w t$ of wing element $\delta x^{\prime} \delta y^{\prime}$ at point (x^{\prime}, y^{\prime}).

As in references 1 and 2, the inertia coefficients are given by the following formulae:-

$$
A_{1}=\sum \delta_{\mathrm{m}} \mathrm{y}^{\prime 2}\binom{\phi_{\partial}}{r}^{2}
$$

$$
=\int_{0}^{s^{\prime}} m_{0} \sec ^{3} \beta \cdot c^{2} \cos ^{2} \beta \ell^{2} f^{2} d y^{\prime}=\int_{0}^{10 / 7} m_{0} c^{2} \ell^{3} f^{2} \sec ^{4} \beta d \eta
$$

$$
=\frac{\rho^{p^{3} c_{0}^{2} a_{1}}}{t_{0}}
$$

where

$$
a_{1}=\frac{m_{0}}{\sigma_{\omega_{0}}} \int_{0}^{10 / 7}\left(\frac{c}{c_{0}}\right)^{2} f^{2} \sec ^{4} \beta d n
$$

$$
\epsilon_{0}=\frac{p}{\sigma_{\omega}} \text { and } y^{\prime}=\eta l^{\prime} \text {. }
$$

$$
\text { Similarly } A_{3}=G_{1}=\sum 8 m x^{\prime} y^{\prime}\left(\frac{\theta}{\theta_{r}}\right)\binom{\varnothing_{\varnothing}}{\phi_{r}}
$$

$$
=\int_{0}^{s^{\prime}} m_{0} \sec ^{3} \beta \cdot c^{2} \cos ^{2} \beta \cdot \ell^{\prime} f F \cdot \text { jo } \cos \beta d y^{\prime}
$$

$$
=\int_{0}^{i 0 / 7} m_{0} c^{3} \ell^{2} j f F \sec ^{2} \beta d n=\frac{p \ell^{2} c_{0}^{3} a_{3}}{\epsilon_{0}}
$$

where $a_{3}=g_{1}=j \frac{m_{0}}{\sigma_{\omega}} \int_{0}^{10 / 7}\left(\frac{c}{c_{0}}\right)^{3} f F \sec ^{2} \beta d \eta$
and the centre of inertia of any section is distance $j e$ behind the flexural axis.
Also $G_{3}=\sum \delta m x^{\prime 2}\left(\frac{\theta}{\theta_{r}}\right)^{2}$
$=\int_{0}^{s^{\prime}} m_{0} \sec ^{3} \beta \cdot c^{2} \cos ^{2} \beta \cdot F^{2} \cdot \lambda^{2} c^{2} \cos ^{2} \beta d y^{\prime}$

$$
=\int_{0}^{10 / 7} m_{0} c^{4} \lambda^{2} \ell F^{2} d \eta=\frac{p \ell_{0}^{4} g_{3}}{\epsilon_{0}}
$$

where $g_{3}=\lambda^{2} \frac{m_{0}}{\sigma_{\omega}} \int_{0}^{10 / 7}\left(\frac{c}{c_{0}}\right)^{4} F^{2} d \eta$
and $\lambda^{2}=k^{2}+j^{2}$.

Thus $\quad a_{1}$ varies as $\sec ^{4} \beta, a_{3}\left(=g_{1}\right)$ as $\sec ^{2} \beta$ and g_{3} is independent of β.

The aerodynamic coefficients

We consider the forces acting on a chordwise strip of the wing (parallel to the lino of flight). Tho geometrical angle of incidence a and the domward displacement of the leading edge of this chordwise strip are given by

$$
\begin{aligned}
& a=\theta \cos \beta+\psi \sin \beta \\
& z=\emptyset \eta \ell^{\prime}-\theta \text { hoc } \cos \beta
\end{aligned}
$$

where " γ is tho slope of the flexural axis at the section considered, and any chordwisc change of camber has been neglected.

$$
\begin{aligned}
& \phi=\phi_{r} f / \eta \\
& \psi=\varnothing_{r} \partial r / \partial=\phi_{r^{\prime}} f^{\prime} \\
& \theta=\theta_{r}
\end{aligned}
$$

f and F being functions of $\eta=y / \ell$.
For the aerofoil clement, the lift and moment coofficients referred to the loading odge are given by

$$
\begin{aligned}
& C_{L}=\alpha \frac{\partial C_{I}}{\partial \alpha}+\dot{\alpha} \frac{\partial C_{I}}{\partial \dot{\varepsilon}}+\dot{z} \frac{\partial C_{I}}{\partial \dot{z}} \\
& C_{m}=\alpha \frac{\partial C_{m}}{\partial \alpha}+\dot{\alpha} \cdot \frac{\partial C_{m}}{\partial \dot{c}}+\dot{z} \frac{\partial C}{\partial \dot{z}}
\end{aligned}
$$

where a is the geometric angle of incidence and \dot{z} is the downward velocity of the leading edge.

In the standard notation, the downward normal force is given by

$$
\begin{aligned}
\delta Z & =-\frac{1}{2} \rho V^{2} c_{c} \delta C_{I} \ell_{d \eta} \\
& =-p V c \ell\left(a V \ell_{\alpha}+\dot{z} \ell_{z}+\dot{\alpha} c \ell_{\alpha}\right) d \eta
\end{aligned}
$$

\therefore substituting for $a, \dot{\alpha}$ and \dot{z},
$-\frac{\delta Z}{\rho V \ell c d n}=\left(\theta_{r} F^{\prime} \cos \beta+\varnothing_{r} f^{\prime} \sin \beta\right) V \ell_{\alpha}^{q}$
$+\left(\dot{\phi}_{r} \ell l^{\prime}-\dot{\theta}_{r}\right.$ ho $\left.F \cos \beta\right) \ell_{z}$
$+\left(\dot{\theta}_{r} F \cos \beta+\dot{\phi}_{r} f^{\prime} \sin \beta\right) \ell_{\dot{\alpha}} c$
$=\theta_{r} F \cos \beta V \ell_{\alpha}+\phi_{r} f^{\prime} \sin \beta V \ell_{\alpha}$
$+\dot{\theta}_{r}\left[F \cos \beta \ell_{\dot{\alpha}} c-h c F \ell_{\dot{z}} \cos \beta\right]$
$+\dot{\phi}_{r}\left[f^{\prime} \sin \beta \ell_{\dot{\alpha}} c+\ell_{f}^{\prime} \ell_{\dot{z}}\right]$

Similarly if $\delta \mathbb{N}$ is the pitching moment on the strip, about the flexural centre,

$$
\begin{aligned}
\delta I I & =\frac{1}{2} p V^{2} \ell c^{2}\left(\delta C_{m}+h \delta C_{L}\right) d n^{\prime} \\
& =p V \ell c^{2}\left(\alpha V n_{\alpha}+\dot{z} m_{\dot{z}}+\dot{\alpha} c m_{\dot{a}}\right. \\
& \left.+h \alpha V \ell_{\alpha}+h \dot{z} \ell_{\dot{z}}+h \dot{\alpha} c \ell_{\dot{\alpha}}\right) d \eta^{\prime} .
\end{aligned}
$$

Substituting for α, \dot{d} and z,

$$
\begin{aligned}
\frac{\delta M}{\rho V \ell c^{2} d \eta^{\prime}} & =\left(\theta_{r} F \cos \beta+\varnothing_{r} f^{\prime} \sin \beta\right)\left(V_{\alpha}+h V \ell_{\alpha}\right) \\
& +\dot{\phi}_{r^{\prime}} \ell^{\prime}\left(m_{z}+h \ell_{\dot{z}}\right)-\dot{\theta}_{r} h c F\left(m_{z}+h \ell_{\dot{z}}\right) \cos \beta \\
& +\left(\dot{\theta}_{r} F \cos \beta+\dot{\phi}_{r} f^{\prime} \sin \beta\right)\left(m_{\dot{a}} c+h c \ell_{\dot{\alpha}}\right)
\end{aligned}
$$

Considering the work done in a given displacement, Let $\delta L_{a}=$ increment in the flexural moment

$$
\delta \mathrm{M}_{\mathrm{a}}=\text { increment in the torsional moment }
$$

Then $\delta I_{a}=\ell_{f} \delta Z \sec \beta+f^{\prime} \sin \beta \delta I^{\prime}$

$$
\delta M_{a}=F \delta M^{\prime} \cos \beta .
$$

$$
\begin{aligned}
& \therefore \frac{L_{a}}{\rho V \ell^{2} c_{0}}=-\sec \beta \int f \frac{c}{c_{0}}\left\{\theta_{r} F \cos \beta V \ell_{\alpha}+\varnothing_{r} \rho^{\prime} \sin \beta V \ell_{\alpha}\right. \\
& +\dot{\theta}_{r}\left[\begin{array}{lll}
F \cos \beta \ell_{\alpha}-h c \cos \beta & \ell_{\dot{2}}
\end{array}\right] \\
& \left.+\dot{\phi}_{r}\left[f^{\prime} \sin \beta f_{\alpha^{c}}+l^{\prime} f f_{z}\right]\right\} d n^{\prime} \\
& +\frac{c_{o}}{\ell} \sin \beta \int\left(\frac{c}{c_{0}}\right)^{2} f^{\prime}\left\{\theta_{r} F \cos \beta\left(V m_{\alpha}+h V \ell_{\alpha}\right)+\phi_{r^{\prime}} f^{\prime} \sin \beta\left(V m_{\alpha}+h V \ell_{\alpha}\right)\right. \\
& +\dot{\theta}_{r}\left[F \cos \beta\left(m_{\dot{\alpha}} c+h c l_{\dot{\alpha}}\right)-h c F \cos \beta\left(m_{\dot{z}}+h l_{z}\right)\right] \\
& +\dot{\phi}_{r}\left[f^{\prime} \sin \beta\left(m_{\dot{\alpha}} c+h c l_{Q}\right)+l^{\prime} f\left(m_{z}+h l_{\dot{z}}\right]\right\} d \eta^{\prime} \\
& \text { and } \frac{M_{a}}{p V \ell_{0}^{2}}=\cos \beta \int F\left(\frac{c}{c_{0}}\right)^{2}\left\{\theta_{r} F \cos \beta\left(V_{\alpha}+h V \ell_{\alpha}\right)+\varnothing_{r^{\prime}} \sin \beta\left(V_{m}+h V \ell_{\alpha}\right)\right. \\
& +\dot{\theta}_{r}\left[F \cos \beta\left(\mathrm{~m}_{\dot{\alpha}} \mathrm{c}+h c \ell_{\dot{\alpha}}\right)-h c F \cos \beta\left(\mathrm{~m}_{\dot{Z}}+h \ell_{\dot{z}}\right)\right] \\
& +\dot{\phi}_{r}\left[f^{\prime} \sin \beta\left(m_{\dot{\alpha}} c+h c l_{\dot{\alpha}}\right)+l^{\prime} f_{\bar{z}}\left(m_{\dot{z}}+h l_{\dot{z}}\right]\right\} d n^{\prime} . \\
& \text { Now } L_{a}=\theta_{r} L_{\theta}+\phi_{r} I_{\phi}+\dot{\theta}_{r} I_{\theta}+\dot{\phi}_{r} I_{\dot{\phi}} \\
& \text { and } M_{a}=\theta_{r} M_{\theta}+\phi_{r} M_{\phi}+\dot{\theta}_{r} M+\dot{\phi}_{r} \dot{\phi}_{\dot{\phi}}
\end{aligned}
$$

\therefore the non-dimensional aerodynamical coefficients are given by

$$
b_{1}=-\frac{L_{\dot{\phi}}}{\rho V \ell^{j} c_{0}}=\int_{0}^{10 / 7} \frac{c}{c_{0}}\left[f_{\dot{z}} \sec ^{2} \beta+f^{\prime} \tan \beta Q_{\dot{\alpha}} \frac{c}{\ell}\right] d n^{\prime}
$$

$$
-\frac{c_{0}}{l} \int_{0}^{10 / 7} f^{\prime}\left(\frac{c}{c_{0}}\right)^{2}\left[f \tan \beta\left(m_{\dot{z}}+h l_{\dot{z}}\right)\right.
$$

$$
\left.+\frac{c}{\ell} f^{\prime} \sin ^{2} \beta\left(m_{\dot{\alpha}}+h P_{\dot{\alpha}}\right)\right] d n^{\prime}
$$

$$
c_{1}=-\frac{I_{\phi}}{\rho V^{2} \ell^{3}}=\frac{c_{0}}{\ell} \int_{0}^{10 / 7} f^{\prime} \frac{c}{c_{0}} \tan \beta l_{\alpha} d n^{\prime}
$$

$$
-\left(\frac{c_{0}}{l}\right)^{2} \sin ^{2} \beta \int_{0}^{10 / 7} x^{2}\left(\frac{c}{c_{0}}\right)^{2}\left(m_{\alpha}+h l_{\alpha}\right) d n^{\prime}
$$

$$
j_{1}=-\frac{I \cdot}{\rho V l^{2} c_{0}^{2}}=\int_{0}^{10 / 7} f\left(\frac{c}{c_{0}}\right)^{2}\left(F l_{\dot{\alpha}}-h \mathbb{P} l_{\dot{z}}\right) d n^{\prime}
$$

$$
-\frac{c_{0}}{l} \sin \beta \cos \beta \int_{0}^{10 / 7}\left(\frac{c}{c_{0}}\right)^{3} F^{\prime}\left[\left(m_{\dot{a}}+h l_{\dot{a}}\right)-h\left(m_{z}+h l_{\dot{z}}\right)\right] d n^{\prime}
$$

$$
k_{1}=-\frac{I_{\theta}}{p V^{2} l^{2} c_{0}}=\int_{0}^{10 / 7} l_{a} F \pm \frac{c}{c_{0}} d n^{\prime}-\frac{c}{l} \sin \beta \int_{0}^{10 / 7} f^{\prime}\left(\frac{c}{c_{0}}\right)^{2} F \cos \beta
$$

$$
\left(m_{\alpha}+h P_{\alpha}\right) d n^{\prime}
$$

$$
b_{3}=-\frac{\dot{\phi}}{p \nabla \ell^{2} c_{0}^{2}}=-\int_{0}^{10 / 7} F\left(\frac{c}{c_{0}}\right)^{2}\left[f\left(m_{\dot{z}}+h l_{\dot{z}}\right)+f^{\prime} \sin \beta \cos \beta\left(m_{\dot{\alpha}}+h l_{\dot{\alpha}}\right) \frac{c}{\ell}\right] d n^{\prime}
$$

$$
c_{3}=-\frac{M \phi}{p v^{2} \ell^{2} c_{0}}=-\frac{c_{0}}{l} \sin \beta \cos \beta \int_{0}^{10 / 7} F\left(\frac{c}{c_{0}}\right)^{2} f^{\prime}\left(n_{\alpha}+h P_{\alpha}\right) d \eta^{\prime}
$$

$$
j_{3}=-\frac{I \dot{\theta}^{\prime}}{\rho V l_{0}^{3}}=-\cos ^{2} \beta \int_{0}^{10 / 7} \mathbb{F}^{2}\left(\frac{c}{c_{0}}\right)^{3}\left[m_{\dot{\alpha}}+h l_{\alpha}-h\left(m_{\dot{z}}+h l_{\dot{z}}\right)\right] d n '
$$

$$
k_{3}=-\frac{I_{\theta}}{p V^{2} \ell c_{0}^{2}}=-\cos ^{2} \beta \int_{0}^{10 / 7} F^{2}\left(\frac{c}{c_{0}}\right)^{2}\left(m_{\alpha}+h l_{\alpha}\right) d \eta^{\prime} \cdot
$$

It is to be noted that c_{1} and c_{3} are not in general zero for a swept back wing.

For the assumed modes of flexure and torsion,

$$
f=n^{2}, f^{\prime}=2 n, F=n .
$$

Derivation of critical flutter speed
As in references 1 and 2, the equations of motion are

$$
\begin{aligned}
& A_{1} \ddot{\phi}_{r}+B_{1} \dot{\phi}_{r}+C_{1} \phi_{r}+G_{1} \ddot{\theta}_{r}+J_{1} \dot{\theta}_{r}+K_{1} \theta_{r}=0 \\
& A_{3} \ddot{\phi}_{r}+B_{3} \dot{\theta}_{r}+C_{3} \phi_{r}+G_{3} \ddot{\theta}_{r}+J_{3} \dot{\theta}_{r}+\mathbb{K}_{3} \theta_{r}=0 \\
& \text { Let } \phi_{r}=\Phi \lambda t, \quad \theta_{r}=\Theta_{e} \lambda t
\end{aligned}
$$

Substituting and eliminating $(\uparrow), ~$ wo get

$$
\begin{gathered}
\left(a_{1} \lambda^{\prime 2}+b_{1} \sqrt{\epsilon_{0}} \lambda^{\prime}+x\right)\left(g_{3} \lambda^{\prime 2}+j_{3} \sqrt{\epsilon_{0}} \lambda^{\prime}+\mathbb{I}\right) \\
-\left(g_{1} \lambda^{\prime 2}+j_{1} \sqrt{\epsilon_{0}} \lambda^{\prime}+k_{1}\right)\left(a_{3} \lambda^{2}+b_{3} \sqrt{\epsilon_{0}} \lambda^{\prime}+c_{3}\right)=0 \\
\text { whore } \lambda^{\prime}=\lambda_{c_{0}} / V \sqrt{\epsilon_{0}} \\
X=\frac{c_{1}}{\rho V^{2} \ell^{3}}=\frac{\ell_{\phi}}{\rho v^{2} \ell^{3}}+c_{1}=X_{c}^{\prime}+c_{1} \\
Y=\frac{K_{3}}{\rho v^{2} l_{0}^{2}}=\frac{\mathrm{m}_{0}}{\rho V^{2} l_{c}^{2}}+k_{3}=I_{c}^{\prime}+k_{3} \\
\text { i.c. } q_{0} \lambda^{4}+q_{1} \lambda^{\prime 3}+q_{2} \lambda^{2}+q_{3} \lambda^{\prime}+q_{4}=0
\end{gathered}
$$

whore

$$
\begin{aligned}
& q_{0}=a_{1} g_{3}-a_{3} g_{1} \\
& q_{1}=\left(a_{1} j_{3}-a_{3} j_{1}+b_{1} g_{3}-b_{3} g_{1}\right) \sqrt{\epsilon_{0}} \\
& q_{2}=\left[a_{1} Y-a_{3} k_{1}+\left(b_{1} j_{3}-b_{3} j_{1}\right) \epsilon_{0}+X_{g_{3}}-c_{3} g_{1}\right] \\
& q_{3}=\left(b_{1} Y-b_{3} k_{1}+X j_{3}-c_{3} j_{1}\right) \sqrt{\epsilon_{0}} \\
& q_{4}=X Y-c_{3} l_{1}
\end{aligned}
$$

The test function is $T_{3}=q_{1} q_{2} q_{3}-q_{0} q_{3}^{2}-q_{1}^{2} q_{4}$
$\mathbb{T}_{3}=0$ at the critical flutter speed V_{C}.
$q_{4}=0$ is the condition for wing divergence.

Estimation of the aerodynamic coefficients

Using reforonces 1 and 2, the aerodynamic coefficients for incompressible flow over an unswept wing are given by

$$
\begin{array}{rlrl}
l_{\dot{z}} & =1.5, & l_{\dot{a}} & =1.4, \quad l_{a} \\
-n_{\dot{z}} & =1.6 \\
& =0.375, \quad-n_{\dot{a}} & =0.7,-n_{\alpha} & =0.4
\end{array}
$$

The values of these coefficients have been derivod from experinentally detemined derivatives for a wing of finite span.

The acrodynanic acceloration coofficionts havo been noglocted in comparison with tho structural incrtia coofficionts.

For the calculation of wing divergence specds, quasi. static values of the dorivatives are used.

There is vary littlo exporimental data on the variation of tho dorivatives with swoepback and with ilach number. For incompressible flow wo assume that the coefficionts vary as $\cos \beta$; for the swopt wing, applying the Glawort correction as for the quasi static condition, the dorivatives aro multipliod by the factor

$$
\frac{1}{\left(1-1^{2}\right)^{1 / 4}\left(1-n^{2} \cos ^{2} \beta\right)^{1 / 4}}
$$

Rosults
The calculations woro porfomod for a wing or aspoct ratio 5 and tapor ratio . For the unswopt wing, takon as 0.10 , giving a wing donsity of $0.765 \mathrm{lb} / \mathrm{ft}^{3^{\circ}}$ The floxural axis was talton at 0.4 chord and the inortia axis at (i) 0.5 chord, (ii) 0.4 chord. Tho sweopback of the Plexural axis was varicd from $+60^{\circ}$ to -60°.

Tho non-dizensional cxitical speed coofficiont

is plotted for various angles of sweopback and swoopforrord, showing the critical fluttor spood and the criticol spood for wing divergence.

Curves aro draw for two values of the non-dimonsional stiffness ratio

$$
r=\frac{\ell / a^{3}}{\theta / d c^{2}}
$$

Figures 2 and 3 are drewn for incorprossible flow; figures 4 and 5 for comprossiblo flow $(I f=0.8)$.

Conclusions
Critical fluttor spood. Bffuct of swopbeck and swopforward
From figuros 2, 3,4 and 5 wo sue that the minimun flutter speed occurs for swopbreck anglos of 5° to 20°. For highly sweptback or swoptformerd fings the fluttor spoed is doublo that for
unswopt wings with the same wing stiffness. (IVOTE: In these calculations wo have nogloctod tho offoct of any rigid body freedons of the aircraft $\mathrm{e} . \mathrm{g}$. pitch and verticol translation. Recont theoretical and experinontal work (roferenco 3) has show that whon those body freedons aro noglected, the colculated flutter spoed is licble to be seriously overestimnted. The calculations in this report can be applicd to an aircraft for which the fuselago is relativoly heavy compared with the wings. For such an aircraft, both the inertia effoct of tho fuselage and darning due to the tailplane tend to suppross the body freedoms in pitch and vortical translation). Effect of change of flexural stifeness ℓ and torsional stiffness m_{θ}

The curvos have beon plottod against tho non-dinensional parancter B for two values of the non dinonsional stiffnoss ratio r. Thus if the ratio of the stiffnesses is kopt constant, the criticol flutter speod is proportional to $\sqrt{\mathrm{rI}_{\theta}}$, and thus increasos as tho torsionol stiffness increasos. Ovor tho rango of stirfnoss ratios considorod ($r=1$ to 2) tho critical fluttor speed is increasod slightly whon the floxural stiffness is decreasod.

Effect of variation of the position of the inortia axis

The critical fluttor spocd incroasos rapidly as the inortia axis is movod forward. Tho offect is loss bonoficial with highly swoptback wings.

Effoct of comprossibility
In general, at a liach nuabor of 0.8 , the critical fluttor speed is some 15 por cont lowor than in the incomprossible casc.

Wing Divorgence

Iffoct of sweopback and sweopforward
Wing divergence is not importent for swoptbacle wings. The revorse is true for stropt forward wings, where for arius of swoop groator than 5° to 15° wing diver, jonco will occur at a lowor spood than tho critical fluttor speod.
Effect of change of floxural stiffnoss l_{ϕ} and torsional stiffnoss ${ }^{[i]} \theta$

As in the caso of fluttor, if tho ratio of the stiffness is kept constant, tho divorgonco spooi is proportional to $\sqrt{I_{\theta}}$, and thus increases as tho stiffnoss incroases. For highly swept forward wings, the wing divorgenco spood is almost independent of the torsional stiffnoss, while for unswopt wings the
divergence speed is independent of the flexumal stiffness.

Effect of variation of the position of the inertia axis

The wing divergence speed is unaffected by a change in the position of the inortia axis, the floxural axis romaining fixcd.

Effect of comprossibility

At a liach number of 0.8 , the critical speed for wing divergence is 15 to 20 por cent lower then in the incorpressiblo casc.

Gonoral conclusions

Fron the abuve results it is seon that tho oxitical flutter spoed is in genoral highor for a swopt back wing for a swept forward wing, divergence will occur bofore fluttor.

REPEREICES

1. W.J. Duncan and H. Lyon

-

2. W.J. Duncan and C.L.T. Griffith
3. E.G. Broadbent

Calculatod flexural torsionol flutter characteristics of somo typical contilover wings.
A.R.C. R. and II. No. 1782. (1937).

The influonce of wing taper on the flutter of cantilovor wings. A.R.C. R. and I. No. 1869. (1939).

Some considerations of the flutter problcns of high spoed aircroft. Proceedings of the Second Intornational Acronautical Conforonce, 1949, pp. 556-581.

WING FLIAN FORM.

FIG I
VARIATION OF CRITICAL SPEED FOR FLUTTER AND WING DIVERGENGE

(INCOMPRESSIBLE FLOW)

FOR SWEPTBACK AND SWEPTFORWARD WINGS

FIG 2

FIG 3
VARIATION OF CRITICAL SPEED FOR FLUTTER AND WING DIVERGENCE
FOR SWEPTBACK AND SWERTFORWARD WING
(COMPRESSIBLE FLOW ; $M=0.8$)

FIG 4
VARIATION OF CRITICAL SPEED FOR FLUTTER AND WING DIVERGENCE FOR SWEPTBACK AND SWEPTFORWARE WINGS.
(COMPRESSIBLE FLOW; $M=0.8$)

