REPORT NO. 36
MAY, 1950.

THE CCI工EGI OF AERONAUTICS

CRANFIEID

Nose Control.s on Delta Wings at
Supersonic Speeds

-by-
13. IT. Bolton Shaw, B.A., D.C.Ae.

SUMMARY

Expressions are derived for ℓ_{ξ} and a_{2} of nose ailerons and nose elevators on a delta wing, as depicted in Fig. 1, in supersonic Plight. Nose and truiling adge controls on delta wings in supersonic filight are compared.

Conclusions
On deIta wings of moderate aspect ratio (say >4) nose controls are comparable with trailing edge controls. Nose controls ore ineffective on delta wings of very small aspect ratio (say<1).

For the same effects, the controls are deflected upWords when trailing edge controls would be doflected downwards and vice versa.
-...-00000-----
(Thesis presented for the College Diploma, June, 1949)

NOSE LTIERON

NOSE ELEVATOR

FIG. 1.

LIST OF CONTENTS

Page
1 Introduction2
2 Notation 4
3 Results 6
4 Discussion of Results 7
4.1 Generol Remarks and Discussion 7
4.2 Nose Ailerons 7
4.3 Nose Rlevators 9
5 Analysis 11
5.1 Pressure Distributions with Leading Edges Lying Outside 1Iach Cone 11
5.11 Controls Used as Ailerons - Calculation of l_{ξ} 21
5.111 Hinge Lines Lying Out side Mach Cone 23
5.112 Hinge Linos Lying Inside Mach Cone 24
5.12 Controls Used as Elevators - Calculation of a_{2} 24
5.121 Hinge Lines Lying Outside Mach Cone 25
5.122 Hinge Lines Lying Inside Mach Cone 26
5.123 Position of Centre of Pressure due to Elevator Deflection 26
5.2 Solution with Leeding Eages Inside Mach Cone 27
5.21 Controls Used as Lilerons 31
5.22 Controls Usod as Elevators 36
5.3 Effects of Infinito Pressure at Leading Eige 42
5.4 Acknowledgements 43
Appendices $\mathrm{I}, \mathrm{II}, \mathrm{III}, \mathrm{IV}, \mathrm{V}, \mathrm{VI}$, and VII. 44

Introduction

The nose controls considered here are equal, flat triangular surfaces located symmetrically on each side of a flat delta wing or tailplane, with the hinge lines meeting at the apex. (See Fig.1).

The controls may be deflected symmetrically (i.e. either both moved up or both moved down through the same angle) to produce a lift force. The controls then act as elevators. Alternatively, the controls may be deflected anti-symmetrically (i.e. one moved up and the other moved down through the same angle) to produce a rolling moment, the controls then acting as ailerons.

In S 5 the lift force and roiling monent are calculated on the assumptions of linearised theory. These results yield expressions for (i) l_{ξ} for nose ailerons and (ii) a_{2} for nose olevators.

Two kinds of supersonic flow over the wing or tailplane are possiblo, depending on the Mach number (M) and the apex angle (2Y), They are:
(i) A flow in which the leading edges lie outside the Mach cone of the apex. This type of flow occurs at higher speeds, corresponding to the analytic condition $M \geqslant \operatorname{cosec} \gamma$.
(ii) A flow in wich the leading edges lie inside the Mach cone. This type of flow occurs at lower speeds, i.e. when $11 \leqq$ cosec γ.

Physically, these flows are different - in the first flow the pressure distribution on either the upper or the lower surface is unaffected by the shape of the other surface, while in the second flow the pressure on either surface is affected by the shape of both upper and lower surfaces. (This follcws from a property of supersonic flow, viz. that a small disturbance at a point in the field can only be communicated to the region within the Wach cone of that point).
/ In the ...

4
Hereafter, the liach cone of the apex will be referred to simply as 'the liach cone'.

Si. (Conta. $)$

In the Analysis these two leinds of flow are treated soparately and field different formuine. Fi.ow (i) can be further subdivỉod into two cases in which the hinge lines lie (a) outside and (b) inside the liach cone. This distinction is important whon performing certain of the integrations, but the method of solution is fundamentally the same in both cases and tho formulao that aro derivod for l_{ξ} and a_{2} are the same.

S 2. (Contd.)
$t=\frac{k_{1} y}{x}$
$\bar{z}=\frac{k_{2} y}{x}$
u induced component of velocity in x direction
$U_{0} \quad$ free stream velocity
v induced component of velocity in y direction
w induced component of velocity in z direction
x chord-wise coordinate (measured from the apex in the direction of flow)
y spanwise coordinate (t ve to starboard)
z normal coordinate (t ve above wing)
a incidence of wing (or tailplane)
$\beta=\sqrt{\mathbb{M}^{2}-1}$
$\gamma \quad$ apex semi-angle
$\eta \quad$ elevator deflection (+ ve when an elevator is defllected up)
θ control deflection (+ ve when starboard control is deflected.up)
(1) semi-angle included between control hinge Iines
λ slope of wing on tailplane surface in x direction
$\mu=y / x$
II (n, u) complete elliptic integral of the third kind $=\int_{0}^{\frac{\pi}{2}}\left(1+n \sin ^{2} \phi\right)^{-i}\left[1-u^{2} \sin ^{2} \phi\right]^{-\frac{1}{2}} d \phi$

II $=I I\left(\overline{B^{2} r^{2}-1}, \sqrt{\left.1-B^{2}\right)}=K^{\prime}(B)+\frac{1}{B^{2} r} \sqrt{\frac{1-B^{2} r^{2}}{1-r^{2}}}\right.$ $\left\{\frac{\pi}{2}+\left[K^{\prime}(B)-\mathbb{E}^{\prime}(B)\right\} \sin ^{-1}(r, B)-\mathbb{K}^{\prime}(B) \cdot \mathbb{E}\left(\sin ^{-1} r, B\right)\right\}$
$p \quad$ air density
$\xi \quad$ ailoron deflection (+ ve when starboard aileron is deflectod up)
\varnothing induced velocity potential

RESULTS

(Soe 息2. for explanation of symbols).

Hose Ailerons

	Leading Edgos Outside Lach Cone $(B \geq 1 ; i, 0, M \geqslant \operatorname{cosec} \gamma)$	Leading gages Inside Mach Cone ($B \leqslant 1$; i. $0, M \leqslant \operatorname{cosec} \gamma$)
ℓ_{ξ}	$-\frac{2}{3} \frac{\left(1-r^{2}\right)}{B} \sin \Theta \tan \gamma$	$-\frac{2}{3} \frac{\left(1-r^{2}\right)^{2}}{\sqrt{1-B^{2} r^{2}}} \sin$ (13) $\tan r$

Nose Elevators

	Leading Edgos Outside Hach Cone ($B \geq 1$;i.e. II $\geq \operatorname{cosec} \gamma$)	Loading Eiges Inside Hach Cone ($B \leqslant 1$; i.e. inscosec γ)
a_{2}	$\frac{4(1-r)}{B} \sin \Theta \tan \gamma$	$\begin{aligned} & \frac{B \neq 0}{4 r\left(\frac{B^{2}}{E} I I-1\right)} \sqrt{\frac{\left(1-r^{2}\right)}{\left(1-B^{2} r^{2}\right)}} \sin \ominus \tan \gamma \\ & \frac{B=0(i \cdot c \cdot 1-1)}{4\left(\cos ^{-1} r-r \sqrt{1-r^{2}}\right) \sin \Theta \tan \gamma} \end{aligned}$
Position of Contre of Pressure	On contre línc, $\frac{2}{3}$ e from apex	On' centre line, $\frac{2}{3}$ c from apex

4.1. General Remarks and Conclusions

At supursonic spoeds, nose controls are unsuitable for delta wings or tailplones of very low aspect ratio (say<1). This is because the slope λ of a doflected nose control surface in the direction of the main stream is proportional to $\sin (4)$ (where $2(1)$ is the angle between the control hinge lines.) The lift force or rolling momont produced, being proportional to λ, is then proportional to sin (1-1). At very small a spect ratios (1) is also very small and the controls are therefore relatively ineffective.

It is possible that in a viscous fluid nose controls may have some advantages ovor trailing edge controls, such as greater maximum ailoron (or elevator) power. This, however, remains to be investigated.

At moderate aspect ratios (say>4) the effectiveness at supersonic speeds of nose controls (as measured by l_{ξ} and a_{2}) is comparable with, although less than, the effectiveness of trailing edge controls.

It should be noted that nose controls must be deflected up instead of down and down instead of up in order to produce the sane offects as conventional (i.ce trailing odge) controls.

4.2. Nose Ailorons

In Fig. 11, $\frac{-t_{c}}{\sin (1) \tan \gamma}$ is plotted against B
$\left(=\sqrt{1^{2}-1} \tan \gamma\right)$ for several values of $r(=\tan \Theta / \tan \gamma)$. On a.ll the curves of constant $r,-\frac{l}{\xi}$ is a maximum at $B=1$, i.e. when $\mathbb{I}=\operatorname{cosec} \gamma$, i.e. when tho liach cono just touchos the leading eages. For a given wing (i.c. γ and ω), and therefore s, given) the curves show the variation of l_{ξ} with $\sqrt{\mathrm{NI}^{2}-1}$.

Curves of $-f_{g}$ against aileron area for several liach numbers betwoon 1 and 3 aro p.lotted for aspect ratios of 2•3,4 and 6.9 in . Figs. 12 and 13.

In practice $\frac{S_{c}}{S}$ would probably not oxceod 0.3. With this limitation, it will be seen that excopt for wings of higher aspect ratios at Ilach numbers near $1,-t_{\xi}$ is considerably less than for convontional ailorons in incompressible flow.

Rate of Roll

It is readily shown that the steady rate of roll p of a wing is given by:

$$
\mathrm{p}=\frac{2 \mathrm{a} \cdot 1 I}{\mathrm{~b}} \frac{l_{\mathrm{E}}}{b_{\mathrm{p}}}
$$

In ref. 1 it is show in Fig. 2 that $-C_{p}$ decreases with M. If $M<\operatorname{cosec} \because,-\ell_{\xi}$ increases with M. (See Fig. 11). Hence by the above equation p increases with M. If $M>\operatorname{cosec} r$ it is proved in ref. 1 that l_{p} varies as $\left(M^{2}-1\right)^{4-2}$ and it is proved in this report that Q_{ξ} also varies as $\left(\pi^{2}-1\right)^{-1}$. Hence p varies as I and increases with M. Thus at all supersonic speeds the steady rate of roll produced by the ailerons increases with increase of speed, and is directly proportional to speed when M> cosec γ.

Comparison of Nose and Trailing Edge Ailerons

Using the approximate formula for trailing odge ailerons derived in Appendix V, a comparison between the effectiveness of nose and trailing edge ailerons is made in Table 1, on the basis that the speed and the ratio, control area/wing area, are the same in both cases. From this table it appears that with moderate aspect ratios (4 to 7) nose clevators are, very approximately, two thirds as offective as trailing edge ailerons at supersonic speeds, the discrepancy increasing as aspect ratio decreases.

ComDIIION	$\frac{\binom{\ell}{E}_{\text {nose }}}{(E)_{T / E}}$
$\mathrm{~A}=6.9$	0.73
$\frac{\mathrm{~S}_{C}}{\mathrm{~S}}=0.2$	
$\mathrm{~A}=4$	
$\frac{\mathrm{~S}_{\mathrm{C}}}{\mathrm{S}}=0.2$	0.56

TABTE 1.

Note. These figures are based on the assumptions that the leading edges of the wing lio outside the Mach cone, that the aspect ratio of the trailing edge ailerons is large compared with $\frac{1}{\beta}$ and that $\frac{0}{\mathrm{~b}}=\frac{2}{3}$. (See Appendix V).

4.3. Nose Elevators

It is shom in 5.123 and 5.22 that the force produced by nose elevator deflections acts always on the centre-line, at two thirds of the maximum chord from the apex. This point is also the centre of pressure of a delta wing, so that nose elevators fitted to a delta wing cannot trim the wing, i.e. cannot act as elevators.

It would be possible, however, to trim a wing by means of nose controls fitted to it provided the wing plan form is similar to cither of the two types shom below:

With either of these plan forms, tho centre of pressure of the force produced by control doflections would differ from the centre of pressure of the wing at incidence. Deltas of this type, with bent trailing odges, are not dealt with in this report, howevor.

The analysis of nose olevators of this report is applicable to dolta tailplanes on supersonic aircraft. The remarks in the romainder of 4.3 refer to such a tailplane.

$$
\text { In Fig. 14, } \frac{a_{2}}{\sin (d) \tan \gamma} \text { is plotted ageinst } B \text { for }
$$

several values of r. For a given tailplane these curves show the variation of a_{2} with $\sqrt{x^{2}-1}$.

Curves of a_{2} against clevator arca for four liach numbers between 1 and 3 are plotted for aspect ratios of 2.3, 4 and 6.9 in Figs. 15 and 16 . On all these curves a_{2} rises to a maximun value, $\mathrm{a}_{2 \text { max. }}$, at a certain valuo of
$\frac{\mathrm{S}_{\mathrm{C}}}{\mathrm{S}}$, usually about 0.6 .
The quantity $\frac{a_{2} \max }{a_{1}}$ is plotted against aspect ratio in Fig. 17, where a_{1} is the lift slope of the delta tailplane. In general $\frac{a_{2} \max }{a_{1}}$ is a function of both H and A, but when $M>\operatorname{cosec} \gamma, a_{2 \max }$ and a_{1} both vary as $\left(\pi^{2}-1\right)^{-\frac{1}{2}}$, and $\frac{a_{2} \max }{a_{1}}$ is thus a function only of A. Only two curves, viz. those for $M=1$ and $M \geqslant \operatorname{cosec} \gamma$, ore therefore show in Fig. 17. At Mach numbers botween 1 and cosec r the value of $\frac{a_{2} \max }{a_{1}}$ Iies between the values of $\frac{a_{2} \max }{a_{1}}$ at $\mathbb{M}=1$ and at $\mathbb{M}=\operatorname{cosec} \gamma$, and may be found approximately by interpolation between the two curves. It will be scen that the values of $\frac{a_{2} \max }{a_{1}}$ are less than conventional values of $\frac{a_{2}}{a_{1}}$ for trailing edge elevators in low-speed flow, particularly at small aspect ratios.

Reference to Figs. 15 and 16 shows that at a given aspect ratio the value of $\frac{\mathrm{S}_{c}}{\mathrm{~S}}$ that gives the maximun value of a_{2} varies slightly with 1I. Howevor, an optimum value of $\frac{S_{C}}{S}$ may be chosen at a given aspect ratio such that at any Mach number a_{2} is within 1 per cent of its corresponding maximum value. This quantity $\left(\frac{S_{C}}{S}\right)_{\text {OFT }}$ is plotted in $\operatorname{Hig} \cdot 18$ against aspect ratio. It does not vary greatly from the value 0.6.

Comparison of Nose and Trailing Edge Elevators

Using the approximate formula for trailing edge clevators derived in Appendix V, a comparison between the effectiveness of nose and trailing edge elevators is made in Table 2, on the basis that speed and the ratio control ared tailplanc area are the same in both cases. From this table it appears that with moderate aspect ratios (4 to 7) nose elevators are, very approximately, half as effective as trailing edge elevators at supersonic speeds, the discrepancy increasing as aspect ratio decreases.

$-11-$	
CONDIIION	$\frac{\left(a_{2}\right)_{\text {nose }}}{\left(a_{2}\right)_{T / E}}$
$A=6.9$	0.65
$\frac{S_{C}}{S}=0.5$	
$A=4$	
$\frac{S_{C}}{S}=0.5$	0.45

TABLE 2.

COIPARISON OF NOSE EIEVATORS WITH TRAILING EDGE ELEVATORS
Note. These figures are based on the assumptions that the leading edges of the tailplane lie outside the liach cone and that the aspect ratio of the trailing edge olevators is large conpared with $\frac{1}{\beta}$.

§ 5.
 Analysis

As stated in the Introduction there are two different conditions of flow to considor, viz. (i) the leading edgos lying outside the Nach cono and (ii) tho leading odges lying insido the Mach cone.
5.1. Pressure Distributions with Loading Bdges Iying Outside Mach Cone

With the assumption of small perturbation of $f l o w$, the equation giving the induced velocity potential \varnothing in three dimensiom l, inviscid, isentropic, steady flow past a body is:

$$
\begin{equation*}
-\beta^{2} \frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=0 \tag{1}
\end{equation*}
$$

Consider $\varnothing=$

$$
\begin{equation*}
\frac{-q}{(x-z)^{2}-\beta^{2}\left[(y-m)^{2}+z^{2}\right]} \tag{2}
\end{equation*}
$$

It is readily verifiod that \varnothing as given by equation (2) satisfies equation (1). It may be shown that equation (2) gives the velocity potential of a supursonic source of strength q at $(\xi, \eta, 0)$.

By superposition,

$$
\varphi=\cdots \frac{a\left(\xi_{0} \eta\right) d \xi^{2} n}{\sqrt{(x-\varepsilon)^{2} \ldots \beta^{2}\left[(y \cdots)^{2}+z^{2}\right]}} \quad \cdots \ldots \ldots .(3)
$$

is also a nolution of equation (1). Equation (3) gives the velocity potentiol of a continuous distribution of elmentary sources q $(\xi, \ldots) d \xi_{j}$. Wo shall investigate whether with correct choice of tio itstribution function q_{2} equation (3) will give the flow pest the dolta wing.

$$
\begin{aligned}
& \text { Then oquation (3), tho nomal velonity } w \text { in civen hy: } \\
& \pi=\frac{2 \eta}{\partial z}=-\beta^{2}:\left\{\frac{q(\xi, \eta) d \xi d \eta}{\left[(x-\xi)^{2}-\beta^{2}\left\{(j-\eta)^{2}+z^{2}\right\}\right]^{\frac{3}{2}}}\right.
\end{aligned}
$$

$$
\begin{equation*}
\therefore(w)_{z=-0}=-(w)_{z=+0} \tag{4}
\end{equation*}
$$

To the accuracy of the Inmearisoci theory it is correct to assume that the velocity at point on the wing is the velocity at the projection of that point on the plane $z=0$. Therefore from equation (4).

$$
\begin{equation*}
(w)_{\Gamma / S}=-(w)_{T / S}, \tag{5}
\end{equation*}
$$

(where the suffices 'I./S' a. ${ }^{\prime} \mathrm{U} / \mathrm{S}^{\prime}$ refor to the lower and upper surfaces of the wing rospectively).

Actualily the condition represented by equation (5) is not satisfied in ou problon sinco

$$
(w)_{I / S}=U_{0} \lambda=(w)_{U / S},
$$

(where A is the slone of the suxface in the x direction at any point of the surface:) Hovever, the flov above the wing is independent of the flow below it, because the leading edges lio outside the Hacin cone. We are therefore justjfied, when confining oun attiontion to one surface, in assuning that equation (5) is satisfiod. Equation (3) therefore gives the velocity potential correctity when considering one surface.

The result is proved in ref. 2 , equation (45), that:

$$
\begin{aligned}
& \left(\frac{\partial \phi}{\partial z}\right)_{z=1}-\left(\frac{\partial \phi}{\partial z}\right)_{z=-0}=2 \pi q \\
& \text { Since } \frac{\partial \phi}{\partial z}=w_{y} \text { this bccomes: }
\end{aligned}
$$

$$
(w)_{z=\div 0}-(w)_{z=-0}=2 \pi q .
$$

With equation (4), this gives:

$$
q=\frac{(w)_{z=0}}{\pi}
$$

or if W_{s} denote the component of velocity in the z-direction at the upper surface,

$$
a=\frac{\pi}{\pi}
$$

Hinge Iinos Outside the Me.ch Cone

FIG?

It is sufficiont to consider an upward deflection θ of the starbcard control only, since the offect of deflecting the port control as well may be found by superposition. W_{s} is then zero everywher on the wing except on the control surface, where $W_{S}=-U_{0} \theta \sin (\Theta)$. There is thus a unifom source distribution $\left(-\frac{1}{\pi} U_{0} \theta \sin (1)\right)$ over bOB. (See Fig, 2). This is equivaient to two unifom source distributions:
(i) $q_{1}=-\frac{U_{0} \theta \sin (\theta)}{\pi}$ over $O B H_{2}$, and
(ii) $q_{2}=+\frac{\Pi_{0} \theta \sin \theta}{\pi}$ over ObN_{2}.

It shoula be noted that the effects of deflecting control bOB are confined to the region $\mathrm{H}_{2} \mathrm{OB}$ of the wing.

Let $\eta_{1}(x, y)$ be a point on the upper surface in the region BOIF_{1}. (Sco Tig . 2)。

Then due to q_{1}, the potential \varnothing at $P_{1}(x, y)$ is
given by:

$$
\phi=-q_{1} \iint \frac{d d \eta}{\sqrt{(x-z)^{2}-\beta^{2}(y-\eta)^{2}}},
$$

the integration extending over the region $R_{1} P_{1} S_{1}$, where P_{1} J: and $P_{1} S_{1}$, are Mach lines through P.

Let $s=\xi-k, \eta$
$\therefore \phi=-q_{1} \int_{0}^{x-k_{1} y}$ as $\int_{\eta_{R_{1}} P_{1}}^{m_{S_{1}} P_{1}} \frac{d \eta}{\sqrt{\left(x-s-k_{1} \eta\right)^{2}-\beta{ }^{2}(y-1)^{2}}}$

$$
=\frac{-1}{\sqrt{\beta^{2}-k_{1}^{2}} \int_{0}^{x-k_{1} y} d_{s} \int_{\eta_{0}-c}^{\eta_{0} \div c} \frac{d \eta}{\sqrt{c^{2}-\left(\eta-m_{0}\right)^{2}}}}
$$

Where $\left\{\begin{array}{l}\eta_{0}=\frac{(x-3) k_{1}-\beta^{2} y}{x_{1}^{2}-\beta^{2}} \\ 0=\frac{\beta\left(x-s-y k_{1}\right)}{k_{1}^{2}-\beta^{2}}\end{array}\right.$
$\therefore \quad C=\frac{-q_{1}}{\sqrt{\beta^{2}-k_{1}^{2}}} \int_{0}^{x-k_{1} y} \pi d s$
i.e. $\phi=\frac{-\pi q_{1}}{\sqrt{\beta^{2}-x_{1}^{2}}}\left(x-k_{1} y\right)$
$\therefore u=\frac{\partial \phi}{\partial x}=\frac{-\pi q_{1}}{\sqrt{\beta^{2}-k_{1}^{2}}}=\frac{-\pi q_{1}}{\beta \sqrt{1-n_{1}^{2}}}$, where $n_{1}=\frac{k_{1}}{\beta}$

In linearised theory the pressure is given by:

$$
p=-\rho U_{0} u
$$

Hence at points such as P_{1}, the upper surface pressure due to q_{1} is given by:

$$
\begin{equation*}
p=\frac{\pi p U_{0} q_{1}}{\beta \sqrt{1-n_{1}^{2}}} \tag{6,1}
\end{equation*}
$$

Sinilarly at points within bON $_{1}$, the upper surface pressure due to q_{2} is given by:

$$
p=\frac{\pi p U_{0} q_{2}}{\beta \sqrt{1-n_{2}^{2}}}
$$

(6.2),
(where $n_{2}=\frac{k_{2}}{\beta}$).

Let P_{2} be a point on the upper surface in the region $\mathrm{M}_{1} \mathrm{OM} \mathrm{M}_{2}$.

> Due to q_{1}
> $\phi=-q_{1} \iint \frac{d \xi d n}{\sqrt{(x-\xi)^{2}-\beta^{2}(y-\eta)^{2}}}$, the integration extend- over $P_{2} Q_{2} O S_{2}$

$$
\text { Let } s=\xi+\beta \eta \text {. }
$$

$\therefore \phi=-q_{1} \int_{0}^{x+\beta y} d s \int_{\frac{s+\beta y-x}{2 \beta}}^{\frac{s}{k_{1}+\beta}} \frac{d \eta}{\sqrt{(x-s+\beta \eta)^{2}-\beta^{2}(y-\eta)^{2}}}$

$$
=-q_{1} \int_{0}^{x+\beta y} d s \int_{\frac{s+\beta y-x}{2 \beta}}^{\frac{s}{k_{1}+\beta}} \sqrt{2 \beta(x-s+\beta y) \eta+(x-s)^{2}-\beta^{2} y^{2}}
$$

$$
=-q_{1} \int_{0}^{x+\beta y}\left[\frac{\sqrt{2 \beta(x-s+\beta y) \eta+(x-s)^{2}-\beta^{2} y^{2}}}{\beta(x-s+\beta y)}\right]_{\eta=\frac{s+\beta y-x}{2 \beta}}^{\eta=\frac{s}{k_{1}+\beta}}
$$

Let $P=x-s+\beta y$.

$$
\begin{aligned}
& \text { Let } \ell=x-s+\beta y . \\
& \left.\therefore \varnothing=-q_{1} \int_{0}^{x+\beta y}\left[\frac{\sqrt{2 \ell l n+(l-\beta y)^{2}-\beta^{2} y^{2}}}{\beta l}\right]_{\eta=\frac{2 \beta y-l}{2 \beta}}^{\eta}\right]^{\eta=\frac{x+\beta y-\ell}{k_{1}+\beta}}
\end{aligned}
$$

$$
=-q_{1} \int_{0}^{x+\beta y} \frac{1}{\beta} \ell \sqrt{\frac{\left(k_{1}-\beta\right) \ell^{2}-2 \beta \ell\left(k_{1} y-x\right)}{k_{1}+\beta}} d \ell
$$

$$
/=\frac{-q_{1}}{\beta}
$$

$$
=\frac{-q_{1}}{\beta} \sqrt{\frac{\beta-k_{1}}{\beta+k_{1}}} \int_{0}^{x+\beta y} \frac{1}{\ell} \sqrt{\frac{2 \beta\left(x-k_{1} y\right)}{\beta-k_{1}} \ell-\ell^{2}} \alpha \ell
$$

Let $\ell=\mathrm{n}^{2}, \frac{2 \beta\left(\mathrm{x}-\mathrm{k}_{1} \mathrm{y}\right)}{\beta-\mathrm{k}_{1}}, \quad \therefore \frac{\alpha \ell}{\ell}=2 \frac{\mathrm{dr}}{\mathrm{n}}$

$$
\therefore \phi=-\frac{4 q_{1}\left(x-k_{1} y\right)}{\sqrt{\beta^{2}-k_{1}^{2}}} \int_{0}^{\sqrt{\left(\beta-k_{1}\right)(x+\beta y)}} \frac{\sqrt{2 \beta\left(x-k_{1} y\right)}}{\sqrt{1-n^{2}}}
$$

$$
=-\frac{2 q_{1}\left(x-k_{1} y\right)}{\sqrt{\beta^{2}-k_{1}^{2}}}\left\{\frac{\sqrt{\left(\beta^{2}-k_{1}^{2}\right)\left(x^{2}-\beta^{2} y^{2}\right)}}{2 \beta\left(x-k_{1} y\right)}+\sin ^{-1} \sqrt{\frac{\left(\beta-k_{1}\right)(x+\beta y)}{2 \beta\left(x-k_{1} y\right)}}\right\}
$$

$$
\text { i.e. } \varnothing=-q_{1}\left\{\frac{2\left(x-k_{1} y\right)}{\sqrt{\beta^{2}-k_{1}^{2}}} \sin ^{-1} \sqrt{\frac{\left(\beta-k_{1}\right)(x+\beta y)}{2 \beta\left(x-k_{1} y\right)}}+\frac{1}{\beta} \sqrt{x^{2}-\beta^{2} y^{2}}\right\}
$$

$$
\therefore \frac{\partial \phi}{\partial x}=-q_{1}\left\{\frac{2}{\sqrt{\beta^{2}-k_{1}^{2}}} \sin ^{-1} \sqrt{\frac{\left(\beta-k_{1}\right)(x+\beta y)}{2 \beta\left(x-k_{1} y\right)}}+\frac{1}{\beta} \sqrt{\frac{x-\beta y}{x+\beta y}}\right\}
$$

$$
\therefore p=p U q_{1}\left\{\frac{2}{\sqrt{\beta^{2}-k_{1}^{2}}} \sin ^{-1} \sqrt{\frac{\left(\beta-k_{1}\right)(x+\beta y)}{2 \beta\left(x-k_{1} y\right)}}+\frac{1}{\beta} \sqrt{\frac{x-\beta y}{x+\beta y}}\right\}
$$

Let $t=\frac{k_{1} y}{x}$

$$
\therefore p=\frac{\rho U_{0} q_{1}}{\beta}\left\{\frac{2}{\sqrt{1-n_{1}^{2}}} \sin ^{-1} \sqrt{\frac{\left(1-n_{1}\right)\left(n_{1}+t\right)}{2 n_{1}(1-t)}}+\sqrt{\frac{n_{1}-t}{n_{1}+t}}\right\}
$$

............ (7.1)
at points such as P_{2}, due to q_{1}.
Sinilarly, at points such as P_{2}, the pressure due to q_{2} is given by:

$$
p=\frac{p U_{0} q_{2}}{\beta}\left\{\frac{2}{\sqrt{1-n_{2}^{2}}} \sin ^{-1} \sqrt{\frac{\left(1-n_{2}\right)\left(n_{2}+\bar{t}\right)}{2 n_{2}(1-\bar{t})}}+\sqrt{\frac{n_{2}-\bar{t}}{n_{2}+\bar{t}}}\right\} \text { (7.2) }
$$

(where $\bar{t}=\frac{k_{2} y}{x}$).

FIG. 3

Due to the source distribution q_{1} over OBII_{2} the pressure is given still by equations (7.1) and (6.1), but the equations for pressure due to q_{2} are different.

The effects of q_{2} are confined to the triangle $\mathrm{M}_{1} \mathrm{OM}_{2}$.

Let P_{1} be apoint on the upper surface in the region bOM. $_{1}$. (See Fig. 3).

Due to q_{2}, the potential \varnothing at P_{1} is given by:
$\phi=-q_{2} \iint \frac{d \xi d \eta}{\sqrt{(x-\xi)^{2}-\beta^{2}(y-\eta)^{2}}}$,
the integration extending over the rogion $O R_{1} Q_{1}$.

$$
\text { Put } s=\xi-\beta y \text {. }
$$

$\therefore \phi=-q_{2} \int_{0}^{x-\beta y} d s \int_{\frac{-s}{2 \beta}}^{\frac{s}{k_{2}-\beta}} \frac{d \eta}{\sqrt{(x-s-\beta \eta)^{2}-\beta^{2}(y-\eta)^{2}}}$
$=-q_{2} \int_{0}^{x-\beta y} d s \int_{\frac{-s}{2 \beta}}^{\frac{s}{k_{2}-\beta}} \frac{d \eta}{\sqrt{2 \beta(\beta y-x+s) \eta+(x-s)^{2}-\beta^{2} y^{2}}}$

$$
\begin{aligned}
& \text { Put } P=\beta y-x+s
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{q_{2}}{\beta} \int \sqrt{\frac{k_{2}+\beta}{k_{2}-\beta}} \int_{0}^{\beta y-x} \sqrt{p^{2}+\frac{2 \beta\left(x-k_{2} y\right)}{k_{2}+\beta} \ell} d \downarrow \\
& +\sqrt{x+\beta y} \int_{0}^{\sqrt{-t}} \int^{\frac{d t}{}} \int_{0} \\
& =\frac{q_{2}}{\beta}\left[\sqrt{k_{2}+\beta} \frac{k_{2}-\beta}{k_{2}} \int_{0}^{p y-x} \frac{2 \beta\left(k_{2} y-x\right)}{k_{2}+\beta} p\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { put } f=\frac{-2 \beta\left(k_{2} y-x\right)}{k_{2}+\beta} m^{2} . \quad \because \quad \frac{d \eta}{\ell}=2 \frac{d m_{2}}{m} \\
& \because \int_{0}^{\beta y-x} \sqrt{p^{2}-\frac{2 \beta\left(k_{2} y-x\right)}{k_{2}+\beta}} p t \\
& =\frac{4 \beta\left(k_{2} y-x\right)}{k_{2}+\beta} \int_{0}^{\sqrt{\left(k_{2}+\beta\right)(x-\beta y)}} \frac{2 \beta\left(k_{2} y-x\right)}{m^{2}+1} d m
\end{aligned}
$$

$$
=\frac{2 \beta\left(k_{2} y-x\right)}{k_{2}+\beta}\left[\frac{7}{m v^{2}+1}+\sinh ^{-1}\right]_{0}^{\sqrt{\frac{\left(k_{2}+\beta\right)(x-\beta y)}{2 \beta\left(k_{2} y-x\right)}}}
$$

$$
=\frac{2 \beta\left(k_{2} y-x\right)}{k_{2}+\beta}\left\{\frac{\sqrt{\left(x^{2}-\beta^{2} y^{2}\right)\left(k_{2}^{2}-\beta^{2}\right)}}{2 \beta\left(k_{2} y-x\right)}+\sinh ^{-1} \sqrt{\frac{\left(k_{2}+\beta\right)(x-\beta y)}{2 \beta\left(k_{2} y-x\right)}}\right\}
$$

$$
=\sqrt{\frac{k_{2}-\beta}{k_{2}+\beta}\left(x^{2}-\beta^{2} y^{2}\right)}+\frac{2 \beta\left(k_{2} y-x\right)}{y_{2} \cdot \beta} \sinh ^{-1} \sqrt{\frac{\left(k_{r}+\beta\right)(x-\beta y)}{2 \beta\left(k_{2} y-x\right)}}
$$

$\therefore \phi=q_{2}\left\{\frac{2\left(k_{2} y-x\right)}{\sqrt{k_{2}^{2}-\beta^{2}}} \sinh ^{-1} \sqrt{\frac{\left(k_{2}+\beta\right)(x-\beta y)}{2 \beta\left(k_{2} y-x\right)}}-\sqrt{\frac{x^{2}-\beta^{2} y^{2}}{\beta}}\right\}$
$\therefore \frac{\partial \phi}{\partial x}=-q_{2}\left\{\frac{1}{\left.\beta \sqrt{\frac{x-\beta y}{x+\beta y}}+\frac{2}{\sqrt{k_{2}^{2}-\beta^{2}}} \sinh ^{-1} \sqrt{\frac{\left(k_{2}+\beta\right)(x-\beta y)}{2 \beta\left(r_{2} y-x\right)}}\right\}}\right\}$
$=-q_{2}\left\{\frac{1}{\beta} \sqrt{\frac{n_{2}-\bar{t}}{n_{2}+\bar{t}}}+\frac{2}{\beta / n_{2}^{2}-1} \sinh ^{-1} \sqrt{\frac{\left(n_{2}+1\right)\left(n_{2}-\bar{t}\right)}{2 n_{2}(\bar{t}-1)}}\right\}$
$\therefore p=\frac{p U q_{2}}{\beta}\left\{\sqrt{\frac{n_{2}-\bar{t}}{n_{2}+\bar{t}}}+\frac{2}{\sqrt{n_{2}^{2}-1}} \sinh ^{-1} \sqrt{\frac{\left(n_{2}+1\right)\left(n_{2}-\bar{t}\right)}{2 n_{2}(\bar{t}-1)}}\right\} \ldots(8)$
Finally, let P_{2} be a point in the region bOR . See
Fig. 3) .
Due to q_{2}, the potential \varnothing at $I_{2}(x, y)$ is given by:

$$
\phi=-q_{2} \iint \frac{d \check{d \eta}}{\sqrt{(x-m)^{2}-\beta^{2}(y-\eta)^{2}}}
$$

the integration extending over $\mathrm{P}_{2} \mathrm{Q}_{2} 0 \mathrm{~S}_{2}$.

$$
\text { Put } s=\xi+\beta \eta \text {. }
$$

$$
\begin{aligned}
\therefore \phi & =-q_{2} \int_{0}^{x+\beta y} d s . \int_{\frac{s+\beta y-x}{2 \beta}}^{\frac{s}{k_{2}+\beta}} \frac{d n}{\sqrt{(x-s+\beta \eta)^{2}-\beta^{2}(y-n)^{2}}} \\
& =-q_{2} \int_{0}^{x+\beta y} d s . \int_{\frac{s+\beta y-x}{2 \beta}}^{\frac{s}{k_{2}+\beta}} \frac{d n}{\sqrt{2 \beta(x-s+\beta y) n+(x-s)^{2}-\beta^{2} y^{2}}} \\
& =-q_{2} \int_{0}^{x+\beta y}\left[\frac{\sqrt{2 \beta(x-s+\beta y) n+(x-s)^{2}-\beta^{2} y^{2}}}{\beta(x-s+\beta y)}\right]_{n=\frac{s+\beta y-x}{2 \beta}}^{n=\frac{s}{k_{2}+\beta}}
\end{aligned}
$$

Lè $\ell=x-s+\beta y$.

$$
\begin{aligned}
\therefore \phi & =-q_{2} \int_{0}^{x+\beta y}\left[\frac{\sqrt{2 \beta P \eta+(\ell-\beta y)^{2}-\beta^{2} y^{2}}}{\beta \ell}\right]_{\eta=\frac{2 \beta y-l}{2 \beta}}^{\eta=} \\
& =-\frac{x+\beta y-\ell}{k_{2}+\beta} \\
& =\int_{0}^{x+\beta y} \frac{1}{\ell} \sqrt{\frac{\left(k_{2}-\beta\right) \ell^{2}-2 \beta \ell\left(k_{2} y-x\right)}{k_{2}+\beta}} d \ell \\
& =-\frac{q_{2}}{\beta} \sqrt{\frac{k_{2}-\beta}{k_{2}+\beta}} \int_{0}^{x+\beta y} \frac{1}{\ell} \sqrt{\ell+\frac{2 \beta \ell\left(x-k_{2} y\right)}{k_{2}-\beta}} d \ell
\end{aligned}
$$

$$
\text { Put } f=\frac{2 \beta\left(x-k_{2} y\right)}{k_{2}-\beta} \mathrm{m}^{2} ; \quad \cdot \quad \frac{\alpha \ell}{\ell}=2 \frac{d m}{m}
$$

$$
\therefore \not \approx=-4 q_{2} \cdot \frac{\left(x-k_{2} y\right)}{\sqrt{k_{2}^{2}-\beta^{2}}} \cdot \int_{0}^{\sqrt{\frac{\left(k_{2}-\beta\right)(x+\beta y)}{2 \beta\left(x-k_{2} y\right)}}} \sqrt{m^{2}+1} d m
$$

$$
=-\frac{2 q_{2}\left(x-k_{2} y\right)}{\sqrt{k_{2}^{2}-\beta^{2}}} \cdot\left[m \sqrt{1+m^{2}}+\sinh ^{-1} m\right]_{0}^{\sqrt{\frac{\left(k_{2}-\beta\right)(x+\beta y)}{2 \beta\left(x-k_{2} y\right)}}}
$$

$$
\begin{aligned}
& =-\frac{2 q_{2}\left(x-k_{2} y\right)}{\sqrt{k_{2}^{2}-\beta^{2}}}\left\{\sqrt{\left(k_{2}^{2}-\beta^{2}\right)\left(x^{2}-\beta^{2} y^{2}\right)} \frac{\sinh ^{-1}}{2 \beta\left(x-k_{2} y\right)} \sqrt{\frac{\left(k_{2}-\beta\right)(x+\beta y)}{2 \beta\left(x-k_{2} y\right)}}\right\} \\
& =-q_{2}\left\{\frac{\sqrt{x^{2}-\beta^{2} y^{2}}}{\beta}+\frac{2\left(x-k_{2} y\right)}{\sqrt{k_{2}^{2}-\beta^{2}}} \sinh ^{-1} / \frac{\left(k_{2}-\beta\right)(x+\beta y)}{2 \beta\left(x-k_{2} y\right)}\right\} \\
& \therefore \frac{\partial \emptyset}{\partial x}=-q_{2}\left\{\frac{1}{\beta} \sqrt{\frac{x-\beta y}{x+\beta y}}+\frac{2}{\sqrt{k_{2}^{2}-\beta^{2}}} \sinh ^{-1} \sqrt{\frac{(k-\beta)(x+\beta r)}{2 \beta(x-k-y)}}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \therefore p=\frac{p U_{0} q_{2}}{\beta}\left\{\sqrt{\frac{n_{2}-\bar{t}}{n_{2}+\bar{t}}}+\frac{2}{\sqrt{n_{2}^{2}-1}} \sinh ^{-1} / \frac{\left(n_{2}-1\right)\left(n_{2}+\vec{t}\right)}{2 n_{2}(1-\bar{t})}\right\} \ldots(9)
\end{aligned}
$$

5.11 Controls Used as Ailerons - Calculation of \mathcal{L}_{L}

FIG. 4

Along a radial line through the apex 0 the pressure, being only a function of $\frac{X}{X}$, is constant. Therefore the resultant force on a thin triangular strip of the wing, of area dA, /with ...
with vertex at O acts at a point G on $x=\frac{2 c}{3}$.
Remembering that the effects of q_{1} are confined to $\mathbb{I}_{2} \mathrm{OB}$, the rolling moment due to q_{1} is given by:

$$
\bar{I}_{1}=\int_{M_{2} O B} \frac{4 c}{3 k_{1}} \quad t p d A
$$

Now $d A=\frac{S}{2} d t=\frac{c^{2}}{2 k_{1}} d t=\frac{c^{2}}{2 \beta n_{1}} d t$
$\therefore \bar{I}_{1}=\frac{2 c^{3}}{3 \beta^{2} n_{1}^{2}} \int_{-n_{1}}^{1} \operatorname{tpdt}$

$$
=\frac{2 c^{3} \rho U_{0} q_{1}}{3 \beta^{3} n_{1}^{2}} \int \frac{\pi}{\sqrt{1-n_{1}^{2}}} \int_{n_{1}}^{1} t d t+
$$

$\left.\int_{-n_{1}}^{n_{1}} t\left[\frac{2}{\sqrt{1-n_{1}^{2}}} \sin ^{-1} \sqrt{\frac{\left(1-n_{1}\right)\left(n_{1}+t\right)}{2 n_{1}(1-t)}}+\sqrt{\frac{n_{1}-t}{n_{1}+t}}\right] d t\right\rangle$,
by equations (6.1) and (7.1)
i.e. $\bar{L}_{1}=\frac{2 c^{3} p U_{0} q_{1}}{3 \beta^{3}} \Phi\left(n_{1}\right)$
where $\oint\left(n_{1}\right)=\frac{1}{n_{1}^{2}}\left\{\frac{\pi}{\sqrt{1-n_{1}^{2}}} \int_{n_{1}}^{1} t d t+\right.$
$\left.\int_{-n_{1}}^{n_{1}}\left[\frac{2}{\sqrt{1-n_{1}^{2}}} \sin ^{-1} \sqrt{\frac{\left(1-n_{1}\right)\left(n_{1}+t\right)}{2 n_{1}(1-t)}}+\sqrt{\frac{n_{1}-t}{n_{1}+t}}\right]+\operatorname{tart}\right\}$
It is proved in Appendix I that:

$$
\begin{array}{r}
\Phi(n)=\frac{\pi}{2}\left(\frac{1}{n^{2}}-1\right) \\
\text { Hence } \bar{L}_{1}=\frac{\pi c^{3} \rho U_{0} q_{1}}{3 \beta^{3}}\left(\frac{1}{n_{1}^{2}}-1\right)
\end{array}
$$

5.111 Hinge Lines Dying Outside the Mach Cone

Similarly, using the pressure formulae (6.2) and (7.2), the rolling moment \bar{L}_{2} due to q_{2} is given by:

$$
\begin{aligned}
\bar{L}_{2} & =\frac{2 c^{3} \rho U_{o} q_{2}}{3 \beta^{3}} \oint\left(n_{2}\right) \\
\text { i.c. } \quad \bar{L}_{2} & =\frac{\pi c^{3} \rho U_{0} q_{2}}{3 \beta^{3}}\left(\frac{1}{n_{2}^{2}}-1\right)
\end{aligned}
$$

Hence the rolling moment due to the deflection of the starboard control, is:

$$
\bar{I}_{s}=\tilde{L}_{1}+\tilde{L}_{2}=\frac{\pi c^{3} p_{0}}{3 \beta^{3}}\left\{q_{1}\left(\frac{1}{n_{1}^{2}}-1\right)+q_{2}\left(\frac{1}{n_{2}^{2}}-1\right)\right\}
$$

With starboard aileron deflection $\theta=\xi, \quad q_{1}$ and
q_{2} are given by:

$$
\begin{aligned}
& q_{1}=-q_{2}=-\frac{U_{0} \xi^{2} \sin (1-1)}{\pi} \\
& \therefore \tilde{L}_{s}=-\frac{c^{3} \rho U_{0}^{2} \xi_{\sin } \sin }{3 \beta^{3}}\left\{\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right\} \\
& \text { ide. } \bar{L}_{s}=-\frac{c^{3} \rho U_{0}^{2} \xi \sin (-1)}{3 \beta}\left\{\frac{1}{k_{1}^{2}}-\frac{1}{k_{2}^{2}}\right\}
\end{aligned}
$$

An equal rolling moment is produced by the port ailron. Hence the total rolling moment \bar{L} is given by:

$$
\begin{aligned}
\bar{L} & =2 \bar{L}_{\mathrm{S}}=-\frac{2 c^{3} \rho U_{0}^{2} \xi_{\mathrm{E}} \sin (1)}{3 \beta}\left\{\frac{1}{k_{1}^{2}}-\frac{1}{k_{2}^{2}}\right\} \\
\therefore \mathrm{C}_{\bar{L}} & =\frac{k_{1}^{2} \bar{L}}{\rho U_{0}^{2} c^{3}}=-\frac{2 \xi \sin (1)}{3 \beta}\left\{1-\frac{k_{1}^{2}}{k_{2}^{2}}\right\} \\
& =-\frac{2 \xi \sin (4)}{3 \beta}\left(1-\frac{\tan ^{2}(\mu)}{\tan ^{2} \gamma}\right)
\end{aligned}
$$

$\therefore \ell_{\xi}=\frac{\partial \tilde{\sigma}_{I}}{\partial \xi}=-\frac{2 \sin (11)}{3 \beta}\left(1-\frac{\tan ^{2}(\Theta)}{\tan ^{2} \gamma}\right)$

$$
\text { Put } r=\frac{\tan (\theta)}{\tan \gamma}, B=\beta \tan \gamma
$$

$\therefore P_{\xi}=-\frac{2}{3} \frac{\left(1-r^{2}\right)}{B} \sin (4) \tan \gamma$

5.112 Hinge Lines Lying Inside Mach Cone

The pressure is given by equations (8) and (9) and therefore, due to q_{2},

$$
\begin{aligned}
& \bar{L}_{2}=\frac{2 c^{3} \rho U_{0} q_{2}}{3 \beta k_{2}^{2}}\left\{\int_{-n_{2}}^{n_{2}} \sqrt{\frac{n_{2}-\bar{t}}{n_{2}+\bar{t}}} d \bar{t}\right. \\
& \left.+\frac{2}{\frac{2}{2}-1}\left[\int_{-n_{2}}^{1} \operatorname{Einh}^{-1} \sqrt{\frac{\left(n_{2}-1\right)\left(n_{2}+\bar{t}\right)}{2 n_{2}(1-\bar{t})}} d \bar{t}+\int_{1}^{n_{2}} \bar{t} \sinh ^{-1} / \frac{\left(n_{2}+1\right)\left(n_{2}-\bar{t}\right)}{2 n_{2}(\bar{t}-1)} d \bar{t}\right]\right\} \\
& =\frac{\pi \rho U{ }_{0} q_{2} c^{3}}{3 \beta k_{2}^{2}}\left(1-n_{2}^{2}\right), \text { by the result of } \\
& =\frac{\pi c^{3} \rho^{U} o_{2}}{3 \beta^{3}}\left(\frac{1}{n_{2}^{2}}-1\right)
\end{aligned}
$$

i.e. \bar{L}_{2} is the same as when the hinge lines lie outside the Mach Cone. \bar{L}_{1} remains unchanged. Hence ℓ_{ξ} is given as before by:

$$
l_{\xi}=-\frac{2}{3} \frac{\left(1-r^{2}\right)}{B} \sin (1-1) \tan \gamma
$$

5.12 Controls used as Elevators - Calculations of a_{2}

$$
\begin{aligned}
& \text { The lift due to } q_{1} \text { is given by: } \\
& \begin{aligned}
L_{1} & =-\int_{M_{2} O B} 2 p d A \\
& =-\frac{c^{2}}{\beta n_{1}} \int_{-n_{1}}^{1} p \text { (See Fig. 4) }
\end{aligned} .
\end{aligned}
$$

$$
\begin{gathered}
=-\frac{c^{2} \rho U_{0} q_{1}}{\beta^{2} n_{1}}\left\{\frac{\pi}{\sqrt{1-n_{1}^{2}}} \int_{n_{1}}^{1} d t+\right. \\
\left.\int_{-n_{1}}^{n_{1}}\left[\frac{-2}{\sqrt{1-n_{1}^{2}}} \sin ^{-1} \sqrt{\frac{\left(1-n_{1}\right)\left(n_{1}+t\right)}{2 n_{1}(1-t)}}+\sqrt{\frac{n_{1}-t}{n_{1}+t}}\right] d t\right]_{0} \quad \text { by equations }(6.1) \text { and }(7.1)
\end{gathered}
$$

i.e. $I_{1}=-\frac{c^{2} \rho U_{o} q_{1}}{\beta^{2}} \int\left(n_{1}\right)$,
where $X\left(n_{1}\right)=\frac{1}{n_{1}}\left\{\frac{\pi}{\sqrt{1-n_{1}^{2}}} \int_{n_{1}}^{1} d t+\int_{-n_{1}}^{n_{1}}\left[\frac{2}{\sqrt{1-n_{1}^{2}}} \sin ^{-1}\right.\right.$
$\left.\sqrt{\frac{\left(1-n_{1}\right)\left(n_{1}+t\right)}{2 n_{1}(1-t)}}+\sqrt{\frac{n_{1}-t}{n_{1}+t}}\right] d t$
It is proved in Appendix III that

$$
X(n)=\pi\left(\frac{1}{n}+1\right)
$$

$\therefore I_{1}=-\frac{\pi c^{2} \rho U_{0} q_{1}}{\beta^{2}}\left(\frac{1}{n}+1\right)$

5.121 Hinge Lines Lying Outside the Mach Cone

Similarly the lift I_{2} due to q_{2} is given by:
$L_{2}=-\frac{\pi c^{2} \rho U_{0} q_{2}}{\beta^{2}}\left(\frac{1}{n_{2}}+1\right)$
Hence due to the deflection of the starboard control, the lift is given by:
$L_{S}=L_{1}+I_{2}=-\frac{\pi c^{2} \rho_{0}}{\beta^{2}}\left\{q_{1}\left(\frac{1}{n_{1}}+1\right)+q_{2}\left(\frac{1}{n_{2}}+1\right)\right\}$
With elevator deflection $\theta=\eta, q_{1}$ and q_{2} are
given by:

$$
q_{1}=-q_{2}=-\frac{U \eta \sin (1)}{\pi}
$$

$\therefore I_{S}=\frac{c^{2} \rho U_{0}^{2} n_{\sin (19)}}{\beta^{2}}\left(\frac{1}{n_{1}}-\frac{1}{n_{2}}\right)$
i.e. $L_{S}=\frac{c^{2} \rho U_{0}^{2} \eta \sin (\oplus)}{\beta}\left(\frac{1}{k_{1}}-\frac{1}{k_{2}}\right)$

An equal lift is produced by the port elevator. Hence the total lift is given by s

$$
L=2 L_{S}=\frac{2 \rho U_{0}^{2} c^{2} \eta \sin (H)}{\beta}\left(\frac{1}{k_{1}}-\frac{1}{k_{2}}\right)
$$

$\therefore C_{I}=\frac{2 k_{1} I_{1}}{\rho U_{0}^{2} c^{2}}=\frac{2 n \sin (14)}{\beta}\left(1-\frac{k_{1}}{k_{2}}\right)=\frac{4 n \sin (19)}{\beta}\left(1-\frac{\tan (11)}{\tan \gamma}\right)$
$\therefore a_{2}=\frac{\partial C_{I}}{\partial \eta}=\frac{4 \sin (11)}{\beta}\left(1-\frac{\tan (1)}{\tan \gamma}\right)$
i.e. $a_{2}=\frac{4(1-x)}{B} \sin (H) \tan \gamma$

5.122 Hinge Lines Lying Inside Mach Cone

By equations (8) and (9),

$$
\begin{aligned}
& I_{2}=\cdots \frac{c^{2} p_{0} q_{2}}{\beta^{2} n_{2}}\left\{\int _ { - n _ { 2 } } ^ { \frac { 2 } { n _ { 2 } ^ { 2 } - 1 } } \left[\int_{-n_{2}+\bar{t}}^{n_{2}} d \overline{n_{2}}+\right.\right. \\
&\left.\left.\sinh ^{-1} \sqrt{\frac{\left(n_{2}-1\right)\left(n_{2}+\bar{t}\right)}{2 n_{2}(1-\bar{t})}} d \bar{t}+\int_{1}^{n_{2}} \sinh ^{-1} \sqrt{\frac{\left(n_{2}+1\right)\left(n_{2}-\bar{t}\right)}{2 n_{2}(\bar{t}-1)} d \bar{t}}\right]\right\} \\
&=-\frac{\pi c^{2} p_{0} q_{2}}{\beta^{2} n_{2}}\left(n_{2}+1\right) \\
&=-\frac{\pi c^{2} p_{0} q_{2}}{\beta^{2}}\left(\frac{1}{n_{2}}+1\right)
\end{aligned}
$$

i.c. I_{2} is the same as when the hinge lines lie outside the Mach cone. T_{1} remains unchanged. Hence a_{2} is given as befnce by:

$$
a_{2}=\frac{4(1-r)}{B} \sin (H) \tan \gamma
$$

5.123 Position of Centre of Pressure due to Elevator Deflection

The pressure is constant over elementary triangular strips of the wing with vertex at the wing apex. The resultant force on such a strip acts at a point whose abscissa is $\frac{2}{3} c$. The centre of pressure must therefore lie on the line $x=\frac{2}{3} c$, and by symmetry it lies on the centre line of the wing. Thus the centre of pressure due to deflection of the elevators lies on the centre line of the wing, distant $\frac{2}{3}$ e from the apex.

5.2 Solution with Leading Edges Insido, Mach Cone

The solution depends on the fact that the velocity at any point upstream of the troiling odge is of degree zero in x, y and z. This is proved as follows:

Let $P(x, y, z)$ bo any such point. By dimensional theory, a typical velocity component \bar{u} is given by:

$$
\frac{\vec{u}_{u}}{\vec{U}_{0}}=\left(\frac{y}{x}, \frac{z}{x}, \frac{x}{c}\right) .
$$

The flow at P is uninfluenced by conditions downstrean of P so that if tho wing is replaced by a similar wing of larger chord c_{1}, the velocity at P will be unaltered,
i.e. $f\left(\frac{y}{x}, \frac{z}{x}, \frac{x}{c_{1}}\right)=\frac{\bar{u}}{U_{0}}=f\left(\frac{y}{x}, \frac{z}{x}, \frac{x}{c}\right)$, where $c_{1} \neq c$.

Hence \bar{u} must be independent of $\frac{x}{c}$, i.e. \bar{u} is of degree zero in x, y and z.
u, v and w are therefore of degrees zero in x, y, z. Now u, v and w all satisfy the equation:

$$
-\beta^{2} \frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}=0
$$

whose most genoral solution of zero degree may be written:

$$
\begin{gathered}
s=f_{1}\left(\frac{\beta[y+i z]}{x+r}\right)+f_{2}\left(\frac{\beta[y-i z]}{x+r}\right), \\
\text { where } x=\sqrt{x^{2}-\beta^{2} y^{2}-\beta^{2} z^{2}} .
\end{gathered}
$$

Let ω denote the conplex variable:
$\beta \frac{(y+i z)}{x+r}$.

Then we may write: $u=R \quad[U(\omega)]$
$v=R \quad[V(\omega)]$
$W=R[W(\omega)]$.
Inside the liach cone r is real, and therefore

$$
|\omega|^{2}=\frac{\beta^{2}\left(y^{2}+z^{2}\right)}{(x+r)^{2}}=\frac{x^{2}-r^{2}}{(x+r)^{2}}=\frac{x-r}{x+r}
$$

$\therefore|\omega|<1$ except on the Mach cone where $r=0$ and $|\omega|=1$. Thus the liach cone and its interior are represented in the $\omega \mathrm{mplane}$ by unit circle and its interior.

$$
\text { At the wing, } z=0, \cdots \omega=\frac{\beta y}{x+\sqrt{x^{2}-\beta^{2} y^{2}}}
$$

$$
\text { i.e. } \omega=\frac{\frac{\beta y}{x}}{1+\sqrt{1-\left(\frac{\beta y}{x}\right)^{2}}},
$$

which is real and increases with $\frac{y}{x}$. At the leading edges; $y= \pm x \tan \gamma ;$

$$
\therefore \omega=\frac{ \pm \beta \tan \gamma}{1+\sqrt{1-\beta^{2} \tan ^{2} \gamma}}=\frac{ \pm \mathrm{k}^{\prime}}{1+\mathrm{k}},
$$

where $k^{\prime}=\sqrt{1-k^{2}}=\beta \tan \gamma$.

The aerofoil therefore becomes the portion of the real axis between $\pm \frac{k^{\prime}}{1+k}$, in the ω-plane. (See Fig.6).

The boundary conditions of the problem are:
(i) Component of velocity at the wing surface normal to the surface is zero;
(ii) u, v and w are all zero on the Mach cone.

Condition (ii) follows from the assumptions of linearised the ory.

It is possible to find functions U, V and W that satisfy these boundary conditions by transforming from the ω-plane into a. new plane, the τ-plane, using the transformation:

$$
\operatorname{cn}(\tau, k)=\frac{2 i \omega}{1-\omega^{2}},
$$

(where $\mathrm{cn}(\tau, \mathrm{k})$ is one of the Jacobian clliptic functions of modulus k).

FIG. 5
THE WING IIT THE (x, y, z) PTANN

FIG. 7

THE τ-PIANVE

The interior of unit circle in the ω-plane becomes the interior of the rectangle, vertices $\pm 2 i K^{\prime}, K \pm 2 i K^{\prime}$.

In Fig. 7, the section $\alpha{ }^{\prime}$ ' of the imaginary axis represents the Mach cone and the parallel lino $C_{U} C_{U}^{\prime}$ represents /the wing.
the wing, A and E represent port and starboard leading edges. $A \mathbb{E}$ represents the lower surface of the wing; $A C_{U}$ and $\mathbb{E C}_{U}^{\prime}$ represent the port and starboard halves of the upper surface, respectively. B_{U} and B_{I} represent the port hinge line on the upper and lower surfaces; D_{U} and D_{L} represent the starboard hinge line on the upper and lower surfaces. C_{I} represents the wing centre line on the lower surface; C_{U} and C_{U}^{\prime} both represent the wing centre line on the upper surface. ${ }^{0 C} C_{L}$ represonts the portion of the $x z$ plane between the lower surface of the wing and the Mach cone.

For given control deflections, the fisst boundary condition (soe p.28) defines w on the wing, i.e. on $C_{U} C_{U}^{\prime}$. The second boundary condition requires that $w=0$ on ca'. Also (a) sinco u, v and w are continuous across the Mach cone, $\frac{d U}{d \tau}$, $\frac{d V}{d \tau}$ and $\frac{d H}{d \tau}$ must be finite at the Mach cone, (b) the aerodynamic forces must be finito, so that the integral of u with respect to area must be finite, (c) the only places where an infinite prossure is admissible are along the hinge lines and leading edges, (d) u, v and w must be single valued.

$$
\text { These conditions enable us to find } \frac{d i}{d \tau} \text {. The }
$$ relations:

$$
\begin{aligned}
& \frac{d U}{d \tau}=\frac{1}{\beta} \mathrm{cn} \tau \frac{\overline{d V}}{d \tau} \\
& \frac{d V}{d \tau}=-i \operatorname{sn} \tau \frac{d T}{d \tau},
\end{aligned}
$$

derived in Ref. 3, from the condition that a velocity potential exists, then determine $\frac{d U}{d \tau}$ and $\frac{d V}{d \tau} \cdot u$, and hence the pressure are found by integrating $\frac{d T}{d \tau}$ with respect to τ.

The above is a modified representation of Stwar ' ' 's $^{\prime}$ method (Ref. 4).
5.21 Controls Used as Ailerons

FIG. 8

The boundary condition at the wing is:
$\mathrm{W}=-U_{0} \xi \sin \Theta=W_{0}$, over the starboard aileron, $W=-W_{0}$, over tho port aileron, $\mathrm{w}=0$ elsewhere at the wing;
i.c. in Fig. 8,

$$
\begin{aligned}
& w=0 \text { on } C_{U} B_{U}, B_{L_{1}} D_{I_{1}} \text { and } D_{U} C_{U}^{\prime} \\
& w=w_{0} \text { on } D_{J_{S}} D_{U} \\
& w=-w_{0} \text { on } B_{U} B_{L}
\end{aligned}
$$

Thus in integrating $\frac{d V}{d \tau}$ along $C_{L} C_{U}$, w must jump in value by an anount $\left(-W_{0}\right)$ at B_{L} and $\left(+w_{0}\right)$ at B_{U}. Hence $\frac{d V}{d \tau}$ must have simple poles at B_{i} and B_{U} with residues of inaginary parts $\frac{-W_{O}}{\pi}$ and $\frac{W_{O}}{\pi}$ respectively. Similarly $\frac{d W}{d \tau}$ must have simple poles at D_{L} and D_{U} with residues of imaginary parts $\frac{-W_{0}}{\pi}$ and $\frac{W_{0}}{\pi}$.

Excopl: when changed by discontinuities, the value of w is constant on the wing. Also w is everywhere zero and so constant, on the liach cone. Therefore $\frac{d W}{d \tau}$ must be real on the wing and liach cone.

Hence $\frac{d W}{d \tau}$ must be chosen to satisfy the following conditions:
(1) $\frac{d V}{d \tau}$ must be real on the wing and ach cone and its integral along OC_{I} from 0 to C_{I} must be zero or imaginary since w is zero $a^{\prime} b$ and at C_{L}.
(2) Along C_{U}, C_{U}, $\frac{d}{d \tau}$ must have poles at D_{U} and B_{U} with residues of imaginary part $\frac{W_{O}}{\pi}$, and at D_{I} and B_{L} with residues of imaginary part $\frac{-W_{0}}{\pi}$.
(3) $\frac{\mathrm{d} Y}{\mathrm{~d} \tau}$ must be finite on the Mach cone.
(4) $\frac{d U}{d \tau}\left(=\frac{1}{\beta}\right.$ cn $\left.\tau \frac{d V}{d \tau}\right)$ and $\frac{d V}{d \tau}\left(=-i \sin \tau \frac{d W}{d \tau}\right)$ must also be finite on the Mach cone. Therefore $\frac{d W}{d \tau}$ must have at least simple zeros at $\pm \pm K^{1}$.
(5) Apart from the poles at D_{U}, B_{U}, D_{I} and B_{I}, the only singularities of $\frac{d W}{d \tau}$ on or inside the rectangle may be poles with zero or real residues.
(6) The only places where u ma, be infinite are A, E, B_{U}, B_{I}, D_{U} and $D_{I_{i}}$
(7) Any infinity of u maxt be such that tho integral of u with rospect to area iomains finite.
(8) u, v and. w rust be single valued.

The required function is:
$\frac{d W}{d \tau}=\frac{i k^{\prime}{ }^{3} C^{2} W_{0}}{\pi D}$ sn $\tau n d^{2} \tau \quad[n c(\tau-a i)+n c(\tau+a i)]$.
[Note. The symbols C, D and S (which is introduced later) are defined by:

$$
\begin{aligned}
& C=\operatorname{cn}\left(2, k^{\prime}\right) \\
& D=\operatorname{dn}\left(2, k^{\prime}\right) \\
& S=\sin \left(a, k^{t}\right)
\end{aligned}
$$

$\therefore \frac{d U}{d \tau}=\frac{1}{\beta}$ on $\tau \frac{d W}{d \tau}=\frac{31^{3} C^{2} W_{0}}{\pi \beta D}$ sd τ cd $\tau[n c(\tau-a i)+n c(\tau \div a i)]$. At 0 on the Wach cone, $u=0$.

Therefore at any point ($K+i t$) on the wing, u is
given by:

$$
\begin{aligned}
& u=R\left[\left.\int_{0}^{K+i t} \frac{d U}{d \tau} d \tau \right\rvert\,\right. \\
& \left.=-\frac{k^{3} \tau^{2} w}{\pi \beta D} \int_{0}^{K+i t} \text { sd } \tau \text { cd } \tau[n c(\tau-a i)+n c(\tau+a i)] d \tau\right] \\
& \left.=-\frac{11^{3} C^{2} v_{0}}{\pi \beta D} \int_{K}^{1+i t} \operatorname{sd} \tau \text { cd } \tau[n c(\tau-a i)+n c(\tau+a i)] d \tau\right],
\end{aligned}
$$

since the omitted part of the integral, from O to K, is real.
$\therefore \frac{\pi \beta D}{k^{\prime 3} C^{2} w_{o}} u=-I\left[\int_{0}^{\text {it t }} \frac{1}{k^{\prime 2}}\right.$ on u sn $v\left[\frac{d s(u-a i)+d s(u+a i)]}{(u=\tau-k)}\right]$,

$$
=-\int_{0}^{t} \frac{1}{k^{\prime} 2} \operatorname{sn}\left(v, k^{\prime}\right) n c^{2}\left(v, k^{\prime}\right) X
$$

$$
\left[L_{\mathrm{s}}\left(\overline{v-a}, k^{\prime}\right)+d s\left(\overline{v+a}, k^{\prime}\right)\right] d v
$$

$$
(u=i v)
$$

$$
=\frac{2 C}{k^{\prime 2}} \int_{0}^{t} \frac{\operatorname{sn}^{2}\left(v, k^{\prime}\right) d n\left(v, k^{\prime}\right) d v}{\operatorname{cn}^{2}\left(v, k^{\prime}\right)\left[S^{2}-\operatorname{sn}^{2}\left(v, k^{\prime}\right)\right]}
$$

$$
=\frac{20}{k^{\prime}{ }^{2}} \int_{0}^{s c\left(t, k^{\prime}\right)} \frac{2^{2} y}{s^{2}-d^{2} y^{2}}, \quad\left(y=s c\left[v, k^{\prime}\right]\right)
$$

$$
=\frac{1}{G^{\prime}} \int_{0}^{\operatorname{sc}\left(\jmath^{2}, k^{\prime}\right)}\left\{\frac{S}{S-C y}+\frac{S}{S+C y}-2\right\} d y
$$

$$
=\frac{S}{\mathrm{C}^{2} k^{\prime 2}} \log _{\mathrm{e}}\left|\frac{\operatorname{S}+\operatorname{Csc}\left(t, k^{\prime}\right)}{\operatorname{S-Csc}\left(t, k^{\prime}\right)}\right|-\frac{2}{C k^{\prime 2}} \operatorname{sc}\left(t, k^{\prime}\right)
$$

The pressure is given by:
$p=-p U_{0}{ }^{u}$
$=-\frac{k^{i} \rho_{0} W_{0}}{\pi \beta D}\left\{S \log _{e}\left|\frac{\operatorname{S} \cdot \operatorname{Csc}\left(t_{i} k^{\prime}\right)}{S-\operatorname{Csc}\left(t, k^{\prime}\right)}\right|-2 C \operatorname{sc}\left(t, k^{\prime}\right)\right\}$
On the wing $\tau=K+i t$ and $\omega=\frac{\beta y}{x+\sqrt{x^{2}-\beta^{2} y^{2}}}$
Substituting these values in $o n(\tau, k)=\frac{2 i \omega}{1-\omega^{2}}$ gives:
$-i k^{\prime} \operatorname{sd}\left(t, k^{\prime}\right)=\frac{i \beta y}{\sqrt{x^{2}-\beta^{2} y^{2}}}$

Let $\mu=\frac{\mathbb{Z}}{X}$.
$\therefore k^{\prime} s d\left(t, k^{\prime}\right)=-\frac{\beta \mu}{\sqrt{1-\beta^{2} \mu^{2}}}$. Now $\operatorname{dn}\left(t, k^{\prime}\right)$ is + we.

$$
\begin{aligned}
\therefore & \operatorname{sn}\left(t, k^{\prime}\right)=-\frac{\beta}{1,} \mu=-\frac{\mu}{\tan \gamma} \\
& d n\left(t, k^{\prime}\right)=\sqrt{1-\beta^{2} \mu^{2}} .
\end{aligned}
$$

On the starboard upper surface，\quad on $\left(t, k^{\prime}\right)=-\sqrt{1-\mu^{2} / \tan ^{2} \gamma}$ ， the sign of the root being determined by $-\mathrm{K}^{\prime}$ そとて．．2K ${ }^{\prime}$ ．

Thus on the starboard upper surface，the pressure is given by：
$p=-\frac{k^{\prime} \rho U o^{W} 0}{\pi \beta D}\left\{\delta \log _{e}\left|\frac{s \sqrt{\tan ^{2} \gamma-\mu^{2}+} \mu}{S_{\tan ^{2} \gamma-\mu^{2}-G \mu}}\right|-\frac{2 C \mu}{\sqrt{\tan ^{2} \gamma-\mu^{2}}}\right\}$
which again is only a twiction of $\frac{y}{x}$ ．
The rolling moment is given by：

$$
\overline{\mathrm{I}}=\frac{40^{3}}{3} \int_{0}^{\tan \gamma} \mu \mathrm{p} d \mu
$$

$\therefore \bar{L}=-\frac{4 k^{\prime} \rho U_{0} W_{0} e^{3}}{3 \pi \beta D} \int_{0}^{\tan \gamma} \int_{\mu S \log _{e}}\left|\frac{S \sqrt{\tan ^{2} \gamma-\mu^{2}}+}{S \sqrt{\tan ^{2} \gamma-\mu^{2}-q_{H}}}\right|$

$$
\left.-\frac{2 u^{2}}{\sqrt{\tan ^{2} \gamma-\mu^{2}}}\right\} d \mu
$$

$\therefore \frac{3 \pi \beta D}{4 \mathrm{k}^{1} \rho_{0} \mathrm{WW}_{0}{ }^{3}} \overline{\mathrm{I}}=-\mathrm{S}_{\epsilon \rightarrow 0} \mathcal{Z}_{\mathrm{t}} \int_{0}^{(S-\epsilon) \tan \gamma} \mu \log _{e}\left[\frac{S \sqrt{\tan ^{2} \gamma-\mu^{2}+C \mu}}{S \sqrt{\tan ^{2} \gamma-\mu^{2}-C \mu}}\right] d \mu$
$\left.+\int_{(S+C) \tan \gamma}^{0} \mu \log _{e}\left[\frac{S v \tan ^{2} \gamma-\mu^{2}+C \mu}{C \mu-S \sqrt{\tan ^{2} \gamma-\mu^{2}}}\right] d \mu\right\}+20 \int_{0}^{\tan \gamma} \frac{-\mu^{2} d \mu}{\sqrt{\tan ^{2} \gamma-\mu^{2}}}$
Integrating by Parts，

$+\left[\left.\mu^{2} \log _{e}\left\{\frac{S \sqrt{\tan ^{2} \gamma-\mu^{2}}+\mu}{S \sqrt{\tan ^{2} \gamma-\mu^{2}}-C \mu}\right)\right|_{(S \cup \in) \tan \gamma} ^{\tan \gamma}\right\}+\frac{S}{2} \int_{0}^{\tan \gamma} \frac{2 \Delta \mu^{2} \tan ^{2} \gamma d \mu}{\left(S^{2} \tan ^{2} \gamma-\mu^{2}\right) \sqrt{\tan ^{2} \gamma-\mu^{2}}}$
$+2 C \int_{0}^{\tan \gamma} \frac{\mu^{2} d \mu}{\sqrt{\tan ^{2} \gamma-\mu^{2}}}$
$=-\frac{S}{2} \mathscr{L}_{\epsilon \rightarrow 0}\left\{\left(S^{2}+{ }^{2}\right) \tan ^{2} r\left[\log _{e}\left(\frac{2 S C^{2}+0(\epsilon)}{\epsilon+0\left(\epsilon^{2}\right)}\right)\right.\right.$
$\left.\left.-\log _{e} \frac{2 s c^{2}+0(\epsilon)}{\epsilon+0\left(\epsilon^{2}\right)}\right]\right\}+s \mathscr{L}_{t}\left\{\in \tan ^{2} \gamma\left[\log _{e}\left(\frac{2 \operatorname{sc}^{2}+0\left(\epsilon^{2}\right)}{\epsilon+0\left(\epsilon^{2}\right)}\right)\right.\right.$
$\left.\left.+\log _{e}\left(\frac{2 S C^{2}+O(\epsilon)}{\epsilon+0\left(\epsilon^{2}\right)}\right)\right]\right\}+s^{2} C \tan ^{2} \gamma \int_{0}^{\tan \gamma} \frac{\mu^{2} d u}{\left(s^{2} \tan ^{2} \gamma-\mu^{2}\right) \sqrt{\tan ^{2} \gamma-\mu^{2}}}$

$$
+2 C \int_{0}^{\tan \gamma} \frac{\mu^{2} d \mu}{\sqrt{\tan ^{2} \gamma-\mu^{2}}}
$$

The limit terms both vanish as $E \rightarrow 0$.
$\therefore \frac{3 \pi \beta D}{4 k^{\prime} \rho U_{0} W_{0} c^{3}} \bar{L}=S^{2} C \tan ^{2} \gamma \int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} \theta d \theta}{S^{2}-\sin ^{2} \theta}$
$+2 C \tan ^{2} r \int_{0}^{\frac{\pi}{2}} \sin ^{2} \theta \alpha \theta, \quad(\mu=\tan r \sin \theta)$
$=S^{2} C \tan ^{2} \gamma \int_{0}^{\frac{\pi}{2}}\left[\frac{S^{2}}{S^{2}-\sin ^{2} \theta}-1\right] d \theta+\frac{\pi}{2} \tan \gamma$
$=S^{4} C \tan ^{2} \gamma \int_{0}^{\frac{\pi}{2}} \frac{d \theta}{S^{2}-\sin ^{2} \theta}+\frac{\pi C}{2} \tan ^{2} \gamma\left(1-S^{2}\right)$
$=S^{4} C \tan ^{2} \gamma \int_{0}^{\infty} \frac{d t}{S^{2}-C^{2} t^{2}}+\frac{\pi C^{3}}{2} \tan ^{2} \gamma$
$(t=\tan \theta)$
$=\frac{\pi c^{3}}{2} \tan ^{2} \gamma$
$\therefore \overline{\mathrm{L}}=\frac{2 \mathrm{k}^{\prime} \mathrm{C}^{3} \tan ^{2} \gamma \rho U_{\mathrm{O}} \mathrm{W}_{\mathrm{O}} \mathrm{C}^{3}}{3 \beta \mathrm{D}}$

$$
\begin{aligned}
& =\frac{2 \mathrm{c}^{3} \tan ^{3} r p U_{0} W_{0} c^{3}}{3 D} \\
& =-\frac{2 \xi c^{3} \tan ^{3} \gamma \rho U_{0}^{2} c^{3} \sin \Theta}{3 D}
\end{aligned}
$$

$\therefore C_{\bar{L}}=\frac{\bar{L}}{\rho U_{0}^{2} c^{3} \tan ^{2} \gamma}=-\frac{2 \xi C^{3} \tan \varphi \sin (I)}{3 D}$
$\therefore \rho_{\xi}=\frac{\partial C_{\bar{L}}}{\partial \xi}=-\frac{2 C^{3}}{3 D} \tan \sin \Theta$

$$
\text { Using the relations of } \mathrm{p} \cdot 34 \text {, we have: }
$$

$$
\begin{aligned}
& \operatorname{sn}\left(a, k^{\prime}\right)=S=\frac{\tan \Theta}{\tan \gamma} \\
& \operatorname{cn}\left(a, k^{\prime}\right)=0=\sqrt{1-\tan ^{2} \Theta /\left(\tan ^{2} \gamma\right.} \\
& \operatorname{dn}\left(a, k^{\prime}\right)=D=\sqrt{1-\beta^{2} \tan ^{2}(\square)}
\end{aligned}
$$

$$
\text { Hence } Q_{\xi}=-\frac{2}{3} \frac{\left.\left(1-\cot ^{2} \gamma \tan ^{2} Q\right)\right)^{\frac{3}{2}}}{\left(1-\beta^{2} \tan ^{2} \Theta\right)^{\frac{1}{2}}} \sin \Theta \tan \gamma
$$

$$
\text { i.o. } l_{\xi}=-\frac{2}{3} \frac{\left(1-r^{2}\right)^{\frac{3}{2}}}{\left(1-B^{2} r^{2}\right)^{\frac{1}{2}}} \sin (1) \tan r
$$

When the Mach cone just touches the leading edges (i.e. $\beta \tan \gamma=1$) the above formula and the formula derived in 5.112 both give the same expression for C_{ξ}.

5.22 Controls Used as Mlevators

The boundary condition at the wing is nov:
$w=-U_{0} n \sin (1)=w_{0}$, over the port and starboard elevators
$\mathrm{w}=0$ elsewhere at the wing.
The conditions that $\frac{d \Psi}{d \tau}$ must satisfy are exactly as before in the aileron case, except that now $\frac{d W}{d \tau}$ must have poles at D_{U} and B_{L} (see Fig.9), with residues of imaginary part $\frac{W_{0}}{\pi}$, and at D_{L} and B_{U} with residues of imaginary part $-\frac{W_{0}}{\pi}$.

IIC. 9

The required function is:
$\frac{d W}{d \tau}=\frac{i k^{t^{4}} c^{3} W_{0}}{\pi D^{2}}\left[\operatorname{sn} \tau n d^{3} \tau\{n c(\tau+a i)-n c(\tau-a i)\}+i A n d^{2} \tau\right]$,
where A is found from the condition that $w=0$ on the Mach cone and on the centre line of the wing,

$$
\text { i.e. } R\left[\int_{0}^{K} \frac{d W}{d \tau} d \tau\right]=0
$$

Thus, A $\int_{0}^{K} n d^{2} \tau d \tau=\int_{0}^{K} i \operatorname{sn} \tau n d^{3} \tau\{n c(\tau+a i)-n c(\tau-a i)\} d \tau$

$$
=-2 S D \int_{0}^{K} \frac{\operatorname{sn}^{2} \tau d \tau}{d^{2} \tau\left(1-D^{2} \operatorname{sn}^{2} \tau\right)}
$$

$$
=\frac{2 S D}{k^{2} C^{2}}\left[\int_{0}^{K} n d^{2} \tau d \tau-\int_{0}^{K} \frac{d \tau}{1-D^{2} \operatorname{sn}^{2} \tau}\right]
$$

i.e. $\frac{E}{k^{\prime 2}} A=\frac{2 S D}{k^{\prime} C^{2}}\left[\frac{E}{k^{\prime 2}}-I I\left(-D^{2}, k\right)\right]$,
where II $\left(-D^{2}, x\right)$ and E are complete elliptic integrals of the third and second kinds with modulus k.
$\therefore A=\frac{2 S D}{k^{\prime 2} C^{2}}\left[1-\frac{k^{2}}{E} I I\left(-D^{2}, k\right)\right]$.
Now $\frac{d U}{d \tau}=\frac{1}{\beta}$ en $\tau \frac{d W}{d \tau}$

$$
\begin{aligned}
& =\frac{i k^{\prime} C^{3} w_{0}}{\pi \beta D^{2}}\left[\text { on } \tau \text { sn } \tau n d^{3} \tau\left\{n c(\tau+a i)-n c(\tau-a i) d+i A n d^{2} \tau \text { on } \tau\right]\right. \\
& \text { At } 0 \text { on the Mach cone, } u=0 \text {. }
\end{aligned}
$$

\therefore At any point ($\mathrm{K}+i \mathrm{t}$) on the wing, u is given by:

$$
\begin{aligned}
& u=R\left[\begin{array}{lll}
K+i t & & \\
& \frac{d U}{d \tau} & d \tau
\end{array}\right] \\
& =-\frac{\mathrm{k}^{t^{4} \mathrm{C}^{3} W}}{\pi \beta D^{2}} I\left[\int_{0}^{K+i t}\left\{\frac{2 i S D \operatorname{sn}^{2} \tau \mathrm{cn} \tau}{\mathrm{an}^{2} \tau\left(d n^{2} \tau-\mathrm{k}^{\prime 2} \mathrm{C}^{2} \mathrm{sn}^{2} \tau\right)}+i A \mathrm{cn} \tau \mathrm{nd}^{2} \tau\right\} d \tau\right] \\
& =-\frac{k^{\prime} C^{3} W^{3} W_{0}}{\pi \beta D^{2}} \int_{0}^{\frac{n c\left(t, k^{\prime}\right)}{k^{\prime}}}\left\{\frac{2 S D y^{2}}{1-k^{\prime} C^{2} y^{2}}+A\right\} d y, y=\operatorname{sd}(\tau, k) \\
& =-\frac{k^{\prime 4} C^{3} w_{0}}{\pi \beta D^{2}} \int_{0}^{\frac{n c\left(t, k^{\prime}\right)}{k^{\prime}}}\left\{A-\frac{2 S D}{k^{\prime} C^{2}}+\frac{2 S D}{k^{\prime} C^{2}\left(1-k^{\prime}{ }^{2} C^{2} y^{2}\right)}\right\} d y \\
& \left.=-\frac{k^{\prime 4} C^{3} W_{0}}{\pi \beta D^{2}}\left\{\left.\left(A-\frac{2 S D}{k^{\prime} C^{2}}\right) \frac{n c\left(t, k^{\prime}\right)}{k^{\prime}}+\frac{S D}{k^{\prime 3} C^{3}} \log _{e} \right\rvert\, \frac{c n\left(t, k^{\prime}\right)+C}{c n\left(t, k^{\prime}\right)-C}\right\}\right\}
\end{aligned}
$$

On the upper surface of the wing,

$$
\text { on }\left(t, k^{\prime}\right)=-\sqrt{1-\mu^{2} / \tan ^{2} \gamma} \text {, where } \mu=\frac{X}{X}
$$

$\therefore u=\frac{k^{\prime 4} C^{3} W_{0}}{\pi \beta D^{2}}\left\{\left(\Lambda-\frac{2 S D}{k^{\prime} C^{2}}\right) \frac{\tan \gamma}{k^{\prime} \sqrt{\tan ^{2} \gamma-\mu^{2}}}\right.$

$$
\left.+\frac{S D}{k^{+} C^{3}} \log _{e}\left|\frac{C \tan \gamma+\sqrt{\tan ^{2} \gamma-\mu^{2}}}{C \tan \gamma-\sqrt{\tan ^{2} \gamma-\mu^{2}}}\right|\right\}
$$

. The pressure is given by:
$p=\frac{k^{\prime 4} C^{3} \rho^{3} U_{0} W_{0}}{\pi \beta D^{2}}\left\{\left(\frac{2 S D}{k^{\prime 2} C^{2}} \cdot A\right) \frac{\tan \gamma}{k^{\prime} \sqrt{\tan ^{2} \gamma \cdots \mu^{2}}}\right.$

$$
+\frac{S D}{k^{13} C^{3}} \log _{e}\left|\frac{0 \tan C-\sqrt{\tan ^{2} \gamma-\mu^{2}}}{0 \tan \gamma+\sqrt{\tan ^{2} \gamma-\mu^{2}}}\right|
$$

The lift is therefore given by:
$I=-2 c^{2} \int_{0}^{\tan \gamma} p d \mu$

$$
\begin{aligned}
& =-\frac{2 k^{4} C^{3} \rho U_{0} W_{0} c^{2}}{\pi \beta D^{2}} \int_{0}^{\tan \gamma}\left\{\left(\frac{2 S D}{k^{\prime 2} C^{2}}-A\right) \frac{\tan \gamma}{k^{\prime} \sqrt{\tan ^{2} \gamma-\mu^{2}}}\right. \\
& \left.\quad+\frac{S D}{k^{\prime 3} C^{3}} \log _{e}\left|\frac{c \tan \gamma-\sqrt{\tan ^{2} \gamma-\mu^{2}}}{c \tan \gamma+\sqrt{\tan ^{2} \gamma-\mu^{2}}}\right|\right\rangle d u
\end{aligned}
$$

Substituting the value of A previously found,
$\therefore-\frac{\pi \beta D}{2 k^{\prime 3} \operatorname{CSpU}_{0} W_{0} c^{2}} I=\int_{0}^{\tan \gamma} \frac{2 I I\left(-D^{2}, k\right)}{E} \frac{\tan \gamma}{\sqrt{\tan ^{2} \gamma-\mu^{2}}}$
$\left.+\frac{1}{k^{\prime}{ }^{2}} \log _{e}\left|\frac{c \tan \gamma-\sqrt{\tan ^{2} \gamma-\mu^{2}}}{C \tan \varphi+\sqrt{\tan ^{2} \gamma-\mu^{2}}}\right|\right\rangle d \mu$
$=\tan \gamma \int_{0}^{1}\left[\frac{2 \pi\left(-D^{2}, k\right)}{E \sqrt{1-s^{2}}}+\frac{1}{k^{\prime} C} \log _{e}\left|\frac{C-\sqrt{1-s^{2}}}{C+\sqrt{1-s^{2}}}\right|\right] d s$
$(s=\mu \cot \gamma)$
$=\frac{\pi I I\left(-D^{2}, k\right) \tan \gamma}{E}+\frac{\tan \gamma}{k^{2}{ }^{2} C} \mathcal{L}_{t}\left(\int_{0}^{5-\epsilon} \log _{e}\left(\frac{\sqrt{1-s^{2}-C}}{\sqrt{1-s^{2}+C}}\right) d s\right.$
$\left.+\int_{S+G}^{1} \log _{e}\left(\frac{\mathrm{C}-\sqrt{1-\mathrm{s}^{2}}}{\mathrm{C}+\sqrt{1-\mathrm{s}^{2}}}\right) \mathrm{ds}\right\}$

$$
=\frac{\pi I\left(-D^{2}, k\right)}{E}+\frac{1}{k^{2} C} \mathscr{C}_{C}+0\left\{S \left[\log _{0}\left(\frac{x^{2}+0(6)}{S \in+0\left(\epsilon^{2}\right)}\right)\right.\right.
$$

$$
\left.-\log _{e}\left(\frac{2 C^{2}+0(c)}{S G+0\left(\epsilon^{2}\right)}\right)\right]+\epsilon\left[\log _{e}\left(\frac{2 C^{2}+0(\epsilon)}{S G+0\left(\epsilon^{2}\right)}\right)\right.
$$

$$
\left.+\log _{e}\left(\frac{2 c^{2}+0(c)}{s\left(+0\left(\epsilon^{2}\right)\right.}\right)\right]+\frac{2}{k^{\prime 2}} \int_{0}^{1} \frac{s^{2} d s}{\left(s^{2}-s^{2}\right) \sqrt{1-s^{2}}}
$$

$$
=\frac{\pi}{E} I I\left(-D^{2}, k\right)+\frac{2}{k^{\prime 2}} \int_{0}^{1}\left\{\frac{S^{2}}{\left(s^{2}-s^{2}\right) \sqrt{1-s^{2}}}\right.
$$

$$
\left.-\frac{1}{\sqrt{1-s^{2}}}\right\} \mathrm{ds} \text {, since the limit term is zero. }
$$

$$
=\pi\left(\frac{I I\left(-D^{2}, k\right)}{\mathbb{E}}-\frac{1}{k^{\prime 2}}\right)+\frac{2 S^{2}}{k^{\prime^{2}}} \int_{0}^{\frac{\pi}{2}} \frac{d \theta}{S^{2}-\sin ^{2} \theta}
$$

$$
(\text { putting } s=\sin \theta)
$$

$$
=\pi\left(\frac{I I\left(-D^{2}, k\right)}{E}-\frac{1}{k^{\prime 2}}\right)+\frac{2 S^{2}}{k^{\prime^{2}}} \int_{0}^{\infty} \frac{d t}{S^{2}-C^{2} t^{2}}
$$

$$
\begin{aligned}
& =\frac{\pi I\left(-D^{2}, k\right) \tan \gamma}{E}+\frac{\tan \gamma}{k^{\prime} C^{2}} \mathcal{L}_{t}\left(\left[\log _{e}\left(\frac{\sqrt{1-S^{2}}-C}{\sqrt{1-s^{2}+C}}\right)\right]_{0}^{s-6}\right. \\
& +\frac{2}{k^{\prime 2}} \int_{0}^{S-\epsilon} \frac{s^{2} d s}{\left(s^{2}-s^{2}\right) \sqrt{1-s^{2}}}+\left[s \log _{e}\left(\frac{C-\sqrt{1-s^{2}}}{c+\sqrt{1-s^{2}}}\right)\right]_{S+\epsilon}^{1} \\
& \left.+\frac{2}{k^{\prime 2}} \int_{S+G}^{1} \frac{s^{2} d s}{\left(s^{2}-s^{2}\right) \sqrt{1-s^{2}}}\right\} \text {; integrating by parts. } \\
& \therefore-\frac{\pi \beta D \cot \gamma}{2 k^{3} \operatorname{CSpU} W_{0} c^{2}} I
\end{aligned}
$$

$$
=\pi\left(\frac{\Pi\left(-D^{2}, k\right)}{E}-\frac{1}{k^{\prime 2}}\right)
$$

Hence $I=-\frac{2 k^{\prime} \mathrm{CSpJ} \mathrm{O}_{0} 0^{2} c^{2} \tan \gamma}{\beta D}\left(\frac{k^{2} I I\left(-D^{2}, k\right)}{\mathbb{E}}-1\right)$

$$
=\frac{2 n \operatorname{CspJ}}{0}{ }_{0}^{2} c^{2} \tan ^{2} \gamma \sin (\Theta)\left[\frac{k^{\prime} I I\left(-D^{2}, k\right)}{\square}-1\right]
$$

$\therefore C_{L}=\frac{2 L}{\rho U_{0}^{2} c^{2} \tan \gamma}$

$$
=\frac{4 \eta \operatorname{cstan} r \sin (-)}{D}\left[\frac{k^{\prime} \pi\left(-D^{2}, k\right)}{E}-1\right]
$$

$\therefore a_{2}=\frac{\partial C_{L}}{\partial \eta}$

$$
\begin{aligned}
& =4 \frac{C S}{D}\left[\frac{k^{\prime} 2 \pi\left(-D^{2}, k\right)}{E(k)}-1\right] \sin (1-1) \tan \gamma \\
& =4 \frac{C S}{D}\left[\frac{k^{\prime} 2 \pi \cdot\left(k^{\prime} S^{2} S^{2}-1, k\right)}{\mathbb{E}^{\prime}\left(k^{\prime}\right)}-1\right] \sin (1-1) \tan \gamma
\end{aligned}
$$

$$
=4 \sin (\Theta) \tan (\Theta) \sqrt{\frac{1-\cot ^{2} \gamma \tan ^{2} \Theta}{1-\beta^{2} \tan ^{2}(\Theta)}}\left[\frac{\left.\beta^{2} \tan ^{2} \gamma I I\left(\beta^{2} \tan ^{2} \Theta\right)-1, \alpha\right)}{E^{\prime}(\beta \tan \gamma)}-1\right]
$$

$$
=4 \sqrt{\frac{1-r^{2}}{1-B^{2} r^{2}}}\left(\begin{array}{c}
\frac{B^{2} I\left(B^{2} r^{2}-1, \sqrt{1-B^{2}}\right)}{E^{\prime}(B)}-1
\end{array}\right) \sin (M \tan \gamma,
$$

We may abbreviate this to:

$$
a_{2}=4 r\left(\frac{B^{2} I I}{E^{\prime}}-1\right) \sqrt{\frac{1-r^{2}}{1-B^{2} r^{2}}} \sin (H) \tan r \text {. }
$$

Special Case: $B=0$, i. 0 . $M=1$

$$
\text { When } B=0, k=0 \text { and } k=1 \text {. }
$$

Also, from ${ }^{\text {S }} 2$
$B^{2} I I=B^{2} K^{\prime}(B)+\frac{1}{r} \sqrt{\frac{1-B^{2} r^{2}}{1-r^{2}}}\left\{\frac{\pi}{2}-\mathbb{B}^{\prime}(B) \operatorname{sn}^{-1}(x, B)\right\}$
$+\frac{1}{x} \sqrt{\frac{1-B^{2} r^{2}}{1+r^{2}}}\left\{\operatorname{sn}^{-1}(r, B)-\mathbb{E}\left(\sin ^{-1} r, B\right)\right\} K^{\prime}(B)$
In the limit as $B \rightarrow 0$, it is proved in Appendix VI
that: $B^{2} K^{\prime}(B) \rightarrow 0$, and in Appendix VII that: $\left\{\operatorname{sn}^{-1}(r, B)-\mathbb{E}\left(\sin ^{-1} r, B\right)\right\} K^{\prime}(B) \rightarrow 0$

Also as $B \rightarrow 0, A^{\prime}(B) \rightarrow 1$ and $\operatorname{sn}^{-1}(r, B) \rightarrow \sin ^{-1} r$.
Hence $B^{2} I r \rightarrow \frac{1}{r \sqrt{1-x^{2}}}\left[\frac{\pi}{2} \cdot \sin ^{-1} x\right]$.
i.c. $B^{2} I I \rightarrow \frac{1}{r \sqrt{1 \cdots u^{2}}} \cos ^{-1} r$, as $B \rightarrow 0$.

Hence the expression for a_{2} becomes:

$$
a_{2}=4\left(\cos ^{-1} \sqrt{4-x^{2}}\right) \sin (\theta) \tan \gamma
$$

Position of the Centre of Pressure due to Deflection of the Elevators

The pressure is again a function only of $\frac{y}{x}$, so that the centre of pressure due to deflection of the elevators is, as before, at $\frac{2}{3} c, 0$.

5.3 Effects of Inf nite Pressure at the Leading Edge

When the leading edges lie inside the Mach cone the leading edge pressure is infinite. (See pp, 34 and 39).

It may be proved that with the controls set at an angle θ and the wing at incidence a, the total velocity q at a point $P\left(x_{0}+E, x_{0} \tan \gamma\right)$ very near the starboard leading cage is nomal to the leading cage and is given by

$$
q=\left(c_{1} a+o_{2} \theta\right) \sqrt{\frac{x_{0}}{\epsilon}}+\text { bounded terms, }
$$

where the coefficients C_{1} and C_{2} are functions only of U_{0}, $\gamma,(H)$ and β. (This is true for both the elevator and aileron cases).

By the result proved in Appendix IV of Ref. 3 , the suction force per unit length of leading edge in a direction normal to the leading edge equals:

$$
\pi p x_{0} \cos \gamma \sqrt{1-\beta^{2} \tan ^{2} \gamma}\left(c_{1} \alpha_{i} c_{2} \theta\right)^{2} \text {, which is a term }
$$

of second order.
/In the ...

In the aileron case the suction per unit length measured parallel to the outward normals to the leading edges is equal and opposite at corresponding points on port and storboard leading edges. The leading edge suction thus produces a side force and a yowing moment about O_{z} which are both second order terms.

In the elevator case the suction forces per unit longth, nomal to the loading edges, are equal and of the same sign at corresponding points on port and starboard leading edges. The suction thus produces a drag which is of second order, i.c. is of the same order as the drag of a delta wing at incidence and cannot be neglected.

5.4 Acknowledgenonts

In conclusion, I wish to express my thanks to Dr. A. Robinson for much valuable help, advice and oncouragemont.

I on gratoful to the Department of Sciontific and Industrial Rosearch for their award of a Naintonance $A 110 w a n c e$ held during the period of the work.

RMEFRENCES

Ref.No

1

2

3
4. Stewart, II.J.

Mitle. etc
Rotary Derivatives of a Delta Wing at Supersonic Speeds; Royal Acronautical Suciety Journal, Vol.52, Nov. 1948, pp.735-752.

Source and Vortex Distributions in Linearised Theory of Steady Supersonic Flow; Quar.Jour. Ilech.App.Miath。 Vol.1, Pt.4, Dec. 1948.

Aerodynamic Derivatives with Rospect to Sideslip of a Delta Wing with Small Dihedral at Supersonic Speed.s; College of Acronautics Roport No. 12(1947).

The Lift of a Delta Wing at Supersonic Speeds: Quarterly of Applied liathematics, Vol.4, 1946, pp. 246-254.

\angle PPENDIX I

EVALUATION OF A DEFINITE INTEGRAL

The integral to be evaluated is:

$$
\Phi(n)=\frac{1}{n^{2}}\left\{\frac{\pi}{\sqrt{1-n^{2}}} \int_{n}^{1} t d t\right.
$$

$\left.+\int_{-n}^{n}\left[\frac{2}{\sqrt{1-n^{2}}} \sin ^{-1} \sqrt{\frac{(1-n)(n+t)}{2 n(1-t)}}+\sqrt{\frac{n-t}{n+t}}\right] t d t\right\}$
Lot $I_{1}=\int_{n}^{1} t d t$

$$
\begin{aligned}
& I_{2}=\int_{-n}^{n} 2 t \sin ^{-1} \sqrt{\frac{(1-n)(n+t)}{2 n(1-t)}} d t \\
& I_{3}=\int_{-n}^{n} t \sqrt{\frac{n-t}{n+t}} d t
\end{aligned}
$$

$\therefore n^{2} \Phi(n)=\frac{\pi}{\sqrt{1-n^{2}}} I_{1}+\frac{1}{\sqrt{1-n^{2}}} I_{2}+I_{3}$

$$
I_{1}=\int_{n}^{1} t d t=\frac{1-n^{2}}{2}
$$

Integrating by parts,

$$
\begin{aligned}
I_{2} & =\int_{-n}^{n} 2 t \sin ^{-1} \sqrt{\frac{(1-n)(n+t)}{2 n(1+t)}} d t \\
& =\left[t^{2} \sin ^{-1} \sqrt{\frac{(1-n)(n+t)}{2 n(1-t)}}\right]_{-n}^{n}-\int_{-n}^{n} \frac{t^{2} \sqrt{1-n^{2}}}{2(1-t) \sqrt{n^{2}-t^{2}}} d t \\
& =\frac{\pi n^{2}}{2}+\frac{\sqrt{1-n^{2}}}{2} \int_{-n}^{n}\left[\frac{t}{\sqrt{2}-t^{2}}+\frac{1}{\sqrt{n^{2}-t^{2}}}-\frac{1}{(1-t) \sqrt{n^{2}-t^{2}}}\right] d t \\
& =\frac{\pi n^{2}}{2}+\frac{\sqrt{1-n^{2}}}{2}\left\{\left[-\sqrt{n^{2}-t^{2}}+\sin ^{-1} \frac{t}{n}\right]_{-n}^{n}-\int \frac{1 n}{(1-t) \sqrt{n^{2}-t^{2}}}\right\}
\end{aligned}
$$

$=\frac{\pi}{2}\left(n^{2}+\sqrt{1-n^{2}}\right)-\frac{\sqrt{1-n^{2}}}{2} \int_{-n}^{n} \frac{d t}{(1-t) \sqrt{n^{2}-t^{2}}}$
$=\frac{\pi}{2}\left(n^{2}+\sqrt{1-n^{2}}\right)-\frac{\sqrt{1-n^{2}}}{2} \int_{0}^{\frac{\pi}{2}} \frac{2 d \theta}{1+n \cos 2 \theta}$ (putting $t=-n \cos 2 \theta$)
$=\frac{\pi}{2}\left(n^{2}+\sqrt{1-n^{2}}\right)-\sqrt{1-n^{2}} \int_{0}^{\infty} \frac{d v}{(1-n) v^{2}+(1+n)} \quad($ putting $v=\tan \theta)$
$=\frac{\pi}{2}\left(n^{2}+\sqrt{1-n^{2}}-1\right)$

Io evaluate I_{z}, put $t=-n \cos 2 \theta$.
$\therefore I_{3}=\int_{-n}^{n} t \sqrt{\frac{n-t}{n+t}} d t=-2 n^{2} \int_{0}^{\frac{\pi}{2}} \cos 2 \theta \cot \theta \sin 2 \theta d \theta$

$$
\begin{aligned}
& =-n^{2} \int_{0}^{\frac{\pi}{2}}(2 \cos 2 \theta+\cos 4 \theta+1) d \theta \\
& =-\frac{\pi}{2} n^{2}
\end{aligned}
$$

- Collecting results,

$$
\begin{aligned}
n^{2} \oint(n) & =\frac{\pi}{\sqrt{1-n^{2}}} I_{1}+\frac{1}{\sqrt{1-n^{2}}} I_{2}+I_{3} \\
& =\frac{\pi}{2} \sqrt{1-n^{2}}+\frac{1}{\sqrt{1-n^{2}}} \cdot \frac{\pi}{2}\left(n^{2}+\sqrt{1-n^{2}-1}\right)-\frac{\pi}{2} n^{2} \\
& =\frac{\pi}{2}\left(\sqrt{1-n^{2}}+1-\sqrt{1-n^{2}}-n^{2}\right) \\
& =\frac{\pi}{2}\left(1-n^{2}\right) \\
\therefore \Phi(n) & =\frac{\pi}{2}\left(\frac{1}{n^{2}-1}\right)
\end{aligned}
$$

APPENDIX II

BVATUATITON OF A DEFINITE INTEGRAL

The integral to be evaluated is:

$$
\begin{aligned}
& \delta=\left\{\int_{-n}^{n} t \sqrt{\frac{n-t}{n+t}} d t+\frac{2}{\sqrt{n^{2}-1}} \int_{-n}^{1} t \sinh ^{-1} \sqrt{\frac{(n-1)(n+t)}{2 n(1-t)}} d t\right. \\
&\left.\left.+\int_{1}^{n} t \sinh ^{-1} \sqrt{\frac{(n+1)(n-t)}{2 n(t-1)}} d t\right]\right\}
\end{aligned}
$$

We shall first evaluate the two limits:

$$
=0 .
$$

$$
\mathbb{E}_{2}=\operatorname{Let}_{t \rightarrow 0} \in\left[\log _{0}\left\{\frac{\sqrt{(n-1)(n+1-\epsilon)}+\sqrt{(n+1)(n-1+\epsilon)}}{\sqrt{2 n \epsilon}}\right\}\right.
$$

$$
\left.+\log _{e}\left\{\frac{\sqrt{(n+1)(n-1-\epsilon)}+\sqrt{(n-1)(n+1+\epsilon)}}{\sqrt{2 n \epsilon}}\right\}\right]
$$

$$
\text { i.e. } \mathbb{E}_{2}=\mathscr{L}_{\epsilon \rightarrow 0}+\in\left[\log _{e}\{\sqrt{(n-1)(n+1-\epsilon)}+\sqrt{(n+1)(n-1+\epsilon)}\}\right.
$$

$$
+\log _{e}\{\sqrt{(n+1)(n-1-\epsilon)}+\sqrt{(n-1)(n+1+\epsilon)}\}
$$

$$
\begin{aligned}
& \mathbb{E}_{1}=\mathscr{L}_{t \rightarrow 0}\left\{\sinh ^{-1} \sqrt{\frac{(n-1)(n+1-\epsilon)}{2 n \epsilon}}-\sinh ^{-1} \sqrt{\frac{(n+1)(n-1-\epsilon)}{2 n \epsilon}}\right\} \text {, and } \\
& \mathbb{E}_{2}=\mathscr{L}_{\epsilon \rightarrow 0} \in\left\{\sinh ^{-1} \sqrt{\frac{(n-1)(n+1-\epsilon)}{2 n \epsilon}}+\sinh ^{-1} \sqrt{\frac{(n+1)(n-1-\epsilon)}{2 n \epsilon}}\right\} . \\
& \text { Now } \mathbb{a}_{1}=\operatorname{L}_{t \rightarrow 0}\left[\log _{e}\left\{\frac{\sqrt{(n-1)(n+1-\epsilon)}+\sqrt{(n+1)(n-1+\epsilon)}}{\sqrt{2 n \epsilon}}\right\}\right. \\
& \left.-\log _{e}\left\{\frac{\sqrt{(n+1)(n-1-\epsilon)}+\sqrt{(n-1)(n+1+\epsilon)}}{\sqrt{2 n \epsilon}}\right\}\right] \\
& =\mathscr{L}_{t \rightarrow 0} \log _{e}\left\{\frac{\sqrt{(n-1)(n+1-\epsilon)}+\sqrt{(n+1)(n-1+\epsilon)}}{\sqrt{(n+1)(n-1-\epsilon)}+\sqrt{(n-1)(n+1+\epsilon)}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\log _{e} 2 n\right]-\underset{\epsilon \rightarrow 0}{\mathcal{L}}+\epsilon \log _{e} \in \\
& =0
\end{aligned}
$$

Returning to d,

Let $\oint_{1}=\int_{-n}^{n} t \sqrt{\frac{n-t}{n+t}} d t$,

$$
g_{2}=\int_{-n}^{1} 2 t \sinh ^{-1} \sqrt{\frac{(n-1)(n+t)}{2 n(1-t)}} d t+\int_{1}^{1} 2 t \sinh ^{-1} \sqrt{\frac{(n+1)(n-t)}{2 n(t-1)}} d t
$$

$\therefore g=f_{1}+\frac{1}{\sqrt{n^{2}-1}} d_{2}$

It is proved in Appendix I that,

$$
\begin{aligned}
& \int_{-n}^{n} t \sqrt{\frac{n-t}{n+t}} d t=-\frac{\pi}{2} n^{2} \\
& \text { i.e. } g_{1}=-\frac{\pi}{2} n^{2}
\end{aligned}
$$

$\therefore d=-\frac{\pi}{2} n^{2}+\frac{1}{\sqrt{n^{2}-1}} \quad g_{2}$. Now $g_{2}=\mathcal{L}_{\epsilon \rightarrow 0} t\left\{\int_{-n}^{1-\epsilon} 2 t \sinh ^{-1} \sqrt{\frac{(n-1)(n+t)}{2 n(1-t)}} d t\right.$

$$
+\int_{1+6}^{n} 2 t \sinh ^{-1} \sqrt{\frac{(n+1)(n-t)}{2 n(t-1)}} d t
$$

Integrating by Parts,

$$
\left.\begin{array}{rl}
g_{2} & =\mathcal{L}_{\epsilon \rightarrow 0}\left\{\left[t^{2} \sinh ^{-1} \sqrt{\frac{(n-1)(n+t)}{2 n(1-t)}}\right]_{-n}^{1-\epsilon}-\frac{\sqrt{n^{2}-1}}{2}\right. \\
\int_{-n}^{1-\epsilon} \frac{t^{2} d t}{(1-t) \sqrt{n^{2}-t^{2}}} \\
& +\left[t^{2} \sinh ^{-1} \sqrt{\frac{(n+1)(n-t)}{2 n(t-1)}}\right]_{1+\epsilon}^{n}-\sqrt{\frac{n^{2}-1}{2}} \int_{1+\epsilon}^{n} \frac{t^{2} d t}{(1-t) \sqrt{n^{2}-t^{2}}}
\end{array}\right\}
$$

$-\frac{\sqrt{n^{2}-1}}{2} \int_{-n}^{n} \frac{t^{2} d t}{(1-t) \sqrt{n^{2}-t^{2}}}$
$=\operatorname{Ltt}_{\epsilon \rightarrow 0}\left[\sinh ^{-1} \sqrt{\frac{(n-1)(n+1-\epsilon)}{2 n \epsilon}}-\sinh ^{-1} \sqrt{\frac{(n+1)(n-1-\epsilon)}{2 n \epsilon}}\right]\left(1+\epsilon^{2}\right)$
$-2 \underset{\epsilon \rightarrow 0}{\mathcal{L}_{t}\left[\sinh ^{-1} \sqrt{\frac{(n-1)(n+1-\epsilon)}{2 n \epsilon}}+\sinh ^{-1} \sqrt{\frac{(n+1)(n-1-\epsilon)}{2 n \epsilon}}\right]}$
$-\frac{\sqrt{n^{2}-1}}{2} \int_{-n}^{n} \frac{t^{2} d t}{(1-t) \sqrt{n^{2}-t^{2}}}$
$=E_{1} \cdot \mathcal{L}_{t \rightarrow 0}\left(1+\epsilon^{2}\right)-E_{2}-\frac{\sqrt{n^{2}-1}}{2} \int_{-n}^{n} \frac{t^{2} d t}{(1-t) \sqrt{n^{2}-t^{2}}}$
$=-\frac{n^{2}-1}{2} \int_{-n}^{n} \frac{t^{2} d t}{(1-t) \sqrt{n^{2}-t^{2}}}$, since $\mathbb{E}_{1}=\mathbb{E}_{2}=0$
i.e. $d_{2}=\frac{\sqrt{n^{2}-1}}{2}\left\{\int_{-n}^{n} \frac{1+t}{\sqrt{n^{2}-t^{2}}} d t-\int_{-n}^{n} \frac{d t}{(1-t) \sqrt{n^{2}-t^{2}}}\right\}$
i.e. $g_{2}=\sqrt{n^{2}-1}\left\{\int_{0}^{\frac{\pi}{2}}(1-n \cos 2 \theta) d \theta+\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{1+n \cos 2 \theta}\right\}$,

$$
\text { (putting } t=-n \cos 2 \theta)
$$

$=\frac{\pi}{2} \sqrt{n^{2}-1}+\sqrt{n^{2}-1} \int_{0}^{\infty} \frac{d v}{(1+n)-(n-1) v^{2}}, v=\tan \theta$
$=\frac{\pi}{2} \sqrt{n^{2}-1}$, the second term vanishing because $(n-1)>0$.
$\therefore g=-\frac{\pi}{2} n^{2}+\frac{1}{\sqrt{n^{2}-1}} g_{2}$
$=\frac{\pi}{2}\left(1-n^{2}\right)$.

APPENDIX III

EVALUATION OF A DEFINITE INTEGRAL

The integral to be evaluated is:

$$
\begin{aligned}
& X(n)=\frac{1}{n}\left\{\frac{\pi}{\sqrt{1-n^{2}}} \int_{n}^{1} d t+\int_{-n}^{n}\left[\frac{2}{\sqrt{1-n^{2}}} \sin ^{-1} \sqrt{\frac{(1-n)(n+t)}{2 n(1-t)}}\right.\right. \\
& \text { Let } J_{1}=\int_{n}^{1} d t \\
& J_{2}=\int_{-n}^{n+t} \sin ^{-1} \sqrt{\frac{n-t}{(1-n)(n+t)}} d t \\
& J_{3}=\int_{-n}^{n(1-t)} d t \\
& \therefore n, X(n)=\frac{\pi}{\sqrt{\left(\frac{n-t)}{(n+t)}\right.}} d t \\
& \sqrt{1-n^{2}} J_{1}+\frac{2}{\sqrt{1-n^{2}}} J_{2}+J_{3} . \\
& J_{1}=\int_{n}^{1} d t=(1-n)
\end{aligned}
$$

Integrating by parts,

$$
\begin{aligned}
& J_{2}=\left[t \sin ^{-1} \sqrt{\frac{(1-n)(n+t)}{2 n(1-t)}}\right]_{-n}^{n}-\int_{-n}^{n} \frac{t \sqrt{1-n^{2}}}{2(1-t) \sqrt{n^{2}-t^{2}}} d t \\
&=\frac{\pi n}{2}+\frac{\sqrt{1-n^{2}}}{2}\left\{\int_{-n}^{n} \frac{d t}{\sqrt{n^{2}-t^{2}}}-\int_{-n}^{n} \frac{d t}{(1-t) \sqrt{n^{2}-t^{2}}}\right\} \\
&=\frac{\pi n}{2}+\frac{\pi}{2} \sqrt{1-n^{2}}-\sqrt{1-n^{2}} \int_{0}^{\frac{\pi}{2}} \frac{d \theta}{1+n \cos 2 \theta}, \\
&=\frac{\pi}{2}\left(n+\sqrt{1-n^{2}}\right)-\sqrt{1-n^{2}} \int_{0}^{\infty} \frac{d v}{(1-n) v^{2}+(1+n)} \quad, \\
&\text { (putting } v=\tan \theta)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\pi}{2}\left(n+\sqrt{1-n^{2}-1}\right) \\
J_{3} & =\int_{-n}^{n} \sqrt{\frac{n-t}{n+t}} d t \\
& =2 n \int_{0}^{\frac{\pi}{2}} \cot \theta \sin 2 \theta d \theta, \quad(\text { putting } t=-n \cos 2 \theta) \\
& =4 n \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta=\pi n
\end{aligned}
$$

\therefore Collecting results,

$$
\begin{aligned}
n X(n) & =\frac{\pi}{\sqrt{1-n^{2}}} J_{1}+\frac{2}{\sqrt{1-n^{2}}} J_{2}+J_{3} \\
& =\pi\left[\frac{1-n}{\sqrt{1-n^{2}}}+\frac{\left(n+\sqrt{1-n^{2}-1}\right)}{\sqrt{1-n^{2}}}+n\right] \\
& =\pi(1+n) \\
\therefore X(n) & =\pi\left(\frac{1}{n}+1\right) .
\end{aligned}
$$

EVALUATION OF A DEFINITE INTEGRAL

The integral to be evaluated is:

$$
\begin{aligned}
f=\{ & \left\{\int_{-n}^{n} \sqrt{\frac{n-t}{n+t}} d t+\frac{2}{\sqrt{n^{2}-1}} \int_{-n}^{1} \sinh ^{-1} \sqrt{\frac{(n-1)(n+t)}{2 n(1-t)}} d t\right. \\
& \left.+\int_{1}^{n} \sinh ^{-1} \sqrt{\frac{(n+1)(n-t)}{2 n(t-1)}} d t\right\}
\end{aligned}
$$

Let $f_{1}=\int_{-n}^{n} \sqrt{\frac{n-t}{n+t}} d t$

$$
g_{2}=\int_{-n}^{1} \sinh ^{-1} \sqrt{\frac{(n-1)(n+t)}{2 n(1-t)}} d t+\int_{1}^{n} \sinh ^{-1} \sqrt{\frac{(n+1)(n-t)}{2 n(t-1)}} d t
$$

$\therefore g=g_{1}+\frac{2}{\sqrt{n^{2}-1}} g_{2}$

It is proved in Appendix III, that,

$$
\int_{-n}^{n} \sqrt{\frac{n-t}{n+t}} d t=\pi n
$$

$\therefore d=\pi n+\frac{2}{\sqrt{n^{2}-1}} d_{2}$
Now $\int_{2}=\mathcal{L}_{t}\left\{\int_{-0}^{1-(-} \sinh ^{-1} \sqrt{\frac{(n-1)(n+t)}{2 n(1-t)}} d t+\int_{1+e}^{n} \sinh ^{-1} \sqrt{\frac{(n+1)(n-t)}{2 n(t-1)}}\right.$ at $\}$
Integrating by Parts,

$$
\begin{aligned}
J_{2} & =\mathcal{L}_{t} \epsilon_{\neq 0}\left[t \sinh ^{-1} \sqrt{\frac{(n-1)(n+t)}{2 n(1-t)}}\right]_{-n}^{1-\epsilon}-\sqrt{\frac{n^{2}-1}{2}} \int_{-n}^{1-\epsilon} \frac{t d t}{(1-t) \sqrt{n^{2}-t^{2}}} \\
& +\left[t \sinh ^{-1} \sqrt{\frac{(n+1)(n-t)}{2 n(t-1)}}\right]_{1+\epsilon}^{n}-\sqrt{\frac{n^{2}-1}{2}} \int_{1+\epsilon}^{n} \frac{t d t}{(1-t) \sqrt{n^{2}-t^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& =\mathcal{L}_{\epsilon \rightarrow 0}\left\{(1-\epsilon) \sinh ^{-1} \sqrt{\frac{(n-1)(n+1-\epsilon)}{2 \epsilon^{n}}}-(1+\epsilon) \sinh ^{-1} \sqrt{\frac{(n+1)(n-1-\epsilon)}{2 \epsilon^{n}}}\right. \\
& -\frac{\sqrt{n^{2}-1}}{2} \int_{-n}^{n} \frac{t d t}{(1-t) \sqrt{n^{2}-t^{2}}} \\
& ={\underset{\epsilon}{t \rightarrow 0}}^{\mathcal{L}^{2}}\left[\left[\sinh ^{-1} \sqrt{\frac{(n-1)(n+1-\epsilon)}{2 \in n}}-\sinh ^{-1} \sqrt{\frac{(n+1)(n-1-\epsilon)}{2(-n}}\right]\right. \\
& \left.-E\left[\sinh ^{-1} \sqrt{\frac{(n-1)(n+1-\epsilon)}{2 \epsilon n}}-\sinh ^{-1} \sqrt{\frac{(n+1)(n-1-\epsilon)}{2(n}}\right]\right\} \\
& \left.+\sqrt{\frac{n^{2}-1}{2}} \int_{-n}^{n} \frac{d t}{\sqrt{n^{2}-t^{2}}}-\int_{-n}^{n} \frac{d t}{(1-t) \sqrt{n^{2}-t^{2}}}\right\} \\
& \text { The limit term is zero from the results } \mathbb{E}_{1}=\mathbb{E}_{2}=0
\end{aligned}
$$

proved in Appendix II.

$$
\text { Hence } \begin{aligned}
d_{2} & =\frac{\sqrt{n^{2}-1}}{2}\left\{\int_{-n}^{n} \frac{d t}{\sqrt{n^{2}-t^{2}}}-\int_{-n}^{n} \frac{d t}{(1-t) \sqrt{n^{2}-t^{2}}}\right\} \\
& =\frac{\sqrt{n^{2}-1}}{2}\left(\pi-2 \int_{0}^{\frac{\pi}{2}} \frac{d \theta}{1+n \cos 2 \theta}\right),(\text { putting } t=-n \cos 2 \theta) \\
& =\sqrt{\frac{n^{2}-1}{2}}\left(\pi-2 \int_{0}^{\infty} \frac{d v}{(1+n)-(n-1) v^{2}}\right),(\text { putting } v=\tan \theta) \\
& =\sqrt{\frac{n^{2}-1}{2}} \pi, \text { the second term vanishing because }(n-1)>0 .
\end{aligned}
$$

$\therefore 9=\pi n+\frac{2}{\sqrt{n^{2}-1}} \oint_{2}=\pi n+\pi$
ie. $\mathcal{f}=\pi(n+1)$.

FIG. 10

The induced flow due to deflection of the control surface $A B C D$ can only offect the area $M_{1} \mathrm{BCM}_{4}$ of the wing. Over the area $M_{2} M_{3} C B$, flow conditions are truly two-dimensional. If the Mach angle $\varnothing\left(=\frac{1}{2}\left\langle M_{1} B_{2}\right)\right.$ is small or if the aspect ratio A_{0} of the control is sufficiently large, it is justifiablo to neglect errors introduced by assuming that the flow over $M_{2} \mathrm{BA}$ and $\mathrm{M}_{3} \mathrm{CD}$ is also two dimensional and by neglecting the end effects over $\mathbb{M}_{1} \mathrm{BA}$ and $\mathrm{M}_{4} \mathrm{CD}$ when calculating forces produced by the controls.

Therefore assuming $\left.\Lambda_{0} \sqrt{M^{2}-1}\right\rangle>1$, the lift increment por control is given by:

$$
\Delta L=\frac{\rho U^{2} S_{c}{ }^{\theta}}{\sqrt{M^{2}-1}} \text {. (This follows from Ackeret's }
$$

theory for a two dimensional wing).
If the controls are elevators, $I=\frac{2 p U^{2} S_{c}}{\sqrt{M^{2}-1}}$,
giving: $a_{2}=\frac{4}{\sqrt{m^{2}-1}} \cdot \frac{S_{c}}{S}$.

With our assumptions, the resultant force due to deflection of a control surface acts at its centroid. Let b_{o} be the distance between the centroids of the ailerons. The rolling moment is then given by:

$$
\bar{I}=b_{0} \Delta I=\frac{\mathrm{b}_{0} \rho \mathrm{U}^{2} S_{\mathrm{c}} \xi_{5}}{\sqrt{\mathrm{II}^{2}-1}}
$$

$\therefore C_{\bar{I}}=\frac{2 \bar{I}}{P U^{2} S_{b}}=\frac{2}{\sqrt{M^{2}-1}} \frac{S_{c}}{S} \frac{b_{0}}{b} \frac{G}{b}$
$\therefore \ell_{\bar{G}}=\frac{2}{\sqrt{M^{2}-1}} \frac{S_{c}}{S} \frac{b_{0}}{b}$

EVALUATION OF A LIMIT

The limit to be evaluated is:

$$
\mathcal{L}_{B \rightarrow 0} t B^{2} K^{\prime}(B) .
$$

Now $K^{\prime}(B)=\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{\sqrt{1-\left(1-B^{2}\right) \sin ^{2} \theta}}$
$\therefore\left|B^{2} K^{\prime}(B)\right|=\left|\int_{0}^{\frac{\pi}{2}} \frac{B^{2} d \theta}{\sqrt{1-\left(1-B^{2}\right) \sin ^{2} \theta}}\right|$
$=\left|\int_{0}^{\frac{\pi}{2}} \frac{B^{2} d \theta}{\sqrt{\cos ^{2} \theta+B^{2} \sin ^{2} \theta}}\right|$
$=\left|\int_{0}^{\infty} \frac{B^{2} d t}{\sqrt{\left(1+t^{2}\right)\left(1+B^{2} t^{2}\right)}}\right|, \quad t=\tan \theta$.
$=\left|\int_{0}^{\infty} \frac{B^{2} d v}{\sqrt{\left(B^{2}+v^{2}\right)\left(1+v^{2}\right)}}\right|, \quad v=B t$
$<\left|\int_{0}^{\infty} \frac{B^{2} d v}{\sqrt{B^{2}\left(1+v^{2}\right)}}\right|$
i.e. $\left.\left|B^{2} K^{\prime}(B)\right|<\int_{0}^{\infty} \frac{B d v}{\sqrt{1+v^{2}}} \right\rvert\,=\frac{\pi}{2} B$

Hence $\mathscr{L}_{B \rightarrow 0} B^{2} K^{\prime}(B)=0$.

APPENDIX VII

EVALUATION OF A LIMIT

The limit to be evaluated is:

$$
\begin{aligned}
& \underset{B \rightarrow 0}{\mathcal{L}_{t}}\left[\sin ^{-1}(r, B)-\mathbb{E}\left(\sin ^{-1} r, B\right)\right] K^{\prime}(B) . \\
& \operatorname{sn}^{-1}(r, B)-\mathbb{E}\left(\sin ^{-1} x, B\right)=\int_{0}^{\sin ^{-1} r}\left[\frac{1}{\sqrt{1-B^{2} \sin ^{2} \theta}}-\mathrm{dn}^{2}(\theta, B)\right] d \theta \\
& =\int_{0}^{\sin ^{-1} r}\left[\frac{1-\sqrt{1-B^{2} \sin ^{2} \theta}}{\sqrt{1-B^{2} \sin ^{2} \theta}}+B^{2} \sin ^{2}(\theta, B)\right] d \theta \\
& =\int_{0}^{\sin ^{-1} x}\left[\frac{\mathrm{~B}^{2} \sin ^{2} \theta}{\sqrt{1-B^{2} \sin ^{2} \theta}\left[1+\sqrt{1-\mathrm{B}^{2} \sin ^{2} \theta}\right]}+\mathrm{B}^{2} \operatorname{sn}^{2}(\theta, \mathrm{~B})\right] d \theta
\end{aligned}
$$

$\therefore \underset{\mathrm{B} \rightarrow 0}{\mathscr{L}_{\mathrm{t}}}\left[\operatorname{sn}^{-1}(r, B)-\mathbb{E}\left(\sin ^{-1} r, B\right)\right] \mathrm{K}^{\prime}(B)$

$=\left\{\int_{0}^{\sin ^{-1} r} \frac{3}{2} \sin ^{2} \theta d \theta\right\} x \underset{\substack{\mathcal{L}^{2} \rightarrow 0}}{\mathcal{E B}^{2} K^{\prime}(B)}$

Hence $\underset{B \rightarrow 0}{\mathcal{L}_{\mathrm{t}}}\left[\sin ^{-1}(x, B)-\mathbb{E}\left(\sin ^{-1} r, B\right)\right] \mathrm{K}^{\prime}(B)=0$.

COLLEGE OF AERONAUTICS
REPORT NO 36

VARIATION OF $\left\{\frac{\ell_{\xi}}{\operatorname{SIN} \Theta \text { TANY }}\right\}$ WITH THE PARAMETERS B AND ψ

FIG.II.

VARIATION OF ℓ_{g} WITH AILERON AREA AT VARIOUS MACH NUMBERS

$$
Y=60^{\circ} ; A=6 \cdot 9
$$

FIG. 13.

COLLEGE OF AERONAUTICS
REPORT NO 36

VARIATION OF $\left\{\frac{a_{2}}{\sin \Theta \Theta^{\oplus} \text { TANy }}\right\}$ WITH THE PARAMETERS BAND τ°

COLLEGE OF AERONAUTICS
REPORT No 36.

 MACH NUMBERS.

FIG. 16.

COLLEGE OF AERONAUTICS

CURVES OF $\frac{a_{2 \text { MAX }}}{a_{1}}$ AGAINST A, SHOWING RANGE OF VARIATION OF $\frac{a_{2} \text { Max }}{a_{1}}$ WITH MACH NUMEER.

FIG. 17

COLLEGE OF AERONAUTICS REPORT NO 36

FIG.18.

