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SUICHARY 

Expressions are derived for 	and a2 
of nose 

ailProns and nose elevators on a delta wing, as depicted in 

Fig, 1 , in supufnonie flight. 	Nose and tro ill rig rldw, 

on delta wings in supernoxi rli.ght are ormpared. 

Conclusions 

On delta wings of moderate aspect ratio (say>4) 

nose controls are comparable with trailing edge controls. Nose 

controls are ineffective: on delta wings of very small aspect 

ratio (say< 1 ) . 

For the same effects, the controls are deflected up-

wards when trailing edge controls would be deflected downwards 

and vice versa. 
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R 1. 	Introduction 
The nose controls considered here are equal, flat 

triangular surfaces located symmetrically on each side of a 

flat delta wing or tailplane, with the hinge lines meeting at 

the apex. (See F5g.1). 

The controls may be deflected symmetrically (i.e. 

either both moved up or both moved down through the same angle) 

to produce a lift force. 	The controls then act as elevators. 

Alternatively, the controls may be deflected anti-symmetrically 

(i.e. one moved up and the other moved down through the same 

angle) to produce a rolling moment, the controls then acting 

as ailerons. 

In § 5 the lift force and rolling moment arc calcu-

lated on the assume Lions of linearised theory. These results 

yield expressions for we for nose ailerons and (ii) a2 
for nose elevators. 

Two kinds of supersonic flow over the wing or tail-

plane are T)ossible, depending on the Mach number (H) and the 

apex angle (2y), They area 

(i) flow in which the leading edges lie outside 

the Mach cone of the apex*. 	This type of flow occurs at 

higher speeds, corresponding to the analytic condition 

M:-:cosec y. 

(ii) A flow in which the leading edges lie inside 

the Mach cone. 	This type of flow occurs at lower speeds, i.e. 

when Ilf;cosec y, 

Physically, these flows are different - in the first 

flow the pressure distribution on either the upper or the 

lower surface is unaffected by the shape of the other surface, 

while in the second flew the pressure on either surface is 

affected by the shape of both upper Laid lower surfaces. (This 

follcwis from a property of supersonic 	viz. that a small 

disturbance at a point in the field can only be communicated 

to the region. within the Mach cone of that point). 

/ In the ... 

Hereafter, the Mach cone of the apex will be referred to 

simply as 'tha :inch cone'. 



In the ,arlalysis these two 	of flow are treated 

L3parat'31y and ;field dif-r:erent formulae. 	Flaw (i) can be 

Further subdiviJed Lit. LW) case; in which the hinge lines lie 

(a) ou',;sia:3 and CO Lsidc the hach con°. 	This distinction 

is important whr.:)n 1:x2formiTig certain of the integrations, but 

the methoa of solution is fundamentally the same in both oases 

and the formulac; that ar.e derived for-P  and a2  are the same, 



2. 	 NOTATION 

a 	speed of souna 

a1 	lift slope of delta tailplane 

a2 	rate of chang(:. of lift coefficient of delta tail- 

plane with -Jlovator angle = 77  - 7„- p u2  o  S 
871 

aspect ratio uf delta wing or tailplane = tan y 

b 	overall epan cf delta 'wing or tailplane 

B = 	/M--1 tan 

maxim:or chord of delta wing or tailplane 

C
L 	lift coeficir=mt 

CL 	 Ecmey. coc!fficient 

▪ (u) 	complctu elliptic integral of the socond kind 

f,- u2  sin2  1 0 
ki 0 

Ei(u) 	 ,:oLuplutr; ,311iptic int,::gral of the 
second 'dad. 	- 

r " 	 - -u2) sin201 
e 

ET (3) 

kl 	cot 

k
2 

= 	cot (E.g) 

K (u) 	complete elliptic ilitegrta of the first kind 
r<iC 	 1 
2 
_ 	

2 	
2 --- 

r 	. 	..., 

ti° 

K' (u) 	complementary ocAnplf.-Ar.: elliptic integral of -the 

first kind 

= 

.:7i 
I 	, 

1 
V G  

_ 11 
	

_ (1-u2) sin2 0 

• 

1  
2 

fp 	non-dimonsionna derivative of rolling meLlont Ivith 

	

EIE il 	, 
rate of roll 7-2 — J-- p C S b2 

I:1 	
apt 4 	0 

non-dim 	derivative: of :culling momnt -with ... E  

aileron „--.nglu = - 
a
r.-_-
f I 	2 

i7 p U0  S b d:s i 
L lift 

L 	rollinu. moment (4. ve when star' ear?-tip 17;rds t,) •FT) 

M 	Hach number 

n1 	k/  /ft 

n2 	
kr)/P 

P rise of pressure above pressure at infinity 

P rate of roll Sc 
r = 	tanl:i:3/tan. N". ,t5 )i 	;-, 
S 	area of delta wing or tailplane = c2 tan y ci 

i 

Sc 	SUM of areas of port and starboard controls 



2. (Contd.) 

k
1 
 y 

t x 

k2y 
T = 

induced component of velocity in x direction 

U o 	free stream velocity 

induced component of velocity in y direction 

w 	induced component of velocity in z direction 

x 	chord-wise coordinate (measured from the apex in 

the direction of flow) 

y 	spanwise coordinate (+ ve to starboard) 

z 	normal coordinate 	ye above wing) 

a 	incidence of wing (or tailplane) 

r = 
y 	apex semi-angle 

elevator deflection (+ ve when an elevator is 

deflected up) 

8 

	

	control deflection (+ ve when starboard control is 

deflected up) 

semi-angle included between control hinge lilies 

2\ 	slope of wing or tailplane surface in x direction 

4 = Y/x 
TI(n,u) complete elliptic integral of the third kind 

,- 

, 2 	 4 = I 
	

(1 + n siǹ-  0)1 
	1 	u2  sin yo dO 

J o 

-3 U 	 B 2) 	
1-13 .r e. 

= U 	 -) = (B) + 4 
,_ 2 9 	 9 

B2r 	1 -r2  

+ 1..K` (B) - ' 	sn-1  (r 13) - 	(B).E (sin-1  r 

p 	air density 

aileron deflection 	ye when starboard aileron is 

deflected up) 

0 	induced velocity potential 



Leading Edgos Outside Hach 
Cone (l;i.e. R cosec y 

l`f oh Cone 
cosec 

2 	(I -37
2

) 	. - 	- sin t Lrar. y sin Rtan y 

-B -r 
2 2  

Loading Edges Insido Hach Cone 
(B'S.- -1; i.e. 2 5;cosec y) 

...■•.■141■1-••••••••,  

BJC1 

crt- TI-1 ) (1 -B-r(  ) sin tan 

a
2 	2 	sin (!jtan y B=..0(i.o. 2=1)  

,----- 

	

-; 	, 1-\ _„ &002' 

	

000
- 
 r -r/1 -r. 	s1n = 41) -Gan 

Position 
of Centre 	On centre lin,.:, 	 On centre line, 
of Press- 	2 	 2 - c from apox 	 3  c from apex tire 	 3 
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3. 	 RESULTS,  

(see Ei 2. for ex-planation of symbols). 

Nose Ailorons 

Jobe E 1 avat ors 
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g 4. 	 Discussion of Results 

	

4.1. 	General Remarks anC, Conclusions  

At supersonic speeds, nose controls are unsuitable for 

delta wings or tailplanes of very low aspect ratio (say<l). 

This is because the slope f1  of a deflected nose control surface 

in the direction of the main stream is proportional to sin(Lli 

(where 2C-9 is the angle between the control hinge lines.) The 

lift force or rolling moment produced, being proportional to A , 

is then proportional to sin 	At very small aspect ratios 

H:is also very small and the controls are therefore relatively 

ineffective. 

It is possible that in a viscous fluid nose controls 

may have some advantages over trailing edge controls, such as 

greater maximum aileron (or elevator) power. This, however, 

remains to be investigated. 

At moderate aspect ratios(say>4) the effectiveness at 

supersonic speeds of nose controls (as measured by °P,.. and a2) 

is comparable with, although less than, the effectiveness of 

trailing edge controls. 

It should be noted that nose controls must be deflec-

ted up instead of down and down instead of up in order to 

produce the same effects as conventional (i.o, trailing edge) 

controls. 

	

4.2. 	Nose Ailerons  

In Fig.11, 	 is plotted against B 
sine tan y 

(ift12-1 tan y) for several values of r (= tan(4/tan y). On 

all the curves of constant r, - 	is a maximum at B=1, i.e. 

when 1'I = cosec y, i.e. when the Each cone just touches the lead- 

ing edges. 	For a given wing (i.e. y and® , and therefore r, 

given) the curves show the variation of 	with A2-1. 

Curves of -f against aileron area for several Each 

inuribors between 1 and 3 arc plotted for aspect ratios of 2.3,4 

and 6.9 in. Figs. 12 and 13, 

In practice 
So 
 would probably not exceed 0.3. 7ith 

this limitation, it will be seen that except for wings of higher 

aspect ratios at :Hach numbers near 1, Is considerably less 

than for conventional ailerons in incompressible flow. 

date of Roll. 



CONDITION .(  t
3 
noso 

( 	/3 

0 

Rate of Roll  

t is readily shown that the steady rate of roll p 
of a wing is given by 

2a E11 
F = 	. , 

D 
-P 

In ref. 1 it is sham in Fig. 2 that 	decreases 

with hi. 	If 144;:C0300 	 increases with M. (See Fig.11). 

Hence by the above eTuation p increases with M, 	If 

11';tcosec y it is proved in ref. 1 thatvaries as (0-1) 
r  

and it is proved in this report that l)  also varies as (M2-1) 

Hence p varies as Li and increases with M. Thus at all 

supersonic speeds the steady rate of roll produced by the ail-

erons increases with increase of speed, and is directly propor-

tions/ to speed when 11,3" cosec 

Comparison of Nose and Trailing_Eclgp Ailerons 

Using the approximate formula for trailing edge ail-

erons derived in Appendix V, a comparison between t•-. effective-

ness of nose and trailing edge ailerons is made in Table 1, on 

the basis that the spoed and the ratio, control area/Wing area, 

are the same in both cases. From this table it appears that 

with moderate aspect ratios Of to 7) nose elevators are, very 

approximately, two thirds as effective as trailing edge ailerons 

at supersonic speeds, the discrepancy increasing as aspect ratio 

decreases. 

TABLE1. 

.COMPARISON OF NO AILERONS 7ITH TRAILING ED CE AILERONS 

/ Note ... 



Note. These figures are based on the assumptions that the 

loading edges of the wing lie outside the Mach cone, that the 

aspect ratio of thel3trailing edge ailerons is large compared 

	

1 	 o 	2 
with .7  and that T.- = . (See Appendix V). 

	

4.3. 	Nose Elevators  

It is sho'..in in 5.123 and 5.22 that the force produced 

by nose elevator deflections acts always on the centre-line, at 

two thirds of the maximum chord from the apex. This point is 

also the centre of pressure of a delta wing, so that nose ele-

vators fitted to a delta wing cannot trim the wing, i.e. cannot 

act as elevators. 

It would be possible, however, to trim a wing by means 

of nose controls fitted to it provided the w:?ng plan form is 

similar to either of thy. two types sham below; 

With either of these plan forms, the centre of pressure of the 

force produced by control d,flections would differ fram the 

centre of pressure of the 7dng at incidence. 	Deltas of this 

typo, with bent trailing edges, are not dealt with in this 

report, however. 

Tho analysis of nose clievators of this report is 

applicable to delta tailplanes on supersonic aircraft. 	The 

remarks in the remainder of L1.3 refer to such a tailplane. 

a2  

sinetany 

several values of r. For a given tailpl-ane these curves show 

the variation of a, with 

Curves of a7  against elevator area for four iLach 

numbers between 1 and 	aro n]otted for aspect ratios of 

2.3, 4 and 6.9 in Figs. 15 and 1S. 	On all these curves a2 
rises to a maximum value, ar max. at a certain value: of 

S 
/ 

a 

In Fig. 14, is plotted against B for 



usually about 0.6. 
a 

S
c 

S 
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The quantity 
2amax  is plotted against aspect ratio 

in Fig. 17, where al  is the lift slope of the delta tailplane. 
a2 max . In general — is a function of both M and A, but when 
a
1 	 2 \--1 	a, 

c max 	
,4amax 

M>cosec y, a, 	and a1  both vary as Oq -1) 2', and 
1 

is thus a function only of A. Only two curves, viz. those 

for /11 = 1 and MZ.cosec y, are therefore sham in Fig. 17. 

At Mach numbers between 1 and cosec'r the value of 
a2 max  

ax 
lies between the values of 

a2m 	at II = 1 and at M = cosec 
a1 

and may be found approximately by interpolation between the two 
a? max 

curves. 	It will be seen that the values of 	a 	are less , 
a2 	

1 
than conventional values of — for trailing edge elevators in a1 
lag-speed flow., particularly at small aspect ratios. 

Reference to Figs. 15 and 16 shows that at a given 
uC 

aspect ratio the value of 	- that gives the maximum value of 

a2 
varies slightly with LI. However, an optimum value of 

Sc may be chosen at a given aspect ratio such that at any Mach 
S 
number a2  is within 1, Eer cent of its corresponding maximum  c‘ 
value. This quantity( 74-)OFT  is plotted in Fig. 18 against 

aspect ratio. 	It does riot vary greatly from the value 0.6. 

Comparison of Nose and Trailing Ed ,e Elevators  

Using the approximate formula for trailing edge ele-

vators derived in Appendix V, a comparison between the effect-

iveness of nose and trailing edge elevators is made in Table 2, 

on the basis that speed and the ratio control area/ tailplane 

area are the same in both cases. From this table it appears 

that with moderate aspect ratios (4_ to 7) nose elevators are, 

very approximately, half as effective as trailing edge eleva-

tors at supersonic speeds, the discrepancy increasing as aspect 

ratio decreases. 

a
1 
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A = 4 
S
c 	 0.4-5 

"5  

TAT 2.  

CONPARISON OF NOSE ELEVATORS WITH TRAILING 2DGE ELEVATORS  

Note. These figures are based on tho assumptions that the lead- - 

ing edges of the tailplane lie outside the iiaoh cone and that 

the aspect ratio of the trailing edge elevators is large cam-

pared with 7  . 

R5. 	 Analysis 

As stated in the Introduction there are two different 

conditions of flow to consider, viz. (i) the leading edges lying 

outside the i.aoh cone and (ii) the leading edges lying inside 

the Math cone. 

5.1. Pressure Distriutions with Loading 7,dges  Lying Out-

side Mach Cone 

With the assumption of small perturbation of flow, the: 

equation giving the induced velocity potential. 0 in three 

dim-:nc1e 1, inviscid, isentropic, steady flow past a body is: 

- 
2 a995 a l  a0  3  

	

2 	0 ax- 	ay- 	az 

Consider 0 = 

 

- 	 r4,-= )2 	2 	z:f -n) 

It is readily verified that 0 as given by equation 

(2) satisfies equation (1). It Imyho shown that equation (2) 

gives the velocity potential of a supersonic source of strength 

q at (E,11,0). 

/ By ... 
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y.) 
I 	/ 	■-) 	4') 	2 	'31 

• (::--C) 	[(y"n) -#Z 

is Ca,S(.-., 0. 2011- 	eq..,ution (1). 	Equation (3) 3ives the 

velocity potentiHL of a nontinuous distribution of elementary 

sources q 	 '-fe shall investigate whether with corr- 

ect choice of t1...; 	 function Q;  equation (3) gill 

give the flew F.).cst 	 wing, 

norn.al 
	

1....4V,, y1 

•-• 

Lx--) 
	,2( 	)2, 21.i  2 

• • (vi) 

 

 

To the accuracy r, • 1-nc 	 d theory it is r.m..reoL 	stsulaA 

that the velocity at 	,.;n the wing is the velocity at the 

projection of 	 c_i the plane z = o. 	The.ror.'ore from 

equation (L,), 

67) 

 

(5) 

 

(whore the s-t...:-"fiees 'TVs' 	'U/ S' refer to the lower and upper 

surfaces of 	 s otivc:i.y) 

.P.ctually 	o.ondition ropre.sented by equation (5) is 

not satisfied 	-f-r,Yplom since 

(3) 

Vs = r 

(where A is the slo-o of the surface in the x direction at 

any point of the 	 ) Ho‘.-ovor, the flea ahove the wing 

is independent or 	flow 6.-1ov/ it, because the leading edges 

lie outside the 1,15 -2.j. oz;_ao. 	We are therefore justified, when 

confining ou:.• n  n'rion 	ie L!urface, in assuming that equa- 

tion (5) is satisfied. Equation ;7) therefore gives the vel-

ocity potential corroc;-.7 when considering one surface. 

The resc.1 is proved in rof.2, equation (45), that 

r 
az 
	 27q 

Since becomes: 



HMTGE 
LINE 

(w) = 29-sq.  
z=+ o 	z=-o 

• 

With egraatlon (4), this gives: 

(-- 

3 

or if errs denote the coaaponent of velocity in the z--direction 

at the upper surface, 

L ines Out  side the Hach Cone  

2 

It -Is suffIelc;nt to consider on upward deflection 8 

of the starboard c••ontrol only, since the effect of deflecting 

the port control as well may be found by superposition, TV 

is then zero eve/Tv:hen; on the ydng except on the control sur-

face, where w = U 0 sin (3. There is thus a unifom source 

distribution (- 	U
o 

 s' n())) over bOB. (See Fig,* This 

is ecraivalent to "1,■'.'re 7.1.--,4 form source distributions: 

(i) 	g1 

	U 0 0 sin 	
over 

OBE2' 
and 

I 

Q2 

U
r 

0 Sine) 
(ii) 

12 = 	
over Ob112. 

Tt 6hould. be noted that the effects of deflecting control bOB 

ore confined to the region ''.'1.20'13 of the wing. 

Let "' (x: •) be a point on the upper surface in the 

region Ba-r • 	(Sc: 

Thr- a due Lo cj 	tie potential 0 at P1  (x'  y) is 

/given 



----- 
v". 

 ey—in) v 	
2 

the integration extc.ndir.g over he region E. P1 	--T 
1 31' 

hero  
r.nli Pi  Si  , are Each :Lines through P. 

Let s = 

.-111  P 
/ = 	ql 	Es | 	

1 	 ar-) 

L)T1R1P1 

I o c 

vfip  2 	k 
t) 	

"n •c 

(2.--,7 )ki -2Y 
14 	= 	0  2 

-1 

6:-s-y 	) 
= 	2  
2} 

I 	' 

r-kly 
as 

9-  
;43 	0 

-'x(11  
kI y ) 

aco 	—cc 
y 	0 

/7 2 
1 

-5,-there n 1 - p 
-ni2  

In linearised• theory the pressure is given by : 

p = 	U0  u. 

ilencr: at points such as P1, the upper surface pressurc: duo to 

is riven by'; 

by-; 

0 

	 (61 ) 

/Similarly • • • 



k1+0 

N  2 
.P- 	 P 

/3r. 	71\  sqYx  113 X-s+ 11) - 
2 p 

a s 0 
rx+Py 

ds 

Similarly at points within bal
1° the upper surface 

pressure duo to q
2 is given by: 

P 

 

(6.2), 

 

kr)  
(where 

n2 - 0 

Let F
2 be a point on the upper surface in the region 

1110 1,12. 

Due to 

0 
r 

   

qi 
(,) 	) 2-P2  (y-Ti ) 2  

the integration extend- 

ever 0 s2. 

Let s = 

Let 	x-s+Py. 

k +p 

	 416(x-s-i-py)71+ x-s 
2 p 

11 12.0.  (x_s±py),(1+  (x_ 2,_p2y2 

2-P 232 

s 
ki+0 

ds 

s+13y-x _ 
2 p 

46+(.e.--civ)2- 2Y2  

t2  
= 

  

q1 

 

 

❑ 
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•- q.1 

 

p—k1 	j(e..:1y)  2 (le 
R+ ki 	1,7 	p 	k1  

Let 	ra
2
. 

2p (x-k1  y) 

(3. - 
• 2 

 dra 
• • 	,) ra 

1 

40'1  (x—k1  Y) 
• - 

k1  

(x+Py) 

27 
- m.2 dm 

i.e. sill 
 -I 

•2q1  (x-ki  y) 

42 	
k2 

j-  2 (x-ki  y) 
0 

vip-  2 

w k1  

-k1 ) (x+13y) 
+ sin 2(3 (x-kiy) 

2f3 (x-k1 
	 +0 x PY i  

2 2 21 (p—k1  ) (x+Py) 

-  
• • ax 	

sin 2 	
/(P-k1 ) (x+py) 	

- 13y  
2P (x-ki  y) + p 	x py 

2  

pUcji  sin
-1 
 

13 	) (x+f3y) 

2p (x—ki 	 x+ f3y 

kI  y 
Let t = — 

x 

P = 
p Uoqi  2  sin 

•I -17r7 

 

   

at points such as P2, due to qv  

Similarly, at points such as P2' 
the pressure due 

to q2 
 is given by: 

p Uoq
2 

= (7.) 

(she re 7b.  
= ÷k y)  



B 

b 

C 

FIG. 3, 
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Elnse  Lines Inside teach Cone 

Due to the source distribution q/  over OBE
2 

the 

pressure is given still 'by equations (7.1) and (6.1)0  but the 

equations for pressure due to q2  arc different. 

The effects of a
2  are confined to the triangle .- 

T.I1 01.1
2. 

Let P1  be a point on the upper surface in the region 

100111' 	(Sec Fig.3). 

Duo to q2, the potential 	at P1  is given by: 

jri 0  j(x-o2-p2 (y-To 2  

the integration extending over the region OR1  Ql . 

Put s = 

'Ix -13y 

.e. - 	 ds 

0 

  

\Ax_s_ET02_02(y_1)2 

x—Py 

,cto  0 = c12 	 ar  

q2  ds 

-s 
2p 
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22  

(0y-x+s) 

ic2 

-s 

 

    

   

   

2.P 

 

   

ds 

Put 

   

0 = 
2 2 T 2

-43 

C) -0 y 

213  

- 	17x 	20 -  2Y7-  

Ni 	k2.
+p 	'C 

+ X413Y 

iik7+73 =@y--x 

 

d k,-p 
0 

 

2 ity,2-1(3 2y2  

To evaluate 
}Y-x 

2P (k2y-x) 

k2+13 
ae 

   

put 	= 

J 

-2p (1:2y-x) 

k2 +p • a 

 

/(k7+p) (x-py) 

20 (k2y-x) 

  

443 (key-x 
k2

+0 In
2 + 1 an 

    

410 



Fk2 "13)(x-13Y) ' 

C • Cr A 
m 	SiT! 

• 
• ■ 

2p (c2p-x) 

ic2+[3 

r 

	

2 2 2 ( 	2 2I3(k2y-x) 	 y ) ■.k22-P ) 

k2+13 	71772y-x) 

k2 	(x2 	 (k 2y-x) 2 \  
P 	) k2-1.p 

Pc9. 0(x-PY) 
sine V 2((k2y-x) 

_i  1-1(2443) sinh   

2y-x) 

	

l(k,.; 	(7.fy) 

	

- 	

rJS  V 2 3 tk2y--,c) 

2 	 (Icn.I•P) (X-  13Y ) 
- sink 

	

2  2 	/ 73 77-1' 
(3. 

•■••••■■ 	 sir-12-1-
1 

n2+:17, 	1 2 
P\/r12-  

U ci2 	-1 2 T  . 
* 
. 0 P = _____. 1......:-... 1. 	....L..._,, 	znh

- 
tt 

 

13 	'''', n„+-- t [ 	 l ji
2
2 i  
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Finally, let P9  be a. point in the region b01:12 ,(See 

Due to q2, tht: ,potontlal 0 at r 2  (x, y) 	given by: 

2 2( 	\ 2 
t  

the integration mcte-..LCiing over P2  Q7  0 S2. 

Put s = E 4. N. 



22 
S+ -I 	12f3 (x-s+Py)Ti+ (x-'5 

2E 

3 
1.‘  k2+13 

x+0y.  

2 ds . 

Let 

2 y—e 
213 

,1/4//24n+  v_py)2_0 2y2 

(22-ot r.P_ 
--2pt (ic,y-x) 

at' „e 	k 9•13 

2pe(x-k7y) 

k2-13 

- 

(x+133?-) 

213 (x-k2,y) 

/q.2( c z•-• 
— • 

2 sA 

f.— 
m 	1+1112  + sinh

-1 

(1:-S-Fpr 

.oz2+ 0 
0 	(1,7  

J 

Pr.t = 
2  

m 	; 

(12jk  
k2+p 

20 (k-k) 

k2 

) 
• 	0 .7= 	ifq . 

11(2-i3 2 
2 

dm m 
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0 

20 

3 

'1G.  
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(k2p2)(x2_p 2y2) 

 

A9-0 (x+Py7) 
Ni 277170--  

 

2q2(x-k2y 

 

- ▪ ssin 1 
 

    

    

   

• 
• • 

(- 

J,A7737.2 2(x -k2y) 
= 

- 

R2 	 ----- 
p /

1v  
(2_,9 

N4 2  

sinh-1 

7 	xP; 	
1 .  

Binh 
 

213 

sinh-1  

/72  n 1 2(1-'7) 

L. 

(- 
2U q 	 ) (n 

sinh-1 / 2  
• • p 

) 	 n24-T 	 ) FT 0. 	
, (1 

2-1 	Vf  2n -T 

5.11 Controls Used as Ailerons - Calculation of fa Z7: 

Along a radial line through the apex 0 the pressure, 

being only a function of x 
 , is constant. Therefore the res- 

L. 	

ultant force  on a thin triangular strip of the Hang 	ar wi /with  .., of 	ea ak, 



t11 

tpdt 2c3  
171 	22  2 

3P n1 

2c3puoqi  

3 3 2 g.z. 
tdt + 

n1  
-1 

sin 

-22- 

2c with vertex at 0 acts at a point G on x = 3  

Remembering that the effects of 	are confined_ to 

1120B, the rolling moment due to qi  is given by: 

L1  = 	 tpdA 3k1 	'- Cit 1120B 

2 	2 
Now dA = 2 dt = k1 dt _ c— 1t2[3n1 

by equations (6.1) and (7.1) 

 2  sin
-1  

i.e. 

where 	(n1 ) =  

2c3pUoqi  
(n1 ) 

3133  

tat + 
2 

-n1 fl-n2 
	 2n1  (1 -t) 	■,,n1  +t 

at( 

It is proved. in Appendix I that: 

(n) = 	(:17-  - 

Hence fi  
7w3pUoqi  

3P
3 

/ 5,111 ... 
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5.111 Hinge Lines LyinOutside the Each Cone 

Similarly, using the pressure formulae (6.2) and (7. 2), 

the rolling moment L2  due to q2  is given by; 

1. e.. 

12 aE
res 

=
1 

+ E
2 

= 	 

starboard control, is: 

gilv7einthbyst:arboard aileron deflection 0 = 	L.r.d 

Hence the rolling moment due to the deflection of the 

L2 

E2 

ql 	

7tc3pUoq2 

2c3pljoq2  

- 

3P3  

3P3  

.mc3puo  

uoc sin 

-1  n2 	I 	2 	2  
0. 	- 1\ + q 	- 1) 

1 	 n, 

C 2E sin 
o' 

. 	Ls 
3P3 

2 c3 pUj sin 

3P k,2 	k
2 I  

An equal rolling moment is produced. by the port ail-

eron. Hence the total  rolling moment L is given by: 

E = 2Es = 
2 2c3  pi.J0E sin 

••■• 

ki2  313 

oin :) • 
k1 
 L 

L13 
pU2c3 	

3 
 

tan  
3P 	 tan2y 

0 

2 



rti 
2 	

sinh-1  

.11
2
- 	Li -n2 

-211- 

• 
• • 

acT  
oE 

2sin 

 

Put r tane  
- tan y • B = p tan y 

• 
. 	• 

(1-r2) 
3 

sin tan. y 

5.112 Hinge Lines Lying Insiae Each Cone  

The pressure is given by equations (8) and (9) and 

therefore, due to q2, 

2c3plIoq 
L2 

_ 	 ---- (II' 
30k22 	 % n

2..1- -1.  
-"2 

(n2-1) (n2j) 
	 at + 	sinh-1 	

n2+ ) (n2-T)d,1:  

2n2  (1-Z) 	 2n2 (17,-1) 

'g131Tocl2
c3 

2 
2 ( 2 1-n 

3pa 	
2 

nc3PIToq2  

3133 
	

(I 
n2 
2 

by the result of 

Appendix 11. 

i.e. f
2 is the same as when the hinge lines lie outside the 

Mach Cone. L
i remains unchanged. Hence is given as 

before by: 

.eE3 =
6an y . 

/ 	9  

2 0 -r-) 

5,12 Controls used as Elevators - Calculations of a
2 

The lift due to qi  is given by: 
1' 

L1  = - (See Fig.4) 



\/41 - ni 	ni 	 _11 -n, 

I 
at +€ 	I ---- sin

-1 

- 
n1 .,•••• 

= 
c

2
pUoc:1  

725- 

,n  

/ 2  1 _,.11  n.1 

at 	+ 2 
13 n1 

-1 
sin 

(1-n
1 
 ) 	t, + 1 31 -t  

2n (1 -t ) 1 n1 +t 

1 

by equations (6.1) and (7.1) 

• 
c

2
pUogi  

R 2 

j(1-n1  ) (ni  +t) 	ini  -t 

77(1-177 	 di 
1 	 ri1  +t 

It is proved in Appendix III that 

(n) = 	+ 

■ ' . 

	

2 
	

+ 1 

5.121 Hinge Lines  Lvinc Outside the Each Cone  

Similarly the lift L7  due to q2  is given by: 

2 
" 0-Toc12 	I 

+ I
\I L, = • 

2  - 

Hence due to the deflection of the starboard control, 

the lift is given by 

7C C 
2 piT 	

il 	
/ 	s\ i 

L, = L + L = - 	 
  2 	k,..,ni 	+ g, (- + 1 1 	2  2 n

2 ji 

..,/ 
7Iith elevator deflection e = r1, Cli  and q2  are 

given by 
U T1 sin  

	

ql 	- 9-2 

L_ 

2 c2 pU
o
'n sin 	frIT  

2  

7cc
2

pUoqi  



£
2 

= 

-26- 

c21.-J.T2
Tisin. 	7-   

1 - .. 1- i. e • Ls  = 6 
	 1 	k2  / 

2/ 

An equal lift is produced by the port elevator. Hence 

the total lift is given by 

2pIT2c2iisin 
L = 2L

S 
 = 

13 	 ir 
o 	 (1._ _ ) 

k\ -1 	2 

• ° • L 	. 2 2 

2kL 
§m sin 	( 	kl 	LITI sin 	 tan 

• k 	
()  

a = 	
) 

tan y 
PUo c 	

\ 	2. 

a CL 43ine 
o

o

a a2 = 611 = 	p 
tan  
Win ' 

i.e. a2 = 	- .0 sin® tan y 

5.122 	 In 	:Hach Cone 

By equations (s) and (9), 

c2pU0q2  1 ' -2 I n2-t 
7 ___c  

c3 	1 	\I n 4...e 
n2 id 2  

L 

d'E 

-1) (n6+-1) 	®2
sinh-1 	 d sinh-- 	

z  
2n2  (1 --t) 	 I 	2n2 (-E-1) 

U 

7cc2pUoq2  

P-ri2 

7r.C2pU0q, 

n +1 2 
by Appendix IV. 

 

i.o. L2 
is the sane as when the hinge lines lie outside the 

Mach cone. 	1./  1,1MnITIS un-lhanged. 	Hence a2 
is given as 

boforw by: 

a
2 	

L(21- 
1? 	

sin 11) tan y 

5.123 Position  of  Centre of Pressure due to Elevator  

De  fie c ti oI  

/The ... 
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The pressure is constant over elementary triangular 

strips of the wing with vertex at the wing apex. The result-

ant force on such a strip acts at a point whose abscissa is 
2 c. The centre of pressure must therefore lie on the line 

x = c, and by umactry it lies on the centre line of the wing. 

Thus the centre of pressure due to deflection of the elevators 

	

lies on the centre lino of the wi 	 2 
ng, distant 	c from the apex. 

5.2 Solution with Leading Edges Inside 'each Cone  

The solution depends on the fact that the velocity at 

any point upstream of the trailing edge is of degree zero in x, 

y and z. This is proved as follows: 

Let P (x, y, z) be any such point. By dimensional 

theory, a typical velocity component u is given by: 

x' 	 c • 
1" 	y z  

• 

The flow at P is uninfluenced by conditions downstream of P 

so that if the wing is replaced by a similarwins of larger 

chord Cl, the velocity at P will be unaltered, 

i.c. f Z 	,v 	z x 

( x 'x'c 	- TT =I  x, x ,c , where c1 	c. 
1/ 	o 

Hence u must be independent of 	, i.e. a is of 

degree zero in x, y and z. 

u, v and w are therefore of degrees zero in x,y,z. 

Now u, v and w all satisfy the equation: 

2 a 2f 82
f 	8f 

0 	■11.1■1 .1. or...m.6. .1. worm.. 	, 	0,  

ax2 
dy'
0  
 az2 

whose most general solution of zero degree may be written: 

f = f 	
x+r 

13 ry+ i  f (LLD 
2 	r 

, 	2 
where r =NZ

2 
 -132 y

2  —p z2  . 

Let w denote the couplox variable: 

x+r 

/Then ... 
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Then we may write : u = E EJ (w)1 
v = i [v (0.0j 

w 	R C.V 	. 

Inside the Hach cone r is. real, and therefore 

, / 	, 	2 
co  I 2 	

4 	
= x r

2 	x-r r,   
(x+r) 	

(x+r)  2 	x+r 

1 except on the Mach cone where r = 0 and fwt = 1. 

Thus the kach cone and its interior are represented in the 

-1)1ano by unit circle and its interior. 

At the wing, z = 0,.'s (1) - 

x+
2
-13 
2
y 
 2 

1.(p,-,r1 2 5  
1+ vfl "-i xi 

which is real and increases with 	. At the leading edges; 

y = + x tan y3 

13 tan y 	± 
_L. 

. • . 	- 

where k' =v1 	k
2 
 =, {3 tan y. 

The aerofoil therefore become s the portion of the 
ki 

real axis between. ++k 	
in the o.) -plane (See Fig. 6) . 

-  

The boundary condl  tions of the problem are: 

(i) Component of velocity at the wing surface normal to 

the surface is zero; 

(ii) u, v and w are all zero on the Mach cone. 

Condition ( ) follows from the assumptions of 

linearized the ory. 

It i u possible to find functions U, V and W that 

satisfy the so boundary condi tions by transforming from the 

w -plane into a. new 21an-,, tic w-plane, u si 4; the transf orma-

tion: 
2 LO 

k 
P 

-{0 

(wher cn (T, k.) is one of the Jacobian elliptic functions of 

modulus k).  

A'ig. 5. 

13y  

1+k 
1+f1_ tan y 
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I (w) 

4 

0 
	

EDGE OF IJACH CONE 

FIG. 5  

THE WING IN THE (x, y, z) PLANE  

FIG. 6 

TEE co-PLANE  

PIG. 7  

THE T -PLANE  

The interior of unit circle in the w-plane becomes the 

interior_of the rectangle, vertices 4. 

In. Fig. 7, the section aa' of the imaginnry axis rep-

resents the Mach cone and the parallel lino CU 
 C' represents 

/the,  wing. 

IL_ 
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the wing. A and E represent port and starboard leading edges. 

AE represents the lower surface of the -ring; ACTT and EC) rep-

resent the port and starboard halves of the upper surface, res-

pectively. Bu  and BL  represent the port hinge line on the 

upper and lower surfaces; Du  and DI,  represent the stgrIJoard 

hinge line on the upper and lower surfaces. CI,  represents the 

wing centre line on the lower surface; Cu  and CU both rep-

resent the wing centre line on the upper surface. 	00
L 

repres- 

ents the portion of the xz plane between the lower surface of the 

wing and the hach cone. 

For given control deflections, tie fi.L 	bo,tna-y 

ciitiori (sec p.28) defines W on the wing, i.e. on Cu  CU, The 

second boundary condition requires that wr = C on oar. Also 
dU 

(a) sine; u, v and w are continuous across the Mach cone, T , 

dV 737  and s must be finite at the Mach cone, (h) the aerodyn- 

amic forces must be finii!o, so that the integral of u with 

respect to area must be finite, (c) the only places whore an 

infinite pressure is admissiblo are along the hinge lines and 

leading edges, (d) u, v and w must be single valued.. 

.-1" These conditions enable us to find 	The 

relations: 

dlI 	I 	61:7 
- en tit 	p 	d.T 

dV 	 (17 
sn T 

1:17 	 th•-   ' 

derived in Ref. 3, from the condition that a velocity potential 

exists, then determine — and dV — 	u, and hence the prossure 
aT 	dT 

du are found by integrating — 
CIT 

with respect to T. 

The above is a modified representation of 

method (Ref. 4). 

/ 5.21. 4.. 



5.21 	Controls Used. ar: .A.ilerons  

FIG. 8 

The boundary condition at the wing is: 

U
o sin ED = 	overr the starboard aileron, 

= Vi
c 

, over thL port aileron, 

-sv 0 A.sewhere at the wing; 

i.e. in Fig. 8, 

to = 0 on C L . B, D and. I,' C' 
U 	I, I' 	U U 

w = w on D
TI 

D
U 

w = vi
o 
 on B

U 
B.

L
. 

cUT Thus in integrating -c-17 along CL  Cu, w mast jump in 
(FT value by an amount (-wo) at Br.,  and. (a-wo) at Bu. 	Hence Tr- 

mus-b have simple poles at L and Bu  .with residues of imagin-
-w  

ary parts — and  — resp=3ctively. Similarly Tr- must have 

simple poles at DI,  and Du  1Vit h resid-ues of imaginary parts  

—L.-D-4w  and 
% 	

2 
- • 

Exeopi: eh rL cOinngrd by disnoiltinuities, the value of 

-sy is poLz,O;rtut on the wing. Also w is everywhere zero and so 

.cousi..q.nt, on the Sia(.17. cone. 	Therefore 
cEr 
aru must be real on the 

wing and liach cone, 

Hence 
dYI 
dti 

must 1)-) chosen to satisfy the following 

conditions; 

I('1) . . . 



(3) 

0+) 

dN 
dT must Le rea or the wing an(-.1 -ach cone and its integ-

ral along CCL  frau C to CL  must be zero or imaginary 

since NT zero at 0 and t CL. 

(2) 	Alonr,  0' dT must have poles at D and- 
U 
 with 

o  
residues of iL-aginary part 

w
,T.1a. at PL  and. DI,  

with residues of imaginary part --- 

05 
must be finite on 'Jhe Each cone, dT 

.N dll 	1 	Ti 1 	_, d.V 	 7) 
dT 	= 7  an T -ci.777 and y,..-: (--- - i sn T -- Must also 

OLT 0 Yee finit on t1,_ ::a , .,-1 , cone, 	Therefore -- must have dr, 
at least sinvule Z'.?..CC at 	a'. 

Apart from the poles at Du, LIT, DL  and. BL, the only sing-

ularities of ti  on or inside the rectangle may be 

poles with zflr❑ or r,:al residues. 

The only places Atihero u m Le infinite are A, E, Bu, 

By Du  and DL. 

Any infinity of u 	be such that the integral of 

with respect to r.roa :conalns finite. 

(8) 	u, v and w roast be lingic valued. 

The required functioh is 

d?T 	ik1
3C2w 

..2 
dT sn ' na T 	inckT-ai) 	nc(T-1,aid • 

L RD 

Note. 	The symbols C,D and s (which  is introduced later) 

are donned by- 

C = cn(a0k. 

I) = dn(,1:1) 

S 	(a, 1:' ) 

• 
• • 

dlT  
att 

I  en 
::.1: 15C 2w 

(IT 	 0 
dT T Ii `ill T cd T Fr1C(T-ai) 	no ('N-ai]. 

At n  on the i;Lach none, u C. 

Therefork: at any point (K+it) on the wing,  u is 

given by; 

uRJ 

	
CL 
	eir 

2 

Ri3D 

J 
-I -1- 

r 1: 	Ca T cd G nc(i-ai)+ 	('Ci-ai)7 LIT 
i i r,  ,) 

:1
11 	

1-  1 	
sd I cd. T nc(c-ai)+,  no(T+ai) 

1 J 1t 
21. ! _ 

/since 
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since the omitted part of ti3;?, 

lit 

integral, frm. 	0 to 	K, is real. 

'ng) I 
1 	1 

1 	i en u en ' ds (u-ai)+ ds (u+ai) • . 	 u - - 3 2
w k' 	0 

a IS1  c)  (12 = 	K) 

it 

= -1  17 
ci o 	lc' - 

STI 
2 / 

(v, ) 	or, k') X 

	

t d; 	v  k' ) de v a, k'} CIV 

(12 .7.. iv) 

fvF. 
2 / 

2 0,,  1 
, 	

sn 	 k' ) dv  

2 	/ 	o 2 	2 
-sn (i k1 ) 

)3c t, k' 
20 I 

k1 2 1 
,2 .2 2 

y 

,Iso(.'6, 	) 

I  
- 
.tpid 

S 
0-2y 

Sc

S  
S+Cy 

S+Ce0(t. k' ) I 	2 
in 	 (t, kr ) 

SSE' ` C-Cso (t, k ) 	Ck' 

The pressure is given by 

p = 	pliou 

k' pll 
= 

9.tD 
Ii.E.N.Csn(tqfj_ _L - 2C sc(t„k_i  ) 

-0 S-030 	) 

J 

On the wing s= h Jt an 

   

   

X+ - 
2 2 

 

	

Substituting the values in onyx ,») 	2-2.--(1) 2 • - 	gives: 

sd(t. k.' 
2 2 2 

..//x 	y 

Let p = 

a • k sid(t,IcT  ) Now an ( t, ) is + ye. 

/Therefor?. ... 

-w 
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f3 
F: 	' tan y 

) 

	

/1 72P,2  • 

On the starbo:, rci upper surface, cn (to  k ) 	- 	-;.) 2/tan2y , 

the sign of the root being dotenninocl. by -Kr Z.„ 	. 

Thu:-3 on the starboard. upper surface, the pressure. is 

given by: 

1.7.'piJwo 	

i 

2 	2 , 
, 3 1c-:, 	

/ S•Li t:a-i.'. 
P a" - 	,nf3D 

) 
	i 

t 	1 s an2y-,,u 2-,av l 
',- 

which again is only a 'L'iristion of Y 
.-,1-  

The roiling mornont 	given by: 

3
tan 

L = Zrc ; 
d Id • 

° 

2Cp. 

"tangy-p.
L  

4ks 	w cr) ntan 
v o 	 ' I l og

o 	•- ... 

 

L = 
370D 

an2y 2-2,J, 1 

  

E 	s 	 rs4)tan  y  
0  

  

• 

4ktpliowoc3  
11  Zoo 

2 

S Vit:n2y-7-141. 

     

an y 
alL4  

ta-i • 

Integrating by Parts, 

 

- r 
Art 

t 1 r, il:-TT---- 	) 

0 0 
1 	. 	r3 N, 	 C`,p.  

4k? pU w c3 r 	I it'. 1.nr• 

-C - 	s 	), 
I... 	\,/ tan - y-p, 	p.

,  
1 i •  k._ 	...--1  ❑ 

-Lan{ 

y 
clfil,1 2ta k.) 	 p.7ydil  

2 r  
2 L.: 	f 	2 (3-tan 	) vtan •1•-p, 

S•-E) tany 
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2C 

ran an y 

0 
, tan

gy-i.2 
 

S2+ 2 
tan 

2
y loge  

(

2s02+0 (61) 
(+0(C_`} 

   

loge  

L 

+ s ott 
6o 

1 
tangy loge  2502+0 ((2)) 

«-2) 

   

+ Yoga 
 

c
2SC

2
+0  

 

ran• 	y 	2 
,2 	2 	(14  Ctan y 

ILL ° 	(32tan2y-112),Aan`y-p." 

 

  

-tan y 2 
+ 20 

c-) 
	vican2y..12 

The limit terms both vanish as 

.7c1:3D  

t+.k'pUowoo-3  

. s2c tan2y 	2 	smn
2  ea.e)  

2 	2 
S -sa.n 0 

0 

+ 2 C tan
2
y sin2Ode, (l.t=tan y zine) 

j 0 

,•)1 
C-72-  

= S
2
0 tangy 

o 

S
2 

3
2
-sin 0 

,rte 	n 

de+ -" tan-  y 

;-."))-'0 Carey 

et a 

ao 	-AC 
tan  2y 

 /. ,2, 

S4C tan
,.- 	dt 	'F. 03  4_ 

a'n2 
 

2 2 2 	2 	' -C t 

(t M tan o) 

c] 0 

2 
y 
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3RD 

2k' C 
3
tan

2
ypUoytoc3 

• 
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203tan3,rptiowpc3 

3D 

2U:3tan3yr)UO2csin 6.11) 

3D 

• • "  

L  

pU2c3tan 2y 

24C3tany sin (J1)  
3D 

aCE 	
2Cj 

= 	
3D 	'-arlY 

sin 

Using the relations of p.34, we have: 

sn (a, k' ) 
tan(2:1) 

= - tan y 

on (a, k ) = C = \tiZa2C--ly-tan2y 

2  
dn (a, k ) = D = -p -tanif9 

Hence 2 (1-cot
2ytan. \.11  

3  (1 2-ban'e 
sin(' 	y 

sin e tar y 

Tien the Each con just touches the lading edges 

(i.c. 

 

tan y = 1) tho above formula and the formula derived 

in 5.112 both give the same expression for 

5.22 Controls  Used as Elevators  

The boundary condition at the wing is now 

w = U 11 sin 	= w, over the port and starboard 

elevators 

w = 0 el.s...hcre at the wing. 

The conditions that 73.7 must satisfy are exactly as 

before in the aileron case, except that now 7  must have 

poles at D and BL (sce Fig.9)„ with residues of imaginary 

part "--
o 
 , and at DL  and Bu  with residues of iraaginary part 

V'0 

/ Fig. 9. 
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:PIG. 9 

The required function is: 

k: 	c3.,70. 

aT - 
70

2 	[E3n 7' nd51-. nc(Ti-ai) - nc(T-aq + :IA nd_2T (37 	 o  

1.... 	 (.. 
v,rhore A is found from tbs.: condition that w= 0 on 

con e and on the centre iim of the wing, 

F K 
i.e. 	R 

i 
dVir 

FIT. = 0 
aT  

Li o J i- 
a 	 33 

Thus, A 	nd
2

T Ch = 

rr‘K
/E

,2_ 
aT , 

1k. 	C, o 	 0 
1-D2an2TI 

_J 

the Each 

  

r-24- -71 (-D2,k) 
1(' 

-A 
kr 

2 
2SID 
k'  

  

2 
whore=

, 
	an E are complete elliptic integrals of 

the third an.d second kinds with modulus k, 



rinc(-tLL) 

23Dy2 
+ A ay, Y=  oa(-L,k) 

l-k' 2C 2 2  y 
ci 0 

no 4t, k_') 
kl 
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2 2SD0
2 	

k' 

	

A = 	 1 - 	n (-D
2
,k) 

lc' 
2 

	

Now 
an
-- 	 c = - 

	

aq• 	i3 "dz 

ik' 403w
0 

 
( on T s n ¶ na

3 ( T j  novt+ai)-no(T-ai)(
) 
 +5.A 1-ta2 

 
Z on T 

7C 0.1)
2 

‘ -_, R 

At 0 on the Hach cone, u = O. 

. .

▪ 

 At any point (Ki-it) on the wing, u is 6i-v-on by: 

u = R 

rK+it 
an 
T- 

   

rC 3vx 	(IKA-itc 
21,̀...1D an2T on 	

LL 	
9 

	 I 	 cn•T na 2 	J 0 	L cin2T (tha2,7..kr 202sn2t ) 

k' 4c3w 

,Rro2 

k' 4C-3Vsr
o 

%pD2 
2SD 	25D 	

y, 
k' 202 	k'

• 

	202 (1-k' 2023/ 

On the upper surface of the wing, 

no(t,k9 	SD 	on(t,k')+C  

k,303 	e I on(-b,k' )-c + - log 

cn(t,k i ) = - N•71-p,Vtan.`y , where p. x 

4C 
• 

k' 	w 
• . u 	

0 	2SD  tan :r- 

.n13D2 k' 2G2 k' itan2y-p,2  

SD 	
log 	C tany+ 7y-11

2 

k' 3C 3 	
o 

 
C tang- tan Y-4 

7 2 I I 

The pressure is given by: 

P = 



(s = II cot y) 

/ 	2 	, 7. II .-D ,krtan y 	tan 	y 	_L. + 	 lor,  

	

G 	,.> 
--;,o

g 
'e 

	

k r  C 	t-   
t1 0 

)=1 

loin  

S+6-  
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c3 

P 	

pU0w0 
 

7q3D
2  

SD 	
log 

k' 3ci 

tan y  

721 -4/2y- 

0 tartyLitan22  

I 	2 
C t:1-1y+tan y-p, 

The lift is therefore given by: 

(\tan y 

L 	2o` 

 

II 0  

210 1-Cpti w c2  
A) an y  

kT No tan
2 

- yI1
2 

ry 

itpD
2 

) 

kr 3c3 	
logo 	C tany- Vtanr-•.t 

2 	2 

SD  

C tany+v•Lan y-1,2 j 

Substituting the value of A pr3viously found, 

• • 
•.T431)  

L 
2k' 3CS pll0w0c

2 

rtan. Y 
211 C--D2,  tan y 

   

   

^  
tangy--u

2  

C tarty- Niban:y-p,  
2 + —

I 
  log

e 
k C 

C tarry- 4tan`Y-p.-  

= tan y 
21-1-(-D2, k) + 

C 
loF,e [2- 	-s 	

cis 

C + ,4/1- 



s log
e 0-4 1-32  

/ 	2 - -s 
1/4 

) 

kt 

intc,i;rating by parts. 

(

( 
+ logS

C +0 ) 
(L7 

E0 

2
cis  

2 
o 	(S`"-s )-11-s2  

Gig e thc limit term i o zero. 

2.1c r 3CSpU IV 0
2 L 

c 

• • • 
132 cot Y 

+0L1- ‘\t, 

s - 	) ) 

-1 

a711.-(-D2  k) -2— n 

(S
7 2 
-

) kl 

- 

  

.7.c n (-D2,k) tan ytan y  
+ 	

, 	
t 2. 2 
	o 

log 

  

(:  

7.171 k / 	2 

k'

1 
+ — 

le
2  

2
2 

S
2
-sin

2
0 

 
d0  -D  k)  _ , 

1-, 0  

(putti.ng s = sin e) 

2 F)S 	
s 

2 
ds 

	• + 

lc' `- 
U 
	(22...s  17:7, 

2:-. It 
(-1),k,)_,  I 	2S 

2  
cit  

' 	2 
t 

r00 

Li 0 

„ 2 
k

r2 

(putting t = tan 0) 



p21.1.(B2r2 _1111  _B2 

E'(-B) 
sin tan y , 

1.■ 

(since r = tan 9 cot y, r3 = E i; 

Hence L 

-41- 

k' 2 
 

2k1 CSpilowoc2tan y 

pD 

2rICSp-LI0 c
2 
 tan

2 
 y sin 

I) 

2   
.. ki 77C(-D2,k)  [ 

 

-1 

   

C 	 2L  

 pu 2c2tari y  

4.-naStan y sinco 	2  -D2,k)  

. . a2 	
= °CT 

	 j. 

B 6) -1 sin 	tan y 

4 
Cs kr 2TT(Icr 2S -- k) 

(k
') 

 

-1] 

sin.8 -ban y 

14. sin a tan 	 ?tan7 	-1.14 

(Ptan y) 

fe may abbreviate this to: 

a2  = sin tan y . 

22ecial Casoi; B W D i.e. H 	1 

When B C, kr = 0 and k = 1 . 

Also, from R 2 

B 211 = B 2IC (B) -1- 
11 -B - 

2
r

2 
	7C 

/ 

 
r  V 1-r 1 

(B) sn-1 (r,B)  



I /1-B
2
r

2 
sn 	3) 	E (sin-1- B) 	(B) - A 1 2 

In the liryii-ro 	13---) 0, it is proved in l_ppenclix VI 

that: B 2K' (B)--.). 0, ond in Appendix VII that: sn-1  (r,B)-E (sin-i r„ 4Kr (3)40 
J 

Also as 13-3 0, 	(B) 	I and 	
( 

sn 	 2-1
--1  

1 	r. 

Hence B
2 	

s
1 

-r
2 

2_ 	 1 ±, 	B 	1 	- 
cos r, as B—> 0. 

Hence the expression for 0_0  becomes: 

/ 
a2 	■COZ 	

-
s.I.n1F"--'0, tan y 

Position of the  Ctrlicre of Pressure  due to Deflection of the 

Elev,vtors 

The proSalia-0 is aR 	a function only of Y-x  , so that 

the centre of pressi -_-fv; c'hie to deflection of the elevators is, 

as before, at 	c, 0 

5.3 	Effects of Ii.11-Inite  Pressure at the Leading Edge  

'Then tt,. leading edges lie inside the Mach cone the 

leading edge pres;-::ure is infinite. (See pp. 34 and. 39 ). 

It may be proved that Idth the controls set at an 

angle 0 and the -„'Lng at incidence a, the total velocity ci  

at a point P (x +(:, x
o
tan y) very near the starboard leading 

edge is normal to the loridIng edge and is Es,ivon by 

f

. 

 
q w (c1or,+=-26)4 	4 Lounded terms, 

where the cocfficieiLts cl  and C;,„
L 
 are functions only of Boa 

 
Y, fa and f3. 	(This is true for both the elevator and aileron 

cases). 

By the recut Drov,:d. in Lppendix IV of Ref, 3, the 

suction foy.ce per anit length of leading edge in a direction 

normal to the leading;  edge cqua-Js 

7cpx.
a
ces y •,. /1 2 tan

2 
 y (el  a,-;-c )

2
, which is a term 

of second order, 

/In the ... 
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In the aileron case the suction per unit length 

measured parallel to the outward normals to the leading edges 

is equal ana opposite at corresponding points on port and star-

board L:adinL edges. The leading edge suction thus produces 

a side force ana a yawing; moment about Oz which are both 

second. order texas. 

in the elevator case the suction forces per unit 

length, normal to the leading edges, are equal and of the same 

sign at corrosoonding points on port and starboard lmding 

odes. The suction thus produces a drag which is of second 

order, i.e. is of the scale order as the drag of a delta wing 

at incidence and cannot be neglected. 

5.4 	el-nova dRa.eents  
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ment. 
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.LPPIEND IX I  

EWLIT.LTION OF L. DEFINITE INTEGRAL  

The integral to be evaluated is: 

.,1  
t 

) --1c-- 1 (n) 	
I 

--,-. 	2 	 tat 
n 	,,...A -n2  t  j n 

(n+t) 	in- t t dt(), 
\I 	2n (1 -t) 	ri+t 

2t sin
-1 (,[7:n)—(7t) 

 dt 
NI 2n (1 -t) 1
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= 
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V n+-b 
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• 
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• n c 01) = —
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Integrating by parts, 
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EL) -n 	( -t) 

Cputting v = tan e) 

= 2 

To evaluate 13  put t = - n cos25. 

1
3 
= 

n+t 	= 2n- cos20 cote sin2ede 
"n 	 o 

2 

o 

(2 cos20+cos40 	I) de 
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= - 2 11  

.S. Collecting results, 

(n) = --7c— 1 + 	 1, 

1 -nL  11-n- 

/Appendix II 
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APPEND= II 

EVALUATION OF ADEFrTIIIE ElTEG-PAL  

The integral to be evaluated is: 
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APPENDIX III  

EVALUATION OF A TAFINITh INTEGRAL  

TIle integral to be evaluated is 

I /1 -n- 

it  I°  at + 	2 	ca 

-n N/1 -n 

fT 	n 1 
. 
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n+ t 
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tJ 
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Integrating by parts, 
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APPENDIX IV  

EVALUZi.TION OF A DEFINITE INTECRLL  

The integral to be evaluated is: 

Let 
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The limit term is zero from the results 

proved. in Appendix II. 
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APPENDIX V 

APPROXILIATE THEORY FOR ► RATLTNG EDGE CONTROLS, 

FIG. 10 

The induced flow •ue to deflection of the control 

surface ABM) can only affect the area MiBCHL  of the wing. 

Over the area M
2 

M
3 

CB
I  flow conditions are truly two-dimon-

sional. If the Hach angle 0 (= 1(M1BH2)  is small or if the 

aspect ratio .L
o of the control is sufficiently largo, it is 

justifiable to neglect errors introduced by assuming that the 

flow over H A and IL
3

CD is also two dimensional and by neg-

lecting the end effects over AI1BJ and 14CD when calculating 

forces produced by the controls. 

Therefore assuming ..
0\11

M2-1))1, the lift increment 

per control is given by: 

pU -Se e  
L   . (This follows from Ackerett  s 

n 

theory for a two dimensional wing). 

2 t..--13
c  

If the controls are elevators, L 

tr-1  

S 
dying. a0  =  	

S 

our assumptions, the resultant force due to def-

lection of a control surface acts at its centroid. Let b
o 

be 

the distance between the centroids of the ailerons. 	The rolling 

moment is then given by: 



b o 
	 bopU2S 

• GL 
pU 2Sb 

2 	Sc o 
S 

in 2-1 

• 	 2 	S 	
o • • 

d 
7-2_1 

/Appendix VI . , 
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API-ENDIX VI  

EVALUATION OF k LEIIT 

The limit to be evaluated is 

-/-7 
	B2  t B 	(B) . 

Boo 

Now K' (B) 
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yr 1 _ (1-B2 sin2 6  
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B
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, 	 t 	. 
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J3 d 

2. 
v 

2 f 	2, 
Li 0 	 ) 

i.1 E2  KT (I) 1( 

Hence 	t B
2 

K T  (B) = 0 . 
B ->o 

B dv 

/Appendix V , 
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I
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 0 1 U 

• • 

 7 1.1 _52sin20  
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B-7 o 
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1_ I -B2sin2 0 1+ \ -B2sin2 6 

r. 
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1 0 
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AFFEMIX  VII 

EVALUATION OF A LThilT  

The limit to be evaluated is: 

t [ sn-1 ( kro B) - E(sin-l r,B) 
B--->0 

(B). 

. -I r 
1-' 1-B sin20 	2 2/ B sn 03,B 	COQ 

ff 
ki 0 	v -B sin2 

 e 
2  

-t sn kr,B) E (sin 1  r, B) 
B-)o 

= 0, since 	t  B2 	LB) = 0 by Appendix VI. 
B-P o 

Herinr..) 
13-'0 

sin W1 	 r,"3 ) 	(B) = 	. 
-I I 	/ 

(B) 

t B 2  K' (B) 

o0 o 
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