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Unsteady supersonic flo7 round an aero2oil of 
infinite span is considered in the first part of the paper. 
It is shown that the iressure at any given point of an 
aerofoil under for:rard acceleration can be analysed into 
three components, one of which is the steady (Ackeret) 
pressure due to the instantaneous velocity, while of the 
other two, one depends directly on the acceleration, and 
one on the square of the velocity, during a limited time 
interval preceding the instant under consideration. 
However, the difference between the total gessure and 
the "steady pressure component" is such that it can be 
neglected in all the definitely supersonic conditions 
which are likely to occur in practice. 

The oscillatory supersonic flow round a Delta 
wing inside the Mach cone emanating .  from its apex is 
considered in the second part of the paper. Particular 
"normal" solutions are obtained by means of a special 
system of curvilinou. coordinates. It is shown that the 
velocity potentials corresponding to vertical and 
pitching oscillations of the wing can be represented by 

series of such normal solutions. 

The assumptions of linoarisod theory arc 
adopted throughout. 

AR/FY, 



1. INTRODUCTION.  

	

1.1. 	In the present paper, tho linearised theory 
of compressible flow will be applied to some problems of 
unsteady supersonic aerofoil theory. Two specific topics 
will bo dealt with candor this heading, viz. (i) unsteady 
supersonic flow round an aerofoil in two dimensions, with 
particular roforonce to accoloratod motion, and (ii) 
oscillatory motion of a Delta wing at supersonic speeds. 

	

1.2. 	In the first part of the paper (Section 2), 
wo consider in the first instance two dimensional 
accoloratod flow round a symmetrical aerofoil at zero 
incidence. The volocity' potential for this type of flow 
CAM be roprosentod by a distribution of elementary 
solutions as given by 

a 

2 	
2 	2 	

2 N/49-(t -to ) -(x -x0 ) -(Y -Y0 ) 

in (x,y,t) space, whore t donotos the time and a the 
velocity of sound. This distribution is of a typo which 
has boon used in connection with steady supersonic aorofoil 
theory in throe dimensions (Refs. 1 and 2). However, in 
that applicstion t represents the third spatial dimension 
and a is the non-dimensional constant 1 	whore M is 

M -1 
the .Llach number of the flow. Thus, if the direction of 
flight coincides with the direction of in3roasing x while 
the chord of the aorofoil always lios on the x-axis, 

(x0 , yo , to ) at any point outside the aerofoil is given 

by 

(X0 , yo , to ) = a J1 	Cr(x,t) d x dt  
, 4 j■- 

42( t_t0 )2_( x_x0) e_y,2 

In tho above formula, the "source density" 
cy--(x,t) is related to the normal velocity component by 

and the integration extends over valuers of x and t which 
corresponds to points on the aorofb4, and which

)2 - 5,0  7 0. 
satisfy 

0) - (x  - x0Z the conditions ter,:.to  and a2 (t - t 

The vertical velocity v in turn can be expressed in terms 
of the-kinematic conditions ons at the aorofoil. 

Using the above representation it is shown that 
the pressure at any given point of the aerofoil can be 
analysed into three parts, one of which is the stoady 
pressure duo to the instantaneous volocity, while of the 
other two one depends directly on the acceleration, and ono 
on the square of the velocity, during a limited  time interval 
preceding the instant under considoratien. Tho componont 
depending on the accaloration gives rise to an expression 
for the apparent mass of an aerofoil at supersonic speeds, 
which is calculated for various cases of uniform acceleration. 

V
o 
= limek) = 1N- 0.(x0 , to), 

y0-40 'ayo  

/Howevor 
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However, it is shown th , t the difference between the total 
pressure and the "steady pressure component" is such that 
under definitely sup e rsonic conditions (11,0'1.15, say) it 
can be neglected in all cases which are likely to occur in 
practice. This statement doss not apply to transonic speeds, 
but the conclusions for such speeds reached on the basis 
of linearised theory are of doubtful validity in may case. 

In view of the fact that conditions above and 
below the aerofoil are independent of one another under 
two -dimensional supersonic conditions, the methods and 
results mentioned above also apply to aerofoils at incidence. 

1.3. 	The second part of the paper (Section 3) deals 
with unsteady supersonic conditions in -three dimeeeions, 
in particular with the oscillatory motion of a Delta wing 
whose leading edges are inside the Mach cone emanating from 
the apex. The alternative problem (leading edges aC wing 
outside Hach cone emanating from apex) has already been 
solved by Garrick and Rubinow . 	(Ref. 3). 

It is assumed that the free stream velocity is 
parallel to the positive direction of the x-axis, while the 
Delta :ring lies (approximately) in the (x,y) plane, its 
apex coincidingwith the origin. A special system of co-
ordinates (r, e  ,,,-) is then introduced by 

x = r 	ns ( e , k') nd (c7- , k) 

y = 1 r ds ( e  ,k') sd (cr ,k) 

z = 1 r cs ( e  ,k') od 	, k) 

In these formulae k= (3 . tan Y, k
2 

e k' 2 = 1, 

leer 0, k' 7. 0,P= ii2  - 1, where:: is the Mich number of 

the flow,1 is the apex semi-angle of the Delta wing, and 
ns, nd, etc., are the well known Jacobian elliptic functions 
in Glaisher's notation. Particular "normal" solutions for 
the velocity potential are than given by 

m 	 m 
1 	 r) F (ns( e ,k 1 ))1,41  (k i nd(cr,k) ) exp 

Nr17- n +1- 

Vi3 

and E and F are Bessel functions, and Lamdfunctions of 
n 

 

the first and second kind respectively. It is shown 
that the velocity potentials corresponding to the 
oscillation of a Delta wing in vertical motion and in 
pitch cm be represented by series of normal solutions 
as mentioned above. 

/Acceleration 

i %.40 (Vt-x sec fu. 
2 

(I V 
-1 

where 	= 1/4.0  sec/i4, 	= cosec II, and the J 
n 



Tho linoarisod equation for the velocity 
potential is 

	

2- 	2 	 2 - 

	

 
2 	2 	2 	2 0 y a 	Q t 

2. ZCELERATION EF22CTS IN SUPERSONIC FLOW. 

2.1. 	Consider the two-dimensional rectilinear 
unsteady flow round a symmetrical aorofoil moving at zero 
incidence. do chooso a system of coordinates which is at 
rest relativo to the fluid in regions fir away from the 
aerofoil , such that the chard of the aerofoil always 
coincides with the x - axis s with the leadin edo pointing 
in positive direction. The followin.,; analysis includes 
the possibility that the surface of the aerofoil be 
deformable, provided the aorofoil remains symotrical 
throughout. 

whore t is the time coordinate and a the velocity of sound. 
We ricrri apply the theory developed for dealing with steady 
flow round aerofoils at zero incidence in throe dimension 
(see Refs. 1 and 2). 	Takin L  into account that tn., equation 
of motion in thLt theory is ..62t 2T 

1 	 + 	 (12-1) 	ci  
2 b x 	Y2  

where z is the direction of metion of the aerofoil andIT 
the lIach number, we have to replace the quantity (3 _  

everywhere in that theory by 1 . 	;fie then find that in our 

a 

present case the velocity potential I at a point P = (x
0 
 ,y 

0 
 t , ), 

0 cam be represented by 

(x
o 
 ,y 

o 
,t 

o
) = a 	cr ( ;0) d x d t  

2 R/ a2(t_t) x_xo) _
7o

2 

- (2) 

where the integration extends over values (x, t) which 
correspond to points on the aerofoil and which satisfy the 
conditions 

a2 (t t )
2 
- (x x

e
)
2 	0 	t 	t

o 

Conditions in the (x,t) plane are sketched in Fig. 1. 

The"source density" -(x,t) is related to the 
normal velocity coqponent by 

li

( 

m 	-2) 4  - 1r cr-(xo , to ) 
yo-->o 	yo  

Let the position of the surface of the aerofoil 
at any time be biven by y = F(x, t), then the boundary 
condition at the aerofoil is 

v =u 	F  

bx at 
/where 

01  



where u =  bb  v = Z4,  • Now assume that the 
2) x 	d y 

position of the leading edge as a function of the 
time is xi; f(t), while the normal coordinate of the 

aerofoil at a distance x' aft of the leading edge is 

given by y = g (x', t). We have x' = 	x = f(t) 	x, 

by definition, and so y = g (f (t) 	x, t), or 

F (x, t) = g (f (t) 	x, t) 

so that the boundary condition becomes 

	

v=u(-bg  )+ f'(t) 	g  + 	g  = (f'(t) 	u) Dg  + b g 

x' 	 xf 	t 

Now u 	be supposed to be small compared 
7ith f'(t) which is the forward velocity of the aerofoil 
and so can be neglected, in accordance % ,ith the simplifying 
assumptions of linearised theory. Hence, at the aerofoil 

	

fit  v = 	+ ag  
by 	 2) xl 

Thus, finally, the source density or at a point 
t of the aerofoil is given by 

cr(x,t) = I 	(f' (t) a R 	*2)g  ) = 1 (f'(t) g
x' 

+ g
t 

 ) 

x' 	8) t 
- (3)  

and 

	

(x0 ,y0 ,t0 ) = 	a 	(f' (t) gx, + gt ) d x dt 

(t-to )
2 

- (x-x0 )
2

-yo
2 

- (4)  

Denoting- the free stream preqsure by pc) , we 
obtain 	for the pressure p at any finite point, 

p p 	e 	(u2 v2 )  

o 	
t 

or 

- (5)  

after linearis,tion. 

Calculating -0 1R .  
t 

obtain 

as given by (4), we 

p 

/(6) 



t(xo ,yo  ,t 0  ) = a  I ..-J(ft(t)g
xl 

 tg
t 
 )d x dt 

R lag  (t -to )
2 
 - (x -x0 ) 2  -y02  

- (6) 

	

+ a 	' (f'(t) g , + gt ) d x 

C 	a ( -to ) -(x -x
o  )

2-y 2  

where the s cond integral en the right hand side is taken 
along those ptrts of the boundary of the aerofoil (in (x,t) 

2 	2 
piano) which satisfy a

2
(t-to ) - (x-xo ) - y0  :?.000.0,:?.000.0, tiCto 

(e.g. In Pig. 1. C is the curvilinelr se,jment L'L"). Also, 

' 
b 	(fl(t) g + 	) = f"(t) g

x
I + P(t)11 2g 	+ f g (t)g 	g 

t 
x' x' 	x't 	tt 

- -(7) 

Thus, taking into account that dx = f t (t) 
evorywhoro on C, 	 dt 

-t (xoao) to )  ' a 	1  fug 	+ (f') 2g 	+ f' g 	+ g 

	

x' 	x'x' 	xlt 	tt 	 d x dt ir 

	

12 	2 	2  (t_to)_(x_x0) - y  2 
	 ..., 

o 	
- - - (8 ) 

   dt 

C 
12(t-t0)2-(x-x0)2_702 	

-II 

This for„lula is valid on the assumption that gxt  

is continuous and differentiable everywhere. In the caso 
that g i  is discontinous at a number of fixed -joints on the 

aerofoil, 	must be evaluated separately for the differentt 

regions in 	 is continuous, and the results added. 
'x 

This is of practical importance for aerofoils with polygonal 
boundaries, e.g. 7ith double wod,'e section. 

Taking the particular case of a rigid Lerofoil 
(symmetrical with respect to the y-axis, as before), io  sots 
that g is now independent of t, and so 

► 	2 
= 

IC 

A f" g
x

r  d x dt + 	(f' g 
x i x t  d x dt + g. (1")

2
dt 

xl 	 

2 	2  
where r

2 
= a

2 
(t - to ) - (x 	

2 
-x0 ) = yo  , r 

j7 
+ 	(f 1 )

2 	
fe g 

t 
g
x
, +  

r r r 

(9) 
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It will be seen that the first integral on the right 
hand side of (9) depends directly on the fordard acceleration f"(t), 
while the other two inte,rals depend on the acceleration only 
through 1 e interiaediary of the velocity chanje. Thus, only the 
aerodynalic force corresponding to the first integral may be said 
to be a genuine apparent mass effect. 

Considering conditions at the aerofoil, we may transform 
the expression for 4 t still further in the following way. We have 

D (x, t) =-1, and so 

D (x',t) 

  

2 
(f t ) g 

x  „x 

 

(ft )
2 
	I] 
dt 

C t  r 

fug 
x' 

d x' dt 

 

dx'dt gx , 

   

r 

 

r 

  

— 	(10) 

where R' and C' are the transforms of R and C in the (x',t) 
plane (Fig. 2). 

de define a function h(x') by 

h(x') 	j) 	(fl ) dt 	for 06 x' 411:-  X
o 

2 

2 

	

where x' = f (t ) 	x . 	In terms of this function, the 
0 	 0 	0 

second integral on the right hand side of (10) becomes 

2 	 x' 	 x 'O 	x 
(ft) 	

0 

	

x dx'dt = 	g xr x,h(x i )dx' ilg,h(xl) 	 g 1 11 1 (x')dx1  x 	 x   

Jr Jkit 

while the third integral cm be written 

(f')
2 
 dt = h (0) 

Hence 

5 	 2 

	

(f')  gxIxt 	 2 dx'dt + g(o) 	(f') ,dt = lim 	g
xt
h(x/) — 

R 
CI r 	 x' 

C' r 	x'...4xo  ' ' 

	

Novr 	 .l it can be 	that 

x/ 
g I h t (x 1 ) dx' 
x 

 

 

2 
lim 	g 	h (x') = g 	(x') I: f' (t0 ):1 . 

.1 	 x. 
0 	 (t) 	11 

1 
a 	 

Substituting in (10) and putting V(t) = f'(t) for the 
forward velocity, 4  (x') = g (x') for the local incidence, and 

x' 

r 7 0 

M( t =  V( t ) for the Llach nuihcr, we obtain 
a 

u) 
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Ey (to )] 2  4 

- (0((x d 	Cy(t):)2  dt) dx' 
lr 	 dx' -  

- 
 I 
a 	j  

S 

V' (t)C0((x' )  d x' dt 

i' 	
r 

- - -(11) 

The excess pressure, ap (see equ-tion (5) abo.73) is 
then obtained by Ilultiplyin,,z (11) by - e . 

41p -,-. To4(x10 
V( to  ) 2  

- ap 	( 04.(xt 	Ewi 
	dt dx' 

11(to )] _ 	11" 	 dx' 	r 

If V' (t) 115((x t ) dx' dt 

RI 

- - -(12) 

Th, first t-ri on t11,. rij,ht hand side; of (12) is 
th- steldy motion term, s obtainJd by ,Lc1I,ret's theory, Jhilc 
the s,cond dc;ende on the Sq.11.123 	th, velocity  during a liaited 
period precediJJ t o . The third term deponds on the accelerA:Lon 
_ad ay be sAd to be an apprent ;.aqs 

2.2. 	 no Loin, to considJr soa, special cases. It 
-ill qppear th,t for all th, Tvacticll cases of pur-ly sup;rsonic 
flue that 	b- envisaged A pros„.nt the "unsteady tms" ro 
negli;ible comp rod with the "ste-d term "in thc expression for 
41 p. It follo7s ',ILA for such cas2s, the _,:;.1 -)r,,ss 4_on for the 

dr 	,Liv„n by lcIL,ret's theory is 3doqu-,. 

Only c 	of uniform accelerAion will be caasidered. 
For such cases f(t) can be written in the form 

2 
f(t) 	f(to ) + V(to ) (t - to ) + 2  s (t - to ) - - (13) 

where to  is an arbitary moment of time and s is a constant. 

The acceleration term in the expression for 4S p in 
equation (12) becomes 

1.11  th pa  = a e 	V' Rio& ( x' )  d x' dt = 	a e s 	to4 ( x' k ( x' ) d xl 
r 

fry 
R' 

- - (14) 
where 

k(x' ) =-1 	dt 
r 

2 
r>0 

dt 

-to ) 	x-x0  2 
dt  

.2 	2 
41(04

2
(t-to ) -((t)+xv-f(t 0 )-x0) 

d-t. 

ja2 (t-to ) 2  - LV(to ) (t-to ) + 1- s (t-t0 )2- (x'-x':,]2  

- - (15) 

- c4  

/Lot 



d  

Let be the :ach number of the' flow at time t o 
 =1.:(to ) = V(to ) , as before, -thilo 	( 	 ) is the complete 

a 

elliptic into,:;ral c)2 the first kind, 1< ( 

0 
- A2  sing  

AP .---- 

/7214-7 
.1114(x';dx 1  = 	(g(x' 0 ) 	,3(0) ) = 	s g (x' o ) 

ve17-7 	 117- 

- 	(19 ) since g = 0 at the leading edge. 

a 

and q is tho non dimensional parameter 1 J2 (x' o  - xj lei - 
a 

Then it can be shown that 

	

kix' 1 = 2 	1 	 K 2  /0 q whon s 

t - - 1 - q) 2 	— - (16) 

and 

k(x 1 ) =2 	1  
a y  2 	2+ 2g 2,  (:.i.2+ + 1)+ (1

4 

-:hen s 

2 
i -1) 2+2q2 (71.2 -1•1 + 4  

The last expression may also be written in the 

( 	  

-1+ q 

--2q 
22 	2 

q ) 
	 41) 	Ni) 

2 

form 

k(x' ) = 2 	1  
a 2

-1 q
2
) * 2q 
22 K 

- (18) 

For small q, and therefore for small WI, the expression 
for k(x' ) for both positive 	negative s becomes equal to 

For all cases of accelerated supersonic flo7 

to occur in pr aotico, tAo approximation 

k(x' ) = 1 • 	1 	appears to be adequate. 

a 	/1? - 1 

/too ep tinL; this approximation, ti p as gi lien by 
equation (14; b :comps 	 a 

Thy: total longitudinal force D
a 

duo to the aerodynes tic 

inertia off,ct is then obtained by multiplying 41 p a 
by tho local 

incidenc and into ,r: ting over the top and bottom surfaces of the 
aerofoil. 	Thus 

c c  D = 2 4.) 0  4Lp (x' ;uk(x' ) dx' = 	2 E? s s 
a 	 a 

112_1 	

0 g(x 1 ) 84 (x') dx 1  = e  

:2 -1 

/since 
[

(g(c), 2  - (g( 0 ) ) 23 '=" 0  
_ 	- - (20) 

1 
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sinco g(c) = L(0) = 0 for a (closed) syletrical iurofoil. to 
nava thurefore shown that Da = o(s), 	lira D, = o, in other 

sioe s 
words, J r  vanishes for small s •xc-pt for uxpressions of thu 
second ord er of 6,. -3.11nesc in s. This r,cult -DresumAbly holds 
oven for a -edge-snaped ,erofoil since the cut-off trailing 
edge should be consider ed as th, :Limit of a tr,ilia 	, of 
finite shape in connection with the nr-sent 1problem. Ho fuver, 
the form .1 expression for D a'  for aerofoils ;'ith cut-off 
trailin3  edges, is 

11177.  
[g ( c) 

2 

Co; ing. back to tie exact _xprJssions for 	_ -ind pa, 
wo see that e4u -_Aien (16) is valid only providud".4., - 1. 
Subject to this condition, which 	a ssine.,
interpr ttion, and subject to 	1, it eon be shown (usiru 
equations (16) - (18)) that p l  is at any rate numerically 

red with the "stgAay flow term" for the raressure, 

e esE (x' 	- PirttND 	. No 	for an-:;  givon /Urofoil,Atois 

JC(tor-1 

not greater than 1 v/7777-  , where a is the velocity of sound 
a 

:nd 	is the chord of the ::crofoil, 	before. 'tssuming 	= 20 ft. 
2 

grid s = 100 ft/.secvalues Traich Ire as high Is -Any t. ••t can be 
exp cted in practice for t.--.., ttmu bAng - wj see that 	/2 s 

is of the order of .05,4k-1, thu exact vllue depending on the 
altitudu. 

To obtain an imprssion of the 7&,.,:;_)dtude of the "unsteAy 
term" for the -yessur.; 7:hich depends on the squ -re of the velocity, 

pc = - a  	° 0( (: 1 

il 

 

0 

x' 

dx' 

	CV(t)1 2  d t) dx' 

(compare equ Adon (12)), ,u consid-r the 1:1rticulr c 	of 71 
double :eigu aerofoil Those maximmi t - icknoss 2 Ac. tan /3 	at 
a'point A c aft of the loading edge. Then trA (x') = tan a for 

2f c, andot(x') = 	h 	tan (3 for x' 	?1 c. Hence 

x'-x' 

	

1  pc  = _  -, e. 	tm p [gr G(t) i 

	

it 	 r 

and 

 

• 

X =- C 

2 

(22) 

dt 	for 
x'o4

.  0 

X r 

p = — a 2.  tail S -LL 2 dt - 	 cS( -t)]  [-  

x' = 0 	
—)t 

2 

for x' 	o • 
0 

/Nov,-  



t[f(t, 	 [v( 0:)1 2 	Ulf( to  

for xi
o

.7-Ac 

( 23 1 

Now, using a moan valuc thoor.om of tho integral calculus, 

S (-If( t ;12   dt = 1:y( t *PT 'S 	dt = [V( till 2  k ( xi ) 	1r 
2 r 

2 	r 	
ct 

r 70 	 r )ro 

hc:ro t* = t* ( x ' ) is 	sp,D cific value of t within the intc.ry 
of intr Alan, so that tA xo  ) = to  

❑ .0 	_(7.) tn a 
	 1W. 	t

o 	
_L(t*(0))—} 

2 
itti(toj _l 

for x' 44 " 

t'a  PC • 

t°  

This como,lros with tho " s to dy 	tram Aps 
tan a 

[( t ) 2  - 

and 
2 

Apn  - e 	 tan (3  	[I (t, 0 ) 	for xi 
O 

0 

To ?row.; to-.t, in gonor7:1, ❑ p is numoric ally suall 
c 

comn rod vri th LS p , it is sufficient to show th -It tho difforonco 
s 

113tw. on tho sciu ,:_rcs of =vri y tiro volo ethos V( t ) within tho rogion R' 
2 

[is sy,n11 comp lrod with V( to ) 	. 	Ind0,,d, tho time interval 

involvoli can bu no gr J. -.tor than 	xi o 	, and if x ' o & 20 ft . 

2 
(to ) 	for x i  .4 ?\c 

0 

- (24) 

V(t0 j - a 

nd V(to - 1.2 a, say, than this timo intorval is of tho ardor .1 soo. 

:Is sumo thats = 100 ft/soc
2 

Is boforo, tl on tho vAri ltion of the 
volocity in tho interval considurod cAnnot bo gru tor than 10 ft/sue., 
so f.11 at  tho variation of 	( t)  2  is rathur lo- s than two p..r cunt 

- 
of [(t )-..] 2 . 

so that 

❑ P
s 

"r A p
c 

- 	 tan (3 [v(t*(0)1 it (0) •■. 

-40 noti co. for futura roforonco that tho uxOrussion for 
pc  for a wodLo-sh 	 ( 1 = 1) is, 

p 	(11  t In (3 [l( t o  )] 2  - a [V ( t*( 0 ) ;11 2  k ( 0) 
ir 

t 	2  -1 
0 ...A 
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nuaber of the results obtained so far can be applied 
to the two dimensional supersonic flow of a thin aerofoil et a 
small incidence. For simolicity, we shall confine our discuccion 
to the case of an infinite flat plate. 

2.3. 	In two-dimensional steady supersonic flow conditions 
on the upper and laTer surface of the aerofoil are independent 
of one another (compare Refs. 1 and 2). This "principle of 
independence" also applies to certain cases of unsteady flow. 
110re precisely, the pressure at a point xo  on the upper surface 

of the aerofoil, at time to , is independent of the geometry of 

the lower surface erovidod the angular region in the (x, t) plane, 
2 	2 	 2 
a (t - to ) - (x - x0 ) 7 0, t.C.t

o does not include any part 

of the trailing edge. This condition is satisfied, for instance, 
in case the forward velocity of tho .erofoil is supersonic 
throughout. Also, in accelerated flow it is satisfied as soon as 
the forward velocity exceeds the speed of sound. .Lgain, in 
accelerated ..lotion, the condition will still be satisfied, for 
points sufficiently close to the loading edge, even at speeds 
sli6htly below the speed of sound. 

In all cases in which the principle of indeeendence is 
satisfied at all points of the aerofoil, wo may apply the results 
obtained earlier in this paper. In earticular, the total pres sure 
may be represented as the sue of three components as in equation 
(12). Thus, on the to surface of an aerofoil at incidence 	, 
at a point x e o 

aft of the loading odse, 

pa  = 	es O. 	
o 	

- - (27) 

1 ,2 

The corresponding normal force on the aerofoil then, 
is obtained by integrating over top and bottom surfaces 

N
a 

-- es v..‹. c 2  - --(28) 

- 

2 

Sinde the acceleration normal to the ;Mato is s 01( , -c 

2 
may consider the ratio Na  = p 0 	as a kind of anparent 

V21 - 1 
mass of a flat plate at supersonic speeds. Ho ever, as in the 
symmetrical case treated above, neither the acceleration term,apa, 
nor the velocity correction term, bri , arc likely to bo of any - c 

numerical importance for all practical purposes under definitely 
supersonic conditions . (11a:1.1), say). 

3. THE OSCI -1LATING DELTA 4ING AT SU2ERSONIC SWEDS. 

5.1. 	Two-dimensional oscillatory aerofoil theory has boon dealt 
with exhaustively by various authors (e.g. Refs. 4 and 5) from the 
point of view of linearised theory. In three dimensions we have to 
distinguish different physical cases, which present analytical 
problems of varying degrees of difficulty. The simplest case is the 
"definitely supersonic case", in which the principle of independence 
is valid, i.e. the pressures on the upper and loeer surfaces are 
independent of the geometry of the lower and upper surfaces 
respectively (compare para. 2 abovc.4. This is the case which is 
called "purely supersonic" by Garrick and Rubinow 	and is considered 
by these authors in Ref. 3. Definitely supersonic problems can always 
bo solved by mean; of single source distributions, the source density 

/being 
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being related to the local incidence after the __tanner of pars. 2 
thove. Ho over, Garrick and Rubino 	• adopt a Green's fanction 
method vhich has certain advanta,as fro the point of vie of 
uniqueness considerations. 

The lternative cones, called "mixed supersonic" by 
Garrick and Rabinow --, do not satisfy the principle of 
inderendenco. 	flao round a Delta wing is mixed supersonic, 
or as it has else boon caled, "quasi-vubaonio • , if the leading 
des of the aerofoil lie inside the Jach cone eoanating free the 
apex. In this case, the aerofoil can still be roolacod by a 
distribution of doublets but there is no longer aa -,/ sinple 
relation botsoen the strongth of thy; doublets and the kinomatic 
boundary conditions. 	Howovor, partical -x solutions of a 
different Lind can now be obtained by a mothod of pseudo-
orthogonal coordinotos. This method, which was ortinally put 
for-ard to solvo the corresponding steady floe= problem (Re's. 6 
and 7) has also been applied to the calculation of a number of 
stability derivatives (Ref. 8) and to the design of a special 
aerofoil section (Ref. 9). In the present section oo shall 
derive a sories of norm-1 solutions for the velocity potential 
in oscillatory flow and ••-o shall doterino the corresponding 
normal incidence and Tossuro distributions. 	To find the 
pressure distribution andthence the forces on a Delta wing 
oscillating in a given oodo, wo should hay- to dotormino a 
linear combinotioa of normal solutions so as to satisfy the 
seocifiod boundary conditions every-  ore at the aorofoil. 
Failing the explicit dot,reination of an exact solution, we 
may always adopt a collocation mothod, i.e. we nay construct 
a finite linoar combinoLion of normal solutions in such .a ouy 
that the boundary conditions arc satisfied at least at a finite 
numb•r of points. 

It nay be mentioned that even if linoarised theory 
is inadequate in the purely supersonic oscillatory case, it 
may still provido the corroct answer for the quasi-subsonic 
case -;her th second order phonolona near the leading edge arc 
loss critical. 

3.2. 	The motion of the oscillating deraerofoil is governed 
by the wave equation 

	 --1 4_1-0 
x2 
	N 

y
2 
	z 2 
	

bt2  0  

- - - ( 29) 

whero the systom of reference is at rest r,lativo 
the free air, x being positive in the direction of motion of 
the aerofoil 	y is positivo to starboard, and z is palitivo 
up--girds, t is the time, 4 is the velocity potential, end 
finally a is the velocity of sound, as before. Let x', y', z' 
be asystcm of coordinates fixed in the aerofoil, so that 

x' 	x Vt Y . ' 'I z =z 

whore V is the =orward speed of the aerofoil, and so that the 
origin of coordinates coincides - rith its apex. Putting 

1.11(x l , 	z'' 	
t 	

- - - (30) 

for harmonic motion, we then obtained the follo7ving diff,:rontial 
equation for lir 

g if,  )- V b2  17 +  Lia 2  17 - z i u.. V 	.47  :--- 0 
2 . - 

- - 	(31 ) 

/ivicxt 

( 

2 	2 
yo 	

a2 
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Ne.,:t ie introduce yo  by 

\-11  (x. ,Y t 5z t  ) = To  (ric t ,y',z ') exp 1%-i-lx IV 	- - - (32) ( 

exp ( i LA) ( vt - 	s oc
2

„Mr 	) 	- ( 33 ) 'To 

-1 
wher o /44, is the 1 iacn. angle, 	= cosec 	. Substituting 
( 32) in ( 31) 	find that the diff;;rential equation for 
is 

( 
sin/A' 

:.4 kk 4.  iwo 	,.. y 	.„ 2 .i.p. 

2 0 

 ...( ui  ) 
tan  2 
	2 is- 

= ° 	 - e e :At” 10 	 " ‘'.ro 
2 

Y ' 	b z' 	b x' 	v 

2 
1 - is 

so that 

or 

7 where (3 zz cot,. .17: 

Igo  -  1 ( d2  o+  C io) + 
2 ra  2 

31' 2 
2 

and A 	W sin AL,  

o 	- 	(34 ) 

2 
V cos 

Now ( co m Ire Ref. 10j, put 

	

xl 	r its (e 	k' ) nd ( Cr , k) 

y' 1 r ds ( e  , 10 ) sd ( cr , k) 	 - 	( 35) 

z' _at3  r cs ( 	,k') cd 	,k) 
0 

	

k = 	tan I 	k2 
+ k' 2 = 1, k y 0, k' 7 0, "•( is the 

apex semi- 	o f the wing, n E , nd, etc . aro the we ll known 
J ,.eobian elliptic functions in Glaisbor s notation, and the 
intervals of variation of the variables r, e  , tr. are as follows 

0 r 	, 0 44. e4 - 21(0r Cr 6' 2 I( 

where K and I< are the co - ipl..;te elliptic integrals of th; 
first kind of k and k' respectively . To every triplet r, e  , cr" 
within the specified interval of variation t -re corrc..spondc, 
just one 73oint inside the cone ;02 is 2 ( , y 2 a  , 2 ) = 0 

x' > 0 ( ozcep.t for the points of the aerofoil, Mich occur 
twice) and vice versa. The points of the .aerofoil correspond 
to e = Kt. 

The c.,.clu tion for 	becoiaes in torus of theso 
coordinates, 

( r2 3  kIT, 	r  2 	2 	 1 -qo  

2 	 2 	2 
n. ( e  ,kt) 	k' nd ( cr, k) 

fko  

	

= 0 	- - (36) 

be 2 	cr  2 
r'-  Introducing- 	to r 	0  as now d:pondont variable, 

and s= 	r to r place r as an inebpend-nt vn.riable, rfe obtain 

r 	 r 
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2 2 tn. 
s 	 s 	*1  + (.2 - 	_ 	1  

4 	j- z4 	 2 
ns ( e ,ht ) 	

2 	2 
nd ( 	k 

?0 2 	0  
- - (37) e 2 	zo4t5....4  

a "normal solution" of the :arta 

147
1 

= F(s) G(1 H ( cr.) 
ro obt tin tho follovin& ordin.ary diff.;rontial equations  for 

F, G, and H, 

2 	 2 
d P+ 1 d + 1 - (n + 	F(s) =0 

2 	s d s 	 2 
do 

2 	 2 
d G - n (n 	ns ( e, kt) + q) G ( 	) = 0 

2 
d e  

- -(38) 

(39) 

and 
2 	 2 	2 

d H  + ( n (n + 1) k' nd (Cr, k) + qj H(0r) = 0 - 	- (40) 
2 

d cr  
when:: n and q rc arbitarry constants. EquIltion ( 38) is 

	

s:,tisfiod by tho Bossol function J 	( s ) . Putting 
n 

ns ( e  " k' nd (c3', 

obt:.in from (39) and (40), 

d 	 -1 	- 	d G ) 	(n (n + 1) 	+ q)c. 
2 jr27 	 f.„ 2 ,  

d 
	

d 

=0 	 - 	-(41) 

d _.irt 2 lz 2  d H ) 

d d 

+(n(n+1 ) 4/0  2  +q)H= 0 

	

two o qu 	 oquivAlent, ,..xc,opt :or the 
differ.;nt ran,es of tn.:: vnriablos _or 	all 
oceurrints- 	tho.a aro ro-al. Sot .1 ar,.. forms of", Lamc.)'s oquation. 
T.hoy 	satisfied, for Lippro2ri 	q, by Lame' s functions of 
the first and second kind, E and Pm  (compare R..;f . 11) . 	Bo Aring 

in .ind that 	should 13,.; continuous at 	inside tho con; 

2 	2 	 2 
x' - ( y' 	z' ) = 0, x' 	0, wo find th t the appropriate 
functions arc 

	

G = F ( 	 H = E ( 410  

so th ,t particul-a- solutions for 147  are given by 

	

1 	
m - (43) ( h 	F ( I5 ) E (s 

▪ n + 
/Tho 	 

- - (42) 



Now, if f is an arbitrary function of r, e  , Cr" (and 
therefore of r, S, 41 j, then 	can express 	"A f  and  Zif  

z 
as functions of r, 	, 	in the following way see Ref. 7 
equations (231 and (24). Replace x, 	 n, h, k 	that 

accordezice -,Tith the siaolif;ing assumptions of linearisod 
thoory (47) becomes 

i (I.) t 
0 	[  V '?) 14.1  + i (..A.)::

1 
(x', y') 	e 

x' 

reference by 

Pk' 	4)r 

f 	-* 	1 

11M 

The correspondirks expressions for 	are 

2 

	

(71 r) pm 	) 	(44 ) eXp i (A) (Vt 	X' seciw,) 
n+ 2 	n 	n Y V  

 

 

   

	

- 	- (44) 
where x' = 1 r 

i.ssume tht the velocity potential corresponding 
to a specific 	case can be expressed as a linear cc :bination 
of expressions of th3 type of (44). Then the pressure distribution 
Ind theae the forces actin:. on the aerofoil can be 2,,und from 
Bernoulli's ;-,11eorem for unsteady motion, 

P = 2  P CL1F_ * V  .24  :) 	 (45) 
o 

`1)t 	.6 )0 

where 0 p is the pressure dif.2erance between top and bottom 
surfaces and 

eo 
is the density. 

(in the other hand, 1 t tae vertical coordinate of 
the aerofoil be olvari in the fora 

i•AJt 

	

o 
( X 1 	y', t

i1 
(x', y') o 
	

(46) 

Then the boundary condition It the aerofoil is 

	 .  	b 	 ?) 	 iwz i (x- r  y' ) 
	t 

Ca t 
	x' 	Z) ao 	631' a YI 	 - (47) 

No-7, in general, 	 differs ±'ron V by a small 

quantity only, while at,  is itself small. Hence, in 

4 37.1  

, k', 1 respectively). 
2 40  2 di, 2 -1;  

" 	 

	

r  ( % 	10 2 )  

	

- %( 41 2-k' 2 )( 1-41/ 2 )   	 ( 49) 

	

r ( s 2 	4L2 ) 

az 

 

-1 ) (1- nj  -  -b f  + CS ( % 2 -k1 2 ) b f , - 11 ( 412 -1-,:e 2 ) Zif  

   

k 	 r(% 2 — ei /  Zit r (t2  

,Using 
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[]sin,.; these formulae, re can express 4ti p and 	 

2 a'z' 
in 'corms of the function 117 oxp 	0) 	 :and 

of its derivatives. In particular 

[

1 	_ vfig2_34 1._ 4.1A _ ) ,17.  .,_ 4  ( s  2_,, , 	..2)  di;  A,  ( 41,  2 .40 2 )  ,46 -4g 

	

The functions _1; 1 	r. riain finite as t 	Hence, 

	

at the aerofoil 	  

	 lira le -11 ( 1 - 	)  • % ( 	2  - 2  ) 	Ps exp 	Vt-xi :, c i,&) 

% —) 1 	k 	
r(  2 	leA. 2 1  

V 

	

= k 	lira %ft 71 	3;11 	i CU( Vt - X I  ocefri )e
xP 

2 	 2 

V  

—(52) 
a2 The expressions 	1 d ( % ) tend to a finite 
n 

d 

limit as 	tondo to 1.,77 a F 	) 
n 

2 

._) f , say (see Rof.8 

for a diter -.ainLt Zona of this 	Thus for any -cartioular 
nerla,1 solution 

z i 	 k 	 b r 	r ( t 2  12/  ) t r  ( % 2_ 12 ) r) 47,  

exp 
 I

i CO (Vt -- x i  soc2/4,4i ) 	- - - (51) 
V 

r/770  g -11 

exp 

liuz f 	 ALZ 

- 1 	 ( -7% r) E ( 41) 	(53) 
S 177 n + 
	 rz 

Assume that the pot-ntial can be written in the fox-La 
2n+1 A  r  a 

	 J 	
Di 	 ill 

( A r) F (S) E () 
n 	n 

n=o 	 nt h  

6.1 (Vt - x l  soC2/44, 1 
V 

Then, at the aerofoil, (provided the term by ti.A..1 
differentiation is logitLAate), 

00 	2n+1 	m m 

A n fn  r) E ( 4.1 
n=o m = 1 V r 	n 

	

{ 	
2 

exp 	i & 	( Vt - x' $c-,,o "J. , ) 	- -■ 
- ( 5 5 ) 

v 	 . 

/On 
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On the other hand, the right. hand side of the boundary 
condition is a known function of x', y', t, and therefore of 
r,7, t, say 

i  Lij t 	 ityt  V 	̀7' 1  + iCVZ 1( X I  , y‘ I e 	= g (r, 1 ) e ( 

) 	

- --- (76) 

)0  

aerofoil, 
Hence, taking into account that x' = roll at the 

2114.1 

21  Z m  m 	
M f=bfb 

A f 1  J ( A r ) E ( I ) = r ✓ 1 - "G.  g ( r t  it ) exp 
no 	m=.1 	n n r-P-- nii 	n 10 	k i r 

i CU sect  ,,,AAr  r 1 	- - - (77) 

[ V 

= k (r, II 	say, 

where g(r, 11 ) and h(r ,1 ) are complex. 	These functions are 

spocified only for values of r,l/ which correspond to points on 

the aerofoil, i.e. 04cr 41 ,  C, k' 4- SI 4, 1. 	Thus, 70 re 

confronted with an expansion problem which is a variant of the 
normal type, viz. whether it is possible to complete h (r, 10  ) 
on points aft of the trailing edge in such a way that it can 
be represented by an expansion as on the left hand side of (57) . 
In the present paper, the general expansion problem. will net 
be considered in any detail. Instead, we are oina to show ho7, 
having completed h(r, 41,  ), we may determine the coefficients 
m 

A of the expansion, provided the expansion is at all possible. 
n 

For this purpose, Jo require two sets of rulAions 
of orthogonality, viz., 

00 
0 n * m 

J 	( A r ) J 	( 7t r) dr =--- 	1 	n= m 1 n 4- --g- 	m+ 2 	r 	2n+1 

(Compare Ref. 12, p. 388), aid 

n, m = 0,1,2, 3, . . . . 

— (58) 

e 1:11 

41,  ) E Olt  
n 	n 

 d 
0 

n 
om 

m p 

m = p 

- (59 ) 

n = 0, 1, 2, 	 m, p, = 1, 2, ...., 2 n .4- 1 

(Compare Ref. 11, p‘ 466) 

Assuming that term-by-term into ration is permissible, 
we obtain, from (57) 

m 
/A 
n 
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1 
h (r,11 ) dr 	d 41.•  

142 	 k  

m m 
A f 	on 
n n 

2 n + 1 
2 

or 

1. = 	2 n i- 1 	 h (r, , ) 	d r d 
n 	m m 	 2 

m 	
f
n 

o
n 	Cf: :' N 

4r (1 - lb ( 410 2  - 10 ) 

00 

11 s  

n = 0, 1, 2, ... m = 1, 2, ..., 2 n , 1. - - - (60) 

3.3. 	In conclusion, W3 are goinE; to she.: that the velocity 
potentials corrospondinu to vertical and pitching oscillations 
can indeed bo represented by expansions of the typo of (74). 

Wo havo in fact, for vortical oscillAions, a l (x t , y') 

const. = za say, so that g(r, 41 ) = i 60z. aid 

h(r, 41, ) = i Los rji
2 

oxp i W scc/AA. . r 
2 

=iAr r -1 
7. iB A r l 

1  

2 
= tat z and B 	Lt.) 	= cos cc /AA, , since 	= Lmsin AA./  

k 	 RV 	 v cos itA, 

(sae equation (34). 

Now we havo (comnaro Ref. 12, p. 388) 

i B 71r it 	
00 

i( 2 n 	1) P (B 41) J 
n 	n + 

2 1)1.. 	n= o 

where P is the n
th 

Legandre polynomial. 
n 

( A r) 

— — (62) 

Differentiating with respect to B 	, 
00 

n-1 
r:: 	 ir 	I 	( 2 n 	1) P' (B 	) J 	( 	r) 

n 	 nitv 
2 r n 

(63) 
H nco 
	 00 

n 

/ h(r., 1 ) = A 	Tr 	21  i (2 n + 1) P' (B 	J 	(A r) 
3 	 n 	n + 7'z 

	

2 A 	n=o 
— (64) 

To prove that h(r,orb) can be represented by tho required 

2 
expansion, it is sufficient to show that the terms10 -- P l (B 

can be reprJsonted as linear coahinations of Lame"'s functions 

of the first kind E (t) . Now there are just n or 1(n-1) Lame 

functions of the first kind el: order n (-n or i(n-1), according 
2 

as n is oven or odd) ,.hick are of the form 1 - 41, 10 ), 

Ahcz- ..... 

— — — (61) 
where 



2 
where either the pic(il ) or the  1 pK  ( 	) are ;_-)olynomils of iflo  

according 	n is odd or even. For given n, all the p
VC 
 arc 

linearly indopendent, and it is therefore not difficult to so, that 
2 

PI (B10  ), •hich is either its-lf a polynomial of/ 11, or ..hich is 
2 

such that 1 P(Bont  ) is a polynomial of 11 	can be represented 
4.1 	n 

E 	as required. 

In the above analysis, we have assumed that the relation 
(61) applies to all values of r and l, within the domain of 
definition of those variables. This fictitious assumption is 
acceptable fts long as wo are interested only in conditions at the 
aerofoil, but not, of course, if Jo wish to investigate the flow 
in the wake of the aerofoil. 

For pitching oscillations round the apex, :3 have 
r,(x',y') =z* 24;say, so that g(r,11 ) = Vz* + 	2 	• Since 
we know already that tho notential corresponding to g(r,11, ) = const. 
can be represented by the required expansion, it will be su,:ficient 
to consider the case 

g(r,lt ) 	ifohtz* x = i (az* r 

We then have, for the corresponding h(r,10  ), 

2 41-"" 
 -

2"---  
li (r, 	) = 	 r2 	1 	410  exp 	soc

2
mur 11, 

V 

	

. 	2 / 	iBA r 41, NmiAr Al -1 -(65) 

Differentiating (63) with respect of B , 	obtain 

2 2 iBAril   0047 
r e 	 V 	i  

	

2 	

(2 n + 1) P "(Bl ) J 
n 	n + 

/Ar n = o 

	fi r) 

and so 	 00 
z n + 1 

r 	

i ( 2 n + 1)  h(r,1 ) = - :). 	lr 	 / - /1, 1 P"(B 4  ) 

	

g' n 	' 
2 ! 5  n = o 

J 	(hr) 
n + -i- 

- 	(67) 
2 

The terms 1 - 	P" (B 1.) can be r Presented 

as Iin-Lr combinations of Lam( functions of the first hind of 
order n, as before. This completes the argument. 

The two modes of vibrItion considered above are rigid. 
Additional work. on elastic males (theoretical and numerical) 
may be postponed until more evidence is available on the particul,r 
problems 	arc lilcely to occur in practice. 

/Rcforcncos 

2 

2 
by a linear combinatiaaof the p 1). It follows that 1- IP (B 11,) 

N: 
can be represented by a linear combination of functions 

(66) 
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