REPORT NO. 16
May, 1948

THE COLLEGE OFAERONAUTICS
CRANFI马LD

On some problems of unsteady
supersonic aerofoil theory.

- By -

A. Robinson, I.Sc., A.F.R.Ae.S.
(To be read at the Seventh International Congress of Applied Nechanics).

SUUTARY

Unsteady supersonic floz round an aerofoil of infinite span is considered in the first part of the paper. It is shown that the pressure at any given point of an aerofoil under forward acceleration can be analysed into three components, one of which is the steady (Ackeret) pressure due to the instantaneous velocity, while of the other two, one depends directly on the acceleration, and one on the square of the velocity, during a limited time interval preceding the instant under consideration. However, the difference between the total pressure and the "steady pressure component" is such that it can be neglected in all the definitely supersonic conditions which are likely to occur in practice.

The oscillatory supersonic flow round a Delta wing inside the Mach cone emanating from its apex is considered in the second part of the paper. Particular "normal" solutions are obtained by means of a special systen of curvilinear coordinates. It is shown that the velocity potentials corrosponding to vertical and pitching oscillations of the wing can be reprosonted by sories of such normal solutions.

The assumptions of linoarised theory are adoptod throughout.

AR/PE

1. INTRODUCTION.

1.1.

In the prosont papor, tho linoarisod thoory of compressiblo flow will bo appliod to somo probloms of unstoady suporsonic aorofoil thoory. Two spocific topics will bo dozlt with undor this hooding, viz. (i) unstoady suporsonic flow round an aerofoil in two dimansions, with particular roforonco to accoloratod motion, and (ii) oscillatory motion of a Delta wing at suporsonic spoods.
1.2 .

In the first part of the papor (Soction 2), wo considor in the first instance two dimensional accoloratod flow round a symmotrical aerofoil at zoro incidonce. The volocity potontial for this typo of flow cam bo roprosonted by a distribution of elomontary solutions as givon by
a

$$
\sqrt{a^{2}\left(t-t_{0}\right)^{2}-\left(x-x_{0}\right)^{2}-\left(y-y_{0}\right)^{2}}
$$

in (x, y, t) space, where t donotos the time and a the volocity of sound. This distribution is of a type wich has boon usod in connoction with stoady suporsonic aorofoil theory in throo dimensions (Rofs. 1 and 2). However, in that application t represonts the third spatial dimonsion and a is the non-dimonsional constant $1 / / \sqrt{M^{2}-1}$ whore M is
tho ${ }^{\text {wach }}$ numbor of tho flow. Thus, if tho diroction of flight coincidos with the diroction of incroasing x while the chord of tho norofoil always lios on the x-axis,
$\Phi\left(x_{0}, y_{0}, t_{0}\right)$ at ony point outside the aerofoil is given by

$$
\Phi\left(x_{0}, y_{0}, t_{0}\right)=a \iint \frac{\sigma(x, t) d x d t}{\sqrt{a^{2}\left(t-t_{0}\right)^{2}-\left(x-x_{0}\right)^{2}-y_{0}^{2}}}
$$

In the abovo formula, tho "source donsity" $\sigma(x, t)$ is rolatod to the normal volocity component by

$$
v_{0}=\lim _{y_{0} \rightarrow 0} \dot{\left(\frac{\partial \Phi}{\partial y_{0}}\right)=\pi \sigma\left(x_{0}, t_{0}\right), ~}
$$

and tho integration oxtonds ovor values of x and t which corrosponds to points on tho sorofoil $\frac{1}{2}$, and which satisfy tho conditions $t<t_{0}$ and $a^{2}\left(t-t_{0}\right)^{2}-\left(x-x_{0}\right)^{2}-y_{0}{ }^{2}>0$.

Tho vortical velocity v_{O} in turn can be expressod in torms of tho kinomatic conditions at tho worofoil.

Using the abovo represontation it is shown that the pressuro at any given point of tho aorofoil can bo analysed into threo parts, one of which is the stoady prossure duo to tho instantanoous volocity, while of the other two one dopends directly on the acceleration, and ono on the square of tho volocity, during a limitod time intorval procoding the instant undor considoration. Tho component doponding on tho accoloration gives rise to an exprossion for tho apparont wass of an aorofoil at suporsonic spoods, which is calculatod for various casos of uniform accoloration.

However, it is shown that the difference between the total pressure and the "steady pressure component" is such that under definitely supersonic conditions ($1 \boldsymbol{l}>1.15$, say) it can be neglected in all cases which are likely to occur in practice. This statement does not apply to transonic speeds, but the conclusions for such speeds reached on the basis of linearised theory are of doubtful validity in on case.

In view of the fact that conditions above and below the aerofoil are independent of one another under two-dinenoional supersonic conditions, the methods and results mentioned above also apply to aerofoils at incidence.
1.3. The second part of the paper (Section 3) deals with unsteady supersonic conditions in three dimensions, in particular with the oscillatory motion of a Delta wing whose leading edges are inside the Mach cone emanating from the apex. The alternative problem (leading edges of wing outside Mach cone emanating from apex) has already been solved by Garrick and Rubinow (Ref. 3).

It is assumed that the free stream velocity is parallel to the positive direction of the x-axis, while the Delta wing lies (approximately) in the (x, y) plane, its apex coinciding with the origin. i special system of coordinates (r, ρ, σ) is then introduced by

$$
\begin{aligned}
& x=r \quad n s\left(e, k^{\prime}\right) n d(\sigma, k) \\
& y=\frac{1}{13} r \text { as }\left(e, k^{\prime}\right) \operatorname{sd}(\sigma, k) \\
& z=\frac{1}{13} r \text { cs }\left(e, k^{\prime}\right) \text { cd }(\sigma, k)
\end{aligned}
$$

In these formulae, $k=\beta$. $\tan \gamma, k^{2}+k^{\prime}=1$, $k>0, k^{\prime}>0,8=\sqrt{n^{2}-1}$, where $I I$ is the Mach number of the flow, Y is the apex semi-angle of the Delta wing, and ns, nd, etc., are the well know Jacobian elliptic functions in Glaishor's notation. Particular "normal" solutions for tho velocity potential are then given by

$$
\begin{array}{r}
\Phi=\frac{1}{\sqrt{r}} J_{n+\frac{1}{2}}(\lambda r) F_{n}^{m}\left(n s\left(\rho, k^{\prime}\right)\right) E_{n}^{m}\left(k^{\prime} n d(\sigma, k)\right) \exp \\
{\left[\sum_{-1}^{i} \frac{w}{V}\left(V t-x \sec ^{2} \mu\right)\right]}
\end{array}
$$

where $\lambda=\frac{\omega}{V \beta} \operatorname{soc} \mu, \mu=\operatorname{cosec}^{-1} M$, and the $J_{n+\frac{1}{2}}$, and E_{n}^{m} and F_{n}^{m} are Bessel functions, and Lame functions of the first and second kind rospoctively. It is shown that the velocity potentials corresponding to the oscillation of a Delta wing in vertical motion and in pitch can bo represented by series of normal solutions as mentioned above.

2. ACCELSRATION BFPEGTS IN SUPERSONIC FLOW.

2.1. Consider the two-dinensional rectilinear unsteady flow round a symmetrical aerofoil moving at zero incidence. We choose a systom of coordinates which is at rest relativo to the fluid in regions far away from the a.orofoil, such that tho chord of tho aorofoil alvays coincides with tho x - axis, with the loading edgo pointing in positivo diroction. Tho following analysis includos the possibility that tho surface of the aorofoil be doformable, provided the aorofoil remains symatrical throughout.

Tho linoarised equation for the volocity potential is

$$
\begin{equation*}
\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}}-\frac{1}{a^{2}} \frac{\partial^{2} \Phi}{\partial t^{2}}=0 \tag{1}
\end{equation*}
$$

whore t is tho timo coordinato and a tho volocity of sound. We now apply tho theory dovolopod for doaling with steady flow round aerofoils at zoro incidonco in throo dimonsion (soo Rofs. I and 2). Taking into account that tho oquation of aotion in the thoory is $\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}}-\left(M^{2}-1\right) \frac{\partial^{2} \Phi}{\partial z^{2}}=0$
where z is the direction of motion of the aerofoil and If the lach number, we have to replace the quantity $\int=\sqrt{I^{2}-1}$ everywhere in that theory by $\underset{-}{-}$. We then find that in our a
present case the velocity potential Φ at a point $P=\left(x_{0}, y_{0}, t_{0}\right)$,
cail be represented by

$$
\begin{equation*}
\Phi\left(x_{0}, y_{0}, t_{0}\right)=a \int_{R} \frac{\sigma(x, t) d x d t}{\sqrt{a^{2}\left(t-t_{0}\right)^{2}-\left(x-x_{0}\right)^{2}-y_{0}^{2}}} \tag{2}
\end{equation*}
$$

where the integration extends over values (x, t) which correspond to points on the aerofoil and which satisfy the conditions

$$
a^{2}\left(t-t_{0}\right)^{2}-\left(x-x_{0}\right)^{2}>0 \quad \text { and } t<t_{0}
$$

Conditions in the (x, t) plane are sketched in Fig. 1 .
The"source density" $\sigma(x, t)$ is related to the normal velocity coimponent by

$$
\lim _{y_{0} \rightarrow 0}\left(\frac{\partial \bar{\Phi}}{\partial y_{0}}\right)=\pi \sigma\left(x_{0}, t_{0}\right)
$$

Let the position of the surface of the aerofoil a.t any time be given by $y=F(x, t)$, then the boundary condition at the aerofoil is

$$
v=u \frac{\partial F}{\partial x}+\frac{\partial F}{\partial t}
$$

where $u=\frac{\partial \Phi}{\partial x}, v=\frac{\partial \Phi}{\partial y}$. Now assume that the
position of the leading edge as a function of the time is $x^{x}=f(t)$, while the normal coordinate of the aerofoil at a distance x^{\prime} aft of the leading edge is
given by $y=g\left(x^{\prime}, t\right)$. We have $x^{\prime}=x \not \ell^{-x=f(t)-x, ~}$ by definition, and so $y=g(f(t)-x, t)$, or

$$
F(x, t)=g(f(t)-x, t)
$$

so that the boundary condition becomes

$$
v=u\left(-\frac{\partial g}{\partial x^{\prime}}\right)+f^{\prime}(t) \frac{\partial g}{\partial x^{\prime}}+\frac{\partial g}{\partial t}=\left(f^{\prime}(t)-u\right) \frac{\partial g}{\partial x^{\prime}}+\frac{\partial g}{\partial t}
$$

Now u nay be supposed to be small compared
with $f^{\prime}(t)$ which is the forward velocity of the aerofoil and so can be neglected, in accordance i th the simplifying. assumptions of linearised theory. Hence, at the aerofoil

$$
\frac{\partial \Phi}{\partial y}=v=f^{\prime}(t) \frac{\partial g}{\partial x^{\prime}}+\frac{\partial g}{\partial t}
$$

Thus, finally, the source density σ at a point x, t of the aerofoil is given by

$$
\begin{equation*}
\sigma(x, t)=\frac{1}{\pi}\left(f^{\prime}(t) \frac{\partial g}{\partial x^{\prime}}+\frac{\partial g}{\partial t}\right)=\frac{1}{\pi}\left(f^{\prime}(t) g_{x^{\prime}}+g_{t}\right) \tag{3}
\end{equation*}
$$

and

$$
\Phi\left(x_{0}, y_{0}, t_{0}\right)=\frac{a}{\pi} \iint \frac{\left(f^{\prime}(t) g_{x^{\prime}}+g_{t}\right) d x d t}{\sqrt{a^{2}\left(t-t_{0}\right)^{2}-\left(x-x_{0}\right)^{2}-y_{0}^{2}}}
$$

Denoting the froe stream pressure by p_{0}, wo
obtain for tho prossure p at any finite point,

$$
p=p_{0}-e\left[\frac{1}{2}\left(u^{2}+v^{2}\right)+\frac{\partial \Phi}{\partial t}\right]
$$

or

$$
\begin{equation*}
p=p_{0}-\rho \frac{\partial \Phi}{\partial t}=p_{0}+\Delta p \tag{5}
\end{equation*}
$$

after linoarisation.

$$
\text { Calculating } \frac{\partial \Phi^{\prime}}{\partial t}=\Phi_{t} \text { as given by (4), we }
$$

obtain

$$
\begin{align*}
& \Phi_{t}\left(x_{0}, y_{0}, t_{0}\right)=\frac{a}{\pi} \iint_{R} \frac{\frac{\partial}{\partial t}\left(f^{\prime}(t) g_{x^{\prime}}+g_{t}\right) d x d t}{\sqrt{a^{2}\left(t-t_{0}\right)^{2}-\left(x-x_{0}\right)^{2}-y_{0}^{2}}} \tag{6}\\
&+\frac{a}{\pi} \int_{c} \frac{\left(f^{\prime}(t) g_{x^{\prime}}+g_{t}\right) d x}{\sqrt{a^{2}\left(t-t_{0}\right)^{2}-\left(x-x_{0}\right)^{2}-y_{0}^{2}}}
\end{align*}
$$

Whare the second intogral on the right hand side is takon along those purts of tho boundary of tho aorofoil (in (x, t) plano) which satisfy $a^{2}\left(t-t_{0}\right)^{2}-\left(x-x_{0}\right)^{2}-y_{0}^{2} \geq 0, t<t_{0}$ (o.g. In Fig. I. C is tho curvilinoar sogtiont $L^{\prime} L^{\prime \prime}$). Also,

$$
\frac{\partial}{\partial t}\left(f^{\prime}(t) g_{x^{\prime}}+g_{t}\right)=f^{\prime \prime}(t) g_{x} \prime^{+}\left[f^{\prime}(t)\right]^{2} g_{x^{\prime} x^{\prime}}+f^{\prime}(t) g_{x^{\prime} t}+g_{t t}
$$

Thus, toking into account that $\frac{d x}{d t}=f^{\prime}(t)$
ovorywhuro on C,

$$
\begin{aligned}
\Phi_{t}\left(x_{0}, y_{0}, t_{0}\right)= & \frac{a}{\pi}\left[\iint_{R} \frac{f^{\prime \prime} g_{x^{\prime}}+\left(f^{\prime}\right)^{2} g_{x^{\prime} x^{\prime}}+f^{\prime} g_{x^{\prime} t}+g_{t t}}{\sqrt{a^{2}\left(t-t_{0}\right)^{2}-\left(x-x_{0}\right)^{2}-y_{0}^{2}} d x d t}\right. \\
& \left.+\int_{C} \frac{\left(f^{\prime}\right)^{2} g_{x^{\prime}}+f^{\prime} g_{t}}{\sqrt{a^{2}\left(t-t_{0}\right)^{2}-\left(x-x_{0}\right)^{2}-y_{0}^{2}}} d t\right]
\end{aligned}
$$

This formula is valid on tho assumption that g_{x} '
is continuous and difforontiablo ovorywhore. In tho caso

- that $g_{x^{\prime}}$ is discontinous at a numbor of fixod points on tho a rofoil, Φ_{t} must bo ovaluatod soparatoly for the difforent rogions in which g_{x}, is continuous, and tho rosults addod.

This is of practical importanco for aorofoils with polygonal boundarios, $0.8 \cdot$ ith doublo wodgo soction.

Taking tho particular caso of a rigid aorofoil
(symutrical with rospoct to tho y-axis, as boforo), soe that g is now indopondent of t, and so

where $r^{2}=a^{2}\left(t-t_{0}\right)^{2}-\left(x-x_{0}\right)^{2}=y_{0}^{2}, r>0$.

It will be seen that the first integral on the right hand side of (9) depends directly on the forward acceleration $f^{\prime \prime}(t)$, while the other two inter, rails depend on the acceleration only through the intermediary of the velocity change. Thus, only the aerodynaizic force corresponding to the first integral may be said to be a genuine apparent mass effect.

Considering conditions at the aerofoil, we may transform the expression for $\underline{\Phi}_{t}$ still further in the following way. We have $\underline{D(x, t)}=-1$, and so

D $\left(x^{\prime}, t\right)$

$$
\Phi_{t}=-\frac{a}{\Pi}\left[\int_{\mu} \int_{r}^{f^{\prime \prime} g_{x^{\prime}}} d x^{\prime} d t+\iint_{R} \frac{\left(f^{\prime}\right)^{2} g_{x^{\prime} x^{\prime}}}{r} d x^{\prime} d t+g_{x^{\prime}}(0) \int_{C} \frac{\left(f^{\prime}\right)^{2}}{r} d t\right]
$$

where R^{\prime} and C^{\prime} are the transforms of R and C in the $\left(x^{\prime}, t\right)$ plane (Fig. 2).

$$
h\left(x^{\prime}\right)=\int_{r^{2}>0}^{2} \frac{\left(f^{\prime}\right)^{2}}{r} d t \quad \text { for } 0 \leq x^{\prime} \leq x_{0}^{\prime}
$$

Where $x_{0}^{\prime}=f\left(t_{0}\right)-x_{0}$. In terms of this function, the second integral on the right hand side of (10) becomes
while the third integral can be written

$$
\int_{1} \frac{\left(f^{1}\right)^{2}}{r} d t=h(0)
$$

Hence

$$
\begin{aligned}
& \int_{R^{\prime}} \frac{\left(f^{\prime}\right)^{2} g_{x^{\prime} x^{\prime}}}{r} d x^{\prime} d t+g_{x^{\prime}}(0) \int_{C^{\prime}} \frac{\left(f^{\prime}\right)^{2}}{r} d t=\lim _{x^{\prime} \rightarrow x_{0}^{\prime}} g_{x} h\left(x^{\prime}\right)-\int_{0}^{x_{0}^{\prime}} g_{x^{\prime}} h^{\prime}\left(x^{\prime}\right) d x^{\prime} \\
& \text { Now it can be shown that } \\
& \lim _{x^{\prime} \rightarrow x_{0}^{\prime}} g_{x^{\prime}} h\left(x^{\prime}\right)=g_{x^{\prime}}\left(x_{0}^{\prime}\right) \cdot\left[f^{\prime}\left(t_{0}\right)\right]^{2} \cdot \frac{\pi}{a \sqrt{\left[\frac{f^{\prime}\left(t_{0}\right)}{a}\right]^{2}-1}}
\end{aligned}
$$

Substituting in (10) and putting $V(t)=f^{\prime}(t)$ for the forward velocity, $\alpha^{\prime}\left(x^{\prime}\right)=g_{x^{\prime}}\left(x^{\prime}\right)$ for the local incidence, and $\mathbb{M}(t)=\frac{V(t)}{a}$ for the INarch number, we obtain

$$
\begin{array}{r}
\Phi_{t}=-\alpha\left(x_{0}^{\prime} ; \frac{\left[v\left(t_{0}\right)\right]^{2}}{\sqrt{\left[I\left(t_{0}\right)\right]^{2}-1}}+\frac{a}{\pi} \int_{0}^{-8-}\left(\alpha\left(x^{\prime}\right) \frac{d}{d x^{\prime}} \int \frac{[v(t)]^{2}}{r} d t\right) d x^{\prime}\right. \\
-\frac{a}{\pi} \int_{R_{0}^{\prime}}^{x_{0}^{\prime}} \frac{V^{\prime}(t) \alpha\left(x^{\prime}\right)}{r} d x^{\prime} d t \\
---(11)
\end{array}
$$

The oxcoss pressure, $\boldsymbol{\Delta} p$ (soo oqu tion (5) above) is then obtained by iultiplying (II) by - ρ.

$$
\Delta p=+\rho \propto\left(x_{0}^{\prime} / \frac{\left[v\left(t_{0}\right)\right]^{2}}{\sqrt{\left[i\left(t_{0}\right)\right]^{2}-1}}-\frac{a e}{\pi} \int_{0}^{x^{\prime}} 0\right.
$$

$$
+\frac{a e}{\pi} \iint_{R^{\prime}} \frac{V^{\prime}\left(t \mid \infty<\left(x^{\prime}\right)\right.}{r} d x^{\prime} d t
$$

$-\quad-(12)$
The first tor 1 on the right hand sido of (12) is the staady rotion turin, as obtainod by ackorut's thuory, whilo tho sscond doponds on tho square of tho volocity during a limitod puriod procoding t_{0}. Tho third tora doponds on tho accolor ation and aay bo said to bo an apparont taass uffoct.
2.2. No aro now going to considor somo spocial casos. It
ill ppuar that for all tho practical casos oi puruly suporsonic flow thit can bo onvisagod st prosunt tho "unstoady turas" aro nogligiblo coupurod with tho "sto dy torm "in tho uxprossion for $\Delta \mathrm{p}$. It follows that for such casus, tho uxpression for tho drag sivon by ickurot's thoory is adoquat.

Only cass of uniform acceleration will be considered. For such cases $f(t)$ can be written in the form

$$
\begin{equation*}
f(t)=f\left(t_{0}\right)+V\left(t_{0}\right)\left(t-t_{0}\right)+\frac{1}{2} s\left(t-t_{0}\right)^{2} \tag{13}
\end{equation*}
$$

Where t_{0} is an arbitary moment of tize and s is a constant.
The acceleration term in the expression for $\Delta \mathrm{p}$ in
$\Delta p_{a}=\frac{a \varrho}{\pi} \int_{R^{\prime}}^{\beta} \frac{V^{\prime}(t) \alpha\left(x^{\prime}\right)}{r} d x^{\prime} d t=\frac{a e_{s}}{\pi} \int_{0}^{x_{0}^{\prime}} \alpha\left(x^{\prime}\right) k\left(x^{\prime}\right) d x^{\prime}$
where

$$
\begin{aligned}
k\left(x^{\prime}\right) & =\int_{r}>0 \\
& =\int \frac{d t}{r}=\int \frac{d t}{\sqrt{a^{2}\left(t-t_{0}\right)^{2}-\left(x-x_{0}\right)^{2}}}=\int \frac{d t}{\sqrt{a^{2}\left(t-t_{0}\right)^{2}-\left(f(t)+x^{\prime}-f\left(t_{0}\right)-x_{0}^{\prime}\right)^{2}}} \\
& =\frac{d t}{a^{2}\left(t-t_{0}\right)^{2}-\left[V\left(t_{0}\right)\left(t-t_{0}\right)+\frac{1}{2} s\left(t-t_{0}\right)^{2}-\left(x^{\prime}-x_{0}^{\prime}\right]^{2}\right.}
\end{aligned}
$$

$I=\mathbb{H}\left(t_{0}\right)$ Let 11 be the Mach number of tho flow at time t_{0}
$-L\left(t_{0}\right)=\underline{V\left(t_{0}\right)}$, as before, while $K(\lambda)$ is the complete
elliptic intogral of the first kind, $K(\lambda)=\int_{0}^{\pi / 2} \frac{d \phi}{\sqrt{1-\lambda^{2} \sin ^{2} \phi}}$,
and q is the non dimensional parameter $\frac{1}{a} \sqrt{2\left(x_{0}^{\prime}-x^{\prime}\right)|s|}$.
Then it can be shown that

$$
\left.k\left(x^{\prime}\right)=\frac{2}{2} \frac{1}{2^{2}-(1-q)^{2}}\right\}\left(2 \sqrt{\frac{q}{2}-(1-q)^{2}}\right) w^{2} 0
$$

and

The last expression any also be written in the
form

$$
k\left(x^{\prime}\right)=\frac{2}{a} \frac{1}{\sqrt[4]{\left(a^{2}-1+q^{2}\right)^{2}+2 q^{2}}} K\left(\sqrt{\frac{1}{2}}\left(1-\frac{1^{2}-1+q^{2}}{\sqrt{\left(1^{2}-1+q^{2}\right)^{2}+2 q^{2}}}\right)\right)
$$

$$
-\quad-(18)
$$

For small q, and therefore for small $|\mathrm{s}|$, the expression for $k\left(x^{\prime}\right)$ for both positive and negative s bocoias equal to
$\frac{\pi}{a} \cdot \frac{1}{\sqrt{M^{2}-1}}$. For all cases of accelerated supersonic flow
Which are likely to occur in practice, tho approximation
$k\left(x^{1}\right)=$ I.
 appears to be adequato.
a
Accopting this approximation, Δp_{a} as given by equation (14) bocomos

since $g=0$ at tho leading edge.
The total longitudinal force D_{a} due to tho asodynamic inortia offuct is then obtained by multiplying $\Delta \mathrm{p}_{\mathrm{a}}$ by the local incidence and integrating ow or tho top and bottom surfaces of tho aoroioil. Thus

$$
D_{a}=2 \int_{0}^{c} \Delta p_{a}\left(x^{\prime} \left\lvert\, \alpha\left(x^{\prime}\right) d x^{\prime}=\frac{2 e_{s}}{\sqrt{I^{2}-1}} \int_{0}^{c} g\left(x^{\prime}\right) g^{\prime}\left(x^{\prime}\right) d x^{\prime}=\frac{e_{s}}{\sqrt{n^{2}-1}}\right.\right.
$$

sinco $g(c)=g(0)=0$ for a (closod) syatutrical zorofoil. . . 0 have tinurofore show that $D_{a}=0(s)$, i.c. $\lim _{s \rightarrow 0} \frac{D_{a}}{S}=0$, in othor Words, D_{a} vanishos for small s uxcopt for oxprossions of tho sucond ordur of suallnoss in s. This rosult prosuazbly hold s ovon for a odgo-shapod orofoil sincu tho cut-oie trailing odg'o should bo considorod as the linit of a troiling ode of finito shopo in connoction with tho pr usunt problom. Howovar, tho form 1 oxprossion for D_{a}, for aorofoils vith cut-off trailins odgos, is

$$
\begin{equation*}
D_{a}=\frac{e_{s}}{\sqrt{I^{2}-1}}[g(c)]^{2} \tag{21}
\end{equation*}
$$

Couing back to tho axact uxpressions for $k\left(x^{\prime}\right)$ and $p_{a^{\prime}}$, Wo suo that oquation (I6) is valid only providud $\mu<$ II - . Subjoct to this condition, which has a sinclo gromutrical intorpr t tion, and subjoct to $\mu \ll 1$, it can bo shown (using oquations (16) - (18)) that p is at any rato numurically a:no 11 comp rod with tho "stg dy flow turin" for tho prossurs,

not grcator than $\frac{1}{a} \sqrt{2 \mathrm{cs}}$, whoro a is tho volocity of sound and c is tho chord of tho aorofoil, as bofore issuming $c=20 \mathrm{ft}$. and $s=100 \mathrm{ft} / \mathrm{suc}^{2}$ - valuos wich aro a.s high as any tiat can bo oxpuctod in practico for the timo buing - 70 soo that $\frac{1}{a} \sqrt{2 \mathrm{cs}}$
is of tho ordor of $.05<1$, thu oxact $v i l u o$ doponding on the altitudo.

To obtain an imprussion of tho magatude of tho "unsto dy torm" for the prossure which doponds on tho squaro oi tho volocity,

$$
p_{c}=-\frac{a}{\pi} \int_{0}^{x^{\prime}} 0 \alpha\left(x^{\prime}\right) \frac{d}{d x^{\prime}}\left(\int^{\left.\frac{[v(t)]^{2}}{r} d t\right) d x^{\prime}}\right.
$$

(comparo oqu tion (12)), o considur thu prticul r cso of a doublo odgo ivrofoil hos naximum t icknoss $2 \lambda c \cdot \tan \beta$, at a point λ c aft of tho loading odgo. Thon $\alpha\left(x^{\prime}\right)=\tan \beta^{\prime}$ for $x^{\prime}<\lambda c$, and $x\left(x^{\prime}\right)=-\frac{\lambda}{1-\lambda}$ tan β for $x^{t}>\lambda_{\text {c. Honco }}$
 for $\mathrm{x}_{\mathrm{o}}>\lambda_{\mathrm{c}}$.

$$
\int_{r^{2}>0} \frac{[v(t)]^{2}}{r} d t=\left[v\left(t^{*}\right)\right]^{2} \int_{r^{2}>0}^{2} \frac{d t}{r}=\left[v\left(t^{*}\right)\right]^{2} k\left(x^{\prime}\right) \doteqdot \frac{\pi}{a} \frac{\left[v\left(t^{*}\right)\right]^{2}}{\sqrt{\left[I\left(t_{0}\right)\right]^{2}-1}}
$$

whoro $t^{*}=t^{*}\left(x^{t}\right)$ is spocific valuo of t within tho intorval of intogration, so that $t^{*}\left(x_{0}\right)=t_{o}$
$\Delta p_{c} \doteqdot-\frac{\rho \tan \beta}{\sqrt{\left[i\left(t_{0}\right)\right]^{2}-1}}\left\{\left[v\left(t_{0}\right)\right]^{2}-\left[v\left(t^{*}(0)\right)\right]^{2}\right\} \quad$ for $\left.x^{\prime}{ }_{0}<\lambda_{0}\right)$
and

This comparos with tho "stoxdy motion". torm Δp_{s}
$\Delta_{p}=e \frac{\tan \beta}{\sqrt{\left[\left(t_{0}\right)\right]^{2}-1}}\left[v\left(t_{0}\right)\right]^{2}$ for $x_{0}^{\prime} \angle \lambda_{c}$
and

$$
\left.\Delta p_{s}=-e \frac{\lambda}{1-\lambda} \frac{\tan \beta}{\sqrt{\left[\left(t_{0}\right)\right]^{2}-1}}\left[v\left(t_{0}\right)\right]^{2} \text { for } x_{0}^{\prime}>\lambda_{0}\right\}
$$

To provo that, in gonoral, Δp_{c} is numorically small
comprod with $\Delta_{p_{s}}$, it is sufficiont to show that tho difforonco botw on tho squaros of sny tifo volocitios $\mathrm{V}(\mathrm{t})$ within tho rogion R^{\prime} is smanll comprod with $\left[\mathrm{V}\left(\mathrm{t}_{0}\right)\right]^{2}$. Indoua, tho timo intorval involvod can bo no gruator than

$$
\frac{x_{0}^{\prime}}{V\left(t_{0}\right)-a}, \text { and if } x_{0}^{\prime} \leqslant 20 \mathrm{ft}
$$

and $V\left(t_{0}\right)=1.2 a$, say, thon this timo intorval is of tho ordor .1 soc. Assumo that $s=100 \mathrm{It} / \mathrm{soc}^{2}$ as boforo, thon tho variation of tho volocity in tho intorval considurod cannot bu grovtor than $10 \mathrm{ft} / \mathrm{soc}$., so that tho variation of $[V(t)]^{2}$ is rathor 10 s than two por cont of $\left[v\left(t_{0}\right)\right]_{100}^{2}$.

$$
\Delta_{p_{c}}=-e \tan \beta\left\{\frac{\left[v\left(t_{0}\right)\right]^{2}}{\sqrt{\left[1\left(t_{0}\right)\right]^{2}-1}}-\frac{a}{\pi}[v(t *(0))]^{2} k(0)\right\}
$$

so that

$$
\begin{equation*}
\Delta p_{s}+\Delta p_{c}=\frac{2 e}{\pi} \tan \beta\left[V\left(t^{*}(0)\right)\right]^{2}=(0) \tag{26}
\end{equation*}
$$

A nuaber of the results obtained so far can be applied to the two dimensional supersonic flow of a thin aerofoil at a swall incidence. For simolicity, we shall confine our discucsion to the case of an infinite flat plate.
2.3. In two-dimensional steady supersonic flow conditions on the upper and la er surface of the aerofoil are independent of one another (compare Refs. 1 and 2). This "principle of independence" also applies to certain cases of unsteady flow. ilore precisely, the pressure at a point x_{0} on the upper surface
of the aorofoil, at time t_{0}, is indopondent of the geometry of
the lowor surface provided the angular region in the ($x, t)$ plane, $a^{2}\left(t-t_{0}\right)^{2}-\left(x-x_{0}\right)^{2}>0, t<t_{0}$ doos not include any part of the trailing odge. This condition is satisfied, for instanco, in caso tho forward volocity of the arofoil is supersonic throughout. Also, in accoloratod flow it is satisfiod as soon as the forward volocity oxcouds tho spood of sound. tsain, in accoloratod zotion, the condition will still bo satisfiod, for poin'ts sufficiontly close to tho loading odgo, evon at spoods slishtly below tho spood of sound.

In all casos in which tho principlo of indopondonco is satisfiod at all points of tho aorofoil, wo may apoly tho rosults obtained oarlior in this papor. In particular, tho total prussuro aay bo roprosontod as tho sual of throu coipononts as in oquation (12). Thus, on tho top surface of an a.orofoil at incidonco \propto, at a point x_{o}^{\prime} aft of the loading odso,

$$
\Delta_{p_{a}}=\frac{e_{s} \alpha}{\sqrt{T^{2}-1}}{ }^{\prime}{ }_{0} \quad-\quad--127 .
$$

Tho corrosponding normal force on the aurofoil thon, is obtainod by intugrating ovor top and bottom surfacos

$$
N_{a}=\frac{\varrho s \propto c^{2}}{\sqrt{M^{2}-1}} \quad----(28)
$$

Sinco tho accoloration normal to the plato is s α, wo nay consider tho ratio $\frac{N_{a}}{s \alpha}=\rho \frac{e^{2}}{\sqrt{N}-1}$ as a kind of apparont
mass of a flat plato a.t suporsonic spoods. Ho ovor, as in tho symatrical casc truatod abovo, noithor tho accoloration torm, Δp_{a}, nor the volocity corroction torin, Δp_{c}, aro likoly to bo of any
numorical importanco for a.ll practical purposos undor dofinitcly suporsonic conditions ($\mathbb{N} \geqslant 1.15$, say).
3. THE OSCILLATING DIUTA NIVG AT SUPGRSONIC SPMEDS.
3.1. Two-dinonsional oscillatory a.orofoil thoory has boon doa.lt with uxhaustively by various authors (o.g. Rofs. 4 and 5) from tho point of viow of linoarisod thoory. In threo dimonsions wo have to distinguish difforont physical casos, Fhich prcsunt analytical problons of varying dogroos of difficulty. Tho simplost case is tho "dofinitoly suporsonic case", in which tho principlo of indopondonco is valid, i.o. tho prussurus on the uppor and lavor surfaces aro indopendont of the geomotry of tho lowor and uppor surfaces rospoctivoly (comparo para. 2 above). This is tho caso which is callod "puroly suporsonic" by Garrick and Rubinow and is considorod by thoso authors in Rof. 3. Dofinitoly supursonic probloms can always bo solvod by moan of singlo sourco distributions, tho sourco donsity
being related to the local incidence after the manner of para 2 above. Ho rever, Garrick and Rubinow adopt a Green's function method wich has certain advantayes fro 1 the point of vie: of uniqueness considerations.

The alternative cases, called "aixed supersonic" by Garrick and Rubinow. . , do not satisfy the principle of indopendence. The ilo: round a Dolta wing is wized supersonic, or as it has also been c lled, "quasi-subsonic ", if tho leading edoes of the aorofoil lie inside the lach cono enanating frou the apex. In this case, tho aerofoil can still bo replacod by a distribution of doublets but thore is no longor ang siaple rolation botsoen tho strongth of tho doublots and the kinomatic boundary conditions. Howevor, particulr solutions of a difforent lind can now bo obtoinod by a aothod of psoudoortinosonal coordinatos. This mothod, which was originally put for ard to solvo tho corrosponding stoady flow problom (Ro:s. 6 and 7) has also boon appliod to tho cslculation of a nuabor of stability dorivatives (Rof. 8) and to tho dosign of a spocial. aerofoil soction (Ref. 9). In tho prosont soction shall dorive a sorios of norilil solutions for tho volocity potontial in oscillatory $f l o w$ and to shall dotoruino tho corrosponding normal incidonco and passuro distributions. To find tho prossure distribution and thenco tho forcos on a Dolta ving oscillating in a givon ado, wo should hav to dotoraino a linoar comination of normal solutions so as to stisfy tho spucifiod boundary conditions vvorywhoro at tho aorofoil. Pailing the explicit dot raination of an uxact solution, wo may alvays adopt a collocation mothod, i.u. We may cunstruct a. finito linoar coubin tion of normal solutions in such a may tinat tho boundary conditions aro satisfiod at loast at a finito nuabor of points.

It alay bo montionod that ovon if Iincarisod thoory is inadoquato in tho pursly suporsonic oscillatory caso, it may still provido tho correct onswor for tho quasi-subsonic caso whor thu sacond ordor phono iona nowr tho loading adge aro luss oritical.
3.2. Tho aotion of tha oscillating aurofoil is govornod by tho wavo squation

$$
\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}}+\frac{\partial^{2} \Phi}{\partial z^{2}}-\frac{1}{a^{2}} \frac{\partial^{2} \Phi}{\partial t^{2}}=0 \quad---(29)
$$

whoro tho systom of ruforenco is at rist rulativo
tho frou air, x boing positivo in tho diruction of inotion of tho aorofoil thilo y is pasitivo to starboard, and z is positivo up ards, t is tho timo, ϕ is tho volocity potontial, and finally a is tho volocity of sound, as boforo. Lut $x^{\prime}, y^{\prime}, z^{\prime}$ bo asystom of coordinatos fixod in tho aurofoil, so that

$$
x^{\prime}=x-V t \quad y^{\prime}=y \quad z^{\prime}=z
$$

whuro V is tho forward spocd of tho aurofoil, and so that tho origin of coordinatos coincidos ith its apox. Putting

$$
\begin{equation*}
\Phi=\Psi\left(x^{\prime}, y^{\prime}, z^{\prime}\right) o^{i w t} \tag{30}
\end{equation*}
$$

for haraonic wotion, wo thon obtainod tho following difforontial oquation for Ψ

Noxt 10 introduco Ψ_{0} by

$$
\Psi\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\Psi_{0}\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \operatorname{oxp}\left(\frac{i \omega x^{\prime} V}{1-I^{2}}\right)
$$

so that

$$
\Phi=\Psi_{0} \operatorname{oxp}\left(i \frac{\omega}{v}\left(v t-x^{\prime} \operatorname{soc}^{2} \mu\right)\right)--(33)
$$

whoro μ is tho Kiach anglo, $\mu=\operatorname{cosoc}^{-1}$. Substituting Ψ_{0}
(32) in (31) wind that tho difforontial oquation for is
$\sin ^{2} \mu\left(\frac{\partial^{2} \Psi_{\psi}}{\partial y^{\prime}}+\frac{\partial^{2} \Psi_{0}}{\partial z^{\prime}}\right)-{ }^{2} \mu \frac{\partial^{2} \Psi_{0}}{\partial x^{2}}-\left(\frac{\mu}{v}\right)^{2} \tan ^{2} \mu \Psi_{0}=0$

$$
\frac{\partial^{2} \underline{U}_{0}}{\partial x^{\prime}}-\frac{1}{\beta^{2}}\left(\frac{\partial^{2} \underline{\Psi}_{0}}{\partial y^{\prime}}+\frac{\partial^{2} \bar{U}_{0}}{z^{\prime}}\right)+\lambda^{2} \Psi_{0}=0
$$

$$
\text { whoro } \beta=\cot \mu=\sqrt{2}-1 \quad \text { and } \lambda=\frac{w \sin \mu}{2} .
$$

Now (co waro Rof. 10), put

$$
\begin{aligned}
& x^{\prime}=r r_{s}\left(e, k^{\prime}\right) \operatorname{nd}(\sigma, k) \\
& y^{\prime}=\frac{1}{\beta} r d s\left(e, k^{\prime}\right) \operatorname{sd}(\sigma, k) \\
& z^{\prime}=\frac{1}{\beta} r \operatorname{cs}\left(e, k^{\prime}\right) \operatorname{cd}(\sigma, k)
\end{aligned}
$$

Whoro $k=\beta \tan Y, k^{2}+k^{t^{2}}=1, k>0, k^{\prime}>0, \gamma$ is tho apox somi-unglo of tho wing, ns, nd, ote aro tho woll known J cobion olliptic functions in Gloisbor's notation, and tho intorvals of variation of tho variablos $r, ~ e, \sigma$ aro as follows

$$
0<r<\infty \quad, \quad 0<e \leq K \quad,-2 K \leq \sigma \leq 2 K
$$

whoro K and K^{\prime} aro tho compluto vlliptic intugrals of tho first kind of k and k^{\prime} rospectivoly. To ovory triplot r, Q, σ rithin tho spocifiod intorval of variation tia ro corrosponds just ono point insido the cono $x^{\prime 2}-\beta^{2}\left(y^{t^{2}}+z^{t^{2}}\right)=0$,
$x^{\prime}>0$ (oxcopt for the points of the aurofoil, which occur twico) and vico varsa. Tho points of the aurofoil corrospond to $C=K^{\prime}$.

Tho oqu tion for Ψ_{0} bocomos, in torms of thuso coordinates,

$$
\begin{aligned}
& \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \Psi_{0}}{\partial r}\right)+r^{2} \lambda^{2} \Psi_{0}-\frac{1}{n s^{2}\left(\rho, k^{\prime}\right)-k^{\prime}{ }^{2} n d{ }^{2}(\sigma, k)} \\
& \left(\frac{\left.\partial^{2} \bar{\Psi}_{0}+\frac{\partial^{2} \tilde{\Psi}_{0}}{\partial \rho^{2}}\right)=0}{\partial \sigma^{2}}\right) \\
& \text { nd } s=\lambda_{r}^{\text {Introducing }} \begin{array}{l}
\Psi_{1} \text { to ruplaco } r \text { as an indepond nit variablo, to obtain }
\end{array}
\end{aligned}
$$

$$
\begin{array}{r}
s^{2} \frac{\partial^{2} \Psi_{1}}{\partial s^{2}}+\frac{\partial \Psi_{1}}{\partial s}+\left(s^{2}-\frac{1}{4} \Psi_{1}-\frac{1}{n s^{2}\left(\rho, k^{\prime}\right)-k^{2} n d^{2}(\sigma, k)}\right. \\
\end{array}
$$

Assuining a "nomal solution" of tho =orm

$$
\Psi_{I}=F(s) G(e ; H(\sigma)
$$

To obtain tho following ordinary difforontial oquations for F, G, and H,

Whoro n and q ro arbitarry constants. Bquation (38) is s tisfiod by tho Bossol function $J_{n}+\frac{1}{2}(s)$. Putting

$$
S=n s(e, k), \quad \eta=k \cdot n d(\sigma, k)
$$

to obtain frou (39) and (40),

$\sqrt{1-\eta^{2}} \sqrt{\eta^{2}-k^{2}} \frac{d}{d \eta} \sqrt{1-\eta^{2}} \sqrt{\left.\eta^{2}-k^{2} \frac{d H}{d \eta}\right)}$
$+\left(n(n+1) \eta^{2}+q\right) H=0$
$\sqrt{1-\eta^{2}} \sqrt{\left.\eta^{2}-k^{2} \frac{d}{d \eta} \sqrt{1-\eta^{2}} \sqrt{\eta^{2}-k^{2}} \frac{d H}{d \eta}\right)}$
$+\left(n(n+1) \eta^{2}+q\right) H=0$

$$
\begin{equation*}
\frac{d}{d \eta} \sqrt{1-\eta^{2}} \sqrt{\eta^{2}-k^{2} \frac{d H}{d \eta}} \tag{41}
\end{equation*}
$$

$$
+\left(n(n+1) q^{2}+q\right) H=0
$$

Tho two oquations re oquivalont, oxcopt lor tho
difforont ranjos of tho variablos or which all thy oxprossions occurring in thow aro roil. Bota ar foras of Lamé's oquation. Thoy or satisfiod, for ppropriatu m , by Lams's functions of tho first and socond kind, $\mathrm{E}_{\mathrm{n}}^{\mathrm{m}}$ and $\mathrm{F}_{\mathrm{n}}^{\mathrm{m}}$ (comparo RJf. 11). Boaring in ind that $\bar{\Phi}$ should bo continuous at and insido tho cono $x^{\prime}-\beta^{2}\left(y^{\prime}+z^{\prime}\right)=0, x^{\prime}>0$, wo find th the appropriato functions aro

$$
G=\mathbb{F}_{n}^{\mathrm{m}}(\Phi) \quad H=\mathbb{E}_{n}^{m}(\eta)
$$

so that particuler solutions for Uo aro givon by

$$
\Psi_{0}=\frac{1}{\sqrt{r}} J_{n+\frac{1}{2}}(\lambda r)_{n}^{m}\left(\xi_{n}^{m} E_{n}^{m}(\eta)\right.
$$

$$
\begin{align*}
& \frac{d^{2} P}{d s^{2}}+\frac{1}{s} \frac{d F}{d s}+\left(1 \frac{-\left(n+\frac{1}{2}\right)^{2}}{2}\right) \quad F(s)=0 \tag{38}\\
& \frac{d^{2} G}{d \rho^{2}}-\left(n(n+1) n s^{2}\left(e, I^{\prime}\right)+q\right) G(e)=0--(39) \tag{39}\\
& \text { and } \\
& \frac{d^{2} H}{2}+\left(n(n+1) k^{\prime} \text { nd }(\sigma, k)+q\right) H(\sigma)=0--(40) \tag{40}\\
& d \sigma
\end{align*}
$$

The corresponding expressions for Φ are

$$
\left.\begin{array}{l}
\Phi=\frac{1}{\sqrt{r}} J{ }_{n+\frac{1}{2}}(\lambda r){\underset{N}{m}}_{m}(\xi) \mathbb{E}_{n}^{m}(\eta) \exp \left[i \frac{\omega}{V}\left(V t-x^{\prime} \sec ^{2} \mu\right)\right. \\
\ldots-(44)
\end{array}\right]
$$

assume that the velocity potential corresponding to a specific case can be expressed as a linear combination of expressions of the type of (44). Then the pressure distribution and theme the forces acting on the aerofoil can be found Pron Bernoulli's theorem for unsteady motion,

$$
\Delta p=2 \rho_{0}\left(\frac{\partial \Phi}{\partial t}+v \frac{\partial \Phi}{\partial x^{\prime}}\right)
$$

where Δ_{p} is the pressure difference between top and bottom surfaces and C_{0} is the density.

On the other hand, let the vertical coordinate of the aorofoil be given in the form

$$
\begin{equation*}
z^{\prime}=z_{0}\left(x^{\prime}, y^{\prime}, t_{i}=z_{I}\left(x^{\prime}, y^{\prime}\right) e^{i w t}\right. \tag{46}
\end{equation*}
$$

Then the boundary condition at the aerofoil is

$$
\frac{\partial \Phi}{\partial r^{\prime}}\left[\frac{\partial \Phi}{\partial x^{\prime}} \cdot \frac{\partial z_{1}}{\partial x^{\prime}}+\frac{\partial \bar{\Phi}}{\partial y^{\prime} \partial y_{1}^{\prime}}+i w z_{1}\left(x^{\prime}, y^{\prime}\right)\right] e^{\text {int }}
$$

quantity only, while $\frac{\partial \bar{\Phi}}{\partial \mathrm{y}^{\prime}}$ is itself small. Hence, in
accordance with tho simplifying assumptions of linearised theory (47) becomes

$$
\begin{equation*}
\frac{\partial \bar{\phi}}{\partial z^{\prime}}=\left[v \frac{\partial z_{1}}{\partial x^{\prime}}+i \omega_{z}\left(x^{\prime}, y^{\prime}\right)\right] e^{i \omega t} \tag{48}
\end{equation*}
$$

Now, if f is an arbitrary function of r, P, σ (and therefore of r, ξ, η, , then wo can express $\frac{\partial f}{\partial x^{\prime}}$ and $\frac{\partial f}{\partial z^{\prime}}$ as functions of $r, 5, \eta$ in tho following way see Ref. 7 equations (23) and (24). Replace x, z, μ, j, n, h, k in that reference by $x^{\prime}, z^{\prime}, \xi, \eta, \beta, k^{\prime}, 1$ rospectivoly).

$$
\begin{aligned}
& \frac{\partial f}{\partial x^{\prime}}=-\frac{1}{\beta x^{\prime}}\left[\xi \eta \frac{\partial f}{\partial x}-\frac{\eta\left(s^{2}-k^{2}\right)\left(\xi^{2}-1\right)}{r\left(\xi^{2}-\eta^{2}\right)} \frac{\partial f}{\partial G}\right. \\
& \left.\frac{-g\left(\eta^{2}-\mathrm{F}^{2}\right)\left(1-\eta^{2}\right)}{r\left(s^{2}-\eta^{2}\right)} \frac{\partial \pm}{\partial \eta}\right]---(49) \\
& \frac{\partial f}{\partial z^{\prime}}=\frac{\sqrt{\left(s^{2}-1\right)\left(1-\eta^{2}\right.}}{k}\left[-\frac{\partial f}{\partial r}+\frac{s\left(s^{2}-k^{2}\right)}{r\left(s^{2}-\eta^{2}\right)} \frac{\partial f}{\partial s}-\frac{\eta\left(\eta^{2}-k^{2}\right)}{r\left(s^{2}-\eta^{2}\right)} \frac{\partial f}{\partial \eta}\right]
\end{aligned}
$$

Using these formulae, to can express Δp and $\partial \bar{\phi}$
in terms of tho function $\Psi_{0} \exp \left[i \frac{\omega}{V}\left(V t-x^{\prime} \operatorname{soc}^{2} \mu^{\partial}\right]^{\prime}\right]^{\prime}$ and
of its derivatives. In particular
$\frac{\partial \Phi}{\partial z^{\prime}}=\frac{\sqrt{\left.s^{2}-1\right)\left(1-\eta^{2}\right)}}{k}\left[-\frac{\partial \Psi_{0}}{\partial r}+\frac{\xi\left(s^{2}-k^{\prime}{ }^{2}\right)}{r\left(s^{2}-\eta^{2}\right)} \frac{\partial \Psi_{0}}{\partial \varepsilon}-\frac{\left.\eta\left(\eta^{2}-k^{2}\right)^{2}\right)}{r\left(\xi^{2}-\eta^{2}\right)} \frac{\partial \Psi_{0}}{\partial \eta}\right]$ $\exp \left[i \frac{\omega}{V}\left(V t-x^{\prime} \operatorname{soc}^{2} \mu\right)\right]-\cdots-(51)$
Tho functions $F(9)$ remain finito as $S \rightarrow 1$. Hondo, att tho asrofoil
$\frac{\partial \Phi}{\partial z^{\prime}}=\lim _{\xi \rightarrow 1} \frac{\sqrt{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)}}{k} \cdot \frac{\xi\left(\xi^{2}-k^{2}\right)}{r\left(\xi^{2}-\eta^{2}\right)} \frac{\partial \Psi_{0}}{\partial \xi} \exp \left[\frac{i \omega}{v}\left(\mathrm{vt}-\mathrm{x}^{\prime} \operatorname{soc} \mu\right)\right]$ $=\frac{k}{\sqrt{1-\eta^{2}}} \lim _{\xi \rightarrow 1} \sqrt{\xi^{2}-1} \frac{\partial \tilde{\Psi}_{0}}{\partial \xi} \exp \left[\frac{\dot{\omega}}{\underline{\omega}}\left(v t-x^{\prime} \operatorname{soc}^{2} \mu\right)\right]$
Tho expressions $\sqrt{\xi^{2}-1} \frac{d F(\mathbb{Q})}{\frac{n}{S}}$
limit as 9 bonds to $I, \sqrt{5^{2}-1} \frac{d F^{m}(S)}{d 乌} \rightarrow f_{\text {n }}^{m}$, say (sou Ref. 8
for a dotorninato ?orr of this limit). Thus for any particular normal solution Ψ 。,

$$
\begin{aligned}
& \text { Assume that the potential can bo written in tho form }
\end{aligned}
$$

Then, at the aerofoil, (provided the tori by tor: differentiation is logitiaato),

$$
\begin{array}{r}
\frac{\partial \Phi}{\partial z^{\prime}}=\frac{k}{r \sqrt{1-\eta^{2}}}\left[\begin{array}{lll}
\sum_{n=0}^{\infty} & \sum_{m=1}^{2 n+1} \frac{A_{n}^{m} f^{m}}{\sqrt{m}} & J \\
n+\frac{1}{2} & (\lambda r) \\
& \exp \left[i \frac{\omega}{V}\left(V t-x^{\prime} \operatorname{soc}^{2} \mu\right)\right] .
\end{array} . . .\right.
\end{array}
$$

On the other hand, the right hand side of the boundary condition is a known function of $x^{\prime}, y^{\prime}, t$, and therefore of $r, 7, t$, say

$$
\left[V \frac{\partial_{2}}{\partial x_{1}^{\prime}}+i \omega_{z}\left(x^{\prime}, y^{\prime}\right)\right] e^{i \omega t}=g(r, \eta) e^{i \omega t}--(56)
$$

aerofoil,

$$
\text { Hence, taking into account that } x^{\prime}=r \eta \text { at the }
$$

$$
=k(r, \eta), \text { say }
$$

where $g(r, \eta)$ and $h(r, \eta)$ are complex. These functions are specified only for values of r, η which correspond to points on the arofoil, ie. $0<r \eta \leq C, k^{i}<\eta \leq 1$. Thus, 70 are confronted with an expansion problem which is a variant of the normal type, viz. whether it is possible to complete $h(r, \eta)$ on points aft of the trailing edge in such a way that it can be represented by an expansion as on the left hand side of (57). In the present paper, the general expansion problen fill not be considered in any detail. Instead, wo are going to show how, having completed $h(r, \eta)$, wo may dotormino the coefficionts m A of the expansion, provided tho expansion is at all possible.

For this purpose, require two sots of rolutions of orthogonality, viz.,

$$
\begin{equation*}
\int_{0}^{\infty} J_{n+\frac{1}{2}}(\lambda r) J_{n+\frac{1}{2}}\left(\lambda_{r}\right) \frac{d r}{r}=\frac{1}{2 n+1} n=m \tag{58}
\end{equation*}
$$

$n, m=0,1,2,3, \ldots$
(Compare Ref. 12, p. 388), and

$$
\int_{E}^{m}(\eta) E_{n}^{p}(\eta) \frac{d \eta}{1-\eta^{2} / \eta^{2}-k^{\prime 2}}=o_{m}^{n} m=p
$$

$$
n=0,1,2, \ldots \ldots m, p,=1,2, \ldots .2 n+1
$$

(Compare Ref. 11, p. 466)
Assuming that torm-by-turn integration is permissible, wo obtain, frail (57),
n

$$
A_{n}^{m} f_{n}^{m} \frac{o_{n}^{m}}{2 n+1}=\int_{0}^{\infty} \int_{k^{\prime}}^{1} n(r, \eta) \frac{d r}{\sqrt{r}} \frac{d \eta}{\sqrt{1-\eta^{2}} \sqrt{\eta^{2}-k^{\prime}}}
$$

or

$$
\begin{aligned}
i_{n}^{m}=\frac{2 n+1}{m} f_{n}^{m} o_{n}^{m} & \int_{0}^{\infty} \int_{k^{\prime}}^{1} \frac{n(r, \eta)}{r_{\left(1-\eta^{2}\right)\left(\eta^{2}-k^{\prime}\right)}^{m}} d r d \eta \\
n & =0,1,2, \cdots m=1,2, \ldots, 2 n+1 \cdots--(60)
\end{aligned}
$$

3.3. In conclusion, wo are going to show: that the volocity potentials corresponding to vertical and pitching oscillations can indood bo roprescntod by expansions of tho typo of (54).

Wo have in fact, for vortical oscillations, $z,\left(x^{\prime}, y^{\prime}\right)=$
constr. $=z^{2}$ say, so that $g(x, \eta)=i \boldsymbol{\omega}_{\mathrm{z}}$ and

$$
\begin{align*}
h(r, \eta)=\frac{i \omega z^{*}}{k} & r \sqrt{1-\eta^{2}} \exp \left[\frac{i \omega}{v} \operatorname{soc}^{2} \mu \cdot r \eta\right] \\
& =i A r \quad \sqrt{1-\eta^{2}} \text { iB } \lambda r \eta
\end{align*}
$$

whore

$$
A=\frac{\omega_{z}^{*}}{k} \text { and } B=\frac{\omega}{\lambda V} \operatorname{soc}^{2} \mu=\operatorname{cosoc} \mu, \text { sinco } \lambda=\frac{\omega \sin \mu}{V \cos ^{2} \mu}
$$

(soc equation (34).
Now wo have (compare Ref. 12, p. 388)

$$
a^{i B \lambda r \eta}=\sqrt{\frac{\pi}{2 \lambda r}} \sum_{n=0}^{\infty} i^{n}(2 n+1) P\left(B \eta_{n} J_{n+\frac{1}{2}}(\lambda r)\right.
$$

Whore P_{n} is the $n^{\text {th }}$ Logandro polynomial.
Difforontiating with rospoct to B η,

$$
\lambda r o^{i} B \lambda r \eta=\sqrt{\frac{\pi}{2 \lambda r}} \sum_{n=0}^{\infty} i^{n-1}(2 n r I) P_{n}^{\prime}(B \eta) J_{n+\frac{1}{2}}(\lambda r)
$$

Hone

$$
\begin{equation*}
h(r, \eta)=A \sqrt{\left.\frac{\pi}{2 \lambda^{3}} \sum_{n=0}^{\infty} i^{n}(2 n+1) P_{n}^{\prime}(B \eta) J_{n+\frac{1}{2}}(\lambda r)\right) .} \tag{64}
\end{equation*}
$$

To prove that $h(r, \eta$) can bo rope esontod by tho required expansion, it is sufficiont to show that tho toms $\sqrt{1 .-\eta^{2}} P^{\prime}(B \eta)$ can bo roprosontod as linoar combinations of Lamós functions of tho first kind $E_{n}^{\text {Th }}(\eta)$. Now there are just $\frac{1}{2} n$ or $\frac{1}{2}(n-1)$ Lame functions of tho first kind of ordor $n\left(\frac{1}{2} n\right.$ or $\frac{1}{2}(n-1)$, according as n is oven or odd) which are of tho form $1-\eta^{2} p_{k}(\eta)$,
whoro oithor tho $p_{k}(\eta)$ or tho $\frac{1}{\eta} p_{k}(\eta)$ aro polynomiels of η^{2}, a.ccording is n is odd or ovon. For givon n, all tho p_{k} arc linoarly indopondont, and it is thoroforo not difficult to sou that P:(B η), hich is oithor itsolf a polynomial of η^{2} or hich is such that $\frac{1}{\eta} \operatorname{P}_{n}^{\prime}(B \eta)$ is a polynomial of η^{2} can be roprosontod by a linoar combinationof tho $p_{K}(\eta)$. It follows that $\sqrt{1-\eta^{2} P_{n}^{\prime}(B \eta)}$ can bo roprosontod by a linoar combination of functions m E (q) as roquirod. n

In tho abovo analysis, wo havo assumod that tho rolation (61) applios to all valuus of r and η within tho domain of dofinition of thoso variablos. This fidititious assumption is accoptablo as long as wo aro intorostod only in conditions at tho aurofoil, but not, of course, if ino mish to invostigato tho flow in tho wako of tho aorofoil.

For pitching oscillations round the apox, wo havo $r,\left(x^{\prime}, y^{\prime}\right)=z^{*} \pi$; say, so that $g(r, \eta)=V z^{*}+i \omega z^{*} \cdot x^{\prime}$. Sinco wo know alroady that tho potontiol corrosponding to $g(r, \eta)=$ const. can bo roprosontod by tho rocquirod oxpansion, it will bo susficiont to considor the caso

$$
g(x, \eta)=i \omega z^{*} x=i \omega z^{*} r \eta
$$

Wo thon havo, for tho corrosponding $h(r, \eta)$,

$$
\begin{aligned}
& h(r, \eta)=\frac{i \omega_{z}}{k} r^{2} \eta \sqrt{1-\eta^{2}} \exp \left[\frac{i \omega}{v} \operatorname{soc}^{2} \mu r \eta\right] \\
&=i A r^{2} \eta h_{1-\eta^{2}}^{i} \text { B } \lambda r^{\eta}
\end{aligned}
$$

Difforontiating (63) with rospoct of B η, oo obtain

and so

$$
h(r, \eta)=-4 \sqrt{\frac{\pi}{2 \lambda^{5}}} \sum_{n=0}^{\infty} i^{n+1}(2 n+1) \sqrt{1-\eta^{2} \eta_{P_{n}^{\prime \prime}}(B \eta)}
$$

$$
\begin{equation*}
J_{n+\frac{1}{2}}\left(\lambda_{r}\right) \tag{67}
\end{equation*}
$$

Tho torms $\sqrt{1-\eta^{2}} \eta$ P" (B η) can bo roprosontod n
as linu ir combinations of Lamó functions of tho first kind of ordor n, as boforo. This complotos the argumont.

The two modos of vibrition considorod above are rigid. additional work on olastic modos (thooretical and numorical) may bo postponed until moro ovidonco is availablo on tho particul ir probloms which aro likoly to occur in practico.

No．	suthor	Titlo，otc．
1.	．E．Puckott	Suporsonic wavo drag of thin aorofoils． Journal ioro．Sci，vol 13， 1946.
2.	A．Robinson	Tho wavo drag of diamond－shapod zorofoils at zoro incidonco． R．A．E．Toch．Noto No．ioro． 1748 ， 1946.
3.	J．E．Gorrick ond S．J．Rubinow：	Thcorotical study of air forcos on an oscillating or stoady thin wing in a suporsonic main stroam． N．A．C．．．．Toch．Noto No．1383， 1947.
4.	v．Borbely	Aorodynamic forcos on a harmonically oscillating fing at suporsonic volocity． Z．．．．工．I．vol 22．1942．
5.	G．Tomplo and H．．．Jahn．	Pluttor at suporsonic spouds． Part I，R．．．．E．Roport No．S．．．E．3314， 1945.
6.	A．Robinson	Liit and drag of a flat Dolta wing at suporsonic spoods． R．．．．3．Toch Noto No Noro．1791， 1946.
7.	\therefore ．Robinson	Aorofoil thoory of a flat Dolte ring at supursonic spoeds． R．A．T．Report No．Aoro 2151， 1946.
8.	人．Robinson	D mping dorivativos of a Dolta \％ing at suporsonic spoods． To bo publishod in tho Journal of the Royal Aoronautical Soc．
9.	H．B．Squiro	Theory of flow ov or a particular wing in suporsonic flow • R．A．E．Report No． Aero 2184， 1947.
10.	A．Robinson and J．H．Huntor－Tod．	Tho aorodynainic dorivatives with rospoct to sidoslip for a Dolta wing with sua．ll dihodral at suporsonic spoods． Collogo of ioronautics Roport No．12， 1947.
11.	E．T．Hobson	Tho thoory of sphorical and ellipsoidal harmonics． Gambridgo， 1931.
12.	H．Batcman	Partial difiorontial equations of ITathomatical Physics． ．Inorican odition，Now York， 1946.

CALCULATION OF VELOCITY POTENTIAL FOR accelerated motion

FIG.I.

CONDITIONS IN THE ($\left.X^{\prime}, t\right)$ PLANE
FIG. 2.

