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SULTMARY

Unsteady supersonic flow round an aerofoil of
infinite span is considered in the firgt part of the paper.
It is shown that the pressure at any given point of an
aerofoil under forward acceleration can be analysed into
three componemnts, one of which is the steady (Ackeret)
pressure due to the instantaneous velocity, while of the
other two, one depends directly on the acceleration, and
one on the square of the velocity, during a limited time
interval preceding the instant under consideration.
However, the difference between the total pressure and
the "steady prsssure component" is such that it can be
neglected in all the definitely supersonic conditions
which are likely to occur in oractice.

The oscillatory supersonic flow round a Delta
wing inside the Mach cone emanating from its apex is
considered in the second part of the paper. Particular
"normal®" solutions are obtained by means of a special
system of curvilinear coordinates. It is shown that the
velocity potentials corresponding to vertical and
pitehing oscillations of the wing can be reprcesonted by

gseries of sguch normal solutions.

The assumptions of lincarised theory are
adopted throughout.
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INTRODUCTION .

Lsls In the prosont papor, the lincariscd theory
of compressible flow will boc applied to somo probloms of
unsteady supersonic aerofoil theory. Two specific topics
will bo dealt with under this hoading, viz. (i) unstcady
supcrsonic flow round an aerofoil in two dimcnsions, with
particular roforcnec to accolorated motion, and (ii)
oscillatary motion of a Delta wing a2t supcrsonic spoodse

1s26 In tho first part of the papor (Scction 2),
wo considor in the first instance two dimensional
accolorated flow round a symmetrical acrofoil at zcro
incidonces Tho velocity potential for this typc of flow
cam be roprescnted by a distribution of elemontary
solutions as givon by

a

- S8 2
2%( oty ) 2l xx) (yy )

in (x,y,t) space, where t denotes tho time and a the
voloeity of sound. This distribution is of a type which
has beon used in conncction with stoady supersonic acrofoil
thsory in threc dimensions (Rofs. 1 and 2). However, in
that applic-tion t ropresents the third spatial dimension
and 2 is the non-dimensional constant Lf 3" whore M is
tho #ach numbor of tho flow. Thus, if tho dircction of
flight coincidos with the dircction of imcrcasing x while
the chord of tho ~orofoil always lies on the x-axis,

{%ss Fos t,) at any point outside the acrofoil is given

by
P (x5 o %) = 0 O (x.t) d x dt
\/a (t=ty) —-(x-xo) -y

In the above formula, tho "source donsity"
o (x,t) is rclated to the normal velocity component by

o = lim . 3‘& = Wwolx,, to),
y > 0\ 2y |
Q

and the integration cxtends over values of x and t which

corresponds to points on thg acrofoil, and whiches:tis
the conditions tqg_to and a2(t - tO) = ix = xo) s ~70.

Tho vertical velocity v, in turn can be expressed in torms
of tho<kincmatic conditions ~t tho acrofoil.

- Using the above representation it is showm that
the pressurc at any given point of the acrofoil can be
analysed into threc parts, one of which is the steady
pressure duc to tho instantancous veloeity, while of the
other two onc depends direetly on the aceeleration, and onc
on the squarc of the veloeity, during a limited time intorval
prcecoding the instant undor considoratiun. The component
doponding on tha acceleration gives rise to an oxpression
far the apparent wmass of an aorofoil at supersonic spceds,
which 1s cnalculanted for various casces of uniform accoloration.
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However, it is shown th:.t the difference between the total
pressure and the "steady pressure component" is such that
under definitely supersonic conditions (Mp1.15, say) it

can be neglected in all cases which are likely to occur in
practice. This statement does not apply to transonic speeds,
but the conclusions for such speeds reached on the basis

of linsarised theory are of doubtful validity in eny case.

In view of the fact that conditions above and
below the aserofoil are independent of one another under
two~dimeneional supersonic conditions, the methods and
results mentioned abovs alsc apply to aerofoils at incidence.

1.3. The second part of the paper (Section 3) deals
with unsteady supersonic conditions in three dimensions,

in particular with the oscillatory motion of a Dslta wing
whose leading edges are inside the Mach cone emanating from
the apex. The alternative problem (leadingz edges of wing
outside lach cone emanating from apex) has already been
solved by Garrick and Rubinow {Raf. 3}.

It is assumed that the free stroam velocity is
parallel to the positive direction of the x-axis, while the
elta wing lies (approximately) in the (x,y) plane, its
apex coinciding with the origin. A special system of co-
ordinates (r, e ¢~ ) is thon introduced by

X =r ns (@, k') nd (e, k)

yel P ds(e,k') sd (o~ ,k)

g=1 »p cs(e,k') cd (o , k)
2 2
In these formulae, k -:-(3 e tan Y k + k' =1,
2
x>0, k' » O,B =fii -1, where Il is the Mach numbcr of
the flow, Y is the apex semi-angle of the Delta wing, and
ng, nd, etc., are the well known Jacobian elliptic functions
in Glaisher's notation. Particular "normal" solutions for
the velocity potential are thon given by
m

%-‘- L J (% 2 F (ns( e ,E')E (k'nd( o ,k) ) exp
T N+ B .

I
2
[i M/ (V-x ssc/bp)
: v
-1

where ?\. = ;E soc/_v ,/4_, = cosec M, and the Jn e
m

of-

and Ez and F arc Bessel functions, and Lamd functions of
n

the first and sccond kind respcctively. It is shown

that the veloecity potentials corresponding to the

oscillation of a Delta wing in vertical motion and in

pitch cen be represented by scrics of normal solutions

as mentioned above.
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ACCELIRATION SFIICTS IN SUPERSONIC FLOW.

2.1 Consider the two-dimensional rectilinear
unsteady flow round a symmetrical serofoil moving at zZero
ineidence. We choose a system of coordinates which is at
rest relative to the fluid in regions far away from the
aerofoil , such that the chard of the acrofoil always
coincides with the x - axis,with the loading edge pointing
in positive direction. The following analysis includos
the possibility that thc surface of the asrofoil be
deformable, provided the acrofoil remains symactrical
throughout.

Tho lincarised cquation for the velocity
potential is

2 2 2
30 .28, ¢ _, e g
2 2 2 2
BK 53’ a at
whorc t is the timo coordinate and a tho velocity of sound.
de now apply the theory doveloped for dcaling with steady

flow round acerofoils at zZero incidoncc in throo dimeonsion
(sco Refs. 1 and 2). Taking into account that tho cauation

of wotion in thit theory is . 2 2 B 2
29 ., ¥ A1) D -0
2 2 2
Dx P, ¥4 dz
where z is the direction of motion of the zerofoil and 31

the Iliach number, we have to replace the guantity G - /Hﬁ “ g

everywhere in that theory by_i- #e then find that in our

a
present case the velocity potential at a point P = {x ,y ,t ),
cam be represented by 0 "o O

@(x,y,t)=aj & (x %) d xd t = = = {2)
oy B e -

2 A -
a (t—to) —(x—xo) w7,

where the integration extends over values (x, t) which
correspond to points on the aerofoil and which satisfy the
conditions
2 2 2
-t - - and t t
a (t 0) (x xo) > 9 nd bt
Conditions in the (x,t] plane are sketched in Fig. 1.

The"source density" o= (x,t) is related to the
normal velocity couponent by

lim <) a = vo__(x05 to)
Yo ?% \ a7,

Let the position of the surface of the amerofoil
at any time be given by y = F(x, t), then the boundary
condition at the asrofoil is

v =u 1a F,, oF
dx Jt

/Where seses
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where u = aé , v = bé » Now assume that the
o X Qy

position of the leading edze as a function of the
time is xE= f(t), while the normsl coordinate of the

agrofoil at a distance x' aft of the leading edge is
given by y = g (x', t})« We have x' = xx'-' x s 8{t) =x,
by definition, and so y = g (£ (t) - x, t), or

P(x, t) =g (£ (t) »x, %)
so that the boundary condition becomes

veu (-08 )4+£'(t) B8 + D& - (f'(t) ~u) O& + D&

> x 2t | Bk ax Bt

Now u way be supposed to be small compsred
with £'(t) which is the forward velocity of the asrofoil
and so can be neglected, in accordaace with the simplifying
assumptions of lincariscd theory. Hence, at the asrofoil

Bi =v=='t) O8 + O¢g
dy Dzt Bt

Thus, finally, the source density g@* at a point
x, t of the acrofoil is given by

orlxt) =1 (£ (t) d g+ dg) =1_(£'(t) g, +g)
3 A
azx At

and
é (xo,yo’to) = sl Edfd Bt ¥ g‘t} d x dt

= 2
¥ i P S v,?

= = = ()

Denoting the free stream preasurc by Pys WC
obtain for the prossure p at any finito point,

po"e[%(u2+v2}+__§?_‘; ]
Dt

It

P

or

e}
Ll

p - P28 -p s “ D
2+

afteor lincarisation.

Calculating -] é = @ g 28 given by (4), we
Dt

obtain

BEY »omen




bx %% ) & at ﬁ{f'(t) Jd x dt
t %02 ¥gs by =TT g 78
|| _ot ol W
2 2 2
R \Aa, £ T (x-x) —y02
- - - (6
+ _a (EME) & - + gt) g%
w
G.; sttt ) g 1o B
( (x )
whore the s.cond integral on the right hand side is taken
along thosc pwrts of tho bound.ry of the acrofoil (in {x,t)
N s 2 2 2 2
plane) which satisfy a (t—to) » {x=me) = Yo 2.0, t &€t

(Geg+ In Fig. 1. C is the curvilinear scoment L'L"). Also,

;t (£ (1t & ot gt) = £t} gx'*E'(t)]zgx'x'd— f'(tigx't‘- gt‘t.

- = (7]

Thus, taking into account that dx = £'(t)
ovorywhore on G, dt

2 4 i
Pulx0750t,) = sl f] s, - (£) g, 28, *¢

e L4
\/a2 (Bt ) (x| - 3'02

I

- - - (8)

2
+ (£') gxl - £ g‘t

dt

Ja2 WL )

2 2

0 xfo (t-—to} (x-x.o) Y

This forimla is valid on tho assumption that gx,

is continuous and difforontiablc overywacre. In tho casc
. that g , is discontinous at a number of fixed noints on tho
X

acrofoeil, @t must bo cvaluated somratcly for the differont
rogions in which g 8 1 is continuous, and thc rcsults addced.

This is of practical imoortancc for aorofoils with polygonal
boundarics;, c.g. with doublc wodyc soction.

Taking the particular casc of a rigid :ocrofoil
(symactrical with rospect to the y-axis, as bofors), © sce
that g is now indc-aond:,nt of t, and so

§

2
f"grdxdt-l- Fad By A xdb + g {£*) da%
R %'
" r

m e R0

2 2
zharc.r =a. t—t) —{x—x) =¥, . B Pl
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It will be seen that the first integral on the right
hand side of (9) depends dirsctly on the forward accelerstion £U{%);
while the other two inte_rals depend on the acceleration only
through the intermediary of the velocity change. Thus, only the
aerodynamic force corresponding to the first integral may be said
to be a genuine apparent mass effect.

Considering conditions at the aerofoil, we may transform
the expression for ét still further in the following way. We have

D (x, t) =<, and so
D i,
7 ' 2
@‘tz_ (f')glxi y (£')
d.x" gt & dx'dt + gx,(OJ1 dat
r c' r
- - - (10)

where R' and C' are the transforms of R and C in the (x',t)
plane (Fig. 2).

We define a funetion h(x') by

; 2
hi(x') =J) {f') a4t for 0% x'<& xo'
rg;r o %
where x! =f (t ) -x . In terms of this function, the
o o} o)
sccond integral on the right hand side of (10} becomes

2 x!

5! X
(£') g o po o )
X' X dx'dt = 8 i typih(x’ jdxt gk'h[x‘) - gx,h'(x’)dxﬂ
o o §©
r

while the third intesral can be written

!f'[z dt =h (0)
7

Rf

Hence

2 , '
) (2] 2 o 2 \ o bt '
X dx'dt + glo)} (£') dt =1im g hi{x') -] z ,h'(x') ax
r x! ) r x'-Qx' x X
R’ C o

Now it can be showm that
2
lim g bBix'] =g [x') .‘: £? (to) :] = L
x] XI O

LNy j)/1fg (to} i]EE ;
T

Substituting in (10) and putting V(t) = £'(t) for the
forward velocity, o (x') = g (x'] for the local incidence, and

x'
Vi) for the lach numbgr, we obtain
a

M(t} =

T wevvn
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v// (t ax!

- g of{(x') a x' at

T

.- - ix [v 5 ]2 a vt(x ) |ne]® aty ax*
il

The oxccss pressure, i} p (sco oqu-tion (5) above} is
then obtained by wltiplying (11) by - e .

2
Ap=+f’o¢(x'o)ﬁ(t°):' bt (ox(x'] d_ E(____“]gdt)df

The first tora on the right hand sidc of (12) is
the steady aotion torm, 28 obtainsd by acksrot's thoory, wihilc
the sscond deponds on tho squars of tho velocity during a limited
period proeceding t,» The third term doponds on tho acccloration
and wey bo sald to bo an apparcnt mass offuct.

2.2 JG aro now going to considor soms spocial cascs. It
7111 sppoar that for all the nractical cascs of pursly suporsonic
flow thit can bo onvisaged 1t pros.at the "unsteady t: ras™ are
nogligiblc coupaured with the Ysto:dy torm "in the cxpression for
13 p. It follows thit for such casss, tho Xpression for tho
drag givon by ickorot's theory is adoguato.

Only ¢ =38 of uniform acceler:stion will be considered.
For such cases £(t) can be written in the form
2
£t) = £tg) + Vit ) (t - &) +% 8 (¢ - t,) = w =itEe

where t, is an arbitary moment of time and s is a constant.

The acceleration term in the expression for A p in
equation (12) becouss :

o)
‘LEE = at Vi(tjoh(x') dx'"dt = a2€ s ol (x') k (x') d x'
m v w |
R' o
- = =1(14)
where
kKix)) = at = d?_b.&..._ ! = dt
r i > > ) e, 2
r%)»o 'ag(twto}2—(x—x0] (é (t—to) ~(£(t)+x —f(to;—xé)
_ dt
2 e
/a2(t-t0J2 - [V(toi (t-tg) + &8 (4=t ) - (xrﬁxﬁ
w a | 5)

/Le‘t e h e
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Nl - Let ii be the lch auaber of thc flow at time to
=(t,) = V(ty) , as before, 7hile K | A ) is tho complsts

a /2
elliptic intcgral of the first kind, K { A) = d@ 5
0
/l - P’I2 Sin2¢

and g is the non dimensional parametor _J;/2 (x‘o - x')? sl -
a

Then it can be shown that

Elx'") =@ 0 - K 2/ q when 53,0

% 2 2 2
\/—i ok = R Lg—(l—q} - m = {36]

k(x') =2 K@ i -1‘+q
/ -l) + 2q (L + 1)+ q ‘/*1 —l) +2q '-.2+1)+

p)

when s <=0 - - = (17)
The last sxpression may also be written in the
form
k(x'] =2 1 v ﬁ— 1 - :.32-1+q2
1 7(._‘2-1 + qz)g* 2q2 5 , %112-1 + q2}2+ 2q2
- = - (18)

- Por small q, and thersfore for small |sl, the expression
for k(x') for both positive and ncgative s bcecomss equal to
w 1 e
*  Fe———=-. DPor all cases of accelerated supersonic flow
a M -1

waich zre likely to oceur in mactice, the approximation
k(x') = _W_ . 1 appears to be adoquatc.

a M -1

Accopting this approximation, € p eas givon by
equation (14} bocomes &

Op = £ wxtiaxt = € s (glx') - zlo)

)= £ g (x
-1 . \/Li -1 Jiba

gsince g = 0 at tho leading odgo. - - {19
The total bongitudinal force D,‘ duc to the asrodynamic
inortia off.ct is thon obtained by multiplying A P, by the local

incidencs and intograting ovoer the top and bottom surfacos of the
acroroils Thus -

D =2 } Op (x'je(x') dx' = 2 € ‘rg(f) g{x') ax' = Q 8

o} : 1.12—1 0 V"
| Eg’(c.’d = 01!23

- (20}
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sincc gle) = g(0) = 0 for a (dossd) syarwtrical -orofoil. o
have thuroforc shown that D =ols), i.3. lim D, = o, in othor
; 50 5
words, D, vaaishcs for small s uxcopt for cxprossions of the
sveond ordor of saallncess in s. This rosult prusumably holds
oven for a wecdgo-snaped sorofoil sine. the cut-off trailing
odge should bo considcrcd as the Limit of 2 trailing edzo of
finite shapo in conacction with the o osont problom. Howvovor,
ths form.l cxprossion for D, for acrofoils with cut-off
trailing odges, is -

2
5, » R Eg(cnj - - = {a)
\/122—1

Coming back to ftac sxact .xprussions for k(x') snd Py
we 8uo that cquation (16) is valid only providod AA < 11 - 1.
Subjoct to this condition, which his a sinsloc goom.tricsal
intorpr t.tion, and subject to 22 1, it con be shown (using
oquations (16) - (18)) that p” is at any rato numorically suall
coup. rod with tho Mat .u_gy flow tura" for the prossurs,
e oL (;;'O) Ly - Nos, for any givon icrofoil, Ab is

not greator than 1 ,/2 ¢ s , whorc o is the volocity of sound
a - .
nd 6 is tho chord of tho asrofoil, 2s baoforc. Assuming ¢ = 20 ft.

2
and s = 100 ft/suec - valuce waich ire as high 1s any tiat can be

cxpueted in practice for ta. time buing - wo soc that 1 5 e g
a

is of thc order of .05 &1, th. cxact valuo dopending on the
altitude.

To obtain an impr.ssion of thc magaitude of tho "unstc .dy
torm" for tho prcssurs vhich doponds on the squirc of the velocity,

: 2
P, = =4 e Xoo(‘(:i')._c_l__( [‘J!‘t]j dt) dx'
*-n- dx! r
0

(commre oqu tion (12)), .o considur thu pirticul r ¢z of a
doublc rodge icrofoil —hosc maximum t:oickncss 2 hc- tan B 3 4
a' point A c aft of tho loading odgo. Thon o (x') = tan ﬁp for
x'& Ac, and el (x') =~ &  tan ﬁ for x' > A c. Honeo

1-—

&
ct

(22) J~ and

:

c
- %l =8

1 -8

for x'o‘y?\c .

A\TOW sreen

P =-g_1_‘:_ﬁ_tan‘3 [‘fﬁﬂ_ld: 'l | o j’&(tijg a

A Xt
2
& P =~2 4 t;m[a, Y [:v_(tl ] dt for x' & Ac
T £ *" =0

x! «.:xf

X

LI

C
e
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Now, using a mcan valuc theorcm of tho imtogral calculus,

r,v(t}i dt ~Ev{t*]f [ t*] x') & 1;__ v(i'-kﬁg -

r 7 r 3o
whoro t* = t* [x') is spocific valueo of ¢ within tho interval
of intogration, so that 't,‘{:{ ] = &,

br, % f”"mﬁ V(t:] 0)) } forx'.z.?\c
/_[ittO] [ —']

f’tmﬁ [v(t*( '?tc))z [ vi€on) k -_2\__[{‘_!(%,0)]2 =
o o] -

This comparos with the "steidy motion" torm .st
F 2
e tan 6 ﬁ[toj] for x' £ Me
- o
3 - , 2 L
/]

>
o
e

P
o
0

>4
o
i
l

A tan B Fa'(toj]g for x'0> Pc
1-7 ,/F(t‘JjI_ 1 L

To prove that, in goncral, A pc is numerically small
compirod with A s it is sufficiont to show that the differcnce
botwuon tho squares of any two velocitiocs V(t) srithin tho rogion R'
is small comparod with [V(to]]e. Indcud, tho time intcrval
involvod can be no groator than S , and if x'oﬁ 20 ft.

Wt ~a

and V(toj = 1.2 a, say, thon this timc intorval is of tho order .1 socc.

: 2
Assume that s = 100 £t/sce 13 boforc, thon the variition of the
voloeity in tho intcrval con.a.:i.durod cannot bo grortor than 10 ft/scc.,
so that tho variation of fy(+t) is rathcr less than two pur cont

2
of Ef(t )] .
o
Wo notics for futurc roferonce that the cxprcssion for
p. for a wodgo-shaped »orofoil { A = 1) is,

tan B (0] ° £%(0) | - -
- - f3 f(tg g [usoni]®

i

go that

2
Bp rar - af tanfo'[wt*(on] ¢ (0] v
™
I ks

E(t" (A c)):l ;"] for x'o"?AcJ

k’,(231

- (24)

—

—
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A nuaber of the results obtained so far can be applied
to the two dimensional supersonic flow of a thin aerofoil at a
saall incidence. For simolicity, we shall confine our discucsion
to the case of an infinite flat plate.

2+3. In two-dimensional steady supersonic flow conditions
on the upper and lorer surface of the aerofoil are independent
of one another (compare Refs. 1 and 2). This "principle of
independence" also applies to certain cases of unsteady flowe
iore precisely, the pressure at a point X, on the upper surface

of the acrofoil, at time t,, is indepcndent of the geomctry of

the lower surface provided the angular region in the (x, t) plane,
2

P
a {t-tol - (x * %)

v e I &t does not include any part
of the trailing odgc. This condition is satisfied, for instanco,
in casc the forward volocity of the :erofoil is supcrsonic
throughout. Also, in accclorated flow it is satisfioed as soon as
the forward veclocity oxccuds the spoed of sound. igain, in
accclorated motion, the condition will still be satisficd, for
points sufficiently close to tho loading odge, ovon at spocds
sligzhtly below the speod of sound.

In all cascs in which th¢ prineiplo of indcnondcnco is
satisficd at all points of the acrofoil, wo may apply the rosults
obtained carlicr in this papcor. In particular, tho total »nrussurec
may bo roprecscnted as thz sua of throu cowpononts as in cquation
(12). Thus, on tho top surfacc of an scrofoil at incidcones of |
at a point x’o aft of tho loading odgu,

Apa= Caot x'o - = = = (27)
2
S

The corrcsponding normal forcc on the acrofoil thon,
is obtainod by intograting ovor top and bottom surfaccs

. 2
N = @s o ¢ : - = = ~(28)

Sincc the acecleration normal to the nlato is s o , we

2
may consider the ratio N = e c as a kind of apparont

5% \}:.{ 51

mass of a flat platc at supcrsonic specods. Ho wver, as in the
syamotrical casc troated above, ncithor the accoleration term, ﬁ»pa,
nor thc velocity corrcction torm, bpc, arc likely to be of any

numorical importance for all practical purposcs undor dofinitely
supcrsonic conditions (22 1.15, say).

THS OSCILLATING DILTA ~ING AT SUPEZRSONIC SPEEDS.
JF.1. Two-dincnsional oscillatory scrofoil thcory has bocn deoalt

with oxhaustively by various authors (c.g« Rofs. 4 and 5) from tho
point of view of lincariscd thoory. In throc dimcnsions we have to
dietinguish diff.rcnt physical casos, which presont analytical
problems of varying dogrees of difficulty. The simplest case is tho
"dofinitely supcrsonic case", in which the principlc of indcpundenco
is valid, i.c. the prussurcs on the uppor and lovcr surfaccs arec
indopendont of the geomotry of thoe lower and uopcr surfaces
respectively (comparc para. 2 abovc). This is thc casc which is
called "purcly supcrsonic" by Garrick and Rubinow and ie considorod
by thcsc authors in Rof. 3. Dofinitoly suporsonic Problems can always
bc solved by mean: of singlc sourcc distributions, tho source density

/bOiIlg‘ LE SR S
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being related to the local incidence after the manner of para 2
zbove. Hovrever, Garrick and Rubinow - adopt a Green's function
method which has certain advaentagss fro: the point of vis. of
unigueness considerations.

The :=lternative cuses, called ™aixed supersonic" by
Garrick and Rubinow - -, do not satisfy the principle of
independencc. ihe {low round 2 Delta wing is wized supersoaie,
or as it has 21so been c.lied, "quasi-subsonic ® , if the leading
ed_es of the asrcfoil lie inside the lfach conec enanating fron tho
apex. In this case, thc acrofoil can still be reolaced by a
distribution of doublets but thorc is no longsr any siuple
rclation botscen tho strongth of tho doublcts and the kinematie
boundary conditions. However, particul:r solutions of a
difforent lind can now bc obteincd by 2 mcthod of pscudo-
ortinogonal coordinatcs. This mothod, which was orginally put
forard to solve tho corresponding stoady flos problem (Rcis.
and 7) has also boon applied to the csleulation of a numbor of
stability dorivatives (Rsf. 8) and to the dosign of a spocial
acrofoil scetion (Raf. 9). In tho prosont ssction <o shall
dorive a sorios of norm:l solutions Tor the velocity potontial
in oscillatory flow and "r; shall dotoruine the corresponding
normal incidsones and @ cssure distributions. To find tho
prossurc distribution andthence the forces oa a Dclta wing
oscillating in a giveon 2ode, we should have to detormine a
lincar coubination of norwal solutions so as to s»tisfy tho
gspeeified boundary conditions svorywhoroe at tho acrofoil.
Failing tho oxplicit dot.raination of an oxact solution, wo
may always adopt » collocation method, i.c. wo mAy cunstruct
a finitc lincar combin:tion of normal solutiens in such a way
that the boundary conditions arc satisficd at lcast at a finite
numbor of pointse.

It sy be mentioned that oven if lincarised thoory
is inadcquato in the purcly supcrsonic oscillatory casz, it
may etill vrovidoe the corrcet answor for the quasi-subsonic
casc whor: tho soccond ordor phonoacna noar the leading odgze arc
logs criticals

Fe2e The motion of tho oscillating acrofoil is govorncd
by the wave cquation

$8.36.3% .1 ¥&.0 - = «f29)
3 S B s | B

whore the systom of roforcncc is at rost rolative

the frec alr, x being positive in the dircetion of wmotion of

tho acrofoil vhilc y is positive to starboard, and z is positive
upards, t is tho tiame, is the veloecity potontial, asad
finally a is thc vslocity of sound, as bofore. Lot x', y', g
bc asystem of coordinatcs fixcd in tho asrofoil, so that

x*=x-" yv' =y z' =32

where V is the Corward spoed of tho a.rofoil, and so that tho
origin of coordinatcs coincidos with its apox. Putting

for haramonic wotion, wo thon obtaincd the following diffcrontial
equation for W

(147 _5‘174- ?Jg\lhf Vofw ¥ \p— ziwV .o
hx‘z ay'2 .az? g a2 Q!

/Noxt snvse
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Noxt o introducc % by

W (=52 = \Yo (x',y',2") oxpf iux¥ w = =i

2
1 -1
go that
o NE Dxp(iW{V‘t—"'S“GE )} ) - - = (33)
O "_? S L N
. L1 -1
whoro is tho liach anglc, AL = coscc  is Substituting .
(32) in {31) wo find that tho difforontial cquation for
is
2 5 <f p) o T
sin/” '3\H+ thyo ‘GOE}MJ B‘P(;- s tm/J.‘i}i):O
2 2
av dz' O x' v
or

)211‘2;— A 32%+ 32@0 + ?’izq}o =0 - = =(34)
2 2 2

3 ke

7’2
throﬁzcot,y =q il = 1 and ?\ = _Wsin/\b .

Now (co wairc Ref. 10), put

x! = rns (€, k') nd (&7, k)

~
L

:_L[.srds(e:k')Sd[rsk) """"(35]
z' = res (@, k') cd (om,k)
@

shore k =ﬁ> tan Y , Lk 1, k2 0, k' 20, Y is the
apox scmi-:nglc of tho wing, ns, nd, ote. arc tho well known
Jcobian clliptic functions in Gloisbor's notation, aond the
intcrvale of variation of the variablos r, e , §" arc as follows

%
0&r & o0 o..-:.eé\( , -2fe o s=2 K

whoro K and K' aro tho conpluots olliptie intograls of tho
first kind of k and k' rcspcctively. To cvery triplet r, @ , o~
writhin the spocificd interval of v,:-.rj_agion t3 orc corrcsponds
ust ons point insids tho cono 412 2 e

R GRS < x'% (y'“ +3'") =0,

x' >0 (oxcept for thc points of tho acrofoil, +hich occur
twico) and vice versa. Tho points of tho acrofoil corrsspond

to e =\('.

Tho cqgu-tion for 12 bocomos  in torms of thoso
coordinates,

3 of 2% N :
ar bl‘

2 2 2
n_s(e,k'] -k nd {0, k]

2 16 2 ¢l
(3 V. W\ =0 ---6
- 362 D2
Introducing 'q}.: =J?' Wo a8 5 now dopondent variablo,

and s = A r to roplace r as an indepcndunt vairiable, 7o obtain

J(3T) eeene




A5

g &
s B‘fﬂsa ‘g]1+{82—!._)¢1—- 1
* 2
a 52 b 8 nsz( e,l:'j--l:'2 nd (¢, k)

2 2
3 W, 2 UN-0 - - -037)
207 ot
Assuiring, a "normal solution" of thc “orm
Qfl #ls) (@ ) B (O7)

7o obtain the following ordinary difforential cquations for
P, G, and H,

I

2 -

dP+ 1 4FR+f1 -(n«+3) Pls) =0 - = = (98)
-2 d s 2

ds 8

2 2

d &G ~-{(n(n~+~1jnse (P, L) +q)G(Q) =0 - - =(39)
: € ¢

1€

and

2 2 2

d H +{({nln+1 k¥ nd (O, k) +qg) Ho") =0 - - - (40)
2

i g

viacre n and q rc arbitarry constants. Baquation (38) is
s:tieficd by tho Bessol function Jn (s)e Puttiing

. o B

g:.-ns(e,}:'} " ”Lal’:'nd(ﬂ",lt) s

-~ obtain from (39) and {(40j,

\/"52—‘1/@2,—1:'2 g__(/gz-l/@—'wz dG ) ~-(n (n+1J%2+Q)G
a8 18

and s »
\/—”Lz/'bg—kz L(ﬁ—%aﬁ;*kzé—ﬁi

an, af
+(n(n+1}12+q)H=O - - =(42)

Tac teo cquitions ~ro cquivalent, coxeopt Jor tho
diffcront ran,cs of tho variablos Jor which all tug oxpr casions
occurring in thou arc roal. 3Bot: ar. Torus of, Lamo's oquation.
Thoy ar- satisficd, for :ppropriitc g, by Laml's functions of
the first and sccond kiand, EI::: and A (comparc R.f. 11). Boaring

4 “alvd that @ should bu continuous at znd insidc thc conc

2 2 2
xt - ﬁ (y* +2' ) =0, x> 0, wo find th't thc appropriatc
functions arc

m _ m
c=7 (9] H=E (1,)

n n
so that particular solutions for Ik arc given by

b'i'ﬂ. it
We1_3 (An7(8) 2i4) - - - (43)
n n

1
T n + 3




e

The corresponding expressions for @ are
= 1 (A ) " S : «
) F o B | e i a2 (Vi - x! sec
P s el e p

= & = (ha)

e { .
wnere X -_3_._'_1' ﬁ:*; ’YL .

weouine that the weloeity potential corresponding
to a specific case can be expressed as a linsar co :bination
of exprecssions of thz type of (44). Then the pressure distribution
nd thems the forces acting on the aerofoil can be fuund from
Bernoulli's tisorem for unsteady motion,

=2e aé + aé - - = (45)
Dt Bx'

where Ap ig the pressure dif_ erence betwesn top and bottom
surfaces and eo is ths density.
Un the otasr hand, lt the vertical coordinato of
the aocrofoil be given in the form
iwit
5t =35 _[8%, 9%, 4 en, B8 gf) e - - - (46)

Then the boundary condition 2t the aerofolil is
AP (2 . 221 2% 21, iwszq(x', y') | e
o' ¥z "B x pY P |- - 47
Wow, in general, a_&_ differs from V by a small
d '
guantity only, while _@f_?_ ig itself small. Hence, in

3y

accordance with the simplifiing assumptions of linearised
thoory (47) bocouss

iwst

- . it
BQ = v .551 +ih.>zl ES AL L B - - - (48)

oz’ _ o x!

Now, if £ is an arbitrary function of r, e , & (and
therofore of r, & , ﬂL J, then wo can oXOross Jf .nd OF
ox' dz!

as functions of r, g , M in the following way sce Ref. 7
equations (23} and (24). Replace x, z, A 0¥, 0, by, k in that

reference by x', g /'2' {3 k', 1 roesnectivo ly}

A f= af-—”b(‘" 0 J(g ‘1:

-%t"be—k'zhtl*ﬁbzi £ |- - -(49)
r (@ 2 4"2 j 3“2/

\/fg (l-"‘H dr +';§-L€2—L' ) D2 —ﬂ(@zmk' af
I'(% ""’L} Bg r{r:%2 —4?,_1 BﬂLJ

JUsing eeies - = =(50)

Bz
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Using thesc formmlac, ro can oxpross fdp and (b
az

in terms of the functiocn il’ cxpli O (Vt-x' 9u02
- -l
of its derivatives. In particular
Bi =¢f‘_§2—11{1-ﬂ2) -Q%T@(g‘?-wzj Qﬁfg«'n(’bz-k'z) Bﬁﬂ
- dr xefpide xe-4) 2

eXp (\J(Vt - x! SuC/ﬂ] s _(51-}
o

The functions F ‘é ) romain finito as % -~>»1. Hence,
n

at thec acrofoil

35 = lim \/@-‘2-1)(1 -"l}?) . @(@2 -1:‘2} 3.@‘ (Vt-x! q,cyu.
33' %—)l 2 i 12’ a% v

\/ —l aujaxp i(vt - x! %00/4,
r./l— E—}l 08 v
Lo 2 |
The oxvressions ﬁg -1 4F (Qg ) tend to a finite

/.2 m
limit as @ tonde to LV B -1 aF () m
n

yf , say (scc Ref.8
n

a8

for a detoerainite form of this limit). Thus for any particular
noraal solution

J -1 BY{, J (?\rJEm{"Z,)—~-—{53}
n

a \/ r n-i-z
Assumz that the potuntial can be writton in the form
o 2n+l m

% - ZZ-’—‘—EIJ;—_—J g

exp y i o (vt - x' socéjtu J:] « = = =(54)

v

hen, at the aerofoil, (provided the torm by tora
differontiation is logitimato],
4 r- Fors) 2n+l A

8. . Ars s (Anst)
rvfghi:i?. :zéj ;E: F g )

Oz

exp {1 W (vt - x' sccj/Lb) - e = {55)
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On the other hand, the right hand side of the boundary
condition is a known function of x', y', t, and therefors of

r:”l: t, say

iut igst

v 9%« i@aylxt, v | “g(n )0 e

3 x'

Hence, taking into account that x' = rf?’ at the

asrofoll,
2n+1
m m ?
2 2 A& 21 2 (Br)E("l) g(r’q’)e:@
n=o m=1 n n/;_- N4y k
im&oz_gw_rq - = =57
v

= (x, 4 ), oay,

where gl(r, "L ) and h(r, Ql/ ) are complex. These functions are
specified only for values of r, "z which correspond to points on
the acrofoil, i.c. Ogr "1«-_": G, kt -‘-"z % 1. Thus, we ore

confronted with an expansion problem which is a variont of the
normal type, viz. whether it is posgible to complcte h {r, ‘Yb )
on points aft of the trailing edge in such a way that it can

be reorcsented by an espansion as on the left hand gide of (57).
In the prosent peper, the general expansion problem will not

be congidered in any dota.ll. Instead, wo arc going to show hov,
having comploted h(r, 4]‘ |, wo may detcrmine tho coefficionts

m

A of thc expansion, provided tho cxpansion is at all possiblo.
n

For this purposc, 7o roquirc two sots of rclations
of orthogonality, viz.,

i
0 n%n
j J (Ar)J (B w3 L . B RE0LRT 0
ks o+ 5 m o+ 5 r 2n+1
= = =~ {38)
(Couware Ref. 12, p. 388), ad
m P | 0 m:fp
j’ B (M) B () a z
n n > . # i
1""[’ ’q, # X! “m
= = = {39

(Gompare Ref. 11, p- 46b)

Assuming that torm-by-turm intogration is permissiblc,
we obtain, froam (57,

m
JA cosee
n




m m m )
Lz °n = h (r,frl) dr an
T / e > 2
2n + 1 o k! T ‘/{ - ”'L /rb, - k!
or
- fod]
t = _Zoad h(r, % ) drd’)’L
n m f i > =
n °n o WK' r {1 - ’bhj ( ”1, - k')
n:—.{}, l, 2, L m:l, 2, 2oy, 210.-&-1. o —(60)
33, In conclusion, wo arc going to shoi; that the vclocity

potontials corrosponding to vertical and pitching oscillations
can indood bo rovrescatced by cxzpansions of thc type of (54).

Wo have in fact, for vortical oscillautions, z,(x', y') =
const. = =z® gay, so that g(r, "L ) = 1itwg* ;nd

h(r,"l’) =iwz*r /1 -‘Vl‘ oxp[iw soc/zﬁg,.r"z :
vV

k

=1 Ar l__ﬁl?‘ OiBaI‘ﬂ/

2
A= W2 and Bs _W S0C M = COSCC Am ginco PI = WMgin A

whoere

w

2
AV v cO8 Ads

(scc cquation (34).

Now wo have (comparc Rof. 12, p. 388)

o
iB Ar n
o ﬂ'= L Z‘ i(2n+l)P{B"l}J (Ar)
f n n+ 3
231‘ nsao
th

- = = |62)
whore P is the n Legendre polynomial.
n
Difforentiating with rospect to B *L ¥
o0
iBArM, n-1
Ar ¢ = Z i (2nvl)P'(B”L)J (A r)
n Ny
2Ar n=o
- = = (63)
Henee
0
: n
h(r,M, ) =4 i (2n+1)2 (B"L)J (Ar)
3 n n+ =
2 A n=o
- - - (64)

To provc that hir, "’L} can be roprosontcd by the roquired
expansion, it is sufficiont to show that tho tormsv l.- "'Lg P'(B HLJ
Tl
ecan be renrusentod as lincar coabinations of Lamd's functions
of the first kind Em{ql’ ) » Now there arc just %n or {n-1) Lauc
functions of the :E‘i:;st kind of order n (3n or 4{n-1), according

2
as n is cven or odd) vhich arc of tho form 1 - OL I:K{‘L by

/'E,'hOl‘D sas e
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2
whore cither the p‘(‘l‘b ) or the 1 P (M ) arc nolynomizls of 1‘L 3
)

according :s n is odd or svon. For given n, all the pK arc
lincarly indopendent, end it is thorcforc not difficult tc soc¢ that

- 2

P'(BM, ), ~hich is oithor itsclf a polynomial of M, or ~hich is
n 2

such that 1 P'(Bﬂ’j is a2 polynomial of "'1, can ba reproscnted

41’ n
/ A (
by a lincar cowbinatianof tho p (®). It follows that J/1- P'(B Y )
» ; A . N

can be roproscatod by a lincar combination of functions
m

E (4, ), as roquirod.
n

_ In the above analysis, wo have assumed that tho rolation
(61) appliocs to all valucs of r and ), writhin tho domain of
dofinition of thesc variscblcs. This fiditious assumption is
accoptablc as long as wo arc intcrcstod only in conditions at tho
acrofoil, but not, of course, if .o wrish to inveostigatc thc flow
in tho wake of tho aocrofoil.

For pitehing oscillations round tho apox, wo have ‘
ry(x',y') =a* 2, say, so that glr,"M, ) = V2% + iwz* 2 . Sinco
we know already that tho potontial corrcsponding to g(r, %, ) = const.

can be roprosonted by the roquirod oxpansion, it will bo suificicnt
to consider the casc

glr,M ) =iwz* x=iWwz*ry,

Wo then have, for tho corrosponding h(r,#‘L 1s

]i.(r,"l') =iWg* r2"1v/l - 01'2 oxp | iw soczxu,r ’Vl’
k

v
ziAr2"lJ;—n oiB)r"L —‘-‘"(65)

Difforontiating (63) with rospct of BM, , ic obtain

2 2 iB?lr‘VL o0 n
A r o =-f W Z‘ i(2n+® "B7N) T (Ar
n n+ %
2Ar n=o a
- - - (66)
and
and so - -0 -n+1 “
h(r,”L)z-A z Z i (2n+1)¢l—-‘1, "an(B’L)
2?‘ ns=o
J lt?tr)
n+z
- = = (67}

2
The torms V1 - ”l, ”L P" (B 7.) can bc roprosentod
n
as linc.r combinations of Lamé functions of thc first kind of
ordor n, as boforo. This complotes the argumont.

The two modcs of vibraition considerod above arc rigid.
additional work on olastic modcs (thooretical and numorical)
may be postponed until morc cvidence is availablc on the particul .r
problous which arec likely to occur in practico.

/Roforoncos s.ees
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