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SUMNARY

Expressions are derived for the sideslip
derivatives on the assumptions of the linearised
theory of flow for a delts wing with small dihedral
flying at supersonic speods. A discussion is
included in the appendix on the relation between
two methods that have been evolved for the treatment
of aerodynamic force problems of the delta wing
lying within its apex Mach conec.

VWhen the:leading edges are within the Mach
cone from the apex, the pressurc distribution and
the rolling moment arc independent of Mach number
but dopcndont on aspect ratio. There is a leading
edge suction, which is a function of incidence,
aspect ratio and Mach number, that contributes
as woll as the surface pressurc distribution to
the sideforce and yawing momont.

VWhen the leading edges are outside the
apex Mach cone, tho non-dimensional rolling
derivative is, in contrast to tho othcr casc,
dopendent on Mach numbor and independent of
aspect ratio: the othor dorivatives and the
prossure, howover, arc dopendent on both variables.
There is no leading edge suction force in this case.
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dis Introduction

The present popor, in which the acrodynamic derivativos
with rospoct to sidoslip cro calculatod, is onc of o serios doaling
with tho forco cocfficionts acting on o delta wing at supersonic
gpeeds. The investigation will be confined to the case of small
deviations of the wing from the neutral position, so that in particular
it may be assumed that if tho wing is initially wholly within the
Moch cone’ emanating from its opex it will remain so in the disturberd
condition, and vice versa.

The problem divides into the two cases in which the wing
protrudes through its apex Mach cone and in which it is entirely
enclosed within its In tho former the task’ simplifiecs to intcgrating
a uniform distribution of supersonic sources, since the motion ashoad
of the troiling odge above tho wing is independent of that bolow the
wing. In the latter casc rocoursc is made to o mothod based on that
introducod by Stowart (rof.l} in his solution of tho basic 1ift problom,
cxcopt that the oxprossion rolating the prossurc distribution to the
boundary conditions is derived in o difforont mannor.

Robingon (rof.2) solved tho 1ift problom by othor means

and & comparison of thc two tochniquos omployod is mado in tho
appondix to this papor.

2 Notation

V= Fréé stroam veolocity AV==Semi vertex angle

v = Sideslip velocity ¢ = Max. chord

[ = Air density 8 = c®tanT= Wing area
M = Mach number s = ctan? = Semi span

A=iE - 1
>;==/2tanﬁr

L = Rolling moment

L/FVVSB = Non-dimensional
rolling derivative

n_= N/lvaSs = Non~dimeonsional
yawing derivativo

N = Yawing moment ¥y = Y/wWSs = Non~-dimensional
(referred to vertex) ¥ sidoslip dorivative,
Y = Side force K = Incideonce

é; = Dihedral anglo
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3. Results

A thln flat delta wing of small dihedral is travelling at
supersonic speed V with sideslip ¥ with vertex into wind (Sec Figeda).

The forces duc to sideslip are:-

Inside Mach Cone (A £ 1) _ Outside Mach Cone (A 7}
+ % pWSthamBY » ’gp—v 6 Btan Y,
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The non~dimensional asrodynmmic dorivatives with respoct to
sideslip arc:~

Inside Mach Cone (W€ 1) - " Outside Mach Conc (X 1)

2hswm V. 5
351-, 3

E——— D i o
- cotYsoe Y% -‘"_-5'" S £

dieee,
Bgﬁ% B |

™ Ineor

, i : T s g T
-2 %gato.nY— i A8 /1= ?\Lg "‘1.‘%-% tanY e N
B

It will be noted that the above quantitics are continuous on
transition from one caso to the other.

; A ,
At Pig. tho quontitios /31/8, n /8" a Ry /S
for zoro incidonce are plotted agoinst tho paramctor N

At Fig.2 tho quantitics 1 /S, nv/é.g and yv/gg
for zoro incidence arc plotted against Mach number for difforcnt nspoct
ratios, It will bo'scon that tho valuos of 1.,/§ obtained for tho’
highor aspeet ratios, when the loading cdges :.ro within the lMach cone,
arc comparable with those obtained in incomprossible flow.

At Fig.3 tho contributions to n /X & and
duo to incidonce arc plotted against Mach number for d:.f rcn‘t aspoct
ratiose. It will be noted that tho parts of n_ and y, duc to
inecidenec nre of op ohmlte sign to the remaindervand for incidénces
comparable to the dihedral angle, are of the same order.

The suction force at the leading edge when lying within the
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Mach cone is:—

P—VG"‘S y»/‘f -}\2

E'(?\)

The pressure distributions are:-

(a) Leading edges within the Mach cone:-
2 Eie tan
— PTG =
Tr \/xet&n"‘r - yg

(b) Leading edges outside the Mach cone:-

(i) At a point outside the Mach cone:-

. 6 tan ¥
pois X

(i1) At a point inside the Mach cone:-

-;%ﬂ“?ﬁé: tan'f i%cot?f :h 1
/3

1
;kz I 2y2

4, Delta Wing Fnclosed within the Apex Mach Cone

4,1 Relating the Pressure Distribution to the Boundary Conditions

In the linearised supersonic theory excess pressure is
proportional to the induced weloeity in the frecstrcam direction.
Since the angle of dihedral is small, the boundary conditions can
be expressed by equating the veloeity normal to the yawing plane to
the component of the sideslip velocity along the normal to the
acrofoil itseolf.

Using the cartesian axes indicated in Fig.4e we will establish
for the class of problems to which our present one belongs that the
induced wvelocity components w, v and w in the X, y and z~ directions
cannbe expressed as the real parts of functions U, V and W of a complex
variable T° and that there exist relations of the Torm

au 5 f1(’1") W ang av =f2€-|-') aw

at aT a7 ar

The problem thercfore roduces to determining a suitable
transformation from the x, y, z - spaco to the T ~planc and a suitable

function GW , 80 that w® R{W) +takes up tho known valges at the

boundarics. = This is ossentially the method of Stewart (ref.t),
but our derivation of the rclations between U, V and W will be
somewhat differcnt.

The flow at any point ahead of the trailing edge is
uninfluenced by the trailing edge, so that if we replace the aerofoil
by one of the same shape but of different size the flow at such a
point will be unaltered, Hence the flow at any point along a ray
through the vertex is the samo. The induced velocity is thereforec
of dogree zoro in x, y, 2z; this typc of flow is called conical,

a. torm introduced by Buscmanri.
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In the linearised supersonic theory the equation of
continuity is the Prandtl-Clauert equation:-

~-f223u v 2w

Fx ¥y 9z

= 0 sscososnsnssresssseas (1)

For irrotational flow curl (u, v, w) = 0 and there
oxists a velocity potential § .

It will therofore be scon that u, v, w and é
satisfy thce oquation:-

2 2
“Bd'_'“_f'q':_&_‘_:[g :'a_i =0 to;-.-u-.n-o..a..(E)
;™" By r-Ya
Undor tho transformation [x‘, y', gt} = (x, iRy, 1B832)

ocvery solution of Laplace's eguation in x', y', z', is also a
solution of equation (2) in x, y, z and vice versa.

It was established by Dok.a in 1857 that the most general
solution of Laplace's cquation of zero degrec in threoe dimonaions

is of tho form:-~
' +lz +F ...................(3)
x' + T A' + r

whore r = x o y + z .

Honcc any analytic function of W is a solution of
equation (2) of degree zero, where

uo:'q +i% =(3

)

ik Aw . 2 P 2 e Ise
Y~ 22 and where r° =x° -(3¢ y© -(3°2

X

Thereforc we take u, v, w to be thc rcal parts of
Ulw), Viw), W), satisfying both oquation (2) and Laplace's cgquation
in ﬁg,:f. It will bc notcd that tho vclocity poteontial is not of
dogréc zero and cannot thercforc bo put in this form.

It will bo scon that for conical flow the induccd veloeity
potontial is of the form ?= & “11 (‘qg ], g0 that:-

_m AW +'31¢—_.1""’Z2+F2 .

__BG _”1232)__1«_ /371_) _"f_+1 _?EGEQY;.é .. (4)

2 /3
- And 3 -3"- - 80 -° +TF TT{‘I?Y

<
i

W

:

The oquation of continuity (1) bceomos:-
1 "“?2"52 2(321!’, + 'a Y - 8\’/"0 LR }
il

A\IOVI{I LA R = ]




D
Now since u is the real part of U = Ulw) The Caucly-
Riemann equations give

du & 3'[). "'i U
w © oy TRy

and similarly for V and W. Therefore:~

i 2% wT}l% ig-%g ——
% L_L -i 'a} " 7( S.Z

Ers
BT ST vl o8 T

& 2; ﬂ_iﬂ +2£1+7l—i\°22
s “M“’z ‘"ﬂ ey

- - GRBT s v S 2y,
a “S'E, ﬁ'lz}’ﬁ 2[3(1{02}37?5 3—3(1-722-5’2)%}’J8J

+{_._ﬁ_—+i%€3q—i—}l 21[;‘,1“”-3

av
dey

o L. S fJ
Hence /3 (1 ~w?2) AU pgyy W
dw dia)
: y %Y, 2 837
EB.’(Q 722~S2) gqug Bfw}' 1“_?:a__s'z -Y ______ (9)
and (1 -cu2).§E $i (1 *@%) STL

( & )£3 T B;W} +4/3- " ,,;Z Say
so ‘that by equation (5)

dalf o 1 2i aw
e - - —
d G 1 - w2 did

2
and W o= oy, ~LEH_ oY
atw 1 ~W2 Jw
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On the Mach cone 1= = x° ~3% (y2 + 2°) =0, so that

2,0 2
jwl2 =B° (y == L = 1, At the asrofoil z =0, so § =0,
(r +x)

0 tan 7y et k

4;’ Ftanz7’ 1 +k

¥

and at a leading "edge ¥y=#x tanq", 80 7‘(

where k° % 1 = k'© = 1 =/3%tan®,

"The Mach cone and its interior aro, therefore, roprescnted
in tho W-planc by tho unit circlc and its intorior, whilc the acrofoil
bocomos the roal axis botweon + k'/(1 + k). (Fig.4b rofors).

1 21 G

Consider the transformation enfylk) =T-“{;_§ whero

en(f ,k) is tho Jacobian elliptic function of modulus k.

The interior of tho unit cirecle in the w--pl anc is traced
on the Teplanc in tho roctangle, vorticoe # 2iK'(k), K(k) # 2iK* (k).
In Fige.4c tho imaginary axis AA' botwoon T= # 24iK'! reproscnts the
‘Moch cono, whilé the acrofoil bocomos the parcllel lino BB' beotwoen
T=K4 2ik', such that CQ is the lowor surfaoce, 2z =~ 0, y<0,
QB the upper surfoce z =+ 0, y<0, CQ'" tho lowor surface, z ® ~0,
y>0 and Q'B' tho uppor surface z =+ 0, y> 0. Tho leading
edges become the points Q, Q'. The point C ecorresponds to the
wing axis on the lower surface and the points B,B' both to the
axis on the upper surfacee “Tho line OC ropresents the portion
of thc zx-planc, y = 0, z<0, botwocn the Mach conc and 'tha,
acrofoil, while AB .FEB' both corrospond to the similar soction
above tho aorofoil: the linc P corrosponds to that part of tho
Xy=-planc, y <0, z = 0 botwoen thc Mach' conc and the lcading cdge,
and tho line P'Q' +to tho similar part, y>» 0, z = Q.

In thc-,’l'"-plane -d—U- = i GIIT’ —g-%-: lb.--...t.-.‘.tl.l!....{11)

i A
and V= ~ignrdV¥ ¥
av aT

4.2 Cglculation of Derivatives with respect to Sideslip

As already indicated we assume that the kincmatic boundary
conditions are fulfilled at the normal projcction of the acrofail
on tho xy~planc rathor than at tho acrofoil itsclf.  The boundary
condition for a gideslip veclocity ¥ ond d:l.hedralé' reduces to
w=V& for y»0 and w=~7T0 for y{O0.

Prom the asymmetry of the configuration it follows that
w =0 at the zx planes In addition w =0 at the lMach cone.

: . . du av aw
m physical consgiderations — , — RO
From phy % T s E and 3

must be finite at the Mach conce  Furthermorc the acrodynamic forccs
must bo finite, so that any infinity of u at tho acrofoil must be
such that tho intogral of wu with rospoct to arca is finitc.
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We have to choose W go that 4U s AV oy, w fulfil
a7 aT ay
these conditions and so that u, v, w arc single valucd.

In order that Y may be finitc on the Moch conc and
w zoro on thoe Mach congTand the zZx-planc, % must be rogular
and rcal on AA' and beo imaginary on 0C, AB do.m:l A'B' with no
singularitics othor than poleos; the rosiducs of such polecs must

bc zoro or real oxcopt at C, B and B' whoro thorc arc discontinuitics

in w Sinco & (=t ool gng -dl(= 3, 5111’51-'3“-‘)51'0 to bo also

ar\ 2 ay aT ar
finite on the Mach cone, ¥ must howe at lonst o simple zero at tho
av |
points P and P' (T= 4 B s Since w is to bo constant over

the two holves of tho acrofoil, —d:‘—’i"-"_ must be rcal on BB' and havo no
d - ' -

singuloritios which contributo to w oxcept,ns before, at C, B and B'.

In integrating .g:_’ along OCB w must Jjump in valuc by on cmount + 76
at C and —'1?6 in intograting along CCB'. Clearly, thorcfore -@1;{_
ans
must have a simple polec at C of rosiduc of imaginary part
PR . Similerly S mugt have simplo polcs of rosiduc of
gL aT
imoginary part —?iﬁ_ ot B and B', so that w may roturn to
e 7 P
Zoro on AB and A'B's In ordor that w, v, w moy be singlo
valucd —-@-[-J. WV M st bo regular within the rectunglc.
ar’ av ar
Functions satisfying thosc conditions anc oquation (11)
arci-
& = 2050k'3 4T nlT
. i ]
L 2—' k:3 5 )
g-}{ :# v BC_: T.nc'r‘ .l...ll.l..........'..l(1 )
d e ol .
du = 2ivQk 3 snTnalT
av /3
It will be notod that SU is puro imoginary along tho roal

aT
axis and rogular at T =K, so t‘mt-—-

Z;élx.t [ sn(K + is) nr:a (K + 13)(33,1‘.. K * i '
0z

u

_.é..—k' f an(g,k') nc (s k')ds

= —- v 5 ta.n}’sc a;, k')

/Onuoco..c
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¥
On the aerofoil W= — and T=K +ie,
x-i-ng..a 2
while econT = —&-— s 80 that k'sd(a‘k') = A .
1 -,3 R X2n f32 42
2(0, ad‘[o' k') ye -
Hence sc k') = B
’ 1%8d°( O ,k")  xPtanieyiy?
2 s
Thereff)re u = 1‘-—1-_ "\'r'é'tanY = 5 Illl...l....l.(is)

In the linearised theory the pressurc P ¥ const. - ,OL;J_J-

80 that the rolling moment duc *to gideslip is:~

L = + j 2RV u y dy dx, where integration is over the wholo
! ,, wing
4 . = L - S
= 4= Y
" PWStan Jx tan" Y-y ’
£ 4
= +-§P‘W6tan§'r q2 1 -t ‘f‘%" dq,
o Yo

whore x = g/t

¥y = gtan¥ %-—2
= +-§ PW(SthanB-r,
L 2 '
Honce the derivative 1 = = = StanY,
& PW Ss 3

The sideforce duo to tho proessurc distribution over the
acrofoil rosulting from a sideslip is:~

il

(Y

35..

j‘j 2 Vlslu[dydx oy
)2

"'5'- ""’Vé tmT
L ‘"‘tanz'r-—

- & oS 4anY ik
yig m J/L jo "t'r’g tdq,
PW62G tan To

I
dm

(¥) 4 82
. .| " S ’
(yvld e = " §

Tho corresponding yowing moment is:—

jjzpvlulé. xdydx
5 Iyl xdyax
= VU o
--pv an - "




B 3 ot 5
= -8 pWOTan™ Y ‘ X g = dtdq
o}

"

- 2. f)'v"—\?tg 203 't-a.n2 ’3"-.
37

1}

(nvlS (N%/'-PﬁSS = - %‘;52 .

In considering forces in the plane of the delta wing, in this
case sideforce and yawing moment due to sideslip, it is necessary to
take into account the contribution from the infinite suction at the
loading cdge as well as that from the pressure distribution ovor the
wing. At zoro incidonce tho suction forces duc to sideslip arc of
second order, but at a finite ineidonce thore is o cross term of
first order.

1t will be shown that the inducod velocity at the leading
edge is perpendicular to tho loading cdgc and that it can be
oxprosscd in tho form :-~

q = C-l + Dboundcd terms
where f is tho distancc in from tho loading ©dgo.

The corresgonding suction force was shown in Appendix IV
to Refe2 to be Wp Cecos Yyl - N2 por unit longthe

Congidering first tho flow duoc to the sideslip alono,
the induted velocity along & leading edge (y =X tan¥) ds
(u cos™ ¥+ v gin¥ ), which is the roal part of )é cos’ ¥ (U\?H- ];lvz =

T /

Now from cquations (12) 4 {UB"' 1:'\:] = 2 i56k'’ {cn"\'-—» Ak sn’!’} sc'i"ndz"r,
: ar

i
which, refcrring to Fig.dc, ig roal along OP' and purod imaginary
along P'Q': it is, furthormoro, rogular ot ovory point along O?‘Q‘
including Q', which corrosponds to tho loading cdge ¥y = xten Y .
Honce tho componont of induccd volocity duc to sideslip along &
loading cdgo is zOTrO.

From Ref.2 we have that the induced velocity potential at
the asorofoil duc to an incidonce ol is ~!

lLE&———Jx?tangdla— y2 .
E' (N)
shore E'()) is tho comploto elliptic intogral of the sccond kind.

It will be noted that the volocity componont along the loading cdge
vanishcs.

As tho contributions’ from both ficlds aro zcro in the
dircotion of the lcading cdge, tho totol induccd veolocity
perpondictlar to tho loading edge is cosecY times the x-wise
component, which we obtain from the above oxpression and our
provious result (13), giving:—

-~ sec Y ¥ A
463Qan¥qr_fy2. NVE ()

xtanﬁT’+ %%f;é
/?u'boootn
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Put x=x0+£sin'7', y=x0-banT-§cosT

go that q J_E * _2,*\}'5 B tanYsecy
IE‘ iy % 2 €

+ Dbounded torms.

Hence the suction due to sideslip at incidence is
2LV xo'tan"f’ \/ P
E'(A)

The side force duc to leading edge suction resulting from a
sideslip at incidence is:~

H

n"c' — EP———
(x), . A TVADS  4an YA -72 x dx
A8 Y

iﬂi—‘f-— cCtan ¥V 1 —?\-2.

CEY(M)

L]

= (Y (s = 2481 -p <
(y\r?f\é} [Eiﬁ/w B (A)

The corresponding yawing moment is:-

C
_d"_E'L-Tv:;{J]S- tanT.f? Pl JL28302’Y. dx

{Nl&‘i‘
o
= LM““ 03-.{ 1 - A% tanY. secz"l"
E (A)
W S
- e, AASE A -
(n"l(-.é' = (N)‘*(S/FVVSS = T () cot™ sec Y
Hence the total side force is : Bl
s 24° 4811 -2
Y = ~2P'W02tan'7i i ten ¥ - v AR
and : 7, : f ‘ 2]
yo = -2 _2.(5 ta.nY— 9(15\ 1~ A
& i B {A)

/a.nd....o.....u
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and the total yawing moment is -
=
e

H = “%P??cstany

82_{)&1}),.- __c{__;_ m sec?f
B (A)
and

2 : )
B % “% —2"'8 “—ﬁ‘é—'ﬂ ~ A%, cot Ysec™Y

(s B (A)

5« Delta Wing with Leading Bdgos Outside Mach Cono

The boundary condition at the aerofoil is w =38
on one half and’ ~v& on the other. When considerin the upper
surface, y >» 0, where w = v& we may toke w ® -~ 7¥O on the
curresponding lower surface, sincc the flow above the acrofoil
is indopondont of the flow below: it in tho casc undor consideration.
Tn this artificial condition thorc is a jump of ~2%0 - in tho valuc of 28
ot the surfaco, so that tho surfacc can bec roplacod by a uniform On
supersonic sourcc distribution of density - “% s tho other half

i
of tho aorofoil, y<0, whorc W = 8 , can bo likowiso roplaced by
o source distribition of donsity 5. .

i g1
Honce?(x, ¥y, 0) = = Lﬁ;’ff - "
(x -~ %) - 8 (Y"yo)z
whore & = #, wvhen y? O

o = -1, whon y 0.

g0 @: - %Jlrdpd‘\r g whoro X, x -/3F coshy

¥o ¥ o= Psinh\t .

In Fige4d P is tho point (x,y), OL; ond OLp avc tho 2
loading edgos, and PL, ond PL, oro the boundories whore (x - xo)

"/32(}' = y0)2 = 0,

The values of P 5 ‘lff vary as follows:-

vhon (x,, ¥y,) is on (1) Hyq - -

(i1) PL + DG

(1i1) B, = tan~! BL =€
. X

i

y coasch \J

T
) N K

(iv) OX

= _ xtan¥ ~ v
hnﬂs?};r- ginh¥
»xto L

A coshl + sinhy

(v) OL

(vi) 0L, , @ =F,

-0
i =
|

/‘Nhon.-.--.-..
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When P is inside ths

Mach cone from the apex, we have

F? = ; :%SL \y:¥(11F + g

2 - 1y
o £

lts ~ Gt
75 Z 2e2 )P0
7 d b2 d =
so that u = ar J % x "f J e , Since < 0]
N 2 ¢
and ,00-':(31 =P, when Y = € -
')
: E_?S tanY'd W . T5 | tan¥ay
}tcosh‘qa ~ sinhW % e?ﬂ cosh"L‘U + inhy
1
ﬁﬁ' tan"} dt _2v5 | tan’¥dt
‘\[1 # 12y Lot Tl AL +42) 4+ 2¢
o 1 e 1 e
where t = tanh 3% v ;1 = tanh 3 €
= ~ 1 . +
&S tanY PR o o e AT+ 1
T e . 4 A== P e
i f AL
tan y cot o) "
/%2 -B*
%hen P is outside the apex Mach cone
._ﬁL a 0
é?’ f31 Y, v?
go that u = —u— , by putting € = O® in the above.
AS -1
When y €0, wu changos signe
Honce tho rolling momont duc to sidoslip is:-
L = + fZF?fu}[dydx
=0 ¢ socl ~¥
. 4,0?‘?81;&111 T 2:3:1’.n’53 ag ar
Pl
A = o O't.";g

A T 7

2
sinh inhldWad
T A inhY |a sinhddq
o o

/WhGI'G..o.o-oout




=14

whore x =71 cos®@, y =r sin®@ in the 1st integral

and x = qpcoshy, ¥

o ;3 7
= + 49-‘7‘(53317&11“{/ 930(}2{53 6 4 2 an -—li—i si lele .
W 5 el i e Y e d:!lif

oot"‘lf_’,

a sinh* in the 2nd integral

o B
- ) 4 2
- 2,0"1}“!5 cjta.n'?" _t&ne'b/ af S i1 AYA =1 coshy tanhzlifd\?!

—

3 m 3 npe | a N1 sinh? I A“

o 2

g.g...zﬁ'?—xﬁcrj‘tmz tan® ¥ - = 2 )‘2*1 o
P v 171'32 (1 +42) (D2~ 1 42 +)2)

wvhere + = sinh'ti"

., 26585t Y (y2y o 22 =t J\% st 5 ;-1 ]
E

" s v o P

+ QFWSGBtaﬂzT '

3/3

= +

PTVSE 3/3

Hence 1, =

/Theoootoblﬁ"




The side force duc to gideslip is:-

Hf{} F-? S dydx
x

=
I

m i
| AdA 1 coshY tanhYay
X 'sinh’a}}/ 4

i
1
n
<l
=
bl 1
njle
1 d_i\.)
~ 8
f"'“\.aé_ﬁ-.‘
“
1
s (O
4
=
l°
S
o

0
m -
- EP'_VS c 't&n(}j ;\' }\‘ -1 fﬂﬂ"(f t o= coshlr
3\/ 12 ;\2-1 t2 + 1
1
o _&P?ﬁf TV e A
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APPEND IX

The Relation between Two Methods

of Treating Acrodynamic Forco Problems.
of a Dclta Wing at Supcrsonic Spocds

1« Introduction

te1 Solutions to the problem of the 1ift at supersonic speceds
of a flat delta wing lying within its apex Mach cone were obtained
independently by Stewart (ref.t) and by Robinson (ref.2) by methods
which at first sight appear very difforont. A transformation will
bo derived that links the two under conditions of conical flowe

1«2 Robinson's method of hyperboloido-conal coordinates is
classical in its approach to the problem, for it reduces to the
finding of a system of which the Mach conc end the delta wing arc
coordinatc surfacos. Stowart's troatmeont is speeial to a
particular set of problems.

1.3 Despite the link betweon the methods they are different
in scope. Stewart's method is suitable for problems involving
a discontinuity in the boundary conditions, while the other is nots
on the other hand hyperboloido~conal ccordinates are not limited to
solutions of degree zero in X, ¥y, Z. Thus, for oxample, Stowart's
mothod is suitablc for calculating tho acrodynamic derivativos with
respcet to sidoslip and the othor for pitching moment duc to pitching
and rolling momont duc to rolling, but not vice versa.

2s Hyperboloido~Coneal Coordinates

The coordinates developed in ref.2 were as follows:-

T ~/ {/“-2-1;2) (v 2_112)

y = .C..l.'....ll......{1)

[k

T J(z‘-ﬁz- A
Ak

where k'2 = 1 -~ k2 =ﬁ£tan2’}"

/The.-........l....
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The family of surfaces constituting the system are:-
2 2
X "'/3 (yz-l'-zz):rg

) = g
Y_/gz

2 '
_?_C____n O 'OCP'-llolno.o.oointz)
1 aw A
> 2,2 2 2
X . /3 ¥ - Q & = ()
"'] .
v?.. v2 = kc.. 1 »}/2

It will be observed that these coordinates are analogous to
sphero-conal coordinates; in fact they correspond under the transformation

(=, v*: 8% = s ?'-f?Y: iﬁz]-

As pM—p 1, the concs of the sccond family of surfaces
~ approximate to tho delta wing from both sides, and as /u.-ﬁao they
tend to the Mach cone.

The equation 432'.324?4. .32P+ 2°P 3 ¢ SRRV ..
"&xg 'ay"’ D 22

now becomes:-

Jr2e2) (p2-1) % In2B) (ue-1) lﬁ Wiy 2a?) (1 -v?) <o —3
/e E[ 28] (1= v2) -—ﬁ
3_.3)_) .......(4)
“a:-
| rdt pa : Zt :
J (4257 (£2-1) J (42 ) (1-t°)

Writing O=

ie€s, M =ns (p,l:_}
Y =knd (,k")

2 2 .
we have 'a_tg ?-g /-Lg—-)z‘g) . (rZ?‘p)—O...............(6)

II....l.ll'l...-.'o..........'.....(5)

P F =L 3r
Hence for conical flow —3%) 0, where <Pis &

velocity. ?p
As O varies from 0 to K{l:), M varies from @ to 1,

As @ veries from -2K'(k) to - K'(k), W varies from k to 1 and
back to k as G" continues through to zero, repeating as QG increases

to &XK'.

/Equ&tionﬂ esea s
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Bquations (1) and (5) give:-

X = rns ('P',I:) nd (@°,%')

¥ E{%ds (ﬁ,k) ad (a-,k.'J o.--o.onqlo-ooc|noooo.on-o(7}

z s-rr; cs (‘5,1:) cd (g~,k!

To cach valuc of @ ,& in the spocificd intervals of

variation there corresponds just one triplet x, %’ z for consgtant

r on the right hand sheet of the hyperboloid x -,/32 ye _p2 z2 = ri'iz '
FPreviously we traced the (x z)-plane on t ~planc =N+ i

Y (%, ¥, z)-pl he w-p @J"] Fﬂh.—)s

80 that ovidently thorc is & onc to onc corrcspondence botwoon tho points
‘insidc lwl+=1 in the g-planc and tho points in tho  -planc (7 =ﬁ+ i )
within the specified intervals of variation of P andd@ .

Bquation (6) shows that a function ¢ which satisfies
equation (3) and is of degree zero in X, ¥, 2 satisfies Laplacc's
equation in &, , but any function which satisfiss Laplace's
equation in the w-plane is of zero degree in x, ¥, 2 and satisfies
equation (3). Hence every potential function in the w-plane is a
potential function in the T-~planc, provided the Ww-planc is traced
on the latter by means of the transformstions given by (w=/3 ¥ * iz

X%

and equations (1) and (5). Therefore the transformation is conformal,

By a transformation bascd on Stewart's method we previously
transformed a sot of points in the w-~planc into the rcctangle, vertices
T = # 2iK', K * 2iK', but that sot of points corrcsponds to tho points
in tho (x, y, z)-plane which bocomo, by the transformation of the
provious parcgraph, tho 'samo" rectangle in the T -planc with tho
vertices corrosponding. It thorefore follows from tho goncral thoory
of conformsl roprescntation that tho two transformations arc idontical,

We have shovn that Stowart's 7 -planc is conncctod to tho
system of hyperboloido-conel coordinates by the simplc relations
of cquations (5)s Furthormorc we have given at equations (7) a direct
coordinate transformation between (x, y, z) and (f £ ), by which
Stewart's relation between U, V and W as functiohs of T could be
ostablishcd in the samc mannor as the rolation beotwecn thom as
functions of tho intcrmodiatc variable w was csfablishods

3« Aerodynamic Derivatives Lp and Mg

In the first section of this eppendix it was stated the
rolling moment due to rolling, Lp, and the pitching moment die to
pitching, Mq, could be dorived by the mcthod of hyporboloido—conal
coordinatcs in the quasi-subsonic casc. This will now bec indicatod.

By the transformation (x', y', z') = (x, iRy, if3z)
these coordinates become gphero-conal, whilc cquation (3) roduccs to
Laplace's cquation.

Henee there oxist solutions for the induced potgn‘tial g_i of
the f0m§= MmEB (v)F(u) vhere E, and F, are Lamé functions
n n n %
of the same class, of degree n and of the first and second kind
rospectively.

/Such...l.....
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Such a solution satisfics tho boundary condition at tho
Mach conc, where AL -Joo, since F (M) is of ordor p- n = 1 at
infinity. £

To find Lp we choosc the degroc and class of the Lamé
functions so that FEU-L)
B

B, ()
Though at first sight —:g-i is proportional to y, and thercforc
" i

of the right form, at the acrofoil where z =0, A= 1, we require
some reassurance on tho point, for here

Bo(p) (P | >
2 = J dt » which is of order (M° ~ 1)
E . ; 2
L e ,uu/l‘ﬂe— 12142 - 1?)°
' ¥
a.S/u..‘tcndS to unity; however it may be shown that z 2l
R Ep(m)

tends to a limit that is indepondent of V.
We find Mg d4n a similar fashion by teking

00
% = gx JalA) -,y : dtr .
Ez(.h\.) /’Ltg‘jttz - 1)—3“’2 4 kz}

Detailed numerical rcsults for thoso cascs will be
published shortly in the Journal of thc Royal Acronautical Socicty.
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