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- SULIIARY - 

The linearised theory is developed in some 
detail in order to clarify the difference between two-
dimensional and axi-symmetric flow. In agreement with 
other author:, it is concluded that the perturbation 
velocity on a thin body of revolution in compressible 

2 
flow is 1/r:. 	times the perturbation velocity in 
incompressible flow on a thinner body at reduced incidence 
obtained by reducing the lateral dimensions of the original 
body in the ratio f; : 1. 

This result is applied to a representative family 
of streamliee bodies of revolution at zero incidence. 	It 
is found tht, without an undue loss of accuracy, the 
results - of the calculations can be presented in a relatively 
simple form in a diagram showing the variation of velocity 
with Mach number for a range of values of velocity on the 
surface of a streamline body in incompressible flow (fig.6). 
This variation is alvrl -gs less than that predicted by the 
Glauert law but approaches it with increase in the basic 
incompressible flow velocity, being very close to it for 
basic incoumressible velocity ratios, u/U o , of 1.10 and 
higher, 

It is shown that the blockage factor for a body of 
revolution In a wind tunnel is increased in compressible 

flow in the ratio 1/q 	and not 14, 4  as quoted in 
reference 1. 
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Notation 

x - ordinate measured in direction of undisturbed 
stream 

Y, z - ordinates measured normal to each other and 
to the x-axis 

	

r 	radial ordinate measured normal to the axis 
of the body 

	

U0 	undisturbed stream velocity 

- incidence of body (assumed small) 

u, v, w 	- components of velocity measured in x, y, z 
directions (u U o , v and w are assumed 

small compared with U 0) 

mo - Mach number of undisturbed stream 

- V 1 - 

T - maximum diameter of body 

2t - length of body 

0 - velocity potential 

- 

stream function 

The suffix i refers to quantities measured in incompressible 
flow, the suffix c refers to quantities measured in compressible 
flow, the suffix s refers to quantities measured at the surface -
of the body. 
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1. Introduction. 

A number of authors (refs. 2, 3, 4) have at various 
times pointed out an error in the application of the linearised 
perturbation theory of compressible flow to bodies of 
revolution given by Goldstein and Young in R. and M. 1909 
(ref.1). The error undoubtedly exists, but it is felt that a 
certain degree of confusion and, in some cases, inaccuracy is 
present in the papers discussing it. There is therefore a need 
for a simple and clear exposition of the source of the error and 
of the correct solution. The latter has been applied to a 
family of streamline bodies of revolution as well as spheroids, 
and curves have been derived from which the effect of 
compressibility on the velocity distribution on a body of the 
former family can be readily obtained with reasonable accuracy. 

2. Theory. 

To appreciate the source of the error referred to above, 
it is necessary to recapitulate some of the theory of R. and M. 
1909 (ref.l) both for two-dimensional and three-dimensional flow. 

Consider first two-dimensional flow. If f(x,y) is the 
perturbation potential for a thin cylinder (i.e., its y ordinates, 
which we will write as y s  , are small), then, to the order of 
approximation involved in the linearised theory, the difference 
between f(x,y,) and f(x, 0) is of the second order in y s  and may 
be neglected when compared with f(x, 0). 	The same is true for 
any of the derivatives of f(x, y) and in particular for v = fy (x, y). 
Hence, we may write that, on the surface of the cylinder, 

vs  = fy  (x, 0), 

and since to the order of our approximation 

vs = 43rs 

U0 	dx 

the slope of the tangent at any point to the body is given by 

dys 	fy  (x, 0) 

dx 	U0  

Now, if we consider the compressible flow about a thin cylinder, we 
know that the linearised perturbation potential / 0  satisfies 
(see ref.1) 

(i ) 

whore 

Hence, any function of the form 

= 1 - Mc  . 

/c  = (1/P n) f(x, E3 y)   ( 3) 

will satisfy the equation (2) if 

/i = f(x,y)   (4) 
satisfies the incompressible flow potential equation (Laplace equation) 
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It follows from equation (3) that the lateral velocity at the 
surface of the disturbing body is given by 

laic n-1 ) fy( XP ii3r5) 1  

Hence, by the above argument, 

ves = ( 1M n-1 ) ,  fy(x, 0) = ( 1/( n-1) vis 
	

( 5) 

where vis  is the lateral velocity at the surface of the body for 
which fisi  is the incompressible flow perturbation potential. 

It follows from equation (1) that if we scale the 
ordinates (and therefore the slopes and incidence) of the body about 
which we require the compressible flow by the factor c3 n-1 , and 
then find the incompressible flora perturbation potential function 
for the transformed body, that function is the function A_ . We 
see that we have in fact an infinite choice of bodies in incompressible 
flow with their ..ssociated perturbation potentials, from any one of 
which we can obtain 16v  . 	For oxmf,ple, if we take n = 0, then we 
scale the body ordinates and incidence up in the ratio 141 , and 
hence on the ori'rinal body 

u 	= fx(x2 	= fx(xy 0) 

=ui on the fattened body   (6) 

This is Method II of R. and M. 1909 (ref.1). 

Again, if we take n . 1, we do not alter the body shape 
and incidence, but then 

tic  = 	) fx(x, pr) = (1/c3 ) fx(x l  0) 

= (1/0 ) ui. 

This is Method I of R. and M. 1909 (ref.1). 	And so on, 

 

( 7) 

 

This infinite choice is associated with the fact that in 
two-dimensions the velocity perturbation on the surface of a thin 
body varies linearly with the thickness. In every case we arrive 
at the well known Glauert law, viz., the perturbation velocity is 
increased in the ratio 1/(3 in two-dimensional compressible flow. 

The above argument can be validly extended to the case of 
flow about a three-dimensional body provided the spanwise or z 
ordinate of the body is large compared with the y ordinate.. This 
extension is discussed in genonll in R. and E. 1909 (ref.1) and its 
particular application to swept back wings is discussed in ref. 5. 

However, when 70 come to consider bodies such as bodies 
of revolution for which the y and z ordinates are of the same 
order, an essential difference appears. It is then no longer true 
to say that, if f(x, y, z) is the perturbation potential, near the 
axis 

f(x, Y, z) 	f( x , 0,  0 ) 

is of the second order in y (or z ) and may be neglected compared 

/with 

0. 



with f(x, 0, 0). 	The perturbation potential function and its 
derivatives are in fact infinite along the portion of the axis 
of the body where their singularities lie. As a corollary to 
this we may note that it is no longer true that the velocity 
perturbation on a thin body of revolution varies linearly with 
thickness, it varies more nearly like the square of the thickness 
(ref.6). It was this essential distinction of axi-symmetric flow 
that was overlooked in R. and Y. 1909 and led to the error referred 
to in paragraph 1. 	In R. and M. 1909 (ref. 1) it was assumed that 
the argument given above for two-dimensional bodies could be applied 
unchanged to bodies of revolution and hence it was deduced that the 
Glauert law applied. But it will now be clear that in the case of 
bodies of revolution we must be careful to match our boundary 
conditions on the actual bound%ry in compressible flow, and not on 
the axis, when deciding on an appropriate incompressible flow. 
As will be seen in what follows the Glauert law does not apply, 
although the actual law does not lead to results as different 
numerically fruit the Glauert law as some writers (refs. 2, 7, 8) 
have surmised. 

It is still true to say that if 

= 	f(x, Y, ") 

-Eac. Laplace oduation, then 

. 	c 	= 	(1/(; 	f(x, e3 y, 	z) 

satisfies the linearised perturbation potential equation for 
compressible flow. For the latter flow the corresponding values 
of the lateral velocity components are 

= (143 	 03r, 1"),1 
and 	= 	(V(3 n'a ) efz ( Xs ri 3r , 

lid hence the slopes of the tangents to the body, in planes 
parallel to the xy and zx planes, are given by 

= 	1 	fy(xs , 	Ys, 	zs) 

 

ln -1 

 

UC) U0  

   

and 
rz ( Xs , 	ys, t3 Z s) I 

U 
(.3 n-1 

U0  

where the ordinates of the body are given by x s , ys , zs. Now the 

points x, 3 ys,, zs  define a body derived from the one we are 
,1 2    

considering by scaling its lateral ordinates and incidence down in 
the ratio 	:1. If vi, wi are the lateral velocities about 

this thinner body in incompressible flow, it follows that 

ys 
vas  = uo  

and similarly 
w. 
is 

vls  
= 

 

xs  

CS = 

(8) 



It follows from equations (9) and (10) that if we take f(x, y, z) 
to be the perturbation potential about the thinner body and take 
n = 2, /5, will then be the correct compressible flow 

perturbation potential about the body we are considering. Hence, 
the perturbation velocity on the latter is 1/0 2  times the  

incompressible flow velocity on the similar body obtained by 

reducing the lateral dimensions and incidence of the original body 

in the ratio 	1. 	This was of course true in two-dimensions 
but there is no longer an infinity of possible bodies and their 
associated incompressible flows with which to correlate the 
compressible flow. In this case there is only the one body and 
its incompressible flow that we can take for this purpose. 

3. Application and Range of Calculations.  

From the foregoing it will be clear that to determine 
the velocity distribution over a body of fineness ratio, say, 
T/2 £ at a Kenh number M and incidence ee , we require the 
incompressible flow velocity distribution over the body scaled 
down to the thickness t'6T/2t 	and incidence •  and eN 

then multiply the perturbation velocity by 1/0 2  to derive the 
required perturbation velocity. Hence, to cover a range of Mach 
numbers, we require the incompressible flow velocity distributions 
over a family of shapes derived by scaling the lateral ordinates 
of the body dorm by a range of factors between 1.0 and 0. It 
will be clear that in general the precise change in local velocity 
brought about by a change of Mach number will depend on the shape 
of the body, the position consjelered and the magnitude of the 
incompressible value; and a simple universal law of the Glauert 
type can no longer apply. However to investigate the effect for 
a typical family of similar streamline bodies of revolution at 
zero incidence, calculations. have been made for one of the families 
of similar shapes developed in ref.9. This family was defined by 
the parameters a/b = 1/2, Z' = 0.4, using the notation of ref. 9, 
i.e., they have a moderate velocity gradient ahead of the position 
of maximum velocity, which occurs at approximately 40% of the body 
length aft of the nose. The incompressible flow velocity 
distributions for members of this family of fineness ratios T/2? 
of 0.05, 0,1, 0.15, 0.2, 0.25 and 0.3 are shown in fig.l. 
These distributions were calculated by the method of ref.6. 

4. Analysis. 

!.l. Variation of maximum velocity with Mach number  

The curve of maximum velocity as a function of fineness 
ratio is shown in fig.2. It is there compared with the 
corresponding curve for spheroids at zero incidence. The 
departure of these curves from linearity through the origin is a 
measure of how far the variation of maximum velocity with Mach 

-number may be expected to depart from the Glauert law. Thus Tm may 
expect a behaviour closer to the Glauert law on streamline bodies of 
revolution in the region of maximum velocity than on spheroids. 
This is confirmed by figs. 3 and • where are shown the variations 
with Mach numbui of the maximum velocity on streamline shapes and 

. spheroids of varieus fineness ratios at zero incidence, and the 
corresponding curves derived from the Glauert law are shown for 
comparison. 

The variation of the critical Mach number with fineness ratio 
for streamline shapes and spheroids is shown in fig.5, and again 

/the ... 
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the corresponding Glauert law curves are shown for comparison. 

4.2. Variation with Mach number auLL2JALjatmy 
point on streamline body.  

By using the curves of fig.1 and the results of the above 
discussion it is possible to deduce the variation With Mach number 
of the velocity at any point on a streamline body of revolution of 
the typical family, for any fineness ratio within the range 
considered. Systematic sets of curves were derived showing this 
variation for various fineness ratios, each set relating to a given 
position aft of the nose. An analysis of these sets of curves then 
showed that with little loss of accuracy the variation of velocity 
with Mach number from a given incompressible value might be taken to 
be independent of position and fineness ratio. This permitted a 
single family of curves to be drawn and reproduced in fig.6 showing 
the variation of velocity with Mach number for a range of values of 
the incompressible velocity. In so far as the streamline shapes 
for which these curves were obtained are reasonably typical, the 
curves are valid for general use except where very great accuracy 
is required. In the latter case complete and accurate calculations 
would be required. 

5. 	Wind TUnnel Interference. 

According to the linearised theory the equivalent 
source-sink distribution of a body of revolution is proportional 
to the square of the fineness ratio (see ref. 6). 	The 
perturbation potential varies linearly with the equivalent 
source-sink distribution (ref.6). It readily follows from the 
above that the equivalent source-sink distribution of a body 
remains independent of Mach number. This was demonstrated by a 
rather different argument by Lees (ref.2). But the velocity in 
the x-direction induced at the point (x, r) in compressible flow 
due to a given source-sink distribution is the same as that 
induced at the point (x, jar) in incompressible flow. When Pr 
is large this velocity varies inversely as (13 r3. Treating the 
wind tunnel interference on a body of revolution arising from 
blockage as due to the induced velocities of its series of images 
in the walls, it follows that the interference factor should be 

1/(3 3  and not 1/(3 4  as stated in R. and M. 1909 (ref.l). 

/References 	• • 
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VARIATION OF CRITICAL MACH NUMBER WITH 
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TVPICAL VARIATION WITH MACH NUMBER OF 

VELOCITY AT ANY POINT ON A STREAMLINE 

BODY OF REVOLUTION AT ZERO INCIDENCE. 


