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Application of the Linear Perturbation Theoﬁy
to Compressible Flow about Bodies of Revolution.
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- SUMMARY -

The linearised theory is developed in some
detail in order to clarify the difference between two-
dimensional and axi-symmetrie flow, In agrecment with
other authors it is concluded that the perturbation
velocity on a thin body of revolution in compressible

2

flow is 1/3 times the perturbation velocity in
incompressible flow on a thinner body at reduced incidence
obtained by reducing the lateral dimensions of the original
body in the ratio 4 : 1.

This result is applied to a representative family
of streamlinc bodies of revolution at zero incidence. It
is found that, without an undug loss of accuracy, the
results of the calculations can be presented in a relatively
simple form in & diagram showing the variation of wvelocity
with Mach number for a range of values of veloecity on the
surface of a streamline body in incompressible flow (£fig.6).
This variation is alwys less than that predisted by the
Glauert law but approaches it with increase in the basic
incompressible flow velocity, being very cloge to it for
basic incompressible velocity ratios, v/U,, of 1,10 and
higher,

T+ is showm that the blockage factor for a body of
revolution in a wind tunnel is increased in compressible

flow in the ratio 1/@ > and nok 1/¢ b s guoted in
reference 1.
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Notation

Yy 2

ordinate measured in direction of undisturbed
stream

ordinates measured normal to each other and
to the x-axis

radial ordinate measured normal to the axis
of the body

undisturbed stream velocity

incidence of body (assumed small)

components of velocity measured in x, ¥, 2
directions (u - U,, v and w are assumed

small comparcd with Ug)

Mach number of undisturbed stream

JiTw

maximum dismeter of body
length of body

velocity potential

stream function

The suffix i refers to quantities measured in incompressible
flow, the suffix ¢ refers to quantities measured in compressible
flow, the suffix s refers to quantities measured at the surface

of the body.
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die Introduction.

A number of authors (refs. 2, 3, 4) have at various
times pointed out an error in the application of the linearised
perturbation theory of compressible flow to bodies of
revolution given by Goldstein and Young in R, and M., 1909
(ref,l)s The error undoubtedly exists, but it is felt that a
certain degree of confusion and, in some cases, inaccuracy is
present in the papers discussing it., There is therefore a need
for a simple and clear exposition of the source of the error and
of the correct solution. The latter has been applied to a
family of stre=mline bodies of revolution as well as spheroids,
and curves have been derived from which the effect of
compressibility on the velocity distribution on a body of the
former family can be readily obtained with reasonable accuracy,

2y Theory.

To appreciate the source of the error referred to above,
it is necessary to recapitulate some of the theory of R. and M.
1909 (ref,l) both for two-dimengional and threc-dimensional flow,

; Consider first two-dimensional flow, If f(x,y) is the
perturbation potential for a thin cylinder (i.e., its y ordinates,
which we will write as yq , are small), then, to the order of

approximation involved in the linearised theory, the difference
between f£(x,y,) and £(x, 0) is of the second order in yg and may

be neglected nhun compared with f(x, 0). The same is true for
any of the derivatives of f(x, y) and in particular for v = fy(x, )

Hence, we may write that, on the surface of the cylinder,

vy = fy Ly D),

and since to the order of our approximation

Vyq = dys

—— ———

U, dx
the slope of the tangent at any point to the body is given by
&, _ 2y (x, 0)

I [
e o s e

dx U

Now, if we consider the compressible flow about a thin cylinder, we
know that the linearised perturbation potential g, satisfics

(see ref,l)
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*"e}'l_‘! _
H2 >4, L. 9% i \
b -a 2 "'_"'2
» X i i
_‘2 l\ co.--a-p--olrubn(z)
where ‘3 = l-MOQ.i

Hence, any functiorn of the form

g, = (/B #x, B¥) DR SR

will satisfy the equation (2) if
ﬁi = f(X,y) @ E 8 8 G N A0 S e S A0S E B EESEARS (ll-)

satisfies the incompressible flow potential equation (Laplace equation)




It follows from cquation (3) that the lateral velocity at the
surface of the disturbing body is given by

vos = (/B Niy(x, fyg).

Hence, by the above argument,
VGB = (l/(3 n-l)' fy(]{’o) = (l/(i n-l) Vis I.l..o.ltll(s)

where vig is the lateral velocity at the surface of the body for
which g3 is the incompressible flow perturbation potential,

It follows from equation (1) that if we scale the
ordinates (and therefore the slopes and incidence) of the body about
which we require the compressible flow by the factor (5NF1, and
then find the incompressible flow perturbation potential function
for the transformed body, that function is the function g; , We
see that we have in fact an infinite choice of bodies in incompressible
flow with their =associated perturbation potentials, from any onc of
which we can obtain ﬁc . For example, if we take n = 0, then we
scale the body ordinates and incidence up in the ratio 1/ﬁ s and
hence on the ori~inal body

c fx(x, (337) = fy(x, 0)

= U3 on the fattened body sanaanaans (8)

u

It

This is Method Tl of R. and M. 1909 (ref.l).

Again, if we take n = 1, we do not alter the body shape
and incidence, but then

o = (UB) fx(x, By) = (/B ) fx(x, 0)
(1/(3)ui. ST UM S arsanmae )

This is Method I of R, and M, 1909 (ref.l). 4And so on,

u

1

I

This infinite choice is associated with the fact that in
two-dimensions the velocity perturbation on the surface of a thin
body varies linearly with the thickness, In every case we arrive
at the well known Glauert law, viz., the perturbation velocity is
increasged in the ratio 1/F in two-dimensional compressible flow,

The above argument can be validly extended to the case of
flow about a three-dimensional body provided the spanwise or 2z
ordinate of the body is large compared with the y ordinate., This
cxtension is discussed in genersl in R, and M. 1909 (ref,l) and its
particular application to swept back wings is discussed in refs 5.

However, when we com¢ to consider bodies such as bodies
of revolution for which the y and 2z ordinates are of the same
order, an essential difference appears, It is then no longer true
to sey that, if f£(x, v, z) is the perturbation potentisl, near the
axis

f(xy Sy Z) = f'('_?[, 0, Q)
is of the second order in y (or z ) and may be neglected compared
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with £(x, 0, 0). The perturbation potential function and its
derivatives are in fact infinite along the portion of the axis

of the body where their singularities lie, As a corollary to

this we may notc that it is no longer true that the velocity
perturbation on o thin body of revolution varies linearly with
thickness, it varies more nearly like the square of the thickness
(ref.6), It wns this essential distinction of axi-symmetric flow
that was overlooked in R, and M. 1909 and led to the error refcrred
to in paragraph 1. In R, and M, 1909 (ref. 1) it was assumed that
the argument given sbove for two-dimensional bodics could be applied
unchanged to bodics of revolution and hence it was deduced that the
Glavert law applicd, But it will now be clear that in the casc of
bodics of revolution we must be careful to match our boundary
conditions on the actual boundiry in compressible flow, and not on
the axis, when dceiding on an appropriate incompressible flow,

As will be seen in what follows the Glauert law does not apply,
although the actual law does not lcad to results as different'
numerically from the Glauert lew as some writers (refs. 2, 7, 8)
have surmised,

it is still true to say that if

F{i = 8x; ¥s 8)

arbisfics the Linplace cduation, then

T

k=]

= (/" 2=, By, (2)

satisfies the linearised pertucbation potential equation for
compregsible flow, For the latter flow the corresponding values
of the lateral vclocity components are

<
I

(/B Y ibgln, Py B9 ,“\ »

and W,

L

n=Lly . '
(/870 et (x, Bys @2) |

nd hence the slopes of the tangents to the body, in planes
parallel to the xy and zx plancs, are given by

Ves = 1 fy(xss (3 Vs pzs) \

Ug {an-l Uo l

a-.nd ’ {'f t‘;o‘°°‘--'.(9)
e L 1 Lol 2ss G Fay {355) i
Ur) (sl’l"l UO ’;

where the ordinatcs of the body are given by gy Yar Zge Now the

points xg, (3 Yg, @,zﬁ define = body derived from the one we are
=k

considering by scaling its latcral ordinates and incidence dowm in
the ratio (¥ :1. If v, wi are the lateral velocities about
this thinner body in incompressible flow, it follows that

BYS Ug a(ﬁys) Vis\

Veg = Up i i | i

3 Xy [H e, [3

and similarly Y sssnsnnnal i)

o @ : 25k s
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It follows from equations (9) and (10) that if we take f(x, y, z)
to be the perturbation potential about the thinner body and take
n=2, g, will then be the correct compressible flow

perturbation potential about the body we are considering. Hence,
the perturbation velocity on the latter is I/P 2 times the

incompressible flow velocity on the similar body obtained by

reducing the lateral dimensions and incidence of the original body

in the ratio 3 : 1. This was of course true in two-dimensions,
but there is no longer an infinity of possible bodies and their
associated incompressible flows with which to correlate the
compressible flow, In this case there is only the one body and
its incompressible flow that we can teke for this purpose,

2 Application and Range of Calculations,

From the foregoing it will be clear that to determine
the velocity distribution over a body of fineness ratio, say,
/28 at a licch number M and incidence 2. , we require the
incompressible ilow velocity distribution over the body scaled
down to the thickness ;4T/2¢  and incidence (2L, and we

then multiply the perturbation velocity by‘L/ﬁ‘z to derive the
required perturbstion velocity. Hence, to cover a range of Mach
numbers, we require the incompressible flow velocity distributions
over o family of shapes derived by scaling the lateral ordinates

of the body dovm by a range of factors between 1.6 snd O, It
will be clear that in general thc precise change in local velocity
brought about by a change of Mach number will depend on the shaope
of the body, thc position considered and the magnitude of the
incompressible value; and a simple universal law of the Glauert
type can no longer apply. However to investigate the effect for

a typical family of similar streamline bodies of revolution at

zero incidencc, calculations. have been made for one of the families
of similar shapes developed in ref,9, This family was defined by
the parameters a/b = 1/2, Z' = O.4, using the notation of ref. 9,
i.c., they have a moderate velocity gradient ahcad of the position
of maximum velocity, which occurs at approximatcly L4LO% of the body
length aft of the nose. The incompressible flow velocity
2istributions for members of this family of fineness ratios T/2 ?
of 0,05, 0,1, 0,15, 0.2, 0,25 and 0,3 are shown in fig.l.

These distributions were calculated by the method of ref.6.

L AIKL].ZSiS.

4,1, Variation of maximum velobity with Mach number

The curve of maximum velocity as a function of fineness
ratio is shown in fig.2. It is there compared with the
corresponding curve for spheroids at zero incidence. The
departure of these curves from linearity through the origin is a
mcasure of how far the variation of meximum velocity with ldach
number may be cxpected to depart from the Glauvert law, Thus we may
expect o behaviour closer to the Glaucrt law on streamline bodies of
revolution in the region of maximum velocity than on spheroids.

This is confirmed by figs. 3 and . where are shown the variations
with Mach numbex of the maximum velocity on streamline shapes and
spheroids of various fincness ratios at zero incidence, and the
corresponding curves derived from the Glauvcrt law are shown for
comparison.

- The variation of the critical Mach number with fineness ratio
for streamlinc shapes and spheroids is shown in fig.5, and again

/the <ee
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the corresponding Glauert law curveg are shown for comparison.

L2, Variation with Mach number of velocity at any
point on streamline body.

By using the curves of fig.l and the results of the above
discussion it is possible to deduce the variation with Mach number
of the velocity at any point on a streamline body of revolution of
the typical family, for any fincness ratio within the rangec
considered., Systematic sets of curves were derived showing this
veriation for various fineness ratios, each set relating to a given
position aft of the mose. An analysis of these scts of curves then
showed that with little loss of accuracy the variation of velocity
with Mach number from a given incompressible value might be taken to
be independent of position and fincness ratio, This permitted a
single family of curves to be drawn and reproduced in fig.6 showing
the variation of velocity with Mach number for a range of values of
the incompressible velocity., 1In so far as the streamline shapes
for which thesc curves were obtained are reasonably typical, the
curves are valid for general use except where very great accuracy
is required, In the latter case complete and accurate caleculations
swould be requircd,

B Wind Tunnel Interference.

According to the linearised theory the cquivalent
source-gink distribution of a body of revelution is proportional
$o the square of the fineness ratio (see ref., 6). The
perturbation potential varies linearly with the equivalent
source-sink distribution (ref.6). It readily follows from the
above that the cquivalent source-sink distribution of a body
remains independent of Mach number, This was demonstrated by a
rather different argument by Lecs (ref,2). But the velocity in
tho x-direction induced at the point (x, r) in compressible flow
duc to a given source-sink distribution is the same as that
induced at the point (x, (3r) in incompressible flow. TWhen {3r
is large this velocity varies inversely as Q,3 r?, Treating the
wind tunnel interference on a body of revolution arising from
blockage as duc to the induced velocities of its series of images
in the walls, it follows that the interference factor should be

/@3> amdmot 1/(3 b ag stated in R. and M. 1909 (ref.l).
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VARIATION OF MAXIMUM VELOCITY ON SDHEROIDS
AND STREAMLINE BODIES OF REVOLUTION WITH
FINENESS RATIO.
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VARIATION OF CRITICAL MACH NUMBER WITH

FINENESS RATIO FOR SPHEROIDS AND

STREAMLINE BODIES OF REVOLUTION AT ZERO
INCIDENCE.
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TYPICAL VARIATION WITH MACH NUMBER OF
VELOCITY AT ANY POINT ON A STREAMLINE

BODY OF REVOLUTION AT ZERO INCIDENCE.
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