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-SUMMARY- 

The problem considered by Griffith 
and Meredithl for incompressible flow is here 
considered for compressible flow, it being 
assumed that there is no heat transfer 'by 
conduction at the plate. 	Essentially, the 
method consists of estabLishing a correspondence 
between the velocity and temperature profiles 
for incompressible flow and those for 
compressible flow, the lateral ordinates being 
scaled by factors which are functions of the 
ordinates and of Mach number. 

The results of calculations covering 
a range of Mach numbers up to 5.0 are shown in 
Figs. 1 and 2. 
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1. 	Notation 

distance measured parallel to the plate 
in direction of main stream upstream 
of plate 

y 	distance measured normal to the plate 
from the surface of the plate 

u velocity component in x direction 

✓ velocity cumponent in y drection 

density 

temperature 

coefficient of viBecj',y 

k 	thermal conductj=city 

ev 	specjfic heat at constant volume 

ap 	s2ecific heat at constant pressure 

0' A!-C 	1I -rscnal numer, assumed constant) 

J 
/ 
mecherical ,ouivalent of heat 

cpA, (assunid con ant 

J c o  T i  

1" 	 (sh -ear 0),ross) 
' dy 

suffix 1 refers to quantities measured at large 
normal dist-noes from the plate (y-""00 ), 

suffix w refers to quar 4.itles measured at the 
plate 

defined by —&--) 

 

d 7 • 

a1 	
\/(- 1) J.  cp  T, 

- na,  is the speed 
of Hound in the 
main stream) 

/2. 

 

 



2. Introduction  

, The classic solution due to Griffith and 
Meradithl. of the velocity distribution attained with 
suction on a flat plate of infinite extent in incompressible 
flow is of special interest, since it is a solution of the 
general equations of motion and does not depend on the 
usual assumptions of boundary layer theory. 	The. 
corresponding problem for compressible flow is t.y no 
means as simple in its most general fo/wi t  ILowever, if 
the usual assumptions of boundary layer theory are made, 
it permits of an exact solution which is easily obtained. 
This solution may have no practical importance at the 
moment, but it was felt to have sufficient intrinsic 
interest to be worth recording. 

3. Analysis  

The equation of motion in the boundary layer 
of a flat plate at zero incidence in steady compressible 
flow is 

v 	u 	'sb (14- -6 	• 	 
x 	 e 	Y 	Y 

The equation of bontinuity is 

) 
u) t 	 v = 0  "26 x 	ay 

The energy equation is 

01, u 	t J cp v 	T =  J 
x 	 Y 	e  d Y 	y 

u  

	  (3) 
aY 

We are interested in the problem of the final velocity 
and temperature profiles far downstream from the plate 
leading edge when 

( 1 ) 

(2) 

Aience 	 



Hence, the above equations become 

(4 ) 

v = const . = 	v1  	 (5) 

2 
v tiL ..1t) LAE) 	(6) 

ciY 	 dy 	(dir 	• •J 

where i = J cp T and e":- 	 ( 2randt1 s number 
assumed constant). 

The gas equation leads to 

	

OPr.   (7) 

e l  

It will be assumed that the vax:ation of ", with T 
is given by 

 

(8 ) 

 

wheretj= const. For air at normal temperatures LO is 
about 0.76, but it increases slightly with T i . 

The boundary conditions are 

le  .0 9 V 0 at y 
1 ay 

u = 0, di  
dy 

at y = 0, if no heat transfer by 

conductic -a is assumed to occur at 
th 

If in equation (6) we ch ,oage tht inde -oendent variable. 
from y to u, wrltng't (u) 	la y i= Aa) and 

dv 
eliminate 	by means of eouation (4) ;  we obtain 

(1  cr) 	 ° 

v d 	 du 
dy 	dy 	/ dy 

/Prom 	 
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From (4) and (5) 

dlC` = 
v  

and hence 
= 

1  v
l  u+ ci  

where 0
1 

i3 a const. 

If we write 1".  = value, of'r at the wall, 
w 

C Zr • 
1 w 

Further, since 'r 	0, when u = u, 

C = - p 
1 	‘1 1 1 

Therefore, 

I 	lot v 	u ) 
\k J, 	1 

= e ii 
 11+; 

 

(10) 

  

Equation (9) can then be written 

	

di 	 d2i 

	

(1 a.) el vl —du 	 (ua. - u) du 	= ° 	(11) 

This equation is readily solved to give 

2 	 2 

ii i 	
Au 

Q'''11 	1 	_ 2- 
2 (2 -Cr) 	ul 	 ul 

..(12) 

  

satisfying the conditions i = i1 , when u = ul , and 

di 0, when u = 0. 
= 

It is of interest to note that at the wall 
where u = 0, 	2 

i 
1  2 

(1 3 ) 

/and 

du 



and hence the total energy at the wall differs from 
that in he main stream only by the quantity 

(

2 	2 v
w 

- v
1 

. 

. 1.4L du From (10) we have, since er 
dy 

u  = 1 - exp 
ul  

 

o e1 1  '' v ( 14 ) 

 

••■ 

 

Let rj = 	vl y  

   

and let 
"41 d 	d ; . 

(15) 

with! = 0, when?r 0. 

Then, from (14) 

1 - exp. ( y) 	  
(16) 

u
1 

and from (12) 
, 2 

i1 
 

0.-1 	exp. (2S).- 2 	exp.67) .( 17) 
2(2 -0-) o- 

2 
Nriting Q = i/i1 	b 	- 1) Ml , then 

- 1 	cr 
b 	(2 - 0") 

where F( 13 ) 	exp.6r 	- exp. (2 4 
cr 

F 
( 18 ) 

From (16) and (18) we-.can express 	I,  G-  1 	as 

111 

functions of .11 only, independent of Mach number. 
To derive the actual velocity and temperature 
distributions for any given Mac number we need to 
evaluate the relation between 5 and /Z (or y) given 
by (15). 

/From 	 



b 	C7'2 	exp (Cr 	e)so = 
2 (2 -01 LO 2 

- 	7  7 
2 	11 	(20). 

From (15) 

S W 
it ._ 	(iL) . OS 

,o 	1 

= f 	
-.Cu 

0-'  
It 	 p(Pidr - 5 • 	 (19) 

2(2 -Cr) 	-" 1  0 [. 

In general, the integral on the right hand side of (19) 
must be evaluated either numerically or graphically, 
giving as a function of Sand Mi 	Since v1 

is negative, only positive values of need be 
considered and it will be found that values of 3 greater 
than 10 may be ignored. Having determined 1? (or y) 
for a comprehensive range of values of ;S' and Y

1 
we can then, for each Mach number, replot 

as functions of 7) using the 

111 	b/2 

basic (or incompressible) profiles 

For the special case c 
integrated outright to give 

given by (16) and (18) 

1.0, (19) can be 

and 0-  --  

4. 	Calculations  and results 

The velocity and temreraturo distributions 
have been calculated fora). 0.76 and M l  = 0, 1.0, 2.0 ;  
3. 0 , 4.0 and 5.0, Of  being taken as 0.72. 	For comparison, 
calculations have also been made for CO = 1.0 and Mi 
1.0 y  3.0 and 5.0. 	The resulting velocity distributions 
3 

€ This process of establishing a transformation of the 
lateral ordinate y , which converts the temperature 
andlulocity profiles for incompressible flow to those 
for compressible flow, was first used by Hantsche and 
Wendt in Ref.2. They then applied it to the boundary 
layer on a flat plate in compressible flow without 
suction for the special caso where 	= 1.0. 	However, 
it seems capable of much wider application, and in a 
later paper it is hoped to use it for more general 
problems of the boundary layer en a finite flat plate both 
with and without suction in cempressible flow. 



as functions of 1? are shown in Fig.', and the 
corresponding temperature distributions are shown 
in Fig.2. 	I* will be noted that there is a 
thickening of the velocity and temperature boundary 
layer with increase of Mach number, and this process 
is enhanced by an increase of (O. 

---aDo- 
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