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~SUMMARY=-

The problem considered by Griffith
and Meredithl for incompressible flow is here
considered for compressible flow, it being
assumed that there is no heat transfer by
conduction at the plats. Bssentially, the
method consists of establishing a correspondence
between the velocity and temperature profiles
for incompressible flow and those for
compressible flow, the lateral ordinates being
socaled by factors which arc functions of the
ordinates and of Mach number.

The results of calculations covesring
a range of Mach numbers up to 5.0 are shown in
Figs. 1 and 2.
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j Notation
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distance measured parallel to the plate
in direction of main stream upstream
of plate

distaence measured normal to the plate
from the gurfac:z of the plate

valocity component in x direction
velocity component in y dlrection
density

tearveraturc

coefficient of visocily

thermal cenductivity

specific heat at constant volume

vecific heat at conghbant pressure
(Prendtl number, assumed constant)

schanical equivalent of heat
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A8 Introduction

The classic golution due to Griffith and
Meredithl of the velocity distribution attained with
suction on a flat plate of infinite extent in incompressible
flow is of special interest, since it is a solution of the
general equations of motion and does not dspend on the
usual agsumptions of boundary layer theory. The,
corresponding problem for compressible flow is Ly no
means as simple in its most gencral form, However, if
the usual assumptions of boundary layer theory are made,
it permits of an exact solution which is easily obtained.
This solution may have no practical importance at the
moment, but it was felt to have suffiolent intrinsic
interest to be worth recording.

B Analysis

The equation of motion in the boundary layer
of a flat plate at zero incidence in steady compressible

flow is
du Bu . 1 D (w9, .......1)
Y Ll dy @ By(/‘-?}y)

The equation of esontinuity is
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The ensrgy equation is
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We are interested in the problem of the final velocity
and temperature profiles far downstream from the plate
leading edge when

;é. & 0.
dx
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Hence, the above equations beoccme

dn d du
v — = e s ..ci..ll.ll.....!‘(4)
dy (/Ldy

dy

ev: const. =€lvl au-o.o.u-|-loon.tont(5)

a . _d_ L PP
Qv = r ) /)(dv) (6)

where i = Jecp T, and®”= &0"‘" ( Prendtl's number
ageumed constant).

The gas equaticn lsads to
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1t will be assumed that the varliation of M- with i
is given by

2 . (_M AR ppe—
P ) T’L

wheret)= conste. Tor air at normal temperatures &) is
about 0.76, but it increases slightly with T .

The boundary conditions are

T.J.-'-_-'l.l,-:::},'\f-‘-"'\:?i:fl'_, du =0 at y =&,
1 N g1 1 1 dy '
u = 0, di - 0 at y =0, if no heat transfer by

dy conduction is assumed to occur atb

the plate.

If in equation (6) we change the independent veriable
from y to u, writing %u) %:A.%E , i =3i(u) and
¢ dy

eliminate ev by means of equation (4), we obtzin
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From (4) and (5)

SewRY Wl Ve

and hence
v. u+ C
T=0, " 1’
where Cl is a const.
If we write ¥ = value ofV at the wall,
W
8 N .
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Further, since T = 0, when u = u,
C = o ' X e
: 101

Therefore,
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Equation (9) can then be written
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This equation is readily solved to give

o
-1i= - = -2_1--“— o (12)
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satisfying the conditions 1 = 1i,, when u = Uy and

di _ when u = 0.
a-a--—»O’
It is of interest to note that a2t the wall
where u = 0, 2
iw= l+_:L ...l.l.....'.-.l...li..iﬂil'.‘)(13)
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and hence the total energy at the wall differs from
thg‘b in21)he main stream only by the quantity
&

L
w

From (10) we have, since"l"=,k%9- p
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with.r = 0, when?t= C.
Then, from (14)
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and from (12)

i « 41 = ... exp. (2%).- % GXP-(G"f) «(17)
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Writing © . 4. b=(y-1) Ml' then

1
&-1 o
= F(Y)
b /2 (2 - 07) . seunsviin)
where F($) = [%: exp.(a"f) - €XP. (2 :fﬂ

From (16) and (18) weé .can express A ©-1 ag

LY
functions of :\P only, independent of Mach number.

To derive the actual velocity and temperature
distributions for any given Mach number we need to
evaluate the relation between ¥ and rz (or y) given
by (15).
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From (15)
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In general, the integral on the right hand side of (19)
must be evaluated either numerically or graphically,
giving 9 as & function of Sand M, ., Since vy

is negative, only positive values of-S need be

considered end it will be found that values of § greater
then 10 may be ignored. Having determined M (or y)

for a comprehensive range of values of and Ml

ol

we can then, for each Mach number, replot

2. and §l:_£_ as functions of 77 , using the
Wy b2 \

basic (or incompressible) profiles given by (16) and (lB)x

For the special case W= 1.0, (19) can be
integrated outright to give
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4. Calculations and results

The velocity and temperature distributions
have been calculated forw= 0.76 and M =0, 1.0, 2.0:
3,0, 4.0 and 5.0, 0 being taken as 0.72." TFor comparison,
calculations have also been made for (W = 1.0 and M =
1.0, 3.0 and 5.0, The resulting velocity disti}butions
3 ASee e

# Thig process of establishing a transformation of the
lateral ordinate y , which converts the temperature
and v;elocity profiles for incompressible flow to those
for compressible flow, was first used by Hantsche and
Wendt in Ref.Z2. They then applied it to the boundary
layer on a flat plate in compressible flow without
gsuction for the special casc where = 1.0, However,
it seems capable of much wider applicatiion, and in a
later paper it is hoped to use it for more general
problems ef the boundary layer en a finite flat plate both
with and without suction in cempressible flow.
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as funotions of ¢ are shown in Fig.l, and the
corresponding temperature distributions are shown
in Fig.2. I®» will be noted that there is a
thickening of the velocity and temperature boundary
layer with increase of Mach number, and this process

is enhanced by an increase of W.
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