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1. Summary

Key points

 This study has delivered an invaluable baseline estimate of energy use and greenhouse
gas (GHG) emissions on commercial farms in England. Energy use and GHG
emissions associated with particular commodities were quantified and results broadly
agreed with those derived by Life Cycle Assessment, but with much scatter in the
environmental performance of farms.

 Direct energy use on farms was generally less that indirect (embedded) energy use,
except for horticulture, which is dominated by heating fuel use. In contrast, most GHG
emissions are incurred on farms, rather than as embedded emissions.

 Scatter in both environmental and economic performance underlies the somewhat
disappointing finding of no clear positive link between farm financial performance and
energy use or GHG emissions. However, the mere existence of these ranges shows
that there is scope for improvement in both financial and environmental performance
and that there is no apparent barrier for both to be achievable in harmony.

 The recording of such farm-level energy data is essential for the future, as it should
enable improvements to be made in efficiency of energy use. The improved UK
agricultural GHG inventory will depend on high quality energy data on agricultural
activities. This study will be invaluable in identifying the level of detail needed.

 Future data requirements include: contractor work rates and fuel use per unit area and
per unit time, fertiliser and pesticide use by brand name, enhanced output data,
especially animal live weights, and horticultural produce recorded by weight rather
than by value.

Approach

 The study used a sample of 511 farms in the 2007/08 Farm Business Survey in
England.

 Quantities of energy used on farm were recorded, both in direct form, e.g. diesel,
electricity, and as embedded energy in materials such as fertilisers and feeds. These
data and other factors were used to calculate GHG emissions from farms.

 The study used the Life Cycle approach – with the bought-in items, the energy use
values and the GHG emissions including activities pre-farm gate; (e.g. extraction,
refining and distribution) as well as emissions from on-farm use. Values for embedded
energy and GHG emissions came mainly from previous research but some new
inventory values were derived in the study, such as for contactor operations, wood
grown on farms, and for some fertiliser types.

 GHG emissions mainly comprised: CO2 from fuel, CH4 from enteric emissions, CH4

and N2O from manure storage, N2O from applications of fertiliser and manure to land,
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plus excretory returns from grazing livestock and leaching following grassland
cultivation.

Findings: Energy and emissions per hectare

 There was, in general, a strong linear relationship across farm types between energy
use per hectare and GHG emissions per hectare. This means it is possible to produce
quick estimates of GHG emissions from energy data that are relatively easy to derive.

Farm type and size

 Energy use per hectare varied considerably across farm types and sizes. Highest users
were specialist poultry farms: lowest were grazing farms in less favoured areas (LFA).

 GHG emissions per hectare followed broadly the same farm type trend as energy
usage, but enteric CH4 and field emissions of N2O meant that grazing farms (LFA or
lowland) tended to emit more GHG per hectare than general cropping and specialist
cereal farms.

 For energy use and GHG emissions per hectare, farm size had much less impact than
farm type.

 There was no overall significant difference between organic and non-organic farms on
energy use per hectare or GHG emissions per hectare. The only exceptions were
organic poultry and organic horticultural farms, where organic had significantly lower
values in both cases.

Direct and indirect sources

 Apart from horticultural farms, energy use of most farm types was mainly indirect (i.e.
embedded in inputs). This highlights the need to consider both types of energy use.
GHG emissions were dominated by on-farm emissions, except on poultry farms.

Soil and biomass carbon: Effects of grassland cultivation and establishment, and woodland

 For most farms the effects of grassland cultivation, establishment and woodlands were
relatively small, but the data only allowed a snapshot and may not be wholly
representative over a longer time scale as the effects of land use change are long
lasting.

 Total losses of soil C via grassland cultivation tended to outweigh gains from
grassland establishment. Woodlands provided a net increase in soil C.

Economic and environmental performance

 An approach of using farm economic data to allocate energy use and GHG emissions
to commodities was successful for most commodities. It gave results that were
generally close to those obtained from LCA studies.

 There was a significant positive link between energy use per farm and income per
farm, via higher total energy use on larger farms, which often have higher incomes.
But there was no significant relationship on a per hectare basis between income,
energy and GHG emissions.
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 Beneath the whole farm level, for any commodity or commodity group, there was no
reliable significant relationship between gross margin and energy use or emissions.
This is undeniably both somewhat surprising and disappointing.

 There was a wide range of both economic and environmental performance in the farms
studied. There may be many reasons for the variations, such as soil, rainfall,
topography, degree of capitalisation, machinery age or use of contractors. Also, this
analysis is a snapshot of one farming year. More detail is needed to understand the
variation in economic and environmental performance across farms and across years.

 Within the commodities, milk was scrutinised in more detail. There was a weak
relationship between energy use or GHG emissions per litre and net income per litre,
and the slope was negative, as desired, albeit influenced by an outlier. However, the
significant, although weak, negative slope for milk production and energy does accord
with reports of increased profitability and environmental performance in dairying.

Introduction

A subset of 511 farms was the subject of an additional module on energy use and greenhouse
gas (GHG) emissions in the 2007/8 Farm Business Survey. Additional questions were posed
in order to determine the quantities of energy used on farms, both in direct form, such as
diesel and electricity, together with embedded energy in materials such as fertilisers and feeds
as well as young livestock. These values, together with other factors were used to calculate
GHG emissions from farms. This report describes the analysis of the data by farm type and
size as well as relating energy use and GHG emissions to the production of individual
commodities.

Methods

The study applied Life Cycle Thinking in its approach, so that the energy use values include
the overheads of extraction, refining and distribution as well as the “end of pipe emissions”.
This is consistent with Life Cycle Assessment (LCA) and recently released specification for
carbon footprinting: PAS2050. It also includes the embedded energy (and GHG emissions) in
bought-in items. This is an important feature of the analysis, particularly for livestock
production. Most of the sources of values for embedded energy and GHG emissions came
from the Cranfield Agricultural and Horticultural Life Cycle Inventory (CAHLCI), which
includes major agricultural commodities, fertilisers and energy carriers (fuels), the latter being
taken from the EU’s Life Cycle Database (ELCD). Some new inventory values were derived
in the study, such as for bought-in contactor operations, or for wood grown on farms, or for
fertiliser types that were not wholly specific in the questions asked.

GHG emissions were calculated from fuels used together with point source and diffuse
emissions of methane (CH4) and nitrous oxide (N2O). These included: enteric emissions of
CH4, CH4 and N2O from manure, N2O from applications of fertiliser and manure to land (plus
excretory returns from grazing livestock). Specific terms were also applied for the secondary
N2O from leaching following grassland cultivation. A limited analysis was also applied to the
potential for losses and gains of soil C and uptake of biomass C, but these were on limited
time duration. The IPCC Tier 1 emission factors were mostly applied in this analysis.

The sum of energy use and GHG emissions per farm was scaled by farm area for all
representatives of robust farm types and sizes that were sampled. Some combinations were
not represented and there was one “other”: a mushroom farm. In addition, two allocation
methods were applied in order to calculate the energy use and GHG emissions by commodity
(or groups of commodities). This was based on the physical amounts produced wherever
possible, although it was sometimes applied by financial output in horticulture, with the
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greater diversity of outputs in that sector. Regression analysis was also applied to relate
energy use to commodity outputs.

Data envelopment analysis (DEA) was applied to the processed data in order to help identify
the efficient frontier of production.

Economic and environmental performance were compared for some commodities, using gross
margins and net incomes.

Results

Farm type and size

The energy use per hectare varied considerably across the farm types and sizes, ranging from
10 to 2,900 GJ/ha (Table 13). The differences in total energy use per hectare by farm type
were generally statistically significant. The ratios of direct to indirect energy use tend to be
systematically different, depending on farm type. The highest users of energy were specialist
poultry farms and the lowest were grazing farms in less favoured areas (LFA),

Table 1 Ordering from highest to lowest of total energy use per hectare by farm types

Farm type
Total energy
use, GJ/ha

1 Specialist poultry 2900

2 Horticulture 1500

3 Specialist pigs 430

4 Dairy 36

5 Mixed 19

6 General cropping 16

7 Cereals 14

8 LFA grazing livestock 10

9 Lowland grazing livestock 10

10 Other (#) 1.7
(#) This is a mushroom farm and is not included further in
the analysis emissions and energy use

There were broad similarities in the ordering of GHG emissions per hectare from farm types,
but the contribution of factors like enteric CH4 and field emissions of N2O meant that general
cropping and specialist cereal farms emitted less GHG per hectare than LFA or lowland
grazing farms.
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Table 2 Ordering from highest to lowest of GHG emissions and total energy use per hectare by
farm types

Type
Total GHG emissions,
GWP, t CO2e/ha

1 Specialist poultry 410

2 Horticulture 107

3 Specialist pigs 100

4 Dairy 8.0

5 Mixed 5.8

6 LFA grazing livestock 4.6

7 Lowland grazing livestock 4.1

8 Cereals 2.6

9 General cropping 2.4

10 Other (#) 0.4
(#) This is a mushroom farm and is not included further in the
analysis emissions and energy use

The significance of effects of farm size on energy use and GHG emissions were considerably
less than for farm type. The main effects were that small poultry and horticultural farms use
significantly less energy and emit less GHG per hectare than their medium and large
counterparts. Part of this could be a tendency for smaller poultry units to be free-range (with
inevitably lower stocking densities) and for smaller horticultural units to have less or no
heated glass areas.

Direct and indirect sources

Horticultural farms were systematically different from other farm types in that 95% of energy
use was on the farms, which was dominated by heated greenhouse systems (Table 3). Direct
energy use ranged from 26% on pig farms to 51% on general cropping farms. This highlights
the need to consider both types of energy use. GHG emissions for the other farm types were
relatively larger (34% to 82%), mainly because of enteric CH4 and field N2O emissions, with
grazing farms having the highest proportions of on farm emissions. Overall, most GHG
emissions are incurred on farms, rather than as embedded emissions.

Table 3 Proportions of total energy and GHG emissions that are incurred directly on farms,
rather than embedded in inputs (e.g. fertilisers, feeds, young stock).

Count Energy GHG

Cereals 83 40% 66%

Dairy 77 36% 63%

General cropping 77 51% 66%

Horticulture 104 95% 93%

LFA grazing livestock 19 37% 81%

Lowland grazing livestock 41 48% 82%

Mixed 47 38% 66%

Specialist pigs 20 26% 54%

Specialist poultry 42 37% 34%
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Organic and non-organic farms compared unit area basis

There was no overall significant difference between organic and non-organic farm energy use
or GHG emissions per hectare. There were some sector-specific differences: both organic
poultry and horticultural farms had significantly lower energy use and GHG emissions per
hectare than their non-organic counterparts, for similar reasons to the general effects of size.
In addition, organic poultry farms would operate with lower stocking densities and buildings
tend to be more often naturally ventilated. This analysis is limited by the small number of
organic farms in the sample and large inter-farm variability. It must be noted that these
comparisons were per hectare and not per unit output.

Effects of grassland cultivation, grassland establishment and woodland

The losses of soil C from cultivations and gains of soil C from grassland establishment
together with farm woodlands were estimated. The effects of grassland management were
generally somewhat more negative than positive, while woodlands were always positive.
There were some examples where either woodland or grassland (or both) contributed to C
storage on the farm, but these are in the minority and tend to apply to smaller farms. For most
farms sampled, the effects were relatively small, but the data only allowed a snapshot of land
use changes. So, what is reported here is based on that, but may not be wholly representative
of what happens on the farms over a longer time scale as the effects of land use change are
long lasting. Apart from these instances of the change between arable and grassland, soil C
was assumed to be constant on all farm types.

Regression

The value of applying regression analysis was limited. Few conclusive, significant
relationships could be extracted and these only applied to direct and total energy use for field
crops, even on cereal and general cropping farms. The estimate for total energy used for
wheat at 2.7 GJ/t was close to 2.4 MJ/t in CAHLCI, while that for barley was about twice that
in CAHLCI and the estimate for direct energy was non-significant. The explanation is: first,
we have many possible outputs in many combinations and not enough farms in the sample to
explain variation and second, the residual errors were not normally distributed so that fits
were inevitably poor.

Allocation

The first method was based on the application of existing CAHLCI values for crops in order
to partition whole farm energy use and GHG emissions between crops (and was applied to
farms with crops only). The results gave generally good agreement between the crop values in
CAHLCI and those resulting from the FBS data. Energy values were more closely aligned
than GHG emissions. GHG emissions estimated from FBS data were about 75% of those in
CAHLCI. The same approach was applied to milk production, but with less success. Some
reasonable agreement was possible, but the sampled dairy farms included varying proportions
of herd replacements and other cattle in various stages of beef production as well as a
diversity of other enterprises. Agreement improved as the sample was screened to be more
consistent.

Reasonable agreement was also found on poultry and pig farms. The method worked overall,
although the uncertainties were substantial for many commodities, partly simply reflecting
inter-farm variability.

The second method used economic allocation per enterprise to partition the energy use from
purchases of fertilisers, fuels etc together with physical causality (e.g. enteric emissions could
be ascribed directly to say beef or sheep). The method worked reasonably well with good
overall agreement between energy use in CAHLCI and the FBS sample. The uncertainties
were nonetheless relatively high with coefficients of variation (CoV: standard deviation
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divided by the mean) in the order of 40%, reflecting inter-farm variability. GHG emissions
from crops were again about 75% of those in CAHLCI. The allocation of energy to animal
production was generally less accurate than for crops, which should not be surprising because
a larger number of inputs are required for animal than crop production. Milk and eggs were,
however, estimated about as accurately as winter wheat. These commodities have relatively
low breeding overheads and are fairly well optimised. Furthermore, the physical outputs that
constitute the function units are well characterised, e.g. x hectolitres of milk or y dozen eggs.
In contrast, weights of all stock for meat had to be estimated from general expectations (e.g.
typical broiler of finished lamb weights) or from prices per kg. The liveweight-based
commodities all required about an order of magnitude more energy than the crops. This is to
be expected as animals consume crops, and concentrate them into livestock products that are
functionally different, e.g. providing very high quality protein. There was reasonable
agreement between results from CAHLCI and the FBS survey for energy use, although there
seemed to be a systematic underestimate of pig energy. The FBS-derived estimates of energy
use for animal commodities had a range of uncertainties from CoV 27% to 57%, with sheep
animal being 92%. The FBS-derived estimates of GHG emissions were actually generally
closer than energy and with smaller uncertainties (CoV 20% to 60%). There were no
significant differences for producing these commodities on different farm types, but there was
a hint that sheep produced on pig or poultry farms may incur an undue allocation, but this
may just be an artefact of the method.

Economic and environmental performance

The first phase compared whole farm net income with energy use or GHG emissions
(normalised per hectare), with farms divided into robust types. This showed a large range of
incomes as well as energy use and GHG emissions. The energy use was stratified by farm
type, but there was no obvious correlation. In the next phase, incomes (or margins) were
related to energy use or GHG emissions by regression either at a farm level or by commodity.

There was no significant relationship between net farm income and energy use or GHG
emissions on cereal farms. There was, however, a significant increase in whole farm energy
use with net farm income, reflecting the higher total energy use on larger farms.

In horticulture, there was a very wide range of energy use per hectare owing to part of the
sector using heated greenhouses. Whether these were included or not, there were no
significant relationships between energy use or GHG emissions per hectare and net farm
income. The range of incomes is also large owing to the wide range of food and ornamental
outputs.

The remainder of the economic and environmental performance analysis focused on single
commodities or commodity groups: winter wheat, winter barley, winter OSR, ware potatoes,
sugar beet, milk, eggs, other cattle, sheep, wool, pigs and poultry. Liveweight gain was the
metric for other cattle, sheep, pigs and poultry. After initial screening, outliers were
eliminated systematically with the threshold for inclusion set at the gross margin of a
commodity being at least 10% of the farm margin.

The relationships between gross margin and either energy use or GHG emissions per unit
commodity can be summarised as follows. There were no reliable significant relationships
between them for any commodity when considering all farm types and sizes. There were a
few significant relationships in the animal sector, but these were reliant on outliers. This is
undeniably both somewhat surprising and disappointing. What is also evident is that there is
a wide range of both economic and environmental performance in the farms studied. For
example, the ratios of the highest to lowest of both gross margin and energy use for winter
OSR and winter barley were three and five respectively. This pattern was repeated across
other crops, although with differing ranges. In livestock production, the range of gross
margins can be higher than is seen in crop production, e.g. £0.01 to £0.42 per dozen eggs or
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about £100 to £13,000 per t liveweight gain for beef animals. The ranges of energy use and
GHG emissions were similar to those for crops. There were some significant relationships,
but these need qualifying. These occurred with pigs, poultry and wool. The pig ones relied on
one outlier. The wool ones also seemed to be unduly influenced by a few outliers. Poultry
production for both meat and eggs were split between two populations: fully housed and free
range. The variation in energy use and GHG emissions was generally larger for free range
than indoor, reflecting the high degree of optimisation in mainstream fully housed production.

Milk was scrutinised in more detail, being possible with more farm data available to analyse.
As before, there was no relationship between gross margin and energy use or GHG emissions
when considering the whole population. Farm size was investigated, but there were no trends
within sizes, although the range of gross margins was larger for medium than small or large.
There was a weak relationship between energy use or GHG emissions and net income and the
slope was negative, as desired, but this was influenced by an outlier. There was a highly
significant relationship between energy use per hectare and milk production per hectare.
There were nine organically managed farms in the screened sample with gross margins from
£12 to £21 per hectolitre. There were significant relationships for these farms with negatives
slopes for both GHG emissions and energy use against gross margin, which is the desired
effect: i.e. higher income and lower burdens per unit production. Energy use and GHG
emissions (for organic milk) tended to be in the lower part of the ranges, but could not be said
to be significantly different as a population from non-organic milk.

Organic winter wheat margins were systematically higher than for non-organic wheat,
although there were only four organic farms out of 200. In contrast to organic milk, the slope
between gross margin and energy use or GHG emissions was positive, but the sample is too
small to support useful conclusions.

Data Envelopment Analysis

Data Envelopment Analysis (DEA) successfully discriminated relatively efficient from
inefficient Decision Making Units (DMUs) or farms. It has thus identified a set of relevant
candidate benchmark farms and triggered a set of searching questions to account for the
discrepancies between the inefficient farms and their peers. It has done its job in this respect.
It maybe that the necessary simplifications of the number and measure of outputs, the
approximations involved, or chance play a genuine role in making a DMU appear inefficient.
It must also be remembered that farms are multi-functional in more ways than can be readily
measured.

Various formulations of the DEA, criteria chosen and excluded outliers have been explored.
Whilst these changes affect some details in the results there is broad pattern of the efficient
peers being common across formulations, suggesting a degree of robustness. The DEA scores
are broadly comparable if either GHG emissions or energy is used as the input vector, with
many DMUs being efficient in both models if indirect inputs of energy off-farm are
systematically and robustly accounted for.

Typically the DMUs are dominated by a small group of efficient peers some distance away,
the histograms often have two peaks: one where the majority of the industry is and a smaller
one of the smaller set of efficient peers that are on the Pareto efficient frontier. This may
suggest that outliers play too big a role in the data, but that at least is a question that the DEA
has revealed.

We have looked at farm size, region, type, and organic status as possible explanatory
variables for the observed DEA scores. Some interesting effects due to farm type and organic
status are suggested. However, these remain statistically elusive due to the restricted amount
of data available relative to the heterogeneity of the industry. The use of statistics to
investigate the role of explanatory variables that can explain DEA scores is still in its infancy
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due to the non-normal distribution of DEA scores. Tobit regression analysis and non-
parametric ANOVA have been used/suggested as tools.

Energy and emissions per hectare

There were, in general, strong linear relationship across farm types between normalised
energy use and GHG emissions. It was most obvious for horticultural and poultry units, in
which there is a relatively high direct fuel use (Table 50). The fits were very good for high
energy activities like specialist mono-gastric production and horticulture. They were
inevitably poorer for other farming activities when enteric methane emissions and field
emissions of N2O play a relatively greater role. This, nonetheless, provides the ability to
produce quick estimates from data that is relatively easy to derive.

Table 4 Summary of regression between energy use per hectare and GHG emissions per hectare
across farm types. The regressions and slopes were all significant at p <0.001. These are ordered
by decreasing quality of fit.

Farm type
Variance
accounted
for

Standard
Error of
regression

Slope,
t CO2e/GJ

Standard
Error of slope

Specialist pigs 99% 10 0.181 0.0033

Specialist poultry 98% 101 0.141 0.0027

Horticulture 97% 59 0.0746 0.0014

Dairy 90% 1.27 0.219 0.0037

LFA grazing 69% 0.96 0.390 0.0266

Mixed 61% 1.79 0.236 0.0123

Lowland grazing 56% 1.35 0.355 0.0178

General cropping 53% 0.82 0.144 0.0059

Cereals 52% 0.72 0.178 0.0059

Concluding discussion

This analysis has delivered an invaluable baseline estimate of actual energy use and GHG
emissions on contemporary commercial farms in England. Differences between some farm
types are apparent, but not surprising. The effects of scale were limited to poultry and
horticulture. Most farm energy use is embedded in indirect energy use, whereas most GHG
emissions occur on farms themselves.
The use of two allocation methods delivered very useful results and allowed the energy use
and GHG emissions associated with particular commodities to be quantified. These results
were in broad agreement with those derived by LCA. It was also evident in these analyses that
there was much scatter in the environmental performance of farms.
This scatter, together with that in economic performance, must underlie the somewhat
disappointing relationships between farm financial performance and energy use or GHG
emissions. The mere existence of these ranges shows that there is scope for improvement in
both financial and environmental performance and that there is no apparent barrier for both to
be achievable in harmony. The significant, although weak, negative slope for milk production
and energy accords with reports from consultancies of increased profitability and
environmental performance in dairying. DEA has shown considerable potential as a tool for
analysing farm performance, although having a larger sample would have been helpful. It is a
powerful tool for rapidly identifying outliers.
There may be many reasons for the variations, such as soil texture, rainfall, topography,
farmer type, degree of capitalisation, livestock breeds, machinery age or use the of
contractors. It must also be remembered that this analysis is a snapshot of one farming year.
Between years, there may be yield and price variation as well as capital investments etc. More
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detail is needed to understand why the variation occurs and data from more years are needed
to track changes.
In some cases, the allocation of energy use was slightly problematic in that high allocations
of, say, electricity or a heating fuel were made on some farms in farm types where little
electricity use might be expected for the farm operations themselves, e.g. LFA grazing. This
suggests that energy used in the office could be distorting what is used for the actual farm
activities (e.g. lighting lambing sheds). Nonetheless, this type of energy use is part of an
overall farm activity, but not one that is usually included in LCA studies.
One area in which there was not enough data to make a substantial analysis was of organic
production. This was because of the very limited data available, with small numbers of farms
of different types and relatively high diversity of outputs. There is no fundamental reason
why the analysis can not be applied to organic systems, it just needs more data.
The recording of energy related data on farms is essential for the future, as it should enable
improvements to be made. The improved UK agricultural GHG inventory will depend on high
quality activity data as well as improved and more specific emission factors. The experience
gained in this study will be invaluable in identifying what level of detail of data is needed.
Future data requirements include a better understanding of contractor work rates and fuel use
per unit area and per unit time, fertiliser and pesticide use by brand name, enhancing the
quality of the physical inputs and outputs of farms, especially animal liveweights and
horticultural produce being recorded by weight rather than by value. Future recording to
involve a systematic screening of recorded data to eliminate spurious values and highlight
inconsistencies. Examples could be animal production without feed or excessively high
fertiliser application rates. A larger sample of organic farms is also needed to allow a
conclusive analysis to be made.
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Main Report

Introduction

The Farm Business Survey (FBS) normally collects data on the value of outputs and inputs,
and the physical quantities of outputs but not much data on physical quantities of inputs. In
the 2007/08 accounting year, extra data was collected relating to energy use, including
physical quantities of inputs from a sample of 511 farms. The FBS was chosen to collect this
information because the data are collected via interview by professional researchers who
regularly visit the farms. It thereby enables a higher degree of accuracy and data robustness
than a postal or telephone survey. This report describes an analysis of the data to understand
better energy use on farms and the greenhouse gas (GHG) emissions associated with energy
use as well as other biologically derived processes, such as enteric methane and field
emissions of nitrous oxide. Much of the underlying basis of the analyses came from work
conducted at Cranfield University (and previously at Silsoe Research Institute) on life cycle
assessment (LCA) and systems modelling of agricultural commodity production (Audsley et
al, 1997; Williams et al., 2006; Williams et al., 2009).

The study applied Life Cycle Thinking in its approach, so that the energy use values include
the overheads of extraction, refining and distribution as well as the “end of pipe emissions”.
This is consistent with Life Cycle Assessment (LCA) and recently released specification for
carbon footprinting: PAS2050 (BSI, 2008). It also includes the embedded energy (and GHG
emissions) in bought-in items. This is an important feature of the analysis, particularly for
livestock production.

2. Methods

Direct and indirect energy sources

Farms use energy in direct forms such as diesel. Much energy can also be brought onto farms
embedded in materials, feeds or stock, i.e. at some stage direct energy has been used to create,
transport or nurture these items. Both forms are important. For example, Williams et al.
(2006) analysed total energy used to produce a unit weight of non-organic bread by LCA and
showed that the indirect energy is about 70% of the total. So, omitting indirect energy can
substantially underestimate the true energy that is embedded in a farm commodity. Care is
needed in how this is interpreted. For example, the energy used on a livestock farm includes
much that is embedded in feeds, so that should be accounted for in estimating what it takes to
produce the livestock. Similarly, the energy used to produce feeds must be traced back to
fuels, fertilisers and machinery in order to establish what has been used to produce those
feeds. But if a (simplified) region has two farms that produce (a) feed crops and (b) livestock,
the energy calculated per farm by this method tells us what each farm uses to produce its
outputs, but the sum of farm energy use in the region is not the sum of energy used on both
farms as the embedded energy in the feeds is transferred to the livestock farms. The same
argument applies to GHGs, so that the sum of GHG across all farm types if scaled up to the
national level would NOT equate to a national inventory, since it would be double counting
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feed crops. Summing the GHG emissions per commodity and making due allowance for the
final use of all crops (e.g. wheat for milling, fermentation or feed) would come much closer to
forming a national GHG inventory.

Global warming potentials

Greenhouse gases are not equal in their effect on the atmosphere. The effects are interpreted
by converting them to the equivalent effects in trapping solar energy of carbon dioxide (CO2)
of a fixed time period. The units of global warming potential (GWP) are in CO2 equivalents,
which are abbreviated to CO2e. By common consent, this is normally 100 years (although
values for 20 and 500 years are also calculated). The Intergovernmental Panel on Climate
Change (IPCC) periodically updates the global warming potentials of gases and we use the
most recent set (IPPC, 2007). For agriculture, the main gases are methane (CH4) with a GWP
of 25 and nitrous oxide (N2O) with a GWP of 298. These are slightly different from those
used in the current national inventory, which was constructed in response to the Kyoto
protocol and uses the original IPCC values of 21 and 310 for CH4 and N2O respectively. The
use of the more recent set of values is consistent with those used on PAS 2050 (BSI, 2008).

Scope of greenhouse gases quantified

In the current UK GHG inventory (Kyoto orientated and using the IPPC structure), the
contribution of agriculture is limited to direct emissions from agricultural activities that are
not related to energy use, e.g. N2O from soils and CH4 from manure. CO2 is only included
from the use of lime as a soil conditioner. The use of fuels for machinery, heating and
ventilation and associated CO2e emissions are included in the energy part of the overall
national inventory. Estimates of the agricultural sector’s contribution to energy related CO2e
emissions may be included in the inventory, but are not separately, explicitly recorded. The
differences are summarised in Table 5.

Other gases do make a small contribution to GWP from agriculture, such as carbon monoxide
(CO) from combustion and nitric oxide (NO) from manure. These have been reported under
the overall umbrellas of CO2, CH4 and N2O by transferring them to the nearest functional
equivalent, e.g. CO comes from fossil fuel as does almost all CO2, so its contribution was
added to that of CO2. These actually make very little difference to the overall outcome.

One area for which we currently have no data is leakage of air conditioning and refrigeration
coolants. These have very high GWPs (often several thousand). They could make a
contribution to emission from air conditioned field machinery and deliveries of anything that
is cooled in transit. Retail type chilled counters are also prone to leakages and these could
make a contribution from farm shops. Refrigeration units such as those used for cooling milk
are hermetically sealed and not prone to leakage. Cooling units used for crops (e.g. potatoes)
are also well sealed and often use low GWP coolants.
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Table 5 Summary of main gases included in the UK agriculture GHG inventory and those
considered in the present study

Gas
Source in current

inventory
Other sources used in

the present study
Comments

CO2 Lime Energy use

Energy generation
overheads

Upstream inputs (e.g.
pesticide, fertiliser,
lime extraction and
delivery, silage wrap)

Urea field emissions

Grassland change These are accounted for
in the UK LULUCF
GHG inventoryWoodland

CH4 Enteric from livestock
Energy generation
fugitive emissions

Manure management

Where emitted in
upstream input
production and
distribution

N2O All N inputs to soils
Upstream inputs,
especially nitrate
fertiliser production

Manure management

Secondary conversion
from ammonia, nitric
oxide and leached
nitrate

Others
CO, and minor
combustion gases

LULUCF = Land use, land use change and forestry

Conversion of raw data to consistent metrics

There were three main parts in this process, which we consider first from the perspective of
energy use. The clearest aspect of energy use is fuels purchased and used on the farm. All
main fuel types were converted to primary energy values (i.e. including upstream activities of
extraction, refining and delivery) using conversion factors in the Cranfield Agricultural and
Horticultural Life Cycle Inventory (CAHLCI) (Table 6). CAHLCI represents a set of outputs
from Cranfield’s agricultural and horticultural LCA work (Williams et al., 2006; Williams et
al., 2009). Two types of renewable energy were included in the raw data: straw and wood.
We used the CAHLCI values for wheat straw and developed a de novo estimate for wood
using data from the literature (Appendix 1). These are all forms of direct energy.
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Table 6 Factors used to convert physical units recorded by the FBS team into primary energy

and GHG emissions
(*)

.

FBS Fuel descriptions
FBS
item
code

Reference
Unit

Primary Energy, MJ
per unit

GHG emissions
(GWP100), kg CO2e
per unit

Red diesel 1 1 litre 43.1 3.07

Derv 2 1 litre 43.1 3.07

Petrol 3 1 litre 39.3 2.99

Engine lubricating oil 4 1 litre 48.1 3.45

Propane/LPG 5 1 kg 52.4 3.74

Kerosene 6 1 litre 41.2 3.03

RFO (residual oil, medium and
heavy burning oils)

7 1 litre 48.1 3.45

Mains natural gas 8 1 m3 39.9 2.40

Electricity 9 1 kWh 11.6 0.67

Wood (imported onto farm) 12 1 kg 0.323 0.023

Wood (grown on farm) 13 1 kg 0.262 0.0187

Coal 14 1 kg 23.0 2.37

Domestic heating oil (farm
use)

15 1 litre 43.1 3.03

(*)
All GHG emissions use the IPCC (2006) coefficients to convert species such as methane and nitrous

oxide into global warming potentials (GWP) using the conventional 100 year time scale.
The source of the primary energy and GHG data for fuels (energy carriers) is the European
Commission's "European Reference Life Cycle Database" (ELCD)

Agriculture is a high friction environment (e.g. soil wears tillage equipment and cereals wear
the inside of harvesting machinery), and consequently machinery wears out relatively fast,
compared with, say, a combustion process. In previous work, we established that the
overheads of machinery and tractors represent about 30% of the direct energy use from diesel.
This overhead was thus added to red diesel, which is mainly used for agricultural vehicles.

Materials (and animals) bought onto the farm contain embedded energy, i.e. the energy used
to manufacture, or breed and feed, and deliver the item. On arable farms, these are mainly
items like fertilisers (N especially), but more widely include pesticides, silage wrap,
concentrated feeds, manures and younger livestock. Many of these are in CAHLCI, but de
novo ones were also developed as needed. These were based on data from the literature,
interpolation or extrapolation from CAHLCI or creating a new LCI from 1st principles. In
some cases, proxies representing similar items could be used. Given the nature of the
descriptions of items, some could be defined and quantified with much greater reliability than
others. For example, ammonium nitrate and urea are well characterised items, while liquid
manures are not. The embedded energy in manure is mainly a function of its nutrient
composition. The management of manure can be very varied, e.g. different storage lengths or
dilution with rain water or wash water. Quantities are also less easy to measure (or estimate
by farmers) than synthetic N fertiliser.

For young livestock, estimates were made based on a set of assumptions. Again these vary
considerably in reliability. Day-old chicks bought by broiler producers are well characterised,
while a beef animal of 18-24 month is far more variable in its history and management
options and hence embedded energy. Best estimates were made of embedded energies using
derivations from the animal production module of the Cranfield LCA model (values are given
in Appendix 2).
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Contractor operations cover a wide range of activities. These were recorded by the hectare or
hour. These vary in expected accuracy. Field operations per ha, such as ploughing, spraying
and harvesting, are well characterised, while activities such as slurry and manure operations
by the hour could include energy utilisation at widely differing rates. Best estimates were
made using values from CAHLCI wherever possible, extrapolating from these with plausible
work rates from standard farm management texts (e.g. Nix, ABC) or developing sets of
scenarios from which means could be derived. In these contractor operations, separate terms
for direct energy and machinery overheads were applied, as with farmer-purchased red diesel.
We took the view that the normal arrangement would be for contractors to supply their own
diesel. It is quite possible that some farmers supplied diesel to contractors.

The same basic approach was applied to GHG emissions. These occur as direct emissions,
e.g. CH4 from ruminant digestion or manure storage; N2O from N applications in manure and
synthetic nitrogen or CO2 from combustion. There are also secondary effects, e.g. N2O from
leached nitrate and ammonia. All items bought in contain embedded GHG emissions, which
may have been derived from combustion, direct N2O from fertiliser manufacture or any
process that is implied in animal feeds or animals themselves. Two areas of GHG emissions
from soils were excluded: C losses from peat soils and N2O from organic soils (not to be
confused with organically managed soils). This was because the exact locations of farms
were not known and hence the soils being managed were not known.

CAHLCI and the Cranfield LCA model were used as the first data sources whenever possible,
for consistency with the energy data. In some cases, where disaggregation of the model was
not readily possible or for technical reasons, general emission factors were taken from the
IPCC (2007) guidelines on national reporting of GHG inventories (usually only Tier 1 was
possible). These included daily emissions of enteric methane from cattle or manure
management.

Effects of woodland and cultivating or establishing grassland

Values for C uptake by trees were taken from the Country Land and Business Association’s
CALM calculator (http://www.calm.cla.org.uk). It provides a range of values for conifers and
broadleaf woodland in woodland ranges of tree ages (Table 7). The age and area of farm
plantations were recorded in the energy module and the closest values for C uptake were used.
It should be noted that these are broad average numbers and not the ones that would be used
in commercial plantations in which much more detail may be known about the operation.

Table 7 Biomass uptake rates in woodland from the CALM tool converted to measures of GWP

Biomass uptake rate,
t CO2e ha-1year-1

Age, years Conifer Broadleaf

5 1.4 `0.7

15 21 15

25 14 11

Areas of grassland that were established or cultivated in the recording year were included in
this survey module. The potential effects on emissions from these were estimated: no changes
were estimated in any other areas of grass on the farms. Changes in soil and biomass C from
cultivating grassland (generally a loss of C and hence source of GHG emissions) and
establishing grassland (gain of soil C) were calculated from data in the UK LULUCF GHG
inventory (Thomson et al. (2008). This source provides estimates of the changes in
equilibrium values of soil C (to a depth of 1 m) when changing use, e.g. arable to grassland.
These are weighted averages that include the distribution of soil types and so would not
necessarily apply to the individual soils in the surveyed farms, but are indicative. There are
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some typical challenges when dealing with changes in soil C and land use change (LUC).
These occur because of the long-term, non-linear (1st order kinetics) changes that occur
between soil C equilibrium states. These can be summarised as:

1. How long has the soil been under a particular land use (unless the soil C density is
actually known)?

2. What is the rate constant that should be applied?
3. Over what time scale should changes be calculated and averaged or integrated?

These have been approached in various ways for different applications. For example, in
PAS2050 (BSI 2008) the full change in soil C equilibrium is included and the change is
linearised over 20 years after the LUC occurs, although reaching 99% of the change could
take 50 to 300 years (Thomson et al., 2008). The national inventory uses the 1st order
equations along with best estimates of land use history. We opted to use the 1st order
equations and take the average rate of change over the first 20 years after LUC. In the
absence of better data, we assumed that both grassland and arable land were previously in
equilibrium, although this would not always be the case in rotational systems. Some over-
estimation would thus occur in some cases. The net effect of these calculations is the sum of
the total biomass change (i.e. all biomass changes were assumed to occur in 1 year) and the
average of 20 years of changes in soil C (Table 8).

Table 8 Summary of emissions from LUC between arable and grassland (derived from
Thomson et al. (2008))

From
grass to
arable

From
arable to
grass

Difference in soil C equilibria (kg C m-1) -23 23

Rate constant, k -0.046 -0.023

average change 20 years (t CO2e ha-1 year-1) 25.3 -15.5

Change in biomass C as emission rate, t CO2e ha-1 -1.8 1.8

Net emission rates (soil & biomass), t CO2e ha-1 23.5 -13.7
V:\Database\Data_Sources\[LUC.xlsx]Sheet1

There may have been other changes in land use, such as cultivation of land that had been in
set aside or setting aside some corners of fields for non-agricultural purposes, but these could
not be captured.

Screening data

All data are prone to containing errors. Some are simply random variation and should be
accounted for by calculating statistical uncertainties. Sometimes, however, there are errors
that appear to have resulted from erroneous data entry, or perhaps a misunderstanding about
units or some other error. A case in point is lime applications. Purchases were meant to be
recorded in tonnes, but this led to apparently impossible application rates being used. This
assertion is based on the British Survey of Fertiliser Practice, which gives lime application
rates for many years. Lime is not usually applied every year on a farm, so that the amount
applied in any one year could easily be say five times more than the average over the long
term. This may also be countered by lime not necessarily being applied over the whole farm
in any one year. Even allowing for that, apparent average application rates over the whole
farm of 1000 t per ha are implausible and the only rational explanation is that the values were
recorded in kg, like other fertilisers. A careful analysis of the data was made and a cut
applied at 10 t/ha (averaged over the whole farm adjusted agricultural area), with all
purchases above being assumed to be in kg and scaled accordingly (Appendix 3).
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A second area is manure. This was highlighted when a pig farm apparently produced energy
as well as pigs. This resulted from a gross over-estimate of the nutrient content of slurry and
hence the credit to the farm of nutrients that were exported. The volume of slurry that was
reported seemed to very high compared with the expected volume of undiluted excreta
produced by the pigs on that farm. Given the uncertainty of this example (not isolated) and
the variable nutrient losses from manures and composts, it was felt that all these values should
be excluded because of adding to much noise to the dataset. It is probable that some types of
manure are much more consistent than others, e.g. broiler litter, but it would be unbalanced to
include some imports or exports.

A third area is contractor energy. 72% of farms used contractors for some activities. As
noted above, the potential errors in some areas are large, especially ones per unit time. In
general, the more contractor energy was used, the greater the noise. So, the cut-off of 20%
energy from contracting was applied to reduce the errors in the data. This excluded 98 farms
from most subsequent analyses.

Post-harvest energy can be used for grain drying or grain cooling and long-term cooling of
unstable crops like potatoes or apples. It may also be used for rapid cooling of some
horticultural crops like tomatoes or strawberries. Such values are not erroneous per se, but
the occurrence on any farm may result from chance, e.g. a dry cereal harvest, or management
choice, e.g. always selling main crop potatoes to another business for storage. This means
that nominally similar farms could use more or less energy for post harvest activities for very
different reasons. So, separate sets of data were prepared for analysis with post-harvest
energy being included or excluded so that farms could be compared on a consistent basis as
well as “as is”. The spread of data was such that most farms including post-harvest energy
were on a continuum, with about six outliers in which the post-harvest energy ranged from
1.4 to 4.7 times the rest of the energy used (the highest value was on a small farm producing
only apples). On some farms there may be other energy-using enterprises, like juicing. Also,
one area that was excluded was the purchase of packaging materials by horticultural farms
and egg producers.

Specific additional pre-processing

Sugar beet pulp may be bought by farmers across England, but is currently only produced in
the East with a few well defined factories. The delivery distances of beet pulp delivered (as
purchased straights) to farms was estimated from the farm location (within a local government
area – LGA). The geographic mean of the factors was taken as the origin, with “crow flying”
distances to the centre of each LGA calculated from digital maps. A tortuosity coefficient of
1.25 was applied to these distances to compensate for actual road patterns.

There were some unusual farms in the dataset, e.g. a very small one upon which only 3rd party
horses were kept and one mushroom farm. A few were also apparently outliers, although this
often became obvious only post hoc and analyses were then repeated. The horse farm was
removed from all analyses.

Farm area

This might seem too simple a concept, but different areas are recorded and have validity in
different contexts and care was needed in making the selection when scaling farm activities in
order to normalise them. Three main choices concern the Agricultural Area (AgArea), Total
Adjusted Agricultural Area (TotalAdj), which included shared rough grazing, and the area of
heated and unheated glass (relevant for specialist horticultural farms). For most analysis (e.g.
energy per unit area) the Total Adjusted Agricultural Area was used, but in some cases this
was not recorded and so the Agricultural Area was used, which often was close to or the same
as the area of heated glass.
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Statistical analyses

Farms were grouped by size and type (robust farm types) and the means of energy use and
GHG emissions were calculated along with variance and standard deviation. Types and sizes
were then compared using analysis of variance, both one and two way. Log transforms of
values were used to ensure that the data were sufficiently normal to make the use of ANOVA
valid.
Farm energy use was examined using multiple linear regressions applied to commodities.
Data envelopment analysis (DEA) was used to compare farms with their peers.
Other statistical analyses were applied as needed.

Allocation and DEA methods

These are described in their own sections, but it should be noted that two allocation methods
were applied. The first used LCA data as a basis and expanded from the simplest situation,
while the second used economic allocation.

Relating economic and environmental performance

The main approach was to relate production of commodities to the enterprise gross margin
and net farm income.
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3. Results

The types and sizes of farms that were selected by the FBS team (Table 9) show a reasonable
representation of farm types. There were some omissions from the range of possibilities, with
no large LFA or lowland livestock farms but these are probably very unusual by their nature
anyway. There were also few very small farms in the sample.

Table 9 Numbers of farm types and sizes in the sample

Large Medium Small
Very small
(part-time)

Grand Total

Specialist Cereals 45 28 10 83

Specialist Dairy 48 26 3 77

General cropping 57 17 3 77

Specialist
Horticulture 64 27 11 2 104

LFA grazing
livestock 6 13 19

Lowland grazing
livestock 7 29 5 41

Mixed 18 16 13 47

Other 1 1

Specialist Pigs 9 4 7 20

Specialist Poultry 16 16 10 42

Grand Total 257 147 100 7 511

There were 30 organic farms in the sample (Table 10). These were systematically different in
range from the overall sample, with few large farms, only one specialist cereal farm and no
specialist pig farms. This should not be a great surprise given the different outlook and
history of organic farming, although one could have imagined more mixed farms being
represented.

Table 10 Numbers of organic farm types and sizes in the sample

Large Medium Small
Grand
Total

Specialist Cereals 1 1

Specialist Dairy 3 4 2 9

General cropping 1 2 1 4

Specialist Horticulture 1 1 2

LFA grazing livestock 1 1 2

Lowland grazing livestock 1 4 5

Mixed 3 3

Other 0

Specialist Pigs 0

Specialist Poultry 3 1 4

Grand Total 4 12 14 30
V:\Commentary\[Tables_for_Draft_report.xlsx]Sheet2

The farms were well reasonably well distributed over the country (Figure 1).
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Figure 1 Approximate numbers and locations of farms in the survey sample.

Statistical analysis by farm type and size.

The results that follow were obtained by summing the energy use and GHG emissions per
farm and then normalising by dividing by the adjusted agricultural area to obtain values per
ha. The overall values for energy use include all the sizes within farm types (Table 11). The
use of direct energy in sectors like horticulture and poultry is about two orders of magnitude
larger than most field-based farm types. Thus reflects the extensive use of heating fuels in
these sectors as well as electricity for ventilation, feeders and manure management in poultry
farms. Indirect energy use on poultry farms is again about two orders of magnitude larger than
most field-based farm types. This reflects mainly feed purchases as well as young birds. The
lowest value for energy use is on LFA grazing farms, remembering that this is per ha, not per
unit output.

The energy use of farms in the sample shows considerable variation as indicated by the
coefficient of variation (CoV, i.e. standard deviation divided by the mean). Even within farm
types, however, there can be substantial variety in the profile of enterprises and variation
within enterprises. For example, specialist poultry production includes both fully housed and
free range birds that produce not only eggs and finished birds for meat, but also day old
chicks, pullets and

turkeys. Horticultural farms include ones with only heated glasshouses as well as unheated
field crops, which may be edible or ornamental. Animal enterprises exist on cereal and
general cropping farms, but the relatively narrow range of activities of cereal farms means
that the CoV for this farm type is lower than for the others.

The indirect energy use is clearly a considerable term for all farm types and the averages are
often larger than the direct values. The reasons vary between farms, but on cereal farms,
fertilisers form the main contribution, while feeds can be the main terms on animal farms,
especially pig and poultry. It is noteworthy that the indirect energy use on horticultural farms
is about 15 times lower than direct, reflecting heating energy use in glasshouses.
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(from the Farm Business Survey)
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The significance of differences between farm size and types (per unit area) was examined
using one-way analysis of variance (ANOVA). The one “other” farm type was not included
in this analysis. Total (i.e. direct+ indirect) energy use was examined in this analysis, hence
including all embedded and bought-in energy or emissions.

Farm type and total energy use per ha

Most farm types were significantly (p<0.05) different from each other in energy use per ha
(Table 12). Mixed farms were least likely to be different from others, probably owing to the
broad spectrum of possible activities on any individual farm and therefore LFA grazing farms
were not different from other field based types except for cereals. The highest three energy
users per ha were thus specialist poultry, horticulture and pigs with the grazing livestock types
being lowest (Table 13). This agrees with typical expectations, although some might be
surprised that the total energy per ha of an LFA grazing farm is not significantly different
from cereals or general cropping farms.

Table 11 Total direct and indirect energy use per unit area on robust farm types with scaling by
adjusted agricultural area (or agricultural area, if no value recorded). All farm sizes are
included in each type

Direct Energy, GJ/ha Indirect Energy (*), GJ/ha

Count Average Std Dev CoV, % Average Std Dev CoV, %

Cereals 83 5.6 2.2 39% 8.4 3.7 44%

Dairy 77 13 6.4 49% 23 18 79%

General cropping 77 8.0 4.1 51% 7.8 5.3 68%

Horticulture 104 1,500 3,800 260% 87 490 560%

LFA grazing
livestock

19 3.7 2.1 58% 6.3 4.5 70%

Lowland grazing
livestock

41 4.7 3.8 80% 5.0 4.0 80%

Mixed 47 7.3 4.7 65% 12 11.5 93%

Other (#) 1 0.090 1.6

Specialist pigs 20 110 180 170% 320 401 130%

Specialist poultry 42 1,070 2,200 210% 1,800 3,040 170%

(*) includes energy used by contractors.
(#) This is a mushroom farm
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Table 12 Significant differences (P<0.05) between total energy use per ha of farm types using
log transforms. Significance is shown by s appearing in intersecting grids.

Dairy *

Cereals S *

Gen. Crop. S *

Hort. S S S *

Mixed S *

Pigs S S S S *

Poultry S S S S S S *

LFA Graz. S S S S *

Lowland Graz. S S S S S S S *

Dairy Cereals
Gen.
Crop.

Hort. Mixed Pigs Poultry
LFA
Graz.

Lowland
Graz.

V:\Analysis of variance\CorrectSize\CorrectGrass_Contracting_FatAnimals_SheepAlt_DairyYield_20pcContracting1\SUMMARY AND ANALYSIS.docx

Table 13 Ordering from highest to lowest of total energy use per ha by farm types

Farm type
Total energy
use, GJ/ha

1 Specialist poultry 2900

2 Horticulture 1500

3 Specialist pigs 430

4 Dairy 36

5 Mixed 19

6 General cropping 16

7 Cereals 14

8 LFA grazing livestock 10

9 Lowland grazing livestock 9.7

10 Other (#) 1.7

The analysis of GHG emissions has some similarities to energy use, but with some distinct
differences too (Table 14). Poultry and horticulture were the highest emitters per ha for both
direct and indirect emissions, and were again about two orders of magnitude larger than the
lower emissions from field cropping.

Most farm types emit significantly (p<0.05) different GHGs per ha (Table 15) with the
ordering given in Table 16. The descending order of poultry, horticulture, pigs and dairy still
applies, but the general cropping farms emit significantly (p<0.05) less GHGs per ha than
LFA grazing farms.

The general trends are in line with the energy use results and both clearly support the idea that
arable production (per unit area) had smaller GHG emissions than non-ruminant livestock
production and dairying. Specialist pigs and poultry units typically see their downstream food
production burdens concentrated into the small area that is often little more than the land their
houses stand on, unlike ruminant farms that are associated with a relatively large area of
grazing land. Lowland grazing, LFA grazing and general cropping were not significantly
different from each other.
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Table 14 Total direct and indirect GHG emissions per unit area on robust farm types with
scaling by adjusted agricultural area (or agricultural area, if no value recorded). All farm sizes
are included in each type

Direct GHG emissions, GWP,
t CO2e/ha (*)

Indirect GHG emissions, GWP,
t CO2e/ha (#)

Count Average Std Dev CoV, % Average Std Dev CoV

Cereals 83 1.7 0.92 53% 0.87 0.59 68%

Dairy 77 5.0 2.0 41% 3.0 3.9 130%

General cropping 77 1.6 1.0 60% 0.82 0.74 90%

Horticulture 104 100 290 280% 7.1 40 560%

LFA grazing
livestock

19 3.7 1.4 39% 0.86 0.63 73%

Lowland grazing
livestock

41 3.4 1.7 49% 0.74 0.86 120%

Mixed 47 3.8 2.2 57% 2.0 2.7 140%

Other 1 0.12 0.23

Specialist pigs 20 54 69 130% 46 63 140%

Specialist poultry 42 140 250 180% 270 470 170%

All farms 511 36 155 430% 27 160 580%

Source V:\ExtractedData\[DEA_SIZE1_GrassChanges_CorrectPivots_Contracting_multipleCrops_FatAnimals_CO2_N2O-

(*) includes all fuels, enteric emissions from animals, field emissions of N2O.

(#) includes embedded GHG in bought in materials and animals, machinery overheads and secondary
emissions of N2O.

Table 15 Significant differences (P<0.05) between total GHG emissions per ha of farm types
using log transforms

Dairy *

Cereals S *

Gen. Crop. S *

Hort. S S S *

Mixed S S S *

Pigs S S S S S *

Poultry S S S S S *

LFA Graz. S S S S *

Lowland
Graz.

S S S S *

Dairy Cereals
Gen,
Crop,

Hort. Mixed Pigs Poultry
LFA
Graz.

Lowland
Graz.
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Table 16 Ordering from highest to lowest of GHG emissions and total energy use per ha by
farm types

Type
Total GHG emissions,
GWP, t CO2e/ha

1 Specialist poultry 410

2 Horticulture 107

3 Specialist pigs 100

4 Dairy 8.0

5 Mixed 5.8

6 LFA grazing livestock 4.6

7 Lowland grazing livestock 4.1

8 Cereals 2.6

9 General cropping 2.4

10 Other 0.4

The proportions of energy used and GHG emissions for each farm type that are direct are
shown in Table 17 and indicate that for most farm types the direct energy used is in the region
of 40%. Horticulture is much higher (because of heating fuels) and pigs rather lower. Direct
GHG emissions are more varied by type, but are generally higher than energy use. Field N2O
and enteric CH4 are the main causes.

Table 17 Total energy and GWP per ha and proportional contributions from direct and indirect
sources

Farm type
Total
Energy,
GJ/ha

Total GHG t
CO2e/ha

Proportions of
direct/total
energy

Proportions of
direct/total
GHG

Cereals 14 2.6 40% 66%

Dairy 36 8.0 36% 62%

General cropping 16 2.4 51% 66%

Horticulture 1500 110 94% 93%

LFA grazing livestock 10 4.5 37% 81%

Lowland grazing livestock 10 4.2 49% 82%

Mixed 20 5.8 37% 66%

Other 1.7 0.35 5% 34%

Specialist pigs 430 99 25% 54%

Specialist poultry 2800 410 38% 33%

All farms 580 63 68% 57%
V:\ExtractedData\[DEA_SIZE1_GrassChanges_CorrectPivots_Contracting_multipleCrops_FatAnimals_CO2_N2O-N_CH4.xlsx]CO2 CH4 N2O (AgriUseWOcropdry)

Effect of farm size on energy use and GHG emissions

The significance of differences between farm size and types (per unit area) was examined
using one-way analysis of variance (ANOVA). There was a significant effect of size, when
considering all farm types, which was that small farms used less energy per ha than medium
or large farms. This is energy per ha and not per unit output. There was not a significant
effect of size (for all farm types) of GHG emissions per ha.
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The effects of farm size and type interactions were examined using two-way ANOVA (Table
18). For most farm types, there were no significant effects of size on energy use: the
exceptions were horticulture and poultry. For both specialist poultry and horticulture, small
farms used significantly (p<0.05) less energy per ha and produced lower GHG emissions per
ha than their medium and large counterparts (Table 19). Part of this could be a tendency for
smaller poultry units to be free-range and for smaller horticultural units to have less or no
heated glass areas. Because of the minority of significant differences that were found, the
overall effects of size-type interactions were not significant (Table 18). Given these findings,
the farm types were largely treated as one set in subsequent analyses.

Table 18 Results of two-way ANOVA of farm type and size for energy use per ha.

Source of variance d.f. s.s. m.s. v.r. F pr.

Type ignoring Size 8 145 18.1 56.94 < 0.001

Type eliminating Size 8 139 17.4 54.47 < 0.001

Size ignoring Type 2 13.6 6.82 21.37 < 0.001

Size eliminating Type 2 7.3 3.67 11.49 < 0.001

Type.Size 14 5.45 0.390 1.22 0.257

Residual 375 119 0.319

Total 399 277 0.697

Table 19 Results of two-way ANOVA of farm type and size for GHG emissions per ha.

Source of variance d.f. s.s. m.s. v.r. F pr.

Type ignoring Size 8 94.37 11.80 39.87 < 0.001

Type eliminating Size 8 98.29 12.29 41.54 < 0.001

Size ignoring Type 2 1. 0.914 3.09 0.047

Size eliminating Type 2 5.76 2.88 9.74 < 0.001

Type.Size 14 7.05 0.504 1.70 0.053

Residual 375 111 0.296

Total 399 218 0.5467

Organic and non-organic farms compared unit area basis

Comparisons of energy use and GHG emissions by farm type between organic and non-
organic farms (per ha) were also made using two way ANOVA. There was not an overall
significant difference between organic and non-organic farm energy use or GHG emissions
per ha (Table 20 and Table 21). There were some specific differences at the level of p<0.05.
Both organic poultry and horticultural farms had significantly lower energy use and GHG
emissions per ha than their non-organic counterparts. Much of the difference between
horticultural farms could be explained by the relative absence of heated glass on the organic
farms. On poultry farms, all organic farms would operate with lower stocking densities and
buildings tend to be more often naturally ventilated. This analysis is of course limited by the
small number of organic farms in the sample and large inter-farm variability, so that more
differences could become apparent if more samples were available. It must be noted that
these comparisons were per ha and not per unit output.
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Table 20 Results of two way ANOVA of farm type and organic vs. non-organic systems on
energy use per ha.

Source of variance d.f. s.s. m.s. v.r. F pr.

Type ignoring Organic 8 145.5 18.18 54.59 < 0.001

Type eliminating Organic 8 143.9 17.99 54.02 < 0.001

Organic ignoring Type 1 4.02 4.02 12.08 < 0.001

Organic eliminating Type 1 2.51 2.51 7.53 0.006

Type.Organic 6 2.12 0.354 1.06 0.384

Residual 384 128 0.333

Total 399 278 0.697

Table 21 Results of two way ANOVA of farm type and organic vs. non-organic systems on GHG
emissions per ha.

Source of variance d.f. s.s. m.s. v.r. F pr.

Type ignoring Organic 8 94.37 11.8 38.02 < 0.001

Type eliminating Organic 8 94.93 11.9 38.25 < 0.001

Organic ignoring Type 1 0.851 0.851 2.74 0.099

Organic eliminating Type 1 1.413 1.41 4.55 0.033

Type.Organic 6 3.20 0.533 1.72 0.115

Residual 384 119 0.310

Total 399 218 0.547

The general lack of significant effects of sizes and types on energy use and GHG emissions is
perhaps not too surprising given the large uncertainties in the basic data (Table 11 and Table
14).

Regression analysis

Classic multiple linear regression was applied to the survey data with the aim of quantifying
energy use on the whole farm in relation to the range of outputs produced across all farm
types. Although log transformation was applied to the data used in ANOVA, it was not
helpful in reducing errors in the regression analysis and our statistical consultant advised
against its use. Untransformed data were thus used in the results that are now reported. The
range of outputs was simplified by grouping them into the following categories (Table 22).

Although our aim was to use physical outputs wherever possible, these were not recorded for
many horticultural outputs. So, revenue was commonly chosen for most horticultural
commodities. With animal production, some net outputs are clearly identifiable, e.g. milk or
eggs, but others are more diffuse, e.g. beef or sheep in which sales and purchases of stock of
varying weights, ages and values occur. In some instances, farms actually lose net livestock
(by number or weight) over a year.
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Table 22 Output units used in multiple linear regression across farms

Field Crops
Units of
output

Horticultural
Crops

Units of
output

Animal Outputs
Units of
output

Barley Weight Ornamentals Value Eggs produced Dozen

Bio-energy Weight Other Value Whole Milk Volume

Legumes Weight Salads-Herbs Value Wool Weight

Oilseeds Weight Soft Fruit Value
Dairy Cattle Total
Average

Head

Other Arable Weight Top Fruit Value
Other Cattle Total
Average

Head

Other Cereals Weight Vegetables Value Sheep Total Average Head

Potatoes Weight Pigs Total Average Head

Sugar Beet Weight
Poultry Total
Average

Head

Wheat Weight

The value of applying regression analysis was limited. Few conclusive, significant
relationships could be extracted and these only applied to direct and total energy use for field
crops (Table 23 and Table 24) on cereal and general cropping farms. The estimate for total
energy used for wheat at 2.7 GJ/t was close to 2.4 MJ/t in CAHLCI, while that for barley was
about twice that in CAHLCI and the estimate for direct energy was non-significant. The
estimates for total energy used for potatoes, oilseed and sugar beet were reasonable, but not
exceptionally good.

The explanation of this is twofold. First, we have many possible outputs in many
combinations and not enough farms in the sample to explain variation. Second, the residual
errors were not normally distributed (as with ANOVA) so that fits were inevitably poor. Our
statistical advisor suggested that taking logs would not be suitable for this application.
Further effort in this area was concentrated on the allocation methods.

Table 23 Fitted values of total energy use to crops using regression analysis

Parameter Estimate, GJ/t s.e. p

Barley 4.6 0.81 <.001

Legumes 1.1 1.36 0.401

Oilseeds 3.8 0.80 <.001

Potatoes 0.88 0.13 <.001

Sugar Beet 0.25 0.07 <.001

Wheat 2.7 0.14 <.001

Table 24 Fitted values of direct energy use to crops using regression analysis

Parameter Estimate, GJ/t s.e. p

Barley 1.7 0.54 0.002

Legumes -0.12 0.91 0.900

Oilseeds 0.40 0.54 0.457

Potatoes 0.73 0.08 <.001

Sugar Beet 0.20 0.05 <.001

Wheat 1.2 0.10 <.001
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Post -harvest energy

On the 79 farms where post-harvest energy use was recorded, 6.4% of the direct energy used
by those farms was for post-harvest activity. This is about 3% of direct energy use on all
farms.

Post-harvest energy use for grains

These were calculated from all farms where only grains were harvested and energy use for
post-harvest activities were recorded. All grains were summed without any weighting on the
basis that there was no evidence to identify what grains may have been dried or not. This
gave the result of a mean energy use for grain of 142 MJ/t (Table 25), albeit with a large
range.

Table 25 Estimates of energy use per t grain harvested, where energy use has been recorded

mean 142

min 2

max 409

s.d. 106

CoV 75%

n 45

Lower CI -66

Upper CI 350

Applying this mean value with farms where grains and potatoes are both cropped, the mean
value + upper CI was used to identify outliers, i.e. assuming energy was being used for potato
storage. Removing these led to a modified estimate (Table 26), which differed little.

Table 26 Revised estimates of post-harvest energy use per t grain harvested, where energy use
has been recorded

mean 134

min 2

max 409

s.d 102

CV 76%

n 67

Post-harvest energy use for potatoes

The energy use for potatoes was further examined by subtracting the mean grain energy use
from the total on-farm use to estimate what was used for potatoes where both grains and
potatoes were grown. The results suggested two small populations of energy use, one high
and one low. For the higher range, the mean energy use was 860 MJ/t and 50 MJ/t for the
lower range (Table 27). The scatter in the grain-only data is such that it must be recognised
that values in the low range for potatoes could imply no energy use by potatoes. The energy
use for potatoes falls into a mixture of categories, with some using ventilation only and others
using refrigeration so that two ranges are quite plausible. Storage times also vary
considerably.
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Table 27 Estimates of post-harvest energy use in MJ per t potatoes harvested, where energy use
has been recorded

More likely high
energy use

More likely low
energy use

mean 862 49

min 194 5

max 1,206 97

s.d 435 40

CoV 50% 82%

n 5 5

The results compare well with the national average values used in CAHLCI in which the post-
harvest energy use for wheat, OSR, field beans and main crop potatoes are 138, 162, 166 and
619 MJ/t respectively.

The data for post-harvest energy by other crops was sparse. Furthermore, the quantification
of some crops was only possible by revenue value rather than by weight. From the limited
data, we can say relatively little (Table 28). The range for top fruit appeared to embrace two
orders of magnitude.

Table 28 Estimates of post harvest energy use in horticulture per £ revenue (RV), only on farms
where such energy use has been recorded

Salads &/or Herbs
RV

Top Fruit RV

mean 2.3 26

min 1.6 0.3

max 2.9 96

s.d. 0.9 46

CoV 39% 176%

n 2 4

Effects of grassland cultivation and establishment and woodland

The losses of soil C from cultivations and gains of soil C from grassland establishment
together with farm woodlands were estimated. The results (Figure 3 and Table 29) show that
the effects of grassland management are generally somewhat more negative than positive,
while woodlands are always positive. There are clearly some examples whether either
woodland or grassland has created a C sink on the farm, but these are in the minority and tend
to apply to smaller farms. For most farms sampled, the effects are relatively small.

Please note that the data only allow a snapshot of land use changes. So, what is reported here
is based on that, but may not be wholly representative of what happens on the farms on a
longer time scale and the effects of land use change are long lasting.
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Figure 2 Effects on overall farm C footprint of including changes in grassland area and of
forestry normalised to a ha of agricultural area

Table 29 Relative and absolute effects of biomass and soil C on whole farm GHG emissions.
Note that positive values represent increases in emissions

Effect as % difference Effect as t CO2e/ha

With
Woodland

With
Grassland

With
both

With
Woodland

With
Grassland

With
both

mean -18% -14% 3% -0.8 0.1 1.0

max 0% 17% 16% 0.0 5.8 7.0

min -275% -555% -18% -20 -18 -0.9

CoV -219% -479% 286% -3.1 19 1.6

n 78 86 28 78 86 28

4. Allocation of energy and GHG to farm outputs using LCA values as
a basis

Almost all farms produce more than one output and a useful insight into farm operations can
be obtained by allocating farm energy use and GHG emissions to individual commodities (or
commodity groups) rather than just to the whole farm itself. The part of the analysis started
with cereal farms (being the most straightforward) and progressed through to farms with more
complex outputs. It became clear early on that arable farms are much more easy and reliable
to analyse than livestock or mixed farms.

Methods

This was initially applied to non-organic specialist cereal farms. The starting point was to take
the amounts of each commodity produced by each farm and multiply these by the energy and
emission factors from CAHLCI for these commodities to obtain farm-specific total energy use
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and GHG emissions. This total was compared with the farm total that was calculated from the
FBS data that were recorded by operation and input (e.g. fertiliser, pesticide, fuel etc).
Uniform errors were assumed to apply from each commodity and farm-specific correction
factors were calculated to obtain a perfect match between LCA-based the FBS-based totals for
each individual farm. For each commodity, the averages of the farm-specific LCA energy
and emission correction factors were calculated to obtain an improved FBS-derived value to
account for the allocation of the energy and GWP per commodity.

This method was initially applied to sub-populations of the farms, restricting the farms to
those with just one type of output, so that one output is accountable for the entire farms
emission and energy use. It was then applied to sub-populations of farms that have multiple
outputs, using the previously FBS-derived factors to account for the energy use and emission
for a commodity, so that the remaining energy use and emissions are accounted for by the
new, and yet unassigned, commodity. Additional commodities were then introduced and the
process was repeated until all were accounted for. This took up to five iterations with the sub-
populations of the farm type increasing at every stage.

CAHLCI does not include all crops recorded by the FBS so that some values for energy and
GHG emissions were estimated by proxy from existing data. In order to reduce error or bias,
only cereal farms without grain drying were included.

The analysis is summarised here, the complete set is shown in Appendix 4.

Table 30 Data used in the commodity allocation analysis

Commodity Quantity

Crops Weights produced, t

Dairy Milk volume (m3)

Pigs Weight on sale

Poultry (enterprise code = 74 to 79 & 87) Egg number (dozen)

Poultry (enterprise code = 81 & 83)
Weight on sale (derived from revenue from sale
use average of £/kg to convert to weight if weight
not recorded)

N.B. The contribution of organic residues from the energy and GWP farm totals was
excluded. Also excluded were the two arable farms the FBS rate recorded was far too high to
be believable: farms #229 and #253.

The energy and emission factors per commodity from CAHLCI are in, Table 31, and the
energy and emission factors that were obtained after each analysis are summarised at the end
of this section.
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Table 31 The energy and emission factors per t commodity from previous LCA work in
CAHLCI. Note that some are proxies, based on the nearest crop equivalent.

Crop
Primary

Energy used,
GJ/t

GHG emissions
as GWP,
t CO2e/t

Beans for stockfeed 2.4 0.50

Durum wheat 2.4 0.49

Green peas - processing 2.2 0.24

Linseed 5.1 1.0

Mixed barley 2.3 0.42

Mixed wheat 2.3 0.46

Other oilseed rape - double low 5.1 1.0

Peas dry for human 2.4 0.50

Peas for stockfeed 2.4 0.50

Potatoes first early 1.4 0.19

Processing potatoes 0.78 0.095

Seed potatoes 0.79 0.095

Spring barley 2.2 0.4

Spring oats 2.2 0.4

Spring oilseed rape 5.1 1.0

Spring oilseed rape - double low 5.1 1.0

Spring wheat 2.4 0.49

Sugar beet 0.37 0.042

Ware potatoes 0.78 0.095

Winter barley 2.3 0.43

Winter oats 2.3 0.43

Winter oilseed rape - double low 5.1 1.0

Winter oilseed rape - not double low 5.1 1.0

Winter wheat 2.3 0.46

Results of the allocation exercise

Cereal and general cropping farms

Farms were initially selected without any animals and with only combinable crops. This gave
a sub-population of 26 farms. More crops were introduced into the analysis, so that the final
number of farms after five stages was 63 (Table 32).
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Table 32 Crops grown on specialist cereal farms and numbers included in the commodity
allocation analysis

Sub-population size 26 28 33 61 63
Crop Stage 1 Stage 2 Stage3 Stage4 Stage5

Beans for stockfeed     

Durum wheat     

Peas dry for human     

Peas for stockfeed     

Spring barley     

Spring oilseed rape - double low     

Spring wheat     

Winter barley     

Winter oats     

Winter oilseed rape - double low     

Winter wheat     

Green peas - processing    

Mixed barley    

Mixed wheat    

Other oilseed rape - double low    

Spring oats    

Spring oilseed rape    

Winter oilseed rape - not double
low    

Potatoes first early   

Processing potatoes   

Seed potatoes   

Ware potatoes   

Sugar beet  

Linseed 

A good correspondence between the energy and GWP calculated directly from the LCA
values in CAHLCI and those derived from the FBS data was obtained from Stage 1 (Figure 3
and Figure 4), with a better fit for energy than GWP. A similar pattern was seen after
progressing through to Stage 5, when all crops were included (Figure 5 and Figure 6). The
scatter for energy use was reasonably balanced around the ideal line, while there was a
general underestimate of GHG emissions by the FBS derived values of about 8%.



FBS Energy Module: Analysis by CU Page 24 of 106

Figure 3 Total energy use on cereals farms growing only combinable crops calculated from
CAHLCI and FBS-derived values (Stage 1 of allocation analysis). [Note log y axis.]

Figure 4 Total GHG emissions on cereals farms growing only combinable crops calculated from
CAHLCI and FBS-derived values (Stage 1 of allocation analysis) [Note log y axis.]
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Figure 5 Total energy use on cereals farms growing all recorded crops calculated from CAHLCI
and FBS-derived values (Stage 5 of allocation analysis)

Figure 6 Total GHG emissions on cereals farms growing all recorded crops calculated from
CAHLCI and FBS-derived values (Stage 5 of allocation analysis)
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The energy and emission factors per commodity from the LCA and after applying the analysis
(Table 33) showed that reasonably close agreements were obtained between the mean values,
although the error implied by the standard deviations reflect the degree of scatter.

Table 33 Values for crop energy and GHG emissions used from the LCA analyses in CAHLCI
and the final mean values (and standard deviation) derived from the FBS data. Values are
rounded to 2 significant figures.

Primary Energy used, GJ/t GHG, t CO2e/t

Crop (t)
CAHLCI
value

After
analysis
of FBS
data

Standard
deviation

LCA
Factor

After
analysis
of FBS
data

Standard
deviation

Beans for stockfeed 2.4 2.5 0.8 0.50 0.37 0.13

Durum wheat 2.4 2.5 0.8 0.49 0.36 0.13

Green peas - processing 2.2 2.3 0.73 0.24 0.18 0.061

Linseed 5.1 5.5 1.7 1.0 0.77 0.27

Mixed barley 2.3 2.4 0.77 0.42 0.31 0.11

Mixed wheat 2.3 2.4 0.77 0.46 0.34 0.12

Other oilseed rape -
double low

5.1 5.5 1.7 1.0 0.77 0.27

Peas dry for human 2.4 2.5 0.8 0.5 0.37 0.13

Peas for stockfeed 2.4 2.5 0.8 0.5 0.37 0.13

Potatoes first early 1.4 1.5 0.47 0.19 0.15 0.05

Processing potatoes 0.78 0.83 0.26 0.095 0.071 0.025

Seed potatoes 0.79 0.84 0.27 0.095 0.071 0.024

Spring barley 2.2 2.3 0.73 0.40 0.30 0.10

Spring oats 2.2 2.3 0.73 0.40 0.30 0.10

Spring oilseed rape 5.1 5.5 1.7 1.00 0.77 0.27

Spring oilseed rape -
double low

5.1 5.5 1.7 1.00 0.77 0.27

Spring wheat 2.4 2.5 0.8 0.49 0.36 0.13

Sugar beet 0.37 0.39 0.12 0.042 0.031 0.011

Ware potatoes 0.78 0.83 0.26 0.095 0.071 0.025

Winter barley 2.3 2.5 0.78 0.43 0.32 0.11

Winter oats 2.3 2.5 0.78 0.43 0.32 0.11

Winter oilseed rape -
double low

5.1 5.5 1.7 1.0 0.77 0.27

Winter oilseed rape - not
double low

5.1 5.5 1.7 1.0 0.77 0.27

Winter wheat 2.3 2.4 0.77 0.46 0.34 0.12

Allocation analysis with milk

Although a dairy farm is conceptually straightforward, the variations are considerable.
Specialist dairy farms may include other arable or animal enterprises. A major common, and
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subtlety complex one, concerns other cattle. In the Cranfield LCA, the commodity of milk is
modelled in the context of exact numbers of herd replacements being maintained to keep
herds (at three production levels) at a constant size. On actual farms, the numbers of herd
replacements may differ for a variety of reasons (e.g. increasing herd size or selling breeding
heifers or running a flying herd) and some offspring may be kept for beef production. While
a detailed (and lengthy) interview with each farmer would clarify the function of different
animals, this was not possible. So, a critical feature of the analysis was the estimation of the
legitimate breeding overheads that were needed.

Five analyses were applied to an initial population of 68 non organic dairy farms and can be
summarised as:

Set 1. 42 farms without arable outputs, but including some other animals. No cut-off
ratio for other cattle.

Set 2. 43 farms with no other animals, with arable crops if the factor has been
calculated. No cut-off ratio for other cattle.

Set 3. 27 farms with no other animals, no arable crops, no dairy cow : other cattle
ratio limit

Set 4. 17 farms, with no other animals, with arable crops if the factor has been
calculated. Cut-off limit applied of 3 dairy cows to 2 other cattle (sub-set of Set
2).

Set 5. 11 farms with no other animals, no arable crops and a cut-off limit applied of 3
dairy cows to 2 other cattle (sub-set of Set 3).

Given that set 1 included other animals, it was not surprising that the apparent energy use per
unit milk were generally higher from the FBS-derived data than from the LCA-based data
(Figure 7), although in contrast the GHG emissions were generally lower (Figure 8). Both
sets of data included one obvious outlier, in which the average milk yield was apparent 1.4
hectolitres per cow per year, compared with the average of 66 per cow per year. This farm
was excluded from further numerical analysis. There were other farms with relatively high
energy use per unit milk, but without clear reasons. The FBS-based energy estimates are
higher but include more outputs so that if they were accounted for by the LCA then it would
give a better match between the two. There was much more scatter in the plots than for arable
crops. This is to be expected, given that many more variables, assumptions and management
options apply to dairying than arable production.

There was, rather surprisingly, less scatter in the data on GHG emissions than energy use. It
seems likely that the high contribution of enteric methane and field N2O emissions dominate
compared with the relatively smaller variation from energy-related emissions. The
underestimate of GHG emissions was about 15%. It should be noted that the LCA-derived
values used a more sophisticated method for calculating enteric emissions than was possible
with the FBS data and this may explain part of the difference.
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Figure 7 Total energy use on dairy farms without arable outputs, but with other animals
calculated from CAHLCI and FBS-derived values (Set 1)

Figure 8 Total GHG emissions on dairy farms without arable outputs, but with other animals
calculated from CAHLCI and FBS-derived values (Set 1)

In the second set, other species of animals were excluded, but crops that had been analysed
previously were included. Again, there was more scatter in the energy data (not illustrated)
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and an apparent overestimate of energy per unit milk along with an apparent underestimate,
by about 15%, of GHG emissions (Table 34).

Table 34 Comparison of energy use and GHG emissions per unit milk produced between the
LCA-derived values in CAHLCI and the FDS-derived values

Milk Energy use, MJ/hectolitre
Milk GHG Emissions, kg
CO2e/hectolitre

CAHLCI
FBS-derived
factor

standard
deviation

CAHLCI
FBS-derived
factor

standard
deviation

Set 1 270 430 200 110 110 69

Set 2 270 430 190 110 100 55

Set 3 270 420 220 110 100 64

Set 4 270 340 89 110 76 18

Set 5 270 310 51 110 69 5

In the third set, there were no arable outputs or other species of animals. This gave similar
answers to those from Set 2 (Table 34). In the last two sets, the potential for other cattle to
confound the results for milk was investigated, in that some might be kept for beef production
instead of being herd replacements. Farms with ratios of “other cattle” to dairy cattle that
exceeded the cut-off ratio were excluded from the analysis. The effect was to give lower
results for both energy use and GHG emissions compared with the comparative
subpopulations that included more other cattle (Table 34), which is to be expected. The errors
were also reduced and less scatter is visible (Figure 9 and Figure 10 illustrate Set 5). We
started from the assumption that the LCA values are about right for UK milk (and indeed our
values accord closely with others obtained in the UK and overseas). The key is in the
allocation of resources and breeding overheads to the milk producing dairy cow: hence the
cut-off ratio that was applied. Of course, within the populations of dairy farms that were
analysed, there was variation in the level of performance, but some of the values obtained
from Sets 1, 2 and 3 seem implausibly high (when compared with expected values from
agricultural handbooks (e.g. ABC, Nix) and strongly indicate resource use by other
enterprises, e.g. beef or rearing dairy replacement heifers for sale. This clearly indicates the
need for careful assessment, on any farm, of the resources going into each bovine enterprise.
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Figure 9 Total energy use on dairy farms without arable outputs, but with other animals
calculated from CAHLCI and FBS-derived values (Set 5)

Figure 10 Total GHG emissions on dairy farms without arable outputs, but with other animals
calculated from CAHLCI and FBS-derived values (Set 5)
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The sensitivity to the ratio of other cattle to dairy cows was examined. It was found that there
was a significant correlation between the ratio and energy use and GHG emissions (with the
slope and constant also being significant (Figure 11 and Figure 12)).

Figure 11 Effect of ratio of other cattle / dairy cows on energy use for milk production

Figure 12 Effect of ratio of other cattle / dairy cows on GHG emissions from milk production
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Allocation analysis with poultry

Analysis was applied to the FBS farms that were classified as Specialised Poultry, but
focussed on eggs for human consumption and broiler chickens, i.e. excluding any farms with
an Enterprise Code #74 (breeding), #80 (buying hatching eggs) or #84 (Ducks geese). This
left 31 farms, of which some contained other commodities. One farm had other cattle, barley
and wheat. Two farms had other cattle and sheep. One farm had pigs, one had oilseed and
wheat, one had other cattle and another had bioenergy crops. All farms were included in the
analysis, with values for other outputs that had been previously calculated being applied when
possible. The reference values in CAHLCI that were derived by LCA are in Table 35

Table 35 Energy and emission factors from LCA for poultry

Commodity Primary Energy used, GJ/t GWP, t CO2e/t

Eggs - mixed battery/deep
litter/barn/free range 12.7 2.4

Eggs - farmyard/non commercial 11.8 2.5

Eggs – battery 13.5 2.4

Eggs - (free range) 12.0 2.5

Live weight - broilers 11.3 1.8

Live weight - turkeys 16.2 2.9

The results showed generally close agreement between energy use and GHG emissions across
all farm types, even with those that had other enterprises (Figure 13 and Figure 14). In
contrast to milk, the average FBS-derived estimates for energy use and GHG emissions both
tended to be higher than those in CAHLCI. On systematic difference is the omission of
manure exports from poultry farms in the FBS data (Table 36 and Table 37). This may have
contributed to the differences. There was little effect on other commodities.

Figure 13 Total energy use on poultry farms calculated from CAHLCI and FBS-derived values
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Figure 14 Total GHG emissions on poultry farms calculated from CAHLCI and FBS-derived
values

Table 36 Energy and GHG emissions factors for poultry commodities from farms with only
birds or eggs as outputs

Primary Energy used, GJ/t GHG emissions, CO2e/t

LCA
value

FBS-
derived
value

Standard
deviation

LCA
Factor

FBS-
derived
value

Standard
deviation

Eggs - mixed
battery/deep

litter/barn/free range

12.7 17.4 10.7 2.42 2.97 1.96

Eggs - farmyard/non
commercial

11.9 16.2 10.0 2.49 3.05 2.02

Eggs – battery 13.5 18.5 11.4 2.35 2.89 1.91

Eggs - (free range) 12.0 16.4 10.0 2.53 3.10 2.05

Live weight -
broilers

11.2 15.4 9.4 1.78 2.19 1.45

Live weight -
turkeys

16.2 22.1 13.6 2.90 3.56 2.36

Table 37 Energy and GHG emissions factors for poultry commodities from farms with birds,
eggs and other commodities as outputs

Primary Energy used, GJ/t GHG emissions, CO2e/t

LCA
value

FBS-
derived
value

Standard
deviation

LCA
Factor

FBS-
derived
value

Standard
deviation

Eggs - mixed
battery/deep

litter/barn/free range

12.7 17.4 10.7 2.42 2.97 1.96

0

2000

4000

6000

8000

0 2000 4000 6000 8000

G
H

G
e

m
is

si
o

n
s

d
e

ri
ve

d
fr

o
m

FB
S

fa
ct

o
rs

,
t

C
O

2
e/

ye
ar

GHG emissions derived from CAHLCI factors, t CO2 e/year

Just Birds

Full allocation other
commodities

Part allocation other
commodities

No allocation other
commodities

Series5



FBS Energy Module: Analysis by CU Page 34 of 106

Eggs - farmyard/non
commercial

11.9 16.2 10.0 2.49 3.05 2.02

Eggs – battery 13.5 18.5 11.4 2.35 2.88 1.91

Eggs - (free range) 12.0 16.3 10.0 2.53 3.10 2.05

Live weight -
broilers

11.2 15.4 9.4 1.78 2.19 1.45

Live weight -
turkeys

16.2 22.1 13.6 2.90 3.56 2.36

Allocation analysis with pigs

The pig sector is more complex than the poultry sector, in that most farms in the FBS were
either broiler or egg producers. Pig farms can include several outputs, e.g. weaners, stores or
finished pigs and thus may include breeding units or not. We concentrated on farms that
included finishing, some of which had breeding too. Analysis was applied to 11 FBS farms
that were classified as being specialised pigs which included these categories of enterprise:
outdoor fat pigs (1 farm), indoor fat pigs (9 farms) and mixed breeding/buying weaners
selling fat pigs/other (1 farm). One of these also had sheep, another farm also had other cattle
and wheat while three farms had arable (winter wheat and barley; winter wheat; winter wheat,
barley and sugar beet). The analysis was applied twice, firstly by ignoring any of the other
commodities, secondly using the factor for those commodities that have been previously
calculated.

Figure 15 Total energy use on pig farms calculated from CAHLCI and FBS-derived values
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Figure 16 Total GHG emissions on pig farms calculated from CAHLCI and FBS-derived values

The values derived from the FBS data were close to the original LCA-based ones, although
there was considerable uncertainty in the averaged estimates. (Table 38 and Table 39). There
was more difficulty trying to compare pigs than the other commodities owing to the range of
breeding overheads that were included in the FBS data in contrast to the LCA values.

Table 38 Energy and GHG emissions factors for finished pigs from farms with only pig outputs

Primary Energy used, GJ/t GHG emissions, CO2e/t

LCA
value
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derived
value

Standard
deviation

LCA
Factor

FBS-
derived
value

Standard
deviation
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selling: Fat pigs

19 17 11 3.1 3.2 2.5

Mixed
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weaners selling fat
pigs/other

19 17 11 3.1 3.2 2.5
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Table 39 Energy and GHG emissions factors for finished pigs from farms with mixed outputs
and allocations to other commodities provided where possible

Primary Energy used, GJ/t GHG emissions, CO2e/t

LCA
value

FBS-
derived
value

Standard
deviation

LCA
Factor

FBS-
derived
value

Standard
deviation

Indoor breeding
selling: Fat pigs

19 17 11 3.1 3.1 2.6

Mixed
breeding/buying
weaners selling fat
pigs/other

19 17 11 3.1 3.1 2.6

Outdoor breeding
selling: Fat pigs

15 14 8.9 2.8 2.8 2.3

Allocation from LCA résumé

A method was developed and applied for allocating burdens between commodities and
deriving new average values for commodities from the FBS. The method was more reliable
for arable than animal commodities, because of the wider range of options and assumptions in
animal production. The method was not applied to beef and sheep systems owing to the great
diversity of farm sub-types, including diverse and unknown weights and ages of stock that are
bought and sold. The results provide averages of energy use and GHG emissions for some
commodities, which provide some baseline values. The scatter in the results also indicates the
scope for improvement.

One area of uncertainty associated with this analysis is the energy expended in overheads,
such as running an office or maintaining vehicles and general use of electricity on the farm for
purposes like lighting or indeed other enterprises, like a farm shop. The method applied
assumed that energy use was used for specific commodities, but some aspects of overheads or
other energy using non-farming enterprises should not be allocated uniformly across all
outputs. It implies a source of error in the analysis. It may be possible to minimise it with
more information.

Allocation of burdens using economic allocation

Crops with physical measures of outputs

The main agricultural crops, like wheat, barley, oilseed rape, potatoes and sugar beet, all have
recorded outputs by weight so comparisons can be made with the values in CAHLCI. Also,
the economic allocation method allowed more farms to be included in the analysis, so
differences between farm types could be investigated. Winter wheat was the most commonly
grown crop, with 193 farms followed by oilseed rape at 107 and winter barley at 91. Durum
wheat, rye and seed potatoes were only grown on one farm each.

Production of winter wheat on all farm types took an average of 2.6 GJ/t and emitted 0.33 t
CO2e. This compared well with 2.3 GJ/t and 0.46 t CO2e in CAHLCI. Both estimates from
the FBS data had a CoV of about 35%, so they are not significantly different from those in
CAHLCI. Results for winter OSR and winter barley were also close to those in CAHLCI
(Table 40). Indeed most crops grown in any quantity produced similar results and the
comparisons were well within the error range of the FBS-based estimates.
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Table 40 Primary energy used to grow main crops on all farm types calculated by economic
allocation from the FBS data plus LCA values from CAHLCI for the nearest equivalent crop

Crop
Average,
GJ/t

Std. Dev,
GJ/t

CoV Count
CAHLCI,
GJ/t

Beans for Stockfeed 2.5 0.98 39% 42 2.4

Durum wheat 3.2 1 2.4

Linseed 4.1 1.57 38% 3 5.1

Mixed Barley 3.1 1.49 48% 9 2.3

Mixed Cereals 1.9 1 2.3

Mixed wheat 2.1 0.18 8% 2 2.3

Other protein crops 6.0 1.40 23% 3

Peas for combining 2.3 0.50 22% 17 2.4

Potatoes first early 1.4 0.79 55% 2 1.4

Processing potatoes 0.8 0.19 23% 2 0.78

Rye 2.8 1 2.4

Seed potatoes 0.7 1 0.79

Set a side 0.0 0

Spring Barley 3.1 1.04 34% 67 2.2

Spring Oats 3.2 0.92 29% 6 2.2

Spring Oilseed rape 4.8 2.85 59% 7 5.1

Spring Wheat 2.5 1.00 40% 4 2.4

Sugar beet 0.3 0.13 54% 49 0.37

Triticale 4.6 1.52 33% 8

Ware potatoes 1.1 0.40 37% 42 0.78

Winter Barley 2.9 0.98 34% 91 2.3

Winter Oats 2.7 1.07 39% 30 2.3

Winter Oilseed rape 4.8 1.46 30% 107 5.1

Winter Wheat 2.6 0.90 35% 193 2.3

The generally good agreement between the FBS derived values and those in CAHLCI is very
encouraging and suggests that the approach is well justified. It is also clear that there is much
scatter in the farm data, suggesting that there is again considerable scope for making
improvements.

The GHG emissions from crops calculated from the FBS data were broadly similar to those in
CAHLCI and generally within the error band of the FBS values. The FBS values all behaved
in the way expected, with much lower values per t for root crops like potatoes and sugar beet
than for cereals. The FBS values were, on average, about 80% of those in CAHLCI. It is not
clear what has caused this and to what (if any) extent it is an artefact of either the allocation
method or the need to apply simplifying assumptions for the FBS analysis.
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Table 41 GHG emissions from growing main crops on all farm types calculated by economic
allocation from the FBS data, plus LCA values from CAHLCI for the nearest equivalent crop

Crop
Average,
t CO2e/t

Std. Dev,
t CO2e/t

CoV Count
CAHLCI,
t CO2e/t

Beans for Stockfeed 0.27 0.10 37% 42 0.5

Durum wheat 0.61 1 0.49

Linseed 0.43 0.09 21% 3 1.0

Mixed Barley 0.35 0.13 36% 9 0.42

Mixed Cereals 0.16 1 0.445

Mixed wheat 0.25 0.03 12% 2 0.46

Other protein crops 0.77 0.25 33% 3

Peas for combining 0.23 0.07 32% 17 0.5

Potatoes first early 0.20 0.19 96% 2 0.19

Processing potatoes 0.085 0.051 60% 2 0.095

Rye 0.32 1

Seed potatoes 0.11 1 0.095

Set a side 0

Spring Barley 0.34 0.12 35% 67 0.4

Spring Oats 0.36 0.11 32% 6 0.4

Spring Oilseed rape 0.64 0.41 64% 7 1.0

Spring Wheat 0.29 0.15 53% 4 0.49

Sugar beet 0.031 0.018 57% 49 0.042

Triticale 0.46 0.14 31% 8

Ware potatoes 0.13 0.06 45% 42 0.095

Winter Barley 0.35 0.11 32% 91 0.43

Winter Oats 0.35 0.15 44% 30 0.43

Winter Oilseed rape 0.72 0.29 40% 107 1.0

Winter Wheat 0.33 0.12 36% 193 0.46

Effects of farm type on main crops

In practice, more crops are grown on specialist cereal or general cropping farms than other
farm types. No single crop type is grown on all farm types, but winter wheat, OSR and winter
barley are the most widespread. Given the uncertainties of the estimates, no conclusions
about the farm types are possible. There is a hint that crops grown on dairy farms take more
energy than other farm types (and this trend was echoed across all other crops), but whether
this is a real effect or an artefact of the allocation method can not be determined without more
detailed analysis (Table 42). It is often assumed that mixed systems give benefits, but these
findings neither confirm nor deny this.

The effects of farm type on GHG emissions (Table 43) were a little more varied over farm
types, but with high uncertainties, again no conclusions can be drawn between farm types.
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Table 42 Average primary energy used to grow common crops across different farm types (GJ/t)

Winter Wheat Winter Barley
Winter Oilseed
rape

Average
of 3
cropsMean Count Mean Count Mean Count

All Farms 2.6 193 2.9 193 4.8 107 3.4

Cereals 2.4 69 2.5 69 4.8 53 3.2

Dairy 3.5 17 4.0 17 6.1 2 4.6

General
Cropping

2.4 61 2.6 61 4.7 33 3.2

Horticultural 2.4 4 4 3.4 1 2.9

LFA Grazing 5.5 1 5.5

Lowland Grazing 3.7 2 3.7 2 3.7

Mixed 2.8 32 3.1 32 5.0 16 3.6

Specialist Pigs 3.4 6 3.0 6 5.0 1 3.8

Specialist Poultry 2.9 2 3.8 2 4.9 1 3.9

Table 43 Average GHG emissions from common crops across different farm types (t CO2e/t)

Winter Wheat Winter Barley
Winter Oilseed
rape

Average
of 3
cropsMean Count Mean Count Mean Count

All Farms 0.33 193 0.35 91 0.72 107 0.47

Cereals 0.34 69 0.33 37 0.77 53 0.48

Dairy 0.40 17 0.49 8 0.81 2 0.57

General
Cropping

0.29 61 0.28 16 0.64 33 0.40

Horticultural 0.22 4 0.43 1 0.22

LFA Grazing 0.50 1 0.17

Lowland Grazing 0.33 2 0.36 6 0.23

Mixed 0.35 32 0.37 19 0.75 16 0.49

Specialist Pigs 0.44 6 0.36 3 0.85 1 0.55

Specialist Poultry 0.31 2 0.36 1 0.46 1 0.38

Crops with financial measures of outputs

The diverse outputs of many crops from vegetables to fruit and flowers were only consistently
recorded by financial value, so there is no independent comparison. These crops are mainly
grown on general cropping and horticultural farms (Table 44). The more classically
horticultural-type crops use relatively small amounts of energy per £, mostly under 6 MJ/£,
but the one value for hops was over 100 MJ/£ and the two other more arable crops of herbage
seeds and “other arable crops” used about 8,000 MJ/£. The pattern for GHG emissions was
broadly similar (Table 45).

Again, there was much scatter and a generally smaller sample than for field crops. The
diversity of crops is such that no real recommendation can be made without considering each
farm in more detail.
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Table 44 Financial allocation of energy use to minority crops using revenue value as measure of output, MJ/£

Fresh veg-
etables

Top and
soft fruit

Straw-
berries

Flowers
and
ornam-
entals

Nursey
stock

Vineyard
selling
wine
grapes

Medicinal
plants,
aromatics
and
spices

Hops
Herbage
seed

Other
arable
crops

All Farms Average 14 3.2 3.4 5.6 4.7 1.4 17 122 7,839 8,111

Std Dev 15 1.5 1.8 3.6 3.0 0.9 4.9

CoV 110% 46% 53% 64% 63% 66% 29%

Count 59 24 4 39 10 2 4 1 1 1

Cereals Average 2.2 19

Std Dev 0.8 1.6

CoV 38% 8%

Count 2 2

General Cropping Average 13 2.5 6.4 0.7 19 122 7,839 8,111

Std Dev 12 0.5 3.7

CoV 94% 19% 58%

Count 23 2 6 1 1 1 1 1

Horticultural Average 14 3 3 5 5 2 10

Std Dev 17 2 2 4 3

CoV 120% 46% 53% 66% 63%

Count 36 19 4 33 10 1 1

Lowland Grazing Value 2.4

Count 1
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Table 45 Financial allocation of GHG emissions from minority crops using revenue value as measure of output, kg CO2e/£

Fresh veg-
etables

Top and
soft fruit

Straw-
berries

Flowers
and
ornam-
entals

Nursey
stock

Vineyard
selling
wine
grapes

Medicinal
plants,
aromatics
and spices

Hops
Herbage
seed

Other
arable
crops

All Farms Average 1.15 0.26 0.21 0.40 0.35 0.10 2.17 8.94 634 503
Std Dev 1.22 0.12 0.14 0.27 0.20 0.05 1.02
CoV 1.06 0.47 0.69 0.66 0.57 0.47 0.47
Count 59 24 5 39 10 2 4 1 1 1

Cereals Average 0.39 2.76
Std Dev 0.30 0.11
CoV 0.77 0.04
Count 2 2

General
Cropping Average 1.39 0.20 0.51 0.07 2.51 8.94 634 503

Std Dev 1.30 0.05 0.34
CoV 0.93 0.23 0.66
Count 23 2 6 1 1 1 1 1

Horticultural Average 1.00 0.25 0.21 0.38 0.35 0.13 0.65
Std Dev 1.17 0.11 0.14 0.25 0.20
CoV 1.17 0.42 0.69 0.66 0.57
Count 36 19 5 33 10 1 1

Lowland
Grazing Value 0.21

Count 1
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Allocation and animal production

The allocation of energy to animal production was generally less accurate than for crops, which
should not be surprising, because a larger number of inputs are required for animal than crop
production. Milk and eggs were, however, about as accurately estimated as winter wheat or OSR
(Table 46). These commodities have relatively low breeding overheads and are fairly well
characterised. The liveweight-based commodities all took about an order of magnitude more energy
than the crops. This is to be expected as animals consume crops, and concentrate them into
livestock products that are functionally different, e.g. proving very high quality protein.

The commodity called “poultry not eggs” includes only poultry enterprises that sell finished broilers
(enterprise code 81). The commodity called “Pigs” includes those farms mainly selling finished
(fat) pigs (enterprise code 66, 69 & 72).

The error (statistical uncertainty expressed as CoV) for pig is smaller than for poultry and the
difference in energy per t liveweight is less than might be expected. The energy used per t
liveweight gain is still higher for other cattle and sheep, than for pigs or poultry, but the error is
high too.

Table 46 Primary energy used to produce livestock and livestock products on all farms, allocated
financially. The functional units for animals are liveweight gain across all types of that species.

Eggs Milk
Poultry
not eggs

Pigs
Other
cattle

Sheep
animal
(live-
weight)

Sheep
wool

GJ/12k
eggs *

GJ/hl GJ/t GJ/t GJ/t GJ/t GJ/t

Average 9.2 0.34 12.9 10.0 27.4 20.3 2.6

Std Dev 2.5 0.11 6.4 4.7 15.5 18.6 1.8

CoV 28% 33% 50% 47% 57% 92% 69%

Count 20 81 10 17 160 117 100

FBS/CAHLCI 98% 124% 76% 43% 85% 91%

 12 k eggs weigh 0.72 t

Comparisons were possible between the FBS-derived animal commodity values and those from
CAHLCI. This was enabled by converting the deadweight based CAHLCI values back to
liveweight (using one average value of killing out percentage per commodity). It is also a
simplification in that the outputs from CAHLCI represent the exact balance of breeding and
finishing needed to produce a t of deadweight while we do not know to what extent the sample in
the FBS reflects the overall structure of the sectors. Nonetheless, the results are generally
encouraging, with good agreement for eggs, other cattle and sheep liveweight (Table 46). The FBS
values appear to underestimate energy for pig weight substantially and to a lesser extent for poultry
not eggs, and over-estimate the energy needed for milk. The underestimation for pig weight is
partly explained because pig enterprises may include varying proportions of breeding, growing and
finishing systems, while the CAHLCI results are balanced between breeding and finishing. The
results in Table 46 include all farm types and some commodities are concentrated on specialist
units, especially dairy, pigs and poultry. We do not know whether this underestimate is a function
of the allocation method or systematic differences. One factor to be remembered is that the
Cranfield LCA focuses on only the energy used specifically for an enterprise and does not include
any overheads like farm offices. These terms have been included in the FBS data and have thus
been allocated to the various enterprises in the farm. It is not clear to what extent this influences the
outcomes. Some energy is clearly allocated from sources that would not be used in contemporary
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agricultural field activities, e.g. coal, which must surely be used for heating an office on an LFA
farm with only sheep and beef.

As with crops, animal production is not strictly limited to farm types, although it has more influence
than with crop production. Milk production is concentrated on dairy farms and pigs on pig farms.
Consequently the errors tend to be smaller on those farms and the agreement with the LCA values
in CAHLCI tend to be closer (Table 47).

The same comparison between the FBS values and those from the Cranfield LCA model were made
(Table 48). There was generally good agreement for eggs, milk, poultry, pigs and other cattle,
although the values from the FBS data under-estimated sheep (liveweight) emissions compared with
the LCA values. The errors in the data were generally slightly lower than for the energy

There were apparent differences in GHG emissions between farm types (as with energy use),
although the error levels mean that there was no significant effect (Table 49). One feature that
appears in both energy use and GHG emissions is that sheep seem to receive a noticeably higher
allocation when produced on pig or poultry farms. This may be an artefact of a relatively low
intensity production system being alongside higher intensity systems and the associated economic
allocation.
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Table 47 Primary energy used to produce livestock and livestock products on different farm types,
allocated financially. The functional units for animals are liveweight gain across all types of that
species.

Eggs Milk
Poultry
not eggs

Pigs
Other
cattle

Sheep
animal

Sheep
wool

Farm type
GJ/12k
eggs *

GJ/hl GJ/t GJ/t GJ/t GJ/t GJ/t

Cereals Average 5.4 23.7 16.9 2.6

Std Dev 14.8 5.5 1.2

CoV 62% 33% 48%

Count 1 29 16 13
FBS/CAHLC
I 58% 73% 76%

Dairy Average 0.34 6.3 36.6 20.7 2.0

Std Dev 0.11 22.0 10.3 1.4

CoV 32% 60% 50% 71%

Count 74 1 21 23 18
FBS/CAHLC
I 125% 27% 114% 93%

General cropping Average 8.2 0.44 10.4 24.2 20.2 4.0

Std Dev 5.6 11.9 11.4 2.9

CoV 54% 49% 56% 71%

Count 1 1 5 18 7 7
FBS/CAHLC
I 88% 163% 45% 75% 91%

Horticultural Average 25.0 10.8 0.8

Std Dev 10.1

CoV 40%

Count 2 1 1
FBS/CAHLC
I 78% 48%

LFA grazing Average 31.2 16.1 2.1

Std Dev 16.2 5.8 1.1

CoV 52% 36% 54%

Count 17 16 16
FBS/CAHLC
I 97% 72%

Lowland grazing Average 27.2 19.0 3.0

Std Dev 14.8 6.7 2.0

CoV 54% 35% 66%

Count 36 28 26
FBS/CAHLC
I 84% 85%

Mixed Average 9.3 0.30 11.3 3.9 25.1 16.5 2.3

Std Dev 0.12 3.5 11.2 6.2 1.6

CoV 39% 90% 45% 37% 71%

Count 1 6 1 2 31 19 18
FBS/CAHLC
I 100% 110% 66% 17% 78% 74%

Specialist pigs Average 11.5 25.9 41.1 5.8

Std Dev 3.6 10.2 31.3

CoV 32% 39% 76%

Count 9 2 3 1
FBS/CAHLC
I 49% 81% 184%

Specialist poultry Average 9.5 13.0 26.7 62.6
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Std Dev 2.6 6.7 22.2 87.5

CoV 27% 52% 83% 140%

Count 17 9 4 4
FBS/CAHLC
I 101% 77% 83% 281%

Table 48 GHG emissions from production of livestock and livestock products on all farms, allocated
financially. The functional units for animals are liveweight gain across all types of that species.

Eggs Milk *
Poultry
not eggs

Pigs
Other
cattle

Sheep
animal

Sheep
wool

t CO2e/ 12 k
eggs

kg CO2e/
hl

t CO2e/t t CO2e/t t CO2e/t t CO2e/t t CO2e/t

Average 1.40 88 1.98 2.99 14.50 9.03 1.17

Std Dev 0.29 17 0.90 0.68 6.76 4.48 0.70

CoV 21% 20% 45% 23% 47% 50% 60%

Count 20 81 10 17 201 117 100

FBS/CAHLCI 80% 84% 72% 74% 99% 61%

 Note that milk is in kg CO2e, other commodities are in t CO2e
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Table 49 GHG emissions from production of livestock and livestock products on different farm types,
allocated financially. The functional units for animals are liveweight gain across all types of that
species.

Eggs Milk *
Poultry
not eggs

Pigs
Other
cattle

Sheep
animal

Sheep
wool

Farm type
t CO2e/
12 k eggs

kg
CO2e/ hl

t CO2e/t t CO2e/t t CO2e/t t CO2e/t t CO2e/t

Cereals Average 0.80 11.72 8.56 1.35

Std Dev 5.10 2.41 0.67

CoV 44% 28% 50%

Count 1 29 16 13

FBS/CAHLCI 46% 80% 58%

Dairy Average 89 2.63 17.85 9.38 0.89

Std Dev 18 9.22 4.86 0.63

CoV 20% 52% 52% 71%

Count 74 1 59 23 18

FBS/CAHLCI 85% 65% 122% 63%

General cropping Average 1.52 93 3.26 11.45 8.26 1.74

Std Dev 0.80 4.15 2.38 1.12

CoV 24% 36% 29% 64%

Count 1 1 5 18 7 7

FBS/CAHLCI 88% 89% 81% 78% 56%

Horticultural Average 12.22 7.53 0.57

Std Dev 3.73

CoV 30%

Count 2 1 1

FBS/CAHLCI 84% 51%

LFA grazing Average 15.36 8.41 1.11

Std Dev 5.20 1.72 0.52

CoV 34% 20% 47%

Count 17 16 16

FBS/CAHLCI 105% 57%

Lowland grazing Average 14.41 8.49 1.26

Std Dev 4.53 1.82 0.64

CoV 31% 21% 50%

Count 36 28 26

FBS/CAHLCI 99% 57%

Mixed Average 1.30 81 2.48 2.03 12.90 7.97 1.09

Std Dev 14 0.29 4.37 2.45 0.75

CoV 17% 14% 34% 31% 69%

Count 1 6 1 2 34 19 18

FBS/CAHLCI 75% 78% 90% 51% 88% 54%

Specialist pigs Average 3.10 13.98 19.19 0.98

Std Dev 0.54 5.51 15.81

CoV 17% 39% 82%

Count 9 2 3 1

FBS/CAHLCI 77% 96% 129%

Specialist poultry Average 1.43 1.93 11.14 14.21

Std Dev 0.27 0.94 7.15 12.65

CoV 19% 49% 64% 89%

Count 17 9 4 4

FBS/CAHLCI 82% 70% 76% 95%

Note that milk is in kg CO2e, while other commodities are in t CO2e



FBS Energy Module: Analysis by CU Page 47 of 106

5. Economic efficiency

This is partly addressed in the section on data envelopment analysis, but it is the main focus on this
section. The question under consideration is: is there a relationship between the amount of energy
used, or amount of emissions produced, with the financial gain of the farm? The net farm income
was used as the indicator of farms’ financial gain (item code 79, table M2). This value is calculated
as “Gross Margin – Total Fixed Costs” and so also incorporates indirect costs. It was then
normalised as net income per ha for farms with mixed outputs and to physical outputs where
possible. The net incomes were then compared with the energy used or GHG emissions normalised
by the same scalars. This approach was only used for farm types and some general observations.
Gross margins were used for individual commodities.

Regression equations and coefficients are shown on plots even when there is not a significant
relationship. This is merely for completeness and does not imply that the use of such equations has
any validity.

Results

Grouping all farm types together did not show any obvious relationships, mainly because a few
farm types have both much higher energy use and income per ha than other farm types. Figure 17
shows the stratification of the industry with the grazing farm types using the least energy, but also
getting the least net income (noting that the data range is restricted). This progressed through the
cropped farms in the middle, with animal farms using more energy per ha, but attaining the greater
net income per ha. Within any range where there is an overlap in the farm types, the values range
substantially.

Figure 17 All farm types energy use versus net income per ha for a restricted value range
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A generally similar pattern was seen for GHG and net income per ha (Figure 18). Looking at the
same focused ranges for the emissions the same stratified pattern for the farm types in the lower
ranges of the values was seen, but for this case the cropping farms have the lower emissions range,
then grazing, with animals being the worst polluters per ha.

Figure 18 All farm types emissions versus net income per ha for a restricted value range

Given this wide range of values per farm type, each farm type was subsequently assessed separately
using regression. The quality of the relationships obtained was assessed by the regression
coefficient (as r2), the statistical significance of the regression itself as well as the slope and
intercept. Given that rather weak correlations with large scatter can still be significant at p<.05, it is
considered that the threshold of significance should be p<.001.

Cereal farms

There was not a significant relationship between energy use or GHG emissions and net income per
ha (Figure 19). The mean energy use and GHG emissions per ha were 13.7 (29%) GJ/ha and
2.6 t (55%) CO2e/ha (with coefficients of variation in parenthesis).
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Figure 19 Cereals farms energy use versus net income per ha

There was, however, a significant correlation between total energy used and total net farm income
(Figure 20) with the following summary of the regression analysis.
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Figure 20 Total energy use versus total net income on cereals farms

Horticulture

Horticulture presents interesting challenges because of the great diversity of outputs, e.g. tomatoes
and bedding plants as well as the varied physical growing environments: heated glass, unheated
glass (or polytunnels) or fields (with or without fleece or black plastic mulch). Horticultural farms
were analysed first considering them all together, then as populations of all glass, no glass and
mixed; all heated, partly heated, unheated and without glass.

Again, with all farms considered together, there was no significant relationship between energy use
or GHG emissions per ha and net income per ha. Figure 21 shows the range of horticultural farms
as sub populations grouped as: 100% under glass, 0% under glass and mixed proportions. The
results are swamped by the high earnings of the glassed areas since they are relatively small farms
producing intensively grown produce. It was not possible to relate energy use to physical outputs
owing to their great diversity and limited data, e.g. only a few tomato growers included weights of
tomatoes produced. Cash revenue is not a very good guide to weight owing to the range in value of
products like loose classic vs. cherry on the vine tomatoes.
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Figure 21 Horticultural farms. Energy use versus net income per ha

There were significant correlations between net farm income per ha and both energy use and GHG
emissions per ha for farms with no crops grown under glass. In both cases, the slopes were
positive, but both depended on one outlying data point, which created a somewhat artificial
situation. Removing this outlier meant that there was no significant relationship. There were,
similarly, no significant correlations between net farm income per ha and energy use or GHG
emissions per ha for farms with 100% heated glass, 100% unheated glass or mixtures of heated and
unheated glass.
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Figure 22 Relationship between GHG emissions and net income per unit area for horticultural farms
with no glass, without one outlying point

Commodities and gross margin

This analysis was applied to five main crops and eight animal outputs. The crops were winter
wheat, winter barley, winter OSR, ware potatoes and sugar beet. The animal commodities were
milk, eggs, other cattle, sheep (liveweight gain), sheep (wool), pigs and poultry. After initial
screening, it was decided to set a threshold to eliminate outliers systematically. From the previous
work on allocation, it was clear that commodities making a small contribution to farm revenue
could easily have unreasonably high burdens allocated to them. So, the threshold was set at the
gross margin of a commodity being at least 10% of the farm margin.

The relationships between gross margin and either energy use or GHG emissions per unit
commodity can be summarised as follows. There were few reliable significant relationships
between them for any commodity when considering all farm types and sizes, although there were
some promising relationships (Figure 23 and Figure 62).
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Figure 23 Energy use & gross margin per unit commodity for other cattle

Figure 24 GHG emissions & gross margin per unit commodity for other cattle
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Figure 25 Energy use & gross margin per unit commodity for sheep (liveweight gain)

Figure 26 GHG emissions & gross margin per unit commodity for sheep (liveweight gain)
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Figure 27 Energy use & gross margin per unit commodity for sheep (wool)

Figure 28 GHG emissions & gross margin per unit commodity for sheep (wool)
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Figure 29 Energy use & gross margin per unit commodity for pigs

Figure 30 GHG emissions & gross margin per unit commodity for pigs
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Figure 31 Energy use & gross margin per unit commodity for eggs

Figure 32GHG emissions & gross margin per unit commodity for eggs
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Figure 33 Energy use & gross margin per unit commodity for poultry

Figure 34 GHG emissions & gross margin per unit commodity for poultry
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Figure 35 Energy use & gross margin per unit commodity for winter wheat

Figure 36 GHG emissions & gross margin per unit commodity for winter wheat
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Figure 37 Energy use & gross margin per unit commodity for winter barley

Figure 38 GHG emissions & gross margin per unit commodity for winter barley
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Figure 39 Energy use & gross margin per unit commodity for ware potatoes

Figure 40 GHG emissions & gross margin per unit commodity for ware potatoes
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Figure 41 Energy use & gross margin per unit commodity for sugar beet

Figure 42 GHG emissions & gross margin per unit commodity for sugar beet
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Figure 43 Energy use & gross margin per unit commodity for winter oilseed rape

Figure 44 GHG emissions & gross margin per unit commodity for winter oilseed rape
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More analysis on milk

The possible effects were investigated further, concentrating mainly on milk production. The
influence of farm size was negligible (Figure 45 and Figure 46). There were relatively few small
farms and the performance of these was concentrated in the centre of the spread of data. The
medium scale farms covered most of the spread of large farms, which were numerically dominant,
but the scatter was great so that no clear trend was detectable. A minority of dairy farms were
registered organic and managed. The gross margins of these farms were in the upper half of the
range. The energy use for organic was in the lower part of the range of all farms (which is
consistent with results from LCA), while the GHG emissions were well within the range of all
farms (Figure 48 and Figure 47). The one difference between the organic and non-organic farms is
that there are significant correlations between both energy use and GHG emissions with gross
margin and that the slopes were both negative. So, the implication for organically produced milk is
that better economic performance can go along with better environmental performance.

Figure 45 Energy use & gross margin per unit commodity for dairy, effect of farm size
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Figure 46 GHG emissions & gross margin per unit commodity for dairy, effect of farm size

Figure 47 Energy use & gross margin per unit commodity for dairy, organic and non-organic

0

100

200

0 5 10 15 20 25

G
H

G
e

m
is

si
o

n
s,

k
g

C
O

2
e

/h
e

ct
o

li
tr

e
m

il
k

Gross margin, £/hectolitre milk

LARGE

MEDIUM

SMALL

y = -21.34x + 662.88
R² = 0.4405

0

200

400

600

800

0 5 10 15 20 25

E
n

e
rg

y
u

se
,M

J
/h

e
ct

o
li

tr
e

m
il

k

Gross margin, £/hectolitre milk

Non Organic

Organic

Linear (Organic)



FBS Energy Module: Analysis by CU Page 66 of 106

Figure 48 GHG emissions & gross margin per unit commodity for dairy, organic and non-organic

Another approach was taken with milk, which was to correlate GHG emissions and net income per
unit milk. This was more promising than the relationship with gross margin and the correlation was
significant when applied to all farms (Figure 49). This had a negative slope, which was statistically
significant, even though the regression coefficient (r2) was relatively low at 0.33. This is an
encouraging example of where increasing economic performance is linked directly with increasing
environmental performance. One caveat is that the slope is influenced by some outliers.

Figure 49 GHG emissions versus net income per unit milk production on dairy farms
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Organic and non-organic wheat

Organically produced wheat was compared with non-organic wheat. There were only four farms in
the sample, but it is clear from the gross margin that organic wheat is profitable, with three farms
having higher gross margins than the main body of data (Figure 50 and Figure 51). The energy use
and GHG emissions were well within the spread of data. Unlike organic milk, there was not an
obvious negative slope, but there are too few points to be conclusive about the apparent positive
slope of gross margin with energy use and GHG emissions.

Figure 50 Energy use & gross margin per unit commodity for winter wheat, organic & non-organic

Figure 51 GHG emissions & gross margin per unit commodity for winter wheat, organic & non-
organic
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Fully housed (indoor) and free range (outdoor) egg production was compared. The results were that
the spread of both gross margin and energy use or GHG emissions were larger for outdoor than
indoor production (Figure 52 and Figure 53). This probably results from the considerable
optimisation in mainstream egg production reducing technical performance more than in free range
systems.

Figure 52 Energy use & gross margin per unit commodity for eggs, fully housed ( indoor) & free range
(outdoor)

Figure 53 GHG emissions & gross margin per unit commodity for eggs fully housed ( indoor) & free
range (outdoor)
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Milk yield and energy use per hectare

There was a better relationship between milk yield per ha and energy use per ha (Figure 54). This is
entirely understandable as increasing inputs, such as N fertiliser increases grass yield and hence
milk yield.

Figure 54 Dairy farms energy use versus milk production per ha

On-farm emissions and energy use for wheat and milk

A sub-set of relationships were explored to see if the GHG emissions and energy use that were
incurred on farms were more closely related to economic performance. Winter wheat was examined
first and the indirect energy use from embedded energy and GHG emissions in fertiliser and
pesticide manufacturing were excluded. This meant that the energy use and GHG emissions were
located largely on the farm (GHG from electricity generation occurs at the power station, but
demand comes from the farm). The situation for milk production is more complex. The only
unequivocal source embedded energy that could be excluded was fertiliser and pesticide
manufacture. Other factors varied from farm to farm, so that false comparisons would be made with
due care, e.g. some farms use energy to grow feed crops, while others buy feeds in. Hence, feed
imports need to be included to ensure that the energy use per unit milk is uniformly calculated
across farms.

The results have not appreciably changed the outcomes of the analyses that included all energy use
and emissions. There were again no significant relationships between gross margin per unit of
output and either energy use or GHG emissions per unit output (Figure 55 to Figure 58). The main
difference between these and the previous analyses is that the values for energy use and GHG
emissions were reduced with exclusion of embedded materials. This was by a factor of about a half
for wheat, but the effect was considerably smaller for milk.
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Other investigations were also made (although not illustrated). Applying the gross margin per cow
rather than per hectolitre milk or per ha rather than per t wheat did not provide any significant
relationships. If anything, it provides confirmation that there is much variation in performance
between farms.

Figure 55 GHG emissions per unit winter wheat vs. gross margin per unit winter wheat. Only on-farm
GHG emissions included.

Figure 56 Energy use per unit winter wheat vs. gross margin per unit winter wheat. Only on-farm
energy use included.
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Figure 57 Energy use per unit milk vs. gross margin per unit milk. Fertiliser manufacturing energy
excluded

Figure 58 GHG emissions per unit milk vs. gross margin per unit milk. Fertiliser manufacturing
energy excluded
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Discussion on environmental and economic performance

It is somewhat disappointing that there seemed to be so little relationship between farm financial
performance and energy use or GHG emissions. Nonetheless, this part of the study has shown the
scatter (sometimes very wide) of both energy use and income per ha or physical unit of output. The
mere fact that there ranges shows that there is scope for improvement in both financial and
environmental performance. The significant, although weak, negative slope for milk production
and energy accords with other reports of increased profitability and financial performance (Kite
Marketing and Kingshay Trust pers. comm.).
This part of the study has still illustrated some very useful features of farm types. Energy use and
GHG emissions per ha are systematically different between farm types. Energy use per ha and milk
yield are highly correlated and are now quantified. There are clear differences in energy and
emissions per ha with indoor and outdoor pig farms, although the range is wide. Indoor poultry
production seems to be well optimised and with relatively little variation in environmental
performance between the farms examined, while the range for outdoor production was much
greater.
One area in which there was not enough data to make a worthwhile analysis was of organic
production. This was because of the very limited data available, with small numbers of farms of
different types and relatively high diversity of outputs. There is no fundamental reason why the
analysis can not be applied to organic systems; it just needs more data.
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6. Energy and emissions per ha

One feature that emerged in this analysis is the generally strong linear relationship across farm
types between normalised energy use and GHG emissions. It was most obvious for horticultural
and poultry units, in which there is a relatively high direct fuel use (Figure 59). There was a highly
significant linear relationship between energy use and GHG emissions per ha across all farm types
(Table 50). The fits were very good for high energy activities like specialist mono-gastric
production and horticulture. They were inevitably poorer for other farming activities where enteric
methane emissions and field emissions of N2O play a relatively greater role (Table 50). This,
nonetheless, provides the ability to produce a quick estimate from data that is relatively easy to
derive. Examples for pigs, dairy and cereals illustrate the range of fits (Figure 60 to Figure 62).

Figure 59 Relationship between energy use and GHG emissions per ha for all farm types

Table 50 Summary of regression between energy use per ha and GHG emissions per ha across farm
types. The regressions and slopes were all significant at p<.001. There are ordered by decreasing
quality of fit.

Farm type
Variance
accounted
for

Standard
Error of
regression

Slope,
t CO2e/GJ

Standard
Error of slope

Specialist pigs 99% 10 0.181 0.0033

Specialist poultry 98% 101 0.141 0.0027

Horticulture 97% 59 0.0746 0.0014

Dairy 90% 1.27 0.219 0.0037

LFA grazing 69% 0.96 0.390 0.0266

Mixed 61% 1.79 0.236 0.0123

Lowland grazing 56% 1.35 0.355 0.0178

General cropping 53% 0.82 0.144 0.0059

Cereals 52% 0.72 0.178 0.0059
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Figure 60 Energy use and GHG emissions per unit area for specialist pig farms.

Figure 61 Energy use and GHG emissions per unit area for specialist dairy farms.
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Figure 62 Energy use and GHG emissions per unit area for specialist cereal farms.

y = 0.178x
R² = 0.5197

0

2

4

6

8

0 5 10 15 20 25

G
H

G
em

is
si

o
n

s,
t

e
C

O
2e

/h
a

Energy use, GJ/ha



FBS Energy Module: Analysis by CU Page 76 of 106

7. Data envelopment analysis

Introduction

Data envelopment analysis (DEA) is a method to measure the relative efficiency of multiple
decision-making units (DMUs) when the production process presents a structure of multiple
disparate inputs and outputs. The DEA method was formally developed by Charnes, Cooper and
Rhodes (1978). The advantage of the procedure is its ability to compare the efficiency of DMUs
with very different levels of disparate inputs and outputs, in this case cereals, root crops, ruminants,
non-ruminants, and grassland on farms. The strength of this method is that it makes no apriori
assumptions about the importance or weight of any of these disparate input or outputs.

In this case DEA will be applied to determine the relative efficiency of each farmer (i.e. the
decision making unit, DMU). Efficiency (E) is defined as the emission per weighted sum of outputs
per unit of energy or GWP:

j

ijij

j
Energy

Outputsweights

E

 



}{}{

where i is the output such as wheat and j is the DMU number. The principle of the procedure is that
it chooses the weights individually for each DMU which maximise their efficiency-score, subject to
the constraint that no other DMU using those same weights can have an efficiency-score greater
than 1. Once all DMUs have been so analysed, the DMUs that have an efficiency of 1 form a
Pareto-efficient frontier and are efficient relative to their peers. A lower value represents the level
of inefficiency relative to their peers. A typical very simplified outcome is illustrated in Figure 63,
in which farm efficiencies of two enterprises form an efficiency frontier. This is simplified in that
only one frontier is presented, whereas in the analysis of the FBS data, an n-dimensional surface is
created. Although many calculations are needed, the solution is found by linear programming,
which is computationally efficient.

Figure 63 is presented as an output orientated model with the greatest radial expansion of output per
unit of input being the points furthest from the origin where the Pareto efficient frontier lies. The
efficiency calculated by this model is known as technical output efficiency. It is equally possible to
formulate the problem with an input orientation where the task is find the maximum radial
contraction of inputs per unit output giving a Pareto frontier closest to the origin. This is known as
technical input efficiency. Where, it is assumed that there are no economies of scale, that is
constant returns to scale, then technical input and output efficiency are the same.

Figure 63 Hypothetical example of Data Envelopment Analysis

0%

20%

40%

60%

80%

100%

120%

0% 20% 40% 60% 80% 100% 120%

C
ri

te
ri

o
n

2

Criterion 1

Idealised
Efficient
Frontier



FBS Energy Module: Analysis by CU Page 77 of 106

The procedure is frequently used to compare the efficiency of units with very different levels of
inputs and outputs such as schools or bank branches. The main output is the identification of the
most efficient farms and a relative ranking of other farms.

DEA Method

We adopt the DEA model for assessing technical input efficiency (Thanassoulis, 2001: 66). Take a
set of N DMUs (j=1….N) using m inputs to generate r outputs where xij and yrj are the levels of
the ith input and rth output respectively. The technical efficiency of DMU j0 is defined as k0 and
is determined by the following linear programming model
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ି
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Where λj is weight each DMU (j=1…N) will have in calculating the inputs and outputs of the
composite DMU j0*. Each of the criteria can have a slack denoted by ௜ܵ

ି and ௥ܵ
ା , which

represents the distance from the constraint

The model is not solved by introducing the non Archimedean infinitesimal, but rather a two
stage optimisation is used. First k0 is minimised then with that held constant the sum of the
slacks, ௜ܵ

ି and ௥ܵ
ା , is maximised.

In this form, the DEA model is said to be Constant Returns to Scale (CRS) and the average
productivity is not a function of scale/farm size. In the CRS model technical input efficiency
equals technical output efficiency. The alternative formulation is known as Variable Returns
to Scale (VRS) and it requires an additional constraint, ∑ ௝ߣ

ே
௝ୀଵ ൌ ͳǡܰ׊ , that is the sum of the

weights equals 1 (Banker et al. 1984). In the VRS case technical input efficiency does not
equal technical output efficiency. The VRS model prevents DMU from up scaling or down
scaling to find a referent point for efficiency measurement.

It is worth noting throughout the following sections on results that when a unit is referred to as
efficient it has a score (technical input efficiency) of one and lies on the Pareto frontier where it is
impossible to improve one criterion without some other criteria deteriorating. In theory it is
possible to have a set of DMUs with a technical input efficiency of 1 that do not lie on the Pareto
frontier because they are dominated in at least one dimension, but not all dimensions by a peer on
the Pareto frontier. Anything with DEA technical input efficiency of <1 is deemed inefficient. The
efficient set is only relatively efficient to the inefficient set. DEA tells nothing about absolute
efficiency and the capacity of the efficient set to improve.

A worked example

To illustrate the DEA method we have developed several sets of test data. In the first dataset
random data was generated for three vectors, Global Warming Potential 100 years (GWP), hectares
of land required, and total gross margin. The DEA is conducted using the input oriented VRS
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model. The results are shown in Figure 64 revealing the spread of the data in the production
possibilities set, the location of the Pareto efficient or non dominated set and the boundary that is
assumed to run through them to envelop all DMUs. Contrasting to Figure 63, Figure 64 is
presented as the minimisation of input per unit of output. In this case we are seeking the smallest
amount of the inputs land and GWP per unit of total gross margin and this lies closest to the origin
of the graph. The technical input efficiency of each DMU is taken on a radial line from the DMU to
the origin and is the ratio of the distance from the origin to the Pareto boundary over the distance
from the origin to the DMU. To calculate radial efficiency the DEA method assumes the Pareto
frontier extends beyond the outlying efficient DMUs to envelop all DMUs (dotted line in Figure 64)

Figure 64 A randomly generated DMU dataset showing the location of the Pareto set and frontier

Next, a data set of 482 farm Decision Making Units (DMUs) was simulated, which is the same
number of DMUs as those that report financial information in the FBS energy dataset. Five crops
are simulated, wheat, barley, rape, beans and potatoes. Each can be grown on a random area
between 0 and 100 hectares and generating a gross margin of £500/ha, £425/ha, £445/ha, £430/ha,
and £1600/ha respectively. Thus, a farm can be between 0 and 500 hectares with five gross margin
outputs, one for each crop. On the input side of the model we have a single emission vector of
greenhouse gases with 50kg/ha from wheat, 45kg/ha from barley, 70kg/ha from rape, 25kg/ha from
beans, and 125kg/ha from potatoes.

Unlike Figure 64, this example DEA model has greater than three dimensions and it is thus much
harder to present the results graphically.

In this first case all the DMUs are efficient, E=1, as each has the same technical relationship
between inputs and outputs regardless of amounts grown. Each DMU can take a set of weights that
makes its output mix look ideal without making any other DMU look better.
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Next, one DMU is taken and the emission of greenhouse gases from potatoes is modelled 250 rather
than 125kg/ha. The DEA successfully identifies this DMU and returns a technical input efficiency
of 0.7. In this case the inefficient unit has been dominated by efficient peers.

Next the DMUs are split into two sets so that the first 141 have low GHG emissions for Potatoes
(125 kg/ha) and the rest have high ones (250kg/ha). Most of the inefficient DMUs are detected.
However, some seem efficient because they are not dominated by a member of low GHG set in
their neighbourhood in other words for that particular combination of outputs.

To further demonstrate this idea of dominance 241 farms were generated as a low GHG and high
GHG potatoes pairs to make 482 DMUs. In this case every high GHG case is exactly dominated by
its low GHG case and has a relative efficiency of 0.7.

If we introduce a second input vector (to be minimised) that reflects, say rainfall above 600 mm
mean and generate a set where the first 141 have low GHG potatoes and the rest have high GHG
potatoes (as in the case previously) and assign 100mm extra rainfall to the second set then the
efficiency scores are unchanged by the second input. This is because it is modelled as an
undesirable and thus they can’t assign any weight on it to better their existing efficiency scores.
However, if the first set has the ‘poor’ 100 rainfall value then all DMUs can take weights that make
them relatively efficient as they all have a good and a bad value in one or other input. As rainfall is
an exogenous input that is beyond management control then a requirement could be to only
compare units that have the same level and introduce an equality constraint, such that each virtual
efficient DMU must have the same rainfall. Then each DMU from each set is now efficient even if
the second set have both the higher GHGs and the higher rainfall.

Data, such as the FBS energy survey will contain the effects of chance. We now define a set of 141
with low GHG potatoes and a second set where the GHG emissions are now;

wheat = 30 +rnd *20,
barely = 25 + rnd * 20,
rape = 50 + rnd * 40,
beans = 20 + rnd * 10, and
potatoes = 220 + rnd * 60.

In this case, some of the second set dominate the first set as the first 4 crops have lower emissions
despite the larger potato emissions. Of the first 141 the mean relative efficiency is 0.92 of which 54
are efficient and of the second set the mean relative efficiency is 0.89 of which 84 are efficient.

Exploratory DEA analysis of FBS data

The sole input vector is either

 Total direct and indirect Greenhouse Gas emission as the 100 year Global Warming

Potential (GWP), kgCO2 eqv., or

 total direct and indirect energy (MJ)

in order to maximise the discrimination power of the model. The output vectors are based on the
production of quantities of commodity:

Cereals (t),
Oilseeds (t),
Combinable legumes (t),
Potatoes (t),
Sugar beet (t),
Horticultural revenue (£)*,
Milk (hectolitres),
Eggs (no),
Cattle Liveweight (kg),
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Sheep Liveweight (kg),
Pig Liveweight (kg), and
Poultry Liveweight (kg).

*Not uniformly reported in physical units so revenue used instead and includes: ornamentals, top
fruit, soft fruit, salads and herbs, other, and vegetables

All negative values are replaced by zero.

Due to the need to have a homogenous population for the DEA a number of potentially
unrepresentative DMUs are removed. In both models 71 DMUs are removed because they have no
outputs measured in these criteria. A further 92 DMUs are removed because over 20% of the
energy use arises from contracting. Some animal liveweight outputs were calculated as negative
and 21 poultry, 5 cattle, 1 pig, and 1 sheep DMUs have had that output set to zero.

Exploratory Results

The DEA was conducted using the input oriented VRS model. Figure 65 shows the histogram of
DEA scores for both model formulations with 38 (GWP) and 33 (Energy) of the 347 DMUs
forming the efficient set of distinct classes of farm with respect to these measures. In other words
there is no other farm with their particular combination of the above commodity quantities which
has lower GWP or Energy input.

Figure 65 Histogram of technical input efficiency scores, assuming variable returns to scale (VRS) for
models based on either total Global Warming Potential (GWP) or total Energy showing broadly
similar profiles

Table 51 identifies each of the relatively efficient DMUs from each DEA formulation together with
how often each DMU is a peer to a relatively inefficient one. Many of the DMUs are relatively
efficient in both formulations. Additionally, some DMUs act as peers to a large set of relatively
inefficient ones. Provided that these DMUs are not in some way outliers they are candidates for best
practice benchmarking. One such outlier might be DMU 288, which is a small organic horticulture
holding which is peer to 215 other farms. Thus, this is removed and the energy formulation is run
again (Table 51) showing a slightly more diverse set of efficient DMUs
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Table 51 DMUs that are efficient in the GWP and Energy DEA VRS formulation showing that many
DMUs are efficient in both formulations. To consider the effect of a possible outlier the Energy
formulation is run without DMU 288 and shows a slightly more diverse set of efficient DMUs.
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23 Y 1 Y 2 Y 1 Cereals North East 882 2%

53 Y 1 Y 1 Y 1 Cereals East Midlands 146 10%

132 Y 98 Cereals Yorks & Humb 42 20%

336 Y 10 Y 24 Y 9 Cereals East of England 451 5%

348 Y 1 Y 1 Y 1 Cereals East of England 1597 0%

359 Y 12 Y 13 Y 14 Cereals East of England 33 4%

441 Y 153 Y 151 Y 126 Cereals South West 1944 15%

306 Y 3 Y 7 Y 3 Dairy East of England 272 7%

401 Y 45 Dairy West Midlands 114 7%

402 Y 2 Y 6 Y 2 Dairy South East 382 6%

505 Y 16 Y 16 Dairy South West 66 7%

397 Y 14 Dairy West Midlands Y 78 9%

196 Y 7 Y 2 Y 7 General cropping West Midlands 85 8%

215 Y 19 Y 30 Y 14 General cropping East Midlands 86 15%

222 Y 5 Y 36 Y 5 General cropping East Midlands 385 0%

254 Y 1 Y 8 Y 1 General cropping East of England 640 0%

281 Y 3 Y 2 Y 3 General cropping East Midlands 864 2%

284 Y 2 Y 2 Y 2 General cropping East of England 839 4%

307 Y 3 Y 3 Y 3 General cropping East Midlands 2137 2%

327 Y 10 Y 10 General cropping East of England 124 0%

333 Y 9 Y 13 General cropping East of England 65 0%

345 Y 1 Y 1 Y 1 General cropping East of England 353 15%

361 Y 11 Y 10 Y 11 General cropping East of England 959 0%

368 Y 16 Y 17 Y 15 General cropping East of England 705 1%

426 Y 35 Y 36 Y 30 General cropping West Midlands 194 9%

283 Y 2 General cropping East Midlands 54 18%

22 Y 30 Y 27 Y 33 Horticulture North West 57 0%

288 Y 179 Y 215 # # Horticulture East of England Y 9 0%

366 Y 2 Horticulture East of England 164 0%

295 Y 53 Horticulture East Midlands 9 13%

19 Y 6 Y 9 Y 6 LFA grazing livestock North East 204 13%

47 Y 39 Y 30 LFA grazing livestock Yorks & Humb Y 87 15%

62 Y 23 Y 20 Lowl’d graz’g live’k South East 95 7%

210 Y 49 Y 80 Y 48 Lowl’d graz’g live’k East Midlands 87 6%

332 Y 95 Y 101 Lowl’d graz’g live’k East of England 36 17%

374 Y 44 Y 117 Lowl’d graz’g live’k West Midlands 26 5%

42 Y 20 Y 18 Y 18 Mixed Yorks & Humb 66 10%

214 Y 40 Y 28 Mixed East Midlands 227 16%

304 Y 23 Y 21 Mixed East of England 65 11%

371 Y 3 Y 2 Y 3 Mixed South West 1278 19%

383 Y 52 Y 15 Y 44 Mixed South East 49 15%

392 Y 1 Y 1 Mixed South West 536 2%

180 Y 5 Y 5 Y 5 Specialist poultry West Midlands 0 20%

303 Y 15 Y 15 Y 10 Specialist poultry East of England 0 0%

321 Y 25 Y 25 Y 23 Specialist poultry East of England 22 0%
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Figure 66 continues to consider what happens if the possible outlier, DMU 288, is removed from
the energy formulation of the model and it shows that the DEA score tends to be raised and less
scattered.

Figure 66 Histogram of DEA technical input efficiency scores for the Energy formulation with and
without DMU 288 showing that the efficiency scores are moved to the right when a possible outlier is
removed.

Figure 67 shows a comparison between the GWP and Energy formulation, assuming constant
returns to scale (CRS), and reveals a similarly close correspondence to the VRS case.

Figure 67 Histogram of DEA scores showing close correspondence between Energy and GWP
formulations under constant returns to scale (CRS)
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As a rule, CRS scores are always the same as or less than the VRS scores hence the small efficient
set on the CRS case. Figure 68 illustrates this point that there is a very high agreement between
VRS and CRS scores.

Figure 68 Scatter diagram of VRS and CRS models using the energy formulation showing a strong
degree of similarity with some VRS score having a much lower CRS score

Summary

The DEA scores are broadly comparable if either GWP or Energy is used as the input vector, with
many DMUs being efficient in both models. This is a bit non-intuitive until one considers that this
study quantified indirect as well as direct energy inputs. In agriculture, the majority of greenhouse
gas emissions (GWP) arise from nitrogenous fertiliser usage (N20 emissions) or methane due to
rumen digestion or the anaerobic decay of manures. Indirect (off-farm) energy inputs are very
important in the production of nitrogenous fertilisers which are also in turn sequestered off-farm in
the form of imported feed stuffs.

The results also suggest that one has to be wary of very efficient outliers as they dictate the position
of the frontier against which all others are judged.

A revised DEA model

The initial analysis revealed that there was not much difference between the formulations based on
energy or GWP. It also revealed that DMU 288 was a significant outlier. These factors have been
taken into account to select a revised population of DMUs and criteria. Horticulture has also been
revisited and broken down into two to differentiate salad and herb revenue from other horticulture
revenue as this former group of horticulturalists seems to be very heavy users of heated glass
compared to the rest.

The revised formulation now contains 409 DMUs. The exclusions are DMU 288, seven with no
countable outputs, and 94 with over 20% of energy arising from contracting. The livestock live-
weight production calculations for 21 poultry, 6 cattle, 1 pig, and 1 sheep DMUs were negative and
these have been made zero.

The DEA is conducted using input oriented constant returns to scale model, which gives identical
results to the output formulation in this case.
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Results

The histogram of DEA technical input efficiency scores for the revised model is shown in Figure
69. It again has a characteristic efficient population (42) followed by a gap and then the bulk of the
DMUs

Figure 69 Histogram of DEA technical input efficiency scores for the revised model based on total
energy use

The Pareto efficient set

Table 52 lists all 18 of the efficient DMUs together with their farm types, organic status, the
number of time each is a peer, and the criteria levels of each. Most farm types have a peer group
except for specialist pigs whose peers would seem to be pig units on arable farms. The greater then
number of times a DMU is a peer then the more it dominates the industry and is thus a benchmark
candidate that might reflect widespread practice.

Table 53 looks more closely at the role each Pareto efficient DMU has as a peer to the inefficient
DMUs. The information is organised by farm type and details how much of the peer is used and the
mean weight (λ) given to it. It is clear that the farm typologies are not mutually exclusive as
inefficient DMUs use peers from more than their own farm type. The specialists tend to use mostly
their own kind but the picture is much more mixed when the general farm types are considered.

Of practical concern might be the case of Dairy and Specialist pigs that have no peers of their own
kind and thus use peers from general farm types. The risk is that their efficiency is being measured
against a reference with a more divers set of outputs, say, pigs with arable or dairy with fat stock.
The following subsection looks in more detail at the inefficient DMUs and their peers
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Table 52 The 18 Pareto efficient DMUs showing their farm type, the number of times each is a peer and their criteria levels (2 significant figures)

No. times
a peer

Energy Milk Eggs Cattle Sheep Pig Poultry Cereals Oilseeds Legumes Potatoes Sugarbeet Salad Hortic

DMU Type Organic 000GJ hl 000 No t lwt t lwt t lwt t lwt t t t t t £ £000

336 Cereals 6 6800 0 0 0 0 1200 0 1900 330 120 0 3700 0 0

359 Cereals 18 270 0 0 0 0 0 0 78 0 29 0 0 0 0

441 Cereals 162 9900 0 0 4.8 0 0 0 7500 1100 750 0 0 0 0

283 General cropping 4 500 0 0 0 0 0 0 94 0 0 150 380 0 49

222 General cropping 7 2500 0 0 0 0 0 0 830 250 0 200 980 0 45

196 General cropping 12 1600 0 0 0 0 0 0 280 77 0 930 0 0 0.340

333 General cropping 15 510 0 0 0 0 0 0 160 0 0 0 840 0 0

215 General cropping 36 760 0 0 0 0 0 0 320 19 35 0 1000 0 0

426 General cropping 39 6200 0 0 0 0.51 0 0 1300 0 0 4000 0 0 0

320 Horticulture 23 270 0 0 0 0 0 0 0 0 0 0 0 88000 58

381 Horticulture 104 1700 0 0 0 0 0 0 0 0 0 0 0 0 1500

47
LFA grazing
livestock

Y 67 320 0 0 13 25 0 0 0 0 0 0 0 0 0

62 Lowland grazing livestock 38 210 0 0 3.4 17 0 0 0 0 0 0 0 0 0

332 Lowland grazing livestock 128 170 0 0 18 0 0 0 0 0 0 0 0 0 0

304 Mixed 26 690 0 0 8.4 6.3 230 0 0 0 0 0 0 0 0

214 Mixed 48 2100 9500 0 11 0 0 0 470 100 3.5 0 0 0 0

303 Specialist poultry 20 8600 0 0 0 0 0 16000 0 0 0 0 0 0 0

321 Specialist poultry 26 1100 0 790 0 0 0 0 0 0 0 0 0 0 0
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Table 53 An investigation, by farm type, into the role that each Pareto efficient DMU has in being a peer to an inefficient unit showing that often the main
peer is a farm of the same type, but can also be drawn from the more general types.

Farm type of inefficient DMUs with the number of times (count) each peer is chosen and the mean weight (Av. λ) of it 

Cereals Dairy
General
crop’g Horticulture

LFA
graz’g
lives’k

Lowl’d
graz’g
livest’k Mixed

Special’t
pigs

Special’t
poultry

Peers by type Count Av. λ Count Av. λ Count Av. λ Count Av. λ Count Av. λ Count Av. λ Count Av. λ Count Av. λ Count Av. λ 

Cereals

211 1 0.55

336 2 0.09 1 0.00 2 0.06

359 7 2.09 1 0.32 3 0.28 1 4.05 3 0.47 2 0.33

441 64 0.16 1 0.01 41 0.09 8 0.03 1 0.00 8 0.00 30 0.05 5 0.03 2 0.03

General
cropping

196 11 1.04

215 6 2.19 27 2.45 1 0.06 1 0.43

222 2 0.24 4 0.47

283 1 5.85 2 1.20

333 12 2.24 1 0.22 1 4.35

426 3 0.04 1 0.01 27 0.33 3 0.13 1 0.00 3 0.03

Horticulture

320 2 0.15 3 0.18 17 5.90

328 1 0.59

381 2 0.04 18 0.07 82 0.25 1 0.00

LFA
grazing
livestock

46 6 0.57 15 0.33 4 0.52 12 0.90 14 0.62 12 0.79 3 0.09

Lowland
grazing
livestock

62 6 1.46 5 0.56 5 0.83 1 0.91 6 1.02 8 0.68 4 2.54 2 0.30

332 24 1.29 31 0.79 15 1.25 9 0.97 19 0.97 23 2.44 1 0.17 4 1.31

Mixed

42 1 0.38

214 43 0.72 1 1.21 1 0.01 2 1.13

304 1 0.00 1 0.12 4 0.61 3 1.46 16 0.88

Specialist
poultry

303 1 0.00 1 0.00 1 0.00 16 0.06

321 1 0.00 1 0.34 1 0.00 2 0.20 20 1.10
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A selection of inefficient DMUs and improvements

Table 54 through to Table 58 give the target improvements of a selection of inefficient DMUs from
a number of farm types. The tables identify each of the peers and the weights they have in forming
the ideal criteria outcomes by weighted proportion. This ideal outcome is reported along with the
initial or raw criteria levels.

The most convincing peer group comparisons are in Table 54 to Table 56 where the DEA has found
convincing peers that produce equivalent outputs for a fraction of the total energy input of the
inefficient DMU. This is a telling insight for those inefficient farms and warrants further
investigation with the peer group serving as the benchmark farms to the inefficient ones. Two of the
examples show a simple up (Table 55) or down (Table 54) scaling of a much more efficient peer

Table 54 Investigating the recommended improvement of DMU 450, a Horticulture farm type with
technical input efficiency of 0.23

Peer Energy Hortic
DMU No proportion MJ £

450 raw 110000 22000

381 0.015 1,700,000 1,500,000

450 ideal 26,000 22000

Figure 70 shows a more detailed investigation of the difference in energy in between DMU 450 and
its peer. The direct forms of energy are proportionally less with the efficient peer once scaled. The
inefficient DMU has a small amount of additional indirect energy input mostly in the form of the
manufacture of farm equipment. The horticultural farm type is a very broad class so perhaps the
explanation lies in exactly what is produced, but it so happens both produce ornamentals rather than
one vegetables and the other salads/herbs. However, ornamentals could include anything from
orchids to outdoor daffodils with vastly different financial values and production requirements. A
harder look at the nature of ornamentals and other horticultural outputs could help yield robust
comparable typologies. DEA starts a process that identifies these questions.
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Figure 70 Detailed exploration of the energy inputs of DMU 450 relative to its peer, showing
proportionally less direct energy use and a near absence of indirect energy use in the peer for identical
kind of sales (ornamentals)

Table 55 Investigating the recommended improvement of DMU 331, a Specialist poultry farm type
with technical input efficiency of 0.14

Peer Energy Eggs
DMU No proportion MJ No
331 raw 17000000 1600000
321 2.1 1100000 790000
331 ideal 2400000 1600000

Figure 71 shows a detailed investigation into the energy inputs of DMU 331 relative to its peer.
The peer uses proportionally less direct energy. Major result is that DMU 331 has major indirect
energy inputs in the forms of bought feeds and purchased poultry that are virtually absent in the
efficient peer. It could be that the flock change over lies just outside the reporting 12 months of
DMU 321. It could be that the pullets are produced within the farm. Similarly for feed it could be
that feed is produced within the farm, but then one would expect to see fertiliser inputs? For want
of a good explanation it would seem wise to treat DMU 321 as an outlier and reconsider the
efficiency of DMU 331.

Figure 71 Detailed look at the Energy input into DMU 331 and its peer, showing both a proportional
reduction in direct energy use and a major difference in indirect energy use
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Table 56 Investigating the recommended improvement of DMU 145, a LFA grazing livestock farm
type with technical input efficiency of 0.43

Peer Energy Cattle Sheep
DMU No proportion MJ kg lwt kg lwt
145 raw 660000 19000 12000
332 0.73 170000 18000 0
47 0.48 320000 13000 25000
145 ideal 280000 19000 12000

Figure 72 shows a detailed investigation of the energy inputs into DMU 145 relative to its two
peers. The results show a proportional reduction in all forms of energy. The peers seem to offer
good benchmarks for DMU 145.

Figure 72 Detailed investigation into the energy inputs into DMU 145 relative to its peers, showing
across the board proportional reduction in direct and indirect energy inputs

There is a lot of heterogeneity between farms and this shows up in Table 57 to Table 58. In these
cases peers are chosen that introduce a new outputs and in these cases it may pay to re-analyse them
to restrict the properties of the peer group, say no new outputs, but that may reduce discrimination
to the point that these farms with these combinations of outputs become unique and thus relatively
efficient by definition. Table 57 show an efficient dairy unit being constructed from dairy and
grazing farms, which may not be reasonable as the 25t of wheat required is drawing in a lot of other
arable products. A similar problem of a little arable sold is also bringing in other arable products in
the lowland grazing case shown in Table 58.
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Table 57 Investigating the recommended improvement of DMU 1709, a Dairy farm type with technical
input efficiency of 0.52

Peer Energy Milk Cattle Sheep Cereals Oilseeds Legumes
DMU No proportion GJ hl kg lwt kg lwt t t t
5 raw 4800 9300 45000 5900 25.0 0 0
332 1.7 170 0 18000 0 0 0 0
214 0.98 2100 9500 11000 0 470 100 3.50
47 0.24 320 0 13000 25000 0 0 0
5 ideal 2500 9300 45000 5900 470 100 3.44

Table 58 Investigating the recommended improvement of DMU 39538, a Lowland grazing livestock
farm type with technical input efficiency of 0.41

Peer Energy Cattle Sheep Cereals Oilseeds Legumes
DMU No proportion GJ kg lwt kg lwt t t t
483 raw 1000 17000 32000 7.6 0 0
47 1.28 320 13000 25000 0 0 0
332 0.050 170 18000 0 0 0 0
441 0.001 99000 4800 0 7500 1100 750
483 ideal 440 17000 32000 7.6 1.2 0.8

Table 59 and Table 60 show this effect of multiple outputs in the peer group further. In both cases
it is the same peer which draws in other outputs namely cattle and legumes in addition to the
requisite cereals and oilseeds

Table 59 Investigating the recommended improvement of DMU48, a General cropping farm
type with technical input efficiency of 0.54

Peer Energy Cattle Cereals Oilseeds Legumes
DMU No proportion GJ kg lwt t t t
48 raw 2200 0 910 100 0
441 0.12 9900 4800 7500 1100 750
48 ideal 1200 580 910 140 91

Table 60 Investigating the recommended improvement of DMU 205, a Cereals farm type with
technical input efficiency of 0.63

Peer Energy Cattle Cereals Oilseeds Legumes
DMU No proportion GJ kg lwt t t t
205 raw 1400 0 330 110 0
441 0.094 9900 4800 7500 1100 750
205 ideal 9300 450 710 110 71
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We next examine whether these efficiency scores can be explained by specific exogenous factors.
Data Envelopment Analysis is not often used in this role but rather it is used to inform managers of
efficiency problems. The DEA scores are not normally distributed so the best way to look for
difference is to inspect visually the means and score distributions. Given sufficient data quantity
and quality it is possible to use some statistical techniques, such as Tobit regression or non
parametric ANOVA, but such approaches are not universally agreed in the literature.

Effect of organic status

One fascinating question is does organic agriculture deliver environmental benefits per unit of
production when compared to non organic systems. Figure 73 shows the histogram plot of both
farming systems and shows that whilst 2 (10%) of the organic farms are efficient, 17 (4.4%) of the
non organic ones are as well. The two are similar and the population sizes are very different. This
observation is confirmed by as statistical analysis of the technical input efficiency scores in Table
61, which is further broken into farm type in Table 62. Overall there is no consistent trend..

Given more data one could separate out the two groups and conduct separate DEA analysis and
return each farm back into the joint population of farms as its ideal self within its sub group, thus all
management inefficiencies have been removed. When DEA is conducted on this joint pool any
differences in scores are a due entirely to the difference in policy between them

Figure 73 Histogram of technical efficiency scores of organic and non organic farms
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Table 61 Statistical analysis of DEA technical input efficiency scores for organic and non-organic
farms showing a slight advantage to non organic farms but from very different population sizes

Organic status Count Minimum Mean Maximum
FALSE 390 0.00 0.42 1.00
TRUE 19 0.02 0.40 1.00

Table 62 Statistical analysis of technical input efficiency scores of organic and non organic farms by
farm types showing that organic might have the edge for dairy and LFA grazing livestock farm types

Organic status
FALSE TRUE

Farm Type count mean count mean
Cereals 69 0.49
Dairy 41 0.59 3 0.87
General cropping 62 0.62 3 0.37
Horticulture 98 0.30 1 0.10
LFA grazing livestock 14 0.33 2 0.88
Lowland grazing livestock 26 0.46 3 0.28
Mixed 30 0.45 3 0.29
Specialist pigs 16 0.22
Specialist poultry 34 0.16 4 0.06

Effect of Farm Type

Another breakdown analysis of the DEA scores is to look at the effect of farm types. Figure 74
shows the histogram plots for farm types. Mixed farming is held in common to both charts.
Specialist poultry and horticulture are dominated by lower scoring units probably because their
outputs have not been readily characterised on a consistent criteria or have a very efficient outlier.
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Figure 74 histogram plots of DEA scores for farm types

0

2

4

6

8

10

12

14

16

18

20

-25

-20

-15

-10

-5

0

5

10

15

20

25

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
u

m
b

e
r

o
f

fa
rm

s
-

So
lid

co
lo

u
rs

N
u

m
b

e
r

o
f

fa
rm

s
-

G
ra

d
ie

n
t

co
lo

u
rs

DEA techical input efficiencies: histogram category, mid-points

Cereals

Dairy

General cropping

Horticulture

Specialist poultry

LFA grazing livestock

Lowland grazing livestock

Mixed

Specialist pigs



FBS Energy Module: Analysis by CU Page 94 of 106

Table 63 shows the statistical analysis of the farm type DEA scores. All except dairy and specialist pigs have efficient examples. Farms that might be
characterised by only one output, such as specialist pigs, specialist poultry and horticulture seem lower scoring on average.

Table 63 Statistical analysis of farm type DEA scores, showing that most farm types contain an efficient unit

Farm Type count Minimum Mean Maximum
Dairy 44 0.15 0.61 0.96
General cropping 65 0.09 0.60 1.00
Mixed 33 0.16 0.49 1.00
Cereals 69 0.12 0.44 1.00
LFA grazing livestock 16 0.12 0.43 1.00
Lowland grazing
livestock 29 0.01 0.40 1.00
Horticulture 99 0.01 0.30 1.00
Specialist pigs 16 0.02 0.22 0.64
Specialist poultry 38 0.00 0.15 1.00
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Effect of region

Another interesting question is whether region, as in latitude, makes a difference to efficiency scores.
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Figure 75 shows the histogram plots of DEA scores by region and reveals that most profiles are broadly similar with a few efficient farms and a
majority of middling to poorer ones. East of England is noteworthy as it contains three peaks at 0.1, 0.5-0.6, and the frontier. The southwest is more
uniform and neither the North East or North West contain efficient DMUs
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Figure 75 Histogram plots of DEA score by NUTS2 regions

Table 64 shows the statistical analysis of these scores and if there is as a trend it is very weak and slightly south east-north west trend. Table 65 further
considers the effect of region on DEA score by considering the average DEA score of different farm types.
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Table 64 shows the statistical analysis of these scores and if there is as a trend it is very weak and
slightly south east-north west trend.

Row Labels Count Minimum Mean Maximum
East of England 95 0.00 0.47 1.00
Yorkshire & the Humber 44 0.04 0.45 1.00
East Midlands 45 0.04 0.44 1.00
South East 70 0.04 0.42 1.00
North East 16 0.02 0.40 1.00
South West 61 0.05 0.38 0.81
North West 35 0.01 0.36 1.00
West Midlands 43 0.01 0.33 0.70
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Table 65 Mean DEA scores by region and farm type showing some evidence of different farm
types being efficient in different regions (italics denotes the farm types with highest efficiency in
that region)

Region Count Min. Mean Max. Region Count Min. Mean Max.

East of England 95 0.00 0.47 1.00 Yorks &the Humber 44 0.04 0.44 1.00

Cereals 20 0.24 0.56 1.00 Cereals 9 0.23 0.41 0.59

Dairy 2 0.44 0.54 0.65 Dairy 5 0.47 0.66 0.79

General cropping 25 0.33 0.66 1.00 General cropping 9 0.37 0.49 0.60

Horticulture 23 0.01 0.30 1.00 Horticulture 8 0.10 0.35 0.75

Lowland grazing
livestock 3 0.14 0.59 1.00 LFA grazing livestock 3 0.43 0.64 1.00

Mixed 5 0.32 0.54 1.00
Lowland grazing

livestock 1 0.42 0.42 0.42

Specialist pigs 6 0.02 0.20 0.64 Mixed 3 0.35 0.52 0.64

Specialist poultry 11 0.00 0.26 1.00 Specialist pigs 3 0.19 0.30 0.50

East Midlands 45 0.04 0.45 1.00 Specialist poultry 3 0.04 0.11 0.22

Cereals 9 0.28 0.52 0.77 North East 16 0.05 0.38 0.81

Dairy 1 0.43 0.43 0.43 Cereals 5 0.34 0.35 0.37

General cropping 13 0.31 0.61 1.00 Dairy 1 0.38 0.55 0.81

Horticulture 13 0.07 0.23 0.50 LFA grazing livestock 6 0.78 0.79 0.81

LFA grazing livestock 1 0.31 0.31 0.31
Lowland grazing

livestock 2 0.11 0.25 0.46

Lowland grazing
livestock 2 0.45 0.69 0.92 Mixed 1 0.26 0.28 0.29

Mixed 3 0.50 0.70 1.00 Specialist poultry 1 0.15 0.15 0.15

Specialist pigs 2 0.04 0.14 0.25 North West 35 0.19 0.32 0.43

Specialist poultry 1 0.10 0.10 0.10 Cereals 2 0.05 0.11 0.18

South East 70 0.04 0.42 1.00 Dairy 13 0.01 0.36 1.00

Cereals 16 0.16 0.49 0.76 General cropping 2 0.28 0.37 0.43

Dairy 3 0.47 0.67 0.83 Horticulture 6 0.47 0.76 0.96

General cropping 6 0.09 0.54 0.75 LFA grazing livestock 3 0.27 0.65 1.00

Horticulture 27 0.04 0.36 1.00
Lowland grazing

livestock 1 0.04 0.17 0.43

Lowland grazing
livestock 7 0.35 0.59 1.00 Mixed 3 0.40 0.40 0.40

Mixed 5 0.16 0.40 0.66 Specialist poultry 5 0.12 0.39 0.86

Specialist pigs 2 0.19 0.23 0.26 West Midlands 43 0.14 0.32 0.65

Specialist poultry 4 0.06 0.09 0.12 Cereals 4 0.15 0.23 0.30

South West 61 0.02 0.40 1.00 Dairy 4 0.01 0.12 0.21

Cereals 4 0.30 0.55 1.00 General cropping 6 0.01 0.33 0.70

Dairy 15 0.15 0.62 0.85 Horticulture 7 0.30 0.39 0.52

General cropping 4 0.23 0.42 0.75 LFA grazing livestock 1 0.70 0.70 0.70

Horticulture 15 0.06 0.31 0.83
Lowland grazing

livestock 6 0.01 0.27 0.48

LFA grazing livestock 2 0.53 0.64 0.75 Mixed 6 0.26 0.27 0.27

Lowland grazing
livestock 7 0.15 0.31 0.51 Specialist pigs 2 0.38 0.38 0.38

Mixed 7 0.12 0.39 0.61 Specialist poultry 7 0.14 0.14 0.14

Specialist pigs 1 0.18 0.18 0.18

Specialist poultry 6 0.02 0.08 0.15
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Effect of farm size and number of outputs

One question is possible about scale efficiencies. Do larger farms use their inputs and capital
more effectively or not? It is hard to separate farm size from the effect of an increased
number of different output steams on the DEA model. Table 66 shows the how the more
different output streams a DMU has the greater its likely technical input efficiency. This is
due to the increased chance that the DMU does not have peers with that combination and
proportion of outputs. This is not evidence for any claims that generalisation is superior to
specialisation per se.

Table 66 Technical input efficiency scores showing the effect increasing number of outputs on
increasing efficiency score and correlated to increasing number of outputs is farm size.

No. of
outputs Count

Mean
ha Minimum mean Maximum

1 131 22 0.01 0.35 1.00
2 82 126 0.10 0.55 1.00
3 80 181 0.07 0.57 1.00
4 62 211 0.07 0.58 1.00
5 41 302 0.13 0.61 1.00
6 10 222 0.27 0.62 1.00
7 3 1200 0.55 0.85 1.00

To further explore the interplay between farm areas, number of output streams produced, and
the technical input efficiency a scatter plot is shown in Figure 76 and a correlation analysis is
shown in Table 67. There seems to be almost two populations. One population is below 500
ha and very variable and the other a space set above 500ha. There could be a weak case for
efficiencies of scale. There is certainly not enough evidence to worry about the assumption of
constant returns to scale assumed in selecting this DEA model. To get a better idea of any
scale effects it would be necessary to aggregate the output streams into constant number
perhaps using value. Given a large enough dataset one could look only at the subset of say 3
outputs and use Tobit regression to identify any trend.

Figure 76 Scatter plots of the relationship between farm size and the number of different output
stream produced and the technical input efficiency scores

0 1,000 2,000 3,000

0

2

4

6

8

10

12

14

16

0 1,000 2,000 3,000

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

N
u

m
b

e
r

o
f

o
u

tp
u

ts

Total adjusted agricultural area, ha

D
EA

te
ch

ic
al

in
p

u
t

e
ff

ic
ie

n
cy

Techincal input efficiency

Number of outputs



FBS Energy Module: Analysis by CU Page 101 of 106

Table 67 Correlation analysis of farm area, number of output streams, and technical input
efficiency showing mild positive correlations.

Total adjusted agricultural
area, ha

Number of
outputs

Technical input
efficiency

Total adjusted agricultural
area, ha 1
Number of outputs 0.46 1
Technical input efficiency 0.27 0.36 1

Concluding discussion on DEA

Data Envelopment Analysis has successfully discriminated relatively efficient from inefficient
DMUs or farms. It has thus identified a set of relevant candidate benchmark farms and
triggered a set of searching questions to account for the discrepancies between the inefficient
farms and their peers. It is clear that the identification of unusual farms is a major outcome of
the analysis. It maybe that the necessary simplifications of the number and measure of
outputs, the approximations involved, or chance play a genuine role in making a DMU appear
inefficient. It must also be remembered that farms are multi-functional in more ways than can
be readily measured.

Various formulations of the DEA, criteria chosen and excluded outliers have been explored,
whilst these changes affect some details in the results there is broad pattern of the efficient
peers being common across formulations suggesting a degree of robustness.

Typically the DMUs or farms are dominated by a small group of efficient peers some distance
away, the histograms often have two peeks one where the majority of the industry is and a
smaller one set of efficient peers that are on the Pareto frontier. This may suggest that outliers
play too big a role in the data, but that at least is a question that the DEA has revealed.

We have looked at farm size, region, type, and organic status as possible explanatory
variables for the observed DEA scores. Some interesting effects due to farm type and organic
status are suggested. However, these remain statistically elusive due to the limited amount of
data available relative to the heterogeneity of the farms.
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8. Future data collection

This subject will be considered in greater depth in a forthcoming project to enhance the UK
GHG inventory (FFG0913) and this study can feed into that activity. The collection of data
and subsequent empirical analysis always generates questions about data quality and
provoking the wish that other questions had been asked and wondering if all questions were
properly understood by the farmers and data collectors. It must be emphasised that we
believe most data were recorded reliably.

Clarity of units

In the case of lime, it was apparent that some confusion had arisen about the data and whether
the units should be t or kg. Such matters need to have robust method for sense-checking. It is
also likely that some records of fertiliser use were erroneously recorded, e.g. the weight of a
product rather than the component of interest (NPK). It may be more reliable to record actual
product purchases by brand name, given that these are receipted items and a simple database
can be created for all approved fertilisers sold in the UK that can contain environmental
information, such as embedded energy and GHG emissions. Such an approach clearly needs
to be tested by farmers and recorders.

Physical units

On some farms, the outputs were recorded only as cash values rather than physical ones. This
particularly applied to horticulture, with its huge array of possible outputs from tomatoes to
bedding plants. It would greatly help such analyses to have all major outputs recorded as
physical units. For horticulture, we recognise that this is not easy, although it should be
reasonably straightforward for food crops at least. On livestock farms that have live animals
as inputs and outputs, we had to make best estimates of liveweights from some sparse data. It
may not be feasible to expect all farmers to record liveweights at sale and purchase, but there
must be cases where such data are known and could be provided. There is also the
opportunity to relate deadweight values back to the farm of origin now that there are lifetime
tagging systems in operation for some types of stock. Some farmers will also have contracts
to produce, for example, broilers or lambs to a particular specification and this would be
known and recorded, possible both as liveweight and deadweight. Future recording to involve
a systematic screening of recorded data to eliminate spurious values and highlight
inconsistencies. Examples could be animal production without feed, or excessively high
fertiliser application rates.

Contracting

This is evidently a growing feature of contemporary farming. It caused some difficulty in
analysing the data and must be a major source of uncertainty. There is a gulf of knowledge
between actual farm records for fuel use and what a contractor may have used. A limited
range of questions were asked and varied in the accuracy with which fuel use could be
estimated. One question that was omitted was whether fuel used by contractors was taken
from the farm tank or provided by the contractors. We took the view that they would usually
provide their own. Activities like spraying per ha can be estimated reasonably accurately, but
others like ploughing per hour depend much more on the field conditions as well as speed of
the operation. The most open ended were ones like manure management operations per hour,
which could include a gang of any number with any amount of equipment. Future questions
should be more targeted, but there is also a need to get good activity data from contractors
themselves. There are at least two aspects to this: one is to get fuel records for the specific
farm being scrutinised from the specific contractor. The other is to engage with contactors
more widely to get better generic data, e.g. through the National Association of Agricultural
Contractors.
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Overheads and non-farming enterprises

It is very likely that most energy gets used in actual farming activities. There were, however,
some uses of fuels that seemed surprisingly high. These included electricity on LFA grazing
farms and road diesel or petrol on most sorts of farms. Some of this could be accounted for
by the farm office or possibly other activities that are not directly concerned with agricultural
commodity production. Greater insight into energy use needs some of these features to be
better understood and quantified. Sub-metering of electricity is one simple technical approach
to obtain better quality data.
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9. Concluding discussion

This analysis has delivered an invaluable baseline estimate of actual energy use and GHG
emissions on contemporary commercial farms in England. Differences between some farm
types are apparent, but not surprising. The effects of scale were limited to poultry and
horticulture. Part of the uncertainty associated with the estimates of mean energy use and
GHG emissions comes from the mixture of enterprises on farms within robust farm types.
Cereals farms may grow other crops or support a variety of animal enterprises.

The use of two allocation methods delivered very useful results and allowed the energy use
and GHG emissions associated with particular commodities to be quantified. These results
were in broad agreement with those derived by LCA. It was also evident in these analyses that
there was much scatter in the environmental performance of farms. It must be acknowledged
that the methods are not perfect: the ideal would be to perform an in-depth analysis of each
farm with many questions being asked of farmers to help explain results. The estimates for
some animal outputs are inevitably less certain than most crops. Liveweight production is
relatively hard to quantify with the data available, e.g. animal weights were not known, but
estimated from prices, the diversity of purchases, sales and breeding is considerable and
opportunism seems to play a large role in some enterprises. So, the uncertainty of the
functional unit as a unit of liveweight is substantial. This is clearly in contrast to milk and
eggs, which are simply recorded as such.

This scatter, together with that in economic performance, must underlie the somewhat
disappointing relationships between farm financial performance and energy use or GHG
emissions. The mere existence of these ranges shows that there is scope for improvement in
both financial and environmental performance and that there is no apparent barrier for both to
be achievable in harmony. The significant, although weak, negative slope for milk production
and energy accords with reports from consultancies of increased profitability and
environmental performance in dairying. DEA has shown considerable potential as a tool for
analysing farm performance, although having a larger sample would have been helpful. At
least, it is a powerful tool for rapidly identifying outliers, but the technique clearly has the
power to go far beyond this.

There may be many reasons for the variations, such as soil texture, rainfall, topography,
farmer type, degree of capitalisation, livestock breeds, machinery age or use the of
contractors. It must also be remembered that this analysis is a snapshot of one farming year.
Between years, there may be yield and price variation as well as capital investments etc. More
detail is needed to understand why the variation occurs and data from more years are needed
to track changes.

In some cases, the allocation of energy use was slightly problematic in that high allocations
of, say, electricity or a heating fuel were made on some farms in farm types where little
electricity use might be expected for the farm operations themselves, e.g. LFA grazing. This
suggests that energy used in the office could be distorting what is used for the actual farm
activities. Nonetheless, this type of energy use is part of an overall farm activity, but not one
that is usually included in LCA studies.

One area in which there was not enough data to make a substantial analysis was of organic
production. This was because of the very limited data available, with small numbers of farms
of different types and relatively high diversity of outputs. There is no fundamental reason
why the analysis can not be applied to organic systems; it just needs more data.

The recording of energy related data on farms is essential for the future, as it should enable
improvements to be made. The improved UK agricultural GHG inventory will depend on high
quality activity data as well as improved and more specific emission factors. The experience
gained in this study will be invaluable in identifying what level of detail of data is needed.
Future data requirements include a better understanding of contractor work rates and fuel use
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per unit area and per unit time, fertiliser and pesticide use by brand name, enhancing the
quality of the physical inputs and outputs of farms, especially animal liveweights and
horticultural produce being recorded by weight rather than by value. Future recording to
involve a systematic screening of recorded data to eliminate spurious values and highlight
inconsistencies. Examples could be animal production without feed or excessively high
fertiliser application rates. A larger sample of organic farms is also needed to allow a
conclusive analysis to be made.
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