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Abstract

An overview of the progress of research work on the aerodyamics and aeroacoustics

of three-dimensional cavities at transonic speeds is presented with special attention to

identify the flow structures responsible for resonant tones. The cavity length to depth

(L/D) ratio values were chosen to focus the investigations mainly in the open cavity flow

regime. The cavity geometries considered also included the cavities with stores.

In the first part of this project, a two-step computational solver which involves the

solution of the Navier-Stokes equations in the first step, and an integral surface solution

of the Ffowcs-Williams and Hawkings equation in the subsequent step, is developed

especially for the accurate capturing of aeroacoustic phenomena. The solver developed

is validated using a wide range of test cases and it also used to study an empty cavity

unsteady flow problem at transonic speed. In addition, the solver was tested for its

robustness by computing flow around an isolated landing gear.

In the second part of the thesis, a general purpose CFD solver was used to tackle

complex geometry problems which included cavities with missiles and spoilers. The

flow field within the cavities investigated is shown to be dominated by highly unsteady

periodic phenomena. The oscillation mechanism and the internal flow structures are

found to remain largely unaffected by the presence of stores, however, the spanwise

variation on the flow is limited.
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Chapter 1

Introduction

The purpose of this chapter is to provide an outline of the relevant past research works

which places the research work presented in this thesis into context. The aims and

objectives of the research are stated at the end of the chapter.

1.1 Overview

Aerodynamically-generated noise is a small undesirable by-product of unsteady fluid

motion which is apparent in all modern means of transportation. From ground vehicles

(road vehicles, high-speed trains) to commercial and military aircraft, aerodynamic noise

emission is posing a major environmental problem. In the context of air transport, the

pressing environmental challenge the world is facing due to aerodynamic noise has

long been identified. Although significant progress has been made in the reduction of

noise from individual aircraft, continued growth in civil air traffic has outstripped these

efforts. The tremendous growth in air traffic in recent years is, therefore, increasing the

pressure from the public to control the noise from aircraft, such that aerodynamic noise

now represents a potential barrier to future air traffic growth. Hence, noise reduction

technology is critical to the future development, expansion, and operation, of the world

air transportation system. It is anticipated that with the projected increase in air travel

aeroacoustics research will be more critical for the certification of future aircrafts.

In addition, noise issues are also known to be important on account of structural

concerns, especially, it cannot be ignored for the world’s ageing aircraft fleet. Higher

acoustic loads on aircraft translates to more expense and more weight for reinforced

aircraft structures [Raman & McLaughlin (2000)]. Especially in aerospace applications,

cavities or surface cutouts are common and are also well documented in aerodynamic

noise studies. Flow over a simple cavity geometry produces complex flow features

such as flow-induced resonant tones, multiple flow and acoustic instabilities and wave

interactions. The effects of these flow features are found to be severe in applications such

as wheel wells, weapons bays, and other fuselage openings. Internal weapons bays on

military aircraft, in particular, have several design advantages. Reduced aerodynamic

drag, low radar cross-section and avoidance of aerodynamic heating of the store are a

few examples of these. However, once the weapons bay doors are opened, the resultant

flowfield in the cavity is dependent on the cavity geometry and the freestream flow
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1.1. Overview

conditions. The resultant flowfield then interacts with the stores at the beginning of

the store release leading to several undesirable aerodynamic effects. Firstly, the self-

sustaining pressure fluctuations in the cavity cause cavity resonance which in turn leads

to structural fatigue of the aircraft and the store. Secondly, the interaction of the store

with the unsteady shear layer formed over the cavity can lead to unpredictable motion of

the store.

To address these issues, an efficient technique to control and reduce the noise emis-

sions is required, and the obvious choice to achieve this is by reducing the noise at source.

This means that a detailed understanding of the nature of the source responsible, its noise

generation mechanisms and the noise radiation characteristics, is required. Hence, a com-

putational solver which is capable of accurately modelling the flow physics responsible is

essential. Computational techniques can also be used as a tool for the development of flow

control. This project is also motivated by the structural and environmental challenges

posed by acoustic fluctuations in cavity geometries. It also includes the computational

study of the effects of the store on the aerodynamic and the aeroacoustic characteristics

of a cavity. The ultimate aim is to propose a suitable flow control and/or design change

to reduce the acoustic signature of aircraft with minimum aerodynamic penalty.

2
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Chapter 1. Introduction

1.2 Literature Review

A literature review relevant to current research is presented in this section. This includes

introductory background, advances in cavity research, computational methodologies and

computational solver developments.

1.2.1 Cavity Aeroacoustics

Cavity flow research has been evolving continuously for more than 100 years with work

dating back to as early as 1875. Helmholtz (1875) developed an analytical expression for

the flow resonance process. Helmholtz’s work was further developed by Rayleigh (1896)

who, using energy equations for compressible fluids, made adjustments for different

mouth geometries over the resonant chambers. Rayleigh’s studies, which he modelled

as an equivalent spring-mass system for oscillating compressible fluid in the chamber,

showed that the kinetic energy of the fluid in the cavity mouth was stored by the com-

pressibility of the fluid in the cavity chamber. These early works, although relevant to

cavity flow studies, were not explicit studies of cavity flow characteristics. The study of

the aerodynamic properties of cavity flowfields did not start until the mid 20th century.

One of the early works to study cavity flow physics was carried out by Owen (1958)

during 1952 and 1953 at the Royal Aircraft Establishment. His investigation, which in-

volved low speed wind tunnel experiments, found the pressure fluctuations to be random

for shallow and moderately deep bomb bays. He also found that for a given bay geometry

the fluctuating pressure was proportional to free-stream kinetic energy. Similar studies

by Norton (1952) carried out in America at the time on a B-47 aircraft at rather higher

speeds showed that, in addition to the random pressure fluctuation, strong periodic fluc-

tuations may occur in the flow over bomb bays. The nature of these periodic fluctuations

was studied by Krishnamurty (1955) and Plumblee et al. (1962). Krishnamurty found,

experimentally, that the periodic pressure fluctuations are accompanied by strong acous-

tic radiation from the cavity and that their frequency increases with the airspeed and

decreases with increasing cavity length. On the other hand, Plumblee et al. proposed,

analytically, that the periodic fluctuations in the cavity were due to an acoustic resonance

excited by the unsteadiness in the boundary layer approaching the cavity. But this conjec-

ture fails when the boundary layer approaching the cavity is laminar because the periodic

pressure fluctuations exist even in the case of laminar flow. Wind tunnel experiments

were also conducted on flow over cavities at subsonic and transonic speeds by Rossiter

(1966) to better understand the cavity flow characteristics. Rossiter’s study showed that

unsteady pressures in cavities exposed to subsonic and transonic flows may contain both
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random and periodic components. However, generally, the random component predom-

inated in shallow cavities (L/D > 4) and the periodic component predominated in deep

cavities (L/D < 4). In his experiment, a resonance mechanism similar to the mechanism

devised by Powell (1953) of edge tones within the cavity appeared to be responsible

for the periodic component of pressure fluctuation. The measured periodic components

were found to be as high as 35% of the free-stream dynamic pressure. These works of

Krishnamurty (suggesting strong acoustic radiation from the cavity) and of Rossiter (on

the presence of a resonance mechanism responsible for the periodic pressure fluctuation

in the cavity) were early breakthroughs in the description of flow oscillation mechanisms

based on acoustic resonance specifically for cavity flows. They will serve as the starting

point for the subsequent sections in this literature review.

1.2.2 Cavity Flow Types

Early studies based on the analysis of wake flows by Charwat et al. (1961a,b) led to the

characterisation of three distinct types of cavity flows based on the cavity floor pressure

distributions, which are primarily dependent on the geometry of the cavity. These were

categorized as open, closed and intermediate flows. In the 1980s, Stallings & Wilcox

(1987) studied cavity pressure distributions at supersonic speeds experimentally. Their

work led to a more detailed classification of the flow types and the intermediate flow type

was further explained and divided into transitional open and transitional closed flow.

Cavity flows are usually classified by the length-to-depth ratio (L/D) of the cavity

and four different types of cavity flows are categorized depending on the value of this

ratio. Cavity flows, however, exhibit a wide variety of phenomena whose precise nature

depends sensitively on a number of parameters including the value of L/D. In the

literature, vastly different values of L/D have been quoted to define the flow types. For

instance: L/D < 7 for open and L/D > 13 for closed cavity flow is reported in Stallings &

Wilcox (1987) whereas L/D < 10 for open and L/D > 13 for closed cavity flow is reported

in the work of Plentovich (1992). Similarly, Dix & Bauer (2000) quote L/D < 9 for open

and L/D > 13 for closed cavity flow whereas Srinivisan & Baysal (1991) quote L/D < 3 for

open and L/D > 10 for closed cavity flowfields. Tracy & Plentovich (1992) investigated

the variations in the values of L/D and concluded that the vast disagreements in the

literature were due to the dependence of the cavity flow type on Mach number as well

as L/D. The other important of parameters that affect cavity flow types are incoming

boundary layer thickness (δ), ambient density (ρ), viscosity (µ), and speed of sound

(a0). Although the underlying physical mechanisms vary, it is known that self-sustaining

oscillations develop over a wide range of these parameters.

4
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Open Cavity Flows

Open cavity flows are found to have, compared to all flow types, a more organized

character and are often dominated by highly periodic phenomena. Such flow types are

widely present in many aerospace applications, such as wheel wells, weapons bays, and

other fuselage openings for sensors. Unsteady flow approaching such a cavity forms

an oscillating free shear layer when the flow separates from the upstream edge of the

cavity. The shear layer bridges the cavity and re-attaches at a point on the downstream

wall, thus forming a large captive eddy within the cavity. When the cavity flow is

stable a nearly uniform longitudinal static pressure distribution is established. This is

desirable for safe store separation. However, strong acoustic tones can develop due to the

strong interactions between instabilities in the shear layer and the vortices present in the

cavity. These high intensity acoustic tones which occur at specific frequencies, can lead

to structural vibration of aircraft components and the surrounding structure (including

the separating store) leading further to structural fatigue.

Numerous investigations have been conducted to gain insight into cavity flow dy-

namics e.g. Krishnamurty (1955); Rossiter (1966); Charwat et al. (1961a,b); Rockwell &

Naudascher (1978, 1979) and there is now an understanding that open cavity flows can

produce self-sustained oscillations and interactions between the shed vortices inside and

outside the cavity. These oscillations are undesirable as they can induce structural vi-

bration and fatigue, noise radiation and substantial increases in mean drag. A detailed

account of the oscillation mechanism based on past studies will be given in a later section.

Figure 1.1(a) shows a basic representation of the open cavity flowfield model for subsonic

and supersonic speeds. This research project is also concerned with the investigation of

open cavity flow regimes.

Closed Cavity Flows

Closed cavity flows are associated with cavities having L/D ratios typically greater than

13. In this type of flow regime, the shear layer which forms as the incoming boundary

layer separates at the cavity leading edge, reattaches along the floor of the cavity, before

separating again ahead of the downstream wall. This creates two distinct separation

regions, one downstream of the leading face and one upstream of the trailing face. Such

flows are characterized by adverse static-pressure gradients along the cavity floor. The

closed cavity flow at subsonic speeds is also characterized as responding in the wake

mode as it exhibits a bluff body wake behaviour resulting in pressure fluctuations that

are generally broadband in nature. Gharib & Roshko (1991) studied the closed cavity
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1.2. Literature Review

flowfields and found it similar to bluff body wakes, hence the name. In this class of

cavity flows, self oscillations cease (unlike in open cavity flows) and the cavity flow

becomes unstable on a macro scale which results in greatly increased drag. The pressure

distribution in this class of flow consists of three separate stages associated with the flow

dynamics. The sharp longitudinal static pressure gradient present within the cavity can

cause dangerously large pitching moments on any separating stores. A typical closed

cavity flowfield for both subsonic and supersonic speeds can be seen in Figure 1.1(d).

Transitional Cavity Flows

An experimental study of cavity flow behaviour at supersonic speeds by Stallings &

Wilcox (1987) led to classification of cavity flow types into transitional closed and tran-

sitional open cavity flows, and these types of flow occur for values of L/D that lie in

the range between open and closed cavity flows i.e. typically 7 < L/D < 13. Detailed

investigations of the cavity flowfield were carried out by varying the cavity length (and,

hence, L/D). Firstly, with the cavity flowfield being of the closed type, the cavity length

was decreased until the flowfield changed to open flow. Secondly, the length of a cavity,

with the flowfield well inside the open flowfield regime, was gradually increased until

the flow changed to closed type. In this way, two critical L/D ratios were recorded cor-

responding to the change of flowfield types. The data showed that the critical L/D ratio

obtained by increasing the cavity length was greater than that obtained by decreasing

cavity length. This hysteresis effect on the value of L/D ratios increased with increasing

Mach number. The transitional cavity flow type occurs in between the two values of the

critical L/D ratios.

Transitional closed cavity flow occurs at the lower L/D boundary of the closed cavity

flow. In this case the impingement and exit shocks that normally occur for the closed

cavity flow types at supersonic speeds coincide to form a single shock. Large longitudinal

pressure gradients, as in the case for closed cavity flows, are present in the cavity and

can cause large pitching moments to exist on any store being released from the cavity.

With a further small reduction in L/D value from transitional closed cavity flow, the

impingement and exit shock waves transform abruptly into a series of compression

wavelets. This suggests that the shear layer still enters the cavity but it does not impinge

on the cavity floor. This type of flow is referred to as transitional open cavity flow.

Longitudinal pressure gradients are present within the cavity, though they are not as

severe as for the transitional closed cavity flow. Hence, pitching moments on the stores

are also less severe. Figure 1.1(b-c) shows typical flow characteristics of transitional open

and transitional closed cavity flows, respectively, at supersonic speeds.

6
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1.2.3 Physics behind Cavity Flow Oscillations

Many studies have been conducted to understand the fundamental fluid mechanics asso-

ciated with open cavity flow oscillations e.g. Krishnamurty (1955); Plumblee et al. (1962);

Rossiter (1966); Gharib & Roshko (1991). Open cavity flow fields can exhibit a number

of different flow oscillation characteristics depending on the flow conditions and cavity

geometry. The study of Rockwell & Naudascher (1978) defined these oscillation charac-

teristics and categorized them into three different oscillation types which are described

below.

Fluid Dynamic Oscillations

Fluid dynamic oscillations occur in cavities with a short length compared to the acoustic

wavelength. The frequencies of such oscillations can be traced to the selective amplifica-

tion of the vorticity fluctuations inside the cavity shear layer. The primary mechanism for

the existence of these oscillations is the amplification of unstable disturbances in the cavity

shear layer and this process is strongly enhanced by the presence of the downstream edge

of the cavity. The cavity downstream edge enhances the upstream propagation of distur-

bances which is the feedback condition. Two parameters can, therefore, be emphasized

for the existence of these oscillations: the selective amplification condition of the shear

layer and the feedback process. Selective amplification of shear layer instabilities, which

causes some disturbances to be amplified more than others, is necessary for the generation

of large amplitude oscillations. But this is not a sufficient condition because, without the

existence of an effective feedback mechanism, the oscillations would eventually die.

Fluid-Resonant Oscillations

Fluid-resonant cavity oscillations occur when the oscillation is strongly coupled with

resonant wave effects within the cavity. For this class of oscillations, the frequencies

are sufficiently high such that the acoustic wavelength is typically of the same order of

magnitude as the cavity characteristic length e.g. L or W. Within the context of the open-

flow regime, the nature of the flow oscillations is further dependent on the L/D. According

to Tracy & Plentovich (1993) if the value of L/D is sufficiently large, longitudinal standing

waves may exist and the cavity is termed a shallow cavity. Similarly according to East

(1966), transverse waves may exist in the the cavity if the value of L/D is sufficiently

small, and such a cavity is, then, called a deep cavity. Although the values of L/D which

define these two classes have not been precisely identified, shallow cavity behaviour
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is usually found to occur for L/D > 1, while deep cavity behaviour usually occurs for

L/D < 1 according to Rockwell & Naudascher (1978). The development of either of these

two resonant modes of oscillation is dependent upon several interacting events. For

deep cavities at low Mach number it was found in the work of East (1966) that discrete

frequency oscillations exist only over a limited velocity range, indicating an effective

discrete feedback mechanism in the shear layer rather than broadband disturbance energy

from the shear layer that is mainly responsible for the resonance. For the range of

geometries and flow conditions investigated the resonant frequency was found to decrease

as either length or depth was increased.

Fluid-Elastic Oscillations

If one or more of the cavity walls deform elastically to an extent such that the feedback

mechanism of the shear layer instabilities is established, then fluid-elastic oscillations

occur. In fact, it can be assumed that the vibrating structure has the same effects as the

resonating wave does in fluid resonant oscillations. Amplification of the shear instabilities

is via a resonant-type process as in fluid-resonant oscillations and the frequency response

of the system is the same as the natural frequency curves of a structural oscillator. This

type of oscillation is very complex and more challenging than the previous two because

there is an inherent flow-structure interaction in the system. This interaction requires

an account for inertial, elastic and structural damping characteristics and their mutual

interactions while describing the mechanism for self-sustained oscillations.

Cavity Flow Control Techniques

In the previous sections, it was highlighted that the flow approaching a simple cavity

produces a rich variety of complex flow phenomena including resonant tones, multiple

flow and acoustic instabilities, and complex wave interactions. A wide spectrum of

research activities [Vakili & Gauthier (1994); Raman et al. (1999); Huang & Weaver (1991);

Cattafesta et al. (2008); Lawson & Barakos (2009)] to control these complex cavity flow

behaviours is ongoing across the globe. Although initially the solution might seem

simple enough such that any scheme that disrupts the resonance mechanism can be used

to suppress resonant tones, finding a practical solution is not straightforward. There are

currently three main approaches which are being used to vary the way the flow behaves

in the cavity. They are: passive, active open-loop, and closed-loop flow controls. Passive

methods involve manipulating the cavity geometry by either modifying the cavity walls

slanting angle or adding mechanical devices to deliberately alter the flow inside the cavity.

8
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The other two methods involve manipulating the flow inside the cavity by devices that

require external energy input e.g. jets or oscillating flaps. They can be either of the open- or

closed-loop types. Closed-loop control requires the implementation of a feedback loop in

the control system allowing it to continuously monitor and update the control parameters

to match the changing flow conditions. Hence, closed-loop control systems are more

suitable for time-varying and off-design situations. The closed loop system developed

by Cattafesta et al. (1999) to suppress the resonant modes from a weapons-bay was not

very successful, although this was blamed on the poor performance of the actuators.

Active open-loop methods have been found to be limited by actuator bandwidth, and

they require large actuator power to be effective [Cattafesta et al. (1999)] whereas closed-

loop techniques introduce greater complexity and are not mature enough yet. At this

point, it is important to point out that passive and active open-loop schemes break the

resonance cycle in a fundamentally different way to the closed-loop counterparts. Because

the dynamics of a linear system cannot be changed with open-loop control, any open-

loop method used to modify the cavity resonance cycles must do so at finite amplitudes,

typically at amplitudes comparable to the tones being suppressed. By contrast, closed-

loop control can act by changing the dynamics of the linear system, which implies that

low-power actuators can be used effectively. A classification of various flow control

schemes is depicted in Fig 1.2 [Cattafesta et al. (2003)]. In this research thesis, passive

devices are considered for cavity acoustic suppression.

1.2.4 Cavity Flow Modelling and Developments

An important and common phenomenon associated with all classes of cavity flow is

increased noise radiation. Far-field noise measurements presented by Yu (1977) indicate

the acoustic power is proportional to the sixth power of the freestream velocity for shallow

cavities, and is proportional to the 4.7th power for deep cavities. The published data for

the amplitudes of oscillation exhibit considerable scatter even for similar Mach numbers

and cavity geometry. Colonius (2001) suggests that this may be primarily due to the

influence of differences in the nature of the boundary layers at separation on the instability

characteristics of shear layers that span the cavities.

The first description of the phenomena governing shallow cavity oscillations dates

back to earlier experimental work conducted by Rossiter (1966). The Rossiter model is

based on the idea of an acoustic feedback cycle, similar to that put forward by Powell

(1953) in his work on edge-tones. The theory may be summarized as follows: vortical

disturbances originating at the leading edge of the cavity travel downstream and impinge

on the downstream cavity corner, generating acoustic disturbances. These acoustic waves
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then propagate upstream to the region near the shear layer separation point where they

induce localized vortical fluctuations, thereby closing the feedback loop. Realising that

these events must be synchronized, Rossiter derived the following semi-empirical formula

to predict the resonant frequencies

fn =
U∞
L

 n − α
M∞ + 1

K

 (1.1)

where fn is the frequency corresponding to the nth mode, M∞ is the freestream Mach

number, K is the ratio of disturbance velocity in the shear layer to the freestream velocity

and α is an empirical constant employed to account for the phase lag between the passage

of a vortical disturbance past the cavity trailing edge and the formation of an upstream

travelling disturbance. The value of α depends on the L/D and is evaluated as : α =

0.062(L/D).

Rossiter’s model is generally found to agree well with experimental results at mod-

erate subsonic Mach numbers. Heller et al. (1971) found that the temperature recovery

within the cavity was important at transonic and supersonic Mach numbers and hence

it was essential to account for the increased speed of sound within the cavity. To accom-

modate these high Mach number ranges, various alternative semi-empirical models have

been developed by several authors, e.g. Heller et al. (1971), Tam & Block (1978). Heller

et al. (1971) proposed a modification to Rossiter’s equation (1.1) to account for the higher

speed of sound within the cavity for cavity flows at high Mach numbers thus:

f =
U∞
L

 n − α

M∞
[
1 +

(γ−1)
2 M2

∞

]− 1
2

+ 1
K

 (1.2)

where γ is the ratio of specific heats of the test fluid (γ = 1.4 for air).

The linear analysis of Tam & Block (1978) merits some discussion as it is the most

sophisticated approach of all, offering a more complete and physical explanation of noise

generation by shallow cavities. In this model, sound generation at the downstream edge

is modelled as a simple line source along the trailing edge, that alternately produces

compression and rarefraction waves as the shear layer is deflected into and out of the

cavity. The effects of reflection from the cavity walls are incorporated through image

sources. At the upstream edge of the cavity, the phase difference between the pressure

waves, within and outside the cavity, results in a pressure difference that excites the shear

10
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layer and completes the feedback mechanism. By including the effects of finite shear

layer thickness in their model, Tam and Block were able to obtain good agreement with

their experimental data. Apart from the prediction of the possible modes of resonance

using the above mentioned semi-empirical models, the inherent complexity of cavity

flows has, to date, stalled the further development of more complete analytical models.

Numerical models have, therefore, played an important role in the development of our

understanding of cavity flow physics. Although computational resources have increased,

so too has the complexity and sophistication of numerical models. To date, the majority of

work has been based on time-dependent Reynolds-averaged Navier-Stokes simulations

e.g. Srinivisan & Baysal (1991); Grace (2001); Henderson et al. (2000); Takeda & Shieh

(2004), although more recent works have shown promise with the Large Eddy Simula-

tions of Rizzetta & Visbal (2003) and, more importantly, hybrid RANS/LES methods of

Arunajatesan & Sinha (2003); Xiao et al. (2003, 2004).

1.2.5 Overview of Aeroacoustic Research

The study of aeroacoustics is mainly concerned with noise produced by aerodynamic

sources including turbulence and moving aerodynamic surfaces. An integral component

of the acoustic analysis of these sources is the aerodynamic field generated by them which,

in essence, acts as the source of noise. Also, aeroacoustics is concerned essentially with a

small by-product of fluid flows whose internal dynamics can generally be assumed to be

negligibly small. This initially gives rise to hope that the flow dynamics will be more or

less decoupled from the wave motion and hence an assumed knowledge of the flow can

be used to predict the wave motion. However, flow variables defining a turbulent flow

cannot be defined with any degree of confidence which suggests that aeroacoustic theory

should be formulated in such a way that it demands the minimum information from the

flow. Hence, great care is needed while approximating the aerodynamically generated

noise. Firstly, it is a small by-product of the aerodynamic flow field. Secondly, even

though the approximations regarding the aerodynamic field may be safe enough, they

can be fatal for the by-product. Large errors are, therefore, likely even with reasonable

approximations.

Aerodynamic Noise Theory

Aerodynamic noise research is a relatively new subject and the modern theory of aerody-

namic noise did not come to light until the pioneering work of Sir James Lighthill (1952)

in early 1950s. Lighthill established the theory of aerodynamic noise, which was based
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on the exact Navier-Stokes equations. Considering the idealized problem of predicting

the sound produced by a finite region of turbulent flow embedded in an otherwise ho-

mogenous fluid with constant speed of sound, a0, and density, ρ0, and assuming that the

density fluctuations at large distances from such a turbulent region behave like acoustic

waves, Lighthill demonstrated that the exact equations of continuity and momentum

could be rearranged into an inhomogeneous wave equation, now known as Lighthill’s

equation:

∂2ρ

∂t2 − a2
0∇

2ρ =
∂2Ti j

∂xi∂x j
. (1.3)

where Ti j is Lighthill’s stress tensor, given by Ti j = (ρuiu j + pi j − a2
0ρδi j) and a0 is the speed

of sound in ambient air. This rearrangement of the Navier-Stokes equations introduced

the concept of the acoustic analogy (popularly known as Lighthill’s acoustic analogy),

which simply states that there is an analogy between the density fluctuations in any

real flow and the small fluctuations in density that would result from a distribution of

quadrupole-type acoustic sources in a fictitious non-moving medium with sound speed

a0. Lighthill solved the above wave equation using properties of generalised functions

(see the work of Farassat (1994) for details), and obtained the final solution presented

below:

ρ − ρ0 =
1

4πa2
0

∂2

∂xi∂x j

∫
V

Ti j(y, t − r
a0

)

r
dy. (1.4)

The application of Lighthill’s acoustic analogy to any aerodynamic noise problem is

dependent upon being able to specify Lighthill’s stress tensor (Ti j)1 to sufficient accuracy.

In actual fact, Lighthill’s equation is a coupled integro-differential equation for density,

since this appears as the independent variable and also in the source term. The evaluation

of the noise source, therefore, requires a complete knowledge of the flowfield, including

the sound field. This, however, is rarely available and so in practical applications of

Lighthill’s acoustic analogy it is necessary to assume that the sound waves present in the

flow do not modify the flow itself. Lighthill’s stress tensor can then be approximated by

replacing the fluctuating instantaneous density by the ambient density and the remaining

flow variables estimated from aerodynamic principles. This is the virtue of Lighthill’s

1Tensorial suffices used are for representing the vector components. Both the suffix form and the bold

face symbols are used to denote vectors, the choice being made either in accordance with convention or

conciseness of the formulae. With the usual convention of vector and tensor analysis, therefore, the terms

with a repeated suffix are to be regarded as summed over all possible values of the suffix.
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approach; it is capable of producing a good approximation of the order of magnitude of

the sound radiated from a turbulent flow, even when the actual unsteady flow field itself is

only available in very approximate detail. In fact, Lighthill’s celebrated eighth-power law

is a result of an early exploitation of this very feature. Assuming only that the quadrupole

sources scaled with the variables defining the hydrodynamic mean field, Lighthill was

able to show that the acoustic power radiated from a jet at low Mach number scaled with

the eighth power of the jet velocity, establishing the turbulence of the jet mixing layer as

the main source of noise and showing jet speed to be the principal parameter determining

the overall noise.

Hence, although Lighthill’s theory is based on the exact Navier-Stokes equations, the

answer obtained from Lighthill’s theory is only as accurate as the equivalent acoustic

source terms, which must be calculated or measured for the given unsteady or turbulent

flow. In Lighthill’s equation, the acoustic sources are treated as a distribution of equivalent

point sources, whose strengths are obtained from Lighthill’s stress tensor Ti j, where Ti j

is derived from the properties of the unsteady or turbulent flowfield. The theory also

assumes the absence of a solid boundary and hence insignificant back reaction of the

sound produced on the flowfield itself (i.e. the sound produced is so weak relative to the

motions producing it that no significant flow-acoustic interaction can be expected unless

there is such a resonator present to amplify the sound). However, when the source mean

flow is non-uniform, the propagation of sound waves through it involves flow-acoustic

interaction. This has been discussed by Renaut & Rosemary (1997) in detail. Also, this

theory accounts only for the energy which escapes in the form of sound from the flow

and its directional distribution, and is confined in its application to completely subsonic

flows.

Curle (1955) extended Lighthill’s theory to account for the effect of solid boundaries.

He pointed out that the presence of solid boundaries can affect the acoustic propagation

in two ways. Firstly, the sound produced by quadrupole sources in Lighthill’s theory will

be reflected and diffracted by the solid boundary. Secondly and most importantly, the

quadrupoles will no longer be distributed over the whole of the space but only the region

external to the solid boundary. It is, therefore, possible to have a resultant distribution

of dipoles (or monopole sources) at the boundaries. Dipoles are especially likely since

in acoustics they correspond to the externally applied forces and such forces are present

between the fluid and the solid boundary. The modified version of Lighthill’s solution

proposed by Curle, which now consists of a volume as well as a surface integral, is

ρ − ρ0 =
1

4πa2
0

∂2

∂xi∂x j

∫
V

Ti j(y, t − r
a0

)

r
dy −

1
4πa2

0

∂

∂xi

∫
S

Pi(y, t − r
a0

)

r
dS(y). (1.5)
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where,

Pi = −` jPi j.

and ` j is the direction cosine of the outward normal to the fluid. In Curle’s solution,

an extra surface integral is included which is equivalent to the sound generated by a

distribution of dipoles of strength Pi per unit area in a medium at rest (Pi is exactly the

force per unit area exerted on the fluid by the solid boundaries in the xi direction). Also,

the volume integral in Curle’s equation is different from that in Lighthill’s equation. The

difference arises from the effect of the impact (on a solid boundary) of sound waves from

the quadrupoles. Curle proposed the sound field as the sum of that generated by a

volume distribution of quadrupoles and by the source distribution of dipoles.

Ffowcs-Williams & Hawkings (1969) extended the Lighthill-Curle theory to evaluate

the density field radiated by turbulence in the presence of arbitrarily moving surfaces

which, when expressed in terms of generalised functions (as illustrated in the work of

Farassat (1994)), is:(
∂2

∂t2 − a2
0∇

2
) (
ρH( f )

)
=

∂2

∂xi∂x j

(
Ti jH( f )

)
−

∂

∂xi

(
Liδ( f )

)
+

∂

∂t
(
Unδ( f )

)
. (1.6)

where,
Ti j = ρuiu j − τi j +

[
(p − p0) − a2

0(ρ − ρ0)
]
δi j.

Li = Li jn̂ j =
[
ρui(u j − v j) + p′i j

]
n̂ j.

Un = Uin̂i =
[
ρ(ui − vi) + ρ0vi

]
n̂i.

p′i j = (p − p0)δi j − τi j.

In aeroacoustic literature, the three terms on the right hand side of the Eq.B.24 are

known as quadrupole, loading and thickness source terms, respectively. The thickness

and loading source terms are surface distributions of sources as indicated by δ( f ). When

the control surface encloses a physical surface, the thickness source accounts for the

displacement of fluid produced by the body and the loading source accounts for the

unsteady loading exerted by the body on the fluid. The quadrupole source, a volume

source distribution as indicated by H( f ), accounts for all the non-linearity in the region

external to the control surface. Solutions to the above equation can be presented in

various forms. Below is one of the frequently used forms (a detailed derivation is given

by Farassat & Succi (1983)).

14
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a2
0
(
ρ − ρ0

)
H( f ) =

∂2

∂xi∂x j

∫
V

[ Ti j

r |1 −Mr|

]
τ∗

dV +

∫
S

[ Qr+̇Qr

r (1 −Mr)2

]
τ∗

dS

+
1
a0

∫
S

[ Fr

r (1 −Mr)2

]
τ∗

dS +

∫
S

[ Fr + Fm

r2 (1 −Mr)2

]
τ∗

dS

+
1
a0

∫
S

[Fr
(
rMr+̇a0Mr − a0M2

)
r2 (1 −Mr)2

]
τ∗

dS

+

∫
S

[Qr
(
rMr+̇c0Mr − a0M2

)
r2 (1 −Mr)3

]
τ∗

dS. (1.7)

1.2.6 Acoustic Analogy

Acoustic analogies are reformulations of the governing fluid flow equations (compressible

Navier-Stokes equations). In this method, the Navier-Stokes equations are rearranged in

the form of an inhomogeneous wave equation with source terms on the right hand side.

Source terms are then made independent of the fluctuating acoustic variables with some

assumptions. Such a formulation represents a linear wave problem at rest with equivalent

acoustic sources (monopoles, dipoles and quadrupoles) derived from an unsteady flow.

Hence, an aeroacoustic problem (based on instability in fluid flow), can essentially be

converted into a problem of classical acoustics. This is the reason why the formulations

based on this approach are widely known as acoustic analogies. The methods based on

these acoustic analogies (first pioneered by Lighthill and then later extended by Curle

(1955) and Ffowcs-Williams & Hawkings (1969)) require only the information on the near-

field flow to predict farfield noise, and hence provide a viable alternative to computational

aeroacoustics (CAA - see Section 1.2.7). This, therefore, means that a farfield noise data

at a very large distance can be calculated using a nearfield CFD results, i.e. it avoids the

requirement to have a CFD domain which covers source and observer locations. This is the

method most widely used in current aeroacoustic simulations. Some of these techniques

will be explained in subsequent sections. One of the interesting aspects of integral

methods is that the required computational time is independent of the observer distance.

However, increasing the observer distance means an increased amount of analysis data,

and hence a higher storage requirement. Integral methods require knowledge of the

aerodynamic flowfield around the body surface, which then permits one to evaluate the

acoustic pressures at any point in the field by executing a certain number of integrals.

A typical aerodynamic noise calculation, therefore, is performed in two steps, popularly
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known as a hybrid method. In the first step, CFD calculations are performed to retrieve

the necessary flowfield variables demanded by the integral formulations in the second

step. Then an integral formulation is applied to propagate the disturbances to the farfield.

It is necessary to comment on the finding of Tam (2002) that the acoustic analogy should

not be taken as the absolute answer by acoustic researchers. Tam pointed out that the

acoustic analogy fails to identify correct acoustic sources in turbulent flows, and may

not be a suitable tool for noise problems where large turbulent structures and fine-scale

turbulence define radiated sound fields (e.g. high Mach number flow, jet noise problems).

This is not always true. There should be no dispute over the fact that the acoustic analogy

can be used to predict the radiated noise as long as the nature of turbulence is known in

sufficient detail. Hence, it is not the acoustic analogy which fails to identify the correct

acoustic sources in turbulent flows but the choice of turbulence model which determines

the accuracy of the noise prediction. As there is no absolute answer to the best choice of

turbulence model (which in itself depends on the individual problem), so is the case for

aeroacoustic simulations.

Ffowcs Williams-Hawkings (FW-H) Formulation

This formulation is the most widely used for noise radiation studies and was derived

by Ffowcs-Williams & Hawkings (1969). It is based on an exact rearrangement of the

continuity equation and the Navier-Stokes equations into the form of an inhomogeneous

wave equation with two surface source terms (monopole and dipole) and a volume

source term (quadrupole). This formulation embodies the most general form of the

acoustic analogy. It permits the use of both impenetrable walls as well as permeable

interior surfaces off the wall as integration surfaces. Therefore, it is able to deal with

much broader classes of acoustic problems than can Curle’s integral formulation, as

reported in the work of Kim et al. (2003). It is linear when the quadrupole distribution

is neglected, which is valid in the case of many subsonic applications. Taking into

account quadrupole source terms requires substantially more computational resources

due to the need for volume integration. It is, however, necessary to take into account the

volume source term when calculating the noise radiated in high-speed flow conditions

(e.g. transonic and supersonic flows). Another advantage is that the three source terms

present in this method each have physical meaning. This was demonstrated in the study

by Brentner (1986) in the case of helicopter rotor noise. The monopole source term in Eq.

B.24 represents the thickness noise and is determined completely by the geometry and the

kinematics of the body. The second term (dipole source), on the other hand, represents the

loading noise and is generated by the forces that act on the fluid as a result of the presence
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of the body (i.e. rotor in this case). Finally, the volumetric source term represented by

Lighthill’s stress tensor accounts for the nonlinear effects, e.g. nonlinear wave propagation

and steepening, variations in the local speed of sound, and the noise generated by shocks,

vorticity, and turbulence in the flowfield. This is helpful in understanding the noise-

generation mechanism and designing quieter airframe components. The derivation and

solution of the FW-H equation is set out in in Appendix B.

Kirchho�'s Formulation

This is another integral formulation which, unlike the FW-H formulation, does not require

volume integration because it has only a surface source term. This is the reason why this

method has been particularly popular in the past in the prediction of transonic noise

generated by the advancing rotor tip of helicopters. To adapt the FW-H scheme in this

situation would be computationally expensive, the reason being that the quadrupole

source term is no longer negligible, thus requiring a computationally-demanding volume

integration. However, Kirchhoff’s formulation requires the integration surface to be

chosen in the linear flow region (i.e. away from the region where significant velocity

gradients exist), but the linear region itself may not be well defined and is problem-

dependent. It is necessary, therefore, to specify the integration surface well away from

the body surface (e.g. aerofoil surface). Specification of an integration surface well

away from the body surface (at least one aerofoil chord away from the wall surface in

the case of high-lift noise simulation) has negative effects as CFD solutions may not

be well resolved away from the wall surfaces. Hence, the placement of Kirchhoff’s

integration surface is a compromise. Due to this shortfall, Manoha et al. (2002) had to use

discretized linearised Euler equations (LEE) governing acoustic propagation in the non-

linear region (i.e. the region between wall surface and the Kirchoff surface) before using

Kirchhoff’s formulation to propagate the acoustic disturbances to the farfield. Hence,

Manoha’s study involved a three step procedure. The use of LEE, however, increases the

computational cost significantly since the propagation domain must be meshed with an

adequate resolution with respect to the smallest acoustic wavelength, and also because

finite difference higher-order schemes are needed to ensure numerical accuracy and low

dispersion of the propagation of acoustic waves. However, the domain where LEE is

used is strictly limited to the area of significant velocity gradients, normally small in

most airframe noise problems so that a viable solution can be obtained. Although this

avoids the evaluation of the volume integral, it requires knowledge of the derivative

of pressure in the direction normal to the surface. This can impose difficulty, especially

when there are discontinuities on the surface. In the case of the FW-H equation, it requires
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values of pressure, density and flow-velocity perturbations, which are available from CFD

solutions.

FW-H vs Kirchho�'s Formulation

Brentner & Farassat (1998) studied the FW-H and Kirchhoff formulation comparatively

to address the superiority between the two in airframe noise prediction. The first clear

advantage of the FW-H formulation is that it gives insight into the acoustic field in that the

predicted noise is explicitly separated into physical components, i.e., thickness, loading

and quadrupole terms. Also, the FW-H method can include non-linear effects of volume

quadrupoles in its surface integral without having to perform volume integration if the

usual assumption of an impenetrable surface is relaxed. This can be achieved by lifting

the integration surface to enclose all the intense volume quadrupole terms usually present

near the body surface. Kasper et al. (2004) assessed the radiated noise from volumetric

sources in the case of a two-dimensional, three-element aerofoil by comparing a permeable

surface integration with the sum of solid body surface integration and a volume integral.

Their study resulted in different spectra for a body-aligned integration surface and an off-

body surface. Also, the result of the off-body integration surface was in good agreement

with the sum of the result of the solid-body integration surface and volume integral. This

indicated that the volumetric sources were not negligible, and the off body integration

surface was found to take account of the volumetric sources.

Ffowcs Williams has pointed out several implications of the permeable surface ( f = 0)

in Section 11.10 of the book by Crighton et al. (1992). The placement of the integration

surface for the FW-H method is a matter of convenience as long as the quadrupole source

term is utilized. The predicted acoustic pressure field by the Kirchhoff method can incur

serious errors if the integration surface is placed in the non-linear region e.g. wake of an

aerofoil. This was experienced in the work of Manoha et al. (2002) for the case where the

integration surface intersected the wake behind the trailing edge of a slat; the result was

conflicting with experiment. A final advantage of the FW-H approach is that it is relatively

mature and has robust algorithms that have been validated for a variety of industrial

problems. Recently, Kim et al. (2003) implemented the FW-H formulation in Fluent, a

general purpose commercial CFD code, for aeroacoustic analysis. This implementation

accounts only for stationary integration surfaces yet also allows for permeable integration

surfaces. It is based on advanced-time formulation for better computational efficiency.

The accuracy and suitability of the results from these general-purpose commercial codes,

however, can be limited mainly because they are implemented in a lower-order scheme.
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1.2.7 Computational Methods in Aeroacoustics

Computational methods have advanced the evolution of modern engineering analysis

techniques, and aeroacoustics is no exception. Much of the advancement in acoustic

analysis has arisen from the availability of large computational resources. So far, com-

putational fluid dynamics has been the main tool in the development of new designs in

the aeronautics sector, advances in both numerical techniques and increased power of

computers being the key. The trend to apply powerful and effective computational fluid

dynamics (CFD) methods is on the increase, due to the complexity of the flow physics en-

gineers have to deal with in aeronautics. Computational aeroacoustics (CAA), as with the

field of CFD, encompasses a wide variety of physical models and solution philosophies.

CAA is different from CFD in the sense that it involves the development of schemes to

approximate spatial and temporal derivatives in a way that preserves the physics of wave

propagation, a phenomenon of little significance in typical aerodynamic computations

because aerodynamic noise is a fractional by-product of fluid flows. Also, generally,

aerodynamic problems can sometimes be modelled as time independent whereas aeroa-

coustics problems are, by their very nature, time dependent. The numerical modelling of

such phenomena is very demanding and poses challenges distinct from those present in

the more developed field of CFD.

Generally, CAA includes a number of constituents, e.g. nearfield flow and source

modelling, integral formulations. For source modelling, CAA involves solving both the

aerodynamic and aeroacoustic problems simultaneously and is based on the solution of

the fluid motion equations by classical field methods (e.g. finite volume, finite element,

finite difference). In other words, CAA attempts to resolve directly wave propagation to

the far-field. Because of the classical field methods employed in solving fluid equations in

CAA, it requires large computational resources in order to avoid excessive dissipation in

solution. The requirement in computational resources increases as the observer distance

is increased. According to Francescantonio (1997), due to this drawback, an acceptable

solution could only be obtained at a reasonable cost for observers at a distance of about 3

times the rotor radius in the case of helicopter noise (this figure is based on present com-

putational capability available). In practical situations, however, the observer distance

usually required is about two to three orders of magnitude greater than the reference

length used (e.g. cavity length, wing chord etc). Therefore, the problem of direct numeri-

cal simulation of airframe noise is still beyond the capabilities of CAA based on currently

available computing power. Some of these issues and practical limitations which exist in

CAA are discussed in the subsequent section.
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Modelling Issues and Limitations in CAA

The numerical modelling of aeroacoustic phenomena is demanding for several reasons.

Foremost is the fact that aeroacoustic problems are, by definition, time-dependent. They

must, therefore, be treated time-accurately with appropriate consideration of all relevant

time-scales. Since the human ear is sensitive to a wide range of frequencies (typically

20 Hz to 20 kHz), simulations dealing with such problems must also span this broad

spectrum. An equally important consideration is the disparity between the energy levels

of the unsteady flow fluctuations and the acoustic signals. A fairly intense acoustic wave

of 100dB contains pressure fluctuations which are three orders of magnitude smaller

than the pressure fluctuations in a typical turbulent flow. This large disparity between

acoustic and flow variables presents a severe challenge to direct numerical simulation

and has prompted many researchers to question whether it is more prudent to solve for

the perturbations after the mean flow has been determined. For nonlinear problems in

which the interaction between the acoustic and hydrodynamic fields is important, there

is no alternative but to face the large magnitude disparity.

A numerical simulation attempting to simulate noise problems must resolve both the

source evolution and sound propagation phenomena accurately enough so that sound

fields are not contaminated by numerical errors. In practice, however, possible problems

exist due to error accumulation in numerical methods when the numerical schemes

are not optimized for low dissipation and dispersion characteristics. Numerical schemes

approximate the non-dispersive, non-dissipative systems of governing equations through

discretisation, which has numerical dissipation and dispersion, and introduces errors that

may significantly affect the accuracy of the calculation. This has been the main challenge in

aeroacoustics ever since computational methods were first employed. When the acoustic

waves are part of the source mechanisms, as in cases involving acoustic/flow feedback,

Singer & Guo (2004) find numerical dispersion to be the most harmful because it corrupts

the phase information of the waves affecting the interaction between flow and sound.

Furthermore, as one is often interested in the farfield characteristics of a given sound

field, the computed sound fields need to be propagated over large distances comprising

many wavelengths. This causes the dissipation to accumulate over the propagation

length, resulting in significant changes in wave amplitude. Dispersion and dissipation

errors are thus significant when numerical techniques such as finite difference and finite

element methods are used for spatial discretisation in solving propagation problems

when the propagation length is a distance of many wavelengths. Hence, to ensure that

the computed solution is uniformly accurate over such long distances, a numerical scheme

must be almost free of numerical dispersion, dissipation, and anisotropy.
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As mentioned above, the radiation of acoustic energy to the far field is a defining fea-

ture of many aeroacoustic problems. The domains of interest in such cases are essentially

unbounded. As it is impossible to solve directly a problem posed on an unbounded do-

main, the numerical modelling of such phenomena requires the introduction of artificial

boundaries to make the computational domain finite. The boundary conditions imposed

along these artificial boundaries need to closely approximate the free space solution that

exists in the absence of these boundaries. Although such exact non-reflecting or farfield

boundary conditions are known for several specific problems, the derivation of more

general, efficient and suitably accurate boundary conditions remains an active area of

research.

1.2.8 Numerical Schemes

The emergence of CAA as a viable research tool in aeroacoustics is testament not only

to the proliferation of powerful computer resources, but also the development and im-

provement of numerical schemes more capable of meeting the challenges laid out in the

preceding paragraphs. The advances in the development of high-order accurate schemes

has been central to this success. High-order methods are available in a variety of forms,

but researchers have favoured high-order finite difference schemes in CAA development.

Such schemes have come to popularity as they represent a good compromise between

high-order accuracy, increased complexity and available computing resources. Both ex-

plicit and implicit finite difference spatial discretization schemes are widely used e.g.

Tam & Webb (1993); Kim & Lee (1996); Hixon (2000); Gaitonde & Visbal (1999). Explicit

schemes employ large computational stencils for accuracy, whereas implicit schemes

achieve high-order accuracy by solving for the spatial derivatives implicitly using rela-

tively compact stencils. Traditionally, the coefficients of these finite difference schemes

are chosen to give the highest order of formal accuracy.

The overwhelming majority of finite difference schemes employed in CAA have sym-

metric stencils because such schemes contain no inherent dissipation. While this property

is desirable for wave propagation it does leave such schemes susceptible to uncontrolled

growth of numerical instabilities. To overcome these difficulties, Visbal & Gaitonde (2001,

2000) proposed filtering methods and Kim & Lee (2000a) suggested damping schemes

whose spectral characteristics can be optimized to reduce the filter’s (or damping func-

tion’s) impact on the resolved signal. For this reason, central differencing is preferred

in CAA applications. With reference to integral formulations used in aeroacoustics, nu-

merical dispersion has not been a matter of great concern. This is because the numerical

dispersion and dissipation issue may be avoided (as Singer & Guo (2004) explain) when
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using unsteady CFD and integral surface solution, e.g. the FW-H equation, whereby the

propagation of the acoustic waves to the farfield is handled by an integral formulation

that exactly preserves the non-dispersive and non-dissipative nature of the sound waves;

no numerical discretisation is involved in the formulation and the wave characteristics are

exactly computed. However, increases in accuracy requirements and the development of

aircraft with fewer localized noise sources will drive the need for improved dispersion

and dissipation characteristics. Hence, the desire for increased accuracy will always be

present. Kurbatskii & Mankbadi (2004) presented a collective overview of the numerical

tools currently available in aeroacoustic research and on-going developments. Subse-

quent sections below discuss a few of the popular, low dispersion, higher order schemes

available currently.

Dispersion-Relation-Preserving (DRP) Scheme

Tam & Webb (1993) proposed a higher order finite difference scheme (widely known as

a Dispersion-Relation-Preserving (DRP) scheme) to reduce dispersion so that the wave

number of the original differential equations are replicated by the solution of the finite

difference equations. The numerical solution of a higher-order finite difference scheme

will have the same number of wave modes as the original differential equation if both

systems have the same dispersion relations. They found that it was possible to achieve

the same dispersion relation between the numerical and exact solutions as long as points-

per-wavelength greater than four were maintained for the system under consideration.

But there will always be the truncation error depending on the order of the discretization

scheme. The derivation of the method uses Fourier-Laplace transforms rather than the

usual truncated Taylor series. The use of Fourier analysis offers great flexibility including

stability investigations, specification of acceptable errors from numerical calculations, etc.

The authors used asymptotic solutions to develop the radiation and outflow boundary

conditions for the DRP scheme. The transform method allows one to construct the

asymptotic solution of the finite difference equations. The study shows the superior

performance of the proposed higher-order explicit finite difference scheme over standard

finite difference schemes. The numerical study was performed unidiagonally instead of

multidiagonally. It, however, requires a large number of stencils (i.e. seven stencils for

fourth order spatial accuracy).

Compact Scheme

Kim & Lee (1996) proposed a weighted optimization technique for the optimization of the
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compact finite difference scheme. The DRP scheme of Tam and Webb, as explained above,

was developed to minimise the dispersive errors in the wave number domain but it was

a unidiagonal scheme. Therefore, the work of Kim and Lee is essentially an extension

of Tam’s unidiagonal DRP scheme to a multidiagonal (tridiagonal and pentadiagonal)

compact scheme with high order and high resolution. It is obvious that the overall

error of a numerical computation is determined by both the resolution and the order of

truncation, and actual error characteristics of the compact schemes are dependent on their

multidiagonality (usually, expansion from unidiagonality to multidiagonality results in

improved resolution and truncation order). They found that the optimized sixth-order

tridiagonal and the optimized fourth-order pentadiagonal scheme performed the best of

all.

Kim (2007) also proposed a set of optimised boundary closure schemes for use

with compact central finite difference schemes in non-periodic domains. The bound-

ary schemes are given in a form of non-central compact finite differences. They maintain

fourth-order accuracy, a pentadiagonal matrix system and a seven-point stencil which

the main interior scheme employs. The coefficients of the scheme were optimized for

improved resolution characteristics at boundary points by making use of polynomial-

trigonometric blended extrapolation functions. The increased performance and accuracy

of the new boundary schemes coupled with the main interior scheme of Kim & Lee

(1996) at interior stencils have been effectively demonstrated through their applications

to single- and multi-dimensional benchmark problems.

Prefactored Compact Scheme

Hixon (2000) proposed a small stencil compact scheme of prefactored type. The main

feature of the method is that the tridiagonal matrices found in higher order compact

schemes, which otherwise require an LU-decomposition technique, are reduced to two

independent upper and lower bidiagonal matrices. These then can be solved in parallel.

Also, the stencil size is reduced from five points to three for sixth order accuracy and, due

to the smaller stencil size, only one boundary stencil is required instead of two. Hixon

also showed that the stability and accuracy of the proposed scheme was much more

dependent on the performance of the boundary stencils than in the case of equivalent

explicit schemes. This is because the error from the boundary stencil derivatives can

propagate many points into the computational domain.
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Optimized Prefactored Compact Scheme

Ashcroft & Zhang (2003) proposed new optimized prefactored compact schemes in an

effort to reduce dispersion and dissipation errors in aeroacoustic problems. This, in a

sense, was the improved extension to the scheme developed by Hixon (2000). This method

used Fourier analysis similar to the one used by Kim & Lee (1996), rather than the Taylor

series expansion used by Hixon, and performs optimization to achieve the best possible

accuracy and range factor. An obvious benefit in using a Fourier series is that it allows one

to optimize the dispersive scheme by quantifying the dispersive errors. This method also

used a weighting function and optimization range factor. The study showed a reduction

in grid resolution requirements when compared to Tam’s DRP and Hixon’s prefactored

compact schemes. It was also concluded that a fourth-order three point scheme provided

the best overall performance in terms of resolution versus computational cost. Although

the computational cost in this scheme is relatively low compared to other implicit compact

differencing schemes, the boundary derivatives calculation (which is the most important

for complex geometries) can have increased errors compared to the scheme of Kim (2007).

At this point it is necessary re-iterate that the problems in aeroacoustics are, by their

very nature, time-dependent. Hence, just ensuring high spatial accuracy in isolation

does not ensure good results in aeroacoustic simulations. DeBonis & Scott (2002) studied

the consequences of disparate temporal and spatial descritizations. Their computational

study found that for schemes with lower order time-stepping, the truncation error caused

by time-stepping dominated the solution, reducing the overall error of the scheme to

the order of time-stepping and eliminating the benefit gained from higher-order spatial

discretization. The study included Gottlied-Turkel 2-4 predictor-corrector scheme and

two-stage Runge-Kutta schemes (4-4 and 4-6). The Gottlied-Turkel method is fourth

order accurate in space and second order accurate in time. Reducing the time step was

found to increase the order of accuracy but with an increase to computational cost. The

Runge-Kutta 4-4 scheme was found to perform best of all computationally.

Patched Grid Methods

Computational analysis of complex configurations using structured grids almost always

(apart from geometrically simple cases) requires multiple blocks of grids. Even so, one-to-

one matching at block interfaces while generating multi-block grids can cause significant

difficulty depending on the complexity of the configuration. Also, an attempt to create a

structured grid for a complex geometry causes highly-skewed cells which, in turn, results

in inaccurate calculations. Another factor which can cause major problems in generating
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a structured grid is the necessity to cluster grid points in regions where the flow variables

and their gradients change rapidly. These issues are relevant to this research project as

the configuration being considered is complex and a structured grid is used in the project.

The grid-generation issue mentioned above can be improved by the use of a zonal

or patched, grid methods. The patched grid method allows one to generate the grid in

each block independently i.e. it does not require one-to-one matching. Then, inter-block

communication is established by using suitable interpolation at the block interface. Rai

(1986a,b) proposed a patched-grid algorithm for Euler equations based on linear inter-

polation at the inter-block interface. Conservation is ensured at the grid interface using

one-sided flux interpolation at the boundary. The interface condition for one subdomain

is defined from the conservative variables while for the adjacent subdomain the interface

condition is defined from the numerical flux. Rai’s method of achieving conservation at

the boundary can be difficult to achieve and implement in higher-order schemes. Lerat &

Wu (1996) proposed a stable and conservative patched-grid algorithm for compressible

flows. They demonstrated that their scheme was able to predict discontinuities in high-

speed flow. They also pointed out that they were unable to achieve general stability for

the scheme proposed by Rai (1986a,b). But Lerat and Wu’s scheme is conservative and

stable for dissipative difference schemes. Similarly, Benkenida et al. (2002) proposed a

splitting and dividing approach, similar to the work of Lerat & Wu (1996), to maintain

conservation at the block interfaces. The main issue in patched-grid methods is achieving

conservation and overall stability of the schemes. It will not be an issue in the case of

dissipative difference schemes such as that of Lerat & Wu (1996). But achieving stability

for high-order accurate, non-dissipative, centered schemes (i.e. compact schemes) can be

impossible by employing simple interpolation at the boundary.

1.3 Aims and Objectives

The main aims of the research work in this thesis are to develop a computational research

programme capable of resolving cavity flowfields accurately, and investigate and describe

the cavity flowfields for a range of truly three-dimensional (3D) cavity geometries which

fall into the open flow category. Upon establishing the flow behaviour within the empty

cavity geometries, the presence of generic missile bodies in the cavity will be investigated

in order to quantify and describe their effects on the time-averaged and unsteady flow-

fields. The final aim of this project is to assess numerically the suitability and effectiveness

of passive flow control devices for the suppression of cavity tones. The objectives of the

research work are set out as follows:
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• A high-order accurate CFD solver based on a fourth-order optimized compact

scheme will be developed for the purpose of capturing acoustic sources. The

high-order solver will be validated and then used for the computation of various

aerodynamic noise problems.

• Computational simulations will be performed on various empty cavity and cavity-

with-missile geometries to quantify and describe the mean and unsteady flow be-

haviour in the cavity.

• The presence of a missile inside the cavity means that the unsteady flow in the

cavity interacts with the missile. This may, therefore, modify the flow structure

which originally existed in a clean cavity. Hence, computations will be performed

to study these interaction phenomena and their contributions to noise generation.

• The final stage will be spent assessing a suitable noise reduction treatment for the

tone noise from cavities.

1.4 Structure of Thesis

This thesis describes the research work performed to study the unsteady aerodynamics

and resulting aeroacoustic effects of unsteady flowfields. The thesis is structured into

chapters. Chapter 1 has reviewed the fundamentals of cavity flows, aerodynamic noise

generation and computational aeroacoustics; and the existing methods for their suppres-

sion. Chapters 2 is concerned with the computational methodologies employed including

the development of a higher-order aeroacoustic solver. Chapters 3 and 4 are devoted to

the analysis of the computational results obtained. Conclusions and a discussion on the

scope of future work are presented in Chapter 5.
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3.2 Open Flow

When the cavity length is small compared to the depth (i.e. small l/h) the shear flow separates at the front
wall and bridges the cavity, with the dividing streamline ending in a stagnation point at, or near, the top of
the rear wall. This type of flow is commonly called open flow. Sketches 3.2(a) and 3.2(b) illustrate the main
flow features for subsonic and supersonic speeds, respectively (Reference 29).

Sketch 3.2   Open flow

(a) Subsonic speeds

(b) Supersonic speeds

Stagnation pointSeparation point

Dividing 
streamline

Separation point Stagnation point

(a) Open cavity flow.
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Sketch 3.3   Supersonic transitional flow

In order to clarify the various stages in the progression of the flow field it is instructive to look at the case
of a particular cavity te sted in Re ference 13 and singled out for di scussion in Reference 22. The cavity
concerned had a width of 2.5 in., a depth of 0.5 in. (w/h = 5) and was tested at . The results (for
decreasing length) are illustrated in Sketch 3.4, opposite.

Inspection of Sketch 3.4 shows that the impingement and exit shock waves, typical of closed flow at l/h = 24
and 16, coalesce at about l/h = 11.6. The single shock so formed, abruptly changes to a series of wavelets
shortly thereafter, at about l/h = 11.2. Although not specifically stated in either Reference 13 or 22, it seems
reasonable to infer that  the region between l/h = 11.6 and just  prior to l/h = 11.2 is characterised by the
single shock depicted for l/h = 11.6, so that this narrow band could be taken as relating to transitional-closed
flow. Similarly, it seems reasonable to infer (as assumed earlier) that the wavelets appearing at l/h = 11.2
decrease in complexity and weaken as l/h is decreased and become a simple compression wave typical of
fully-developed open flow at l/h = 8, and  beyond at l/h = 4. Th us, in Sketch 3.4 it is suggested that the
transitional-open flow regime commencing at l/h = 11.2 extends down to some undefined value (but taken
here as l/h 8) for the start of fully-developed open flow, see also Section 3.4.3. Furthermore, it is important
to point out that the situation in Sketch 3.4 relates to decreasing cavity length. The transitional-closed and
transitional-open points shown were somewhat different for increasing cavity length, due to a hysteresis
effect. These points will be discussed in more detail in Section 3.4.3. Finally, with regard to the geometries
in the sketch, it should be noted that the value l/h = 9.5 was not tested in Reference 13; it has been included
to illustrate the development of transitional-open flow as l/h is decreased. Also, although tested, no Schlieren
photographs for the l/h = 4 case are given in Reference 13, but as the flow type is clearly open, the flow
pattern is assumed to be similar to t hat for l/h = 8. The  idealised flow patterns within the cavities shown
are based on those given earlier in this section and in Appendix A.

Although the length (via l/h) is the main parameter in determining th e type of flow in the cavity, it is not
the only one. Cavity width (via w/h) also has an effect, as ha s the free-stream Mach number ( ), see
Section 3.4.

(i) Transitional-closed flow

(ii) Transitional-open flow

M1 2.86=

≈

M1
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Sketch 3.3   Supersonic transitional flow

In order to clarify the various stages in the progression of the flow field it is instructive to look at the case
of a particular cavity te sted in Re ference 13 and singled out for di scussion in Reference 22. The cavity
concerned had a width of 2.5 in., a depth of 0.5 in. (w/h = 5) and was tested at . The results (for
decreasing length) are illustrated in Sketch 3.4, opposite.

Inspection of Sketch 3.4 shows that the impingement and exit shock waves, typical of closed flow at l/h = 24
and 16, coalesce at about l/h = 11.6. The single shock so formed, abruptly changes to a series of wavelets
shortly thereafter, at about l/h = 11.2. Although not specifically stated in either Reference 13 or 22, it seems
reasonable to infer that  the region between l/h = 11.6 and just  prior to l/h = 11.2 is characterised by the
single shock depicted for l/h = 11.6, so that this narrow band could be taken as relating to transitional-closed
flow. Similarly, it seems reasonable to infer (as assumed earlier) that the wavelets appearing at l/h = 11.2
decrease in complexity and weaken as l/h is decreased and become a simple compression wave typical of
fully-developed open flow at l/h = 8, and  beyond at l/h = 4. Th us, in Sketch 3.4 it is suggested that the
transitional-open flow regime commencing at l/h = 11.2 extends down to some undefined value (but taken
here as l/h 8) for the start of fully-developed open flow, see also Section 3.4.3. Furthermore, it is important
to point out that the situation in Sketch 3.4 relates to decreasing cavity length. The transitional-closed and
transitional-open points shown were somewhat different for increasing cavity length, due to a hysteresis
effect. These points will be discussed in more detail in Section 3.4.3. Finally, with regard to the geometries
in the sketch, it should be noted that the value l/h = 9.5 was not tested in Reference 13; it has been included
to illustrate the development of transitional-open flow as l/h is decreased. Also, although tested, no Schlieren
photographs for the l/h = 4 case are given in Reference 13, but as the flow type is clearly open, the flow
pattern is assumed to be similar to t hat for l/h = 8. The  idealised flow patterns within the cavities shown
are based on those given earlier in this section and in Appendix A.

Although the length (via l/h) is the main parameter in determining th e type of flow in the cavity, it is not
the only one. Cavity width (via w/h) also has an effect, as ha s the free-stream Mach number ( ), see
Section 3.4.

(i) Transitional-closed flow

(ii) Transitional-open flow

M1 2.86=

≈

M1

(b) Transitional-open cavity flow. (c) Transitional-closed cavity flow.
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Sketch 3.1   Closed flow

Dividing streamline

Stagnation pointSeparation point

Impingement point Separation point

(a) Subsonic speeds

Impingement point

Exit shock

Stagnation pointSeparation point

Floor
impingement
shock

Separation point

(c) Supersonic speeds:  CFD calculations for Mach contours and streamlines for l/h = 20, M1 = 1.35

M

(Reproduced from Reference 40, with permission)

(b) Supersonic speeds

(d) Closed cavity flow.
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Sketch 3.5   Characteristic floor pressure distribution shapes for subsonic speeds
(Reproduced with modifications from Reference 29, with permission)

The following descriptions of the characteristic floor pressure distribution shapes are based on those given
in Reference 29 and refer to the shapes shown in Sketch 3.5.

(a) Open flow

(b) Open/transitional flow boundary (shown hatched to suggest uncertainty)

(c) Transitional flow

i) The pressure is roughly uniform (with  close to zero) for a considerable extent (varying from 40  to
70 per cent) of the cavity floor downstream of the front wall.

ii) Beyond the uniform region the pre ssure incre ases with inc rease in x/l an d th e distribution h as a
concave-up shape.

i) The pressures over the forward portion of the floor remain similar to those for open flow.

ii) The shape of the pres sure distribution over the rearward portion of the cavity floor changes from
concave-up to concave-down.

i) The shape of the pressure distribution over the rearward portion of the cavity floor is concave-down.

ii) As l/h is increased through the transitional region the shape of the pressure distribution gradually
varies from that shown at the open/transitional boundary , Sketch 3.5(b), to that shown at the
transitional/closed boundary, Sketch 3.5(d).
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                                                                 (d)

TransitionalOpen Closed

L/D increasing
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(e) Cavity flow type classification, based on floor pressure distributions.

Figure 1.1: Cavity flow types and corresponding pressure distributions ESDU (2004).
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Figure 1.2: Classification of flow control methods, from Cattafesta et al. (2003).

28

∣∣∣ PhD Thesis: Bidur Khanal



Chapter 2

Computational Methodologies

The computational methodologies used in this project are outlined in this chapter. The

chapter is broken into three main sections. The first provides an account of the high-order

CAA solver developed by the author, the second deals with the general purpose low-

order CFD solver Fluent and the final section describes the Radiation Solver, based on the

integral formulation of Ffowcs-Williams & Hawkings (1969), for farfield noise prediction.

2.1 Introduction

The aim of the research work undertaken in this project is to investigate the acoustic tones

produced by transonic cavities with missiles. The review of the literature indicated that a

direct numerical simulation of an aeroacoustic problem was still beyond the capabilities

of CAA based on currently-available computing power. A hybrid approach based on the

use of near-field CFD computations coupled with solutions of the FW-H equation is a

more practical alternative. Hence, the computational approach adapted in this research is

also a two-step hybrid method. Three main numerical solvers were used for this purpose:

a general purpose Reynolds-Averaged Navier-Stokes flow solver, a high-order accuracy

Navier-Stokes flow solver and an integral formulation for farfield propagation based on

the Ffowcs Williams and Hawkings equation.

Firstly, the Navier-Stokes-based solvers are used to solve the flow around a chosen ge-

ometry using a computational grid. This provides the information on the time-dependent

flow dynamics in the noise source regions. These flow results can then be used as input

to the FW-H solver to yield the acoustic information. This two-step method is illustrated

in Figure 2.1. Detailed accounts of the computational solvers used are presented in the

following sections.

2.2 High-order CFD Solver

The solver, based on a finite difference scheme, is a high-order computational aeroacous-

tics code developed by the author which solves the Navier-Stokes equations in conserva-

tive form. A high-order, optimized, compact finite difference scheme in space and fourth

PhD Thesis: Bidur Khanal

∣∣∣ 29
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order explicit temporal differencing is used to minimise the dissipation and dispersion er-

rors. The time-dependent, three-dimensional Navier-Stokes equations can be expressed,

in Cartesian coordinates as:

∂Q
∂t

+
∂E
∂x

+
∂F
∂y

+
∂G
∂z

= Sv (2.1)

where the conservative variables and the inviscid flux variables are represented as

Q =



ρ

ρu

ρv

ρw

ρet


, E =



ρu

ρu2 + p

ρuv

ρuw

(ρet + p)u


, F =



ρv

ρuv

ρv2 + p

ρvw

(ρet + p)v


, G =



ρw

ρuw

ρvw

ρw2 + p

(ρet + p)w


For air as an ideal gas, the total energy term is given by ρet =

p
γ−1 + 1

2ρ(u2 + v2 + w2).

where γ = cp/cv is the ratio of specific heat coefficients under constant pressure and

constant volume.

The right hand term Sv in Eq. 2.1 is the source term containing the viscous flux

derivatives and is represented as:

Sv =
∂Ev

∂x
+

∂Fv

∂y
+

∂Gv

∂z
.

where Ev =



0

τxx

τxy

τxz

uτxx + vτxy + wτxz + qx


, Fv =



0

τyx

τyy

τyz

uτyx + vτyy + wτyz + qy



and Gv =



0

τzx

τzy

τzz

uτzx + vτzy + wτzz + qz


The viscous stress tensor components are related to the Cartesian velocity components

by the following equations:
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τxx =
1

Re∞

(
2µ

∂u
∂x

+ λ∇.v
)
, τxy = τyx =

µ

Re∞

(
∂u
∂y

+
∂v
∂x

)
τyy =

1
Re∞

(
2µ

∂v
∂y

+ λ∇.v
)
, τyz = τzy =

µ

Re∞

(
∂v
∂z

+
∂w
∂y

)
τzz =

1
Re∞

(
2µ

∂w
∂z

+ λ∇.v
)
, τxz = τzx =

µ

Re∞

(
∂w
∂x

+
∂u
∂z

)
(2.2)

where µ is molecular viscosity and λ and µ are related by Stokes’ hypothesis :λ+2µ/3 = 0.

The heat flux terms are evaluated as:

qx =
µ

(γ − 1) Pr Re∞M2
∞

∂T
∂x

, qy =
µ

(γ − 1) Pr Re∞M2
∞

∂T
∂y

,

qz =
µ

(γ − 1) Pr Re∞M2
∞

∂T
∂z

(2.3)

Eq. 2.1 is expressed in Cartesian coordinates. For the study of flow around complex

geometries, the governing equations must be solved in an orthogonal curvilinear coor-

dinate system, also known as a body-fitted coordinate system. This allows the complex

geometry problem to be transformed into, and simulated using, a uniform computational

domain, which is also easier to handle with finite difference schemes. The equations in

the curvilinear system are obtained after a transformation from the physical coordinate

system to the computational coordinate system using Eqns. 2.4.

ξ = ξ(x, y, z), η = η(x, y, z), ζ = ζ(x, y, z). (2.4)

The chain rule can be used to evaluate the spatial derivatives of the governing equation

and, hence, the transformation metrics, thus

∂

∂x
=

(
∂ξ
∂x

∂

∂ξ
+

∂η

∂x
∂

∂η
+

∂ζ
∂x

∂

∂ζ

)
,

∂

∂y
=

∂ξ
∂y

∂

∂ξ
+

∂η

∂y
∂

∂η
+

∂ζ
∂y

∂

∂ζ

and
∂

∂z
=

∂ξ
∂z

∂

∂ξ
+

∂η

∂z
∂

∂η
+

∂ζ
∂z

∂

∂ζ
(2.5)

which then gives the transformation metrics as
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ξx =
∂ξ
∂x

= J
(
∂y
∂η

∂z
∂ζ
−

∂y
∂ζ

∂z
∂η

)
, ξy =

∂ξ
∂y

= J
(
∂x
∂ζ

∂z
∂η
−

∂x
∂η

∂z
∂ζ

)
, ξz =

∂ξ
∂z

= J
(
∂x
∂η

∂y
∂ζ
−

∂x
∂ζ

∂y
∂η

)
ηx =

∂η

∂x
= J

(
∂y
∂ζ

∂z
∂ξ
−

∂y
∂ξ

∂z
∂ζ

)
, ηy =

∂η

∂y
= J

(
∂x
∂ξ

∂z
∂ζ
−

∂x
∂ζ

∂z
∂ξ

)
, ηz =

∂η

∂z
= J

(
∂x
∂ζ

∂y
∂ξ
−

∂x
∂ξ

∂y
∂ζ

)
ζx =

∂ζ
∂x

= J
(
∂y
∂ξ

∂z
∂η
−

∂y
∂η

∂z
∂ξ

)
, ζy =

∂ζ
∂y

= J
(
∂x
∂η

∂z
∂ξ
−

∂x
∂ξ

∂z
∂η

)
, ζz =

∂ζ
∂z

= J
(
∂x
∂ξ

∂y
∂η
−

∂x
∂η

∂y
∂ξ

)
(2.6)

where J is the transformation Jacobian relating the geometrical properties of the physical

domain to the uniform computational domain, and is expressed as

J =

[
∂x
∂ξ

(
∂y
∂η

∂z
∂ζ
−

∂y
∂ζ

∂z
∂η

)
−

∂x
∂η

(
∂y
∂ξ

∂z
∂ζ
−

∂y
∂ζ

∂z
∂ξ

)
+

∂x
∂ζ

(
∂y
∂ξ

∂z
∂η
−

∂y
∂ξ

∂z
∂η

)]−1

. (2.7)

The equations above are non-dimensionalised using the following reference values

and solved in non-dimensionalised form.

ρ∗ =
ρ

ρ∞
, v∗ =

v
c∞
, p∗ =

p
ρ∞c2

∞

, c∗ =
c

c∞
, x∗ =

x
L
, t∗ = t/(L/c∞). (2.8)

2.2.1 Turbulence Modelling

Turbulence is a state of fluid motion characterized by random and chaotic three-dimensional

vorticity. Turbulence results in increased energy dissipation, mixing, and heat transfer in

the flow. Turbulence is of great technological importance because of the large effects it

has on the flows in which it occurs. The prediction of these effects in a flow of interest

is one of the primary concerns of applied fluid dynamicists, and it is often the case that

the uncertainties in a fluid dynamic calculation are dominated by uncertainties in the

turbulence models. Therefore, one can argue that for researchers of fluid dynamics, tur-

bulence models, their approximations and limitations are of most relevance in the study

of turbulence. Turbulence research is continuously evolving and several turbulence mod-

elling strategies are available today. It is, however, an unfortunate fact that no single

turbulence model is universally accepted as being superior for all classes of fluid dy-

namic problems. The choice of turbulence model depends on several factors such as the

physics encompassed in the flow, the established practice for a specific class of problem,

the level of accuracy required, the available computational resources, and the amount of
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time available for the simulation. To make the most appropriate choice of the model, it

is necessary to understand the capabilities and limitations of the various options. In the

present study, the one-equation model of Spalart & Allmaras (1992) for 2D simulations

and an extension of the same model, Detached-Eddy Simulation (DES) for 3D simulation

is used. DES is a hybrid model which behaves as a standard SA RANS model within

the attached boundary layer and as a Large-Eddy Simulation (LES) Sub-Grid Scale (SGS)

model in the rest of the flow. The one-equation SA model requires the least computational

resources and is found to be reliable for aerospace applications. The turbulent transport

equation solved in this case is given by,

∂

∂t
(
ρν̃

)
+

∂

∂xi

(
ρν̃ui

)
= Gν +

1
σν

 ∂

∂x j

{(
µ + ρν̃

) ∂ν̃
∂x j

}
+ Cb2ρ

(
∂ν̃
∂x j

)2 − Yv (2.9)

where Gν is the production term of turbulent viscosity and Yν is the turbulent viscosity

destruction term. σν and Cb2 are constant. Additional details of the turbulence model can

be found in Spalart & Allmaras (1992); Krist et al. (1998) and Fluent (2005). The system of

partial differential equations in Eq. 2.9 is solved for the transport variable ν̃ to calculate

µt using the relation, µt = ρν̃ fν1 . The turbulent viscosity term (µt) is required to close the

system of equations in Eq. 2.1. fν1 is the viscous damping function. The standard RANS

SA turbulence model uses the distance to the nearest wall to define a length scale d that

is used to calculate the production and the dissipation terms of turbulent viscosity. In the

DES formulation of Spalart & Allmaras (1997), the length scale d is replaced with a DES

length scale dDES defined as:

dDES = min(d,CDES∆) (2.10)

∆ = max(δx, δy, δz) (2.11)

where CDES is a constant for the DES model and ∆ is the largest cell dimension in the

computational grid. The modified length scale calculated using the relations in Eq. 2.10

ensures a length scale that is the same as the standard SA RANS length scale near the

walls where d << ∆ and reduces to the local grid spacing away from the walls where

d >> ∆. The effect of this is to activate a hybrid SA turbulence model that behaves as a

standard SA RANS model within the attached boundary layers and as a LES Sub-Grid

Scale model in the rest of the flow including the separated regions. From Eq. 2.10 it

can clearly be said that this model is grid-dependant and, hence, any solution using

this model also relies on the grid design i.e. depending on whether the cells in the
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2.2. High-order CFD Solver

attached boundary layer are carefully designed, a local grid spacing will be used as the

length scale rather than the standard SA RANS length scale required in the boundary

layer. This version of DES is found to work well in thin boundary layers with flattened

grid cells where the turbulence model switches to its RANS mode, and in the regions of

massive separation where the turbulence model behaviour changes to LES mode with

grid cells close to isotropic. However this model can exhibit an incorrect behaviour in

thick boundary layers and shallow separation regions. This behaviour begins when the

grid spacing parallel to the wall becomes less than the boundary layer thickness (This

situation can arise either due to grid refinement or due to the boundary layer thickening).

In these situations, the grid spacing is then fine enough in the boundary layer for the

DES length scale to switch the turbulence model to the LES mode (but the grid is not

sufficiently fine to support resolved velocity fluctuations internal to the boundary layer

i.e. LES content) which in turn causes the eddy viscosity to drop below the RANS level.

This reduces the modelled Reynolds stresses and the lack of fully resolved LES content

mean the resolved stresses cannot restore the balance from the depleted value of the eddy

viscosity. This deficiency in modelled stresses results in reduced skin friction leading to a

possible premature separation of the boundary layer, which is not a physical behaviour.

Spalart et al. (2006) proposed a way of identifying the boundary layer so that switching of

the turbulence model to LES mode can be prevented. In the modified form of DES (also

known as Delayed DES), the length scale dDES is redefined as:

dDES = d − fd max(0, d − CDES∆) (2.12)

where

fd = 1 − tanh
{
(8rd)3

}
and

rd =
νt + ν√

Ui, jUi, jκ2d2

where ν is the molecular viscosity, (Ui, j) the velocity gradients (with usual tensorial

convention), κ the Kármán constant. Similar to r (which is the square of the ratio of a

model length scale to the wall distance) in the SA model, rd equals 1 in the log layer,

and falls to 0 gradually towards the edge of the boundary layer. The addition of ν in

the numerator is to ensure that rd remains away from 0 very near to the wall. In the SA

model, ν̃ is used instead of (νt + ν). The parameter fd is designed to be 1 in the LES region

where rd � 1, and 0 elsewhere. This model, thus, ensures that the LES mode is prevented
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in boundary layers. This version of DES [also known as Delayed DES or DDES] has

been incorporated in the high-order solver developed in this thesis to ensure that the DES

model is resistant to the ambiguities due to grids and boundary layers.

2.2.2 Numerical Schemes

Conventional low-order CFD schemes used for aerodynamic computations cannot predict

acoustic waves propagation accurately. Excessively fine grid systems are required for an

acoustic propagation problem over a long distance. Even if the discretization scheme

used is high-order, accurate prediction of acoustic waves is dependent on the dispersion

and dissipation characteristics of the scheme. Hence, a high-order discretization scheme

with low dispersion and dissipation errors is desirable for an acoustic computation.

Spatial discretization

A compact finite differencing approach is used in this work to evaluate the first order

spatial derivatives of the governing equations, Eq. 2.1. This approach allows formula-

tion of accurate high-order schemes relatively easily and the high-order accuracy can be

maintained for complex geometries through the use of a curvilinear coordinate system.

Specifically, a fourth-order pentadiagonal type of central compact finite difference scheme

due to Kim (2007) has been used for the spatial discretization in the solver developed in

this work. A pentadiagonal system of central finite difference scheme for evaluating the

first-order spatial derivative, D, of a scalar function f , at point i can be expressed as:

βDi−2 + αDi−1 + Di + αDi+1 + βDi+2 =
1

∆x

3∑
m=1

am
(

fi+m − fi−m
)

(2.13)

This is a generalization of the seven-point Padé scheme [Lele (1992)] used on the interior

nodes and can be solved by inverting a pentadiagonal matrix. The grid spacing ∆x is a

constant independent of the index i in the computational domain where all the grid points

are equally spaced. If α and β equal to zero, an explicit formulation is achieved where

the derivative depends only on the values of the function at neighbouring grid points.

If either α or β are non-zero, the derivative also depends upon the function’s derivative

values at neighbouring grid points and is termed an implicit or compact scheme. The

resolution characteristics of Eq. 2.13 can be analysed in the spectral domain using a

Fourier transform. Taking the Fourier transform of Eq. 2.13 and using Euler’s formula,

the equation in the spectral domain can be written as:
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jk∗∆x f̃ (k)
[
1 + 2α cos (k∆x) + 2β cos (2k∆x)

]
= 2 j f̃ (k)

3∑
m=1

am sin (mk∆x) (2.14)

where

f̃ (k) =

∞∫
−∞

f (x)e− jkxdx

In Eq. 2.14, k is the true wave number of the partial derivatives and k∗ is the numerical

wave number which has a certain deviation from the true wave number due to the

numerical approximation. Ideally k∗ should coincide with k up to as high a value as

possible in order to achieve high resolution characteristics. It is impossible to achieve a

perfect match between k∗ and k over the entire range due to the limitations of numerical

schemes. The discrepancy between k∗ and k is also referred to as the dispersion error of

the scheme. The resolution characteristics of the scheme can be improved by minimising

the error over a desired wave number range. Following Kim (2007) (see also the work

of Kim & Lee (1996)), the total integrated error function due to the discretization scheme

over 0 ≤ κ ≤ rπ (where κ = k∆x) can be written as:

E =

rπ∫
0

(1 + δ)κ
{
1 + 2α cosκ + 2β cos 2κ

}
− 2

3∑
m=1

am sin mκ


2 (
κ
rπ

)10
dκ (2.15)

where r < 1 is a factor to determine the integration range and ( κrπ )10 is a weighting function

to concentrate the optimization on the high wave number band. The conditions for the

integrated error in Eq. 2.15 to be a minimum can be written as:

∂E
∂α

= 0,
∂E
∂β

= 0,
∂E
∂am

= 0 (m = 1, 2, 3) (2.16)

Solving Eqns 2.16 along with the equation resulting from the matching of the same

terms in the Taylor series expansion of Eq. 2.13, optimized values ofα, β and am(m = 1, 2, 3)

can be found. In addition, an optimization strategy based on polynomial-trigonometric

blended extrapolation functions has been used by Kim (2007) to maintain the high reso-

lution characteristic at or near the grid boundaries. Details are available in Kim (2007).

This optimized compact differencing which maintains fourth-order accuracy throughout

the grid block (even at the boundary) is used in this research project for the calculation
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of spatial derivatives. The derivatives of the inviscid fluxes are obtained by first forming

the fluxes at the grid nodes and subsequently differentiating each component using the

above formulae. For the computation of the viscous terms, the primitive variables, u, v,

w and T are first differentiated to form the components of the stress tensor and the heat

flux vector at each node. The viscous flux derivatives are then computed by a second

application of the same scheme. A similar optimization strategy has been applied by the

author for the derivation of optimized interpolation schemes with potential application

in overset grid methods. The detailed process is presented in Appendix C.

Temporal discretization

In most CFD solvers, multistage Runge-Kutta (R-K) schemes have often been favoured

for their low storage requirements and good overall stability response. For CAA solvers,

however, the stability consideration alone is not sufficient, since R-K schemes also add

both dissipation and dispersion errors to the computation. CAA schemes have to be

time-accurate as well as spatially accurate in order to predict wave propagation correctly.

To predict the acoustic propagation problems accurately both the temporal as well as

spatial discretization schemes must have low dissipation and dispersion characteristics.

The fourth-order explicit, low-storage R-K scheme of Hu et al. (1996) is used in the present

high-order solver to advance the solution in time. This is a two-step alternating scheme

optimized for low dissipation and dispersion errors. The scheme uses four stages in the

odd time steps and six stages in the even steps. If the governing equations are written as

∂Q̂
∂t

= R(Q̂) (2.17)

where

R(Q̂) = Ŝv −
∂Ê
∂ξ
−

∂F̂
∂η
−

∂Ĝ
∂ζ
,

then a low storage representation of an explicit p-stage R-K scheme can be represented as:

Q̂n+1 = Q̂n + Kp (2.18)

with

Ki = ∆tR
(
Q̂n + giKi−1

)
i = 1, 2, ....., p (2.19)
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In Eqns. 2.18 and 2.19, p denotes the number of R-K stages in each step, and gi are the

coefficients of the particular step. The superscript n indicates the time level. Integration

from time step n to time step n + 2, is accomplished alternatively by first employing the

four-stage scheme to integrate from time level n to time level n + 1, and then the six-stage

scheme to integrate from time level n + 1 to time level n + 2. Two stage schemes are

favoured over single step schemes as they permit a greater degree of optimization for

wave propagation. In this way the dissipation and dispersion errors of the alternating

two-step schemes are reduced below those attainable through optimization of either of

the individual single steps.

Filtering Scheme

Although high-order schemes are capable of resolving a wider range of wave numbers

or frequencies than conventional low-order schemes, these schemes cannot resolve all

the wave number or frequency range (especially in the high wave number band). Also,

the compact finite differencing used in the high-order solvers are centered schemes, and

like any other centered difference schemes contain no inherent dissipation. Whilst this is

desirable for acoustic wave propagation problems it does leave such schemes susceptible

to numerical instabilities due to the growth of high-frequency modes. These difficulties

originate mainly from grid non-uniformity, boundary conditions, poorly specified initial

conditions and the non-linearity in the flowfields. Hence, in order for a high-order solver

to be robust and accurate in solving complex flowfields with non-uniform grids, a suitable

filtering technique is essential to remove the unwanted numerical oscillations that may

develop from the unresolved high wave number or frequency range. In the CAA solver

developed in this research project, the removal of these very high frequency non-physical

waves is achieved by using the low pass eighth-order implicit filtering formula due to

Visbal & Gaitonde (2002).

If the solution vector to be filtered is denoted by ϕ, the filtered values ϕ̂ are obtained

by solving the tridiagonal system given below:

α f ϕ̂i−1 + ϕ̂i + α f ϕ̂i+1 =

N∑
n=0

an

2
(
ϕi+n + ϕi−n

)
(2.20)

where the coefficients α f , a0, a1, ...an determine the order and spectral response of the

filtering scheme. In Eq. 2.20, the filtered variable ϕ̂ is an implicit function of the solution

variable to be filtered, ϕ. The spectral function (SF), defined as the ratio of the filtered
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and unfiltered fourier coefficients, indicates on which wavelengths the filter acts and is

given by:

SF (k∆x) =

N∑
n=0

an cos (nk∆x)

1 + 2α f cos (nk∆x)
(2.21)

where k is the numerical wave number of the spatial discretization. The coefficients an

are determined by solving the equation SF(π) = 0 along with matching the Taylor series

coefficients of Eq. 2.20 to the desired order. With a proper choice of these coefficients, Eq.

2.20 provides a 2Nth order formula on a 2N + 1 point stencil. α f is a tuning parameter for

the wave length characteristics of the filter which satisfies the inequality −0.5 ≤ α f ≤ 0.5,

with higher values of α f corresponding to a less dissipative filter. Visbal & Gaitonde

(2002, 2000) showed that the N + 1 coefficients a0, a1, ...an can be expressed solely in terms

of α f . For the work presented in this thesis the eighth-order filter with α f = 0.495 has

been used. This choice ensures the spectral characteristics of the filter closely match those

of the spatial compact discretization, preserving the accuracy.

The eighth-order formula requires a nine point stencil, it is therefore not suitable for

use at and near boundary points. In these regions, the order of accuracy of the filter

is reduced, as the boundary is approached, to the level for which a centred scheme is

available. Values along the boundary points are left unfiltered. The filter is applied

sequentially in each coordinate direction to the conserved variables once after the final

stage of the explicit R-K time stepping.

Characteristic Boundary Conditions

One major issue with any high-order solver is the sensitivity of the solution to the grid

skewness and the boundary conditions used. It is, therefore, desirable to have a boundary

formulation which avoids any kind of extrapolation or simplification while solving the

governing equations at the boundary. Boundary conditions based on the method of

characteristics have been developed to meet these high accuracy requirements and have

been continuously evolving for many years [Thompson (1987, 1990); Poinsot & Lele

(1992); Kim & Lee (2000b, 2004)]. Characteristic boundary conditions for Navier-Stokes

equations (also known as NSCBC) are widely used in reacting flow, high temperature

mixtures etc [Sunderland & Kennedy (2003); Yoo et al. (2005); Yoo & Im (2007)]. Another

advantage of this method is that it avoids the excessive communication at multi-block

interfaces required by other interblock treatments e.g. overlapping grids. Hence this
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method has been widely used to treat the block interfaces in multi-block grid domains

for efficient parallel computations [Sumi & Kurotaki (2006); Kim & Lee (2003)].

Characteristic interface boundary treatments have been well documented [e.g. Kim

& Lee (2003); Sumi & Kurotaki (2006); Sumi et al. (2007)] although these methods are

only valid for inviscid and laminar flows. There is also a mathematical consistency

issue which exists for multi-dimensional Navier-Stokes equations, when characteristic

equations are expressed in the form given in the literature [Kim & Lee (2003); Sumi &

Kurotaki (2006); Sumi et al. (2007)]. The characteristic equations in this form do not satisfy

Pfaff’s condition [Thompson (1987); Whitham (1974); Chen & Zha (2006)]. In addition, all

the existing interface treatments based on the method of characteristics lack a satisfactory

interface matching of turbulence quantities. To address these issues, the mathematically

consistent form of the characteristic equations relevant to interface boundary treatment are

derived and a simple and robust technique is proposed to match turbulence quantities

at multi-block interfaces for turbulent flow problems. The detailed derivation of the

characteristic equations, the interface matching techniques along with the characteristic

transformation matrices are given in Appendix A. In the context of the high-order CAA

solver, the characteristic boundary treatment involves three steps. In the first step, the

spatial derivative is calculated using the fourth-order accurate scheme throughout the

grid block including boundaries (as stated in the last paragraph on page 38 and the

first paragraph on page 39). In the second step of the characteristic boundary treatment

(including interface condition),it involves calculating the characteristic wave amplitudes

at the boundaries using the spatial derivatives (which are fourth-order accurate). In the

final stage, the characteristics waves calculated in second step are corrected depending

on the signs of wave convection speeds (Also see Appendix A). The high-order accuracy,

therefore, is maintained because it does not involve any low-order approximation while

calculating the wave amplitudes.

Metric Cancellation Errors

The high-order solver developed in this research work solves the strong-conservation

form of the Navier-Stokes equations (see Appendix A Eq. A.30) which implies that the

metric identities in Eqns. 2.22 to 2.24 have been implicitly invoked. Eq. 2.25, which is

only applicable to time-variant coordinate systems (i.e. moving meshes), is derived from

the grid volume conservation1, also widely referred to as the geometric conservation law

1Actually Eq. 2.25 can be derived easily by setting ρ = 1 and the velocities u, v, w to zero in the first

equation of the time-variant form of the Navier-Stokes equations in Appendix A [Eq. A.30].
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(GCL) in the literature [Pulliam & Steger (1980); Thomas & Lombard (1979); Chung &

Tucker (2003); Visbal & Gaitonde (2001)]. In any finite-difference discretization scheme

these identities must be satisfied numerically (Eq. 2.22 to 2.24 for non-moving meshes) in

order to ensure freestream preservation.

(
ξx

J

)
ξ

+

(
ηx

J

)
η

+

(
ζx

J

)
ζ

= 0 (2.22)

(
ξy

J

)
ξ

+

(
ηy

J

)
η

+

(
ζy

J

)
ζ

= 0 (2.23)

(
ξz

J

)
ξ

+

(
ηz

J

)
η

+

(
ζz

J

)
ζ

= 0 (2.24)

(
1
J

)
τ

+

(
ξt

J

)
ξ

+

(
ηt

J

)
η

+

(
ζt

J

)
ζ

= 0 (2.25)

The issues of the freestream preservation and metric cancellation errors, hence, is

important and have to be ensured in order to extend high-order schemes to non-trivial 3D

generalized curvilinear coordinates. These errors arise in finite difference discretizations

of governing equations written in strong conservation form and could easily degrade the

accuracy of the high-order calculations. Grid-induced errors may appear, for instance, in

regions of large grid variations or near singularities. The straight forward approach of

calculating the metrics given in Eq. 2.6 fails to provide metric cancellation for general 3D

curvilinear meshes. Evaluation of the y and z derivatives (which are required to calculate

ξx, ηx and ζx) using compact centred schemes in Eq. 2.6 does not satisfy the metric identity

in Eq. 2.22 and therefore grid-induced errors appear in regions of large grid variation or

near singularities. For curvilinear 2D meshes, Pulliam & Steger (1980) demonstrated that

the compact scheme provided metric cancellation when the metrics were evaluated with

the same finite difference scheme as those employed for the computation of fluxes. Pulliam

& Steger (1980) introduced a simple averaging procedure to guarantee the freestream

preservation on 3D curvilinear grids. Although this procedure worked well for a low-

order (second-order) scheme, it is not suitable for high-order solvers. An alternative

method to enforce the metric identities can be achieved by using the method of Thomas

& Lombard (1979) which consists of writing the metric relations in conservative form as

follows:
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ξx = J
{
∂

∂ζ

(
z
∂y
∂η

)
−

∂

∂η

(
z
∂y
∂ζ

)}
, ξy = J

{
∂

∂ζ

(
x
∂z
∂η

)
−

∂

∂η

(
x
∂z
∂ζ

)}
ξz = J

{
∂

∂ζ

(
y
∂x
∂η

)
−

∂

∂η

(
y
∂x
∂ζ

)}
, ηx = J

{
∂

∂ξ

(
z
∂y
∂ζ

)
−

∂

∂ζ

(
z
∂y
∂ξ

)}
ηy = J

{
∂

∂ξ

(
x
∂z
∂ζ

)
−

∂

∂ζ

(
x
∂z
∂ξ

)}
, ηz = J

{
∂

∂ξ

(
y
∂x
∂ζ

)
−

∂

∂ξ

(
y
∂x
∂ζ

)}
ζx = J

{
∂

∂ξ

(
z
∂y
∂η

)
−

∂

∂ξ

(
z
∂y
∂η

)}
, ζy = J

{
∂

∂η

(
x
∂z
∂ξ

)
−

∂

∂ξ

(
x
∂z
∂η

)}
ζz = J

{
∂

∂η

(
y
∂x
∂ξ

)
−

∂

∂ξ

(
y
∂x
∂η

)}
(2.26)

The conservative differential form of Eq. 2.26 is ideally suited to the strong-conservation

form of the flow equations solved in the CAA solver developed in this work and is there-

fore selected for 3D complex geometry simulations.

2.3 Low-order CFD Solver

In the second part of this research, the CFD solver FLUENT was used to simulate the

complex geometry cases which involved 3D cavity geometry with stores and spoilers.

FLUENT is a finite-volume solver and the temporal and spatial discretization schemes

available in FLUENT provide at most second-order accuracy in space and time. It is,

therefore, not ideal for aeroacoustic applications. Nevertheless, many studies e.g. Kim

et al. (2003); Mathey et al. (2006) have shown FLUENT to be capable of simulating aeroa-

coustic problems, and of resolving the flow structures responsible for noise generation

when suitably designed computational mesh and time-step sizes are used. Options for

both explicit as well as implicit time-stepping are available with the solver. The governing

equations are integrated over small finite volumes to yield the equations that conserve

the primary variables in each control volume. In Fluent, the governing Navier-Stokes

equations [Eq. 2.1] are solved in integral form. The integral form of Eq. 2.1 for a control

volume V with a differential surface area S can be expressed as follows:

∂

∂t

∫
V

QdV +

∫
S

[E + F + G − Sv].dS =

∫
V

HdV. (2.27)
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where the vector H represents all the source terms such as body forces and energy sources.

The vector H is zero in absence of external forcing and heat sources. For full details, see

Fluent (2005).

2.4 Radiation Solver

In airframe noise, one is often interested in the farfield characteristics of a given sound

field. Hence, the computed sound fields need to be propagated over large distances

comprising many wavelengths. An acoustic radiation solver based on the integral for-

mulation of Ffowcs-Williams and Hawkings (the FW-H solver is based on a retarded-time

formulation) has also been developed to compute noise distribution in the farfield. This

formulation embodies the most general form of the acoustic analogy. It permits the use of

both impenetrable walls as well as permeable interior surfaces off the wall as integration

surfaces. The FW-H equation is an exact rearrangement of the Navier-Stokes equations

and is found to be appropriate for computation of the noise field when solid boundaries

play a direct role in the generation of sound. The solution of the FW-H equation is ob-

tained in terms of volume and surface integrals and may be used to predict the farfield

acoustic signal based solely on nearfield data. The FW-H method has typically been

applied by having the integration surface coincide with solid boundaries, but the method

is still applicable when the surface is off the body and permeable. A detailed derivation

of the FW-H equation, as employed in the radiation solver is given in Appendix B.
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Geometry

STEP I :
Near-field computation
using CFD methods
(LEE, APE, URANS, DES)

Uniform Flow (Outer Region) Observer location
at far-field

STEP II :
Noise prediction at far-field

observer point ’A’
using FW-H formulation

A

Figure 2.1: Schematic of the two-step computational procedure.
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Chapter 3

High-order Solver Simulations

In this chapter, computed results on the source of noise using the high-order CAA solver

developed by the author and its validation with available analytical and experimental

data is presented. Both 2D and 3D geometries are considered.

3.1 Introduction

In Chapter 1, it was highlighted that the conventional low-order CFD schemes used for

aerodynamic computations cannot predict acoustic wave propagation accurately. Ex-

cessively fine grid systems are required for an acoustic propagation problem over a

long distance. Even if the discretization scheme used is high-order, accurate prediction

of acoustic waves is dependent on the dispersion and dissipation characteristics of the

scheme. A high-order discretization scheme with low dispersion and dissipation errors

is, therefore, essential for accurate computation of aerodynamic noise.

A fourth-order accurate CAA solver based on optimized compact finite differencing

was developed by the author to resolve the flow features responsible for aerodynamic

noise generation. The purpose of this chapter therefore is to validate the solver and

examine its capabilities to resolve the acoustic waves without dispersion and dissipation

errors. In addition, its robustness to complex geometries with multi-block curvilinear

grids is demonstrated by computing the unsteady flow around a generic landing gear

wheel. Finally, the solver was tested for its capability to resolve the flow inside a truly

three-dimensional cavity geometry and analyze the influence of the three-dimensional

flow features on the oscillation process. All simulations using the CAA solver were run as

unsteady flows and the turbulence in the flow was modelled using one-equation model

of Spalart & Allmaras (1992) for 2D [URANS simulation] and the DES formulation of

Spalart et al. (2006) for the 3D geometries.

3.2 Validation Work

In this section, results from various simulation cases to validate the CAA solver are pre-

sented. Several test cases including both inviscid and viscous simulations were performed

to validate the CAA solver. One of the test cases was from the typical CAA benchmark

problems [Tam et al. (1997)] used in the validation of CAA codes.
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3.2.1 Two-Dimensional Acoustic Scattering

To demonstrate the accuracy of the CAA solver in multi-dimensions and illustrate the

stability and low dispersive behaviour of the solver, a two-dimensional acoustic scattering

problem from the Second CAA workshop [Tam et al. (1997)] is considered. The physical

problem is to study the scattering of the sound source (generated by a propeller) from

the fuselage of an aircraft. The fuselage is idealized as a circular cylinder and the noise

source (propeller) as a line source so that the computational domain is 2D. The geometry

therefore is a 2D cylinder of non-dimensional radius R = 0.5 placed at the origin of a

cylindrical coordinate system. An acoustic pulse with initial conditions is scattered by

the cylinder. The initial conditions for this sound scattering problem are given by:

p
(
x, y, 0

)
= exp

− ln 2

 (x − 4)2 + y2

0.04

 (3.1)

u
(
x, y, 0

)
= 0

v
(
x, y, 0

)
= 0

This benchmark problem has been solved in previous work of Kim & Lee (2000b)

on an orthogonal grid generated with an O-topology. In the present work, this case is

solved on a non-orthogonal grid domain generated using H-topology to challenge the

stability of the solver. The computational domain consists of a square box of 30d edge

dimension with the cylinder at its centre. The grid domain based on H-topology and the

cell distributions near the cylinder surface is shown in Figure 3.1. The number of grid

points is 355 × 220. A snapshot of the computed pressure field at non-dimensional time

t = 5 is shown in Figure 3.2. From the figure, it can be seen that the acoustic pulse has just

reflected off the cylinder at this time. The unsteady pressure history is recorded at three

points: A(r = 5;θ = 90◦), B(r = 5;θ = 135◦) and C(r = 5;θ = 180◦) during simulation.

Figures 3.3, 3.4 and 3.5 show these computed pressure time histories in comparison with

the analytic solution. From the computed result, superior resolution characteristics of the

optimized compact finite difference schemes with negligible dispersion and dissipation

errors are evident. To verify that the superior accuracy is maintained irrespective of

directional position in the domain, acoustic pressure was monitored at three different

locations as mentioned above and as may be seen, good agreement is evident at all three

locations.
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3.2.2 Inviscid �ow past a 2D cylinder

An inviscid flow past a circular cylinder is a steady flow without separation and is close

to potential flow in the low-Mach-number regime. The grid domain used was the same as

the one based on an H-topology used in the acoustic scattering case. A pressure contour

plot for a Mach number of 0.1 is presented in Figure 3.6. The pressure coefficient curve

is plotted in Figure 3.7 along the cylinder surface in comparison with the potential flow

case. From Figures 3.6 and 3.7, it is evident that the computed inviscid solution is in good

agreement with the potential field of an ideal flow.

3.2.3 Sound Propagation in 3D Curvilinear Meshes

For the next validation case, propagation of a 3D spherical acoustic pulse in a curvilinear

mesh is computed to evaluate the effect of metric cancellation errors on acoustic propa-

gation. A three-dimensional curvilinear grid is generated using the following equations

[see Visbal & Gaitonde (2001)]:

x(i, j, k) = xre f + δx
[
(i − 1) + sin

{
8π

(
j − 1

)
δy

Ly

}
sin

{
8π (k − 1) δz

Lz

}]
(3.2)

y(i, j, k) = yre f + δy
[
( j − 1) + sin

{
8π (i − 1) δx

Lx

}
sin

{
8π (k − 1) δz

Lz

}]
z(i, j, k) = zre f + δz

[
(k − 1) + sin

{
8π (i − 1) δx

Lx

}
sin

{
8π

(
j − 1

)
δy

Ly

}]

with

δx =
Lx

nx − 1
; δy =

Ly

ny − 1
; δz =

Lz

nz − 1

and

i = 1 ... nx; j = 1 ... ny; k = 1 ... nz.

The domain generated using Eqns 3.2 results in a computational grid which does not

satisfy the metric identities discussed in Chapter 2 [i.e. Eq. 2.22 to 2.24]. An isometric

view of the resulting wavy mesh is shown in Figure 3.8. A 3D spherical acoustic pulse

was initiated at the centre of the mesh to study its propagation accuracy in the distorted

wavy mesh. An initial spherical acoustic pulse for this case is prescribed by:
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p = p∞ + εe
− ln 2

(
x2+y2+z2

9

)
(3.3)

u
(
x, y, z, 0

)
= 0

v
(
x, y, z, 0

)
= 0

w
(
x, y, z, 0

)
= 0

where ε = 0.01.

Figures 3.9a and 3.9b display the calculated pressure contours on a plane through

the centre of the spherical pulse at t = 10 for the case when the metrics are evaluated

using Eqns 2.6 and 2.26 respectively. It is apparent that significant distortion of the

acoustic wave occurs due to the lack of freestream preservation (i.e. metric cancellation

errors). The acoustic pressure along the grid line i = j = 31 is compared in Figure 3.10 for

both the calculations with the theoretical solution and poor performance of the standard

metric evaluation method is apparent. The results obtained with the metric evaluation

procedure of Eq. 2.26 exhibit no acoustic distortions and the computed line pressure is in

excellent agreement with the theory. Hence, even for relatively good quality curvilinear

grids, errors resulting from the lack of freestream preservation can corrupt the acoustic

pressure significantly unless proper metric evaluation procedures are employed. This

case has clearly demonstrated that the superior performance of the high-order method

can be extended to a complex geometry cases involving general curvilinear grids.

3.2.4 Vortex propagation across a block interface

To further test the accuracy of the interface conditions and demonstrate its transparent

behaviour towards acoustic waves, a two dimensional problem of an isentropic vortex

convection across a block interface is considered. The Mach number of this case is taken

to be 0.3, and the Reynolds number in viscous flow is set to be 104. A single convective

vortex in an uniform flow is expressed as:
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p = p∞ −
ρC2

0

2R2
0

exp(−r2) (3.4)

u = u∞ −
C0

(
y − yc

)
R2

0

exp(−r2/2) (3.5)

v =
C0 (x − xc)

R2
0

exp(−r2/2) (3.6)

(3.7)

where

r2 =
(x − xc)2 +

(
y − yc

)2

R2
0

and C0 and R0 are set to 0.167 and 0.2 respectively [Sumi & Kurotaki (2006)]. Figure

3.11 shows the two block grid domain used in the computation and each of the block

had grid dimension of 121 × 241. The vortex is initially released from (xc, yc) = −(1, 0)

at t = 0. The pressure contours of the propagating vortex at four different instances is

shown in the Figure 3.12. From the figures it can be seen that the vortex passes through

the block interface boundary very smoothly and there is no evidence of the acoustic

reflections or any other instabilities at the block interface boundary. The pressure signal

along a horizontal line through the centre of the convecting vortex corresponding to the

first three instances in Figure 3.12 is plotted in Figure 3.13. As can be seen in the figure,

there is no reflection of the signals at the block interface and it is found to pass smoothly.

The characteristic boundary condition, therefore, is transparent to the vortex propagation

problem.

3.2.5 Laminar �ow past a 2D cylinder

Viscous flow past a circular cylinder is found to shed vortices in the well-known Von

Kármán vortex street behind the cylinder. It is known experimentally that a regular Von

Kármán street exists when the flow Reynolds number (based on cylinder diameter) lies

in a range of about 60 to 5000 [Schlichting (1979)] and the Strouhal number depends

only on Reynolds number in this range. This regular vortex shedding causes fluctuations

in lift and drag forces and the fluctuation of forces results in the radiation of a dipole

sound field. The radiated dipole sound is estimated analytically and compared with the

computational result. The analytical formula neglects the effects of quadrupole sources

due to the convection of vortices. However, the quadrupole source strength is negligibly
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small at low subsonic flows compared to the dipole source. The analytical formula,

therefore, is well suited for predicting sound directivity for low subsonic flows and is

used in this work for comparison with the computed result. The analytical formula used

to predict the dipole sound directivity [Kim & Lee (2004)] can be written as,

p
′

rms (r, θ) =
ρ∞a2

∞

4

[{
M5
∞Sr
r/d

}{
C2

L sin2 θ + 4
(
CD − CD

)2
cos2 θ

}] 1
2

(3.8)

where Sr is the Strouhal Number, r the distance from the centre of the cylinder, and d is

the cylinder diameter.

As with the inviscid case, a non-orthogonal grid generated using an H-topology was

used for the viscous flow simulation about a 2D cylinder. The flow Reynolds number

based on the cylinder diameter for this case was 300. The number of grid points used

was 250 × 150. The grid points were clustered near the cylinder wall and the boundary

layer was resolved by approximately 25 grid points normal to the cylinder surface. The

viscous grid domain with the cell distributions near the cylinder surface is shown in

Figure 3.14. The simulation was run with a CFL number of 0.5 and was continued until

the non-dimensional time reached t × a∞/d = 400. Figure 3.15 shows contours of the

instantaneous vorticity and velocity fields at the end of the computation; this clearly

indicates the existence of a Von Kármán street along with the positions of the vortices.

Time-dependent lift and drag coefficients are plotted in Figure 3.16. From the figure, a

periodic fluctuation of unsteady forces with constant magnitudes at a constant frequency

is evident after initial transients have settled. The frequency of this periodic oscillation

was used to evaluate the Strouhal number. The computed values of Strouhal number,

mean drag coefficient, and rms fluctuating lift coefficient are compared with experimental

data [Schlichting (1979); Kim & Lee (2004)] and listed in Table 3.1. From the results, the

mean flow properties computed using the proposed boundary conditions are found to

agree well with the experiment. Figure 3.17 compares the computed acoustic directivity

with the analytical estimation using Eq. 3.8. From the figure the computed result is in

excellent agreement with the analytical approximation demonstrating the low acoustic

dispersion and dissipation characteristics of the solver.

3.2.6 Turbulent Flow Past a Backward-Facing Step

Having demonstrated the good accuracy of the solver in computing an acoustic scattering,

potential flow past a cylinder and viscous laminar flow, a viscous turbulent calculation

is performed to demonstrate the performance of the turbulence matching [see Appendix
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Table 3.1: Strouhal Number and Mean Force coefficients
Cases Strouhal Number Drag Coefficient RMS Lift Coefficient

(St) (Cd) (C2
l )

1
2

Experiment 0.21 ± 0.005 1.2 ± 0.1 0.6 ± 0.1

Computed 0.212 1.202 0.612

A for details]. For this case a backward-facing step was chosen, owing to the ready

availability of high-quality experimental data. The computational domain was designed

using a structured multi-block strategy. The basic topology and block structure of the

computational domain and the structured grid are shown in Figure 3.18. Inter-block

boundaries are denoted by dashed lines. As indicated, the computational domain con-

sists of eight structured blocks. Along the inflow boundary, the two Cartesian velocity

components u, v together with the turbulence quantity νt were prescribed to ensure that

the computed boundary layer profile matched the experiment [Jovic & Driver (1994)].

These values were determined using Wilcox’s EDDYBL boundary layer program [Wilcox

(2006)], together with a knowledge of the experimental boundary layer profile upstream

of the step. In total the computational grid consisted of approximately 33000 cells. To

resolve the shear and boundary layers, grid cells are clustered along all solid walls as

well as around the step region using a hyperbolic tangent distribution function. In all

cases the meshes were designed to ensure a y+ of less than or equal to one along all

solid walls. Upstream of the step, the boundary layer was resolved with a minimum of 25

mesh points. In the experiment [Jovic & Driver (1994)] the backward-facing step flow was

found to be closely represented by a two-dimensional flow in the measurement domain.

Hence, in accordance with the experimental observation, a two dimensional simulation

was performed in this case. A characteristic outflow boundary with pressure at infinity

(ie free stream value) was imposed at the downstream boundary of the domain and an

outflow along the upper boundary.

Computations were performed using both the new matching procedure and the ex-

isting approaches (based on simple averaging) at the block-interfaces. From the result, a

discontinuity was found to exist in turbulence variables (e.g. µ and ν) at block interfaces

when the turbulence quantities at the interface were matched using simple averaging.

Contours of non-dimensional kinematic viscosity are plotted in Figure 3.19 for the re-

sult using standard averaging and a clear discontinuity is found to exist at the three-

block-interface junction. This discontinuity, however, is not present in the result from

the new treatment (using proposed turbulence matching procedure). Contours of non-

dimensional kinematic viscosity are again plotted in Figure 3.20 for the result from the new

interface treatment and a smooth and continuous solution is found to exist at all the block
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interfaces. Comparisons of mean streamwise velocity profiles with experiment at two

different locations are plotted in Figure 3.21. A reasonably good agreement between the

experiment and the computed result is evident. Hence, the proposed method to match

turbulence quantities at the block interfaces completes the extension of characteristic-

based interface matching methods for turbulent flow simulation with improved accuracy

and robustness.

3.3 Cavity Flow Simulations

After validating the CAA solver for a wide range of flow types, it is utilized for 2D

and 3D cavity flow simulations, which is also the main focus of this thesis. Although

geometrically simple, cavity flowfields exhibit complex flow behaviours and therefore

can be taken as benchmark cases representative of geometrically more complex flows.

This section therefore is devoted to investigating computationally the aerodynamic noise

generation mechanism in cavities using the CAA solver. In particular the flow physics

responsible for the tonal noise generation are emphasized in this section. For comparison

with experiment, two specific cavity geometries are considered. The first type is an

automobile door cavity and the second is a plane cavity.

3.3.1 Flow over a 2D Automobile Door Cavity

In this section the results of a two-dimensional viscous turbulent simulation of the flow

over an automobile door cavity are presented and analyzed. This geometry represents the

gap between a closed car door and car body; it has a narrow opening, which is exposed

to the external flow, and a relatively deep main cavity with L/D ≤ 1.

Geometry and Flow Conditions

The geometrical details of the cavity investigated are shown in Figure 3.22(a). The 2D

geometry, which is representative of an automobile door gap, comprises a simple rect-

angular surface cutout with a lip or overhang extending from the upstream edge. The

basic cavity dimensions in this case are taken from the experimental work of Henderson

(2000). The computational domain was designed using a structured multi-block strat-

egy. For this case, ten structured grid blocks were used to construct the computational

domain. Figure 3.22(b) shows a view of the nearfield computational grid for the case.

Along the inflow boundary, the two Cartesian velocity components u, v together with
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the turbulence quantity ν were prescribed to ensure that the computed boundary layer

thickness matched the experiment [Henderson (2000)]. These values were determined

using Wilcox’s EDDYBL boundary layer program [Wilcox (2006)] assuming a one-seventh

power-law for the boundary layer. In total the computational grid consisted of approx-

imately 55000 cells. To resolve the shear and boundary layers, grid cells were clustered

along all solid walls, and notably along the cavity mouth using a hyperbolic tangent

distribution function. In all cases the meshes were designed to ensure a y+ of less than

or equal to one along all solid walls. Upstream of the cavity lip, the boundary layer was

resolved with a minimum of 25 mesh points. Grid stretching within the cavity was kept

to a minimum, but outside the cavity grid stretching was used to create a coarse buffer

region near the outflow to damp disturbances before they encountered the characteristic

non-reflecting boundary. Adiabatic, no-slip boundary conditions are imposed on all solid

walls in the computation.

Computed Results

Figure 3.23 shows a sequence of vorticity contours demonstrating the vortex shedding

from the lower edge of the cavity lip. The nature of the flow in the vicinity of the cavity

opening can be analysed by examining these sequences. The images correspond to times

in the oscillation cycle, and highlight the unsteadiness in the resulting shear layer as

the boundary layer separates from the lip of the cavity. The oscillations develop as a

consequence of shear layer instabilities which amplify small pressure disturbances in

a feedback loop. The convective growth of these instabilities results in the unsteady

impingement of the shear layer on the downstream face of the cavity. As a consequence

of this unsteady shear layer behaviour, the pressure in the vicinity of the downstream

wall fluctuates in a quasi-periodic manner. The resulting cyclic oscillation process near

the cavity neck can be described as follows. As the pressure at the cavity downstream

face increases due to the impingement of the shear layer, a mass flux from the neck into

the main body of the cavity results. During this phase the density and pressure increase

within the main body. As the shear layer continues to evolve with time the pressure

in the downstream wall region is reduced when the shear layer is deflected over the

corner. As this occurs mass flows out from the cavity resulting in the reduction of density

and pressure inside the main body. The feedback loop is closed, as the density and

pressure perturbations radiate together as sound from the cavity, perturbing the shear

layer. When the frequency of the disturbance is suitably in phase with the developing

shear layer, resonance occurs. At resonance, sound pressure levels (SPL) in excess of 130dB

have been observed in experiments. The spectral content of the computed pressure at a
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point on the downstream-facing edge of the cavity lip is compared with the experimental

data of Henderson (2000) in Figure 3.24. The computed results show that a strong tonal

component at just over 1800 Hz (St = 0.315) dominates the acoustic spectrum, which is in

good agreement with the experimental data. The computed tone amplitude also closely

matches that in experiment, lying within 3dB. The nature of the oscillations observed may

be described to have similarity with a classic Helmholtz resonator. In order to verify the

hypothesis that the cavity was indeed behaving as a Helmholtz resonator, the following

theory for a Helmholtz resonator was used to estimate the oscillating frequency of the

resonator:

fHelmholtz =
a

2π

√
AO

dOVin
(3.9)

where dO is the equivalent depth of the neck, AO is the area of the opening, Vin is the

volume of the cavity and a is the speed of sound. The equivalent depth of the neck

was calculated using the approximation of Rayleigh (1896) on a piston in a baffle. The

estimated resonant frequency using the simple relation of Eq. 3.9 was found to be f = 1850

Hz, which is in good agreement with the numerical and experimental values. This clearly

indicates that the mode of oscillation is that of a Helmholtz resonator.

3.3.2 3D Clean Cavity, L/D = 4, W/D = 1

The CAA solver is now employed to study the tonal noise produced by a 3D cavity

geometry at transonic speed. Fully 3D numerical simulations are performed with the

CAA code. Both the mean and unsteady flowfields inside the cavity are examined in

detail and comparisons are made with available experimental data [Tracy & Plentovich

(1997)].

Geometry and Flow Setup

The cavity configuration investigated is a 3D plane cavity, which comprises a simple

rectangular cutout in an otherwise infinite plate and is therefore fully described by its

length-to-depth and length-to-width ratios. The geometry considered was 9.6 inches long

with L/D = 4 and W/D = 1 and corresponds to one of the cases in the experimental inves-

tigation [Tracy & Plentovich (1997)]. For this study the Mach number of the freestream

flow is 0.8. Again, as with the geometry, the flow condition corresponds to a subset of

those investigated by Tracy & Plentovich (1997). The computational domain extends 4D
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upstream, 8D downstream, 6D vertically and 4D laterally from the cavity. A sectional

view of the multi-block structure of the computational domain and the structured grid is

shown in Figure 3.25. In total, the computational domain consisted of 52 structured blocks

with approximately 2.9 million grid points. Along the inflow boundary, the two Cartesian

velocity components u, v together with the turbulence quantity ν were prescribed so that

the computed boundary layer just upstream of the cavity had approximately the same

thickness as in the experiment [Tracy & Plentovich (1997)]. These values were determined

using Wilcox’s EDDYBL boundary layer program [Wilcox (2006)], together with a knowl-

edge of the experimental boundary layer thickness upstream of the cavity. The computed

profile was then copied across the span at the inflow boundary and the z-component

of velocity (w) was set to zero. To resolve the shear and boundary layers grid cells are

clustered along all solid walls using a hyperbolic tangent distribution function. At the

cavity leading edge, the boundary layer is resolved with approximately 20 mesh points.

A characteristic outflow boundary with pressure at infinity (i.e. free-stream value) was

imposed at the downstream boundary of the domain, as well as along the upper and lat-

eral boundaries. To assess the adequacy of the computational domain and demonstrate

the suitability of the grid a grid convergence study was undertaken. Due to the excessive

computational time involved in 3D unsteady computations, two-dimensional simulations

were used to establish grid convergence. For this purpose three meshes were generated

with the same basic mesh topology, see Fig. 3.25(c), but with varying grid densities. The

details of the grid convergence study are given in Appendix D. The intermediate grid in

the 2D grid convergence study was found to be in good agreement with the fine grid and

hence was chosen as the basis for the 3D grid generation. The 3D grid thus generated was

used for the unsteady flow simulation for this cavity case. At the first stage, a preliminary

steady simulation was performed using the commercial, general purpose CFD solver,

Fluent. To reduce the computational time, the steady solution was then used to initialize

the unsteady simulation in the CAA solver. The results of the computation are presented

in the following sections.

Aerodynamic Field

Time-mean �ow

The time-mean flowfield is characterized by the mean surface static pressure coefficient

(Cp) distribution. The computed mean Cp distribution is presented in Figure 3.26 for the

simulated case (the experimental Cp data were not available for comparison). The study

of the mean Cp distribution in Figure 3.26 indicates that the flow belongs to the open
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cavity flow type and it is found to exhibit many of the global flow features commonly

found in open cavity flows. The time-mean flow within the cavity is dominated by a

large-scale recirculating flow pattern. The location of the centre of the large structure may

be identified from the trough in the mean Cp plot that is mostly evident along the cavity

floor and the structure is centred downstream of the middle of the cavity. A careful study

of the mean Cp plot also found that the time-mean flowfield is not uniform across the

cavity span. This can be concluded from Figure 3.26 which shows the mean Cp plots for

various spanwise locations. For this case, the centreline of the cavity is seen to record the

greatest variation in the pressure coefficient.

Although the mean Cp plots can be used to identify the cavity flow type, a more

detailed study of the flow behaviour and structure inside the cavity is not possible from

these plots. Hence visualization of 2D sectional streamlines using line integral convolu-

tion (LIC) images [Knowles et al. (2006)] along with 3D flow particle tracking was used

to study the flow behaviour further. To study the state of the time-mean flow features

inside the cavity, vortex core locations were calculated in the time-averaged CFD data

and stream lines were emitted from the calculated locations. The resulting mean flow

structure is presented in Figure 3.27. These streamlines represent the time-mean path

of unsteady vortical structures inside the cavity. In addition, sectional streamlines of

computed time-mean velocity data are visualized using LIC in Figure 3.28. Figure 3.27

reveals a single vortex structure which is seen to travel upward in the upstream third

of the cavity, before being swept downstream to merge with the large recirculation near

the lip of the cavity. This is also evident from the LIC image in Figure 3.28(h). This ob-

servation is consistent in principle with the results presented in Chapter 4 (in Chapter 4,

the results show the presence of two contra-rotating vortices, but these are observations

on wider cavities, i.e. W/D ≥ 2). The structures have described in ESDU Item 02008

[ESDU (2004)] as ’tornado-like’ vortices which spiral up towards the mouth plane (i.e.

the open plane) of the cavity although a description of their subsequent movement is

not given. These structures have also been studied by Atvars et al. (2009) with the aid

of experiments and CFD visualization. The formation of a single vortex structure can be

described as follows. When the flow travelling upstream along the floor of the cavity

reaches the upstream wall, the proximity of the cavity sidewall forces the flow to divert

in the spanwise direction towards the opposite sidewall. The proximity of the opposite

sidewall forces the flow to turn and flow downstream but is prevented from doing so by

the flow travelling upstream along the cavity floor. The flow is forced to turn out towards

the sidewall of the cavity which forms the vertical ’tornado-like’ structures seen on the

cavity floor. The presence of only one vortex structure in this case is thought to be due to
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the narrow cavity width (W/D = 1). The LIC images of sectional streamlines at various

spanwise locations (i.e. Figures 3.28[a-f]) also clearly indicate the three-dimensionality in

the time-mean flow inside the cavity. Firstly, the most noticeable three-dimensional flow

feature is the variation in the position of the core of the main recirculating flow across

the span of the cavity. Secondly, secondary recirculating regions are found to appear

upstream and downstream of the main recirculating structure in the cavity for z/W = 0.4

and z/W = 0.5 locations.

Time-dependent �ow�eld

The basic unsteady flow physics are also in accordance with Rossiter’s model. These

global unsteady features may be seen in Figure 3.29 which shows the time development

of tubular vortical structures in terms of the iso-surfaces of the second invariant of the

velocities Joeng & Hussain (1995). The unsteady behaviour of the flow inside the cavity

may be analysed by studying the evolution of these structures. The incoming boundary

layer separates at the cavity leading edge forming a shear layer. As the shear layer

develops downstream, instabilities quickly grow leading to the tubular vortex structures

evident (tracked with a blue oval) in Figure 3.29. With time, these structures continue

to grow while being convected downstream. At the rear of the cavity, the interaction

of the vortical structures with the cavity trailing edge generates disturbances that travel

upstream along the cavity floor (shown with a red arrow in Figure 3.29(a)) towards the

cavity leading edge, thus closing the feedback loop. The tornado-like vortex observed in

the meanflow study is actually the time-averaged path of the tubular vortex structures

seen in the unsteady flow.

To study the unsteady flow quantitatively, the frequency content of the nearfield

pressure fluctuations was extracted using fast Fourier transforms. Figure 3.30 shows the

comparison between experimental [Tracy & Plentovich (1997)] and computed pressure

spectra at the leading edge of the cavity (note that experimental data were only available

for the leading-edge monitor point). Mode frequency predictions from the modified

Rossiter equation are represented by the dashed lines. From the figure, computed mode

frequencies are found to agree well with the experimental data, although the magnitude

of the tones have small discrepancies. These discrepancies may be due to the lack of

sufficient knowledge of experimental test conditions that affect the cavity flowfield e.g.

incoming boundary layer characteristics, tunnel turbulence levels, ambient density (ρ)

and ambient temperature (T) (or speed of sound, a0). Also, the computed results are

found to agree better with the dominant mode frequency predicted by the modified

Rossiter equation. Higher modes, however, are not well captured by the computation.
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This may be due to the limitation on the grid size used. Due to the fourth order accuracy

of the solver, the computational time is very high and hence this limits the size of the grid

domain for a realistic simulation time frame. To tackle this issue, adaption of zonal grid

methods (patched and/or overlapped grids) are proposed as an area of future work in the

further development of the CAA solver.

To compare the computational accuracy of the CAA solver, an unsteady simulation

was also performed for the same cavity geometry using the second order finite volume

solver, Fluent. Although a zonal grid with non-matching interfaces could have been used

to reduce the number of the overall grid size in the Fluent simulation, the grid domain

which was used for the CAA simulation was used to enable like-for-like comparison. The

comparison was focused on the accuracy of prediction of resonant modes by both the

solvers. Figure 3.31 shows the resonant modes predicted by both the solvers compared

to experiment. From the figure, the CAA solver is found to perform better in prediction

of acoustic phenomena. Firstly, the first resonant mode is not picked up by the Fluent

solver (In Chapter 4, it will be shown that Fluent can offer better accuracy with zonal grid

methods). Secondly, the computed resonant frequency of the second mode from the CAA

solver is also closer (albeit marginally) to experiment than Fluent. Higher order modes

are not picked up by either of the solvers. This may be due to the limitation posed by the

number of grid cells in the structured grid domain. This proves that the high order CAA

solver can perform better than second order solver under identical conditions. However,

the computing costs for the CAA solver was found to be almost 10 times more than that

required for the Fluent solver as shown in Table 3.2.

Table 3.2: Required Computational Resources in Simulations

Solver No. of cores Simulation time Total CPU hrs

(days)

CAA solver 52 240 2.99 × 105

(13 Quad core nodes) (Approx.)

Fluent 16 120 4.6 × 104

(4 Quad core nodes) (Approx.)

3.4 Flow around a Generic Landing Gear

To demonstrate the stability and robustness of the CAA solver for flowfields involving

complex geometries (i.e. challenging geometries for the generation of structured grids),

the unsteady flowfield around a generic landing gear was computed using the CAA code.
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The investigation involves the aerodynamic noise radiation from a single wheel isolated

in a freestream.

Aerodynamic noise from landing gear is considered a major component of airframe

noise, especially during landing when the engine is operating at low thrust. Numerous

experimental as well as computational studies to identify the noise source and its attenua-

tion techniques are being carried out around the globe [Ringshia et al. (2006); Guo (2008)].

The landing gear acoustic spectrum normally has a peak at mid to low frequencies and

is considered to be a significant source of noise for modern passenger aircraft such as the

Airbus A380 or Boeing 787. Flow over the large elements such as the wheels is found

to be responsible for low-frequency noise whilst small components such as axles, struts,

wires etc are responsible for the noise at higher frequencies. Streamlined fairings are

being proposed to reduce the high frequency noise. However, streamlining the wheel is

not practical and hence the wheel is thought to be the most challenging component in

airframe noise.

Geometry and Flow Setup

The landing gear geometry considered in this investigation was a single wheel with a

diameter of 1.05m. A multi-block structured grid was created to compute the unsteady

flowfield around the wheel. A fully structured computational domain was created using

a multi-block domain strategy. The origin of the co-ordinate system coincided with the

geometric centre of the wheel. Due to the complexity involved in generating a structured

grid around a landing gear geometry, the total number of structured blocks to construct

the computational domain was 424. The number of grid points used was 3.15 million.

The computational domain extended 7d upstream, 15d downstream, 5d vertically and 4d

laterally from the centre of the wheel. These dimensions were chosen to be large enough

to minimise the influence of the boundaries on the final solution and small enough to

minimize the number of grid points. Similar values have previously been found to be

sufficient in the simulation of a comparable geometry [Hedges et al. (2002)]. Figure 3.32

shows the 3D computational domain used in this computation. Figure 3.33 shows the

wheel geometry and structured grid distributions. The grid points were clustered near the

wheel surface to ensure y+ = O(1). The boundary layer was resolved by approximately

20 grid points normal to the wheel surface. A characteristic outflow boundary with

pressure at infinity (i.e. free-stream value) was imposed at the downstream boundary of

the domain, as well as along the upper and lateral boundaries whereas a characteristic

inflow boundary condition was imposed at the inlet. A preliminary steady simulation
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was computed using the commercial CFD solver, Fluent. To reduce the computational

time, the steady solution was then used to initialize the unsteady simulation in the CAA

solver. The simulation was run with a CFL number of 0.5.

Aerodynamic Field

Time-mean �ow

To understand the mean flow structure around the landing gear wheel and to investigate

the state of the separated flow in the wheel wake, vortex core locations were calculated

in the time-averaged CFD data and mean flow streamlines were then emitted from the

calculated vortex core locations. The resulting mean flow structure is presented in Figure

3.34. These streamlines clearly show that the vortex cores are formed at the hub of the

wheel. The wheel hubs act as circular cavities and the vortical structures are formed due

to the flow separation and formation of an unsteady shear layer. The mean flow structures

in Figure 3.34 suggest that the downstream wake is driven by the dominant separated

shear layer from the wheel hubs rather than the separated flow from the upper surface of

the wheel.

Time-dependant �ow

Figure 3.35 shows the instantaneous iso-surfaces of the second invariant of the velocities

around the wheel. The large vortex structures can clearly be seen to be shed from the

hub cavities. The hub cavity is seen to drive the shedding of the large scale structures

with the wheel top surface having a negligible effect on this. The visualization indicates

that the separated shear layer in the wheel hub cavities is the most important in landing

gear noise generation. To study the unsteady flow quantitatively, the frequency content

of the farfield (at a distance of 100m from the centre of the wheel) pressure signals were

extracted using fast fourier transforms. Resulting spectra are presented in Figure 3.36.

From the figure, it is evident that dominant acoustic peaks occur at low frequencies (less

than 200 Hz) for all the cases. Low frequency peaks are expected when there is a flow

around large components, in this case the wheel. No peaks are seen to exist at higher

frequencies (greater than 200 Hz) which is also expected. This is because the landing gear

model in this case did not have any small components e.g. axle, hub cut outs etc which are

responsible for the high frequency noise. The farfield sound directivities were obtained

at Plane-AA and Plane-BB (see Figure 3.37) for 36 equi-spaced observer locations located

around a circle of radius 100m (see Figure 3.38). The directivity in Figure 3.39 shows the
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sound distribution in two planes. The directivity distribution at Plane-AA clearly shows

the presence of a dipole sound field, whereas the distribution at Plane-BB shows that the

sound radiation is approximately uniform in this plane.

3.5 Summary

A CAA solver which utilizes a family of optimized high-order accurate finite-difference

compact schemes has been developed to compute aerodynamic noise generation problems

accurately. The solver is based on a hybrid strategy which combines nearfield numer-

ical simulations with a farfield radiation model. An extensive set of two-dimensional

numerical simulations were performed to validate the solver. In addition, a 3D plane

cavity flowfield was also simulated which showed greater complexity, with presence of

multiple modes. All the computed results from the CAA solver were found to agree well

with experiments (in both the frequency and the magnitude). The solver was also used

to study a 3D landing gear geometry to test its robustness and stability for 3D generic

curvilinear grids.

The computed results presented in this chapter have demonstrated the capability of

the CAA solver to resolve unsteady flowfields accurately for a wide range of geometries

and flow conditions. The solver is found to perform robustly with complex multi-block

curvilinear structured grid despite having no artificial dissipation in it.

Although the solver has shown great potential in solving complex unsteady flows

accurately, it has a few shortfalls when tackling complex geometries and the high speed

flow problems. The shortfalls are purely due to the excessively long computation times

involved because of the explicit time stepping used, making flow problems at transonic

speeds computationally very expensive and time consuming. In addition, the solver’s

requirement for a structured grid domain means that complex geometries (e.g. cavity

with stores and landing gear assembly) cases cannot be solved with the current state of the

code. For these reasons, the rest of the computational studies were performed using the

commercial CFD solver Fluent. Chapter 4, therefore, presents the computational studies

in 3D cavity geometries at transonic speeds using Fluent.
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(b) Grid points near the cylinder surface (every other points shown).

Figure 3.1: H-topology domain and grid distribution.
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Figure 3.2: Pressure contours showing acoustic scattering off a cylinder.
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Figure 3.3: Comparison between computed and analytical pressure signals at monitor point A(♦

numerical, — analytical)
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Figure 3.4: Comparison between computed and analytical pressure signals at monitor point B(♦

numerical, — analytical)
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Figure 3.5: Comparison between computed and analytical pressure signals at monitor point C(♦

numerical, — analytical)
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Figure 3.6: Pressure contours from inviscid flow simulation.
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Figure 3.7: Pressure coefficients comparison between potential flow and computation.
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Figure 3.8: Wavy grid to test the metric cancelation errors.

(a) Standard metric formula. (b) New metric formula.

Figure 3.9: Snapshot of acoustic pressure at central plane (2D XY-Plane).

66

∣∣∣ PhD Thesis: Bidur Khanal



Chapter 3. High-order Solver Simulations

Streamwise length (x)

Pr
es

su
re

(P
a)

-20 -10 0 10 20 30

-0.001

-0.0005

0

0.0005

0.001

New metric formula
Theoritical solution
Standard metric formula

Figure 3.10: Comparison of computed pressure (p/p∞) with analytical solution.

Figure 3.11: Grid domain for vortex propagation.
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(a) t × a∞/Lre f = 0. (b) t × a∞/Lre f = 3.5.

(c) t × a∞/Lre f = 7. (d) t × a∞/Lre f = 7.8.

Figure 3.12: Pressure contours showing vortex convection.
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Figure 3.13: Computed pressure signals three different times (corresponding to Figures 4.15(a),

4.15(b) and 4.15(c).

Figure 3.14: Grid domain for viscous computation (every other point shown).
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(a) Contours of vorticity magnitude.

(b) Contours of velocity magnitude.

Figure 3.15: Snapshot of instantaneous flowfield at t × a∞/d = 400.

Figure 3.16: Fluctuating force coefficients.
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Figure 3.17: Acoustic directivity.

(a) Computational multi-block domain.

(b) Computational grid.

Figure 3.18: Backward-facing step domain design and grid generation.
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(a) Contours of mean kinematic viscosity.

(b) Kinematic viscosity at block interface (zoomed in view).

Figure 3.19: Mean kinematic viscosity (ν/ν∞) contours using standard block interface treatment.

————————————————————————————————-
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(a) Mean velocity magnitude (U/U∞).

(b) Mean kinematic viscosity.

(c) Kinematic viscosity (ν/ν∞) at block interface (zoomed in view).

Figure 3.20: Mean flow contours using new treatment.
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(a) Profile at x/h=-3.12. (b)Profile at x/h=4.

Figure 3.21: Mean velocity profiles.

(a) Geometry.

(b) Grid.

Figure 3.22: Geometrical details of automobile door cavity.
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(a) t × a∞/LA = 0 t × a∞/LA = 4 t × a∞/LA = 8

Figure 3.23: Sequence of instantaneous vorticity contours (non-dimensional) for the lip region.

Strouhal Number (fLA/Ufreestream)

S
P

L
(d

B
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
80

90

100

110

120

130

140

Computed
Experiment

Figure 3.24: Pressure spectra comparison at leading wall.
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(a) 3D cavity geometry and co-ordinate system.

(b) A sectional view of multi-block domain.

(c) Grid distribution inside the cavity (zoomed in view).

Figure 3.25: Multi-block Domain Design and Grid generation.
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Figure 3.26: Mean Cp along varying spanwise locations, L/D = 4 and W/D = 1; M∞ = 0.8.
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(a) Downstream view from leading edge. (b) Upstream view from trailing edge.

(c) State of the mean flow in the cavity.

Figure 3.27: Time-mean streamlines for 3D cavity, L/D = 4 and W/D = 1; M∞ = 0.8.
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(a) Time mean streamlines in x-y plane at z/W = 0.1

(b) Time mean streamlines in x-y plane at z/W = 0.2

(c) Time mean streamlines in x-y plane at z/W = 0.3

(d) Time mean streamlines in x-y plane at z/W = 0.4

(e) Time mean streamlines in x-y plane at z/W = 0.5

(f) Time mean streamlines in x-z plane at y/D = 0.5

(g) Upstream wall. (h) Cavity Floor. (i) Downstream wall.

Figure 3.28: Mean flow maps on various planes and surfaces in the cavity using LIC, L/D = 4 and

W/D = 1; M∞ = 0.8.
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(a) t × a∞/D = 0.

(b) t × a∞/D = 3.

(c) t × a∞/D = 6.

(d) t × a∞/D = 9.

(e) t × a∞/D = 12.

(f) t × a∞/D = 15.

(g) t × a∞/D = 18.

Figure 3.29: Shear layer vortex evolution over one cycle of oscillation: iso-contours of the Q-

criterion, L/D = 4 and W/D = 1; M∞ = 0.8 [This cycle equates to an approximate frequency of 289

Hz and hence corresponds to the first resonant mode in Fig. 3.30].
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(a) Monitor point near cavity leading wall. (b) Monitor point near cavity rear wall.

Experimental data from Tracy & Plentovich (1997).

Figure 3.30: Cavity pressure spectra, L/D = 4 and W/D = 1; M∞ = 0.8. Vertical dashed lines

indicate Rossiter mode frequencies.

Frequency (Hz)

P
re

ss
ur

e
(P

a)

1000 2000 3000 4000 5000
0

100

200

300

400

500

600

700

800

900

1000

Experiment
CFD (CAA solver)
CFD (Fluent)

Figure 3.31: Cavity pressure spectra comparison, L/D = 4 and W/D = 1; M∞ = 0.8. Vertical

dashed lines indicate Rossiter mode frequencies.

Figure 3.32: Computational domain for landing gear study.
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(a) CAD model. (b) Structured surface grid.

(c) Structured near field grid design.

(d) Structured grid distribution around the wheel.

Figure 3.33: Landing gear geometry and grid design; M∞ = 0.3.
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(c) View from the top.

(d) View from the side.

Figure 3.34: Time-mean streamlines around the wheel, M∞ = 0.3.

Figure 3.35: Iso-surfaces of the second invariants of velocities.
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(a)Vertically up. (b) Vertically down.

(c) Upstream side. (d) Downstream side.

Figure 3.36: Farfield acoustic spectra as observed by receivers at a distance of 100m from the centre

of the wheel.
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Figure 3.37: Planes used for sound directivity calculations.
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Figure 3.38: Location of observers at farfield.
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(b) Directivity on plane BB.

Figure 3.39: Sound directivities across different planes.
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Chapter 4

Low-order Solver Simulations

In this chapter, the source of noise and its radiation by cavity geometries submerged in

transonic turbulent flows is investigated numerically using a general purpose commercial

CFD solver. Several 3D cavity geometries are considered to study the unsteady flow

behaviour responsible for noise generation. The 3D geometries studied also consisted of

stores in the cavity and spoilers in the upstream boundary layer.

4.1 Introduction

Cavities or surface cutouts exist commonly in aerospace applications and are also well

documented in studies of aerodynamic noise. Although it is well known that cavity flows

often exhibit significant three-dimensional behaviour, such phenomena have generally

received little attention in the literature, and cavity flows have often been treated as

two-dimensional to simplify analysis. This approach has brought significant insight into

the fundamental physics of cavity flow and has resulted in the development of semi-

empirical models for the prediction of the modes of oscillation in the cavities [Rossiter

(1966); Heller et al. (1971); Tam & Block (1978)]. Nevertheless, experimental observations

have long pointed to the presence of 3D flow with strong evidence of span-wise variations

in the cavity shear layer, as well as the stretching of the recirculating flow within the cavity

[Rockwell & Naudascher (1979)]. Although some might argue that such details are not

vital to the prediction of the frequencies of oscillation, one should anticipate a knowledge

of such flow features to be of prime importance in the understanding and prediction of the

aerodynamic noise radiated from three-dimensional cavity geometries. The purpose of

this chapter, therefore, is to examine the flow in a truly three-dimensional cavity geometry

and investigate the nature of the three-dimensional flow features; and study its influence

on the oscillation process and the nature of the radiated sound field.

4.1.1 Cavity Geometry Types

Three types of 3D geometries were considered in this investigation. The first type is

a three-dimensional clean cavity, which comprises a simple rectangular cutout in an

otherwise infinite plate and is therefore fully described by its length-to-depth and length-

to-width ratios. The second type had stores in the cavity. The stores were either mounted
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4.2. Clean Cavity, L/D = 4, W/D = 2.4

on a support strut as in the work of Stallings Jr. et al. (2002) or mounted on the cavity

trailing edge as in the work of Ritchie (2005). Both types of arrangement are shown in

Figure 4.1. The third type of cavity geometry had a vertical spoiler at the cavity leading

edge as shown in Figure 4.2(b). All the cavity geometries investigated in this work had

the L/D ratio varying between 4.0 and 6.25 and a width-to-depth (W/D) variation of 2.0

to 2.5. In these investigations the Mach number of the flow varied from 0.8 to 0.85. The

cavity geometries described correspond to some of the many cases in the experimental

investigations of Stallings Jr. et al. (2002), Ritchie (2005) and Geraldes (2005).

The basic design and the extent of the three-dimensional computational domain and

mesh density were chosen following preliminary two-dimensional numerical simulations

(see Appendix D). The computational domain extends 4L upstream, 5L downstream, and

3L vertically and laterally from the cavity. The overall mesh size for all the 3D cases

was maintained approximately between 1.7 million cells and 2.85 million cells. Grid cells

were clustered along all solid walls and in the region of the shear layer using hyperbolic-

tangent distributions. At the cavity leading edge, the boundary layer is resolved with

approximately 20 mesh points. In all the 3D computational results presented in this

chapter, Detached-Eddy Simulation (DES) based on a one-equation model of Spalart &

Allmaras (1992) has been used to complete the closure of the Navier-Stokes equations.

DES is a hybrid model which behaves as a standard SA RANS model within the attached

boundary layer and as a Large-Eddy Simulation (LES) Sub-Grid Scale (SGS) model in the

rest of the flow. This model has been described in detail in Chapter 2.

4.2 Clean Cavity, L/D = 4, W/D = 2.4

Geometry and Flow Setup

The cavity geometry studied in this case was a 10cm long clean cavity with L/D = 4

and W/D = 2.4 (see also Figure 4.2(a)); and it had identical flow and geometrical settings

to the experimental study of Geraldes (2005). For this study the Mach number of the

freestream flow was maintained at 0.85. A 3D computational domain was generated

using a structured meshing strategy. The non-matching grid interfacing techniques were

utilized to minimize the number of grids in the structured domain. Figures 4.3, 4.4 and 4.5

show sectional views of the three-dimensional computational domain and its structured

grid structure. The grid cells inside the cavity were maintained close to cubic volumes

with a minimum amount of stretching (evident from the zoomed views in the figures) so

that an LES-type length scale can be invoked inside the cavity. The origin of the coordinate
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system is set at the cavity leading edge along the left sidewall of the domain (also shown

in Figure 4.2(a)). In total, the computational domain consisted of approximately 2.6

million structured grid points. Along the inflow boundary, the two Cartesian velocity

components u, v were prescribed so that the computed boundary layer just upstream of

the cavity had approximately the same thickness as in the experiment [Geraldes (2005)].

All the solid surfaces (cavity walls and flat plate) were treated as adiabatic walls with

a no-slip condition. The rest of the boundary faces were set as pressure farfield. The

spacial discretization used was flux difference splitting based on second-order upwind

(default option for compressible flow in Fluent) with a second-order central differencing

applied to the modified turbulent viscosity and a second-order implicit scheme adapted

for temporal discretization. Due to the transonic speed involved, a coupled solver was

chosen to ensure a fully compressible solution and a constant time step of 1 × 10−5s was

maintained for the unsteady simulation.

Aerodynamic Field

Time-mean �ow

The time-mean flowfields are characterized by their mean surface static pressure coeffi-

cient (Cp) distributions. The Cp plot for this case is presented in Figure 4.6 and compared

with the measured data. Study of the mean Cp distribution for this case indicates that the

flow belongs to the open cavity type and it is found to exhibit many of the same global

open cavity flow behaviours. The time-mean flow within the cavity is dominated by a

large-scale recirculating flow pattern. The location of the centre of the large structure may

be identified from the trough in the mean Cp plot that is mostly evident along the cavity

floor and the structure is centred downstream of the middle of the cavity (approximately

at x/L = 0.58). The computed Cp showed some discrepancies from the experiment but

the global characteristics are similar. Both the CFD and experimental Cp distributions are

largely flat across the floor, typical of open cavity flows. Despite the small differences in

the Cp distributions (between CFD and experiments), the internal flow structure in the

cavity is largely in agreement with the experiment of Geraldes (2005).

To analyze and understand the behaviour of the mean flow inside the cavity further,

a more detailed study of the flow inside the cavity using flow visualization techniques

is necessary. Hence visualization of 2D sectional streamlines using LIC images [Knowles

et al. (2006)] and 3D surface flow particle tracking were used. To study 3D time-mean

flow features inside the cavity, vortex core locations were calculated and stream lines

were released from the calculated cores. The resulting mean flow structure is presented
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in Figure 4.7. In addition, sectional streamlines of the computed time-mean velocity data

are visualized using LIC in Figure 4.8. Figure 4.7 reveals the presence of two contra-

rotating flow structures in the upstream third of the cavity which merge to a single, large

recirculation further downstream. This is also evident from the LIC image in Figure

4.8(g). These structures are described in ESDU Item 02008 [ESDU (2004)] as ’tornado-

like’ vortices which spiral up towards the mouth plane (i.e. the open plane) of the

cavity although speculation on their subsequent movement is not given. This has been

further analyzed and discussed by Atvars et al. (2009), with the aid of experiments and

CFD visualization, describe that these structures are formed when the flow travelling

upstream along the floor of the cavity reaches the upstream wall. The proximity of the

cavity sidewall forces the flow to divert in the spanwise direction towards the centreline

of the cavity. When the flow reaches the centreline plane, it meets the flow from the

other side of the centreline and is forced to turn to flow downstream but is prevented

from doing so by the flow travelling upstream along the cavity floor. The flow is forced

to turn out towards the sidewall of the cavity which forms the vertical ’tornado-like’

structures seen on the cavity floor. Results for a narrower cavity (W/D = 1) presented in

Chapter 3 showed the presence of only one ’tornado-like’ vortex. Also visible in Figure 4.7

are two vortices trailing downstream from the downstream corners of the cavity, which

is consistent with the flow visualisation works of Taborda et al. (2001). The meanflow

structures captured by CFD in Figure 4.8(f-h) are also in good agreement with the oil

flow visualization of Taborda et al. (2001) (see Figure 4.9). Hence, the global features of

the mean flowfield captured by CFD agree well with the experimental observations. The

LIC images of sectional streamlines at various spanwise locations (i.e. Figures 4.8[a-e])

also clearly indicate the three-dimensionality in the time-mean flow inside the cavity.

Firstly, the most noticeable three-dimensional flow feature is the variation in the position

of the core of the recirculating flow across the span of the cavity. Secondly, a secondary

recirculating region exists in the upstream third of the cavity for all spanwise locations

except near the centreline (z/W = 0.4 and z/W = 0.5).

Time-dependent Flow�eld

The unsteady flowfield was also analyzed to study the unsteady structures inside the

cavity. From the CFD result, the computed flow inside the cavity was found to be highly

unsteady and dominated by periodic phenomena. The unsteady features inside the cav-

ity and the shear layer fluctuation process may be seen in Figure 4.10 which shows the

time development of tubular vortical structures in terms of the iso-surfaces of the second

invariant of the velocities [Joeng & Hussain (1995)] and their effect on the instability of
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the shear layer. The solid red arrow represents the flow direction and the vertical arrow

shows the direction of movement of the tubular structures. The presence of large-scale

structures can clearly be seen from the figures. The primary effect of the 3D cavity geom-

etry is seen to be the introduction of a warping of the vortex axis across the span of the

cavity. This is partly due to the end walls retarding the growth of the vortical structures

as they move downstream over the cavity. Overall, the unsteady flowfield is found to

be dominated by the time-dependent behaviour of the shear layer spanning the mouth

of the cavity. As the incoming boundary layer separates at the cavity leading edge a

shear layer is formed. As the shear layer develops downstream, convective instabilities

grow leading to the formation of vortex-like structures (see also Figure 3.29 in Chapter

3) which ultimately impinge on the downstream wall of the cavity. At the downstream

end of the cavity, the interaction of the vortical structures with the cavity trailing edge

generates disturbances that travel upstream along the cavity floor towards the cavity

leading edge. Upon reaching the leading edge of the cavity, these tubular structures

trigger instabilities in the separated shear layer completing the feedback loop. It is worth

noting here that this event does not guarantee shear layer resonance. It all depends on

the extent of the instability caused in the shear layer. In other words, it depends on

the amount of unsteady turbulent kinetic energy the tubular structures are carrying. In

Figure 4.10, the amplification of initial instability in the shear layer caused by the tubular

structures are monitored (marked by blue ovals). The figure shows that the shear layer

instability grows quickly resulting in the violent flapping of the shear layer as it reaches

the trailing edge. It will be shown later (for the same cavity geometry but with a vertical

spoiler in the upstream boundary layer) that faintly energized structures are not able to

excite strong enough instabilities in the separated shear layer to develop resonance modes.

A more quantitative study of these variations may be obtained by analyzing the

frequency content of the nearfield pressure time-history data using fast fourier transforms.

Figure 4.11 shows the comparison between experimental and computed pressure spectra.

The data correspond to sampling points located at x/L = 0.90 on the floor of the cavity.

From the comparison, the frequency of the first resonant mode is well predicted by the

computation compared to experiment although the CFD under-predicts the magnitude

of the tone by 4dB. Mode frequency predictions from the modified Rossiter equation

are represented by the dashed lines. The computed second mode frequency (1642Hz)

however is lower than the experiment. The computed second mode frequency is found to

agree better with the second mode frequency predicted by the modified Rossiter equation.

Also, the CFD shows the second-mode dominance whereas the first-mode is dominant in

the experiment. These discrepancies may be due to the lack of sufficient knowledge of the
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experimental test conditions that affect the cavity flowfield e.g. incoming boundary layer

characteristics, tunnel turbulence levels, ambient density (ρ) and ambient temperature

(T) (or speed of sound, a0).

4.3 Clean Cavity, L/D = 5, W/D = 2

The second cavity case was a 16cm long clean cavity with L/D = 5 and W/D = 2.0; it had

identical flow and geometrical settings to the experimental study of Ritchie (2005) (see

also Atvars et al. (2009)) except that W/D = 2.5 in the experiment.

Geometry and Flow Setup

For this study the Mach number of the freestream flow was maintained at 0.85 consistent

with the experiment [Ritchie (2005)]. The 3D computational domain was again generated

using a structured meshing strategy described in the previous empty cavity case (See

Section 4.2). The coordinate system and the basic grid topology has been maintained

identical for all the clean cavity computational domains. The computational domain

for this case consisted of approximately 2.4 million structured grid points. Along the

inflow boundary, the two Cartesian velocity components u, v were prescribed using the

experimental boundary layer data to emulate the boundary layer thickness upstream

of the cavity leading edge measured in the experiment [Ritchie (2005)]. At the cavity

leading edge, the boundary layer is resolved with approximately 20 mesh points. All the

solid surfaces (cavity walls and flat plate) were treated as adiabatic walls with a no-slip

condition. The rest of the boundary faces were set as pressure farfield. The spatial and

temporal discretization schemes used were same as those in Section 4.2.

Time-mean �ow

To study the time-mean flowfield characteristics, initially the mean surface static pressure

coefficient (Cp) distributions are examined. The Cp plots for this case (L/D = 5, W/D = 2)

is presented in Figure 4.12 for a number of different spanwise locations. The study of

the mean Cp distribution for this case indicates that the flow belongs to the open cavity

flow type and it is found to exhibit many of the same global open cavity flow features. A

careful study of the mean Cp plot also found that the time-mean flowfield is not uniform

across the cavity span. This can be concluded from Figure 4.12 which shows the vari-

ation of mean Cp along with experimental Cp data at floor centreline. For this case, the
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centreline of the cavity does not record the greatest variation in the pressure coefficient.

Instead, the greatest variation is found at a position 16.7% from the centreline. This is

thought to be the result of the significant spanwise flow present in wide 3D cavities.

The computed Cp showed significant discrepancies with the experiment in the rear half

of the cavity. This difference however is very small, especially when compared to the

difference between the CFD and the experimental cavity width. The Cp in the experiment

was found to be negative for the first 60% of the cavity floor with a minimum at approxi-

mately x/L = 0.4. Cp then continues to rise downstream of the x/L = 0.4 mark, reaching

a maximum value at x/L = 0.9 (the most downstream measurement station). The ex-

perimental Cp distribution within the cavity is typical of flows on the boundary between

open and transitional-open types (see Figure 1.1). The effect of the thick boundary layer

in the experiment is consistent with the observations of Plentovich (1992) and Ahuja &

Mendoza (1995). In the work of Ahuja & Mendoza (1995), increasing the boundary layer

thickness resulted in the disappearance of resonant modes and further increase resulted

in pressure spectra of a purely broadband nature (i.e. the pressure spectrum resembled

the characteristic of a closed cavity flow). This then implies that increasing the bound-

ary layer thickness has the effect of changing the cavity flow from an open to a closed type.

As in the previous case (Section 4.2), further investigations to understand the mean

flow structures inside the cavity were carried out by studying 2D sectional streamlines

from LIC images and 3D surface flow visualization. The resulting mean flow structures

are presented in Figures 4.13 and 4.14. As in Sec. 4.2, Figure 4.14 clearly indicates the

presence of two contra-rotating flow structures in the upstream third of the cavity which

merge to a single, large recirculation further downstream. This is also evident from the LIC

image in Figure 4.13(g). Also visible in Figure 4.14 are two vortices trailing downstream

from the downstream corners of the cavity which is again consistent with the experiment

[Taborda et al. (2001)]. The CFD shows a main recirculation which is further downstream

than seen in the experiments [Atvars et al. (2009)]. This may be due to the effect of the

narrow cavity geometry (W/D = 2) compared to experiment (W/D = 2.5). The LIC images

of sectional streamlines at various spanwise locations (i.e. Figures 4.13[a-e]) also clearly

indicate the slight three-dimensionality in the time-mean flow inside the cavity.

Time-dependent �ow�eld

The unsteady flowfield was also analyzed to study the unsteady structures inside the

cavity. From the results, the flows were found to be highly unsteady and dominated

by periodic phenomena. Figure 4.15 shows the instantaneous iso-surfaces of vorticity
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magnitude and the second invariant of the velocities Joeng & Hussain (1995). The presence

of large-scale structures can clearly be seen from the figures. The unsteady flowfield

is found to be mainly dominated by the time-dependent behaviour of the shear layer

spanning the mouth of the cavity, typical of open cavity flow types. A more quantitative

study of these variations may be obtained by analyzing the frequency content of the

nearfield pressure time-history data using fast fourier transforms. Figure 4.16 shows the

comparison between experimental and computed pressure spectra. The data correspond

to sampling points located at x/L = 0.10 and x/L = 0.90 on the floor of the cavity. From the

comparison, the frequency of the dominant mode is well predicted by the computation

compared to experiment. But the CFD broadband noise level is found to be higher than

the experiment. The reason for the higher broadband noise level is not yet known. Despite

these differences, the dominant resonant mode frequencies are in good agreement with

the experiment.

4.4 Clean Cavity, L/D = 5, W/D = 2.5

This cavity case had identical geometrical and flow setting to the cavity in Section 4.3

except the W/D which was set to 2.5 in line with the experiment [Ritchie (2005)]. All the

boundary conditions set up were also maintained identical to those in Section 4.3.

Time-mean �ow

To study the time-mean flowfield characteristics, firstly the mean surface static pressure

coefficient (Cp) distributions are examined. The Cp plot for this case is presented in Fig-

ure 4.17. The mean Cp distribution indicates that the flow resembles the behaviour of

transitional open cavity flows and the time-mean flow within the cavity is found to be

dominated by a large-scale recirculating region. Unlike in Section 4.3, the location of the

centre of the large structure (identified from the trough in the mean Cp plot along the

cavity floor) is upstream of the middle of the cavity at approximately x/L = 0.45. The

computed Cp starts positive initially but goes negative after x/L = 0.1 and is negative until

approximately x/L = 0.56. This is similar to the mean flow behaviour in the experiment

although the Cp in the experiment was found to be negative for the first 60% of the cavity

floor with a minimum at approximately x/L = 0.4. However, it is worth noting that the

most upstream experimental measurement station was at x/L = 0.1. The Cp then contin-

ues to rise downstream of the x/L = 0.4 mark, reaching a maximum value at x/L = 0.9

(the most downstream measurement station). This behaviour is thought to be due to the
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thick boundary layer which was present in the experiments and is largely captured by

CFD. Both the Cp distributions are typical of flows on the boundary between open and

transitional-open types (see Figure 1.1 in Chapter 1). Despite small differences in the Cp

distributions (between CFD and experiments), the characteristics of the Cp curves are in

good agreement.

As in the previous cases, further investigations to understand the meanflow structures

inside the cavity were carried out by studying 2D sectional streamlines and 3D flow

visualization. The resulting mean flow structure is presented in Figure 4.18. Also, the

sectional streamlines of the computed time-mean velocity data are visualized using LIC

in Figure 4.19. As in the previous cases, Figure 4.18 clearly indicates the presence of

two contra-rotating, "tornado-like" flow structures in the upstream third of the cavity

which merge into the single, large recirculation further downstream. This is also evident

from the LIC image in Figure 4.19(g). Also visible in Figure 4.18 are two vortices trailing

downstream from the downstream corners of the cavity consistent with the results in

Sections 4.2 and 4.3 (and also in the work of Taborda et al. (2001)). The CFD is found

to have a generally good agreement with the experimental flow visualization results as

shown in Figure 4.20. From the figure the location of the main recirculation from CFD is

in good agreement with the oil flow visualization data at z/W = 0.67. Also the location

of tornado vortices match well with the experimental images. Hence, overall, the global

features of the meanflow are well captured by CFD with respect to the experimental

observations. The LIC images of sectional streamlines at various spanwise locations (i.e.

Figures 4.19[a-f]) also indicate the existence of spanwise variation in the time-mean flow

inside the cavity (gradual spanwise variation seen on the location of the core of the main

recirculating structure).

Time-dependent �ow�eld

In previous cases (Sections 4.2 and 4.3), the unsteady flowfield inside the cavity was

found to be highly unsteady and dominated by periodic phenomena. Similar behaviour

was observed in this case also, with a clear evidence of spanwise flow indicating three-

dimensionality. The unsteady features inside the cavity and the shear layer fluctuation

process may be seen in Figure 4.21 which shows the time development of tubular vortical

structures and their effect on the instability of shear layer. The images are isometric

views looking downstream from upstream of the leading edge. The dark solid arrow

represents the flow direction and the horizontal blue arrow represents the direction of

the movement of the tubular structures with time. In Figure 4.21, the main emphasis is
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put on monitoring the movements of vortical structures along the cavity width with time.

The unsteady flowfield can be seen to be dominated by the time-dependent behaviour of

the shear layer spanning the mouth of the cavity which flaps violently. A red coloured

oval is used to track the growth and movement of unsteady vortical structures with

time. From the figure, the tubular structures which start at the left side are seen to move

gradually towards the right with time. After a non-dimensional time of t × a∞/D = 5.0,

the structures are seen to have reached the right half of the cavity span. This clearly

reaffirms the three-dimensional flow seen in the previous cases and is consistent with

the results of the mean flow study. The frequency content of the nearfield pressure time-

history is presented in Figure 4.22 which compares CFD and the experiment [Ritchie

(2005)]. The data correspond to sampling points along the central plane at x/L = 0.10 and

x/L = 0.90 on the floor of the cavity. From the plots, the frequency of the dominant mode

predicted by the computation is found to agree well with experiment. The CFD result,

however, is found to show a second mode dominance while the first mode is dominant

in the experiment. Also the CFD broadband noise level is found to be higher than the

experiment for the sampling location at x/L = 0.10. Despite these differences, the resonant

mode frequencies are in good agreement with the experiment.

4.5 Cavity with Stores, L/D = 5, W/D = 2.5

To study the effect of the presence of missile bodies on the cavity mean and unsteady flow-

fields, two different configurations were simulated on the baseline geometry of Section

4.4. The first of the two configurations had a missile body whose axis was in line with the

flat plate and mounted on the trailing edge of the cavity along the central plane as shown

in Figure 4.1(b). The second configuration had two missiles mounted at z/W = 0.25

and z/W = 0.75 as shown in Figure 4.1(c). All the flow set up and boundary conditions

were identical to those in Sections 4.3 and 4.4. A 3D computational domain based on a

hybrid mesh was used, which consisted of mainly structured cells with a small number

of unstructured cells to bridge the missile nose area for easier transition to a structured

grid. In addition, non-matching grid interface techniques were utilized to minimize the

number of cells in the structured domain. Figures 4.23(a), 4.23(b) and 4.23(c) show the

sectional views of the three-dimensional computational domain in the presence of missile

bodies. The origin of the coordinate system is set at the cavity leading edge along the left

sidewall of the domain (identical to the clean cavity case in Section 4.4).
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Time-mean �ow

The Cp plots for the cavity with store cases are presented in Figure 4.24. The mean Cp

distribution indicates that the flow resembles the behaviour of transitional open cavity

flows and the time-mean flow within the cavity is found to be dominated by a large-scale

recirculating region. Although the location of the centre of the large structure (identified

from the trough in the mean Cp plot) is in the upstream half of the cavity, the result was

found to have significant discrepancies from the experiment. Although the mean Cp in

the experiment and CFD are negative at identical areas of the floor, the magnitudes differ.

The lowest value of Cp in the experiment is−0.06 compared to−0.02 in the computed data

of the two missile case. The Cp in the CFD is only just negative. The Cp in the experiment

then undergoes a steep rise compared to the very shallow rise in the CFD. The reason for

this discrepancy is not known.

3D mean flow streamlines and 2D sectional streamlines were also visualized to un-

derstand the nature of the mean flow in the cavity. The mean flow structures for both

the cases are presented in Figure 4.25. The figure reveals that the presence of missile

bodies in the cavity mouth plane reduces the spanwise flow in the cavity. The strong

recirculating flow on either side of the missile however, still exists. The flow structures

on either side of the missile (at least for the cavity with one missile case) are found to

have similarity with flows in a narrow cavity (see also Section 3.3.2 in Chapter 3). Also,

the sectional streamlines of the computed time-mean velocity data are visualized using

LIC in Figures 4.26, 4.27 and 4.28. The LIC images indicate the existence of 3D flow at

varying spanwise planes (Figures 4.26(a-e)). Also the images in Figure 4.28 confirm that

the presence of missile in the cavity causes the mean flow in the cavity to divide in two

halves. This is also evident from the streamlines in Figures 4.27. Similarly, LIC images

for the cavity with two missiles are presented in Figures 4.29, 4.30 and ??. These images

also reveal that the mean flow has effectively been divided into two halves due to the

presence of the missiles. The central inner span of the cavity (the region between the two

missiles) is seen to record minimum amount of three dimensionality where the rolled up

streamlines (from the gap between the missile and the side wall) from both sides form

a curved path around the nose of the missile body and move towards downstream wall

in straight line (see Figure 4.25(b)). LIC images of computed profiles on cavity floors are

also compared with the oil flow visualization results from the experiment [Ritchie (2005)]

in Figure 4.32. Despite the difference in the mean pressure coefficients, the meanflow

structures predicted by the CFD is in good agreement with that seen in the experiment.
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Time-dependent �ow�eld

The unsteady features inside the cavity and the shear layer fluctuation process may be

seen in Figure 4.33 which shows the time development of tubular vortical structures and

their effect on the instability of the shear layer. The images are isometric views looking

downstream from the upstream leading edge. In Figure 4.33, the main emphasis is put

on monitoring the evolution of the separated shear layer, which is divided in two halves

by the missile in the middle. The unsteady flowfield can be seen to be dominated by the

time-dependent behaviour of the shear layer which has been broken in two parts and both

the parts travel with same speed and reach the trailing edge at the same time. Each halve

of the shear layer is seen to behave as if it was a separated shear layer of a narrow cavity.

A blue coloured oval is used to track the growth and movement of unsteady vortical

structures with time. Also evident in the figure is the tubular structures which start at the

left side are seen to move gradually towards centre of the cavity. However these structures

do not cross to the right side as seen in the clean cavity case [Section 4.4]. This clearly

reaffirms the fact that the three-dimensional flow is limited to each side of the missile

but there is negligible activity across the centre. Similar structures were observed in the

two missile case. Frequency content of the nearfield pressure time-history is presented in

Figure 4.34 for the one missile case which compares CFD and the experiment. The data

correspond to sampling points along the central plane at x/L = 0.10 and x/L = 0.90 on

the floor of the cavity. From the plots, the frequency of the dominant mode predicted

by the computation is found to agree well with experiment. The CFD result, however, is

found to show the second mode dominant while the reverse is true in experiment. Also

the CFD broadband noise level is found to be slightly higher than the experiment. Figure

4.35 shows the computed spectrum for the two missiles case along with the experiment.

The data correspond to a sampling point along the central plane at x/L = 0.90 on the floor

of the cavity. The CFD result shows discrepancies with the experiment in terms of the

resonant mode frequency and also the magnitudes. The resonant frequencies predicted

by the CFD are lower than the experiment.

4.6 Clean Cavity (and Cavity with Store), L/D = 5.42,

W/D = 2

The cavity considered in this case was 12.2cm deep with an L/D of 5.42 and W/D of 2.0.

A further investigation was also carried out with a missile body in the cavity. The missile

body was mounted on a support strut as shown in Figure 4.1(a). These cases correspond to
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some of the many cases in the experimental investigation by Stallings Jr. et al. (2002) and

have comparatively thinner incoming boundary layer than those investigated previously

(see Sections 4.24.3 and 4.4). Also, the store is mounted on a support strut unlike in

Section 4.5. These cases were, therefore, considered to investigate the effect of thin

boundary layers and also to study the possible changes in flow characteristics due to strut

mounted store. The flow conditions for these cases also correspond to a subset of those

investigated by Stallings et al.

Time-mean �ow

As in the previous cases, the characteristics of the time-mean flowfields were analyzed

by studying the mean surface static pressure distributions. The mean Cp distributions

for the clean cavity and the cavity-with-store cases are plotted in Figure 4.36. The flow

conditions were set to match the experimental study of Stallings Jr. et al. (2002). The

study of the mean Cp indicated that the computed Cp was initially positive for the first

17% of the cavity floor. It was negative until x/L ≈ 0.5 with a minimum at approximately

x/L = 0.5. The Cp then continued to rise downstream of x/L = 0.5, reaching a maximum

value at the cavity trailing edge. This behaviour was present in both the computed cases.

The influence of the presence of the store in the cavity on the static pressure distributions

may be seen in terms of an increase in pressure along the cavity floor and a decrease in

the maximum pressure observed along the aft wall of the cavity. In both the cases the

point of maximum pressure is seen to lie at the rear end of the floor. In the experiments,

however, the Cp is found to have a marginally negative value at the upstream end (first

measurement was at x/L = 0.046) and the pressure continues to drop until approximately

x/L = 0.45. The Cp, then, continues to rise downstream of x/L = 0.45, reaching a max-

imum value at the cavity trailing edge. From Figure 4.36, it can be seen that there is a

negligible effect on the mean Cp due to the presence of the store in the front half of the

cavity length. This is true for both computed and experimental results. The computed

results over-predict the experiment by a Cp of no more than 0.025 in the front half. The

rear half of the cavity shows a small effect on the Cp distribution due to the presence of

the store. The computed result is found to slightly over-predict the experiment. Despite

the discrepancy, the computed mean flowfield has captured the essential mean flow be-

haviour (i.e. the curves have similar slopes). The behaviour of both the computed as well

as experimental cavity floor Cp distributions suggests that the flow shares similarity with

flows on the boundary between open and transitional-open types.

Figures 4.37 and 4.38 show the time-mean flowfield for the clean cavity. These images
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also reaffirm most of the global flow features observed in the previous cases. Figure 4.38

and the LIC image in Figure 4.37(g) reveal the presence of two ’tornado-like’ structures in

the upstream third of the cavity which merge to a single, large recirculation further down-

stream. A third recirculating region is found to exist in the downstream end of the main

recirculating region for this case from Figure 4.37. The LIC images at various spanwise

locations (i.e. Figures 4.37[a-e]) also reveal the three-dimensionality in the time-mean

flow inside the cavity. Both the variation in the position of the core of the recirculating

structure across the span of the cavity and the appearance of a secondary recirculating

region upstream of the main recirculation is evident for all spanwise locations except

z/W = 0.4 and z/W = 0.5.

Time-mean flowfields were also visualised for the cavity-with-store case to understand

the time development of the mean flow due to the presence of a store. Figures 4.39 and

4.40 show the state of mean flow features for this case. Most of the global flow features

observed in the clean cavity case are seen to exist in this case. However, some noticeable

differences can also be seen after careful study of the images. Although Figures 4.40 and

the LIC image in Figure 4.39(j) hint at the presence of two recirculating structures on

either side of supporting strut upstream of the cavity, these structures are very weak in

comparison to the structures seen in Figures 4.38 and 4.37(g). The presence of two strong

’tornado-like’ structures, however, is clearly evident in Figure 4.39(g) which is a section

view at half the cavity depth. This can be further clarified with the aid of a description

of the formation of these structures by Atvars et al. (2009). When the flow travelling

upstream along the floor reaches the upstream wall of the cavity, the proximity of the

cavity sidewall forces it to divert in the spanwise direction towards the centreline. On

reaching the centreline plane, it meets the flow from the other side of the centreline and

is forced to turn to flow downstream. Unlike in the clean cavity case, the flow travelling

upstream along the cavity floor encounters the flat base of the supporting strut. Hence

the downstream travelling flow is able to travel without forming a complete recirculation.

At a plane parallel to the floor above the support base, however, the strut cross section

is smaller and is more slender. This allows the flow travelling upstream to continue to a

large extent, thereby, forcing the downstream travelling flow to turn in a vertical spiral.

This explains the reappearance of the ’tornado-like’ structures in Figure 4.39(g). Also the

variation in the position of the core of the recirculating structure across the span of the

cavity is less noticeable from the LIC images in Figure 4.39 (although not immediately

noticeable, the centre of the main recirculating core does not shift compared to the Figures

4.37[a-e]). This indicates that the spanwise flow structure off the centre plane shows fewer

3D effects compared to the clean cavity case. However, a secondary recirculating region
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upstream of the main recirculation is found to exist at various spanwise locations except

z/W = 0.4 and z/W = 0.5 consistent with the previous observations. The upstream view

of the cavity trailing edge in Figure 4.40 reveals that the streamlines are seen to have

divided due to the presence of the store and the supporting strut. The upstream view

from the rear of the cavity (see Figure 4.40(b)) clearly shows the streamlines rolling up in

two halves on either side of the store body.

Time-dependent �ow�eld

Unsteady flowfields were analyzed for the both clean cavity and cavity-with-store cases

to study the unsteady structures inside the cavity and the effects of the store. Figures

4.41(a) and 4.41(b) show the iso-surfaces of the vorticity magnitude for the clean cavity

and the cavity with the store respectively. From the figures, the warping of the vorticity

iso-surface can be seen to be enhanced (shear layer warping on both sides of the store) due

to the presence of the store. As the vortical structures in these regions reach the trailing

edge, the vortex axis is aligned with the streamwise direction. Then the 3D flow in the

end wall regions leads to the formation of thin streamwise vortices, which is also clear

from the study of time-mean streamlines in Figures 4.40 (also Figures 4.14 and 4.38).

Figures 4.42 and 4.43 show the frequency content of the pressure signals for both

the cases. Figure 4.44 compares the pressure spectra from the two cases at two different

positions along the cavity centreline. Predicted mode frequencies from the two cases

along with the calculation using the modified Rossiter formula are presented in Table 4.2.

From the results, the first mode frequency from the clean cavity is found to agree well

with the modified Rossiter formula. The dominant mode, however, is not the first mode

and the dominant peak occurs at 212 Hz. This frequency is significantly lower compared

to the second mode of 279 Hz predicted by the modified Rossiter formula. Higher order

modes are absent in the computed spectrum. The cavity-with-store case, however, has

many peaks in the pressure spectrum and the corresponding mode frequencies agree

reasonably well with the Rossiter formula. Five Rossiter modes are clearly present for the

store case in contrast to the clean cavity which only had two modes (clearly identifiable)

present. High speed cavity flows are characterised by the existence of more than a single

dominant mode and these multiple modes are found to couple non-linearly resulting in

amplitude modulations at different frequencies. This is most probable for the clean cavity

because spanwise flow fluctuations (i.e in the z-axis direction) are dominant compared to

the store case which has less pronounced spanwise flow. Hence a coupling between the

lateral and longitudinal instabilities may have resulted in a dominant peak (low frequency
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modulation) at 212 Hz for the clean cavity case. This is not represented by the Rossiter

formula, which is based on a 2D acoustic feedback mechanism. The flow behaviour and

parameters which leads to this type of coupling is not clear. This, however, is thought to be

due to the thin incoming boundary layer upstream of the leading edge which results in thin

separated shear layer. The clean cavity results in the earlier sections (see Sections 4.2, 4.3

and 4.4) do not exhibit this behaviour, which may be due to the relatively thick incoming

boundary layer present in those cases which result in a relatively ’stiff’ separated shear

layer). The thin separated shear layer are found to undergo more enhanced spanwise

flapping than those seen in thick boundary layer studies.

The mean flowfield visualisation in the time-mean flow study clearly showed that the

flowfield was divided in two halves (for the cavity-with-store case) with little evidence

of flow across the store and supporting strut. It is suggested that this blockage effect

of store and strut on the spanwise flow may have reduced the possibility of spanwise

and streamwise flow fluctuations undergoing non-linear coupling to result in amplitude

modulations. This may be the reason for the co-existence of multiple modes without

coupling between them.

Table 4.1: Comparison of mode frequencies (Hz) for cavity with L/D = 5.42, W/D = 2 and

M∞ = 0.80

mode Clean cavity Cavity with store Modified Rossiter Formula

1 114 145 111.4

2 212 276.6 279

3 – 424 445

4 – 618 615

5 – 765 782

4.7 Clean Cavity (and Cavity with Store), L/D = 6.25,

W/D = 2

The last two cavity cases considered were 12.2cm deep with an L/D of 6.25 and W/D of

2.0, one of the two had a store in the cavity. The rear end of the store in the previous

case (Section 4.6) was very close to the cavity trailing edge. This case, therefore, was

considered to study the flow features resulting from increased gap between the rear of

the store and the cavity trailing edge. The geometry and flow conditions in these cases

also correspond to some of the many cases in the experimental investigation by Stallings

Jr. et al. (2002).
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Time-mean �ow

The mean Cp distributions are plotted for both the cases in Figure 4.45 to analyze the

meanflow characteristics. As in the previous cases (Section 4.6), it can be seen that there is

negligible effect on mean Cp due to the presence of the store in the front part of the cavity

floor until x/L = 0.2. Both computed and experimental data show that the Cp starts with

a marginally negative value at the upstream end (first floor measurement point was at

x/L = 0.039 in experiment). The rear half of the cavity shows very little effect on the Cp

plot due to the presence of store, in either the experiment or CFD. A reasonable agreement

between the computed and experimental mean flowfield is evident from the comparison

although, as in Section 4.6, the CFD has generally predicted higher Cp levels than seen

experimentally. The behaviour of the computed as well as experimental cavity floor Cp

distributions showed that the flow shared similarity with the transitional-closed type.

Figures 4.46 and 4.47 show the state of the time-mean flowfield for both the cases.

These images also reaffirm most of the global mean flow features observed in the pre-

vious cases (see Sections 4.3 and 4.6). As before, Figures 4.47(a) and the LIC image in

Figure 4.46(e) reveal the presence of two ’tornado-like’ structures in the upstream third

of the cavity which merge to a single, large recirculation further downstream. A third

recirculating region is found to exist in the downstream end of the main recirculating

region for this case from Figure 4.46. The LIC images at various spanwise locations (i.e.

Figures 4.46[a-c]) also reveal the three-dimensionality inside the cavity. The cavity-with-

store case also revealed similar mean flow features which were observed in the previous

case (see Section 4.6). As in Section 4.6, the upstream view of the cavity trailing edge in

Figure 4.47(d) reveals that the streamlines are seen to have divided due to the presence of

the store and the supporting strut.

Time-dependent �ow�eld

Figure 4.48 shows the frequency content of the pressure signals for these cases at one

point on the cavity floor centreline, near the upstream wall. Predicted mode frequencies

from the two cases are presented in Table 4.2. As in the previous two cases, the first mode

frequency from the clean cavity case is found to agree well with modified Rossiter formula

(although a difference of 8 Hz in the case of clean cavity). The first mode, however, is not

the dominant mode and the dominant peak occurs at 268 Hz. This frequency is different

to the second mode of 234 Hz predicted by the modified Rossiter formula. Higher

order modes are absent in the computed spectra. The cavity-with-store case, however,
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has many peaks in the pressure spectra (consistent with the observations in Section 4.6)

and the corresponding mode frequencies show reasonable agreement with the Rossiter

formula. Up to five Rossiter modes are clearly present for the store case in contrast to

the clean cavity which only had the first and second modes present. These observations

are consistent with the results in Section 4.6. The discrepancies on the predicted modes

between the CFD and the modified Rossiter formula is greater than those observed in

Section 4.6 which may be due to the effect of the increased gap between the base of the

store and the cavity downstream wall on the unsteady flowfield.

Table 4.2: Comparison of mode frequencies (Hz) for cavity with L/D = 6.25, W/D = 2 and

M∞ = 0.80

mode Clean cavity Cavity with store Modified Rossiter Formula

1 97 91.7 89

2 268 214.0 234

3 – 360.7 380

4 – 477.0 525

5 – 617.0 670

4.8 Cavity with Spoiler, L/D = 4, W/D = 2.4

In this section, computational results obtained to study the flow control effects of a passive

device (a serrated spoiler in this case) are presented. The main objective of the spoiler is

to introduce disturbances in the shear layer in order to disrupt the resonant mechanism

that sustains the cavity oscillations. Spoilers have been extensively used as a means of

reducing the tones produced by cavities, however the detailed flow physics behind the

tone suppression effects of these are not well understood. The main purpose of this

section, therefore, is to study and describe the flow features inside the cavities in the

presence of a spoiler in the upstream boundary layer and the subsequent reasons behind

the tone suppression.

Geometry and Flow Setup

The cavity geometry studied in this case is exactly same as the cavity in Section 4.2, the

only difference being the presence of a serrated spoiler immediately upstream of the cavity

leading edge. The spoiler geometry is a slightly modified version of one of the sawtooth

spoilers used by Geraldes (2005) in his experiments and, therefore, it had identical flow
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conditions to the experiment. The spoiler geometry used here is a modified version of the

coarsest (also termed the "large" spoiler) of the three spoiler geometries in the experiments

of Geraldes (2005). Each of the triangular elements in the experiment measured 7.375mm

wide and 3.6875mm high. In this study, the spoiler geometry was modified to facilitate

good quality structured grid generation in the upstream boundary layer where the spoiler

is located. To resolve the boundary layer correctly, structured grid cells with low skewness

angles are essential and this is crucial for accurate prediction of the flowfield inside the

cavity. To ensure consistency with the experiment, the sawtooth profile was modelled as

a series of trapezia of identical heights and surface area. The only variable was then the

base width. The spoiler profiles are shown in Figure 4.49. The 3D computational domain

was generated using a structured meshing strategy. The non-matching grid interface

techniques were utilized to minimize the the number of grids in the structured domain.

Figures 4.50, 4.51 and 4.52 show sectional views of the three-dimensional computational

domain and its structured grid structure. The zoomed in views clearly show the grid

topology used to generate the structured cells around the spoiler profile. The grid cells

inside the cavity were maintained close to cubical volumes with a minimum amount of

stretching (evident from the zoomed views in the figures) to ensure that the LES-type

length scale is activated inside the cavity. The origin of the coordinate system is set at the

cavity leading edge along the left sidewall of the domain (also shown in Figure 4.2(b)). In

total, the computational domain consisted of approximately 2.79 million structured cells.

Along the inflow boundary, the two Cartesian velocity components u, v were prescribed

so that the computed boundary layer just upstream of the cavity had approximately the

same thickness as in the experiment of Geraldes (2005).

Aerodynamic Field

Time-mean �ow

The effect of spoilers on the cavity mean flowfields are investigated first by studying

the mean surface static pressure coefficient (Cp) distributions and then by mean flow

visualization. The Cp plots for the clean cavity and cavity with spoiler cases are presented

in Figure 4.53, which clearly indicates the heavy pressure loss due to the presence of the

spoiler. The mean Cp distribution is negative for the most of the cavity length, positive

only after x/L = 0.93. The dissipation (at Kolmogorov scale) and self-regeneration of

turbulent kinetic energy all takes place in the boundary layer and the spoiler acts as an

external device that extracts energy from the flow resulting in the heavy pressure loss.

To analyze and understand the behaviour of the mean flow inside the cavity further, a
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more detailed study of the flow behaviour and structure inside the cavity was performed

using flow visualization techniques. The resulting mean flow structure is shown in Figure

4.54. The mean flow streamlines do not show any evidence of spanwise flow. Also the

’tornado-like’ vortices normally seen in empty cavities are absent. The ’tornado-like’

vortices were described as the mean flow path of unsteady tubular structures responsible

for sustaining resonance mechanisms in earlier sections. It was also highlighted (in

Section 4.2) that the sustained resonant fluctuation of the shear layer was dependant on

the amount of energy the vortical structures were carrying. The dissipation of turbulent

kinetic energy by the spoiler means that the structures are weakly energized and therefore

are unable to sustain the spanwise flow. This also explains the absence of ’tornado-like’

vortices. Also absent in Figure 4.54(b) are the two vortices trailing downstream from

the downstream corners of the cavity which is normally found in clean cavities. Instead,

uniformly spaced streamwise vortices are seen to exit from the trailing wall. This also

reinforces the statement that the flow inside the cavity is unable to sustain 3D behaviour

and resonant modes due to extraction of energy by the spoiler. This will be explained

further while analyzing the unsteady results. In addition, sectional streamlines of the

computed time-mean velocity data are visualized using LIC in Figure 4.55. The sectional

streamlines at various spanwise locations (i.e. Figures 4.55[b-f]) also indicate that the

spanwise flow is not present. The position of the core of the recirculating region across

the span of the cavity is approximately constant including the secondary recirculating

region which exists in the upstream third of the cavity for all spanwise locations. The

main feature of the mean flow pattern on the cavity floor is also consistent with the oil flow

visualization of Geraldes (2005), who observed a massive separation region located in the

region of x/L = 0.25 to 0.3 where all the streamlines converge (in the CFD, streamlines are

seen to converge approximately at x/L = 0.3).

Time-dependent Flow�eld

The unsteady flowfield was also analyzed to study the effect of the spoiler on the flow

oscillations. From the result, the computed flow inside the cavity was found to be highly

unsteady and dominated by periodic phenomena. The unsteady features inside the cavity

and the shear layer fluctuation process may be seen in Figure 4.56 which shows the time

development of tubular vortical structures and their effect on the instability of the shear

layer. The solid red arrow represents the flow direction and the vertical arrow shows

the direction of movement of the tubular structures. The shear layer spanning the cavity

width is found to be more stable in this case. To explain this, first the origin of spanwise

fluctuations in a 3D clean cavity needs to be explained. The shear layer in clean cavities
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undergoes warping which is partly due to the slowing down of the flow by the side walls.

But the main reason can be described as follows.

The wall shear stress due to the three-dimensional flat plate boundary layer upstream

of the leading edge of a 3D cavity results in a component of viscous force in the spanwise

direction. When the flow separates at the cavity leading edge, this spanwise force acts as

an initial trigger for the spanwise oscillation of the separated shear layer. The oscillation

gets energized by the presence of unsteady turbulent energy in the flow. In the case of the

spoiler, however, the spoiler flowfield acts as a barrier against the spanwise instability. In

addition, the loss of turbulent kinetic energy due to the presence of the spoiler means the

shear layer instabilities do not get enough energy to amplify. This is thought to be the

reason for the stable separated shear layer. The tubular structures are seen to arrive at

the cavity leading edge in Figure 4.56 but these structures do not have sufficient energy

to cause the violent flapping of the streaks of the separated shear layer. Therefore the

sustained fluctuation of the shear layer does not occur. In other words, the resonant

modes are absent. Frequency contents of the nearfield unsteady pressure signal was

extracted using fast fourier transforms for comparison with experiment. The resulting

spectra are shown in Figure 4.57. From the figure, the CFD result is found to record the

complete suppression of the dominant tones in the presence of the spoiler, consistent with

the experiment. The computed broadband noise level has some discrepancies with the

experiment which may be due to the lack of sufficient knowledge of the experimental test

conditions that affect the cavity flowfield e.g. incoming boundary layer characteristics,

tunnel turbulence levels, ambient density (ρ) and ambient temperature (T) (or speed of

sound, a0). Overall, the computed result is found to capture the global characteristics

well when compared to experiment.

4.9 Summary

This chapter presented the results of computational studies in 3D cavity geometries at

transonic speeds using the commercial CFD solver, Fluent. Various 3D cavity geometries

were considered which also consisted of stores in the cavity and spoilers in the upstream

boundary layer. The CFD results for all the empty cavity cases showed the presence of a

strong oscillation feedback mechanism. The overall effect of the presence of a store in the

cavity was found to be to divide the cavity flow such that the resulting flowfield behaves

similarly to two narrow cavity flowfields. The CFD results for a cavity with a spoiler

showed the complete suppression of resonant modes, consistent with the experiment.

The results indicated the spoiler to act as an energy-extracting device, thus dissipating
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the turbulent energy from the approaching boundary layer. This then was found to

reduce the widely-occurring phenomenon in clean cavities, of cross-stream warping of

transverse vortical structures in the free shear layer.

(a)Missile mounted on a support strut.

(b)Missile mounted on cavity trailing edge.

(c) Missiles (Two) mounted on cavity trailing edge.

Figure 4.1: Isometric views of the stores in cavity.
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(a)Clean Cavity.

(b)Cavity with Spoiler.

Figure 4.2: Isometric views of the clean cavity and cavity with spoiler.
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(a) Section view of grid in empty cavity.

(b) Section view of grid (zoomed in).

Figure 4.3: Structured grid distribution across XY-plane.

(a) Section view of grid in empty cavity.

(b) Section view of grid (zoomed in).

Figure 4.4: Structured grid distribution across XZ-plane.
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(c) Section view of grid in empty cavity.

(d) Section view of grid (zoomed in).

Figure 4.5: Structured grid distribution across YZ-plane.
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Figure 4.6: Centre line mean Cp along the cavity floor, L/D = 4 and W/D = 2.4.
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(a) ’Tornado-like’ vortices in the cavity.

(b) View from the cavity rear wall.

Figure 4.7: Time-mean streamlines for 3D cavity, L/D = 4, W/D = 2.4 and M∞ = 0.85.
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(a) Time mean streamlines in x-y plane at z/W = 0.1

(b) Time mean streamlines in x-y plane at z/W = 0.2

(c) Time mean streamlines in x-y plane at z/W = 0.3

(d) Time mean streamlines in x-y plane at z/W = 0.4

(e) Time mean streamlines in x-y plane at z/W = 0.5

(f) Upstream wall. (g) Cavity Floor. (h) Downstream wall.

Figure 4.8: Mean flow map for clean cavity using Line Integral Convolution, L/D = 4, W/D = 2.4

and M∞ = 0.85.

116

∣∣∣ PhD Thesis: Bidur Khanal



Chapter 4. Low-order Solver Simulations

Figure 4.9: Oil flow visualization for an L/D=4 cavity [Taborda et al. (2001)].
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(a) t × a∞/D = 0. (b) t × a∞/D = 1.4. (c) t × a∞/D = 2.8.

(c) t × a∞/D = 4.2. (c) t × a∞/D = 5.6. (c) t × a∞/D = 7.0.

Figure 4.10: Shear layer vortex evolution over one cycle of oscillation: iso-contours of the Q-

criterion and vorticity sheet, L/D = 4 and W/D = 2.4; M∞ = 0.85.
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Figure 4.11: Pressure spectra at floor centreline, x/L = 0.9.
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Figure 4.12: Mean Cp along varying spanwise locations, L/D = 5, W/D = 2 and M∞ = 0.85.
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(a) Time mean streamlines in x-y plane at z/W = 0.01

(b) Time mean streamlines in x-y plane at z/W = 0.2

(c) Time mean streamlines in x-y plane at z/W = 0.3

(d) Time mean streamlines in x-y plane at z/W = 0.4

(e) Time mean streamlines in x-y plane at z/W = 0.5

(f) Upstream wall. (g) Cavity Floor. (h) Downstream wall.

Figure 4.13: Mean flow map in cavity using Line Integral Convolution, L/D = 5, W/D = 2 and

M∞ = 0.85.
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(a) ’Tornado-like’ vortices in the cavity. (b) Streamlines released from upstream of cavity leading edge.

(c) View from the cavity side wall.

Figure 4.14: Time-mean streamlines for 3D cavity, L/D = 5, W/D = 2 and M∞ = 0.85.
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(a) Vorticity magnitude.

(b) Second invariant of the velocities.

Figure 4.15: Iso-surfaces showing flow structure in the cavity for Case 1 (L/D = 5, W/D = 2 and

M∞ = 0.85).
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(a) Floor at x/L=0.10. (b) Floor at x/L=0.90.

Figure 4.16: Empty cavity pressure spectra at floor centreline, L/D = 5, W/D = 2 and M∞ = 0.85.
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Figure 4.17: Mean Cp along the cavity centreline, L/D = 5 and W/D = 2.5.

(a) ’Tornado-like’ vortices in the cavity.

(b) View from the cavity rear wall.

Figure 4.18: Time-mean streamlines for 3D cavity, L/D = 5, W/D = 2.5 and M∞ = 0.85.
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4.9. Summary

(a) Streamlines at side wall

(b) Streamlines in x-y plane at z/W = 0.1

(c) Streamlines in x-y plane at z/W = 0.2

(d) Streamlines in x-y plane at z/W = 0.3

(e) Streamlines in x-y plane at z/W = 0.4

(f) Streamlines in x-y plane at z/W = 0.5

(g) Upstream wall. (h) Cavity Floor. (i) Downstream wall.

Figure 4.19: Mean flow map for clean cavity using Line Integral Convolution, L/D = 5, W/D = 2.5

and M∞ = 0.85.
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(a) Side wall, CFD result.

(b) Side wall, experiment (Oil flow).

(c) x-y plane at z/W = 0.67, CFD.

(d) x-y plane at z/W = 0.67, experiment (LIC of PIV data).

(e) Upstream wall. (f) Cavity Floor. (g) Downstream wall.

CFD result

(h) Upstream wall. (i) Cavity Floor. (j) Downstream wall.

Oil flow Visualization

Figure 4.20: Mean flow map Comparison, L/D = 5, W/D = 2.5 and M∞ = 0.85.
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(a) t × a∞/D = 0. (b) t × a∞/D = 1.0. (c) t × a∞/D = 2.0.

(c) t × a∞/D = 3.0. (c) t × a∞/D = 4.0. (c) t × a∞/D = 5.0.

Figure 4.21: Shear layer vortex evolution over one cycle of oscillation: iso-contours of the Q-

criterion (tubular structures in dark blue) and vorticity sheet (coloured by velocity), L/D = 5 and

W/D = 2.5; M∞ = 0.85.

(a) Floor at x/L=0.10. (b) Floor at x/L=0.90.

Figure 4.22: Clean cavity pressure spectra at floor centreline, L/D = 5, W/D = 2.5 and M∞ = 0.85.
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(a) Section view of grid in cavity with a missile body (XZ-plane).

(b) Section view of grid in cavity with a missile body (XY-plane).

(c) Section view of grid in cavity with two missiles (XZ-plane).

Figure 4.23: Structured grid distribution across XY-plane.
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(a) Cavity with one missile body.
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(b) Cavity with two missile bodies.

Figure 4.24: Mean Cp along the floor centreline, L/D = 5 and W/D = 2.5.

128

∣∣∣ PhD Thesis: Bidur Khanal



Chapter 4. Low-order Solver Simulations

(a) Cavity with one missile body.

(b) Cavity with two missile bodies.

Figure 4.25: Meanflow streamlines, L/D = 5 and W/D = 2.5.
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(a) Time mean streamlines at side wall

(b) Time mean streamlines in x-y plane at z/W = 0.1

(c) Time mean streamlines in x-y plane at z/W = 0.2

(d) Time mean streamlines in x-y plane at z/W = 0.3

(e) Time mean streamlines in x-y plane at z/W = 0.4

Figure 4.26: Mean flow map for cavity with one missile, L/D = 5, W/D = 2.5 and M∞ = 0.85.
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(a) Time mean streamlines in x-z plane at y/D = 0.25

(b) Time mean streamlines in x-z plane at y/D = 0.20

(c) Time mean streamlines in x-z plane at y/D = 0.10

(d) Cavity Floor.

Figure 4.27: Mean flow map for cavity with one missile, L/D = 5, W/D = 2.5 and M∞ = 0.85.
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(a) x/L = 0.50 (b) x/L = 0.75 (c) x/L = 0.99

Figure 4.28: Mean flow maps at various streamwise sections for cavity with one missile, L/D = 5,

W/D = 2.5 and M∞ = 0.85.
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(a) Time mean streamlines at side wall

(b) Time mean streamlines in x-y plane at z/W = 0.1

(c) Time mean streamlines in x-y plane at z/W = 0.2

(d) Time mean streamlines in x-y plane at z/W = 0.3

(e) Time mean streamlines in x-y plane at z/W = 0.4

(f) Time mean streamlines in x-z plane at z/W = 0.5

Figure 4.29: Mean flow map for cavity with two missiles, L/D = 5, W/D = 2.5 and M∞ = 0.85.PhD Thesis: Bidur Khanal
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(a) Time mean streamlines in x-z plane at y/D = 0.20

(b) Time mean streamlines in x-z plane at y/D = 0.10

(c) Cavity Floor.

Figure 4.30: Mean flow map for cavity with two missiles, L/D = 5, W/D = 2.5 and M∞ = 0.85.
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(a) Leading wall (b) x/L = 0.10 (c) x/L = 0.25

(a) x/L = 0.50 (b) x/L = 0.75 (c) x/L = 0.99

Figure 4.31: Mean flow map at various streamwise sections for cavity with two missile, L/D = 5,

W/D = 2.5 and M∞ = 0.85.
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(a) Cavity with one missile, CFD.

(b) Cavity with one missile, Experiment.

(c) Cavity with two missiles, CFD.

(d) Cavity with two missiles, Experiment.

Figure 4.32: Floor mean flow map comparison, L/D = 5, W/D = 2.5 and M∞ = 0.85.
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(a) t × a∞/D = 0. (b) t × a∞/D = 1.0. (c) t × a∞/D = 2.0.

(d) t × a∞/D = 3.0. (e) t × a∞/D = 4.0. (f) t × a∞/D = 5.0.

Figure 4.33: Shear layer vortex evolution over one cycle of oscillation: iso-contours of the Q-

criterion and vorticity sheet, L/D = 5 and W/D = 2.5; M∞ = 0.85.
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4.9. Summary

(a) Floor at x/L=0.10. (b) Floor at x/L=0.90.

Figure 4.34: Cavity with one missile pressure spectra at floor centreline, L/D = 5, W/D = 2.5 and

M∞ = 0.85.
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Figure 4.35: Cavity with two missiles pressure spectra at floor centreline, L/D = 5, W/D = 2.5 and

M∞ = 0.85.
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Figure 4.36: Mean Cp variations for clean cavity and cavity-with-store cases, L/D = 5.42 and

W/D = 2.
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(a) Streamlines in x-y plane at z/W = 0.01

(b) Streamlines in x-y plane at z/W = 0.2

(c) Streamlines in x-y plane at z/W = 0.3

(d) Streamlines in x-y plane at z/W = 0.4

(e) Streamlines in x-y plane at z/W = 0.5

(f) Upstream wall. (g) Cavity Floor. (h) Downstream wall.

Figure 4.37: Mean flow map in cavity using LIC, L/D = 5.42, W/D = 2 and M∞ = 0.80.
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4.9. Summary

(a) ’Tornado-like’ vortices in the cavity. (b) View from the cavity rear wall.

(c) View from the cavity side wall.

Figure 4.38: Time-mean streamlines for 3D cavity, L/D = 5.42, W/D = 2 and M∞ = 0.80.
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(a) Streamlines in x-y plane at z/W = 0.01

(b) Streamlines in x-y plane at z/W = 0.2

(c) Streamlines in x-y plane at z/W = 0.3

(d) Streamlines in x-y plane at z/W = 0.4

(e) Streamlines in x-y plane at z/W = 0.5

(f) Strut section. (g) Mid-depth plane. (h) Rear of store.

(i) Upstream wall. (j) Cavity Floor. (k) Downstream wall.

Figure 4.39: Mean flow map for cavity-with-store case using LIC, L/D = 5.42, W/D = 2 and

M∞ = 0.80.
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(a) Flow structure in the cavity. (b) View from the cavity rear wall.

Streamlines released from vortex cores inside the cavity.

(c) View from the cavity rear wall.

Figure 4.40: Time-mean streamlines for 3D cavity-with-store, L/D = 5.42, W/D = 2 and M∞ = 0.80.
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Chapter 4. Low-order Solver Simulations

(a) Iso-surface of vorticity magnitude, clean cavity.

(b) Iso-surface of vorticity magnitude, cavity-with-store.

Figure 4.41: Instantaneous vorticity iso-surfaces showing shear layer warping, L/D = 5.42, W/D =

2 and M∞ = 0.80.
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(a) Floor at x/L=0.10. (b) Floor at x/L=0.90.
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(c) Rear cavity wall at y/D=0.25. (d) Rear cavity wall at y/D=0.50.

Figure 4.42: Empty cavity pressure spectra at floor and rear wall centreline, L/D = 5.42, W/D = 2

and M∞ = 0.80.
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(c) Floor at x/L=0.667. (d) Floor at x/L=0.90.

Figure 4.43: Cavity-with-store pressure spectra at floor, L/D = 5.42, W/D = 2 and M∞ = 0.80.
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4.9. Summary

(a) Floor at x/L=0.10. (b) Floor at x/L=0.90.

Figure 4.44: Floor centreline pressure spectra comparison for clean cavity and cavity with store,

L/D = 5.42, W/D = 2 and M∞ = 0.80.

Figure 4.45: Mean Cp variations for clean cavity and cavity-with-store cases, L/D = 6.25 and

W/D = 2.
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(a) Streamlines in x-y plane at z/W = 0.2

(b) Streamlines in x-y plane at z/W = 0.4

(c) Streamlines in x-y plane at z/W = 0.5

(d) Upstream wall. (e) Cavity Floor. (f) Downstream wall.

Surface mean flow maps, clean cavity .

(g) Streamlines in x-y plane at z/W = 0.3

(h) Streamlines in x-y plane at z/W = 0.4

(i) Mid-depth (x-z) plane

(j) Upstream wall. (k) Cavity Floor. (l) Downstream wall.

Surface mean flow maps, cavity with store.

Figure 4.46: Mean flow maps using LIC, L/D = 6.25, W/D = 2 and M∞ = 0.80.PhD Thesis: Bidur Khanal
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(a) Clean cavity. (b) Cavity with store.

Streamlines released from vortex cores inside the cavity.

(c) View from the cavity rear wall, clean cavity.

(d) View from the cavity rear wall, cavity with store.

Figure 4.47: Time-mean streamlines, L/D = 6.25, W/D = 2 and M∞ = 0.80.
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(b) Cavity with store.

Figure 4.48: Floor centreline pressure spectra at x/L=0.10, L/D = 6.25, W/D = 2 and M∞ = 0.80.

PhD Thesis: Bidur Khanal

∣∣∣ 151



4.9. Summary

(a) Experiment.

(b) CFD.

Figure 4.49: Spoiler geometry.

(a) Section view of grid in empty cavity.

(b) Section view of grid (zoomed in).

Figure 4.50: Structured grid distribution across XY-plane.
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(a) Section view of grid in empty cavity.

(b) Section view of grid (zoomed in).

Figure 4.51: Structured grid distribution across XZ-plane.
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(c) Section view of grid in empty cavity.

(d) Section view of grid (zoomed in).

Figure 4.52: Structured grid distribution across YZ-plane.
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Figure 4.53: Centre line mean Cp along the cavity floor, L/D = 4 and W/D = 2.4.
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(a) Streamwise streamlines without tornado vortices.

(b) View from the cavity rear wall.

Figure 4.54: Time-mean streamlines for cavity-with-spoiler, L/D = 4, W/D = 2.4 and M∞ = 0.85.
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(a) Time mean streamlines at side wall

(b) Time mean streamlines in x-y plane at z/W = 0.1

(c) Time mean streamlines in x-y plane at z/W = 0.2

(d) Time mean streamlines in x-y plane at z/W = 0.3

(e) Time mean streamlines in x-y plane at z/W = 0.4

(f) Time mean streamlines in x-y plane at z/W = 0.5

(g) Upstream wall. (h) Cavity Floor. (i) Downstream wall.

Figure 4.55: Mean flow map for cavity-with-spoiler using LIC, L/D = 4, W/D = 2.4 and M∞ = 0.85.
PhD Thesis: Bidur Khanal
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4.9. Summary

(a) t × a∞/D = 0. (b) t × a∞/D = 1.4. (c) t × a∞/D = 2.8.

(c) t × a∞/D = 4.2. (c) t × a∞/D = 5.6. (c) t × a∞/D = 7.0.

Figure 4.56: Shear layer vortex evolution over one cycle of oscillation: iso-contours of the Q-

criterion and vorticity sheet, L/D = 4 and W/D = 2.4; M∞ = 0.85.
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Figure 4.57: Pressure spectra at floor centreline, x/L = 0.9.
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Chapter 5

Conclusions and Future Work

A summary of the main conclusions and the future work plan are now presented.

5.1 Concluding Remarks

The main aims of this research were to develop a computational research programme

capable of resolving cavity flowfields accurately, investigate and describe the cavity flow-

fields for a range of truly three-dimensional (3D) cavity geometries which fall into the

open flow category. In addition, investigation of the effects of missile bodies in the cavity

and flow control using passive devices were also part of the research aim.

5.1.1 CAA Solver Results

The first part of this thesis was devoted to the development of a computational solver ca-

pable of resolving aeroacoustic phenomena. Central to this work was the need to develop

efficient numerical tools to compute accurately the generation and farfield radiation of

noise from turbulent flows. To fulfill this requirement, a hybrid strategy has been devel-

oped. The approach combines nearfield numerical simulations with a farfield radiation

model. To complement the radiation solver, a family of optimized high-order accurate

finite-difference compact schemes have been adopted in the CAA code developed in this

thesis. An extensive set of two-dimensional numerical simulations were performed to

validate the solver. In addition a rectangular cavity with a lip was also simulated which

showed the cavity to behave as a Helmholtz resonator, with the fluid volume inside the

cavity directly affecting the frequency of oscillation. The sound spectrum was found

to be dominated by a single tonal component. Results for the plane rectangular cavity

geometries showed greater complexity, with the cavity oscillations often characterized

by the presence of multiple modes with similar strength. All the computed results from

the CAA solver were found to agree well with experiments. Both the frequency and the

magnitude of acoustic pressure were in good agreement with the available experimental

data. The solver was also used to study a 3D landing gear geometry to test its robustness

and stability for 3D generic curvilinear grids. The result showed the solver to be robust

and stable for geometries involving complex structured grids.
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5.1.2 CFD Solver Results

Wider cavities had significant spanwise flow compared to a narrow cavity (i.e. W/D = 1)

and the effect of the side walls is thought to have significance in limiting the spanwise

flow in a narrow cavity. Study of the time-mean flowfields inside the empty cavities has,

in general, indicated the presence of three dimensionality in the time-averaged flows. The

clean cavity and the cavity with a missile have negligible differences in Cp distribution,

especially on the front half of the cavity, whereas the difference was more pronounced

over the rear half. The presence of a missile in the cavity was found to limit the spanwise

flow in the cavity.

Unsteady flow results were also analysed for various configurations. Analysis of

the clean cavity unsteady flowfields found that the computed mode frequencies were in

good agreement with the experiments although the CFD was found generally to under-

predict the magnitude of the first resonant mode. However, CFD was found to record

the second mode as dominant whereas the reverse is true in the experiment. A strong

oscillation feedback mechanism was found to be present in all the empty cavity cases

studied. Pressure peaks were also found to exist at frequencies which were not close to

Rossiter modes for the clean cavity cases. This is thought to be the result of the coupling

between the spanwise and the streamwise flow fluctuations. Spanwise flow, however, is

less evident in cavity-with-missile cases and it had multiple Rossiter modes co-existing

without coupling (or any amplitude modulations). The blockage effect of the missile on

the spanwise flow is thought to be the reason which limits the interaction of spanwise

and streamwise flow fluctuations undergoing non-linear coupling to result in amplitude

modulations. Also in the cavity-with-missile cases, the separated shear layer was found

to undergo warping in two parts due to the presence of the missile (i.e. the missile is seen

to act as a central wall which promotes warping of the vortices on either side). As the

vortical structures in these regions reach the trailing edge, the vortex axis is aligned with

the streamwise direction. Then the 3D flow in the end wall regions leads to the formation

of streamwise vortices. The overall effect on the flowfield is that the missile in the cavity

divides the cavity flow such that the resulting flowfield behaves similar to two narrow

cavity flowfields.

5.1.3 Flow Control Results

The tone suppression effectiveness of using a serrated spoiler on the upstream cavity edge

was also studied computationally. To understand the flow physics behind the tone sup-

pression effects of passive devices (spoiler in this case) detailed analysis of time-averaged
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as well as unsteady flowfields were performed. The mean flow study indicated the heavy

pressure loss due to the presence of the spoiler. The dissipation (at Kolmogorov scale) and

self-regeneration of turbulent kinetic energy all takes place in the boundary layer and the

spoiler acts as an external device that extracts energy from the flow, resulting in the heavy

pressure loss. The computed unsteady result showed complete suppression of resonant

modes, consistent with the experiment. Based on the CFD results a mechanism by which

the spoiler suppresses the cavity resonant modes has been suggested in this thesis. It is

seen that the spoiler acts as an energy-extracting device, thus dissipating the turbulent

energy from the approaching boundary layer. This then reduces the widely-occurring

phenomenon (in empty cavities) of cross-stream warping of transverse vortical structures

in the free shear layer. Unsteady flow within the cavity, therefore, has insufficient energy

to excite flapping of this free shear layer to cause resonance.

5.2 Future Work

The computational studies presented in this research thesis have developed a high-order

CAA solver capable of resolving aerodynamically generated noise. The solver in its cur-

rent state requires a structured grid domain (and one-to-one matching at block interfaces

while generating multi-block grids). However, one-to-one matching at block interfaces in

multi-block grids can cause significant difficulty for complex geometrical configurations.

Also, an attempt to create a structured grid for a complex geometry causes highly-skewed

cells which, in turn, results in inaccurate calculations. The grid-generation issue men-

tioned above can be improved by the use of a zonal, or patched, grid method. Hence

addition of the overset and overlapping grid capabilities in the solver is suggested. The

solver currently uses an explicit time-marching method which restricts the time step sizes

to excessively small values determined by the stability condition that the CFL number

should be less than 1. This results in very long and expensive computing times. An

implicit time-stepping with sub-iterations (to maintain the high-order accuracy in time)

is, therefore, suggested for implementation in the solver.

A final recommendation is to explore other flow control methods based on active

control techniques to suppress the high acoustic fluctuations seen in the computational

results. Such an approach would overcome the high pressure loss seen with the spoiler,

which is a disadvantage of this simple passive approach.
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Appendices





Appendix A

Derivation of Characteristic

Boundary Conditions

Characteristic interface boundary treatments have been well documented [e.g. Kim &

Lee (2003); Sumi & Kurotaki (2006); Sumi et al. (2007)] although these methods are only

valid for inviscid and laminar flows. As far as the author knows, all the existing interface

treatments based on the method of characteristics lack a satisfactory interface match-

ing of turbulence quantities. This work proposes a characteristic interface condition for

complex geometries which addresses these issues and also ensures multi-dimensionality.

The method does not neglect any transverse terms during characteristic wave amplitude

calculations and all the viscous source terms are also taken into account in the deriva-

tion. For turbulent flow problems, a simple and robust technique is proposed to match

turbulence quantities at the multi-block interface.

A.1 Navier-Stokes Equations in Characteristic form

The time-dependent, three-dimensional Navier-Stokes equations can be expressed, in

Cartesian coordinates as:

∂Q
∂t

+
∂E
∂x

+
∂F
∂y

+
∂G
∂z

= Sv. (A.1)

Where the conservative variables and the inviscid flux variables are represented as

Q =



ρ

ρu

ρv

ρw

ρet


, E =



ρu

ρu2 + p

ρuv

ρuw

(ρet + p)u


, F =



ρv

ρuv

ρv2 + p

ρvw

(ρet + p)v


,

G =



ρw

ρuw

ρvw

ρw2 + p

(ρet + p)w


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and Sv is the source term containing the viscous flux derivatives represented as

Sv =
∂Ev

∂x
+

∂Fv

∂y
+

∂Gv

∂z
.

Ev =



0

τxx

τxy

τxz

uτxx + vτxy + wτxz + qx


, Fv =



0

τyx

τyy

τyz

uτyx + vτyy + wτyz + qy



and Gv =



0

τzx

τzy

τzz

uτzx + vτzy + wτzz + qz


These equations can also be written, in quasi-linear form, as:

∂Q
∂t

+ A
∂Q
∂x

+ B
∂Q
∂y

+ C
∂Q
∂z

= Sv (A.2)

where A = ∂E
∂Q , B = ∂F

∂Q and C = ∂G
∂Q are Jacobian matrices. Eq. A.2 can also be written in

terms of primitive variables, with U being the primitive variables vector, as:

∂U
∂t

+ a
∂U
∂x

+ b
∂U
∂y

+ c
∂U
∂z

= Sp (A.3)

where Sp is the viscous flux vector and a, b and c are the respective Jacobian matrices in

primitive variables form. The relation between the Jacobian matrices in Eqns A.2 and A.3

can be written as:

A = MaM−1 and so on.

where M is the transformation matrix between the conservative variables and the primi-

tive variables and M−1 is its inverse. Note here that a and A have the same eigenvalues. In
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order to express these in characteristic form, the above sets of equations are transformed

to the non-conservative form in the generalized coordinate system (ξ, η, ζ):

∂Q
∂t

+ Nξ
∂Q
∂ξ

+ Nη
∂Q
∂η

+ Nζ
∂Q
∂ζ

= Sv (A.4)

∂U
∂t

+ nξ
∂U
∂ξ

+ nη
∂U
∂η

+ nζ
∂U
∂ζ

= Sp (A.5)

where Nκ = κxA+κyB+κzC and nκ = κxa+κyb+κzc (with κ = ξ , η or ζ) are flux Jacobian

matrices and are interrelated by Nκ = MnκM−1.

The flux Jacobian matrix nκ can be diagonalized by its left eigenvector matrix S−1 as:

nκ = SΛκS−1 (A.6)

Here Λκ is the eigenvalue matrix of nκ. Similarly, the flux Jacobian matrix Nκ can also

be diagonalized by its left eigenvector matrix P−1 and has the same eigenvalue matrix as

that of nκ i.e.,

Nκ = PΛκP−1 (A.7)

where P = MS and P−1 = S−1M−1. All the transformation matrices M, M−1, S and S−1 are

given in Section A.6.

The eigenvalue matrix in Eqns A.6 and A.7 is a diagonal matrix and is given by:

Λκ =



Vκ 0 0 0 0

0 Vκ 0 0 0

0 0 Vκ 0 0

0 0 0 Vκ + Cκ 0

0 0 0 0 Vκ − Cκ


(A.8)

Where Vκ = u · κ, Cκ = c |κ| and κ = (κx, κy, κz) with κx = ∂κ/∂x (metrics of coordinate

transformation) etc. Here κ is an index to represent the generalized coordinate axis

direction.
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In order to analyse and derive the boundary conditions, the Navier-Stokes equations

represented by Eqns A.4 and A.5 are transformed into characteristics form. In the fol-

lowing, only the derivations for the ξ direction will be presented but those for the other

directions are similar. Representing the total spatial derivative terms (including viscous

source terms but excluding the inviscid spatial derivatives in the ξ direction) by vectors

Sc and Sd respectively for Equations A.6 and A.7, the Eqns A.6 and A.7 can be written as:

∂Q
∂t

+ Nξ
∂Q
∂ξ

+ Sc = 0 (A.9)

∂U
∂t

+ nξ
∂U
∂ξ

+ Sd = 0 (A.10)

The source terms in Eqns A.9 and A.10 are related by the relation:

Sd =



Sc1
Sc2 − uSc1

ρ
Sc3 − vSc1

ρ
Sc4 − wSc1

ρ

(γ − 1)
[
0.5u2Sc1 − uSc2 − vSc3 − wSc4 + Sc5

]



where u2 = (u2 + v2 + w2).

Eqns A.9 and A.10 can be converted into characteristic form by multiplying them by left

eigenvector matrices P−1 and S−1 respectively i.e. at a boundary with constant ξ,

P−1
ξ

∂Q
∂t

+ Lξ + P−1
ξ Sc = 0 (A.11)

S−1
ξ

∂U
∂t

+ Lξ + S−1
ξ Sd = 0 (A.12)

where

Lξ = ΛξP−1
ξ

∂Q
∂ξ

= ΛξS−1
ξ

∂U
∂ξ

(A.13)
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As discussed in section 2.2.2 of Chapter 2, the characteristic equations in Eqns A.11

and A.12 do not satisfy Pfaff’s condition for the integrability of differential forms. For

the first term in the left side of Eqn A.11 [or A.12] to exist, the matrix P−1
ξ (or S−1

ξ in Eqn

A.12) needs to either satisfy Pfaff’s condition for the integrability of differential forms

[Whitham (1974)] or be constant, a condition not possible for the fluid equations. Hence,

the matrix P−1
ξ cannot be absorbed into the partial derivatives as represented in Eqn A.11.

To avoid this and restore the mathematical consistency, Eqns A.11 and A.12 are rewritten

as:

∂Q
∂t

+ PξLξ + Sc = 0 (A.14)

∂U
∂t

+ SξLξ + Sd = 0 (A.15)

The left eigenvector matrix for the Navier-Stokes equations expressed in primitive

variable form (Equation A.5) is simpler than the corresponding left eigenvector matrix

for the Navier-Stokes equations in terms of conserved variables (Equation A.4). Hence,

Equation A.15 is used hereafter for all the analysis and the derivation of boundary con-

ditions. Multiplying matrices Sξ and Lξ, and after some algebraic manipulation, the time

derivatives of the primitive variables can be expressed as:

∂ρ

∂t
= −ξ̂xL1 − ξ̂yL2 − ξ̂zL3 −

(L4 + L5)
2

− Sd1 (A.16)

ρ

c
∂u
∂t

= ξ̂zL2 − ξ̂yL3 −
ξ̂x (L4 − L5)

2
−

Sd2

c
ρ

c
∂v
∂t

= −ξ̂zL1 + ξ̂xL3 −
ξ̂y (L4 − L5)

2
−

Sd3

c
ρ

c
∂w
∂t

= ξ̂yL1 − ξ̂xL2 −
ξ̂z (L4 − L5)

2
−

Sd4

c
1
c2

∂p
∂t

= −
(L4 + L5)

2
−

Sd5

c2

The relations represented by Eq. A.16 form the main basis of deriving characteristic

wall, interface and inflow/outflow boundary conditions. Figure A.1 shows a simple,

structured grid consisting of two blocks. The derivation of accurate interface conditions

is based on the fact that time developments of the primitive variables at the upstream

limit (left side) and those at the downstream limit (right side) on the block interface are

strictly matched. Based on this simple logic, it can be said that the right hand sides in the

system of equations in A.16 need to be exactly matched at the block interface i.e.
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ξ̂xL1 + ξ̂yL2 + ξzL3 +
(L4 + L5)

2
+ Sd1

∣∣∣∣∣
left

= ξ̂xL1 + ξ̂yL2 + ξ̂zL3 +
(L4 + L5)

2
+ Sd1

∣∣∣∣∣
right

(A.17)

− ξ̂zL2 + ξ̂yL3 +
ξ̂x (L4 − L5)

2
+

Sd2

c

∣∣∣∣∣∣
left

= − ξ̂zL2 + ξ̂yL3 +
ξ̂x (L4 − L5)

2
+

Sd2

c

∣∣∣∣∣∣
right

(A.18)

ξ̂zL1 − ξ̂xL3 +
ξ̂y (L4 − L5)

2
+

Sd3

c

∣∣∣∣∣∣
left

= ξ̂zL1 − ξ̂xL3 +
ξ̂y (L4 − L5)

2
+

Sd3

c

∣∣∣∣∣∣
right

(A.19)

− ξ̂yL1 + ξ̂xL2 +
ξ̂z (L4 − L5)

2
+

Sd4

c

∣∣∣∣∣∣
left

= −ξ̂yL1 + ξ̂xL2 +
ξ̂z (L4 − L5)

2
+

Sd4

c

∣∣∣∣∣∣
right

(A.20)

(L4 + L5)
2

+
Sd5

c2

∣∣∣∣∣
left

=
(L4 + L5)

2
+

Sd5

c2

∣∣∣∣∣
right

(A.21)

Now subtracting Eq. A.21 from Eq. A.17:

ξ̂xL1 + ξ̂yL2 + ξzL3 + Sd1 −
Sd5

c2

∣∣∣∣∣
left

= +ξ̂xL1 + ξ̂yL2 + ξ̂zL3 + Sd1 −
Sd5

c2

∣∣∣∣∣
right

(A.22)

Hereafter, a superscript of ′l′ refers to the variable at the left side of the interface and

that of ′r′ refers to the variable at the right side of the interface. Now ξ̂x× Eq. A.22 + ξ̂z×

Eq. A.19 - ξy× Eq. A.20 gives:
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L1 +
ξ̂zSd3

c
−
ξ̂ySd4

c
+ ξ̂x

(
Sd4 −

Sd5

c2

)∣∣∣∣∣∣
left

=
(
ξ̂l.ξ̂r

)
Lr

1 +
ξ̂l

zSr
d3

c
−

ξ̂l
ySr

d4

c
+ ξ̂l

x

(
Sr

d1 −
Sr

d5

c2

)
(A.23)

Hence Eq. A.23 can be written as:

L1 + Sr1|left =
(
ξ̂l.ξ̂r

)
Lr

1 + Sr1 |right (A.24)

where

Sr1|left =
ξ̂zSd3

c
−
ξ̂ySd4

c
+ ξ̂x

(
Sd4 −

Sd5

c2

)
|left

and

Sr1|right =
ξ̂l

zSr
d3

c
−

ξ̂l
ySr

d4

c
+ ξ̂l

x

(
Sr

d1 −
Sr

d5

c2

)
.

Similar mathematical manipulation leads to,

L2 + Sr2|left =
(
ξ̂l.ξ̂r

)
Lr

2 + Sr2 |right (A.25)

L3 + Sr3|left =
(
ξ̂l.ξ̂r

)
Lr

3 + Sr3 |right (A.26)

where
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Sr2|left = −
ξ̂zSd2

c
+
ξ̂xSd4

c
+ ξ̂y

(
Sd4 −

Sd5

c2

)
|left

Sr3|left = −
ξ̂xSd3

c
+
ξ̂ySd2

c
+ ξ̂z

(
Sd4 −

Sd5

c2

)
|left

Sr2|right = −
ξ̂l

zSr
d2

c
+
ξ̂l

xSr
d4

c
+ ξ̂l

y

(
Sr

d1 −
Sr

d5

c2

)
Sr3|right = −

ξ̂l
xSr

d3

c
+
ξ̂l

ySr
d2

c
+ ξ̂l

z

(
Sr

d1 −
Sr

d5

c2

)

Again, ξ̂x× Eq. A.18 + ξ̂y× Eq. A.19 + ξ̂z× Eq. A.20 gives:

L4 − L5 +
2
c

(
ξ̂xSd2 + ξ̂ySd3 + ξ̂zSd4

)∣∣∣∣∣
left

=
(
ξ̂l.ξ̂r

) (
Lr

4 − Lr
5

)
+

2
c

(
ξ̂l

xSr
d2 + ξ̂l

ySr
d3 + ξ̂l

zSr
d4

)
(A.27)

Now Eqns A.27 and A.21 can be rewritten as:

L4 − L5 + Sr4|left =
(
ξ̂l.ξ̂r

) (
Lr

4 − Lr
5

)
+ Sr4|right (A.28)

L4 + L5 + Sr5|left = Lr
4 + Lr

5 + Sr5|right (A.29)

where

Sr4|left =
2
c

(
ξ̂xSd2 + ξ̂ySd3 + ξ̂zSd4

)
|left

Sr4|right =
2
c

(
ξ̂l

xSr
d2 + ξ̂l

ySr
d3 + ξ̂l

zSr
d4

)
Sr5|left =

2Sd4

c2 |left

Sr5|right =
2Sd4

c2 |right

Equations A.24, A.25, A.26, A.28 and A.29 form the main basis of characteristic match-

ing at the block interface. The usual convention in which either the left or the right hand

convection terms are corrected by the other one according to Eqns A.26 and A.28 is de-

cided based on the sign of the convection speed (i.e. the incoming convection term is

corrected while the outgoing term is left unchanged). In this way, accurate interface

conditions are maintained at the block interfaces.
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A.2 Characteristic relations for conservative equations

In general, compressible viscous flows are solved in conservation form of the Navier-

Stokes equations and so it is inconvenient to use the non-conservative form of the gov-

erning equations as depicted in Eq. A.4 or Eq. A.5. Hence for practical purposes, the

conservative form of the Navier-Stokes equations in generalised coordinates is used:

∂Q̂
∂t

+
∂Ê
∂ξ

+
∂F̂
∂η

+
∂Ĝ
∂ζ

= Ŝv (A.30)

where the caret represents the transformed variables in the generalised coordinates. The

conserved variables, inviscid fluxes and the viscous fluxes in the generalized coordinates

can be represented as:

Q̂ = Q/J (A.31)

Ê = (ξxE + ξyF + ξzG)/J

F̂ = (ηxE + ηyF + ηzG)/J

Ĝ = (ζxE + ζyF + ζzG)/J

Ŝv =
∂Êv

∂ξ
+

∂F̂v

∂η
+

∂Ĝv

∂ζ

with,

Êv = (ξxEv + ξyFv + ξzGv)/J

F̂v = (ηxEv + ηyFv + ηzGv)/J

Ĝv = (ζxEv + ζyFv + ζzGv)/J

The Jacobian of the transformation, J, and the grid metrics in the system of equations

(A.31) is given by:

J =

[
∂x
∂ξ

(
∂y
∂η

∂z
∂ζ
−

∂y
∂ζ

∂z
∂η

)
−

∂x
∂η

(
∂y
∂ξ

∂z
∂ζ
−

∂y
∂ζ

∂z
∂ξ

)
+

∂x
∂ζ

(
∂y
∂ξ

∂z
∂η
−

∂y
∂ξ

∂z
∂η

)]−1

.

ξx =
∂ξ
∂x

= J
(
∂y
∂η

∂z
∂ζ
−

∂y
∂ζ

∂z
∂η

)
, ξy =

∂ξ
∂y

= J
(
∂x
∂ζ

∂z
∂η
−

∂x
∂η

∂z
∂ζ

)
, ξz =

∂ξ
∂z

= J
(
∂x
∂η

∂y
∂ζ
−

∂x
∂ζ

∂y
∂η

)
ηx =

∂η

∂x
= J

(
∂y
∂ζ

∂z
∂ξ
−

∂y
∂ξ

∂z
∂ζ

)
, ηy =

∂η

∂y
= J

(
∂x
∂ξ

∂z
∂ζ
−

∂x
∂ζ

∂z
∂ξ

)
, ηz =

∂η

∂z
= J

(
∂x
∂ζ

∂y
∂ξ
−

∂x
∂ξ

∂y
∂ζ

)
ζx =

∂ζ
∂x

= J
(
∂y
∂ξ

∂z
∂η
−

∂y
∂η

∂z
∂ξ

)
, ζy =

∂ζ
∂y

= J
(
∂x
∂η

∂z
∂ξ
−

∂x
∂ξ

∂z
∂η

)
, ζz =

∂ζ
∂z

= J
(
∂x
∂ξ

∂y
∂η
−

∂x
∂η

∂y
∂ξ

)
(A.32)
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Comparing Eq. A.4, A.14 and A.30, the source term and the characteristic wave

amplitudes corresponding to Eq. A.30 can be written as:

Sc = J
[{

E
∂

∂ξ

(
ξx

J

)
+ F

∂

∂ξ

(
ξy

J

)
+ G

∂

∂ξ

(
ξz

J

)}
+

∂F̂
∂η

+
∂Ĝ
∂ζ
− Ŝv

]

Lξ =



L1

L2

L3

L4

L5


=



U
{
ξ̂x

(
∂ρ
∂ξ −

1
c2

∂p
∂ξ

)
+
ρ
c

(
ξ̂z

∂v
∂ξ − ξ̂y

∂w
∂ξ

)}
U

{
ξ̂y

(
∂ρ
∂ξ −

1
c2

∂p
∂ξ

)
+
ρ
c

(
ξ̂x

∂w
∂ξ − ξ̂z

∂u
∂ξ

)}
U

{
ξ̂z

(
∂ρ
∂ξ −

1
c2

∂p
∂ξ

)
+
ρ
c

(
ξ̂y

∂u
∂ξ − ξ̂x

∂v
∂ξ

)}
(U + C) ρc

{
1
ρc

∂p
∂ξ +

(
ξ̂x

∂u
∂ξ + ξ̂y

∂v
∂ξ + ξ̂z

∂w
∂ξ

)}
(U − C) ρc

{
1
ρc

∂p
∂ξ −

(
ξ̂x

∂u
∂ξ + ξ̂y

∂v
∂ξ + ξ̂z

∂w
∂ξ

)}


(A.33)

A.3 Interface matching

In this section, the interface matching process is described. As shown in Figure A.1,

the domain is decomposed into two blocks along a common face, and the characteristic-

based interface conditions are imposed on the block interface. As explained in Section

A.1, the generalized characteristic interface conditions are based on the simple fact that

time development of the flow variables at the upstream limit and those at the downstream

limit at the block interface are strictly matched. Using equations A.24, A.25, A.26, A.28

and A.29 these conditions are replaced by the spatial relations.

The transfer direction of a characteristic wave component Li is determined by the

eigenvalue λi given by Eq. A.8. Under subsonic conditions, four eigenvalues have a

positive sign, and one eigenvalue has a negative sign. Thus, four characteristic waves

are travelling from the upstream to the downstream side and one wave is travelling in

the opposite direction. The decision over which wave amplitude needs to be corrected is

dependent on whether the convection speed at the interface is larger or smaller than the

sound speed. Based on the signs of the contravariant velocities at the block interface four

possible combinations of wave directions can be found, which are shown in Figure A.2.

The characteristic wave components, denoted by solid arrows, are the known ones and

those with a hollow arrow are unknown ones, which are corrected by the characteristic

interface treatment. In all cases a total of five unknown and five known vectors exist at

the interface.
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A.4 Interface matching of turbulence quantities

Turbulence is of great technological importance because of the large effects it has on the

flows in which it occurs. Turbulence results in increased energy dissipation, mixing,

and heat transfer in the flow. The prediction of these effects in a flow of interest is one

of the primary concerns of applied fluid dynamicists, and it is often the case that the

uncertainties in a fluid dynamic calculation are dominated by uncertainties in the turbu-

lence models. Hence it is vital for any characteristic-based computational solvers which

use a multi-block grid to have an accurate matching method for turbulence properties

at block interfaces. An efficient matching approach is derived for turbulence quantities

in this work. For illustrative purposes, the one-equation turbulence model of Spalart &

Allmaras (1992) is used. The turbulent transport equation solved by the model is given

by,

∂

∂t
(
ρν̃

)
+

∂

∂xi

(
ρν̃ui

)
= Gν +

1
σν

 ∂

∂x j

{(
µ + ρν̃

) ∂ν̃
∂x j

}
+ Cb2ρ

(
∂ν̃
∂x j

)2 − Yv (A.34)

where Gν is the production term of turbulent viscosity and Yν is the turbulent viscosity

dissipation term. σν and Cb2 are constants. The system of partial differential equations in

Eq. A.34 is solved for the transport variable ν̃ to calculate µt using the relation, µt = ρν̃ fν1

. The turbulent viscosity term (µt) is required to close the system of equations in Eq. A.1.

fν1 is the viscous damping function. Additional details of the turbulence model can be

found in the literatures [Spalart & Allmaras (1992); flu (2005); Krist et al. (1998)]. Now,

Eq. A.34 is reorganized as:

∂

∂t
(
ρν̃

)
= Gv − Yv + Ts (A.35)

where

Ts =
1
σv

 ∂

∂x j

{(
µ + ρν̃

) ∂ν̃
∂x j

}
+ Cb2ρ

(
∂ν̃
∂x j

)2 − ∂

∂x j

(
ρν̃ui

)
The interface matching of turbulence quantities is based on the simple fact that time

developments of the turbulent variables at the upstream limit and those at the downstream

limit on the block interface are strictly matched. Also the production and dissipation

terms need to be the same at the block interface. Based on this simple logic, the matching

condition for turbulence quantities can be written as:
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Gv − Yv + Ts|left = Gv − Yv + Ts|right (A.36)

Eq. A.36 can be rewritten as:

(Gv − Yv)|left = (Gv − Yv)|right + Tr
s − Tl

s (A.37)

Using Eq. A.37, net production and dissipation effects are strictly matched at the

interface at each time step.

A.5 Characteristic wall boundary conditions

The system of equations (A.16) is used as a starting point to deduce relations for the

wall boundary conditions. Considering the viscous wall condition, all the velocity terms

become zero and also the first three convection terms disappear at the wall. Hence, the

system of equations (A.16) can be written as:

∂ρ

∂t
= −

(L4 + L5)
2

− Sd1 (A.38)

ξ̂x (L4 − L5)
2

+
Sd2

c
= 0 (A.39)

ξ̂y (L4 − L5)
2

+
Sd3

c
= 0 (A.40)

ξ̂z (L4 − L5)
2

+
Sd4

c
= 0 (A.41)

∂p
∂t

= −
c2 (L4 + L5)

2
− Sd5 (A.42)

Now, ξ̂x× Eq. A.39 + ξ̂y× Eq. A.40 + ξ̂z× Eq. A.41 and some algebraic manipulations

leads to:

L4 − L5 +
1
c

(
ξ̂xSd2 + ξ̂ySd3 + ξ̂zSd4

)
= 0 (A.43)

The characteristic wave amplitudes L1, L2 and L3 are all set to zero at the wall as all

the velocity terms are zero. Also Eq. A.43 is used to correct the incoming characteristic

waves (at ξmin boundary, the characteristic wave L4 is entering the domain whereas L5 is

entering the domain at ξmax boundary) at the wall boundary. In addition, the normal heat

flux is set to zero at the boundary when an adiabatic wall is considered.
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A.6 Characteristic Transformation Matrices

The matrices M, M−1 transform the conservative variables to primitive variables and vise

versa. These matrices along with S and S−1 are given as:

M =



1 0 0 0 0

u ρ 0 0 0

v 0 ρ 0 0

w 0 0 ρ 0
u2

2 ρu ρv ρw 1
γ



M−1 =



1 0 0 0 0

−
u
ρ

1
ρ 0 0 0

−
v
ρ 0 1

ρ 0 0

−
w
ρ 0 0 1

ρ 0
(γ−1)u2

2 u
(
1 − γ

)
v
(
1 − γ

)
w

(
1 − γ

) (
γ − 1

)



S =



ξ̂x ξ̂y ξ̂z
1
2

1
2

0 −
cξ̂z
ρ

cξ̂y

ρ
cξ̂x
2ρ −

cξ̂x
2ρ

cξ̂z
ρ 0 −

cξ̂x
ρ

cξ̂y

2ρ −
cξ̂y

2ρ

−
cξ̂y

ρ
cξ̂x
ρ 0 cξ̂z

2ρ −
cξ̂z
2ρ

0 0 0 c2

2
c2

2


, S−1 =



ξ̂x 0 ρξ̂z
c −

ρξ̂y

c −
ξ̂x
c2

ξ̂y −
ρξ̂z

c 0 ρξ̂x
c −

ξ̂y

c2

ξ̂z
ρξ̂y

c −
ρξ̂x

c 0 −
ξ̂z
c2

0 ρξ̂x
c

ρξ̂y

c
ρξ̂z

c
1
c2

0 −
ρξ̂x

c −
ρξ̂y

c −
ρξ̂z

c
1
c2


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Figure A.1: Two-block domain with single interface (top) and block decomposition for interface

treatment (bottom)
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(a)0 < Ul < C, 0 < Ur < C (b) − C < Ul < 0,−C < Ur < 0

(c)0 < Ul < C,−C < Ur < 0 (d) − C < Ul < 0, 0 < Ur < C

Figure A.2: Various block grid orientations and the direction of characteristic waves at the interface
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Appendix B

Derivation and Solution of the FW-H

Equation

The Ffowcs Williams and Hawkings (FW-H) equation [Ffowcs-Williams & Hawkings

(1969)] is the most general form of Lighthill’s acoustic analogy [Lighthill (1952)]. It is

an exact rearrangement of the Navier-Stokes equations and is appropriate for computing

the acoustic field when there are solid boundaries present in the flow field. The FW-H

equation can be used to predict the acoustic signal at far-field observer locations based

solely upon information of the near-field flow, provided by computation or experiment.

Its solution is obtained in terms of volume and surface integrals and can be applied either

by having the integration surface coincide with solid boundaries, or off the body as a

permeable surface. It is even valid if the integration surface lies in the non-linear region

making it a very flexible technique. In the following sections the derivation of the FW-H

equation and its solution is given beginning with the Navier-Stokes equations.

B.1 Lighthill's acoustic analogy

In 1952 Lighthill (1952) published a pioneering paper, establishing the theory of sound

generated aerodynamically. Lighthill’s theory was based upon the rearrangement of

the Navier-Stokes equations showing how the source of aerodynamic noise could be

obtained from exact time-accurate calculations or experiment. The result is a wave

equation including a source term. Lighthill’s inhomogeneous wave equation is expressed

as:

[
∂2

∂t2 − c2
0∇

2
]
ρ
′

=
∂2Ti j

∂xi∂x j
(B.1)

The left-hand side is the linear wave equation and the right-hand side represents a

quadrupole distribution. Ti j is the Lighthill stress tensor . . .

Ti j = ρuiu j + Pi j − c2
0ρ
′

δi j (B.2)
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Where Pi j is the compressive stress tensor . . .

Pi j = pδi j + µ

{
−
∂ui

∂x j
−

∂u j

∂xi
+

2
3

(
∂uk

∂xk

)
δi j

}
(B.3)

The limitation of Lighthill’s formulation is that it assumes the absence of solid bound-

aries in the flow field. In real applications this is often impractical and consequently the

FW-H equation is derived to include the presence of solid boundaries in arbitrary motion.

B.2 A body in arbitrary motion and the Heavyside

function

The FW-H equation may be derived by considering a body in arbitrary motion with

surface S, described by the equation f (x, t) = 0, and immersed in a fluid such as air. The

function f (x, t) is a function of time so that it always surrounds the volume or surface of

interest, and is defined to be positive everywhere outside the surface S and negative in

the interior of S. Therefore . . .

f > 0 inside S

f < 0 outside S
(B.4)

If the body submerged in the fluid is replaced by fluid at rest (p = p0, ρ = ρ0, and

ui = 0) and the flow variables are regarded as generalized functions, the validity of the

equations of fluid motion may be extended to all space through the use of the Heavyside

fuction H( f ) where:

H( f ) =

{
1 f < 0
0 f > 0

}
(B.5)

The Heavyside function can then be applied to the governing equations of the fluid.
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B.2.1 Governing Equations

Outside the body the continuity and momentum conservation equations hold true. In

tensor notation these are expressed as:

∂

∂t

(
ρ − ρ0

)
+

∂

∂xi

(
ρui

)
= 0 (B.6)

∂

∂t

(
ρui

)
+

∂

∂xi

(
Pi j + ρuiu j

)
= 0 (B.7)

Where Pi j is the compressive stress tensor, Pi j = pδi j − τi j, and τi j is the viscous stress

tensor. Multiplying the continuity equation, equation B.6, by H( f ) gives:

H( f )
∂

∂t

(
ρ − ρ0

)
+ H( f )

∂

∂xi

(
ρui

)
= 0 (B.8)

The next step is to express equation B.8 with H( f ) inside the differential operators.

For this we need to perform some algerbra. We can write:

∂ f (x, t)
∂t

+
∂ f (x, t)
∂xi

∂xi

∂t
= 0 (B.9)

⇒
∂ f (x, t)

∂t
= −vi

∂ f (x, t)
∂xi

where vi =
∂xi

∂t
(B.10)

also,

∂

∂t

{(
ρ − ρ0

)
H( f )

}
= H( f )

∂

∂t

(
ρ − ρ0

)
+

(
ρ − ρ0

)∂H( f )
∂t

(B.11)

and,

∂H( f )
∂t

=
∂H( f )
∂ f

∂ f
∂t

=
∂H( f )
∂t

(
− vi

∂ f
∂xi

)
(B.12)
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⇒
∂H( f )
∂t

= −vi
∂H( f )
∂xi

(B.13)

Applying these relationships we have:

∂

∂t

{(
ρ − ρ0

)
H( f )

}
= H( f )

∂

∂t

(
ρ − ρ0

)
−

(
ρ − ρ0

)
vi
∂H( f )
∂xi

(B.14)

and we can also write,

∂

∂xi

(
ρuiH( f )

)
= H( f )

(∂ρui)
∂xi

+ (ρui)
∂H( f )
∂xi

(B.15)

Finally, subtracting equation B.14 from B.15 gives the result:

∂

∂t

{ (
ρ − ρ0

)
H( f )

}
+

∂

∂xi

{
ρuiH( f )

}
= ρ0vi

∂H( f )
∂xi

+ ρ (ui − ui)
∂H( f )
∂xi

(B.16)

Multiplying the momentum equation, equation B.7 by H( f ) gives:

H( f )
∂

∂t

(
ρui

)
+ H( f )

∂

∂xi

(
Pi j + ρuiu j

)
= 0 (B.17)

Now,

∂

∂t

{
ρuiH( f )

}
= H( f )

∂

∂t

(
ρui

)
−

(
viρui

)∂H( f )
∂x j

(B.18)

and,

∂

∂x j

{ (
Pi j − ρuiu j

)
H( f )

}
= H( f )

∂

∂x j
+

(
Pi j + ρui

(
u j − v j

) )∂H( f )
∂xi

(B.19)

Adding equations B.18 and B.19 yields the following:

∂

∂t

{
ρuiH( f )

}
+

∂

∂x j

{ (
Pi j + ρuiu j

)
H( f )

}
=

{
Pi j + ρui

(
u j − v j

) }∂H( f )
∂x j

(B.20)
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We have now multiplied the equations of continuity and momentum by H( f ) and

expressed the result with H( f ) inside the differential operators. Taking the time derivative

of equation B.16 and the space derivative of equation B.20, then subtracting one from the

other gives:

∂2

∂t2

{ (
ρ − ρ0

)
H( f )

}
−

∂2

∂xi∂x j

{ (
Pi j + ρuiu j

)
H( f )

}
=

∂

∂t

{
ρ0vi + ρ (ui − vi)

∂H( f )
∂xi

}
−

∂

∂xi

[(
Pi j + ρui

(
u j − v j

) )∂H( f )
∂x j

]
(B.21)

Adding then subtracting c2
0

∂
∂x2

0

{ (
ρ − ρ0

)
H( f )

}
from the LHS of equation B.21 gives:

{
∂2

∂t2 − c2
0∇

2
}( (
ρ − ρ0

)
H( f )

)
=

∂2

∂xi∂x j

[(
ρuiu j + Pi j − c2

0
(
ρ − ρ0

)
δi j

)
H( f )

]
−

∂

∂xi

[{
Pi j + ρui

(
u j − v j

) }∂H( f )
∂x j

]
+

∂

∂t

[{
ρ0vi + ρ (ui − vi)

}∂H( f )
∂x j

]
(B.22)

We can now make use of the relation:

∂H( f )
∂x j

=
∂H( f )
∂ f

∂ f
∂x j

= δ( f )
∂ f
∂x j

⇒ δ( f ) =
∂H( f )
∂ f

(B.23)

. . . which leads to the FW-H equation:

(
∂2

∂t2 − c2
0

∂2

∂xi∂x j

) (
H( f )ρ

′

)
=

∂2

∂xi∂x j

(
Ti jH( f )

)
+

∂

∂xi

(
Fiδ( f )

)
+

∂

∂t

(
Qδ( f )

)
(B.24)

where . . .
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Ti j = ρuiu j + Pi j − c2
0ρ
′

δi j (B.25)

Li = −

(
Pi j + ρui

(
u j − v j

) ) ∂ f
∂x j

(B.26)

Un =
(
ρ0vi + ρ

(
ui − v j

) ) ∂ f
∂xi

(B.27)

The contribution of the Lighthill stess tensor, Ti j, to the right-hand side of equation

B.24 is known as the quadrupole term. This is followed by the dipole term Fi, involving

an unsteady force, and Q represents a monopole-type term.

B.2.2 Retarded Time Formulation

The FW-H equation is typically solved using a Green’s function technique. Retarded

time formulation involves the calculation of acoustic signals by summing all the signals

received by an observer at the same time t. Depending on the location and the velocity of

both source and observer, these signals are emitted at different times and travel different

distance to reach the observer at the same time t. Hence, it can be regarded as the signal

analysed from the point of view of the observer. In this formulation the computational

time is the reception (or observer) time.

Let,
∂2

∂t2 − c2
0∇

2 = L

Where L is a linear differential operator. This immediately suggests that equation B.24

is of the form,

Lφ = P,

where φ is any source variable and P is a source term. If we assume initially that φ

and P are functions of x only in volumetric space V, then

Lxφ = P (B.28)

Now we choose a function G(x, y) such that following equation holds.

LxG(x, y) = δ(x − y) (B.29)

196

∣∣∣ PhD Thesis: Bidur Khanal



Appendix B: Derivation and Solution of the FW-H Equation 197

Where G is the Greens function and δ, the Dirac delta function. Now multiplying

both sides of equation B.29 with the value of source term at y and integrating over whole

volume V, we get:

∫
V(y)

LxG(x, y)P(y)dy =

∫
V(y)

δ(x − y)P(y)dy = P(x) (B.30)

In deriving above relation, the sifting property of delta functions has been used, i.e.∫
f (x)δ(x)dx = f (0).

The linear differential operator Lx in equation B.30 can be taken out of the integral

because it is independent of variable y. Hence equation B.30 becomes,

Lx

∫
V(y)

G(x, y)P(y)dy = P(x) (B.31)

Comparing equation B.31 with equation B.28, it immediately follows that,

φ =

∫
V(y)

G(x, y)P(y)dy (B.32)

Exactly the same principle will be used to solve equation B.24.

Now consider a Green’s function which satisfies following equation:

(
∂2

∂t2 − c2
0∇

2
)

G(x, y; t, τ) = δ(x − y)δ(t − τ) (B.33)

Now, as before, multiplying equation B.33 by right hand side of equation B.24 (Here

use right hand side of equation B.24 evaluated at position y and time τ) and integrating

over all space and time, we get:

 ∂2

∂t2 − c2
0
∂2

∂x2
i

 ∫
(V,τ)

G(x, y; t, τ)MdV(y)dτ =

∫
(V,τ)

δ(x − y)δ(t − τ)MdV(y)dτ (B.34)
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where,

M =
∂2Ti j

∂yi∂y j
H( f ) +

∂Fi

∂yi
δ( f ) +

∂Q
∂τ
δ( f )

Use of the sifting property of delta functions immediately results in:

∫
(V,τ)

δ(x − y)δ(t − τ)MdV(y)dτ =
∂2Ti j

∂xi∂x j
H( f ) +

∂Fi

∂xi
δ( f ) +

∂Q
∂t
δ( f ) (B.35)

Comparing equations B.34 and B.35 above, we can write,

 ∂2

∂t2 − c2
0
∂2

∂x2
i

 ∫
(V,τ)

G(x, y; t, τ)MdV(y)dτ =
∂2Ti j

∂xi∂x j
H( f )

+
∂Fi

∂xi
δ( f ) +

∂Q
∂t
δ( f ) (B.36)

Finally, comparing equations B.24 and B.36 it can be seen that:

c2
0(ρ − ρ0)H( f ) =

∫
(V,τ)

G(x, y; t, τ)

 ∂2Ti j

∂yi∂y j
H( f ) +

∂Fi

∂yi
δ( f ) +

∂Q
∂τ
δ( f )

 dV(y)dτ

i.e.

c2
0(ρ − ρ0)H( f ) =

∫
(V,τ)

G
∂2(Ti jH( f ))

∂yi∂y j
dV(y)dτ

+

∫
(V,τ)

[
G
∂(Fδ( f )i)

∂yi
+ G

∂(Qδ( f ))
∂τ

]
dV(y)dτ (B.37)

Assuming the volume sources are limited to a finite region of space and using the

sifting property of delta functions, we get:
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c2
0(ρ − ρ0)H( f ) =

∫
(V,τ)

Ti j
∂2G

∂yi∂y j
dV(y)dτ

+

∫
(S,τ)

Fi
∂G
∂yi

dS(y)dτ +

∫
(S,τ)

Q
∂G
∂τ

dS(y)dτ (B.38)

Hence, this is the required solution for the wave equation representing sound propa-

gation expressed in terms of any Green’s function G which satisfies:(
∂2

∂t2 − c2
0∇

2
)

G(x, y; t, τ) = δ(x − y)δ(t − τ)

Also three dimensional free space Green’s function is given by,

G(x, y; t, τ) =
δ(g)
4πr

where, g = τ − t +
|x−y|

c0
, and r =

∣∣∣x − y
∣∣∣ (B.39)

Also, symmetric properties of Green’s functions tell us that,

∂G
∂t

= −
∂G
∂τ
, and

∂G
∂xi

= −
∂G
∂yi

.

Using these properties, we can write,

c2
0(ρ − ρ0)H( f ) =

∂2

∂xi∂x j

∫
(V,τ)

Ti j
δ(g)
4πr

dV(y)dτ

−

∫
(S,τ)

Fi
∂G
∂xi

dS(y)dτ −
∫

(S,τ)

Q
∂G
∂t

dS(y)dτ (B.40)
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Also using the conversion relationship for spatial to temporal derivatives in the form,

∂

∂xi

(
δ(g)
4πr

)
=

1
c0

∂

∂t

(
r̂iδ(g)
4πr

)
−

r̂iδ(g)
4πr2 (B.41)

This gives finally,

c2
0(ρ − ρ0)H( f ) =

∂2

∂xi∂x j

∫
(V,τ)

Ti j
δ(g)
4πr

dV(y)dτ −
1
c0

∂

∂t

∫
(S,τ)

Fi
r̂iδ(g)
4πr

dS(y)dτ

+

∫
(S,τ)

Fi
r̂iδ(g)
4πr2 dS(y)dτ −

∂

∂t

∫
(S,τ)

Q
δ(g)
4πr

dS(y)dτ (B.42)

To integrate the above equation with respect to τ, following property of delta function

in relation to variable change is required:

∫
Q(t)δ

{
f (τ)

}
dτ =

N∑
n=1

(
Q(τ∗n)∣∣∣∣∂ f
∂τ

∣∣∣∣
τ=τ∗

)
(B.43)

Where τ∗ is the value of τ for which f (τ) = 0. Also in this case, f (τ) = t − τ − |x−y|
c0

. To

account for the effect of the source motion in the solution represented by equation B.42,

consider a source at position xs(t) at time t. Then the acoustic perturbation satisfies,

 ∂2

∂t2 − c2
0
∂2

∂x2
i

 (ρ − ρ0)c2
0 =

∂

∂t
(Q(t)δ(x − xs(t)) (B.44)

The above equation B.44 has the solution of the form,
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c2
0(ρ − ρ0) =

∫
(V,τ)

Q(t)δ(x − xs(t))δ
(
t − τ − |x−xs(t)|

c0

)
4π |x − xs(t)|

dV(y)dτ (B.45)

Where f (τ) = t − τ − |x−xs(t)|
c0

for source motion. Hence,

∂ f
∂τ

= −1 −
1
c0

∂ |x − xs(t)|
∂τ

(B.46)

and,

∂ |x − xs(t)|
∂τ

= −
∂xs(t)
∂τ

.
(x − xs(t))
|x − xs(t)|

,
1
c0

∂xs(t)
∂τ

= M, Mr = −M.
(x − xs(t))
|x − xs(t)|

.

Using these results equation B.46 becomes,

∂ f
∂τ

= −1 + Mr (B.47)

Using equation B.47, and the result of equation B.43, equation B.45 becomes,

c2
0
(
ρ − ρ0

)
=

N∑
n=1

∂

∂t

{ Q(τ∗n)
4πr (1 −Mr)

}
(B.48)

This results enables us to straight away right the solution for the moving surface in

this exercise which is,

4πc2
0
(
ρ − ρ0

)
H( f ) =

∂2

∂xi∂x j

∫
V

[ Ti j

r |1 −Mr|

]
τ∗

dV

+

∫
S

[ Fr

r2 (1 −Mr)

]
τ∗

dS +
1
c0

∂

∂t

∫
S

[ Fr −Qc0

r |1 −Mr|

]
τ∗

dS (B.49)
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τ∗ is an emission time of sound heard by the observer at time ‘t’. At this time,

c0 (t − τ∗) = |x − xs(τ∗)| = r (B.50)

i.e.

c0

(
1 −

∂τ∗

∂t

)
= −

(xi − xsi)
|x − xs|

∂xsi

∂τ∗
∂τ∗

∂t
(B.51)

i.e

∂τ∗

∂t
=

1
1 −Mr

, and
∂

∂t

∣∣∣∣∣
x

=
[ 1
1 −Mr

∂

∂τ∗

∣∣∣∣∣
x

]
(B.52)

This relation can now be used to present the final solution in the following form,

c2
0
(
ρ − ρ0

)
H( f ) =

∂2

∂xi∂x j

∫
V

[ Ti j

r |1 −Mr|

]
τ∗

dV +

∫
S

[ Qr+̇Qr

r (1 −Mr)2

]
τ∗

dS

+
1
c0

∫
S

[ Fr

r (1 −Mr)2

]
τ∗

dS +

∫
S

[ Fr + Fm

r2 (1 −Mr)2

]
τ∗

dS

+
1
c0

∫
S

[Fr
(
rMr+̇c0Mr − c0M2

)
r2 (1 −Mr)2

]
τ∗

dS

+

∫
S

[Qr
(
rMr+̇c0Mr − c0M2

)
r2 (1 −Mr)3

]
τ∗

dS (B.53)

Equation B.53, with the volume quadrupole term neglected, is known as formulation

1A of Farassat ?. Solvers which are based on this formulation are known as ‘retarded time

methods’. The computation of retarded time becomes intense because in the equation for

retarded time;

τret = t −

∣∣∣x − y(τret)
∣∣∣

c0

the relation for retarded time is implicit and so it requires a suitable root finding techniques

to find the value of retarded time.
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B.2.3 Advanced Time Formulation

This is effectively retarded time formulation, but from the view point of source. In

advanced time, computational time is the emission time. Hence at a given time the con-

tributions from the integration domain are calculated based on the current aerodynamic

data and the current kinematics of the domain. At each computational time and for each

source element, the time at which the corresponding disturbance will reach the observer

is calculated and referred to as advanced time. The advantage of this formulation is that

the expression for the advanced time is in explicit form. The retarded time formulation

was interpreted by Casalino as an advanced time formulation ? from the view point of

the source:

tadv = t +
1
c0

∣∣∣∣x (tadv) − y (t)
∣∣∣∣ = t +

r (t)
c0

[Mor +
√

M2
or (t) + 1 −M2

0

1 −M2
o

]
(B.54)

where for each panel ri = xi(t) − yi(t) is the radiation vector and Mor = r̂iMoi is the

observer Mach number vector in the radiation direction.
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Appendix C

Fourier Optimization

Interpolations are extensively used in numerical methods and Lagrange method is the

most common and widely used method. Although Lagrange method is very popular,

it can incur instabilities in large scale computing and the cases where high accuracy

is desired (i.e. schemes used for acoustic simulations especially in high wave number

band). Here an attempt is made to develop optimized interpolation scheme using Fourier

analysis. Consider a function f (x) (which is to be approximated using interpolation)

having a fourier transform, f (α).

Therefore,

f (x) =

∫
∞

−∞

f (α)eiαxdα (C.1)

Assume that f (α) can be represented by, f (α) = A(α)∠φ(α)

where, A = | f (α)| and φ(α) = arg[ f (α)].

Then

f (x) =

∫
∞

∞

A(α)ei(αx+φ)dα (C.2)

Now let us consider a unit magnitude simple wave of wave number α such that

fα(x) = ei(αx+φ) (C.3)

Consider that f (x) is to be approximated by interpolation at stencil point ‘m’ using ‘N’

point stencil such that

fm(x) =

N∑
n=1

cn fn (C.4)

For the stencil shown in Figure C.1, the value of the function can be written as

f
(
x1 +

(
(m − 1) + η

)
∆x

)
=

N∑
n=1

cn fn (C.5)

Now if we define the error as the square of difference between the left and right of above

equation, it can be written as

Elocal =
 f

(
x1 +

(
(m − 1) + η

)
∆x

)
−

N∑
n=1

cn f (x1 + (n − 1)∆x)
2

(C.6)
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⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜
x x x x x x

δxm

1 2 3 m m+1 Nx N-1

δ x

Frame 001 ⏐ 27 Jul 2006 ⏐ Internally created data set

Figure C.1: Interpolation grid in one dimension

Substituting for f (x) from equation C.3, the local error in equation C.8 becomes

Elocal =

e
i
[
α
(

x1+

(
(m−1)+η

)
∆x

)
+φ

]
−

N∑
n=1

cne
i
(
α
(

x1+(n−1)∆x
)
+φ

)2
(C.7)

With some algebraic manipulation, it simplifies to:

Elocal =
eiα

(
m+η−1

)
∆x
−

N∑
n=1

cneiα(n−1)∆x
2

(C.8)

Now the integrated error over a range of wave numbers from 0 to κ can be expressed

as:

E =

κ∫
0

∣∣∣eiα(m+η−1)∆x
−

N∑
n=1

cn eiα(n−1)∆x
∣∣∣2 d (α∆x) (C.9)

For α∆x = 0, Elocal = 0. This results in Equation C.10 from C.8.

N∑
n=1

cn − 1 = 0 (C.10)

Equations C.10 and C.9 are used to derrive a Lagrange function which can be differenciated

to evaluate the condition for the minimum overall error.

L =

κ∫
0

∣∣∣eiα(m+η−1)∆x
−

N∑
n=1

cn eiα(n−1)∆x
∣∣∣2 d (α∆x) + λ

 N∑
n=1

cn − 1

 (C.11)

Conditions for the minimum error can now be expressed as,
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∂L
∂cn

= 0 (C.12)

and

∂L
∂λ

= 0 (C.13)

Equation C.12 leads to,

Re


κ∫

0

−ei(n−1)k

ei(m+η−1)k
−

N∑
p=1

cpei(p−1)k

 dk

 +
λ
2

= 0 (C.14)

Re

− ei(m+n+η−2)k

i(m + n + η − 2)
+

N∑
p=1

cp
ei(p+n−2)k

i(p + n − 2)


κ

0

+
λ
2

= 0

i.e.

N∑
p=1

cp
sin(p + n − 2)κ

p + n − 2
+
λ
2

=
sin(m + n + η − 2)κ

m + n + η − 2
(C.15)

Similarly, Equation C.13 leads to:

N∑
n=1

cn − 1 = 0 (C.16)

Now the systems of linear equations C.15 and C.16 are solved simultaneously to find

the interpolating coefficients cn (for n = 1, 2, 3, ...).
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Appendix D

Grid Convergence Studies

D.1 Introduction

In this section the results from initial studies to establish grid convergence on two-

dimensional cavity geometry are presented and analyzed.

D.2 2D cavity simulation using CAA solver

The first study was conducted using the CAA solver to simulate a 2D cavity geometry

which is shown in Figure D.1(a). This computation was performed to establish an opti-

mum computational grid domain for 3D cavity simulation performed in Chapter 3. The

cavity has a (L/D) ratio of 4, Mach number of the flow = 0.8 and corresponds to one of

the cases in the experimental investigation by Tracy and Plentovich Tracy & Plentovich

(1997). For this case, three different computational domains were generated with the same

basic grid topology, but with varying number of grid cells. The coarse grid had approx.

21500 cells, the intermediate and the fine grids had 32300 and 51400 cells respectively.

The zoomed in views of 2D coarse and fine meshes (the intermediate mesh is identical

to that shown in Figure 3.25(c)) is shown in Figure D.2 and grid boundaries are shown

in Figure ??(b). The results of the grid convergence study are shown in Figure D.3. The

data correspond to sampling points located at x/L = 0.9 on the floor of the cavity. From

the figure, the agreement between the fine and intermediate grid densities is good. Only

the higher harmonics of the dominant mode show difference. However, higher modes

generally carry less energy and are not of principle interest in this work. Also Any at-

tempts to capture these higher modes by refining the grid makes the three dimensional

simulation becomes prohibitively expensive. The coarse grid result is found to suffer

from the dissipation due to the grid coarsening. Therefore the intermediate mesh was

chosen for the distribution of grid cells in XY-plane.

D.3 2D cavity simulation in Fluent

As in Section D.2, 2D grid convergence studies were also performed to establish an

optimum computational grid domain for 3D cavity simulation performed in Chapter
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4. The first cavity case had a (L/D) ratio of 4, Mach number of the flow = 0.85 and

corresponds to one of the cases in the experimental investigation by Geraldes (2005). This

investigation was carried out to establish an optimum computational grid domain for the

3D simulation in Section 4.2. For this study, three different computational domains were

generated with the same basic grid topology, but with varying number of grid cells. The

grid topology is based on a structured meshing strategy which utilizes non-matching grid

interfacing techniques to reduce the number of grid cells significantly (see also Section

4.2). The coarse grid had approx. 21300 cells, the intermediate and the fine grids had 31100

and 49200 cells respectively. The computational grid boundaries are shown in Figure D.4

and the zoomed in views of 2D meshes (the intermediate mesh is identical to that shown

in Figure 4.3(b)) are shown in Figure D.5. The results of the grid convergence study are

shown in Figure D.6. The data correspond to sampling points located at x/L = 0.9 on the

floor of the cavity. From the figure, the fine and intermediate grid results are similar. The

coarse grid, however, suffers from excessive dissipation due to the large grid sizes. The

intermediate grid, therefore, was chosen as the basis for 3D grid generation. Similar study

was also performed for another cavity which had a (L/D) ratio of 5, Mach number of the

flow = 0.85 and corresponds to the 3D case studied in Sections 4.3 and 4.4. The result for

this case is shown in Figure D.7, and again medium grid was used for the subsequent 3D

study based the result.

Similar studies were performed to establish the optimum number of grid cells for other

3D clean cavities simulated in Chapter 4. For the cavity-with-store cases, The grid cell

sizes inside the cavity were maintained similar to the equivalent clean cavity geometry

(for the DES, simulation, the 3D grid cells are ideally required to be isotropic. Hence all

clean cavity meshes had near isotropic cells inside the cavity with minimum stretching.

These cells sizes were used while generating the grid for the cavity-with store cases).
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L = 9.6 in.

D = 2.4 in.

(a) 2D cavity geometry.

(b) Computational domain boundary for CAA simulation.

Figure D.1: Cavity geometry and computational domain extent.
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(a) Coarse grid domain.

(b) Fine grid domain.

Figure D.2: Structured grids used in 2D CAA simulation.
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(a) Acoustic pressure contours, intermediate grid.

(b) Pressure spectra at x/L = 0.9.

Figure D.3: Result from CAA grid convergence study.
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(a) Computational domain boundary for Fluent simulation.

Figure D.4: grid boundaries for Fluent and CAA study.
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(a) Coarse grid domain.

(b) Intermediate grid domain.

(c) Fine grid domain.

Figure D.5: Structured grids used in 2D cavity simulation, L/D = 4 and M∞ = 0.85.
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Figure D.6: Result from grid convergence study, L/D = 4 and M∞ = 0.85.
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Pressure spectra at x/L = 0.9.

Figure D.7: Result from grid convergence study, L/D = 5 and M∞ = 0.85.
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