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Abstract

Small hand-held micro air vehicles (MAVs) can serve many functions unsuit-

able for a manned vehicle, and can be inexpensive and easily deployed. MAVs for

indoor applications are underdeveloped due to their demanding requirements.

Indoor requirements are best met by a flapping-wing micro air vehicle (FMAV)

based on insect-like flapping-wing flight, which offers abilities of sustained hover,

aerial agility, and energy efficiency. FMAV development is hampered by a lack

of understanding of insect-like flapping-wing aerodynamics, particularly at the

FMAV scale. An experimental programme at the FMAV scale (Reynolds number

on the order of 104) was undertaken, investigating: leading-edge vortex (LEV)

stability, flapping kinematic effects on lift and the flowfield, and wing planform

shape effects on the flowfield. For these experiments, an apparatus employing a

novel flapping mechanism was developed, which achieved variable three-degree-

of-freedom insect-like wing motions (flapping kinematics) with a high degree of

repeatability in air up to a 20Hz flapping frequency. Mean lift measurements and

spatially dense volumetric flowfield measurements using stereoscopic particle im-

age velocimetry (PIV) were performed while various flapping kinematic parame-

ters and wing planform were altered, to observe their effects. Three-dimensional

vortex axis trajectories were reconstructed, revealing vortex characteristics such

as axial velocity and vorticity, and flow evolution patterns. The first key result

was the observation of a stable LEV at the FMAV scale which contributed to half

of the mean lift. The LEV exhibited vortex breakdown, but still augmented lift

as Reynolds number was increased indicating that FMAVs can exploit this lifting

mechanism. The second key result was the identification of the trends of mean

lift versus the tested kinematic parameters at the FMAV scale, and appropriate

values for FMAV design. Appropriate values for lift generation, while taking

mechanical practicalities into account, included a flat wingtip trajectory with zero

plunge amplitude (Θ), angle of attack at mid-stroke (αmid) of ∼ 45◦, rotation phase

(τ) of +5.5%, and maximum flapping frequency and stroke amplitude.
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Preface

This thesis presents an experimental study which addresses a number of ques-

tions with regards to insect-like flapping-wing aerodynamics at the flapping-wing

micro air vehicle (FMAV) scale. In particular, the stability of the leading-edge vor-

tex (LEV) at this scale, effects of flapping kinematics on mean lift and the flow

structures generated, and effects of wing planform shape on the flow structures,

are addressed. The main contributions of this thesis are outlined below, followed

by publications, patents and awards that have come out of this work. Finally, the

thesis structure is described.

0.1 Contributions

The main contributions of the work performed by the author are as follows:

• The design, development and analysis of a novel, patent-pending flapping

mechanism which enables separate control of each of the three rotational

degrees of freedom of a flapping wing, thus allowing flapping kinematics to

be altered. The mechanism is a three-degree-of-freedom parallel spherical

design, and it possesses unique characteristics that are advantageous for

this application, which include: large workspace (range of motion of the

wing), minimised inertial loads and vibrations due to location of the centre

of mass of all components at the centre of rotation, ability to achieve very

high rotational accelerations of the wing, low backlash, and few (7) moving

parts.

• The design and development of a first-of-its-kind experimental apparatus,

which employs the aforementioned flapping mechanism to drive a flapping

wing in air. The apparatus consists of cable drives, servo motors and control

hardware to drive the mechanism, and integrates with measurement devices

to measure mechanism position, wing position, lift forces, and flowfield

velocities. This apparatus has demonstrated a never-before-seen ability to

mimic insect-like flapping-wing kinematics smoothly with a high degree of



0.1. Contributions

repeatability up to a 20Hz flapping frequency in air, with separate control of

the wing’s three degrees of freedom, and variable kinematics.

• Experimental setup and the collection of a spatially-dense set of 3D flowfield

measurements on an insect-like flapping wing operating at the FMAV scale.

Flow velocities were measured at each point in space throughout a dense

3D grid representing a volume enclosing the wing. From these data, the

form of 3D vortex core structures, and axis trajectories were reconstructed,

particularly those of the 3D leading-edge vortex (LEV) and tip vortex.

• Identification of a stable LEV, on an insect-like flapping wing operating at

the FMAV scale.

• Identification of the presence of a secondary LEV of opposite sense to the

primary LEV, on an insect-like flapping wing at the FMAV scale.

• More detailed experimental measurement than hitherto reported of the lift

contribution from the 3D LEV.

• Recovery of characteristics of vortices generated by an insect-like flapping

wing from 3D vortex axis trajectories. Calculated characteristics for a given

vortex include axial velocity, tangential velocity, axial vorticity, helix angle,

circulation, and vortex diameter.

• Experimental characterisation of vortex breakdown in the LEV on an insect-

like flapping-wing at the FMAV scale. It is shown how the helix angle in the

LEV surpasses a critical value, axial velocity levels drop and vortex diameter

rises, indicating vortex breakdown.

• Experimental identification of an axial ‘blowing’ effect originating from the

tip vortex, which causes vortex breakdown in the LEV on an insect-like

flapping wing.

• Demonstration that the tip vortex re-energises the LEV when they merge,

which suppresses vortex breakdown.

• Experimental identification of flapping kinematic effects on mean lift at

the FMAV scale, and identification of optimal values for various kinematic

parameters for generating lift.

viii
∣∣∣ PhD Thesis: Nathan D B Phillips



• Identification of the effects of flapping kinematics on 3D flow structures

generated by an insect-like flapping wing. These include effects on flow

evolution, vortex breakdown in the LEV, and LEV axial velocity.

• Calculation of axial accelerations due to viscous, Euler, Coriolis, and cen-

trifugal forces along the 3D LEV axis.

• Identification of the suppression of LEV formation inboard for a forward-

swept leading edge.

0.2 Publications & Patent

This work has led to a patent application and a number of publications as listed

below:

• Phillips, N. (2010). Three Degree-of-Freedom Parallel Spherical Mechanism

for Payload Orienting Applications. UK Patent GB2464147 (pending).

• Phillips, N. & Knowles, K. (2010d). Reynolds Number and Stroke Amplitude

Effects on the Leading-edge Vortex on an Insect-like Flapping Wing. In

International Powered Lift Conference, 5-7 October, Philadelphia, PA, USA.

AHS International.

• Phillips, N. & Knowles, K. (2010c). Formation of Vortices and Spanwise

Flow on an Insect-like Flapping Wing throughout a Flapping Half Cycle. In

Aerodynamics Conference, 27-28 July, Bristol, UK. Royal Aeronautical Society.

(also invited for submission to the Aeronautical Journal).

• Phillips, N. & Knowles, K. (2010b). Effect of Wing Planform Shape on the

Flow Structures of an Insect-like Flapping Wing in Hover. In 27th Inter-

national Congress of the Aeronautical Sciences (ICAS) 2010, 19-24 September,

Nice, France.

• Phillips, N. & Knowles, K. (2010a). Effect of Flapping Kinematics on the

Mean Lift of an Insect-like Flapping wing. Accepted for Proc. IMechE, Part

G, Journal of Aerospace Engineering. (invited paper).
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0.3. Awards

• Phillips, N. & Knowles, K. (2009). Effect of Flapping Kinematics on the

Mean Lift Generated by an Insect-like Flapping Wing. In CEAS European

Air and Space Conference, 26-29 October, Manchester, UK. Royal Aeronautical

Society.

• Phillips, N. & Knowles, K. (2008). Progress in the Development of an Ad-

justable, Insect-like Flapping-wing Apparatus Utilising a Three Degree-of-

Freedom Parallel Spherical Mechanism. In International Powered Lift Confer-

ence, 22-24 July, London, UK. Royal Aeronautical Society.

Additional publication related to this work, and contributed to by the author:

• Ansari, S. A., Phillips, N., Stabler, G., Wilkins, P. C., Żbikowski, R., &

Knowles, K. (2009). Experimental Investigation of Some Aspects of Insect-

like Flapping Flight Aerodynamics for Application to Micro Air Vehicles.

Experiments in Fluids, Special Issue: Animal Locomotion-The Physics of Flying,

46(5), 777-798. (invited paper).

0.3 Awards

This work has received the awards listed below:

• 1st Place in the IMechE Western Aerospace Centre Prize Competition 2011,

Bristol UK.

• 2nd Place in the 9th Osborne Reynolds Recent Postgraduate & Research Stu-

dent Award 2011, London UK.

0.4 Thesis Outline

This thesis is comprised of three main parts and a set of appendices. The first part

provides an introduction and relevant background, starting with an introduction

to MAVs and the motivation for their development (Chapter 1) with a particular

focus on FMAVs. This is followed by background material on insect-like flight

x
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and a literature review (Chapter 2). Lastly, the research aims of the thesis and the

methodology used are given (Chapter 3).

The second part focuses on experimentation, beginning with the design and

development of the experimental flapping-wing apparatus, termed the ‘flapper-

atus’, used for experiments (Chapter 4). This is followed by the experimental

programme (§ 5.1), procedures (§ 5.2), and analysis of the data (Chapter 5). This

includes a discussion of the employed PIV processing and analysis (§ 5.3), and an

uncertainty analysis of measurements performed in the study (§ 5.4).

The last part contains the results of the experimental study and a discussion

(Chapter 6). Following this, conclusions are given (Chapter 7), including FMAV

design recommendations derived from this work (§ 7.1), as well as recommenda-

tions for future work (§ 7.2).

Appendices at the end of the thesis present functions which define flapping

kinematics (Appendix A), and a derivation of the flapping mechanism kinematics

(Appendix B). The non-intrusive flowfield measurement technique of particle im-

age velocimetry (PIV) is described (Appendix C), as well as the developed vortex

axis identification procedure and vortex point-joining algorithm (Appendix D).

In addition, the methods by which vortex parameters including helix angle and

vortex diameter were calculated along a vortex axis are given (Appendix E), as

well as supplementary figures (Appendix F). Lastly, extra terms which arise in

the Navier-Stokes equations due to the fact that flow velocities are viewed in a

rotating and accelerating frame are derived (Appendix G).
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Nomenclature

All units are as indicated in brackets unless otherwise stated. A & B are generic

variables

Latin Alphabet

a acceleration (m/s2)

AB angle subtended by line segment between generic points A and B on

the surface of a sphere (rad)

AR aspect ratio, 2R2/S

b distance of wing root from centre of rotation (m)

C correlation value, see Equation C.1

C cosine of angle subtended by line segment ‘DZ’ on the surface of a

sphere, see Equation B.19

c chord length (m)

C̄L mean lift coefficient, L̄/0.5ρv̄2
tipS

d vortex diameter (m)

DA denominator of expression for β̇A, see Equation B.32 & B.36

E cosine of angle subtended by line segment ‘AE’ on the surface of a

sphere, see Equation B.67 & B.70

F cosine of angle subtended by line segment ‘BC’ on the surface of a

sphere, see Equation B.63

f flapping frequency (Hz)

I array of pixel intensity levels

i unit vector in x direction

j unit vector in y direction
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Nomenclature

K vortex axis identification score, see Equation D.1 (rad)

k unit vector in z direction

L lift (N)

L̄ mean lift over a flapping cycle (N)

l distance from centre of rotation to wingtip, b + R (m)

LA angle subtended by link LA on the surface of a sphere (rad)

n interrogation window size, see Equation C.1 (pixels)

n sample size, see Equation 5.22

nA point A

NA numerator of expression for β̇A, see Equation B.30 & B.34

P coefficient of power-two term of characteristic equation of velocity

gradient tensor, see Equation 5.7 (1/s2)

Q coefficient of power-one term of characteristic equation of velocity

gradient tensor, see Equations 5.6 & 5.8 (1/s2)

q multiplier of the square of the mean wingtip speed used as a threshold

when plotting Q isosurfaces (1/m2)

R length of one wing from root to tip, (m)

< coefficient of power-zero term of characteristic equation of velocity

gradient tensor, see Equation 5.9 (1/s2)

Re Reynolds number,
v̄tip c̄
ν

S planform area of one wing (m2)

S sine of angle subtended by line segment ‘DZ’ on the surface of a

sphere, see Equation B.20

S symmetric part of velocity gradient tensor, see Equation 5.3 (1/s2)

T flapping period (s)
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Nomenclature

t time (s)

TA/B transformation matrix from frame B to frame A

TLA or TB input torque on link LA, or torque in direction B (Nm)

∇v velocity gradient tensor

v velocity (m/s)

w vorticity (1/s)

X,Y,Z alternative orthogonal axis system

x, y, z orthogonal axis system

Greek Symbols

α pitch angle (rad)

β or βA,B angle between two vectors, or angle between vectors A and B (rad)

βA generic angle between two segments of a great circle on the surface

of a sphere (rad)

∆φA difference between generic stroke angle φA and wing stroke angle φ

(rad)

δA error on A

Γ circulation, see Equation 6.1 (m2/s)

γ helix angle, see Equation 2.2 (rad)

λ viewing angle of camera in the xcamycam plane to point n in the mea-

surement plane (rad)

µ dynamic viscosity of fluid (Ns/m2)

ν kinematic viscosity of fluid, µ/ρ (m2/s)

Ω angular velocity (rad/s)

Ω antisymmetric part of velocity gradient tensor, see Equation 5.4 (1/s2)
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Nomenclature

Φ stroke amplitude (rad)

φ stroke angle (rad)

ψ inclination angle of link (rad)

ψ phase angle between stroke and plunge kinematics (rad)

ρ fluid density (kg/m3)

σ standard deviation

τ rotation phase (% of flapping period T)

Θ plunge amplitude (rad)

θ plunge angle (rad)

ς fraction of flapping period with constant pitch

ζ viewing angle of camera in the xcamzcam plane to point n in the mea-

surement plane (rad)

Superscripts

L left camera

R right camera

Subscripts

0 x0y0z0 coordinate system fixed to wing (strokes), see Figure G.1

1 xyz coordinate system fixed to wing (strokes and plunges), see Fig-

ure 2.4

a axial component

cam xcamycamzcam measurement coordinate system fixed to camera, see Fig-

ure 4.27

cent centrifugal

cor Coriolis
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Nomenclature

cr centre of rotation

eul Euler

f lx flex

I inertial XIYIZI coordinate system, see Figure 2.4

imgL ximgLyimgLzimgL coordinate system fixed to image plane of left camera,

see Figure C.3

imgR ximgRyimgRzimgR coordinate system fixed to image plane of right camera,

see Figure C.3

LA link LA

max maximum

mec flapping mechanism output

mec1 xmec1ymec1zmec1 flapping mechanism output coordinate system (strokes

and plunges), see Figure 4.7

mec2 xmec2ymec2zmec2 flapping mechanism output coordinate system (strokes,

plunges and pitches), see Figure 4.7

mid mid-stroke

min minimum

r radial component

t tangential component

tip wingtip

va xvayvazva local coordinate system at point n on a vortex axis, see Fig-

ure 6.1

w xwywzw coordinate system fixed to wing (strokes, plunges and pitches),

see Figure 2.4

wng wing
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Nomenclature

Notation

(A)B vector A with respect to frame B

Ā mean

Ä second time derivative

Ȧ or dA/dt first time derivative

∂A
∂B partial derivative of A with respect to B

A · ∇A convective derivative

A vector

Ax,Ay,Az components of vector A in xyz frame

Ax0,Ay0,Az0 components of vector A in x0y0z0 frame

Axcam,Aycam,Azcam components of vector A in xcamycamzcam frame

Axw,Ayw,Azw components of vector A in xwywzw frame

DA/Dt substantial derivative, dA/dt + A · ∇A

Abbreviations

2D two-dimensional

3D three-dimensional

CCD charge-coupled device

CFD computational fluid dynamics

CI confidence interval

DOF degrees of freedom

FMAV flapping-wing micro air vehicle

KHI Kelvin-Helmholtz instability

KHV Kelvin-Helmholtz vortex
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Nomenclature

LEV leading-edge vortex

LIC Line Integral Convolution

MAV micro air vehicle

PIV particle image velocimetry

PPR pulses per revolution

PTV pitching vortex

rms root mean square

RPM revolutions per minute

RTV root vortex

STPV stopping vortex

STRV starting vortex

TPV tip vortex

UAV unmanned air vehicle

UFLIC Unsteady Flow Line Integral Convolution

VTOL vertical take-off and landing
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Chapter 1

Introduction

This first chapter begins with the origin of the micro air vehicle (MAV), followed

by a discussion of various MAV applications, requirements, and types. The

motivation for developing flapping wing micro air vehicles (FMAVs) in particular

is then presented. Lastly, an account of FMAV research and development up to

this point at Cranfield University will be given.

1.1 Origin of the MAV

Autonomous or remotely-controlled unmanned vehicles are useful in many situa-

tions which are either too hazardous for human presence, or are simply impossible

for a manned vehicle to achieve. For example, bomb disposal robots eliminate

the hazards for the human operator, while still allowing the task to be performed.

Meanwhile, some tasks are simply impossible for a human, such as very long

endurance reconnaissance flights that last days, or inspection in small areas such

as inside pipes, in which cases unmanned vehicles are suitable.

In the realm of aeronautics, unmanned air vehicles, or UAVs, began in World

War I as self-guided airplanes carrying a warhead to deliver to a target, and

were later used as radio-controlled target drones, and flying bombs in World

War II (Mueller, 2009). Small UAVs (below 6m wingspan and 25kg Mueller &

DeLaurier (2003)) later became possible with the advent of better and smaller

components such as small combustion engines, and radio receivers. An advan-

tage of a smaller UAV is that the vehicle becomes less expensive and, hence,

expendable. Ultimately, miniaturisation of electric motors, sensors, receivers

and actuators progressed to the point that even smaller UAVs became a reality

(Mueller, 2009). In the early 1990s following a feasibility study on small flying

vehicles from RAND, the Defense Advanced Research Projects Agency (DARPA)

held a workshop where a 15.24cm (6in) flying vehicle weighing no more than

90 grams was proposed (McMichael & Francis, 1997). Such a small vehicle was

termed a micro air vehicle, or MAV. The advantage of such a vehicle whether for
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1.2. MAV Applications

military or civilian applications would lie in its small size, as it could be carried

and deployed by a single operator, would be inexpensive and mass produced, and

could be fitted with sensors of many types for remote sensing. Since their initial

conception, the development of MAVs has taken off, and there is great interest in

developing these vehicles for a number of applications.

1.2 MAV Applications

There are many applications for MAVs, both military and civilian. A number of

such uses are discussed in Davis et al. (1996) and Galiński & Żbikowski (2007),

some of which will be discussed here.

Reconnaissance One of the obvious applications for MAVs is outdoor reconnais-

sance. Ground-level troops could easily carry and deploy a MAV fitted with

a small camera, which could be used on the battlefield to locate enemy posi-

tions to achieve better situational awareness, and result in fewer casualties.

A vehicle of this size would be very stealthy as its radar signature would be

very small or even undetectable due to its small size, low flying speed, and

low power signature (Davis et al., 1996). Indoor reconnaissance missions

could also be achieved by a MAV. A hover-capable MAV would be able

to operate in dense urban environments, and go so far as to even fly inside

buildings to carry out mission objectives. This capability would be useful

in civilian law enforcement in hostage situations or "drug busts". In such

scenarios, a stealthy MAV would be able to fly into the building of interest

before a raid and locate all of the combatants. This would give invaluable

information for planning the raid to minimise casualties and achieve main

objectives such as saving hostages.

Survivor Searching Many search and rescue situations are complicated by the

need to search over vast areas. For example, in a scenario where either

survivors are stranded at sea or in vast uninhabited areas and their location

is unknown, one or a number of search and rescue aircraft must manually

scan the area. With such large areas to cover, the search and rescue teams

may not be able to search the whole area before the survivors expire. In

2
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Chapter 1. Introduction

such a situation, many MAVs fitted with conventional or thermal-imaging

cameras, could be deployed in a swarm that would be able to work together

and scan a vast area much faster, purely because of their great numbers.

Furthermore, search MAVs would be able to get closer to the ground in

environments that are hazardous to manned aircraft, such as in mountain-

ous and densely wooded areas. This would improve chances of locating

survivors. Hover-capable MAVs could be used for searching for survivors

in indoor environments or other confined spaces. For example, if a building

is on fire, or has collapsed in the aftermath of an earthquake, search and

rescue crews could deploy MAVs to help locate survivors, as they would be

able to fly through very confined spaces that are too small for a human.

Inspection in Environmentally Hazardous Areas Inspection in areas which are

too hazardous for a human presence, could be accomplished with an MAV.

For example, in a situation where there is a radiation or hazardous gas

leak inside a facility, a MAV could be fitted with the appropriate sensors

and deployed to locate the source of the problem and potentially rectify it

without putting humans at risk.

Structural Health Monitoring Large structures such as bridges have to be con-

tinually inspected for cracks and fatigue. This inspection is carried out

manually by a single inspector, or inspection crew, which can be compli-

cated by areas that are difficult to access. An MAV or number of MAVs,

with the ability to hover and perch on the structure, could be used to access

difficult areas so that an easier, and less hazardous remote inspection could

be performed. Furthermore, health monitoring of large distances of pipeline

could be performed with MAVs fitted with sensors to detect leaks.

Space Exploration Because of their small size and light weight, MAVs would

be perfect for space exploration, which places particularly high costs on

volume and weight of the launch payload. MAVs would be useful in this

application as they would enable exploration of areas that are difficult to

reach with land rovers. In addition, a long-endurance MAV would be able

to explore much larger areas, and even potentially have the capability of

repeated takeoffs and landings to inspect key areas of interest more closely.
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1.3. MAV Requirements

1.3 MAV Requirements

From the previous section, it can be seen that MAV applications generally fall into

three types:

1. outdoor

2. outdoor with hover

3. indoor with hover

For outdoor applications in general, in addition to the small size and weight

requirements of ∼ 150mm and 90 grams laid out by DARPA, a flight speed of

10 − 15m/s necessary to overcome winds, and an endurance of 20 − 60 minutes

are required (Davis et al., 1996). Adding the need for hover leads to much more

challenging requirements, especially for indoor applications where there are other

additional complications. It is for this reason that MAVs for indoor applications

are relatively underdeveloped. MAVs for outdoor, and outdoor with hover ap-

plications already exist, whereas suitable MAVs for indoor applications are only

starting to emerge. As the topic of this thesis is related to MAVs intended for

indoor applications as we will see later, only the requirements for this application

will be described. Including requirements laid out by DARPA for the AeroVi-

ronment Inc. Phase II Nano Hummingbird Project (AeroVironment, 2011b), the

requirements for an MAV for use in indoor environments are as follows:

Small Size and Low Weight The wingspan should be ∼ 150mm and it should

weigh less than 90 grams.

Ability to Operate at Low Speeds The vehicle should be able to operate at low

flying speeds. This implies that in addition to generating a sustaining lift

force at low speeds, the vehicle must still possess directional control at low

speed.

Sustained Hover Capability The vehicle should be able to sustain hover. This

also requires that the vehicle is able to transition from forward flight to

hover, and then back again. In addition, a hover capability also requires

that the vehicle still has directional control during hover.

4
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Chapter 1. Introduction

Ability to Operate in Confined Spaces The MAV should be able to operate in

confined spaces, which requires good stability, maneuverability and precise

control. In addition, this requires that the vehicles operates well close to

obstacles, such as walls, floors, and ceilings.

Vertical Takeoff and Landing (VTOL) Capability The vehicle should be able to

takeoff and land vertically, which is a necessary requirement for operation

in confined spaces.

Ability to Transition from Outdoor to Indoor Environment and Back Although

the vehicle is intended for indoor use, it will experience periods at the start

and end of its mission when it is entering and leaving a building. Hence, it

will be in an outdoor environment for brief periods of time. Thus, the vehi-

cle should be capable of transitioning between these environments, which

requires the ability to tolerate gusts and winds when entering and exiting a

building.

Energy Efficiency The vehicle should be as energy efficient as possible so as to

maximise endurance.

Ability to Carry Sensors The vehicle should have the ability to carry sensors

required for the mission, such as a camera. To achieve this, the vehicle must

be designed with the payload (sensor) weight in mind, so that it will be able

to generate enough lift for sustained flight.

Autonomous Operation or ‘Heads-Down’ Remote Control The vehicle must ei-

ther be capable of operating and guiding itself to achieve the mission goals,

or it must enable ‘heads-down’ remote control in which the operator is able

to pilot the vehicle with only a video feed from the MAV.

Low Noise Signature For covert operations, the vehicle should be as quiet as

possible so as to minimise the possibility of detection.

1.4 MAV Types

The different types of MAVs developed thus far for various applications will now

be described. These include fixed, rotary, and flapping wing MAVs.

PhD Thesis: Nathan D B Phillips
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1.4. MAV Types

1.4.1 Fixed Wing

Fixed wing MAVs are simply very small airplanes that use a fixed lifting surface

with control surfaces to provide directional control and a propulsion system. They

are intended to be used for comparatively long endurance outdoor missions. A

large number of different fixed-wing MAV designs have been developed, thus

only a few examples will be presented here.

Figure 1.1: AeroVironment’s Black Widow (AeroVironment, 2011c)

One of the most active researchers in unmanned air systems in general, AeroVi-

ronment Inc., produced a six inch size (∼ 150mm), three ounce (∼ 85gram) MAV

called the Black Widow (Figure 1.1), in the 1990s soon after DARPA′s initial pro-

posal for a vehicle of this type (AeroVironment, 2011c). It had an endurance of

30 minutes, range of 1.8km, maximum altitude of 800 feet (∼ 244m), and carried

a video camera providing a live video feed to the ground. The success of this

project earned the design team and their leader Matt Keennon, several awards.

Another key researcher in fixed wing UAVs and MAVs, the Naval Research

Laboratory (NRL), has produced a number of MAV designs. Shown in Figure 1.2

are different versions of their MITE (Micro Tactical Expendable) MAV, with vary-

ing wingspans for carrying different payloads (Kellogg et al., 2001). For the MITE2

version, with a camera payload, they reported a flight time of over 20 minutes,

6
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Chapter 1. Introduction

Figure 1.2: Naval Research Laborator’s MITE MAVs; from left to right, the MAVs are MITE2, MITE3, MITE4 (Kellogg

et al., 2001)

Figure 1.3: Gust resistant MAV (Galiński et al., 2010)

and flight speeds from 10 to 20mph (∼ 9m/s).

A more recent example of a fixed wing MAV is the gust-resistant MAV of

Galiński et al. (2010) illustrated in Figure 1.3. The design features a cranked delta

wing, with a propeller in the wing which elevates lift coefficients and enables it to

fly controllably at very high angles of attack. The authors reported an issue with

with the propeller that caused the vehicle to roll and fly off path with a change in

motor speed; however, a second stage prototype using contra-rotating propellers

is proposed which would eliminate this problem.

PhD Thesis: Nathan D B Phillips
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1.4. MAV Types

1.4.2 Rotary Wing

Figure 1.4: Rotary wing MAVs of Prox Dynamics; from left to right: Micro Mosquito toy, Nanoflyer, PD − 250L flying

science platform, ProxFlyer MAV for US army (Muren, 2008)

Rotary-wing MAVs are essentially small helicopters. These vehicles are mainly

intended for short endurance outdoor missions requiring a hover capability. As

with fixed-wing MAVs, many different rotary-wing MAVs have been developed,

only a few of which will be mentioned here.

Figure 1.5: PD − 100 Black Hornet by Prox Dynamics; carrying case (left) ; vehicle right (ProxDynamics, 2011)

A very active developer of rotary wing MAVs is Prox Dynamics, headed by

Petter Muren. He formulated a novel solution for passive stability, called the

Proxflyer system, which uses a special coaxial rotor hub design that achieves

passive stability without the need for gyros or servos (Muren, 2008). With this

system, a number of vehicle designs which can typically fly for up to 10 minutes

have been developed for areas ranging from the military to the toy market as

illustrated in Figure 1.4. Currently, Prox Dynamics is developing their ‘PD − 100

Black Hornet’ rotary wing MAV design as shown in Figure 1.5 (ProxDynamics,

2011). This is intended for military applications, giving soldiers on the ground

the abilities to perform reconnaissance inside buildings and urban areas, and to

gain a bird’s eye view of an area. It will have a 120mm rotor diameter, 15 gram

weight, 10m/s maximum speed and an endurance of up to 30 minutes.

8
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Chapter 1. Introduction

Figure 1.6: Rotary wing MAVs of Ascending Technologies Gmbh (AscTech, 2011)

Many other companies and organisations have arisen that specialise in de-

veloping rotary wing MAVs. A popular configuration is to use multiple rotors,

typically four, spaced around a central hub which is referred to as a quadrotor.

Ascending Technologies Gmbh (also known as AscTech) specialises in rotary-

wing MAVs of this type for a number of applications. Some of their designs are

illustrated in Figure 1.6, which are typically mounted with a camera for applica-

tions including industrial inspection, surveying and aerial photography (AscTech,

2011). Recently, with a partner company LaserMotive, they broke a world record

and achieved a continuous flight of over twelve hours using a ground based laser

to power the vehicle (AscTech, 2010).

Figure 1.7: AR Drone by Parrot with different body casings (Parrot, 2011)

The company Parrot has also developed a similar quadrotor MAV called the

AR Drone, pictured in Figure 1.7. Although intended as a toy, it has all the

capabilities required for many practical applications. It is equipped with two

onboard video cameras (front and vertical), an ultrasound altimeter, and can be

flown with an iPod device with a touchscreen, which also displays the live video

feed from the vehicle (Parrot, 2011).

PhD Thesis: Nathan D B Phillips
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1.4. MAV Types

1.4.3 Flapping Wing

A flapping wing MAV or, FMAV is a vehicle that employs a pair (or two pairs)

of insect-like flapping wings. As will be discussed in the next section, this mode

of flight offers the abilities of sustained hover and agile manoeuvres in confined

spaces, which is why FMAVs are intended for indoor applications. A detailed

review of flapping-wing devices and FMAVs will be given in Chapter 2, thus to

avoid undue repetition, only one example of a FMAV will be given here.

Figure 1.8: Nano Hummingbird by AeroVironment (AeroVironment, 2011b)

The very first FMAV that truly mimics the insect-like mode of flight has only

very recently emerged, and is the ‘Nano Hummingbird’ of AeroVironment Inc.

shown in Figure 1.8 (AeroVironment, 2011a). Although designed to resemble

a hummingbird, it exploits an insect-like mode of flight, as hummingbirds and

insects use very similar flapping wing kinematics. This is the first FMAV that

truly mimics insect flight in the sense that it uses only a pair of flapping wings

to achieve all the required propulsion and control, just as insects do. As will

be seen in Chapter 2, past FMAVs that have achieved free-flight employed a tail

for directional control. The Nano Hummingbird is equipped with an onboard

video camera which provides a live video feed to the operator, has a wingspan of

160mm, weighs 19 grams in total, and has a flight time of 11 minutes. The vehicle

successfully achieved all of the Phase II requirements laid out by DARPA, some
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Chapter 1. Introduction

of which include a sustained hover capability, ability to tolerate winds, hover

endurance of 8 minutes, and the ability to fly from an outdoor environment to

indoors and back again.

1.5 Motivation for FMAV Development

Although a number of MAV solutions for outdoor missions either with or with-

out hover already exist, suitable MAVs for indoor missions are comparatively

under-developed due to the challenging requirements imposed by an indoor en-

vironment. No system has successfully demonstrated all of the abilities required

for these missions, until very recently by AeroVironment. However, there is still a

great need for further research and development on MAVs for indoor applications,

as this area has only just begun.

As indoor missions require hover, rotary wing MAVs and FMAVs are potential

solutions. However, compared to rotary wing MAVs, FMAVs are apparently

more efficient. A comparison of the energy requirements for different MAV types

was performed by Woods et al. (2001) using formulated expressions for power

required. It was found that at flight velocities below approximately 15m/s (which

is the case for indoor flight), flapping wings require less power for sustained

flight than rotary wings as illustrated in Figure 1.9. The horizontal line segment

at the low flight velocity end of the flapping wing curve arises from a separate

expression for required power in the hover condition. This is needed because

the expression for necessary power for higher flight velocities goes to infinity as

flight velocity approaches zero (Woods et al., 2001). In this study, the different

MAV types were also tested for power required for a number of mission scenarios

including an urban, battlefield, and artillery spotting scenario, in which loitering

time, payload weight and windspeed were varied. It was found that flapping

wings were best for missions requiring long loitering times, and that flapping

wings were more efficient than rotary wings in the presence of wind, but only up

to a windspeed of approximately 15m/s (Woods et al., 2001). Experiments with

free-flying FMAVs have also shown the benefits of flapping wings compared to

rotary wings. The FMAV of Zdunich et al. (2007) showed higher thrust-to-power

ratios for flapping wings in comparison to a rotary wing at higher disk loadings

(ratio of FMAV weight to area swept by wings). They explained that this would

PhD Thesis: Nathan D B Phillips
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1.5. Motivation for FMAV Development

give such a vehicle the ability to carry a significant payload, and that it would

perform well in gusts and turbulence. Thus, given these benefits of flapping

wings over a rotary wing, an FMAV would be a better solution than a rotary wing

MAV, as it would be more efficient and offer a longer endurance. Furthermore,

it is clearly observed in nature with two-winged insects (Diptera) that this mode

of flight offers the unique abilities of sustaining hover, and performing complex

and agile manoeuvrers in confined spaces. An FMAV that exploits the insect-

like mode of flight would therefore successfully meet many of the requirements

outlined for indoor applications in § 1.3. Hence, the motivation for developing

FMAVs is to use them for indoor applications, as they show a particular suitability

for this environment.

Figure 1.9: Power required versus flight velocity for fixed, rotary and flapping wing MAVs (Woods et al., 2001)

One of the impediments to the development of FMAVs is the lack of physi-

cal understanding of various aspects of insect-like flapping wing aerodynamics,

which has been highlighted by Żbikowski (2002). For instance, effects of wing

design and flapping kinematics on the aerodynamic forces and flows have not

been adequately explored and understood as we will see in the next chapters.

Such knowledge is a necessary prerequisite for FMAV design. To advance the

understanding of insect-like flapping wing aerodynamics to a level which can

facilitate design and development of FMAVs, further experimental studies on the
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subject are required. The focus of this thesis, therefore, is to answer a number

of fundamental questions on insect-like flight relevant to FMAV development,

through an experimental study. These questions will be posed later in Chapter 3.

1.6 FMAV Research & Development at Cran-

�eld

Cranfield University at Shrivenham has been an active researcher on insect-like

flight, with relevance to FMAVs. Analytical modeling of insect-like flight began

with the work of Pedersen (2003), who developed a blade element based indicial-

Polhamus model which predicted aerodynamic forces on a flapping wing. The

model was 2D (thus, no spanwise flow and tip vortex), and proved to be over

simplified, as it did not correctly model the flow physics, and showed discrepan-

cies with experimental data (see Pedersen (2003) for details of this model). Later

work of Ansari (2004) also took an analytical approach using a nonlinear unsteady

model, which was also blade element based, but used radial chords instead of

straight ones (see Ansari (2004) for details of this model). This model predicted

aerodynamic forces in addition to generating flow visualisation. It proved to be

a great improvement over the model of Pedersen, as 2D flow visualisations, and

predicted forces agreed very well with experimental data. A parametric study

was performed with this model, in which kinematic parameters and wing design

were varied to determine an optimal wing planform, and flapping kinematics.

There were, however, still limitations to this model as it was quasi-2D, and thus

could not capture spanwise flow and the tip vortex, which are both very promi-

nent features of the flowfield on insect-like wings. Work by Wilkins (2008) took

a CFD approach, combined with some basic experiments. This study focused

on impulsive start and pure sweeping motion of an insect-like wing, both in 2D

and 3D, which appropriately captured spanwise flow and the tip vortex. Ef-

fects studied were that of Reynolds number, angle of attack, wing planform, and

aspect ratio to name a few. Results yielded useful conclusions relating to the

stability of the leading-edge vortex (LEV), which we will see later in Chapter 2.

Other work at Cranfield has produced a number of flapping-wing demonstra-

tors, which replicate insect-like wing motions (Galiński & Żbikowski, 2005, 2007)
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which we will see later in Chapter 2. The work in this thesis represents the first

major experimental study on insect-like flight at Cranfield.

14
∣∣∣ PhD Thesis: Nathan D B Phillips



Chapter 2

Background & Literature Survey

In this chapter, all of the necessary background to the subject of insect flight will

be presented. This begins with a discussion on insect flapping-wing kinematics,

in which various aspects related to an insect’s wing motion will be described.

Following this, aerodynamic mechanisms and phenomena experienced by insects

will be discussed. Observed kinematic effects such as the effect of Reynolds

number, will be presented next. Lastly, a review of flapping wing mechanical

models (‘flappers’) that have been developed to date for various purposes will be

given, followed by a summary of this chapter.

2.1 Insect Flapping Wing Kinematics

Necessary background on insect flapping wing kinematics will first be presented.

This begins with a discussion on the flapping cycle, which is followed by a

description of the coordinate systems used, and how the instantaneous wing

position is defined. Definitions of kinematic parameters describing a given insect’s

flapping wing motion are then given and, lastly a short description of insect

manoeuvres is presented.

2.1.1 Flapping Cycle

An insect’s cyclic flapping motion consists of four phases: downstroke, supina-

tion, upstroke, and pronation. These are illustrated in Figure 2.1. The downstroke

is a translation of the wing at a relatively constant angle of attack from its most

aft and dorsal position to its most forward and ventral position. The wing ac-

celerates from the beginning of the downstroke to a constant or peak angular

velocity around mid-stroke, after which the wing begins to decelerate. At the end

of the downstroke supination occurs, which is when the wing rapidly comes to

a stop and reverses its direction and angle of attack so that the wing’s underside

becomes the topside for the subsequent half-stroke. The wing then translates

PhD Thesis: Nathan D B Phillips
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2.1. Insect Flapping Wing Kinematics

Figure 2.1: Phases of insect flapping cycle

with a relatively constant angle of attack back to its most aft and dorsal position,

which is the upstroke. Similar to the downstroke, the wing accelerates to around

mid-stroke and then begins decelerating. Finally, at the end of the upstroke, the

wing pronates, which is when it again rapidly comes to a stop and reverses its dir-

ection and angle of attack in preparation for the next half-stroke. Thus, an insect’s

flapping motion consists of two ‘translation’ phases (downstroke and upstroke)

with relatively constant angle of attack, and two ‘rotation’ phases (supination

and pronation) in between. The translation phases last 80 − 90% of the flapping

period T, while the remaining phases encompassing pitch reversal take up the

rest (Ellington, 1984b).

The path that the wingtip traces during the flapping cycle takes the form of

irregular self-intersecting shapes, typically resembling a figure-of-eight. Some

examples of wingtip trajectories from high-speed footage of insects are shown in

Figure 2.2. The wingtip trajectory can take on many shapes, including ellipses,

arcs and banana-type shapes, in addition to a figure-of-eight. Some species of

insects exhibit common wingtip paths between individuals, whereas in others,

the trajectory of the wingtip can be very different between individuals (Ellington,

16
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Figure 2.2: Wingtip trajectories of a hoverfly (left) and bumble bee (right) (Ellington, 1984b); red lines indicate

instantaneous orientation of wing chord showing angle of attack; red cross indicates position of wing base

1984b).

2.1.2 De�nition of Wing Position & Coordinate Sys-

tems

Upon examining an insect’s flapping cycle, it is evident that an insect’s wing

motion is the composition of three separate motions. As illustrated in Figure 2.3,

these are a fore and aft stroking motion (stroke), an up and down plunging motion

(plunge), and a pitching motion (pitch) about the pitch axis to vary the wing’s

angle of attack. The stroking motion will also be referred to here as sweep. From

Figure 2.4, the wing’s position in the stroke, plunge and pitch directions are

the stroke angle φ, plunge angle θ and pitch angle α respectively. Before these

angles are described further, a few coordinate systems must first be defined using

Figure 2.4.

As will be discussed later at the end of this chapter, this thesis only deals with

insect flight during hover, thus, the insect’s body is always considered fixed. The

inertial XIYIZI frame (fixed to the earth) is aligned with insect’s body such that the

XI, YI, ZI axes coincide with the insect’s forward, lateral (starboard), and vertical

directions respectively. Also, the ZI axis, XIYI plane are respectively normal and

parallel to the earth’s surface. The stroke plane can be thought of as a plane of

fit through the wing base and the curve defining the path of the wingtip. As this

thesis only deals with flight in hover, the stroke plane is always considered to be

PhD Thesis: Nathan D B Phillips
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Figure 2.3: Definition of stroke, plunge and pitch

parallel with the XIYI plane. Using the starboard wing, the xyz frame is fixed to

the wing (but does not pitch with the wing) such that the x axis is aligned with

the wing’s pitch axis, the y axis is always parallel to the XIYI plane and points

forward, and the z axis is perpendicular to the two. The remaining xwywzw frame

is fixed to the wing (and pitches with the wing), where the xw axis coincides with

the x and pitch axes, the yw axis always points from trailing edge to leading edge,

and zw is normal to the wing surface.

Returning to the definition of the angles defining wing position, the stroke

angle φ, is the angle from the XI (lateral) axis to the projection of the wing’s pitch

axis on the stroke (XIYI) plane as illustrated in Figure 2.4. The positive stroke

direction is in the ZI direction, thus a positive stroke angle is forward of the XI

axis, and a negative stroke angle is aft. The plunge angle θ is the angle between

the pitch axis and the stroke plane. The direction of positive plunge is in the −y

direction, hence, the plunge angle is positive when the wing is above the stroke

plane, and negative when it is below. Pitch α, is the wing’s geometric angle of

attack relative to the −y axis, and the direction of increasing pitch is in the −xw

direction as seen in Figure 2.4. For example, the wing has 0◦ and 180◦ pitch angles

when the yw axis (pointing from trailing to leading edge) coincides with the −y

and y directions respectively. Thus, the pitch angle is greater than 90◦ on the

downstroke and less than 90◦ on the upstroke.

18
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Figure 2.4: Definition of wing position and coordinate systems

2.1.3 Kinematic Parameters

An insect’s flapping kinematics may be described using a number of kinematic

parameters. These include flapping frequency, stroke amplitude, plunge ampli-

tude, angle of attack at mid-stroke, and rotation phase, which will all be described

now.

Flapping Frequency Flapping frequency f , simply describes the number of flap-

ping cycles in a second. Insects execute a flapping cycle with frequencies

ranging from 5−200Hz. The general trend is that an insect’s mass is inversely

proportional to its flapping frequency, thus larger insects have lower flap-

ping frequencies (Azuma, 2006). For example, fruit flies exhibit flapping

frequencies of 240Hz, whereas hummingbirds which are 10000 times heav-

ier, flap at 15Hz (ibid.). As noted in the previous chapter, hummingbirds

use insect-like kinematics and, thus, exploit the same mode of flight.
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Stroke Amplitude From the wingtip trajectories shown earlier, it can be seen that

an insect’s wing motion is mostly a stroking motion, with pitching at either

end of the stroke and small amounts of plunging. The extent of the stroking

motions is measured by the stroke amplitude Φ, which is simply the angle

between the maximum and minimum stroke angles. Insects exhibit stroke

amplitudes as high as 180◦ (Weis-Fogh, 1973) and as low as 66◦ (Ellington,

1984b). However, for most insects, the stroke amplitude is about 120◦ (Weis-

Fogh, 1973). Insects can vary their stroke amplitude, as it has been reported

that hawkmoths increase their stroke amplitude when in hover (Willmott

& Ellington, 1997), and increasing the stroke amplitude on one wing can

initiate a turn (Brackenbury, 1995).

Plunge Amplitude Similar to stroke amplitude, the extent of wing plunging is

the plunge amplitude Θ, described as the angle between the maximum

and minimum plunge angles. Observed plunge amplitudes are always

much smaller than stroke amplitudes (Ellington, 1984b). For example, upon

examination of results from Willmott & Ellington (1997), for a hawkmoth,

the maximum plunge amplitude is approximately 20◦, compared to a∼ 115◦

stroke amplitude.

Angle of Attack at Mid-Stroke Angle of attack at mid-stroke αmid describes the

wing’s angle of attack when it is at the mid-stroke position, which is the

mean stroke angle φ̄. Insect wings twist along their span such that during

the ‘translation’ phases of the flapping cycle, the angle of attack (pitch angle)

at the wingtip is 10 − 20◦ lower (more horizontal) than at the wing root

(Ellington, 1984b). The angle of attack at mid-stroke at 70% span ranges from

35 − 45◦, but is usually around 35◦ (ibid.). For the downstroke, these angles

would simply be subtracted from 180◦ to obtain the equivalent values. In this

thesis, symmetric pitching kinematics are always used, an example of which

is an αmid of 45◦ and 135◦, on the upstroke and downstroke respectively,

giving the same effective angle of attack of 45◦. αmid is always quoted as the

angle that is less than 90◦.

Rotation Phase The timing of the pitch reversal with stroke reversal in insects

has been observed to be variable. Hoverflies show a changing location of
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the middle point of pronation (time at which the angle of attack is 90◦) so

that it occurs after the end of the upstroke, which implies that insects can

pitch their wings on command, and pitch reversal is not purely the result of

inertia (Ellington, 1984b). To modulate aerodynamic forces for manoeuvres,

insects can advance or delay supination relative to stroke reversal (Dickinson

et al., 1999). In this thesis, the timing of pitch reversal with stroke reversal is

termed the rotation phase τ. Here it is defined as a percentage of the flapping

period T, where a positive sign implies that pitch reversal (pronation and

supination) begins early whereas a negative sign indicates that pitch reversal

is delayed. For example, at a 20Hz flapping frequency, a rotation phase of

5% means that the wing begins pitching early so that it reaches a 90◦ angle

of attack 2.5ms before reaching the end of the stroke.

The manner in which flapping kinematics are defined as a function of these

kinematic parameters is given in Appendix A.

2.1.4 Manoeuvres

Insects achieve manoeuvres using a number of methods. Since, over a flapping cy-

cle, the resultant force acts nearly perpendicular to the stroke plane, forward/back

or lateral accelerations can be achieved by respectively pitching or rolling the

stroke plane relative to the insect body (Ellington, 1984b). Tilting the stroke plane

in this manner tilts the resultant force over a flapping cycle in the direction of the

desired acceleration. Sudden forward or back accelerations can also result from

sudden increases in angle of attack on the upstroke or downstroke respectively,

creating a rowing-type effect in the direction of acceleration (ibid.). Yawing in

fruit flies has been observed to be the result of advancing supination on the wing

on the outside of the turn, and delaying supination on the other (Dickinson et al.,

1993). Pitching moments about the lateral axis are achieved in insects by shifting

the mean stroke angle forward or aft (Ellington, 1984b). Shifting the mean stroke

angle aft yaws the stroke plane of both wings back, creating a nose-down mo-

ment. A nose-up moment is caused by the opposite, by shifting the mean stroke

angle forward. Banking (rolling) is achieved by insects by either increasing the

stroke amplitude (with fixed flapping frequency, keeping the wings in phase), or
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increasing angle of attack on the outside of the roll (Brackenbury, 1995). Increas-

ing the stroke amplitude on one wing with fixed flapping frequency, requires the

wing to travel further in the same period of time, thus increasing its speed and

hence lift on that side.

2.2 Aerodynamic Mechanisms & Phenom-

ena

Figure 2.5: Reynolds numbers in the animal kingdom ranging from bacteria (left) to whales (right) (adapted from

Nachtigall (1977))

Insects achieve high lift using a number of aerodynamic mechanisms. These

will be discussed, in addition to relevant aerodynamic phenomena. These include,

Kelvin’s circulation theorem, the Wagner and Kramer effects, ‘added mass’, wake

capture, clap and fling manoeuvre, the leading-edge vortex, and vortex break-

down. However, before proceeding, we must first define Reynolds number (Re)

which is the ratio of inertial forces to viscous forces given as Re = vl/ν. Here, v is

the velocity of the fluid with respect to the body, l is a characteristic length, and

ν is the kinematic viscosity. After Ellington (1984d), the characteristic velocity is

taken as the mean wingtip speed v̄tip, and the characteristic length is taken as the

mean chord c̄, thus:
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Re =
v̄tipc̄
ν

(2.1)

As seen in Figure 2.5, insects operate at Reynolds numbers up to the order

of 104 where they overlap with small birds. FMAVs operate at this upper end,

at Reynolds numbers on the order of 104. For example, the Nano Hummingbird

by Aerovironment, is very comparable in weight to the hummingbird Patagona

gigas (only differing by 1 gram) which, in nature, operates at Re = 15000 (Azuma,

2006).

2.2.1 Kelvin's Circulation Theorem

Kelvin’s circulation theorem states that in a control volume made up of the same

fluid elements the time rate of change of circulation must always be zero (Ander-

son, 2001). For instance, when a wing accelerates from rest, it develops circulation

that generates lift, and to balance this, a starting vortex of equal and opposite cir-

culation to the wing-bound circulation must be shed. This is of little interest to

conventional aircraft, as starting vortices are left far behind at the point of takeoff.

However, insect-like flapping wings only travel a few chord lengths beyond their

starting position, so starting vortices are a prominent characteristic of the flow-

field generated. Kelvin’s circulation theorem comes into play any time there is

an increase or decrease in lift. For instance, when the wing’s angle of attack rises

during pitch reversal and lift increases, a pitching vortex of the same strength and

opposite sense to the wing-bound circulation increase must shed. Similarly, when

lift falls either due to an angle of attack reduction, or as a result of the wing coming

to a rest, a vortex with a strength proportional to the reduction in wing-bound

circulation, and with the same sense, is shed. In the case of a wing coming to rest,

this is manifested as a stopping vortex.

2.2.2 Wagner E�ect

As mentioned previously, when a wing starts from rest, a starting vortex forms at

the trailing edge. The impact of this starting vortex is to slow the growth of lift.

This is the Wagner effect (Wagner, 1925). The result of this is that lift on the wing

PhD Thesis: Nathan D B Phillips
∣∣∣ 23



2.2. Aerodynamic Mechanisms & Phenomena

grows gradually to its steady-state value, as the starting vortex is left behind in

the wake and hence has decreasing influence. This is relevant to insect-like flight

because starting vortices are shed at the start of each half-stroke, which will have

an impact on lift.

2.2.3 Kramer E�ect

The study of Kramer (1932) investigated the effect on an airfoil from a sudden

increase in angle of attack. Rather than pitching a wing rapidly, a sudden angle of

attack increase was achieved by rapidly changing the direction of the oncoming

flow using a set of louvres at the upstream end of the test section in an open-loop

wind tunnel. By suddenly changing the angle of the louvres, angle of attack

increases in the pitch-up direction of up to 220deg/s were achieved on a wing in

the test section. It was found that a rapid increase in angle of attack from 0◦ to an

angle beyond stall of 30◦, was accompanied by a sudden increase in lift coefficient

to a level beyond steady state values. This is the Kramer effect. It addition, the

maximum lift coefficient achieved was proportional to the rate of angle of attack

increase. The cause for this effect was attributed to the fact that following the

sudden increase in incidence, there was a lag in the flow separation and it did not

all separate at once. During a flapping cycle, an insect’s wing makes use of this

effect when it suddenly pitches up at the end of a half-stroke as it begins reversing

pitch. Sometimes this effect is negative, where at the end of pitch reversal the

wing rapidly pitches down causing lift to suddenly fall.

2.2.4 Added Mass

When an insect accelerates its wing from rest, it not only experiences the inertial

reaction force from accelerating the wing mass, but also an inertial reaction force

from accelerating the fluid around it. The extra force from accelerating this

‘added’ mass of fluid is known as added mass (also known as apparent mass).

This added mass can be comparable to the wing mass itself for some insects

(Ellington, 1984a), and is affected by wing geometry and flapping kinematics

(Dudley, 2000). This effect also comes into play at the end of a half-stroke when

the wing must decelerate an ‘added’ mass of fluid, in addition to the wing itself.
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Added mass will affect instantaneous forces on the wing; however, if flapping

kinematics are symmetric, as the usually are, then inertial forces from the wing

and added mass will average out, and have no effect on mean forces (Ellington,

1984a).

2.2.5 Wake Capture

Figure 2.6: Two types of wake capture (adapted from Lua et al. (2011)); (a) wing-wake interaction with counter-rotating

vortex pair; (b) and with a single vortex

Another aerodynamic mechanism that is thought to be exploited by insects is

wake capture. This mechanism was studied in experiments by Birch & Dickinson

(2003) in which the wings of a dynamically-scaled model of a fruit fly were

accelerated from rest in the presence of the wake from a previous half stroke,

and also in the absence of any wake. Their results showed that when a wing is

accelerated from rest into its wake, the resulting lift is much greater than in the

wake-free case. It was suggested by Dickinson that this increase in lift results

from the wing recapturing shed vorticity from the previous half stroke, which

adds to the wing’s bound vorticity and enhances lift. This is what he called ’wake

capture’. Wake capture was demonstrated in a later study in which the flapping-

wing was brought to rest at the end of a half-stroke while the wing was pitched

early (a positive rotation phase). The result was that when the wing came to rest it

had the appropriate angle of attack to receive (capture) the previously shed wake

and generate lift, resulting in lift generation for a short while after the wing was

brought to rest (Dickinson et al., 1999). There is, however, some controversy over

the effect of wake capture, and whether it enhances lift, has little effect, or impedes

lift. It was found in CFD studies by Sun (2005) that wake capture is detrimental
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to lift, and by Aono & Liu (2006) that it has little effect. A recent study of Lua

et al. (2011) involving a 2D translating and pitching wing, has shed some light

on this as it was found that interaction of the wing with the wake can either lead

to augmented or decreased lift, depending on whether a single vortex or pair of

counter rotating vortices are encountered. A counter rotating pair (Figure 2.6a)

was found to increase the oncoming flow velocity on the underside of the wing,

and increase lift, whereas a single vortex (Figure 2.6b) close to the wing underside

would decrease lift momentarily. It was suggested by the investigators that lift

can be enhanced by correctly timing the wing stroke to encounter the desired

structures.

2.2.6 Clap and Fling

Figure 2.7: ’Clap-and-fling’ manoeuvre from Weis-Fogh (1973)

During the pronation stage of the flapping cycle insects can exploit a lifting

mechanism called the ‘clap and fling’ manoeuvre, which was proposed by Weis-

Fogh (1973) and Lighthill (1973). Referring to Figure 2.7, during pronation when

the upper surfaces of the wings are in contact with both leading edges pointing

forward, the wings fold apart as pronation continues towards the downstroke,

forming a ‘V’ with the two wing chords. As this happens, fluid rushes into fill the

gap which immediately creates a bound circulation on both wings, but of opposite

sense. When the wings then translate apart, the starting vortices from each wing

add to the bound vorticity of the neighbouring wing, thus the gradual growth

in circulation resulting from the Wagner effect is subdued and the wing-bound

circulation reaches levels higher than those seen during the translation (Ellington,

1984c). This is the ‘fling’ portion of the clap and fling mechanism. The ‘clap’
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refers to the wings coming together at pronation, in which the leading edges

first come together to form an inverted ‘V’ shape. As the rest of the wing upper

surfaces come together, a jet of fluid is ejected downwards as the inverted ‘V’

closes, leading to an increase in lift (Ellington, 1984c). The clap can last between

20 − 25% of the flapping period (Ellington, 1984b). This mechanism is thought

to be exploited by numerous insects as well as birds which bring their wing tips

very close together (or even touch) during pronation.

Other variations of the clap and fling exist, such as the ’peel’ in which the wings

peel apart like two pieces of paper rather than rigidly flinging open. This was

proposed by Ellington (1984c), who had observed wings of moths and butterflies

to peel apart in this manner. Another variation is the ’near clap and fling (or peel)’

in which the upper wing surfaces do not come into contact, but come very close

or even touch at the tailing edges.

2.2.7 Leading-edge Vortex (LEV)

The transient high lift produced during translation phases (downstroke & up-

stroke) of the flapping cycle originates largely from a leading-edge vortex, or

LEV, that forms at the leading edge of an insect-like flapping wing. This is sim-

ilar in some ways to the LEVs observed on delta wings. Due to the high angle

of attack, the flow separates at the leading edge and then rolls up into a vortex

that grows in size towards the wingtip where it merges with the tip vortex. The

presence of this vortex further increases the flow velocity over the topside of the

wing, hence reducing pressure and increasing lift. It has been said that the LEV

is responsible for up to two thirds of the lift generated (van den Berg & Ellington,

1997a).

The LEV was first reported by Maxworthy (1979), who performed experiments

on the ’fling’ portion of the ’clap-and-fling’ manoeuvre described previously. It

was reported that as the wings swept, a ‘separation-vortex’ (the LEV) formed

on the upper surface each wing, which developed a flow through its axis that

transported vorticity out of it and into the tip vortex. This is pictured in Figure 2.8.

Maxworthy realised that this axial flow prevented the LEV from shedding by

transporting vorticity away and into the tip vortex, whereas in the 2D case (a 2D
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Figure 2.8: First observation of the leading-edge vortex on a flapping wing by Maxworthy (1979); ‘separation vortex’

(the LEV) feeds into the tip vortex

translating wing, as opposed to a 3D sweeping wing), vorticity is removed by a

buildup and subsequent shedding of vorticity.

Flow visualisations of live insects have shown the existence of the LEV. In the

studies of Ellington et al. (1996) and Willmott et al. (1997), an LEV was reported to

be present on the wing of a hawkmoth that fed into the tip vortex. Spanwise (axial)

flow was reported to be present above the wing, which decreased in strength

towards the end of a half-stroke. In addition, the size of the LEV was said to

grow towards the wingtip, and also throughout a half-stroke, but despite this,

it did not grow so large that it became unstable and shed. This was attributed

to the spanwise flow that transported vorticity into the tip vortex. Additional

flow visualisations on a mechanical model of a hawkmoth, called the ‘flapper’,

by Ellington and his colleagues, also observed the formation of a LEV. Again, it
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was seen to grow in size towards the wingtip, and grow throughout a half-stroke

(Ellington et al., 1996). They also reported that the LEV remained attached until

the middle of a half-stroke (mid-stroke), where the LEV broke down outboard and

the outboard portion of the LEV soon shed towards the end of the half-stroke. The

same observations of the LEV were made in later studies also using the ‘flapper’

(van den Berg & Ellington, 1997b,a).

Axial flow velocities in the LEV have been reported in a number of studies to

be comparable to the mean wingtip speed (Ellington et al., 1996; van den Berg &

Ellington, 1997a; Ramasamy & Leishman, 2006), and even as high as two times

the mean wingtip speed (Lu & Shen, 2008). It was suggested that axial flow

through the LEV is the result of either centrifugal forces, a favourable pressure

gradient along the vortex core, or a combination of the two (Ellington et al., 1996;

van den Berg & Ellington, 1997a). An axial pressure gradient through the LEV

has been confirmed in CFD studies of Wilkins (2008) and Wilkins & Knowles

(2009). The pressure in the LEV core decreases towards the tip due to the increase

in wing tangential velocity from root to tip. The higher flow speeds (and hence

lower pressures) in the stronger tip-ward end of the LEV induces a flow from the

weaker (and relatively higher pressure) root-ward end of the LEV. In the case of a

2D translating wing, the oncoming flow velocity at every chord is the same, thus

no axial pressure gradient and hence, no axial flow forms. It has been observed

in studies of Birch & Dickinson (2001), that at low Reynolds numbers (Re = 160)

spanwise flow is very weak on a revolving wing. This led to the conclusion

that the structure of the LEV and the strength of the spanwise flow is Reynolds

number dependent. This appears to be true as an experiment by Ramasamy &

Leishman (2006) which used a very similar wing geometry to that used by (Birch

& Dickinson, 2003), saw a strong spanwise flow at Re = 15500.

The stability of the LEV is somewhat controversial. In the case of a 2D trans-

lating wing, the LEV is always reported to be unstable, as it sheds within the first

few chord lengths of travel (see e.g. Dickinson & Götz (1993), Wilkins (2008)).

In the case of a 3D wing, some studies report it to be stable, while others report

that it sheds. Experiments by Lentink & Dickinson (2009), linearly translated a

3D wing with and without a swept leading edge and found that the LEV shed,

leading to the conclusion that the presence of a tip vortex is not enough to sta-

bilise the LEV. Only when the wing is rotated (swept), is the LEV stable. This
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was also found by Wilkins (2008) who showed the LEV on a 3D translating wing

to be unstable, but stable when revolved (swept). Dickinson and his colleagues

have experimented up to Reynolds numbers on the order of 104 (Re = 14000)

with their model fruit fly wing, and consistently reported that the LEV is stable

for a 3D revolving wing (see e.g. Birch et al. (2004), Poelma et al. (2006), Lentink

& Dickinson (2009)). Experiments by Ellington and his co-workers with their

’flapper’ using a model Hawkmoth wing at Re = 8000 reported a stable LEV for

the first half of a downstroke (Ellington et al., 1996; van den Berg & Ellington,

1997b,a), which then shed in the second half and a new one formed. In later

experiments testing a hawkmoth and tapered planform using a more simplified

propeller-like test rig, which simply revolved a wing continuously, found that lift

coefficients above Re = 10000 did not increase (Ellington & Usherwood, 2001).

Purely from the aerodynamic force data, they tentatively concluded that above

Re = 10000 the LEV lacks the axial flow required to stabilise it and it becomes

turbulent and periodically grows and breaks away rather than remaining stable.

In a later experiment using a similar setup using a different versions of a revolving

hawkmoth wing (AR = 5.66−6.33) at Re = 8071 it was found that the LEV is stable,

even under continual revolutions (Usherwood & Ellington, 2002a). A follow up

study tested wings with different aspect ratios and different Reynolds numbers

ranging from 1100 to 26000, but could not comment on LEV stability as no flow

visualisation was performed, only force measurements (Usherwood & Ellington,

2002b). Flow visualisation of the mechanical flapping wing model of Tarascio

et al. (2005), Ramasamy et al. (2005) and Ramasamy & Leishman (2006) from

Re = 8000− 19500, saw periodic shedding of the LEV. Over the Reynolds number

range of 160 − 3200, studies of Lu et al. (2006) observed two LEVs to be present

over a flapping wing, and later at Re = 1624 they saw multiple LEV structures

(Lu & Shen, 2008). At even higher Reynolds numbers from Re = 10000 − 60000,

experiments of Jones & Babinsky (2010, 2011) showed continuous shedding of

the LEV. Thus, the general trend appears to be that for Reynolds numbers below

10000, the LEV is typically reported to be stable, whereas above 10000 conflicting

reports of LEV stability arise. This is of particular interest to FMAVs as they will

operate at Reynolds numbers on the order of 104, and the stability of the LEV can

potentially impact performance.
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2.2.8 Vortex Breakdown

Figure 2.9: Spiral-type vortex breakdown (top) from Leibovich (1978); bubble-type vortex breakdown (bottom) from

Sarpkaya (1971)

Vortex breakdown has been seen to occur in the LEV in numerous experiments

on insect-like flapping wings. Before discussing breakdown with regards to

flapping flight, the phenomenon will first be discussed. Vortex breakdown (also

known as vortex burst) pictured in Figure 2.9, is generally described as an abrupt

change in the core structure of a swirling flow (Benjamin, 1962). More specifically,

it is characterised by the formation of a stagnation point on the vortex axis followed

by a region of reversed axial flow (Leibovich, 1984), which is accompanied by a

sudden increase in vortex size. It was first observed to occur on the LEVs over a

delta wing by Peckham & Atkinson (1957). The occurrence of vortex breakdown is

either desirable or undesirable depending on the application. In swirl combustion

systems it is beneficial because it improves mixing, whereas breakdown of the LEV

over delta wings is undesirable as it decreases lift and causes buffeting (Escudier,

1988).

Forms & Structure

There are two main types of vortex breakdown: spiral-type and bubble-type

which are illustrated in Figure 2.9. The spiral-type occurs first when a breakdown-
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Figure 2.10: Schematic diagram of spiral-type breakdown (left) adapted from Brücker (1993); cross-section through

flowfield of spiral-type breakdown (right) adapted from Brücker (1993); the stagnation point in both figures is denoted by

the point nst

free vortex reaches a sufficient level of swirl (Lucca-Negro & O’Doherty, 2001),

which will be discussed later. Here, swirl describes the ratio between the tan-

gential and axial velocity components of the vortex. The structure of the spiral

type breakdown is given in Figure 2.10. It can be seen that after a certain point,

the initially straight vortex axis forms a kink to one side and then coils up. The

sense of the coiling of the axis has been observed to be the same, and in other

cases opposite to the sense of rotation of the undisturbed vortex core. A definite

explanation as to why this discrepancy occurs has yet to be given (Lucca-Negro

& O’Doherty, 2001). The present discussion will focus on those which coil in the

opposite sense to the rotation of the vortex core (as illustrated in Figure 2.10).

This sense of coiling appears to be more common and is the manner in which the

vortex axis coils over delta wings (Lambourne & Bryer, 1961). Just downstream of

the initial kink in the vortex axis is a region of reversed axial flow. It can be seen in

Figure 2.10 that the vortex-induced velocity at the centre of the coiled vortex axis

is in the same direction as this reversed axial flow. In addition, as a consequence

of the coiling of the vortex axis, the stagnation point is located off the vortex axis

(Brücker, 1993). This is illustrated in Figure 2.10.

If the swirl level is increased further, the breakdown transitions from a spiral-

type to bubble-type, which is accompanied by a shift in the breakdown location

further upstream (Lucca-Negro & O’Doherty, 2001). The bubble-type exhibits a

larger increase in vortex core size beyond the breakdown location compared to the

spiral-type (Leibovich, 1984). Figure 2.11 illustrates the structure of the bubble,
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Figure 2.11: Schematic diagram of bubble-type breakdown (top) adapted from Uchida et al. (1985); cross-section

through flowfield of bubble-type breakdown (bottom) adapted from Escudier (1988); the stagnation point in both figures

is denoted by the point nst

where it can be seen that the flow is axisymmetric, the stagnation point is on the

vortex axis unlike the spiral-type, and a vortex ring exists at the downstream end

of the bubble. After performing flowfield measurements of the transition from

spiral-type to bubble-type, Brücker (1993) argued that during this transition the

winding of the coiled vortex becomes more compressed and as this happens the

flow becomes more axisymmetric and the stagnation point approaches the vortex

axis. When this coil is compressed enough it forms a vortex ring which has an

increased level of vorticity in its circumferential direction because the vorticity

along the coil has been concentrated into a single ring. As a result of this, the level

of reversed axial flow is increased (as the vortex-induced velocity at the centre of

this ring is in the opposite direction to the upstream axial flow) and the breakdown

location moves upstream. Beyond this type of breakdown, additional increases in

swirl only have the effect of moving the bubble-type breakdown structure further

upstream (Lucca-Negro & O’Doherty, 2001).

Factors A�ecting Vortex Breakdown

The phenomenon of vortex breakdown is not entirely understood, and a generally

accepted explanation of the exact cause of vortex breakdown has yet to be reached

(Lucca-Negro & O’Doherty, 2001). However, it is generally accepted that the
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occurrence of vortex breakdown is dictated by two factors: the swirl level and

axial pressure gradient (Gursul et al., 2007). Swirl level is represented by some

parameter describing the ratio of tangential velocity to axial velocity of the vortex.

A commonly used measure of swirl level is the helix angle, given by:

γ = tan−1(vt/va) (2.2)

Here, vt is the tangential velocity component, and va is the axial velocity

component. It has been shown that vortex breakdown occurs when the helix

angle reaches a critical value of approximately 50◦ (Délery, 1994). As mentioned,

the axial pressure gradient, which results from downstream conditions is the

other factor contributing to the occurrence of breakdown. This pressure gradient

is influenced by the presence of solid boundaries on or near the vortex axis, and

by the existence of downstream flow traveling in the opposite axial direction.

The presence of either of these makes the pressure gradient more adverse, and

if the pressure gradient is adverse enough then a stagnation point will form on

the vortex axis resulting in breakdown. Experiments by Werlé (1960), illustrated

this by triggering vortex breakdown in the LEV over a delta wing by placing a

solid disk downstream in the LEV and in another experiment by blowing a jet

of air in the axial direction opposite to the travel of the LEV. It should be noted

that if the helix angle is below the critical helix angle of 50◦ mentioned previously,

vortex breakdown is not necessarily absent. This is because for a greater adverse

pressure gradient, a lesser degree of swirl is required for breakdown (Hall, 1972).

Independent changes in swirl level or pressure gradient can either incite or

suppress vortex breakdown. This is the basis for flow control methods for de-

laying vortex breakdown over delta wings, where such methods rely on altering

either the swirl level or pressure gradient (Gursul et al., 2007). For example, either

blowing or sucking along the vortex axis in the same direction as the vortex axial

velocity will alleviate the adverse pressure gradient and can even completely sup-

press breakdown, which has been shown experimentally by Werlé (1960). Such a

method was employed on the Concorde where breakdown of the LEVs over the

wings was eliminated with the aid of the exhaust from the engines (Mitchell &

Délery, 2001). Here the exhaust created trailing-edge blowing in the same dir-

ection as the LEV axial velocity, which acted to alter the adverse pressure gradient
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favourably.

Vortex Breakdown in Insect-like Flight

Probably the first reported occurrence of breakdown in the LEV on an insect-like

wing took place in experiments by Ellington et al. (1996) with their mechanical

‘flapper’ executing Hawkmoth-like flapping kinematics at Re ≈ 1000. It was ob-

served with smoke streaklines released from the wing root that the LEV broke

down around 60 − 70% of the wing length, after which it connected to the tip

vortex. In another experiment by van den Berg & Ellington (1997a) (also per-

formed with their ‘flapper’) the LEV was again observed to breakdown around

the same location. In this study, the helix angle was measured from the ‘clearly

defined’ streaklines (the streaklines before the breakdown location) through the

LEV, which was found to be 45.9◦ with a standard deviation of ±11.9◦. Since then,

breakdown of the LEV has been reported in numerous other experiments, which

have mostly been performed at Reynolds numbers of the order of 103. It is typi-

cally seen that breakdown initiates at or around mid-stroke, where the location on

the wing at which breakdown occurs appears to vary. Observations have reported

breakdown to occur at approximately 75% of the wing length (van den Berg &

Ellington, 1997b), 50% wing length (Lu & Shen, 2008; Lentink & Dickinson, 2009),

and 35% of the wing length (Lu et al., 2006). This discrepancy in breakdown

location is possibly in part a result of the fact that over these various studies,

the breakdown location has been determined in a qualitative way, with different

methods. That is, rather than locating the breakdown location quantitatively (i.e.

the point at which axial flow stagnates and reverses), the breakdown location has

typically been qualitatively determined as the point where streaklines either dis-

sipate or suddenly follow a greater radius of curvature, or when a vortex criterion

isosurface disappears, all of which may lead to a different result. After mid-stroke

when the wing decelerates, breakdown of the LEV has consistently been seen to

move inboard (van den Berg & Ellington, 1997b; Lu & Shen, 2008; Lentink &

Dickinson, 2009). As for the effect of breakdown on aerodynamic forces, the ex-

periments of Lentink & Dickinson (2009) found that lift coefficients were higher

at a Reynolds number where breakdown had occurred (Re = 1400) compared to

a lower Reynolds number where breakdown was absent (Re = 110). Thus, they

concluded that vortex breakdown did not negatively impact force production.
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CFD studies have also observed breakdown or hints of the occurrence of break-

down (Liu et al., 1998; Wilkins, 2008). The study of Liu et al. (1998) replicated

the experiment of van den Berg & Ellington (1997a) but computationally. Imme-

diately after mid-stroke they observed breakdown of the LEV between 60 − 70%

of the wing length and also reported an adverse pressure gradient which they

attributed to a balance between the spanwise pressure gradient and the pressure

gradient originating from the wing tip. It should be noted that in most of the

reported incidences of breakdown of the LEV on insect-like wings, no attempt

has been made to classify which type of breakdown has occurred. However,

upon inspection of results from such studies, it appears that only the spiral-type

breakdown has been observed.

2.3 Kinematic E�ects

Studies on insect-like flight to date have observed a number of effects due to

various kinematic parameters. These include effects from Reynolds number,

angle of attack, rotation phase, stroke amplitude, plunge amplitude and wingtip

kinematics. Such effects will now be discussed, in that order.

2.3.1 Reynolds Number

Experiments by Dickinson & Götz (1993) measured forces on a 2D translating and

pitching wing, immersed in liquid over the range Re = 120 − 1400, and found

that lift and drag coefficients rose with increasing Reynolds number. This led

to the conclusion that lift augmentation increases with Re. A later experiment

using a 3D revolving (sweeping) wing at Re = 120&1400 gave a similar story,

where lift and drag coefficients were larger at higher Reynolds number (Birch

et al., 2004). Up to an even higher Reynolds number range from Re = 110− 14000,

testing a flapping and continually rotating (sweeping) wing, the same trend was

observed for all cases where aerodynamic coefficients increased with Re (Lentink

& Dickinson, 2009). However, the rate of increase of lift and drag coefficients

declined with increasing Re, as force coefficients at Re = 1400&14000 were similar.

The waving (sweeping) wing experiment of Jones & Babinsky (2011), showed

similar lift coefficients at Re = 30000 and Re = 60000 over various angles of attack.
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A similar result was obtained in the study of Ellington & Usherwood (2001)

testing different revolving wings from Re = 10000 − 50000. The general trend for

all wings tested was that in the range Re = 20000− 50000 lift and drag coefficients

are relatively unchanged. However at Re = 10000 lift and drag coefficients were

at their peak, as they were generally higher respectively at high and low angles

of attack for two of the planforms tested (manduca and taper). These findings

later led to the conclusion of a critical Reynolds number of 10000, above which

the flow will become turbulent and lift coefficients will drop by a factor of three

(Ellington, 2006). However, this conclusion was later rejected by Usherwood

(2009) who showed that at even higher Reynolds numbers, model pigeon wings

(Re = 10800&54000) saw very similar force coefficients to those of a hawkmoth

(Re = 8000). In computational studies, the work of Wilkins (2008) found that on a

3D revolving wing, lift coefficients increase up to Re = 2500, and remain constant

thereafter.

In terms of the effect on the LEV, as mentioned earlier in § 2.2.7, there are

observed discrepancies in LEV stability above Re ≈ 10000. Also, axial flow in the

LEV core is minimal at low Reynolds number of 160 (Birch & Dickinson, 2001),

it exhibits higher values as Re increases, but has been postulated to be absent at

Re > 1000 resulting in vortex shedding (Ellington & Usherwood, 2001). Although

axial flow has been confirmed on a flapping wing at Re = 14000 (Lentink &

Dickinson, 2009). Other observed Reynolds number effects are that LEVs grow

more quickly at low Re (Jones & Babinsky, 2011), and even a dual LEV structure

has been observed to form at Re ≥ 640 (Lu et al., 2006).

From the previous discussions, it can be seen that a number of discrepancies

exist in regards to Reynolds number effects. These include conflicting reports of

effects on aerodynamic forces, and effects on the flow, such as potential effects on

LEV stability, and axial flow.

2.3.2 Angle of Attack

It has been consistently reported that lift coefficient peaks between an angle of

attack of 40 − 50◦, declining on either side of this value, whereas drag coefficient

continually rises as the angle of attack approaches 90◦. This is true for the 2D

case of a translating wing (Dickinson & Götz, 1993; Wilkins, 2008), as well as 3D
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flapping wings, or continually revolving wings (Sane & Dickinson, 2001; Ellington

& Usherwood, 2001; Usherwood & Ellington, 2002a; Wilkins, 2008). Even in the

case of varying wing geometry and aspect ratio, lift coefficient still peaks in

this angle of attack range and drag coefficient continually climbs (Usherwood &

Ellington, 2002b).

In CFD studies by Wilkins (2008), it was found that increasing the angle of

attack on an impulsively-swept wing increased the stable size of the LEV. Smoke

visualisations on a continually revolving wing at Re ≈ 8000 by Usherwood &

Ellington (2002a) saw no separated flow (LEV) below an angle of attack of 10◦.

Above this, the LEV and axial flow through its core soon developed. At the

highest angle of attack of 90◦ a stable LEV in addition to a stable trailing-edge

vortex, both possessing strong axial flows, were present. Observations by Lu

et al. (2006) on a flapping wing at Re = 1624 revealed the formation of a dual LEV

structure for angles of attack around 30◦ and above.

2.3.3 Rotation Phase

The first investigation of rotation phase appears to be that of Dickinson et al.

(1999), in which pitch reversal was advanced, symmetric, and delayed relative to

stroke reversal, which respectively correspond to a positive, zero, and negative

rotation phase. Experiments were performed at Re = 140, and it was found that

when pitch reversal was advanced, higher mean lift coefficients were achieved,

and that delaying pitch reversal gave the lowest lift. These results were replicated

in a CFD simulation of the same wing type (fruit fly) at Re = 136 by Sun & Tang

(2002b), and again in another study at Re = 147 (Sun & Tang, 2002a) in which

it was found that the power required per unit of lift increased as pitch reversal

was advanced. A similar CFD study by Ramamurti & Sandberg (2002), with a

fruit fly wing planform, at a similar Reynolds number (Re = 136), also found that

advanced pitch reversals lead to higher lift, followed by a symmetric and delayed

pitch reversal which performed the worst. The study of Sane & Dickinson (2001)

investigated this further experimentally, where a range of rotation phases were

tested at a Reynolds number on the order of 102. It was found that a rotation

phase of 5% was optimal, as mean lift coefficient fell on either side of this value

(Sane & Dickinson, 2001). In the same year, experiments by Sunada et al. (2001)
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on a 2D translating and pitching wing at Re = 1000 found that maximum lift

was achieved with a 0% rotation phase, whereas peak efficiency (lift per power

required) was obtained at a value of 12.5%. Consistent with the trends found by

Sane & Dickinson (2001), results from the analytical model of Ansari et al. (2008b)

found a rotation phase of 5% to be optimal for two different wing geometries.

2.3.4 Stroke Amplitude

Investigation of stroke amplitude effects are few. Experiments by Sane & Dick-

inson (2001) performed at Reynolds numbers on the order of 102, varied stroke

amplitude with a fixed flapping frequency. It was found that when increasing

the stroke amplitude, the normal force rises, but the normal force coefficient falls.

Regarding lift and drag components, they found that increasing stroke amplitude

increased lift coefficients, and decreased drag coefficients. The analytical model

of Ansari et al. (2008b) similarly found that increasing stroke amplitude with a

fixed flapping frequency led to a rise in both lift and drag forces. Computational

investigations of Meng et al. (2010) studied effects due to wing corrugation, and

varied stroke amplitude, but with a fixed Reynolds number of 1800, as opposed

to a fixed flapping frequency. Only effects due to corrugation are discussed rather

than stroke amplitude effects; however, upon examination of their results, mean

drag coefficient declines with increasing stroke amplitude, whereas mean lift

coefficient falls by about 0.3 for a 110◦ increase in stroke amplitude.

In flow visualisations of Tarascio et al. (2005) on their flapper operating at

Re = 8000, stroke amplitude was varied. However, they observed no changes

in the flowfield, as they reported that vortices were continually shed regardless

of stroke amplitude. The effect of stroke amplitude on the flowfield mainly

comes down to the stability of the LEV which, as has been mentioned earlier, is a

controversial subject. As discussed, some studies observed the LEV to be stable for

continual revolutions (infinite stroke amplitude), while in others it sheds almost

immediately.
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2.3.5 Plunge Amplitude and Wingtip Kinematics

Plunge amplitude effects are relatively unexplored. In experiments by Sane &

Dickinson (2001) at Reynolds numbers on the order of 102, figure-of-eight and

oval wingtip trajectories with increasing plunge amplitude were investigated for

their effects on forces. A figure-of-eight trajectory can be followed in two ways,

by either rising or descending at the start of a half stroke. It was found that for

both trajectories, including the mentioned two ways of following a figure-of-eight,

increasing the plunge amplitude from zero (from a flat wingtip trajectory) led to a

decrease in both mean lift and drag coefficients, but had little effect on the mean lift

to drag coefficient ratio. The parametric study of Ansari (2004) using his analytical

model, examined a figure-of-eight, concave, and convex arc wingtip trajectory,

and varied the plunge amplitude of these. Increasing the plunge amplitude

for figure-of-eight kinematics in which the wing rises at the start of half-stroke,

showed a decline in lift and rise in drag. Achieving a figure-of-eight trajectory in

the other manner by descending at the start of a half-stroke gave comparatively

higher lift and drag, but effects from changing plunge amplitude with this case

were not given. For the concave arc (wingtip follows a ‘u’ shape) increasing plunge

amplitude generally led to a rise in lift and a larger rise in drag. The convex arc

(wingtip follows an inverted ‘u’) saw lift fall slightly with rising plunge amplitude,

whereas drag fell comparatively more, which led to particularly higher lift to drag

ratios at higher plunge amplitude. Another study, by Berman & Wang (2007) also

using an analytical model, used an optimisation algorithm and varied kinematic

parameters to converge on an optimal set of kinematics that would minimise

power consumption for a fruitfly, a bumblebee and a hawkmoth. A sensitivity

study of one of the optimal sets of kinematics showed that increasing the plunge

amplitude (with figure-of-eight wingtip kinematics) led to a continual rise in lift

and power required. The recent experimental study by Ania et al. (2011) measured

forces using their ’RotaFlap’ mechanism which flapped a wing through a figure-

of-eight trajectory up to Re ≈ 3700. Although the resultant force coefficient was

found not to change significantly with Re, it exhibited much smaller resultant

force coefficients of at most 0.7 compared to values of around 3 (even at very high

plunge amplitudes) found by Sane & Dickinson (2001) at lower Reynolds number

(Re on the order of 102).
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2.4 Flapping Wing Mechanical Models

In experiments concerning the aerodynamics of insect-like flight with applica-

tions for FMAVs in mind, mechanical flapping wing models (or ’flappers’) that

emulate insect-like flapping-wing motion are very useful. Unlike working with

real insects, a mechanical flapper gives the experimenter control over flapping

kinematics, and forces can be measured from individual wings. Furthermore,

mechanical flappers (which operate in air) serve as a stepping stone towards

a fully functional FMAV. For these reasons, experiments performed with me-

chanical flappers are a key part of advancing the understanding of insect-like

flapping-wing flight necessary for the development of a working FMAV. In such

experiments arguably one of the most important aspects is the design and opera-

tion of the flapper, and the experimental apparatus as a whole. This section will

perform a review of different mechanical flappers that have been made thus far

that emulate insect-like wing motion, and what they were used for. The section

begins with a review of submerged flappers (flappers that operate in a liquid),

followed by flappers that operate in air. Free-flying flappers are then discussed,

which are flappers that can actually sustain free-flight.

2.4.1 Submerged Flappers

One of the advantages of performing experiments in a liquid is that, in comparison

to working in a gas, the more viscous nature of a liquid allows the subject of the

experiment to be slowed down much more for a given physical size of the subject,

while still preserving the Reynolds number (due to the lower kinematic viscosity).

This is advantageous because slowing down the experiment makes it much easier

to visualise unsteady effects. In addition, liquid flows can be seeded more easily,

and make it easier to separate aerodynamic forces from inertial forces as the inertial

forces (from accelerating the body, not the fluid) become relatively smaller. This

section will discuss mechanical flappers that have operated in a liquid, starting

with early and recent two-dimensional flappers, followed by early and recent

three-dimensional flappers.
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Figure 2.12: 2D experimental apparatus of Maxworthy (1979)

2D Flappers

Early Flappers

The earliest experiment of this kind appears to be that of Maxworthy (1979)

who studied the ’clap-and-fling’ mechanism formulated by Weis-Fogh (1973) and

Lighthill (1973). In his experiments, Maxworthy used a 2D and a 3D apparatus,

the latter of which will be described later. The 2D apparatus (Figure 2.12) consisted

of two rectangular wings pivoted at their trailing edges and each attached to a

rod with a brass weight to drive the wing rotation and ‘fling’ the wings apart

from a closed position. Experiments were performed in water and later glycerine

(to simulate Re = 13000 and Re = 32, respectively) and flow visualisation was

performed using dye and neutrally buoyant wax beads illuminated with a light

sheet perpendicular to the wingspan, and later parallel to the wingspan. ’Streak

photographs’ of the flow were taken at various points following the release of the

wings. Here, a ’streak photograph’ is obtained when the exposure of the film is

set such that streaks on the image are produced resulting from the motions of the

particles during the exposure. From the length and direction of the streaks on the

image, and from the known time of exposure, Maxworthy was able to determine

local fluid velocities and ultimately circulation in different areas of interest.

In the same year, a two-dimensional water tank experiment was also per-

formed by Savage et al. (1979). Savage and his colleagues studied the unsteady

flow resulting from a 2D flapping wing in a water tank undergoing an idealised

dragonfly-like flapping wing motion at an average Reynolds number of app-
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Figure 2.13: 2D experimental apparatus of Savage et al. (1979)

roximately 6000. Their experimental apparatus consisted of a rectangular wing

mounted vertically in a water tank, where pitch and stroke control of the wing

were achieved via two separate motors. As noted previously, this was a two-

dimensional experiment as the wing purely translated. An illustration of the

apparatus is given in Figure 2.13.

Savage and his colleagues studied the flow induced by the flapping wing by

seeding the water surface with markers of ‘confetti comprising the residue from

computer card punching operations’ (Savage et al., 1979). Photographs were then

taken of the water surface at different points in the flapping cycle to produce streak

photographs. These were then converted to vector maps, where the positions and

strengths of vortices in the flow field were determined and ultimately forces were

analysed using potential flow theory.

Less than a decade later, another water tank-based experiment concerning the

clap-and-fling was performed by Spedding & Maxworthy (1986). In their experi-

ment, they used an apparatus submersed in water, comprising of two rectangular
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Figure 2.14: 2D experimental apparatus of Spedding & Maxworthy (1986)

wings pivoted at their trailing edges which would ‘fling’ apart using hanging

weights. The apparatus was supported within the water by ’floats’ to make the

system neutrally buoyant, and enable lift to be measured via a connection to load

cells with pushrods. Flow visualisation was performed by seeding the tank with

polystyrene beads and illuminating the flow with a sheet of light at the mid span

to produce streak photographs, and vector maps at different points following the

wing rotation.

Recent Flappers

Following the work of Maxworthy, Spedding and Savage, there have been

numerous 2D water tank based experiments which have utilised experimental

apparatuses very similar to the one used by Savage et al. (1979). That is, an

apparatus that generally consists of a wing in a water tank which is mounted

to a motor-driven translating platform to produce stroking (or pure plunging)

motions, while the wing pitches passively or via a motor. Studies that used this

type of apparatus include those of Dickinson & Götz (1993), Sunada et al. (2001),

Heathcote (2007), Beckwith & Babinsky (2009), and Wilkins (2008). Illustrations

of their respective apparatuses are given in Figure 2.15.
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Figure 2.15: 2D experimental apparatuses of a) Dickinson & Götz (1993); b) Sunada et al. (2001); c) Heathcote (2007);

d) Beckwith & Babinsky (2009); e) Wilkins (2008); f) Lua et al. (2011)
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These apparatuses are very similar in design and function. Most were equipped

with a force balance at the root to measure forces and some used a separate mo-

tor for pitch control, depending upon the nature of the experiment. These have

been used to perform flowfield measurement via PIV, or flow visualisation with

hydrogen bubbles. Aspects studied, include effects due to wing rotation (Dickin-

son & Götz, 1993), stroke and pitch phase effects (Sunada et al., 2001), chordwise

flexibility effects (Heathcote, 2007), flows of an impulsively started wing (Wilkins,

2008; Beckwith & Babinsky, 2009), and wake capture effects (Lua et al., 2011).

3D Flappers

Early Flappers

The earliest three-dimensional experiment of this kind appears to be that of

Maxworthy (1979) who studied the ’clap-and-fling’ mechanism. In addition to

building a two-dimensional apparatus as discussed above, in this study, Maxwor-

thy also built a three-dimensional apparatus. This consisted of two vertical rods

which could pivot on bearings. Perpendicularly attached to each rod was another

rod on which wings pivoted freely via teflon bearings. The wings were made

rigid and had ’stops’ to limit the angle of attack of each wing to approximately

30◦. During the experiment, the wings would start off together with their upper

surfaces touching, and then the wings would fold apart by rotating the two ver-

tical rods by their handles through desired sweep angles. Thus, this experiment

studied the ’fling’ portion of the ’clap-and-fling’ mechanism, as well as the subse-

quent translation of the wings through a sweep. As mentioned, the wings pivoted

freely until a certain point where they were held at a constant angle of attack of

approximately 30◦ via stops. Figure 2.16 gives an illustration of this apparatus.

As with the two-dimensional apparatus mentioned above, this apparatus was

immersed separately in water and glycerine, flow visualisation was performed

using dye and wax beads, and streak photographs were taken which were used

to determine flow velocities and circulation in desired areas.

Recent Flappers

The next three-dimensional flapping apparatus that operated in a liquid ap-

peared twenty years later in the experiments of Dickinson et al. (1999). In their ex-

46
∣∣∣ PhD Thesis: Nathan D B Phillips



Chapter 2. Background & Literature Survey

Figure 2.16: 3D experimental apparatus of Maxworthy (1979)

periments, Dickinson and his colleagues used a mechanical flapping wing model

dubbed the ’Robofly’, which has become by far the most successful flapping-wing

apparatus operating in a liquid. This apparatus has been used in a number of

studies, with many different researchers since its creation and it continues to yield

valuable results. The design of the apparatus consisted of two wings modeled,

from a fruit fly, each controlled by three stepper motors via three coaxial drive

shafts connecting to a gearbox. Each wing had three degrees of freedom, and

thus the apparatus could achieve a wide range of flapping kinematics with either

symmetric or asymmetric wing motions by simply programming a desired ve-

locity profile for the six motors. There is no mention made of how the sweeping,

plunging and pitching motions were produced from the rotations of the drive

shafts, but it is implied by the ’gearbox’ connecting to the wing that a collection

of gears were used. To measure aerodynamic forces, a two-dimensional force

balance was located at the root of one of the wings. Studies with this apparatus

have relied on flowfield measurements with particle image velocimetry (PIV) and

force measurements. An illustration of the apparatus is given in Figure 2.17.

Since the development of the ’Robofly’ by Dickinson and his colleagues, there

have been numerous three-dimensional flapping-wing apparatuses that operate

quite similarly. Three of these are the apparatuses used in the studies of Maybury

& Lehmann (2004), Yamamoto & Isogai (2005) and Lu et al. (2007) illustrated

in Figure 2.18. It can be seen, however, that these apparatuses differed from

Dickinson’s Robofly in the sense that two wings were used in tandem to simulate

dragon-fly like flapping wing motion, and were oriented vertically in a tank or

water tunnel. In addition, the wings on each one of these apparatuses had two

degrees of freedom rather than three, thus only sweeping and pitching motions
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Figure 2.17: 3D experimental apparatus of Dickinson et al. (1999)

were possible for each wing. Like the Robofly, however, with the exception of the

apparatus of Lu et al. (2007), they could measure aerodynamic forces via a force

sensing element at the root.

Recently developed three-dimensional flapping wing apparatuses which use

either a single wing or a single pair of wings (and thus are of more interest in

this case) include those of Luc-Bouhali (2006), Lu et al. (2006), Wilkins (2008),

Nagai & Hayase (2009), and Jones & Babinsky (2011) which are illustrated in

Figure 2.19. As with the more recent 2D apparatuses, these are all very similar

Figure 2.18: 3D experimental apparatuses of a) Maybury & Lehmann (2004); b) Yamamoto & Isogai (2005); c) Lu et al.

(2007)
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Figure 2.19: 3D experimental apparatuses of a) Luc-Bouhali (2006); b) Lu et al. (2006); c) Wilkins (2008); d) Nagai &

Hayase (2009); e) Jones & Babinsky (2011)

with most employing a force balance at the root for measuring wing forces, and

some utilise a separate motor to enable wing pitching. In most of the studies

with these devices, flowfield measurements via PIV were performed. Topics

that were investigated include force and flowfield measurement (Luc-Bouhali,

2006), kinematic and aspect ratio effects (Lu et al., 2006), flow from an impulsively

swept wing (Wilkins, 2008), stroke plane inclination and advanced ratio effects

(Nagai & Hayase, 2009), and Reynolds number and angle of attack effects (Jones

& Babinsky, 2011).

A recent flapper that operates in liquid is the ‘RotaFlap’ mechanism of Ania

et al. (2011) shown in Figure 2.20. It employs a patented mechanism consisting

of a housing with a set of shafts and bevel gears. Two of the shafts (40 & 42

in Figure 2.20) connect to flapping wings as illustrated, whereas the other shaft

(102) remains stationary and the housing (100) is driven to continually rotate (not

reciprocate) about the stationary shaft. The result is that as the housing rotates,

the wings are subjected to two simultaneous rotations about two perpendicular
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Figure 2.20: RotaFlap of Ania et al. (2011); images from original patent (top); flapping mechanism (bottom)

axes, which when combined, result in a figure-of-eight wingtip trajectory for each

wing. However, as shown, both wings will always be 180◦ out of phase. This was

used in experiments in mineral oil, and aerodynamic forces were measured over

a range of flapping frequencies.

2.4.2 Air Flappers

The advantage of a flapper that works in air from the point of view of FMAVs, is

that if the flapper is at the FMAV scale, there is no debate about dynamic similarity.

Furthermore, as mentioned previously, this type of flapper serves as a stepping

stone towards a working FMAV prototype. For example, lessons learnt in the

development of flappers that work in air, may be applied to FMAVs since they

will have similar issues. This section will now discuss flappers that have operated
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in air, beginning with early flappers, then the more recent flappers.

Early Flappers

The first experiment concerning insect flight using a mechanical apparatus in

air was that of Bennett (1966). His experimental apparatus consisted of a wing

made of music wire and cellophane tape which was swept back and forth by

an oscillating shaft driven by a pulley. The wing could pitch passively, but was

limited to certain angles of attack by using ’stops’. It could flap at a frequency of

46Hz, with a 144◦ stroke amplitude. An illustration of his apparatus is given in

Figure 2.21. This was used to measure the induced velocities above and below the

wing, which was accomplished with a hot-wire anemometer. Using the measured

velocities, the time-averaged lift acting on the wing was inferred using momentum

theory.

Figure 2.21: Experimental apparatus of Bennett (1966)

Four years later, Bennett performed another flapping-wing experiment in air,

using a new mechanical apparatus (Bennett, 1970). His new apparatus was similar

to the previous one, except it was improved to give control of wing pitching. This

improvement was possibly prompted by the fact that in the original apparatus

in which wing pitching was passive, the wing took too long to reach a constant
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angle of attack (Bennett, 1966). The new apparatus consisted of a wing which

swept back and forth driven by a shaft via a toothed belt drive. The wing’s

angle of attack was varied via a cam which pivoted a follower arm that pushed

a bobbin up and down on the shaft. Nylon threads connected the bobbin to a

pulley fixed to the wing spar, so that the motion of the bobbin up and down the

shaft caused by the cam-driven follower would make the wing pitch. Figure 2.22

gives an illustration of Bennett’s apparatus. As with his previous experiment, this

apparatus was used to measure induced velocities above and below the wing to

deduce the lifting forces acting on the wing using momentum theory.

Figure 2.22: Experimental apparatus of Bennett (1970)

Bennett performed another flapping wing experiment using a mechanical

flapper seven years later (Bennett, 1977). The focus of this new experiment was to

study the ’clap-and-fling’ mechanism proposed by Weis-Fogh (1973) and Lighthill

(1973). The apparatus that he used for this was quite different than the previous

two. This new apparatus comprised of a rectangular wing freely pivoted at the

end of a long arm. The wing was held up against a stationary image plane by a

’trigger’ chord while a rubber band attached to the arm was stretched in the other

direction, causing the wing to ‘peel’ away from the image plane when released.

Thus, this experiment studied the ’fling’ portion of the ’clap-and-fling’ mechanism

in 2D as was later studied in experiments by Maxworthy (1979) and Spedding

& Maxworthy (1986). The purpose of the image plane was to simulate the effect

of two wings ’flinging’ apart, and removing the image plane allowed Bennett to

study a ’clapless’ wing. To measure the angle of attack and translation of the wing,

potentiometers were used at the wing pivot and the pivot of the arm. In addition,
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the rate of change of the angle of attack was controlled by a ’snubber’ chord. An

illustration of the apparatus is given in Figure 2.23. This apparatus was used to

measure the induced velocities under the wing using a hot-wire anemometer, and

estimate relative lift forces.

Figure 2.23: Experimental apparatus of Bennett (1977)

The next experiments which used a mechanical flapping apparatus in air were

those of Saharon & Luttges (1987) and Saharon & Luttges (1988). Both studies

were concerned with dragonfly-like flight. The earlier study focused on the effects

of wing pitching and plunging from a single dragonfly-like wing on the unsteady

flow. On the other hand, the second study utilised a pair of wings in tandem

and observed the effect on the flow by changing various parameters like flapping

frequency, plunging amplitude and phase difference between the two wings. In

the earlier study the apparatus consisted of a single wing extending through a

side wall in a wind tunnel that was driven to plunge up and down and pitch via a

motor-driven scotch yoke and slider-driven universal joint. The apparatus in the

second study instead employed a pair of wings in tandem. An illustration of the

apparatus used in the later study (Saharon & Luttges, 1988) is given in Figure 2.24.

Due to the limited illustrations of the apparatuses used by Saharon & Luttges,
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Figure 2.24: Experimental apparatus of Saharon & Luttges (1988); a) wing models used; b) experimental apparatus

it is difficult to tell exactly how the mechanisms controlling the wings worked.

In both studies, the apparatuses were used for flow visualisation with smoke in

conjunction with a synchronised strobe lamp to illuminate the flow at desired

points in the flapping cycle

Recent Flappers

Around a decade after the work of Saharon and Luttges, the experiment of Elling-

ton et al. (1996) was performed using arguably the most famous mechanical

flapping wing model that operated in air, called simply the ‘flapper’. The de-

sign of this flapper consisted of a pair of mechanical wings modeled from the

hawkmoth Manduca sexta, but scaled up approximately ten times. Each wing

had four degrees of freedom enabling sweeping and plunging motions, as well

as individual pitching motions of the fore and hind sections of the wing. This

was accomplished by a complicated mechanism of bevel gears and yokes driven

by a set of four coaxial drive shafts in turn driven by four motors. Here, the

outer drive shaft controlled the sweeping motion of the wing, the middle drive

shaft controlled the plunging motion, and the inner two drive shafts controlled

the pitching motions of the two segments of the wing. In addition, the motions of

the two wings were coupled so that the wing motions mirrored each other. Fig-

ure 2.25 gives an illustration of the ’flapper’ used by Ellington and his colleagues.

This mechanical model was used in numerous studies for studying the nature of
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Figure 2.25: Experimental apparatus of (Ellington et al., 1996); a) flapper; b) wing model

the leading-edge vortex by performing flow visualisation with smoke released

along the leading edge of the wings.

Five years following the experiments of Ellington et al. (1996) with their me-

chanical model of the hawkmoth Manduca sexta, another study involving Elling-

ton was performed that utilised a mechanical flapping apparatus in air, which

was that of Ellington & Usherwood (2001). Their apparatus is illustrated in Fig-

ure 2.26a, which consisted of a continually revolving wing driven by a motor

(like a propeller). Lift measurements were achieved by placing the apparatus on

a balance, and torque measurements (used to deduce drag) were performed by

transmitting torque through a beam to a force balance. Lift and drag coefficients

were measured on different wing designs over a range of angles of attack and

Reynolds numbers. Similar versions of this apparatus were later used in Ush-

erwood & Ellington (2002a), Usherwood & Ellington (2002b), and Usherwood

(2009) which are shown respectively in Figure 2.26b-d. In all cases, lift and torque

measurements were achieved via a connection to a force balance, either via a

pivoted arm or by direct mounting of the apparatus to a balance. These rigs

were used to measure lift and drag coefficients on continually revolving wings at
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Figure 2.26: Revolving wing apparatuses of a) Ellington & Usherwood (2001); b) Usherwood & Ellington (2002a); c)

Usherwood & Ellington (2002b); d)Usherwood (2009)

different angles of attack and Reynolds numbers.

In the same year, the first prototype of a mechanical flapper called the ’Mi-

cromechanical Flying Insect’ or ’MFI’ emerged (Yan et al., 2001). Since the initial

prototype, there have been several improvements and versions but the basic op-

eration and form of the flapper is the same, and the latest version of the MFI

is illustrated in Figure 2.27. The basic design consists of four four-bar mecha-

nisms (2 per wing) each driven by its own piezoelectric actuator. Each four-bar

mechanism pair is then coupled to a wing via a ’differential’ which is a folded

structure of carbon fibre forming a mechanism with two input links. When these

two input links of the differential are actuated in the same direction the wing

sweeps, and when they are actuated in opposite directions the wing twists, hence

changing its angle of attack. The lengths of the links in each four-bar linkage are

56
∣∣∣ PhD Thesis: Nathan D B Phillips



Chapter 2. Background & Literature Survey

such that they each form a double-rocker mechanism, and a small oscillation on

the input link (from the actuator) produce a large oscillation at the output link

(connected to the wing differential). Each actuator pair oscillates slightly out of

phase, hence causing the connecting four-bar linkages to oscillate out of phase

which then translates to cyclic sweeping and pitching motions of the wing via

the differential. The purpose of the MFI is eventually to be a flying, stable and

autonomous FMAV, and thus this flapper is more of an FMAV prototype than an

experimental test bed. Latest improvements to the MFI include optimal kinemat-

ics for the actuators driving the four-bar linkages and lower wing inertia resulting

in a wing beat frequency of 275Hz producing a total of 1400µN of lift (Steltz et al.,

2007).

Figure 2.27: Micromechanical Flying Insect (MFI); a) details of flapping mechanism; b) exploded view of complete

MFI

The next mechanical flappers of interest are those of Żbikowski et al. (2005)

and Galiński & Żbikowski (2005), dubbed ’flapper Mk1’ and ’flapper Mk2’ respec-

tively as illustrated in Figure 2.28. These were built as flapping-wing technology

demonstrators to be used as research test beds as well as precursor FMAV de-

signs. Both flappers had wings with three ranges of motion, that is, they could

both produce sweeping, plunging and pitching motions. However, their wing

trajectories were both fixed such that the wing tip followed a figure-of-eight with

symmetric pitch reversal. The first flapper Mk1 produced flapping wing motion

via a complex drive train that drove a Watt’s straight-line mechanism in which the

midpoint of one of the links followed a figure-of-eight trajectory. This link was

connected to two wings via sockets that interfaced with the wing spars so that
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Figure 2.28: a) Flapper Mk1 of Żbikowski et al. (2005); b) Flapper Mk2 of Galiński & Żbikowski (2005); c) conceptual

flapper redesign of Galiński et al. (2007)

the figure-of-eight motion of the link was translated to the wings. Pitch reversal

was achieved with a Geneva wheel that drove a cable drive interfacing with the

wing spar. The second flapper Mk2 had a mechanism significantly different from

the first. In this flapper, wing sweeping and plunging motions were achieved by

two spherical scotch yokes that interfaced with the wing root. One of the yokes

was oriented horizontally to raise the wing and produce plunging motions, while

the other yoke was oriented vertically to sweep the wing back and forth. The

spherical yokes flapping each wing were driven by a complex drive train and a

single motor. Pitch reversal in this design was produced via articulating a link

connecting to universal joints interfacing with the root of each wing spar. Both

flappers have been used for flow visualisation as well as flow field measurements

via PIV.

A concept of a flapper redesign was later made by Galiński et al. (2007) (Fig-

ure 2.28c) that would avoid problems with resonance that the flapper Mk2 expe-

rienced when it reached a flapping frequency of approximately 15Hz, and avoid

the large power consumption seen as flapping frequency increased. This new

conceptual redesign consisted of two wings each oscillated by a resonating spring

driven by an ultrasonic motor. The concept for controlling pitch reversal was to

use a series of latches and fenders (stops) on the wing to force wing rotation at

desired points.

The next noteworthy mechanical flapping wing apparatus that operated in air,

was that of Tarascio et al. (2005). An illustration of their mechanical flapper is

given in Figure 2.29. Their design consisted of a single motor driving a scotch

yoke that flapped the wings back and forth, while pitch reversal was achieved

by using rods fixed to the root of the wing that came into contact with stops at
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Figure 2.29: Mechanical flapper of Tarascio et al. (2005)

either end of a stroke. When the wings were at mid-stroke, they were held fixed

at a constant angle of attack by a cam attached to each wing spar. The cams

were designed to give the wing a desired angle of attack at mid stroke, and to

be bi-stable so that the wing would be in either one of two positions which were

set by the stationary stops. This apparatus was used to investigate the nature

and stability of the leading-edge vortex as well as other vortical wake structures

induced by a pair of flapping wings using flow field measurements via PIV.

Just a year later a mechanical flapping wing model was also developed by

Conn et al. (2006). Their mechanical flapper featured a parallel crank-rocker

(PCR) flapping mechanism, an illustration of which is given in Figure 2.30 along

with the flapper itself. The design of this mechanism used two crank-rockers

driven out of phase by a motor. The follower of one of the crank-rockers was

continuous with the leading-edge spar of the wing, while the follower of the

other crank-rocker extended through a slotted rod fixed to the wing root. Thus,

by driving the two crank-rockers slightly out of phase, the followers and hence

the wing would simultaneously sweep back and forth as well as pitch at either

ends of a stroke. This was similar to the operation of the MFI, where instead

of two out-of-phase double-rocker mechanisms, two out-of-phase crank-rocker

mechanisms were used. Like many other flappers, the motion of the flapper of

Conn and his colleagues was fixed during operation, although kinematics could

be altered prior to operation by changing the phase angle between the two crank-
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Figure 2.30: Mechanical flapper of Conn et al. (2006); a) parallel crank-rocker mechanism; b) working flapper

rockers. This mechanical flapper was used to measure forces as well as perform

flow visualisation to study the flow induced by flapping wings. Most recently,

it has been fitted with a more powerful motor which has increased the flapping

frequency from 7.15Hz to 13.2Hz (Conn et al., 2008).

Following the MFI mentioned earlier, another flapper emerged (from some

of the same researchers) using the same technology as the MFI. An illustration

of this flapper is shown in Figure 2.31 and it achieved powered flight (Wood,

2008); although, it was tethered to an external power source and it was not free-

flight as it slid up two vertical wires. However, it was later argued that this

‘liftoff’ may have been the result of standing waves in the guide wires rather than

aerodynamic lift, as it was shown that a simple pager motor (no wings) can travel

up two vertical wires due to standing waves (Marks, 2009). The operation of

this flapper is similar to the MFI, but much more simplified as it has only one

piezoelectric actuator driving two wings which have passive wing pitching.

In the same year as the aforementioned Mk1 and Mk2 flapper by Żbikowski

and Galiński, a mechanical flapping-wing model was developed by Banala &

Agrawal (2005) that could also produce three-dimensional wing motions in which

the wing tip traced a figure-of-eight. Their design consisted of a planar five-bar

linkage in combination with a four-bar linkage and is illustrated in Figure 2.32.

Here the five-bar linkage (ABCDE) produced the sweeping and plunging motions

while the four bar linkage (CBFG) produced the pitching motions. The motions

of this system of linkages were transmitted to the wings via universal joints and
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Figure 2.31: Mechanical flapper of Wood (2008)

Figure 2.32: Mechanical flapper of Banala & Agrawal (2005)

telescopic segments coupling the wing spar with the mechanism. The purpose

of this mechanical model was to mimic the wing motion of a hawkmoth, and to

eventually serve as the flapping mechanism for a flying prototype.

Another mechanical flapper worth mentioning is that of McIntosh et al. (2006)

which is illustrated in Figure 2.33. Their design consisted of two wings that swept

back and forth via two crank-rockers driven by a motor. To vary the wing pitch,

each wing spar extended to connect to a follower via a spring, where the follower

had a cam on the end that followed a guide as the wing swept. The guide was

designed so that when the wing was at the appropriate point in the flapping

cycle, the wing would pitch as a consequence of the cam following the profile of

the guide. This mechanical flapper was used to measure forces generated by the

wings and is intended to be ultimately used on an actual hovering MAV.

The next flapping wing model to be mentioned is that of Syaifuddin et al.

(2006). Their design which is given in Figure 2.34 consisted of two wings actuated

by a pair of four-bar linkages. Each four-bar linkage constituted a double-rocker
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Figure 2.33: Mechanical flapper of McIntosh et al. (2006); a) details of flapping mechanism; b) assembled flapper

Figure 2.34: Mechanical flapper of Syaifuddin et al. (2006); a) details of flapping mechanism; b) assembled flapper

mechanism that was actuated at one end by an oscillating piezoceramic actuator

and at the other end flapped a wing. The lengths of the linkages were chosen such

that the small oscillations of the actuator were translated into large oscillations of

the wings, similar to what was done with the MFI. Wing pitching was passive,

but was limited to certain angles of attack by stoppers at the wing pivots. This

mechanical flapper was used to measure lift forces produced by the wings and

perform flow visualisation with smoke. In a later study, it was used to to observe

effects of wing rotation, wing corrugation and the ’clap-and-fling’ manoeuvre on

the lift it produced (Nguyen et al., 2008).

The last mechanical flapper that will be mentioned here is the mechanical

flapper of Warkentin & DeLaurier (2007) which featured two pairs of wings in

tandem like a dragonfly as shown in Figure 2.35. The wings were flapped up
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Figure 2.35: Mechanical flapper of Warkentin & DeLaurier (2007); a) details of flapping mechanism; b) assembled

flapper

and down via a crank-rocker mechanism driving each wing, while wing pitching

was passive. The purpose of this flapper was to study the effect on thrust and

efficiency from changing the phase angle and wing spacing between the wing

pairs.

2.4.3 Free-Flying Flappers

This section will discuss insect-like mechanical flappers that have achieved free-

flight. The section begins with a discussion of the early free-flying flappers,

followed by an overview of the more recent ones.

Early Flappers

Probably the first free-flying mechanical flapper that mimicked insect-like flight

was the CIA funded ’Insectothopter’ which was developed in the 1970s (Adkins,

2008). This was a dragonfly-sized mechanical flapper with two pairs of wings,

and looked very similar to a real dragonfly as illustrated in Figure 2.36. The

Insectothopter was powered by a flapping mechanism consisting of a leaf spring

and a ’power bag’ in which lithium nitrate crystals were used to produce a gas to

inflate the bag. As the bag would inflate, the leaf spring would be deflected and at

a certain point the power bag would then deflate and the leaf spring would return

to its neutral position where the bag would re-inflate and the cycle would repeat.

The motion of the leaf spring was coupled to the wings to produce flapping

motion, and the gas produced in the bag was vented aft to produce extra thrust.
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Figure 2.36: DARPA and CIA funded mechanical flappers; a) real dragonfly; b) Insectothopter; c) Insectothopter; d)

flapping mechanism of Insectothopter; e) schematic of Insectothopter

With this added thrust, the Insectothopter could achieve a range of 200m and fly

for 60s with a 1gram launch weight. The purpose of the Insectothopter was to be

launched over walls and fences and to perform reconnaissance using an onboard

‘optical microphone’.

In 1985, a rubber band-powered ’Canard Biplane’ ornithopter was made by

Frank Kieser, which in the same year set a world record for indoor free-flight

duration (Jones et al., 2004). An illustration of his flapper is given in Figure 2.37.

The design consisted of two pairs of wings on top of each other, as opposed

to a tandem configuration like a dragonfly, and had a canard for longitudinal

stability. The rubber band drove a crank-rocker mechanism for each wing pair

which caused the starboard and port wing pairs to cyclically open and close.

Although this was called an ornithopter, it was insect-like in the sense that it

made use of the ’clap-and-fling’ mechanism identified by Weis-Fogh (1973) and
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Figure 2.37: Kieser’s canard biplane flapper (Kieser, 1985)

Figure 2.38: AeroVironment Inc.’s Microbat

Lighthill (1973).

The next insect-like mechanical flapper that could sustain free-flight was

AeroVironment Inc.’s ’Microbat’ MAV which was the first palm-sized ornithopter

and flew for the first time in 1998 (Pornsin-Sirirak et al., 2001). An illustration

of the Microbat is shown in Figure 2.38. Although the Microbat was referred

to as an ornithopter and had a tail, it was arguably an entomopter since it had

a flapping frequency in the insect range of 30Hz (Keennon & Grasmeyer, 2003).

In addition, leading-edge vortices were observed over the wings in wind tunnel

tests using smoke, where the leading-edge vortex is typically characteristic of

insect-like aerodynamics in contrast to bird-like aerodynamics where the flow is

generally attached (Zdunich et al., 2007). The Microbat was powered by a small

electric motor that drove a simple crank-rocker mechanism to drive the wings up

and down, and wing pitching was passive.
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Recent Flappers

Figure 2.39: DelFly (Mols, 2005)

One of the more recent free-flight capable mechanical flappers is the ’DelFly’

from Delft University of Technology built in 2005 (Mols, 2005), and pictured in

Figure 2.39. The DelFly weighed between 15 and 21 grams, and had two pairs

of wings on top of each other as the rubber band powered ornithopter of Kieser

in 1985 did. Wing flapping was achieved via a small electric motor that drove a

crank-rocker mechanism for each pair of wings, and wing pitch was passive. For

control, it had a V-tail which was actuated via onboard servos. In addition, it had

an on-board camera so it could be remotely operated.

Another free-flying flapper with the same wing configuration as the DelFly

and Kieser’s ornithopter, was the ’Mentor’ MAV which was developed at the

University of Toronto in collaboration with SRI International (Zdunich et al.,

2007). This is pictured in Figure 2.40, and the design of the Mentor flapper

consisted of a single motor driving two crank-rockers that flapped two pairs of

wings with passive wing pitch. Like the DelFly it also had a tail for control.

The purpose of the Mentor flapper was to produce a flapping-wing design for an

FMAV prompted by DARPA’s initiative to develop working MAVs.

Another flapper capable of free-flight is that of Tanaka et al. (2005), which is

a butterfly-like flapper design as shown in Figure 2.41. Their design weighed

merely 0.4 grams and had two wings which were flapped at a frequency of

10Hz via a rubber band driven crank-rocker mechanism. In addition, as seen in

Figure 2.41 it had no tail, but could still fly freely for approximately 1.5m. This

flapper was used to study the stability of the leading-edge vortex on the wings
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Figure 2.40: Mentor MAV of Zdunich et al. (2007); a) flapping mechanism; b) working flapper

Figure 2.41: Butterfly-like flapper of Tanaka et al. (2005); a) flapping mechanism; b) working flapper

for tethered and non-tethered flight by using flow visualisation with smoke in a

wind tunnel.

The latest free-flying flapper and most successful at achieving propulsion

and control with two wings just as insects do, is the Nano Hummingbird by

AeroVironment Inc., discussed previously in § 1.4.3. Figure 2.42a shows the inner

workings of the vehicle, along with the complete vehicle itself in Figure 2.42b.

Reciprocating motion of the two wings originates from a crank-rocker mechanism

which drives two wing spars forming the leading edges of each wing. Directional

control is achieved via variable tensioning of the wing membrane by shifting the

root spar (2161) relative to the main spar (2160), and by limiting the rotation of

the root spar using stops, enabling angle of attack to be separately limited on

upstrokes and downstrokes for each wing (Keennon et al., 2010). The vehicle
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Figure 2.42: Nano Hummingbird of AeroVironment Inc.; a) inner workings (Keennon et al., 2010); b) complete FMAV
(AeroVironment, 2011a)

achieves 6 degrees-of-freedom, and thus is able to translate and rotate about all

three axes.

2.5 Summary

An insect’s wing motion is the composition of separate stroking, plunging and

pitching motions, typically resulting in a figure-of-eight-like wing trajectory with

pitch reversal at either end of the stroke. Insects experience a number of aero-

dynamic mechanisms and phenomena. Kelvin’s circulation theorem assures that

vorticity is shed whenever there is a change in wing-bound circulation, the Wag-

ner effect limits the growth of lift at the start of a half-stroke, and the Kramer

effect results in sudden rises in lift when the wing abruptly pitches up. Added

mass subjects the wings to extra forces from accelerating (or decelerating) the

fluid around it, and wake capture can enable the wing to re-encounter previously

shed wake in a way that augments lift if the wing stroke is timed correctly. The

clap-and-fling mechanism and different versions of it lead to further lift still as

the proximity of the wings to each other diminishes the Wagner effect. One of

the most important lift augmenting mechanisms, the LEV, takes the form of a

spiralling vortex that grows towards the tip where it merges with the tip vortex.
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In 2D the LEV always sheds, whereas in 3D, reports are mixed as conflicting

findings of LEV stability arise above Re = 10000, which has been postulated to be

a critical Reynolds number, above which the flow becomes turbulent and the LEV

sheds. Vortex breakdown, resulting in a drop in axial vorticity and rise in vortex

size, and affected by swirl level and axial pressure gradient, has been observed in

the LEV at mid-span or more outboard at Reynolds numbers on the order of 103

and above.

Effects from Reynolds number are mixed as some reports show that lift coef-

ficients continually rise, rise and then plateau, or rise and diminish as Reynolds

number increases. As angle of attack increases, so does the size of the LEV, but

even at a 90◦ angle of attack it is stable (seen at Re ≈ 8000). Consistent reports

show lift peaks between a 40− 50◦ angle of attack, and that drag continually rises

with it. It is generally seen that advancing pitch reversal by about 5% of the flap-

ping cycle leads to peak lift, whereas any further advances or delays diminishes it.

Increasing stroke amplitude with a fixed frequency leads to a rise in lift, drag, and

lift coefficient, but a decline in drag coefficient. Keeping Reynolds number fixed

and increasing stroke amplitude has been shown to decrease drag coefficients, but

affect little change in lift coefficients. Employing figure-of-eight kinematics and

increasing plunge amplitude has been mostly shown to decrease lift. A concave

arc wingtip trajectory with higher plunge increases lift but increases drag much

more leading to poor lift to drag ratios, whereas a convex arc slightly decreases

lift but exhibits very good lift to drag ratios.

Experiments concerning insect-like flight using a liquid as the medium have

been seen in two forms: two-dimensional, and three-dimensional experiments.

Two-dimensional experiments started off studying mostly the ’clap-and-fling’ ma-

noeuvre using particle-streak photography, but eventually progressed to replicat-

ing complete flapping cycles with pure plunging and pitching with direct force

measurement and flow field measurement with PIV. Similarly, three-dimensional

experiments also started off focusing on the ’clap-and-fling’ manoeuvre and mea-

suring the induced flow velocities using particle-streak photography. Recent ap-

paratuses of this kind typically employ separate sweep and pitch control with a

force balance at the root. The most well known apparatus of this kind, Dickinson’s

Robofly, could replicate the full three degree-of-freedom motion of insect wings

while simultaneously measuring forces and flow velocities with PIV. Experiments
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with mechanical insect-like flappers in air have all been three-dimensional (with

the exception of that of Bennett (1977)). Designs were originally quite simple (yet

effective) using materials like rubber bands, music wire and cellophane tape, and

aerodynamic forces were deduced by measuring induced velocities and using

momentum theory. Recently, mechanical flappers of this kind have generally

become more complex with multiple degrees of freedom and complex flapping

mechanisms, and have been used for direct-force measurement in conjunction

with PIV measurements. As for free-flying insect-like flappers, the first design

consisted of a unique gas-driven spring oscillator driving a pair of wings, whereas

today this type of flapper typically consists of a motor driving a crank-rocker cou-

pled directly to a pair, or two pairs of wings and a conventional tail for control

(except for the Nano Hummingbird which has no tail).
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Research Aims & Methodology

This chapter presents the aims of the present work, and outlines the method by

which the aims will be achieved. The chapter starts with a discussion of some

of the gaps in the present knowledge of insect-like flight relevant to FMAVs,

which leads into the aims of the present study that intend to fill some of these

gaps. Following this is a discussion and justification of the methodology that is

employed in this study to meet the aims. The proposed method is to employ

a flapping-wing mechanical model (‘flapper’) in a series of experiments. The

necessary requirements for this ‘flapper’ to meet the research aims are also given.

Before proceeding, it should be mentioned that this work focuses on flight in the

hover condition, which is the most demanding phase in insect flight in terms of

power, and it coincidentally simplifies the aerodynamics, and has been the focus

of most past studies.

3.1 Aims

From the previous chapter it can be seen that there are a number of points of

concern for FMAV development. The first of these is the stability of the preceding

LEV. As mentioned in the preceding chapter, above Re = 10000 conflicting

reports of LEV stability arise, and it has been postulated that the LEV becomes

turbulent above this value and sheds. This is of particular interest to FMAVs

as they will operate at Reynolds numbers on the order of 104, and an unstable

LEV could potentially cause significant fluctuations in lift that would hamper

operation and control. Furthermore, LEV shedding would lead to an increase in

drag, particularly at outboard sections of the wing which would result in greater

torque requirements to drive the wing, and hence lower efficiency (Ansari et al.,

2008b). Therefore, one of the questions that will be addressed in this thesis is

whether or not the LEV is stable at FMAV-scale Reynolds numbers.

Another point of concern to FMAVs is the fact that kinematic effects have not

been adequately explored, as there are relatively few studies on the subject. Kine-

matic effects are of great interest to FMAVs because knowledge of how different
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kinematic parameters impact the aerodynamic forces is a prerequisite to FMAV

design. For example, when designing the flapping mechanism for an FMAV, the

designer would need to know what flapping frequencies and stroke amplitudes

the mechanism must be able to achieve to enable the vehicle to support its weight.

First of all, as discussed in the preceding chapter, effects of Reynolds number on

force coefficients are unclear. Effects of Reynolds number on the flow structures,

such as changes in LEV stability, structure and axial flow, have also not been

adequately explored. Thus the question of how Reynolds number affects lift and

the flow structures will be addressed in this thesis.

Effect of angle of attack on the flowfield, including the form and structure of the

LEV has been investigated very little, especially above Re = 10000. Experiments

addressing this, as well as angle-of-attack effects on the forces would be useful

and thus will be investigated here.

Rotation phase effects have mostly only been explored at Reynolds numbers

below 200, with the exception of Sunada et al. (2001) who looked at Re = 1000.

However, this last work was performed with a 2D translating wing which does

not completely replicate the flow on an insect wing, as 2D experiments lack the

essential axial flow for stabilising the LEV. Thus, it currently remains unknown

what the effects of rotation phase are on the forces and flow structures at the much

higher Reynolds numbers (of the order 104) needed for FMAVs. An investigation

that establishes these effects at this scale would be of interest as rotation phase has

been shown to be quite effective at augmenting lift in the studies performed at

much lower Reynolds numbers. Therefore, the effect of rotation phase at FMAV

scale on the lift, as well as on the flow structures will be studied in this thesis.

Similar to rotation phase effects, the effect of stroke amplitude on forces has

only been investigated below Reynolds numbers of 2000, and effects on the flow

have been studied up to 8000. Thus, stroke amplitude effects on the forces and

flow at FMAV scale have not been established, and will be addressed here.

Wingtip kinematics with varying plunge amplitude effects have also only

been performed at lower Reynolds numbers, where the highest explored is Re ≈

3700, and most studies were done at Reynolds numbers on the order of 102.

Hummingbirds which operate at the FMAV scale exhibit figure-of-eight wingtip

kinematics, thus, an FMAV that makes use of this wingtip trajectory may exploit
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some unknown benefit. This has yet to be answered, as studies on this subject have

not been performed up to this scale. Therefore, this thesis will also investigate

the effects on lift and the flow structures from employing figure-of-eight wingtip

kinematics with varying plunge amplitude.

The aforementioned questions that will be addressed in this thesis can be

summarised by two general questions:

• Is the LEV stable on an insect-like flapping-wing at FMAV scale?

• How are the lift and flow structures on an insect-like flapping-wing at FMAV

scale affected by flapping kinematics?

Expanding on these general questions and adding other points of interest, the

particular questions to be addressed are as follows:

• How do the flow structures generated by an insect-like wing at FMAV scale

evolve over a half-stroke? This will answer the question of LEV stability, that

is: is there evidence of LEV shedding throughout a half-stroke, or is there a

single LEV present that stays relatively fixed with respect to the wing?

• Does vortex breakdown occur in the LEV? If it does, then why does it occur,

where on the wing does it form, and how does it evolve?

• Is axial flow present through the LEV core at the FMAV scale?

• What is the contribution of the LEV to the mean lift generated?

• How do the kinematic parameters listed below affect the mean lift and flow

structures, particularly the LEV, at FMAV scale? That is, when each one

of these parameters is independently varied while all others are kept fixed,

how are the mean lift and flowfield affected?

– rotation phase

– angle of attack

– Reynolds number

– stroke amplitude

– figure-of-eight kinematics with varying plunge amplitude

PhD Thesis: Nathan D B Phillips
∣∣∣ 73



3.2. Methodology

• What is the effect of wing planform shape on the flow structures produced?

This means, if flapping kinematics are held fixed and wing planform is

varied, how does the flow change?

3.2 Methodology

To achieve the proposed research aims, the fundamental requirement is that an

insect-like wing must be flapped with insect-like kinematics at the FMAV scale,

while permitting separate control of the listed kinematic parameters to investigate

their effects. This will be achieved experimentally, thus requiring the design and

development of a flapping-wing mechanical model, a ‘flapper’. One could argue

that using live insects is another potential option as larger insects and humming-

birds operate at FMAV scale Reynolds numbers. However, using a live insect or

hummingbird would give the experimenter no control over individual kinematic

parameters, and it has been noted that tethered specimens behave differently

than in free-flight (Willmott & Ellington (1997), Sane & Dickinson (2001)), thus

complicating the ability to measure representative aerodynamic forces. Thus, a

mechanical ‘flapper’ is the most appropriate option as it can enable control of

flapping kinematics and parameters.

From the previous chapter, it can be seen that there are a number of flapper

types to choose from, as either a 2D or 3D flapper operating in liquid or air, or

a free-flying flapper can be employed. Using a free-flying mechanical flapper is

the least useful option for studying insect flight as designs of this type are very

limited in terms of what the wings can do. Even the Nano Hummingbird by

AeroVironment Inc. has limited control over its wings, for instance stroke ampli-

tude, rotation phase, wingtip kinematics and plunge amplitude cannot be varied.

Thus, while the a free-flying flapper like the Nano Hummingbird is appropriate

and very successful at achieving flight, it is not suitable for an experimental study

as few parameters can be controlled. 2D experiments are also inappropriate to

meet the research aims. As was mentioned before, 2D experiments do not com-

pletely replicate the flow on an insect wing, as the very important axial flow

through the LEV core is lacking in such experiments. The remaining options are a

3D flapper that operates in either liquid or air. While experiments in a liquid have

certain advantages, such as enabling the wing to be slowed down thereby simpli-

74
∣∣∣ PhD Thesis: Nathan D B Phillips



Chapter 3. Research Aims & Methodology

fying mechanism design and control, and ease of seeding the fluid, a flapper that

operates in air has been chosen.

A flapper that operates in air on the FMAV scale would fully replicate the

conditions of a real FMAV. Although experiments in liquid are dynamically

scaled (preserving Reynolds number) to match the flow conditions of insects or

FMAVs, such experiments may not replicate other aspects of FMAV conditions

that are potentially important. For instance, flappers that operate in air experience

much higher vibrations than those in a liquid, purely because they have to operate

at much higher speeds. These vibrations may be significant enough to affect

the wings and impact the aerodynamics. All air flappers that have been used

above Re = 10000 have reported or speculated the presence of LEV shedding,

which include those of Ellington & Usherwood (2001); Ramasamy et al. (2005);

Ramasamy & Leishman (2006). On the other hand, above this Reynolds number,

there have been reports of a stable LEV on a flapper that operates in liquid

(Lentink & Dickinson, 2009). Thus, it could be possible that on an insect-like

flapping wing above Re = 10000 the LEV is stable, but with the addition of

vibrations from the FMAV′s flapping mechanism, the LEV destabilises. With

their ‘flapper’ that operated in air, Ellington and his colleagues reported potential

reduced LEV stability caused by gearbox vibrations (van den Berg & Ellington,

1997a). If flapping mechanism vibrations do in fact impact the aerodynamics, then

flapping-wing experiments would have to include a realistic level of vibration on

the wings to replicate actual FMAV conditions, as FMAVs would exhibit a certain

level of vibration. This is of course all speculation, however, the main point is

that any unknown important aspects of FMAV operating conditions would be

captured in such experiments that use a flapper that operates in air. Essentially,

a flapper of this type would be an actual FMAV, and thus, there would be no

question of the direct applicability of experimental findings to an FMAV.

Another reason for choosing a flapper of this type is that it serves as a stepping

stone towards a working FMAV, a point also made by Mueller & DeLaurier

(2001). For example, issues encountered and lessons learned would be applicable

to FMAV design. In addition, a device of this kind could serve as a future test bed

for FMAV wing designs, as wings could be tested for their performance under

certain kinematics, and then installed directly on an FMAV.

Concerning the design of a flapper to be used in the present work, there are a
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number of lessons to be learnt and points to be taken from past flappers. First of all,

many flappers including those of Bennett (1966), Maxworthy (1979), Tarascio et al.

(2005) and Syaifuddin et al. (2006) all use mechanical ’stops’ to limit the wing’s

angle of attack. This method of controlling pitch is unattractive because each time

the wing comes into contact with a hard stop, the wing is essentially impacted

with an impulsive force that rapidly pitches the wing. An impulsive force is of

a high frequency and thus is likely to excite unnecessarily large vibrations in the

wing. From the point of view of studying attached vortices over a wing, this is

undesirable because any unnecessary wing vibrations could potentially force LEV

shedding. Thus, using this method of pitch reversal could potentially show flow

features that are specific to a mechanism that uses this pitch reversal method.

Another lesson is that mechanical complexity and the use of backlash-prone

components like gears and cams should be minimised. Bennett reported problems

in his flapper with lost motion in the wing due to clearances between components

such as the cam and the bobbin (Bennett, 1970). The flapper of Conn and his

colleagues reported problems with friction in the gears and misaligned shafts,

resulting in reduced flapping frequencies (Conn et al., 2007). In addition, the Mk2

flapper of Galiński, which had a complex drive train of gears, had problems with

vibration as it would unintentionally resonate at a certain frequency (Galiński

et al., 2007). Also, Ellington’s flapper, which used a flapping mechanism consist-

ing of a number of bevel gears, had to use anti-backlash springs to reduce backlash

(van den Berg & Ellington, 1997b), but this added to the mechanical complexity.

Thus, using such components should be avoided as they increase complexity and

reduce the positional accuracy of the flapping wing.

Another point to be noted from past flappers is that most had wings with

only two degrees of freedom, so they could only sweep back and forth, and pitch.

This is especially true for flappers that operated in air, where only the flappers of

van den Berg & Ellington (1997b), Żbikowski et al. (2005), Galiński & Żbikowski

(2005) and Banala & Agrawal (2005) could achieve true insect-like wing motion

with sweeping, plunging and pitching motions. Flappers with only two degrees

of freedom are limiting because they cannot replicate the plunging motions that

are clearly present in insect-like kinematics, as was seen in the previous chapter.

The last point that will be noted from previous mechanical flappers is that, with

the exception of Ellington’s flapper, none of the flappers that operated in air that
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had wings with at least three degrees of freedom, had adjustable kinematics. Some

flappers like that of Tarascio et al. (2005) and Conn et al. (2007), were adjustable

in the sense that kinematics could be set before operation by reconfiguring parts;

however, during operation the wing motion was fixed. This severely limits the

number of kinematic parameters that can be altered, thus limiting the different

kinematic effects that can be explored.

With the above points and the research aims in mind, the requirements for the

flapper of the present study are listed as follows, where the flapper should:

• operate in air on the FMAV scale, that is, it should employ a wing that is of

FMAV size (∼ 150mm wingspan)

• permit separate control of stroke, plunge and pitch

• allow flapping kinematics (and thus kinematic parameters) to be altered

without requiring mechanical parts to be changed or altered

• achieve a maximum stroke amplitude of at least 120◦

• achieve a maximum plunge amplitude of at least 20◦

• achieve pitch angles at least in the range of 45 − 135◦

• allow instantaneous flapping mechanism position to be measured; this is

required to recover actual flapping mechanism kinematics

• enable instantaneous wing position to be measured; this is required to re-

cover the actual wing flapping kinematics and kinematic parameters

• allow at least lift to be measured

• enable flowfield measurement via particle image velocimetry (PIV); this

implies a level of optical access around the wing

• have a highly repeatable wing position, which implies a tight tolerance

on flapping mechanism position; this is required to enable kinematic pa-

rameters to be held virtually fixed, and to give useful force and flowfield

measurements

• achieve flapping frequencies up to 20Hz
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• have no mechanical hard stops

• avoid backlash-prone components, such as gears and cams

• have a minimal number of moving parts

• allow different wing designs to be mounted to the flapping mechanism

The design of a flapper to satisfy the requirements will now be addressed in

the next chapter.
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Flapperatus

Recalling from Chapter 3, the proposed method to achieve the research goals is

to conduct a series of experiments with a flapping-wing mechanical model (a

‘flapper’). This chapter presents the design, development and performance of

the developed mechanical flapper apparatus, termed the ’flapperatus’. First, the

original system concept for the flapperatus is outlined. Following this are a num-

ber of sections outlining the flapping mechanism design and development. This

starts with the evolution of the flapping mechanism conceptual design, followed

by a presentation of the mechanism output coordinate systems that rotate with the

wing. Details of the form and operation of the final flapping mechanism concep-

tual design are given next. After this, a kinematic analysis of the mechanism, as

well as a description of a dynamic model, and the component designs are given.

The stress analysis performed on the components to arrive at the final detailed

design is then discussed. The final detailed design of the flapping mechanism is

then presented.

The next section and subsections describe the form of the complete flappera-

tus system and its functional elements (other than the flapping mechanism). The

main subsystems of the flapperatus are described. This begins with the flapping

mechanism controller, which actuates the flapping mechanism, followed by the

mechanism position measurement system, which measures the mechanism posi-

tion and synchronises the wing with the measurement devices. Next, the flowfield

/ wing position measurement system which measures the flow over the wing and

also the position of the wing itself is discussed. This includes a description of the

PIV setup used in experiments. The force measurement system which measures

lift on the wing is then described, and finally the wing designs for the flapperatus

are presented.

The final section to this chapter illustrates the performance of the flapperatus

by presenting results of high-speed photography which show the flapping kine-

matics achieved by the wing. In addition, the repeatability of the mechanism and

wing position are discussed.
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4.1 System Concept

Figure 4.1: Flapperatus conceptual system block diagram

The system concept for the flapperatus outlined from the requirements at the

end of Chapter 3, is given in the system block diagram in Figure 4.1 which illus-

trates all of the functional elements and the connections between them. At the start

of the process, the user inputs the necessary kinematic parameters, as illustrated,

to define the flapping kinematics of the wing using the expressions given in Ap-

pendix A. The flapping mechanism controller then outputs the necessary input

kinematics for the flapping mechanism (the ‘mechanism input kinematics’). Next,

the flapping mechanism outputs kinematics (the ‘mechanism output kinematics’)

to the wing, which are the kinematics that the flapping mechanism ‘demands’ that

the wing follows. The actual kinematics that the wing produces, the flapping kine-

matics, will however differ from the mechanism output (‘demanded’) kinematics.

This is because the wing will flex, and hence will not follow the mechanism output

kinematics exactly. If the wing were infinitely rigid then the flapping kinematics

would be the same as the mechanism output kinematics. Lift, flowfield measure-

ments, and instantaneous wing position are taken from the wing via the force,

flowfield and wing position measurement systems respectively. The mechanism

position measurement system monitors the actual flapping mechanism position
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to enable synchronous flowfield and wing position measurements. The flapping

mechanism position can be correlated to the ‘demanded’ wing position, thus, for

example, when the wing is at mid-stroke according to the ‘demanded’ kinematics

(the mechanism output kinematics) flowfield and instantaneous wing position

measurements can be taken at that point in time. End outputs to the user are the

mean lift, flowfield measurements, and instantaneous flapping mechanism and

wing position. With the history of flapping mechanism and wing position, the

actual mechanism output kinematics, flapping kinematics, and actual kinematic

parameters can be recovered.

4.2 Flapping Mechanism

From the system concept shown previously, the most important element is the

flapping mechanism. This is also the most demanding element in terms of its

required operation as it must have three degrees-of-freedom, operate at high

speeds, and have a very repeatable motion. The design and development of the

flapping mechanism will now be described.

4.2.1 Conceptual Design Evolution

As mentioned in Chapter 2, a very limited number of past flappers were capable

of producing sweeping, plunging and pitching motions. That is, most could

only perform sweeping and pitching motions. Of the flappers that were able to

produce the three ranges of motion, the mechanism used in the design of the

Mk2 flapper of Galiński & Żbikowski (2005) was initially selected for the present

flapperatus’ flapping mechanism. This mechanism was a double spherical Scotch

yoke with a universal joint, and it was selected because it is capable of achieving

a wide range of flapping kinematics. Other mechanisms in comparison would

require linkage lengths to be varied in order to alter kinematics, whereas in the

design of the flapping mechanism of the Mk2 flapper, only the input motion

profiles of the scotch yokes and the actuated universal joint need to be altered. In

this flapper these input motion profiles were fixed, however, they could be made

variable when implemented into the flapperatus. Thus, the first design of the

flapping mechanism for the flapperatus consisted of two spherical Scotch yokes
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Figure 4.2: Flapping mechanism design 1: double spherical Scotch yoke with universal joint (after Galiński & Żbikowski

(2005))

to produce the sweeping and plunging motions, and a universal joint to permit

pitching motions. An illustration of this design is given in Figure 4.2.

It was soon discovered that this first design would only be able to achieve

a maximum stroke amplitude of 90◦ because the maximum operational angle

(maximum permissible misalignment between two shafts) of a single universal

joint is 45◦. This was a problem because one of the requirements laid out for the

flapperatus was that it should achieve a maximum stroke amplitude of at least

120◦, to be representative of typical insects. From this point, multiple methods

of coupling a stationary rotating shaft to a moving rotating shaft with a varying

misalignment were explored. Eventually a solution was found that permitted

a maximum stroke amplitude of 120◦, which was a telescopic double universal

joint. This is merely two universal joints with a telescopic segment in between the

two. With this type of coupler a maximum operation angle of 60◦ is permissible.

Thus the single universal joint in the first design was exchanged for a telescopic

double universal joint. In addition, the Scotch yoke that controlled stroke was

exchanged for a ring with an attaching link that would passively follow the plunge

movements of the remaining Scotch yoke, but still permit sweeping movements.
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Figure 4.3: Flapping mechanism design 2: single spherical Scotch yoke with telescopic double universal joint

This modification was made to reduce backlash in the mechanism. Figure 4.3

illustrates the second design of the flapping mechanism for the flapperatus.

The next point of concern was the use of the Scotch yoke in the second design.

First of all, the required clearances between the slot of the Scotch yoke and the

sliding element that follows it would lead to undesirable levels of backlash in the

plunge direction. Another problem was that as the stroke angle approaches +90◦

or −90◦, the range of achievable plunge angles approaches zero. For example, if

the slot of the Scotch yoke extended a full 180◦ and the wing was at a 90◦ stroke

angle, then the wing could no longer be moved in the plunge direction. This is a

problem because with a figure-of-eight wingtip trajectory, high plunge angles are

required when the absolute stroke angle is also high. Thus, an alternative method

of stroking and plunging the wing was sought.

For a new stroking and plunging mechanism, inspiration was drawn from the

three degree-of-freedom ‘Agile Eye’ of Gosselin & Hamel (1994) and its simplified

two degree-of-freedom version of Gosselin & Caron (1999), both from Université

Laval. These are shown in Figure 4.4, where both are spherical mechanisms that

employ linkages to rotate a camera about two or three axes. The three degree-of-

freedom Agile eye offers a particular advantage as it employs parallel kinematics.

This means that all motors work together to produce a panning (stroking), tilting
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Figure 4.4: Versions of ‘Agile Eye’; a) 3DOF Agile Eye schematic (Gosselin & Hamel, 1994); b) actual 3DOF Agile Eye

embodiment (Laval, 2011); c) 2DOF Agile Eye schematic (Gosselin & Caron, 1999); d) 2DOF Agile Eye embodiment (Laval,

2011)

(plunging) or torsion (pitching) motion of the camera, rather than individual

motors controlling each of these actions independently. The advantage of this is

that with a given set of motors, much higher angular accelerations of the payload

can be achieved. This enables the Agile eye to achieve angular accelerations of

over 20000deg/s2 (Laval, 2011). To produce an insect-like flapping wing trajectory,

insect wings must undergo very high angular accelerations; thus, a flapping

mechanism that uses parallel kinematics as the Agile eye does, would be ideal for

this application.

Using the Agile eye for inspiration, a novel two degree of freedom parallel

spherical mechanism was conceived that would perform the required stroking

and plunging motions of the wing. This mechanism (Figure 4.5) consisted of
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Figure 4.5: Flapping mechanism design 3: 2DOF parallel spherical mechanism with telescopic double universal joint

two concentric rings with two linkages to couple their motion. This mechanism

design was conceived from a planar parallel mechanism consisting of two parallel

sliders joined by a pair of links. Stroking and plunging motions were produced

by this mechanism by rotating the concentric rings in the same and opposite

directions respectively. The advantage of the new mechanism was that backlash

in the system would be reduced drastically since all Scotch yokes (which are

backlash-prone) were removed. In addition, the limitation on plunge angles at

larger absolute stroke angles was eliminated. Thus, this new design was more

successful at meeting the formulated requirements. Details on the operation of

the mechanism will be given in greater detail in following section. The method

of controlling pitch, however, remained the telescopic double universal joint.

The final design modification was the removal of the telescopic double uni-

versal joint which was replaced by a spherical slider-rocker mechanism. This re-

duced the part count and removed the constraint on maximum stroke amplitude

imposed by the maximum operational angle of the telescopic double universal

joint. With this design modification, the maximum stroke amplitude is infinite

since all drive shafts become collinear as illustrated in Figure 4.6. In addition,

all linkages could be made into full rings, which permits the centre of mass of
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Figure 4.6: Flapping mechanism design 4: 3DOF parallel spherical mechanism

the mechanism to be located at the spherical centre of rotation. This would dras-

tically reduce vibrations during operation. Thus, the final conceptual design of

the flapping mechanism for the flapperatus is that shown in Figure 4.6, which is

classified as a three degree-of-freedom 3-RRR parallel spherical mechanism. The

form and operation of this mechanism will be discussed in greater detail shortly.

4.2.2 Mechanism Output Coordinate Systems

Before proceeding, a description should be given of the mechanism output co-

ordinate systems that rotate with the payload (wing). These are illustrated in

Figure 4.7. The xmec1ymec1zmec1 coordinate system is defined relative to the iner-

tial axis, in the same manner that the xyz coordinate system fixed to the wing

in Figure 2.4 (page 19) was defined. However, its orientation is defined by the

mechanism stroke and plunge angles, φmec and θmec respectively. These are the

stroke and plunge angles according to the mechanism output kinematics, thus,

these are the ‘demanded’ stroke and plunge angles of the wing. In the same
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Figure 4.7: Mechanism output coordinate systems

fashion that the xwywzw frame in Figure 2.4 is defined, the xmec2ymec2zmec2 axis is

defined relative to the xmec1ymec1zmec1 axis by the mechanism pitch angle αmec. This

is the pitch angle according the mechanism output kinematics. Thus, φmec, θmec,

and αmec over time define the mechanism output kinematics. Mechanism output

kinematic parameters including Φmec, Θmec, τmec, and αmidmec describe the mecha-

nism output kinematics just as the kinematic parameters of the wing itself (Φ, Θ

etc.) describe the flapping kinematics as discussed in § 2.1.3 (page 19). Thus, for

example, Φmec is the stroke amplitude that the flapping mechanism commands

the wing to perform.

As discussed in the first section of this chapter, with flexible wings the flapping

kinematics (φ, θ, α), and thus, kinematic parameters (e.g. Φ) will differ from the

mechanism output kinematics (φmec, θmec, αmec) and mechanism output kinematic

parameters (e.g. Φmec). If wing flexibility is ignored then the xmec1ymec1zmec1 and xyz

coordinate systems become the same, and similarly, the xmec2ymec2zmec2 and xwywzw

coordinate systems become the same. Thus, mechanism output kinematics and

flapping kinematics also become the same. For the remainder of this chapter up

to (but not including) the last section, wing flexibility is irrelevant, thus, flapping

kinematics are presented in place of mechanism output kinematics. For example,

φ represents the stroke angle of the wing (φ) and the mechanism stroke angle
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(φmec).

4.2.3 Form & Operation

The final flapping mechanism for the flapperatus described earlier will now be

discussed in more detail. As mentioned, the mechanism that has been developed

is a three degree-of-freedom 3-RRR parallel spherical mechanism. Here, 3-RRR is

standard notation used to describe the architecture of parallel mechanisms. This

indicates that there are three independent kinematic chains where each chain

starts with a revolute input (denoted by the underline). Each input then connects

to the end effector via a kinematic chain consisting of two revolute joints. In order

to understand the operation of this mechanism, it must be described in parts.

Figure 4.8: 2DOF planar parallel mechanism

Figure 4.9: 2DOF parallel spherical mechanism

First, the manner in which the mechanism produces stroking and plunging

motions will be described. To aid in this explanation, first consider a planar

parallel mechanism consisting of two sliders joined by two links as shown in
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Figure 4.8. From this figure, it can be seen that if both sliders (points B and C)

translate together in the positive x direction by the same amount, then this will

produce a translation of point A in the positive x direction, and vice versa for the

negative x direction. A translation of point A in either the positive y or negative

y direction may be achieved by moving each slider in opposite directions by the

appropriate amount as illustrated. If this planar mechanism is converted to its

spherical equivalent, then the x, y planar coordinate system will be replaced by

a φ, θ spherical coordinate system. A radial ’r’ coordinate in this case is not

required since, for purposes of generality, spherical mechanisms are defined on

the surface of a ’unit’ sphere of radius one (Chiang, 1996). In this conversion

from planar to spherical, lines of constant x become lines of longitude, and lines

of constant y become lines of latitude. The equivalent spherical mechanism is

illustrated in Figure 4.9, where links L1-L4 and points A, B, C correspond to the

same links and points in the planar version in Figure 4.8. It can be seen that the

sliders (L1 and L2) in the planar version take the form of links L1 and L2 in the

spherical version, which both have the same axis of rotation (axis Z). One can see

that these links are the spherical equivalent of the planar sliders by considering

that if links L1 and L2 are rotated about their common axis of rotation then this

will cause points B and C to translate along lines of constant θ (latitude lines).

This is analogous to the planar case where points B and C translate along lines

of constant y. Thus, analogous to the explanation given for the planar version, if

links L1 and L2 are rotated in the same direction by the same degree then this will

cause point A to translate along a line of constant latitude in the same direction.

This is a stroking motion. If links L1 and L2 are rotated in opposite directions by

the appropriate amount then this will cause point A to translate along a line of

constant longitude, which is a plunging motion. It should be mentioned that the

axis of rotation of all revolute joints must intersect the spherical centre of rotation

for this mechanism to work as described. By fixing a wing through point A and

the centre of rotation of the mechanism, the mechanism can orient the wing by

specified φ and θ angles.

The remaining portion of the mechanism that adds the third degree of freedom

to permit pitching will now be described. As before, first consider the planar

mechanism from Figure 4.8 but redrawn in Figure 4.10 with an additional slider

and links to give a third degree of freedom. These additional components form a

PhD Thesis: Nathan D B Phillips
∣∣∣ 89



4.2. Flapping Mechanism

Figure 4.10: 3DOF planar parallel mechanism

Figure 4.11: 3DOF parallel spherical mechanism

slider-rocker mechanism, with the rocker being link L7 pivoting about point A. It

can be seen that varying the position of slider L5 for any given location of point A

in the xy plane (which is dictated by the positions of sliders L1 and L2) will allow

L7 to be rotated about point A.

Converting this additional slider-rocker mechanism to its spherical equivalent

and adding it to the spherical mechanism described previously, results in the com-

plete three-degree-of-freedom parallel spherical mechanism, which is illustrated

in Figure 4.11. As before, the labeling of linkages and points on this mechanism

corresponds to the same links and points on its planar counterpart in Figure 4.10.

Similar to sliders L1 and L2 of the planar version, slider L5 becomes link L5 in
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Figure 4.12: True embodiment of 3DOF parallel spherical mechanism

the spherical version which has the same axis of rotation (axis Z) as links L1 and

L2. This results in point E translating along a line of constant θ (latitude) for a

given rotation of link L5. Thus, similar to the planar version, for a given position

of point A, a rotation of link L5 will push or pull the coupler link L6 which will

cause link L7 (the rocker) to rotate about the common revolute joint between links

L3, L4, and L7 at point A. As before, the axis of rotation of all revolute joints must

intersect the spherical centre of rotation for the mechanism to function in this

manner. If a wing is fixed to link L7, as illustrated, with its pitch axis of rotation

coinciding with the axis of rotation (axis A) of the common revolute joint at point

A, this complete mechanism will be capable of orienting a wing by specified φ,

θ, and α angles. The input links to this mechanism are links L1, L2 and L5,

thus mechanism input kinematics are imposed on these links, and the mechanism

output kinematics are given to the wing fixed to link L7.

The form of the mechanism given in illustrations thus far in Figure 4.9 and

Figure 4.11, would not be a practical embodiment due to play that would be

encountered in the bearings, since the bearings would have to support large

moments. This problem can be alleviated by turning all linkages into full rings

and adding revolute joints that are collinear with the existing joints. Figure 4.12

illustrates the true embodiment of the three degree-of-freedom parallel spherical

mechanism. Here, all linkages have been made into full rings, and revolute joints

have been added collinearly with the existing ones, which can be seen in the

front and back views of linkages L1 and L3. In this design, links L1, L2 and L5

subtend angles of 60◦, 120◦, and 25◦ respectively, and all other links subtend an

angle of 90◦. The method by which these numbers were arrived at will be given
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in a later in § 4.2.6. With this configuration, the bearings will not be subjected

to moments due to the additional joints, thus making the mechanism less prone

to play and more stable. In addition, turning all linkages into full rings allows

the mechanism centre of mass to be located at the spherical centre of rotation.

The wing however, would displace the centre of mass, but this could be avoided

by using a counterweight on the other side of the mechanism, as illustrated in

Figure 4.12. Therefore, the entire mechanism’s centre of mass can be located at

the spherical centre of rotation, thereby minimising vibrations. This mechanism

and its two degree-of-freedom version (which excludes the portion that enables

pitching) are patent pending (Phillips, 2010).

4.2.4 Kinematic Analysis

Before proceeding, a description of the parallel kinematics of the three degree-

of-freedom parallel spherical mechanism should be given. As can be seen by

observing the planar version of the mechanism in Figure 4.10, the position of point

A and the angle of the rocker link L7 are both functions of the positions of all three

sliders. That is, the positions of all sliders together control all degrees-of-freedom,

rather than each slider independently controlling a respective degree-of-freedom.

The same is true for the spherical version of the mechanism, where the φ, θ, and

α angles of an oriented wing are all a function of the positions of links L1, L2, and

L5. This is the essence of parallel kinematics, in which a platform is manipulated

by multiple independent kinematic chains (Bonev, 2007). In this case, link L7 (to

which the wing is rigidly connected) is the platform which is manipulated by links

1 & 3, links 2 & 4 and links 5 & 6 which constitute three independent kinematic

chains. The inverse kinematics of the mechanism will now be performed.

The portion of the mechanism that produces the stroking and plunging mo-

tions is illustrated in the left of Figure 4.13, whereas the portion that produces the

pitching is shown to the right. Linkages and points labeled correspond to those

shown previously. Before proceeding, recall that the wing spar passes through

the centre of rotation and point A, and pitches with link L7. The positions of input

links L1, L2 and L5 respectively denoted by φL1, φL2 and φL5, for an arbitrary set

of φ, θ, and α angles of the wing can be found using the spherical law of cosines

to be:
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Figure 4.13: Position of Links L1-L4 for arbitrary location of point A (left); position of Links L5-L7 for arbitrary location

of point A (right)

φL1 = φ + cos−1(
cosL3 − cosL1 sinθ

sinL1 cosθ
) (4.1)

φL2 = φ + cos−1(
cosL4 − cosL2 sinθ

sinL2 cosθ
) (4.2)

φL5 = φ − β1 +
α − π

2

|α − π
2 |
β2 (4.3)

where:

β1 = cos−1(
cosL6 − cosL5

√
1 − (cosL7 sinθ + sinL7 cosθ sinα)2

sinL5
√

1 − (cosL7 sinθ + sinL7 cosθ sinα)2
) (4.4)

β2 = cos−1(
cosL7 − sinθ (cosL7 sinθ + sinL7 cosθ sinα)

cosθ
√

1 − (cosL7 sinθ + sinL7 cosθ sinα)2
) (4.5)
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Figure 4.14: Example flapping kinematics and wingtip trajectory; f = 20Hz, αmid = 45◦, τ = 0%, Φ = 120◦, Θ = 20◦,

figure-of-eight wingtip trajectory

By observing Figure 4.13, it can be seen that when the pitch angle α (measured

clockwise from the great circle perpendicular to the local line of longitude at point

A) is less than 90◦ then φL5 = φ−β1−β2. On the other hand, when α is greater than

90◦ then φL5 = φ − β1 + β2. Therefore, the expression in front of β2 in Equation 4.3

is required to make β2 of the appropriate sign. An alternative way of defining the

angular positions of input links L1, L2, and L5 is to define them relative to their

positions when the wing is at the ‘neutral’ position, which is when φ = 0◦, θ = 0◦,

α = 90◦. In this manner, Equations 4.1-4.3 become:

φL1 = φ + cos−1(
cosL3 − cosL1 sinθ

sinL1 cosθ
) − cos−1(

cosL3
sinL1

) (4.6)

φL2 = φ + cos−1(
cosL4 − cosL2 sinθ

sinL2 cosθ
) − cos−1(

cosL4
sinL2

) (4.7)

φL5 = φ − β1 +
α − π

2

abs(α − π
2 )
β2 + cos−1(

cosL6 − cosL5 cosL7
sinL5 cosL7

) (4.8)
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Figure 4.15: Example mechanism input kinematics required to produce flapping kinematics in Figure 4.14

With these new expressions, φL1 throughφL5 become zero whenφ = 0◦, θ = 0◦,

and α = 90◦. Thus Equations 4.6-4.8 combined with Equations 4.5 and 4.4 provide

the azimuthal positions of input links L1, L2 and L5, as a function of φ, θ, α

and the link ‘lengths’ denoted by the same names of the links themselves. For

example the ‘length’ of link L1 is ‘L1’. The length of a given link is not an arc

length, but rather an angle that the link subtends on a sphere. For example, a link

which extends from the north to south pole on a sphere along a line of longitude

would have a length of 180◦. Therefore, with a given set of flapping kinematics,

the angular position, velocity, and acceleration of links L1, L2, and L5 required to

achieve the given kinematics, may be determined using these equations and their

first and second time derivatives. These equations are derived in full along with

their first and second time derivatives in Appendix B. In addition, this appendix

also derives expressions for the φ, θ, and α angles of the wing and their first

and second time derivatives as functions of the angular positions, velocities, and
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accelerations of the input links L1, L2, and L5.

As an example, Figure 4.14 illustrates a set of flapping kinematics in which the

wingtip traces a figure-of-eight, with f , αmid, τ, Φ, and Θ of 20Hz, 45◦, 0%, 120◦, and

20◦ respectively, and a constant pitch angle for 50% of the cycle. As mentioned,

taking these kinematics and inputting them into Equations 4.6-4.8 and their first

and second time derivatives yields the position, velocity and acceleration of links

L1, L2 and L5, which are plotted in Figure 4.15. These are the mechanism input

kinematics to the flapping mechanism. It should be noted that in this example,

the angles that links L1, L2 and L7 subtend are 60◦, 120◦, and 25◦ respectively, and

all remaining links subtend an angle of 90◦.

4.2.5 Dynamic Modeling

To determine required forces and moments to drive the flapping mechanism

under a given set of kinematics, as well as the loads that each component will be

subjected to, a rigid-body dynamic model was formulated. This was evaluated

using the matrix method, in which equations for the sum of forces and moments

for all components are combined to give a system of n equations and n unknowns

in matrix form. The resulting set of equations in the form AX = B where A, X, and

B are n × n, n × 1 and n × 1 matrices respectively, were solved for the unknown

X using Gaussian elimination. The number of components yielded 42 equations,

with 42 unknowns and a sparse A matrix. Output from the model gave reaction

forces at all of the joints, as well as required torques on the input links to drive

the mechanism.

4.2.6 Component Design

Since its conception, the flapping mechanism was envisaged to be driven by

three separate motors driving each of the input drive shafts (input links L1, L2,

L5). Rather than having a complex drive train and additional mechanisms (e.g.

planar crank-rockers) to convert continuous revolutions of the drive motors to

reciprocating motions for the input links, the intention was to simply couple the

motion of each motor directly to each of the input links of the flapping mechanism.

For example, each motor would drive each input link via a 1 : 1 belt drive or
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directly via a connecting shaft. The advantage of this drive method is that it

minimises the number of moving parts and flapping kinematics are easily altered

by simply changing the motion profiles of the motors.

The most challenging aspect of the proposed drive method is that the required

input kinematics on the input links of the flapping mechanism must be within lim-

its of what motors can achieve. These input kinematics (which the motors must

achieve) will be similar to the flapping kinematics themselves. In insect-like kine-

matics, the wing exhibits high speeds and very high angular accelerations. For

example, with the figure-of-eight kinematics at 20Hz in Figure 4.14, the stroking

angular velocity and acceleration peak at ∼ 7500deg/s and 9.5 × 105deg/s2 respec-

tively. The required speeds can easily be achieved by most motors as, in the

previous example, the peak velocity is equivalent to ∼ 1250rpm, which is well

within the range of most motors. The limiting factor is the required angular ac-

celerations, as their high values will limit what is achievable with a given motor,

depending on the required mechanism input kinematics. Therefore, in optimising

the design of the flapping mechanism, the lengths of the links must be chosen

such that for a given set of flapping kinematics the required angular accelerations

on the input links are minimised. This will enable the highest possible flapping

frequencies and generally more demanding flapping kinematics to be achieved.

In the following analysis employing the dynamic model, the lengths of links L1-

L7 are optimised such that both the required input angular accelerations(φ̈L1, φ̈L2,

φ̈L5) and the required input torques (TL1, TL2, TL5) on input links L1, L2, L5 are

minimised. Here, it is also desired to minimise the input torque on these links

required to overcome torques acting on the wing either due to aerodynamic or

inertial forces. First, input links L1 and L2 are optimised, followed by the coupler

links L3 and L4. Lastly, the links for the portion of the mechanism that enables

pitching motions, links L6, L7 and L5, are then optimised. Before beginning, it

should be noted that the lengths of links L1-L7 have no effect on the required input

angular acceleration or torque required to output a desired angular acceleration

or torque on the wing in the stroke direction.

Input Links L1 and L2

The design of links L1 and L2 have the greatest impact on the achievable plunge

accelerations and output plunge torques (torque that drives the wing in the plunge
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Figure 4.16: Pure plunging kinematics and required plunge torque; time is non-dimensionalised by the cycle period

T = 2.63s

direction). Therefore, to choose appropriate lengths for these links a test case

involving pure plunging of a payload with no stroke or pitch is employed. This

test case is illustrated in Figure 4.16, where a payload with a unit moment of

inertia in the plunging direction is plunged up and down with a peak angular

acceleration of unity, and a peak required plunge torque also of unity, which is

required to drive this motion. Thus, in this test case, the flapping mechanism must

output a peak plunging acceleration and torque of one. In the following analysis,

the lengths of links L1 and L2 are varied, and the required input kinematics and

input torques on links L1 and L2 required to produce the desired motion with

the specified payload, are computed with the dynamic model. This analysis

uses massless links, and the lengths of links L3 and L4 are both taken as 90◦.

The portion of the mechanism for producing pitching motions is ignored in this

analysis, because it has no influence during pure plunging motion with no pitch.

The effect of varying the lengths of links L1 and L2 on the maximum required
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Figure 4.17: Effect of length of links L1 and L2 on (a) the maximum input acceleration (b) and torque required to

output the kinematics and plunge torque in Figure 4.16, and (c) their sum; black dot in (c) shows an optimal point where

the sum of maximum required input angular acceleration and torque is minimal

input accelerations and maximum required input torques on either of the two

links, is shown in Figure 4.17a and b respectively. It can be seen that as L1

approaches 0◦ or L2 approaches 180◦, then higher input accelerations are required
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to produce a peak output plunging acceleration of unity. On the other hand, when

L1 and L2 approach 90◦, more input torque is required to produce a unit output

plunge torque. This says that as the angle of separation (L2-L1) between the ends

of links L1 and L2 increases, lower input torque on the links is required to achieve

a desired output torque in the plunge direction, meanwhile, the links have to be

accelerated at greater rates to achieve a required output angular acceleration in

the plunge direction.

The goal of optimising the lengths of links L1 and L2 is to minimize both

the required input angular accelerations and torques on these links needed to

produce a desired motion. Thus, the sum of these two criteria must be minimised.

Figure 4.17c shows the sum of the peak input angular accelerations and torques

discussed previously. The black dot in this figure illustrates the chosen lengths

for L1 and L2, which are 60◦ and 120◦ respectively, as they lie in the region where

the sum is minimised. Therefore, with these values, the flapping mechanism will

require lower input angular accelerations and torques to achieve a set of plunging

kinematics and overcome torques on the wing in the plunge direction.

Coupler Links L3 and L4

Similar to input links L1 and L2, the lengths of coupler links L3 and L4 have the

largest affect on the achievable plunge accelerations and output plunge torques.

Thus, the test case used for input links L1 and L2 is used here, where the lengths

of links L3 and L4 are varied and the required input kinematics and torques are

calculated. As before, massless links are used, lengths of links L1 and L2 are

taken as 60◦ and 120◦ respectively, and the portion of the mechanism for pitching

is ignored.

As seen in Figure 4.18a, the optimum angle for both links is 90◦ to minimise the

required input accelerations on the input links to produce a unit output plunge

acceleration. The required input torque to produce an output plunge torque of

unity is minimised as long as the lengths of links L3 and L4 are equal, as seen in

Figure 4.18b. Therefore, without going further, the optimal lengths for links L3

and L4, to minimise the required input angular accelerations and torques, is 90◦

for both.

100
∣∣∣ PhD Thesis: Nathan D B Phillips



Chapter 4. Flapperatus

Figure 4.18: Effect of length of links L3 and L4 on (a) the maximum input acceleration and (b) torque on input links

L1 and L2 required to output the kinematics and plunge torque in Figure 4.16

Coupler Link L6 and Rocker L7

The lengths of links L6 and L7 have the greatest influence on the output pitching

accelerations and pitch torques on the wing. Thus, to optimise their performance,

a test case involving pure pitching with no stroke or plunge is employed. This is

illustrated in Figure 4.19, which depicts a payload with a unit moment of inertia

in the pitch direction, being pitched with a peak angular acceleration of unity, and

a peak required pitching torque of unity. As with the other links, the lengths of

links L6 and L7 are varied while the peak required input acceleration and torque

on the input link L5 (the input link to the pitching portion of the mechanism) are

computed. Again, massless links are used, the length of link L5 is taken to be 90◦

and only the pitching portion of the mechanism is considered in this analysis.

Referring to Figure 4.20a, the optimal choice for link L6 can be seen to be is 90◦.

This is because, for any given length of link L7, the required angular acceleration

on input link L5 to output a unit pitching acceleration is minimised when L6 is

90◦. The effect of the length of link L6 on the required input torque is minimal,

as seen in Figure 4.20b; thus the optimum choice for L6 is still taken to be 90◦.

For link L7, as its length increases, less input torque is required to produce a unit
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Figure 4.19: Pure pitching kinematics and required pitch torque; time is non-dimensionalised by the cycle period

T = 5.56s

output pitch torque, however, a higher angular acceleration of the input link to

achieve a unit pitching acceleration is required. As before, we want to design

link L7 such that minimal input accelerations and torques are required, thus we

want to minimise their sum, which is shown in Figure 4.20c. Here it can be

seen that the optimal value for L7 is approximately 40◦. However, more weight

should be given to reducing required input accelerations, because in insect-like

kinematics the pitching accelerations are by far the highest. For example, for

the figure-of-eight kinematics in Figure 4.14, max(φ̈) ≈ 9.5 × 105deg/s2 whereas

max(α̈) ≈ 2.8 × 106deg/s2. Thus, the choice of the length for L7 was reduced to

25◦, which is at the lower end of the minimal region in Figure 4.20c. This leads

to an approximately 50% rise in torque required compared to values when L7

= 40◦, however, the required input acceleration on L5 is roughly halved. Another
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Figure 4.20: Effect of length of links L6 and L7 on (a) the maximum input acceleration and (b) torque required to

output the kinematics and pitch torque in Figure 4.19, and (c) their sum

motivation for reducing link length L7 to 25◦, is that it leads to a greater range

of achievable plunge angles. The shorter this link is, the higher the wing can

be plunged upwards before rocker link L7 collides with the top of link L1 or L2,

which can be visualised with the aid of Figure 4.11.
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Input Link L5

Figure 4.21: Effect of length of link L5 on the maximum input acceleration (a) and torque (b) required to output the

kinematics and pitch torque in Figure 4.19

The input link L5 for the portion of the mechanism that enables pitching, also

has the greatest effect on output pitching accelerations and torques delivered to

the wing. The test case used to optimise the length of this link is the same as that

used previously for links L6 and L7 with pure pitching. In the analysis for L5,

the lengths of links L6 and L7 are taken to be 90◦ and 25◦ respectively, massless

links are used, and only the pitching portion of the mechanism is considered. As

seen in Figure 4.21, the optimal choice for the length of L5 is 90◦, as it minimises

both the required input angular acceleration, and torque required to output a unit

pitch acceleration and unit pitch torque respectively.

4.2.7 Stress Analysis

Using the optimised lengths of links L1-L7 found previously, the final detailed

design of the flapping mechanism was converged upon after performing a stress

analysis of the components. Using the dynamic model on a given mechanism

design, the reaction forces at the joints for each component were computed. This

analysis included masses and moments of inertia of the links. With the computed

reaction forces, stress analysis was performed on each part using SolidWorks.

This was performed first using a coarse grid and then repeated with a fine grid to

verify that the resulting factor of safety for each component was sufficiently high.

104
∣∣∣ PhD Thesis: Nathan D B Phillips



Chapter 4. Flapperatus

Figure 4.22: Wing design; a) planform for optimised FMAV from Ansari (2004) where 0,0 denotes the wing centre of

rotation; b) isometric view of wing design used to compute loads for stress analysis

If parts failed then they were redesigned and the process was started over and

repeated in an iterative loop until a successful design was achieved.

In this iterative process, a worst case scenario set of flapping kinematics, wing

design, and expected aerodynamic forces were required in order to converge

on a successful design. This was necessary to assure that the final design had an

adequately high factor of safety to handle inertial forces from demanding flapping

kinematics and aerodynamic forces. The flapping kinematics, wing geometry and

aerodynamic forces used for this process will now be described. The flapping

kinematics used in this iterative process were for a convex arc wing motion where

the wingtip follows an inverted ’u’. The other kinematic parameters were a

flapping frequency of 20Hz, a respective stroke and plunge amplitude of 120◦

and 50◦, angle of attack at mid-stroke of 30◦, 0% rotation phase, and a constant

angle of attack for 65% of the cycle. These kinematics were chosen because they

were more demanding in comparison to other wingtip trajectories in terms of the

maximum accelerations demanded by the mechanism.

The wing design used in this analysis was that identified by the unsteady

aerodynamic model of Ansari (2004) for an optimized FMAV in air. This has a

12cm long wing with a reverse semi-ellipse planform shape and an aspect ratio of 6

which is illustrated in Figure 4.22a. Figure 4.22b is an isometric view of the actual

wing design used in the analysis where the thickness of the spars was 0.9mm, the

membrane thickness was 0.1mm and the material was taken to be carbon fibre

with a density of 0.002g/mm3. The design of the wing spars was inspired by the

wing design used on the Mk2 flapper of Galiński & Żbikowski (2005).
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Figure 4.23: Stresses in input link L1 under worst case scenario flapping kinematics and aerodynamic forces

Aerodynamic forces on the wing were assumed to be a constant 2.5N for lift

and 2.5N for drag acting at 73% span and 5.5mm back from the pitch axis. At this

location, these forces create a stroke, plunge and pitch torque of 0.3Nm, 0.3Nm,

and 0.194Nm respectively. These forces were chosen to act at this location because

they closely approximate the peak values given from the unsteady aerodynamic

model of Ansari (2004) for a 20Hz flapping frequency with a flat wingtip trajec-

tory (wingtip follows a straight line) and using the same wing geometry described

above. These values from Ansari’s model are a peak lift, drag and stroke, plunge

and pitch torque of 2.14N, 2.44N, 0.29Nm, 0.25Nm and 0.19Nm respectively. Al-

though these values were obtained from a different set of kinematics than is used

in this analysis, these forces and moments can be expected to be representative

of the case here (Ansari, 2008). Furthermore, as these are peak values that are

applied continuously throughout the flapping cycle, rather than mean values, a

worst case scenario is employed, which in the end would yield a conservative

factor of safety.

With these worst case scenario loads and flapping kinematics, a final design

for the flapping mechanism was converged upon. The material used for the links
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in this analysis was aluminium 6082−T6, which has a yield strength of 255N/mm2

and a density of 0.0027g/mm3 (Harris, 1993). Drive shafts and pins were made

from steel EN3B which has approximately the same properties as steel AISI1020

(Goodland, 2008) which has a yield strength of 351.6N/mm2 and a density of

0.0079g/mm3. In the final design, the lowest factor of safety seen in any of the

components was 1.28, and the average over all the components was 2.33. An

example of the stresses in one for the components is shown in Figure 4.23, which

illustrates the stresses in input link L1.

4.2.8 Final Detailed Design

Figure 4.24: Final flapping mechanism design; (a) mechanism anodised black and integrated into flapperatus; (b)

mechanism on its own

Figure 4.24 illustrates the final design of the flapping mechanism, where it is

shown on its own, and anodised black and integrated into the flapperatus. The

overall diameter of the mechanism is 54.7mm, and as used in the stress analysis,

all linkages are made of aluminium 6082 − T6 and all pins and drive shafts are

made from steel EN3B. As described in § 4.2.6, the lengths of links L1, L2, and L7

are 60◦, 120◦ and 25◦, while all other links (L3, L4, L5, and L6) subtend 90◦. The

range of motion of the mechanism enables plunge angles of ±25◦, pitch angles

from 30− 150◦, and stroke angles of ±∞ to be achieved. In practice, however, due
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to the presence of other components such as a frame to mount the mechanism, a

maximum range of stroke angles of ±90◦ is reasonable.

4.3 Complete System

The architecture of the complete flapperatus is illustrated in Figure 4.25. This

shows the same systems discussed at the beginning of this chapter in the con-

ceptual system design (Figure 4.1), however, Figure 4.25 illustrates the detailed

system design and the components that make up each system. As before, the user

inputs the desired kinematic parameters to define the flapping kinematics using

the expressions given in Appendix A. Also, the user inputs the stroke angle φcam,

which is the stroke angle in the flapping cycle at which it is desired to perform

flowfield and instantaneous wing position measurements. Next, the flapping

mechanism controller converts the flapping kinematics to input kinematics for

the flapping mechanism using the expressions given in § B.1 in Appendix B. The

controller then drives the flapping mechanism with these input kinematics, and

the wing flaps. Meanwhile force measurements can be performed, as well as flow-

field, and wing position measurements synchronised with mechanism position.

As before, end outputs to the user are flowfield, mechanism and wing position,

and mean lift measurements. Each one of the major systems including the flap-

ping mechanism controller, mechanism position measurement system, flowfield /

wing position measurement system, and the force measurement system will now

be described in that order.

4.3.1 Flapping Mechanism Controller

The drive system of the flapperatus that controls the flapping mechanism is il-

lustrated in Figure 4.26. Three concentric drive shafts connect to the input shafts

(input links) of the flapping mechanism. Here, the outer, middle, and inner drive

shafts connect to input links L1, L2 and L5 of the flapping mechanism respec-

tively. Fixed at the end of each of the drive shafts is a ‘drive pulley’, each named

appropriately. Each drive pulley is then coupled via a 1 : 1 cable drive to a ‘motor

pulley’ fixed on the shaft of a servo motor. For each axis, the cable drive consists

of two loops of cable that are turned through a set of smaller pulleys, and are
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Figure 4.25: Flapperatus detailed system block diagram
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fixed on opposite ends of the motor and drive pulleys. To prevent slippage, each

loop of cable is clamped at both its drive and motor pulley ends. This is allowable

because each drive shaft never rotates more that ±90◦. An example set of these

cable clamps for a single loop are labeled in Figure 4.26. The smaller pulleys that

turn the cables at the servo motor end, are mounted to ball slides that allow these

pulleys to be translated horizontally (via turning lead screws) to eliminate slack

in the cables. The material used for the cables was Dyneemar thread.

The motors used were three 400W SIGMAV (SGMAV−04ADA61) servo motors

from Omron, which have an instantaneous peak torque of 3.82Nm and a rated

angular acceleration of 3.8 × 106deg/s2. Similar servo motors by Baldor were also

considered, however, results from tests performed by the manufacturers showed

that the motors from Omron had better performance when replicating insect-like

kinematics. Each servo motor was driven by a SGDV (SGDV-2R8A11A) servo

drive also by Omron, and all drives were controlled by a single Trajexia motion

controller, by the same manufacturer.

As seen in the side view in Figure 4.26, home and limit switches are located

behind the drive pulleys. Each switch consists of a slotted opto switch which

breaks a circuit when the beam passing across the slot is cut. Notched disks are

fixed to each one of the drive pulleys so that when a given drive shaft rotates to

the appropriate degree, the notch on the attached disk will pass through the slot

and trigger the switch. The home switches are connected to the motion controller

(Figure 4.25), and they provide a positional reference for the system. When the

system is started, the motion controller does not know the position of each of

the drive shafts, so all shafts rotate in the positive stroke direction until each

one of the axes triggers a home switch. At this point, the motion controller has

established an absolute position for each one of the drive shafts. Each drive shaft

is then rotated a known degree from the home switches until the wing reaches its

neutral position (when φ = 0◦, θ = 0◦, α = 90◦). The limit switches serve a similar

function. If one of the drive shafts rotates too far such that it approaches the limit

of its range of motion, then its notched disk will trigger one of the limit switches.

This then cuts a circuit connected through all the servo drives, and brings the

motors to a halt. An emergency switch is also located in this circuit, so that the

system can be stopped manually.
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Figure 4.26: Flapperatus drive system
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4.3.2 Mechanism Position Measurement System

The mechanism position is monitored via a set of encoders fixed to each one of

the drive shafts. The encoder used on the outer and middle drive shafts was a

10000PPR (pulse per revolution) differential encoder by US Digital (model E6).

On the innermost drive shaft a 4096PPR differential encoder also by US Digital

(model E5) was used. A custom-made data acquisition system employing a 32-

bit, 80MHz, 8-core microcontroller (Parallax Inc. protoboard no. 32212) which

was custom programmed, was used to read the encoder positions and output

the motion profiles to an SD card. As the microcontroller monitored the drive

shaft angles, it also served the function of synchronising the mechanism position

with flowfield and wing position measurements. Since the relation between the

drive shaft angles and the output stroke, plunge and pitch angles of the flapping

mechanism are known, data acquisition at a desired point in the flapping cycle can

be triggered when the drive shafts reach the appropriate positions. For example,

when it is desired to perform measurements at mid-stroke, the microcontroller

triggers the flowfield and wing position measurement system when the drive

shafts reach the positions that correspond to the mid-stroke point in the flapping

cycle.

4.3.3 Flow�eld / Wing Position Measurement Sys-

tem & PIV Setup

The flowfield and wing position measurement system is illustrated in Figure 4.27a,

and it largely consisted of a stereoscopic PIV system comprised of two high-speed

cameras and a laser-generated light sheet. See Appendix C for a description of

the PIV flowfield measurement technique. The cameras used were PowerViewTM

HS−3000 high-speed cameras (model 630064) with a resolution of 1024×1024px2,

and were obtained from the EPSRC equipment loan pool. The laser was a New

Wave Research Gemini Nd:YAG double pulsed laser with a wavelength of 532nm,

which was interfaced with a LaserPulseTM light arm (model 610015) to convert

the beam to a light sheet via a cylindrical and spherical lens at the exit of the

light arm (see Figure 4.27b and c). As seen in Figure 4.27a, the PIV setup utilised

an angular camera set-up. The right camera was aligned such that its axis was
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normal to the light sheet, whereas the left camera’s axis made a 48.5◦ angle with

the right camera axis. In addition, the body of the left camera was rotated relative

to the lens according to the Scheimpflug condition (described in Appendix C).

The cameras were oriented to view a common area centred around the wing of

approximately 95 × 95mm2. A 60mm lens at an f # of 2.8, and a 105mm lens at an

f # of 4 were used for the right and left cameras respectively.

Referring to Figure 4.27a, the flapping mechanism, drive shafts, cable drives

and servo motors were mounted to a support frame. The wing was aligned such

that it was ‘edge-on’ to the right camera when it was at the mid-stroke position

(when φ = 0◦ and θ = 0◦) and the measurement stroke angle φcam (which will be

explained shortly) set by the swivel position was zero. Recalling the coordinate

systems from § 2.1.2 (page 17), the inertial XIYIZI frame is fixed to the support

frame, and the xyz axis fixed to the wing rotates with respect to this inertial frame.

The same xcamycamzcam frame used in Appendix C is also employed here, which

is the PIV measurement coordinate system and it is fixed in space. Again, the

laser light sheet is coincident with the ycamzcam plane, thus, measured velocity

components are in the xcam, ycam, zcam directions.

As seen in Figure 4.27a, the support frame was mounted on a swivel. This

enables the inertial coordinate system, and hence, the wing to be rotated relative

to the xcamycamzcam measurement frame. The swivel position denoted by the mea-

surement stroke angle φcam, is set with the aid of a protractor at the base of the

support frame as seen in Figure 4.27a. This angle sets the point in the flapping cy-

cle at which measurements are performed on the wing. For example, to perform

measurements when the wing is at a stroke angle of −60◦, the support frame is

rotated 60◦ in the positive stroke direction, giving a measurement stroke angle of

−60◦. It should be noted that the measurement stroke angle is not always equal

to the wing’s stroke at the desired point in the flapping cycle due to wing flexion,

which will be explained in more detail in § 5.2.

The support frame was also mounted on a traverse, which allowed the inertial

axis and the wing to be translated relative to the measurement frame in the ±xcam

direction. This enabled flowfield measurements to be performed in a volume

surrounding the wing, rather than just a single plane. In addition, raw images

obtained in the PIV data acquisition provided a means to reconstruct the instan-

taneous wing position. By locating the position of the leading and trailing edges
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Figure 4.27: Flowfield / wing position measurement system & PIV setup; (a) schematic of hardware setup and

coordinate systems; (b) photo of outside of setup illustrating enclosure; (c) photo inside enclosure illustrating hardware

setup
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in the many images taken along the span which essentially reveal local 2D slices

along wing, the instantaneous wing position is reconstructed. Such a method was

also employed by Poelma et al. (2006). This wing position reconstruction method

is described in greater detail in § 5.2.

The flapperatus was placed inside an hexagonal enclosure (Figure 4.27b) which

had a width of approximately 2.5m and a height of 1.8m. This was designed to

isolate the apparatus from outside disturbances and contain the seeding, whilst

minimising wall interference effects. Inside the chamber the flapping wing was

positioned over 15, 6 and 13 wing lengths from the walls, ceiling and floor re-

spectively. The seeding used was smoke generated from a smoke machine (see

Figure 4.27c) using global mix smoke fluid by Le Maitre.

It should be noted that the experiments which investigated wing planform

shape effects used a different PIV system to that described previously, due to the

limited availability of the previous system. These experiments used a spherical

and cylindrical lens to generate the laser light sheet rather than a light arm. In

addition, the cameras used were two FASTCAM-ultima APX high-speed cameras

with the same resolution as the previous (PowerViewTM) cameras of 1024×1024px2.

These cameras were used in the same angular setup as shown in Figure 4.27a,

however they were set up to view a larger common area of approximately 120 ×

120mm2, and the angle between the cameras was set to 45◦. The same laser, camera

lenses and aperture settings were used.

4.3.4 Force Measurement System

The force measurement system consisted of a Nano 17 (FTD-Nano-17 SI-12-0.12)

six-component force balance by ATI. Lift was measured using the vertical com-

ponent which had an operational range of ±17N and a resolution of 0.78mN. The

force balance was mounted to the support frame and the top of the flapping mech-

anism as illustrated in Figure 4.28a. Figure 4.28b depicts a free-body diagram of

the mechanism and its drive shafts and pulleys. It can be seen that the tension

forces from the cable drives exist only in the horizontal plane, thus the flapping

mechanism and drive shafts are unrestrained in the vertical direction, except due

to the connection to the support frame via the force balance. Thus vertical forces
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Figure 4.28: Force measurement system illustrating (a) connection of flapping mechanism to support frame through

a force balance and (b) a free body diagram of the flapping mechanism and drive shafts and pulleys

(Fz) read by the force balance are lift forces. Raw voltages from the balance were

acquired with an NI-PCI-6221 data acquisition board by National Instruments.

4.3.5 Wings

The wing used on the flapperatus for the majority of the experiments is illus-

trated in Figure 4.29b. This wing was designed and manufactured by Galiński

& Żbikowski (2007), and its planform originated from the ‘four-ellipse’ shape of

Pedersen (2003) (top of Figure 4.29a) which consisted of four elliptic arcs. How-

ever, due to mechanical limitations, portions of the original four-ellipse shape are

truncated at the root end of the wing (Galiński & Żbikowski, 2007) resulting in

the actual wing design as illustrated. This wing design will be referred to as the

‘four-ellipse’.
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Figure 4.29: Four-ellipse wing design; (a) original four-ellipse shape after Pedersen (2003) with truncated areas due

to mechanical constraints and wing structure (adapted from Galiński & Żbikowski (2007)); (b) actual manufactured wing

used in experiments

As illustrated, the structure of the wing consisted of a 2mm diameter root spar

which branches into three separate spars at the leading edge, middle, and trailing

edge of the wing each with a 1mm diameter. This spar layout was inspired

by entomological literature, which suggests that insect wings generally derive

their strength from a main leading- and trailing-edge and middle spar (Galiński

& Żbikowski, 2007). The root spar which forms the pitch axis, was located at

approximately the quarter chord point of the maximum chord. Between the spars

was a 0.1mm thick membrane. The wing was designed to be as rigid as possible so

as to avoid effects due to wing flexibility, thus simplifying experiments. A carbon

roving and epoxy composite was used to form the spars, while the membrane

was made of a carbon tissue and epoxy composite. The entire wing was made

in one step with a mould, thus creating a continuous composite structure. The

wing length from root to tip was 82mm, and the wingtip measured 106mm from

the centre of rotation when mounted on the flapping mechanism. In addition, the

mean chord length was 27.7mm, the wing area was 2270mm2, and the aspect ratio

was 5.9.

Additional wing designs were made to study the effects of wing planform

shape. These are illustrated in Figure 4.30, and include a ‘reverse-ellipse’, rect-

angle, four-ellipse, and ellipse planform shape. The reverse-ellipse, and ellipse

planforms are simply made from half ellipses, but with opposite ends forming
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the wingtip, and the four-ellipse is the same planform as described previously.

Length, mean chord, aspect ratio and wing area for all shapes are given in Fig-

ure 4.30. All wings were designed to have a relatively constant mean chord,

length and area giving a constant aspect ratio of about 6. It should be noted here

that the reverse-ellipse planform had a slightly larger area due to the interface

between the spar and the wing near the root section. In addition, for all planforms

the pitch axis was placed at the quarter-chord of the maximum chord.

Figure 4.30: Additional wing planform shapes

The structure of the additional wing designs differed from the original four-

ellipse wing design discussed at the beginning of this section, thus the four-ellipse

wing was also made with this new structure to match the new wings. Again, to

minimise effects due to flexibility, these additional wings were made as stiff as

possible. This was accomplished by sandwiching a 2mm diameter carbon-fibre

rod between two sheets of carbon-fibre cloth infused with epoxy resin, and cured

in a mould. The resulting membrane thickness was 0.45mm. When mounted on

the flapping mechanism, the wingtip of each wing design measured 106mm from

the centre of rotation.

4.4 System Performance

This section discusses the performance of the flapperatus, starting with results

from high-speed photography illustrating the kinematics achieved by the wing.

Following this, the repeatability of the mechanism and wing position are dis-

cussed.
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4.4.1 Kinematics

The flapping mechanism and flapperatus as a whole exhibited very good perfor-

mance when executing the desired flapping kinematics. Figure 4.31 illustrates a

reconstruction of the actual wingtip trajectory and angle of attack (from the cam-

era’s perspective) at 50% span for a number of cases at a 20Hz flapping frequency.

This was obtained with high-speed photography filmed at 1200 f ps. Markers were

placed at the wingtip and leading and trailing edges at 50% span to make these

points visible in individual frames, enabling the wingtip trajectory and angle of

attack to be recovered. It should be noted that around mid-stroke the points

marking the angle of attack were not visible, thus angle of attack is not shown

around this point in the cycle. As seen in these figures, even at the high flapping

frequency of 20Hz, the motion of the wing is smooth and it successfully achieves

insect-like flapping-wing kinematics.

4.4.2 Mechanism & Wing Position Repeatability

In addition to the motion of the flapping mechanism being very smooth, its posi-

tion was also very repeatable. To quantify its positional repeatability, the flapping

mechanism’s drive shaft angles were measured (via the encoders) throughout

∼ 1000 flapping cycles. The flapping kinematics employed consisted of a flat

wingtip trajectory, and with kinematic parameters (of the mechanism output kine-

matics) of f = 20Hz, Φmec = 131.7◦, Θmec = 1.2◦, αmidmec = 45.4◦, and τmec = 6.1%. By

averaging the resulting wing positions, a time history of the mean wing position

throughout a single flapping cycle, was obtained. This will be referred to as the

’average cycle’. The stroke, plunge and pitch angle over the average cycle is illus-

trated in Figure 4.32 (shown by markers) along with these angles over the 1000

flapping cycles measured (solid lines). The width of the solid lines provides an

indication of the variability of each angle.

Over the many cycles measured, the difference of the stroke, plunge and

pitch angles from those at the corresponding point in the average cycle were

determined. Ultimately this revealed that the stroke, plunge and pitch angles

had a standard deviation of 0.1◦, 0.07◦ and 0.17◦ respectively. This analysis was

repeated with a set of flapping kinematics defined by the same parameters used

previously, however a more demanding figure-of-eight wingtip trajectory with
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Figure 4.31: Wingtip trajectories executed at a 20Hz flapping frequency, and angle of attack recovered from high speed

photography filmed at 1200 f ps for a (a) figure-of-eight trajectory, (b) concave arc trajectory, (c) convex arc trajectory, (d)

flat trajectory; dots mark the position of the wingtip, while lines indicate angle of attack (as seen from the camera) at 50%

span; red denotes downstroke (left to right) while blue denotes upstroke (right to left)

120
∣∣∣ PhD Thesis: Nathan D B Phillips



Chapter 4. Flapperatus

Figure 4.32: Repeatability of flapping mechanism output kinematics; solid lines show stroke, plunge and pitch angles

over ∼ 1000 flapping cycles, markers show these angles for the ‘average cycle’ (average of the ∼ 1000 cycles); thickness of

the solid lines provide an indication of variability of stroke, plunge and pitch; time is non-dimensionalised by the flapping

period T = 0.05s

Θmec = 25.2◦ was employed instead of a flat one. The results from this test were

very similar to those found with the flat wingtip trajectory, as a standard deviation

of 0.04◦, 0.06◦ and 0.17◦ were found for the stroke, plunge and pitch angle. Thus,

taking the worst values, the repeatability of the stroke, plunge and pitch angle

(from the mechanism output kinematics) are 0.1◦, 0.07◦ and 0.17◦ respectively.

This is a good result because it indicates that in addition to flapping kinematics,

kinematic parameters can also be held virtually constant.

The repeatability of the flapping mechanism position and its output kinematics

translated to a very repeatable wing position. This is illustrated with the aid of

Figure 4.33, which depicts raw images at mid-stroke at ∼ 90% span for a flat

wingtip trajectory at 20Hz, as taken by the left camera. Figure 4.33a shows an

image from one exposure (artificially made red), Figure 4.33b illustrates the sum

of 15 exposures taken over 15 flapping cycles, and Figure 4.33c is the first figure

(a) overlaid on top of the second figure (b). The solid band of light in all images is

the intersection between the laser light sheet and the wing. Here the sum of many
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Figure 4.33: Wing position repeatability seen at mid-stroke at 90% span for flat wingtip trajectory at 20Hz; in all cases

the solid band of light (red or white) is the intersection between the laser light sheet and the wing; (a) raw image from one

exposure from left camera (colour is artificially made red); (b) sum of 15 exposures from left camera (taken over 15 flapping

cycles); (c) single exposure overlaid over top of sum of 15 exposures, the comparison between these images provides an

indication of wing position repeatability

exposures is computed for n images as max(I1, .., In), where for a given image, I

is an array representing the intensity level at each pixel. Thus, for a given pixel

in the ‘summed’ image, the sum is computed by taking the maximum intensity

value at that pixel across the n separate exposures.

The summed image in Figure 4.33b provides an indication of the wing position

repeatability. Across 15 flapping cycles, the intersection between the light sheet

(which is fixed in space) and the wing falls at the same location in the image

giving a band of light that is of similar height and thickness to a single exposure

(Figure 4.33a). This is especially shown in Figure 4.33c, where the single and

summed exposures are directly compared showing that the light sheet and wing

intersection location is very repeatable, thus the wing position is also very repeat-

able. If the wing position were significantly variable then the white band of light

in the summed image would be much wider and / or taller in comparison to a

single exposure.

As will be seen later in Chapter 6, recovered flapping kinematics were very

comparable to the mechanism output kinematics, indicating that the wing faith-

fully follows the flapping mechanism output. The actual degree to which the

flapping kinematics differed from the mechanism output kinematics due to flexi-

bility will be addressed later in § 5.4.
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4.4.3 Summary & Conclusions

This chapter has outlined the design and development of the flapping-wing me-

chanical model, the ‘flapperatus’. A novel flapping mechanism was conceived

which gives separate control of each of the wing’s three degrees of freedom

(stroke, plunge, and pitch) and, hence, enables adjustable kinematics. After a

kinematic analysis was performed, and a dynamic model was developed, the

form of the flapping mechanism was arrived upon by optimising the design of

each component such that required input torques and angular accelerations on

the input links, are minimised for a given set of flapping kinematics. The final

detailed design of the components was reached after performing a stress analysis

with loads obtained from the dynamic model and assumed worst-case-scenario

aerodynamic loads. The flapperatus contained all of the necessary hardware to

drive the flapping mechanism, including cable drives and servo motors, and it

interfaced with mechanism position, wing position, aerodynamic force, and flow-

field measurement systems. The performance of the flapperatus was very good,

as it was shown that desired insect-like flapping-wing motions were achieved

smoothly, with a high degree of repeatability up to the maximum 20Hz flapping

frequency.
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Chapter 5

Experimentation

This chapter begins with a description of the experimental programme. Proce-

dures used in conducting measurements are then outlined. Following this, a

description of the PIV processing and analysis applied to the flowfield measure-

ments is given. Finally, the chapter ends with an uncertainty analysis on the

measurements performed in the study.

5.1 Experimental Programme

In this section, the experimental programme outlined to meet the research aims

listed in Chapter 3 is described. This is divided into four main stages, beginning

with the investigation of the effects of flapping kinematics on mean lift, followed

by a study of the flow evolution throughout a half-stroke. Next is a stage investi-

gating effects from flapping kinematics on the flow structures generated, followed

by wing planform shape effects on the flows.

5.1.1 Kinematic E�ects on Mean Lift

The experimental programme began with establishing the effects of flapping kine-

matics on the mean lift generated at the FMAV scale. This was performed by be-

ginning with a baseline set of kinematics and then sequentially varying individual

kinematic parameters while keeping all others relatively constant to observe the

resulting change in mean lift. The baseline kinematics used are illustrated in

Figure 5.1, and were based on the baseline kinematics used in the analytical para-

metric study of Ansari et al. (2008b). In addition, these were similar to the kine-

matics previously identified to be optimal for generating lift in Sane & Dickinson

(2001). The kinematics identified by Sane & Dickinson (2001) were a flat wingtip

trajectory, with Φ = 180◦, αmid = 45◦, τ = +5% and ’flip duration’ of 10%. Here

’flip duration’ is the time taken for pitch reversal to occur as a percentage of the

flapping period T. For this investigation, this parameter was approximately 50%.
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Although these results by Sane & Dickinson (2001) were obtained at a much lower

Reynolds number, on the order of 102, it was felt that kinematics similar to theirs

would likely be close to optimal at the FMAV scale. Thus, using such baseline

kinematics would be an appropriate point from which to start a parametric study.

Kinematic parameters that were investigated included flapping frequency, angle

of attack at mid-stroke, rotation phase, stroke amplitude, and plunge amplitude

with a figure-of-eight wingtip trajectory. The actual values tested for each test

case, are listed later in Chapter 6. Test cases were performed at mean Reynolds

numbers ranging form R̄e ≈ 4000 − 21000, where most were performed at the

upper end of this range.

Figure 5.1: Baseline flapping kinematics; f = 20Hz, Φmec = 131.8◦, Θmec = 1.7◦, αmidmec = 45.7◦, τmec = 6.1%; time is

non-dimensionalised by the flapping period T = 0.05s

It was originally envisaged that the flapperatus would be capable of synchro-

nising lift measurements with wing position, which would provide a means to

obtain plots of instantaneous lift forces over a flapping cycle. This would be

achieved by first measuring pure inertial forces with a ‘dummy’ wing (e.g. a

simple rod) with negligible aerodynamic lift force that has the same mass, cen-

tre of gravity and moment of inertia as the real wing. With synchronous force

and wing position data, these inertial values could then be subtracted from raw

force measurements with the real wing to obtain the instantaneous aerodynamic
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forces, since the phase relationship is known. However, this capability was not

implemented into the flapperatus. Thus, instantaneous plots of lift could not be

obtained because the phase relationship between readings of pure inertial forces

and those with inertial and aerodynamic forces, is unknown, and hence, they can-

not be subtracted. Instead, in this study, mean lift values were simply obtained by

averaging the lift readings. In doing so, inertial forces average out to zero when

symmetric kinematics are employed, which was the case here.

Actual mechanism output kinematics for all the cases tested were recovered

after mean lift measurements were performed. Although kinematic measure-

ments were recovered in separate experimental runs to the lift measurements, the

kinematics obtained still provide an accurate history of the kinematics during the

force measurements owing to the high repeatability of the flapping mechanism

and wing as described at the end of Chapter 4.

5.1.2 Flow Evolution

To address the topics of LEV stability, breakdown and axial flow at the FMAV scale,

the next stage of the experimental programme conducted a detailed investigation

of the flow evolution over the wing at R̄e ≈ 15000. This was performed by

taking dense flowfield measurements along the wingspan at twelve instances

evenly spaced in time over a half-stroke. The result of this was a spatially and

temporally detailed picture of how the three-dimensional flow structures, such

as the LEV and tip vortex, form and evolve over time as the wing executes a half-

stroke. Thus, from this information, any potential LEV shedding, breakdown

and axial flow can be observed and described. The flapping kinematics used

for this investigation were the baseline kinematics shown previously, but with a

smaller stroke amplitude of Φ = 120◦. A smaller stroke amplitude was used so

that measurements throughout the half stroke would be closer temporally.

5.1.3 Kinematic E�ects on Flow Structures

The next stage of the experimental programme was to determine how the observed

trend of the flow evolution and the characteristics of the flow structures (found

from the pervious stage) changed when flapping kinematics were altered. Of

PhD Thesis: Nathan D B Phillips
∣∣∣ 127



5.2. Experimental Procedures

greatest interest was the effects on the LEV. This investigation followed the

same format to the study of flapping kinematics effects on lift, where the same

baseline kinematics were used and kinematic parameters were sequentially varied

in the same manner while others where held virtually constant at the baseline

values. The same test cases were used so that flowfield measurements would

complement the mean lift measurements, and provide further insight into the

lift trends observed. Flowfield measurements along the wingspan providing a

volume of velocity data were performed at mid-stroke for most of the test cases.

Measurements were performed here because the flow typically reaches a quasi

steady-state around mid-stroke, and most of the lift is produced during this phase

of the cycle, so the flowfield at mid-stroke was felt to provide a good representation

of the ‘mean lift-generating’ flow. However, for test cases varying rotation phase

in particular, flowfield measurements were performed along the wingspan for six

points in time throughout a half-stroke because this parameter was expected to

have a significant impact on the flow evolution. It was desired to capture any

such effect with numerous flowfield measurements.

5.1.4 Wing Planform E�ects on Flow Structures

The end of the experimental programme addressed the effects of wing planform

shape on the flows generated. As before, the same baseline kinematics were used,

but with a lower flapping frequency of 15Hz. The wing planforms presented in

§ 4.3.5 were used, and flowfield measurements along the wingspan were per-

formed at the mid-stroke position, as in the previous stage. As mentioned in

§ 4.3.3, this investigation used a different PIV system to that used in the other

experiments.

5.2 Experimental Procedures

The procedures used in acquiring experimental data will be presented in this sec-

tion. First, the procedure used when performing mean lift measurements will be

outlined. This is followed by the procedure used for conducting flowfield mea-

surements across the wingspan. Lastly, the method in which the instantaneous

wing position and flexion is obtained from raw images is described.
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5.2.1 Force Measurement

For each test case, vertical force was acquired from the force balance at a rate of

1200Hz over a period of more than 150 flapping cycles. This sampling rate was

sixty times greater than the maximum flapping frequency, which is sufficiently

high when compared to the cut-off frequencies used in similar experiments (Dick-

inson et al., 1999; Sane & Dickinson, 2001). Three minutes prior to and three

minutes following each data acquisition, unloaded measurements were taken.

This was done to detect any voltage drift in any of the force balance’s channels

and then correct the force measurements by interpolating between the unloaded

readings before and after the data acquisition. Mean lift for each test case was

obtained by simply averaging the acquired data. As mentioned before, when

averaging the acquired force data, inertial forces from the wing and mechanism

rapidly accelerating and decelerating will cancel since they are symmetric.

5.2.2 Flow�eld Measurement

Before proceeding, a reader unfamiliar with the PIV flowfield measurement tech-

nique should review Appendix C. The first step in the experimental procedure

for flowfield measurements was to rotate the flapperatus via the swivel to the

appropriate measurement stroke angle so that the right camera would view the

wing ’edge-on’ at the desired point in the flapping cycle. The manner in which

this was performed will be explained using Figure 5.2. This depicts the differ-

ence between the mechanism output xmec1ymec1zmec1 coordinate system (recall from

§ 4.2.2 page 86) and the similar xyz coordinate system fixed to the wing, due to

wing flexion. Recall that if the wing does not flex then these coordinate systems

will coincide with each other. Point ncr denotes the centre of rotation, and n f lx is

the point on the root spar beyond which the wing flexes. This is the point where

the root spar joins with the flapping mechanism. The location of the wing spar

(pitch axis) if the wing had no flexion is shown by the ‘no-flex’ line, whereas the

‘flex-line’ shows its location for an arbitrary flexion of φ f lx and θ f lx in the stroke

and plunge directions respectively from the ‘no-flex’ position. The stroke angle

φ and mechanism stroke angle φmec are shown as defined in prior chapters. For

the right camera to view the wing ’edge-on’, the measurement coordinate system

xcamycamzcam must be oriented such that the xcam axis is parallel to the line of in-
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Figure 5.2: Difference between wing and mechanism output coordinate systems due to wing flexion

tersection of the wing with the XIYI plane. This way, even though the wing has

plunged upwards due to flexion, the right camera can still view all the way across

the wing by viewing in the −xcam direction. Otherwise, if for example the right

camera viewed in the −xmec1 direction, then only the underside of the wing would

be visible and the topside would be obstructed. This condition was achieved

through trial and error by running the flapperatus with the desired kinematics,

capturing images at the desired point in the flapping cycle (set by φmec), and ad-

justing the measurement stroke angle φcam via the swivel and iteratively repeating

this process until an edge-on condition was achieved.

Once the appropriate measurement stroke angle was set to achieve an ‘edge-

on’ view of the wing, the next step was to release smoke into the test chamber and

four minutes were allowed to elapse before beginning the experiment. As will

be described in § 5.4, this ‘settle time’ was observed to be appropriate to allow
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the seeder-induced flow to reduce to an acceptable level, and for the seeding den-

sity to become uniform. After this ‘settle time’, the flapperatus was ramped up

to the desired flapping frequency with the specified flapping kinematics. Once

the flapperatus reached its desired flapping frequency, 10 seconds (> 40 flapping

cycles) were allowed to elapse, which was assumed to be sufficient to surpass

any start-up effects. Next, starting from approximately 18% span where % span

is defined from the root of the wing, 15 image pairs (for both cameras) were ac-

quired for each of 81 spanwise locations extending up to 117% span, and spaced

1mm apart. As described in § 4.3.3, changing the spanwise measurement position

is accomplished by traversing the flapperatus with respect to the measurement

plane. Here the flapperatus was traversed in 1mm increments between measure-

ments, where 40 flapping periods were allowed to elapse following the arrival at a

new measurement position before acquiring image pairs. In acquiring the image

pairs, for each test case a pulse separation was selected such that the maximum

out-of-plane particle displacement would be less than one quarter of the thickness

of the laser light sheet (given to be optimal in Keane & Adrian (1991)). Here the

expected out-of-plane velocity was the mean wingtip speed, as the peak spanwise

flow has consistently been reported to be comparable to this speed (Wilkins, 2008;

Ellington et al., 1996; Ramasamy & Leishman, 2006; Ansari et al., 2009). However,

in the present experiments, out-of-plane velocities of at most two times the mean

wingtip speed were measured. In these cases, the maximum out-of-plane particle

image displacement exceeded one quarter of the thickness of the laser light sheet,

and would have been at most, half of the thickness of the light sheet. Given the

number of samples obtained per measurement location (15) and the fact that out-

of-plane particle displacements greater than one quarter and less than or equal to

one half of the thickness of the laser light sheet still have a detection probability

greater than 70% (Keane & Adrian, 1991), such velocities in this range could be

measured with confidence.

For flowfield measurements over the wing, no velocity data is obtained under

the wing due to the shadow cast by the wing. To obtain a complete picture of

the flowfield around the entire wing, some test cases employed flowfield mea-

surements underneath the wing to combine with the corresponding topside mea-

surements. Here, flowfield measurements underneath the wing were performed

at the same point in the cycle on the opposite stroke. For example, at mid-stroke

PhD Thesis: Nathan D B Phillips
∣∣∣ 131



5.2. Experimental Procedures

topside measurements are taken during the downstroke, and underside measure-

ments are taken at mid-stroke on the upstroke. Such velocity measurements can

be combined if the underside measurements are mirrored, because for symmet-

ric kinematics (which was the case here) the flows generated during opposite

half-strokes are mirror images of each other (Lu et al., 2006).

5.2.3 Wing Position Measurement

As mentioned in § 4.3.3, the instantaneous wing position is reconstructed by

manually locating the leading- and trailing-edge positions in the raw images

obtained during the PIV flowfield data acquisition. This process will now be

described. For a given spanwise measurement location, the first exposure from the

15 image pairs for each camera were averaged, giving ’average’ images for each.

Here, a an ‘average’ image ‘Ī’ is computed from n images as Ī = I1/n+I2/n+...+In/n,

where In is an array representing the intensity level at each pixel for a given image

n. The average images from the left and right cameras were then combined into

one image by dewarping the average image from the left camera and overlaying

it over top of that from the right camera. Here, the left image is dewarped as

described in Appendix C, which transforms the image so that it appears as it

would be viewed if the camera axis were normal to the measurement plane (as

the right camera’s is), rather than angled to it. This way, the images can be

directly combined since they are now from the same perspective, and the result

is a clear indication of the intersection of the laser light sheet with the wing as

shown in Figure 5.3a. As indicated, points in the ycamzcam plane overlaid over

the top of the image are then manually selected at the leading and trailing edges

(red dots). This process is then repeated for every third spanwise measurement

location, and the most tip-ward spanwise location that intersects the wingtip. The

result is a collection of 3D points in the xcamycamzcam coordinate system defining

the instantaneous form and position of the wing as illustrated in Figure 5.3b.

Leading- and trailing-edge points in between every third measurement location

were inserted via interpolation.

With the 3D coordinates of the wing edge obtained using the above method,

the instantaneous stroke, plunge and pitch angles of the wing can be recovered.

As mentioned earlier, these coordinates are obtained in the xcamycamzcam coordinate
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Figure 5.3: Recovery of instantaneous wing position and flexion from raw images; (a) average image from left camera

view dewarped and overlaid over top of average image from right camera at 50% span, illustrating manual detection (red

dots) of leading- and trailing edge; (b) manually detected edge locations (red dots) from all spanwise locations revealing

instantaneous wing position and flexion

system. The pitch axis lies a known distance from the leading edge, thus a line

forming the pitch axis can be constructed in this frame. The angle between the

pitch axis and the xcamycam plane can then be found, which is the flex angle in the

plunge direction θ f lx shown in Figure 5.2. However, all flowfield / instantaneous

wing position measurements were performed when the wing was at a mechanism

plunge angle (θmec) of zero, thus, the measured θ f lx angle in this manner, is the

actual plunge angle θ of the wing. Next, the angle between the xcam axis and the

projection of the pitch axis onto the xcamycam plane can be found to give the angle

φcam2 shown in Figure 5.2. As seen in this figure, the stroke angle can then be

found from φ = φcam + φcam2. Here the measurement stroke angle φcam is known

from the swivel setting mentioned in the prior section. The coordinates defining

the wing edge can then be transformed from the xcamycamzcam coordinate system to

the xyz coordinate system since the angles between these coordinate systems are

now known. The local angle of attack along the wingspan can then be computed

with these transformed coordinates.

5.3 PIV Processing & Analysis

This section presents the method in which raw images captured during the PIV

data acquisition were processed to produce volumes of velocity data. Following
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this, the techniques used to analyse the data to visualise the flow and identify

vortices are presented.

5.3.1 Processing

PIV data processing was performed with DaVis FlowMaster software by LaVision.

The calibration for the processing was achieved with a calibration plate with

dots spread across two planes. This was placed in the measurement plane in

the area viewed by the two cameras. As discussed in Appendix C, with this

calibration, a mapping function is generated that enables the two-component

vector maps obtained from each camera to be dewarped and mapped onto a

common orthogonal plane (the measurement plane) to obtain the three velocity

components. Some degree of misalignment between the measurement plane

(light sheet) and the calibration plate is however, unavoidable. This leads to

errors in the reconstructed velocity components, and a registration error. The

registration error is the more significant of the two (Scarano et al., 2005), and

it results in the two-component vector maps from each camera not ‘matching-

up’ correctly when dewarped and combined on the common orthogonal plane.

This causes the wrong two-component vectors to be combined when obtaining

the three components using Equations C.2-C.4 in Appendix C. In other words,

the same two-component vector viewed at the same point in the measurement

plane by the two cameras are not combined with each other to produce the three

components, but rather, since the vector maps do not match-up, two-component

vectors from slightly different points in the measurement plane are incorrectly

combined.

Errors from this misalignment were corrected in the PIV processing using

the approach based on a ‘disparity map’ (Willert, 1997; Scarano et al., 2005). In

this approach, the same exposure (e.g. the first exposure) from the right and

left cameras are dewarped and mapped onto the common orthogonal plane.

These resulting images are then cross correlated with each other in the same

manner that an image pair from a 2D PIV data acquisition are cross correlated

to get a 2D vector map. If the calibration plate were perfectly aligned with the

light sheet then the resulting vector map would have vectors with zero length

everywhere since the particle images from each camera (which are taken at same
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point in time, but from different perspectives) will perfectly match-up resulting

in zero particle image displacements. However, as mentioned previously, with

a degree of misalignment (which is unavoidable), the two dewarped views will

not perfectly match-up, and the degree of mismatch is quantified by the vector

map resulting from the cross correlation. This vector map is referred to as the

‘disparity-map’. The disparity map is then used to correct the dewarping in the

PIV processing, such that the correct points in the two vector maps match-up

correctly to obtain the three components. After this correction is applied, and the

same exposures from the two cameras are again dewarped and cross-correlated as

done before, a ‘residual’ disparity map is obtained which provides an indication

of the level of remaining registration error, and hence how well the two camera

perspectives dewarp and match-up. The residual disparity can then be added to

the first iteration disparity map to improve the correction. This process can be

iterated until the desired level of registration error is achieved. Such a process

was iterated three times, resulting in a residual disparity with a respective mean

and maximum registration error of 0.3px and 0.8px. For the different PIV setup

used for the wing planform investigation (as noted in § 4.3.3), the mean and

maximum residual registration error was 0.7px and 1.5px respectively. Errors on

the reconstructed three velocity components due to calibration plate misalignment

will be addressed later in § 5.4.5.

Before image pairs were cross-correlated, reflections on the wing and in the

background were removed by averaging the multiple samples of images taken at

a given spanwise location for each exposure, and then subtracting these averages

from each sample at the same measurement location. The acquired image pairs

were then cross-correlated with a standard cyclic fast Fourier transform-based

algorithm which uses Equation C.1 (page 289). In the cross-correlation, a Gaussian

peak fit was used to locate correlation peaks to within sub-pixel resolution. An

initial interrogation window size of 32 × 32 px2 was employed, which progressed

to a final interrogation window size of 16 × 16 px2 with two passes and a 50%

overlap. This resulted in a spatial resolution for both PIV setups of ∼ 1mm2.

Deformed interrogation windows were also used which increases the number of

matched particles and the signal-to-noise ratio. Between passes from the initial to

final interrogation window size, the median filter proposed by Westerweel (1994)

was utilised to locate spurious vectors and replace them by interpolation.
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The resulting vector maps for a given spanwise measurement location were

averaged, and then assembled into a 3D matrix representing the flow velocities

throughout the measurement volume surrounding the wing. As noted in § 4.3.3,

the measured velocity components are in the xcamycamzcam frame. These are then

transformed to the xyz frame aligned with the wing using the known angles

between these coordinate systems as discussed in § 5.2.3. Finally, the kinematic

data obtained from the drive shaft encoders are used to determine the actual wing

speeds at the measurement point, which are then used to convert measurements

from vectors with respect to the ground to vectors with respect to the wing.

5.3.2 Analysis

Flow Visualisation

The flowfield in a given 2D plane in the measurement volume was visualised

with the use of Line Integral Convolution (LIC), which was originally presented

by Cabral & Leedom (1993). This technique visualises a vector field by taking an

image of white noise with the same dimensions as the vector field, and stepping

through each pixel and and integrating forwards and backwards a certain distance

along the local streamline. As this happens, each pixel is assigned the mean

intensity of the pixels underneath the streamline, and pixels that lie along the

same streamlines are assigned similar intensities. Further details on the employed

method may be found in Lawson et al. (2005). Essentially, this method smears

points in the white noise image in the direction of the local velocity vector, and an

example ‘LIC’ image is shown in Figure 5.4. The result of this method is an image

that resembles a streak photograph from a steady flow (recall from Chapter 2), in

which a liquid flow is densely seeded with particles and a picture is taken with a

prolonged exposure producing streaks defining the local streamlines. Thus, LIC

provides a picture densely packed with streamlines, that has the advantage of

identifying all of the flow features.

The LIC technique employed here is also known as steady flow LIC, as it uses

an instantaneous, or time-averaged, vector field to produce the image. Another

version known as unsteady flow LIC, or UFLIC (see e.g. Shen & Kao (1998)),

also exists which produces the image using a time-dependent vector field. The
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result of the latter technique is analogous to a streak photograph produced from

an unsteady flow.

Vortex Identi�cation

To identify vortical structures in the 3D flowfield, the velocity gradient tensor and

its properties were examined. At a given point, the velocity gradient tensor is

defined as:

∇v =


∂vx
∂x

∂vx
∂y

∂vx
∂z

∂vy

∂x
∂vy

∂y
∂vy

∂z
∂vz
∂x

∂vz
∂y

∂vz
∂z

 (5.1)

This can be split into a symmetric part S, and antisymmetric part Ω as follows

(Mase, 1970):

∇v = S + Ω (5.2)

where

S =
1
2

(
∇v + (∇v)T

)
(5.3)

Ω =
1
2

(
∇v − (∇v)T

)
(5.4)

Here T represents the transpose. S and Ω are also known as the rate of defor-

mation tensor, and the spin tensor respectively (Mase, 1970). This decomposition

can be thought of as separating the local fluid motion into strain and shear rates,

which are lumped together in S, and rigid-body-like rotation rates which are

grouped into Ω. The vortex identification criterion of Hunt et al. (1988), called the

‘Q criterion’, makes use of this decomposition to identify vortices, and is defined

as:
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Figure 5.4: yz plane of vectors over top of a LIC image illustrating critical point identification method proposed by

Knowles et al. (2006), where such points are identified where contours of vy = 0 and vz = 0 intersect; wing outline is

indicated by the black line, where the right side is the leading edge

Q > 0 (5.5)

where

Q =
1
2

(
||Ω||2 − ||S||2

)
(5.6)

Here, ||Ω|| =
√

trace(ΩΩT), and ||S|| =
√

trace(SST). This states that if at a given

location Ω dominates over S (and thus Q > 0), then that region is a vortex since the

local fluid motion will be dominated by rigid-body-like rotation. As we will see

shortly, this criterion was used in the analysis to classify flow regions as vortices.

Vortex core locations were identified in the volumes of velocity data using

the technique proposed by Knowles et al. (2006). This locates vortex cores and

other features such as saddle points in 2D planes by finding intersections between

contour lines of zero velocity for the two velocity components in that plane. For

example, in the yz plane, intersections of contour lines of vy = 0 and vz = 0 mark
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critical points as illustrated in Figure 5.4. An intersection point was automatically

classified as a vortex if it passed the Q criterion mentioned previously, that is if Q >

0 at the intersection. Critical points identified in this manner can be automatically

classified as other types, such as saddles, by using the same approach as Chong

et al. (1990) and Peikert (undated). This approach uses the following properties

of the velocity gradient tensor:

P = −trace(∇v) = −

(
∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z

)
(5.7)

Q = (P2
− trace((∇v)2))/2 =

∣∣∣∣∣∣∣
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∂vz
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∣∣∣∣∣∣∣
∂vy

∂y
∂vy

∂z
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∂vz
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< = det(∇v) =

∣∣∣∣∣∣∣∣∣∣
∂vx
∂x

∂vx
∂y

∂vx
∂z

∂vy

∂x
∂vy

∂y
∂vy

∂z
∂vz
∂x

∂vz
∂y

∂vz
∂z

∣∣∣∣∣∣∣∣∣∣ (5.9)

With just the calculated values of P,Q, and<, a given point can be classified as

a certain critical point type according to the criteria outlined in Chong et al. and

Peikert. For example, a point is a saddle if Q < 0, and a focus (vortex) if Q > 0.

This is consistent with the Q criterion, as Q in Equation 5.8 is another form of Q

in Equations 5.5 and 5.6. However, in the present analysis, only vortices were

of interest, thus, as mentioned previously, intersection points were classified as

vortices using the Q criterion.

The employed vortex core identification method was applied to every xy, yz,

and xz plane in the measurement volume resulting in a collection of points in 3D

each representing a vortex core location. These points revealed the form of vortex

axes. Points along a vortex axis could be joined by a single line by using the fact

that the 3D vorticity vector at a given point on the vortex axis points to the next

point on the vortex axis. In other words, the vorticity vector along the vortex axis

is tangent to the axis trajectory. A ‘vortex point-joining algorithm’ was therefore

developed that exploited this fact to join collections of points with a line forming

a vortex axis. Details of this algorithm are given in Appendix D.
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With the vortex axes identified by 3D lines, numerous characteristics of a given

vortex structure could then be obtained along its core including: tangential and

axial velocity, helix angle, axial vorticity, vortex diameter, and circulation. Details

of how these quantities are computed along a given vortex axis are presented

in Appendix E. In addition, points along an identified vortex axis provided

starting points from which to release instantaneous streamlines, making the vortex

structure visible.

To provide a secondary indication of the presence of vortex structures, iso-

surfaces of the Q criterion were also employed. A high enough threshold above

zero had to be employed because simply plotting areas where Q > 0 saturated

the measurement volume. A threshold of a certain multiple ‘q’ times the square

of the mean wingtip speed was mostly employed, where q ≈ 8.5 × 104m−2 was

found to be appropriate.

5.4 Uncertainty Analysis

This section presents an uncertainty analysis for the various measurements per-

formed in this study. First, uncertainty on measured mean lift will be discussed,

followed by uncertainty on the flapping mechanism output stroke, plunge and

pitch angles. After this, the uncertainty on the optically measured (from raw

images) wing position (wing stroke, plunge and pitch angle) will be discussed. In

addition, the errors on the wing position when optical measurements are unavail-

able, and its position must be estimated from the flapping mechanism position,

are given. Lastly, errors on the flowfield measurements are discussed.

5.4.1 Force Measurements

To verify that the procedure described in § 5.2.1 for measuring mean lift was

reliable, a series of experiments were performed to quantify the error. In these

experiments, the wing was removed and known masses were loaded onto the

outermost drive shaft of the flapping mechanism. Mean vertical force was then

measured using the same procedure outlined in § 5.2.1, and the result was com-

pared to the weight of the known masses to compute the error. This was performed
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using a number of masses ranging up to ∼ 25 grams. Results revealed an error

of ±0.02N (95% confidence level) on the mean calculated vertical force. To verify

that inertial forces from the wing in the vertical direction would in fact cancel and

hence have no contribution to measured mean lift, a test was performed where

a plain rod was put in place of the wing and vertical force was measured over a

number of cases employing figure-of-eight kinematics at 20Hz with an increasing

plunge amplitude. An increasing plunge amplitude leads to larger inertial forces

in the vertical direction since plunging accelerations rise. It was found that in all

cases, the measured vertical force was well within the error band centred at the

expected value of zero, thus verifying that inertial forces average to zero.

5.4.2 Flapping Mechanism Position

Uncertainties in the computed mechanism output angles (φmec, θmec, αmec) origi-

nate from physical backlash in the flapping mechanism, encoder resolution, and

variability due to the degree of positional repeatability. These sources of error

will be discussed, and their effects quantified.

Backlash Backlash only affected the mechanism plunge angle and was 0.3◦ in the

plunge direction. This was measured by locking all of the drive shafts and

measuring any remaining degree of wing movement.

Encoder Resolution Uncertainty on the drive shaft angles (φL1, φL2, φL5) originat-

ing from the resolution of the respective encoders, was 0.036◦ for the outer

and middle shaft encoders and 0.088◦ for inner shaft encoder. Resulting

error on the output stroke, plunge and pitch angles was found by running

a simulation in Matlab in which ‘actual’ input kinematics are quantised to

discrete values according to the encoder resolutions resulting in ’measured’

input kinematics. Mechanism output kinematics were calculated with equa-

tions in Appendix B using both actual and measured input kinematics, and

the resulting differences in the φmec, θmec, and αmec angles between the two

cases gave the error due to encoder resolution. This analysis was performed

with all of the flapping kinematics used in experiments, and a maximum

error onφmec, θmec, andαmec, was found to be 0.04◦, 0.03◦ and 0.4◦ respectively.
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Position Variability The variability in the output stroke, plunge, and pitch angles

due to the repeatability of the flapping mechanism position, was quantified

in § 4.4.2. These values were found to be 0.1◦, 0.07◦ and 0.17◦ for φmec, θmec,

and αmec respectively.

Combining all sources of error, the total error on the mechanism output stroke,

plunge and pitch angles are:

δφmec =
√

0.04◦2 + 0.1◦2 = ±0.1◦ (5.10)

δθmec =
√

0.3◦2 + 0.03◦2 + 0.07◦2 = ±0.3◦ (5.11)

δαmec =
√

0.4◦2 + 0.17◦2 = ±0.4◦ (5.12)

5.4.3 Wing Position from Optical Measurements

Error in optically reconstructing the instantaneous wing position using the method

outlined in § 5.2.3, arises from the uncertainty in locating the leading and trailing

edge positions in the many raw images taken along the span. This uncertainty

affects the calculated pitch angle α, as well as the φcam2 and θ f lx angles described

in § 5.2.3 (see Figure 5.2) which are used to obtain the stroke and plunge angles

of the wing. The uncertainty in locating the leading and trailing edges both in

the ycam and zcam directions was conservatively taken as half of the thickness of

the perceived laser light sheet and wing intersection (e.g. half the thickness of the

white line in Figure 5.3a), which was 0.47mm. The impact of this uncertainty is a

maximum error in α, φcam2 and θ f lx of 2◦, 1.2◦ and 1.2◦ respectively. Recalling from

§ 5.2.3 that φ = φcam +φcam2, additional error in the wing’s stroke angle arises from

uncertainty in the measurement stroke angle φcam, which was 0.5◦. Therefore, the

total error in the stroke angle of the wing is:

δφ =
√
δφ2

cam + δφ2
cam2 (5.13)
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δφ =
√

0.5◦2 + 1.2◦2 (5.14)

δφ = ±1.3◦ (5.15)

Recalling from § 5.2.3 that in each measurement case, θ f lx is in fact the plunge

angle of the wing, thus, the error in the wing’s plunge angle is:

δθ = δθ f lx (5.16)

δθ = ±1.2◦ (5.17)

Lastly, the wing’s pitch angle is directly found from the raw images, where the

error has previously been stated to be:

δα = ±2◦ (5.18)

It should be noted that the error in the local pitch angle will depend upon

the local chord length, where the shorter the chord the higher the error since the

leading and trailing edge location error of 0.47mm becomes comparatively bigger

as the chord length decreases. However, error in α is previously quoted for the

mean chord length and, thus, is the mean local error of α along the span.

5.4.4 Wing Position from Mechanism Position

As will be seen in Chapter 6, some experimental test cases only employed flowfield

measurements at mid-stroke. In these cases, the actual wing position throughout

the flapping cycle cannot be determined, simply because the wing position is

only known at one point in the cycle. However, the actual wing position can be
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described by the known mechanism output kinematics if effects due to flexibility

are included. For example, the wing’s stroke angle φ is equal to the mechanism

output stroke angle φmec plus or minus some contributions to flexibility. Thus,

contributions due to flexibility can be treated as a form of error in the mechanism

output angles, when describing the angles of the wing. This ‘flex’ error can be

determined by computing the difference between recovered flapping kinematics

and mechanism output kinematics. As will be seen in Chapter 6, experimental

test cases in which the flow evolution and rotation phase were investigated in-

cluded simultaneous wing position and mechanism position measurement, thus

providing data to compute differences between flapping and mechanism output

kinematics due to flexion. After performing this computation it was revealed

that the rms errors (differences) between the wing and mechanism output stroke,

plunge, and pitch angles were 3.8◦, 2.3◦, and 4.5◦ respectively. Including the er-

rors in the φmec, θmec, and αmec angles found previously in § 5.4.2, and errors on

the reconstructed wing position given in § 5.4.3 (which must be included since

the computed difference between flapping and mechanism output kinematics is

affected by this error), the errors in the wing stroke, plunge and pitch angles

described by the mechanism output angles are as follows:

δφ =
√

0.11◦2 + 1.3◦2 + 3.8◦2 = ±4◦ (5.19)

δθ =
√

0.31◦2 + 1.2◦2 + 2.3◦2 = ±2.6◦ (5.20)

δα =
√

0.44◦2 + 2◦2 + 4.5◦2 = ±4.9◦ (5.21)

5.4.5 Flow�eld Measurements

Errors in flowfield measurements arise from a number of sources including: an

inadequately large sample size, contaminating flows from the smoke machine,

‘start-up’ effects, potential flow recirculation, possible alteration of the flow from

traversing the wing, calibration errors, and PIV processing error. These errors will

now be discussed in order and, finally, the total error in the velocity measurements

for the two PIV setups will be given.
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Sample Size

As mentioned in § 5.3.1, for a given spanwise location in the measurement vol-

ume, multiple samples of PIV flowfield measurements were captured and then

averaged. The act of averaging filters out noise in the velocity measurements,

thus providing a picture of the ‘true’ flowfield. The question arises, however, of

how sample size affects the averaged flowfield, and how close it is to the true

mean. This section will address this question, and quantify how close velocity

measurements were to the mean.

Figure 5.5: Maximum (top) and mean (bottom) of 95% confidence limits on velocity components in flowfield at 50%

span versus sample size

One hundred instantaneous flowfield measurements (100 samples) at 50%

span at mid-stroke with the baseline kinematics given in § 5.1.1 (but with Φmec ≈

120◦) were used for this analysis. For a given sample size n, each point in the

measurement plane was stepped through and the sample of n vxcam, vycam, and

vzcam velocity components at that point were used to compute a 95% confidence

interval (CI) for each of the velocity components at that point using the following

formula for a normal distribution:
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CI = ±1.96
σ
n

(5.22)

Where σ and n are the standard deviation and sample size respectively. The

result for a given sample size is a ‘map’ of the 95% confidence limits at each point

across the measurement plane. This was performed for sample sizes of 5 − 100.

Across this range the maximum and mean of the 95% confidence limits across

the measurement plane, for a given sample size, are illustrated in Figure 5.5

as a percentage of the mean wingtip speed (8.4m/s). It can be seen that from

the lowest sample size of 5, the confidence limits in the measurement plane

rapidly narrow as sample size increases. Beyond a sample size of approximately

40, any further samples have very little impact on the proximity of flowfield

velocities to the true mean. A sample size of this magnitude was however, deemed

too large to be practical for the present experiments, as it would require large

processing times for the desired level of spatial resolution in the measurement

volume. Instead a sample size of 15 was chosen as an adequate compromise, as

it lies approximately where the confidence limits in Figure 5.5 begin to level out

after declining rapidly. At this sample size, all velocity components are within

approximately 13% (maximum confidence limit) of the mean wingtip speed from

the true mean; however, most are within 3% (mean confidence limit).

Settling Time

To ensure that measurements were not contaminated with flows generated in

the act of filling the test chamber with smoke, an experiment was performed

to determine the appropriate length of time to wait (the ‘settle time’) before

beginning experiments. The experiment consisted of releasing seeding into the

enclosure (using a fixed burst length of ∼ 3s) and measuring the resulting flow

every 5 seconds up to approximately 5 minutes, using a PIV laser pulse separation

of 5ms. The observed velocity levels over time are illustrated in Figure 5.6. Here

the velocity level is measured by the mean of the velocity magnitudes in the

measurement area, plus one standard deviation of the velocity magnitudes. It

can be seen that flow velocities roughly level out just before 2 minutes. However,

a settle time of 4 minutes was selected for experiments, as it gave more time to
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Figure 5.6: Flow velocity levels versus time since seeding burst; velocity level is shown by mean of velocity magnitudes

over measurement area plus one standard deviation

allow the seeding density to become uniform. In addition, at this time, velocity

levels drop below 0.03m/s, which corresponded to a maximum level of around

1.4% of the mean wingtip speed (from the measurement test case with the lowest

wingtip speed), where in most measurement test cases this value was in fact below

0.05%. This was deemed to be sufficiently low that subsequent experiments would

not be contaminated.

Start-up E�ects

As noted earlier in § 5.2.2, 10 seconds (> 40 flapping cycles) were allowed to

elapse before measurements commenced. The purpose of this was to surpass

any ‘start-up’ effects, and allow the flow to reach a quasi-steady state. In other

words, to allow the flow to reach a state where the flowfield at the same point in

the half-stroke between successive flapping cycles becomes virtually identical. To

determine the number of flapping cycles required to surpass start-up effects, an

experiment was conducted which involved 2D PIV measurements of the flowfield

for a set of flat wingtip kinematics at a 5Hz flapping frequency and ∼ 132◦ stroke

amplitude. The wing was allowed to flap from an originally quiescent flow, and

once the desired flapping frequency was reached, flowfield measurements were

taken every cycle at 50% span at mid-stroke, up to 100 cycles. This was repeated

5 times, and corresponding measurements were averaged. The results of this
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Figure 5.7: LEV tangential velocity profiles at mid-stroke, 50% span at 1, 25, 50 and 100 flapping cycles since start from

rest; vxcam components are approximately the axial velocities; velocities are normalised with respect to the mean wingtip

speed (2.4m/s); distance above wing surface is normalised with respect to c̄ (27.7mm)

experiment are illustrated in Figure 5.7, where vxcam components (approximately

LEV tangential velocity components) are shown plotted along a line in the zcam dir-

ection rising from the wing surface at approximately the quarter-chord position.

It can be seen that beyond 25 flapping cycles, the velocity profiles are similar, thus,

any start-up effects are deemed to have been surpassed by this point. Therefore,

the employed wait of 10 seconds, corresponding to 40 flapping cycles or more

(depending on the flapping frequency), is sufficient. This aspect of flapping-wing

experiments has been investigated before, where the study of Poelma et al. (2006)

found that 3 flapping cycles were appropriate to surpass start-up effects.

Recirculation

As a result of operating the flapperatus in an enclosed volume for a prolonged

period of time, there was the risk of recirculation forming if the enclosure were too

small, which would influence results. To ensure that no recirculation was present,

and hence ensure the enclosure was appropriately sized, the wing was flapped

in an initially quiescent flow, and a sample size of 15 flowfield measurements
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at 50% span were acquired and averaged every 300 flapping cycles over a total

period of almost 9000 cycles. A given experimental run in the main experimental

programme lasts approximately 6000 flapping cycles. The flapping kinematics

used for this investigation were the same as those used in § 5.4.5. The means

and maxima of the velocity components over this number of flapping cycles are

plotted in Figure 5.8. If recirculation had formed then it would be expected

that velocity components would have drifted over time, especially the mean and

maximum vzcam values (where this velocity is in the vertical direction). It can be

seen that over time the means and maxima of the velocities do not drift and remain

centred around the same value. Therefore, it was deemed that the enclosure was

appropriately sized and no recirculation formed.

Figure 5.8: Mean and max of velocity components at 50% span versus number of flapping cycles; velocities are

normalised with respect to the mean wingtip speed (8.4m/s)

Traversing Flow Error

Recall from § 5.2.2 that flowfield measurements throughout a volume surrounding

the wing were accomplished by traversing the flapping-wing relative to the fixed

measurement plane. It could be argued that the act of traversing the wing in this

manner could have altered the flow and given results that are not characteristic

of a flapping-wing in the hover condition. Although peak and average traversing

speeds were well below 0.1% of the mean wingtip speed, any such effects from

traversing the flapping wing were investigated, which will be described now.
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Figure 5.9: LEV velocity profiles for a traversed and non-traversed measurement at 50% span; (a) vycam components

are approximately the LEV tangential velocities; (b) vxcam components are approximately the axial velocities; velocities are

normalised with respect to the mean wingtip speed (8.4m/s); distance above wing surface is normalised with respect to c̄
(27.7mm)

As described in the measurement procedures, for each measurement location

along the span, 40 flapping periods were allowed to elapse following the arrival

at that measurement location before flowfield measurements commenced. This

waiting time was imposed to surpass any potential effects on the flow from

traversing the wing. To validate the use of this wait time, flowfield measurements

along the entire span were captured using the aforementioned procedure, thus

giving a ‘traversed case’. For comparison, a ‘non-traversed’ case was employed

where the measurement location was pre-set to 50% span, the wing was allowed

to flap from a quiescent flow (which is also true for the traversed case) and

measurements at just that spanwise location were taken thereafter with the same

sample size (15). The same flapping kinematics used in the sample size study in

§ 5.4.5 were employed for this study. At the 50% span location for both traversed

and non-traversed cases, the LEV core location was found using the technique

outlined in § 5.3.2. In both cases, the LEV core was identified at approximately the

same point, where the core location only differed by less than 0.5mm in the both

horizontal (ycam) and vertical (zcam) directions. A vertical line in the zcam direction

was drawn upwards from the wing surface intersecting the LEV core location

for both cases, and velocity components along this line for each case are plotting

in Figure 5.9. Here vycam is approximately the LEV tangential velocity and vxcam

is approximately the axial velocity. It can be seen that the velocity profiles in
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both cases are virtually identical; therefore, the employed method of traversing

the wing was deemed to have no effect on the flow structures produced, and

measurements represent a true hover condition.

Calibration Error

Calibration error occurs when the spatial measurement scales obtained using

the calibration plate differ slightly from their true values. For both PIV setups,

the calibration error resulted in a 0.2% error on measured displacements, thus,

resulting in an error in velocity measurements also of 0.2%.

Calibration Plate Misalignment

Recall from § 5.3.1, that misalignment between the calibration plate and light sheet

can lead to errors in the 3D velocity components. With this misalignment, the

viewing angles (from the calibration plate) used in the three component recon-

struction are not the true viewing angles with respect to the measurement plane in

which the actual velocities are measured. Thus, error arises on the reconstructed

3D velocity components. The misalignment between the calibration plate and the

light sheet can be computed from the disparity map mentioned in § 5.3.1. From

the ‘velocity’ gradients in the disparity map, the misalignment can be computed

with the expressions derived in Scarano et al. (2005). Using this approach, for

the main PIV setup the calibration plate was found to be misaligned by 0.16◦ and

−0.65◦ in the stroke and plunge directions respectively. For the second PIV setup

used for the wing planform study (as noted in § 4.3.3), these misalignments were

respectively 0.3◦ and 0.15◦ in the stroke and plunge directions.

With the determined misalignments, the errors in the reconstructed velocity

components were determined numerically. Employing Equations C.2 - C.4 from

Appendix C, a simulation was set up in Matlab which stepped through each

point in the measurement area and computed the three velocity components

from vR
ycam, vR

zcam, vL
ycam, and vL

zcam. At each point, these four components from the

two cameras were each varied from −10px to 10px, which was the maximum

range of particle image displacements in the experiments. Thus, at each point,

the 3D velocity components were computed for every possible combination of
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vR
ycam, vR

zcam, vL
ycam, and vL

zcam each ranging from −10px to 10px. This was performed

for an array of points across the measurement area with viewing angles from

the known geometry of the setup. The viewing angles were then perturbed

according to the measured calibration plate misalignments, and the three velocity

components at each point were recalculated with the same method mentioned

previously. The resulting differences in the velocity components between the two

cases provided the errors in the velocity components resulting from calibration

plate misalignment. For the main PIV setup, this revealed an rms error in the

in-plane components (norm of errors in ycam and zcam components) of 2.7µm, and

an rms error of 2.1µm in the out-of-plane components (error in xcam components).

This corresponds to a maximum in-plane and out-of-plane rms error in velocity

components of 1.5%, and 1.2% of the mean wingtip speed respectively, resulting in

a norm of 1.9%. For the PIV setup for the wing planform study, in-plane and out-

of-plane rms errors were found respectively to be 5.3µm and 3.8µm, translating

to errors in velocity components of 2.4% and 1.7% of the mean wingtip speed for

in-plane and out-of-plane respectively. These combine to a norm of 2.9% of the

mean wingtip speed.

PIV Processing Error

Errors in PIV measurements can be divided into three forms: outliers, bias errors,

and root mean square (rms) errors (Huang et al., 1997). Outliers were identified

and removed using the median filter discussed in § 5.3.1. The other two forms of

error will now be discussed and evaluated.

Bias error arises when a velocity gradient is present in the interrogation win-

dow. If the velocity gradient is large enough then the measured velocity in that

interrogation window will be biased towards a lower value. This is because par-

ticles with higher velocities are more likely to leave the interrogation window

between pulses, resulting in less detection of higher velocities in comparison to

the lower velocities, for which the particles remain in the interrogation area. Bias

error is directly proportional to the particle image displacement and the velocity

gradient within an interrogation window; thus, if these are minimised then bias

error may be made negligible (Keane & Adrian, 1990). If particle displacements

are minimised, then the loss of particles with higher velocities from the inter-

rogation window is reduced. As velocity gradients are minimised the velocity
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across the interrogation area becomes more uniform, which results in a much

higher correlation peak (ibid.) and better detection, and the measured velocity

for that window is more representative of all the velocities in that window. In the

present study particle image displacements were minimised through the use of

an interrogation window offset, which moves the interrogation window with the

particles between pulses, thus minimising loss of particles. In addition, deformed

interrogation windows were also used, in which the interrogation window is

deformed to prevent further loss of particle images from the interrogation area.

Velocity gradients can be minimised by employing a progressively smaller inter-

rogation window (Keane & Adrian, 1992), which was the technique employed

here as described in § 5.3.1. It was felt that minimising these factors resulted in a

negligible bias error from these sources.

The rms errors in the velocity field measurements were quantified using the

approach described by Willert & Gharib (1991) and Willert (1997), in which error is

measured by processing particle image pairs where the particles have displaced

by an amount that is known reliably. Using this approach, the flow was mea-

sured four minutes after a seeding burst (at which it was known that the flow

velocity was below 0.03m/s) using a short pulse separation of 4µs. This short

pulse separation in conjunction with a low flow velocity meant that the actual

displacement of the particles between pulses was virtually zero and, thus, any

measured displacements would be pure error. The resulting vector map of parti-

cle image displacements then provides a large sample of errors, from which the

rms error can be found. With this approach, for the main PIV setup, in-plane

error on measured particle displacements was found to be 4µm, whereas the out-

of-plane error was 4.2µm. This corresponds to a maximum rms error for in-plane

and out-of-plane velocity measurements of 2.3% and 2.4% of the mean wingtip

speed respectively, resulting in a norm of 3.3% of the mean wingtip speed. For

the different PIV setup used for studying wing planform effects, in-plane and

out-of-plane errors of 5.7µm and 7µm were found respectively. These translate to

maximum rms in-plane and out-of-plane velocity errors of 2.6% and 3.1% of the

mean wingtip speed respectively, giving a norm of 4%.
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Total Error

Combining all of the errors discussed above, the total error on velocity mea-

surements as a percentage of the mean wingtip speed, for the main PIV setup

was:

δv
v̄tip
× 100% =

√

3.32 + 1.42 + 0.22 + 1.92 + 3.32 = ±5% (5.23)

Similarly, for the second PIV setup for studying wing planform, the total error

was:

δv
v̄tip
× 100% =

√

3.32 + 1.42 + 0.22 + 2.92 + 42 = ±6% (5.24)

The results of the experimental programme described here, will now be pre-

sented and discussed in the next chapter.
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Results & Discussion

Following the experimental programme outlined in § 5.1, this chapter begins with

a detailed investigation of the flow evolution throughout a single half-stroke in

order to obtain a picture of how the flowfield generated by an insect-like flapping

wing at FMAV scale is characterised. This is then followed by a parametric

study in which various kinematic parameters and wing planform are altered, to

observe how this flowfield changes as well as the mean lift generated. The effect

of varying rotation phase is first investigated, followed by Reynolds number and

stroke amplitude effects. Following this is a study of angle of attack effects, the

effect of varying plunge amplitude with figure-of-eight kinematics, and finally

wing planform shape effects are presented.

Before proceeding we must define a set of coordinate systems. Referring to

Figure 6.1, the xyz coordinate system is the same as that presented in § 2.1.2

Figure 6.1: Wing fixed xyz (same as in § 2.1.2), and vortex axis fixed xva yvazva coordinate systems
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6.1. Flapping Half Stroke

(page 17). Here, the origin is placed at the root of the wing, which is located at the

wing offset distance b (23.8mm) from the centre of rotation. The other xva, yva, zva

coordinate system, is a local coordinate system at a given point on a vortex axis.

This is also illustrated in Figure 6.1 where this coordinate system is fixed at an

arbitrary point n on the LEV/TPV vortex axis. It is oriented such that the xva axis

points in the local direction of the curve defining the axis, towards the end of the

axis without a white dot. The yva, zva axes form a plane normal to the xva axis, where

the yva axis is parallel to the line of intersection between this plane and the wing

as illustrated. The zva axis is then perpendicular to this line of intersection and xva.

If the yvazva plane does not intersect the wing then zva is oriented vertically such

that the xvazva plane is parallel to the z direction. Axial, and tangential directions

along an axis are taken as the xva and yva directions respectively. For instance, a

positive tangential velocity points in the yva direction.

6.1 Flapping Half Stroke

The first investigation focuses on the development and evolution of the flow in-

duced by an insect-like flapping-wing in hover throughout one half of a flapping

cycle (a half-stroke), at a Reynolds number relevant to FMAVs (Re on the order

of 104). Recall that a half-stroke lasts T/2s and consists of the point when the

wing is at rest and about to accelerate, followed by acceleration to a constant

(or peak) velocity at mid-stroke, and then deceleration to rest with simultaneous

pitch reversal. As described in § 5.1.2, numerous volumetric flowfield measure-

ments were performed throughout a half-stroke and various flow structures were

identified and analysed. First, the flapping kinematics used for this investigation

including the measurement points will be presented, followed by a description of

the flow evolution. Next discussions on other aspects relating to the observations

will be given, including the presence of a secondary LEV, LEV breakdown, LEV

circulation and lift, and LEV stability.

6.1.1 Flapping Kinematics & Measurement Points

The flapping kinematics used are illustrated in Figure 6.2 and the kinematic pa-

rameters are listed in Table 6.1. Mechanism output kinematics (the kinematics
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Chapter 6. Results & Discussion

Figure 6.2: Mechanism output kinematics (black) and flapping kinematics (red) over a complete flapping cycle; time

is non-dimensionalised with respect to the flapping period T (0.05s)

demanded by the flapping mechanism) are illustrated by the black lines in Fig-

ure 6.2; actual flapping kinematics (measured wing kinematics accounting for

wing flexion) are shown by the red lines with symbols. If the wing were in-

finitely rigid then the mechanism flapping kinematics would be the same as the

wing flapping kinematics. In addition, the pitching kinematics are re-plotted in

Figure 6.3 with αmin and αmax, which refer to most horizontal and most vertical

local pitch angles respectively along the wing at an instant. These angles give

an indication of wing twist. Here, αmax occurs towards the root and αmin occurs

towards the wingtip. The pitch angle α is simply the mean pitch angle along the

span. For a full description of how all kinematic angles are defined, please see

§ 2.1.3 (page 19).

Twelve azimuthal positions evenly spaced in time throughout the flapping

half cycle were chosen as the flowfield measurement positions. Again, the start
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Table 6.1: Kinematic parameters

f 20Hz

R̄e 15210

Φ 118.3 ± 2.6◦

Θ 4.2 ± 2.4◦

αmid 43.3 ± 2◦

τ 6.2 ± 0.5%

Φmec 112.7 ± 0.2◦

Θmec 1.3 ± 0.6◦

αmecmid 45.6 ± 0.4◦

τmec 6.1 ± 0.3%

of the half-stroke 0T was taken as the time when the wing is at rest and about

to accelerate. The measurement positions start at 0.042T (T/24) and progress to

0.5T in increments of T/24. Measurements for only a half-stroke rather than a

full cycle were performed because the flows generated by half-strokes in opposite

directions have been reported to be mirror images of each other for symmetric

kinematics (Lu et al., 2006). The flapping kinematics used here were virtually

symmetric, thus only analysing a half-stroke was deemed sufficient to describe

what occurs for a full flapping cycle. This also justified using mirrored flowfield

Figure 6.3: Comparison of mechanism output angle of attack (αmec), mean (α), maximum (αmax) and minimum (αmin)

angle of attack; time is non-dimensionalised with respect to the flapping period T (0.05s)
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Chapter 6. Results & Discussion

measurements under the wing from the return stroke to fill in masked areas in

the measurement volume as described in § 5.2.

6.1.2 Flow Evolution

Figures 6.4 and 6.5 illustrate the flow evolution throughout the half-stroke viewed

from the top (−z) and back (y) views respectively. The left column of each figure

shows dark grey surfaces illustrating vortex core diameter overlaid with the vortex

axis coloured with axial vorticity normalised by the mean wing angular velocity

Ω̄wng (79.7rad/s). Vortex axes become coloured dashed lines when behind other

objects. Right columns show instantaneous streamlines released from vortex axes

coloured with axial velocity normalised with respect to the mean wingtip speed

v̄tip (8.4m/s). In addition, instantaneous black streamlines released along the wing

edge are also shown, along with transparent grey isosurfaces of Q = qv̄2
tip (where

q ≈ 8.5 × 104m−2) to provide a secondary indication of the presence of vortical

structures. For a given vortex axis, the positive axial direction points along the

local direction of the axis (xva direction) towards the end without a white dot.

Figures F.1 - F.6 give these plots for all twelve measurement positions, whereas

Figures 6.4 and 6.5 are condensed forms.

Immediately after the start of the half-stroke at 0.042T a starting vortex STRV1

is clearly visible at the outboard section of the trailing edge, along with a tip

vortex TPV1 and a leading-edge vortex LEV1. Here, STRV1, TPV1 and LEV1

are one continuous vortical structure. The LEV from the previous half-stroke,

LEV0 can also be seen at this time, particularly from the back view in Figure 6.5

underneath the wing towards the leading edge. This is highlighted by the fact

that the black instantaneous streamlines released from the leading edge near the

root curl underneath the wing in the same sense as the LEV from the previous

half-stroke. In addition, the tip vortex TPV0 and root vortex RTV0 from the

previous half stroke can be seen under the wing.

As the stroke progresses to 0.125T, the starting vortex STRV1 is left behind in

the wake, TPV1 grows in size. LEV1 develops more inboard where an increased

level of axial vorticity is present and the vortex axis has shifted away from the

leading edge. LEV1 and TPV1 remain as one continuous structure, but with an

increased level of axial flow through the core. The presence of a secondary LEV
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Figure 6.4: Top views illustrating flow formation over a flapping half cycle; left column shows vortex core diameter

(dark grey surfaces) and vortex axes coloured with axial vorticity normalised with respect to Ω̄wng (79.7rad/s) (axes become

dashed when behind other objects); right column shows instantaneous streamlines released from vortex axes coloured

with axial flow normalised with respect to v̄tip (8.4m/s), black streamlines released along the wing edge, and transparent

grey isosurfaces of Q = qv̄2
tip where q ≈ 8.5× 104m−2; positive axial direction points along an axis towards the end without

a white dot
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Figure 6.5: Back views illustrating flow formation over a flapping half cycle; left column shows vortex core diameter

(dark grey surfaces) and vortex axes coloured with axial vorticity normalised with respect to Ω̄wng (79.7rad/s) (axes become

dashed when behind other objects); right column shows instantaneous streamlines released from vortex axes coloured

with axial flow normalised with respect to v̄tip (8.4m/s), black streamlines released along the wing edge, and transparent

grey isosurfaces of Q = qv̄2
tip where q ≈ 8.5× 104m−2; positive axial direction points along an axis towards the end without

a white dot
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right along the leading edge beyond 50% span is suggested by the Q criterion

isosurfaces. LEV0 from the previous half stroke has disappeared at this time

and is left behind in the wake. TPV0 and RTV0 are still present, but are further

underneath the wing at this position in the cycle. Interestingly, the core axial

velocity of TPV0 as seen by the wing is approximately two times the mean wingtip

speed.

At the mid-stroke position 0.25T when the wing has reached its maximum

speed, LEV1 has developed more towards the root with an even greater axial

vorticity and axial velocity, which peaks at approximately two times the mean

wingtip speed. Shortly after 50% span, a kink forms in the LEV1 axis. At this point

the axial vorticity drops, which is accompanied by a dramatic increase in vortex

diameter and a decrease in axial velocity. As LEV1 merges with TPV1, the axial

vorticity rises slightly and the vortex diameter decreases. This inverse relationship

between axial vorticity and vortex diameter is expected in order to obey the law

of conservation of angular momentum. The observed sudden increase in vortex

diameter and drop in axial velocity is an indication of vortex breakdown, which

will be described in detail later on. At this point in the cycle, breakdown appears

to occur around 65% span. As with the previous point in the cycle, a secondary

LEV right along the leading edge extending from approximately 25% span to the

wingtip is suggested by the Q criterion isosurfaces. TPV0 and RTV0 from the

previous half-stroke have left the measurement domain at this point in the cycle.

Figure 6.6: Top views of wing showing the kink in the vortex axis intensifying following mid-stroke; vortex core

diameter (dark grey surfaces) is shown overlaid with vortex axes coloured with axial vorticity normalised with respect to

Ω̄wng (79.7rad/s); positive axial direction points along an axis towards the end without a white dot
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After mid-stroke, when the wing begins to decelerate, breakdown in LEV1

becomes intensified as the kink in the axis becomes more pronounced. This is

illustrated in Figure 6.6. The portion of the vortex axis spanning approximately

70− 75% span turns such that the local axial direction approaches the y direction.

Eventually at 0.333T, which is shortly after pitch reversal has started, the kink in

the axis has become so exaggerated that LEV1 outboard ’appears’1 to break into

separate structures LEV1.1 and LEV1.2. In addition, at this time the axial velocity

of TPV1 has begun to reverse such that TPV1 starts to travel towards the wing

rather than away from it. This occurs because as the wing decelerates it begins

to see TPV1 as it would be viewed with respect to the ground. Here, an observer

fixed to the ground sees TPV1 with an axial velocity directed towards the wing.

As with previous points in the cycle, a secondary LEV right along the leading

edge extending to the tip is present according to the Q criterion isosurfaces.

At this point it should be noted that structures beginning with the same number

(e.g. LEV1, LEV1.1 & LEV1.2) are considered to be part of the same vortex

structure, rather than being separate entities. These structures ’appear’ separate

in this analysis simply because of the vortex point-joining algorithm (described

in Appendix D) being unable to join them. In reality, for most occurrences they

are very likely one continuous vortex structure.

Returning to Figures 6.4 and 6.5, at 0.375T, which is approximately one quarter

into pitch reversal, the outboard section of the LEV has straightened. TPV1 has

increased in diameter and its axial velocity has become even more negative as

the wing decelerates. In general the axial velocity along the whole LEV1/TPV1

structure outboard of 50% span has decreased greatly at this point since the mid-

stroke position. The sudden drop in axial velocity in LEV1 now occurs much

closer to the root, implying a shift in the vortex breakdown location towards the

root since mid-stroke. At this time a pitching vortex shed off the trailing edge can

be seen in the Q criterion isosurfaces; this is a form of starting vortex, which occurs

when the wing pitches up while still moving forward. A series of root vortices

RTV1 − 3 is also present behind the root-ward end of the trailing edge. These

root vortices appear to be the result of Kelvin-Helmholtz instability (KHI) in the

shear layer between tip-ward flow induced by the tip vortex, and the root-ward

1The vortex point-joining algorithm in Appendix D, is unable to join structures LEV1−LEV1.2,

thus they appear separate, when in reality they are probably one continuous structure
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6.1. Flapping Half Stroke

Figure 6.7: xz plane of vectors over top of a LIC image illustrating RTV formation at 0.375T; plane is approximately

20mm (0.72c̄) downstream of the leading edge in the −y direction; wing outline is indicated by the dashed black line

flow below as illustrated in Figure 6.7. This root-ward flow could be induced

by a major root vortex outside of the measurement domain. KHI can occur in

the shear layer between two parallel flows with different velocities, either as a

result of the velocity gradient between the flows itself or due to different densities

between the flows (Kundu & Cohen, 2008). In this case, the fluid density is

constant everywhere (incompressible), thus it is the velocity gradient across the

shear layer which leads to this instability causing the shear layer to roll up into a

series of smaller vortices. It should be noted that the major RTV suggested earlier

differs from the smaller ones as it is not created by KHI in a shear layer, but rather

is created by the flow curling from underneath the wing at the root to the lower

pressure upper side of the wing, just as the tip vortex is created.

Leading up to and at the end of the half-stroke at 0.5T when the wing has come

to a rest, the portion of the LEV outboard of approximately 35% span, LEV1.1,

contains a very low level of axial velocity. The inboard portion LEV1 still has a

high axial vorticity and exhibits a dramatic increase in vortex diameter before the

identified axis disappears. In addition, the point of decrease in axial velocity in

LEV1 has shifted, along with the vortex breakdown location, even closer to the

root since 0.375T and mid-stroke. As with 0.375T, numerous other root vortices

164
∣∣∣ PhD Thesis: Nathan D B Phillips



Chapter 6. Results & Discussion

are observed leading up to, and at the end of the stroke. TPV1 has grown even

larger in diameter and has separated from the LEV and is descending with the

downwash, which begins around 0.417T. The axial velocity of TPV1 at the end of

stroke has become even more negative, where it is flowing towards the wingtip

with a normalised velocity in places greater than the mean wingtip speed. This is

because now that the wing has come to a rest, portions of TPV1 which were shed

slightly earlier in the stroke are now catching up with the wing.

After the end of stroke position when the wing begins to accelerate into the

next half-stroke, the process repeats and the flow returns to the beginning of the

stroke as seen at 0.042T. Since the end of stroke, the inboard portion of the LEV,

LEV1 remains underneath the wing, becoming LEV0 while the outboard portion

LEV1.1 rapidly disappears. TPV1 becomes TPV0 and continues to convect down

into the downwash. The small root vortices have disappeared into the wake and

a major root vortex RTV0 also is convected downwards with TPV0. At the end

of stroke (0.5T) RTV0 was likely outside of the measurement domain towards the

root.

Before proceeding it should be mentioned that in the previous discussion ref-

erencing Figures 6.4 and 6.5, vortex structures often start and end out of nowhere.

In reality, vortex axes do not start or end in mid air, thus some of the observed

structures seem impossible. In the present analysis, an identified vortex axis starts

where a line of vortex points are observed and finishes when there are no more

vortex points at the end of such a line as described in Appendix D. The employed

method of Knowles et al. (2006) which identifies these vortex points (see § 5.3)

possibly did not identify points beyond a certain extent for a given vortex axis,

either because the vortex becomes too weak to identify a centre, or it has dissi-

pated due to interference from other flows. For example, in yz planes at the start

of the half-stroke the previous LEV under the wing, LEV0, is very visible inboard,

but disappears outboard. This could occur simply because the wing speeds are

higher towards the tip, where beyond a certain point moving outboard, LEV0 is

dissipated by the stronger flow traveling underneath the wing. Thus, for such

cases in which vortex structures suddenly end, it is possible that they are either

very weak and continue beyond the identified ‘end’ or they dissipate shortly

beyond this ‘end’.
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Figure 6.8: Closeup of leading edge showing secondary LEV and KHVs at 50% span at mid-stroke (primary LEV lies

to the left outside the area viewed); velocity vectors illustrated over top of a line integral convolution (LIC) image and

areas of highly positive (anticlockwise) and highly negative (clockwise) x-wise vorticity (left); velocity vectors and areas

where Q > qv̄2
tip (q ≈ 8.5 × 104m−2) (right)

6.1.3 Secondary LEV

As noted in the prior discussion, the presence of a secondary LEV right along the

leading edge is suggested by the Q criterion isosurfaces. The presence and charac-

teristics of this structure will now be investigated in more detail. Additional PIV

flowfield measurements were taken at the mid-stroke position viewing a much

smaller area centered at the leading edge. This gave a higher spatial resolution,

revealing more details of the flow between the LEV and the leading edge.

Figure 6.8 illustrates a close up of the leading edge, showing approximately

20% of the local chord length at 50% span at mid-stroke. The left figure shows

velocity vectors superimposed over a line integral convolution (LIC) image and

areas of highly positive (anticlockwise) and highly negative (clockwise) x-wise

vorticity. The right figure shows the same velocity vectors, together with areas

with a Q value greater than qv̄2
tip (where q ≈ 8.5× 104m−2). For both subfigures the

LEV lies just to the left, outside of the area viewed. It can be seen that between the

LEV and the leading edge is a region of highly negative vorticity with a rotational

sense opposite to that of the LEV. This is known as the secondary vortex on delta

wings, as illustrated in Figure 6.9. Here, this structure will be referred to as the

secondary LEV, while the other will be referred to as the primary. A secondary

LEV between the primary LEV and leading edge has been observed at Re >= 2500
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Figure 6.9: Subsonic flow over a sharp-edged delta wing (Anderson, 2001)

in CFD studies on insect-like flapping wings by Wilkins (2008)2, and it was seen

that this secondary LEV strengthens with increasing Re. Here, the secondary LEV

extends from 33 − 95% span and grows in size towards the tip as the primary

LEV does as shown in Figure 6.10. The secondary LEV was not identified by the

employed vortex core identification scheme of Knowles et al. (2006) because the

lower spatial resolution of the measurements (relative to those shown in Figure

6.8) combined with its position very close to the wing surface resulted in the

secondary LEV often lacking a clearly defined centre.

The secondary LEV referred to above is, however, not the same structure

highlighted at the leading edge by the Q criterion isosurfaces, which was also

referred to as a secondary LEV. The right-hand part of Figure 6.8 shows these

areas at the leading edge with the same Q value and above. This reveals a series

of small vortices in the vortex sheet emanating from the leading edge, which

resembles KHI. In the left-hand part of Figure 6.8 it can be seen that this area

contains a high level of positive vorticity, indicating that these smaller vortices

rotate in the same sense as the LEV. The vorticity in this region is so high due to

2Wilkins (2008) investigated insect-like wing geometries undergoing impulsive starts and

steady rotation to simulate key elements of insect flapping aerodynamics
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Figure 6.10: Closeup of leading-edge flowfield at mid-stroke at 33% span (left) and 95% span (right) illustrating

secondary LEV growth; vectors are shown superimposed over LIC images of the measured flowfield; primary LEV lies to

the left outside the area viewed in 95% span image

the shear between flow traveling in the−y direction from the leading edge and the

flow induced by the secondary LEV traveling in the opposite (positive y) direction.

The velocity gradient is enough to lead to KHI in the vortex sheet leading to the

formation of these smaller vortices, which will be referred to as Kelvin-Helmholtz

vortices (KHVs). Such an instability in a vortex sheet has also been observed on

delta wings as pictured in Figure 6.11c. In addition, the CFD studies of Wilkins

have also reported the presence of KHI (termed ‘breakdown’ vortices) in the vortex

sheet between the leading edge and the LEV core at Re >= 2500 (see Figure 6.11b).

Wilkins reported that these ‘breakdown’ vortices in the vortex sheet were of the

same sense as the primary LEV, as has been seen here.

From 30− 95% span the same region of negative x-wise vorticity, highlighting

the secondary LEV, is present along with a series of small vortices in the vortex

sheet just behind the leading edge, shown by the Q criterion. Therefore, the

additional vortex implied by the Q criterion isosurfaces along the leading edge in

Figures 6.4 and 6.5 is not another LEV, but rather highlights KHI in the vortex sheet

right at the leading edge along the span. As mentioned, this results from the level

of shear between flow from the leading edge traveling towards the trailing edge,

and the flow induced by the secondary LEV traveling in the opposite direction.

Unlike that seen on delta wings, KHVs that form in the vortex sheet do not appear

to propagate further downstream towards the primary vortex core, encircling it
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Figure 6.11: Comparison of flowfield at leading edge; (a) leading edge flowfield at 50% span at mid-stroke from the

present study; (b) CFD results of the leading edge flow for an impulsively-started rotating (sweeping) wing at Re = 15000,

α = 45◦ and 50% span from Wilkins (2008); (c) experimental leading edge flowfield data for a delta wing at Re = 121900,

α = 12.5◦ from Riley & Lowson (1998); secondary vortex lies between the primary vortex and the leading edge and KHV
results from KHI

and merging with it. Instead, this instability only occurs immediately above the

secondary LEV, which suggests that the KHVs in the shear layer either maintain

a stable position, or they dissipate or roll into the primary LEV as they flow past

the secondary LEV. For convenience, from this point forward the primary LEV

will simply be referred to as the LEV.

6.1.4 LEV Breakdown

At the mid-stroke position the LEV showed signs of breakdown. This breakdown

will be investigated in greater detail. As mentioned in §2.2.8, vortex breakdown

is characterised by the formation of a stagnation point on the vortex axis followed

by a region of reversed axial flow (Leibovich, 1984), which is accompanied by a

sudden increase in vortex size. For a detailed description of vortex breakdown

and the factors affecting it, the reader is referred to §2.2.8 (page 31).

As illustrated in Figure 6.12, the trajectory of the LEV axis resembles the form

of spiral-type breakdown given in Figure 2.10, where the sense of winding of the

vortex axis is opposite to the sense of rotation of the vortex core. Figure 6.13

illustrates the axial and tangential velocity components normalised with respect

to the mean wingtip speed v̄tip, vortex diameter normalised with respect to the
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Figure 6.12: LEV/TPV vortex axis resembles a spiral, which is characteristic of spiral-type vortex breakdown; the

sense of winding of LEV/TPV vortex axis is opposite to the sense of rotation of the vortex core

mean chord c̄, and absolute helix angle along the vortex axis at mid-stroke. Here,

helix angle is calculated at each axial position at approximately the centre of the

vortex. For a detailed description of how helix angle is calculated, as well as the

other quantities mentioned previously, see Appendix E. The identified vortex axis

begins at approximately 25% span, and the axial position thereafter is normalised

with respect to the wing length. Six points of interest (n1 − n6) are indicated in

the graphs, and the corresponding points on the vortex axis coloured with axial

vorticity, are shown in the bottom portion of Figure 6.13. In addition, Figure 6.14

illustrates the axial and tangential velocity profiles normalised with respect to v̄tip

for the same points highlighted.

Soon after the start of the vortex axis, point n1, the axial velocity is at its peak

of almost twice the mean wingtip speed, with a helix angle of approximately 30◦

and a jet-like axial velocity profile as seen in Figure 6.14. Further along the vortex

at point n2, which is approximately where the kink in the axis forms, the axial

velocity has begun to decline, the helix angle stays at approximately 30◦ and the

velocity profile remains jet-like. After this initial kink, the axial velocity continues

to decline and the vortex diameter increases at a slightly higher rate. Eventually,

at around point n3, the helix angle surpasses the critical angle of 50◦ (ignoring

the earlier localised spikes), which as stated in §2.2.8 is the helix angle at which
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Figure 6.13: Vortex characteristics at 0.25T; axial and tangential velocity normalised with respect to v̄tip, vortex diameter

normalised with respect to c̄, and absolute helix angle along vortex axis; vortex axis begins at approximately 25% span

and axial position thereafter is normalised with respect to the wing length; points n1 − n6 mark points of interest, which

correspond to points labeled on the vortex axis coloured with axial vorticity normalised with respect to Ω̄wng (79.7rad/s)

(bottom)
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breakdown occurs. In addition, at this point the axial velocity profile has changed

to a wake-like velocity profile. A transition from a jet-like profile to a wake-

like profile is typically observed across the breakdown location (Lucca-Negro &

O’Doherty, 2001). Soon after the breakdown location, the vortex diameter rises

more sharply and the axial velocity continues to decline until it eventually reaches

zero, forming a stagnation point followed by region with a slightly negative axial

flow. This is consistent with the definition of vortex breakdown noted at the

start of this section. Also after breakdown, the magnitude of the tangential

velocity has become much bigger in comparison to the axial velocity (recall that

γ = tan−1(vt/va)), hence the helix angle has continued to rise sharply reaching

almost 90◦. Soon the peak vortex diameter is reached at point n4, at which position

the axial velocity is very close to zero. The axial flow is probably stagnant at this

point because the axial velocity is of the same order of magnitude as the error on

va (5% of v̄tip). Following point n4, the vortex diameter rapidly declines to point

n5. As seen in Figure 6.14, the tangential velocity profile at this point resembles

the summation of a tangential velocity profile of a larger vortex with that of a

smaller vortex with the same sense. This is consistent with the LEV merging

with the TPV, thus the tangential velocity profile of the LEV adds to that of the

TPV resulting in the profile seen here, and reducing the vortex diameter to that

of the newly added TPV. After this point the axial velocity profile continues to

be wake-like, the vortex diameter stays relatively constant into the TPV and the

helix angle drops below the critical value of 50◦ momentarily before rising above

it again. This would indicate that the TPV is breaking down, since there the helix

angle passes the critical value, which is accompanied by a slight decline in axial

velocity. However, there is no accompanying increase in vortex diameter as seen

at point n6, thus either breakdown in the TPV is much less intense, or it is absent.

As noted in §2.2.8, the level of swirl (helix angle) as well as the pressure gradient

along the vortex axis affect breakdown, and independent changes in either of

these can incite or suppress its occurrence. Thus, it is possible that in the TPV the

axial pressure gradient is favourable enough to avoid breakdown despite having

a helix angle above critical.

We have seen here, therefore that breakdown of the LEV at mid-stroke starts

to occur at point n3 which is at approximately 80% span, as at this point the helix

angle reaches the critical value, and afterwards the axial flow stagnates soon and
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Figure 6.14: Axial (left) and tangential velocity (right) profiles normalised with respect to v̄tip at points of interest

(n1 − n6) along LEV/TPV axis labeled on Figure 6.13; zva coordinate is normalised with respect to c̄; black dots indicate

location of wing surface
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Figure 6.15: LEV breakdown location throughout half-stroke

the vortex diameter rises more sharply. This is much closer to the wingtip than

previously estimated in §6.1.2, where the breakdown location at this point in the

half-stroke was estimated to occur around 65% based on the position where the

axial velocity declined rapidly and the kink formed in the axis. However, from

the previous discussion it is evident that breakdown occurs beyond the kink in

the axis much closer to the wingtip.

For the remainder of the half-stroke, the location of LEV breakdown is given

in Figure 6.15. As before, the breakdown position was determined by locating

the point on the LEV axis where the helix angle surpassed the critical value of

50◦, combined with an increase in vortex diameter and a reversal in axial velocity.

From Figure 6.15 it can be seen that LEV breakdown in fact does begin at mid-

stroke, and the breakdown location generally moves inboard throughout the

remainder of the half-stroke. It should be noted that at the first measurement

position (0.042T) the helix angle did pass critical, but the vortex diameter along

the entire axis was relatively constant, thus, breakdown was deemed to be absent

at this point. In addition, for the prior two measurement points before mid-stroke

(0.167T and 0.208T), the helix angle did pass critical at 98% span, however much

less dramatic increases in vortex diameter were observed, and the axial velocity
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did not reverse at any point, thus, breakdown was considered to be absent at these

positions as well. However, this may suggest that the onset of LEV breakdown

occurs shortly before mid-stroke at 0.167T, and then becomes fully developed at

mid-stroke.

It is interesting to note that the Q criterion isosurfaces around the LEV con-

sistently disappear shortly before the LEV breakdown location as seen in Figures

6.4 and 6.5. Recalling the definition of Q from § 5.3, a sudden drop in Q level

near the breakdown location implies that the vortex structure transitions from a

rigid-body-like rotation to a state with comparatively higher strain rates. This

makes sense in view of the fact that this vortex suddenly expands beyond the

breakdown location, where by conservation of angular momentum the spiralling

fluid with a tight radius from the root must decrease in angular velocity as the

radius suddenly expands. Thus the rotation rates in the fluid go down with an-

gular velocity and the strain rates become comparatively larger which means a

lower Q value. For this reason, it is felt that a sudden drop in Q value is a good

indication that LEV breakdown is present.

Cause of LEV Breakdown

Breakdown of the LEV probably occurs as a result of the presence of the TPV.

Recall from §2.2.8 that downstream conditions (in the axial direction) affect the

axial pressure gradient which in turn can trigger vortex breakdown. As also noted,

experiments by Werlé (1960) illustrated this fact by triggering vortex breakdown in

a LEV by blowing a jet of air in the axial direction opposite to the travel of the LEV.

In the present investigation, the TPV is located a short distance away in the local

LEV axial direction from the breakdown location. As in the experiments of Werlé

(1960), the TPV creates an axial blowing effect by inducing a flow in the opposite

direction to the axial flow of the LEV, which is illustrated in Figure 6.16. This

occurs because the TPV axis is roughly perpendicular to the local axial direction

(xva) of the LEV axis at breakdown. The resulting pressure gradient is adverse

enough to lead to formation of a stagnation point between these two competing

flows. This can be seen in Figure 6.14 across points n2 − n4 as the axial velocity

profile of the LEV becomes increasingly negative as it travels towards the tip.

The end result is breakdown of the LEV. This cause of LEV breakdown has been

postulated before by Liu et al. (1998).
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Figure 6.16: xvazva plane at point n3 (LEV breakdown location shown in Figure 6.13) on the LEV axis illustrating an

axial ‘blowing’ effect originating form the TPV; xva axis points in the local positive axial direction of the vortex axis

The observed shift in the LEV breakdown location inboard (Figure 6.15) also

appears to be the result of an increasingly adverse axial pressure gradient, which

would intensify breakdown as mentioned in §2.2.8. When examining Figure 6.4

it can be seen that following mid-stroke an increasingly greater portion of the

LEV/TPV axis exhibits very low or negative axial velocities. This implies the

presence of an adverse axial pressure gradient, which becomes more intense be-

yond mid-stroke to the point that it is strong enough to stagnate or reverse the

majority of the flow along the vortex axis. The pressure gradient probably be-

comes more adverse in this phase of the flapping cycle because of a diminishing

favourable pressure gradient, which results from a declining wing angular veloc-

ity (and, hence, declining centrifugal force) and increasing angle of attack (which

we will see later in § 6.4.4 has a large effect on LEV breakdown).

TPV Stabilising E�ect

As discussed previously, when the LEV merges with the TPV, the vortex diameter

suddenly drops and soon after the helix angle falls below the critical level. This

suggests that when the merger of the LEV with the TPV occurs, vortex breakdown

is suppressed. Such a method for avoiding vortex breakdown using multiple
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Figure 6.17: Dye visualisation of vortices over a delta wing (top) and double delta wing (bottom) at an angle of attack

of 25◦ and 30◦ illustrating suppression of vortex breakdown using multiple vortices from Gursul et al. (2007)

Figure 6.18: Axial vorticity along vortex axis at 0.25T; vortex axis begins at approximately 25% span and axial position

thereafter is normalised with respect to the wing length; points n1 − n6 mark points of interest along axis shown in

Figure 6.13
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vortices has been observed on delta wings. This is illustrated in Figure 6.17 which

shows a delta wing and double delta wing at different angles of attack. On the

standard delta wing the LEVs soon break down, however, on the double delta

wing the LEVs from the forward delta wing are energised by the LEVs of the aft

delta wing, which alters the pressure gradient favorably and delays or eliminates

breakdown (Gursul et al., 2007). A similar mechanism takes place here. Although

the TPV is responsible for breakdown at the identified breakdown point, when

the LEV axis then twists following the breakdown location to join with the TPV,

the TPV then suppresses breakdown by adding kinetic energy and re-energizing

the vortex core. This is illustrated by Figure 6.18 which shows the axial vorticity

along the vortex axis, where at the approximate point (n5) when the LEV merges

with the TPV, there is an increase in axial vorticity.

6.1.5 LEV Circulation

Figure 6.19: Circulation along LEV/TPV axis at 0.25T; vortex axis begins at approximately 25% span and axial position

thereafter is normalised with respect to the wing length; points n1 − n6 mark points of interest along axis shown in

Figure 6.13

The circulation along the LEV and TPV axis for a given point can be determined

by using the computed vortex diameters and tangential velocity profiles according

to:
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Γ = πdvt (6.1)

Where d is the vortex diameter and vt is the tangential velocity at a distance of

d/2 from the vortex centre computed as described in Appendix E. The circulation

along the LEV/TPV axis is given in Figure 6.19, where points n1 − n6 correspond

to the same points of interest along the axis shown in Figure 6.13. It can be seen

that the LEV circulation grows out towards the wingtip along with the vortex

diameter growth seen in Figure 6.13. When the LEV merges with the TPV at

approximately point n5, the circulation drops with the diameter, but rises again

shortly thereafter.

For the the entire half-stroke, the variation of the peak LEV circulation is given

in Figure 6.20. It can be seen that peak circulation levels in the LEV rise up to the

mid-stroke position, and then decline afterwards towards the end of the stroke.

The variation in circulation is linked to the vortex diameter as, leading up to

mid-stroke, the vortex diameter grows and then generally decreases after (see

Figure 6.4). A similar trend has also been reported by van den Berg & Ellington

(1997a), who observed on their ‘flapper’ that LEV circulation values on either side

of the mid-stroke position were lower than at mid-stroke.

With the computed circulation, the sectional lift for a given point on the vortex

axis can be computed using:

Figure 6.20: Peak LEV circulation throughout half-stroke; time is non-dimensionalised with respect to the flapping

period T (0.05s)
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L = ρvwΓ (6.2)

Here vw is the local wing velocity which varies along the span and throughout

the half-stroke. Applying this equation to the computed circulation values and

integrating the result for only the portion of the LEV/TPV that is above the wing

surface provides a measure of the lift force due to the LEV. The identified LEV axis

often does not start at the ’true’ start of the vortex axis, thus circulation values

were extrapolated inboard to the root using a power law fit through the data

points up to the point of maximum circulation. The result of computing the LEV

lift in this manner throughout the half-stroke including identified ’portions’ of the

LEV (e.g. LEV1 and LEV1.1 towards the end of stroke) is given in Figure 6.21. As

with circulation, the lift on the LEV rises towards mid-stroke and then declines. It

should be noted that the computed LEV lift at 0.333T is smaller than it should be

because portions of the LEV between the separately identified segments of LEV1,

LEV1.1 and LEV1.2 (see Figure 6.6) were not included in the lift calculation as these

segments of the vortex axis were not identified. The same is true towards the end

of the stroke from 0.417T − 0.5T, where the computed lift would also be smaller

than it truly is because the unidentified portion of the LEV axis between LEV1 and

LEV1.1 (see Figure 6.4) could not be included in the calculation. However, the

trend in Figure 6.21 provides a lower level estimate of the LEV lift throughout the

half-stroke. Upon taking the mean of these values, it is revealed that the average

LEV lift is 0.0734N. In a later section, a mean lift measurement of 0.17 ± 0.02N is

given for a test case with a very similar set of mechanism output kinematics that

only differs in the stroke amplitude, which is 1.5◦ larger. From these values it can

be estimated that throughout a half-stroke, the LEV is responsible for at least 40%

of the mean lift generation.

The same approach of determining the contribution of lift from the LEV was

employed by van den Berg & Ellington (1997a). Using their ‘flapper’ they com-

puted the LEV lift using the LEV diameter and tangential velocity for three points

in a half-stroke, including a position before, at, and after mid-stroke. At these

respective locations they quoted values of 5.27mN, 5.45mN and 1.74mN of lift

from the LEV and deduced using the weight of a hawkmoth (which their ‘flap-

per’ represented) that the mean lift would be 7.8mN. Thus, they stated that the
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Figure 6.21: LEV lift throughout half-stroke; time is non-dimensionalised with respect to the flapping period T (0.05s)

LEV provides at most two-thirds of the lift generated. From the present results,

it can be seen that this value is in fact much higher, as the peak LEV lift is larger

than the estimated mean lift of 0.17 ± 0.02N, such that the LEV instantaneously

generates at least 130% of the mean lift. When taking the mean of the LEV lift

values from the study of van den Berg & Ellington (1997a), and comparing to

their 7.8mN mean lift value, their results suggest that over a half-stroke the LEV

contributes 53% of the generated lift. This is in closer agreement with the present

result that the LEV generates at least 40% of the mean lift. At the upper bound of

the mean force measurement (0.19N), the contribution of the LEV becomes 49%.

Given this fact combined with the results of van den Berg & Ellington (1997a), it

seems logical to conclude that the LEV contributes about half of the lift produced.

LEV Stability

From the discussion of the flow evolution throughout the half-stroke in § 6.1.2, it

is apparent that the LEV at this FMAV scale Reynolds number is stable. Although

the LEV becomes less coherent and ‘appears’ to break into separate structures

in the latter half of the half-stroke (such as into LEV1, LEV1.1 and LEV1.2 at

0.333T in Figure 6.6), portions of the LEV are never seen to shed into the wake.

As mentioned in the previous analysis when the LEV ‘appears’ to break into

separate structures, this is simply a result of the vortex point-joining algorithm
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being unable to join them, and in reality they are very likely one continuous vortex

structure. It could be argued that shedding of the LEV, or portions of it, could

have simply been missed between measurement points in the cycle. However,

the measurement points in this investigation were close enough together that if

portions of the LEV either inboard or outboard did shed for a given point in the

cycle then they would have been observed within the measurement volume at

the next measured point in the half-stroke. This can be proven by considering

that even at the mid-stroke position where the wing velocity is the greatest, if the

LEV did shed then it would only have a chance to travel at most one mean wing

chord before the next measurement point in the cycle. This is based on the fact

that at mid-stroke the maximum velocity along the wing at the tip was 13.2m/s,

and the time until the next measurement point was 0.0021s (T/24), thus any shed

LEV would travel at most (13.2m/s)(0.0021s) = 0.0275m (approximately equal to

the mean chord length c̄) downstream before the next measurement point. The

measurement domain extends 2 mean chords downstream from the leading edge,

thus any LEV shedding would have been observed. The mid-stroke position has

the greatest risk of missing a shed LEV, because the wing velocity is the greatest,

and thus any shed LEV will travel a greater distance downstream of the wing

before the next measurement point. Since it has been demonstrated that even

at mid-stroke any LEV shedding would have been detected, the possibility of

missing a shed LEV elsewhere in the cycle can be ruled out. Therefore, despite

the fact that it exhibits breakdown, the LEV is stable as it remains present on the

upper side of the wing surface near the leading edge for the entire half-stroke,

and even persists underneath the wing at the start of the subsequent half-stroke.

As mentioned in § 2.2.7 there is some controversy over the stability of the LEV

for Reynolds numbers on the order of 103 and above. A possible explanation of

why some researches have observed a stable LEV and others have not, is that

LEV stability is very dependent on wing aspect ratio. This was concluded by

Wilkins (2008) in his CFD studies, where he found that the LEV is stable up to

AR = 20 (using the present definition of AR). He explained that the LEV will

become unstable if it is allowed to grow to such a size that it forms a TEV, in

which case the TEV will be pulled under the LEV toward the leading edge and

the LEV will separate. If the aspect ratio of the wing is low enough such that the

LEV merges with the TPV, before it grows too big and forms a TEV, then it will
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be stable. This conclusion makes sense in view of the present results. It was seen

in § 6.1.4 Figure 6.13, that the LEV continually grows in diameter towards the

tip, approaching a size close to the mean chord length, before it merges with the

TPV and the diameter suddenly drops. One can imagine that if the wing were

any longer then the trend of vortex growth in Figure 6.13 would continue to rise

beyond point n4 and ultimately the LEV would grow larger than the mean chord

length. According to Wilkins (2008), a TEV would ultimately form and the LEV

would shed. However, the aspect ratio of the wing of the present study (AR = 6),

is low enough to prevent this.

Studies that have also observed a stable LEV have had a similar or lower

aspect ratio to that of the present study. Investigations by Dickinson and his

colleagues up to Reynolds numbers on the order of 104, using a fruit fly wing

(AR = 4.5), have consistently reported a stable LEV (see e.g. Birch et al. (2004),

Poelma et al. (2006), Lentink & Dickinson (2009)). Flow visualisation by Ellington

and his co-workers on their flapper using a model hawkmoth wing (AR = 4.2)

saw a stable LEV for the first half of a downstroke, but saw it shed after mid-

stroke (Ellington et al., 1996; van den Berg & Ellington, 1997b,a). However, this

shedding could have been a result of the operation of their flapper, as they report

potential reduced LEV stability due to vibrations from the gearbox. A later

study by the same research group using different versions of a hawkmoth wing

(AR = 5.66 − 6.33) at Re = 8071 found that the LEV was stable on a continually

revolving wing (Usherwood & Ellington, 2002a). However, in one of their prior

studies using a hawkmoth and tapered wing (AR = 5.6 for both), they tentatively

concluded that above Re = 10000, the LEV on a revolving wing lacks the axial flow

required to stabilise it and it becomes turbulent and periodically grows and breaks

away rather than remaining stable (Ellington & Usherwood, 2001). However, this

conclusion was only drawn from force data and was not complemented with

flowfield measurements or flow visualisation. From the present results we see

that in fact axial flow in the LEV is clearly present above Re = 10000, and that

the LEV does not repeatedly grow and shed. Experiments by Leishman and

co-workers using their flapping wing model, in one study using a rectangular

wing (AR = 10) (Tarascio et al., 2005), and in other studies with a fruit fly

wing planform (AR = 4.5) (Ramasamy et al., 2005; Ramasamy & Leishman,

2006) over Reynolds numbers spanning 8000 to 19500, found shedding of the
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LEV. However, this could have been a result of the wing pitching kinematics of

their mechanical model, which upon examination show oscillations during the

wing sweep. Pitching oscillations would lead to vortex shedding, which possibly

explains their observations. Investigations by Lu & Shen studying a range of

wings with aspect ratios ranging from 1.8 − 15.4 over Re = 160 − 3200 reported

the presence of dual LEVs for all wings tested. The primary LEV was reported

to remain attached to the inboard portion of the wing and diffused out towards

the tip, while the minor (secondary) LEV present along the leading edge, and

of the same rotational sense as the primary LEV shed towards the wingtip (Lu

et al., 2006). They noted that when compared to the dragonfly wing (AR = 8),

the primary LEV of the fruit fly wing (AR = 4.5) only began to diffuse closer to

the wingtip, and exhibited a more stable structure. In a later study performing

more detailed flowfield measurements of the dragonfly wing (AR = 8), their

observations of this wing were extended to include the presence of three minor

LEVs in addition to the primary (Lu & Shen, 2008). These minor vortices were

seen to shed at the tip-ward portion of the wing. For a similarly high aspect ratio

wing, studies of Jones & Babinsky using a rotating wing model (AR = 8) observed

continuous LEV shedding over the Reynolds numbers tested (Re = 10000−60000)

(Jones & Babinsky, 2010, 2011). Therefore, there appears to be a trend where for

aspect ratios up to approximately 6, the LEV is most often reported to be stable,

which is consistent with the present results. As aspect ratio rises up to 8 stability

of the LEV declines and shedding occurs. This is consistent with the findings

of Wilkins (2008) that above a certain aspect ratio, the LEV will be unstable,

however this ’critical’ aspect ratio appears lower than he predicted, and appears

to be somewhere between AR = 6 − 8.

6.2 Rotation Phase E�ects

From the previous section we now have a detailed picture of how the flow devel-

ops throughout a typical flapping cycle. The next step is to see how this picture

changes as kinematic parameters are altered. The first investigation of this type

focuses on effects of varying rotation phase, which describes the phase relation-

ship between the pitching kinematics and the stroke kinematics. Recall that a

positive, zero, or negative rotation phase means that during pitch reversal the
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wing reaches a 90◦ angle of attack before, at, or after the end of a half stroke

respectively. Rotation phase is quantified in terms of a percentage of the flap-

ping period (T). For example, at a 20Hz flapping frequency, a rotation phase of

+5% means that the wing begins pitching early so that it reaches a 90◦ angle of

attack 2.5ms before reaching the end of the stroke. Here the effects of changing

rotation phase on the mean lift and flow structures generated throughout a stroke

are investigated. The measurement cases will first be presented, followed by the

mechanism output and flapping kinematics, mean lift measurements, and finally,

the flowfield measurements.

Table 6.2: Kinematic parameters for test cases which vary rotation phase

case # 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

f 20Hz 20Hz 20Hz 20Hz 20Hz 20Hz 20Hz 20Hz

R̄e1 17760 17830 17800 17800 17840 18120 17870 17590

R̄e2 − − 17430 17420 17490 − 17570 −

Φ 129.2 129.8 140.9 137.5 135.7 131.8 136.9 127.9

±8◦ ±8◦ ±2.6◦ ±2.6◦ ±2.6◦ ±8◦ ±2.6◦ ±8◦

Θ 1.2 1.7 3.7 3.8 3.2 1.7 5.8 1.8

±5.2◦ ±5.2◦ ±2.4◦ ±2.4◦ ±2.4◦ ±5.2◦ ±2.4◦ ±5.2◦

αmid 43.9 43 45.3 44.7 46.2 43.2 47.3 47.1

±4.9◦ ±4.9◦ ±2◦ ±2◦ ±2◦ ±2◦ ±2◦ ±4.9◦

τ −14.7 −10.1 −3.7 +1.6 +5.5 +6.1 +10.1 +15.2

±1.4% ±1.4% ±0.5% ±0.5% ±0.5% ±1.4% ±0.5% ±1.4%

Φmec 129.2 129.8 129.5 129.5 129.7 131.8 130.1 127.9

±0.2◦ ±0.2◦ ±0.2◦ ±0.2◦ ±0.2◦ ±0.2◦ ±0.2◦ ±0.2◦

Θmec 1.2 1.7 1.6 1.4 1.7 1.7 1.7 1.8

±0.6◦ ±0.6◦ ±0.6◦ ±0.6◦ ±0.6◦ ±0.6◦ ±0.6◦ ±0.6◦

αmecmid 43.9 43 44.4 45.5 45.3 45.7 46.8 47.1

±0.4◦ ±0.4◦ ±0.4◦ ±0.4◦ ±0.4◦ ±0.4◦ ±0.4◦ ±0.4◦

τmec −14.7 −10.1 −5 +0.2 +4.9 +6.1 +10.2 +15.2

±0.3% ±0.3% ±0.3% ±0.3% ±0.3% ±0.3% ±0.3% ±0.3%
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Figure 6.22: Mechanism output kinematics (black) and flapping kinematics (red) for test cases that vary rotation phase;

time is non-dimensionalised with respect to the flapping period T (0.05s)

6.2.1 Flapping Kinematics & Measurement Cases

Starting from the ’baseline’ set of kinematics presented in § 5.1, rotation phase

was varied while all other parameters were held virtually constant. Eight rotation

phases ranging from very negative to very positive values were tested giving the

eight test cases listed in Table 6.2. For all test cases, mean lift measurements were

performed. Flowfield measurements and the accompanying instantaneous wing

position measurements were performed only for cases 1.3 − 1.5&1.7. These cases

have smaller errors on their kinematics parameters as the flapping kinematics

were measured directly via the instantaneous wing position measurement pro-

cedure outlined in § 5.2.3 (page 132) rather than estimating flapping kinematics
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Figure 6.23: Comparison of mechanism output angle of attack (αmec), mean (α), maximum (αmax) and minimum (αmin)

angle of attack for rotation phase test cases involving flowfield measurements; time is non-dimensionalised with respect

to the flapping period T (0.05s)

from the mechanism output kinematics as described in § 5.4.4 (page 143). Flow-

field measurements were only performed on these cases because they adequately

encompassed the peaks in the mean lift and mean lift coefficient versus rotation

phase trends as will be shown later. Re1 and Re2 indicate the Reynolds num-

bers during the mean lift, and flowfield measurements respectively. These differ

slightly because of varying air pressure on the day of measurement.

For each test case involving flowfield measurements, six measurement points

throughout a half-stroke were chosen for flowfield measurement including: 0.09T,
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0.16T, 0.25T, 0.34T, 0.41T, 0.5T. Again, the beginning of the half-stroke 0T is the

time when the wing is at rest and about to accelerate into a half-stroke. As

with §6.1, only a flapping half cycle was examined as the flowfield generated

by half strokes in opposite directions would be the same (but mirrored), due to

the symmetric kinematics used. With this in mind, flowfield measurements were

also performed under the wing at 0.59T and 0T to fill in the masked areas in

the measurement volume at 0.09T and 0.5T respectively. Only under-the-wing

measurements were performed at these times since these are the points when the

LEV from the previous stroke is likely to be under the wing.

The mechanism output and flapping kinematics for each of the test cases

are given in Figure 6.22. In addition, plots of αmec, α, αmax and αmin (recall that

αmax & αmin represent the most vertical and horizontal pitch angles respectively)

throughout the flapping cycle for the test cases involving flowfield measurements

are shown in Figure 6.23, giving an indication of wing twist. For both figures,

the flapping kinematics (red) only extend to 0.59T since flowfield measurements

were only performed up until this point, as mentioned previously.

6.2.2 E�ect on Mean Lift

The effect of varying rotation phase on mean lift is illustrated in Figure 6.24. It can

be seen that mean lift and mean lift coefficient peak at a rotation phase of +5.5%,

beyond which any positive effects from pitching the wing early are diminished.

In addition, it can be seen that negative rotation phases are especially detrimental

to lift production.

It has been noted by Ansari et al. (2008b) that the benefits of an advanced pitch

reversal and the detriments of negative ones are a consequence of the Kramer

effect (see Chapter 2 for a description of the Kramer effect). Here, for an advanced

pitch reversal (positive rotation phase) the wing begins to pitch up sooner than

it would with a 0% rotation phase. According to the Kramer effect, the rapid

change in pitch will be accompanied by an increase in lift. Since pitch reversal is

advanced, the wing will have a higher speed while it is pitching and hence more

lift compared with a 0% rotation phase.

As rotation phase is further increased, however, the segment where the wing

travels with a negative angle of attack before coming to the end of the stroke
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Figure 6.24: Effect of rotation phase on mean lift and mean lift coefficient

gets longer. Beyond a +5.5% rotation phase, the length of this segment and the

negative lift it produces appears to negate the lift-enhancing benefits of pitching

the wing early. As rotation phase decreases below zero, lift drops dramatically.

This is because, as the wing begins to pitch later and later, the wing starts the

subsequent half-stroke with an increasingly negative angle of attack. When the

wing starts a half stroke with a negative angle of attack, it suffers a negative

Kramer effect, where the wing rapidly pitches down, resulting in a sharp increase

in negative lift.

The theoretical results of Ansari et al. (2008b) determined a similar rotation

phase of +5% to be optimal for creating lift, and the trend of mean lift versus

rotation phase observed was very similar to that illustrated in Figure 6.24. It

appears that the only previous experiments that have investigated rotation phase

effects are those by Dickinson et al. (1999) and later by the same research group

in the study of Sane & Dickinson (2001). The earlier study investigated delayed,

symmetric and advanced pitch reversals, where they found that advancing pitch

reversal led to higher mean lift. In their later study various kinematic parameters

were altered including rotation phase to observe the effects on forces. Similar to

the present results, they found that a rotation phase of +5% maximised lift along
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with a stroke amplitude, angle of attack at mid-stroke, and ’flip duration’ of 180◦,

45◦, and 10% respectively. Here ’flip duration’ is the time taken for pitch reversal

to occur as a percentage of the flapping period T. For the present experiments,

this parameter was approximately 50%. Both of Dickinson’s experimental stud-

ies were performed at much lower Reynolds numbers (Re on the order of 102),

thus results presented here show that the benefits of pitching the wing early by

approximately +5.5% of the flapping cycle extend to the FMAV scale.

6.2.3 E�ect on Flow Evolution

The effect of varying rotation phase on the evolution of the flow throughout a

half-stroke will now be presented, which should also give further insight into the

mean lift and lift coefficient versus rotation phase trend shown previously. Figures

6.25 - 6.27 illustrate the flow evolution throughout the flapping half cycle for the

four rotation phases τ = −3.7%, 1.6%, 5.5%, 10.1% from test cases 1.3 − 1.5&1.7

respectively. As mentioned previously, it can be seen that these rotation phases

investigated span across the mean lift and mean lift coefficient peaks in Figure 6.24.

Top (−z) and back (y) views of the wing are respectively shown by Figures 6.25 and

6.26, which illustrate vortex diameter with dark grey surfaces overlaid with vortex

axes coloured with axial vorticity (normalised by the mean wing angular velocity).

Figure 6.27 shows the top views of the wing with instantaneous streamlines

released from vortex axes coloured with axial velocity (normalised with respect

to the mean wingtip speed). In addition, instantaneous black streamlines released

along the wing edges are also shown, along with transparent grey isosurfaces of

Q = qv̄2
tip (where q ≈ 8.5 × 104m−2). As with the similar figures in § 6.1.2, the

positive axial direction points along the local direction of a given axis towards the

end without a white dot. Figures F.7 - F.14 (see Appendix F) present these top and

back view plots for all six measurement positions, whereas Figures 6.25 - 6.27 are

condensed forms.

From Figures 6.25 - 6.27 it can be seen that the general trend of flow evolution

from τ = −3.7% to 10.1% is the same as that presented in § 6.1.2. That is, at

the start of the stroke a starting vortex (STRV1) is shed and the primary LEV

(LEV1) and the tip vortex (TPV1) form, while the LEV, tip vortex and root vortex

from the previous stroke (LEV0, TPV0, RTV0) still persist under the wing. LEV0,
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Figure 6.25: Top views illustrating flow formation over a flapping half cycle for four rotation phases: τ =

−3.7%, 1.6%, 5.5%, 10.1%; vortex core diameter (dark grey surfaces) shown with vortex axes coloured with axial vor-

ticity normalised with respect to Ω̄wng (91.7rad/s) (axes are dashed lines behind objects); positive axial direction points

along an axis towards the end without a white dot
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Figure 6.26: Back views illustrating flow formation over a flapping half cycle for four rotation phases: τ =

−3.7%, 1.6%, 5.5%, 10.1%; vortex core diameter (dark grey surfaces) shown with vortex axes coloured with axial vor-

ticity normalised with respect to Ω̄wng (91.7rad/s) (axes are dashed lines behind objects); positive axial direction points

along an axis towards the end without a white dot
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Figure 6.27: Top views illustrating flow formation over a flapping half cycle for four rotation phases: τ =

−3.7%, 1.6%, 5.5%, 10.1%; instantaneous streamlines released from vortex axes coloured with axial velocity normalised

with respect to the mean wingtip speed (9.7m/s); black streamlines are released along wing edge; transparent grey isosur-

faces indicate areas where Q = qv̄2
tip where q ≈ 8.5 × 104m−2; positive axial direction points along an axis towards the end

without a white dot
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TPV0, and RTV0 are then convected away into the downwash and LEV1 develops

more inboard with an increasing level of axial vorticity and axial velocity peaking

at mid-stroke where a sudden increase in vortex diameter is present, indicating

breakdown. Following mid-stroke, the LEV1 axis becomes more distorted, the

breakdown location moves inboard resulting in a drop in axial velocity level

in LEV1 closer to the root, and the axial velocity of TPV1 reverses. When pitch

reversal occurs towards the end of the stroke, pitching vortices (PTVs) are shed off

the trailing edge. Leading to the end of the stroke, the LEV persists over the wing,

and root vortices (RTVs) form and TPV1 breaks away and begins descending

with the downwash. It should be noted that the stroke amplitude used in the

measurement cases for this section is larger than the stroke amplitude used in

the kinematics in § 6.1.2. Thus, the mean wing speeds for these cases are higher,

which has resulted in the presence of other flow structures that were not identified

in § 6.1.2. These include more pitching vortices (PTVs), stopping vortices (STPVs)

seen at 0.5T, and a second tip vortex, TPV2, at 0.5T for τ = +5.5%, which forms

and sheds very shortly before the end of the half stroke. The investigation in

§ 6.1.2 likely did not pick up these additional structures because they were too

weak to identify owing to the lower mean wing speed, or they simply were not

present.

Although the general flow evolution for all rotation phases tested is the same,

there are noticeable effects due to the varying rotation phase. First of all, aspects

of the pattern of flow evolution are linked to the pitching kinematics. Changing

the rotation phase alters the phase relationship between the stroke kinematics

and the flow evolution pattern, just as it does to the phase relationship between

stroke kinematics and the pitching kinematics. For instance, starting vortices are

shed later in the cycle if pitch reversal is delayed, and vice versa if pitch reversal

is advanced. This can be seen at 0.09T in Figure 6.25 where the starting vortex,

STRV1 is closer to the trailing edge for more negative rotation phases, indicating

that it is shed later. In addition, at 0.5T for τ = +10.1%, there is a stopping

vortex STPV2, which is the starting vortex for the next cycle, that has already

been shed because of a more advanced pitch reversal. Similarly, pitching vortices

form sooner, and the tip vortex (TPV1) breaks away from the wing and descends

into the wake sooner if pitch reversal is advanced. This can clearly be seen at 0.5T

in the back views in Figure 6.26.
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The trends observed here provide further explanation of the mean lift and

lift coefficient versus rotation phase trends presented in Figure 6.24. Recall from

Chapter 2 that when a wing starts from rest and sheds a starting vortex the effect

of the starting vortex is to reduce the bound circulation on the wing and slow

its growth, as it is in the opposite sense to the wing bound circulation. This is

the Wagner effect (Wagner, 1925). As seen previously, for more negative rotation

phases the wing sheds a starting vortex later in the cycle, therefore, the negative

effects of the Wagner effect extend further into the half-stroke. This is especially

detrimental to lift because further into the half-stroke the wing velocities are

higher and, thus, it is where the wing has the most opportunity for producing lift.

Starting vortices shed later in the cycle will also be stronger owing to the higher

wing velocity, which combined with their negative impact during a significant

lift-producing phase of the cycle results in decreased lift for more negative rotation

phases. In addition, as mentioned previously, for a more delayed pitch reversal

(more negative rotation phase), the wing travels with a negative angle of attack

for a longer period of time into the half-stroke and suffers from a negative Kramer

effect, which also leads to lift reduction. Therefore, the influence of an increasingly

significant Wagner effect combined with an increasingly negative angle of attack

at the start of the stroke and negative Kramer effect, results in a drastic decline in

lift below a rotation phase of about 0%.

As rotation phase is increased, the starting vortex is shed sooner in the cycle

when the wing velocity is relatively low. When the wing reaches higher velocities

in the half-stroke it is distanced much further from the starting vortex, and the

wing bound circulation has had more opportunity to grow, thus lift values are

higher. Furthermore, as mentioned previously, when pitch reversal occurs sooner,

the wing exploits a Kramer effect when the wing velocities are higher, leading to

an increase in lift. Kramer attributed the increase in lift resulting from a rapid

increase in incidence, to a lag in flow separation, as it was observed that the flow

did not separate right away and all at once (Kramer, 1932). A similar story can be

seen in the present results in Figure 6.25 and Figure 6.26, where it can be seen that

when the wing pitches early, the LEV (LEV1 & LEV1.1) does not shed. As rotation

phase increases, however, the wing travels with a negative angle of attack for a

longer period of time towards the end of the half-stroke, leading to a decline in lift

beyond a rotation phase of about 6%. Therefore, higher rotation phases benefit
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from a decreased Wagner effect and a positive Kramer effect, but eventually suffer

from an increasingly negative angle of attack before the end of stroke.

It is interesting to note that across the rotation phases here (τ = −3.7% to

10.1%), the LEV appears stable as it did in § 6.1.2, even in the case of the most

advanced rotation phase of 10.1% where the wing travels with a negative angle of

attack for a significant period of time. As in § 6.1.2, although the LEV shows signs

of breakdown and becomes distorted after mid-stroke, the LEV, and any other

portions of the LEV identified separately by the vortex point-joining algorithm

(e.g. LEV1.1), remain present over the wing surface even up until the end of the

stroke.

6.3 Reynolds Number & Stroke Amplitude

E�ects

The next investigation focuses on Reynolds number and stroke amplitude effects,

that is, effects of varying the mean wing speed and the distance traveled respec-

tively. For a constant mean wing chord, mean Reynolds number may be altered in

one of two ways by either increasing flapping frequency and keeping the distance

traveled constant (constant stroke amplitude in this case), or by increasing the

distance traveled (increasing stroke amplitude) and keeping flapping frequency

constant. In the latter case, mean Reynolds number simultaneously increases with

stroke amplitude because the wing is required to travel over greater distances in

the same period of time, thus increasing the mean wing speed. Stroke amplitude,

however, may be independently increased while holding mean Reynolds num-

ber constant by proportionately decreasing flapping frequency for an increasing

stroke amplitude to achieve a constant mean wing speed. This section investigates

Reynolds number and stroke amplitude effects on the mean lift generated and on

the LEV, by examining these three cases of varying R̄e with a constant Φ, varying

R̄e and Φ with a constant f , and varying Φ with a constant R̄e. First, the measure-

ment cases will be presented, followed by the mechanism output and flapping

kinematics, mean lift measurements, and flowfield measurements. In addition,

the effects of Reynolds number and stroke amplitude on LEV breakdown and

axial flow are discussed.
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Table 6.3: Kinematic parameters for test cases which vary R̄e with a constant Φ

case # 2.1 2.2 2.3 2.4

f 5Hz 10Hz 15Hz 20Hz

R̄e1 4590 9200 13810 18320

R̄e2 4390 8790 13240 17760

Φ 131.7 ± 8◦ 131.5 ± 8◦ 131.7 ± 8◦ 131.8 ± 8◦

Θ 0.7 ± 5.2◦ 0.8 ± 5.2◦ 1.1 ± 5.2◦ 1.7 ± 5.2◦

αmid 46.7 ± 2◦ 45.8 ± 2◦ 45.4 ± 2◦ 43.2 ± 2◦

τ 6.1 ± 1.4% 5.7 ± 1.4% 6 ± 1.4% 6.1 ± 1.4%

Φmec 131.7 ± 0.2◦ 131.5 ± 0.2◦ 131.7 ± 0.2◦ 131.8 ± 0.2◦

Θmec 0.7 ± 0.6◦ 0.8 ± 0.6◦ 1.1 ± 0.6◦ 1.7 ± 0.6◦

αmecmid 45.2 ± 0.4◦ 45.3 ± 0.4◦ 45 ± 0.4◦ 45.1 ± 0.4◦

τmec 6.1 ± 0.3% 5.7 ± 0.3% 6 ± 0.3% 6.1 ± 0.3%

Table 6.4: Kinematic parameters for test cases which vary R̄e and Φ with a constant f

case # 3.1 3.2 3.3 3.4 3.5

f 20Hz 20Hz 20Hz 20Hz 20Hz

R̄e1 3870 7790 11670 15690 18120

R̄e2 3790 7630 11430 15190 17760

Φ 28.1 ± 8◦ 56.6 ± 8◦ 84.9 ± 8◦ 112.7 ± 8◦ 131.8 ± 8◦

Θ 0.5 ± 5.2◦ 0.7 ± 5.2◦ 1 ± 5.2◦ 1.3 ± 5.2◦ 1.7 ± 5.2◦

αmid 46.4 ± 2◦ 45.4 ± 2◦ 44.6 ± 2◦ 43.6 ± 2◦ 43.2 ± 2◦

τ 6.8 ± 1.4% 6.2 ± 1.4% 6.2 ± 1.4% 6.1 ± 1.4% 6.1 ± 1.4%

Φmec 28.1 ± 0.2◦ 56.6 ± 0.2◦ 84.9 ± 0.2◦ 112.7 ± 0.2◦ 131.8 ± 0.2◦

Θmec 0.5 ± 0.6◦ 0.7 ± 0.6◦ 1 ± 0.6◦ 1.3 ± 0.6◦ 1.7 ± 0.6◦

αmecmid 44.8 ± 0.4◦ 45.1 ± 0.4◦ 45.3 ± 0.4◦ 45.6 ± 0.4◦ 45.1 ± 0.4◦

τmec 6.8 ± 0.3% 6.2 ± 0.3% 6.2 ± 0.3% 6.1 ± 0.3% 6.1 ± 0.3%
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Table 6.5: Kinematic parameters for test cases which vary Φ with a constant R̄e

case # 4.1 4.2 4.3 4.4 4.5

f 20Hz 9.93Hz 6.63Hz 4.92Hz 4.27Hz

R̄e2 3790 3770 3780 3780 3770

Φ 28.1 ± 8◦ 56.4 ± 8◦ 85 ± 8◦ 114.3 ± 8◦ 131.9 ± 8◦

Θ 0.5 ± 5.2◦ 0.4 ± 5.2◦ 0.5 ± 5.2◦ 0.6 ± 5.2◦ 0.7 ± 5.2◦

αmid 46.4 ± 2◦ 45.6 ± 2◦ 45.3 ± 2◦ 45 ± 2◦ 44.9 ± 2◦

τ 6.8 ± 1.4% 6.3 ± 1.4% 6 ± 1.4% 6 ± 1.4% 6 ± 1.4%

Φmec 28.1 ± 0.2◦ 56.4 ± 0.2◦ 85 ± 0.2◦ 114.3 ± 0.2◦ 131.9 ± 0.2◦

Θmec 0.5 ± 0.6◦ 0.4 ± 0.6◦ 0.5 ± 0.6◦ 0.6 ± 0.6◦ 0.7 ± 0.6◦

αmecmid 44.8 ± 0.4◦ 44.6 ± 0.4◦ 44.4 ± 0.4◦ 44.5 ± 0.4◦ 44.6 ± 0.4◦

τmec 6.8 ± 0.3% 6.3 ± 0.3% 6 ± 0.3% 6 ± 0.3% 6 ± 0.3%

6.3.1 Flapping Kinematics & Measurement Cases

Again, starting from the ’baseline’ set of kinematics presented in § 5.1, flapping

frequency and stroke amplitude were varied to give the three following sets of

cases: varying R̄e with a constant Φ (cases 2.x)3, varying R̄e and Φ with a constant

f (cases 3.x), and varying Φ with a constant R̄e (cases 4.x). The kinematic parame-

ters for each set of cases are listed in Tables 6.3 - 6.5. Mean lift measurements were

obtained for cases 2.1− 2.4, 3.1− 3.5, 4.1 and 4.5. It should be noted that the mean

lift for case 4.5 was not measured directly, but rather was obtained by the identi-

fied mean lift trend from cases 2.1− 2.4. Also, the flapping kinematics during the

mean lift measurements for case 3.4 differed slightly from those during the flow-

field measurements, with only a small difference in the stroke amplitude of 1.5◦.

This difference was deemed small enough such that the flowfield measurements

adequately represented the flow generated during the mean lift measurements.

For every case, flowfield measurements and the accompanying instantaneous

wing position measurements were performed only at the mid-stroke position. As

has been shown previously, the flow is quasi-steady on either side of mid-stroke

where the wing is translating with a relatively constant velocity. In addition, the

aerodynamic forces over this phase of the flapping cycle are typically seen to be

quasi steady (see e.g. Dickinson et al. (1999)), and it is the phase where most

3shorthand for cases 2.1 − 2.4 etc.
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Figure 6.28: (a) mechanism output kinematics for test cases which vary R̄e and f with a constant Φ; (b) mechanism

output kinematics for test cases that vary R̄e and Φ with a constant f
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Figure 6.29: Mechanism output kinematics for test cases that vary Φ with a constant R̄e

of the lift is generated. Thus, looking at the flowfield at mid-stroke provides

a good representation of the mean lift-producing flow. Mechanism output and

kinematics for each test case are given in Figures 6.28 - 6.29.

6.3.2 E�ect on Mean Lift

Starting with cases 2.x, the effect of increasing mean Reynolds number (by in-

creasing flapping frequency) with a constant stroke amplitude is illustrated in

Figure 6.30. The effect is an increase in mean lift with increasing R̄e, and results in

a decrease in mean lift coefficient. The lift coefficient decreases in this case because

the ratio of mean lift to average wingtip speed decreases as flapping frequency

increases. This observed trend is to be expected since increasing flapping fre-

quency proportionately increases the average wing speed which results in higher
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lift. Fitting a power law to the data reveals that mean lift varies directly with v̄1.5
tip ,

which is lower than expected since, conventionally, lift varies with the square of

velocity. Although v̄tip to a power as high as 2.1 can fit within the error bars, an

exponent of less than 2 makes sense physically because throughout a flapping

cycle there are periods where the wing sheds its wake and loses lift, which brings

down the average lift. This was a note made by Ansari et al. (2008b) who in their

analytical parametric study saw that lift varied with f to a power slightly less

than 2. In their study, a rigid wing was used, whereas the present experiments

used a stiff but non-rigid wing which would have dampened the sudden spikes

in instantaneous lift resulting in smaller values of mean lift (in comparison to

analytical predictions with an infinitely rigid wing) sensed at the root.

Figure 6.30: Effect of flapping frequency (R̄e) on mean lift and mean lift coefficient

As shown in Figure 6.31 for cases 3.x, the effect of increasing mean Reynolds

number and stroke amplitude while holding flapping frequency constant is also

an increase in mean lift. Again, this trend is expected because the mean wingtip

speed is increasing. The mean lift coefficient declines in this case because the ratio

of mean lift to mean wingtip speed squared (L/v̄2
tip term in the coefficient of lift

PhD Thesis: Nathan D B Phillips
∣∣∣ 201



6.3. Reynolds Number & Stroke Amplitude E�ects

Figure 6.31: Effect of stroke amplitude with constant flapping frequency on mean lift and mean lift coefficient

Figure 6.32: Effect of stroke amplitude with constant mean Reynolds number on mean lift and mean lift coefficient
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equation) decreases with increasing mean Reynolds number and stroke ampli-

tude for a constant flapping frequency. As with the previous case, a non-linear

relationship would be expected because v̄tip is increasing and lift conventionally

scales with the square of velocity. However, the relationship presented here is a

linear one, where doubling the mean Reynolds number and stroke amplitude for

a constant flapping frequency roughly doubles the lift. Interestingly the study of

Ansari et al. (2008b) also saw a linear relation between stroke amplitude and mean

lift. As will be seen later, this relationship probably results from LEV breakdown

which becomes more intense with increasing stroke amplitude.

Increasing stroke amplitude while holding mean Reynolds number constant

(cases 4.x) is seen to have no effect on mean lift as seen in Figure 6.32. This

makes sense because the mean wing speed is remaining constant, and hence lift

should remain constant. It should be noted that the second point on this graph at

Φ = 132◦ was not measured directly, but rather, was obtained from the mean lift

versus mean Reynolds number trend for a constant stroke amplitude (Φ = 132◦)

illustrated in Figure 6.30.

6.3.3 E�ect on Flow�eld

Figures 6.33 - 6.35 illustrate the flow formation at mid-stroke for cases 2.x-4.x

respectively. These are the same style of plots presented in § 6.1 illustrating

vortex diameter, axial vorticity, and instantaneous streamlines with axial velocity.

The same plots, but showing back views rather than top views are shown in

Appendix F Figures F.15 - F.16.

For an increasing mean Reynolds number with a constant stroke amplitude,

it can be seen in Figure 6.33 that the general flow structure of the LEV remains

relatively unchanged. The LEV starts off closer to the leading edge towards the

root and travels outboard and aft to where it merges with the tip vortex, and the

general trajectory of the vortex axis is the same. In all cases, the axial velocity of the

vortex peaks around mid-span, after which the axial velocity in the LEV rapidly

drops to a level below a normalised velocity of 0.5. This drop is accompanied by

a sudden increase in the diameter of the LEV indicating LEV breakdown.

If mean Reynolds number and stroke amplitude are simultaneously increased

by holding flapping frequency constant, then quite a different result is obtained
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Figure 6.33: Top views illustrating flow formation at mid-stroke for test cases with varying f (R̄e); left column shows

vortex core diameter (dark grey surfaces) and vortex axes coloured with axial vorticity normalised with respect to the

mean wing angular velocity Ω̄wng (23.1, 46.2, 69.6, 93.2rad/s); vortex axes become dashed when behind other objects; right

column shows instantaneous streamlines released from vortex axes coloured with axial velocity normalised with respect

to v̄tip (2.4, 4.9, 7.4, 9.9m/s), black streamlines released along the wing edge, and transparent grey isosurfaces of Q = qv̄2
tip

where q ≈ 8.5 × 104m−2; positive axial direction points along an axis towards the end without a white dot
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Figure 6.34: Top views illustrating flow formation at mid-stroke for test cases with varying Φ and constant f = 20Hz;

left column shows vortex core diameter (dark grey surfaces) and vortex axes coloured with axial vorticity normalised

with respect to Ω̄wng (19.8, 40, 60, 79.7, 93.2rad/s); vortex axes become dashed behind other objects; right column shows

instantaneous streamlines released from vortex axes coloured with axial velocity normalised with respect to v̄tip (2.1, 4.2,

6.4, 8.4, 9.9m/s), black streamlines released along the wing edge, and transparent grey isosurfaces of Q = qv̄2
tip where

q ≈ 8.5 × 104m−2; positive axial direction points along an axis towards the end without a white dot
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Figure 6.35: Top views illustrating flow formation at mid-stroke for test cases with varying Φ and constant R̄e ≈ 3780;

left column shows vortex core diameter (dark grey surfaces) and vortex axes coloured with axial vorticity normalised with

respect to Ω̄wng (19.8rad/s); vortex axes become dashed when behind other objects; right column shows instantaneous

streamlines released from vortex axes coloured with axial velocity normalised with respect to v̄tip (2.1m/s), black streamlines

released along the wing edge, and transparent grey isosurfaces of Q = qv̄2
tip where q ≈ 8.5×104m−2; positive axial direction

points along an axis towards the end without a white dot
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as seen in Figure 6.34. At lower stroke amplitudes (Φ = 28.1◦&56.6◦) the LEV axis

is relatively straight with a smaller vortex diameter, and breakdown appears to

be either absent or much less intense as there is no dramatic increase in vortex

size. Lower amplitudes are more prone to TEV shedding off the trailing edge, as

seen in the Q criterion isosurfaces, which are probably due to KHI in the shear

layer between fluid originating from above and below the wing. The tip and root

vortices from the previous half stroke (RTV0 and TPV0) are closer to the under

side of the wing at mid-stroke for smaller stroke amplitudes owing to the fact

that the wing reverses into its own wake sooner for a smaller stroke amplitude.

As stroke amplitude increases, the LEV is more developed and is larger in size.

The outboard section of the LEV axis at higher stroke amplitudes moves aft and

becomes more distorted and indications of LEV breakdown arise as a sudden

increase in vortex diameter occurs. If stroke amplitude is varied at a fixed mean

Reynolds number, the very same trend is observed as seen in Figure 6.35, although

normalised axial velocity levels in the LEV are noticeably lower.

The change in the flowfield at mid-stroke seen as stroke amplitude is increased

resembles the flow evolution that occurs between the start of a half-stroke and

the mid-stroke position presented in § 6.1. This indicates that the extent of LEV

development is a function of the number of mean chords traveled, where the larger

the stroke amplitude (more mean chords traveled) the more the LEV grows.

6.3.4 LEV Breakdown

The presence of LEV breakdown mentioned previously will now be examined in

more detail. If the helix angle is computed along the LEV it is found that in all

cases the critical helix angle of 50◦ (see § 2.2.8) is eventually passed. For cases 2.x, it

is found that as mean Reynolds number increases for a fixed stroke amplitude, the

breakdown location at mid-stroke remains relatively fixed between 60−70% span.

As stroke amplitude is increased with either a fixed flapping frequency (cases 3.x)

or a fixed mean Reynolds number (cases 4.x), the point where the critical helix

angle is passed is variable and occurs between 65−90% span. Thus, for the range of

Reynolds numbers and stroke amplitudes tested here, LEV breakdown appears

to be present based upon the computed helix angles. However, as mentioned

previously, for smaller stroke amplitudes the LEV diameter is much smaller at

PhD Thesis: Nathan D B Phillips
∣∣∣ 207



6.3. Reynolds Number & Stroke Amplitude E�ects

mid-stroke and sudden increases in vortex diameter are absent. This is illustrated

in Figure 6.36, which shows the degree of LEV diameter increase along axis versus

stroke amplitude for all cases. The degree of increase is measured by the ratio of

maximum LEV diameter to the diameter at the start of the axis towards the root.

Again, with a smaller stroke amplitude the percent increase in vortex size is less,

and as stroke amplitude is increased, much more dramatic increases in vortex

diameter are observed. Including vortex diameter increase when assessing the

presence of vortex breakdown (as has been done previously) suggests that LEV

breakdown is absent at Φ = 28.1◦ and &56.6◦. In Figure 6.34 and Figure 6.35,

the vortex diameter grows very little in these cases. Recall from §2.2.8 that in

addition to the swirl level, the pressure gradient along the vortex axis also affects

breakdown, and that independent changes in either of these can incite or suppress

its occurrence. Given this fact combined with the lack of vortex diameter increase

at lower stroke amplitudes, LEV breakdown is probably suppressed thanks to a

favourable pressure gradient preventing breakdown even though the critical helix

angle is surpassed. Regardless of whether breakdown is absent, or is present but

more suppressed, what is certain is that the extent of LEV breakdown at mid-

stroke is very dependent on stroke amplitude, and that mean Reynolds number

has no noticeable effect on breakdown within the range tested.

Figure 6.36: Degree of LEV diameter increase along axis (shown by ratio of maximum LEV diameter to the diameter

at the start of the axis) at mid-stroke versus stroke amplitude; red line is a power fit to the data points
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If LEV breakdown were absent at lower stroke amplitudes it would explain

the stroke amplitude versus mean lift trend in Figure 6.31 for a constant flapping

frequency. On delta wings, the result of vortex breakdown is a decrease in lift

(Escudier, 1988). Assuming that the same is true for flapping wings, then as stroke

amplitude increases, the LEV is more prone to breakdown, which would then lead

to a shallower rate of lift increase with increasing stroke amplitude. However,

if this were true then it would be expected that the mean lift at Φ = 131.9◦

in Figure 6.32 would be lower than that at Φ = 28.1◦. However, these values

are virtually the same, thus something must be decreasing the lift at low stroke

amplitudes as well. This could be explained by the fact that with lower stroke

amplitudes, the root vortex and tip vortex shed from the previous half-stroke are

closer to the wing underside during the middle portion of the stroke when most of

the lift is generated. This is clearly seen in Figure 6.34 and Figure 6.35. The effect

of these previous shed vortices is to induce a downwash, thus decreasing lift.

With larger stroke amplitudes this negative effect declines, as the previously shed

wake has a longer time to descend before the wing re-encounters it. Therefore,

provided that vortex breakdown results in decreased lift, there are two competing

effects. Lower stroke amplitudes suffer from decreased lift due to proximity to

shed wake, which declines in effect with increasing stroke amplitude, but is met

with another effect of decreased lift due to more intense LEV breakdown at higher

stroke amplitudes. This could account for the linear trend as seen in Figure 6.32.

6.3.5 LEV Axial Flow

Observed dependencies of the axial flow level in the LEV on stroke amplitude

and mean Reynolds number will now be presented. Figure 6.37a illustrates the

stroke amplitude versus peak LEV axial velocity for cases 2.x, 3.x and 4.x. It can

be seen from cases 4.x that an increase in stroke amplitude while mean Reynolds

number is held constant has no effect on LEV axial velocity, and that it is only

affected if mean Reynolds number is varied. Axial velocity, therefore, is a function

of Reynolds number. Plotting the same data, but with mean Reynolds number

on the horizontal axis, reveals the peak LEV axial velocity versus mean Reynolds

number trend, shown in Figure 6.37b. A linear and power fit of the data are

shown, where the power equation fits the data much better as it has a lower
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Figure 6.37: Peak LEV axial velocity at mid-stroke versus (a) stroke amplitude and (b) mean Reynolds number

standard error (0.9m/s compared to 1.1m/s), and passes through 0, 0 as it should.

This reveals that peak axial velocity in the LEV is a function of R̄e1.3.

A non-linear relationship between LEV axial velocity and mean Reynolds

number could be explained by centrifugal forces. Centrifugal force is proportional

to v2, and since mean Reynolds number is proportional to the mean wingtip speed,

it follows that centrifugal force will vary with R̄e2. Thus, doubling the mean

Reynolds number will quadruple centrifugal forces, causing higher accelerations

in the fluid and leading to higher axial velocities. The accelerations due to viscous,

Euler, Coriolis and centrifugal forces in the axial direction along the vortex axis

for case 2.4 are shown in Figure 6.38. For a description of these accelerations and

how they are computed, please see Appendix G. It can be seen that centrifugal

forces dominate in the axial direction. Given this dominance and the fact that

both centrifugal force and LEV axial velocity follow a non-linear relationship

with mean wing speed (R̄e), it seems plausible that LEV axial velocity originates

partially from centrifugal force, which has been postulated before by van den

Berg & Ellington (1997a). This would explain why in cases 3.x axial velocity

remains constant as stroke amplitude is varied and mean Reynolds number is

held constant. Here, the mean wing speed is fixed, thus the centrifugal forces

remain constant and the result is a constant axial velocity. It must be noted,

however, that contributions from the axial pressure gradient along the vortex axis

are unknown since there is no pressure data. Axial flow through the LEV has been
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shown to be the result of an axial pressure gradient along the LEV. It is likely that

both centrifugal and pressure forces dominate in the axial direction in the LEV,

and the combined effect results in axial flow, and the trend shown in Figure 6.37b

as R̄e is increased. This could explain why axial velocity varies with R̄e1.3, rather

than R̄e2. If axial velocity were purely the result of centrifugal force then it would

vary with R̄e2, however, with contributions from other forces, mainly pressure,

the result is an increase with R̄e1.3.

Figure 6.38: Axial accelerations along vortex axis due to viscous (avisc), euler (aeul), coriolis (acor), and centrifugal (acent)

forces for case 2.4; accelerations are normalised with respect to the mean wingtip acceleration (1230m/s2); vortex axis

begins at approximately 27% span and axial position thereafter is normalised with respect to the wing length

6.4 Angle of Attack E�ects

The effects of varying the angle of attack at mid-stroke on the flow formation and

mean lift will now be investigated. Measurement cases will first be presented,

followed by the mechanism output and flapping kinematics, mean lift measure-

ments, and then flowfield measurements. Also, a discussion of how angle of

attack affects LEV breakdown will be given.
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Table 6.6: Kinematic parameters for test cases which vary angle of attack

case # 5.1 5.2 5.3 5.4 5.5

f 20Hz 20Hz 20Hz 20Hz 20Hz

R̄e1 17850 18120 18090 18110 18110

R̄e2 17630 17760 17830 17850 17890

Φ 129.9 ± 8◦ 131.8 ± 8◦ 131.6 ± 8◦ 131.8 ± 8◦ 131.8 ± 8◦

Θ 1.4 ± 5.2◦ 1.7 ± 5.2◦ 1.6 ± 5.2◦ 1.6 ± 5.2◦ 1.5 ± 5.2◦

αmid 35.5 ± 2◦ 43.2 ± 2◦ 53.6 ± 2◦ 64.1 ± 2◦ 74 ± 2◦

τ 6.2 ± 1.4% 6.1 ± 1.4% 5.9 ± 1.4% 5.6 ± 1.4% 5 ± 1.4%

Φmec 129.9 ± 0.2◦ 131.8 ± 0.2◦ 131.6 ± 0.2◦ 131.8 ± 0.2◦ 131.8 ± 0.2◦

Θmec 1.4 ± 0.6◦ 1.7 ± 0.6◦ 1.6 ± 0.6◦ 1.6 ± 0.6◦ 1.5 ± 0.6◦

αmecmid 35.8 ± 0.4◦ 45.1 ± 0.4◦ 55 ± 0.4◦ 65.3 ± 0.4◦ 75.5 ± 0.4◦

τmec 6.2 ± 0.3% 6.1 ± 0.3% 5.9 ± 0.3% 5.6 ± 0.3% 5 ± 0.3%

6.4.1 Flapping Kinematics & Measurement Cases

As with the other cases, starting from the ’baseline’ kinematics given in § 5.1, αmid

was varied while all other parameters were held virtually constant to give the five

test cases listed in Table 6.6. Mean lift measurements were obtained for all cases,

in addition to flowfield measurements at the mid-stroke position. Mechanism

output kinematics for each test case are shown in Figure 6.39.

6.4.2 E�ect on Mean Lift

The effect of varying αmid on mean lift and mean lift coefficient is given in Fig-

ure 6.40. It can be seen that mean lift and the mean lift coefficient peak at an angle

of attack of around 45◦, declining either side of this value. An explanation for

this is provided by Wilkins (2008), who in a CFD study observed the same trend

illustrated in Figure 6.40 with peak mean lift also occurring at an angle of attack

around 45◦. He observed that increasing angle of attack increased the stable size

of the leading-edge vortex, which had the effect of increasing the wing-normal

force. From 0◦ to 45◦ angle of attack he found that the increase in normal force was

great enough that its vertical component (lift) would increase despite the fact that

the normal force points in an increasingly horizontal direction. Beyond an angle
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Figure 6.39: Mechanism output kinematics for test cases that vary angle of attack at mid-stroke

of attack of 45◦, the increase in normal force became less steep, which combined

with an increasingly horizontal normal force resulted in lift decreasing. The net

aerodynamic force acting on an insect-like flapping wing has been shown exper-

imentally to act nearly normal to the wing surface (see, e.g. Sane & Dickinson

(2001)), thus this explanation seems appropriate to explain the trend presented

here. It is also interesting to note that experiments by Sane & Dickinson (2001) and

Usherwood & Ellington (2002a), which were performed at Reynolds numbers on

the order of 102 and 103 respectively, found that the mean lift coefficient reaches a

maximum between 40◦ and 50◦ angle of attack. Therefore, results presented here

show this trend extends to FMAV scale Reynolds numbers on the order of 104.
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Figure 6.40: Effect of angle of attack at mid-stroke on mean lift and mean lift coefficient

6.4.3 E�ect on Flow�eld

Figure 6.41 illustrates plots of the same style seen previously, with top views of

the wing revealing the effect on the flow structures of increasing αmid. A back view

of the wing for the same cases may be found in Figure F.18 of Appendix F. It can

be seen that the effect is an increase in LEV and TPV diameter as αmid is increased,

which is consistent with observations by Wilkins (2008). This is also illustrated

in Figure 6.42a which shows the vortex diameter normalised with respect to the

mean chord at 40%, 50%, and 60% span versus αmid, where the identified trends

indicate that the LEV should disappear below an angle of attack of about 20◦.

Returning to Figure 6.41, as αmid is increased beyond 45◦, the LEV axial velocity

drops quite drastically. Comparing flows for αmid = 35.5◦ and αmid = 74◦ shows

that axial flow changes from quite positive values to mostly negative values.

Figure 6.42b also illustrates this with plots of minimum and maximum LEV axial

velocity versus αmid, where there is a clear link between angle of attack and axial

velocity level. Thus, the previous conclusion that LEV axial velocity is a function

of mean Reynolds number, must be extended by noting that axial velocity is also

a function of angle of attack.
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Figure 6.41: Top views illustrating flow formation at mid-stroke for test cases with varying αmid; left column shows

vortex core diameter (dark grey surfaces) and vortex axes coloured with axial vorticity normalised with respect to Ω̄wng

(92.9rad/s); vortex axes become dashed behind other objects; right column shows instantaneous streamlines released from

vortex axes coloured with axial velocity normalised with respect to v̄tip (9.7m/s), black streamlines released along the wing

edge, and transparent grey isosurfaces of Q = qv̄2
tip where q ≈ 8.5 × 104m−2; positive axial direction points along an axis

towards the end without a white dot
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Figure 6.42: (a) LEV diameter normalised with respect to c̄ (27.7mm) versus αmid at 40%, 50%, & 60% span; (b) minimum

and maximum LEV axial velocity normalised with respect to v̄tip (9.9m/s) versus αmid

Interestingly the axial velocity of the tip vortex switches from positive to

negative as αmid rises. This switch appears to occur somewhere around 55◦. The

same phenomenon was observed in § 6.1.2 when the wing came to the end of the

half-stroke and pitch reversal was underway (see Figure 6.4). There the switch

in the axial direction of the TPV was attributed to the fact that since the wing

was decelerating it was beginning to view the TPV as it would be seen by an

observer fixed to the ground. However, the results presented here show that this

is not the whole story, as at the mid-stroke measurement position the wing is not

decelerating, but rather has reached peak angular velocity, and still a switch in

TPV axial velocity is observed. This switch is possibly the result of an increasingly

lower pressure region on the upper surface of the wing. As mentioned, CFD

studies of Wilkins (2008) found that the wing normal force continually rose as

angle of attack was increased, which implies an increasingly negative pressure

region above the wing compared to the free stream. If the angle of attack is

sufficiently high then this region is a low enough pressure such that pressure

forces are able to overcome the momentum of the free stream flow and reverse

its direction. Therefore, a reverse in TPV axial direction can also result from

instantaneous wing angle of attack, in addition to wing deceleration.

It can also be seen that as αmid increases, root vortices form, which have been

attributed to KHI in the shear layer between a tip-ward flow above the wing and

root-ward flow below the wing as discussed in § 6.1.2 and seen in Figure 6.7. As

216
∣∣∣ PhD Thesis: Nathan D B Phillips



Chapter 6. Results & Discussion

αmid rises, the region of fluid aft of the LEV develops a stronger tip-ward flow due

to the increased size of the tip vortex, which eventually leads to a sufficiently high

velocity gradient between the root-ward flow below the wing, causing KHI. Also

as seen in Figure 6.41, if αmid is high enough then a secondary tip vortex (TPV2)

forms.

6.4.4 LEV Breakdown

Figure 6.43: LEV breakdown location versus αmid

The effect of αmid on the vortex breakdown location is illustrated in Figure 6.43.

Again, breakdown was identified as the point at which the helix angle passed 50◦,

accompanied by an increase in vortex diameter and a reversal in axial velocity.

For case 5.1, for αmid = 35.5◦, the helix angle was always below critical, thus no

breakdown location for this case was identified. However, breakdown could have

been present between the end of the identified LEV axis and the start of the TPV

axis, which the vortex point-joining algorithm was unable to connect. As seen

in Figure 6.43, αmid has a clear impact on the vortex breakdown location, as it

shifts towards the root for higher αmid values. The same effect was seen in § 6.1.2,

when the LEV breakdown location was also reported to move inboard as pitch

reversal occurred towards the end of stroke. This suggests that in addition to
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being dependent on stroke amplitude as discussed in § 6.3.4, the extent of LEV

breakdown is strongly dependent on angle of attack. The same is true for delta

wings, where the vortex breakdown locations in the LEVs over the wing move

upstream as angle of attack increases (Gursul et al., 2007).

6.4.5 General E�ect of Angle of Attack

Comparing Figure 6.41 to Figure 6.4 in § 6.1.2, shows that the flowfield at mid-

stroke for larger αmid values strongly resembles the flowfield seen towards the

end of a half-stroke when pitch reversal is occurring. For example comparing

the flow at αmid = 64.1◦ in Figure 6.41 to the flow at 0.375T in Figure 6.4, shows a

very similar picture. Many of the effects of varying αmid noted previously are also

observed to occur towards the end of a half-stroke during pitch reversal, including

a shift in LEV breakdown location inboard, a drastic drop in axial velocity levels,

LEV and tip vortex diameter increase, and axial reversal of the tip vortex. The

mid-stroke and end of stroke position are very different in the sense that at mid-

stroke the wing is at peak velocity and has no acceleration, whereas towards the

end of stroke the wing is at a reduced velocity and is decelerating and pitching

rapidly. The fact that the flowfield and flow phenomena seen at mid-stroke for

high α values also occur towards the end of stroke when the wing is at a similar

angle of attack, suggests that the effects of LEV breakdown intensification, axial

velocity drop, LEV and tip vortex size increase, and axial flow reversal of the tip

vortex, are largely the result of instantaneous angle of attack, and less the result

of wing deceleration.

6.5 E�ect of Figure-of-Eight Kinematics

The effects of using figure-of-eight wingtip kinematics will now be investigated.

This is performed by starting with the baseline ’flat’ wingtip kinematics and

progressing to figure-of-eight kinematics with an increasing plunge amplitude

while observing the resulting effects on mean lift and flowfield. First, measure-

ment cases will be presented, followed by the mechanism output and flapping

kinematics, mean lift measurements, and lastly, the flowfield measurements.
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6.5.1 Flapping Kinematics & Measurement Cases

Beginning with the ’baseline’ kinematics presented in § 5.1, Θ was varied using

figure-of-eight wingtip kinematics while all other parameters were held virtually

constant, giving the seven test cases in Table 6.7. For all cases, mean lift was

measured, whereas flowfield measurements at the mid-stroke position were only

performed for cases 6.1−6.5. The mechanism output kinematics for each test case

are given in Figure 6.44.

Table 6.7: Kinematic parameters for test cases which vary plunge amplitude

case # 6.1 6.2 6.3 6.4 6.5 6.6 6.7

f 20Hz 20Hz 20Hz 20Hz 20Hz 20Hz 20Hz

R̄e1 18570 18720 18970 19320 19730 20140 20720

R̄e2 17760 17860 18100 18430 18820 20160 20760

Φ 131.8 131.9 131.9 132.1 132.1 131.9 132

±8◦ ±8◦ ±8◦ ±8◦ ±8◦ ±8◦ ±8◦

Θ 1.7 4.8 8.6 12.7 16.9 21 25.2

±5.2◦ ±5.2◦ ±5.2◦ ±5.2◦ ±5.2◦ ±5.2◦ ±5.2◦

αmid 43.2 42.3 43 42.7 43.3 44.4 44

±2◦ ±2◦ ±2◦ ±2◦ ±2◦ ±4.9◦ ±4.9◦

τ 6.1 6 6.1 6 6 6 5.9

±1.4% ±1.4% ±1.4% ±1.4% ±1.4% ±1.4% ±1.4%

Φmec 131.8 131.9 131.9 132.1 132.1 131.9 132

±0.2◦ ±0.2◦ ±0.2◦ ±0.2◦ ±0.2◦ ±0.2◦ ±0.2◦

Θmec 1.7 4.8 8.6 12.7 16.9 21 25.2

±0.6◦ ±0.6◦ ±0.6◦ ±0.6◦ ±0.6◦ ±0.6◦ ±0.6◦

αmecmid 45.1◦ 44.6◦ 44.6◦ 44.6◦ 44.3◦ 44.4◦ 44◦

±0.4◦ ±0.4◦ ±0.4◦ ±0.4◦ ±0.4◦ ±0.4◦ ±0.4◦

τmec 6.1 6 6.1 6 6 6 5.9

±0.3% ±0.3% ±0.3% ±0.3% ±0.3% ±0.3% ±0.3%
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Figure 6.44: Mechanism output kinematics for test cases that vary plunge amplitude with figure-of-eight kinematics

6.5.2 E�ect on Mean Lift

The effect on mean lift and mean lift coefficient from varying Θ using figure-of-

eight kinematics is given in Figure 6.45. Increasing plunge amplitude has only a

small effect on mean lift and mean lift coefficient. As plunge amplitude increases,

the mean lift increases slightly and reaches a maximum at 8.6◦, whereas mean

lift coefficient reaches a maximum at 4.8◦. Here, the peak in mean lift coefficient

occurs at a different angle than the peak in mean lift because the ratio of mean

lift to mean wingtip speed is greater at a plunge amplitude of 4.8◦ than at 8.6◦.

Beyond these angles, further increases in plunge amplitude reduce both mean lift

and mean lift coefficient.

A possible explanation for the observed trend is that, as with increasing stroke

amplitude, increasing the plunge amplitude also increases the distance that the
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Figure 6.45: Effect of plunge amplitude with figure-of-eight kinematics on mean lift and mean lift coefficient

wing must travel in the same period of time. Thus, for a fixed stroke amplitude

and flapping frequency, this will bring an increase in the mean wing speed (and

thus, an increase in R̄e) and should increase lift. The change in mean wing speed

for a given change in plunge amplitude is, however, quite small. Increasing the

plunge amplitude from 1.7◦ to 8.6◦ increases the mean wing speed by about 2%.

This would be accompanied by a 4% increase in mean lift, if mean lift scales with

v2, or a 3% increase if it scales with v1.5 as seen in § 6.3.2. The increase in lift from

Θ = 1.7◦ to 8.6◦ is 8%, which is larger than either of these. However, considering

the level of error, this increase could in fact be closer to 3% or 4%, in which case,

the peak in mean lift at 8.6◦ can be explained simply by an increase in wing speed.

The decreasing mean lift seen beyond Θ = 8.6◦ could be attributed to an in-

crease in effective angle of attack. This increases for greater plunge amplitudes

since the wing’s velocity has a downward component. The angle of attack at mid-

stroke for these experiments was set approximately to 45◦; thus, as the plunge

amplitude was increased, effective angle of attack would have risen beyond 45◦.

According to Figure 6.40, beyond 45◦ mean lift falls. Increasing the plunge ampli-
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tude in this case up to 8.6◦ would have increased the effective angle of attack by

7.4◦, bringing it up to around 52.4◦. This is still in the ‘plateau’ region in Figure 6.40

where changes in angle of attack give only small changes in mean lift. Thus, up

to a plunge amplitude of 8.6◦, the positive effects of increased mean wing speed

possibly dominate over the negative effects of increased effective angle of attack.

Beyond an effective angle of attack of 55◦, however, lift falls more sharply. Hence,

above a plunge amplitude of around 8.6◦ the negative effects of increased effective

angle of attack appear to dominate over the positive effects from increased mean

wing speed.

All of the measurements in Figure 6.45 are roughly in the same error band,

and so it is possible that the trend observed here is simply due to measurement

error. For instance, the true trend could simply be a positive or negative sloping

line, both of which can fit within all the error bars. To test if the trend observed

here was genuine, the experiment was repeated and it was again revealed that

mean lift peaks at a plunge amplitude of 8.6◦, after which, it declines as plunge

amplitude increases further.

6.5.3 E�ect on Flow�eld

The effect of varying Θ on the flowfield at mid-stroke is shown in Figure 6.46,

which shows the same style of plot shown previously illustrating vortex diameter,

vortex axes, axial vorticity, and instantaneous streamlines with axial velocity

for each test case. A similar plot showing back views of the wing is given in

Figure F.19 of Appendix F. It can be seen that the effect of varying the wingtip

kinematics from an almost flat wingtip trajectory to a figure-of-eight wingtip

trajectory with an increasing plunge angle, are very slight. Generally, the effects

of increasing Θ are similar to those seen previously from increasing αmid, such as

an increase in LEV diameter (Figure 6.47a), reversal of the axial velocity of the TPV

and a shift in the LEV breakdown location inboard (Figure 6.47b). A similarity

between plunge amplitude and angle of attack effects would be expected because

as Θ increases, so does the effective angle of attack. However, there are notable

differences, including a relatively constant peak axial velocity with increasing Θ

seen in Figure 6.47c, as well as a noticeable shift in the outboard portion of the

LEV axis away from the wing surface as illustrated in Figure 6.48. In addition,
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Figure 6.46: Top views illustrating flow formation at mid-stroke for test cases with varying Θ with figure-of-eight

kinematics; left column shows vortex core diameter (dark grey surfaces) and vortex axes coloured with axial vorticity

normalised with respect to Ω̄wng (93.2, 94, 95.2, 97, 99rad/s); vortex axes become dashed behind other objects; right column

shows instantaneous streamlines released from vortex axes coloured with axial velocity normalised with respect to v̄tip

(9.9, 9.9, 10.1, 10.3, 10.5m/s), black streamlines released along the wing edge, and transparent grey isosurfaces of Q = qv̄2
tip

where q ≈ 8.5 × 104m−2; positive axial direction points along an axis towards the end without a white dot
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Figure 6.47: (a) LEV diameter normalised with respect to c̄ (27.7mm) at 40%, 50%, & 60% span, (b) LEV breakdown

location, and (c) minimum and maximum LEV axial velocity normalised with respect to v̄tip versus Θ

the secondary LEV becomes more visible at Θ = 16.9◦, seen in Figure 6.46 (LEV2),

as it is identified by the employed vortex identification scheme.

6.6 Planform Shape E�ects

We now shift from investigating kinematic effects to wing planform shape effects.

In this study, four planforms varying in shape, but with a relatively constant wing

length, area, mean chord and aspect ratio are tested to investigate the effects on the

flowfield. First the measurement cases and details of the wing geometries will be

presented, followed by the mechanism output and flapping kinematics, and the
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Figure 6.48: Back view of wing (left) and sectional chordwise view at 85.4% span (right) illustrating shift in outboard

portion of LEV axis away from the wing surface with increasing Θ

flowfield measurements. Also, discussions on LEV breakdown, and leading-edge

sweep effects will also be given.

6.6.1 Flapping Kinematics & Wing Planforms

The flapping kinematics used for this investigation were the same as the ’baseline’

kinematics presented in § 5.1, but at a lower flapping frequency of 15Hz. The

kinematic parameters are listed in Table 6.8, and the flapping mechanism output

kinematics are shown in Figure 6.49.

The wing planforms investigated included a ‘reverse-ellipse’, rectangle, ‘four-

ellipse’, and ellipse shape as presented in § 4.3.5 in Figure 4.30 (page 116). As

Table 6.8: Kinematic parameters

f 15Hz

R̄e 13830

Φ 131.7 ± 8◦

Θ 1.2 ± 5.2◦

αmid 46.4 ± 4.9◦

τ 6 ± 1.6%

Φmec 131.7 ± 0.2◦

Θmec 1.2 ± 0.6◦

αmecmid 46.4 ± 0.4◦

τmec 6 ± 0.3%
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with the wing design used in the preceding discussion (the ‘four-ellipse’), all

wing geometries tested here had the same mean chord length of approximately

28mm and a constant aspect ratio of about 6. It should be noted here that the

reverse-ellipse planform had a slightly larger area due to the interface between

the spar and the wing near the root section. In addition, for all planforms the

pitch axis is located at the quarter-chord of the maximum chord. Overall, these

shapes encompass a number of geometric variations including area distribution,

leading and trailing edge sweep, and tip chord length.

Figure 6.49: Mechanism output kinematics for test cases that vary planform shape; time is non-dimensionalised by

the flapping period T (0.067s)
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6.6.2 General Flow Structure

The form of the major flow structures for each of the wing geometries at mid-stroke

is illustrated in Figure 6.50 which depicts the top, back and root views which look

in the −z, y, and x directions respectively. Vortical structures are highlighted with

transparent isosurfaces of Q normalised with respect to the maximum Q value.

These are plotted for three different ’normalised Q’ values: purple = 0.2, orange

= 0.1, yellow = 0.05. In addition, the structure of the flow around these major

vortices is illustrated with vectors in wing coordinates plotted on an isosurface of

velocity magnitude (in laboratory coordinates) equal to the mean wingtip speed

(7.4m/s). It should be noted that the employed vortex identification scheme of

Knowles et al. (2006) did not reveal clear vortex axes for these measurements, and

thus, vortex axes and vortex diameters were not identified as they have been in

previous sections. This is possibly because a different PIV measurement system

was used for these measurements.

Recall that Q provides a measure of the dominance of rotation rates over

strain rates at a point in the fluid, where the more positive Q is the more rigid-

body motions dominate, and the more negative Q is the more shearing motions

dominate. Since vortex cores exhibit nearly rigid-body rotation, Q values will

be largest in such regions because shear is virtually nonexistent. Thus, higher

normalised Q values indicate regions where vortex cores are present.

It can be seen from the isosurfaces of normalised Q = 0.2 for all wing geome-

tries, that two vortex core structures appear to be present along the leading edge.

The more aft of these structures is the LEV, and the more forward structure high-

lights KHVs resulting from KHI in the vortex sheet emanating from the leading

edge as described in § 6.1.3. To provide a comparison of the strength of the LEV

across the planforms, the upper portion of Figure 6.51 illustrates the normalised

Q = 0.2 isosurfaces coloured with x-wise vorticity for the top views. As reported

before in § 6.1.3, it can be seen that both of the KHVs at the primary LEVs rotate

in the same sense. Also, it can be seen by the vorticity values that the strength of

the LEV across all planforms is very similar. Returning again to Figure 6.50, at the

isosurfaces for the lower two normalised Q values, more of the vortex structures

become visible. The moderate normalised Q level (0.1) is concentrated around

the LEV and KHVs, and with addition of the low normalised Q level (0.05) the tip
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Figure 6.50: 3−view of flow around each planform shape at mid-stroke; isosurfaces are of constant Q normalised with

respect to the maximum
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vortex for each wing planform becomes clear. A conical region of vortical flow

extending outboard from the LEV is also made visible on all wing planforms by

the lower two normalised Q isosurfaces.

6.6.3 LEV Breakdown

In all cases, the LEV starts off with a smaller diameter and with a higher Q value

at the root. Progressing towards the tip it stays somewhat the same size as indi-

cated by the highest level Q isosurface, which then spontaneously ends around

mid-span. Recall from § 6.1.4 that high Q level isosurfaces were observed to con-

sistently disappear shortly before the vortex breakdown location, thus, a sudden

drop in Q value is an indication of LEV breakdown. Therefore, LEV breakdown

is present for all planforms, which according to previous observations in past

sections, must occur shortly after the sudden drop in Q. The lower normalised

Q isosurfaces beyond approximately mid-span, suggest an expanding vortical

region, or in other words, an increase in vortex diameter, which is consistent with

the occurrence of breakdown.

An unexpected consequence of averaging multiple images obtained at a given

measurement location is that the core of the primary LEV becomes visible. This is

because the seeding particles (smoke) are slightly more dense than the fluid (air).

In a vortical flow this means that in comparison to a fluid element, the smoke

particles will have a larger centrifugal force (pulling the particle away from the

centre of rotation) compared to the radial pressure gradient (pulling the particle

towards the centre of rotation). The result is that the seeding density in the core

of the LEV is less than elsewhere in the fluid. In a single exposure this lower level

of seeding density in such a region is invisible, however, when multiple images

for the same measurement location are averaged it becomes quite clear.

Figure 6.51 shows images averaged in the manner mentioned previously.

These images were generated from averaging 15 samples of the first exposure

at each of four spanwise locations (30.5%, 42.7%, 54.9%, 67.1%) straddling the

region where the Q level suddenly drops in the LEV for each wing planform.

For comparison, the same spanwise locations are also labeled on the isosurfaces

of normalised Q = 0.2 coloured with x-wise vorticity. It can be seen for the

rectangle, four-ellipse and ellipse planforms that more inboard, the LEV is quite
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Figure 6.51: Isosurfaces of normalised Q = 0.2 coloured with x−wise vorticity for each planform at mid-stroke (top);

average of multiple image samples at various spanwise locations revealing a dark spot, which is the core of the LEV
(bottom)
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concentrated and grows only slightly from 30.5% to 42.7% span. The reverse-

ellipse differs from this, where at 30.5% span the LEV is barely visible, however

at 42.7% span it grows to a size comparable to that seen at the same spanwise

location for the other planforms. At 54.9% span and beyond to 67.1% span, the

core structures for all planforms are similar and appear to suddenly expand and

become less distinct. This is in agreement with the conical vortex structures

observed in the moderate and low normalised Q isosurfaces in Figure 6.50.

6.6.4 Leading-Edge Sweep E�ects

The observations in Figure 6.51 suggest that a forward-swept leading edge sup-

presses the formation of the LEV. Given that the normalised Q = 0.2 isosurface

for this planform does not appear close to the root and the LEV’s small structure

seen in the averaged image at 30.5% span, it seems as though the LEV does not

form until close to 30.5% span. In contrast, the LEV is quite visible inboard of

30.5% span for the other planform shapes. The forward-sweep on the leading

edge of the reverse-ellipse planform varies in this case from root to tip. Towards

the root, where the forward-sweep is greatest, the LEV is more affected and is even

absent. The leading edge for this planform approaches a straight leading edge

geometry towards the tip, and it appears as a consequence of this that the vortex

structures towards the tip more resemble those seen on planforms with straight

leading edges (rectangle and four-ellipse), where highest Q isosurface for the LEV

disappears around the same location, implying a similar point of breakdown.

However, it appears as though the breakdown location on the reverse-ellipse is

slightly further outboard than the rest, as the high Q isosurface extends slightly

further. This suggests that a forward-swept leading edge also shifts the LEV

breakdown location outboard.

An aft-swept leading edge (ellipse planform) appears to have no noticeable

effect on the vortex structures when compared to the straight leading edge plan-

forms. The vortex cores are of similar size across 30.5%-42.7% span as depicted

in the averaged images in Figure 6.51, and the point when the high Q isosurface

disappears is the same, implying a similar breakdown location.
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6.6.5 Overall Planform E�ect

It is apparent that, overall, the flow structures on all four planform shapes are very

similar, despite the drastic differences in geometry. This implies that planform

shape generally has little effect on the flow structure over the wing. This view

has been supported elsewhere. Experiments of Lu et al. (2006) who looked at the

Reynolds number range 160−3200, postulated that the effect of geometry was only

slight. CFD studies of Wilkins (2008) who tested the same ellipse, rectangle, and

reverse-ellipse planforms (but with a smaller aspect ratio) reported little impact

on the flow phenomenology for a constant aspect ratio. From the present results

these conclusions have now been extended to FMAV scale Reynolds numbers.

It is worth noting that although planform shape has little effect on the general

flow structures, it has been seen computationally and analytically that it signifi-

cantly impacts aerodynamic forces. Wilkins (2008), who as previously mentioned

computationally studied similar wing geometries, found lift coefficients between

these planform shapes to be quite different. Here, the reverse-ellipse performed

the best, followed by the rectangle and then the ellipse planform which performed

the worst. Similarly, results from Ansari et al. (2008a), who analytically studied

wing geometry effects (on the same wing geometries presented here), indicate that

the reverse and four-ellipse planform shapes are best and will produce compara-

ble values of lift. This is followed by the rectangle and ellipse planform shapes

which would perform the worst in terms of lift production. It should be noted,

however, that Ansari’s model was based on a blade element approach using ra-

dial chords. Due to its only quasi-3D nature, it did not capture the tip vortex,

spanwise flow, or vortex breakdown, and did not reveal a stable LEV.
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Chapter 7

Conclusions & Recommendations

This chapter summarises the findings and achievements of the thesis. Based

upon key results, recommendations for future FMAV design are then given. This

is followed by a discussion of potential future work.

Flapping Mechanism Design & Development

A novel flapping mechanism was conceived and created which permits sep-

arate control of a flapping wing’s sweeping, plunging and pitching motions.

This separate control enables flapping kinematics to be altered so that a wide

range of insect-like kinematics can be achieved. These capabilities of sepa-

rate stroke, plunge and pitch control, and the ability to alter kinematics, are

features which have rarely been seen in devices of this kind developed by

previous research groups. Kinematic analysis was performed on the mech-

anism so that desired output kinematics to the wing could be related to the

input kinematics of the input links of the mechanism. A dynamic model of

the mechanism was created, which enabled the design of the mechanism’s

links to be chosen such that required input torques and accelerations of

the input links to produce a desired set of kinematics would be minimised;

thus, enabling high flapping frequencies and complicated kinematics to be

achieved. A final detailed design of the mechanism was converged upon by

performing a stress analysis with loads obtained from the dynamic model,

which resulted from a worst-case-scenario set of flapping kinematics and

aerodynamic loads.

Flapping-wing Apparatus Design & Performance

The final flapping mechanism design formed the heart of the greater exper-

imental flapping-wing apparatus, the ‘flapperatus’. This contained all of

the necessary hardware to drive the flapping mechanism, including servo

motors and cable drives. In addition, the flapperatus interfaced with aero-

dynamic force, flowfield, and wing position measurement devices, to enable

such measurements. When fitted with a wing, the performance of the flap-

peratus was proved to be very good. The flapping mechanism successfully
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achieved variable insect-like kinematics smoothly, even up to the maximum

20Hz flapping frequency. Even at this high frequency, the repeatability of

the mechanism’s output kinematics was very good. Although the flapping

wing was slightly flexible, it faithfully followed the mechanism output kine-

matics, and the wing position was very repeatable. This was a result of the

excellent repeatability of the flapping mechanism position. The flapperatus

is the first of its kind in its abilities to mimic insect-like flapping-wing kine-

matics smoothly with a high degree of repeatability up to a 20Hz flapping

frequency in air (thus, true FMAV conditions), with separate stroke, plunge

and pitch control and variable kinematics.

Flow Evolution Throughout Half-Stroke at FMAV Scale

The first experimental investigation utilising the flapperatus focused on

the flow formation throughout a half-stroke at an FMAV scale Reynolds

number of approximately 15000. It was revealed that the flow evolution

is characterised by the formation of a starting vortex soon after the start of

the half-stroke, with the beginnings of a LEV forming outboard and a TPV.

In addition, at the start of the half-stroke the LEV, TPV and major RTV

from the previous stroke still persisted underneath the wing. As the stroke

progressed these structures were left behind in the wake and the current LEV

grew in size with an increasing level of axial vorticity and velocity towards

the mid-stroke position where the LEV broke down. Beyond mid-stroke the

LEV became more distorted and axial velocity levels dropped in the core

as the breakdown location moved inboard. The axial direction of the TPV

reversed as the wing decelerated because the wing began to view the TPV

as it would be seen by an observer fixed to the ground. Towards the end

of the stroke when pitch reversal occurred, pitching vortices were shed off

the trailing edge and the TPV began descending with the downwash. In

addition, a series of RTVs formed due to KHI in the shear layer between a

tip-ward flow above the wing and a root-ward flow below the wing.

LEV Stability at FMAV Scale

Throughout the entire half-stroke even up until the end of stroke at the

FMAV scale Reynolds number tested (Re ≈ 15000), the LEV was stable and

was not observed to shed into the wake. A possible explanation for why
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this study revealed a stable LEV at this scale and others have not was that,

after Wilkins (2008), the LEV becomes unstable beyond a certain aspect ratio.

Examination of past studies showed more reports of a stable LEV at aspect

ratios of around 6 or below (where AR = 6 for the present study), and more

reports of an unstable LEV towards AR = 8, suggesting a critical aspect ratio

somewhere between 6 and 8.

Secondary LEV

The presence of a secondary LEV between the (primary) LEV and the leading

edge, as has been observed on delta wings, was revealed. This rotated in

the opposite sense to the LEV, and grew in size towards the tip. KHI in

the vortex sheet emanating from the leading edge was present immediately

above the secondary LEV. This was due to the level of shear between the

flow originating from the free-stream traveling towards the trailing edge

and flow traveling towards the leading edge induced by the secondary

LEV. In plots of Q criterion isosurfaces, the resulting KHVs in the shear

layer resemble an addition LEV which is present along the leading edge and

has the same sense of rotation as the (primary) LEV.

Vortex Breakdown in LEV

Details of LEV breakdown revealed that it exhibited the spiral type of break-

down. Upon examining the mid-stroke position (for Re ≈ 15000, stroke

amplitude Φ ≈ 120◦), it was seen that the helix angle of the LEV surpassed

the critical value of 50◦ around 80% span, which was followed by a steeper

increase in vortex size and a drop in axial velocity levels to negative values.

This breakdown appeared to be caused by an axial ’blowing’ effect from the

TPV, which induces a flow in the opposite direction to the vortex axial flow.

After breakdown the LEV soon merged with the TPV which reduced the

vortex diameter and added energy resulting in an axial vorticity increase

and a suppression of vortex breakdown as the helix angle dropped below

critical. Beyond mid-stroke, the intensification of breakdown was blamed

on an increasingly adverse pressure gradient, which caused the breakdown

location to move steadily inboard ultimately to approximately 20% span at

the end of stroke.
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LEV Circulation & LEV Lift Contribution

Examining LEV circulation showed that circulation increases towards the tip

along with the vortex diameter. Throughout a half-stroke the level of LEV

circulation increases to a peak at mid-stroke and then declines thereafter. It

was discussed that the LEV can instantaneously produce 130% of the mean

lift value, which occurs at mid-stroke and is a much higher value than has

been previously reported. After averaging the LEV lift values over a half-

stroke and examining previously-reported values of LEV lift, it is apparent

that the LEV is responsible for about half of the mean lift produced.

Effect of Rotation Phase on Mean Lift & Flow Structures

If the timing of pitch reversal with stroke reversal (rotation phase) is varied,

the pattern of flow evolution does not change greatly. However, a noticeable

effect was that the phase relationship between the pattern of flow evolution

and stroke kinematics was altered with rotation phase. For a more delayed

pitch reversal (more negative rotation phase), a starting vortex is shed later

in the stroke, and the TPV begins descending into the downwash later.

Starting from a negative value, as rotation phase is increased, mean lift rises

and peaks around a rotation phase of about +5.5%, after which it declines.

More negative rotation phases suffer from low lift due to a more pronounced

Wagner effect, as a starting vortex is shed further into the half-stroke. They

also suffer from a negative Kramer effect as the wing starts with a negative

angle of attack and rapidly pitches down at the start of a half-stroke. More

positive rotation phases benefit from a more enhanced Kramer effect when

the wing pitches up earlier when the wing has a higher velocity. However,

they eventually suffer from negative lift as the wing translates a further

distance with a negative effective angle of attack towards the end of stroke

as rotation phase increases beyond the optimal value.

Reynolds Number & Stroke Amplitude Effects on Mean Lift & Flow Structures

Increasing mean Reynolds number by increasing flapping frequency and

holding stroke amplitude constant led to an increase in lift proportional

to v1.5, whereas increasing mean Reynolds number via stroke amplitude in-

crease and constant flapping frequency led to a linear relation between mean

lift and wing speed. Keeping Reynolds number constant and increasing the
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stroke amplitude had no effect on the mean lift produced. In the range tested

(Re ≈ 4000 − 18000) a mean Reynolds number increase with constant stroke

amplitude had little effect on the flow at mid-stroke and LEV breakdown

occurred between 60− 70% span. Increasing stroke amplitude either with a

fixed mean Reynolds number or fixed flapping frequency produced a simi-

lar flowfield at mid-stroke. In general, for larger stroke amplitudes the LEV

is larger, and LEV breakdown is more developed. It is postulated that the

greater extent of LEV breakdown at larger stroke amplitudes, and the closer

proximity of the wing underside to the TPV and RTV from the previous

half-stroke for small stroke amplitudes, led to decreased lift at a high and

low stroke amplitude respectively, resulting in the observed linear trend.

The axial flow level in the core of the LEV was shown to be independent of

stroke amplitude, and dependent on mean Reynolds number, where peak

axial velocity varied with R̄e1.3. It was shown that in the axial direction,

centrifugal forces dominate over viscous, Euler, and Coriolis forces, which

possibly explains the non-linear trend between vortex axial velocity and

wing speed (R̄e), as the relation between centrifugal force and wing speed

(which is a function of wing angular velocity) is also non-linear.

Effect of Angle of Attack on Mean Lift & Flow Structures

The optimal angle of attack at mid-stroke occurs around 45◦ and lift declines

on either side of this value. As angle of attack increases, the LEV becomes

larger and vortex axial velocity levels drop, eventually to the point where

the axial direction of the TPV reverses. LEV breakdown is also a function

of angle of attack, as the breakdown location is more inboard for higher

angle of attack values. This was blamed on an increasingly adverse axial

pressure gradient. Similarities in the flowfield seen at mid-stroke for high

angle of attack, and the end-of-stroke position in other measurements when

the angle of attack is similarly high, suggests that effects such as a shift in

breakdown location inboard, axial reversal of the TPV, and LEV and TPV

diameter increase are largely the result of instantaneous angle of attack.

Effect of Figure-of-Eight Kinematics on Mean Lift & Flow Structures

Transitioning to figure-of-eight kinematics, and increasing plunge ampli-

tude to approximately 9◦ results in a slight increase in lift. This could be
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explained by an increase in wing speed, which must increase with plunge

amplitude as flapping frequency is held constant. Beyond a plunge ampli-

tude of 9◦, lift steadily declines, probably due to an increasing effective angle

of attack. The effects on the flowfield at mid-stroke are only slight, as the

LEV exhibits a similar structure as plunge amplitude increases. However,

vortex diameter increases slightly, the LEV breakdown location gradually

moves inboard, and the portion of the LEV axis towards the tip lifts further

away from the wing surface.

Effect of Wing Planform Shape on Flow Structures

For a constant aspect ratio, and mean chord length, varying wing planform

shape was seen to have very little effect on the flow structures produced.

Even with drastic differences in wing geometry, a LEV of similar size and

strength forms, KHVs are present along the leading edge, and LEV break-

down occurs in a similar location. However, one noticeable effect was that

a forward-swept leading edge suppresses the formation of the LEV inboard

and possibly shifts the LEV breakdown location towards the tip.

Main Findings of Thesis

There are two main findings that the reader should take from this thesis.

The first is that despite the fact that it breaks down, the LEV on an insect-like

wing in actual FMAV conditions remains attached to the wing and continues

to augment lift as Reynolds number is increased. This confirms that FMAVs

can exploit the lifting mechanism of the LEV, which supplies about half

of the generated lift. The second finding is the identification of the mean

lift versus kinematics trends themselves at FMAV scale which, as will be

discussed next, can inform FMAV design.

7.1 Recommendations for FMAV Design

The identified trends showed that using figure-of-eight kinematics instead of

flat wingtip kinematics gave very little benefit, as it only increased mean lift

slightly for a small plunge amplitude (Θ ≈ 9◦). Implementing plunge control

into a flapping mechanism, greatly complicates its design and control. This small
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benefit from figure-of-eight kinematics does not justify the added complications in

mechanism design required to achieve these kinematics. A flapping mechanism

with only stroke and pitch control, would achieve a slightly lower peak lift (0.015N

less), however the design would be greatly simplified as it would be less complex,

with fewer moving parts, and simpler control, which leads to lighter weight and

better reliability. However, it should be noted that to transition from hover to

forward flight and back, the flapping mechanism must be capable of tilting the

stroke plane.

Figure 7.1: Mean wingtip speed and Reynolds number versus mean lift coefficient showing power and linear fit

The mid-stroke angle of attack (αmid) and the end-of-stroke pitch phase advance

(τ) should be set to the optimal values of approximately 45◦ and +5.5% respectively

to obtain peak lift. As noted previously, figure-of-eight kinematics do not yield a

sufficient benefit, thus plunge amplitude Θ = 0◦. The selection of the remaining

parameters of f and Φ is somewhat arbitrary, as increasing either of these results

in an increase in lift, thus there is no ‘optimal’ value. The choice of f and Φ will

depend upon the application. For example, some applications may constrain the

maximum value of f to less than 20Hz so that the vehicle is as silent as possible.

Meanwhile, others may not place a restriction on f , but restrict Φ due to size
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constraints where, for a larger Φ, the wings sweep over a larger area, thus the

‘effective’ size of the vehicle is larger.

For a given situation, the choice of f and Φ can be aided with an expression

for mean lift as a function of f and Φ. Such an expression will be derived now.

It was seen that changing stroke amplitude while holding the mean wingtip

speed (Reynolds number) constant, did not affect lift production (see Figure 6.32).

Increasing mean wingtip speed either via an increase in f with constant Φ or

increase in Φ with constant f , resulted in increased lift. Thus, lift is a function

of mean wingtip speed. Plotting the mean lift coefficient versus mean wingtip

speed from these measurements, as seen in Figure 7.1, reveals that:

C̄L = 4.52v̄−0.5
tip (7.1)

This was obtained from the power fit of the data points which, in comparison to

the linear fit shown, yields a smaller standard error and better fits the data points

at higher v̄tip values which have smaller error. Now, substituting Equation 7.1 into

the mean lift equation:

L̄ = 1/2ρC̄Lv̄2
tipS (7.2)

leads to:

L̄ = 2.26ρv̄1.5
tip S (7.3)

As in § 6.3.2, we see that mean lift scales with v1.5. Now we want to find v̄tip as

a function of f and Φ. By definition:

v̄tip = lΩ̄wng (7.4)

Where l is the distance from the centre of rotation to the wingtip, and Ωwng

is the angular velocity of the wing. For flat wingtip kinematics (i.e. no plunge)
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Ωwng = φ̇ = Φπ f sin(2π f t − 2πτ/100) (from Appendix A). In general, for a sine

wave with amplitude ‘A’, the mean of the absolute value of the sine wave for one

cycle is ∼ 0.637A. Noting this, and the fact that 0.637π ≈ 2, gives:

Ω̄wng = 2Φ f (7.5)

Substituting Equation 7.5 into Equation 7.4, and then inserting into Equa-

tion 7.3 gives:

L̄ = 6.39ρ(Φ f l)1.5S (7.6)

The data used to obtain this expression are for a wing of aspect ratio 6, which

must be reflected in this expression. Noting that AR = 2R2/S, thus S = R2/3 (for

AR = 6), l = b + R, and multiplying by two, so that we have an expression for

mean lift from two wings, we obtain the final expression:

L̄ = 4.26ρR2[Φ f (b + R)]1.5 (7.7)

Thus, with flat wingtip kinematics, a wing of aspect ratio 6, and αmid and

τ set to 45◦ and +5.5% respectively, Equation 7.7 may be used to select f and

Φ for a given wing length R and wing offset b. For example, if an application

constrains R to 100mm, the wing offset is 10mm, the FMAV mass is 75g and the

flapping frequency must be at most 20Hz, then the required stroke amplitude to

achieve the required lift at standard sea-level conditions is approximately 150◦.

It must be noted that this relation is not necessarily true for other wing planform

shapes aside from the ’four-ellipse’ used, and it only applies to a wing of aspect

ratio 6. Therefore, this expression must be used for obtaining rough estimates of

unknown quantities given known parameters and constraints.

7.2 Recommendations for Future Work

Although this thesis has answered a number of questions on the subject of insect-

like flight in relation to FMAVs, many questions still remain. At present, this field
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is quite young and the number of aspects related to insect-like flight that require

further research and experimentation, is great. This section discusses a few areas

of future research which can extend from the present work.

Synchronised Force, Torque and Wing Position Measurements

One of the capabilities envisaged for the flapperatus was the ability to simul-

taneously measure all three instantaneous force and torque components on the

flapping-wing in addition to instantaneous wing position. Only lift measurements

were implemented for the present work, with which position measurements were

not synchronized. It was for this reason that instantaneous lift plots could not

be produced as discussed in § 5.1. With synchronised force, torque and wing

position measurement, pure inertial forces and torques can be measured using

a ‘dummy’ wing (e.g. a simple rod) with negligible aerodynamic force that has

the same mass, centre of gravity location and moment of inertia as the real wing.

These inertial readings can then be appropriately subtracted from those with the

real wing to obtain the instantaneous aerodynamic forces and moments, because

the phase relationship between the measurements is known. Since wing position

was not simultaneously measured in the present work, this subtraction could not

be performed. Thus, inertial forces could only be eliminated by averaging the

readings (inertial forces are symmetric, and thus average to zero) to obtain a mean

lift value.

With all three instantaneous force and torque components on the flapping-

wing, a lot of useful information can be obtained. For instance, force and torque

values can be used to determine the centre of pressure for a given wing design.

This would be useful in the structural design of wings, as it would be known

where all loads on the wing are applied. In addition, with torque measurements

the power required to drive the wing can be determined. In conjunction with

the lift produced, this would provide a measure of efficiency. Furthermore, with

instantaneous values of all force and torque components, further insight into the

link between the instantaneous flowfield and the forces can be obtained.
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Manoeuvres

With instantaneous force and torque measurements as discussed previously, kine-

matics which are suitable for performing manoeuvres can be explored. Forces and

torques acting on the wing can be transformed to FMAV body forces if the wing

position is simultaneously known. With a pair of wings, and by testing a range

of different flapping kinematics, particulary asymmetric ones, kinematics that are

suitable for achieving roll, pitch and yaw control of the FMAV body can be de-

termined. Furthermore, with force and torque values known, one can determine

which methods of achieving this control are most efficient.

Wing Flexibility

Another area of interest is wing flexibility. The present work used wings that

were made as rigid as they could be so that experiments and analysis could be

simplified by excluding effects due to flexibility as much as possible. A logical

next step is to investigate wing flexibility, as in nature insects possess very flexible

wings. Experiments on this aspect are few, but those that have been performed

have shown clear benefits of flexibility. The experiments of Heathcote et al.

(2004); Heathcote (2007), showed that flexibility can improve lift and efficiency.

In addition, in the study of Young et al. (2009), which employed wing flexibility

measurements from live insects combined with CFD, it was found that flexible

wings give better power efficiency. Further research on the effects of flexibility

on aerodynamic forces and flow structures would be useful. Ultimately it should

be known how flexible a wing should be, and how wing stiffness should be

distributed (e.g. stiff towards base, but flexible towards wingtip) to achieve

optimal performance.

Wing Aspect Ratio

It was discussed in § 6.1.5 that differing reports of LEV stability could be the result

of an aspect ratio effect, as at aspect ratios of 6 or below, the LEV is often reported

to be stable, whereas up towards a value of 8 it appears to be unstable and sheds.

As noted, such a dependency of LEV stability on aspect ratio was found in CFD

studies by Wilkins (2008). It would be useful for future work to confirm this
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7.2. Recommendations for Future Work

effect by gradually varying aspect ratio and measuring the flowfield to determine

if there is a ‘critical’ aspect ratio beyond which the LEV becomes unstable and

sheds. In addition, it would be of interest to determine how the aerodynamic

performance of a wing with a LEV that is stable, differs from one with an LEV

that is unstable.
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Appendix A

Flapping Kinematics Functions

Figure A.1: Definitions of flapping kinematic parameters; time is non-dimensionalised by the flapping period T

This appendix presents expressions for flapping kinematics (φ, φ̇, φ̈, θ, θ̇,

θ̈, α, α̇, α̈) as functions of kinematic parameters f , Φ, Θ, αmid, and τ. for a

description of how these parameters are defined, the reader is referred to § 2.1.3

page 19. Figure A.1 illustrates how each parameter is defined, and complements

the following definitions.
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The stroke and plunge angles and their first time derivatives (stroke and

plunge velocities) and second time derivatives (stroke and plunge accelerations)

are defined as follows:

φ = −
Φ

2
cos

(
2π f t −

2πτ
100

)
(A.1)

φ̇ = Φπ f sin
(
2π f t −

2πτ
100

)
(A.2)

φ̈ = 2Φπ2 f 2cos
(
2π f t −

2πτ
100

)
(A.3)

θ =
Θ

2
cos

(
4π f t −

4πτ
100
− ψ

)
(A.4)

θ̇ = −2Θπ f sin
(
4π f t −

4πτ
100
− ψ

)
(A.5)

θ̈ = −8Θπ2 f 2cos
(
4π f t −

4πτ
100
− ψ

)
(A.6)

Here, ψ is the phase angle between the plunging and stroking kinematics

where:

ψ = 0 for concave arc (‘u’ shape)

ψ = π/2 for figure-of-eight

ψ = π for convex arc (inverted ‘u’ shape)

The pitching kinematics are described by a number of functions to separately

define the segments where there pitch angle is varying, and remains constant. Let

ς represent the fraction of the flapping period T (where T = 1/ f ) where the pitch

angle is constant. Therefore the pitch angle is fixed, and varies for ςT and T(1− ς)
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of the flapping period respectively. In this thesis, ς is always approximately 0.5.

The pitch angle is defined as follows:

α =
(π

2
− αmid

)
sin

( 2πt
T(1 − ς)

)
+
π
2
, 0 ≤ t ≤

T(1 − ς)
4

(A.7)

α = π − αmid,
T(1 − ς)

4
< t <

T(1 + ς)
4

(A.8)

α =
(π

2
− αmid

)
sin

(π(2t − ςT)
T(1 − ς)

)
+
π
2
,

T(1 + ς)
4

≤ t ≤
T(3 − ς)

4
(A.9)

α = αmid,
T(3 − ς)

4
< t <

T(3 + ς)
4

(A.10)

α =
(π

2
− αmid

)
sin

(π(2t − ςT − T)
T(1 − ς)

)
+
π
2
,

T(3 + ς)
4

≤ t ≤ T (A.11)

the first time derivatives (pitch velocities) are:

α̇ =
(π

2
− αmid

)( 2π
T(1 − ς)

)
cos

( 2πt
T(1 − ς)

)
, 0 ≤ t ≤

T(1 − ς)
4

(A.12)

α̇ = 0,
T(1 − ς)

4
< t <

T(1 + ς)
4

(A.13)

α̇ =
(π

2
− αmid

)( 2π
T(1 − ς)

)
cos

(π(2t − ςT)
T(1 − ς)

)
,

T(1 + ς)
4

≤ t ≤
T(3 − ς)

4
(A.14)

α̇ = 0,
T(3 − ς)

4
< t <

T(3 + ς)
4

(A.15)
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α̇ =
(π

2
− αmid

)( 2π
T(1 − ς)

)
cos

(π(2t − ςT − T)
T(1 − ς)

)
,

T(3 + ς)
4

≤ t ≤ T (A.16)

the second time derivatives (pitch accelerations) are:

α̈ = −
(π

2
− αmid

)( 2π
T(1 − ς)

)2
sin

( 2πt
T(1 − ς)

)
, 0 ≤ t ≤

T(1 − ς)
4

(A.17)

α̈ = 0,
T(1 − ς)

4
< t <

T(1 + ς)
4

(A.18)

α̈ = −
(π

2
−αmid

)( 2π
T(1 − ς)

)2
sin

(π(2t − ςT)
T(1 − ς)

)
,

T(1 + ς)
4

≤ t ≤
T(3 − ς)

4
(A.19)

α̈ = 0,
T(3 − ς)

4
< t <

T(3 + ς)
4

(A.20)

α̈ = −
(π

2
− αmid

)( 2π
T(1 − ς)

)2
sin

(π(2t − ςT − T)
T(1 − ς)

)
,

T(3 + ς)
4

≤ t ≤ T (A.21)
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Appendix B

Derivation of Flapping Mechanism

Kinematics

In this appendix, expressions describing the the mechanism kinematics as func-

tions of flapping kinematics will be derived, followed by a derivation of flapping

kinematics as functions of the mechanism kinematics. A summary is given at the

end, which presents tables listing the appropriate equations to use to calculate a

desired variable.

Figure B.1: Position of Links L1-L7 for arbitrary location of point A for defining flapping kinematics a function of

mechanism kinematics, and mechanism kinematics as a function of flapping kinematics; positions of links L1-L4 (left);

position of Links L5-L7 (right)

B.1 Mechanism Kinematics as Functions of

Flapping Kinematics

First, expressions describing the flapping mechanism kinematics will be derived.

The positions (φL1, φL2, φL5), velocities (φ̇L1, φ̇L2, φ̇L5), and accelerations (φ̈L1, φ̈L2,
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φ̈L5) of input the links (L1, L2, L5), all as functions of the flapping kinematics (φ,

φ̇, φ̈, θ, θ̇, θ̈, α, α̇, α̈), and the link ‘lengths’ (angles subtended by each link on the

surface of a sphere) will be derived in that order.

B.1.1 Link Positions

First, expressions for the positions of links L1 and L2, denoted by φL1 and φL2

respectively, will be derived. Applying the spherical law of cosines to triangle

ABZ illustrated in Figure B.1:

cosL3 = cosL1 cos(
π
2
− θ) + sinL1 sin(

π
2
− θ) cos(∆φL1) (B.1)

∆φL1 = cos−1(
cosL3 − cosL1 sinθ

sinL1 cosθ
) (B.2)

since φL1 = ∆φL1 + φ:

φL1 = φ + cos−1(
cosL3 − cosL1 sinθ

sinL1 cosθ
) (B.3)

Applying the same procedure to triangle ACZ gives:

φL2 = φ + cos−1(
cosL4 − cosL2 sinθ

sinL2 cosθ
) (B.4)

Now, the expression for the position of link L5, denoted byφL5 will be derived.

First, an expression for the angle that the segment of the great circle joining points

D and Z subtends, which will be referred to as ’DZ’, must be found. Applying

the spherical law of cosines to triangle ADZ illustrated in Figure B.1:

cosDZ = cosL7 cos(
π
2
− θ) + sinL7 sin(

π
2
− θ) cos(

π
2
− α) (B.5)

DZ = cos−1(cosL7 sinθ + sinL7 cosθ sinα) (B.6)
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Again, applying the spherical law of cosines to triangle ADZ, an expression

for β2 may be found:

cosL7 = cosDZ cos(
π
2
− θ) + sinDZ sin(

π
2
− θ) cosβ2 (B.7)

β2 = cos−1(
cosL7 − cosDZ sinθ

sinDZ cosθ
) (B.8)

Applying the same procedure to triangle EDZ gives and expression for β1:

β1 = cos−1(
cosL6 − cosL5 sinDZ

sinL5 sinDZ
) (B.9)

Finally, substituting Equation B.6, Equation B.8 & Equation B.9 into the fol-

lowing expression will give the final expression for the position of link L5:

φL5 = φ − β1 +
α − π

2

|α − π
2 |
β2 (B.10)

By observing Figure B.1, it can be seen that when the pitch angle α (measured

clockwise from the great circle perpendicular to the local line of longitude) is

greater than 90◦ then φL5 = φ− β1 + β2. On the other hand, when α is less than 90◦

then φL5 = φ − β1 − β2. Therefore, the expression in the brackets in front of β2 in

Equation B.10 is required to make β2 the appropriate sign.

A more convenient way of defining the angular positions of input links L1, L2,

and L5 (Equation B.3,B.4,B.10) is to define them relative to their positions when

the wing is at the ‘neutral’ position, which is when φ = 0◦, θ = 0◦, α = 90◦. In this

manner, Equation B.3,B.4 & B.10 become:

φL1 = φ + cos−1(
cosL3 − cosL1 sinθ

sinL1 cosθ
) − cos−1(

cosL3
sinL1

) (B.11)

φL2 = φ + cos−1(
cosL4 − cosL2 sinθ

sinL2 cosθ
) − cos−1(

cosL4
sinL2

) (B.12)
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φL5 = φ − β1 +
α − π

2

|α − π
2 |
β2 + cos−1(

cosL6 − cosL5 cosL7
sinL5 cosL7

) (B.13)

This way, φL1, φL2 & φL5 become zero when φ = 0◦, θ = 0◦, and α = 90◦. Thus

Equation B.11, B.12 and B.13 combined with Equation B.6, B.8 and B.9 provide the

azimuthal positions of input links L1, L2 and L5, as a function of φ, θ, α and the

link ‘lengths’ (angle subtended on the surface of a sphere) denoted by the same

names of the links themselves.

B.1.2 Link Velocities

Taking the first time derivative of Equation B.11 - B.13, we obtain the velocities

φ̇L1, φ̇L2, φ̇L5 of the input links:

φ̇L1 = φ̇ − θ̇

 sinθcosL3 − cosL1

cosθ
√

(sinL1cosθ)2 − (cosL3 − cosL1sinθ)2

 (B.14)

φ̇L2 = φ̇ − θ̇

 sinθcosL4 − cosL2

cosθ
√

(sinL2cosθ)2 − (cosL4 − cosL2sinθ)2

 (B.15)

φ̇L5 = φ̇ − β̇1 +
α − π

2

|α − π
2 |
β̇2 (B.16)

where:

β̇1 =
(ĊS − ṠC)cosL5sinL5 + ṠsinL5cosL6

SsinL5
√

(SsinL5)2 − (cosL6 − CcosL5)2
(B.17)

β̇2 =
(ĊS − ṠC)cosθsinθ + (Ṡcosθ − θ̇Ssinθ)cosL7 + θ̇CS

Scosθ
√

(Scosθ)2 − (cosL7 − Csinθ)2
(B.18)

C = cosDZ = cosL7 sinθ + sinL7 cosθ sinα (B.19)
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S = sinDZ =
√

1 − C2 (B.20)

Ċ = θ̇cosL7cosθ − θ̇sinL7sinθsinα + α̇sinL7cosθcosα (B.21)

Ṡ =
−CĊ
√

1 − C2
(B.22)

B.1.3 Link Accelerations

Taking the second time derivative of Equation B.11 - B.13, the accelerations φ̈L1,

φ̈L2, φ̈L5 of the input links are obtained:

φ̈L1 = φ̈ − 1√
(sinL1cosθ)2−(cosL3−cosL1sinθ)2

(
θ̈
(

sinθcosL3−cosL1
cosθ

)
+

+θ̇2
(
cosL3 − sinθcos2L3cosL1−sin2θcosL3−2cos2L1cosL3+2cosL1sinθ

(sinL1cosθ)2−(cosL3−cosL1sinθ)2 −
sinθcosL1−sin2θcosL3

cos2θ

)) (B.23)

φ̈L2 = φ̈ − 1√
(sinL2cosθ)2−(cosL4−cosL2sinθ)2

(
θ̈
(

sinθcosL4−cosL2
cosθ

)
+

+θ̇2
(
cosL4 − sinθcos2L4cosL2−sin2θcosL4−2cos2L2cosL4+2cosL2sinθ

(sinL2cosθ)2−(cosL4−cosL2sinθ)2 −
sinθcosL2−sin2θcosL4

cos2θ

)) (B.24)

φ̈L5 = φ̈ − β̈1 +
α − π

2

|α − π
2 |
β̈2 (B.25)

where:

β̈1 =
Ṅ1D1 − Ḋ1N1

D12 (B.26)

β̈2 =
Ṅ2D2 − Ḋ2N2

D22 (B.27)
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C̈ = θ̈cosL7cosθ − θ̇2cosL7sinθ − θ̈sinL7sinθsinα+

−(θ̇2 + α̇2)sinL7cosθsinα − 2θ̇α̇sinL7sinθcosα + α̈sinL7cosθcosα
(B.28)

S̈ = −
Ċ2 + CC̈ − C3C̈

(1 − C2)3/2 (B.29)

N1 = (ĊS − ṠC)cosL5sinL5 + ṠsinL5cosL6 (B.30)

Ṅ1 = (C̈S − CS̈)cosL5sinL5 + S̈sinL5cosL6 (B.31)

D1 = SsinL5
√

(SsinL5)2 − (cosL6 − CcosL5)2 (B.32)

Ḋ1 =

(
2ṠS2sin3L5 − ṠsinL5cos2L6 + (2ṠC + ĊS)cosL5sinL5cosL6+

−(ṠC2 + ĊSC)cos2L5sinL5
)
/
√

(SsinL5)2 − (cosL6 − CcosL5)2

(B.33)

N2 = (ĊS − ṠC)cosθsinθ + (Ṡcosθ − θ̇Ssinθ)cosL7 + θ̇CS (B.34)

Ṅ2 = (C̈S − CS̈)sinθcosθ + (CṠ − ĊS)θ̇sin2θ + (ĊS − CṠ)θ̇cos2θ+

+(S̈ − θ̇2S)cosθcosL7 − (2Ṡθ̇ + Sθ̈)sinθcosL7 + θ̈CS + θ̇ĊS + θ̇ṠC
(B.35)

D2 = Scosθ
√

(Scosθ)2 − (cosL7 − Csinθ)2 (B.36)

Ḋ2 =

(
2ṠS2cos3θ − (C2θ̇ + 2S3θ̇)cosθsinθ − (ĊCS + C2Ṡ)cosθsin2θ + (ĊS+

+2CṠ)cosθsinθcosL7 + CSθ̇cos2θcosL7 − Ṡcosθcos2L7 + Sθ̇sinθcos2L7+

−2CSθ̇sin2θcosL7 + C2Sθ̇sin3θ

)
/
√

(Scosθ)2 − (cosL7 − Csinθ)2

(B.37)
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B.2 Flapping Kinematics as Functions of Mech-

anism Kinematics

Now, the flapping kinematics (φ, φ̇, φ̈, θ, θ̇, θ̈, α, α̇, α̈) will be derived as functions

of the positions (φL1, φL2, φL5), velocities (φ̇L1, φ̇L2, φ̇L5), and accelerations (φ̈L1, φ̈L2,

φ̈L5) of input the links (L1, L2, L5), and the link ‘lengths’.

B.2.1 Wing Position

First, expressions for φ, θ, as functions of the link positions φL1 and φL2 will be

derived. Applying the spherical law of cosines to triangle BCZ illustrated in

Figure B.1, and letting ‘BC’ represent the angle subtended by the segment of the

great circle joining points B and C:

cosBC = cosL1 cosL2 + sinL1 sinL2 cos(φL1 − φL2) (B.38)

Now apply the spherical law of cosines to triangle ABC:

cosL4 = cosL3 cosBC + sinL3 sinBC cosβ5 (B.39)

cosβ5 =
cosL4 − cosL3 cosBC

sinL3 sinBC
(B.40)

Now apply the spherical law of cosines to triangle BCH:

cos(π − L2) = cos(π − L1) cosBC + sin(π − L1) sinBC cosβ6 (B.41)

cosβ6 =
cosL1 cosBC − cosL2

sinL1 sinBC
(B.42)
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Substituting Equation B.38 into Equations B.40 & B.42 and noting that sinBC

=
√

1 − cos2BC:

cosβ5 =
cosL4 − cosL3

(
cosL1 cosL2 + sinL1 sinL2 cos(φL1 − φL2)

)
sinL3

√
1 −

(
cosL1 cosL2 + sinL1 sinL2 cos(φL1 − φL2)

)2
(B.43)

cosβ6 =
cosL1

(
cosL1 cosL2 + sinL1 sinL2 cos(φL1 − φL2)

)
− cosL2

sinL1
√

1 −
(
cosL1 cosL2 + sinL1 sinL2 cos(φL1 − φL2)

)2
(B.44)

SinceψL1 +β5 +β6 = π, we can now obtain an expression forψL1 by substituting

in Equations B.43 & B.44:

ψL1 = π − cos−1

(
cosL4−cosL3

(
cosL1 cosL2+sinL1 sinL2 cos(φL1−φL2)

)
sinL3

√
1−
(

cosL1 cosL2+sinL1 sinL2 cos(φL1−φL2)
)2

)
+

−cos−1

(
cosL1

(
cosL1 cosL2+sinL1 sinL2 cos(φL1−φL2)

)
−cosL2

sinL1

√
1−
(

cosL1 cosL2+sinL1 sinL2 cos(φL1−φL2)
)2

) (B.45)

We can finally obtain an expression for θ by applying the spherical law of

cosines to triangle ABZ:

θ =
φL1 − φL2

|φL1 − φL2|
sin−1

(
cosL1 cosL3 + sinL1 sinL3 cosψL1

)
(B.46)

The fraction in front is required to make θ the appropriate sign. Thus, sub-

stituting Equation B.45 into Equation B.46 gives the final expression for θ as a

function of φL1, φL2 and the link ‘lengths’. This expression applies in either case

when φL1, φL2 are defined relative to the φ = 0 longitude line, or when they are

defined relative to their positions when the wing is at the neutral position (when

φ = 0◦, θ = 0◦, α = 90◦).

Now that θ is known, we can find φ as a function of φL1, φL2. Again, applying

the spherical law of cosines to triangle ABZ:
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cosL3 = cosL1 cos(π/2 − θ) + sinL1 sin(π/2 − θ) cos∆φL1 (B.47)

∆φL1 = cos−1

(
cosL3 − cosL1 sinθ

sinL1 cosθ

)
(B.48)

Noting that φ = φL1 − ∆φL1, and substituting in Equation B.48, we can obtain

an expression for φ:

φ = φL1 − cos−1

(
cosL3 − cosL1 sinθ

sinL1 cosθ

)
(B.49)

However, ifφL1 is defined relative to its position when the wing is at the neutral

position, then we must add an extra term:

φ = φL1 − cos−1

(
cosL3 − cosL1 sinθ

sinL1 cosθ

)
+ cos−1(

cosL3
sinL1

) (B.50)

Therefore, Equation B.49 combined with Equations B.45 & B.46 gives φ as a

function of φL1, φL2 and the link ‘lengths’. If φL1, φL2 & φL5 are defined relative

to their positions when the wing is at the neutral position, then Equation B.50 is

used instead of Equation B.49.

Now find an expression for α as a function of φL1, φL2 & φL5. Applying the

spherical law of cosines to triangle AEZ and letting ‘AE’ represent the angle

subtended by the segment of the great circle joining points A and E:

cosAE = cosL5 sinθ + sinL5 cosθ cos(φ − φL5) (B.51)

Again, apply the spherical law of cosines to triangle AEZ:

cosL6 = cosAE cosL7 + sinAE sinL7 cosβ3 (B.52)
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cosβ3 =
cosL6 − cosAE cosL7

sinAE sinL7
(B.53)

Now apply the spherical law of cosines to triangle AEF, noting that the angle

subtended between points A and F is 90◦, and letting ‘EF’ represent the angle

subtended by the segment of the great circle joining points E and F:

cosEF = cosAE cos(π/2) + sinAE sin(π/2) cosβ4 (B.54)

cosβ4 =
cosEF
sinAE

(B.55)

Noting that the angle subtended between points F and G is 90◦, thus EF =

φ − φL5 − π/2 Equation B.55 becomes:

cosβ4 =
sin(φ − φL5)

sinAE
(B.56)

Substituting Equation B.51 into Equations B.53 & B.56 and noting that sinAE

=
√

1 − cos2AE:

β3 = cos−1

(cosL6 −
(
cosL5 sinθ + sinL5 cosθ cos(φ − φL5)

)
cosL7

sinL7
√

1 −
(
cosL5 sinθ + sinL5 cosθ cos(φ − φL5)

)2

)
(B.57)

β4 = cos−1

(
sin(φ − φL5)√

1 −
(
cosL5 sinθ + sinL5 cosθ cos(φ − φL5)

)2

)
(B.58)

Noting that α = β3 + β4 and substituting in Equations B.57 & B.58, we obtain:

α = cos−1

(
cosL6−

(
cosL5 sinθ+sinL5 cosθ cos(φ−φL5)

)
cosL7

sinL7

√
1−
(

cosL5 sinθ+sinL5 cosθ cos(φ−φL5)
)2

)
+

+ θ
|θ|

φ−φL5−cos−1( cosL6−cosL5 cosL7
sinL5 cosL7 )

|φ−φL5−cos−1( cosL6−cosL5 cosL7
sinL5 cosL7 )|

cos−1

(
sin(φ−φL5)√

1−
(

cosL5 sinθ+sinL5 cosθ cos(φ−φL5)
)2

) (B.59)
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If φL1, φL2 & φL5 are defined relative to their positions when the wing is at the

neutral position, then EquationB.59 is rewritten as:

α = cos−1

(
cosL6−

(
cosL5 sinθ+sinL5 cosθ cos(φ−φL5+cos−1( cosL6−cosL5 cosL7

sinL5 cosL7 ))
)

cosL7

sinL7

√
1−
(

cosL5 sinθ+sinL5 cosθ cos(φ−φL5+cos−1( cosL6−cosL5 cosL7
sinL5 cosL7 ))

)2

)
+

+ θ
|θ|

φ−φL5

|φ−φL5|
cos−1

(
sin(φ−φL5+cos−1( cosL6−cosL5 cosL7

sinL5 cosL7 ))√
1−
(

cosL5 sinθ+sinL5 cosθ cos(φ−φL5+cos−1( cosL6−cosL5 cosL7
sinL5 cosL7 ))

)2

) (B.60)

In Equations B.59 & B.60, the fractions in front of the second term are required

to make it of the appropriate sign. Therefore, Equation B.59 combined with

Equations B.45, B.46 & B.49 provides an expression for α as a function of φL1, φL2

& φL5, and the link lengths. If φL1, φL2 & φL5 are defined relative to their positions

when the wing is at the neutral position, then Equation B.60 is used instead, along

with Equations B.45, B.46 & B.50.

B.2.2 Wing Velocity

Taking the first time derivative of Equation B.46, we obtain an expression for the

wing’s plunge velocity:

θ̇ = −
φL1 − φL2

|φL1 − φL2|

( ˙ψL1sinL1sinL3sinψL1√
1 − (cosL1cosL3 + sinL1sinL3cosψL1)2

)
(B.61)

where

˙ψL1 = F Ḟ cosL4−ḞcosL3
(1−F2)

√

sin2L3−F2−cos2L4+2FcosL3cosL4
+

−
F Ḟ cosL2−ḞcosL1

(1−F2)
√

sin2L1−F2−cos2L2+2FcosL1cosL2

(B.62)

F = cosBC = cosL1 cosL2 + sinL1 sinL2 cos(φL1 − φL2) (B.63)

Ḟ = −(φ̇L1 − φ̇L2)sinL1 sinL2 sin(φL1 − φL2) (B.64)
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Again, the fraction at the front of Equation B.61 is required to make it the

appropriate sign. Thus, Equation B.61 combined with Equations B.45, B.62 - B.64

provides an expression for the wing’s plunge velocity as a function of the positions

and velocities of links L1, and L2, and the link lengths. These expressions hold if

the positions of the links are defined relative to their neutral position, or if they

are defined with respect to the φ = 0◦ longitude line.

Now, taking the first time derivative of Equation B.50, we obtain an expression

for the wing’s stroke velocity:

φ̇ = φ̇L1 −
θ̇cosL1 − θ̇sinθcosL3

cosθ
√

cos2θ − cos2L1 − cos2L3 + 2cosL1cosL3sinθ
(B.65)

When combined with Equations B.46 & B.61, Equation B.65 provides an ex-

pression for the stroke velocity as a function of the link positions, velocities, and

lengths. Again, this holds if the input link positions are defined relative to the

φ = 0 longitude line, or if they are defined relative to their position when the wing

is at the neutral position.

Lastly, taking the first time derivative of Equation B.59, we obtain the pitch

velocity:

α̇ = ĖcosL7−EĖcosL6
(1−E2)

√

sin2L7−E2−cos2L6+2EcosL7cosL6
+

−
θ
|θ|

φ−φL5−cos−1( cosL6−cosL5 cosL7
sinL5 cosL7 )

|φ−φL5−cos−1( cosL6−cosL5 cosL7
sinL5 cosL7 )|

(
(φ̇−φ̇L5)(1−E2)cos(φ−φL5)+EĖsin(φ−φL5)

(1−E2)
√

1−E2−sin2(φ−φL5)

) (B.66)

where

E = cosAE = cosL5 sinθ + sinL5 cosθ cos(φ − φL5) (B.67)

Ė = θ̇cosL5 cosθ− θ̇sinL5 sinθ cos(φ−φL5)− (φ̇− φ̇L5)sinL5cosθsin(φ−φL5) (B.68)

Again, the fractions in front of the second term in Equation B.66 are required to

make it the appropriate sign. Equation B.66 in conjunction with Equations B.46,
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B.49, B.61, B.65, B.67, & B.68 provide an expression for the pitch velocity as a

function of the link positions, and velocities, and lengths. Equations B.66 - B.68

apply if the link positions are defined relative to the φ = 0◦ longitude line. If,

however, φL1, φL2 & φL5 are defined relative to their positions when the wing is at

the neutral position, then Equations B.66 - B.68 are rewritten as:

α̇ = ĖcosL7−EĖcosL6
(1−E2)

√

sin2L7−E2−cos2L6+2EcosL7cosL6
+

−
θ
|θ|

φ−φL5

|φ−φL5|

(
(φ̇−φ̇L5)(1−E2)cos

(
φ−φL5+cos−1( cosL6−cosL5 cosL7

sinL5 cosL7 )
)
+EĖsin

(
φ−φL5+cos−1( cosL6−cosL5 cosL7

sinL5 cosL7 )
)

(1−E2)

√
1−E2−sin2

(
φ−φL5+cos−1( cosL6−cosL5 cosL7

sinL5 cosL7 )
) )

(B.69)

E = cosAE = cosL5 sinθ+sinL5 cosθ cos
(
φ−φL5+cos−1(

cosL6 − cosL5 cosL7
sinL5 cosL7

)
)

(B.70)

Ė = θ̇cosL5 cosθ − θ̇sinL5 sinθ cos
(
φ − φL5 + cos−1( cosL6−cosL5 cosL7

sinL5 cosL7 )
)
+

−(φ̇ − φ̇L5)sinL5cosθsin
(
φ − φL5 + cos−1( cosL6−cosL5 cosL7

sinL5 cosL7 )
) (B.71)

B.2.3 Wing Acceleration

Taking the second time derivative of Equation B.46, we obtain an expression for

the wing’s plunge acceleration:

θ̈ = −
φL1−φL2

|φL1−φL2|

((
ψ̈L1sinL1sinL3sinψL1 + ψ̇2

L1sinL1sinL3cosψL1

)(
1 − (cosL1cosL3+

+sinL1sinL3cosψL1)2
)
− ψ̇2

L1sin2L1sin2L3sin2ψL1

(
cosL1cosL3+

+sinL1sinL3cosψL1

))
/
(
1 − (cosL1cosL3 + sinL1sinL3cosψL1)2

) 3
2

(B.72)

where:
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ψ̈L1 =

(
(Ḟ2cosL4 + F̈FcosL4 − F̈cosL3)(1 − F2)(sin2L3 − F2

− cos2L4 + 2FcosL3cosL4)+

−Ḟ2(3F3
− 2Fsin2L3 + 2Fcos2L4 − 5F2cosL3cosL4 − F+

+cosL3cosL4)(FcosL4 − cosL3)
)
/(1 − F2)2(sin2L3 − F2

− cos2L4 + 2FcosL3cosL4)
3
2 +

−

(
(Ḟ2cosL2 + F̈FcosL2 − F̈cosL1)(1 − F2)(sin2L1 − F2

− cos2L2 + 2FcosL3cosL2)+

−Ḟ2(3F3
− 2Fsin2L1 + 2Fcos2L2 − 5F2cosL3cosL2 − F+

+cosL1cosL2)(FcosL2 − cosL1)
)
/(1 − F2)2(sin2L1 − F2

− cos2L2 + 2FcosL1cosL2)
3
2

(B.73)

F̈ = −(φ̈L1−φ̈L2)sinL1sinL2sin(φL1−φL2)−(φ̇L1−φ̇L2)2sinL1sinL2cos(φL1−φL2) (B.74)

The fraction at the front of Equation B.72 is required to make it the appropriate

sign. These expressions apply when the positions of the input links are defined

in either manner mentioned previously.

Now, taking the second time derivative of Equation B.50, we obtain an expres-

sion for the wing’s stroke acceleration:

φ̈ = φ̈L1 −

((
θ̈cosL1 − θ̈sinθcosL3 − θ̇2cosθcosL3

)
cosθ

(
cos2θ − cos2L1 − cos2L3+

+2cosL1cosL3sinθ
)
− θ̇2

(
cosL1 − sinθcosL3

)(
sinθcos2L1 − 2sinθcos2θ + sinθcos2L3+

−3sin2θcosL1cosL3 + cosL1cosL3
))
/cos2θ(cos2θ − cos2L1 − cos2L3 + 2cosL1cosL3sinθ)

3
2

(B.75)

Finally, taking the second time derivative of Equation B.59, we obtain the pitch

acceleration:
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α̈ = −

(
(Ė2cosL6 + ËEcosL6 − ËcosL7)(1 − E2)(sin2L7 − E2

− cos2L6 + 2EcosL7cosL6)+

−Ė2(3E3
− 2Esin2L7 + 2Ecos2L6 − 5E2cosL7cosL6 − E+

+cosL7cosL6)(EcosL6 − cosL7)
)
/(1 − E2)2(sin2L7 − E2

− cos2L6 + 2EcosL7cosL6)
3
2 +

−
θ
|θ|

φ−φL5−cos−1( cosL6−cosL5 cosL7
sinL5 cosL7 )

|φ−φL5−cos−1( cosL6−cosL5 cosL7
sinL5 cosL7 )|

(
(1 − E2)(1 − E2

− sin2(φ − φL5))
(
(φ̈ − φ̈L5)cos(φ − φL5)(1 − E2)+

−(φ̇ − φ̇L5)2sin(φ − φL5)(1 − E2) − EĖ(φ̇ − φ̇L5)cos(φ − φL5) + EËsin(φ − φL5)+

+Ė2sin(φ − φL5)
)
−

(
(φ̇ − φ̇L5)cos(φ − φL5)(1 − E2)+

+EĖsin(φ − φL5)
)(

3E3Ė − 3EĖ + 2EĖsin2(φ − φL5)+

−(1 − E2)(φ̇ − φ̇L5)cos(φ − φL5)sin(φ − φL5)
))
/(1 − E2)2(1 − E2

− sin2(φ − φL5))
3
2

(B.76)

where:

Ë = θ̈cosL5cosθ − θ̇2cosL5sinθ − θ̈sinL5sinθcos(φ − φL5)+

−sinL5cosθcos(φ − φL5)
(
θ̇2 + (φ̇ − φ̇L5)2

)
+

+sinL5sin(φ − φL5)
(
2θ̇(φ̇ − φ̇L5)sinθ − (φ̈ − φ̈L5)cosθ

) (B.77)

As before, the fractions in front of the second term in Equation B.76 are re-

quired to make it the appropriate sign. These expressions apply when the link

positions are defined relative to the φ = 0◦ longitude line. When φL1, φL2 & φL5 are

defined relative to their positions when the wing is at the neutral position, then

Equations B.76 - B.77 become:
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α̈ = −

(
(Ė2cosL6 + ËEcosL6 − ËcosL7)(1 − E2)(sin2L7 − E2

− cos2L6 + 2EcosL7cosL6)+

−Ė2(3E3
− 2Esin2L7 + 2Ecos2L6 − 5E2cosL7cosL6 − E+

+cosL7cosL6)(EcosL6 − cosL7)
)
/(1 − E2)2(sin2L7 − E2

− cos2L6 + 2EcosL7cosL6)
3
2 +

−
θ
|θ|

φ−φL5

|φ−φL5|

(
(1 − E2)(1 − E2

− sin2(φ − φL5 + cos−1( cosL6−cosL5 cosL7
sinL5 cosL7 )))

(
(φ̈+

−φ̈L5)cos(φ − φL5 + cos−1( cosL6−cosL5 cosL7
sinL5 cosL7 ))(1 − E2) − (φ̇ − φ̇L5)2sin(φ − φL5+

+cos−1( cosL6−cosL5 cosL7
sinL5 cosL7 ))(1 − E2) − EĖ(φ̇ − φ̇L5)cos(φ − φL5 + cos−1( cosL6−cosL5 cosL7

sinL5 cosL7 ))+

+EËsin(φ − φL5 + cos−1( cosL6−cosL5 cosL7
sinL5 cosL7 ))+

+Ė2sin(φ − φL5 + cos−1( cosL6−cosL5 cosL7
sinL5 cosL7 ))

)
−

(
(φ̇ − φ̇L5)cos(φ − φL5+

+cos−1( cosL6−cosL5 cosL7
sinL5 cosL7 ))(1 − E2) + EĖsin(φ − φL5 + cos−1( cosL6−cosL5 cosL7

sinL5 cosL7 ))
)(

3E3Ė+

−3EĖ + 2EĖsin2(φ − φL5 + cos−1( cosL6−cosL5 cosL7
sinL5 cosL7 ))+

−(1 − E2)(φ̇ − φ̇L5)cos(φ − φL5 + cos−1( cosL6−cosL5 cosL7
sinL5 cosL7 ))sin(φ − φL5+

+cos−1( cosL6−cosL5 cosL7
sinL5 cosL7 ))

))
/(1 − E2)2(1 − E2

− sin2(φ − φL5 + cos−1( cosL6−cosL5 cosL7
sinL5 cosL7 )))

3
2

(B.78)

Ë = θ̈cosL5cosθ − θ̇2cosL5sinθ − θ̈sinL5sinθcos(φ − φL5 + cos−1( cosL6−cosL5 cosL7
sinL5 cosL7 ))+

−sinL5cosθcos(φ − φL5 + cos−1( cosL6−cosL5 cosL7
sinL5 cosL7 ))

(
θ̇2 + (φ̇ − φ̇L5)2

)
+

+sinL5sin(φ − φL5 + cos−1( cosL6−cosL5 cosL7
sinL5 cosL7 ))

(
2θ̇(φ̇ − φ̇L5)sinθ − (φ̈ − φ̈L5)cosθ

)
(B.79)

B.3 Summary

A summary of the expressions obtained are listed in Table B.1 for mechanism

kinematics (φL1, φ̇L1, φ̈L1, φL2, φ̇L2, φ̈L2, φL5, φ̇L5, φ̈L5) as functions of the flapping

kinematics (φ, φ̇, φ̈, θ, θ̇, θ̈, α, α̇, α̈) and link lengths (L1-L7). Conversely, Table B.2

lists the expressions for flapping kinematics as functions of the mechanism kine-

matics and link lengths. In both tables the first column applies when the positions

of the input links φL1, φL2, & φL5 are defined relative to the φ = 0◦ longitude line

(as shown in Figure B.1). The second column applies when φL1, φL2, & φL5 are de-

fined relative to the input link positions when the wing is at the ‘neutral’ position
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(when φ = 0◦, θ = 0◦, & α = 90◦). For each variable, the main equation is listed

first, followed by additional equations which must be used in conjunction with

the main equation in order to calculate the desired variable. For example, the first

row, first column of Table B.2 states that to calculate φ, Equation B.49 is used in

conjunction with Equations B.45 & B.46.

Table B.1: Summary of equations defining mechanism kinematics as functions of flapping kinematics and link ‘lengths’;

for each variable, the main equation equation is listed first, followed by additional equations which must be used in

conjunction with the main equation in order to calculate the desired variable

if link positions defined relative if link positions defined relative

to φ = 0 longitude line to ‘neutral’ position

φL1 B.3 B.11

φ̇L1 B.14 B.14

φ̈L1 B.23 B.23

φL2 B.4 B.12

φ̇L2 B.15 B.15

φ̈L2 B.24 B.24

φL5 B.10 with B.6, B.8, B.9 B.13 with B.6, B.8, B.9

φ̇L5 B.16 with B.17 - B.22 B.16 with B.17 - B.22

φ̈L5 B.25 with B.19 - B.22,B.26 - B.37 B.25 with B.19 - B.22,B.26 - B.37
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Table B.2: Summary of equations defining flapping kinematics as functions of mechanism kinematics and link ‘lengths’;

for each variable, the main equation equation is listed first, followed by additional equations which must be used in

conjunction with the main equation in order to calculate the desired variable

if link positions defined relative if link positions defined relative

to φ = 0 longitude line to ‘neutral’ position

φ B.49 with B.45, B.46 B.50 with B.45, B.46

φ̇ B.65 with B.45, B.46, B.61 - B.64 B.65 with B.45, B.46, B.61 - B.64

φ̈ B.75 with B.45, B.46, B.61 - B.64, B.75 with B.45, B.46, B.61 - B.64,

B.72 - B.74 B.72 - B.74

θ B.46 with B.45 B.46 with B.45

θ̇ B.61 with B.45, B.62 - B.64 B.61 with B.45, B.62 - B.64

θ̈ B.72 with B.45, B.62 - B.64, B.72 with B.45, B.62 - B.64,

B.73, B.74 B.73, B.74

α B.59 with B.45, B.46, B.49 B.60 with B.45, B.46, B.50

α̇ B.66 with B.45, B.46, B.49, B.69 with B.45, B.46, B.50,

B.61 - B.64, B.65, B.67, B.68 B.61 - B.64, B.65, B.70, B.71

α̈ B.76 with B.45, B.46, B.49, B.61 - B.78 with B.45, B.46, B.50, B.61 -

B.65, B.67, B.68, B.72 - B.75, B.77 B.65, B.70, B.71 - B.75, B.79



Appendix C

Particle Image Velocimetry

In this Appendix, the non-intrusive flowfield measurement technique of Particle

Image Velocimetry, or PIV, will be described. First, the standard PIV technique

that gives 2D vectors will be described, followed by the stereoscopic PIV technique

which allows 3D velocity vectors to be measured.

PIV is a flowfield measurement technique similar to the ‘streak photograph’

technique mentioned in Chapter 2. Recall that in this technique, a plane is illu-

minated with a light sheet and a photograph with a prolonged exposure is taken

of a seeded flow, revealing streaks of light representing local particle paths, or

instantaneous streamlines. With the lengths of the streaks, and known exposure

time, the local velocities throughout the measurement plane can be computed.

The modern technique of PIV uses a very similar principal to measure fluid ve-

locities in a measurement plane. As illustrated in Figure C.1, a laser light sheet is

used to illuminate a plane, and two short exposures of the seeded flow are taken

at a known time separation. This gives a snapshot of particle positions at two

separate times. Therefore, the magnitude and direction of local particle displace-

ments during the time between exposures is known, and local fluid velocities can

be determined. This technique will be described in more detail shortly.

The theory for this technique was first outlined by Adrian (1988), and it orig-

inally employed a film camera in which the film was continually exposed while

a light sheet was pulsed twice in quick succession, resulting in particle positions

at two separate times on the same image. From these images, velocity vectors

were recovered with an auto-correlation function. With the advent of high-speed

digital video recording, it became possible to employ double image recordings

and determine velocity vectors from particle images between the successive im-

ages using a cross-correlation analysis (Keane & Adrian, 1992). Here, instead of

recording particles on the same image, particle positions from the first and sec-

ond laser pulses are captured on two separate images. This technique is generally

preferred because it does not suffer from some of the problems associated with

the double-exposed single image technique. These issues include the need for a

prior knowledge of fluid velocity, since it is otherwise unknown which particle
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images originate from which exposure, difficulty in measuring velocities close to

zero since particle images overlap, and noise levels which are close to the signal

level (Raffel et al., 1998). Thus, the standard PIV technique used today employs

single exposed double images.

Figure C.1: Standard PIV technique (adapted from Dantec (2011))

Further details of PIV will now be given. Figure C.1 illustrates the workings of

this technique, where a laser beam is converted to a light sheet via a set of optics,

and is used to illuminate the measurement plane. The measurement coordinate

system xcamycamzcam is oriented such that the ycamzcam plane coincides with the

measurement plane, ycam is horizontal, and zcam is vertical. Thus, measured in-

plane velocities are in the ycam and zcam directions. It should be noted that in the

literature, the in-plane axes are often denoted by x (horizontal) and y (vertical),

however, for the sake of continuity with the rest of this thesis, the in-plane axes

are taken as ycam and zcam. The flow is seeded with particles, and the laser is

pulsed twice in quick succession, where the pulses are separated by time ∆t. With

each laser pulse, an image of the particle positions is taken with a high-speed

camera (lens and CCD in Figure C.1), giving two images (an ‘image pair’) with

particle positions at two separate times. Each image is then broken into a grid

of ‘interrogation windows’. Corresponding interrogation windows between the

two images are stepped through and cross-correlated using a function typically

of the form:
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C(dycam, dzcam) =

ycam<n,zcam<n∑
ycam=0,zcam=0

I1(ycam, zcam)I2(ycam+dycam, z+dzcam), −
n
2
< dycam, dzcam <

n
2

(C.1)

Figure C.2: Correlation map (adapted from Raffel et al. (1998))

Here, I1 and I2 are arrays of pixel intensities in the interrogation window for

the first and second images, respectively, n is the interrogation window size (in

pixels), and dycam and dzcam are the particle image displacements in the ycam and zcam

directions, respectively. Essentially, this function works by multiplying the pixel

intensities at each point in the first image with intensities at the corresponding

points in the second image, but shifted by dycam and dzcam, and then these products

are summed to give a correlation value C. This is performed over a range of

dycam and dzcam values, thus creating a 3D ‘correlation map’ which represents the

computed C value versus dycam and dzcam as shown in Figure C.2. When dycam and

dzcam are the values of the actual particle image displacements, C peaks as seen in

the correlation map (Figure C.2), which is called the correlation peak. This peak

occurs because when the ’shifts’ dycam and dzcam are the particle displacements,

the arrays of pixel intensities (the particle images themselves) between the two

exposures ‘match-up’. Thus, pixels with high intensity levels, which occur where

particle images are present in the first image, are directly compared with the pixels

in the second image where the particle images have displaced to, which also have

high intensity levels. This gives especially large products when the intensities are

multiplied, and hence a large C value. Therefore, in each interrogation window in

the measurement area, the displacement components dycam and dzcam representing
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the fluid displacement between images, are found by obtaining the dycam and dzcam

values at the peak C in the correlation map. With the known time between pulses

∆t, the displacement vectors can be converted to velocity vectors.

A limitation of the standard PIV technique is that it can only measure fluid

velocities within the measurement plane, that is, out-of-plane velocities cannot

be measured. An extension to this technique was first revealed by Gautier &

Riethmuller (1988), in which a pair of cameras in a stereoscopic arrangement

view the same measurement area, instead of just one. This is called stereoscopic

PIV, and it enables the third velocity component to be deduced from the in-

plane velocity components seen in the two camera perspectives. As illustrated

in Figure C.3a and b, a stereoscopic PIV setup is comprised of two cameras

(lens and CCD) angled to the measurement plane, which is called an angular

setup. Again the xcamycamzcam frame is fixed to the measurement plane, and new

frames ximgRyimgRzimgR and ximgLyimgLzimgL fixed to the image plane (CCD) of the

right and left cameras respectively, are introduced. Figure C.3a shows a view

of the xcamycam plane (parallel to the earth’s surface), where for a given point ’n’

in the measurement plane, a ray through the lens to the image plane makes an

angle of λ with the normal (xcam direction) for the left ‘L’ and right ‘R’ cameras

denoted by the superscripts. Similarly, Figure C.3b depicts a xcamzcam plane, where

for point n, a ray to the image plane makes an angle of ζ with the normal for

each camera. The ζ angle for each camera in almost all applications is zero. The

cameras can also be oriented perpendicularly to the measurement plane (such

that λR, λL, ζR, ζL = 0◦), which is called a translational setup, however, the angular

setup has greater out-of-plane accuracy (Lawson. & Wu, 1997; Prasad, 2000), and

thus is the most widely used. However, as a consequence of angling a given

camera in this manner, the lens plane for a given camera is no longer parallel

to the measurement plane, and thus, only a portion of the area viewed in this

plane will be in focus due to the finite depth of field. This can be avoided by

angling the camera’s CCD (the image plane) relative to the lens according to the

Scheimpflug condition which is achieved when the measurement, lens and image

planes intersect at a common line for a given camera (Prasad & Jensen, 1995). This

is illustrated in Figure C.3a, but not in the other plane in Figure C.3b because the

ζ angles are often close to zero, thus, there is no need to angle the image plane in

this direction. When the Scheimpflug condition is achieved, the area viewed in
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Figure C.3: 3D vector reconstruction by Willert (1997) for (a) xcam ycam plane and (b) xcamzcam plane (adapted from

Giordano & Astarita (2009))
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the measurement plane angled to the lens will all be in focus.

Once the cameras are setup and focused on a common area in the measurement

plane, as described previously, a calibration must be performed so that the two

camera views can be related. After Soloff et al. (1997), the calibration method con-

sists of placing a calibration plate parallel to the light sheet and in the area viewed

by the two cameras. The calibration plate typically consists of an array of dots a

known distance apart. After both cameras image the calibration plate, a mapping

function is formulated for each camera by matching the same dots between the

two camera perspectives. These functions allow coordinates in the image plane

of each camera (in the ximgRyimgRzimgR & ximgLyimgLzimgL frames) to be transformed

to common coordinates in the measurement plane (the xcamycamzcam frame). Cali-

bration plates used for this purpose are either dual plane plates, or single plane

plates that can be translated perpendicular to the measurement plane. Dual plane

plates consist of dots distributed across two planes a known distance apart. In

either case, an additional plane of dots is provided, from which another mapping

function is created for each camera. For a given camera, the additional mapping

function for the second plane combined with the first mapping function, enables

the viewing angles of the camera relative to the measurement plane (the λ and ζ

angles) to be recovered. Therefore, the calibration simultaneously establishes the

relation between the image planes of the two cameras and measurement plane,

and the geometric relation of the cameras to the measurement plane.

With the calibration between the two camera views established, 3D flowfield

measurements can be performed. The laser light sheet is pulsed twice and each

camera captures an image pair. Image pairs from each of the camera views are

then cross correlated using the same method described earlier for a single PIV

camera setup. This creates a vector map in each of the image planes. The interro-

gation windows used in the cross-correlation form an irregular grid resulting from

the camera perspective, as illustrated in Figure C.4. This way, corresponding in-

terrogation windows between the two camera views still represent the same area

(and hence the same particles) in the measurement plane, despite the different

perspectives. These grids are formulated from the previously discussed calibra-

tions. The 2D vectors in the the irregular grids, and the grids themselves for each

camera view are then ’dewarped’ and mapped onto a common orthogonal plane

(the measurement plane) using the aforementioned mapping functions. In other
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Figure C.4: Reconstruction of 3D vectors

words, vectors from the ximgRyimgRzimgR and ximgLyimgLzimgL frames are transformed

to the xcamycamzcam frame. Thus at each point in the orthogonal plane (xcamycamzcam

frame), there is a pair of vycam and vzcam velocity components from the left and right

cameras denoted by the superscripts (see Figure C.3a & b). These are then used

in the following formulae to reconstruct the true 3D velocity components (from

Willert (1997) and adapted by Giordano & Astarita (2009)):

vxcam =
vL

ycam − vR
ycam

tanλR − tanλL (C.2)
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vycam =
vL

ycamtanλR
− vR

ycamtanλL

tanλR − tanλL (C.3)

vzcam =
vL

zcamtanζR
− vR

zcamtanζL

tanζR − tanζL =
vL

zcam + vR
zcam

2
+

vxcam

2
(tanζL + tanζR) (C.4)
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Appendix D

Vortex Axis Identi�cation Procedure

& Vortex Point-Joining Algorithm

Figure D.1: Example result of the vortex identification method of Knowles et al. (2006) applied to volumetric flowfield

data; blue dots indicate identified vortex core locations; wing outline is indicated by the solid black line

This appendix presents the procedure and algorithms developed to reconstruct

vortex axes in the collection of ‘vortex points’ returned by the vortex identification

method of Knowles et al. (2006) discussed in § 5.3.2 (page 137). First, the method

in which groups of vortex points belonging to a common axis were identified will

be presented. This is followed by a description of the algorithm developed to join

vortex points with a line representing the vortex axis.

A shortcoming of the vortex identification method of Knowles et al. (2006),

is that it is sensitive to noise and returns false vortex core locations. When this

method is applied to every xy, yz, and xz plane, the result is a collection of points

(‘vortex points’) in a 3D volume as pictured in Figure D.1, where some points are

true vortex cores and others are spurious. The problem then is how to pick out

groups of true vortex core points that mark the vortex axis of a common vortex

structure. Although an obvious vortex axis can be seen right away in the group of
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points that form an organised line as pointed out in Figure D.1, a less subjective

and more automated method of finding vortex axes is required.

The method developed to identify groups of points that belong to a common

axis relies on the following two facts: the vorticity vectors at points close together

on a vortex axis point in roughly the same direction, and the vorticity vector at

any point on a vortex axis will be a tangent to the curve defining the vortex axis

at that point. Thus, if a given point is a true vortex and is on the same vortex axis

as its neighbours, then it will meet the following criteria:

1. the vorticity vector points in the same direction as the vorticity vectors of its

neighbouring points;

2. the path from the given point to neighbouring points is roughly tangential

to the vorticity vectors at the current and neighbouring points.

These are the criteria used in locating groups of such points, which will be

illustrated now with an example. Consider a group of m points and their vorticity

vectors illustrated in Figure D.2. Points n5 − n10 define the true vortex axis and

the other points are spurious. For a given point ni the following quantity K is

computed:

Ki =

j=m∑
j=1

π
2
− |βr j/i,w j −

π
2
| + βwi,w j (D.1)

Here βr j/i,w j is the angle between the vector r j/i (position vector of point n j

relative to ni) and the vorticity vector w j, and βwi,w j is the angle between vorticity

vectors wi and w j. These angles are illustrated in Figure D.2 for i = 1 and j = 2,

and they are always positive and less than or equal to 180◦. The term βwi,w j in

the above equation quantifies how much the point ni meets criterion 1 with its

neighbouring point n j. The π
2 − |βr j/i,w j −

π
2 | portion of the equation quantifies how

much the given point meets the criterion 2. If the point is a true vortex and is on

the same vortex axis as its neighbouring point n j then both of these terms will be

minimised. When these terms are added over all points to give the K value as

indicated in the above equation, K will be minimal if the point is a true vortex.

The result of computing K for every point is pictured in Figure D.3. Here it can

296
∣∣∣ PhD Thesis: Nathan D B Phillips



Appendix D: Vortex Axis Identification Procedure & Vortex Point-Joining
Algorithm 297

Figure D.2: Set of true and spurious vortex core points and their vorticity vectors

be seen that this method successfully reveals the true vortex core points n5 − n10,

as they have a minimal K value.

Let us now apply this method to real experimental data. The result of com-

puting K for all the points in Figure D.1 is shown in Figure D.4, where a long

vortex axis becomes visible. In the calculation of K for each point, the ten closest

neighbouring points were used, thus m = 10. The task now is to join these points

that belong to the same vortex structure, which will be discussed next.

To join vortex axis points, the first step is to select manually the starting point

of the vortex axis. This is done by computing the K value of all points as discussed

previously to reveal the vortex axis, and then selecting a point on the end of this

axis. For example, in Figure D.4 we would select the dark blue dot closest to the

wing root. From this point, the following algorithm is employed:

let i = current point (i is initialised as the starting point mentioned

previously)
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Figure D.3: Result of K value computation revealing the true vortex core points which have a minimal K

Figure D.4: Result of K value computation applied to experimental data revealing the true vortex core points which

have a minimal K

let j = all points excluding the current point and any points joined to

the vortex axis in a previous iteration
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loop until break

flag = 0

loop over points j

construct a position vector r j/i from the current point ni to n j

calculate the angle βwi,w j between the vorticity vector wi at the

current point ni and the vorticity vector w j of point n j

calculate the angle βr j/i,wi between r j/i and wi

calculate the angle βr j/i,w j between r j/i and w j

calculate magnitude |r j/i|

if i > 1

calculate the angle βri/i−1,r j/i between ri/i−1 and r j/i

else

βri/i−1,r j/i = 0

end if

if (π2 − |βwi,w j −
π
2 |) < threshold1

and (π2 − |βr j/i,w j −
π
2 |) < threshold2

and βri/i−1,r j/i < threshold3

and |r j/i| < threshold4

flag = 1

calculate the perpendicular distance from the path of wi to the

path of r j/i, with |r j/i| as the hypotenuse = |r j/i|sin(βr j/i,wi)

calculate the perpendicular distance from the path of w j to the
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path of r j/i, with |r j/i| as the hypotenuse = |r j/i|sin(βr j/i,w j)

add these perpendicular distances to the magnitude of the

position vector r j/i to compute:

‘distance sum’ = |r j/i| + |r j/i|sin(βr j/i,wi) + |r j/i|sin(βr j/i,w j)

end if

repeat loop for next point j

if flag = 0

break

else

the point j with the minimum ‘distance sum’ is considered to be

the next point on the vortex axis and is then joined to the vortex

axis

this point then becomes the current point i in the next iteration

end if

repeat loop for new point i

To complement this description, an illustration depicting the second iteration

of this algorithm is given in Figure D.5. At this stage the vortex axis consists

of points n1 and n2, and points n3 − nm are being evaluated to determine which

point to add next to the vortex axis. Thus i = 2 and j = 3, 4, 5, ..m, where m is the

number of points (only points n1−n4 are shown). All n j points are then examined

to determine which to include for further consideration using the four threshold

tests indicated. The first test evaluates the angle between the vorticity vectors
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Figure D.5: Example of second iteration of vortex point-joining algorithm

at ni and n j, and ensures that the angle is below threshold1, so that it conforms

to criterion 1 listed earlier. The second test determines if the angle between the

position vector from ni to n j and the vorticity vector at n j is below threshold2, to

test its conformance to criterion 2. The next test ensures that the angle between

the previous segment of the reconstructed vortex axis (position vector r2/1) and

the considered next segment (r j/2) is below threshold3. This is used so that the

reconstructed vortex axis does not take very sharp turns or reverse on itself.

Finally, the last test allows only points that are sufficiently close by a distance

of threshold4 or less to the current point n2, to be considered for the next point

on the axis. In this example points n3 and n4 both pass all four tests, and are

now evaluated further to determine the appropriate point to add. For point n3,

‘distance sum’ = |r3/2| + |r3/2|sin(βr3/2,w2) + |r3/2|sin(βr3/2,w3) and for point n4 ‘distance

sum’ = |r4/2| + |r4/2|sin(βr4/2,w4) + |r4/2|sin(βr4/2,w2). It can be seen that ‘distance sum’

is minimised when point n j is close to point ni and wi and w j are parallel to the

direction of r j/i. This way, finding the minimum ‘distance sum’ simultaneously

finds a close point and the point that best meets criterion 2. Here ‘distance sum’

for point n3 is less than that for point n4, thus point n3 is added to the vortex axis,

and i = 3 and j = 4, 5, 6, ...m for the next iteration. This continues and the loop

ends when a scenario occurs where no points pass the four threshold tests.

When this algorithm is applied to the data in Figure D.4 and the dark blue dot
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Figure D.6: Result of vortex axis joining algorithm applied to experimental data; the vortex axis is indicated by the

solid red line; wing outline is indicated by the solid black line

closest to the wing root is selected as the starting point, an angle of 65◦ is used for

threshold1 − 3, and a distance of 10 grid spacings (10mm) is used for threshold4,

the result is that illustrated in Figure D.6. Here the vortex axis is shown by the

red line. To illustrate how well this method identifies the true vortex axis, a

comparison of the vorticity magnitude |w| along the curve to the component of

the vorticity vector wa (the axial vorticity) in the local direction of the curve is

shown in Figure D.7. As discussed earlier, the vorticity vector at any point on

a vortex axis will be tangent to the curve defining the vortex axis at that point.

Thus, the magnitude of the 3D vorticity vector along a vortex axis should be equal

to the component of the vorticity vector in the local direction of the vortex axis,

which is virtually the case in Figure D.7. This is further shown in Figure D.8 which

illustrates instantaneous streamlines released along the vortex axis in a vorticity

vector field (wx, wy, wz used instead of vx, vy, vz). Here it can be seen that the paths

of the streamlines largely coincide with the path of the vortex axis.

This developed method of joining vortex points is, however, somewhat ad hoc

as it occasionally requires the threshold values to be adjusted to join an obvious
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Figure D.7: Comparison of normalised vorticity magnitude |w| and axial vorticity wa versus axial position on vortex

axis; vorticity is normalised by the mean wing angular velocity (79.7rad/s)

group of vortex points forming an axis. The threshold4 was always 10 grid

spacings, whereas the threshold1-3 angles were varied in the range of 65◦ − 75◦.

Also, at times points which were obviously not part of the vortex axis (indicated

by a high K value) were incorrectly added to the axis, which would then cause

the reconstructed axis trajectory to follow an erratic (incorrect) path. Such points

had to be manually excluded from consideration in the algorithm.

A measure of how accurately the reconstructed vortex axis ‘fits’ the true vortex

axis is provided by the comparison of the vorticity magnitude and axial vorticity

along the axis. Along the true vortex axis, the vorticity magnitude will be equal

to the axial vorticity. Therefore, the difference between the vorticity magnitude

and axial vorticity along the reconstructed axis provides an ‘error’ of the axis

fit. In the example shown in Figure D.7 which is a very good fit, the rms error

from the differences of the normalised vorticities (normalised by the mean wing

angular velocity Ω̄wng) is 8. In the vortex axis reconstruction procedure, any

required adjustment of the algorithm mentioned previously was performed until

a similar level of axis fit was achieved. After computing the differences between
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Figure D.8: Instantaneous streamlines coloured with vorticity magnitude released along vortex axis (dotted line) in a

vorticity vector field; wing outline is indicated by the solid black line

the normalised axial vorticity and vorticity magnitude (both normalised by w̄wng)

for all vortex axes identified in this thesis, the rms error was found to be 9.8. In

addition, for each reconstructed axis, streamlines released in a vorticity field (as

shown in Figure D.8) were used to verify that the vorticity streamlines followed the

path of the axis. Furthermore, isosurfaces of Q were used to provide a secondary

indication (and another confirmation) of the presence of a vortex.

It should be noted that inspiration for this vortex point-joining algorithm was

drawn from the vortex axis identification algorithm of Singer & Banks (1994).

This algorithm requires the user to input the starting point of the vortex axis, then

a small step is made in the direction of the vorticity vector of the current point

and then a plane is constructed perpendicular to the vorticity vector at the point

one step away. The point with the local minimum pressure is then located in this

plane, which is then added to the vortex axis and becomes the current point in

the next iteration.
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Calculation of Vortex Parameters

With a vortex axis identified using the procedure outlined in Appendix D, var-

ious characteristics of the vortex can then be obtained. These include axial and

tangential vector quantities such as tangential velocity, and axial vorticity, helix

angle, vortex diameter, and circulation. The method by which these quantities are

obtained will be described in this Appendix, but first a local coordinate system

fixed to the vortex axis must be introduced.

Characteristics of a vortex along its axis are obtained in a local xvayvazva coor-

dinate system fixed at a given point n on the vortex axis. This is illustrated in

Figure 6.1 (page 155) and is presented at the beginning of Chapter 6, but will be

described again here for convenience. The frame is oriented such that at a given

point n, the xva axis points in the local direction of the curve defining the axis,

towards the end of the axis without a white dot. The direction of xva is obtained

using coordinates on either side of point n and the central difference method.

With an array of xn, yn, zn values defining the xyz coordinates of a vortex axis, the

unit direction vector iva of the xva axis for point n is obtained by:

iva =


(xn+1 − xn−1)/

√
(xn+1 − xn−1)2 + (yn+1 − yn−1)2 + (zn+1 − zn−1)2

(yn+1 − yn−1)/
√

(xn+1 − xn−1)2 + (yn+1 − yn−1)2 + (zn+1 − zn−1)2

(zn+1 − zn−1)/
√

(xn+1 − xn−1)2 + (yn+1 − yn−1)2 + (zn+1 − zn−1)2

 (E.1)

With the iva direction vector, the equation of a plane (the yvazva plane) perpen-

dicular to iva (and xva) at point n can then be formulated. With this equation, and

the xyz coordinates of the wing edge, the coordinates of the intersections of the

wing edge and this plane can be determined numerically. The two points where

the wing edge intersects this plane (intersection at leading edge and trailing edge)

are then used to formulate the direction of the yva axis and its unit direction vector

jva. This is performed using a similar formula to Equation E.1, but with the co-

ordinates of intersection with the leading edge used in place of xn+1yn+1zn+1, and

coordinates for the intersection with the trailing edge used in place of xn−1yn−1zn−1.

Thus, the yva axis is parallel to the line of intersection between the yvazva plane
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and the wing, and points towards the leading edge. The zva axis and its direction

vector kva are then formulated by taking the cross product of iva with jva. If at a

given point on the axis the yvazva plane does not intersect the wing then the zva

axis is oriented vertically such that the xvazva plane is parallel to the z direction.

The method in which various quantities are computed, will now be described.

E.1 Vector Quantities

Once the xvayvazva axes and direction vectors are defined, a grid of points in the

yvazva plane with the same grid spacing as in the 3D volume (1mm) is generated,

where the local point n on the vortex axis is the origin. At each point in the grid,

the three components of the desired vector quantities (velocity and vorticity) are

interpolated from the volume of 3D vectors. For a given point, the interpolated

3D vector is then transformed to the xvayvazva frame by computing the components

of the 3D vector in each of the xva,yva, and zva directions using the unit direction

vectors. For example, the component in the xva direction is computed by taking the

dot product of the vector with iva. The resulting components in the xva direction

are the axial components, and components in the yva direction are taken as the

tangential components. Thus, axial velocity (va) and vorticity (wa) are simply the

components of these quantities in the xva direction, while tangential velocity (vt)

is the velocity in the yva direction. Tangential velocity is always plotted in this

thesis along a vertical line through the vortex core and in the zva direction, that is

a vertical line at yva = 0.

E.2 Helix Angle & Vortex Breakdown Loca-

tion

Recall the expression for helix angle given in Equation 2.2 (page 34), where it

is defined as the inverse tangent of the ratio of the tangential velocity to axial

velocity at a point. Since tangential velocity is zero at the centre of a vortex, helix

angle at the vortex centre for a given axial position was computed by calculating

the helix angle at one grid point (1mm) on either side of the vortex core location
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in both the zva and −zva directions, and then averaging the result. Justification for

calculating the helix angle in this manner, will be given next.

The maximum helix angle occurs at the edge of the vortex core since the

tangential velocity rises towards the edge, while axial velocity falls. In the LEV

on insect-like flapping wings, the helix angle at the edge of the vortex core is

always beyond the critical angle of 50◦ (see § 2.2.8 for a description of this angle).

This can be visualised by considering that flow emanating from the leading edge

which is entrained into the LEV, originally has a direction roughly the same to

that as the free-stream (i.e. no axial velocity, thus γ is close to 90◦). Since the helix

angle is always beyond critical at the edge of the LEV core, it would seem that

the LEV is always in a state of breakdown along its entire length. However, this

seems to be an inaccurate indication of breakdown, because regions where signs

of breakdown are absent, such as those where axial velocity levels are high, and

vortex diameter is small and grows very little, will be classified as being in a state

of breakdown. It was stated by Délery (1994), that characterising breakdown with

only one parameter is an oversimplification, and that the properties of the local

velocity distributions must be taken into account. With this in mind, breakdown

was not classified solely on helix angle, because using this criterion alone states

that the entire LEV is always in breakdown. A more appropriate way of defining

helix angle was to calculate its value very near the vortex centre in the manner

explained above. This gives the lower bound of helix angles in the vortex, thus, if

the helix angle near the centre has passed critical, then the helix angle is beyond

critical everywhere in the vortex at that axial position. With this manner of

calculating helix angle, and the comments of Délery (1994) in mind, breakdown

was classified as the point where there was a rise in the helix above critical, a

reversal in axial velocity, and a rise in vortex diameter.

E.3 Vortex Diameter

Vortex diameter was determined in the yvazva plane by first plotting the tangential

velocity along the line yva = 0 through the vortex core (the zva direction). The first

absolute peak in vt is found in this profile on either side of the vortex centre at

0, 0. These absolute peaks are located by stepping through points from 0, 0 in the

zva and −zva directions, and when the local rate of change of vt in that direction
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Figure E.1: Calculation of vortex diameter from tangential velocity profile through vortex core, where points nu and

nl mark the extent of the rigid-body rotation region of the vortex

switches and the value of vt changes by a certain threshold since the switch in

the rate of change, then that point is an absolute peak. This threshold was taken

as 0.5m/s. For example, referring to Figure E.1, above the vortex centre, the first

absolute peak occurs when vt begins rising (after first declining from 0, 0) and

the value of vt rises by the threshold value or more since the switch in its rate of

change with zva. Similarly, below the vortex core, the first peak is located when the

vt begins declining, and declines by the threshold value or more. If however, the

wing surface is reached before a peak in vt is found below the vortex centre, then

the peak location is taken as the location of the wing surface. Note that the vortex

shown in Figure E.1 is clearly asymmetric, probably as a result of the proximity of

the core to a solid surface (the wing). With the two absolute peak locations, a line

is then fitted through the vt, zva points in between these peaks. The ‘upper’ point

nu on this line above this vortex axis is located at the vt value of corresponding

peak, and similarly a ‘lower’ point nl is located on the line at the vt value of the

other peak. Thus, these points mark the extent of the solid-body rotation region

of the vortex’s tangential velocity profile, which represents the vortex core. The

difference between zva coordinates of points nu and nl gives the vortex diameter.

This method of fitting a line through the core points was employed because
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the detected absolute peak locations on either side of the vortex core at times lay

outside of the rigid-body rotation region of the profile. Therefore, simply using

the zva coordinates of the peak locations would give a less accurate measure of

vortex diameter. In addition, when peak locations are outside of the rigid-body

rotation region, the slope of the line through these peaks does not match the slope

of the line through the points on the vt profile at the core. These slopes should

in fact match if the identified points are to represent the extent of the vortex

diameter. By fitting a line through the vortex core points between the identified

peak locations, and finding the points (nu and nl) on the line corresponding to the

vt values at the peak locations, the slopes through points nu and nl, and through

the vortex core match much more closely. This results in a much better fit of points

nu and nl to the rigid-body rotation region, and the measured diameter becomes

much less sensitive to the identified absolute peak locations.

For a given point on the vortex axis, 16 points are made in the yvazva plane

defining a circle with the vortex diameter centred at the vortex core at 0, 0. The

coordinates of these points are then converted to the xyz frame, and the same

process is performed at each point along the vortex axis. This results in a series

of points in 3D which define the local outline of the vortex core as seen in the

left of Figure E.2. These points are then joined into a surface, which provides a

visualisation of the 3D vortex core, and its diameter.

Figure E.2: Conversion of points defining local outline of vortex diameter to surface visualising the 3D vortex core
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E.4 Circulation

Circulation was computed at a given point on the vortex axis using Equation 6.1

(page 179) combined with the computed vortex diameter, and the average of the

absolute vt values at the edges of the vortex core (vt at nu and nl). It should be

noted that when averaging the absolute vt values as described, the result is given

a positive sign if the velocities give a sense of rotation about the vortex centre in

agreement with the right hand rule (i.e. clockwise rotation when viewed in the

positive xva direction). Conversely, if the vt values give an anticlockwise rotation,

then the average is given a negative sign.

310
∣∣∣ PhD Thesis: Nathan D B Phillips



Appendix F

Supplementary Figures

PhD Thesis: Nathan D B Phillips
∣∣∣ 311



Appendix F: Supplementary Figures 312

Figure F.1: Top views illustrating flow formation for the first third of a flapping half cycle; left column shows vortex

core diameter (dark grey surfaces) and vortex axes coloured with axial vorticity normalised with respect to Ω̄wng (79.7rad/s)

(axes are dashed lines behind objects); right column shows instantaneous streamlines released from vortex axes coloured

with axial flow normalised with respect to the mean wingtip speed (8.4m/s), black streamlines released along the wing

edge, and transparent grey isosurfaces of Q = qv̄2
tip where q ≈ 8.5 × 104m−2; positive axial direction points along an axis

towards the end without a white dot
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Figure F.2: Top views illustrating flow formation for the second third of a flapping half cycle; left column shows

vortex core diameter (dark grey surfaces) and vortex axes coloured with axial vorticity normalised with respect to Ω̄wng

(79.7rad/s) (axes are dashed lines behind objects); right column shows instantaneous streamlines released from vortex axes

coloured with axial flow normalised with respect to the mean wingtip speed (8.4m/s), black streamlines released along the

wing edge, and transparent grey isosurfaces of Q = qv̄2
tip where q ≈ 8.5 × 104m−2; positive axial direction points along an

axis towards the end without a white dot
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Figure F.3: Top views illustrating flow formation for the last third of a flapping half cycle; left column shows vortex core

diameter (dark grey surfaces) and vortex axes coloured with axial vorticity normalised with respect to Ω̄wng (79.7rad/s)

(axes are dashed lines behind objects); right column shows instantaneous streamlines released from vortex axes coloured

with axial flow normalised with respect to the mean wingtip speed (8.4m/s), black streamlines released along the wing

edge, and transparent grey isosurfaces of Q = qv̄2
tip where q ≈ 8.5 × 104m−2; positive axial direction points along an axis

towards the end without a white dot
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Figure F.4: Back views illustrating flow formation for the first third of a flapping half cycle; left column shows vortex

core diameter (dark grey surfaces) and vortex axes coloured with axial vorticity normalised with respect to Ω̄wng (79.7rad/s)

(axes are dashed lines behind objects); right column shows instantaneous streamlines released from vortex axes coloured

with axial flow normalised with respect to the mean wingtip speed (8.4m/s), black streamlines released along the wing

edge, and transparent grey isosurfaces of Q = qv̄2
tip where q ≈ 8.5 × 104m−2; positive axial direction points along an axis

towards the end without a white dot

PhD Thesis: Nathan D B Phillips
∣∣∣ 315



Appendix F: Supplementary Figures 316

Figure F.5: Back views illustrating flow formation for the second third of a flapping half cycle; left column shows

vortex core diameter (dark grey surfaces) and vortex axes coloured with axial vorticity normalised with respect to Ω̄wng

(79.7rad/s) (axes are dashed lines behind objects); right column shows instantaneous streamlines released from vortex axes

coloured with axial flow normalised with respect to the mean wingtip speed (8.4m/s), black streamlines released along the

wing edge, and transparent grey isosurfaces of Q = qv̄2
tip where q ≈ 8.5 × 104m−2; positive axial direction points along an

axis towards the end without a white dot
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Figure F.6: Back views illustrating flow formation for the last third of a flapping half cycle; left column shows vortex

core diameter (dark grey surfaces) and vortex axes coloured with axial vorticity normalised with respect to Ω̄wng (79.7rad/s)

(axes are dashed lines behind objects); right column shows instantaneous streamlines released from vortex axes coloured

with axial flow normalised with respect to the mean wingtip speed (8.4m/s), black streamlines released along the wing

edge, and transparent grey isosurfaces of Q = qv̄2
tip where q ≈ 8.5 × 104m−2; positive axial direction points along an axis

towards the end without a white dot
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Figure F.7: Top views illustrating flow formation for the first half of a flapping half cycle for four rotation phases:

τ = −3.7%, 1.6%, 5.5%, 10.1%; vortex core diameter (dark grey surfaces) shown with vortex axes coloured with axial

vorticity normalised with respect to Ω̄wng (91.7rad/s) (axes are dashed lines behind objects); positive axial direction points

along an axis towards the end without a white dot
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Figure F.8: Top views illustrating flow formation for the second half of a flapping half cycle for four rotation phases:

τ = −3.7%, 1.6%, 5.5%, 10.1%; vortex core diameter (dark grey surfaces) shown with vortex axes coloured with axial

vorticity normalised with respect to Ω̄wng (91.7rad/s) (axes are dashed lines behind objects); positive axial direction points

along an axis towards the end without a white dot
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Figure F.9: Back views illustrating flow formation for the first half of a flapping half cycle for four rotation phases:

τ = −3.7%, 1.6%, 5.5%, 10.1%; vortex core diameter (dark grey surfaces) shown with vortex axes coloured with axial

vorticity normalised with respect to Ω̄wng (91.7rad/s) (axes are dashed lines behind objects); positive axial direction points

along an axis towards the end without a white dot
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Figure F.10: Back views illustrating flow formation for the second half of a flapping half cycle for four rotation

phases: τ = −3.7%, 1.6%, 5.5%, 10.1%; vortex core diameter (dark grey surfaces) shown with vortex axes coloured with

axial vorticity normalised with respect to Ω̄wng (91.7rad/s) (axes are dashed lines behind objects); positive axial direction

points along an axis towards the end without a white dot
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Figure F.11: Top views illustrating flow formation for the first half of a flapping half cycle for four rotation phases:

τ = −3.7%, 1.6%, 5.5%, 10.1%; instantaneous streamlines released from vortex axes coloured with axial velocity normalised

with respect to the mean wingtip speed (9.7m/s); black streamlines are released along wing edge; transparent grey

isosurfaces indicate areas where Q = qv̄2
tip where q ≈ 8.5× 104m−2; positive axial direction points along an axis towards the

end without a white dot
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Figure F.12: Top views illustrating flow formation for the second half of a flapping half cycle for four rotation phases:

τ = −3.7%, 1.6%, 5.5%, 10.1%; instantaneous streamlines released from vortex axes coloured with axial velocity normalised

with respect to the mean wingtip speed (9.7m/s); black streamlines are released along wing edge; transparent grey

isosurfaces indicate areas where Q = qv̄2
tip where q ≈ 8.5× 104m−2; positive axial direction points along an axis towards the

end without a white dot
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Figure F.13: Back views illustrating flow formation for the first half of a flapping half cycle for four rotation phases:

τ = −3.7%, 1.6%, 5.5%, 10.1%; instantaneous streamlines released from vortex axes coloured with axial velocity normalised

with respect to the mean wingtip speed (9.7m/s); black streamlines are released along wing edge; transparent grey

isosurfaces indicate areas where Q = qv̄2
tip where q ≈ 8.5× 104m−2; positive axial direction points along an axis towards the

end without a white dot
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Figure F.14: Back views illustrating flow formation for the second half of a flapping half cycle for four rotation

phases: τ = −3.7%, 1.6%, 5.5%, 10.1%; instantaneous streamlines released from vortex axes coloured with axial velocity

normalised with respect to the mean wingtip speed (9.7m/s); black streamlines are released along wing edge; transparent

grey isosurfaces indicate areas where Q = qv̄2
tip where q ≈ 8.5×104m−2; positive axial direction points along an axis towards

the end without a white dot
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Figure F.15: Back views illustrating flow formation at mid-stroke for test cases with varying f (R̄e) and constant Φ;

left column shows vortex core diameter (dark grey surfaces) and vortex axes coloured with axial vorticity normalised

with respect to Ω̄wng (23.1, 46.2, 69.6, 93.2rad/s); vortex axes become dashed when behind other objects; right column

shows instantaneous streamlines released from vortex axes coloured with axial velocity normalised with respect to v̄tip

(2.4, 4.9, 7.4, 9.9m/s), black streamlines released along the wing edge, and transparent grey isosurfaces of Q = qv̄2
tip where

q ≈ 8.5 × 104m−2; positive axial direction points along an axis towards the end without a white dot
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Figure F.16: Back views illustrating flow formation at mid-stroke for test cases with varying Φ and constant R̄e; left

column shows vortex core diameter (dark grey surfaces) and vortex axes coloured with axial vorticity normalised with

respect to Ω̄wng (19.8rad/s); vortex axes become dashed when behind other objects; right column shows instantaneous

streamlines released from vortex axes coloured with axial velocity normalised with respect to v̄tip (2.1m/s), black streamlines

released along the wing edge, and transparent grey isosurfaces of Q = qv̄2
tip where q ≈ 8.5×104m−2; positive axial direction

points along an axis towards the end without a white dot
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Figure F.17: Back views illustrating flow formation at mid-stroke for test cases with varying Φ and constant f ; left

column shows vortex core diameter (dark grey surfaces) and vortex axes coloured with axial vorticity normalised with

respect to Ω̄wng (19.8, 40, 60, 79.7, 93.2rad/s); vortex axes become dashed behind other objects; right column shows

instantaneous streamlines released from vortex axes coloured with axial velocity normalised with respect to v̄tip (2.1, 4.2,

6.4, 8.4, 9.9m/s), black streamlines released along the wing edge, and transparent grey isosurfaces of Q = qv̄2
tip where

q ≈ 8.5 × 104m−2; positive axial direction points along an axis towards the end without a white dot
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Figure F.18: Back views illustrating flow formation at mid-stroke for test cases with varying αmid; left column shows

vortex core diameter (dark grey surfaces) and vortex axes coloured with axial vorticity normalised with respect to Ω̄wng

(92.9rad/s); vortex axes become dashed behind other objects; right column shows instantaneous streamlines released from

vortex axes coloured with axial velocity normalised with respect to v̄tip (9.7m/s), black streamlines released along the wing

edge, and transparent grey isosurfaces of Q = qv̄2
tip where q ≈ 8.5 × 104m−2; positive axial direction points along an axis

towards the end without a white dot
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Figure F.19: Back views illustrating flow formation at mid-stroke for test cases with varying Θ with figure-of-eight

kinematics; left column shows vortex core diameter (dark grey surfaces) and vortex axes coloured with axial vorticity

normalised with respect to Ω̄wng (93.2, 94, 95.2, 97, 99rad/s); vortex axes become dashed behind other objects; right column

shows instantaneous streamlines released from vortex axes coloured with axial velocity normalised with respect to v̄tip

(9.9, 9.9, 10.1, 10.3, 10.5m/s), black streamlines released along the wing edge, and transparent grey isosurfaces of Q = qv̄2
tip

where q ≈ 8.5 × 104m−2; positive axial direction points along an axis towards the end without a white dot



Appendix G

Navier-Stokes Equations for Flapping

Flight

Figure G.1: Coordinate systems defining wing position

By their nature, flapping wings rotate back and forth about a centre of rotation

in producing their flapping motion. This means that when the flow is viewed

with respect to the wing, we are looking at it in a rotating frame of reference

rather than an inertial (fixed) frame. In fact, such a frame of reference is not only

rotating, but is also accelerating due to the fact that flapping wings constantly

accelerate and decelerate. When viewing in a frame that rotates with a finite

angular velocity and angular acceleration, extra terms arise in the Navier-Stokes

equations which do not exist when viewing in an inertial frame. These extra terms

will be derived here, using the derivation of the equations of motion in a rotating
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frame of reference with a constant angular velocity (no angular acceleration)

given in Kundu & Cohen (2008), which has been extended here for a frame that

has a finite angular acceleration. Following this, expressions for these terms as a

function of instantaneous kinematic parameters will be derived.

First consider the set of coordinate systems in Figure G.1. This is the same

set of coordinate systems given in Figure 2.4 in § 2.1.2 (page 17), but with the

addition of another coordinate system x0, y0, z0. Here, the x0y0z0 frame rotates

about the ZI axis by the stroke angle φ, the xyz frame rotates about the −y0 axis

by the plunge angle θ, and lastly the xwywzw frame rotates about the −x axis by

the pitch angle α. The xwywzw frame is fixed to the wing, and thus is the frame in

which the equations of motion will be derived. In addition, all origins are placed

at the centre of rotation.

We first define a vector A in the xw, yw, zw frame:

A = Axwiw + Aywjw + Azwkw (G.1)

Taking the time derivative gives:

(Ȧ)I = Ȧxwiw + Ȧywjw + Ȧzwkw + Axwi̇w + Aywj̇w + Azwk̇w (G.2)

Here the subscript I denotes with respect to the inertial frame. The first half of

Equation G.2 (Ȧxwiw + Ȧywjw + Ȧzwkw) is equal to (Ȧ)w which is the rate of change of

vector A with respect to the rotating frame xwywzw (indicated by the subscript w).

As for the second half of Equation G.2, the derivatives of the unit direction vectors

are simply the cross products of the angular velocity vector of the xwywzw frame Ωw

with the respective unit direction vectors (ie i̇w = Ωw×iw). Thus, the second half of

Equation G.2 (Axwi̇w+Aywj̇w+Azwk̇w) is equal to AxwΩw×iw+AywΩw×jw+AzwΩw×kw

which itself is simply Ωw ×A. Therefore Equation G.2 becomes:

(Ȧ)I = (Ȧ)w +Ωw ×A (G.3)

Now substituting A with a position vector r, gives an expression relating the

velocity in an inertial frame to velocity in a frame rotating by the angular velocity

Ωw:
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(v)I = (v)w +Ωw × r (G.4)

The time derivative of (v)I can be obtained by substituting A with (v)I in

Equation G.3 to obtain:

( ˙(v)I)I = ( ˙(v)I)w +Ωw × (v)I (G.5)

Substituting in Equation G.4:

(a)I =
d
dt

((v)w +Ωw × r)w +Ωw × ((v)w +Ωw × r) (G.6)

(a)I = ˙(v)w + (Ω̇w)w × r +Ωw × (ṙ)w +Ωw × (v)w +Ωw × (Ωw × r) (G.7)

SubstitutingΩw into Equation G.3, we see that (Ω̇w)I = (Ω̇w)w (sinceΩw ×Ωw =

0), thus the rate of change of the angular velocity vector is the same whether it is

viewed in the rotating or inertial frame. Equation G.7 now becomes:

(a)I = (a)w + Ω̇w × r + 2Ωw × (v)w +Ωw × (Ωw × r) (G.8)

This is the final result. The first term (a)w is the acceleration in the rotating

frame, Ω̇w × r is the Euler acceleration, 2Ωw × (v)w is the coriolis acceleration and

Ωw × (Ωw × r) is the centripetal acceleration. We now want to include these terms

in the Navier-Stokes equation, which is given for an incompressible fluid below:

ρ
Dv
Dt

= −∇p + µ∇2v (G.9)

Substituting Equation G.8 into Equation G.9, and expanding the substantial

derivative Dv
Dt into its local and convective parts, we obtain the Navier-Stokes

equation in the rotating frame of reference xwywzw.
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dv
dt

+ v · ∇v = −
1
ρ
∇p + ν∇2v − Ω̇w × r − 2Ωw × v −Ωw × (Ωw × r) (G.10)

These new terms are the Euler acceleration −Ω̇w × r, the coriolis acceleration

−2Ωw × v, and the centrifugal acceleration −Ωw × (Ωw × r). It would be useful

to obtain expressions for these accelerations in the rotating frame as a function

of the instantaneous kinematic parameters (φ, φ̇, φ̈, θ, θ̇, θ̈, α, α̇, α̈), which will be

determined now.

First, the transformation matrices between subsequent frames will be deter-

mined, (let the xyz frame be denoted by the subscript 1):

T0/I =


cos(φ) sin(φ) 0

−sin(φ) cos(φ) 0

0 0 1

 (G.11)

T1/0 =


cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)

 (G.12)

Tw/1 =


1 0 0

0 −cos(α) sin(α)

0 −sin(α) −cos(α)

 (G.13)

We can now get the transformation matrices from the inertial and x0y0z0 frames

to the rotating frame xwywzw. First from the inertial:

Tw/I = Tw/1T1/0T0/I (G.14)
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Tw/I =



[cos(θ)cos(φ)] [cos(θ)sin(φ)] [sin(θ)]

[−sin(θ)cos(φ)sin(α)+ [−sin(θ)sin(φ)sin(α)+ [cos(θ)sin(α)]

+sin(φ)cos(α)] −cos(φ)cos(α)]

[sin(θ)cos(φ)cos(α)+ [sin(θ)sin(φ)cos(α)+ [−cos(θ)cos(α)]

+sin(φ)sin(α)] −cos(φ)sin(α)]


(G.15)

From the x0y0z0 frame:

Tw/0 = Tw/1T1/0 (G.16)

Tw/0 =


[cos(θ)] [0] [sin(θ)]

[−sin(θ)sin(α)] [−cos(α)] [cos(θ)sin(α)]

[sin(θ)cos(α)] [−sin(α)] [−cos(θ)cos(α)]

 (G.17)

Now define the angular velocity and angular acceleration vectors for all

frames:

Ω0 = φ̇kI (G.18)

Ω̇0 = φ̈kI (G.19)

Ω1 = φ̇kI − θ̇j0 (G.20)

Ω̇1 = φ̈kI − θ̈j0 − θ̇j̇0 (G.21)

PhD Thesis: Nathan D B Phillips
∣∣∣ 335



Appendix G: Navier-Stokes Equations for Flapping Flight 336

Ωw = φ̇kI − θ̇j0 − α̇i1 (G.22)

Ω̇w = φ̈kI − θ̈j0 − θ̇j̇0 − α̈i1 − α̇i̇1 (G.23)

Ultimately, we want Ωw and Ω̇w written in components in the xwywzw frame.

Equation G.22 can be obtained in this frame using transformation matrices Tw/I,Tw/0Tw/1:

Ωw = Tw/I


0

0

φ̇

 + Tw/0


0

−θ̇

0

 + Tw/1


−α̇

0

0

 (G.24)

Ωw =


[φ̇sin(θ) − α̇]

[φ̇cos(θ)sin(α) + θ̇cosα]

[−φ̇cos(θ)cos(α) + θ̇sinα]

 (G.25)

To obtain Ω̇w in the xwywzw frame we first need j̇0 and i̇1 in this frame. Starting

with j̇0:

j̇0 = Ω0 × j0 (G.26)

Notice that Ω0 = φ̇k0 since kI = k0, thus:

j̇0 = φ̇k0 × j0 = −φ̇i0 (G.27)

Converting to xwywzw frame:

j̇0 = Tw/0


−φ̇

0

0

 =


[−φ̇cosθ]

[φ̇sinθsinα]

[−φ̇sinθcosα]

 (G.28)

336
∣∣∣ PhD Thesis: Nathan D B Phillips



Appendix G: Navier-Stokes Equations for Flapping Flight 337

Now find i̇1:

i̇1 = Ω1 × i1 (G.29)

Inserting Equation G.20 into Equation G.29 and transforming it to the x1y1z1

frame (noting again that kI = k0):

i̇1 = (T1/0


0

−θ̇

φ̇

) × i1 = φ̇cosθj1 + θ̇k1 (G.30)

Converting to xwywzw frame:

i̇1 = Tw/1


0

φ̇cosθ

θ̇

 =


[0]

[−φ̇cos(θ)cos(α) + θ̇sin(α)]

[−φ̇cos(θ)sin(α) − θ̇cos(α)]

 (G.31)

Now Ω̇w can finally be obtained in the xwywzw frame by substituting in Equa-

tion G.28, Equation G.31, and the appropriate transformation matrices into Equa-

tion G.23 to obtain:

Ω̇w = Tw/I


0

0

φ̈

+Tw/0


0

−θ̈

0

+


[φ̇θ̇cosθ]

[−φ̇θ̇sinθsinα]

[φ̇θ̇sinθcosα]

+Tw/1


−α̈

0

0

+


[0]

[α̇(φ̇cos(θ)cos(α) − θ̇sin(α))]

[α̇(φ̇cos(θ)sin(α) + θ̇cos(α))]


(G.32)

Ω̇w =


[φ̈sin(θ) + φ̇θ̇cos(θ) − α̈]

[cos(α)(θ̈ + φ̇α̇cos(θ)) + sin(α)(φ̈cos(θ) − φ̇θ̇sin(θ) − θ̇α̇)]

[sin(α)(θ̈ + φ̇α̇cos(θ)) − cos(α)(φ̈cos(θ) − φ̇θ̇sin(θ) − θ̇α̇)]

 (G.33)

Using Equation G.25 and Equation G.33 in the following equations pro-

vides expressions for the euler, coriolis, and centrifugal accelerations denoted

as aeul, acor, acen f respectively:
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aeul = −Ω̇w × r (G.34)

acor = −2Ωw × v (G.35)

acen f = −Ωw × (Ωw × r) (G.36)

In summary, when viewing in a rotating frame of reference the Navier-Stokes

equations include three extra terms defining an Euler, Coriolis and centrifugal

acceleration, as given in Equation G.10. Equations G.25 and G.33 combined with

Equations G.34 - G.36 provide expressions for the Euler, Coriolis and centrifugal

accelerations as functions of instantaneous kinematic parameters.
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