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ABSTRACT

This thesis focuses on the analysis of iron oxides/hydroxides (ochre) for provenancing

purposes. It explores the composition of red and yellow ochres used by the Neolithic

Maltese through a series of carefully selected optical, structural and chemical methods.

These instrumental techniques are defined in an analytical methodology established for

this project through a series of pilot studies. A comparative study with ancient ochre

from Amarna supports the methodology adopted and outlines the limitations of the

sourcing method. Results from the analyses and subsequent statistical tests carried out

on data indicate that certain element ‘signatures’ strongly link the majority of the

Maltese archaeological pigments to local sources. These results therefore suggest that,

contrary to popular belief, the Maltese archipelago was the likely source for Neolithic

ochre. The study disproves the argument for contact with Europe based on ochre

trade, therefore indicating that biogeography stands as the most compelling argument

for the observed divergence from cultural habits during this Neolithic era.
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INTRODUCTION

Ochres are common, yet highly valued pigments and have been used for several

thousands of years by numerous ancient cultures across the continents (Herbst 2004).

Archaeological evidence clearly indicates that prehistoric man was attracted to the

pleasant tones and outstanding properties of these widely available earth colours,

which were predominantly extracted from local deposits. Ochres have, in fact, been

used for a broad range of purposes, including artistic, ceremonial and medicinal

purposes; as colouring materials, body paints, as food and wood preservatives, insect

repellents, in tanning processes for hides, for rituals and in funerary contexts (Helwig,

2007; Erlandson, 1999).

This study focuses on the provenancing of ancient ochres through material analysis.

Here the chemistry of these archaeological pigments is investigated with the aim of

giving supporting evidence that could corroborate and/or challenge current

archaeological debates regarding trade between countries. The main case study

investigated in this thesis explores the ochres used by the Neolithic Maltese as

embellishing and symbolic media during the Temple period. It aims to establish (1)

whether there are any possible sources of ochre on the Maltese islands; (2) whether

these sources can satisfy the provenancing postulate hypothesis, and therefore be

linked to the remaining prehistoric ochre, using a set analytical methodology; and (3)

potentially prove/disprove ochre as being the presupposed trade product which

definitively proved that exchange between neighbouring countries took place in

Neolithic times. This thesis also (4) looks at ancient pigments from the ephemeral
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Egyptian city of Amarna as a comparative study, which also serves to validate and

examine the limitations of the provenancing methodology used.

Chapter outline

The chapters in this thesis can be summarised in the following outline. Chapter 1

introduces ochres by describing their formation, their use as pigments throughout the

course of time, and their properties. This chapter also outlines the principles of

sourcing, and the provenancing postulate theory. Chapter 2 provides a description of

the geology and Neolithic/Temple period of the Maltese archipelago and therefore

focuses on giving an overview of the various aspects of the main case study of this

provenancing project. It gives a description of the iron-rich formations on the islands

and highlights the importance of this study by describing assumptions made involving

ochre and trade between the islands and mainland Europe in the Neolithic era. Chapter

3 focuses on establishing which characterisation methods are best for use in pigment

and ochre analysis.

Chapter 4 defines the methodology for characterising ochre, and presents a series of

pilot studies implemented for this purpose. It also describes the acquisition of the

Maltese geological and archaeological samples; as well as the Amarna samples, and

concludes by outlining the statistical methods employed in this provnenacing study.

The fifth and sixth chapters are the results and discussion chapters respectively.

Chapter 5 therefore underlines the results and data examination for both the Malta and

the Amarna projects through a series of descriptive and statistical operations; whereas

both Chapter 6 and the Conclusion show the implications of these observations.
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Chapter 1.

Ochres: Formation, composition and
properties
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1.1. An introduction to ochres

A wide variety of materials have arrested human attention throughout history because

of their visual characteristics and aesthetic appeal. Their exploitation for use as artistic

media has often preceded the discovery of and overall use as materials based on their

functional properties (Stafford, Frison et al., 2003). This concept is illustrated

exceptionally well through the iron oxides, namely the ores of hematite and goethite,

which have been used as ochre pigments for thousands of years (Marsden, 1990; Rapp,

2002).

The term “ochre” is derived from the Greek word ochros, meaning pale yellow. It

refers to a group of pigments containing a mixture of accessory and/or host phases, and

colouring components (Cornell and Schwetmann, 2003: 512). The amount of

accessory materials and/or host minerals associated with the natural ochre depends on

its source and degree of processing, with all the associated minerals affecting the final

tone of the pigment in question (Hradil, 2003). However, iron minerals, especially the

oxides and/or hydroxides, are the most important constituents of these ochres, as they

are the main colorant agents of these pigments. Their formation within rocks is

therefore considered to be important in providing an overall understanding to how

ochres form, and how these colouring materials are an overall product of their

surrounding environment; an association that is retained even after extraction.
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Figures 1-1a, b. Modern yellow ochre beds in Roussillon, France (Krijgsman, 2009)
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1.2. The formation of iron ores within rocks

Iron is the third most abundant cationic element on the earth’s crust after silicon and

aluminium. It is ubiquitous in nature, present in all rock groups, and is therefore

constantly channelled in varying forms and degrees of abundance into the global cycle

of elements (Maynard, 1983: 10). Iron constitutes about 5% of the earth’s upper crust,

but is rarely found as a free metal in nature as it readily combines with oxygen, sulphur

and other anions (Rapp, 2002: 139, 161). The most common iron ores are iron oxides

and, to a slightly lesser extent, iron hydroxides. Sources of these primary (hypogene)

ores can also be enriched, chiefly by metamorphism, and by precipitation, dissolution

and reprecipitation during rock weathering (Clout, 2006). The alteration stimulators

include pH, temperature and water activity; therefore different iron oxides may serve

as indicators of the type of environment in which they were formed (Cornell and

Schwertmann, 2003: 409).

1.2.1. Formation within igneous and metamorphic rocks

The presence of iron oxides in igneous and metamorphic rocks is of minor importance

as their occurrence within these rock formations is limited. Iron oxides fundamentally

form as decomposition and/or exsolution products from titomanetites (Fe-Ti oxides)

and ilmenites in magmatic rocks. Conversely, the iron-rich minerals in metamorphic

rocks are formed from metamorphised sedimentary iron-formations, metabasites,

aerobic clay rocks and metamorphosed manganiferous rocks (Cornell and

Schwertmann, 2003: 409-412)
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Eon Era Time-frame
Start
(mya)

Holocene 0.01

Pleistocene 1.64

Pliocene 5.2

Miocene 23.3

Oligocene 35.4

Eocene 56.5

C
en

o
zo

ic

Paleocene 65

Cretaceous 145.6

Jurassic 208

M
es

o-
zo

ic

Triassic 245

Permian 290

Carboniferous 362.5

Devonian 408.5

Silurian 439

Ordovician 510

Phanerozoic

P
a

le
o

zo
ic

Cambrian 570

Proterozoic 2500
Precambrian

Archaean 4000

Hadean 4600

Table 1-1. Earth’s geological time scale

1.2.2. Formation within sedimentary rocks

Sedimentary rocks are the principal sources of iron and contain both minor and major

amounts of Fe ores, with iron-rich sediments containing in excess of 15% Fe. A list of

the range of iron minerals present in sedimentary rocks is given on P.10. The

classification of iron-rich deposits is rather subjective and is also dependant on the

country’s geology. It is, however, generally agreed upon that red beds and

sedimentary iron ores nominally constitute the more important of the iron oxide

sediments (Cornell and Schwertmann, 2003: 412). The majority of these were formed

under marine conditions; consequently these rocks often include traces of marine

fossils (Tucker, 2001: 182).

Figure 1-2. Estimated
abundance of iron-formation
deposited through geological
time. Horizontal scale is non-
linear, approximately
logarithmic; range 0-10 tonnes
(from Edwards and Atkinson,

1986: 320)
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The red beds are fairly widespread and mostly belong to the late Palaeozoic, Early

Mesozoic and Late Cenozoic periods. They owe their remarkable red colour to the

presence of hematite, which is typically formed from the oxidation of magnetite

(Fe3O4), biotite (K(Mg, Fe)3AlSi3O10(F, OH)2), ilmenite (FeTiO3) and goethite (α-

FeOOH) (Cornell and Schwertmann 2003: 413). In the latter case, the transformation

appears to be diagenetic and favoured with increasing temperature and increasing

burial depth (Weibel and Grobety, 1999). Varying grain size of hematite also affects

colour, with an overall transformation from red to purple beds as the size of the

hematite crystals gets larger (Cornell and Schwertmann, 2003: 414). Goethite is also

one of the main iron-bearing minerals in red beds, and is abundant in younger deposits,

which have a distinctive yellow-brown appearance (Gualtieri and Venturelli, 1999)

There are two main groups of sedimentary iron ores, the early to middle Precambrian

iron formations and the Phanerozoic ironstones.

The iron formations or banded iron formations (BIF), are characterised by their regular

layered banding of iron minerals (>15%: usually hematite or magnetite), interbedded

with chert and/or quartz (Edwards and Atkinson, 1986: 316; Rapp, 2002: 72-73). The

banding may range from a few millimetres to several centimetres in thickness

(typically 0.5 – 3 cm thick), and examples of three recognised banding scales in

Western Australia are described in Edwards and Atkinson (1986: 322). The four

important BIF facies identified are summarised below.
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Facies Type Description

Oxide Most important, consists of gradations of hematite, magnetite and chert.
Carbonate may be present. Typically ~30-35% Fe in rocks. The simplest
and commonest BIF consists of alternating layers of hematite and chert

Carbonate Bands consist of chert, siderite or ankerite and sometimes sulphides. 25-
30% Fe

Silicate Layers of alternating iron silicates (greenalite, stilpnomelane, minnesotaite),
magnetite, siderite and chert. 25-30% Fe

Sulphide Chiefly pyritic (~37%), thinly banded with organic matter and carbon
constituting to about 7-8% of the formation.

Table 1-2. An overview of the identified facies in BIF (Evans 1993: 253)

A possible subdivision of the Precambrian BIF has been suggested for the iron

formations in North America. Though not satisfactorily fitting for other basins, they

have divided them into the Superior (/Lake Superior) and Algoma types; associated

with near-shore environments and volcanics respectively (Maynard, 1983: 9; Evans,

1993: 254). The itabirites are a further sub-class to the BIF, and are laminated,

metamorphosized, oxide-type BIF (Edwards and Atkinson, 1986: 317). Sometimes

‘itabirites’ is also used as another term used for BIF, along with jaspillite, hematite-

quartzite and specularite (Marsden, 1990: 50; Evans, 1993: 253). Another relatively

important sedimentary iron ore occurs in skarns, which are fundamentally a type of

Archean age gangue formation (Cornell and Schwertmann, 2003: 417). The great bulk

of the iron formations were laid down in a particularly short period of time of 600

years, approximately 2,500-1,900 million years ago (Maynard, 1983: 11; Evans, 1993:

253). It is assumed that their deposition resulted from the combined effect of

structural, geological and biological factors, as will be described later.
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Group Mineral Occurrence Formula and Description
Hematite Precambrian iron-formations

and Phanerozoic ironstones
α-Fe2O3

Thin red beds and laminae in the iron formations, also occurs as large, peloidal and
oolitic forms, associated with quartz and chert. In ironstones is present as ooids.

Oxides

Magnetite Common in Precambrian iron-
formations, found in
Phanerozoic ironstones

Fe3O4

Grey, interlaminated with chert in iron-formations, forms crystals or granules within
oolitic ironstones

Goethite Mesozoic and Phanerozoic iron
deposits

α-FeO.OH
Forms yellow-brown spherical ooids, also can occur with berthierine

Limonite Weathering product of, and thus
associated with, iron oxides

FeO.OH.nH2O
Poorly defined form of hydrated iron oxide. Contains goethite, other materials such as
clay and adsorbed water

Carbonate Siderite Major constituent of
Precambrian and Phanerozoic
iron deposits

FeCO3

Cement to many oolites, is common in non-marine, organic-rich mudrocks as crystals or
as nodules, yellow-brown

Silicates Berthierine In most Jurassic ironstones (Fe4
2+Al2)(Si2Al2)O10(OH)8

Occurs as ooids, flakes; commonly distorted, is a green, early diagenetic mineral
Chamosite Found in most Palaeozoic

ironstones
(Fe5

2+Al)(Si3Al)O10(OH)8

Forms from berthierine, similar structure, cemented by siderite or calcite
Greenalite Precambrian iron deposits Fe6

2+Si4O10(OH)8

Rounded to subangular green pellets, with little internal structure
Glauconite Form greensands, ancient and

modern
KMg(FeAl)(SiO3)6.3H2O
Green, pellets and aggregates up to 1mm diameter

Sulphides Pyrite Common in many iron-rich
sediments, but they rarely form
the major part

FeS2

Grains and cubic crystals, may form spherical aggregates (framboids), yellow crystals

Marcasite Rare, associated with pyrite FeS2

Dimorph of pyrite, forms nodules in chalk

Table 1-3. The common iron minerals in sedimentary rocks (adapted from Marsden, 1990: 48 and Tucker, 2001: 182-188)
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The second group of iron ores are the ironstones. These date back to the Phanerozoic

era and cover the time span between the Ordovican and Tertiary eras (Cornell and

Schwertmann, 2003: 417). The main minerals contained in these ores are usually

goethite, chamosite, hematite, berthierine and siderite, which, in contrast to the iron

formations, are intimately mixed. They also contain less SiO2 and more Al and P than

the BIF, and in places the chamosite has been observed to grade into kaolinite

(Maynard, 1983: 9, 20, 50). Ironstones are predominantly oolithic in character,

consisting of spheroids of Fe accumulations that suggest (an almost) concentric

precipitation of the iron and/or iron oxide, often around a detrital core (Cornell and

Schwertmann, 2003: 419). The oolith bodies are typically hardened, and are either

perfectly rounded, or encompass a slightly off-centre nucleus, which makes them

irregularly shaped. These are termed concentric- and eccentric-type ooliths

respectively (Maynard, 1983: 50). The ironstones are sometimes further sub-

categorized into Clinton and Minette types based on their internal constituents (Evans,

1993: 257; Clout, 2006).

1.2.3. Formation and transportation of iron

There are no modern analogues for the formation of iron-deposits; hence suggested

methods for formation and transportation of iron are purely hypothetical (Tucker,

2001: 182). Speculations suggest a combination of structural, geochemical and

biological factors, which include processes of continental weathering and volcanic-

hydrothermal activities, as explained below.
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The Lower Proterozoic was marked by a series of structural changes, which led to the

development of shallow intercontinental troughs and marginal basins that provided

numerous sites for the deposition of iron formations (Edwards and Atkinson, 1986:

317). The incipient iron is presumed to have originated from sub-aquatic volcanic

activity, or from continental landmasses, and was then carried to the sea through rivers.

Because of its low solubility in natural waters due to the pH and Eh ranges present, the

iron was transported as the highly insoluble ferric hydroxide [Fe(OH)3] either: (i) as a

colloidal suspension, stabilized in the presence of organic matter, or (ii) by adsorption

and chelation onto organic matter or (iii) by transportation on clay minerals, either as

part of the clay structure, or as oxide films on the surface of clays (Tucker, 2001: 182).

Although many queries still need to be resolved, it is believed that formation of the

principal iron minerals hematite and goethite involved the diagenetic transformation of

iron from its trivalent ferric state as Fe(OH)3 to its divalent, ferrous (Fe2+) form. This

process is to a large extent dependant on changes in the pH and the Eh of the surface

and diagenetic environments, the concentration and activity of carbonate and sulphide

ions in solution, and the presence of organic matter (Tucker, 2001: 182). The ferric

hydroxide precursor is stable at the higher pH levels under more oxidising conditions

such as those experienced in natural environments; whereas Fe2+ is stable under more

acidic and more reducing conditions. Organic matter considerably affects the Eh in

natural aqueous environments by promoting oxygen consumption by photosynthetic

bacteria. These subsequently create favourable oxidising conditions for the depositing

of the ferric (Fe3+) hydroxide.



13

The ensuing oxidation/reduction breakdown processes therefore result in the

precipitation of iron oxides and other iron minerals, which is strongly dependant on the

chemistry of the contiguous environment, the oxygen content and the water-sediment

depth. This scheme thus summarises the formation of the Precambrian iron

formations, which were formed by seasonal precipitation from sediments rich in

silicon, iron and organic matter at particular redox potentials and water depths. Here,

the metastable phases (such as ferrihydrite and chert) were converted to hematite by

bacterial action and diagenesis (Cornell and Schwertmann, 2003: 417).

Thermodynamic plots (Figure 1-3) suggest that hematite is the most likely mineral to

be formed (most stable) in a moderately to strongly oxidising environment and low

original organic content conditions; hence in shallow, well-oxygenated water (Edwards

and Atkinson 1986: 321).

Figure 1-3. Eh-pH
diagram for iron oxides
and iron ores. This shows
that hematite is stable in
moderately to strongly
oxidising environments,
whereas the other minerals
are stable in reducing
environments and are
dependant on the
concentrations of
carbonate and sulphide in
solution (from Tucker,
2001: 185)
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Environment Characteristic Phases

Oxic Hematite, goethite, MnO2-type minerals, no organic matter

Anoxic
1) Sulphidic Pyrite, marcasite, rhodochrosite, organic matter

2) Non-sulphidic
a. Post-oxic Glauconite, berthierine, no sulphide ores, minor organic matter (also

siderite, vivianite, rhodochrosite)

b. methanic Siderite, vivianite, rhodochrosite, earilier formed sulphide minerals,
organic matter

Table 1-4. Characteristic phases formed in early diagenetic environments

While goethite is formed directly from the dehydration of Fe(OH)3 by heating and/or

ageing (Maynard, 1983: 22), it can be seen that the formation of the ferrous minerals

pyrite, siderite and magnetite is strongly dependant on reducing conditions and on the

carbonate and sulphide ions present in solution. This implies that the minerals are

formed during early diagenesis where the Fe2+ is liberated by bacterial activity in the

sediment. A negative Eh also prevails in this environment, owing to bacterial

decomposition of the organic matter present, therefore promoting this reaction. The

ferrous minerals consequently form as follows (from Tucker, 2001: 185):

1) Pyrite (FeS2): Sulphate present in solution (common in seawater) is reduced by

bacteria present in sediments to H2S. This reacts with the liberated Fe2+ to form

metastable iron sulphides: mackinawite and greigite, which are eventually transformed

to pyrite during diagenesis. Pyrite can also form in association with the bacterial

reduction of sulphate in gypsum.

2) Siderite (FeCO3): Precipitates when high carbonate and low sulphate levels are

present (in a methanic environment). It is more common in non-marine sediments

which contain less sulphates.
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3) Magnetite (Fe3O4): Formed when carbonate and sulphide levels are low and with

negative Eh and neutral pH conditions. Since such an environment is rare, magnetite

precipitation in this manner is uncommon.

4) Iron silicate minerals: These include berthierine, chamosite, greenalite, glauconite;

precipitation is not completely understood, but could occur in reductive, post-oxic,

diagenetic environments.

These sedimentary iron ores may be further modified by both metamorphism when

exposed to high temperatures, and by oxidation and/or weathering when exposed to

atmospheric conditions (Maynard, 1983: 15). This results in the formation of a

“gossan” (aka “gozzan” or “iron-hat”: refer to Figure 1-4 below), an oxidised outcrop

iron ore deposit, a layer that is often used as an indicator of a buried ore deposit

(Cornell and Schwertmann, 2003: 420). Goethite in ironstones, for example, may have

resulted from the oxidation of siderite or other ferrous minerals on exposure to ambient

conditions (Equation 1-1 below), even from specular hematite through dissolution or

reprecipitation. Hematite, though generally a primary mineral, can also be

synsedimentary and be formed in berthierine after exposure of the grains to a more

oxidising environment (Tucker, 2001: 186).

Equation 1-1. The oxidation of siderite

4FeS2 + 15O2 + 10H2O→ 4FeOOH + 8H2SO4

The weathering of pyrite, resulting in the formation of goethite as a gossan.
Sulphuric acid also forms, termed “acid mine drainage”
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1.2.4. Supergene enrichment

It is assumed that the superior-quality ochre deposits form by a process known as

supergene enrichment of the iron orebodies, typically from the sedimentary iron

formations. The process involves the uplift and mobilization of gangue material (e.g.

silicates and silica) from the iron-rich sediments by means of hydrothermal solutions

(Maynard, 1983: 16), or by circulating and/or downward-moving ground waters via

basinal de-watering (Carney and Mienie, 2003; Clout, 2006).

Consequently soluble gangue material and lower-grade, porous iron minerals are

leached out of the iron formations and flushed through the regional stratigraphy (a

process intensified if the BIF is underlain by impervious formations), resulting in a

considerable enrichment in metal values. The ensuing voids are characteristically

filled by iron minerals, typically hematite, leaving a compact, purer, high grade iron-

rich sediment of low porosity (Evans, 1993: 39, 267; Clout, 2006). Other metals such

Gossan &
Oxidised ores

Water Table

Enriched ores

Primary ores

Supergene
enrichment

zone

Hypogene
zone

Oxidation
zone

Leached
zone

Figure 1-4. Overview
of the supergene
enrichment process
(adapted from Rapp,
2002: 177; Clout,
2006)
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as Cu, Ni, Co, Zn and Pb are also dissolved and usually co-precipitate with the Fe

compounds via isomorphous substitution (Oliveira, Imbernon et al., 1996). Over time,

voids would develop and overlying strata could collapse into these cavities, leaving the

enriched ore preserved in deep sinkholes (Carney and Mienie, 2003). Further

gradients in the redox potential, usually along continental shelves in shallower waters

stimulate the formation of ironstones. These ooids also require mobile Fe2+ ions as a

source of iron and are therefore said to be exclusively of supergene origin with foreign

elements present reflecting the growth environment (Cornell and Schwertmann, 2003:

418; Evans, 1993)

The essential conditions for the genesis of supergene iron ore involve:

1) Iron-rich deposits (e.g. BIF) as a source of iron and as a target for enrichment;

2) Imperpeable/poorly permeable beds e.g. shales, above and below iron-rich

deposits;

3) Suitable open structures, such as plunging synclines, together with deep-water

access through e.g. fracture zones to initiate the system of enrichment;

4) Suitable geochemical conditions, including exposure to the atmosphere;

5) Suitable electrochemical conditions to achieve desired redox potential gradients;

6) Stable tectonic conditions for extended periods of time (Morris, 1998).

Examples of BIF sites that experienced such enrichment processes have been

discussed in Evans (1993), and include the Hamersley Basin (Edwards and Atkinson,

1986: 326) and Mount Tom Price in Western Australia (Clout, 2006; Thorne, 2006),

Cerro Bolivar in Venezuela, with the richest Fe-source being the N4E Mine in the
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Carajas region of Brazil (Evans, 1993: 270). Another recognised mine for commercial-

scale exploitation of hematite is the Sishen Iron Ore Mine in Southern Africa, which

has been in use since 2,000 B.C. (Carney and Mienie, 2003). One of the largest iron

ore mines in the world (BIF: hematite and goethite) is Mount Whaleback in the Pilbara

district of Western Australia (Clout, 2006).

Many iron ore deposits are therefore residual deposits, which are subjected to further

weathering throughout the course of time. These weathering processes continually

remove the more soluble minerals within the formations, and the ferric iron oxides and

hydroxides remain as residual deposits. Ferric oxide content is said to be indicative of

the quality of these pigments and typically varies between 15 – 70 % (Helwig, 2007).

The main mineral within these more recent deposits is most often goethite, FeOOH,

which was probably the first iron ore to be exploited as ochre (Rapp, 2002: 55).

Ochres have been used abundantly by mankind throughout the course of time. There

are relatively few ochre beds specially recommended as sources in historical records,

yet existing evidence indicates probable trading of iron oxide pigments between

ancient groups, undoubtedly because certain high-quality red ochres were especially

valued by these peoples (Scott and Hyder, 1993; Rapp, 2002: 162). Both

archaeological and ethnographic data also suggest that high-quality red ochres were

quarried systematically at a limited number of discrete regions because these peoples

were conscious of the superiority of certain ochres and thus sought out particular

varieties for their specific characteristics (Rapp, 2002: 199).



19

1.3. Use of ochre throughout history

“Prehistory has produced evidence for two meaningful regularities in human

evolution: tool making and the collection and use of ochre” (Wreschner, 1980: 631)

Ochre has played an important role in early human activities, having been used for

several thousands of years by peoples all over the world. Though its frequency of use

was never consistent, it is a recurring archaeological theme, with a transcultural

character of exploitation that has remained relatively consistent throughout the course

of time. The mineral pigment was used in social and cultural activities, as a material

that infused the dull surfaces it was applied to with a colourful, visual appeal. Ochre is

therefore associated with cultural expression through its use in the art, customs, rituals,

magic, symbolic behaviour and the religious beliefs of man from the Upper

Palaeolithic through to the contemporary world and present day (Taçon, 2004: 37).

Figure 1-5. Possible uses of ochre (adapted from Boivin 2004)

Although it is debatable as to whether ochre associated with the lower Palaeolithic

actually implied use, the earliest possible evidence for ochre exploitation is thought to

be at Olduvai in a context dating from more than 498,000 B.C. (Rapp, 2002: 199).

Ochre, colour: visual impact,
infusion with power

Body paints. Indicative of status, part of ritual ceremonies,
societies / tribes, enhanced attraction to possible mates

Art: Mural painting, embellishing of wares- form
of artistic expression and creativity

Burial practices: symbolism,
“blood-like”, rebirth/afterlife

Other symbolic/
metaphorical qualities:
fertility, gender, role

definition, age,
puberty, embodiment

of supernatural powers
Use as a medicinal

product
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Prehistoric man was undoubtedly attracted to the iron ore it for its colour, and

collected and transported it for use over large distances (Wreschner, 1980; Helwig,

2007: 47). The discoveries at the site of la Chapelle aux Saints in France indicate that

ochre must have played an important role in burial customs for the Neanderthal man.

Several pieces of the mineral were found in a grave dating back to the Mousterian

culture (c.70,000 – 40,000 B.C.), which also contained many funerary items, therefore

probably having a key role in the man’s survival in an afterlife (Schmandt-Besserat,

1980: 128). It also appears that pieces of ochre were collected and prepared by

deliberate shaping of the ends for use as ‘pencils’ or ‘crayons’ for a facilitated

application of colour directly onto a surface. The ochre ‘crayons’, some found with

worn out tips marking unquestionable evidence of use, ranged from red to yellow to

red-brown, possibly also indicating colour manipulation through heating of the

mineral; an impressive achievement so early on in the history of mankind (Wreschner,

1976; Tacon, 2004: 32).

Event timeline Culture Period B.C.

Middle Palaeolithic Mousterian (Neanderthal man) 70,000 – 40,000

Châtelperronian 40,000 – 29,000
Aurignacian 29,000 – 22,000

Gravettian 22,000 – 18,000

Solutrean 18, 000 – 15,000

Upper Palaeolithic

Magdalenian 15,000 – 10,000

Epipalaeolithic/Mesolithic 12,000 – 8000

Pre-Pottery Neolithic A (PPNA) 10000 – 8500
Pre-Pottery Neolithic B (PPNB) 8500 – 6500

Neolithic

Pottery Neolithic (PN) 6500 – 3500

Table 1-5. Stone age timeline (adapted from Schmandt-Besserat, 1980)
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Although it is still uncertain as to why ochre was considered to be an important

material for survival in life after death, it is generally thought that the intense red

colour symbolised blood, the analogy of life; possibly rebirth and a continued

existence in this or another world (Stafford, Frison et al., 2003; Tilley, 2004: 140).

This supposition is especially favoured as red ochre was preferred over the yellow

equivalent of the pigment, and because the red colour was often used in connection

with fertility symbols deposited with the dead in the Palaeolithic (Wreschner, 1976;

Vassallo, 2007). Although ochre was not ubiquitous amongst grave goods in all

burials, the material has been found in fifteen other sites reminiscent of this

Mousterian culture (Wreschner, 1980; Schmandt-Besserat, 1980: 128). As in Terra

Amata, the proof that the ochre fragments were used as colouring media is evidenced

by the worn/smooth and/or pointed or shaped ends. Other ochre pieces bear traces of

having been scratched into with pointed tools, undoubtedly for exploitation of the

extracted powder as a pigment, as shown in Figure 1-6 (Hovers, Ilani et al., 2003).

The earliest phase of the Upper Palaeolithic, the Châtelperronian period in Europe (c.

40,000 – 29,000 B.C.) indicated that ochre began to play a predominant role in human

society, where it was extensively used in burials and rituals, and in human settlements.

Evidence also shows effort put into pigment preparation (such as at the site of Arcy-

sur-Cure near Paris), with traces of ochre visible on slabs and pestles indicating

grinding. Further preparation is observed in ochre found associated with hearths and

camp fires, implying calcination for colour manipulation (see later). Other discoveries

include the apparent development of palettes for colour mixing, and balls of ochre

containing and/or intermixed with flint or bone (Schmandt-Besserat, 1980: 129-130).
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Figures 1-6 a-c. Two views of an ochre piece from Qafzeh Cave showing striations indicative
of heavy scraping off the lump (Hovers, Ilani et al., 2003), and a grinding stone from Slovenian
Late Paleolithic sites (Ciganska jama, Lukenjska jama) indicating pigment preparation (from

Petru, 2006): size not given

Figures 1-7 a-c. Red ochre found in graves of three infants uncovered just over two years ago
in the ~27,000 B.C. Stone Age camp of Krems-Wachtberg in Lower Austria. Scale rules

marked in 5 cm (a, b) and 1 cm (c) (Einwögerer, Friesinger et al., 2006)

The earliest definite intended use of ochre in the first type of figurative art, namely in

rock-art paintings, was experienced with the Aurignacian culture (29,000 – 22,000

B.C.), the period in which the presence of the Homo sapiens is fully attested. Famous

examples include those at the sites of La Ferrassie and Abri Castanet, and the first

human representations appear later in the Gravettian culture (c. 22,000 – 18,000),

which also shows an abundance of ochre associated with Upper Palaeolithic burials

extending from England, through Europe, all the way to Russia (Schmandt-Besserat,

1980: 131-133).
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Although there appears to have been a decrease in the use of ochre associated with the

Solutrean culture between 18,000 – 15,000 B.C., the Magdalenian period (15,000 –

10,000 B.C.) saw the culmination of the mastery of use of this pigment by Palaeolithic

man. This is especially evident in the caves at Lascaux (France) and Altamira (Spain),

with impressive animal representations of horses, bison and cattle, painted in a wide

range of colours including blacks, yellows, yellow-browns, browns, and various

intensities of reds. The wall paintings realise astounding effects through the

naturalistic depictions and intense, expertly applied colour (Hradil, Grygara et al.,

2003).

Figures 1-8 a, b. A cave painting in Lascaux, France (c 15,000 BC) and another in the
vicinity of the village of Vallon - Pont-d'Arc in southern France (Lewis, 1995; Davis, 2004)

Ochre use in Europe predated use of the pigment anywhere else across the globe, and

use in Australia, for example, dates back to at least 63,000 to 41,000 B.C. at sites

including Malakunanja II, Nauwalabila in Laladu National Park and in western New

South Wales, where the pigment was used as ‘crayons’ and in burial practices (Taçon,

2004: 32). The Levantine North African contemporaries of the upper Palaeolithic also

used red pigments, albeit on a much smaller scale. In sharp contrast, the Natufians (the

original black Africans of Israel) were more sedentary; resulting in the introduction of
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novel activities, and painting in ochre appears to have been one of them (Weinstein-

Evron and Ilani, 1994). Red ochre once again appears to have been used in burials,

with lumps, painted skulls and even painted plaster flooring unearthed in certain burial

pits found associated with these cultures (Wreschner, 1980).

Period Location Use

298,000 – 228,000
B.C.

Terra Amata, near Nice, France
(Schmandt-Besserat, 1980), and from
the Lare Acheulican sites of Ambrona

Earliest evidence of use in
Europe

Paleolithic period
Before 10,000 B.C.

Chumash Indians of California
Chinese and Japanese graves
(Robinson, 2004), Egypt

Neolithic Period
Start 10,000 B.C.

Catal Hüyük, Turkey (Schmandt-
Besserat, 1980), China and Japan

Unified Silla period
~668 – 935 A.D.

Korea (Winter, 1989)

Extensive use for artistic, burial
and ritual purposes: quite well
documented.
Red ochre was commonly used to
colour skeletons, sometimes
cinnabar was applied to the
skulls.

Ayurvedic period
~ 520 B.C.

India (Ray, 1956)
Synthetic production in the
context of medicinal materials

Roman Empire
510 B.C. – 476 A.D.

E.g. Pompeii, Italy
Red earth most commonly used
red pigment for wall decorations

Middle ages to
today
Start ~500 A.D.

Worldwide, particularly mentioned in
treatises for Italian artists (Theophilus,
Cennini)

Typically used for flesh tones,
preparatory drawings in frescoes,
as base colours, in mordants and
in bole for water gilding.
Also synthetically produced from
iron for enamel and glass décor

Table 1-6. History of use of ochre pigments (from Helwig, 2007: 46-52)

In the Neolithic period, which started in Europe c. 8000 B.C., ochre was clearly

regarded as a popular, prominent colouring material, and was applied in vast

quantities. It was has also been found in cosmetic sets of many women’s graves, either

as compressed pigment in shells or mixed with fat for use as rouge. This period saw

workshops designated to pigment preparation by grinding and storing in cake-like
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lumps, as seen in the prehistoric towns of Beidha (Jordan, 7,200 – 6,500 B.C.) and Ali

Kosh (Iran, 6600 to 6000 B.C.).

Ochre continued to dominate in pigment use for mural painting and pottery decorations

throughout history as is summarised in Table 1-6. These iron ores, were, however,

only the start to the discovery of a whole new world of pigments which were exploited

by our predecessors to varying extents and at various periods throughout the course of

time. Ochre nevertheless remains an “index fossil” for evolution (Wreschner, 1976),

being a direct, remaining record of human development and an abstract representation

of behaviour.

1.3.1. Other Pigments commonly associated with Ochre

Analysis of finds and documentation in artists’ manuals has shown that ochres have

been used in conjunction with certain other pigment varieties, either for certain

ritualistic purposes, or merely to imitate some other colour. The more important

pigments are listed below:

 Cinnabar – is the native form of red mercury (II) sulphide (HgS). This pigment has

been used with red ochre in various Paleolithic and Neolithic tombs in Turkey,

Korea, Japan and China to colour skeletons – sometimes cinnabar was used to

colour the head, whereas the ochre was used to cover the rest of the body (Helwig,

2007: 47). Mercuric sulphide has also been used in association with the ochres by

the Egyptians, but only after the seventh century B.C. (Colinart, Delange et al.,

1996). It has also been interchanged with red ochre by Roman artists, though the

ochre was preferred because of its lower cost and higher stability.
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 Jarosite KFe3(SO4)2(OH)6 and natrojarosite (with Na substituting the K), a yellow

pigment commonly found in Egyptian wall paintings, is naturally occurring and at

times used as an ochre substitute as the colours are similar.

 The earliest significant exploitation of galena (PbS) in North America occurred in

the 2nd millennium B.C. where small pieces were placed in burials together with red

ochre (Rapp 2002: 174).

 Vermillion is also mercury (II) sulphide, but a synthetic variety. It has been

recommended as a chief component for flesh tones (with lime and red earth) in

Thompson’s (1960) artist’s manual.

 Red Lead – Lead (II,IV)-oxide, or minium - is found mixed with red ochre in murals

in the Mogao grottoes near Dunhuang, China. It has also been recorded by Pliny to

have been used in conjunction with the ochre to produce sandyx/syricum, a cheaper

cinnabar-like colour which could be used on classical frescoes without any colour

alteration.

1.3.2. Painting in ancient Egypt

The artistic capabilities of the ancient Egyptians have always been well recognised.

Their skill is represented in the vast majority of their remaining art works; which show

an outstanding degree of creativity (Petrie, 1996: 9).

Though the most characteristic form of art pertaining to the ancient Egyptians is

exhibited by their stonework, these peoples also strove to embellish surfaces through

the application of pigments (James, 1979: 188). It is suspected that painting was the

earliest form of art in Egypt (Lucas and Harris, 1999: 338; Petrie, 1996: 55). This
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form of art is particularly well represented from the Dynastic period, and was used

extensively to decorate papyri, plaster, leather, pottery, stone, wood and sometimes

linen (James, 1979: 204-205). The later eighteenth and nineteenth Dynasties are

moreover popularly described as the ‘age of the art’, as they indicate a flourishing in

painting techniques. This was observed in several remaining eighteenth Dynasty

paintings (James, 1979: 206) and described, for example, by Flanders Petrie (1894) in

the palace and temple of the ancient city of Amarna (Petrie, 1996: 18).

The pigments exploited by these Egyptian artists included a wide range of naturally

sourced and artificially prepared colours which have been outlined in the table below.

Both pigments and painting techniques showed the remarkable acuity and knowledge

these peoples had about materials and their properties (Lucas and Harris, 1999: 133,

352; Davies, 2001: 22-24; James, 1979: 205).

Colour Pigment (and chemical formula)

Black Carbon black/soot/charcoal (C), bone black (Ca3[PO4]2 + CaCO3 +C), pyrolusite
(MnO2)

White Calcite (CaCO3), gypsum (CaSO4.2H2O), huntite (CaMg3[CO3]4)

Yellow Yellow ochre (FeOOH), orpiment (As2S3), massicot (PbO), jarosite
(KFe3[OH]6[SO4]2), natrojarosite (NaFe3[OH]6[SO4]2) and organic yellows

Red Red ochre (Fe2O3), red lead (Pb3O4)

Blue Azurite (2 CuCO3 . Cu[OH]2), Egyptian blue (frit- CaCuSi4O10)

Brown Ochre (Fe2O3 / FeOOH)

Green Malachite (2 CuCO3 . Cu[OH]2), Egyptian green (frit- CaCuSi4O10 + vegetable
yellow)

Table 1-7. A summary of the pigments used in ancient Egypt (adapted from Lucas and Harris,
1999; Davies, 2001)
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The ancient city of Amarna: a historical overview

Amarna, sometimes also (incorrectly) referred to as Tell el-Amarna, is the name given

to an extensive archaeological site that represents the remains of an ephemeral capital

city constructed and abandoned within about fifteen years in the eighteenth Dynasty by

King Akhenaten,; approximately between 1347 and 1332 BC. It is located on the

eastern bank of the Nile, approximately 200 km south of Cairo; roughly halfway

between Cairo and Luxor (or Memphis and Thebes) at the border of Middle and Upper

Egypt (Redford, 1992).

The surviving remains of site serve as an ideal reference to the study of this brief

Amarna period, therefore also providing a good insight into this particular timeframe

of the history of Egyptian civilisation. It was also considered as a complementary case

to this project owing to its definite start and end date, implying that all materials found

at the site were representative of the eighteenth dynasty. Excavations following

discovery started in 1891 by W. M. Flinders Petrie, and several teams have continued

to excavate, survey and study this unique site ever since (Kemp, Garfi et al., 1993;

Petrie, 1894; Nicholson, 2007). The paintings in particular, have been described as

“…the most complete and striking remains found in the present excavations” (Petrie,

1894: 12). Amarna is known to hold amongst the most beautiful examples of mural

paintings on clay plaster in both the palaces of the king as well as in private houses

(Lucas and Harris, 1999: 354).
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1.4. Properties and preparation techniques of ochre

The preparation and application of pigments is considered to be a rather complicated

process, and has been regarded as a greater achievement of prehistoric peoples than

tool making (Wreschner, 1976). The outline below substantiates this by describing all

the methods involved from sourcing of the ore to application of the pigment.

Figure 1-9. Outline of pigment production from natural ochre

1.4.1. Ochre production: Extraction and processing

Though little is known about the procurement of ochre by ancient peoples, historical

sources mention the mines in Athens and other mainland sites in Greece, particularly

in Attica (Wilson, 2006: 166) and Analfi (Vaughn, Grados et al., 2007). The red ochre

from the island of Ceos, Greece, was exported as early as the 4th century B.C. and this

apparently significant site is also mentioned by Theophrastus (Caley and Richards,

1956). Hematite was also mined in the Chalchihuites area in Zacatecas, Mexico,

around 200 – 500 A.D. (Rapp, 2002: 59). Roman writers describe Egypt as being a

source of high-quality red earth (Colinart, Delange et al., 1996, Lucas and Harris,

1999), whist the documented sources of ochre quarried by the Native Americans in the

US include the Sunrise Mine in Wyoming and the Red Rock Quarry in California

(Tankersley, Tankersley et al., 1995; Stafford, Frison et al., 2003).

(1i) Sourcing

(1ii) Selection

(1iii) Extraction

(3ii) Binder addition

(3i) Water addition

(2i) Firing

(2ii) Pulverisation

(2iii) Collection
3. Conversion into paint of

desired viscosity

4. Application

2. Pigment processing

1. Ore
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Certain iron-based pigments appear to have been processed to some extent following

extraction (Chalmin, Menu et al., 2003). Ochres were ground on quartz cobbles to

improve the grain size, for example. It is also thought that minerals such as biotite and

feldspar were intentionally mixed with the pigments, and that different recipes were

used at different times by prehistoric peoples (Clottes, Menu et al., 1990).

Ethnographic evidence also suggests that the Chumash Indians of California

distinguished between the varieties of red earth, giving each type a specific name and

use (Helwig, 2007: 68).

Colour manipulation through heating was practiced as early as 298,000 B.C.

(mentioned previously), showing the advancement of these peoples. The method of

synthetic ochre production involved the irreversible process of calcination, or heating,

of raw yellow earth to produce a range of hues, such as orange, red, brown and mid-

tones of these colours. This process involved the dehydroxylation of hydrated iron

oxides to the oxide, with the final colour being dependant on the original material, the

temperatures and/or the duration of the heat treatment involved. Even the hematite-

based ochres were at times roasted to produce more intense red hues, as was observed

from the remains in the Châtelperronian site at Arcy-sur-Cure (Schmandt-Besserat,

1980: 129).

2FeOOH (s) Fe2O3 (s) + H2O (g)
Iron hydroxide (goethite) Iron oxide (hematite) Water of
Yellow/yellow-brown Red/brown hydration

Equation 1-2. The calcination of iron hydroxide

Heat (260-300°C)

Dehydroxylation
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Calcination of the iron ores remained and probably still is the most popular technique

employed for synthetic red ochre production throughout the course of time, even

though several other methods were developed. The calcination of iron sulphates to

temperatures between 500°C and 750°C, for example, was another technique that was

practiced, and dates back to the end of the Five Dynasties (960 A.D.) in China

(Helwig, 2007: 47). This technique was later described by Theopharastus, and

eventually by Vitruvius and Pliny, and is referred to as colcothar by various medieval

craftsmen and alchemists (Hawthorne and Smith, 1979). By the early sixteenth

century, the red oxide product was also generally known as burnt vitriol (Thompson,

1936). From around the fifth or sixth millennium B.C., raw ochres were also reduced

to a black pigment by briefly heating vessels, to which a layer of ochre had been

applied, at 800°C in a sealed kiln/furnace. This reduction technique was particularly

important in Mesopotamia and Minoan Crete.

Methods for producing synthetic medicinal iron oxides by roasting iron filings with

various salts were known in India from early times, even dating back to the Ayurvedic

period c.600 B.C. – 800 A..D. Seventeenth and eighteenth century alchemical treatises

and writings on enamel and glass also describe a related artificial iron oxide, referred

to as croccis martis, made by intentionally oxidizing metallic iron or steel. Synthesis

by solid state transformation through the heating of iron ores and/or iron salts (such as

iron sulphates FeSO4.7H2O, iron chlorides FeCl2 and FeCl3, iron hydroxides FeOOH,

iron carbonate, Fe2CO3 and magnetite) in an oxidizing atmosphere probably remains

one of the most practised methods of synthetic ochre production (Helwig, 2007: 49).
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1.4.2. Application

The methods employed in prehistory to enable the adhesion of a pigment to a surface

include 1) fluid application by means of the combination of a solvent and/or a binder

to the material; 2) through the utilisation of ochre with a high proportion of clay in its

composition, 3) by the preparation of a pigment with an extremely fine grain size. The

latter form was achieved by thoroughly grinding the pigment as no evidence for other

methods, such as levigation (a process which involves the suspension of ochre grains

in a water-filled vessel) has been found to date. It is assumed that the pigment

particles were fine enough to stain the walls by infusing themselves into the pores of

the rock (Stafford, Frison et al., 2003).

A fluid paint generally consists of two to three components, namely the colouring

material, which in this case would be the ochre; a solvent/dispersant, typically a liquid

which has the ability to disperse the pigment particles making the colour easier to

apply and manipulate; and the binding medium, a component which binds the pigment

particles together and to a surface, thus allowing both cohesion and adhesion. In the

case of natural ochres, the proportion of clayey matter in the composition of the

pigment is sometimes high enough to act as a binder, which explains the exploitation

of the ochre pieces as ‘crayons’, and why in some cases it is suspected that the ochre

was merely mixed with a solvent, such as water, to ease application. Nevertheless, it is

suspected that sometimes urine, fat, vegetal matter/juices and blood were also added to

the paint mixture, though few traces of these organic materials have survived

environmental degradation since prehistoric times (Wreschner, 1976). An example of

burned vegetal matter combined with red ochre was identified among pigments found
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at Herod’s palace in Jericho (Rapp, 2002: 212). Taçon (2004: 33-34) also forms

interesting, and possibly quite apt parallels between ochre exploitation by the

aboriginals in Aurstralia to its use by our ancestors in prehistory. Several extracts

quoted in his text describe how red and/or yellow ochre was mixed with fat and

daubed over bodies for self adornment, and how the said mineral was ground, mixed

with a fluid, characteristically water, and sometimes also the binding agents saliva or

blood for use in artistic depictions.

It is assumed that various methods of application depended on the material to be

embellished with ochre, as well as on the time period involved and the ensuing

preferred technique by the cultures in question. Some other simple methods appeared

to entail blowing the pigment onto the wall through a tube, as well as finger painting

using the ochre-solvent-medium mix to trace outlines onto a surface. Other scenarios

saw people using makeshift brushes, which were made out of fibrous or vegetal

material, such as a pad of moss; out of tufts of animal hair or by using the shredded

end of a reed (Rogers and Rogers, 1985: 29-31).

1.4.3. Structure, substitutions and transformations

Whether naturally occurring or manufactured synthetically, the colour of ochre is

characteristically a product of its constituent iron oxides/hydroxides. Though fourteen

iron oxides, oxide hydroxides and hydroxides have been identified to date (Table 1-8

below); goethite (α-FeOOH: iron hydroxide) and hematite (α-Fe2O3: iron oxide) are

the most thermodynamically stable under aerobic conditions (Carbone, Benedetto et

al., 2005; Mazeina and Navrotsky, 2007). They are therefore the most widespread in
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nature and are the iron mineral varieties customarily found in ochre pigments. Other

phases may also be present, and include the minerals lepidocrocite and magnetite

(Eastaugh, Walsh et al., 2004: 363).

Hydroxides/oxyhydroxides Oxides
Formula Mineral Formula Mineral

1 α-FeOOH Goethite 5 Fe5HO8. 4H2O Ferrihydrite
2 β-FeOOH Akaganéite 6 α-Fe2O3 Hematite
3 γ-FeOOH Lepidocrocite 7 γ-Fe2O3 Maghemite
4 δ’-FeOOH Feroxyhyte 8 Fe3O4 Magnetite
9 Fe(OH)2 12 FeO Wüstite

10 FeOOH High-pressure 13 β-Fe2O3

11 Fe(OH)3.nH2O Bernalite 14 ε-Fe2O3

Salts
Oxy-hydroxy salts Hydroxy salts

15
Fe16O16(OH)y(SO4)z.
n H2O

Schwertmannite 17 FeII, III Green Rusts

16 Oxyhydroxy nitrate

Table 1-8. Iron oxides, oxyhydroxides and salts known to date (Schwetmann and Cornell,
2003)

The structures of the two iron hydroxides/oxides goethite and hematite are very

similar: both have hexagonal close-packed structures and are termed alpha phases.

The close structural relationship suggests a topotactic transformation in which the

oxygen sub-lattice is preserved. The stability of the two minerals is controlled by

thermodynamics with transformation being affected by pressure, relative humidity,

temperature and grain size (Goss, 1987).

The structure of goethite is based on an arrangement of O atoms in an orthorhombic

unit cell: a = 0.9956 nm, b = 0.30215 nm, c = 0.4608 nm (Cornell and Schwertmann,

2003). The Fe(III) atoms are arranged in two rows to form double chains of octahedra

alternating with double chains of vacant sites, ultimately leading to the orthorhombic

symmetry. The chains run the length of the c-axis in the b–c plane (Helwig, 2007: 59).
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All the bonds within the double chains are covalent with each octahedron sharing four

of its edges with neighbouring octahedra, whereas all the bonds between these chains

consist of relatively weak hydrogen bonds (Frost, Ding et al. 2003). Goethite has a

number of polymorphs, namely lepidocrocite (γ-FeOOH) and akaganéite (β-FeOOH).

Hematite has a hexagonal unit cell (a = 0.5034, c = 1.375), although it is sometimes

described as belonging to the rhombohedral crystal system. While in goethite half the

octahedral interstices are filled with Fe3+, in hematite two thirds are filled. The

framework of hematite is regarded as a set of O and Fe layers, arranged normal to the

threefold axis (Gualtieri and Venturelli, 1999).

These natural iron oxides/hydroxides also have the tendency to exhibit isomorphous

substitution of the ferric ion by other cations and are often referred to as “sinks” for

trace and heavy metals which tend to substitute for Fe on the octahedral sites (Wells,

Fitzpatrick et al., 2006). Al is the most common substitution cation in both goethite

and hematite (Friedel and Schwertmann, 1996), and small amounts of transition metals

and trace elements including Ni, Co, Cr, Ga, V, Sc, Ge, Mn, Cu, Zn, Cd and Pb are

also reported to associate with natural and synthetic goethite (Wells, Fitzpatrick et al.,

2006). Cr, Mn, Rh, Ga, In, Nd, Ni, Cu, Ge, Sn, Si and Ti are noted as substitution

metal ions in hematite (Cornell and Schwertmann, 2003: 47). This partial cation

substitution also results in colour variation, resulting in pigment shades which may

range from yellow through to brown and purple (Helwig, 2007: 39).

The effect of aluminium, the most frequent element that substitutes for Fe, on the unit

cell parameters of goethite and hematite is given as illustrated in the tables below
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(Grave, Bowen et al., 1982; Amarasiriwardena, DeGrave et al., 1986; Friedel and

Schwertmann, 1996; van-San, Grave et al., 2001; Vandenberghe, San et al., 2001;

Wells, Fitzpatrick et al., 2006; Alvarez, Rueda et al., 2007).

Goethite Unit cell parameters (nm)
a b c

Mean 0.4634 0.9945 0.3021
Mean Unit cell volume Å3 138.67
Al-substituted goethite a b c
2.1 Mol.% 0.4635 0.9921 0.3012
3.0 Mol.% 0.4609 0.9930 0.3015
3.8 Mol.% 0.4632 0.9910 0.3011
4.6 Mol.% 0.4617 0.9913 0.3010

Hematite a c
Mean value 0.5036 1.3760
Mean Unit cell volume Å3 302.235
Al-substituted hematite a c
5 Mol.% 0.5023 1.3732
10 Mol.% 0.5016 1.3716
15 Mol.% 0.5011 1.3720
20 Mol.% 0.5008 1.3692

Tables 1-9a,b. The effects structural Al on the unit-cell parameters at various molar
concentrations with respect to the non-substituted Fe oxide for goethite and hematite

Thermal transformations involving the dehydroxylation of goethite to hematite occurs

after natural and managed thermal transformations when the iron hydroxide is

subjected to heat or mechanical stress (Ruan and Gilkes, 1995). Understanding this

transformation is of importance in the study of colorants used in antiquity, primarily

because calcination was used by ancient peoples to modify the colour of their iron

oxide/hydroxide-based pigments (Pomies, Menu et al., 1999; Chalmin, Vignaud et al.,

2004). Appreciating changes experienced by the ochre following this thermal

treatment is important to assert that the material does not experience any change in

elemental composition that could potentially affect the accuracy of this provenancing

project.
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When heated, hydroxo-bonds are therefore replaced by oxo-bonds and face sharing

between octahedral (absent in FeOOH structures) develops and leads to a denser

structure: The (100), (010) and (001) directions in goethite become the (001), (110)

and (111) directions in the trigonal haematite cell (Özdemir and Dunlop, 2005). As

only one half of the interstices are filled with cations, some movement of Fe atoms

during the transformation is required to achieve the two thirds occupancy found in

hematite (Frost, Ding et al., 2003).

The goethite-hematite phase transformation has been widely investigated and several

structural relationships and mechanisms of solid-state transformation of goethite to

hematite have been suggested, with many points remaining unclear and debated.

(Watari, Delavignette et al., 1983; Goss, 1987; Wolska and Schwertmann, 1989;

Gualtieri and Venturelli, 1999; Walter, Buxbaum et al., 2001; Cornell and

Schwertmann, 2003: 369). Relatively recent thermal kinetic studies carried out by

Gualtieri and Venturelli, (1999) and Fan, Song et al. (2006) have carefully investigated

microstructural changes and the transformation kinetics of synthetic goethite. The

results have suggested that the dehydration of goethite during calcination involves a

three-dimensional diffusion process which does not appear to involve any alteration in

composition, apart from the observed dehydration, which is described below.

Since iron oxides are known to have a particularly high affinity for water, adsorbing up

to one mole of excess water per mole of iron oxide (Mazeina and Navrotsky, 2007),

the initial dehydration process therefore involved loss of surface water (Fan, Song et

al., 2006). The next phase, beginning at approximately 473 K, involved the formation
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of non-stoichiometric hematite, which was described as the intermediate

“protohematite” Fe2-x/3(OH)xO3-x, in certain publications (Wolska and Schwertmann,

1989).

Fan, Song et al. (2006) observed the formation of hematite on the surfaces of goethite,

which started preferentially in areas with a large surface-are-to-volume ratio, such as

edges. Other observations included the delay of further oxidation by this hematite

‘film’, which appeared to act as a protective layer to the enclosed goethite.

The dissociative water was then produced through further diffusion of hydrogen or

hydroxyl groups at a relatively high temperature, making the rate-determining step an

interface reaction process and not long-range diffusion. This endothermic reaction

proceeded until recrystallization into hematite fully occurred (Fan, Song et al., 2006).

A small amount of water was found to be left in the product, even when only hematite

peaks were observed, i.e. the final product was able to support some OH-ions (Goss,

1987).

Hematite

Figure 1-10. The two most
probable ordering schemes of
iron during the goethite-
protohematite phase
transformation and final
transformation to hematite
(Gualtieri and Venturelli, 1999)
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1.4.4. General properties of ochre

It has already been established that ochre is a universally exploited material and was

primarily used throughout history as a pigment for its colour, which it derives from its

constituent components. There are, in fact, several factors that affect the final tone of

the pigment in question, and these have been aptly outlined by Bednarik (1994), who

attributes the varying colours to the states of hydration, oxidation, reduction,

hydrolysis, adsorption, grain shape and size/size distribution of the various

components within the pigments.

It is commonly accepted that the degree of hydration of the pigment, which is

analogous to the quantities of the two main ochre-colouring minerals present (namely

the ratio of hematite to goethite), is the major factor influencing colour (Mortimore,

Marshall et al., 2003). Purple and red shades therefore show a prevalence of

anhydrous oxides (hematite) within the pigment. The lighter tones conversely indicate

some degree of hydration, with goethite as the main ferrous colorant present. The

darker ochres contain various phases of manganese oxides as well as the iron

hydroxides and/or oxides. If the manganese oxide quantity exceeds five percent of the

total colorant matter within the pigment, these are termed brown earths and umbers,

which are often described as ochre variants (Chalmin, Vignaud et al., 2004). Their

overall characteristics and composition, however, reflect otherwise (Robertson, 1976).

The umbers in particular contain between five to twenty percent manganese oxides,

which tend to have a significant effect on the physical properties of the pigment.
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Accessory minerals also affect ochre properties, besides colour, occasionally in a

negative way. Examples of accessory minerals present in ochres include quartz,

feldspars, calcite, dolomite and other carbonate minerals; various clay minerals and

possibly gypsum (Carbone, Benedetto et al., 2005). Ochres still exhibit outstanding

pigment characteristics, including non-toxicity, excellent hiding power and good

tinting strength (Cornell and Schwertmann, 2003).

Siennas, pigments mined from Siena in Italy, and often also referred to as natural

varieties of yellow ochre, are exceptions to this. Their relative transparency has been

commented about in artist’s manuals since the eighteenth century (Merrifield, 2003),

and this property was eventually ascribed to the atypically small particle size of the

goethite in the pigment (Helwig, 2007). Particle size may therefore also affect

pigment characteristics: goethite is reputedly the end member of many

transformations; unless its particle size is less than 0.1 mm, whereupon it becomes

thermodynamically more unstable than hematite (Prasad, Prasad et al., 2006).

Mineral Particle Size Colour
~1 μm Yellow

Goethite α-FeOOH
0.05 μm Brown
1 – 5 μm Blue-red to purple

Hematite α-Fe2O3 0.1 – 0.2 μm Bright red

Table 1-10. The relationship between mineral, particle size and colour (Cornell and
Schwertmann, 2003)

The continuous and extensive history of application of ochres can therefore be

attributed to a variety of factors, including abundance in nature, relatively simple

methods of preparation, and suitable optical and handling characteristics. These

pigments are also amongst the most permanent of pigments available to date,
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exhibiting excellent resistance to light, water, fluctuating environmental conditions,

alkali and dilute acid attack (Clarke, 1976; Bikiaris, Daniilia et al., 2000). Ochres are

also absorbers of ultraviolet light and therefore tend to protect their binding medium

from deterioration, thus increasing the overall permanence of the paint they constitute

(Cornell and Schwetmann, 2003: 511). It appears that even aboriginals judged the

suitability of ochres by their purity, consistency, opacity and texture (Clarke, 1976;

Taçon, 2004: 34).

Ochres therefore bear evidence to the aptitudes of age-old cultures, and to the way

these peoples sourced the material for artistic and symbolic use. The durability of

ochre has also allowed us to observe and appreciate this form of cultural expression

thousands of centuries later. Though little is known about the procurement of these

pigments, current characterisation studies show the potential benefits of linking ochres

to their sources. Determining their provenance may therefore be key to understanding

ancient technologies, and, more importantly, to establish trade routes and

communication between ancient civilizations (Popelka-Filcoff, Robertson et al., 2007).

The second point is of particular interest in this study because of the implications

associated with ancient exchange that tally with the aims of this thesis, and is

described below.

1.5. Provenancing techniques

The capacity for gaining fresh insight to regional interconnections in prehistory by

means of provenance research has been recognized by archaeologists for several

decades. Provenancing has assumed great importance in the field of archaeological
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studies for a number of reasons, including: the understanding of the interrelationships

between material transactions and social organizations, the recognition of the

movement of goods and of peoples and thus the social and evolutionary significance of

exchange, as well as the appreciation of mobility patterns of prehistoric peoples (Earle

and Ericson, 1977).

Provenance research involves the acquisition of evidence by means of quantitative

analysis of the constituents of archaeological items and/or materials and their potential

sources. Although the main methodology used for provenancing entails the acquisition

of compositional profiles through element/chemical characterisation methods, other

forms also comprise descriptive modeling, application of ethnographic and

ethnohistorical research, systemic modeling, and several others (Earle and Ericson,

1977: 4). Chemistry-based provenancing is, however, the most exploited and more

recognized technique, and its principles have been understood since the early 1970s

(Glascock and Neff, 2003). Research in this field has grown rapidly over the past few

decades, and has experienced an increase in the number of implemented techniques for

analysis, as well as a better examination of data by means of suitably applied statistical

methods. The ultimate aim is to potentially link the individual artefacts to their place

of origin, as has been described by Weigand, Harbottle et al. (1977) by means of the

‘provenance postulate’ theory.

This theory requisites differences in composition between natural sources that exceed,

in some recognizable way, differences observed within a given source. The raw

material can therefore be linked to its source through chemical analysis as long as the



43

inter-source variation between different sources is greater than the intra-source

variation within one source. If the elemental signatures of the artefact source groups

follow the provenance postulate, then elemental analysis may be used to source the

artefacts if all possible sources are known, and as long as significant numbers of

datasets are obtained to ensure suitability of results and to establish appropriate

conclusions (Glascock and Neff 2003).

(1) Sources are localised and easy to
identify (e.g. obsidian and other lithic

outcrops)

(2) Source materials are widespread
and boundaries are indistinct (esp.

ochres)

Raw material samples from the known
sources are sampled and analysed

Unknowns are sampled and analysed

Reference groups from known source
samples are formed and are characterised
statistically

Pattern-recognition is used to partition
the unknown data and the resulting
groups are characterised statistically

Artefacts of unknown provenance are
sampled and analysed. These are then
compared to the known reference groups

Raw materials are sampled and
analysed as widely as possible. These
are then compared with unknown
groups to infer likely sources or source
zones for groups

Figure 1-11. The two approaches to provenancing of materials (Glascock and Neff, 2003)

Sourcing based on this provenance postulate theory can therefore follow one of two

separate paths, as shown in Figure 1-11: (1) The raw materials from localized and

relatively distinguishable sources are analysed in conjunction with the

materials/artefacts of unknown provenance. Statistical analysis can then be used to

determine whether the composition profiles fit into any of the source groups. (2)

Conversely, when sources are more widespread, as is usually true in the case in ochre
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provenancing, characterisation of all individual sources is virtually impossible.

Provenancing therefore begins with the characterisation of the artefact/material

composition, resulting in the generation of reference groups. Individual raw materials

are then compared to these groups and the range of variation is evaluated (Glascock

and Neff, 2003).

Since iron is ubiquitous in the environment, establishing the likely sources of these

iron-based ochres is often rather challenging as sources are usually widespread and

indefinite, and have not been elementally characterised as extensively as other

materials used in provenancing, such as ceramics and obsidian. The provenance

approach adopted in this thesis therefore utilizes a combination of the two paths

suggested above to facilitate the study and substantiate the results. It involves

restricting the area examined to the Maltese islands, which means that the iron-rich

sources, although never explored for provenancing purposes before, are quite well

defined (refer to Chapter 5). These were established through a thorough understanding

the geology of the archipelago, and will be described in section 2.1. The Maltese

islands are also particularly rich in Neolithic remains that show evidence of heavy

ochre use (refer to section 2.2), therefore implying that the acquisition of a

representative sample group of archaeological ochre to link the Neolithic pigment to

potential local sources was possible.

Provenancing of these pigments, however, also presents another set of challenges,

which are discussed in Chapters 5 and 6. These include the fact that (1) ochre applied

to archaeological artefacts consists of relatively thin layers, making sample recovery

and/or analysis difficult and (2) the addition of other materials (such as binders and/or
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other pigments) is likely, and these may have an effect on the chemical signature of the

ochre (Hall, Meiklejohn et al., 2007).

Chemical characterisation of materials for provenancing purposes therefore

necessitates the undertaking a number of procedures, which have been summarized in

the list below. These steps were also used to formulate the outline of this thesis.

(1) The identification of the artefact/material that needs to be sourced, including its

main components/raw materials

(2) Establishing of the area/region for research into potential sources for the

identified raw materials

(3) The execution of a geological survey across the area/region, with a representative

number of reference materials taken from each source. Samples must also be

sufficient to account for intra- and inter- source variation.

(4) Characterisation of the material chemistry through instrumental analysis from

both the archaeological material as well as the source groups.

(5) Statistical evaluation of the data obtained to determine source homogeneity,

grouping and chemical “fingerprinting” of both the artefact material as well as

the raw material sources, thus isolating the characteristic composition for each.

Differences between sources must be clearly distinguishable and samples from

different geological sources must fall into discrete clusters.

(6) Establishing whether the data satisfies the provenance postulate theory, and

whether the chemical signatures or ‘fingerprints’ from the archaeological

material fit in any of the discrete source groups (Popelka-Filcoff, Robertson et

al., 2007).
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Chapter 2.

Malta: Its geology and prehistory
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2.1. An overview of the geology of the Maltese islands

The Maltese archipelago is located in the centre of the Mediterranean Sea, 96 km to the

east of the Sicilian coast and 290 km off the North African coast. It lies along a main

navigational seaway in the Sicily channel, which connects the basins of the Eastern and

Western Mediterranean sea (Pedley, Clarke et al., 2002: 14).

Location:

Latitude: 35°48’28” – 36°05’00” North Longitude: 14°11’04” – 14°34’37” East

96 km south of Sicily (Italy) 1836 km from Gibraltar

290 km from North Africa (Libyan coast) 1519 km from Alexandria (Egypt)

Islands:

Malta: 245.7 km2 Gozo: 67.1 km2

Comino: 2.8 km2 St. Paul’s Islands: 10.1 ha

Cominotto: 9.9 ha Filfla: 2.0 ha

Fungus Rock: 0.7 ha

Table 2-1. Maltese geography (Schembri, 1993)

Figure 2-1. The Maltese islands (Carr, 2010)

Although centrally located, the entire archipelago totals a mere 316 square kilometres,

with Malta and Gozo (Ghawdex) being the two main inhabited islands. Malta is the

largest of the group, followed by Gozo, which lies North West of Malta (Tilley, 2004:

93). The location of the Maltese islands, coupled with the abundance of the

particularly fine, natural harbours they encompass, have made the islands of particular

importance throughout history, despite their tiny size (Pedley, Clarke et al., 2002: 13).
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2.1.1. The formation of the Maltese islands

The rocks forming the archipelago were initially sheets of marine sediment that were

deposited on the sea bed of the Pelagian spur some thirty to five million years ago

during the Oligocene and Miocene epochs in the Tertiary period of the Earth’s

geological timeframe. A collision of the African continental plate into the Eurasian

plate ten million years ago led to a partial subduction of the African foreland beneath

the European plate, resulting in an exertion of pressure and an uplift of marine

sediments to levels above sea level. This resulted in rock formation and the emergence

of the archipelago by the processes of sediment induration. The Maltese islands were

thus formed and were originally linked to Sicily and Europe by a land bridge that

emerged during this uplift (Gardiner, Grasso et al., 1995). The eventual split from the

rest of Europe occurred during the Holocene, which led to a rise in the sea level of the

Atlantic Ocean, causing it to spill out into the Mediterranean Sea. The next Ice Age

that was experienced two million years ago resulted in a wetter climate that also

affected the topography of the archipelago, leading to the formation of river valleys in

the islands (Pedley, Clarke et al., 2002: 18-29).

2.1.2. The rock formations of the archipelago

The geology of the Maltese archipelago is therefore relatively young, consisting solely

of Tertiary formations, with all the rock types being sedimentary and limestone-

dominant (Tilley, 2004: 94). Geophysically, the archipelago and the Ragusa peninsula

of southeast Sicily belong to the African plate, hence the rock types of the Maltese

islands are similar to those of both south-eastern Sicily as well as to the coastal areas of

Tunisia (Schembri, 1993: 28). They fundamentally encompass a large number of lime-
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rich skeletal remains of marine flora and fauna whose skeletons are majorly calcitic

(Fenech, 2007: 6). There is, however, a subsidiary portion of clays and marls within

the limestones, which originate from water-borne clay minerals and/or fine (volcanic)

dust blown by the wind from distant land sources. A few bands in the limestone are

also significantly rich in metallic ions, such as iron (described below) and aluminium.

Some areas are also distinctly abundant in cemented calcium phosphate (Pedley,

Clarke et al., 2002: 41).

The geological sequence of rocks falls into four/five distinct layers of uneven thickness

and which lie almost horizontally over one another. These are: Lower Coralline

Limestone (LCL), Globigerina Limestone (GL),

Blue Clay formation, Greensand and the Upper

Coralline Limestone (UCL) They are

characterised by differing mineral properties;

including hardness and resistance to

environmental weathering (Spratt, 1854: 5), and

are summarised in Table 2-2 below. Together

with the geological fault lines, the different

formations dictate the overall surface topology,

which varies considerably between the islands

(Pedley, Clarke et al., 2002: 21, 35; Tilley, 2004:

94).

Figure 2-2 . A section through
the rock layers of the Maltese
islands, adapted from Pedley,

Clarke et al., 2002: 35, 36
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Layer Unit
Maltese
Name

Thickness
(~m)

Formation and properties

4/5 Upper
Coralline
Limestone

Qawwi ta`
Fuq / il-
Qawwi

30 – 162 Topmost, youngest formation, a hard, pale grey limestone unit, resembling the LCL in both structure
and chemistry, indicating a similar deposition in shallow waters. Some layers are completely
crystalline and others are highly fossiliferous.

(4) Greensand Ramli / Il-
Gebla
Safra

0 – 16 A thin and sometimes absent fossiliferous sandy formation, rich in organic matter. Contains
glauconite, which gives the rock its distinctive green/orange/brown colour. Also consists of
bioclastic limestones and brown, phosphatic grains. Represents a long period of submarine erosion
and sediment winnowing, followed by a final shallowing.

3 Blue Clay Tafli /
Tafal

< 75 Soft, bluish-grey, kaolinite-dominant and rich in lime and marl, of varying composition. Very fine-
grained sediment dominated by skeletal material from planktonic organisms, with clay content
originating from a land source, possibly volcanic ash from the north of Sicily, yet deposition may
have occurred in open muddy water environments. Additional components comprise quartz, augite,
feldspar and tourmaline. Has a large number of inclusions that appear through weathering of the
darker clay beds, e.g. spherical concretions of iron-rich ooids.

2 Globigerina
Limestone

Il-Gebla
tal-Franka

20 – 250 Fine-grained rock-type, widely exposed in the south-eastern part of Malta, and extending over two-
thirds of the island’s surface. Believed to have been of a bluish-grey when deposited but now has a
honey-brown/yellow shade owing to oxidation of its constituent iron sulphides to hydroxides by
percolating rainwater. Contains planktonic fossils and Globigerina shells. Has high phosphate
levels that suggest that the water streaming over this shallowed surface was rising from greater
depths as an “upwelling” current.

1 Lower
Coralline
Limestone

Qawwi ta`
Isfel:

Zonqor

Exposed:
120

The oldest rock formation of the islands, forming most of Malta’s southern and south-western sheer
coastline and outcropping inland along fault lines. Consists of hard, resistant, pale grey limestone,
containing limestone beds with debris derived from skeletal remains of fossil corals and other
calcareous algae. Grading and sorting indicates shallow marine deposition, probably in an agitated,
gulf environment, though younger beds show deposition in more open marine conditions.

Table 2-2. Rock formations of the Maltese islands: Adapted from Zammit-Maempel, 1977; Pedley, Clarke et al., 2002; Tilley, 2004; Fenech, 2007
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The formations therefore reflect the changes that took place in the Pelagean Platform

millions of years ago, with the current rock sequence reflecting changes in water depth.

The outcrop geology of Gozo is more varied than that of Malta, and the various rock

outcrops that predominate on Malta include GL appearing in the central and south-

eastern portion of Malta, and the UCL outcropping in the northern and north-western

regions of the island (Pedley, Clarke et al., 2002: 63).

2.1.3. Soils

The rocks are overlain by terrestrial, aeolian and alluvial deposits laid down

subsequent to the surfacing of the Maltese islands and their exposure to weathering and

erosion (Conklin, 2005). These soils are normally bright red and fertile, and are all

characterised by their close similarity to the parent rock material from which they

originate (Trump, 2008: 16). They are rich in calcite, clay, oxides of iron and

manganese and other mineral particles (Oertel, 1961; Fenech, 2007: 21). Since

pedological processes are slow in calcareous soils the deposits are relatively immature

(Vella, 2006: 171). Maltese soils have long been classified into three main types

following the Kubiena classification system (after Lang, 1960), depending on their age

and site of formation. These include the more mature and weathered Terra Soils,

formed during the Pleistocene; the Xerorendzinas (Globigerina deposits) and the

Carbonate Raw Soils, which are both immature soil groups with a high amount of

calcium carbonate and a low organic matter content (Schembri, 1993). A recent

MALSIS (Maltese Soil Information System) study undertaken in 2004-2006 has

further subdivided the soils into seven types, as described in Table 2-3 below.
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Soil Type Characteristics

Calcisols
Dominant soil group on the Maltese islands, rich in lime and secondary CaCO3

Divided into Endoleptic Calcisols, Epileptic Calcisols, and Hypocalcic Calcisols

Leptosols
Shallow soils in garigue areas
Are calcari-lithic soils

Vertisols
Clay soils, therefore are limited to the Blue Clay outcrop
Crack and degrade easily

Luvisols

Relicts of different environments as formed under climatic conditions different to
those of the present age: All reddish, clayey and containing secondary CaCO3

Divided into Chromi-Calci-Epileptic Luvisols (shallow) Endolepti-Chromi-Calci
Luvisols and Chromi-Calcic Luvisols (deep)

Cambisols
Still incipient formations, but very fertile soils for agricultural purposes
Vary from browner to redder soils (latter are richer in ferric ions)

Regosols
Also incipient formations, therefore weakly developed
Classed as the ‘other’ soils, as all outliers fall into this group

Arenosols Sandy soils, therefore quartz-rich, beach deposits, relatively localised

Table 2-3. Maltese soil types (from MALSIS, 2006)

2.1.4. Overview of the geological iron-rich sources on the Maltese islands

Though the geology of the Maltese archipelago mainly consists of limestones which

lack significant iron deposits, such as beds (and/or caves) of iron formations, various

areas have been identified as being abundant in metallic elements, particularly in iron,

and could therefore be potential sources of ochre. Four such sources were identified

through a thorough literature survey and through consultation with Maltese geologists.

These were: the red veins, or ‘Calcitic red’ limestones, the ‘Greensands’ formation,

the ‘Ooid’ group, and the soils, termed ‘Terra rossa(e)’.
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The first of the iron-rich deposits are known to originate from the formation of

‘mineral-veins’ within the sedimentary bedrock; particularly from the occurrence of

what are known as ‘veins of replacement’ in the UCL. These occur through the

deposition of a mineral mass, such as soil, in rock fractures, which sometimes cut

through the entire stratgraphical sequence of the limestone. This process is promoted

by the passage of water through the soil and then through upper rock layers;

encouraging mineral substitution and enrichment in certain materials, such as iron

oxides, within the rock. Subsequent solution, redeposition and burial, coupled with the

action of time, result in the formation of hardened iron-calcitic palaeosols; the alleged

‘Calcitic reds’ (Scott, 1921), which are predominantly present in outcrops towards the

north of Malta, mainly at Cirkewwa and Ghadira.

The invariable presence of the mica mineral glauconite is one of the major

distinguishing features of the fossiliferous ‘Greensands’ formation. The composition

of glauconite depends on its structure and degree of ordering, but it essentially is a

potassium/sodium/calcium-iron aluminosilicate of chemical formula [(K,Na,Ca)1.2-

2.0(Fe3+,Al,Fe2+,Mg)4.0[Si7-7.6Al1-0.4O20](OH)4.n(H2O)] (Deer, Howie et al., 1966: 207).

Greensand is a sedimentary sandstone, forming by marine diagenesis in shallow water

under moderately reducing conditions; probably in the anoxic, non-sulphidic, post-oxic

diagenetic environment, thus explaining the high Fe3+/Fe2+ ratio with respect to the rest

of the geology. The glauconite itself forms by clay mineral transformation and by

crystallite growth within substrate pores (Tucker, 2001). This Greensands formation

and is generally referred to as the Ghajn Melel member of the UCL, and is widespread

in Gozo and found in selected locations in Malta; at Dingli Cliffs and Ghajn Znuber

Mellieha, for example (Pedley, Clarke et al., 2002: 56).
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Figures 2-3 a, b. Heated greensand rock in a shallow cave in Gelmus, Gozo (Photos: author)

The Blue Clay layer underlies Greensands in the stratigraphy of the Maltese

archipelago, and outcrops at many coastal regions. It is known to host irregular,

though often spherical concretions, nodules, or ‘Ooids’, that are significantly rich in

iron (Zammit-Maempel, 1977: 26; Spratt, 1854: 7). Although the actual route of

formation of these minerals is not completely understood, it is hypothesized that these

Ooids were formed through weathering reactions, such as repeated winnowing and

reworking, of fine-grained iron minerals in shallow water. The clay/mud cover is

thought to have provided the required reducing conditions to the sediment (Spratt,

1854: 7; Zammit-Maempel, 1977: 26; Einsel, 2000: 253).

The alluvial, unconsolidated deposits on the Maltese islands were also considered to be

likely sources of iron oxides, mainly because of the high percentage of iron minerals

they contain. Their very name, ‘Terra Rossa’, or red Mediterranean soil, denotes this

factor (Priori, Costantini et al., 2008). Although it is probable that these soils have

altered somewhat in composition since prehistoric times, undoubtedly with the

concentration of impurities increasing proportionally to the ever-growing increase in

population, human activity, urbanisation and development throughout the ages, it is

this very factor that has strengthened the belief that these deposits could have been
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sources of ochre (Vella, 2006). It was also assumed that chemical signatures within

these soils would have remained unaltered, and therefore links to the parent material

and earlier alluvial deposits would be demonstrable by means of chemical analysis. Of

the seven soil types established by the MALSIS Maltese Soil Information System,

certain reference groups were considered to be more likely candidates as ochre sources

than others, namely the leptosols and the luvisols.

Little of the geology is thought to have changed since the first settlers set foot on the

Maltese islands (Fenech, 2007). Some land has been lost to cliff erosion in the south

and west, and a little more through subsidence of the land towards the north and east.

The topography, on the other hand, has suffered extensively subsequent to human

habitation and interference, with an extensive depletion of trees, mainly pine and

evergreen oak, which were felled from as early as the Bronze Age (post 2500 B.C.) to

clear the land for farming and cattle grazing. Stripping the land of its tree cover

consequently led to soil erosion; and settler interference has led to a complete change

in the topography of the islands because of the construction works as well as the

resulting pollution which has clearly affected the chemical composition of the soils

(Trump, 2008: 14–15). The islands were therefore limited in resources for human

habitation. Although providing inhabitants with fertile land, water, seafood and some

chert for tools; the restricted size of the archipelago, coupled with the lack of game,

locally available hard-stones, metal ores and inadequate amounts of timber, probably

made the islands rather difficult to live on; and near-impossible to do so without some

form of contact with mainland Europe (Trump, 2008: 19–20).
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2.2. Malta: Its prehistory and temples

Radiocarbon dating carried out on ancient deposits has shown that the relatively

isolated islands of Malta and Gozo were originally colonized around 5200 B.C.,

probably by settlers from Sicily (Bonanno, 1991; Vassallo, 2007: 59). Archaeological

evidence mainly based on pottery styles indicates that the ancient customs adopted on

the archipelago retained their ties with the cultures from southern Italy and Sicily for

the next couple of millennia, possibly indicating that Malta was part of a network of

societies that stretched across to these countries (Bonanno, 1986; Zammit, 1994).

A major drift or ‘schismogenesis’ (Robb, 2001) was observed in the course of the

fourth millennium, around 3600 B.C., when the Neolithic Maltese created a unique

society whose cultural disparity is clearly exhibited through the Megalithic temples

that were built on the islands over the next two millennia, and, although to a lesser

extent, by their new ceramic repertoire. The temples were the climax of the islands’

prehistory and remain unique to date. They are reputed to be the earliest surviving

free-standing, though now ruinous, existing stone structures, since at the time they

were being built it appears that no-one else was raising self-supporting roofed stone

buildings elsewhere in the world (Trump, 1999: 93; Hoskin, 2001: 23; Evans, 1953;

Stoddart, 1999; Bonnano, 1996; Tilley, 2004: 87; Vassallo, 2007: 6). The temples

show the unique advancement in the art and architecture of this Neolithic Maltese

society, and the sophistication and technical achievement of these structures defy all

preconceived ideas of primitivism associated with these ancient peoples (Vella, 2007).
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Period Phase Time (B.C.)

Ghar Dalam c5200 - 4500
Grey Skorba 4500 - 4400Neolithic
Red Skorba 4400 - 4100

Zebbug 4100 - 3800
Mgarr 3800 - 3600
Ggantija 3600 - 3000
Saflieni c. 4000 - 2500

Neolithic:
“Temple
Period”

Tarxien c. 3000 - 2500

Tarxien Cemetery 2500 - 1500
Borg in-Nadur c. 1500 - 725

Bronze and
Iron Age

Bahrija c. 900 - 725

Table 2-4. The chronological sequence of Maltese
Prehistory. Classification based on pottery typology
and radiocarbon dating (from Pace, 2004) Figures 2-4 a, b. Temple plans of

Ggantija (above) and Skorba (from
Trump, 1966 and Robb, 2001)

Although this period included other ritual sites, burial sites and habitations, very little

evidence has survived the ravages of time, with remains of habitation sites today

almost entirely lost to environmental decay. The village of Skorba, found towards the

north-west of Malta, is the last surviving site known to date and has allowed for the

radiocarbon 14C dating of material deposits. This study, coupled with the classification

of pottery typology, has enabled the establishment of the most commonly accepted

chronological sequence given above (Trump, 1966: 48).

What remains today are therefore mere vestiges of what the architecture in the

Neolithic and Temple Period must have looked like some 5500 years ago. Albeit in

ruins, the temples are still recognized as architectural wonders, representing incredible

building capabilities for the once presumed ‘primitive’ society of this period.

Stipulations as to what these structures must have looked like are based on what is left,
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on a few temple models and on what has been best preserved (Trump, 2008: 192). The

Hal-Saflieni Hypogeum burial complex, for example, is an underground, multi-level

necropolis, located close to a mega-temple complex, Tarxien (Figure 2-7), and which

was developed between 4000 – 2500 B.C. both for burial and temple purposes

(Zammit, 1925). It is important because it is the only remaining prehistoric site that

has not suffered as extensively to the ravages of time as the other temples have, and is

therefore our only insight into what the temple structures above ground must have

looked like (Ridley, 1976; Mifsud and Ventura, 1999: 5). This underground site is

architecture in the negative and was majorly used as a funerary site, therefore its

‘construction’ and functionality were clearly different to that of the temples above

ground, however, structural parallels with the over-ground architectural structures are

obvious. The Hypogeum is set on three different levels and has been decorated with

replicas of temple architecture, with surviving details that include megalithic interiors,

corbelled roofing and several ochre wall paintings (Pace, 2000: 16; Pace, 2004;

Morana, 2003).

2.2.1. Structural layout and general description of the temples

The temples are generally low, intricate, expansive, stone structures, with a physical

form mimetic of the surrounding landscape, yet are also visually prominent (Robb,

2001). Each contain between four and twenty spaces, enclosed within a substantially

thick wall enclosing a labyrinth of rooms and a forecourt, possibly left unroofed, for

public assembly (Trump, 1999: 98). Temples first consisted of lobed structures with

trefoil floor plans, arranged around a central axis (Bonanno, 1996). The structures

were then elaborated and sometimes modified to form increasingly complex multi-
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apsed buildings of varied sizes, generally consisting of around four to six

hemispherical chambers branching off a narrow entrance path (Trump, 1966: 47;

Trump, 2008: 69–76). The façade was built of orthostats (rows of large stone slabs),

with taller cornerstones intentionally positioned at either end. The side and rear walls

were also constructed from sets of orthostats, laid in a slightly different manner to and

generally taller than the façade itself (Zammit, 1994). The primary axis of orientation

of the entrances for most temples was on a north-west to south-east line, arguably

orientated in such a manner for the implied astronomical significance and solar

alignments involved (Trump, 1999: 92; Zammit, 1994: 6-12; Hoskin, 2001).

Figures 2-5a, b. An aerial view and (b) the outside of the main shrine of Hagar Qim temples,
south of Malta (Pictures courtesy of Heritage Malta)

Temple construction materials consisted of huge blocks of both coralline and

globigerina limestone (Table 2-5). The tough coralline stones tended to crack

naturally, hence these broken off blocks were selected for use as structural elements

and carried to the chosen location in the temple without being modified. The softer

globigerina stone was, on the other hand, standardized to taste, therefore potentially

looking relatively smooth and new in comparison to the coralline blocks (Trump,

2008: 6, 71). Typical architectural components were also carved from the latter
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globigerina stone and examples include the incomplete dome, the horizontal arch, the

orthostats and post-and-lintel trilithon (literally meaning ‘three stones’). Some

elements were decorated with drill holes and other surfaces embellished with relief

representations of fish, domestic animals and spirals (Tilley, 2004: 94, 112, 136).

Characteristics Temple examples Rock availability

Ggantija temple (~ 3600-3000
B.C.)

Close proximityCoralline limestone
dominant

Kordin III temple (~ 3600 B.C.) Carried over from a distance

Tarxien temple (~ 3000-2500
B.C.), Hagar Qim temple (~
2600 B.C.)

Close proximity
Globigerina limestone
dominant Mgarr temple (~ 3600-3000

B.C.), Skorba temples (~
4100B.C.)

Carried over from a distance

Coralline: external walls,
globigerina: internal walls Mnajdra temple (~ 3200 B.C.)

Coralline stone used was
carried over from a distance

Table 2-5. Dominant rock used for building of the temples (from Cassar and Vannucci, 2001;
Trump, 2008: 79)

Figures 2-6a, b. An aerial view and (b) the middle axis of the Mnajdra temples, south of
Malta (Photographs courtesy of Heritage Malta)

While the temple exteriors were composed of a series of megalithic blocks, it is

assumed that the rough surfaces of some of the internal walls and floors were entirely

smoothened, plastered or paved over either in clay or in a cement-like plaster known as

torba. The latter cement mix was a tough and durable material made from crushed
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limestone paste, and was sometimes spread over a rubble foundation when used as flooring.

The material was purposely applied to conceal rock contours and surface textures, and

was consistently used as flooring in the temple apses (Trump, 2008: 72, 77). Various

flagstones seem to have paved other floor areas and rope holes across entrances could

indicate that different parts of the internal space may have been cordoned off depending on

the occasion (Tilley, 2004: 118). Oracle holes were also a key part to the interior design of

some temples, probably providing the means for the priestly elite to communicate with the

congregation (Trump, 2008: 111). Apart from the relief / pitted decorations and the built-

in, sometimes elaborately carved stone tables assumed to have been altars; little evidence

of embellishing is left, though it is likely that the interiors may have been decorated with

a series if ochre paintings. Other internal décor may have included doors, partitions and

other furnishings made from organic raw materials which have long since disappeared

(Evans, 1971: 175; Trump, 2008: 77; Tilley, 2004: 102). Finds within the temples

comprise a wide variety of stone (sometimes polished), chert and some obsidian tools

(mainly sacrificial knives); amulets and a large range of pottery, the production of which

appeared to have flourished incredibly during this period (Bonanno, 1986). Spindle whorls,

phalli and figurines which are dominantly female and other rather sexless or animal-shaped

were also unearthed on excavation; clearly exhibiting an ancient population that was

agricultural-based with a cult involving the adoration of a corpulent fertility deity

(Bonanno, 1986; Robb, 2001; Trump, 2008: 75).

The temples within the archipelago therefore have similar architectural characteristics,

yet the construction appears to have been ‘base’ controlled as methods and

architectural details vary between temples; indisputably reflecting a division of the
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local population into cultural groups (Robb, 2001). The temples themselves appear to

be distributed into six clusters of two or three temples, which could be indicative of the

territorial centres of various chiefdoms, each probably with a preferred, specialized

priesthood; undoubtedly an element of secular competition rather than religious

fervour. Consequently, the temples/temple clusters were not just religious centres but

could have also served as administrative centres with communal leaders making

decisions for the internal community (Bonanno, 1986; Trump, 2008: 89). Certain

repetitive features also appear to be shared by a number of temples, and therefore

giving some insight to the mindsets of these Neolithic cultures. Firstly, several

temples seem to be associated with seasonal watercourses, the sea and/or with the

small, off-shore islets. Only two temple sites occupy high points, indicating that sites

were not chosen for high visibility; yet larger temple locales were probably

intervisible. (Tilley, 2004: 91-92; Trump, 2008: 198) Pairs of temple sites may also be

related in terms of locations in the landscape (Table 2-6 below).

Although today the temples are roofless structures exposed to the elements, the walls

are estimated to have reached varying heights depending on the roofing system

employed. Overall interior volumes are, nevertheless, estimated to have been limited;

thus when still in use the temples must have been dark and confined, probably

amplifying internal sounds and smells, creating an ethereal, unworldly experience for

any congregation of believers (Trump, 1999: 96). The resulting effect that most of the

temples presented was a deceivingly solid, static exterior with a mobile, convoluted,

organic interior intended to confound. The passageways within the temples were probably

opened or blocked at will to endorse this confusion, and the construction itself also induced
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changes in body posture through careful manipulation of roof height and overall space.

This created an almost bewilderingly complex interior, aimed at disorientating those ancient

peoples visiting the temples; thus advocating fear and awe of the priesthood elite and/or

chiefs, who stood as the sole intermediaries between the general population and the gods

within these prehistoric societies (Tilley, 2004: 130). The temples, therefore, purport a

hierarchical culture whereas burials, surprisingly, do not. This class distinction theory

within the temples is further supported by the fact that the internal space was too

limited to cater for a large group of people, and because the inner sections of some

temples (such as Tarxien) and the ‘Holy of Holies’ in the Hypogeum suggested

selective access (Bonanno, 1986; Robb, 2001). A brief description of some of the

more important temples and burial complexes (which will also be mentioned later in

the text) is given in Table 2-7.

That the temples were ritual monuments is therefore beyond doubt (Robb, 2001).

Physical evidence indicates that worship included animal sacrifice on rectangular-cut

altar stone slabs, but beyond this, little is known about the rites and rituals that took

place in them (Vella, 2007: 63). It is assumed the underlying reason for the

construction of these temples and the execution of sacrificial rites lies with the fact that

the Neolithic Maltese were farmers who felt the necessity to build the temple structures

primarily as loci for ritual and worship to either a priestly elite, or to the figurative

‘mother goddess' (/‘goddess of fertility’) whose obese symbolic form features in many

archaeological sites around the archipelago. It has also been suggested that the

temples themselves were modeled on the form of the ‘goddess of fertility’ statues

(Trump, 2008: 88).
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Figure 2-7. The location of the Maltese temples and other prehistoric sites Table 2-6. Common characteristics between temples and temple
(adapted from Robb, 2001) groups (from Tilley, 2004: 91–92)

Characteristics Temple examples

Associated with
watercourses

1. Borg in-Nadur
2. Hagar Qim and Mnajdra
3. Kuncizzjoni temple site

Associated with
harbours

1. Kordin temples
2. Borg-in-Nadur
3. Hagar Qim and Mnajdra
4. Bugibba temple

Associated with
the sea and islets

1. Hagar Qim and Mnajdra: Filfla
island

2. Bugibba temple: St Paul's island

Occupying high
points

1. Hagar Qim
2. Tas-Silg

Intervisible
groups

1. Hagar Qim and Mnajdra
2. Ggantija, and Santa Verna and

Xewkija
3. Borg-in-Nadur and Tas-Silg
4. Tarxien and Kordin
5. Skorba and Ta Hagrat

Landscape pairs

1. Skorba and Ta Hagrat
2. Hagar Qim and Mnajdra
3. Tarxien and Kordin
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Site ~ Date B.C. Brief Description

Malta

Skorba (SKB) 5000-2500 Settlement complex with two temples, excavation
began in 1937. Several artefacts were found,
including figurines, pottery and evidence of use and
development of site for many years (Neolithic to
early Bronze age)

Tarxien temples
(TAR)

3000-1500 Discovered in 1913, found here was “the earliest
colossal statue in the world” (Vassallo, 2007: 129).
The statue and temple complex were partly
destroyed by farmers before a formal excavation was
undertaken. The complex was still very rich in
Temple period remains, which were found beneath a
Bronze Age crematorium

Hal-Saflieni
Hypogeum (HYP)

4000-2500
YY

Discovered in 1902. Brief description given in text:
underground necropolis, burial and temple site,
sculpted in the rock. Consists of three levels: Upper
level used for burials during 3600-3000 B.C.,
Middle and Lower levels cut during Tarxien Phase
(3000-2500 B.C.), contains about 7000 secondary
burials

Gozo

Ggantija temples
(GTA)

Started 3600 ‘Gigantic’ temples, considered as being the oldest
free standing structures in the world
Massive walls, probably were ~10m high, though
today the highest point is 6m: roofing is a mystery
Excavated in 1826 (by convicts!)
Structure began as one trefoil, which was extended
Evidence found of sacrificial offerings and rites

Xaghra (or Gozo)
Stone Circle, also
referred to as
Brochtorff’s Circle
(XSC),

Between
4100-1500

The burial site for the Ggantija builders
Cleared ~1820-1822, but was partially destroyed
between 1834-1835 by treasure seekers. Further 20th

century excavations unearthed an underground
complex of caves, with many finds (~200,000 bones
and other artefacts) showing usage from after 4100
(Zebbug Phase) till <1500 B.C. (Bronze Age)

Santa Verna (STA
V)

Started 5000 Excavated in 1911, found to have first been a
habitation site in the early Neolithic, converted to a
temple, used during all periods of Gozitan
archaeology. Finds included numerous sherds

Table 2-7. Overview of the temples/sites/habitation sites mentioned in this thesis (from Cope,
2004 and Vassallo, 2007)
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2.2.2. Ochre use in Neolithic Malta

One of the more prominent materials used during the Neolithic in Malta was red

ochre. Sprinkling liberal amounts of the pigment over bones of the deceased was

presumably part of common burial practice in the prehistoric tombs. Quantities used

were such that the bones associated with this material were described as being “soaked

in blood” by workmen who inadvertently came across them when clearing the sites,

horrified at the notion of having discovered some “bloody murder” (Evans, 1971;

Trump, 2008: 211). This scenario has been described in the 1910-11 annual report (: 3-

4), when a mass of bones were discovered in a prehistoric well-tomb between Buqana

and Ta’Qali (Evans, 1953). In the Hal-Saflieni and Xaghra Stone Circle burial sites, it

appears that the funerary rituals involved exposing the bodies or burying them until the

flesh had decomposed and fallen off completely, with the bones then reburied in a vast

ossuary and sprinkled with vast amounts of ochre, possibly mixed with water (Stodart,

1999: 183; Vassallo, 2007: 69)

Ochre was also used to decorate the walls of the Hypogeum and probably the temple

walls (Robb, 2001). Though only traces of pigment appear in the temple sites,

primarily as dabs of colour on pieces of plaster, very few of which remain in situ

(Evans, 1959, 1971) (Figure 2-8 below), the elaborate designs in the Hypogeum have

survived environmental degradation and are therefore the only surviving examples of

wall paintings executed during the prehistoric times on the Maltese islands (Zammit,

1994). Here, it appears that the ochre was ground and mixed with water and possibly

some organic binder to form a deep-red coloured paste.
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Figures 2-8a, b. The only two remaining pieces of wall torba coloured with red ochre. (a)
measures approx 5 x 5 cm, whereas the longer ends of (b) measure 10 x 5 cm. Both pieces

were found at Ggantija temples in Gozo (Photos: author)

The wall decorations in the Hypogeum include block colour applied to the walls of

whole sections throughout the necropolis (as can be observed in Chambers 4, 6, 17, 20

and 23), as well as a variety of other more organic and intricate designs (Bonanno,

1996). These were probably applied for both aural as well as visual effects and

comprise a couple of rows of spirals, with free bifurcated ends, connected to

polygonal/honeycomb forms by means of a series of vertical lines and applied to the

walls and ceiling of the decorated/painted room (Chamber 20, Figure 2-9: Ridley

1976). Other designs include several interconnecting spirals, circles, swirls,

curvilinear paintings and other circular designs; such as the three circles in the oracle

niche in the oracle chamber, C18 (Pace, 2000: 12; Evans, 1971: 51). Although the

curvilinear forms and polygonal designs can be linked to the naturalistic reliefs from

Bugibba, Hagar Qim and Tarxien temples, it is interesting that the circle was painted

in such abundance in the ‘Oracle room’, as the use of this shape was exceptionally

rare in Maltese prehistory (Ridley, 1976: 22)
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Figures 2-9a, b. Decoration in the underground necropolis of the Hal-Saflieni Hypogeum,
Malta. Pictured: Spiral and circular designs from the Oracle chamber (Photos: author)

Ochre was also used to paint several figurines, to encrust and highlight the scratched

designs on ceramic ware and probably also as body paints and cosmetics during

various rituals and/or on special occasions (Figures 2-10, 2-11). It is also suspected to

have been used more profusely as, for instance, a background to the relief spirals on

some of the altars and on the torba flooring in Skorba, for example (Trump, 1966: 8;

Trump, 2008: 211). It has been assumed that the ochre, albeit used in such copious

amounts, was completely imported from Sicily, perhaps in special vessels from the

Agrigento area in southern Sicily (Trump, 2008: 211), as it is of common belief that

‘none occurs on the islands’ (Tilley, 2004: 140).

Although the definite reasons for the designs in the Hypogeum and the use of this

pigment in Malta still elude scholars, it is likely that ochre was probably used for its

symbolic properties (Pace, 2004). In the temples it is associated with cults for the

living, perhaps being an invocation of the semantic properties of the colour red;

whereas in burial practices its symbolism is associated with the dead, suggesting an

initiation from life towards death, perhaps towards another life (Tilley, 2004: 140).
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Figures 2-10a, b. Ochre on various stone materials, including a large bead (left) and a spoon
(from Gozo, Museum of Archaeology. Photos: author))

Figures 2-11a, b. More ochre-doused material, including the very famous ‘Twin Seated’
figurines carved out of globigerina (a) and ochre on bone in (b) (Photos: author)

2.2.3. Contact and trade

This temple-building period and exploitation lasted for over a millennium, and around

thirty such temples were built on Malta and Gozo, though others may have once

existed (Figure 2-7: Tilley, 2004). Though their mass construction may have been

spurred by cultural groups and regional priesthood distributions, the massive size and

complexity of the temples, their abundance on two tiny islands and the fact that the

temples remain without any convincing parallels elsewhere, has made these architectural

wonders a point of fascination amongst archaeologists and antiquarians since as early

as the sixteenth century (Vella, 2007: 62; Trump, 2008: 6).
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There is no simple explanation as to why the Temple period civilization in Malta

supported complex art and architecture far more advanced than those of its nearer or

distant neighbours, and why none of the contemporaries of the Neolithic Maltese built

similar megalithic structures of any kind. This is, in fact, an ongoing debate which

has centred on the economic and social set-up of Maltese society in prehistory.

Although some authorities consider that the Maltese islands must have been an

international centre where foreign cultures combined, producing the temple society as

a result; archaeological evidence from places like Skorba for instance, strongly

suggest the development to be local, as “No large numbers of visitors, pilgrims, or

traders, could have passed through Malta leaving so little trace.” (Trump, 1966: 51)

Two relatively plausible hypotheses proposed to describe the unique character of the

temples are based on the local environment. The most generally accepted explanation

emphasizes biogeography: because the Maltese islands were isolated and relatively

insular, the civilizations living there experienced an inevitable drift from the cultures

of mainland Europe. The second argument stresses the fragile ecosystem and potential

of environmental vulnerability on the archipelago, where increasingly scarce natural

resources led to impossible economic problems for the population, invoking a

heightened need for fertility rites, which resulted in this mass temple construction

(Tilley, 2004: 87). Unfortunately, no concrete evidence for environmental

deterioration during the Neolithic exists; hence this latter point is purely hypothetical.

The temples have therefore been described time and time again as being a product of

cultural isolation, rejecting contact with the external world (Evans, 1953: 80; 1959;

Bonnano, 1996; Tilley, 2004: 87). Nevertheless, the problem still stands: how isolated

were the islands in actual fact? Did they not form part of a network of societies
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stretching across southern Italy and Sicily? Why was there this sudden apparent

divergence in cultural habits? The question regarding isolation has in fact been a topic

invoking several heated debates between groups of antiquarians for a relatively long

period of time.

Many compelling arguments have been purported for and against the presumed

isolation hypothesis. The argument for isolation is based on the unique character of

the temples (Evans, 1953), and on other archaeological evidence, mainly on the sharp

decrease in the quantities of imported products such as obsidian (which was obtained

from southern Italy) and pottery, and on the significant differences between temple-

period ceramics and contemporary Sicilian and Italian pottery (Evans, 1953: 76, 81,

83). It is also surprising that none of the metallurgical technology was imported to the

islands during this period (Bonanno, 1991). Robb, 2001 however, challenged the

interpretations based on this ‘evidence’, insisting that “Malta's apparent isolation at

least partially reflects archaeologists looking at Malta in isolation”. He pointed out that

Malta was not as isolated as claimed but was linked to the rest of Europe through a wide

regional network. Robb supported his argument by drawing parallels between the

circles of standing stones like those at the Brochtorff Circle to some from Sardinia, and

also found similarities between the Hal Saflieni Hypogeum and a 35-room rock-cut

hypogeum at Calaforno in Sicily and a smaller one at Malpasso (Vassallo, 2007).

Even Bonanno (1986, 1991) drew parallels of the tomb architecture with those of the

Ozieri culture of Sardinia. Ceremonial rituals also appeared to have been similar

(Robb, 2001). Robb also aptly pointed out that the decline in trade of obsidian and

pottery was a regional decline, and not a local factor. Moreover, it appears that most

pottery dating from this period across Sicily and southern Italy also exhibited regional
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differences that emphasized local identities; hence differences were not just a trait

being experienced on the Maltese islands. He argued that the unique character of the

temples was deliberate action to create cultural differences and maintain their identity.

Robb stressed this claim further by providing arguments and evidence for contact,

which rests on the fact that it was relatively easy to cross the 100 km separating Malta

and Sicily, a journey that could have been undertaken between one to three days in

calm waters (Tilley, 2004). Possible evidence of trade is present, with imports, albeit

relatively few, that include high-quality flint, hardstones, polished stone axes and/or

amulets, lava rock for grind stones, as well as alabaster and some semi-precious stones

which were used as beads (Trump, 1966: 49). Other potentially limited resources that

must have necessitated import include timber and fuel (Bonanno, 1986; Robb, 2001).

The chief apparent import, however, appeared to have been ochre, which, as has been

detailed previously, was used extensively and lavishly throughout this period. Since it

has been claimed that there are no ochre sources on the islands this pigment has been

used as the definitive proof for contact between the islands and mainland Europe

(Evans, 1959; 1971; Bonnanno, 1986; Robb, 2001).

People are still searching for answers to questions relating to these Neolithic

inhabitants of Malta who ceased their temple construction ‘frenzy’ and vanished, as

mysteriously as they had first appeared, sometime around 2500 B.C. (Zammit, 1994:

6). It is still a mystery as to why this sophisticated culture collapsed, and/or why the

culture was suddenly uprooted as there is no evidence pointing towards a sudden

catastrophe (Evans, 1953: 84). It appears that the temples were abandoned abruptly

and totally, although a select few were used for other purposes: the Tarxien temple, for
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example, was converted into a cemetery (Bonanno, 1986). Speculations include a

wipe out of the population through war or pestilence; though it is unlikely that either of

these would kill off an entire population.

The most accepted suggestion returns to the probable economic problems associated

with islands, including rapid depletion and ensuing lack of resources or a probable

draught, which consequently made the archipelago unfit to be lived upon (Trump,

1966: 51). Competition between territorial centres could also have led to social

collapse, or the Neolithic Maltese peoples may have been led to think that the islands

were accursed by the gods and needed to be abandoned. Suggestive evidence of

Maltese influence has been observed in Sardinia (Bonanno, 1986), but little else

accounts for the 200 year gap observed before the arrival of the Bronze Age people

from southern Italy or the Cyclades (Vassallo, 2007: 60). Whatever the situation was,

no evidence exists to disprove any of the theories proposed; yet the temples have

always been shrouded in mystery, since nothing as remotely as spectacular has ever

succeeded the Temple-phase on the Maltese islands, at least, not for several millennia

(Trump, 2008: 241).
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Imported Items Used for Found at Originated from

Flint Tools Many sites
Monti Iblei, near Syracuse;
others from further afield

Obsidian Tools Many sites
Major source Lipari, another
was Pantelleria

Pumice
Grinding bone
instruments

One block
found at Skorba

Etna region or on Lipari (?)

Lava quernstones Cereal grinding Tarxien Etna

Red ochre Ritual, decoration Many sites Different sites in Sicily (?)

Polished
metamorphic /
igneous rocks

Stone axes Skorba
Various: behind Messina and
in the Sila of Calabria

Green stone Axe amulets Tarxien Calabria, probably Sila

Alabaster Miniatures Various sites
Argrigentino or northern
Calabria

Foodstuffs? No archaeological trace

Table 2-8. Imported material from Sicily/Italy to Malta: Imports were not that plentiful, and
exports are impossible to identify (Trump, 1966: 49-50; Bonanno, 1986)

Figures 2-12a, b. Lower walls at Mnajdra, and a view of the main hall in the Hal-Saflieni
Hypogeum (Pictures courtesy of Heritage Malta)
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Chapter 3.

Characterisation methods
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3.1. Overview of characterisation methods used in the analysis of
pigments

As the aim of this project was to assess whether or not the Maltese islands may have

been the ultimate source of these abundantly used ancient ochres, it was necessary to

establish which techniques were appropriate for characterisation and provenancing

purposes; specifically applied to the analysis of pigments, as will be described below.

The techniques selected for the determination of the chemistry of materials therefore

depend on a number of issues, including the quantity and quality of the materials to be

analysed, the type of information/results required, the availability, suitability and

efficiency of the instrument and its operators, the cost-limitations of the study, the

accuracy, precision, value and validity of the data, as well as the sample sizes and

sampling limitations imposed by the case in question.

Numerous techniques are being studied, implemented, improved upon and made

available for the study of objects, for the observation of their condition, fabrication

technology, for constituent characterisation and for provenancing purposes. The range

of equipment ranges from simple microscopy and chemical methods, to the more

precise and innovative instrumental methods, which can be non-invasive, non-

destructive and completely destructive; where sampling may or may not be required

for the analytical investigation. In the case of non-invasive methodologies, results can

be obtained without sampling, and are therefore particularly appealing for

archaeometric studies. Non-destructive techniques conversely involve the acquisition

of samples, though these samples can be re-used if stored carefully after the
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investigation. Destructive techniques on the other hand necessitate complete

‘consumption’ of an extracted sample for the analytical process involved (Crown,

1968). Although ‘classical’ wet methods and ‘traditional’ techniques are still being

employed for material chemistry studies, analysis by means of the generally faster and

more reliable instrumental techniques is now preferred, especially for provenancing

studies because of the ever increasing potential and accuracy exhibited by these

techniques. Relatively simple methods like polarising light microscopy (PLM), for

example, that uses visible light to observe the optical properties of materials in

transmission and/or reflection is still a rather popular technique that is often

implemented in the analysis of pigment dispersions (Eastaugh, Walsh et. al., 2006).

The majority of these instrumental methods work on a similar principle. They

essentially utilize a source, which may be collimated and resolved before being

allowed to interact with a surface, artefact or with an appropriately prepared and/or

activated sample. The interaction generally results in some sort of emission, which is

then detected, and the overall data output can be interpreted. Comparing the results

obtained with supplementary data from complementary techniques is usually necessary

for a more comprehensive investigation; which can thus be used to satisfy the aim(s) of

the enquiry. Literature studies pertaining to pigment analysis and provenancing

studies have shown the potential of a wide range of instrumental techniques, as will be

described in the following section, while further instrumental details are supplied in

Appendix I. However it is generally observed that:

‘There is no one method that is the most suitable for solving all problems…each

analytical method has its own particular advantages and limitations’ (Brill, 1999)
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3.1.1. Analysis of inorganic materials

X-rays have been applied extensively in the analysis of coloured materials. A

regularly used non-destructive X-ray technique is XRF spectroscopy, a method that

was first implemented in the early 1970s (Moioli and Seccaroni, 2000). It has now

become one of the most powerful tools for qualitative and semi-quantitative

investigations of cultural materials (Scott, 2001; Hahn, Oltrogge et al., 2004) and is

often used in ochre studies, though chiefly in conjunction with other techniques (Calza,

Anjos et al., 2008; Ramos, Ruisánchez et al., 2008). Improved portable XRF models

additionally allow in situ analysis in field studies or in galleries, museums or private

collections (Szokefalvi-Nagy, Demeter et al., 2004). The importance of this non-

destructive technique has been highlighted in numerous publications (Klockenkamper,

von Bohlen et al., 2000; Scott, 2001; Hahn, 2004), and other case studies use this X-

ray method to help establish the provenance of painted artworks (Aloupi, Karydas et

al., 2000) and to authenticate several paintings through pigment analysis

(Klockenkamper, von Bohlen et al., 2000; Szokefalvi-Nagy, Demeter et al., 2004).

XRF, nevertheless, has its limitations and is generally used as a preliminary

investigative technique or employed with complementary analytical or physico-

chemical methodologies to allow for an exhaustive knowledge of all the components

present in the different pigments (Moioli and Seccaroni, 2000). Although it provides

quick and relatively reliable results (Moioli and Seccaroni, 2000; Samek, Injuk et al.,

2002) it is a surface technique that does not give any stratigraphical information

(Cesareo, Castellano et al., 2004).
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PIXE is another widely used non-destructive X-ray technique, implemented rather

frequently in the examination of cultural works of art. Like XRF, the advantages of

using PIXE with an external air path include few sample size restrictions, improved

heat conduction and less charge build-up (Mando, 1994; Moser, Bubb et al., 1998). Its

detection is likewise limited to medium and heavier elements, but PIXE can be

coupled with other techniques including PIGE to simultaneously analyse the light

elements (Reiche, Britzke et al., 2005), and Rutherford backscattering spectroscopy,

RBS, for profiling heavy elements (Uda, Demortier et al., 2005, Salamanca et al.,

2000). Its lower beam deflection moreover allows for quantitative analysis of

materials when appropriately calibrated. PIXE and PIGE applications are similar to

those of XRF; hence these techniques have been used to identify inorganic paint

constituents on a wide range of substrates and as a result provide historical information

about the artefact for authentication, dating and provenancing purposes (Moser, Bubb

et al., 1998; Brenner, Lill et al., 2004; Reiche, Britzke et al., 2005; Uda, Demortier et

al., 2005; Rivero-Torres et al., 2008; Pappalardo et al., 2008). PIXE is therefore

preferable when the non-destructive elemental characterisation of small, well-defined

regions is important. However, the technique necessitates transportation of the objects

into the accelerator laboratory, which, besides being rather costly, may also result in

limitations in its use (Neelmeijer, Brissaud et al., 2000).

The conventional SEM-EDS, on the other hand, remains one of the most prominent

techniques used for compositional analysis; mainly due to its relatively low operating

costs and its adequate detection limits. The chief advantage of this technique is the

coupling of the electron microscope with a dispersive spectrometer. These jointly
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provide high-quality magnified images, morphological data, stratigraphical

information (if cross sections are prepared), as well as elemental information (San

Andres, Baez et al., 1997; Colombini, Giachi et al., 2003; Damiani, Gliozzo et al.,

2003; Ponting, 2004; Mazzeo, Joseph et al., 2006). It is often used in conjunction with

the PLM for imaging. The EDS is in fact probably ‘one of the mostly accepted

physical techniques for elemental analysis’ (Szokefalvi-Nagy, Demeter et al., 2004).

Though ENVAC modes now allow examination of small objects under environmental

temperature and pressure, the SEM-EDS is generally classified as an invasive, but non-

destructive technique. Constant calibration is also necessary due to repeated

fluctuations of the electron beam.

XRD has an unmistakable advantage over the aforementioned elemental techniques. It

is able to give qualitative phase analysis of crystalline, polycrystalline or partially

crystalline organic and inorganic molecules (Silbilia, 1996), thus identifying the

compound rather than giving a peak chart of elements. Powder diffraction is

nevertheless considered to be the most reliable way of achieving satisfactory data from

an array of crystallites and has been exploited in several ochre analysis studies (Krekel

and Polborn, 2003; Rendle, 2003; Pradell, Salvado et al., 2006). Here, it is rarely used

alone but is typically exploited in conjunction with other elemental/molecular

identification methods, especially as naturally occurring goethite and hematite are

poorly crystalline materials (Schwertmann and Cornell, 2000). The potential of XRD,

however, lies in its ability to identify the composition, distributions, structural

imperfections and relative proportions of the mineral phases associated with the ochre

(Murad, 1979; Dold and Fontbote, 2002; Chalmin, Menu et al., 2003; Mortimore,
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Marshall et al., 2003). XRD has also been used in several thermal transformation

studies of ochres (Przepiera and Przepiera, 2001; Loffler and Mader, 2006; Manasse

and Mellini, 2006; Prasad, Prasad et al., 2006). Powder diffraction, however, makes

the technique invasive and thus less desirable when compared to the non-destructive

XRF or PIXE/PIGE methods.

Several other techniques have been exploited to varying extents for pigment analysis.

Mössbauer spectroscopy, for instance, is a technique based on the energy level

transitions experienced in nuclei of solids associated with the emission and/or

absorption of gamma rays; and has also been used in pigment analysis. It has been

found to be especially useful in the observation of iron-containing pigments, mainly to

discriminate between lattice structures and co-ordination geometries and to identify

oxidation states for iron. It is, however, conventionally also used in conjunction with

other complementary methods, yet provides useful supplementary information about

the iron content in the materials (Murad, 1979; Casellato, Vigato et al., 2000).

Examples of other useful and routinely implemented techniques include laser induced

breakdown spectroscopy, or LIBS, inductively coupled plasma (ICP), sometimes

coupled with mass spectrometry (MS), atomic absorption/emission spectroscopy (AAS

and AES). All these techniques entail volatizing a sample to plasma, whose

constituent particles or elements, existing in an excited state, are subsequently

identified by means of a detector/system. The majority of these instrumental methods,

the ICP coupled techniques in particular, are very sensitive and hence are ideal for

quantitative analysis. Their high sensitivity generates data values of elements present
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in materials down to the parts per million range (ppm), and has consequently resulted

in the exploitation of these ICP plasma-based techniques in various provenancing

studies. Here, when coupled with suitably targeted statistics, some elements present in

trace quantities have proven to be geological markers and are therefore exceptionally

useful in the successful sourcing of materials, as has been observed in numerous

publications (Jarvis, 1989; Kato, Ohta et al., 1998; Lawrence, Greig et al., 2006;

Marmolejo-Rodríguez, Prego et al., 2007; Iriarte, Foyo et al., 2008). These techniques

are, however, only used in specialized studies as (i) sample preparation can be rather

challenging and labour costs can be significant, (ii) the sample is completely consumed

during the analysis and (iii) excess data is equally superfluous; consequently these

highly-sensitive techniques are rarely used for general material characterisation

purposes (Glascock and Neff, 2003).

Neutron activation analysis (NAA) is another technique being implemented in

elemental characterisation studies. It involves sample irradiation with neutrons or

another neutron source, and results in radioactive emission from the sample, resulting

in radiation spectra with peaks characteristic to the elements present within the sample

(Glascock and Neff, 2003). Although other techniques, such as the ICP-coupled

techniques, have superseded this method in terms of practicality (a neutron source is

costly), this method is still being employed in pioneering ochre provenancing studies

to date (Popelka-Filcoff, Robertson et al., 2007; Popelka-Filcoff, Miksa et al., 2008).
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3.1.2. Molecular methods

FTIR and Raman spectroscopy both utilize the interaction of infrared rays (IR) with

materials to gain information about organic and inorganic molecular bonds, and are

therefore useful tools in the molecular characterisation of materials. Although both are

powerful techniques, they are generally combined with other complementary methods

to corroborate results (Wilkinson, Perry et al., 2002). This is mainly because these

methods are qualitative rather than quantitative, as too many factors influence the peak

heights; which are typically proportional to concentration within a given sample.

Resultant spectra can also be confusing, bands may overlap, and absorbance and/or

fluorescence may be experienced in critical regions of the spectrum, masking the

presence of weaker, yet possibly significant peaks (Drake and Moore, 2006).

Semi-destructive transmission FTIR using a KBr ‘window’ has often been used as a

quick, cheap and relatively satisfactory way of identifying materials: In conservation,

for example it has been used for successful identification of both pigments and binding

media (Derrick, Stulik et al., 1999; Coates, 2000; Learner, 2004; Drake and Moore,

2006). It has also been found to be a useful method in earth pigment characterisation

studies, generally in conjunction with SEM-EDS and XRD (Bikaris, Danila et al.,

2000; Genestar and Pons, 2005) and has also been used to observe the molecular

structure of ochres and the ensuing changes in molecular composition upon calcination

(Cambier, 1986; Betancur, Barrero et al., 2004; Prasad, Prasad et al., 2006). Attempts

are still being made to make the technique completely non-destructive by attaching

microscopes to the spectrometer and using reflectance methods (van der Weerd,

Heeren et al., 2004).
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Raman spectroscopy is a completely non-destructive technique that requires little or no

sample preparation. It has a wider spectral range in comparison to conventional FTIR

(de Gelder, Vandenabeele et al., 2005), and is thus preferred for rapid, in situ detection

and identification of numerous materials (Rosalie David, Edwards et al., 2001).

Raman and micro-Raman have been studied extensively and the techniques have been

implemented widely in the analysis of organic and inorganic pigments (Davey,

Gardiner et al., 1994; Scardova, Lottici et al., 2002; Smith, Derbyshire et al., 2002;

Perez and Esteve-Tebar, 2004; Suzuki and McDermot, 2006). FTIR is, however,

generally preferred in ochre studies as it gives more information about the clay fraction

within the ochre in comparison to Raman methods, and thus is a better method for

ochre/earth pigment differentiation. Several interesting studies have been carried out,

however, using Raman as one of the major techniques of analysis, and include

spectroscopic studies of natural and archaeological pigments (Edwards, Brooke et al.,

1997; Edwards, Drummond et al., 1999; Fremout, Saverwyns et al., 2006). A critical

drawback of the technique is the possible aforementioned fluorescence, which

seriously interferes with the Raman signals. Though ways of mitigating this problem

are being explored (Bartick, 2002; Macdonald and Wyeth, 2006), analogous

techniques such as FTIR (Smith and Clark, 2001; Hernanz, Mas et al., 2006; Edwards

et al., 1998; Daniilia et al., 2008); or complementary techniques including XRF

(Centeno, Mahon et al., 2004; Ricci, Borgia et al., 2004, Sawczak et al., 2008, Ramos

et al., 2008) or PIXE (Vandenabeele, 2004) are generally implemented to qualify the

components of the material in question. A comparative table of the most useful

techniques is provided on P.88.
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Chapter 4.

Methodology
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4.1. Analytical methodology and pilot studies

4.1.1. Overview

The aim of this section of the project was to explore the methods described in Chapter

3 used for pigment and ochre analysis, and identify which techniques were more

efficient at characterising/differentiating between ochres and potentially link them to

their source(s). Although recent ochre studies have already suggested the

implementation of certain techniques such as NAA and XRF spectroscopy (Popelka-

Filcoff, Robertson et al., 2007; Popelka-Filcoff, Miksa et al., 2008), instrument

availability and the possible potential benefits of experimenting with other techniques

necessitated this part of the study. Two pilot studies were therefore implemented in an

attempt to establish a methodology to differentiate between ochres.

The first study, Pilot Study 1, exploited a combination of the complementary and

analogous analytical techniques to characterise natural and synthetic ochres, and to

assess the reliability in generating data suitable for provenancing. These methods

include polarising light microscopy (PLM), scanning electron microscopy (SEM)

coupled energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray

fluorescence spectroscopy (XRF), particle induced X-ray emission (PIXE), inductively

coupled plasma – atomic emission spectroscopy (ICP-AES), Fourier transform infrared

(FTIR), and Raman spectroscopy. The techniques were used to determine the visible

particle morphologies (surface), mineral structures, chemical composition (major,

minor and trace elements), and molecular bonds present. An overview of these

methods is supplied in Appendix I. Experimentation was also attempted with other
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techniques but when results failed to contribute to satisfying the aim of the project

further analysis was deemed unnecessary.

Figure 4-1. The scheme suggested for provenancing studies

The second study, Pilot Study 2, was a sub-study that focused on two of the methods

described in Pilot Study 1 that showed debatable benefits for this ochre project;

namely XRD and FTIR. The aims and objectives of each study will be outlined in

further detail in their respective sub-sections.

Figures 4-2a-c. (a) Observing a dispersed sample (b) The SEM-EDS and (c) an XRD
(Photos: author)

4) Isotopes? Still much research required in this field applied to ochre studies

1) Observation of general characteristics
2) Identification and quantification of

major elements present,
Best ‘starting point’

Imaging/optical examination:
Light microscopy, SEM

Elemental analysis techniques
including: EDS, XRF, PIXE

Molecular analysis via:
FTIR, Raman

Structural analysis: XRD

3) Identification and quantification of:
Minor elements
Trace elements + Statistics
Rare earth elements

ICP – coupled techniques, e.g.
ICP-MS / ICP-AES or/and
Carefully calibrated PIXE,
possibly used in conjunction
with PIGE and RBS
NAA
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Technique Pros Cons
SEM
-EDS

Non-destructive, very useful for simultaneous imaging and
chemical analysis

Sampling required, and preparation of embedded cross
sections if required can be relatively time consuming

XRF Non-invasive, low penetration depth, quick, no sample
preparation required, qualitative and semi-quantitative
elemental analysis of a particular area of the sample

Surface sensitive, careful calibration is necessary,
irregularities and distance from object might lead to inaccurate
results, no stratigraphical information and cannot detect light
elements

PIXE Sensitive elemental technique, non-destructive, can also be
non-invasive if an air-path is used/sample is mounted outside
the chamber. Profiling through multiple paint layers is also
possible by varying the energy of the incident beam

Expensive to run and operate, sample needs to be transported
to the accelerator facility, quantification is only possible if the
‘dark matrix’ i.e. the matrix of the invisible elements
(generally of low Z) is known (Pappalardo, Sanoit et al. 2007).
Detection is limited to medium and heavier elements

XRD Establishes chemical identity of materials rather than their
elemental composition, also used to measure crystallinity (via
XRD line widths), order and particle size (coherently
diffracting domain size). Sample preparation is relatively
easy, results obtained are both qualitative and quantitative

Only useful for materials with repeating structural unit
(crystalline phases). Library of diffractograms and reference
material required to establish material identities. Powder
diffraction also necessitates sampling, and detection limits can
be an issue

ICP-AES Very sensitive technique for elemental analysis: major, minor,
trace and rare earth elements are identified

Complex and time consuming (sometimes dangerous) sample
preparation, sample is consumed during analysis

FTIR Molecular characterisation, small quantity of sample required,
quick and relatively simple sample preparation, short analysis
time. Also allows for the simultaneous study of organic and
inorganic species, crystalline or amorphous compounds, and in
some cases, even provides mineralogical information

Quantitative analysis is virtually impossible, spectra
interpretation can be very difficult because of overlapping
bands, grain size affects results, spectral interferences are not
uncommon

Raman Non-invasive, low penetration depth, no sample preparation
required, provides information regarding the molecular
structure and crystal lattice vibrations and hence is sensitive to
the composition, chemical environment and crystalline
structure of the material analysed

Fluorescence may mask several if not all peaks, surface
sensitive, too high power may burn material, matrix effects,
bands may overlap if mixtures are present, weaker peaks may
be masked

Table 4-1. Pros and cons of the instrumental techniques used in this pilot study (from Lyman, 1990; Brundle, Evans et al., 1992; Silbilia, 1996;
Skoog, Holler et al., 1998; Rouessac and Rouessac, 2000; Action, 2004; Adriaens, 2005; Sackler, 2005)
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4.1.2. Sample selection for pilot studies

The samples for Pilot Study 1 were acquired from a variety of sources. Pieces of raw

yellow ochre were collected from a once popular, now disused ochre deposit at

Shotover hill, Oxfordshire. A total of four areas were selected, S 1001 – S 1004, with

multiple samples extracted from both the surface and the core were obtained from

each. Another group of geological ochres were donated to this project and consisted of

four different lumps of ochre acquired from the well-known ochre mines in Margi (MC

1001) and Sia (EC 1001 – EC 1003), in Cyprus. Another large block of red-chalk

ochre was obtained from Norfolk (N 1001). Two final sets of samples of natural and

synthetic red ochre were also acquired from a paint plant factory in Mumbai, India, for

comparative purposes and were used as controls (NI 1001, SI 1001).

Figures 4-3a-c. Examples of samples gathered (Photos: author)

The group collected for Pilot Study 2 consisted of a large set of earth pigments which

were provided by the Pigmentum Project. These included a range of forty different

varieties of ochres, siennas, green earths and umbers, with shades ranging from yellow

to red, green to brown, all collected for comparative purposes. The country of origin

was known in most cases, and all known details were documented (refer to Pilot Study

2 for a comprehensive list of the pigments, their colours and sources).
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4.1.3. Sample preparation

Technique Samples Prepared

(a) PLM
Preparation of dispersion sample by dispersing the pigment particles in
thermoplastic resin on a slide mounted on a hot plate. The permanent

slide was sealed with a coverslip while the resin was still hot

(b) SEM-EDX
Particles were dispersed on a stub, attached by means of double-sided

sticky carbon tabs. These were carbon coated twice for examination in
certain experiments (SEM-EDS 1)

(c) XRF
No sample preparation was required. This method was only used in

experiments in Chapter 5

(d) PIXE
Tests were carried out using approximately 0.3 g of sample, which was
pressed into 10 mm  pellets and was mounted on a graphite holder.

Carbon paths were traced along the edges of the pellets

(e) ICP-AES
Samples (~ 0.3g) were dissolved and analysed at the Royal Holloway

College Geology Labs in Surrey

(f) XRD
Around 0.006 g of sample was ground and placed in the middle of an

XRD sample holder

(g) FT-IR
Powdered samples (0.004 g) were pressed into discs with 0.132 g of

potassium bromide (KBr)

(h) Raman
Various tests carried out, with varying acquisition times and distances on

both the mineral and ground pigment

Table 4-2. A table summarising sample preparation

Figures 4-4 a-c. Pigment preparation: grinding (Photos: author)

4.1.4. Instrumental set-up

PLM: The PLM used was a Polyvar MET microscope, equipped with a Polaroid

camera for quick capture. Various magnifications were used for observation of the

properties of the sample, including an objective lens of X100 which necessitated oil

immersion.



91

SEM-EDS: Two SEM-EDS instruments were used for this pilot study. Samples were

powdered and adhered to a stub for both machines. The first SEM was a JEOL JSM –

840A, which was operated at an accelerating voltage of 15 kV under high vacuum.

The powdered samples examined under this SEM were coated in a conductive layer of

carbon to prevent negative charge build-up on the surface. Backscattered electron

images (BSE) of each sample were obtained and both major and minor elements were

detected at a working distance of 15 mm using the attached PGT Princeton Gamma –

Tech Si(Li) detector (EDS). This was regulated to collect a spectrum at approximately

300 seconds livetime.

The second SEM was a LEO 435VP variable pressure microscope with the potential of

working in near environmental (EnVac) conditions. This EnVac mode was operated at

20kV and was used for examining the samples, thus precluding carbon coating

required for high vacuum conditions. Observations were carried out with a

backscattered electron detector (BSE). Analysis was carried out by means of an

attached GENESIS EDAX INC. advanced microanalysis solutions energy analyser,

which was regulated to collect a spectrum at approximately 200 seconds livetime and

at a working distance of 24 mm. Quantitative oxide concentrations in weight % were

calculated by stoichiometry from element percentages generated by the EDS software.

XRF: An Innov-X Alpha Series was loaned for the non-invasive analysis of selected

samples in this project. It had an X-ray tube excitation source, and a high resolution,

thermo-electrically cooled SiPiN diode detector. The XRF was operated at 40 kV, 9

μA, at approximately 40 seconds livetime. The instrument was suspended ~ 5mm

from the surface of the object.
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PIXE: The samples were attached to a graphite holder by means of conductive carbon

cement. Paths of this cement were also traced along the edges of the sample. The

PIXE was equipped with a Van der Graaf accelerator source and a PGT Princeton

Gamma-tech Si(Li) detector, operated at 2MeV and 10 nA.

ICP-AES: 0.3 g of the sample was powdered finely. 0.2g of the powdered sample was

then weighed into a Teflon beaker. 4 ml of hydrogen fluoride (HF), 2 ml of perchloric

acid (HClO4) and 1 ml of nitric acid (HNO3) were added to the sample and the mixture

evaporated to dryness on a hotplate. After cooling, the samples were dissolved in 10%

hydrochloric acid, warmed and after cooling diluted to 20mls. The prepared solutions

were then analysed using the Perkin Elmer 3300RL ICP optical spectrometer for the

range of major and trace elements. Major elements were quoted as weight percent

oxide and trace elements as parts per million (ppm) of the element. Both acid

dissolution and analysis was carried out at the Royal Holloway College.

XRD: The XRD profiles of the powdered samples were obtained using a Kristalloflex

810 Siemens powder diffractometer equipped with a Cu Kα radiation source. The

accelerating voltage and the electric current at the Cu anode were 40 kV and 30 mA

(1200W) respectively. A range of 10 – 80° 2θ was scanned at a step size of 0.02° and 

at a count time of five seconds per step. All data was compared to reference data from

Crystallographica Search-Match. Further analysis was carried out at a later date on a

separate X’Pert PRO PANalytical powder diffractometer, operated at 40 kV and 40

mA and a Cu Kα source. The angular range was also set at 10 – 80° at a step size of

0.013° and scanning s peed of 0.022 s.
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FTIR: Sample preparation involved pressing the powdered samples into 10 mm

diameter discs (pressure 10 t) using the compressed alkali metal halide pellet method

(also known as the KBr pellet or disk method). A typical disc was prepared by

combining the sample with the salt in an approximate ratio of 1:33. A total weight of

0.055 g made the pellet of appropriate thickness for effective transmission. Generally

0.004 g of sample was mixed with 0.132 g of KBr, thus two pellets were run off the

same sample to corroborate results. A background scan was also made to preclude

environmental interferences, and the KBr pellet was prepared just before it was due to

be analysed.

The sample pellet was placed in the infrared beam path of a Bruker Vector 22 FTIR

spectrometer and data collection time was run over a period of 100 seconds. Some

charts distortions, exhibited as slightly sloping baselines and low percentage totals that

possibly represented energy loss by scattering and/or diffraction of the IR beam, were

found to be impossible to rectify and consequently necessitated the application of the

baseline correction system and y-axis scaling to facilitate peak evaluation.

Raman: The instrument used was an Ocean Optics R-3000 Raman spectrometer, with

an incident beam wavelength of 785 nm and a output power of 250 mW. The dynamic

usable range was between 200 – 1800 R cm-1. White light background correction was

performed prior to the acquisition of every spectrum, and integration times were set at

5, 10, 20 and 30 seconds
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4.1.5. Pilot Study 1

An overview of the aims of this study therefore included the following:

i. To test the instrumental techniques used in pigment analysis, namely PLM,

SEM-EDS, PIXE, XRD, ICP-AES, FTIR, Raman.

ii. To establish how useful, adequate and/or complementary the methodologies

were to differentiate between ochres.

iii. To observe whether different groups may actually be differentiated, and how

these relate to their sources, colorant etc.

iv. To establish which methodology provided the most valuable information for

this project; i.e. which results obtained were the more useful for the

characterization and provenancing of ochres.

v. To determine whether any unanswered query would require further

investigation in an auxiliary study.

Sample Description
No. Name Source Colour

1 S 1001 Shotover, Oxford, UK Yellow-brown

2 S 1002 Shotover, Oxford, UK Yellow-brown

3 S 1003 Shotover, Oxford, UK Yellow-brown

4 S 1004 Shotover, Oxford, UK Yellow-brown

5 MC 1001 Margi, Cyprus Bright yellow

6 EC 1001 Sia, Cyprus Yellow-brown

7 EC 1002 Sia, Cyprus Dirty-brown

8 EC 1003 Sia, Cyprus Red

9 N 1001 Norfolk, UK Reddish -white

10 NI 1001 Paint plant, India Red (natural)

11 SI 1001 Paint plant, India Red (synthetic)

Table 4-3. The samples analysed in this study
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PLM results. PLM data from the examined Shotover dispersion samples showed a

large number of quartz grains and goethite. The goethite consisted of fine, translucent,

rounded, yellow-brown crystals of approximately 1.5 µm (though variable) diameter,

and which tended to clump together and to the quartz grains (Figure 4-5b). The quartz

particles varied in size but were characteristically much larger than goethite; with a

vitreous, angular and transparent appearance. S 1003 had fewer quartz grains in

comparison to the other Shotover samples (Gribble and Hall, 1992: 40).

Figures 4-5a-c. Characteristic Shotover dispersion samples under the PLM: Mag. X200 of
clumps of goethite grains in S 1001 (a) and goethite on a large particle of quartz at Mag. x1000
in oil immersion of S 1002 under crossed polars (XPL) (b) Quartz grain (X1000) in S 1001 (c)

Observation of the particles in MC 1001 showed that the pigment was not an ochre.

Comparison to previous studies of documented optical properties of pigments under

plane and cross-polarized light (XPL) indicated that the main colorant was probably a

material known as jarosite or natorjarosite, of composition KFe3(SO4)2(OH)6 and

NaFe3(SO4)2(OH)6 respectively (Eastaugh, Walsh et al., 2004: 150). The main

distinguishing features included the particle shape and size: while goethite and

hematite were rounded particles with a distinctive yellow or red colour, jarosite-based

particles were generally hexagonal with a yellow to greenish tinge (Figure 4-6c). An

even more marked distinguishing feature was the high birefringence experienced under

XPL.
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The EC 1001 – EC 1003 dispersion samples were similar to those from Shotover, as

can be seen in Figure 4-6c. Here goethite appears as clumps on a quartz grain. These

samples appeared to be quartz dominant with varying proportions of goethite-to-

hematite. Hematite crystals observed were more abundant in EC 1003 and appeared

near-identical to goethite particles under both plane and crossed polarized light; only

differing, as expected, in colour. The EC samples differed from the Shotover group as

they appeared to have a greater pigment to-accessory mineral ratio, and thus were

‘purer’ (Chapter 1).

N 1001 consisted of hematite granules clumped onto particles of calcite. The calcite

itself was present in large quantities and was clearly distinguishable from quartz grains

(which did not feature anywhere in N 1001) due to its high level of birefringence with

third order interference colours (Figure 4-7a). Pleochroism of the same calcite

particles was also visible under plane polarized light (PPL).

Figures 4-6a-c. (a) MC 1001 samples PPL, (b) MC 1001 under XPL and (c) EC 1002
showing ochre particles clumped on a grain of quartz. Mag X400 in all images.

Lastly, the samples obtained from the paint plant in India appeared to consist solely of

pure hematite, both as separate, minute, grains and as clumps. Although there were no

very noticeable differences between the natural and synthetic varieties, the synthetic
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ochre consisted of particularly small rounded particles, a characteristic of a synthetic

method of manufacture, whereas the so called ‘natural’ variety seemed to have some

grains with a sub-angular/less rounded appearance.

Figures 4-7a-c. (a) Particles of ochre clumped onto a large, birefringent calcite particle in N
1001, viewed under XPL, (b) NI 1001 and (c) SI 1001. All were viewed under Mag. of X400

SEM-EDS results. Below are some examples of the secondary electron (SE) images

taken of a selected few of the samples in question. Particle size varied, with grain

dimensions of the larger (quartz) particles differing between grains on the same stub.

EDS analysis was majorly qualitative and partially quantitiative as the JEOL JSM-

840A-PGT Princeton Gamma-Tech EDS spectrometer used was inadequate for fully or

even semi-quantitative results. The particles were also irregular, making it difficult to

obtain accurate elemental counts. The major and minor constituents of the pigment

particles in each case were evaluated by calculating ratios of the abundance of

elements present in proportion to their peak heights. Analysis for the Cyprus samples

was repeated on the LEO 435VP - GENESIS EDAX INC SEM-EDS (more accurate).

Optical observations under the SEM merely confirmed PLM observations, revealing

pigment particles clumped together or around the more angular quartz grains. The

latter observation was especially featured in the Shotover samples, whereas the Cyprus

samples predominantly appeared to clump together. The accessory mineral in N 1001
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was calcite, whose particle sizes were significantly smaller (~20 μm) in comparison to

the quartz grains. The paint plant pigment from India purely consisted of small

pigment grains and negligible amounts of material other than the iron oxide.

Figures 4-8a-c. SE images of examples of the Shotover samples (scale bar: 20 μm)

Qualitative results and comparisons between the major elements present in averaged

semi-quantitative readings enabled the division of most samples into their (expected)

groups, namely Shotover, Sia, India. The data indicated that both Shotover and Sia

natural ochres predominantly consisted of silicon dioxide, iron oxide and aluminum

oxide, while the paint plant India ochres were chiefly hematite based. The Margi and

Norfolk samples fell into categories of their own, with the Margi ochre being sulphur

and iron dominant, whilst the Norfolk sample was very calcitic.

Partially-quantitative results are given below, displayed in oxide wt-% as is

conventional for EDS analysis. These results also gave inter-group differences, with S

1003, for example, having a much higher concentration of Fe in comparison with the

other three samples, indicating that the ochre was of better quality than the other

Shotover samples. Comparison between minor elements present enabled a more

efficient sample distinction, and confirmed the discrepancy between these samples. S

1001, S 1002 and S 1004 had a similar composition containing small quantities of
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potassium and titanium, whereas S 1003 conversely contained traces of phosphorous

and lead.

Samples
Oxide % MC 1001 EC 1001 EC 1002 EC 1003

Na2O 3 0 0.2 0.5
MgO 0 0.3 0.5 1.7
Al2O3 1.2 5.1 3.3 12
SiO2 8.3 20 20 41
SO2 26 0.6 5.5 1
K2O 0.4 0.3 0.5 0.8
CaO 0 0 0.3 1
TiO2 0 0.7 0 1.2
Fe2O3 62 73 69 41

Table 4-4. Oxide % values of samples from Cyprus Figure 4-9. EDS spectrum of
MC 1001
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Figure 4-10. Comparison between oxide% in MC and EC samples (Error at 20%). K (in
FeK/SiK etc.) refers to the K lines representing electron shell transitions in the EDS

EDS measurements of the Cyprus samples showed that MC 1001 were of different

composition to the EC samples. They had comparatively high sulphur levels; though

the other (minor) elements present indicated formation in similar silicaceous (rather

than calcitic) environments. Differences within the same Sia ochre group were also

apparent, therefore indicating inter-site variation. EDS analysis is therefore useful for

characterisation studies, although a much larger sample group is necessary to assess

whether inter-site variation was significant.
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PIXE results. Tests results showed that the PIXE had potential, but needed to be re-

calibrated. Nevertheless, a poor signal-to-noise ratio and a low count rate were

observed for each sample, though the deadtime was fairly satisfactory. Results were

preliminary and somewhat unsuitable, and further testing at a later stage gave similar

results.

XRD Results. The XRD results both corroborated and, in some cases, complemented

the SEM-EDS results, giving structural identities of the major materials present rather

than giving mere elemental compositions. The colorant in MC 1001, for example was

found to be natrojarosite, with molecular formula NaFe3[SO4]2[OH]6. This therefore

confirmed and accounted for the predominance of sulphur in the EDS spectrum,

confirming the PLM and the SEM-EDS investigations.
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Figure 4-11. The diffraction profile of MC 1001
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Distinct diffraction profiles were obtained whenever quartz or calcite were present, as

observed in the Shotover and Cyprus samples (quartz dominant), and the Norfolk

samples (calcite dominant). Iron oxide profiles gave a poor signal-to-noise ratio as the

material was poorly crystalline (typical problem) and/or was present in very low

quantities, thus giving almost no peak visible above the background.

When iron oxide was present in quantities above detection limits, it was identified as

goethite in sample S 1003 and hematite as in both the EC samples and in the paint

plant samples from India. In the latter example, the natural ochre gave a more defined

diffractograms, possibly showing that the iron oxide here was more crystalline than its

synthetic counterpart. Higher counts also indicated a higher proportion of crystalline

material, as in S 1002. A blank slide was run as a control and showed that the broad

swell observed between the 10 – 20o2θ was attributable to the support.
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Figure 4-12. Poorly crystalline goethite which was distinguishable in S 1003
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Overlaying the diffractograms obtained per sample (Figure 4-13 below) also showed

obvious correlations between materials obtained from the same site in comparison to

those obtained from different sites. In the latter (b) example, for instance, EC samples

had near-identical diffraction profiles, whereas it is obvious that MC 1001 fell into an

entirely different pigment category.

2-Theta - Scale

11 20 30 40 50 60 70 80

2-Theta - Scale

11 20 30 40 50 60 70 80

Figures 4-13a, b. Shotover samples (S 1001: black – S 1004: orange) and Cyprus samples
(MC 1001: black, EC 1001: red – EC 1003: orange)

ICP-AES results. Not all the samples were analysed by means of dissolution ICP-AES

due to the cost incurred per sample; hence representative samples, namely S 1001 – S

1003, N 1001, MC 1001 and EC 1001 – EC 1003, were selected for analysis. This

ICP-AES method was the most sensitive of the selected techniques in these pilot

studies and is probably amongst the most sensitive of methods available for elemental

analysis to date. The average detection limit was given as 1 ppm, though this varied

slightly per element: consequently all data will be reproduced to 2 significant figures.

The data obtained was exceptionally useful at discriminating between the samples,

showing both site similarities and disparities. All the results obtained have been

tabulated on the following pages, and various charts have been plotted to observe

relationships between data.
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A considerable amount of information was acquired from the data. The plots below

(Figures 4-14a, b), for example, show the variation and correlation between the major

and minor elements in the samples. Observations included a significantly higher Na2O

wt-% in MC 1001 in comparison to all the other samples: therefore corroborating all

evidence and proving the pigment was natrojarosite. TiO2% in MC 1001 was much

lower (8x lower) than average, and also appeared to be indirectly proportional to

Al2O3% in Cyprus data, though not in UK data. The Cyprus results also show that the

Ba and Cu (ppm) content was higher than in any other sample group.
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Figures 4-14a, b. Bar charts showing the oxide percent variations of Fe, Ca and Al between
samples (a) and of the minor elements present in the samples (b)
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(ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

sample Sr Zr U Th Rb Nb Cs Y La Ce Pr Nd Sm Eu Gd
S 1001 24 78 2.6 1.7 6 0.8 0.28 14 7.7 14 2.1 10 2.3 0.53 2.2
S 1002 14 140 14 16 8 3.6 0.40 44 14 40 5.5 26 8.9 2.0 8.03
S 1003 32 80 19 6.1 9 4.3 1.3 47 21.4 62 8.4 42 14 3.0 12

MC 1001 76 14 0.12 0.12 5 0.2 0.04 2 0.4 0.6 0.1 0.5 0.22 0.17 0.16
EC 1001 6 28 0.17 0.16 2 0.8 0.04 3 0.5 1.0 0.1 0.7 0.36 0.15 0.33

EC 1002 39 37 0.69 0.46 6 1.6 0.15 6 2.3 4.4 0.6 2.8 0.82 0.47 0.72
EC 1003 21 25 0.14 0.18 4 1.0 0.05 3 0.6 1.1 0.2 1.0 0.47 0.24 0.38
N 1001 207 59 0.51 5.03 24 15.4 1.28 18 19.2 33 4.9 22 4.8 0.93 4.3

(ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

sample Tb Dy Ho Er Tm Yb Lu As Pb Cd Tl Mo Sb Bi Sn
S 1001 0.37 2.0 0.39 1.02 0.15 0.86 0.12 57 6 0.1 0.04 0.7 0.6 0.2 0
S 1002 1.6 9.6 1.9 5.4 0.89 5.7 0.80 170 106 1.0 0.07 1.5 3.8 2.3 1
S 1003 2.4 13 2.4 6.6 1.06 6.7 0.95 890 150 0.4 0.17 22 15 1.8 2

MC 1001 0.07 0.21 0.07 0.42 0.04 0.14 0.02 106 33 0.1 1.9 4.1 1.3 1.0 1
EC 1001 0.07 0.64 0.11 0.40 0.06 0.39 0.05 24 10 0.3 0.10 0.7 1.1 0.2 2
EC 1002 0.15 0.98 0.25 0.76 0.10 0.70 0.11 300 72 1.9 1.3 5.2 16 1.7 4
EC 1003 0.09 0.48 0.12 0.32 0.07 0.53 0.06 23 7 0.1 0.09 4.2 1.9 0.7 1
N 1001 0.6 3.1 0.62 1.7 0.24 1.5 0.23 103 15 0.3 0.17 1.5 4.1 0.6 1

Table 4-5a-c. ICP-AES data for Pilot Study 1: the major elements are given as the conventional oxide wt-%, while all the other data is given in ppm.
Data has been rounded off to 2 significant figures

% % % % % % % % % (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)
sample Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Ba Co Cr Cu Li Ni Sc
S 1001 2.4 9.4 0.06 0.21 0.04 0.06 0.39 0.24 0.04 48 7 104 6 12 34 3
S 1002 5.7 66 0.24 0.45 0.04 0.09 0.09 1.4 0.2 26 73 200 23 4 283 11
S 1003 7.3 63 0.16 0.41 0.04 0.13 0.07 1.4 0.05 44 26 190 38 8 137 11

MC 1001 1.05 43 0.14 0.31 4.9 0.40 0.07 0.03 0.01 190 1 0 57 2 1 3
EC 1001 3.7 50 0.22 0.36 0.07 0.10 0.42 0.05 0.005 66 5 2 870 1 0 11
EC 1002 8.9 27 1.4 0.86 0.27 0.50 0.79 0.05 0.08 430 11 69 1600 3 23 27
EC 1003 3.8 33 0.77 0.40 0.15 0.30 0.51 0.03 0.02 260 9 21 46 2 5 15
N 1001 3.6 9.9 0.67 31 0.37 0.64 0.15 0.17 0.26 59 9 92 25 23 252 6



105

The main component of all samples was undoubtedly iron, although the accessory

mineral that predominated in the majority of the samples, namely quartz (as was

determined by means of SEM-EDS and XRD analysis), could not be measured by this

analytical technique. Relative proportions of iron oxide in the samples have been

plotted (Figure 4-15), and show that if the iron oxide was the main colorant material

and denotes pigment quality, it may be assumed that both the Shotover (S) and Cyprus

sites are good ochre sources, with certain areas within the stated sources being better

than others (S 1003).

Figure 4-15. Oxide percent of iron
(oxide) in the samples showing clear
variation in proportions of iron
in samples from the same source

It is apparent that the iron oxide concentration varied per sample, even markedly

within a same source; hence analysis of results for the purpose of source discrimination

(comparative purposes) necessitated treating the iron as a dilution factor for the other

components. This involved examining the elements as log-10 ratios to the iron in a

series of bivariate plots to validate this discrepancy and enable efficient comparison of

concentration ratio values (refer to section 4-3). A considerable number of graphs

were plotted to observe inter- and intra-source variation, with only the most

representative being reproduced in this brief report. These include four examples of

bivariate plots used to compare the concentrations of examples of rare earth elements

(REE) present within the materials to show sample grouping in UK vs. Cyprus

samples.
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Figures 4-16a-d. Examples of bivariate plots of REE showing the distinct groups corresponding to different geographical origins. A slight variation
in the REE signature also corresponds to the different source within the same country
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This was also important to evaluate the sub-groups identified during the previous sets

of analyses based on the disparate identities of their primary constituents. Essentially,

the UK samples were divided into the Shotover group, which were goethite and quartz-

dominant; and the Norfolk sample, which was calcite-rich, also containing some

hematite. The same feature had been observed with the Cyprus ochres, whereby the

Margi sample, natrojarosite, had a completely different composition to the hematite-

based Sia ochres. Although these ‘odd’ (Norfolk N 1001 and Margi MC 1001)

samples were also somewhat distinguishable from the rest of the UK and Cyprus

groups in the bivariate REE plots, these plots also showed that they form a part of the

same group.

Raman Results. The Raman data was poor, because the excitation wavelength of the

laser beam on the said instrument was found to be inappropriate for the analysis of

pigments. No matter how short the acquisition time, the detector appeared to be

repeatedly flooded with reflected light and/or fluorescence when analysing a solid

sample (mineral/ground form). This was because of both the extremely high count

rates (4000 counts) and due to the ensuing lack of peaks in the resulting charts (a in the

spectrum Figure 4-17 below). A preliminary test was carried out by dispersing the

pigment, namely the NtI 1001, in methylated spirit at an acquisition time of six

seconds to check whether future attempts at using this Raman spectrometer were futile.

Peaks, however, did appear and were potentially in right region of the spectrum, but

the number of counts was nevertheless low and peak-to-noise ratio poor. Increasing

the acquisition time and focusing the beam on the sample clearly improved the quality

of the final spectrum, proving that analysis could be achieved using this preparation
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technique. The advantage of Raman spectroscopy for sourcing is, nonetheless,

debatable, especially with the Raman spectrometer available for use which gave poor

qualitative data during these tests.
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Figures 4-17a, b. Raman spectra for NtI 1001. Powdered sample at an acquisition time of 1 s
(a), the dispersion in methylated spirit at 6 s (b) [Background: glass slide]

FTIR results. This technique was used to observe the preferential absorption of

infrared radiation frequencies in an attempt to identify the molecular bonds within the

pigments. The IR results were compared to reference data and the peaks observed

appeared to compare well. Comparative studies and data interpretation with these

standards and published results are given in the second pilot study.

Initial analysis also indicated that the IR frequencies from a particular site were

similar, though a few peak discrepancies, such as slightly shifted absorbance peaks or

broader bands were sometimes noted. This was observed in S 1001 – S 1004, which

were quartz- and goethite-rich. The latter feature was determined by the hydroxyl

stretching bands at ~3150 cm-1. It however appeared that there was no significant
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difference between S 1003 and the other spectra from Shotover, even though XRD

data showed that this sample contained a larger proportion of goethite.

Similar frequency charts were also observed for samples EC 1002 – EC 1003. The

large 3104 cm-1, 893 cm-1 and 796 cm-1 bands showed that EC 1001 was goethite-

dominant, whereas the other two Sia ochres contained hematite. The recurrent 1034

cm-1 absorption band was attributed to the silicate. MC 1001 was clearly of a

completely different composition, as can be observed in Figure 4-20 below.

Comparison of the spectrum to the IR chart for natrojarosite resulted in a good peak

match. N 1001 was also distinguishable from all the other samples due to its high

proportion of calcite, which was identified from the large C – O stretching band in the

1428 cm-1 region.

Figure 4-18. % Absorbance reference chart of natrojarosite (Downs, 2006)
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Figure 4-19. The FTIR spectra of an example of a sample from Shotover (S 1004), and the calcitic N 1001
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Figure 4-20. FTIR spectra of the Cyprus samples
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Conclusion for Pilot Study 1

It appeared that obtaining optical, elemental, structural and molecular information off

these samples was ideal for a fully comprehensive investigation of ochres. PLM

studies were undoubtedly useful for preliminary investigations, with an observed

advantage of this method being the small sample size, implying that little sample of the

possibly limited material is necessary for the preparation of a dispersion (permanent)

slide. This characteristic, however also serves as a disadvantage: Since only a few

grains of the material are required, these may not be entirely representative of the

whole sample, and certain observations may reflect impurities. PLM observations are

also very subjective, with inferences made being entirely dependant on the prepared

dispersion, the examiner and his/her experience. Relative proportions of certain

minerals within a particular dispersion slide therefore are only indications of what is

present and must not be taken as definite proof of, for example, the prevalence of a

material over another, implying that it is necessary to couple the interpretations of this

technique with data off other methods before reaching any conclusions about the

identity of the material in question.

Overlap of data and unnecessary experimentation would be experienced if SEM-EDS

and PIXE analysis were to be carried out in conjunction with the ICP-AES studies. It

appears that the latter methodology is undoubtedly the most successful method for

distinguishing between ochres and relating the materials to their sources owing to the

large number of data obtained and the excellent detection limits (<1 ppm for most

elements) exhibited. It is proposed therefore, that the less sensitive SEM-EDS method

(~20% error per reading) will only be used as a substitute for ICP-AES when sample
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quantities are limited, as only a few mg of sample are required in this non-desctructive

elemental technique: ICP-AES, although very sensitive, necessitates the complete

consumption of 0.3 g of sample. It is also estimated that the statistical tests described

later towards the end of this chapter (4.3) will be used on future, larger quantities of

elemental data sets to help identify clusters, patterns and/or groups non-subjectively.

Furthermore, if these element signatures fit into clusters of geological datasets which

satisfy the provenance postulate theory, then it is estimated that this method, namely

ICP-AES coupled with statistical analysis, will be the ideal system to efficiently source

ochre. Moreover, samples from both the core and exterior of the natural ochre lumps

indicated that there were no observable differences in composition that might reflect

alteration or changes in the environment.

While it was concluded that the Raman spectrometer available for use is unsuitable for

this ochre provenancing study, it is also debatable how useful XRD and FTIR methods

are, with the limiting factors of both methods being their poor sensitivity (~15-20%)

and difficult peak interpretation. This query will be addressed in Pilot Study 2 below.
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4.1.6. Pilot Study 2

Subsequent to the conclusions drawn from the first pilot study, this second study aimed

at establishing whether the two techniques that appeared to have potential for

differentiating between ochres based on different (non-elemental) aspects of the

material, were suitable for characterising ochres for provenancing purposes. The

techniques were XRD, which enabled structural characterization of the ochre

constituents, and FTIR, which identified the molecular groups present. The pigments

analysed were obtained from the Pigmentum project and are listed below.

Sample Description
No Proj. No. Country Colour
1 51_P1897 Burnt yellow ochre: bright orange
2 52_P1898

Czech paint plant
Bohemian green earth: green-white

4 46_P1892 Yellow ochre: yellow
5 47_P1893 Orange ochre: yellow (darker)
6 48_P1894

Leningrad Paint Plant during the
late Soviet Union era, Russia

Red ochre: bright orange
7 30_P056 Terra di Siena: yellow brown
8 31_P057

Siena, Italy
Terra di Siena: red

9 44_P1890 Le Marche, Italy Pale grey earth: whitish-brown
10 45_P1891 Pesaro, Italy Sandstone : yellow white
11 49_P1895 Warksworth, Derbyshire Brown ochre: yellow-brown
12 43_P1889 Calcined umber: bright orange
13 50_P1896

Parys Mountain, Anglesey, N
Wales White-brownish (lumpy)

14 53_P1899 Bacup, Lancashire Brown lumps
15 55_P1901 Near Burnley, Lancashire Yellowish (lumpy)
16 54_P1900 Bright red (lumpy)
17 56_P1902

Cloud Hill Quarry, Breedon on
the Hill, Leicestershire Dark yellow (lumpy)

18 57_P1903 Whitish-red
19 58_P1904 Whitish-yellow
20 59_P1905 Whitish-brown
21 60_P1906 White, little brown
22 61_P1907 Whitish-yellow
23 62_P1908 Whitish-brown
24 63_P1909 Yellow
25 64_P1910 Red-orange
26 65_P1911

Sand, the Needles, Isle of Wight

White, little brown
27 26_P051 France Yellow
28 27_P052 France Orangey-red
29 28_P053 Germany Yellow (darker than 26_P051)
30 29_P054 Italy Yellow (Brighter than 26_P051)

Table 4-6. The pigments analysed in this study
(Green earth included for comparative purposes)

Synthetic
Natural
Unknown
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XRD results. Some examples of the XRD diffractograms obtained are shown below.

In several cases it was observed that the background was rather high and/or there was a

large swell present in the lower 2θ angles, which led to peak masking, poor peak 

detection and low confidence levels with both auto and manual peak search settings.

This affected data interpretation and left some peaks impossible to qualify. Although

it was difficult to determine why this inadequacy occurred, previous studies have

shown that XRD of goethite (and of other iron oxides, Cornell and Schwertmann,

2003: 176) resulted in a noisy spectrum as the iron hydroxide present appeared to be

poorly crystalline (Figure 4-12, 4-21).
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Figure 4-21. An example of the high background (highlighted), observed in sample 30_P056

Several diffractograms were of remarkably good quality, but this generally occurred

when the samples were significantly rich in highly crystalline accessory phases, which
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of certain accessory minerals in particular countries: primarily quartz in the Northern

European countries (France, Germany, UK, Czech and Russia) and calcium-based

carbonates and sulphates in samples from Italy.

Sample Components Sample Components

France Czech

26_P051
A Quartz SiO2

B Goethite Fe +3O(OH)
C Hematite Fe2O3

51_P1987
A Quartz, alpha SiO2

B Hematite, syn Fe2O3

27_P052

A Quartz SiO2
B Some organic dye (?)
C Goethite Fe +3 O(OH)
D. Hematite Fe2O3

52_P1898

A Quartz, alpha SiO2

B. Chromium Oxide CrO
C. Manganese Vanadium Oxide Mn1.5
V1.5 O4

United Kingdom Italy

29_P054
A Gypsum CaSO4.2 H2O
B Anhydrite Ca(SO4)
C Goethite, syn FeO(OH)

57_P1903
58_P1904
59_P1905
60_P1906
61_P1907
62_P1908
63_P1909
64_P1910

A Quartz Si O2

A Quartz Si O2

A Quartz Si O2

A Quartz Si O2

A Quartz Si O2

A Quartz Si O2

A Quartz Si O2

A Quartz Si O2

30_P056
A Goethite Fe +3 O(OH)
B Dolomite Ca Mg (CO3)2

Soviet Union

46_P1892

47_P1893

A Quartz, syn Si O2

B Goethite Fe +3 O (OH)
31_P057

A Hematite Fe2O3

B Dolomite Ca Mg (CO3)2

48_P1894

A Quartz, syn Si O2

B Hematite, syn Fe2 O3

C Goethite Fe +3 O (OH)

44_P1890
A Calcite Ca CO3

B Goethite Fe +3 O (OH)

Germany

28_P053
A Quartz Si O2
B Goethite Fe +3 O (OH)

45_P1891
A Quartz alpha SiO2

B Calcite CaCO3

C Dolomite Ca Mg (CO3)2

D Goethite Fe +3 O(OH)

Table 4-7. XRD analysis of some Group 2 pigments

Some results have been tabulated above. It was observed that the detected colorant

(iron oxide/hydroxide) correlated with the overall colour of the particular ochre

(red/yellow). Although the benefits of XRD testing include rapid analysis and

relatively simple characterisation of material constituents, the technique was therefore

found to have equally significant drawbacks. Essentially, XRD was found to be

inadequate for a fully accurate determination of the constituents beyond the
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identification of the major minerals present, namely the accessory mineral(s) and the

(typically) iron-based colorant(s) when these were present in concentrations of >20%.

As has already been noted, in several cases it was also difficult to detect the latter.

Quantitative measurements by means of the Rietveld method were also not viable

because of the overall poor diffraction signals experienced off the iron oxides and

hydroxides in relation to the accessory minerals (Prasad, Prasad et al., 2006).

FTIR results. FTIR appears to have been a useful tool in the identification of iron

oxides in literature and in published studies, though differentiation between sets of

pigments from various sources has been met with limited success (Bikiaris, Daniilia et

al., 2000; Prasad, Prasad et al., 2006). The FTIR spectra obtained for the Pigmentum

ochres in this study gave interesting albeit somewhat limited results, which were found

to majorly corroborate the XRD data. The frequency charts obtained were also

compared to previous infrared runs carried out on an attenuated total reflectance

spectrometer (ATR) by scientists at the Pigmentum Project. A summary of the

observations are given below:

o Most spectra gave unusually high noise, generally between the higher 4000 and

3500 cm-1 region of the frequency chart. This was attributed to adsorbed water in

the ochre samples.

o The FTIR spectra obtained for this study were similar to those obtained from the

Pigmentum project, though the percentage transmittance (overall peak signal) was

much better for the transmission spectra obtained for this study, hence were better

for differentiation purposes as smaller peaks were also discernable.
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o In some cases the spectra were of poor quality with a low %T, possibly because of

reduced transmittance relating to the small particle size, as was experienced in

samples 30_P056 and 31_P057 [Siena samples] (Figure 4-24 below). It is

debatable as to whether this could be a characteristic of Terra di Siena ochres: a

larger sample group is necessary to ascertain whether the ‘noise’ perceived is

actually inherent to this particular source, although previous research has indicated

that small particle size is actually a feature of Siena ochres (Chapter 1).

o Frequency charts were evaluated on the basis of both material source and pigment

colour. The latter were divided into yellow, red, orange and brown samples. Peak

differences for each consecutive group are briefly described in Table 4-8.

o The main peaks were satisfactory matches to published ochre spectra, though

differences were noted on cross comparison between the various FTIR charts.

o Difficulties were encountered on trying to distinguish between red and yellow

ochres, mainly because: 1) the spectra are known to be relatively similar, 2)

hematite is found to differ from goethite in wavenumbers beyond the detection

limits of the FTIR (500 – 300 cm-1); and 3) several samples comprised mixtures of

the two colorants, making differentiation even more complicated.

The Soviet Union samples 46_P1892, 47_P1893, and 48_P1894 were a good example

of how difficult differentiation between goethite and hematite-dominant samples can

be (Figure 4-22). XRD data indicated that, besides containing quartz, these samples

consisted of goethite, a goethite-hematite mixture, and hematite respectively. The

resulting FTIR spectra were found to be very similar, with the minor differences

exhibited in peak shapes rather than differing peak positions. Variations mainly

included the broadness of the 3450 cm-1 peak: this was more prominent in the
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46_P1892, 47_P1893 samples, as was expected; and in the position of the ~1032 cm-1

peak, which appeared to be skewed towards a higher wavenumber in the hematite-rich

sample. Consequently, although some discrepancies are observable, they are not

distinct enough for accurate differentiation.

The results obtained have been summarized in Table 4-8 below.

Colour Sample No. Locality Frequency chart description
Conforms to expected

spectrum?
Differences

26_P051 France Yes N/A
28_P053 Germany Yes Very large swell at 3161cm-1

29_P054 Italy
30_P056 Italy

45_P1891 Italy

Refer to notes for Italy samples: different spectra due
to distinct calcitic peaks. Odd spectrum was 29_P054
as it was a calcium sulphate based sample

46_P1892 Russia Yes N/A
47_P1893 Russia Yes N/A
55_P1901 Lancashire

Yellow

56_P1902 Leicestershire
Samples contained a lot of adsorbed water and gave a
broad, distinctive peak around 3100 cm-1

.

27_P052 France Yes Some goethite also present
31_P057 Italy Refer to notes for Italy samples

Red

54_P1900 Leicestershire No Fewer peaks
43_P1889 N WalesOrange
48_P1894 Russia

Yes, majorly
hematite-based

Lack kaolinite peaks,
interestingly similar spectra

44_P1890 Italy
49_P1895 Derbyshire
50_P1896 N Wales

Brown

53_P1899 Lancashire

All spectra were significantly different, possibly
because all samples were different shades of brown

Table 4-8. An outline of the properties and IR chart observations of some of the analysed
Pigmentum samples

The sensitivity of the method is therefore a factor to be taken into consideration, as

well as the difficulties encountered in results interpretation owing to the overlapping

peaks (which were also observed in Pilot Study 1) and reduced transmittance in certain

samples. An obvious flaw to the technique is the similarity between hematite, goethite

and kaolinite spectra; all of which generally tend to be present in varying proportions

in ochre frequency charts. This study therefore illustrates how FTIR must be used

with caution, if used at all, in ochre studies; and that although potential differences

within spectra may be inherent to the material, there are (a) too many variables
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involved, hence a larger sample set for each country/source is necessary, and (b) the

technique itself appears to be unsuitable for provenancing and even differentiation

purposes as there are too many errors to be considered when using this analytical

method.

Conclusion for Pilot Study 2

In conclusion, both techniques show potential for qualitative analysis, but are

inadequate for quantitative measurements. FTIR data is complicated to interpret

beyond identity recognition, mainly because of overlapping peaks and similarities

exhibited between spectra, making it impossible to reach any definite conclusions

without making (possibly wrong) assumptions. The main disadvantages of XRD seem

to be related to the limitations implied by poor crystallinity of key ochre colorants.

This method, however, was clearly useful to identify of the mineral phases of the

major constituents and for giving an indication to the amount of disorder in the

crystalline iron oxide/hydroxide phases. It was therefore concluded that XRD gave

complementary information to this study and could be implemented in the

provenancing study if samples are available in sufficient amounts.

These pilot studies therefore showed that the methods implemented should include

PLM for optical investigations, XRD for phase identification if sample quantities are

sufficient, and ICP-AES for elemental analysis. If not enough sample (g) is available

for the latter method, SEM-EDS is to be used. Later investigations showed that

sampling was not possible in a variety of cases (unethical), therefore the non-invasive

XRF elemental technique was employed.
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Figure 4-22. FTIR spectra of the Soviet Union samples 46_P1892, 47_P1893, and 48_P1894

46_P1892

47_P1893

48_P1894
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Figure 4-23. FTIR spectra of the French samples 26_P051, 27_P052

26_P051

27_P052
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Figure 4-24. FTIR spectra of the Siena (Italy) samples 30_P054, 31_P057

30_P054

31_P057
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4.2. Sampling, sample extraction and analysis for the case studies

After having established which analytical techniques to adopt for efficient sourcing of

ochre, it was possible to investigate the ochres in the main study of this project, those

of Maltese islands and its prehistoric temples, and those in the comparative study, the

ochres of Amarna. This involved systematic sampling of the geological and

archaeological samples, as will be described below.

4.2.1. Maltese geological samples

The geological samples analysed were collected from a number of localities (Figure

4-26). The Calcitic reds were collected from sourced areas of hardened palaeosols in

the Cirkewwa (Cwa) and Ghadira (Gh) Bay areas, and from fractures through the

Upper Coralline Limestone at Mistra village (Mv) and Mgarr (MG), where the desired

rock had been exposed. A large number of Greensands samples, including some fully

oxidised material (Figure 2-3), were collected from Gelmus (G), in Gozo. This area

was an elevated landform or butte that largely consisted of the desired sandstone, and

samples were extracted from some naturally formed caves along its sides where the

required rock form was exposed. More Greensands were found at Ghajn Tuffieha

(GT) and from a block of displaced sandstone at Mgarr. Furthermore, sand suspected

to be of the same material was sampled from a beach called ‘Ramla l-Hamra’ (RB).

Yellow/red-brown Ooid nodules were easily identifiable where they unmistakably

showed up against the dull Blue Clay outcrops (Figure 4-27) and were collected from

the coastal areas of Marsalforn (Gozo), Ghajn Tuffieha and Mgarr.

All chosen sources were easily accessible and all the samples had a distinctive ochre

colour, which facilitated their selection. Samples were carefully extracted using a
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hammer and chisel when necessary, and care was taken to sample from undisturbed

areas where possible. Multiple fragments were taken of the same material, and the

best samples were carefully selected under a microscope. Powdering of the sample

was also executed under a microscope from both the exterior and interior of the

sample to avoid the occurrence of inclusions or other rock formations.

Figures 4-25a-c. Photographic documentation of samples Cwa 1002, G 1002 and G 1005
(ref. Table 1) Scale 1: 1cm (Photos: author)

Although sampling from the Maltese soils has been described elsewhere (Vella, 2006

– technical report), a brief description of the operations undertaken is listed below:

 Performing a reconnaissance survey to identify the major soil landscapes, and

correlating these with existing soil maps,

 Planning and executing a precise grid survey of the Maltese Islands at 1 km by 1

km grid intervals, totalling a significant 331 survey points;

 Sampling the target sites by digging shallow pits, recording the profile data and

collecting 1.5 kg of samples using spade, screw and/or gouge augers;

 Analysing samples and storing surplus material in an archive facility with

controlled environmental conditions at the Agricultural Services Labs in Malta.

The soils for this project were sampled at this facility, and were chosen on the basis of

soil type and location, obtaining as widespread a sample group of the most relevant
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samples as possible (Figure 4-26). More Leptosols and Luvisols were collected as

these were expected to be more iron-rich (refer back to Chapter 2)

Sample group Location Sample No. Analysed No.

Cirkewwa Cwa 1001, Cwa 1002, Cwa 1003, Cwa 1004 4

Ghadira Gh 1001, Gh 1002, Gh 1003 3

Mistra village Mv 1001 1

Calcitic Red
(CR)

Mgarr MG 1101, MG 1201, MG 1301, MG 1401, MG 1501,
MG 1601

6

Total 14

Gelmus G 1001, G 1002, G 1003, G 1004, G 1005, G 1006, G
1007, G 1008

8

Ghajn Tuffieha GTG 1001, GTG 1002, GTG 1003 3

Ramla Bay RB 1001 1

Greensands
(Gr)

Mgarr MG 1009, MG 1100 2

Total 14

Marsalforn Mfn 1001, Mfn 1002, Mfn 2002, Mfn 2003, Mfn 2004 5

Ghajn Tuffieha GT 1001, GT 1002, GT 1003, GT 1004, GT 1005, GT
1006

6
Ooids
(O)

Mgarr MG 1001, MG 1006, MG 1008, MG 1701 4

Total 15

Gozo region G 037, G 042 (leptosols), G 057 (calcisol) 3

North Malta G 073 (cambisol), G 113, G 129 (leptosols), G 132
(vertisol), G 135 (luvisol)

5

South Malta G 266 (cambisol), G 269, G 299 (luvisols) 3

West Malta G 178 (leptosol), G 254 (luvisol) 2

Terra Rossa
(TR)

Central Malta G 223 (regosol), G 312 (luvisol) 2

Total 15

Table 4-9 and Figure 4-26. Samples selected for analysis and location of extraction
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Figures 4-27a, b. (a)‘Ooid’ nodules in Blue Clay at Ghajn Tuffieha before extraction, (b)
section through a nodule. Scale bar 1 : 1 cm

4.2.2. Maltese archaeological samples

In the pilot studies it was ascertained that ICP-AES was the ideal method for ochre

differentiation for provenancing purposes. This technique was, however, destructive,

as it necessitated complete sample digestion. Acquisition of the archaeological

samples was therefore a lengthy process due to the ethical factors involved when

authentic materials of historical and cultural significance were to be irretrievably lost.

It was decided, nevertheless, that the benefits of the study – in terms of information

obtained – prevailed over the ultimate loss of the required cultural material(s).

Conditions dictating sample acquisition included the following:

i. That controlled but sufficient amounts of samples were to be taken where

possible (pure ochre samples could not be in excess of 0.77 g);

ii. That the quantities of the remaining cultural material(s) significantly

outweighed the total amount of sample to be consumed.

Ooid nodules
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All the samples acquired were carefully photographed and documented. It was borne

in mind that these samples may have been mixed with some other material at some

point following extraction from their geological environment: either by the prehistoric

peoples themselves, or following burial, post-excavation or during storage. Relatively

pure samples were taken from the National Museum of Archaeology (NMA) in

Valletta. Deposits of sediment material were also obtained from the Hal-Saflieni

Hypogeum, which was chosen as the only known prehistoric site in Malta with

deposit material left in situ following excavation. Although it was first thought that

the sediment material from the Hypogeum should be rich in ochre remains (refer back

to Chapter 2), on extraction samples indicated poor ochre quality as a result of being

intermixed with large quantities of unconsolidated deposits. It was therefore decided

to take samples from areas where the material was considered to be most useful

(selected burial chambers and/or untouched deposits) and where it was found in

abundance for both practical and ethical purposes. Bone samples were also acquired

as these were thought to have been sprinkled with ochre as a part of the burial practice

of these Neolithic people. The deposits were left to dry out in a fan oven at 26ºC (+/-

2 ºC) for 5 days, and were left to cool to room temperature.

Figures 4-28a, b. MA 001 and MA 005 ochre from the NMA before extraction
(Photos: author)
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From the eleven samples taken from the NMA, only seven good quality

archaeological ochre remains were found. This is because MA 003, MA 006, MA

008 and MA 010 were merely lumps extracted from the same ochre finds box as their

powder-form counterparts, namely samples MA 002, MA 005, MA 007 and MA 009

respectively. Furthermore, some samples were obtained in quantities below the

desired weight and therefore could not be analysed via ICP-AES. A total of 13

deposits were obtained from the Hypogeum (HYPD), along with 12 bone pieces. The

bones were collected from the disturbed deposits and unused material was to be

returned on completion of the project. An overview of all the samples obtained from

the Hypogeum is given in Figures 4-29 and 4-30 and are listed in Table 4-10 below.

Overview of samples obtained

Sample No. Description Weight (g) Estimated Phase (BC) Analysis

1 MA 001 Red powder 0.1346 Zebbug: 4100-3800 SEM-EDS
2 MA 002 Red lump 0.5844 ? Zebbug: 4100-3800 ICP-AES
3 MA 003 Red powder 0.7498 ? Zebbug: 4100-3800 ICP-AES
4 MA 004 Orange powder 0.1594 Tarxien: 3000 - 2500 SEM-EDS
5 MA 005 Yellow lump 0.2369 Tarxien: 3000 - 2500 SEM-EDS
6 MA 006 Yellow powder 0.1764 Tarxien: 3000 - 2500 ICP-AES
7 MA 007 Yellow lump 0.379 Tarxien: 3000 - 2500 ICP-AES
8 MA 008 Yellow powder 0.2734 Tarxien: 3000 - 2500 ICP-AES
9 MA 009 Red lump 0.2541 Ggantija: 3600-3000 ICP-AES

10 MA 010 Red powder 0.4322 Ggantija: 3600-3000 ICP-AES
11 MA 011 Red powder 0.5151 Buqana burial: ~3000 ICP-AES
12 HYPD 1001 Deposit, C5 8.8704 Saflieni: 3300 - 3000 ICP-AES
13 HYPD 1002 Deposit, C5 9.3781 Saflieni: 3300 – 3000 ICP-AES
14 HYPD 1003 Deposit, C5 9.812 Saflieni: 3300 – 3000 ICP-AES
15 HYPD 1004 Deposit, C5 11.353 Saflieni: 3300 – 3000 ICP-AES
16 HYPD 2001 Deposit, C8 13.489 Saflieni: 3300 – 3000 ICP-AES
17 HYPD 3001a Deposit, C9 10.595 Saflieni: 3300 – 3000 ICP-AES
18 HYPD 3001b Deposit, C9 Subsample Saflieni: 3300 – 3000 ICP-AES
18 HYPD 7001 Deposit, C18 3.19 Saflieni: 3300 – 3000 ICP-AES
20 HYPB 2003 Finger bone, C8 0.789 Saflieni: 3300 – 3000 ICP-AES
21 HYPB 4004 Foot bone, C14 3.597 Saflieni: 3300 - 3000 ICP-AES

Table 4-10. A description of the samples chemically analysed (via SEM-EDS/ICP-AES) in
this part of the study. Phases are approximate, but all samples date back to the Temple Period

(Pace 2000). MA samples were obtained from the NMA; the HYPD and HYPB samples
from the Hypogeum
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Figure 4-29. Plan of the Upper Level of the Hal-Saflieni Hypogeum, with sample sets obtained highlighted and numbered (Plans courtesy of Heritage Malta)

Sample set
H(1)

Sample set
H(2)
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Figure 4-30. Plan of the Middle Level of the Hal-Saflieni Hypogeum, with sample sets
obtained highlighted and numbered (Plans courtesy of Heritage Malta)

Sample Location Samples
H(1) Deposits: HYPD 1001, 1002, 1003, 1004

Bone: HYPB 1001
H(2) Deposits: HYPD 2001

Bone: HYPB 2001, 2002, 2003
H(3) Deposits: HYPD 3001
H(4) Deposits: HYPD 4001, 4002

Bone: HYPB 4001, 4002, 4003, 4004
H(5) Deposits: HYPD 5001, 5002

Bone: HYPB 5001, 5002, 5003, 5004
H(6) Deposits: HYPD 6001
H(7) Deposits: HYPD 7001, 7002

Table 4-11. The sample locations and respective samples obtained from each area

Sample set
H(5)

Sample set
H(3)

Sample
H(7)

Sample set
H(4)

Sample
H(6)
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Figures 4-31a-d. Microphotographs of samples MA 002, MA 006, MA 010, HYPB 2003

4.2.3. Amarna samples

The next archaeological samples were obtained for the comparative Amarna study, a

site selected on account of the renowned artistic skills of its inhabitants and its well-

defined period of occupancy; because of sample availability and because samples were

expected to be different from the Maltese ochres because of Egypt’s dissimilar

geology. Two sets of archaeological samples were acquired, both of which had been

brought over from Egypt following an expedition to Amarna on separate occasions.

The first group (BLN 001-009) consisted of a total of nine samples - five yellow and

four red pigments thought to be yellow and red ochres - obtained from Bolton Museum

and Archives. Sampling was carried out through careful scraping of small amounts of

powder off the larger lumps of archaeological samples in the presence of the curator.
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Care to avoid sample contamination was taken by removing superficial dirt and

sampling off ‘cleaner’ regions of material. This sampling technique was destructive,

therefore it was only possible to obtain minimal amounts of pigment for ethical

reasons (described earlier). Samples obtained weighed between 0.0139 and 0.0924 g.

Figure 4-32. Source lumps of BLN 003 and BLN 006 respectively before samples were taken

Overview of samples obtained

Sample No. Description Weight (g) Analysis

1 BLN 001 Light yellow powder 0.0924 SEM-EDS
2 BLN 002 Light yellow powder 0.0739 SEM-EDS
3 BLN 003 Light yellow powder 0.0139 SEM-EDS
4 BLN 004 Yellow powder 0.0240 SEM-EDS
5 BLN 005 Bright yellow lump 0.0208 PLM only
6 BLN 006 Red powder 0.0152 SEM-EDS
7 BLN 007 Bright red powder 0.0170 SEM-EDS
8 BLN 008 Deep red powder 0.0284 SEM-EDS
9 BLN 009 Deep red powder 0.0202 SEM-EDS

10 AMN 002 Yellow powder 0.0168 SEM-EDS
11 AMN 003 Yellow powder 0.0247 SEM-EDS
12 AMN 005 Red powder 0.0108 SEM-EDS
13 AMN 006 Red powder 0.0129 SEM-EDS
14 AMN 007 Yellow powder and lumps 0.0242 SEM-EDS
15 AMN 008 Red powder and lumps 0.0887 SEM-EDS
16 AMN 009 Yellow powder 0.1351 SEM-EDS
17 AMN 011 Light yellow lump 0.2272 ICP-AES
18 AMN 012 Deeper yellow lump 0.3330 ICP-AES
19 AMN 013 Bright red lump 0.9941 ICP-AES
20 AMN 014 Bright red lump 0.0930 SEM-EDS

Table 4-12. A description of the samples chemically analysed (via PLM/SEM-EDS/ICP-
AES) in this part of the study. BLN samples were obtained from Bolton Museum; AMN

samples were those donated to the project.



134

The second group (AMN 002-003; 005-009; 011-014) was donated to the project and

consisted of a total of eleven pigment samples, six yellow and five red samples which

were thought to be ochres, all of which were either in grains or in small blocks. A list

of all these samples is given in Table 4-12.

Figures 4-33a-c. Microphotographs of samples AMN 002, AMN 006, AMN 008

4.2.4. Sample preparation and analysis for Maltese and Egyptian samples

PLM, XRD, ICP-AES, SEM-EDS analysis

The analytical methodology described at the beginning of this chapter was therefore

adopted for this project. Dispersions of each sample were first prepared, and each was

analysed visually under a microscope in PPL and XPL. The selected geological

specimens and those archaeological samples available in sufficient quantities for ICP-

AES (most of the Malta samples, and AMN 011, AMN 012 and AMN 013) were

pulverized in an agate mortar and sent to Royal Holloway college for analysis.

Remaining ‘Ooid’ samples were also analysed via the X’Pert PRO PANalytical

powder diffractometer. This technique was also tested on some other sample groups.
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MA 001, MA 004 and MA 005 and the majority of the ancient Egyptian samples were

prepared on a stub for investigation under the SEM-EDS in the LEO 435VP, which

was operated under variable pressure conditions. A new set of parameters were

adopted for the study of these small sample sizes, particularly to preclude particle-

induced electron scattering and the X-ray absorption geometric effects normally

experienced (Goldstein, Newbury et al. 2003: 462-480). A series of tests indicated that

the best-suited conditions included operating the gun at 15 kV, with a beam current of

300 µA and an I probe value of 1.6 nA. The working distance was kept at 24 mm for

BSE EDS measurements, which were collected by means of the GENESIS EDAX

INC. advanced microanalysis solutions energy analyser at 300 seconds livetime (real

time acquisition). Magnification was kept at X300 and an area of 100 µm2 was

scanned for every measurement. These conditions gave a reasonably high deadtime of

approximately 13% with around 8000 counts per second. EDS values off known

materials were cross-checked prior to analysis of the unknowns.

Non-invasive analysis on archaeological ochres in situ

Since there was little archaeological ochre left on the Maltese Islands and few

examples were present in sufficient quantities that allowed for acquisition for

laboratory analysis (SEM-EDS/ICP-AES), a non-invasive investigative method was

attempted to analyse the ochre traces remaining on Neolithic artefacts. A successful

application to Innov-X systems allowed for the analysis of traces of these prehistoric

ochres in situ using an Innov-X Alpha Series XRF. Full instrumental details are

described elsewhere (Chapter 4: 91) in this study.
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The XRF was calibrated on an internal standard whenever the system was restarted.

Background scans were also carried out on ochre-deficient areas of each area/object

analysed, and measurements were taken off a series of ‘standards’ selected for this

project. These essentially consisted of a set of earth samples of relatively uniform

composition that had been analysed prior to this investigation via the ICP-AES.

Livetime acquisition was 40 seconds, and the instrument was suspended at ~ 5 mm

from the object. The gun emission area was also padded with a synthetic cloth to

preclude damage in case involuntary contact was made, and a suitably sized aperture

left to avoid any interference with the emission and detection of X-rays. An overview

of the materials analysed and their respective locations are given in the table below:

Location/stored at Chambers / objects analysed Source Phase
Ħal-Saflieni Chamber 4, Upper level, Chamber 6,

Intermediate level, Chamber 17, Walkway
area, Chamber 18, Oracle Chamber,
Chamber 20, Decorated room, Chamber
23, Stepped area, Chamber 26, Main hall

Hypogeum Saflieni

Total number of readings 117
Plate shard #1 Skorba Ghar

Dalam
Plate shard #2 Mgarr
MA 002, shell, plate shard #3 ? Zebbug
Large pot, Sleeping lady, reclining figure,
large statue, alabaster fat goddess, Venus
of Malta, pot shards #1 - #5

Hypogeum Saflieni

Phallic figures, single phallus, clay
statuette, MA 004 – 007, MA 009 - 011

Tarxien Tarxien

MA 009 - 010 Ggantija Ggantija

National Museum of
Archaeolgy (NMA)

MA 011 Buqana ?
Total number of readings 134 1

Shells #1 - #5, spoon, necklace beads #1 -
#2, button, pendant, 12 beads forming
necklace, Twin Seated figurine, miniature
bowl, small pot, ochre pot, bones #1 - #3

Xaghra
Stone
Circle

Tarxien

Pot shards #1 - #4 S. Verna Zebbug

Gozo Museum of
Archaeology (GMA)

Plaster samples #1 - #2, pebble, pottery
shards #5 - #7

Ggantija Ggantija

Total number of readings 169

Table 4-13. Outline of XRF analytical work on Maltese archaeological materials

1 Some data was lost owing to an instrument malfunction
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Figures 4-34a, b. Collecting XRF data from the ochre wall paintings in the Hal-Saflieni
Hypogeum

Figures 4-35a, b. XRF analysis in labs set up with restricted access in the NMA (a) and the
GMA (b)

Figures 4-36a, b. Analysing immovable artefacts in cordoned off areas in the museum
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4.3. Statistical methods employed for the provenancing of ochre

As it was concluded that elemental analysis was key to the sourcing of ochre; it was

necessary to identify which statistical methods to implement on the acquired data in

this provenancing study. This entailed using and adapting various statistical methods

used in the provenancing of other materials to ochre (Earle and Ericson, 1977;

Erlandson, Robertson et al., 1999; Glascock and Neff, 2003; MacDonald, Hancock et

al., 2008). Iron oxides and/or iron hydroxides are the main colorants of these

pigments, therefore it is important to establish which elements were directly linked to

these minerals. Often, however, a large difference in concentration of Fe (III) is noted

between ochres, even between ochres obtained from the same source; therefore it is

customary to ratio the element to Fe, and log-normalise the data for comparative

purposes (Popelka-Filcoff, Robertson et al., 2007; Popelka-Filcoff, Miksa et al., 2008).

Further data examination in this study included extracting the main accessory element

detected, Ca, out of the dataset. All these transformations make relationships between

variables more distinct, were not expected to affect the resulting interpretation

(Aitchison, Barcelo-Vidal et al., 2002).

Further statistical methods were applied to both the raw and transformed data, and

those utilised in this project are described briefly below

i. Scatter plots and matrix plots: are both visuals way of showing trends between

two elements. Matrix plots allow the simultaneous observation of the two-

variable relationships among several variables, and have been used extensively

in Chapter 5.
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ii. Principle components (PC), biplots and loading plots: PC tests are simple

multivariate techniques used to show relationships between variables by

transforming them into a smaller number of variables known as principle

components (Glascock and Neff, 2003): Only two PCs were used in this study.

Biplots and loading plots are different ways of showing the trends in this PC

space, by seeing how the variables correlate with each other.

iii. Pearson’s tests, R2 and P values: are also different methods used in this project

to analyse correlations between data. The information given in these tests, is,

however, numerical, and these methods are therefore more precise than the

plots mentioned above. These tests were used to assess the degree of

correlation between the elements, and when assessing accuracy of instrumental

techniques (e.g. SEM-EDS/XRF and ICP-AES).

iv. Cluster analysis and hierarchical dendrograms. The dendrograms in particular

have been used extensively in Chapter 5, and have also been used to classify

data based on their similarities; as well as to assess the correlation and

therefore grouping between observations. These are non-subjective methods

and link data based on the statistical correlation between them.
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Chapter 5.

Results
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5.1. Maltese geological and archaeological samples

5.1.1. Polarising light microscopy (PLM)

The following photographs were chosen as the representative examples of the Maltese

geological and archaeological sample groups. All the images were taken at a

magnification of x400 under plane polarised light (PPL), unless stated otherwise.

Figures 5-1a-c. PLM images of Calcitic reds: (a) Cwa 1001, (b) Gh 1001, (c) Mv 1001

Figures 5-2a-c. PLM images of Greensands: (a) G 1001, (b) GTG 1002, (c) G 1008 (XPL)

Figures 5-3a-c. PLM images of (a) RB 1001 (Mag x50), (b, c) ‘Ooids’: Mfn 1001, Mfn 2002
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Figures 5-4a-c. PLM images of the Terra rossae: (a) G 037, (b) G 129 (c) G 132

Material In samples Fig. No. Observations

Goethite Most, not
much in the
MA (reds)

5-1a-c, 5-
2a,b, 5-
3c, 5-
4a,c, 5-
8a,c,

Yellow, yellow-brown to brown, generally fine to
very fine particles. Shape: rounded, moderate relief.
Refractive index (RI) > medium. Strong, yellow
body colour so pleochrosim is not obvious.
Particles are birefringent and clump together or onto
an accessory material

Hematite Most
samples,
apart from
the MA
(yellows)

5-1c, 5-
2b, 5-4a-
c, 5-7b,
5-9a-c, 5-
10b,c

Deep red to reddish brown particles, mostly quite
fine but in some cases were larger. Shape: smooth
and rounded, sometimes angular to subhedral.
Moderate to high relief, RI > medium, birefringent,
with masked pleochrosim.
Clumping is also observed.

Glauconite Greensands,
some Ooids

5-2a, 5-6 Colour: olive-green to brown (‘rusted’). Particles
are fine grained and rounded, with a low relief. RI
< medium, moderate birefringence, and bright green
pleochrosim.

Calcite All 5-1a,c, 5-
2a, 5-3c,
5-4c, 5-
7a, 5-9a,c

Very fine, colourless, particles, with extremely
variable relief, therefore varying refractive index.
Shape: varies, euhedral/subhedral, sometimes
microfossils were observed (see text)
Particles extinguished when stage rotated under
XPL
Highly pleochoric and birefringent, with third order
interference colours.

Gypsum Ooids, MA
(reds)

5-3b,c Colourless, varying particle sizes, moderate relief
with RI < medium. Commonly contain inclusions,
low birefringence, grains still colourless, shape is
typically subhedral with first order interference
colours

Table 5-1. Summary of PLM observations, size scale: coarse (>10 µm), large (10 – 3 µm),
medium (3 – 1 µm), fine (1 – 0.3 µm) and very fine (< 0.3 µm). (Comparisons were made to
establish identities with descriptions in: Gribble and Hall, 1992; Eastaugh, Walsh et al., 2004;

Helwig, 2007)
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Material In samples Fig. No. Observations

Quartz All (less
predominant
than calcite)

5-3a, 5-
7c

Larger particle sizes, ranging from medium to
coarse, grains still colourless, shape is typically
subhedral. Relief is variable though typically low.
RI < medium, low birefringence with first order
interference colours

Fibres MA
(yellows)

5-8a-c Intense yellow to yellow-brown to brown, varying
in size, generally quite large fibres, appear highly
oxidised with low relief, and little pleochrosim. RI
< medium, low birefringence, complete extinction

Bone HYPD and
HYPB

5-9b, 5-
10a,c

Also intense yellow colour, and varying in size,
generally quite large and rectangular-shaped with
low relief
No apparent pleochrosim. RI < medium, no
birefringence

Table 5-1. Summary of PLM observations, continued (Gribble and Hall 1992; Eastaugh,
Walsh et al. 2004; Trueman, Behrensmeyer et al. 2004; Helwig 2007)

Geological ochres

PLM observations showed that the samples presented similar characteristics. The

predominance of calcite was observed from the unmistakable pleochroic effect (Figure

5-2a) exhibited by the particles when viewed in plane polars (PPL), as well as by the

characteristically high third order interference colours observed under crossed polars

(XPL) on rotation of the microscope stage (Gribble and Hall, 1992: 156). Various

forms and dimensions of calcite particles were observed, including angular and broken

grains of varying thicknesses (therefore varying birefringence), and microfossils such

as coccoliths. G 2005 was an excellent example of a coccolith-full slide, with

microfossil species thought to be Discoaster pentaradiatus and dimensions reaching up

to 5 μm. All samples also had high quantities of both red and yellow ochre. These

were present in varying proportions and sizes, and were typically clumped around the

accessory minerals (calcite and quartz particles).
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Figure 5-5. Coccoliths in G 2005, viewed under crossed polars. Mag. X1000

Although all the geological samples had many similarities, differences were also

observed between the sample groups, although there were no obvious intra-group

differences perceivable under the light microscope. The Calcitic red (CR) group

predominated in red ochre (and calcite) and also contained few goethite, quartz and

clay particles. The Greensands samples, like the CRs predominated in red/yellow

ochre and calcite. They did, however, contain glauconite, whose particles varied both

in size and in colour: these appeared to be green in certain dispersions (Figure 5-2c),

whereas in other examples the mineral appeared to be ‘rusting’ to a reddish-brown

colour, as was observed in G 2004 (Figure 5-6 below). The RB sample comprised

large particles of quartz/calcite with smoothened, though irregular surfaces, probably

indicating a prolonged exposure as a grain to the environment and its subsequent

weathering effects. The relatively thick constitution of these sand grains enhanced the

birefringent properties of the material, which were clearly observable under XPL. The

inclusions and striations along the grains were probably a mixture of clay and/or some

iron-based material, although this was difficult to certify with confidence.
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The ‘Ooid’ group possibly constituted the most obviously dissimilar set of samples,

and appeared to exhibit a higher quartz content in comparison with the other sample

groups, with some glauconite, calcite (coccoliths were observed in these samples too,

e.g. in Mfn 2004), gypsum and a clear abundance of iron oxides. Other interesting

observations included some micro-scale ooids (Figure 5-4c). The final group of ‘Terra

rossae’ were quite similar to the ‘Calcitic reds’ containing significant amounts of red

ochre and calcite. These however also appeared to have a larger amount of quartz and

organic materials in addition to the other mineral constituents (Conklin, 2005).

Archaeological ochres

The archaeological ochres were divisible into four groups: the MA ‘reds’ consisting of

MA 001 – MA 004 and MA 009 – MA 011; the MA yellows, namely MA 005 –MA

008; the Hypogeum deposits (HYPD) and the bone scrapings (HYPB).

Figures 5-7a-c. PLM images of archaeological samples (a) MA 003, (b) MA 004, (c) MA 010

Figure 5-6. ‘Rusting’ glauconite
grains in dispersion sample G 2004
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Figures 5-8a-c. (a) MA 006, (b) MA 007, (c) MA 008

Figures 5-9a-c. (a) HYPD 1002, (b) HYPD 4001, (c) HYPD 5001

Figures 5-10a-c. (a) HYPB 1001 (b,c) HYPB 4001

The red archaeological ochres consisted of relatively pure grains of hematite that

varied in grain shape and size. Some appeared as fine, rounded particles, whereas

others were larger, more discrete, platy crystals. These particles were typically found

clumped onto grains of highly pleochoric calcite (Figure 5-9c), and in certain cases,

hematite was also observed coating larger grains of quartz (Figure 5-7b). Accessory

material quantities varied considerably, with MA 001 – MA 003 possibly being the
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purest ochres (lower quantity of accessory material). The chief colorant in these

ochres was therefore hematite, with the main accessory mineral being calcite, and

some quartz.

Goethite predominated in the yellow samples, and appeared as orangey-yellow, rather

fine, pure, particles often clumped onto fibrous-looking yellow-brown (probably

heavily oxidized) material of varying dimensions that extinguished under cross-polars

(Figure 5-8 a,c). Although positive identification of the fibrous material could not be

ascertained by means of PLM, it was assumed to be a collection of textile fibres,

possibly flax/jute/hemp owing to the complete, parallel extinction observed (Petraco

and Kubic, 2004). The goethite particles themselves also varied in size and very few

accessory minerals were observed apart from the remote calcite and/or quartz particle.

The HYPD dispersions were all similar with minor differences in amounts of calcite,

organic material, overall purity and ochre type. In some examples red ochre appeared

to predominate as the main colorant, observed in HYPD 1001, 1003, 2001 and 7002;

whereas in other dispersions goethite was present in higher amounts (HYPD 1002 and

5001). Although the iron oxides/hydroxides varied in particle sizes, they were

essentially small and clumped together or onto accessory minerals (Figure 5-9 b, c).

HYPD 3002 and 4002 were particularly rich in organic matter and humic material.

The calcite content was invariably high, and varied in grain size. Some samples were

also relatively rich in ascidian microfossils and other coccoliths. Other accessory

materials included quartz, some gypsum and clays. Many samples also contained

traces of oxidised bone, as was expected from this burial environment (Trueman,
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Behrensmeyer et al., 2004). The control sample HYPD 8001 was difficult to

distinguish from the other HYPD samples. It essentially consisted of red and yellow

ochre, and calcite; but lacked the microfossil features that were observed in the other

samples, as well as humic material, bone and quartz.

The samples extracted from bone obtained from Hal-Saflieni contained a mixture of

various ochres, calcite (few microfossils), quartz and yellow-brown oxidized, bone

material (Figures 5-10a, c, 5-11a). Less accessory materials (other than bone) were

observed in these samples in comparison to the HYPD dispersions.

Figures 5-11a-c. The bone in sample HYPD 4001 (PPL), and images showing the
predominance of calcite and hematite in samples HYPD 6001 and HYPB 2001 (XPL)

5.1.2. X-ray diffraction (XRD)

The diffractograms reproduced on the following pages are examples selected from

those obtained from the XRD tests carried out on the geological sample groups from

the Maltese islands. The final diffractogram is an overlay of a number of the results

obtained from the ‘Ooid’ group, which was the more interesting of materials. A

summary of the chief constituent materials based on the corresponding peaks is given

in Table 5-2 below.
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Mineral Major 2-Theta peaks (High intensity) Observed in sample groups

Calcite 29.363, 35.961, 39.401, 43.166, 47.508,
48.517

Calcitic reds, Terra rossae,
Greensands

Quartz 20.826, 26.568, 42.447, 59.953, 68.141 Calcitic reds, Terra rossae, Ooids

Hematite 28.091, 38.651, 41.597, 58.076, 63.633,
73.942, 75.908

(Terra rossae, Ooids – poor quality)

Goethite 24.65, 38.779, 42.924, 62.686 Terra rossae, Ooids

Gypsum 11.633, 20.731, 29.116, 31.09, 33.367,
43.32, 50.333

Ooids

Table 5-2. Summary of XRD results

XRD tests carried out on the ‘Calcitic reds’ and the ‘Greensands’ failed to confirm the

presence of iron oxides and/or hydroxides. Diffractograms showed the predominance

of calcite, as was expected, and some samples additionally contained some quartz.

Diffraction profiles of the ‘Terra rossa’ group indicated the presence of hematite, albeit

in small amounts.
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Figure 5-13. Diffraction profile of G 1004

3.0e+5

2.5e+5

2.0e+5

1.5e+5

1.0e+5

5.0e+4

0.0

Nicki-PhD_GT 1001 data

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0

1.2e+5

1.0e+5

8.0e+4

6.0e+4

4.0e+4

2.0e+4

0.0

Nicki-PhD_GT 1002 data

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0

1.6e+5

1.4e+5

1.2e+5

1.0e+5

8.0e+4

6.0e+4

4.0e+4

2.0e+4

0.0

Nicki-PhD_MFN 1002 data

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0

1.2e+5

1.0e+5

8.0e+4

6.0e+4

4.0e+4

2.0e+4

0.0

Nicki-PhD_MFN 2002 data

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
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This technique, however, imparted useful information pertaining to the ‘Ooid’ group,

although actual identification of constituent minerals was difficult. It was evident that

the nodules consisted of a mixture of minerals, including crystalline and poorly

crystalline phases, which also showed some preferential orientation. Although

interpretation was tentative for several reasons as described below, the most likely

material present appeared to be gypsum (calcium sulphate, CaSO4.2H2O), whose peaks

prevailed in the diffractograms. Also present were calcite (CaCO3), quartz (SiO2),

goethite (FeOOH) and possibly hematite (Fe2O3) and/or bernalite [Fe(OH)3(H2O)].

In the majority of these ‘Ooid’ group diffractograms it was apparent that the gypsum

peaks were consistently shifted slightly towards higher 2θ angles. Quartz, although

showing preferential orientation, was used as the internal standard and all peaks were

corrected for this material. The gypsum shift, was, however, still present, indicating a

shift in the lattice parameter that was probably the result of some internal substitution

(possibly strontium substituting for the calcium) and/or a variance in the amount water

of crystallisation present.

It was also clear that the peak heights (e.g. 20.7 2θ) did not correspond particularly 

well at times (with, e.g. gypsum), and that the main iron-containing minerals appeared

to be present only in minor amounts when element analysis (see later) showed Fe to

predominate in these samples. The goethite (and hematite) peaks were, moreover,

poorly defined, indicative of poor crystallinity.
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5.1.3. Inductively coupled plasma – Atomic emission spectroscopy (ICP-AES)

Geological samples

% % % % % % % % % (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

sample Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Ba Co Cr Cu Li Ni
Cwa 1001 0.68 0.34 0.70 49 0.22 0.12 0.03 0.07 0.01 51 51 1 12 8 3
Cwa 1002 6.4 2.9 0.94 34 0.19 0.84 0.30 0.06 0.04 137 137 11 58 13 41
Cwa 1003 3.8 1.5 0.74 40 0.19 0.69 0.21 0.05 0.02 103 103 4 30 10 17
Cwa 1004 6.2 2.3 0.87 36 0.18 0.82 0.30 0.07 0.02 123 123 6 54 16 35
Gh 1001 3.1 1.3 1.06 40 0.43 0.62 0.16 0.03 0.02 70 70 4 20 12 12
Gh 1002 2.1 0.88 0.94 46 0.33 0.43 0.11 0.04 0.01 96 96 2 8 8 7
Gh 1003 1.7 0.66 0.55 47 0.13 0.28 0.05 0.02 0.00 45 45 1 16 11 7
Mv 1001 4.01 1.7 0.67 38 0.38 0.49 0.20 0.03 0.03 92 92 5 32 14 13
MG 1101 1.5 0.62 0.56 52 0.03 0.19 0.05 0.03 0.01 20 20 2 19 7 7
MG 1201 3.6 1.5 0.75 47 0.23 0.49 0.13 0.04 0.02 61 61 4 35 13 17
MG 1301 1.9 0.86 0.52 50 0.11 0.28 0.07 0.04 0.01 28 28 2 22 9 10
MG 1401 1.5 0.62 0.42 50 0.04 0.19 0.05 0.02 0.01 22 22 2 13 8 9
MG 1501 2.5 1.04 0.57 48 0.18 0.34 0.10 0.04 0.02 39 39 3 26 11 12
MG 1601 2.3 0.86 0.53 48 0.09 0.33 0.08 0.04 0.01 32 32 3 24 9 10

(ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

sample Sc Sr V Y Zn Zr La Ce Nd Sm Eu Dy Yb Pb
Cwa 1001 1 250 10 6 14 9 3 13 3 0.6 0.2 0.6 1.2 2
Cwa 1002 9 130 56 89 35 61 63 63 69 15.9 3.9 10.7 4.5 9
Cwa 1003 3 120 28 13 26 41 12 30 13 2.1 0.6 1.8 1.6 5
Cwa 1004 7 120 43 68 54 49 41 43 46 11.0 3.1 7.6 3.3 10
Gh 1001 3 130 21 7 43 40 10 27 10 1.6 0.4 0.9 0.4 1
Gh 1002 2 280 15 7 30 33 9 18 9 1.0 0.3 0.6 0.7 0
Gh 1003 1 105 10 4 35 11 4 6 4 0.7 0.1 0.2 0.3 1
Mv 1001 4 86 36 15 24 35 13 34 14 2.9 0.8 1.8 1.6 2
MG 1101 2 43 10 7 15 12 9 27 9 0.4 0.1 0.9 0.8 4
MG 1201 3 67 33 8 24 28 6 26 7 1.0 0.2 1.4 0.9 6
MG 1301 2 66 17 7 18 16 8 20 8 0.5 0.0 0.8 0.8 2
MG 1401 1 35 12 6 14 12 12 7 12 2.1 0.1 0.9 0.9 2
MG 1501 2 50 24 8 19 21 5 10 6 1.5 0.1 1.2 1.1 3
MG 1601 2 49 17 8 18 17 8 4 8 1.8 -0.1 1.2 0.7 3

Table 5-3a, b. ‘Calcitic red’ data (all data rounded off to 2 significant figures)
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% % % % % % % % % (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

sample Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Ba Co Cr Cu Li Ni
G 1001 1.3 4.6 0.76 45 0.07 0.46 0.08 0.41 0.02 24 4 62 11 1 14
G 1002 0.58 3.7 0.64 46 0.05 0.12 0.04 0.15 0.02 13 3 26 22 1 14
G 1003 0.94 5.1 0.75 44 0.17 0.29 0.06 0.23 0.02 21 4 55 25 1 17
G 1004 0.35 1.9 0.54 49 0.14 0.07 0.02 0.09 0.02 13 2 22 18 1 12
G 1005 0.55 1.6 0.53 50 0.18 0.12 0.03 0.11 0.02 12 2 23 16 0 18
G 1006 0.65 2.9 0.56 48 0.09 0.15 0.05 0.17 0.02 14 3 49 23 3 10
G 1007 0.93 5.9 0.75 44 0.20 0.26 0.06 0.24 0.02 16 6 51 30 3 19
G 1008 0.99 3.0 0.67 46 0.59 0.44 0.07 0.35 0.01 16 2 29 11 4 4

GTG 1001 2.5 4.0 0.86 44 0.20 0.89 0.10 0.53 0.04 28 3 52 12 7 23
GTG 1002 2.3 3.6 0.92 43 1.00 0.86 0.09 0.47 0.03 28 3 46 9 7 21
GTG 1003 2.2 3.6 0.90 44 1.04 0.88 0.09 0.50 0.02 26 3 45 9 6 15
RB 1001 0.47 1.6 1.01 47 0.12 0.14 0.02 0.30 0.01 18 1 17 5 1 8
MG 1009 1.0 6.4 0.72 49 0.03 0.16 0.05 0.10 0.01 14 0 20 12 2 8
MG 1100 0.89 5.5 0.74 49 0.02 0.14 0.04 0.09 0.01 20 0 19 10 3 7

(ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

sample Sc Sr V Y Zn Zr La Ce Nd Sm Eu Dy Yb Pb
G 1001 1 62 97 20 27 17 9 25 11 4.2 0.9 2.9 2.0 5
G 1002 1 41 64 9 29 7 5.4 12 8.6 2.2 0.45 1.6 0.6 26
G 1003 2 56 86 17 33 12 9.0 21 14 3.5 0.77 2.5 1 23
G 1004 1 71 33 7 16 4 2 16 3 1.7 0.2 0.7 1.0 15
G 1005 0 47 34 13 16 6 3 13 5 1.7 0.6 1.8 1.2 2
G 1006 2 59 66 10 41 7 6 15 7 2.5 0.4 1.4 0.7 19
G 1007 2 48 93 14 48 10 7 11 8 3.3 0.6 1.7 1.2 22
G 1008 1 81 46 14 45 10 7 14 8 3.4 0.9 1.8 0.6 1

GTG 1001 4 280 86 33 58 12 16 32 19 6.1 1.9 4.1 1.2 2
GTG 1002 4 290 76 28 54 10 14 32 16 5.2 1.3 3.4 1.1 6
GTG 1003 4 290 72 32 54 8 15 34 18 5.2 1.6 3.9 1.2 4
RB 1001 2 380 25 14 26 4 7.4 13 9.9 2.3 0.51 1.9 0.77 6
MG 1009 1 64 22 5 20 9 4 15 5 2.3 0.6 0.6 0.8 3
MG 1100 1 63 17 5 19 8 8 7 8 2.7 0.5 0.6 0.8 6

Table 5-4a, b. ‘Greensands’ data
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% % % % % % % % % (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

sample Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Ba Co Cr Cu Li Ni
Mfn 1001 1.7 34 0.37 8.7 0.61 0.45 0.09 0.07 0.01 20 2 16 13 3 81
Mfn 1002 1.5 19 0.31 18 0.94 1.4 0.08 0.13 0.00 22 1 17 10 5 19
Mfn 2002 1.6 19 0.35 16 0.91 1.6 0.08 0.13 0.00 20 2 12 13 5 32
Mfn 2003 1.7 19 0.47 19 0.95 1.4 0.08 0.13 0.00 27 4 15 19 5 46
Mfn 2004 2.0 22 0.40 15 0.87 2.0 0.10 0.14 0.00 31 3 20 14 6 38
GT 1001 5.3 10 0.65 22 0.10 1.0 0.25 0.07 0.01 61 11 29 12 18 54
GT 1002 8.0 11 1.09 16 0.22 1.8 0.35 0.11 0.01 109 6 41 13 27 25
GT 1003 12 16 1.5 9.2 0.26 2.04 0.52 0.17 0.02 180 8 69 19 37 43
GT 1004 9.4 13 1.2 12 0.14 1.7 0.42 0.13 0.01 140 6 55 18 33 26
GT 1005 5.4 3.8 0.59 18 0.09 0.97 0.26 0.03 0.00 130 3 21 10 17 8
GT 1006 8.9 23 1.2 7.01 0.19 2.3 0.40 0.13 0.01 130 6 59 17 29 37
MG 1001 2.5 20 0.47 18 0.79 1.3 0.12 0.20 0.01 32 3 29 9 7 42
MG 1006 3.5 20 0.43 13 0.31 3.2 0.17 0.07 0.01 51 3 38 9 12 20
MG 1008 2.7 16 0.52 21 0.05 0.72 0.13 0.13 0.01 46 5 33 8 10 57
MG 1701 2.9 14 0.44 24 0.06 0.46 0.14 0.07 0.02 44 11 30 15 11 49

(ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

sample Sc Sr V Y Zn Zr La Ce Nd Sm Eu Dy Yb Pb
Mfn 1001 1 180 35 4 46 21 6 5 4 6.0 2.4 1.4 2.3 6
Mfn 1002 2 360 26 2 59 15 6 3 6 7.0 1.9 0.7 0.9 14
Mfn 2002 2 330 24 3 59 15 7 9 7 5.4 1.8 0.5 0.9 20
Mfn 2003 2 320 26 4 75 16 8 9 8 6.4 1.6 0.3 1.0 24
Mfn 2004 2 420 30 3 78 25 9 9 9 7.8 1.8 0.5 1.3 24
GT 1001 5 350 45 5 62 33 13 18 13 2.0 0.9 0.4 0.7 16
GT 1002 7 430 66 7 62 46 19 28 18 3.4 1.0 0.5 0.9 11
GT 1003 10 180 91 11 98 69 27 41 27 5.2 1.5 1.3 1.4 17
GT 1004 9 200 80 9 72 55 22 36 21 4.0 1.1 0.8 1.0 14
GT 1005 4 370 38 4 35 30 13 22 13 0.4 0.3 0.3 0.6 1
GT 1006 8 307 85 8 73 52 22 31 21 * * 0.6 1.3 16
MG 1001 2 710 31 5 34 24 9 11 10 6.3 2.1 0.3 1.7 17
MG 1006 3 406 38 2 31 29 9 10 10 5.3 1.8 0.0 1.5 22
MG 1008 3 730 31 6 40 24 8 13 9 4.8 1.7 0.6 1.3 21
MG 1701 3 470 27 4 47 23 7 14 8 4.0 1.3 0.2 1.3 32

Table 5-5a, b. ‘Ooid’ data (* indicates that the element was present in concentrations below the detection limit of the instrument)
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% % % % % % % % % (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

sample Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Ba Co Cr Cu Li Ni
G037 17 6.9 1.5 5.4 0.34 2.6 0.75 0.40 0.08 320 15 120 55 72 48
G042 14 6.03 1.5 12 0.33 2.1 0.64 0.45 0.08 320 15 97 56 50 41
G113 9.0 3.9 1.3 18 0.30 1.5 0.46 1.04 0.07 250 10 90 41 37 30
G129 13 5.8 1.3 4.6 0.42 2.0 0.75 0.17 0.10 370 15 100 30 51 36
G178 15 6.6 1.5 3.8 0.37 2.1 0.77 0.22 0.09 350 16 110 33 60 42
G135 15 6.3 1.3 11 0.29 1.8 0.70 0.34 0.09 330 15 110 37 68 46
G254 20 8.04 1.5 3.7 0.22 2.3 0.80 0.12 0.07 304 18 120 41 85 73
G269 13 5.5 1.2 15 0.27 1.4 0.60 0.37 0.06 270 14 110 44 55 49
G299 7.5 3.3 1.0 27 0.24 1.0 0.40 0.63 0.05 230 9 73 71 29 33
G312 11 4.6 1.1 17 0.30 1.3 0.59 0.26 0.07 308 12 91 27 42 44
G073 16 7.0 1.2 1.5 0.40 2.3 0.77 0.14 0.07 380 17 83 25 68 42
G057 5.8 2.7 1.1 32 0.21 0.9 0.31 0.61 0.04 250 11 108 24 42 41
G266 10.4 4.5 1.2 22 0.25 1.1 0.53 0.29 0.06 150 7 57 23 21 22
G132 11 4.7 1.3 19 0.13 1.6 0.53 0.15 0.02 150 10 59 21 36 30
G223 3.1 1.5 0.84 38 0.13 0.5 0.17 0.76 0.02 110 4 43 38 14 20

(ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

sample Sc Sr V Y Zn Zr La Ce Nd Sm Eu Dy Yb Pb
G037 15 103 120 39 130 140 50 91 52 9.1 2.2 5.7 3.2 65
G042 12 170 97 36 120 109 40 71 42 7.4 1.7 4.8 2.2 39
G113 9 205 67 28 150 95 32 54 33 5.8 0.9 4.2 2.3 49
G129 12 110 90 34 110 130 46 87 48 8.7 1.7 5.0 2.7 45
G178 14 105 106 41 108 140 48 94 50 9.3 2.1 5.6 3.3 62
G135 13 140 120 40 130 130 47 89 49 9.2 2.1 5.4 3.0 44
G254 17 82 150 42 107 150 51 93 53 9.8 2.0 5.9 3.6 30
G269 12 180 97 47 110 110 48 78 51 9.8 2.4 6.4 3.2 109
G299 7 190 62 35 130 71 31 54 33 6.5 1.7 4.6 2.4 83
G312 10 180 83 44 100 106 42 71 45 7.7 1.9 5.5 2.3 53
G073 16 102 130 46 107 130 56 103 59 11 2.5 6.5 3.8 36
G057 10 260 82 43 65 106 40 72 41 6.6 1.0 5.8 3.1 24
G266 6 270 42 21 84 53 22 39 23 5.2 1.2 2.8 1.4 27
G132 10 290 86 19 85 76 30 56 31 5.3 1.1 2.8 1.5 11
G223 3 480 29 23 140 32 15 23 16 2.6 0.9 2.3 1.2 104

Table 5-6a, b. ‘Terra rossa’ data
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Archaeological data

% % % % % % % % % (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

sample Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Ba Co Cr Cu Li Ni
MA 002 9.5 51 1.03 1.4 0.23 1.6 0.48 0.51 0.01 580 14 69 29 20 140
MA 003 8.8 43 1.02 6.4 0.19 1.4 0.43 0.71 0.01 440 16 80 29 21 130
MA 006 5.6 9.5 1.8 23 0.73 1.8 0.27 4.6 0.07 290 8 35 220 20 26
MA 007 6.1 13 2.4 26 0.83 1.9 0.31 3.20 0.06 420 7 42 250 24 33
MA 008 6.9 13 2.01 23 1.0 2.3 0.34 4.06 0.07 330 9 52 340 24 31
MA 009 12 28 1.4 0.97 0.36 2.8 0.60 0.63 0.01 350 11 90 22 25 54
MA 010 13 29 1.9 1.9 0.32 3.0 0.62 0.68 0.01 380 12 106 24 27 60
MA 011 7.3 21 0.98 23 0.24 0.85 0.42 1.6 0.01 200 8 68 38 39 90

HYPD 1001 3.2 3.0 0.88 35 0.32 0.56 0.19 6.3 0.02 65 4 60 29 15 39
HYPD 1002 2.9 2.8 0.81 37 0.32 0.53 0.17 7.07 0.01 71 4 55 27 13 35
HYPD 1003 2.9 2.9 0.94 37 0.46 0.52 0.17 5.4 0.02 87 4 51 25 12 30
HYPD 1004 2.6 2.7 0.74 36 0.37 0.46 0.15 8.8 0.02 73 3 44 24 12 29
HYPD 2001 2.2 1.8 0.93 47 0.36 0.38 0.14 4.2 0.01 40 4 33 33 9 50

(ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

sample Sc Sr V Y Zn Zr La Ce Nd Sm Eu Dy Yb Pb
MA 002 8 1700 140 10 120 72 32 31 30 * * 0.5 3.5 82
MA 003 8 1600 130 11 140 58 30 41 28 * * 0.2 3.0 87
MA 006 5 410 81 25 307 11 25 47 26 6.4 1.0 3.0 1.8 30
MA 007 6 600 108 32 150 35 31 47 33 4.8 1.9 3.9 2.3 19
MA 008 6 460 104 30 200 22 31 57 33 7.6 1.7 3.9 2.6 25
MA 009 11 940 130 12 86 88 35 52 34 * * 0.9 2.7 53
MA 010 11 1040 140 12 103 79 36 54 35 * * 0.8 2.5 61
MA 011 6 507 109 16 120 24 23 33 23 * * 1.2 1.9 33

HYPD 1001 4 440 48 40 230 22 19 29 21 3.9 0.9 3.3 1.9 3
HYPD 1002 3 480 42 40 240 7 19 25 21 3.9 1.1 3.2 1.9 7
HYPD 1003 3 560 41 33 209 19 17 27 19 4.0 0.8 3.1 1.5 11
HYPD 1004 3 570 38 30 220 27 16 22 17 3.2 0.8 2.6 1.6 5
HYPD 2001 2 590 35 26 140 7 12 18 13 1.8 0.7 2.3 1.4 3

Table 5-7a, b. Archaeological ICP-AES data (* indicates that the element was present in concentrations below the detection limit of the instrument)
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% % % % % % % % % (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

sample Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Ba Co Cr Cu Li Ni
HYPD 3001 #1 1.8 2.3 0.76 43 0.33 0.29 0.12 15 0.03 54 21 44 139 7 407
HYPD 3001 #2 2.7 1.9 0.92 43 0.21 0.47 0.16 2.04 0.03 70 8 45 50 11 72

HYPD 7001 2.0 1.7 0.96 40 0.21 0.34 0.17 1.00 0.03 250 7 99 101 8 96
HYPB 2005 0.27 0.57 0.48 38 1.00 0.06 0.02 23 0.02 35 3 15 27 2 54

HYPB 4005 0.22 0.44 0.36 37 0.75 0.04 0.01 24 0.01 41 4 16 16 2 29

(ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

sample Sc Sr V Y Zn Zr La Ce Nd Sm Eu Dy Yb Pb
HYPD 3001 #1 2 600 53 27 302 15 13 21 14 2.5 0.5 2.1 1.3 24
HYPD 3001 #2 3 543 35 27 130 14 15 20 16 2.8 0.9 2.4 1.2 80

HYPD 7001 2 509 50 23 200 25 14 22 15 2.5 0.7 2.1 1.0 790
HYPB 2005 0 415 11 4 260 7 3 5 3 0.3 0.0 0.6 0.5 1
HYPB 4005 0 340 10 4 370 4 2 2 2 0.7 0.1 0.4 0.6 8

Table 5-8a, b. Archaeological ICP-AES data continued
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Figures 5-15a-c. Un-transformed data, showing distinct inter-site and inter-group differences between some elements: Intra-site values have been
averaged
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Data analysis and statistical tests for ICP-AES results

All the data was converted to ppm, and for most statistical operations was also log-

normalised for display purposes. Statistics were necessary to identify the trends

between datasets, with the multivariate statistical methods applied to assess group or

source associations based on pattern recognition. Statistical methods used have been

described previously in section 4.3 and include matrix plots, Pearson’s correlation

tests, biplots of principle components, hierarchical cluster analysis and confidence

ellipses to understand and assess correlations. The majority of these assessments were

made using the statistics package Minitab.

A difficulty encountered when observing the data was the substantial number of

variables (the elements) obtained per sample (observation); an aspect deemed

necessary because of the novel data obtained in this study and the indefinite

(unknown) correlations. Matrix plots were therefore drawn as these facilitated the

simultaneous observation of the two-variable relationships. The plots were divided as

shown in Table 5-9 for initial observations, and several plots have been included in

Appendix III for further reference.

Matrix plot Variables Elements (observed in ppm)

A Major Al, Fe, Mg, Ca, Na, K, Ti, P, Mn

B Minor (1) Ba, Co, Cr, Cu, Li, Ni, Sc

C Minor (2) Sr, V, Y, Zn, Zr, Pb

D Rare earths La, Ce, Nd, Sm, Eu, Dy, Yb

Total No. of elements (variables) examined per sample: 29

Table 5-9. Matrix plots devised per set of observations
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Comparison of the different geological groups

Since all groups (groups ≡ different sources) contained samples from different sites

(same geological source), it was necessary to examine the inter-site and therefore the

intra-group element variation between the same and the different groups in order to

satisfy the provenance postulate theory mentioned in Chapter 1. It was essential to

firstly show that (1) the sites clustered into definite groups (not much intra-source

variation), indicative of their geological source and that (2) the various sources

(groups) were distinctly separate, therefore enabling the (3) identification of whether

inter-source variation was actually greater than the intra-source variation.

The observations described here are aimed at illustrating the relationships of element

concentrations with respect to one another per sample and per sample site, to analyse

the intra- and inter- source differences, and to identify any obvious discordant outliers

within the sample groups from simple matrix plots and from the results data. The

matrix plots show comparisons of un-normalised data as the compared variables were

on a similar scale.

Group No. Group name Sites (and number of samples)

1 Calcitic Red Cwa (4), Gh (3), Mv (1), MG (6)

2 Terra Rossa
Vary, divided into leptosols (5), luvisols (5), cambisols (2),
calcisols (1), vertisols (1), regosols (1)

3 Greensands G (8), GTG (3), RB (1), MG (2)

4 Ooids Mfn (5), GT (6), MG (4)

Total No. of geological samples: 58

Table 5-10. Source groups and samples: Samples from Cirkewwa (Cwa), Ghadira (Gh),
Mistra village (Mv), Mgarr (MG), Gelmus (G), Ramla Bay (RB), Marsalforn (Mfn) and Ghajn

Tuffieha (GT)
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Intra- and inter- site variation in the Calcitic reds

The largest degree of intra-site variation was exhibited in the Cwa samples, with least

variation in the MG samples. Element concentrations in the MG samples were also

consistently lower than those observed in the other Group 1 samples as these appeared

to predominate in Ca. The opposite effect was observed in samples Cwa 1002 and

Cwa 1004, which exhibited a rather large, recurrent discrepancy between variables,

owing to lower levels of Ca resulting in elevated concentrations of other elements,

showing the high variability of this element. An example of this discrepancy is shown

in the REE matrix plot in Figure 5-16. Spread in this source group was therefore

limited to a cluster and/or to an analogous correlation.

Interpretations of the results were based on the assumption that the elements

correlating with Fe were related to the Fe oxide signature and to the sample origin,

whereas the elements not associated with, or negatively correlated with, Fe were

related to accessory minerals associated with the Fe mineral, and therefore were acting

as diluents to the ochre (see later). This characteristic was clearly exhibited in all the

Ca graphs, which showed a highly negative correlation, not only with Fe but with all

the other major element observations, therefore illustrating this diluent effect. The

majority of the other elements presented a linear regression with a positive gradient,

and a distinct relationship especially exhibited between Al and Fe, Al and K, Al and

Ti; as well as between Fe and Mn, Fe and K, and Fe and Ti. These elements were

analysed further by means of multivariate and PC statistical analysis, as will be

discussed later. This positive correlation was also marked in the minor element plots;

conversely the data in the REE plots formed obvious clusters, apart from the two

unmistakable Cwa outliers.
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Variation between the analysed soil units in the Terra rossa group

A similar positive correlation with most elements apart from Ca was exhibited in these

Terra rossae as was observed with the first group (Calcitic reds). However, certain

differences were also noted, including an inversely proportional relationship of all

elements with P and Sr, as well as a larger concentration of heavy metals and other

trace elements; and scattered data points for trace metals Cu, Zn and Pb. There was

also a larger spread of data, which, although still showing correlation trends, was not

as clear-cut as the Group 1 set. The regosol (G 223) was the only sample that gave a

definite series of outlying data points; appearing to be calcium-rich, and therefore

containing a lower concentration of other elements with respect to this diluent (Figure

5-17). This regosol also had a higher proportion of Sr in comparison to the other

samples, indicating that the two were directly related and substituted for each other.

Furthermore, the REEs did not form clusters but plotted as straight lines with a

positive gradient, with the regosol exhibiting the lower REE concentration (ppm) and

the calcisol G 073 the higher amount of REEs.

Intra- and inter- site variation of the Greensands

Group 3 samples appeared to have a wider spread of data, albeit displayed on a smaller

scale range than in the other two sample groups (Figure 5-18). Data clustering was,

nevertheless, apparent although linear correlations were not as pronounced, indicating

a relationship between the samples but not a clear-cut relationship with the element

variables. The scatter was especially prominent with the majority of the minor element

plots, although positive correlations with some clustering were evident in most of the

REE plots (apart from Yb). Consistent ‘outliers’ in this sample group included the
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GTG samples, which all had a lower Ca content and therefore unsurprisingly almost

invariably plotted at higher ppms in the graphs, with the exceptions of Ca, Cr, Cu, Zr

and Pb. RB had a significantly higher Mg and a lower Fe content, with an overall

composition nevertheless approximating that of the G samples.

Intra- and inter- site variation of the Ooids

These samples gave the largest data spread of all the three groups (Figure 5-19). The

samples extracted from Marsalforn (Mfn) and Mgarr (MG) generally clustered

together, while the samples from Ghajn Tuffieha (GT) appeared to correlate with each

other, either positively in most cases, or occasionally negatively. The latter

relationship was observed, once again, in the Ca plots, confirming its predominance

and its diluent effect on overall material composition. Positive correlations were

particularly pronounced in graphs between Al and Ti, Al and Mg, Ti and Mg, Sc and

Ba, as well as the plots between Cr and Li. The most interesting and atypical

relationships were those observed in the REE plots of both Sm and Eu against La, Ce

and Nd (Figure 5-20), where a higher concentration than expected of Sm and Eu was

exhibited in relation to the other five lanthanides for the Mfn and the MG samples.

These lanthanides will be discussed in their entirety later on in the text (refer to P.190-

191).
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Figure 5-16. Matrix plot of REE Group 1 ‘Calcitic red’ samples, showing the outlying samples Cwa 1002 and Cwa 1004

(ppm)

(ppm)
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Figure 5-17. Matrix plot of major elements in Group 2 ‘Terra rossa’ samples, showing the positive and negative correlations between the elements

(ppm)

(ppm)
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Figure 5-18. Trace element matrix plots showing the GTG outliers

(ppm)

(ppm)
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Figure 5-19. Matrix plot of the major elements in the Ooid samples

(ppm)

(ppm)
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Figure 5-20. Matrix plot showing the relationship between the REEs in the Ooid group

(ppm)

(ppm)
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Group variations.

Though site and source group averages of data illustrated that several variables showed

intra-group similarities and inter-source differences, conjectures based on this data

were deemed inadequate and further data analysis was necessary.

Figure 5-21. Biplot, showing the significant negative correlation of the variables with Ca
(components established using Minitab 15)

Examples of these trends can be observed in the histograms in Figures 5-15a-c above

which show the mean site variables for each group. Initial data analysis indicated that

the majority of the elements showed a distinct positive correlation with each other, and

that the Fe concentrations varied considerably. The latter factor also appeared to be

affecting the variance of the total data set content and therefore the interpretation. Ca

also clearly contributed to the overall dilution effect. These relationships are shown in

the biplot above, which was drawn to identify patterns in the dataset within a principle

component (PC) space: here the samples are displayed as points whereas the element

variables are illustrated as vectors. These PC tests are simple multivariate techniques

principally used to describe the variation between the elements by transforming them

into a smaller number of variables (two were used in this case).
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A mathematical adjustment was therefore made to the data for statistical analysis of

the ochre samples. This involved extracting respective Ca values from the total, and

presenting all resultant data as ratios to Fe to mitigate the influence of large

concentration differences in Fe across the entire data set. Consequently, relationships

become relative rather than absolute allowing for the dilution effect of both Ca and Fe,

allowing the trace element data relative to Fe for each sample to be better observed

(Erlandson, Robertson et al., 1999; Glascock and Neff, 2003; Popelka-Filcoff, 2006;

Popelka-Filcoff, Robertson et al., 2007; MacDonald, Hancock et al., 2008; Popelka-

Filcoff, Miksa et al., 2008). The log-transform normalisation was then applied to these

values. The operation is described in Equation 1, and the vectors for the modified

datasets are plotted in the loading plot below (Figure 5-23), which shows the strong

correlation the variables have with one another.

Matrix scatter plots were subsequently drawn using this analysed data, which included

all data points to preclude inaccurate inferences from these results. The aims of these

observations were therefore to (i) assess the possibility of group discernment by mere

visual observation of the graphs, (ii) to recognize those variables that could potentially

distinguish between these sources, and (iii) to identify whether there were any other

interesting correlations that could provide further insight to the character of these

geological groups and potentially help differentiation.

Equation 5-1
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Figure 5-22. Log10 normalised data of minor elements (1st set) plotted to show the relationship exhibited with Fe (highlighted)
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Figure 5-23. Loading plot, showing a strong covariance between the variables in the analysed
dataset (components established using Minitab 15)

On observation of these matrix plots, the first prominent aspect was the clustering

between the Calcitic reds and the Terra rossae groups in all plot comparisons between

major, minor and rare earth variables, making them difficult to differentiate when

compared to each other on a scale that included the other two geological groups

(Figure 5-24).

Positive correlation trends were remarkably distinct in the vast majority of the graphs

between all the geological groups (also shown in the loading plot above), although a

broader scatter was exhibited in plots of Na, P, Sr and Pb, probably as a result of the

effects of pollution. It was also evident that the distinction between the three groups

was more pronounced in certain scatter plots than in others. This was observed in a

number of graphs between major elements, particularly those between Al and Mg, Al

and Mn, Mn and Ti, and Ti and Mg; as well as between the minor elements, namely Ba

and Cr, Cr and Li, Zr and V, and Zr and Y.
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Figure 5-24. Comparison of major elements in different source groups after applying element transformation equation [log10({106/106-
Ca}/Fe)*element] to each variable
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No definite distinctions could be made from REE relative concentrations or ratios, as

most of these trace elements appeared to exhibit strong, linear, positive correlations

with one other, as is expected for REE amounts in materials forming in similar

geological environments. A quotient trend, however, is apparent, with the Ooids

having the highest REE ratio and the Calcitic reds-Terra rossae unanimously having

the smallest ratio.

Further data examination: Correlation with FeIII

As Fe is the key component of interest in ochre, an essential operation prior to cross

comparing sets of data from source groups included observing which elements

exhibited a distinctly direct dependence on the Fe concentration by showing a positive,

ideally linear relationship when plotted against Fe. The correlation was assessed by

applying the Pearson’s correlation (r) statistical test between Fe and the selected

variable (all the elements, individually) to determine the degree of proportionality and

appropriate measure of the strength of the association between the two elements. This

correlation coefficient is defined by the following equation,

where xi and yi are individual measurements; x and y are the sample means, and σx and

σy are the standard deviation of the data sets (Rees, 2001: 213). Incident values were

the raw data, and all values, including the correlations with the archaeological samples

(which will be described later) are tabulated in Table 5-11 below.

Equation 5-2
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Pearson's correlation coefficient is represented by the symbol r (rho), which ranges

between -1 and 1, where -1 represents a perfect negative (inverse) correlation, 0

indicates no correlation, whereas 1 is the highest, perfect, positive correlation.

Pearson’s results were assessed for significance on a 95% confidence interval

(α=0.05), and the results are given as the P-value. A P-value of less than 0.05

indicates that there is a statistically significant relationship between the two variables,

and that the null hypothesis can be rejected in favour of the alternative hypothesis.

The archaeological samples were also tested for comparative purposes.

The results indicated that while some geological groups, namely the Calcitic reds and

the Terra rossae, showed clear correlation trends with Fe, correlations were much less

distinct with the Ooids, and particularly even less so in the Greensands group. The

definite correlations have been highlighted in the same table. Many scores were close

to 0; therefore a clear determination of correlation was difficult. Those elements with

a consistent negative Pearson’s coefficient were eliminated from further statistical

analysis.
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Correlation Calcitic reds Terra rossae Greensands Ooids MA (reds) MA (yellows) HYPD
between Fe&: r P-value r P-value r P-value r P-value r P-value r P-value r P-value

Al 0.990 0.000 0.998 0.000 0.238 0.412 -0.371 0.174 -0.118 0.850 0.796 0.414 0.730 0.040
Mg 0.588 0.027 0.907 0.000 0.146 0.619 -0.269 0.332 -0.336 0.581 0.748 0.462 -0.435 0.281
Ca -0.909 0.000 -0.955 0.000 -0.265 0.360 -0.505 0.055 -0.541 0.347 0.391 0.744 -0.840 0.009
Na 0.294 0.308 0.582 0.023 -0.159 0.586 0.536 0.039 -0.524 0.365 0.803 0.406 0.628 0.096
K 0.927 0.000 0.932 0.000 0.081 0.784 0.051 0.857 -0.138 0.825 0.686 0.519 0.715 0.046
Ti 0.966 0.000 0.973 0.000 0.350 0.220 -0.380 0.162 -0.249 0.686 0.929 0.241 0.408 0.315
P 0.448 0.109 -0.691 0.004 -0.038 0.896 0.275 0.322 -0.677 0.209 -0.756 0.454 0.409 0.314

Mn 0.908 0.000 0.714 0.003 -0.131 0.656 -0.199 0.477 0.770 0.128 -0.179 0.886 -0.488 0.220
Ba 0.846 0.000 0.821 0.000 0.210 0.471 -0.455 0.088 0.948 0.014 0.731 0.478 -0.381 0.352
Co 0.959 0.000 0.981 0.000 0.151 0.605 -0.435 0.105 0.855 0.065 0.063 0.960 -0.279 0.504
Cr 0.938 0.000 0.793 0.000 0.304 0.290 -0.178 0.524 -0.295 0.630 0.846 0.358 -0.180 0.670
Cu 0.804 0.001 0.030 0.915 0.244 0.400 0.078 0.781 -0.159 0.798 0.720 0.488 -0.483 0.226
Li 0.957 0.000 0.972 0.000 0.144 0.624 -0.423 0.116 -0.847 0.070 0.998 0.040 0.769 0.026
Ni 0.607 0.021 0.841 0.000 0.065 0.825 0.588 0.021 0.801 0.103 0.941 0.219 -0.229 0.586
Sc 0.972 0.000 0.992 0.000 0.066 0.822 -0.385 0.157 -0.083 0.895 0.998 0.040 0.753 0.031
Sr -0.010 0.972 -0.863 0.000 -0.327 0.254 -0.157 0.576 0.977 0.004 0.647 0.552 -0.390 0.340
V 0.979 0.000 0.981 0.000 0.266 0.358 -0.156 0.579 0.781 0.119 0.980 0.128 0.115 0.787
Y 0.885 0.000 0.655 0.008 -0.074 0.803 -0.191 0.495 -0.853 0.066 0.941 0.219 0.858 0.006

Zn 0.654 0.011 -0.063 0.823 0.109 0.712 0.047 0.867 0.477 0.416 -0.930 0.239 0.523 0.184
Zr 0.934 0.000 0.953 0.000 0.570 0.033 -0.255 0.359 0.312 0.609 0.805 0.404 0.215 0.609
Pb 0.804 0.001 -0.291 0.293 0.166 0.571 0.103 0.716 0.921 0.026 -0.825 0.382 -0.553 0.155
La 0.878 0.000 0.929 0.000 0.174 0.552 -0.314 0.255 0.246 0.690 0.998 0.040 -0.105 0.012
Ce 0.896 0.000 0.944 0.000 -0.017 0.954 -0.435 0.105 -0.389 0.517 0.554 0.627 0.831 0.011
Nd 0.881 0.000 0.923 0.000 0.146 0.619 -0.350 0.201 0.119 0.848 0.998 0.040 0.837 0.010
Sm 0.888 0.000 0.894 0.000 0.235 0.420 0.788 0.001 / / -0.022 0.986 0.884 0.004
Eu 0.903 0.000 0.742 0.002 0.121 0.680 0.939 0.000 / / 0.966 0.167 0.481 0.228
Dy 0.898 0.000 0.765 0.001 -0.068 0.817 0.443 0.098 -0.856 0.064 0.998 0.040 0.857 0.007
Yb 0.870 0.000 0.825 0.000 0.145 0.621 0.820 0.000 0.953 0.012 0.950 0.202 0.848 0.008

Table 5-11. Pearson’s correlation coefficient values: r, and their respective P-values or the significance level



176

Various elements are known to substitute for Fe in ochres; and the tests and plots

above show which variables were likely to have experienced this substitution within

the samples analysed in this study. These are summarised in the table below:

Elements Pearson’s tests Literature Graphs

Major elements Al, Mg, K, Ti, Mn, Al, Ti, Mn Al, Mg, Ti, Mn

Minor elements Ba, Co, Cr, Cu, Li,
Ni, Sc, V, Zr, Pb

Co, Cr, Cu, Ni, V,
Sc, Zn, Pb

Ba, Cr, Cu, Li, Zr,
V, Y

REE All All /

Table 5-12. Comparison between the elements exhibiting a positive correlation with Fe from
the Pearson’s results; and elements known to substitute for FeIII from literature sources

(Cornell and Schwertmann, 2003: 47; Dawood, El-Naby et al., 2004; Wells, Fitzpatrick et al.,
2006), as well as the potentially discriminating variables obtained from the [log10({106/106-

Ca}/Fe)*element] graphs.

The elements therefore expected to co-vary in relation to FeIII and potentially

differentiate between the groups were plots of Al, Ti, Mn, Cr, Cu and V. Other

possible variables also included K, Ni, Li, Zr and Zn. Discrimination by means of

REEs was debatable, although links between these trace elements would indicate

geological associations. Sc and Pb were likely to have been pollutant-associated

elements, therefore trends within these variables were questionable and these elements

were eliminated from further statistical tests along with the rest of the ‘unrelated’

variables.

Hierarchical cluster analysis using the agglomerative method was used to classify the

variables on the basis of data similarity. The method in this study was set on a single

linkage cluster algorithm, which assesses the two most similar samples in the data

matrix based on the Euclidian distance between data points. Consequently, individuals

that linked together within a single group in a cluster were expected to be most similar
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and/or exhibit a comparable relationship. All the samples were automatically grouped

together and linked through a dendrogram, therefore allowing for a direct visualisation

of how the variables related to each other by their clustering. Although it is not

recommended that the validity of these groupings be established by this statistical

representation alone, this method identifies potentially inter-related variables, and was

actually used to further confirm hypotheses of similarities discussed above between

variables and observations within the groups (Everitt, Dunn et al., 1991: 67, 102).

Figure 5-25. Dendrogram showing the hierarchical clustering between the selected variables
off all geological observations (program used: Minitab 15)

It would appear that, in the dendrogram of the selected potential inter-related variables

Al, K, Ti, Mn, Cr, Cu, Li, Ni, V and Zn, for example, Al and Ti were co-related for all

observations, yet it was debatable well how well K and Ni integrated into these

variable groups. The dendrogram, however, was suggestive of two main element

divisions: Al, Ti, Zr, Li (variable set A) and Mn, Cr, V, Cu and Zn (variable set B).
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Hierarchical clusters were subsequently used to analyse whether the selected variables

could be used to identify the different source groups. Various clusters were attempted,

using a varying number of variables to test whether any distinction between groups

was coincidental or actually related to those elements substituting for Fe.

Dendrograms were therefore charted using Al, Ti, Zr, Li, Mn, Cr, V, Cu, Zn, La, Ce,

Nd and Yb (13 variables), Al, Ti, Zr, Li, Mn, Cr, V, Cu, Zn (no REE: 9 variables) and

Al, Ti, Mn, Cr, Cu, V and Zr (7 variables). The first ‘observations-based’ cluster

analysis (Figure 5-26 below) is an example of the 9-variable dendrogram, and included

all the geological samples.

Figure 5-26. A hierarchical cluster showing the algorithm-based division of the geological
samples into groups based on the correlation between the values of the 9 chosen variables. For

a key to the observation numbers (x-axis) refer to Table 5-13.

These cluster analyses indicated that, based on the 13, 9 and 7 variables chosen for this

test, three main groups were recognised, namely the Calcitic reds and the Terra rossae

(CR-TR): Group (i), the Greensands: Group (ii) and the Ooids, shown as Group (iii) on

Group (i)
Calcitic reds + Terra rossae

Group (iii)
Ooids

Group (ii)
Greensands
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the dendrogram below. Two samples from the Greensands group, however, namely

MG 1009 and 1100, were consistently associated with the Ooids in Group (iii) rather

than with the rest of the Greensands. Notwithstanding this irregularity, the method

generally corroborated the observations from the matrix plots of the geological groups

described earlier, and also substantiated the validity of the chosen element variables.

A key to the numerical connotation of the observations on the x-scale is given in Table

5-13.

Numbers Groups
1 – 14 Calcitic reds (CR)

15 – 29 Terra rossae (TR)
30 – 43 Greensands (Gr)
44 – 58 Ooids (O)
59 – 63 MA (reds)/MA (r)
64 – 66 MA (yellows)/ MA (y)
67 – 74 HYPD
75 – 76 HYPB

Table 5-13. Key to the numbers in dendrograms in Figures 5-26 and 5-27

Archaeological data

A similar set of dendrograms using the same three sets of variables was used to assess

how the archaeological groups fitted in with the geological groups and an example

using the same 9-variable set (Al, Ti, Zr, Li, Mn, Cr, V, Cu, Zn) is shown in Figure 5-

27 below. This statistical algorithm method effectively identified four overall groups

within the sample lots, although certain sub-groups were also observed. Group (i)

included the HYPD and the HYPB samples, which fitted in with the Calcitic reds and

the Terra rossae geological sample sets; Group (ii) consisted of the Greensands; Group

(iii) primarily comprised the Ooids and all the red MA archaeological ochres; whereas

Group (iv) indicated that the yellow MA ochres, unlike all the other archaeological

samples, did not fall into any particular source group but formed a separate cluster.
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Figure 5-27. Hierarchical cluster of geological and archaeological samples based on
correlations between the selected variables. A key to the observations is given in Table 5-13.

Group Numbers Group Identities

(i) 1 – 29
67 – 76

Calcitic reds (CR) and Terra rossae (TR)
HYPDs and HYPBs

(ii) 30 - 41 Greensands (Gr)

(iii) 42 – 43
44 – 48, 55 – 60
49 – 54
61 – 63

Greensands MG 1009, 1100
Ooids (O), some MA (reds)
Ooids
Rest of the MA (reds)

(iv) 64 - 66 MA (yellows)

Table 5-14. An outline of the correlations and groups described in the dendrogram above

This hierarchical dendrogram therefore showed that the HYPD samples exhibited a

distinct similarity between the variables in the CR-TR. The HYPB samples also

exhibited similar trends to these three data sets but were a separate sub-group to these

clusters and could therefore almost be considered as outliers to the group. This

dendrogram additionally showed that while the Greensands and the MA (yellows)

showed some correlation with the other sample sets (more so with the CR-TR in Group

Group (i)
CR, TR, HYPD, HYPB

Group (ii)
Gr

Group (iv)
MA (y)

Group (iii)
O, MA (r)
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[i] than with the Ooids in Group [iv]), trends between the data points were not as

pronounced; hence they were statistically clustered as different groups. Finally, and

probably most importantly, the red archaeological ochres (MA red) presented

comparable trends in the data sets with the Ooids. This demonstrated a similarity in

composition that potentially showed that the two sample sets might be linked, and that

the Ooid group could be the likely source for these red MA samples.

To confirm these hypotheses, more matrix plots were compiled that included all major,

minor and rare earth elements of the log10 transformed data ratios of all the geological

and archaeological samples to assess these trends on a visual basis. Sample ellipses

using a sample confidence ellipse at 75% confidence levels were also drawn around

the groups to show the probability of the overlying of data and groups in two-

dimensions, using Systat 13 software. Some examples of these tests are given on the

following pages and in the Appendix III. The results of these tests are discussed in the

following chapter.

Description of archaeological data, and comparison with the geological groups

An overview of the relative amounts of the major element to be found in each of the

archaeological ochres is displayed in the histograms in Figure 5-28 with averages

(including series line connectors) shown in Figure 5-29 below. Differences were noted

between each set of samples, with more similarities being exhibited between the

HYPDs and the HYPBs than between any other group. Key differences were observed

between the elements P, Ca and Fe.
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Figures 5-28 a, b. Histograms showing the relative abundances (weight %) of the major and
some minor elements present in each sample

P2O5 levels were very high in the HYPBs and relatively (though less) high in the

HYPDs. In the latter group levels varied from 1 wt-% in HYPD 7001 to 15 wt-% in

HYPD 3001 #1. Some P2O5 was also observed in the MA (yellows), but averaged to

less than 1 wt-% in the MA (reds). Amounts of calcium were similar in the HYPDs

and the HYPBs (~39 wt-%) ; and were also considerably high in the MA yellows (24

wt-%). The calcium content of the MA reds differed somewhat between samples from

1 wt-% in MA 009 to 23% in MA 011. Fe2O3 (wt-%) also differed between samples,

and the MA (reds) were clearly more iron-rich and displayed a wider degree of

variation than any of the other archaeological samples.

MA (reds) MA (yellows)

HYPDs HYPBs
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Figure 5-29. A histogram comparing the average quantities of (weight %) of the major and
some minor elements present between sample groups: The graphs include series lines.

It was therefore possible to distinguish between archaeological sample groups through

evaluation of these histograms: while CaO and P2O5 predominated in both HYPDs and

HYPBs, analysis showed that the HYPDs contained higher quantities of iron-rich

material. The MA samples had more Fe2O3 in comparison with the other samples,

with the highest occurrence detected in the MA (reds). These MAs appeared to have

similar % ratios of these selected oxides, although the yellow samples had much larger

amounts of calcium and phosphorous oxides present.

Differences were evaluated by comparing scatter plots (Figure 5-30): here

archaeological data has been plotted with geological data for comparative purposes.

All archaeological groups formed tight clusters and/or exhibited similar element ratios,

the majority of which correlated with certain geological groups, as was observed in the

statistical tests, and will be discussed later. Element plots also confirmed differences

between these four archaeological groups. Similar trends between certain elements as

have already been observed in the geological matrix plots: these were therefore also

noted in these archaeological samples between Al and Ti/ Mg/K, Mg and Na/Ti.
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Results showed that: The Hypogeum archaeological samples correlated with the

aforementioned CR-TR groups. Relationships experienced between elements in these

geological groups were therefore reflected in these deposit samples from Hal-Saflieni,

and examples of these relationships can be observed in the matrix plots in Figure 5-33,

5-35, 5-36, and in the scatter plot in Figure 5-31a. Noted differences between these

archaeological and geological samples included slightly lower concentrations of both

the major and the minor elements in the HYPD samples, and, as was also observed

above, high levels of phosphorous, which averaged at 27374 ppm: almost 16 times

greater than the average phosphorous levels in the Terra rossae (Figure 5-30a).
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(yellows) as obvious outliers
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The ratio of Zr to the other elements also differed in relation to the CR-TR groups:

points were more scattered and had lower values in the archaeological set. Certain

HYPD samples also had higher concentrations of particular elements in comparison

with the rest of the HYPD sample group. HYPD 3001 #1, for example, had much

higher amounts of several minor elements, particularly of Ni (407 ppm in comparison

to the average of 50 ppm). HYPD 7001 had a particularly high value of Pb (Figure 5-

30b). These elevated concentrations of P and Ni were also seen in the HYPB samples,

which also exhibited high amounts of Sr and Zn. The HYPB samples were somewhat

different in composition, but more related to this CR-TR geological group than to any

other.

The MA yellows were dissimilar to the other archaeological ochres. They additionally

did not correspond well with any geological sample group, although they did exhibit

similarities with the Greensands (Figure 5-31a). Trends were observed between

several major element plots, such as Al vs. Mn, Mg vs. Ti, Mn vs. Ti. The associations

between most of the minor elements, however, were dissimilar. The MA (yellow) Cr

vs. Cu plot, for example (Figure 5-31b), was very different to the other samples, as

were the plots between Cr vs. Li, Ni vs. Cu, V vs. Zr.

Although the MA reds had the largest degree of variation between major elements of

the archaeological samples, data analysis of scatter plots not only showed that all MA

reds exhibited similar trends, though MA 002 and MA 003 appeared to correlate

together more, and MA 009–MA 011 formed a tighter cluster together. MA 002 and
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MA 003 had higher concentrations of Fe, and several other elements, as shown in

Table 5-15 below:

Element
Higher Al Fe Ti Ba Co Cr Ni Sr V Zr Pb
Lower Mg Mg Ca Na K P Mn Cu Y Zn

Table 5-15. Elements more (higher) and less (lower) abundant in MA red samples 002 and
003; and vice versa for samples MA 009 – 011

Furthermore, the element plots of these archaeological samples almost invariably

indicated a correlation with the Ooid geological group. This was exhibited in the vast

majority of the scatter plots (Figures 5-34, 5-35), apart from those graphs with the

variable Ba. This discrepancy was more distinct between this element and Cr (Figure

5-32b), Cu, Li and Sc. The variable ratios between the MA reds and the Ooids are

given in Table 5-16 below.

-4

-3.5

-3

-2.5

-2

-1.5

-1

-2.5 -2 -1.5 -1 -0.5 0 0.5

log10[(106/106-Ca)/Fe]Mg

lo
g

1
0
[(

1
0

6
/1

0
6
-C

a
)/

F
e
]M

n

Calcitic reds Terra rossae Greensands Ooids

MA (reds) MA (yellows) HYPD HYPB

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-4.5 -4 -3.5 -3 -2.5 -2 -1.5

log10[(106/106-Ca)/Fe]Ba

lo
g

1
0
[(

1
0

6
/1

0
6
-C

a
)/

F
e
]C

r

Calcitic reds Terra rossae Greensands Ooids

MA (reds) MA (yellows) HYPD HYPB

Figures 5-32a, b. (a) similarities between the MA (reds) and the Ooids, (b) shows the
discrepancy between the Ba/Cr ratio in the MA reds

Average Ba/Cr Ba/Cu Ba/Li Ba/Sc
Ooids 0.92 0.84 0.83 0.73
MA 002, 003 0.77 0.69 0.67 0.61
MA 009 – 011 0.84 0.73 0.74 0.64

Table 5-16. A comparison between the Ba/selected variable ratios for the geological Ooids
and the MA samples
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Figure 5-33. Sample ellipses around selected clusters of variables, where each colour is representative of a different geological/archaeological group.
The graphs plotted within these matrix plots are normal distribution curves of each sample data series (Program used: Systat 13)
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Terra rossae

Greensands

Ooids

MA (reds)

MA (yellows)

HYPD

HYPB
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Figure 5-34. Matrix plot (using Minitab 13) comparing geological and archaeological data for some of the minor elements: All values here and in the
ellipse plots above have been corrected using the transformation equation [log10({106/106-Ca}/Fe)*element]
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Figure 5-35. Matrix plots for the rest of the minor elements
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Rare earth elements (REE)

The REE data is also known to provide an insight into the chemical behaviour of

natural systems. Their abundance as well as their relative distribution in sedimentary

rocks has been used to help define geologic environments and processes (Nakamura,

1974; Kato, Ohta et al., 1998; Dawood, El-Naby et al., 2004; Basta, Ryan et al., 2005;

Marmolejo-Rodríguez, Prego et al., 2007). The distribution of REEs in nature

corresponds to the Oddo - Harkins rule, where a plot of concentration against atomic

number shows striking differences in abundance between neighbouring REEs. For

comparative purposes concentrations are usually normalised to a shale standard for

sedimentary and related rocks, which makes the y-scale more functional by removing

apparent differences between neighbouring REEs and emphasises any relative

fractionation of elements (Piper, 1974).

The plots of REE concentrations on a shale-normalised diagram are illustrated on the

following page (Figures 5-36): these include examples of the geological and

archaeological sample groups. Shale standard values were obtained from Piper (1974).

These REEs resulted in a smooth correlation profile, with the exception of that for Eu.

This was indicative of an obvious correlation between the geological and the

archaeological samples; and the smooth pattern of REE concentrations was an

additional assessment of analytical accuracy (Jarvis, 1989). It was, however, not

possible to observe the Eu anomaly on the MA (red) plots and on those of the Calcitic

red MG 1601 because the element (Eu) was not detected in these samples owing to

instrument limitations relating to the high amount of Fe present1.

1 Personal communication from Dr Walsh (analyst)
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Figures 5-36a-f. Concentration plots of shale-normalised REE values of the geological and the archaeological samples
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5.1.4. Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-

EDS) results

% % % % % % % % % % % %

sample Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 SiO2 SO3 Cl Cr2O3

MA 001 9.6 62 0.83 2.8 0.28 1.01 1.08 0.47 22 0.32 0.22 0.0
MA 004 0.6 0.34 0.17 31 0.16 0.34 0.00 0.00 1.3 59 0.25 6.5
MA 005 6.1 22 1.8 27 0.61 2.19 0.21 2.2 38 0.09 0.06 0.0

Table 5-17. Archaeological SEM-EDS data, conventionally displayed as an oxide in wt%

Figures 5-37a, b. SEM (BSE) images of MA 001 and MA 005
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The SEM images did not give much information about the samples, except that MA

001 and MA 004 appeared to consist of minute grains of approximately 1.25 μm,

whereas MA 005, the yellow ochre, included some fibrous-like material of varying

size and lengths reaching up to 38 μm.

All calibration check results obtained off the standard materials (and off the samples

analysed) indicated a good correlation of data with the results obtained from the more

accurate ICP-AES technique. Any discrepancies were attributable to the auto-

normalisation of all the values to 100, but these were not considered problematic as

ratios were good and the element data of the archaeological samples compared well for

the majority of the elements. Data was, however, still rounded off to 2 significant

figures and given an average error of ~20%. The correlation between ICP-AES and

SEM-EDS values is shown in the example given for Fe (ppm) below, and in Table 5-

18, which lists the R2-values and the gradient for each element.
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Figures 5-38. Correlation between SEM-EDS and ICP-AES in the measurement of Fe
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Element Al Fe Ca Mg
R2-value 0.9064 0.9557 0.8358 0.7123
Gradient y = 1.0285x y = 1.1567x y = 0.8641x y = 1.0526x
Element Na K Ti
R2-value 0.8015 0.9851 0.2197
Gradient y = 0.5195x y = 1.0236x y = 1.2688x

Table 5-18. R2 values and gradients for some of the analysed variables

The three samples analysed using this technique have been included in the matrix plot

in Figure 5-40 below. MA 001 was categorised as an MA (red), MA 005 was one of

the yellow ochres whereas MA 004 was classed separately as an MA (orange).

Although the SEM-EDS was not as sensitive a method as ICP-AES, it imparted useful

information by giving the concentrations (in oxide wt-%) of the major and of some of

the minor elements when these were present in sufficient amounts. It also identified

the presence and relative quantities of Si, S and Cl in the archaeological ochres,

elements that were not measured by ICP-AES owing to the limitations of the method.

The SEM-EDS results therefore confirmed that the results for MA 001 and MA 005

fitted well with the ICP-AES data for the archaeological reds and yellows respectively;

and therefore further corroborated the ICP-AES discussion pertaining to the material

sources by increasing the number of data points. It also showed that Si was an

important component in these materials, whereas S and Cl were only present in minor

amounts.

This technique also showed that MA 004 appeared to consist of a mixture that

predominated in Ca, S and Cr with only minor amounts of Fe (< 0.34%) present.

Although it may be that some support had inadvertently been included in the sample
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mixture as the orange pigment had to be scraped off the surface of the artefact;

conclusions regarding the actual identity of the pigment were uncertain, particularly as

chromium (III) oxide is green pigment, not an orange one. This sample undoubtedly

required a further in-depth study, but establishing its identity was beyond the objective

of this project.
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Figure 5-39. Weight % of some of the variables showing the differences in composition
between samples. Error bars at 20%
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Figure 5-40. Matrix plots comparing geological and archaeological data from ICP-AES and SEM-EDS samples
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5.1.5. X-ray fluorescence spectroscopy (XRF) data

Archaeological data

A considerably large number of readings were taken, and element variables assumed to

be of significance included Fe, Ti, Mn, Zn and Zr. Variants taken into consideration

included the type of support (limestone/clay/alabaster/shell), and the Neolithic site the

artefacts were originally obtained from. Error bars varied per element and per reading,

and average % errors are listed per element in Table 5-25. All readings copied here

were assumed to be readings off the ochre, because the artefact background readings

(XRF reading of an area on the object with no ochre on it) were subtracted from the

ochre + support values.

(ppm) (ppm) (ppm) (ppm) (ppm)

Sample Fe Ti Mn Zn Zr Source Support

HOC18R4 9300 1700 140 * 3 HYP Wall

HOC18R5 15000 1900 790 9 1 HYP Wall

HOC18R6 12000 * 960 7 11 HYP Wall

HOC18R7 15000 * * * 5 HYP Wall

HOC18R8 5800 * 130 * 1 HYP Wall

HOC18R9 9500 * * * 3 HYP Wall

HOC18R10 13000 2000 200 * 12 HYP Wall

HOC18R11 6800 1600 * 1 3 HYP Wall

HOC18R12 5500 1800 170 9 3 HYP Wall

HOC18R13 28000 * * 9 11 HYP Wall

HOC18R14 11000 1900 240 6 10 HYP Wall

HOC18R15 21000 2500 630 33 11 HYP Wall

HOC18R16 12000 1900 340 6 19 HYP Wall

HOC18R17 11000 2700 200 14 8 HYP Wall

HOC18R18 24000 * 980 17 10 HYP Wall

HOC18R19 15000 * 210 7 * HYP Wall

HOC18R22 3800 * 270 * * HYP Wall

HOC18R23 2100 * * * * HYP Wall

HOC18R24 16000 * 320 7 3 HYP Wall

HOC18R25 13000 * 270 8 6 HYP Wall

HOC18R26 11000 * 400 17 5 HYP Wall

HOC18R27 13000 * 310 10 * HYP Wall

HOC18R28 25000 2200 2200 28 21 HYP Wall

Table 5-19. Archaeological XRF data (HYP = Hal-Saflieni Hypogeum). * indicates that the
element was present in concentrations below the detection limit of the instrument
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(ppm) (ppm) (ppm) (ppm) (ppm)

Sample Fe Ti Mn Zn Zr Source Support

HOC18R29 18000 * 780 28 2 HYP Wall

HOC18R30 11000 * 210 23 11 HYP Wall

HAO18R31 * 2000 180 16 * HYP Wall

HAO18R32 2200 * * 20 * HYP Wall

HAO18R33 1100 * 260 32 * HYP Wall

HAO18R34 680 * * 36 * HYP Wall

HAO18R35 * * * 41 * HYP Wall

HAO18R36 1200 2000 * 10 * HYP Wall

HAO18R37 * * * 17 * HYP Wall

HAO18R38 * * * 17 * HYP Wall

HAO18R39 * * * 12 * HYP Wall

HILC6R41 13000 2600 440 3 63 HYP Wall

HILC6R42 20000 2200 210 2 51 HYP Wall

HILC6R43 14000 * 700 3 53 HYP Wall

HILC6R44 2800 1800 190 10 3 HYP Wall

HILC6R45 2100 1400 * 2 1 HYP Wall

HILC6R46 1600 * 110 * * HYP Wall

HULC4R47 4800 * 180 22 5 HYP Wall

HULC4R48 3600 1400 * * * HYP Wall

HULC4R49 3100 1600 * 3 8 HYP Wall

HULC4R50 5600 * * 6 * HYP Wall

HULC4R51 5100 * * * 17 HYP Wall

HDRC20R53 5900 1700 * 9 6 HYP Wall

HDRC20R54 520 1600 * * 2 HYP Wall

HDRC20R55 3300 * 1100 21 2 HYP Wall

HDRC20R56 3700 * * * 4 HYP Wall

HDRC20R57 2800 1700 * * * HYP Wall

HDRC20R58 1800 * * * 3 HYP Wall

HDRC20R61 300 * 170 * * HYP Wall

HDRC20R62 * 1500 * * * HYP Wall

HDRC20R63 2400 1800 * * 3 HYP Wall

HDRC20R64 2500 * * * 4 HYP Wall

HDRC20R65 * * * 8 * HYP Wall

HDRC20R66 5000 1500 * * 10 HYP Wall

HDRC20R71 9600 1900 140 12 19 HYP Wall

HDRC20R72 3600 * 400 * 1 HYP Wall

HDRC20R74 * 1500 * * * HYP Wall

HDRC20R75 6100 * 200 7 * HYP Wall

HDRC20R76 4500 1600 * * 6 HYP Wall

HDRC20R77 6700 1800 * * 4 HYP Wall

HDRC20R78 2100 * * 190 * HYP Wall

HDRC20R80 5200 1800 200 130 9 HYP Wall

HDRC20R81 1800 * * 220 10 HYP Wall

HDRC20R82 5800 * 460 86 * HYP Wall

HDRC20R83 8800 * * 2 7 HYP Wall

HSAC23R84 9400 1800 200 2 20 HYP Wall

Table 5-20. Archaeological XRF data (HYP=Hal Saflieni Hypogeum). * indicates that the
element was present in concentrations below the detection limit of the instrument
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(ppm) (ppm) (ppm) (ppm) (ppm)

Sample Fe Ti Mn Zn Zr Source Support

HSAC23R85 5000 2200 360 1 7 HYP Wall

HHoHC26R86 5600 * * 11 48 HYP Wall

HHoHC26R87 13800 1800 160 22 37 HYP Wall

HHoHC26R90 3100 * 170 * 9 HYP Wall

HHoHC26R91 6000 2600 300 13 10 HYP Wall

HHoHC26R92 9000 * 260 * 8 HYP Wall

HMHC26R93 4000 1600 200 * 7 HYP Wall

HMHC26R94 460 * * * * HYP Wall

HMHC26R95 7700 * 140 8 11 HYP Wall

HMHC26R96 6000 1600 240 6 1 HYP Wall

HMHC26R97 17000 2100 220 24 14 HYP Wall

HMHC26R98 19000 2200 150 * 8 HYP Wall

HMHC26R99 3100 * * * 6 HYP Wall

HMHC26R100 3600 * * 3 11 HYP Wall

HMHC26R101 6400 1400 280 * 5 HYP Wall

HWC17R106 5900 * * 2 5 HYP Wall

HWC17R107 630 * * * * HYP Wall

HWC17R108 13000 * * * * HYP Wall

HWC17R109 8300 * * * 8 HYP Wall

HWC17R110 470 * * * * HYP Wall

HWC17R111 1300 * 140 * 1 HYP Wall

HWC17R112 6200 * * * * HYP Wall

HWC17R113 6100 * * * 1 HYP Wall

HLSR19 2300 1500 * * 11 HYP Stone

HLSR20 2100 * * * 24 HYP Stone

HLSR21 3100 * * * * HYP Stone

TPFR34 1400 450 130 32 * TAR Stone

TPFR35 1800 420 110 44 * TAR Stone

TPFR36 1600 700 * 21 * TAR Stone

TPFR37 830 * 140 8 * TAR Stone

TSPR40 2100 * * 130 110 TAR Stone

TSPR41 880 * * 220 80 TAR Stone

GPR70 5400 1600 110 17 * GTA Stone

GPR71 3700 630 * * * GTA Stone

XSCTSR95 23000 * * * 1 XSC Stone

XSCTSR96 7900 * * * * XSC Stone

XSCTSR97 4600 * * * * XSC Stone

XSCTSR98 30000 830 * * * XSC Stone

XSCBR107 1700 * * * * XSC Stone

XSCBR108 3100 * * * * XSC Stone

SS1R27 14000 3100 12 31 17 SKB Clay

SS1R29 7700 900 * 27 9 SKB Clay

TCSR44 16000 2100 * 53 22 TAR Clay

TCSR46 22000 1700 * 44 17 TAR Clay

TCSR47 15000 2300 * 42 22 TAR Clay

TCSR48 13000 230 160 55 10 TAR Clay

Table 5-21. Archaeological XRF data (GTA = Ggantija temples, SKB = Skorba, TAR =
Tarxien, XSC = Xaghra Stone Circle): * indicates that the element was present in

concentrations below the detection limit of the instrument
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(ppm) (ppm) (ppm) (ppm) (ppm)

Sample Fe Ti Mn Zn Zr Source Support

HSLR2 13000 1300 46 9 25 HYP Clay

HSLR3 8600 1500 * 76 14 HYP Clay

HSLR4 6400 * * 30 27 HYP Clay

HSLR5 21000 2700 * 88 36 HYP Clay

HSLR6 17000 2300 * 78 34 HYP Clay

HSLR7 6900 530 * 54 11 HYP Clay

HPS2R67 2200 * * 82 14 HYP Clay

HPS2R68 3300 * * 82 8 HYP Clay

HPS5R80 3700 680 260 10 3 HYP Clay

HPS5R82 * * 170 40 * HYP Clay

HPS6R2 * * 390 * * HYP Clay

HPS6R4 * * 530 * * HYP Clay

HPS6R5 * * 210 * * HYP Clay

HPS6R7 * * 280 4 18 HYP Clay

GPS5R113 52000 480 40 * 3 GTA Clay

GPS5R114 46000 1000 * * 2 GTA Clay

GPS5R115 65000 1200 * * 2 GTA Clay

GPS5R116 31000 160 30 * 7 GTA Clay

GPS6R120 51000 7200 240 60 75 GTA Clay

GPS6R121 51700 6300 * 54 48 GTA Clay

GPS6R122 62000 4200 * 46 34 GTA Clay

GPS7R126 * * 43 19 * GTA Clay

GPS7R127 2600 * * 32 * GTA Clay

GPS7R128 * * * 19 * GTA Clay

XSCSPR133 23000 * * 13 * XSC Clay

XSCSPR134 10000 1400 * 43 29 XSC Clay

XSCOPR137 170000 * * * * XSC Clay

XSCOPR138 180000 * * * 8 XSC Clay

XSCOPR139 130000 * * * * XSC Clay

SVPS1R29 20000 1000 150 30 49 STA V Clay

SVPS1R30 52000 1100 210 180 25 STA V Clay

SVPS2R32 1400 350 * 3 * STA V Clay

SVPS2R33 2100 120 * 5 * STA V Clay

SVPS2R34 300 * 14 10 * STA V Clay

SVPS2R35 7000 * 20 11 * STA V Clay

?GNBR109 1600 * * * * ?GOZO Clay

?GNBR112 4600 * * 7 * ?GOZO Clay

XSCB1R142 2400 * * 34 * XSC Bone

XSCB2R145 27000 * * 15 * XSC Bone

XSCB3R148 11000 1500 * * * XSC Bone

XSCB3R147 * * * 25 * XSC Bone

HAFGR25 3600 * * 380 * HYP Alabaster

HAFGR26 1700 1800 * 140 * HYP Alabaster

HAFGR28 500 * * 40 * HYP Alabaster

XSCS1R11 6800 * * * * XSC Shell

XSCS1R12 3800 * * * * XSC Shell

Table 5-22. Archaeological XRF data (STA V = Santa Verna, ?GOZO = unknown Neolithic
site in Gozo): (* indicates that the element was present in concentrations below the detection

limit of the instrument
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(ppm) (ppm) (ppm) (ppm) (ppm)
Sample Fe Ti Mn Zn Zr Source Support

XSCS2R14 2600 * 170 * * XSC Shell

XSCS3R16 * 38 * * * XSC Shell

XSCS4R19 5300 * * 250 20 XSC Shell

XSCS4R20 6700 * * 270 * XSC Shell

XSCS5R23 2300 * * * * XSC Shell

Table 5-23 Archaeological XRF data

As has already been discussed, portable XRF was the only methodology available for

the analysis of the Neolithic ochres remaining on the surfaces of objects in situ from

which sampling was impossible for ethical reasons. As Ca was amongst the elements

beyond the detection limits of the loaned XRF, all data was merely plotted as a log10

normalised ratio to Fe, with the transformation factor being log10(element/Fe). Data

was compared on the basis of the original artefact location (excavation

site/temple/burial ground) and of the support material. Both sets of data gave equally

broad spreads, therefore results from the archaeological and geological datasets were

plotted on the matrix plots on the basis of the support material (stone vs. clay vs.

alabaster vs. shell) owing to the greater likelihood of error based on residual support

signature (Table 5-25).

Although the values obtained from the reference materials correlated very well with

the ICP-AES data (an example is given in Figure 5-41), the attempts to make this

technique as non-invasive/non-destructive as possible on site appeared to have

compromised the quality of the data. Lowest % error (Table 5-25) was also noted in

the standards.
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Element Fe Ti Mn Zn Zr
R2-value 0.983 0.8772 0.8937 0.9281 0.8217
Gradient y = 0.8773x y = 1.1776x y = 0.7722x y = 0.7875x y = 1.9944x

Table 5-24. R2 values and gradients for the analysed variables

y = 0.8773x

R2 = 0.983

0

10000

20000

30000

40000

50000

60000

0 10000 20000 30000 40000 50000 60000

ICP-AES of Fe (ppm)

X
R

F
o

f
F
e

(p
p

m
)

Figure 5-41. Correlation between XRF and ICP-AES in the measurement of Fe

% error per element
Ochre on: Fe Ti Mn Zn Zr

Stone 2 26 15 13 16
Clay 1 14 16 8 4
Other 2 30 27 8 29

In standards 1 12 12 8 2

Table 5-25. % error calculated by averaging +/- error bars and values per element per
support/group of materials

Errors affecting counts and values probably included artefact surface irregularities, the

slight 5 mm distance kept between the spectrometer and the object to avert damage,

and the relatively short acquisition times. All these factors undoubtedly contributed to

the loss of emitted and reflected X-rays, and therefore affected the results output.

Further probable inaccuracies included the assumptions taken when analysing datasets,

such as subtracting a supposed consistent composition of the support, which was

averaged from three readings, from the ochre plus support values.
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Observation of matrix plots showed a wide spread of points although some correlation

was observed. This included significant clustering of the stone-support readings

towards a smaller element/Fe ratio that appeared to correspond to the Calcitic red and

Terra rossa data points. The XRF of the ochre applied to the clay objects also

appeared to correlate well with these two geological groups. The best trend was

observed between the log10 ratios of Ti and Mn, whereas the largest scatter was

experienced in plots between Zn and Zr.
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Figure 5-42. Example of a scatter plot within the datasets: C represents the chamber from
which the readings were taken in the Hypogeum, PF are the phallic figures from Tarxien

(TPFR34, 35), and Ggantija refers to some readings taken off ochre-doused pebbles found in
Ggantija (GPR70). Support material: stone

The scatter plot above (Figure 5-42), for example, shows that variation between data

from a particular site and support materials does not show any particular disparities

and/or trends. The positive correlation between Mn and Ti is still apparent. Results,

however, were inconclusive for this particular provenancing study and discussions

have therefore been left open for further debate.
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Figure 5-43. Matrix plots comparing geological and archaeological data for ICP-AES and XRF results
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5.2. Comparative study: Amarna archaeological samples

5.2.1. Polarising light microscopy (PLM)

All the images reproduced below were chosen as representative photographs of the

relevant Amarna archaeological samples, taken at a magnification of x400 under PPL,

unless stated otherwise.

Figures 5-44a, b. Examples of red ochres: BLN 009 and AMN 005

Figures 5-45a, b. Yellow ochres: BLN 004, AMN 012

Figures 5-46a, b. Examples of the jarosites/natrojarosites: AMN 003, AMN 011
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Figures 5-47a, b. BLN 005 under PPL and XPL, Mag x100

Observation of BLN 005 under the PLM showed that this sample was not an ochre.

Characteristics observed included platy/micaceous-looking crystals, a bright-yellow

colour, high relief and strong birefringence. These all indicated that the pigment was

most likely to be a sample of orpiment (arsenic sulphide) of excellent quality [highly

crystalline] (Eastaugh, Walsh et al., 2004: 127).

Visual and PLM observations used for distinguishing between the ochres, and enabled

the division of samples into their constituent groups. Three main groups of pigments

were identified and are outlined in Table 5-26 below.

Group Pigment. Sample numbers Total

1 Red ochres BLN 006 – 009, AMN 005 – 006, AMN 008 and
AMN 013 – 014

9

2 Yellow ochres BLN 004, AMN 002, AMN 007, AMN 009 and
AMN 012

5

3 Jarosites / natrojarosites BLN 001 – 003, AMN 003 and AMN 011 5

Table 5-26. The groups of pigments as identified under the light microscope

The observations showed a similarity between the red and the yellow ochre samples:

Both sets consisted of pure, fine, pigment particles, typically clustered together or onto

some accessory material (Figures 5-44, 5-45). Calcite and quartz were also present in
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the majority of the samples (refer back to Table 5-1 for a full list of discriminating

optical properties). A foraminifera was also observed in BLN 004 (Figure 5-48

below). The major differences between the yellow and red ochres, was obviously the

colour, and the abundance of iron hydroxide/oxide minerals in the ochres: the iron

oxide (red) pigments appeared to be purer than the iron hydroxide-dominant pigments.

These yellow ochres appeared to contain more accessory minerals, as well as traces of

other pigments; including some red ochre (e.g. BLN 004 and AMN 002: Figure 5-45a)

and minor traces another mineral, identified as jarosite/natrojarosite (AMN 007,

description below).

The final group of pigments was clearly distinguishable from the ochres when

observed under the optical microscope. The particles had approximately hexagonal to

subhedral habits, and appeared as fine, discrete, transparent, pale-yellow to light green

grains. Birefringence was moderate to high, but interference colours were of the first

order and ranged mostly from white to grey (Figure 5-48b). These pigments were

therefore identified as jarosites/natrojarosites: the two cannot be distinguished under a

microscope (Eastaugh, Walsh et al., 2004: 151). Although they could arguably be

unrelated to this study as they are clearly not ochres, their chemistry shows that they

are iron-rich complexes, albeit also rich in sulphur and potassium/sodium. Previous

studies additionally indicate that the ancient Egyptians often used these pigments as

replacements for yellow ochre (Davies, 2001: 2). These iron-rich complexes were

therefore analysed further, purely for comparative purposes.
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Figures 5-48 a, b. The foraminifera in BLN 004, and the jarosite/natrojarosite particles under
crossed polars. Mag. X1000 (oil immersion) for (a), X400 for (b)

5.2.2. Scanning electron microscopy-energy dispersive X-ray spectroscopy
SEM-EDS results

All SEM images showed surface irregularities. Particles were more distinct in the

jarosites/natrojarosites, and measured approximately 1.2 μm. The red and yellow

ochres formed tight agglomerates of particles, with grains of approximately 1.3 μm.

Examples of a sample from the BLN Group 1 samples and the AMN Group 2 samples

for the red and yellow ochres, and for the jarosites/natrojarosites are given below.

Magnification of the images here is the magnification used for EDS measurements.
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Figure 5-49a, b. SEM backscattered electron (BSE) images of examples of red ochres BLN
007 and AMN 005

Figures 5-50a, b. BSE images of examples of yellow ochres BLN 004 and AMN 002

Figures 5-51a, b. BSE images of the jarosites/natrojarosites BLN 001 and AMN 003
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EDS data

% % % % % % % % % % % %
sample Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO SiO2 SO3 Cl

BLN 001 (a) 12 38 0.2 * 3.7 0.7 0.54 0.22 * 12 32 0.15
BLN 001 (b) 9.6 46 0.1 * 3.5 0.7 0.35 0.1 * 7.8 32 0.12
BLN 001 (c) 11 45 0.2 * 4.1 0.7 0.32 0.18 * 8.7 30.2 0.06
BLN 002 (a) 17 29 0.4 * 6.5 0.9 0.12 0.53 * 8.8 36 1.80
BLN 002 (b) 16 26 1.0 * 7.6 1.0 0.4 1.2 * 9.4 33 4.30
BLN 002 (c) 17 30 0.2 * 7.9 1.0 0.44 0.25 * 5.8 32 5.30
BLN 003 (a) 16 35 0.2 * 4.1 1.2 0.12 0.25 * 5.1 38 0.16
BLN 003 (b) 16 35 0.2 * 4.3 1.5 0.13 0.29 * 3.7 39 0.19
BLN 003 (c) 15 38 0.2 * 3.9 1.3 0.3 0.26 * 4.1 37 0.17
BLN 004 (a) 23 29 0.2 0.3 0.1 0.3 2.06 0.24 * 45 0.06 0.08
BLN 004 (b) 26 22 0.3 0.5 0.1 0.2 1.7 0.16 * 48 0.43 0.08
BLN 004 (c) 21 20 0.2 0.5 0.1 0.4 2.5 0.18 * 55 0.23 0.11
BLN 006 (a) 6.1 78 0.8 0.1 0.5 0.5 0.32 0.14 0.53 13 0.46 0.41
BLN 006 (b) 9.2 69 1.0 0.1 0.5 0.5 0.35 0.21 0.51 18 0.55 0.51
BLN 006 (c) 5.2 78 0.7 0.2 0.4 0.6 0.57 0.27 0.96 12 0.71 0.52
BLN 007 (a) 22 25 0.3 0.6 0.2 0.5 4.8 0.5 0.11 45 0.32 0.14
BLN 007 (b) 25 21 0.3 0.6 0.2 0.5 2.09 0.22 0.03 50 0.26 0.15
BLN 007 (c) 23 24 0.3 0.7 0.2 0.9 2.3 0.2 0.13 49 0.23 0.18
BLN 008 (a) 3.5 85 0.6 * 0.3 0.2 0.19 0.31 1.1 7.6 0.94 0.38
BLN 008 (b) 3.8 83 0.7 * 0.4 0.3 0.36 0.29 1.02 9.06 0.94 0.41
BLN 008 (c) 4.9 79 0.8 * 0.4 0.3 0.39 0.33 1.08 11 1.04 0.48
BLN 009 (a) 3.4 31 0.7 23 0.5 0.3 0.16 0.29 0.31 7.8 32 0.30
BLN 009 (b) 4.6 31 1.0 21 0.7 0.4 0.18 0.16 0.31 10.2 31 0.42
BLN 009 (c) 4.3 45 0.9 16 0.5 0.4 0.19 0.39 0.4 10.5 21 0.38

Table 5-27. BLN SEM-EDS data, all quoted to 2 significant figures (error bars at 20%) -* indicates that the element was present in concentrations
below the detection limit of the instrument



211

% % % % % % % % % % % %
sample Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO SiO2 SO3 Cl

AMN 002 (a) 23 33 0.26 0.45 2.6 0.27 1.03 0.12 0.11 35 0.55 4.0
AMN 002 (b) 14 42 0.12 0.44 8.06 0.22 0.95 0.12 0.27 22 0.71 11
AMN 002 (c) 18 24 0.1 0.39 9.6 0.22 0.78 0.15 0.23 27 0.73 18
AMN 003 (a) 12 50 0.09 0.27 4.2 0.69 * 0.2 0.07 1.1 32 *
AMN 003 (b) 11 49 0.11 0.36 3.4 0.84 * 0.28 0.20 1.1 33 0.1
AMN 003 (c) 14 40 0.15 0.28 4.9 0.71 * 0.3 0.06 2.4 37 0.07
AMN 005 (a) 15 45 0.28 0.58 0.76 0.3 1.2 0.11 0.20 36 0.38 0.12
AMN 005 (b) 11 34 0.28 2.4 0.49 0.45 0.93 0.03 0.22 49 1.2 0.13
AMN 005 (c) 13 29 0.24 0.58 0.56 0.35 1.2 * 0.21 55 0.58 0.07
AMN 006 (a) 26 8.8 0.41 1.4 0.14 0.92 * 0.09 0.03 60 0.87 0.58
AMN 006 (b) 27 9.9 0.43 1.7 0.24 1.08 * 0.12 0.11 58 0.82 0.71
AMN 006 (c) 19 14 0.40 1.03 0.13 1.04 * 0.04 * 63 1.1 0.49
AMN 007 (a) 1.3 93 0.35 0.47 0.26 0.24 * 0.24 0.37 3.3 0.4 0.44
AMN 007 (b) 1.3 92 0.4 0.40 0.32 0.23 * 0.24 0.47 3.4 0.5 0.44
AMN 007 (c) 3.7 84 0.73 0.12 0.24 0.79 * 0.06 0.38 9.1 0.27 0.4
AMN 008 (a) 6.2 88 0.35 0.11 0.66 0.39 * 0.27 0.30 1.2 2.09 0.14
AMN 008 (b) 6.3 87 0.25 0.13 0.68 0.58 * 0.16 0.49 1.7 2.9 0.09
AMN 008 (c) 4.9 87 0.17 0.07 0.64 0.64 * 0.2 0.45 2.2 3.4 0.11
AMN 009 (a) 1.8 60 2.6 14 5.3 0.87 * 5.5 0.33 5.09 1.06 4
AMN 009 (b) 1.6 84 0.79 4.5 1.2 0.3 * 0.58 0.41 4.4 0.69 1.05
AMN 009 (c) 5.6 66 0.86 2.9 1.3 2.0 * 0.43 0.28 19 0.66 0.58
AMN 014 (a) 27 17 0.43 1.2 0.31 0.65 * 0.05 3.5 48 0.08 1.3
AMN 014 (b) 22 10 0.31 0.85 0.43 0.71 * 0.07 1.5 63 0.17 1.2
AMN 014 (c) 22 32 0.58 1.01 0.47 0.60 * 0.17 2.3 40 0.19 1.02

Table 5-28. AMN SEM-EDS data (error bars at 20%)
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As mentioned earlier, most sample quantities were insufficient for ICP-AES analysis,

consequently the majority of the pigments were analysed via SEM-EDS. Although

this limited the amount of information obtained per sample, it nevertheless gave useful

data that allowed for analogies between samples. The results were also compared to

the Maltese prehistoric MA red and MA yellow ochres, and will be described towards

the end of this section.

Initial data examination included calculating the mean and the standard deviation for

each set of points taken from each sample (total of three [a-c] per sample) during

SEM-EDS analysis. The standard deviation, a statistical measure of dispersion within

a normal distribution (Rees, 2001: 89), differed per element; with observed variability

usually being proportional to the percentage quantity of the element present, albeit

with some exceptions. Iron oxide (wt-%) was the most variable oxide in question,

followed by silicon and aluminium oxide respectively. Furthermore, although the

concentration of sulphur clearly differed per sample (the reason for its presence in the

selected samples will be explained later), each set of values was similar per

observation; consequently the standard deviation was low even when the quantities of

this variable were high (Table 5-29). Another important observation was made when

comparing the average standard deviations of the BLN samples, and the AMN set

(Table 5-31): the latter consistently gave a slightly higher divergence from the mean,

possibly indicating that these samples were somewhat less pure. This was,

nevertheless, an expected statistical result owing to the fact that while the BLN

samples were extracted from lumps of ochre, the majority of the AMN pigments were

obtained in smaller quantities in powdered form, indicating probable sample handling

prior to this study.
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Figure 5-52. A histogram showing the relative abundances (weight %) of the major elements
present in relation to one another. Error bars at 20%

Although the ochres had similar major constituents, the ratios of these oxides varied

between observations. Samples BLN 006, BLN 008, AMN 008 (red ochres) and AMN

007 (yellow ochre), for example, had a high relative proportion of Fe2O3 that ranged

between 75 – 90% and was indicative of ochres with little accessory minerals and

therefore colorant-rich. The high concentration of sodium also indicated that the non-

ochre yellows were actually natrojarosites rather than jarosites. These had a markedly

more consistent composition than the ochres, as shown in the histogram in Figure 5-52

above.

The sample grouping of ochres and jarosites/natrojarosites established through optical

observations was therefore confirmed by means of both SEM-EDS and ICP-AES

analysis: the abundance of S and Na were the major elements present that dictated the

prevalence of natrojarosite.

Red ochres Yellow ochres Natrojarosites
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Sample Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO SiO2 SO3 Cl

BLN 001 10.93 42.99 0.14 0.00 3.77 0.72 0.40 0.17 0.00 9.45 31.33 0.11
Sd 1.56 4.42 0.05 0.00 0.33 0.06 0.13 0.05 0.00 1.84 0.92 0.08

BLN 002 16.75 28.06 0.49 0.00 7.31 0.97 0.32 0.66 0.00 8.02 33.63 3.79
Sd 0.25 2.47 0.44 0.00 0.75 0.10 0.18 0.37 0.00 1.74 1.82 3.00

BLN 003 15.65 35.73 0.16 0.00 4.10 1.29 0.18 0.27 0.00 4.32 38.13 0.17
Sd 0.72 2.00 0.01 0.00 0.29 0.23 0.11 0.02 0.00 0.62 0.92 0.03

BLN 004 23.37 23.47 0.23 0.43 0.10 0.28 2.09 0.19 0.00 49.52 0.24 0.09
Sd 2.30 5.28 0.02 0.12 0.05 0.13 0.46 0.03 0.00 4.97 0.14 0.03

BLN 006 6.82 74.83 0.81 0.13 0.49 0.52 0.41 0.21 0.66 14.07 0.57 0.48
Sd 1.79 4.26 0.15 0.09 0.07 0.08 0.12 0.05 0.29 2.50 0.08 0.10

BLN 007 23.16 23.09 0.29 0.62 0.20 0.61 3.03 0.31 0.09 48.19 0.27 0.15
Sd 1.58 2.59 0.02 0.08 0.02 0.31 1.62 0.13 0.08 2.76 0.03 0.04

BLN 008 4.09 82.17 0.68 0.00 0.36 0.25 0.31 0.31 1.08 9.35 0.97 0.42
Sd 0.59 2.42 0.06 0.00 0.04 0.10 0.10 0.02 0.06 1.41 0.04 0.09

BLN 009 4.09 35.49 0.88 19.77 0.54 0.36 0.18 0.28 0.34 9.49 28.22 0.37
Sd 0.52 8.73 0.15 5.12 0.13 0.04 0.02 0.08 0.06 1.07 4.43 0.10

AMN 002 18.55 33.03 0.17 0.43 6.59 0.24 0.93 0.13 0.20 28.11 0.66 10.98
Sd 4.89 9.49 0.10 0.06 3.92 0.06 0.17 0.01 0.09 6.15 0.04 10.47

AMN 003 12.01 46.34 0.11 0.30 4.16 0.75 0.00 0.26 0.11 1.54 34.36 0.06
Sd 1.61 5.56 0.04 0.06 1.04 0.11 0.00 0.04 0.11 0.65 2.46 0.09

AMN 005 12.99 35.67 0.27 1.18 0.60 0.37 1.10 0.04 0.21 46.76 0.71 0.11
Sd 1.46 8.31 0.02 1.30 0.16 0.13 0.16 0.04 0.02 8.98 0.29 0.05

AMN 006 24.04 10.94 0.41 1.01 0.17 0.59 1.37 0.08 0.05 60.39 0.00 0.93
Sd 4.82 3.77 0.02 0.11 0.08 0.18 0.38 0.04 0.09 1.96 0.00 0.26

AMN 007 2.11 89.66 0.50 0.33 0.27 0.42 0.00 0.18 0.41 5.31 0.38 0.43
Sd 1.08 3.65 0.19 0.19 0.04 0.40 0.00 0.06 0.06 2.35 0.05 0.02

AMN 008 5.77 87.46 0.25 0.10 0.66 0.54 0.00 0.21 0.41 1.70 2.78 0.12
Sd 0.60 0.58 0.08 0.04 0.02 0.17 0.00 0.04 0.12 0.37 0.38 0.04

AMN 009 3.03 70.08 1.40 7.00 2.64 1.07 0.00 2.16 0.34 9.60 0.80 1.88
Sd 1.91 11.39 0.92 6.27 2.63 1.11 0.00 1.89 0.06 5.99 0.14 2.81

AMN 014 23.68 19.56 0.44 1.01 0.40 0.66 2.40 0.10 0.00 50.46 0.15 1.15
Sd 3.26 13.09 0.13 0.20 0.11 0.13 1.37 0.05 0.00 12.33 0.04 0.28

Table 5-29. Averages and standard deviation (Sd) per sample (values determined via SEM-EDS analysis)
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Al2O3 Fe2O3 CaO Na2O SiO2 SO3

Sample Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO SiO2 SO3 Cl

BLN 2.4 6.6 0.25 1.3 0.65 0.38 0.33 0.39 0.07 4.64 0.17 0.86
AMN 1.9 7.0 0.29 1.5 0.74 0.41 0.33 0.45 0.06 5.09 0.20 0.96

Table 5-30. Average standard deviation per set of samples (BLN and AMN)

Sets Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO SiO2 SO3 Cl

BLN 14 51 0.50 0.3 0.29 0.42 1.4 0.25 0.46 30.2 0.51 0.29
AMN 12 52 0.54 1.8 0.79 0.61 0.81 0.46 0.23 29 0.8 0.77
Colour Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO SiO2 SO3 Cl
RO 14 48 0.45 0.58 0.41 0.51 1.2 0.18 0.36 33 0.78 0.5
YO 9.5 61 0.71 2.6 1.0 0.59 0.7 0.85 0.25 21 0.47 0.8

Table 5-31. Average % of variable per set (BLN and AMN) and per colour (RO = red ochre, YO = yellow ochre)
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Figure 5-53. Histograms showing
the average quantities (%) of the
major and some minor elements
present in relation to one another.
The graphs include series lines and
error bars (20%)
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Figure 5-54. Matrix plots of some of SEM-EDS results (values have been log10 normalised, and data excludes BLN 009 and AMN 002)
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The main accessory mineral in all these Amarna samples was quartz. CaO was only

present in minor amounts, although BLN 009 and AMN 009 indicated a prevalence of

the element in the pigment. The red ochre sample BLN 009 gave particularly

inconsistent results that included high quantities of both CaO (20 wt-%) and SO3 (28

wt-%). Concentrations of these components within the sample were rather high and

could have been indicative of the presence of gypsum in the material. This was

construed particularly as there was no Na2O to offset the SO3, therefore indicating that

the sulphur present was not due to the occurrence of natrojarosite. Another exception

was observed in sample AMN 002, which showed an inconsistency in the chlorine

content with values ranging between 18 wt-% and 4 wt-% (Table 5-28). The higher

amount of sodium present suggested that these elements indicated the presence of

common salt, sodium chloride (NaCl). Because all the oxide % values were

normalised, the presence of these elements was found to have a statistically significant

effect on the values of the other elements present in the material (P >0.05), therefore

necessitating their removal from the sample set.

Both the differences between the averages of the elements present in the two main

sample sets, as well as the differences between the averages of the red and the yellow

ochres were assessed. The data taken into consideration excluded the natrojarosites

and the discordant outliers BLN 009 and AMN 002 mentioned earlier. The results are

shown in Table 5-30 and an outline of the comparisons are shown in the histograms

(Figures 5-53) above.
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It appears that there was no major difference between the BLN and the AMN sample

sets, apart from there being a slightly higher percentage of CaO and SO3 in the latter

set that may have been indicative of sample handling prior to this investigation. The

discrepancy, however, could arguably also be attributed to a difference in source. A

greater difference was observed on comparing the red to the yellow ochres, with the

latter yellow ochres appearing to have more Fe2O3 and less SiO2. These observations,

however, were difficult to ascertain and statistical tests at a 95% level of confidence

showed that these differences in variable values were unlikely to have been of

significance. It is probable that these statistical results were affected by the small

sample size for yellow ochres (total of three samples), and by the exceptionally pure

yellow ochre AMN 007. SEM-EDS studies therefore indicated that the major

elements did not offer enough information to distinguish between the red and the

yellow ochres, and that if their source was different, this factor could not be identified

by this analytical method alone.

5.2.3. Inductively coupled plasma – atomic emission spectroscopy (ICP-AES) data

% % % % % % % % % (ppm)

sample Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Ba
AMN 011 14 29 0.11 0.83 6.0 0.71 0.04 0.06 0.007 29
AMN 012 14 18 0.14 0.23 1.03 0.17 0.93 0.13 0.02 89
AMN 013 14 26 0.23 0.39 0.75 0.23 1.04 0.10 0.11 210

(ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

sample Co Cr Cu Li Ni Sr V Y Zn
AMN 011 1 72 10 0 0 9 680 70 0
AMN 012 14 77 29 8 61 14 95 132 9
AMN 013 26 66 108 4 99 14 96 173 28

(ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

sample Zr La Ce Nd Sm Eu Dy Yb Pb
AMN 011 15 5 3 4 * * 1.1 1.5 10
AMN 012 130 34 48 33 2.0 1.9 1.0 2.3 15
AMN 013 120 11 290 15 * * 5.4 4.0 37

Tables 5-32a –c. ICP-AES data of AMN 011 – AMN 013
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The ICP-AES results from the three samples analysed, namely AMN 011, AMN 012

and AMN 013, compared well with the SEM-EDS results and included a natrojarosite,

a yellow ochre and a red ochre respectively, therefore providing an example of each

sample group. Matrix plots of the results that included the MA yellow and red

archaeological samples from the Maltese islands were used to compare data from these

two completely different sites, and an example of a matrix plot for the REEs is given

below.

On analysis of these REE plots, the results suggested that the Egypt red ochres could

be outliers, while the yellow ochres possibly fitted into the MA (red) group.

Comparison of some element concentrations corroborated the observations for the red

ochres, but also showed that Egypt’s yellow ochres were potentially different from the

MA samples. The natrojarosites were recurrent outliers, as was expected.

Nevertheless, although there appears to be a difference between the Maltese and

Egyptian pigments, this observation is difficult to ascertain as the analysed ICP-AES

sample set for Egypt was small owing to the limited sample quantities, therefore any

dissimilarities could be coincidental.
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Figure 5-55. Matrix plot of REEs for samples of red and yellow ochre from Egypt (RO and YO), and the MA (red and yellow) samples. Eu and Sm
were not included in the plots as some of the data was missing
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Data analysis for differentiation/provenancing purposes

All SEM-EDS and ICP-AES data values were transformed using the mathematical

adjustment described in the previous chapter (also refer to Erlandson, Robertson et al.,

1999; Glascock and Neff, 2003; Popelka-Filcoff, 2006; Popelka-Filcoff, Robertson et

al., 2007; MacDonald, Hancock et al., 2008; Popelka-Filcoff, Miksa et al., 2008).

Oxide values were therefore converted to their element ppm and further transformed

using the following equation: ({106/106-Ca}/Fe)*element. The log-transform

normalisation was then applied to the result. Although it is arguable as to whether it

was necessary to remove the Ca from the total as it was clear that the major accessory

material in these samples was Si-based, the ‘extraction’ was deemed necessary mainly

for two purposes: (i) For comparison with the ICP-AES as detection of Si with the

ICP-AES was not possible. (ii) For eventual comparison with the MA samples, which

were clearly Ca-rich

The subtraction was not expected to affect the results other than allowing for more

efficient observation of the relevant data, i.e. data pertaining to the iron oxides/iron

hydroxides themselves (described previously). It was therefore merely performed as a

systematic procedure in this study. The correlation between all the elements before

and after this statistical analysis of data to show the relationship between the variables

in a principal component space is shown in the loading plots below.

Results indicate that, apart from the Mn and Cl, most elements show a positive

correlation, indicating that the Fe was having the same dilution effect observed in the

Maltese samples as described previously.
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Figures 5-56a, b. PC (Minitab 15) loading plots of ochre components (natrojarosite and
discordant outliers have been removed from the dataset for these plots) (a) before and (b) after

the mathematical adjustment

Figure a.

Figure b.
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Hierarchical cluster analysis of variables and observations

In the previous chapter, various tests (Pearson’s tests and matrix plots) were used to

assess which elements co-varied with Fe and which were subsequently likely to serve

as discriminating variables between groups. In this sub-study, however, the number of

elements detected was limited owing to the lower sensitivity of the SEM-EDS.

Breakdown of data following transformation and normalisation indicated that the only

variables available for comparison included Al, Mg, Na, K, Ti, Mn and P; and that Ti,

Mn and P were present in quantities below the detection limit in certain samples. As a

result, on constructing the hierarchical cluster using the single linkage algorithm

method to compare the variables, P was omitted from the cluster because of problems

experienced when working with too many missing variables. Here the number of

missing values could not exceed the number of elements for hierarchical clusters of

variables: It was assumed (from the previous study) that Ti and Mn were the more

likely elements to substitute for and therefore be dependant on Fe, rather than P.

Figure 5-57. Dendrogram showing the hierarchical clustering between the selected variables
off the ancient Egyptian ochres



224

The dendrogram showed that the elements most likely to co-vary with Fe in these

ancient Egyptian ochres were Al, Ti, K and Mg.

Similar hierarchical dendrograms were used to compare the samples (or observations)

based on this Euclidian distance clustering methodology. Hierarchical clusters of

observations, however, require an entire set of data for each variable; consequently the

number of elements compared here was limited even further. The first dendrogram

was used to assess the relationship between the red and yellow ancient Egyptian ochres

based on the association between the variables Al, Mg, Na, K, Mn. Here, observations

1-8 are representative of the red ochres, while 9-12 correspond to the yellow ochres

(refer to key below). Results from this dendrogram showed that there did not appear to

be any clear distinction between the yellow and red ancient Egyptian ochres.

Figure 5-58. A hierarchical cluster to show the similarity between the red and yellow
Egyptian ochres: a key to the numbers (observations) is given in Table 5-33
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Group Numbers Observations (sample numbers)

Egypt: red ochres 1 – 3
4 – 6
7 – 8

BLN 006 – 008
AMN 005 – 006, AMN 008
AMN 014 – 013

Egypt: yellow ochres 9
10 – 12

BLN 004
AMN 007, AMN 009, AMN 012

Malta: red ochres 13 – 14
15 – 17

MA 002 – MA 003
MA 009 – MA 011

Malta: yellow ochres 18 – 20 MA 006 – MA 008

Table 5-33. Key to numbers and their corresponding observations for Figure 5-58, 5-59

There did, however, appear to be a discrepancy between the variables in AMN 009 and

the variables in the other samples as this yellow ochre appeared to correlate to a much

lesser extent. This was a feature also observed earlier when comparing the major

elements present (histogram in Figure 5-52), where the presence of a high amount of

CaO (%) was noted. This discrepancy could be indicative of a variation in source, or

of some degree of sample handling prior to this study.

Figure 5-59. A hierarchical cluster showing the groups Egyptian ochres vs. Maltese ochres.
A key to the numbers (observations) is given in Table 5-33.

Group (i)
Egyptian ochres Group (ii)

MA (reds)

Group (iii)
MA (yellows)
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A second cluster (Figure 5-59) was used to compare the Egypt and the MA samples. It

includes the majority of the MA samples, with the exception of MA 001 and MA 005

which were omitted because (a) they would have contributed to the exclusion of

another potentially key variable, Mn and (b) despite the omission of these two samples

there were still enough remaining (representative) observations of the red

archaeological MAs.

The cluster analysis did pick out three groups, in addition to the AMN 009 outlier.

The observed groups included: the ochres from ancient Egypt (Group i), the red ochres

(Group ii) and the yellow ochres (Group iii) from the Maltese islands. The

hierarchical cluster within Figure 5-59 featuring the Egyptian ochres was identical to

the dendrogram in Figure 5-58, as was expected. The whole correlation dendrogram

nevertheless indicated that the MA reds from the Maltese islands approached the

composition of the ancient Egyptian ochres much more than the MA (yellows), which

in turn formed quite a discrete cluster.

The relationship between these variables can be observed, to some extent, in the matrix

plot below (Figure 5-60), which features all common variables between the SEM-EDS

and ICP-AES results. This plot illustrates the characteristics recognized in the

hierarchical cluster by showing: (a) that the Neolithic yellow ochres from Malta do

form quite a distinct cluster, and that the MA reds show similar trends, as was

described in the previous chapter, and (b) that there is a wider spread in the ancient

Egyptian ochres, although identical correlations with the MA samples are observed

between certain elements; such as Al and Ti, but that the element ratio is relatively

different between the ochres from the two countries.
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Figure 5-60. Matrix plot showing joint results for the Egyptian and the Neolithic Maltese ochres
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Chapter 6.

Discussion



229

6.1. Characterisation of ochres for provenancing purposes

As it was necessary to establish which instrumental techniques would be most useful

to analyse the samples in this characterisation and provenancing study, a comparison

of techniques was carried out and the overall discussion has been described elsewhere

(Chapter 4). The PLM and XRD were, however, selected and used for the analysis of

the geological and/or the archaeological Maltese and Amarna samples, and the results

obtained will be critically appraised in this section. Both techniques indicated the

potential of distinguishing between geological sources, and the PLM study also

brought to light differences between all the archaeological sample groups.

PLM revealed a number of aspects that could not be determined by any other

technique implemented in this study. This is because it facilitated the user’s capacity

to observe and study the sample constituents, their respective colours and optical

properties at close proximity. A summary of the PLM findings include the following:

i. The ochres present were similar to published studies in terms of their optical

properties (Eastaugh, Walsh et al. 2004: 146);

ii. All the geological and archaeological ochres contained iron oxides and/or

hydroxides and accessory minerals (characteristic of ochres, refer to Chapter

1);

iii. There were similarities between all the Maltese geological samples, such as the

abundance of calcite, hematite and goethite;

iv. Differences were observed between all the geological samples. These included

a higher amount of organic material in the Terra rossae, which nevertheless
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compared well to the Calcitic reds; the presence of glauconite in the

Greensands, and the larger quantities of gypsum and quartz in the Ooids;

v. There were various interesting aspects to the Maltese archaeological samples,

including: the good ochre quality exhibited by the red MAs (fewer accessory

materials/ochre impurities) in comparison to the poorer quality HYPDs; the

unusual fibres present in the MA (yellows), and the bone in the HYPBs,

HYPDs and yellow MA samples;

vi. There were discriminating factors between the Amarna samples: it was possible

to tell which samples were mainly jarosites/natrojarosites. This method also

showed whether samples contained traces of other pigments and was found to

have a higher specificity at qualitatively distinguishing between red and yellow

ochres than the elemental techniques. It was also a much simpler technique to

implement.

Since a larger quantity of sample was required for XRD analysis than for PLM and

SEM-EDS studies, and the ability to identify the poorly crystalline iron oxides was

unsuitable (minimum detection limit of about 15-20%), only the Maltese geological

samples were analysed using this method. The identities of the major phases present

were readily determined, and were found to be predominantly calcite and quartz.

Certain results, however, were difficult to interpret owing to (i) the peak shifts

observed in the Ooid samples and (ii) the broadened diffraction profiles exhibited by

the natural iron oxides, a characteristic experienced even when these were present in

relatively high quantities (15-20%).
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Results obtained during the pilot studies and previous publications have shown that

iron oxides and hydroxides actually exhibit poor crystallinity as a result of their small

size, non-stoichiometry and the presence of H2O and/or OH- ions introduced into the

crystal lattice in a disordered way. This results in line broadening of the corresponding

XRD reflections (Schwertmann, Cambier et al. 1985). These natural iron

oxides/hydroxides also have the tendency to exhibit isomorphous substitution of Fe3+

by other cations, as described in Chapter 1. These substitutions may be quite high,

resulting in obvious deviations from the theoretical composition and therefore affect

the resultant diffraction pattern. The substitutions and the poor diffraction experienced

could therefore account for the irregularities in peak positions, and for the low

quantities of iron-containing minerals detected in the diffraction spectra of all the

geological groups.

This method therefore showed:

i. The high quantity of calcite in the Calctic reds and the Greensands, whose

constituent peaks masked all other peaks;

ii. The presence of both calcite and quartz in the Terra rossae, with calcite being

the more abundant accessory mineral;

iii. The abundance of calcite, gypsum and quartz, in the Ooid group;

iv. The presence of goethite and hematite in the Terra rossae and the Ooids, with

goethite appearing to have better crystallinity as the peaks were more defined.
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6.2. Provenancing: Elemental analysis

Elemental analysis corroborated the results obtained through PLM and XRD

investigations. ICP-AES, in particular, was used in the Malta provenancing study to

enable the characterisation and quantification of the elemental components, and by

extrapolation, the use of relationships between ‘signature’ elements to try and establish

the source of these materials. Characterisation and provenancing will therefore be

discussed simultaneously below.

6.2.1. Comparative study

The methods implemented in this study were used in a comparative study between

ancient ochres from Amarna. The aims were to establish (a) how well the method

employed in this study could distinguish between ochres, (b) to ascertain that the

method does work, and (c) to show that archaeological ochres obtained from different

locations are not identical. Though the results have been described elsewhere (refer to

P.204), the data showed that the implemented methods (PLM, elemental analysis and

statistics) allowed for the discrimination between the yellow ochres, and what was

identified, by means of light microscopy and elemental analysis, as jarosite/

natrojarosite, K/NaFe3(SO4)2(OH)6.

Since most Amarna sample quantities were insufficient for ICP-AES analysis, ochre

elemental data for statistical testing using the variables established as key for ochre

discrimination (Chapter 5) was limited to a total of four elements (Al, Mg, Na and K).

The results using these variables showed that the Amarna ochres were significantly

different from the Maltese ochres, but that the red and yellow Egyptian ochres,
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although visibly different, could not be differentiated statistically via ICP-AES

analysis (P <0.05), implying that a larger dataset of variables was required to

successfully distinguish between these ochres. Although the method worked,

therefore, the limitations experienced were a result of the use of the SEM-EDS and not

through a flaw in the method. Scatter plots indicated a wider spread of data points in

comparison with the Maltese archaeological ochres, which probably indicated that the

source of these ochres was not as chemically distinct as those from the Maltese islands,

and could also explain why the hierarchical analysis could not find auxiliary trends in

the Amarna dataset.

6.2.2. The Maltese islands

The concept of provenancing materials by satisfying the ‘provenance postulate’ has

been described in section 1.5. In summary, if an archaeological material is to be linked

to a particular geological source, the inter-source variation between the potential

sources must be greater than the intra-source variation within a given source (Glascock

and Neff, 2003).

Though differentiation between ochres has been conducted using a number of

approaches (which justifies the necessity of establishing an analytical methodology),

perhaps the most commonly exploited method of characterising sources, establishing

the association between them and analysing the correlation between these sources and

the archaeological materials, is through elemental analysis (Erlandson, Robertson et

al., 1999; Glascock and Neff, 2003; Popelka-Filcoff, 2006; Popelka-Filcoff, Robertson

et al., 2007; MacDonald, Hancock et al., 2008; Popelka-Filcoff, Miksa et al. 2008).
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Minor (or trace) elemental distribution, for example, is often used in the interpretation

of the history of formation and diagenesis of both igneous rocks and geological

sediments, mainly because different elements have varied affinities for certain specific

environments (Basta, Ryan et al., 2005).

In provenance studies, the abundances and relative distribution of the minor and rare

earth elements are also used to define the parent material. This, however, is limited by

the premise that post-depositional processes, such as weathering, re-suspension, re-

deposition and material extraction for human use, do not significantly alter the

elemental composition; hence, any correlation between the geology and the material

prior to and post extraction is retained (Abanda and Hannigan, 2006). Various studies

have shown that trace elements (lanthanides in particular) do not fractionate

significantly during diagenesis due to their lack of mobility in post-depositional

processes; or during post extraction processes, such as water loss through material

heating. They are accordingly often used to explain geochemical processes occurring

in natural environments, such as the origin of sediments, acting as chemical

“fingerprints” (Nakamura, 1974; Kato, Ohta et al., 1998; Dawood, El-Naby et al.,

2004; Basta, Ryan et al., 2005).

As expected, however, other studies have shown that there are exceptions to these

assertions, and that some element mobilisation may occur, albeit in a predictable

manner (Pattan, Pearce et al., 2005; Abanda and Hannigan, 2006). Many trace

elements, especially metals, have also become increasingly problematic pollutant

groups as a result of urbanisation, as has been discussed in Chapter 5 (Adriano, 2001:

2, 4).
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Although the association of ochre with other materials not really relating to its actual

composition (such as binders/source variation) may be an issue in provenance studies

(Chapter 1: 44), there appears to be no evidence of the problem in this study, apart

from a couple of anomalous results in the Greensands data. This lack of fractionation,

alteration and/or contamination was supported by the fact that there was no significant

difference between the external and internal composition of the geological samples.

Particular challenges included limited archaeological sample sizes, both in quantity (g)

and as separate observations (number of samples); and due to the inadequacies of the

non-invasive XRF method (P.201-202). There is also limited research on the effects of

diagenesis and the environment on ochres. Though these materials are known to be

amongst the most stable of pigments, exhibiting a remarkable resistance to

environmental agents of degradation (Helwig, 2007), few studies actually address the

chemistry of ochres, and the possible effects of time on the overall concentration of

constituent (/signature) elements present.

6.2.2.1. Sourcing of Maltese archaeological ochres: The geological groups

All geological samples had high concentrations of Ca, and variable quantities of Fe,

therefore corroborated the PLM and XRD observations. Average oxide concentrations

of CaO included: 46 wt-% for Greensands, 44 wt-% for the Calcitic reds, 16 wt-% for

the Ooids and 15 wt-% for the Terra rossae. The iron oxide content ranged between

0.3 wt-% to 34 wt-% (refer to histogram Figure 5-15b), therefore also justifying the

data analysis using the equation 5-1 and method described on P.169 for statistical

testing.
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The evaluation of data described in the elemental analysis (ICP-AES and SEM-EDS)

results section in Chapter 5 has been structured to help qualify and quantify this intra-

and inter-source variation. The matrix scatter plots were used to observe the

similarities on a visual basis, whilst the hierarchical clusters proved associations by

means of an impartial statistical method.

The results from these geological samples showed that various elements showed strong

correlations with each other, as displayed in the PC tests in Figure 5-23 on P.171.

Especially notable trends are those seen between certain bivariate plots of elements,

namely: Al vs. Ti, Zr, and Li, which all appeared to associate well together; Mn vs. Cr,

Co and V, which also correlated with the previous set of variables; and Cu vs. Zn

(refer to matrix plots between geological groups in Chapter 5, and in Appendix III).

Dendrograms between elements also displayed these associations (Figure 5-25): all

variables also showed a strong covariance with Fe. Other strong trends were observed

between Mg, Na, K, Ba, Ni, Sc, Y, Zn, though correlations were less pronounced in

certain groups, such as the Greensands (e.g. Figure 5-18). The REEs also displayed

similar trends, as was expected, and will be discussed later on P.244.

All these elements have a strong tendency to substitute for Fe, and for each other

(Chapter 1). Substitution is likely to be dictated by Goldschmidt’s rules, where two

ions with the same valency and radius are expected to exchange easily and/or enter

into solid solution in amounts equal to their overall proportions (Suess, 1988).

Substitution can thus be expected between Fe and elements with similar ionic radii and

cation valencies, such as Mn (cationic radius of 0.83) and Fe (cationic radius of 0.78),
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Mn and Mg (radius of 0.72) and Fe and Mg (Pettijohn, 1975: 289). Furthermore, when

a compatible trace element substitutes for a lattice Fe in the material structure, the

concentration of the element can be predicted by means of its distribution coefficient,

and should plot on a reasonably straight line in a scatter plot between elements, as was

observed in the results in Chapter 5. The ratio of the likely substitution elements, such

as Al/Fe, may also represent similarities in geochemistry and reflect the environment

in which the oxides were formed (Manceau, Schlegel et al., 2000).

These trends observed in the Malta geological samples therefore indicate a similar

geochemical origin, as should be expected on a small archipelago. This factor was

considered as important in determining the relationship between these geological

groups and the archaeological material. The correlation between elements in the

Calcitic reds and the Terra rossae, for example (Figure 5-24), was probably because

the former sample group was the likely/closely associated to the parent material to

these red soils (Terra rossae). This also explains why the Calcitic reds were more

abundant in Ca, and why the Terra rossae were richer in Fe and the other minerals (see

Cornell and Schwertmann 2003: 437). The higher proportions of Al and Mg in these

Terra rossae could also be representative of the presence of clay minerals, such as

kaolinite (Al2Si2O5(OH)4) and/or chlorite group clay minerals

(Mg5(Al,Fe)(OH8)(AlSi)4O10) which are often present in soils and ochres (Hradil,

Grygara et al., 2003; Helwig, 2007: 60; Iriarte, Foyo et al., 2008). These variables

were also high in the Ooid group, but much lower in the Calcitic reds and Greensands

respectively.
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The broader scatter of data points at higher concentration levels was observed for some

trace elements and heavy metals in the Terra (soil) group, and was attributed to the

presence of some pollutants (Figure App.III-5). Soils are, in fact, often referred to as

“pollutant sinks”, accumulating in contaminants resulting from the release of

fertilisers, human wastes and landfills into the environment, therefore this feature was

expected (Adriano, 2001: 2, 4, 29).

The clusters formed by the Calcitic reds and the Terra rossae in the scatter plots plotted

at lower or higher ppm levels with respect to one another. Examples of the average

log normalised data of some elements are given below. Although it appeared possible

to distinguish between these two source groups through observation of their element

concentration levels on the clusters in the scatter plots, the elemental ratios were found

to be similar and the difference was therefore not considered to be statistically

significant (P-value <0.05). This was also observed in the hierarchical cluster as

shown on P.169.

Mean element concentration
Source Al Ti Mn Cr Cu V Zr Li
CR 0.43 -0.90 -1.67 -2.34 -2.68 -2.39 -2.33 -2.64
TR 0.29 -0.96 -1.81 -2.53 -2.92 -2.55 -2.48 -2.83

Table 6-1. Examination of the Fe ratio log normalised data for some of the elements in the
Calcitic reds and the Terra rossae

The other two geological groups (Greensands and Ooids), exhibited significantly

different element ratios (P >0.05) to the previous two sample groups and to each other

(Table 5-11). They were thus distinguishable on the majority of the bivariate scatter

plots as they formed discrete clusters. This feature was also confirmed statistically and

has been discussed earlier on P.179. Consequently, only three main geological groups
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were confidently identified as being statistically chemically distinct. Intra-source

correlation was also attributable to mineral composition and not to sampling proximity

as sample acquisition was carried out from the same geological source in very different

localities (Figure 4-26).

In summary, these results showed that:

i. Certain elements exhibited strong, statistically significant correlations with

each other (P.177);

ii. The geological groups were distinct as separate clusters in a large number of

graphs, especially on those scatter plots of elements expected to exhibit

positive trends with Fe. Some formations were tighter than others, as stronger

trends were seen between several elements in each of these groups (P.172);

iii. The Calcitic reds and the Terra rossae exhibited patterns in data element ratios,

though the latter sample group had higher concentrations of minor elements.

These two groups were not recognised as separate groups from statistical tests

(P.178);

iv. Three of the geological groups therefore satisfied the provenance postulate for

this method; where the variation between the different sample groups was

greater than the intra-source variation within a given geological source. The

groups were divided as follows: CR-TR, Greensands and Ooids (P.178).
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6.2.2.2. Sourcing of Maltese archaeological ochres: The archaeological groups

Histograms, graphical representations and statistical tests including both

archaeological and/or geological data suggested various factors pertaining to the

archaeological samples.

(a) Differences between archaeological samples. Inter-group differences in element

concentrations were observed between samples as has been highlighted earlier

(Chapter 5). Noticeable features included the elevated levels of P2O5 observed in the

HYPB (mean: 23 wt-%), HYPD (mean: 6.3 wt-%) and yellow MAs (mean: 4 wt-%).

This reflected the large quantity of bone mineral, carbonate-hydroxylapatite

Ca10(PO4)6-x(CO3)x(OH)2+x (Reiche, Favre-Quattropani et al., 1999), present at the

burial site at Hal-Saflieni in these Hypogeum samples. This also suggested that bone

was a component of the yellow MA ochres.

The histograms given in Figure 5-29 (P.183) also illustrated the relative weight percent

values of some other the major elements of these Maltese Neolithic samples, and

showed the correlations and differences in composition between these sample groups.

Similarities were observed between the HYPDs and the HYPBs, in the calcium oxide

content, for example, although for completely different reasons. While the calcium

oxide content in the HYPBs (38 wt-%) reflected bone mineral chemistry, that in the

HYPDs (40 wt-%), reflected the calcite from the calcium carbonate-dominant

environment and some bone material. The HYPBs were found to consist of very little,

if any, ochre. These histogram 5-29 also showed which HYPD samples were richer in

bone mineral remains, namely those obtained from chambers C5 and C9 (refer to
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Figures 4-29, 4-30), and therefore indicated that these chambers were probably burial

chambers. None of these Hypogeum samples, however, appeared to have enough

ochre (Fe content >10 wt-%) to support the statement given by Soddart (1999: 183),

who claimed that vast amounts of ochre were sprinkled on the bones and reburied in

this underground necropolis.

The Fe content also varied significantly and showed that the MA (reds) were ochres of

higher quality, based on the assumption that higher ratios of iron and less amounts of

other accessory materials implied a better quality of ochre (defined in Chapter 1).

Values of iron oxide in these archaeological samples ranged between 51 wt-% and 21

wt-%. These were followed by the yellow MAs (13 – 9.4 wt-%), the HYPDs (<3 wt-

%) and lastly by the HYPBs (mean of 0.5 wt-% iron oxide). The yellow MA samples

also appeared to contain features characteristic to the other archaeological groups,

containing some bone, a good amount of Ca, and reasonably high levels of Fe, yet the

relative proportions of elements indicated that this set of archaeological samples was

chemically distinct from all the rest. All bivariate plots also showed that these four

sets of archaeological samples exhibited good intra-sample data clustering, but had

different chemical compositions, therefore inter-group differences were clear.

(b) Archaeology vs. geology. The statistical tests were used to observe how the

archaeological sample data fitted in with the geological groups. The results showed

that the archaeological MA (reds) consistently coincided with the Ooid data points,

with one exception. The Ba scatter plots exhibited slight discrepancies which were

more pronounced when the variable was plotted against Cr (Figure 5-32b P.186), Cu,
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Li and Sc, and also where Fe was present in higher concentrations (refer to Table 5-

15/16). Samples MA 002 and MA 003 therefore experienced a greater divergence of

this element from the norm, implying an indirectly proportional relationship with Fe.

Although the reason for this discrepancy is uncertain as publications to date do not

mention any particular incongruity in Ba amounts, it is possible that substitution of Ba

with Ca reflecting the growth environment of the Ooids could be an underlying cause

(Pettijohn 1975: 295). It was assumed that the removal of samples from their natural

environment resulted in a discontinuation of exchange and fractionation between the

constituent elements and their geological environment (Glover, Eick et al. 2002; Miro,

Hansen et al. 2005). If the environment experienced an increase in the Ba-Ca content

for some particular reason, this would be reflected when comparing samples extracted

from the geological environment today to archaeological samples that had been

extracted several millennia ago.

The MA (yellows) did not coincide particularly well with any source groups, though

this archaeological sample set correlated better with the Greensands than with any

other geological source (Figure 5-31a). These trends, however, were not consistent (P-

value >0.5) and results suggested that the MA (yellows) were obtained from an

alternative source to the Maltese islands. The difference in composition, however,

could have also been a result of possible ‘contamination’ with other materials, such as

the bone and the fabric that were undoubtedly present in with the ochre, consequently

changing the nature of the material to a certain extent.

A consistent pattern was observed between the major and minor elements of the

Calcitic reds-Terra rossae and the HYPD samples. The elemental relationships were
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similar, but the major and some minor variables appeared to be present in smaller

amounts in the archaeological data when compared with the geological material. This

factor was attributed to the observed high levels of phosphorous (Figure 5-30a P.184),

which have also been described above. The elements which differed slightly in

comparison to the geological groups, namely the variables Ni and Zr, were associated

with the bone present within their composition since similarly elevated concentrations

were also observed in the HYPBs.

HYPB samples appeared as near-identical discordant outliers in a number of plots, as

was expected from this bone-dominant material. The ppm observations of some of the

major and minor elements in the bone were also found to approximate those of PIXE

studies carried out on emerged archaeological bone, therefore indicating that the two

bone samples analysed had probably been disturbed prior to this investigation (Reiche,

Favre-Quattropani et al., 1999).

The HYPD (and HYPB) results confirmed that these samples were not particularly

ochre-rich. The proximity of their element values to the Terra rossae data however

showed that they had undergone only minor changes in material chemistry. These

deposits were therefore unlikely to have experienced significant changes in

composition, even though the HYPD and Terra rossae were the most likely of the

sample groups to have suffered the effects of pollution (as was described earlier). This

observation was used to further emphasize the unlikelihood of Terra rossae being the

incident source of Neolithic Maltese ochres.
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The tests therefore showed various correlations and discrepancies between certain

archaeological samples and the Maltese geological groups, as summarised below:

i. The MA (reds) showed definite analogies with the Ooids group, indicating that

this could be a likely source for this archaeological ochre.

ii. The MA (yellows) did not correspond well to any geological source.

iii. The HYPDs and the HYPBs exhibited similar trends as the CR-TR. The

HYPBs had a different composition, but were closer to this other

archaeological and geological group than to any other.

6.2.2.3. Sourcing of Maltese archaeological ochres: The REEs

REEs have often been used in provenancing studies to establish relationships between

the archaeological data and geological sources (Glascock and Neff, 2003; Popelka-

Filcoff, Robertson et al., 2007; Iriarte, Foyo et al., 2008). All REE data following

normalisation (Piper, 1974) indicated that the geological and archaeological ochre

groups had formed from very similar environments owing to the near-identical trends

observed (Figure 5-36a-f). Although the Eu concentration for the MA (reds) could not

be detected (see previously), all the other samples showed a strong negative Eu-

anomaly. This was attributed to extensive fractionation of Eu relative to the other

REEs possibly because of suspected suboxic/anoxic (Eu3+ reduced to Eu2+) conditions

in the Maltese and/or Mediterranean terrestrial environment when the sedimentary

rocks were being formed (Jarvis, 1989). This paleoindicator factor therefore strongly

suggests that even the MA (yellows), which data presented as being the most likely

outliers, were related to the geological environment (either the same environment or a

similar one) of the Maltese islands.
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6.2.2.4. SEM-EDS and XRF

The final two methods used to characterise, to a limited extent, the materials in this

study were exploited because of the limited sample quantities and difficulties (ethics)

associated with sample acquisition. Although there was a good agreement between the

measurements and the ICP-AES data, certain interpretations remain debatable: It has

already been established that limiting the number of variables limits the sensitivity of

this provenancing method (P.233)

SEM images of the MA red sample (001) and of MA 004 were similar to published

results as particle sizes appeared similar (Helwig, 2007: 75-76). MA 005 consisted a

mixture of ochre and large quantities of some fibrous material. The EDS values

showed that MA 004 was not an ochre, and that MA 001 and MA 005 oxide

percentages fitted well with the ICP-AES results from red and yellow ochres

respectively.

The XRF data was more difficult to work with, mainly because the number of

variables was reduced to a total of five owing to (a) the instrument limitations and

percentage errors and (b) the presence of certain elements within the support and their

similarities with the ochre-support composition and (c) the assumptions taken when

working with the data, including that the support composition was uniform. Bivariate

plots of these variables also gave a combination of distinct clusters and less defined

groups, which showed potential relationships between element ratios.
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The trends observed between the log10(Ti/Fe) - log10(Mn/Fe) in the XRF-stone scatter

plots (Figure 5-43 P.204) appeared to correlate particularly well with the CR-TR

clusters. Although this could imply an alternative source (other than the Ooids) for

these ochres, it is more likely that the values were experiencing an overall dilution

effect because of the measurements of the background (support). These reflect the

limitations of this non-invasive method, as has been mentioned earlier in section 5.1.5.

This justification could also explain the inconsistent relationships experienced in other

scatter plots, and why certain points, such as the XRF-clay ratios, matched the Ooids

and/or the MA (reds) better (richer support, lower dilution effect experienced). This

similarity observed between the XRF-clays and the Ooids/MA (reds), was also

inconsistent, and although this could show that ochres on certain artefacts were

different to others, it appeared that data was more dependant on the composition of the

support, once again confirming that this as a consistent limitation.

The chemical signature of the ochres analysed in this XRF study was, therefore, not

well defined, and results were not definitive enough for use in this provenancing study.

Although published studies elsewhere have suggested otherwise (Popelka-Filcoff,

Robertson et al., 2007), it appears that sampling may be required for this purpose, as

XRF analyses in this study were carried out on ground (powdered and prepared)

samples of the selected ochres. This sampling method precludes the problematic

dilution effect resulting from the background material, but is destructive, and therefore

unethical.
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6.3. Implications of findings

The characterisation studies also showed a similarity in the composition between the

red MA ochres, even though these were obtained from different archaeological sites

across the islands. This indicated that these pigments, which had been used so

profusely throughout the islands during the Neolithic period (refer to Chapter 2), were

probably extracted from the same and/or similar geological source.

The evidence provided in this thesis also suggested that the Ooids, or a source group

inherently similar to the Ooids, was the source for these MA reds. Although it is

difficult to dismiss the possibility of these ochres as being imported products, the

meta-theoretical principle of Occam’s razor denotes that the simplest solution is

frequently the most probable explanation. These findings thereby suggest that:

i. Sources of ochre on the Maltese islands do exist, therefore disproving

conventional belief which claims that there are no such sources on the islands

(Tilley, 2004: 140 – also refer to Chapter 2);

ii. The presence and use of ochre in Malta cannot be used to support the theory of

trade between the archipelago and mainland Europe during the Neolithic

period;

iii. Robb’s (2001) arguments of Malta being linked to the rest of Europe through a

wide regional network based on the ochre debate are put in question: the use of

this pigment cannot be the definite proof for contact (Chapter 2)

iv. Contact with mainland Europe may have been more limited than was

commonly believed, and this could help to explain the uniqueness of the

Neolithic temples. This also strengthens the hypothesis that biogeography and
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the insularity of the islands resulted in the observed cultural differences and

could explain why the Neolithic temple architecture remains unparalleled by

any of the contemporaries of the Neolithic Maltese.

v. If the Neolithic Maltese understanding of architecture was thought

extraordinary, their knowledge of materials was not less so. It is clear that

Neolithic Maltese painstakingly not only sourced the purer forms of the ochre,

but also sought to prepare the material for use.

The yellow archaeological ochre (MA yellow) sourced for this study was also an

important discovery. Further research showed it may have been found and

documented in the early twentieth century as a yellow textile that had been wrapped

around various bodies in the Bronze Age ancient Tarxien cremation cemetery (Evans,

1971). The find was recorded, albeit briefly, as an unusual discovery in the museum

annual reports, and the yellow colour was thought to have been ‘…perhaps a reddish

colour turned yellow through burning’ (Annual Report of Valletta Museum, 1916).

This statement therefore further emphasised the unusualness of the discovery of this

colour associated with ancient burials. The analysis in this study has shown that these

MA yellows were a clear mixture of several components, including yellow ochre,

deteriorating textile and bone; therefore coherently linking these samples to the

reported find. The ochre used, however, could never have been red ochre, as

dehydroxylation (by calcination) is an irreversible reaction (Chapter 1) and it is only

possible to dehydrate yellow ochre (iron hydroxide) into red ochre (iron oxide). This

statement was therefore invalidated. REE measurements showed that this yellow

ochre was also obtained from a geological context that was similar to the geology of
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the Maltese islands, but minor and trace element analysis either indicated that the

nature of the sample had changed, and/or that the source of this material was not the

Maltese archipelago. It therefore appears that this yellow ochre find might not be of

Neolithic origin, and is definitely not representative of the red ochre used extensively

in the Temple period (Mifsud and Ventura, 1999: 14).

This study also showed that the red ochre remains in the Hal-Saflieni Hypogeum were

only present in the paintings on the chamber walls. This therefore contradicted the

popular belief about burial customs adopted by these Neolithic peoples in relation to

the Hypogeum, which claimed that bones were doused in ochre and reburied in the

necropolis (Stodart, 1999: 183). There additionally did not appear to be much

difference in composition between the ochres from the different chambers in the

Hypogeum. No concrete conclusions, however, could be made by comparing element

concentrations of ochre on different artefacts as the XRF data was subjective to the

support of the ochre in question.
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CONCLUSIONS

The results indicated that the methods employed in this thesis satisfied the provenance

postulate theory and could be used to characterise and provenance ochre, as was shown

through the case study of the ochre on the Maltese islands. Elemental analysis is the

key to this, though the final results are compromised when fewer element variables are

obtained (observed with results from SEM-EDS and XRF results analysis). PLM and

XRD were useful to observe respective optical and structural differences between

materials, and the microscopy technique in particular allowed for material grouping

and pigment documentation prior to the irreversible process of sample digestion for

ICP-AES. The ideal analytical methodology therefore involved combining ICP-AES

analysis and statistical tests to identify the elements that correlated positively with the

main elemental component of the ochres: Fe. These ‘signature’ or ‘fingerprint’

elements were also determined statistically, and included Al, Ti, Zr, Li, Mn, Cr, V, Cu,

Zn, La, Ce, Nd and Yb. It was found that limiting the number to 9 or even 7 of these

variables (Al, Ti, Mn, Cr, Cu, V and Zr) was sufficient for efficient clustering for

provenancing purposes.

Test results therefore identified common patterns between ochre source groups and

showed that three geological sources of ochre on the Maltese islands satisfied the

provenance postulate. These included the Calcitic reds-Terra rossae (1), the

Greensands (2) and the Ooids (3). Applying the same method to the archaeological

samples indicated how these samples corresponded to the geological groups. Results

showed that the red MA ochres, which were used profusely throughout the Maltese

Neolithic/Temple Period, were almost entirely consistent with the Ooid group. This
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showed that the Ooids were the most likely source for these MA reds; and that these

ochres were probably obtained from the Maltese islands. The MA yellows did not

correspond well to any geological source, and further evidence indicated that these

ochres may have been Bronze Age finds, rather than Neolithic material. The HYPD

and the HYPB samples from the Hal Saflieni Hypogeum also showed that there was

little ochre present in these samples. This indicated that apart from its application as

artwork on the walls, there was no definite proof that ochre was extensively used

during burial practices at this underground necropolis.

The evidence provided in this project therefore shows that there is a consistent

correlation between the signature elements in the geological iron-rich Ooid nodules,

and the red archaeological ochres from the Maltese islands. Although it is possible

that similar Ooid nodules from a near-identical geological environment (e.g. Sicily

perhaps?) may have been an alternative source, the findings in this thesis, coupled with

archaeological evidence (described below) strongly support the fact that the ochre used

extensively in Neolithic Malta was of local origin (Occam’s razor) rather than an

import during the Temple era (Robb, 2001).

This study therefore provides scientific evidence to show that Malta was probably a

physically isolated space during the Temple period. This evidence is also supported by

the vast majority of archaeological evidence that highlights this missing link to

mainland Europe, thus clearly supporting the argument for a “local evolution” (Evans

1953). Corroborating archaeological evidence includes (1) the absence of any

similarity between the Megalithic Temples and other architecture in Sicily and/or in
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Europe. The analogy observed by Robb between the rock-cut tomb in Calaforno and

Hal Saflieni in Malta, though presenting a good argument, cannot possibly equal the

complexity and abundance of the above-ground temples constructed on the Maltese

islands in any way. (2) Further archaeological evidence is provided by the difference

observed in ceramic-ware, which was very specialised and local on the archipelago,

presenting obvious gaps in ceramic evidence for trade. (3) Finally, the decrease in

quantities of imported products also supports this argument for isolation, although it is

suggested that further studies should be carried out on other (few) suspected imports,

such as the flints and/or hardstones.

“The ancient Maltese culture, which, despite local variations, had hitherto marched

step by step with that of Sicily, now continued to develop on its own, showing scarcely

a trace of connections with Sicily until it was finally swept away by a new influx of

people from abroad some centuries later (Evans, 1953: 80)

This project therefore helps us reconstruct a satisfactory picture of Maltese Neolithic

prehistory by providing evidence that undeniably fills gaps in our knowledge.

Although current evidence cannot explain the reason for the break between the

archipelago and mainland Europe, this study is definitely a start to the unravelling the

mystery surrounding these tiny but all important group of islands.

This study is a first in its kind in that it provides an in-depth investigation of Maltese

ochres, and supplies a valuable dataset for forthcoming research. Future projects to

support the arguments and hypotheses discussed in this thesis with regards to trade
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during the Maltese Temple period could include looking for further evidence by

applying the same method to similar ochre deposits possibly present in Sicily. The

study could also be broadened by examining sources further afield in southern Italy,

and in other localities Malta was suspected to have been trading with during the pre-

and post-Temple era. A full, in-depth comparison between geological sources is

suggested, with Sicily, however, being the most likely source, owing to a similar

geology to that of the Maltese islands (Schembri, 1993: 28). Further studies would

include comparing the ochre used in Neolithic Sicily and southern Italy to the

Neolithic ochre from Malta. It is also recommended that the results are corroborated

with provenancing studies carried out on other items that could have been traded

during the Maltese Temple Period, such as hardstones and flint. Future work could

therefore additionally include applying the same or a similar methodology to ochres

found at other ancient sites and comparing the elemental data to their suspected

sources, thereby possibly also mapping ochre trade across Europe and further afield.
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