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Abstract

Ducts can be found in ventilation systems, cooling ducts and blade passages of turbines,
centrifugal pumps and many other engineering installations. The properties of the flow in
ducts can significantly affect the performance and efficiency of these installation areas. The
majority of the flows in ducts and engineering applications are turbulent.

The work presented in this thesis focuses on the analysis of turbulent flows inside square
sectioned ducts and ducts with bends. The accuracy of three different high resolution high
order schemes in the context of Implicit Large Eddy Simulation (ILES) is analysed. The
influence of a low Mach limiting technique, Low Mach Number Treatment (LMNT) is also
studied. The schemes employed are Monotonic Upwind Scheme for Scalar Conservation
Laws (MUSCL) with a 2nd order Monotonized Central (MC) and 5th order limiter, and a
9th order Weighted Essential Non-Oscillatory (WENO) limiter.

The first case studied is a duct of square cross section . In the absence of experimental
data for the duct case, the data from a plain channel flow is used to shed light on the results.
The flow analysis points out the generation of secondary motions created by the existence of
surrounding walls. All schemes employed lead to a similarly developed turbulent flow that
is used to provide the turbulent boundary profile for the following case. LMNT proves to
significantly assist MUSCL 2nd and 5th, that use it, in providing a turbulent profile similar
to that of WENO 9th that did not employ the technique but is inherently less dissipative.

The second case under study is that of a square sectioned duct with a 90o bend. The
simulation output is in good agreement both qualitatively and quantitatively with the exper-
imental data available in the literature. The generation of secondary flows inside the bend
is observed without flow separation. Although the turbulent flow entering the domain is
almost the same for all cases, differences between the schemes are noticed especially after
the middle of the bend. LMNT leads to an overprediction of turbulence after that area for
both schemes employing it while WENO 9th without LMNT provides the most accurate
results compared to those provided by the experiment.

The results demonstrate applicability of ILES to strongly confined flows with secondary
motions and shed light on cognitive properties of a wide range of state of the art schemes.
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C H A P T E R 1

Introduction and Objectives

1.1 Turbulent Flows

Turbulent flow is a fluid regime characterised by chaotic, stochastic property changes. A
flow is usually turbulent when the inertial forces are significantly higher than the viscous
ones. Although many before observed or studied turbulence its first representation using
the physical properties of a fluid was that of Reynolds [1] who used a flow visualization
technique in order to determine the onset of turbulence. It was his investigation that resulted
in the parameter that indicates the ratio of inertial to viscous forces known as the Reynolds
number.

Von Karman, Prandtl and Taylor made significant advances in the study of turbulence
during the period between the two World Wars. Richardson described the physical beha-
viour of various sized eddies composing turbulence in the concept of energy cascade where
energy transfer occurs from the large scales to the smaller, following a multi-stage proced-
ure until energy is dissipated into heat [2]. The smallest scales in turbulence responsible
for dissipating energy were determined by Kolmogorov [3].

Turbulent flow is characterised by a distribution of coherent vortical structures of vari-
ous sizes and the vortex dynamics associated with the respective scales of the eddies.

Richardson’s Hypothesis: From Richardson’s point of view, the velocity and the size
of the largest eddies present in the flow are comparable to the global scales of the mean
flow. The Reynolds number for the largest scales is therefore comparable to the global
Reynolds number, i.e. Re >> 1, and viscous forces have a negligible effect. Large eddies
are mostly anisotropic and their shape is influenced by the boundary conditions. Very
limited dissipation occurs at the large scale as the Reynolds number is sufficiently high.
However, the energy of the large scale structures is transferred to small eddies generated
due to instabilities, this process continues until the Reynolds number based on characteristic
scale and velocity of the small eddies becomes sufficiently small for the viscous forces to

1



1.1 Turbulent Flows 2

take precedence. This energy transfer is often illustrated in physical space as eddy break-
up, where the inherently unstable coherent structures deform and evolve into eddies of
smaller size (energy cascade).

Kolmogorov’s Hypotheses and scales of turbulent flow: The idea of an energy cas-
cade has been further developed by Kolmogorov [4]. The assumptions on the physical
behaviour of the eddies made in Kolmogorov’s hypotheses provide the framework for as-
sessing the energy transfer rate and the scales involved in high Reynolds number, turbulent
flows. Kolmogorov stated that the anisotropy, induced on the large scales by the boundary
conditions, is gradually lost as the energy is transferred to progressively smaller eddies.
The flow eventually becomes locally isotropic for the smallest scales of motion away from
the boundaries and flow singularities; thus the small eddies have a statistically universal
character common to all turbulent flows. The statistics mainly depend on the energy budget
composed of the energy flux from the larger scales and viscous dissipation. Provided the
small scales have a relatively short lifespan compared to the global time-scale, they are able
to adapt quickly to the amount of energy received from the larger eddies and a dynamically
balanced budget can be maintained. Based on Kolmogorov’s hypotheses, considerations of
dimensional analysis and energy transfer between the scales can be employed leading to
the following expressions for the velocity, lengthscale and timescale of the smallest eddy,
for which the local Reynolds number becomes equal to one:

uη = (ϵν)
1
4 (1.1.1)

η = ν
3
4 ϵ−

1
4 (1.1.2)

τη = ν
1
2 ϵ−

1
2 (1.1.3)

Here ν is the kinematic viscosity of the fluid and ϵ is the rate of change of the kinetic
energy proportional to u2

η/τη. The relation of the Kolmogorov scales
(
η, uη, τη

)
to the large

scales (τ0, u0, l0) of the flow can then be expressed in terms of the large scale Reynolds
number as follows:

η

l0
= Re−

3
4 (1.1.4)

uη
u0
= Re−

1
4 (1.1.5)
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(a) Tropical Storm Franklin (b) River flow

(c) Solar flare erupting from the sun

Figure 1.1: Turbulent flows in nature. (a) and (d) from http://www.nasa.gov, (b) from
http://www.icwhen.com/ncc14/topics/waikato

τη

τ0
= Re−

1
2 (1.1.6)

The above indicates the degree of separation between the large scale and small scale
motion in a high Reynolds number turbulent flow, which in turn results in significant chal-
lenges with respect to the computational modelling of turbulent flows.

Turbulent flows can be located anywhere in our surroundings in both natural and man-
made flows. They exist in all kind of flows and from the smallest to the largest possible
scales. The most intriguing phenomena can be found in nature such as meteorological
phenomena like the formulation of tropical storms, see Figure 1.1(a). A simple flow like
that of water in a river when meeting obstacles like rocks also presents many interesting
characteristics, see Figure 1.1(b). An other interesting example is that of solar flares, see
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(a) Airplane vortex (b) Car aerodynamics

(c) Factory contaminant dis-
persion

Figure 1.2: Turbulent flows in Engineering. (a) to (c) from http://www.nasa.gov
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Figure 1.1(c). Most, if not all, engineering flows that present interest for study are turbulent.
Understanding turbulent flows plays a significant role in engineering design, optimisation
and manufacturing. Aerodynamic drag due to turbulence for example is a major issue for
automotive or airplane design and transportation in general, see Figures 1.2(a) and (b).
Understanding turbulent flows can help studying cases like contaminant dispersion from
factory emissions, see Figure 1.2(c), and solving many similar environmental issues.

Based on the vast number of applications mentioned above, turbulence can not be linked
with a specific fluid. Every turbulent flow has, besides some common characteristics, cer-
tain unique ones based on its initial and boundary conditions. The randomness of the
unsteady motion in both time and space is one of the most studied characteristics of turbu-
lence. This randomness is why much of the research is based on statistical methods. Be-
sides the chaotic motion, there is some organised motion that appears randomly at different
points timewise or spatially. In these areas there is a high level of vorticity. Identifying
and studying these phenomena is imperative in the prediction of turbulent flows. In this
procedure large vortices gradually brake into smaller and smaller ones up to the point they
dissipate into heat. Another characteristic of turbulent flows is large mixing capacity and
rapid dispersion. Turbulence was and remains one of the most complex problems because
of the random motion that makes an analytical method very difficult. This issue leads to the
use of theoretical and numerical methods by simplifying the view of the problem. Although
this concept is very useful for the study of turbulent flows it still can not be considered, in
a way, an exact prediction of this kind of flows thus constant improvement of methods and
techniques in the area of turbulent flows is necessary and makes their study imperative as
well as very interesting and challenging.

1.2 Duct Flows

Flows in ducts, especially curved ones, are found in many different engineering problems
[5] such as, heat transfer, chemical reactors, fluids transport piping systems, meandering
rivers and other areas, equipment or devices [6]. Other cases related to duct flows are
cooling ducts and blade passages of turbines [7], ventilators and centrifugal pumps [8].
The link to the internal environment is also significant because of ventilation systems and
the need to provide comfortable and healthy conditions for the people inhabiting them
[9]. For engineering applications of ducts the target is usually improved performance and
efficiency. There is a great part of the literature that focuses on ventilation related flows
so a small reference to those will follow before moving into other applications of ducts.
Ventilation is of utmost importance in all internal environments. According to Koinakis
[10], “ventilation should fulfil two basic objectives: (a) to remove the indoor pollutants and
prevent the outdoor pollutants from entering, and (b) to control the indoor climate and the
thermal comfort sense by intervening in the thermal balance”.

There is a large variety of cases and scenarios in the literature. Huang et al. [11]



1.2 Duct Flows 6

studied the role of air in SARS transmission in Hong Kong. Their simulations showed that
there is still room for improving isolation rooms in hospitals but with a significant cost.
Although subways constitute an environment clearly dependent on the ventilation system
and a possible target for terrorist attacks, there are only a few publications concerning
the flow and ventilation inside such areas like the report submitted by Coke et al. [12].
This report was concerned with the creation of a model for the flow in the subway taking
into consideration the complex subway system as well as the train motion. An interesting
result of their research was that the train movement contributed to the fast expansion of
contaminants to other stations. Li and Chow [13] conducted a research on the same area.
Their research was concerned with the evaluation of the performance of tunnel ventilation
safety systems using CFD. According to their results CFD can help in the development
of tunnel ventilation systems by predicting different parameters such as vehicle emission
dispersion, visibility and others. Another point they made is that simulating different fire
scenarios could help the development of the system even more.

The aircraft cabin is also an area greatly dependent on duct ventilation systems since
aircrafts have a closed ventilation system and in case of emergency, evacuation is, with only
a few exceptions, impossible. At the same time aeroplanes are small spaces filled with hu-
mans, vulnerable to many and different dangers. The impact then if something goes wrong,
especially during flight, can be enormous. Focusing on these facts, the flow provided in
such an area through a ventilation system plays an important part and understanding its
pattern and physics is necessary. A very interesting study of the turbulent flow inside the
aircraft cabin, and its important link to the ventilation system, was conducted by Bosbach
et al. [14, 15]. Their study aimed at the better understanding and optimisation of the airflow
in an aircraft cabin based on numerical simulations and experimental validation based on
data obtained through particle image velocity (PIV). The ventilation entrance used was of
rectangular cross section and part of the duct was used in their study.

Although there are numerous cases studying internal flows linked to ventilation sys-
tems it is certainly not the only or most important application of duct flows. There is also
interest in the differences between duct, channel and pipe flows. A lot of attention by many
researchers when studying flows in ducts is given to heat transfer issues under transitional
and turbulent flows [16]. According to Kazuhito [17] “turbulent heat and fluid flow through
a passage with curvature has been one of the primary interests in the thermo-fluid engin-
eering particularly, associated with heat exchanges and turbomachinery blading”. In such
a case because of the curvature we have secondary motions affecting the turbulent strain
field and consequently the level of heat transfer. The effects of a curve to the heat transfer
compared to straight pipes were studied by Rosaguti et al. [18]. In their research they stud-
ied the geometric influences on the thermo-hydraulic performance of a serpentine channel
of semi-circular cross-section with the results showing heat transfer enhancement.

The flow differences between pipes and square sectioned ducts were probably first stud-
ied by Nikuradse in 1926 [19]. Some numerical simulations were carried out in straight
square ducts like the one by Gavrilakis [20] who studied low-Reynolds turbulent flows in
straight square ducts. The results of this study had a satisfactory agreement with some ex-
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perimental data at high Reynolds numbers and many flow characteristics were observed in
the simulations that were not present in the experiments. This is justified by the fact that the
experiments conducted could not capture well the low velocity characteristics thus making
simulation results very important in order to have a better grasp of the flow physics in such
geometry.

The literature around pipes, ducts and channels focuses a lot on curved geometries
because of the nature of the flow and its interesting characteristics. Adding to that the fact
that most of the areas mentioned before, that use ducts, have curved parts as well, the great
importance of the study can be observed. In order to understand this interest of the scientific
community the nature of such a flow must be examined. When a fluid element follows a
curved streamline, it is influenced by an outward centrifugal force due to the curvature of
the streamline [21]. This force is exactly balanced by an inward radial pressure gradient.
In the case of a curved pipe flow we have an imbalance between the pressure gradient and
the centrifugal force setting up a Dean-type secondary motion in the pipe. The fluid in the
middle of the pipe moves outward, it collides to the outer wall and turns moving inwards
along the top and bottom walls to merge at the inner wall [21]. It is therefore observed that
even the laminar flow inside a curved pipe can be complex so the turbulent one will be very
challenging. In his study, Ko [22] showed the conflict between improved heat transfer and
the simultaneous increase in pressure loss concerning turbulent flown in curved pipes with
regards to design parameters for improved performance as well.

Research on ducts and channels dates many years back. Experiments in such geometries
were conducted from the mid 70s and their results are still being used for comparisons
with up to date CFD studies. Laufer [23] conducted experiments on turbulent flows in
channels at three different Reynolds numbers providing a descriptive picture of the energy
diffusion in the centre region of the channel. Experiments in channel flows with a Reynolds
range of 3,000 to 40,000 were conducted by Wei and Willmarth [24] using Laser Doppler
Anemometry (LDA). The target of their experiments was testing the validity of the inner
scaling laws in the range of these Reynolds numbers and the influence of different Reynolds
numbers to the flow. They observed, amongst others, that the turbulent fluctuations became
larger in amplitude with the increase of the Reynolds number. Melling and Whitelaw [25]
conducted LDA experiments in a rectangular duct with a Reynolds number of 42,000. The
main objective was to generate data and experimental results to be used for numerical
models testing by the research community in the future. The experimental results produced
were actually used for validation of CFD numerical methods in many papers that followed
such as the one from Gessner and Emery [26]. Brundrett and Baines [27] studied the
secondary flow in a square sectioned duct focusing on the Reynolds stress tensor. From
their results they concluded that further studies are needed before the eddy structure which
produces the Reynolds stress gradients can be predicted. Their most important conclusion
was that the production of vorticity is associated with the relative proximity of an element
of fluid to the wall of the duct [27].

Experiments on turbulent flows in circular curved ducts were performed by Sudo et al.
[5], Enayet et al. [28] and Anwer et al. [21] aiming at better understanding the nature of the
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flow in ducts with curvature. Humphrey and Whitelaw [29] studied the turbulent flow in a
90o curved bend of square cross section and found out that the pressure driven secondary
flows were much stronger than the stress driven ones. Taylor et al. [30] performed an
experiment, using Laser Doppler Anemometry (LDA), on a square 90o bend with a short
upstream tangent. In their experiment they pointed out the importance of the boundary layer
thickness at the entrance of the duct and the influence of the curvature to the development
of the secondary motion. Using two-sensor hot-wire probes, Kim and Patel [31] measured
the mean velocities and Reynold stresses for developing turbulent flow in a 90o curved
duct of rectangular cross-section. The number of numerical approaches for turbulent flows
inside curved ducts are limited. One of the earliest numerical attempts to simulate this kind
of flow was performed by Kreskovsky et al. [32]. The results were encouraging but not
as close to the experimental ones as expected. Iacovides et al. [33] in a later study used
the standard k − ε eddy-viscosity model for a similar simulation. The study showed that
the curvature induces a pair of counter-rotating vortices within the duct cross-section. The
level of agreement in this simulation was much better.

Through the literature it is found that many different geometries and cases are studied
using different methods. The difference in the geometry of a pipe can be spotted to the shape
of the cross-section, the degrees of the bend etc. One of the geometries mostly studied is the
duct with 180o curve known also as a U-bend duct. Hidayat and Rasmuson [34] studied a
non-isothermal gas-solid flow in a U-bend using the commercial software FLUENT, Nikas
and Iacovides [35] studied the flow and heat transfer through a square-ended U-bend using
low-Reynolds models. The same kind of geometry was used by Pruvost et al. [36] to
study the effects of swirl motion on flow structure while Iacovides et al. [37] experimented
using reflection-free differential second-moment (DSM) closures on a square-sectioned U-
bend. A very interesting study was conducted by Iacovides [38] on stationary and rotating
U-bends with rib-roughened surfaces.

Another geometry that presents a great interest is the 90o bend known as the L-bend.
Kuan et al. [39, 40] studied dilute gas-solid both for one and two-phase flows in a 90o

bend using a differential Reynolds stress model and validated their results using experi-
mental data. Yang and Kuan [41] performed an experiment, investigating dilute turbulent
particulate flow inside an L-bend using Laser Doppler Anemometry (LDA). Mokhtarzadeh-
Dehgan and Yuan [42] measured the turbulence in developing turbulent boundary layers on
the walls of a square L-bend. The pressure drop for turbulent single-phase fluid flow around
sharp L-bend pipes was predicted by Crawford et al. [43].Other interesting cases include
the study of flows in L-bends with spanwise rotation [44], scalar mixing in curved chan-
nels [45], flows in ducts with internal fins or ribbed passages [6, 46] and flows in internal
cooling passages of turbine blades [47].
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1.3 Implicit Large Eddy Simulation

There are many different ways of studying flows using CFD. The Direct Numerical Simu-
lation (DNS) approach provides a complete time-dependent solution for turbulent flows. It
provides superior accuracy because all scales of motion and time are resolved. On the other
hand, the step-size of the discretised problem in time and space must be smaller than the
characteristic time and the characteristic length of the smallest eddies present in the flow.
The duration of the simulation and the size of the computational domain are based on the
characteristic time and the characteristic length of the largest eddies. Since the range of
scales observed in turbulent flows increases with progressively higher Reynolds number,
it usually spans over several orders of magnitude (see Equations 1.1.4 to 1.1.6) hence the
computational demands of this approach limit the practical applicability of DNS to high
Reynolds number flows [48].

The most common approach to calculate a problem in engineering is the Reynolds Av-
eraged Numerical Simulation. Reynolds averaging is based on the idea of decomposing the
exact solution of the flow into an ensemble average and a fluctuating turbulent component.
In the context of CFD simulations, ensemble averaging can be usually interpreted as a time
averaging. In case of engineering applications, the controlled conditions such as inlet con-
ditions in internal flows or free-stream conditions in external flows rarely change in time,
thus time-averaging is preferred. Here, the resolved mean flow can be considered free of
fluctuations and all the unsteadiness is contained in the unresolved turbulent scales that
need to be modelled. The need for modelling results from the nonlinear nature of Navier-
Stokes equations, which leads to appearance of the additional terms in equations, namely
the Reynolds stress tensor, which introduces six additional unknowns. As a result, the av-
eraged equations are always complemented by additional turbulence models that mimic the
effects of the unsteady motions. Since this method requires the least possible amount of
resources it gained enormous popularity in steady-state computations [49].

In unsteady flows, a time-scale associated with the organised unsteady motion exists
and must be well separated from the time-scale of turbulent motion. Here, the exact solu-
tion can be seen as the sum of three contributing terms: the time average, the conditional
average of the coherent motion and the random fluctuation due to turbulent motion. How-
ever, very few unsteady flows are guaranteed to exhibit deterministic low frequency motion
that can, for example, be enforced externally through periodically changing inflow or free-
stream conditions. If applicable, the conditional average in Unsteady Reynolds-Averaged
Numerical Simulations (URANS) is therefore usually interpreted as a phase-averaged solu-
tion and the closure models are formally identical to the ones in steady-state computations
[50].

The concept of Large-Eddy Simulations lies, in a sense, in between the above ap-
proaches with respect to accuracy and computational cost. In contrast to RANS, the equa-
tions of motion in classical Large-Eddy Simulations are filtered in space with respect to
a filtering function. The flow field is then decomposed into an unsteady filtered compon-
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ent and a fluctuating component. The latter, because of the nonlinearity of Navier Stokes
equations is exhibited through the subgrid stress tensor appearing in the momentum conser-
vation law. The larger turbulent structures then are described by the filtered flow field and
directly resolved, whereas the subgrid stress tensor incorporating fluctuating components
has to be modelled. This involves careful and detailed modelling, especially in the near-wall
flow region [51]. Similar to the Direct Numerical Simulations, Large-Eddy Simulations
provide a fully three-dimensional, time-dependent solution. As demonstrated previously,
the grid requirements for DNS strongly depend on the smallest scales present in the flow,
but most of the turbulent kinetic energy is contained in the larger structures. Therefore,
while computing the large-scale dynamics of the flow directly, LES significantly reduces
the total computing time by modelling the less energetic, but computationally demanding,
small scales [52].

In the cases addressed in this thesis, based on the Reynolds number along with the ex-
perimental data available, the flows under study are turbulent. Furthermore, the Reynolds
numbers considered are quite high, which prompts the application of LES. More precisely,
the current thesis focuses on a particular variation of LES approach, namely Implicit Large
Eddy Simulation (ILES). The numerical framework for this research is provided by an
Eulerian type, unsteady, three-dimensional, compressible Navier-Stokes solver. Although
both cases can be deemed incompressible, using a low Mach number coupled with a Low
Mach Number Treatment technique makes this method an appropriate tool for this work.
The framework that has been developed inhouse has a block-structured finite volume ap-
proach, formulated in a generalised curvilinear coordinate system. Several techniques for
the discretisation in time and space are present.

The ILES approach employed here differs greatly from the classic LES one because
unresolved subgrid effects are not explicitly modelled. Classically, the effects of unresolved
scales are modelled in their entirety [53]. In that approach, the numerical methods should
be as unobtrusive as possible. This means that approximation effects (i.e. truncation errors)
should be as small as possible [53].

Figure 1.3 shows a flowchart of how theory, modelling and numerical methods interact
in LES and ILES [53]. With ILES, the model and numerics are merged with the model-
ling, using theoretical foundations in vanishing viscosity to select entropy-satisfying weak
solutions [53].

Hebrard et al. [54] used LES to study the turbulent flow in a duct with a bend and
measured the heating and curvature effects. Guleren and Turan [55] used LES for strongly
curved stationary and rotating U-duct flows. Finally Qin and Pletcher [56] used LES to
study the turbulent heat transfer in a rotating square duct. All these studies are very recent
and the use of LES methods for simulating flows of this kind is something new and under
development. Although the past few years the number of studies around turbulent flows
in curved ducts has increased, compared to a few years back [57], there is still a lot of
room for further research. Considering the nature and the distinctive features of the flow
in such geometry plus the fact that there are not any ILES studies in this area, performing
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Figure 1.3: Fundamental similarities in the modelling approaches described and analysed. In both
cases some more fundamental theoretical results are used to define models

computations in this framework presents a challenging and very interesting task. In order
to better understand the ILES method used, as it is described in chapter 3, we should take a
look at the literature regarding this kind of methods.

Conventional LES procedure involves the filtering of the large scales and explicit subgrid-
scale (SGS) modelling in order to close the low-pass filtered equations [58]. The SGS
stress tensor along with the commutation error term and the truncation error are added
to the Navier Stokes equations. This model however has some drawbacks because struc-
tural models are too expensive (computationally) and not dissipative enough [58]. These
drawbacks lead to the use of mixed models that combine this model with an eddy-viscosity
one. Moreover these mixed models are computationally complex and more expensive when
dealing with high Reynolds numbers [58, 59].

Because of the drawbacks connected with the traditional LES model and based on an
idea for shock capturing presented by Von Neumann and Richmyer in the 50’s, the scientific
community started using implicit SGS models. The models of this type, primarily intro-
duced by Boris et al. [60] are named Implicit Large Eddy Simulation (ILES). The interest
in ILES the past few years is constantly increasing. The absence of explicit parameters
in ILES increases the predictiveness in simulations [61]. In ILES dissipative properties
of certain classes of schemes are utilised in order to mimick the dissipation introducted
through the subgrid stress tensor in classical LES. Namely, the dissipation resulting from
the truncation error is acting as an energy sink corresponding to small scales resulting in
the correct representation of small scales in the numerical solution. A number of classes
of schemes have been shown in the past to possess adequate dissipative properties and de-
liver ILES capability. For example MPDATA family of schemes used in the atmospheric
research community [52], Flux Vector Split [59], ALDM schemes [62] and high resolution,
higher order class of schemes which are the focus of the current thesis [53].
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Looking into the literature focused on ILES one can find successful applications of
ILES approach in a number of engineering problems including:

• Single and multi-component turbulent mixing [63–65]

• Aerospace applications and external flows [66]

• Environmental flows [67, 68]

• Marine hydrodynamics [69]

• Internal channel flows [1, 62, 70, 71]

• Geophysical flows [72]

to name but a few. The results so far for modelling turbulent flows using ILES are
encouraging for the future of the method. However for both Classical and Implicit LES,
modelling of wall-bounded flows dominated by the viscous interaction at the wall presents
a number of challenges [53]. In particular for ILES the question of the adequacy of the dis-
sipation introduced through the numerical scheme for wall bounded flows is important [1].
The classical flow in a curved bend features strong dependence on near wall phenomena as
well as a plethora of secondary flows thus presenting an excellent benchmark case for the
investigation of the behaviour of ILES schemes. There are many experiments in this area,
however so far, to our knowledge, there have been no attempt to investigate this problem
using ILES, which prompted the development of this thesis.

1.4 Aims and Objectives

Following the literature review it is understood that there are still a lot of areas concerning
turbulent flows and the available computation techniques to be researched. The case of the
curved bend presents a challenging area of study because of its link to so many different
areas, as pointed out in the previous sections. Also the limited number of studies, using
ILES, adds to the importance of the research.

The aim of the current PhD project is to study turbulent flows in ducts and investigate
the applicability and properties of different ILES models. More specifically the project’s
objectives are to:

• Investigate physics of turbulent flows and applicability of ILES models for straight
ducts

• Understand and analyse the physics of the flow in ducts with bends
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• Investigate different solution strategies based on high-order, high-resolution methods
for ducts with bends

• Assess the influence of Low Mach Number Treatment

In the following chapter the methodology used to conduct this research is presented.

Chapter 3 includes the study of the flow in a straight duct with periodic boundary con-
ditions and the analysis of the influence of four walls and corners in this kind of a flow.

In chapter 4 the study for the L-bend duct is presented in comparison with experiments
and the flow physics are analysed.

The research concludes with chapter 5 where the findings are summarised and the pos-
sibilities for further research in this area are described.
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Methodology

Further to the involvement of turbulent flows, secondary flows are also present in the cases
under study. In flows like the ones in question, high gradients are frequently encountered,
along with rapidly fluctuating components leading to the use of a simple explicit time in-
tegration method as the ideal one. Different non-linear schemes with a reconstruction step
are used to achieve high-resolution. Finally, the code version used is fully parallelised
(through a domain decomposition technique). The inhouse code used is CNS3D and it has
been developed over a period of more than 20 years with several key publications outlining
the computational methods and models contained within the code [53, 73–78]. It should
be noted that the high resolution, high-order methods can not be found in commercially
available software over 3rd order like for example ANSYS FLUENT. The computational
code has been validated and used for a wide variety of simulations featuring flow physics
such as low and high speed flows, shock waves, mixing of fluids, unsteady attached and
separated flows, multi-component flows to name but a few eg [66, 70, 79].

In this research project, besides the inhouse code for the simulations, Gridgen V15.11
software will be used for the structured grid generation along with some inhouse codes to
add boundary conditions. This brakes the geometry into blocks, thus bringing the grid in
the desired form to be utilised by the Implicit Large Eddy Simulation (ILES) inhouse code
in its fully parallelised version.

2.1 The Governing Equations

The Navier-Stokes Equations (NSE) govern the physics of all (Newtonian) fluid flows. The
set of NSE (continuity, momentum and energy equations) in their differential form is as
follows:

14
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∂ρ

∂t
+ ∇ · (ρu) = 0 (2.1.1)

∂ρu
∂t
+ ∇ · (ρu ⊗ u) = −∇ · S (2.1.2)

∂e
∂t
+ ∇ · (eu) = −∇ · (S · u) − ∇ · q (2.1.3)

where u, ρ, e, and q stand for the velocity components, the density, the total energy per
unit volume, and the heat flux, respectively. The stress tensor S represents the effects of the
thermodynamic pressure p and the viscous stresses, yielding

S = pI − λb(∇ · u)I − µ[(∇u) + (∇u)T ] , (2.1.4)

where I is the identity tensor, µ is the dynamic viscosity coefficient relating the stress to the
rate of strain for a Newtonian fluid and λb is the bulk viscosity coefficient accounting for
the dilatation of the fluid. The bulk viscosity coefficient is defined according to the Stokes
hypothesis as:

λb = −
2
3
µ . (2.1.5)

Because of the temperature differences in the flow the heat flux occurring can be linked
to the temperature gradients based on Fourier’s heat conduction law

q = −κ∇T , (2.1.6)

For a specific gas, the specific heats at constant pressure cp and constant volume cv are
related by:

cp − cv = R

where R is the gas constant equal to 287.05J/kg·K for air and

γ =
cp

cv

where γ is the specific heat ratio and equals 1.4 under standard atmospheric conditions for
air.

The above are also defined as:
cp =

γR
γ − 1

and
cv =

R
γ − 1
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The total density-energy is then given by:

ρE = ρe +
ρ

2

(
u2 + v2 + w2

)
(2.1.7)

where e stands for the internal energy. The calorific equation of state is used in order to
calculate the internal energy:

e = cvT =
RT
γ − 1

=
ρRT
ρ (γ − 1)

=
p

ρ (γ − 1)
(2.1.8)

where cv is the specific heat at constant volume, e is the internal energy and T is the absolute
temperature.

Equation of State:

The equation of state for a perfect gas with negligible inter-molecular forces is used:

p = ρRT (2.1.9)

with R being typically equal to 287.05 Nm/(kg ·K) for air and T standing for temperat-
ure.

Diffusion Coefficients: The diffusion coefficients are comprised of the thermal conduct-
ivity k, and the viscous coefficients λ and µ which are related to the thermodynamic vari-
ables by means of kinetic gas theory. Several of the assumptions on which their derivation
is based are semi-empirical in nature with a detailed account of their derivation given by
Schlichting [19]. The Prandtl number Pr can be calculated and is identified as

Pr =
µcp

k
(2.1.10)

Sutherland’s Law: The physical properties of the flow with Sutherland’s law for the vari-
ation of the dynamic viscosity coefficient µ, with the air temperature T , results:

µ

µ0
=

(
T
T0

)3/2 T0 + S u

T + S u
(2.1.11)

where T and S u are in Kelvin and µ0 is a reference viscosity at a reference temperature
T0. In most cases, the reference values for viscosity and temperature are taken at standard
atmospheric conditions at sea level, thus µ0 = 1.7894 × 10−5kg/ (m · s) and T0 = 288.16K.
Moreover the Sutherland temperature is taken as S u = 110.4K. All the above assume air as
the working medium.
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Figure 2.1: Stresses

Shear and Normal Stresses: The viscous stresses arise from the friction between the
fluid and the surface of an element and is described by the stress tensor T. In Cartesian
coordinates the general form is given as

T =

 τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 (2.1.12)

where the first subscript character denotes the axis at which the plane is perpendicular
to and the second character depicts the direction of the stress on that plane as shown below
in Figure 2.1. Stresses with identical characters in their subscript denote normal stresses
whereas otherwise denote shear stresses.

The computation of the shear stresses depends on the dynamical properties of the me-
dium considered. Assuming air, Isaac Newton stated that the shear stress is proportional to
the velocity gradient. Hence, a fluid of such attribute is referred to as a Newtonian Fluid.
For a Newtonian fluid such as air, the components of the viscous stress tensor (as derived
by George Stokes) are given by the following relations:

τxx = λb

(
∂u
∂x +

∂v
∂y +

∂w
∂z

)
+ 2µ∂u

∂x

τyy = λb

(
∂u
∂x +

∂v
∂y +

∂w
∂z

)
+ 2µ∂v

∂y

τzz = λb

(
∂u
∂x +

∂v
∂y +

∂w
∂z

)
+ 2µ∂w

∂z

τxy = τyx = µ
(
∂u
∂y +

∂v
∂x

)
τxz = τzx = µ

(
∂u
∂z +

∂w
∂x

)
τyz = τzy = µ

(
∂v
∂z +

∂w
∂y

)
(2.1.13)
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Applying 2.1.5 to the normal stresses gives:

τxx = 2µ
(
∂u
∂x
− 1

3
∇ · u

)
τyy = 2µ

(
∂v
∂y
− 1

3
∇ · u

)
(2.1.14)

τzz = 2µ
(
∂w
∂z
− 1

3
∇ · u

)

2.1.1 Dimensionless Form

In Computational Fluid Dynamics, the Navier-Stokes Equations (2.1.1) to (2.1.3) are com-
monly used in their dimensionless form. This procedure simplifies the physical system by
removing the units of the variables. This results to a reduction of the number of parameters
used and facilitates the comparison with experimental data, turning the decreased number
of parameters characterising the flow to a significant advantage.

The non-dimensionalisation is achieved by relating all quantities to characteristic refer-
ence values for the density (ρc), velocity (uc), dynamic viscosity (µc) and length (lc). Time
is non-dimesionalised by the characteristic flow time lc/uc. After this procedure we get the
following set of dimensionless variables:

t∗ =
t

lc/uc
, x∗ =

x
lc
, y∗ =

y
lc
, z∗ =

z
lc
,

ρ∗ =
ρ

ρc
, u∗ =

u
uc
, v∗ =

v
uc
, w∗ =

w
uc
, (2.1.15)

e∗ =
e
ρcu2

c
, p∗ =

p
ρcu2

c
, µ∗ =

µ

µc
.

An additional characteristic value Tc for the temperature is needed in order to obtain a
dimensionless heat flux for energy conservation. With Equations (2.1.6) and (2.1.10), the
heat flux in the non-dimensional form of Equation (2.1.3) can now be written as:

q∗ = − cvγ

Re Pr
Tc

u2
c
∇T ∗ , (2.1.16)

where Re is the Reynolds number given by:

Re =
ρcuclc

µc
. (2.1.17)

The reference velocity uc and the reference Temperature Tc are chosen to satisfy:

cvρ∞Tc = e∞ = ρ∞u2
c , (2.1.18)
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where the subscript ∞ refers to the properties of the free-stream. For a perfect gas, this
leads to the following definitions for uc and Tc

uc = a∞

√
1 + γ2 (γ − 1)Ma2

∞

γ(γ − 1)
, (2.1.19)

Tc =
a2
∞

cv

1 + γ2 (γ − 1)Ma2
∞

γ(γ − 1)
, (2.1.20)

where a∞ =
√
γp∞/ρ∞ is the speed of sound and Ma∞ = u∞/a∞ is the Mach number.

Based on the above, Equation (2.1.16) can now be simplified to:

q∗ = − γ

Re Pr
∇T ∗ . (2.1.21)

lc , which is the reference value, can be replaced with any length representing the char-
acteristic dimensions of the case studied with the reference density being equal to the free-
stream density ρc = ρ∞. Finally, in order to ensure consistency between the numerical
Reynolds number and the experimental Reynolds number, the characteristic viscosity µc is
defined as:

µc =
uc

u∞
µ∞ . (2.1.22)

The above equation is used to achieve the necessary Mach and Reynolds numbers sim-
ultaneously and is only a convenient scaling equation.

Replacing the above relations into the Navier-Stokes Equations (2.1.1) to (2.1.3) yields
their dimensionless form:

∂ρ∗

∂t∗
+ ∇ · (ρu∗) = 0 , (2.1.23)

∂ρ∗u∗

∂t∗
+ ∇ · (ρ∗u∗ ⊗ u∗) = −∇ · S∗ , (2.1.24)

∂e∗

∂t∗
+ ∇ · (e∗u∗) = −∇ · (S∗ · u∗) − ∇ · q∗ , (2.1.25)

S∗ being the nondimensional stress tensor:

S∗ = p∗I +
2

3 Re
(∇ · u∗)I − 1

Re
[(∇u∗) + (∇u∗)T ] . (2.1.26)

Here, the nabla operator ∇ denotes the gradients and vector derivatives with respect to the
dimensionless coordinates x∗, y∗ and z∗. In the following sections the supercript ∗ does not
appear for simplicity reasons.
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2.1.2 Matrix Form

In order to simplify and organise the logic into a computational method, Equations (2.1.23)
to (2.1.25) are written in conservative Cartesian matrix form, resulting in a single equation
representing the entire system of governing equations:

∂U
∂t
+
∂E
∂x
+
∂F
∂y
+
∂G
∂z
=
∂L
∂x
+
∂M
∂y
+
∂N
∂z
, (2.1.27)

where U is the array of the conservative variables; E,F,G are the inviscid and L,M,N are
the viscous flux vectors associated with the Cartesian x-, y- and z-direction, respectively,

U =


ρ
ρu
ρv
ρw
e

 , E =


ρu

ρu2 + p
ρvu
ρwu

(e + p)u

 , F =


ρv
ρuv
ρv2 + p
ρwv

(e + p)v

 , G =


ρw
ρuw
ρvw
ρw2 + p
(e + p)w

 ,

L =
1

Re


0
τxx

τxy

τxz

uτxx + vτxy + wτxz − qx

 , M =
1

Re


0
τyx

τyy

τyz

uτyx + vτyy + wτyz − qy

 ,

N =
1

Re


0
τzx

τzy

τzz

uτzx + vτzy + wτzz − qz

 .

In Equation (2.1.27), qx,y,z represents the net rates of heat transfer along x, y and z
direction and τi j stands for the viscous stress in the j direction exerted on a plane normal to
the i axis.

2.1.3 Generalised Curvilinear Coordinates

The Cartesian coordinate system, however, restrains the choice of cases that can be stud-
ied as a majority of the problems require arbitrary, body-fitted grids that permit the use of
curved geometries. Because of this, the conversion of the Cartesian matrix form to a gener-
alised curvilinear coordinate system given by ξ = ξ(x, y, z, t), η = η(x, y, z, t), ζ = ζ(x, y, z, t)
and τ = t, e.g. see Drikakis’ book [53], is the next step. In order to achieve this, Equation
(2.1.27) is multiplied with the Jacobian determinant of the transformation from Cartesian
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(x, y, z) to curvilinear (ξ, η, ζ) coordinates

J =
∣∣∣∣∣ ∂(x, y, z)
∂(ξ, η, ζ)

∣∣∣∣∣ = xξ
(
yηzζ − yζzη

)
+ yξ

(
zηxζ − zζxη

)
+ zξ

(
xηyζ − xζyη

)
(2.1.28)

and substituting the partial derivatives for non-moving grids

∂

∂x
=

(
∂

∂ξ

)
∂ξ

∂x
+

(
∂

∂η

)
∂η

∂x
+

(
∂

∂ζ

)
∂ζ

∂x
,

∂

∂y
=

(
∂

∂ξ

)
∂ξ

∂y
+

(
∂

∂η

)
∂η

∂y
+

(
∂

∂ζ

)
∂ζ

∂y
,

∂

∂z
=

(
∂

∂ξ

)
∂ξ

∂z
+

(
∂

∂η

)
∂η

∂z
+

(
∂

∂ζ

)
∂ζ

∂z
,

∂

∂t
=
∂

∂τ
.

(2.1.29)

The compressible Navier-Stokes Equations in curvilinear coordinates are now repres-
ented by:

J
∂U
∂τ
+ J
∂E
∂ξ
ξx + J

∂E
∂η
ηx + J

∂E
∂ζ
ζx + . . . = J

∂L
∂ξ
ξx + J

∂L
∂η
ηx + J

∂L
∂ζ
ζx + . . . , (2.1.30)

where the subscripts indicate the partial derivatives with respect to spatial dimensions.

Using this relation (in 1D):

J
∂E
∂ξ
ξx =

∂(JEξx)
∂ξ

− E
∂

∂ξ
(Jξx) (2.1.31)

will lead to further simplification of this expression and its equivalent for the other flux
derivatives, resulting:

∂Ũ
∂t
+
∂Ẽ
∂ξ
+
∂F̃
∂η
+
∂G̃
∂ζ
=
∂L̃
∂ξ
+
∂M̃
∂η
+
∂Ñ
∂ζ
, (2.1.32)

with

Ũ = JU
Ẽ = J(Eξx + Fξy +Gξz) ,
F̃ = J(Eηx + Fηy +Gζz) ,
G̃ = J(Eζx + Fζy +Gζz) ,
L̃ = J(Lξx +Mξy + Nξz) ,

M̃ = J(Lηx +Mηy + Nηz) ,

Ñ = J(Lζx +Mζy + Nζz) ,

(2.1.33)
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This system of equations is applied to the body-fitted grid, like a uniform and rectangu-
lar computational grid. As a result, the numerical treatment for solving the equations in
Cartesian matrix form and generalised curvilinear matrix form is exactly the same. Again
for simplicity reasons, the superscript ˜ is omitted for the remainder of this chapter.

2.2 Time Marching

The time-dependent Navier-Stokes Equations can be considered for both steady and un-
steady flows. A time-marching algorithm that progressively determines the dependent vari-
ables in steps of time is used to find the solution. In case of steady flow, a constant state is
approached asymptotically during the course of the simulation, while for unsteady cases,
the inherently transient solution is predicted.

Explicit Runge Kutta time integration methods are chosen in this work for their ability
to temporally resolve the rapidly fluctuating velocity components encountered in unsteady
separated flows and for their simplicity. This approach constructs the solution as a linear
combination of multiple stages where the number of stages is determined by the desired ac-
curacy of the algorithm [53]. Before applying a Runge Kutta method to Equation (2.1.32),
however, the time derivative has to be isolated

∂U
∂t
= −∂E
∂ξ
− ∂F
∂η
− ∂G
∂ζ
+
∂L
∂ξ
+
∂M
∂η
+
∂N
∂ζ
= f (U, t) , (2.2.1)

2.2.1 Timestep Calculation

A common value needed to be obtained for any numerical temporal discretisation is that of
∆t. For an explicit time stepping scheme, however, it can be shown that the solution will
remain stable only up to a certain maximum value of ∆t. The restriction results from the
local speed of the fastest wave s, propagating through a cell in the entire computational
domain. A simple way to visualise this is by examining Figure 2.2.

One can notice in Figure 2.2 that the wave propagates at a speed s1 for a timestep dur-
ation ∆t within the cell domain (considering x-direction). Thus, the solution obtained can
be said to remain stable. However, if a faster wave speed exists, such as sx, and within the
same timestep length of ∆t, it ’escapes’ the cell domain, then the solution is said to be un-
stable. For a time-stepping scheme to be stable it has to meet the Courant-Friendrichs-Lewy
condition (CFL) which states that if a wave is crossing a discrete grid, then the timestep
must be less than the time for the wave to travel adjacent grid points. As a corollary, when
the grid point separation is reduced, the upper limit for the timestep also decreases. As will
be seen later this has the effect of reducing the timestep to a very small size when dealing
with solid surfaces leading to considerable computational time requirements.
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Figure 2.2: Fluxes and cell centre values

2.2.2 Global Timestep

For time-dependent flows, the same global timestep ∆t has to be used for time marching
in all computational cells, which, for a given Courant-Friedrichs-Lewy (CFL) number, is
defined as

∆t = min

J
CFL

max(|λξ0|, |λ
ξ
+|, |λξ−|, |λη0|, |λ

η
+|, |λη−|, |λζ0|, |λ

ζ
+|, |λζ−|)

 , (2.2.2)

with J denoting the Jacobian determinant and λ are the eigenvalues associated with the
advective fluxes E, F, G, respectively.

For the forward Euler method from Equation (2.2.3), the theoretical value of CFL ≤ 1
leads to a stable integration in time. This means that the length of the timestep is equal or
less than the time it takes for the fastest acoustic wave to travel from one grid point to the
next. Although setting CFL to less than 1 is necessary, it does not guarantee the stability
of the algorithm, as instabilities in the sense of permitting large errors may still appear.
To resolve this issue, the CFL is lowered until a stable solution is obtained. Note that it
is introduced due to the non-linear nature of the governing equations in which case it is
possible for a wave to vary in a non-linear manner and therefore reach the adjacent grid
point within the time calculated by the assumed linear wave.
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2.2.3 Third-Order Runge Kutta

The standard third-order accurate Runge Kutta method consists of the following stages:

U1 − Un

∆t
=

1
3

f (Un, tn) ,

U2 − Un

∆t
=

2
3

f (U1, tn+1/3) ,

Un+1 − Un

∆t
=

1
4

[
f (Un, tn) + 3 f (U2, tn+2/3)

]
.

(2.2.3)

Similar to the two-stage algorithms, a third-order accurate TVD Runge Kutta can be for-
mulated

U1 − Un

∆t
= f (Un, tn) ,

U2 − Un

∆t
=

1
4

[
f (Un, tn) + f (U1, tn+1/3)

]
,

Un+1 − Un

∆t
=

1
6

[
f (Un, tn) + 4 f (U2, tn+2/3) + f (U1, tn+1/3)

]
.

(2.2.4)

Additionally, time integration schemes can be designed with extended stability properties
in mind, leading to the alternative three-stage, third-order accurate algorithm given by:

U1 − Un

∆t
=

1
2

f (Un, tn) ,

U2 − Un

∆t
=

1
2

f (U1, tn+1/3) ,

Un+1 − 2
3U2 − 1

3Un

∆t
=

1
3

[
f (U2, tn+2/3) + f (U1, tn+1/3)

]
.

(2.2.5)

Higher order methods can be constructed as above, but the level of improvement in the res-
ults is insignificant compared to the increased computational cost observed in most cases.
For this reason, higher order methods will not be discussed here.

2.3 Discretisation

Discretisation is the process of transferring continuous models and equations into discrete
counterparts. This process is usually carried out as a first step towards making them suit-
able for numerical evaluation and implementation on digital computers. Discretisation is
also concerned with the transformation of continuous differential equations into discrete
difference equations, suitable for numerical computing.
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Figure 2.3: 3D notation for a finite volume cell

The inter-cell flux values across the faces defined by the subscripts (i ± 1/2, j, k), (i, j ±
1/2, k) and (i, j, k ± 1/2) are used to discretise the spatial derivatives at the centre of the
control volume (i, j, k) as shown in Figure 2.3.

Based on the above statement, Equation (2.2.1) in semi-discretised form can now be
written:

∂U
∂t
= −

Ei+1/2, j,k − Ei−1/2, j,k

∆ξ
−

Fi, j+1/2,k − Fi, j−1/2,k

∆η
−

Gi, j,k+1/2 −Gi, j,k−1/2

∆ζ

+
Li+1/2, j,k − Li−1/2, j,k

∆ξ
+

Mi, j+1/2,k −Mi, j−1/2,k

∆η
+

Ni, j,k+1/2 − Ni, j,k−1/2

∆ζ
,

(2.3.1)

with the terms on the right-hand side being solved independently and the complete system
integrated in time after all the discretised fluxes are summed.

A central difference scheme is used to calculate the linear viscous fluxes L, M and
N, while the non-linear advective fluxes E, F and G are evaluated using a high-resolution
Godunov-type method.

2.4 Low Mach Number Treatment

Kolmogorov states [80] that the leading order kinetic energy dissipation rate is proportional
to u3/∆x for decaying turbulence. In the ILES approach as presented in [81] the dissipation
rate substantially amends the high wave-number performance. To control any excessive
dissipation for decreasing local Mach numbers, the Low Mach Mach Number Treatment
(LMNT) has been proposed [81, 82]. This method has been designed in order to assure
uniform dissipation of the kinetic energy within the limit of Mach number M = 0.
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The working idea of this treatment stands as a correction operation in the reconstruction
procedure. The LMNT is employed on discontinuity at the cell interface between the left
and right values. The addition of a function z in the velocity discontinuity assures reason-
able numerical dissipation rate and does not exceed that of the original scheme. Equation
2.4.1 illustrates the modification with function z

−→u R
i+1/2, j,k =

−→u L + −→u R

2
+ z
−→u R − −→u L

2
, −→u L

i+1/2, j,k =
−→u L + −→u R

2
+ z
−→u L − −→u R

2
(2.4.1)

where z is defined as

z = min (Mtotal, 1) , Mtotal = max (ML,MR) (2.4.2)

Where ML and MR are the local Mach number subscript L and R denote the left and
right of the cell face. This augmentation leads to a progressive blending in of central
differencing for the velocity components, where central cifferencing is recovered for M = 0.
The correction extends the applicability of the Godunov-type methods to a least M ≈ 10−4

([81, 82]). At the same time it can be considered as a ’realistic’ physical law addition to the
standard Godunov method because of the new treatment of the velocity jumps; otherwise
Godunov’s method would set up artificially large jumps not really present in a low Mach
number flowfield.

As probably noticed, the reconstructed left and right density and pressure are not mod-
ified, but since the velocity flux has altered, the total energy flux will need to be corrected
to accommodate for the new kinetic energy (KE) flux. It is important to point out that the
reconstruction is modified based on the local properties of the flowfield, hence the same
governing equations are solved throughout the domain and thus it’s additional computa-
tional ’effort’ is considerably small.

However, Low Mach Number Treatment was designed for freestream flows. It was
designed to counteract uniformly low Mach freestream flows which would otherwise cause
excess dissipation in Godunov type solvers. ILES is, as stated before, sensitive to numerical
dissipation so low (local) Mach numbers near the walls can have a significant effect in the
simulations. Here is where the effect of a method like LMNT can be tested for wall bounded
turbulent flows to deal with the local low Mach numbers. LMNT could prove an important
tool in producing improved results in ILES simulation for this kind of flows and is an
important part of this study.
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2.5 Riemann Solver

In order to introduce the concept of the Riemann solver, it is helpful to consider in the first
instance the physical problem of a closed tube initially divided into two sections separated
by a diaphragm, one with a high pressure and the other with a low one as displayed by
Figure 2.4(a) with the fluid resting. An instant removal of the diaphragm leads to a shock
wave, caused by the high pressure gradient, moving to the right, an isentropic expansion
wave propagating to the left and a contact surface separating the two different fluids emer-
ging due to the different process they underwent, Figure 2.4(b). The main difference in
the two resulting fluids emerges from the fact that the shock wave will cause a change in
enthalpy whereas the isentropic expansion will not thus resulting in a contact surface where
the two fluids meet. The solution of the flowfield in the shock tube as sketched in Figure
2.4 is referred to as the Riemann problem, named after the German mathematician G.F.
Bernhard Riemann who first attempted it’s solution in 1858, and is a direct analytic solu-
tion of the unsteady, one-dimensional Euler equations. First, all the properties of regions 1
and 4 are known before the diaphragm is removed and remain the same in the regions not
reached by the shock or the expansion wave. An “exact” solution to the remaining problem
can be found applying conservation laws across the waves in the problem [83]. However
the exact method leads to a transcendental equation for pressure which has to be solved
iteratively.

A piecewise-average representation of data in a finite volume solver presents a similar
discontinuity at each cell face. The main difference being that in the context of a finite
volume solver, not only pressure, density and temperature are varying in the initial condi-
tion but also the velocity can vary across the discontinuity. This modified Riemann problem
can be solved in the same manner as the shock tube problem resulting in the values at the
cell face which are required in order to determine intercell fluxes for the finite volume
scheme. S.K. Godunov [84] was the first to suggest such a method leading to an “exact”
Godunov solver.

Because the exact Riemann solver is too costly, some approximations are necessary
resulting to the approximate Riemann solvers. In the approximate Riemann solvers, the
intercell fluxes are directly approximated. An approximated expression of the fluxes is
produced by applying the integral form of the conservation laws.

There are many different approximated solvers with some examples being:

• The Roe approximate Riemann solver, devised by Roe [85].

• The HLLC, introduced by Toro [86].

• Rotated-hybrid Riemann solvers that were introduced by Nishikawa and Kitamura
[87].
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(a) t=0

(b) t>0

Figure 2.4: Shock Tube

In this thesis, the advective fluxes were solved using the HLLC solver as presented by Toro
[86, 88]. The Harten, Lax and van Leer solver (HLL) is a robust approximate Godunov
method. Toro, implemented a version where missing contact and shear waves are restored,
resulting to a modified version of the HLL scheme known as HLLC with C representing
the Contact.

2.5.1 HLLC

The approximate Riemann solver assumes a wave configuration that separates the constant
states of the solution. The difference between the HLL and HLLC solvers is the number
of waves. In the HLL the three constant states UL, UR and the Star Region (intermediate
region) are separated by two waves S L and S R. The HLLC solver, on the other hand,
contains three waves, thus creating four regions. The missing contact wave mentioned
above is now represented by the additional wave. The waves, the regions, and the split of
the Star Region in two parts are shown in Figure 2.5 [88].

The newly obtained wave speeds are used to calculate the fluxes by combining them
with the constant states of the variables.

Based on Toro [88] the fluxes are calculated though the following procedure:

The left and right states of the primitive variables are calculated from the reconstruction
step using High Resolution schemes, described in the previous subsection. The pressure in
the star region is estimated by using the left and right states of the primitive variables:
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Figure 2.5: HLLC Riemann Solver

p∗ =
1
2

(pL + pR) − 1
2

(uR − uL)(ρ̄ā) . (2.5.1)

where ρ̄ and ā are the averaged density and speed of sound respectively:

ρ̄ =
1
2

(ρL + ρR) (2.5.2)

ā =
1
2

(aL + aR) (2.5.3)

The S L and S R speeds are then calculated using the following equations:

S L = uL − aLqL , S R = uR − aRqR , (2.5.4)

with

qK =

{
1 if p∗ ≤ pK[

1 + γ+1
2γ (p∗/pK − 1)

]
1
2 if p∗ > pK

. (2.5.5)

where K indicates the left or right states

The star wave speed is calculated as follows:

S ∗ =
pR − pL + ρLuL(S L − uL) − ρRuR(S R − uR)

ρL(S L − uL) − ρR(S R − uR)
. (2.5.6)
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and the U∗L and U∗R states are given by:

U∗K = ρK

(
S K − uK

S K − S ∗

) 
1

S ∗
vK

wK
EK
ρK
+ (S ∗ − uK)

[
S ∗ +

pK
ρK (S K−uK )

]


. (2.5.7)

Finally, the flux is calculated by applying the Rankine-Hugoniot conditions:

FHLLC
i+1/2 =


FL i f 0 ≤ S L

FL + S L(U∗L − UL) i f S L ≤ 0 ≤ S ∗
FR + S R(U∗R − UR) i f S ∗ ≤ 0 ≤ S R

FR i f 0 ≥ S R

. (2.5.8)

2.6 High-Resolution Methods

Use of high-resolution high-order methods in ILES is innovative and challenging and has
been the focus of some researchers the past few years. There is a wide range of cases
(mostly turbulent flows) that are being studied using these methods. An important issue
with the use of these methods in ILES is the universality of the approach for many different
flows. Given this uncertainty the challenge for the use of these methods is significant.
Some of the cases that have been studied so far using these methods include open cavity
flows [63, 89], highly swept wings [90] and low resolution decaying turbulence [91]. More
cases can be seen in the introduction of this study. Upwind methods are typically overly
dissipative for simulations of homogenous decaying turbulence when using second and
third order methods [92]. High order methods improve this situation but do not cure the
problem completely [91] so more detailed research of different cases would be beneficial.
Further evaluation of the methods in turbulent flows will provide usefull information for
their future use, accuracy and affordability.

The search for a new family of numerical schemes that combine the need for a highly
accurate simulation and the preservation of monotonicity, that is a basic property of the
exact solution, lead to the use of modern high-resolution methods. Monotone, first-order
methods, may avoid spurious oscillations, but they are inaccurate for practical simulations.

High-resolution schemes use a type of nonlinear methods to manage oscillations in the
solution, compared to to linear methods that use the same differencing stencil throughout.
High-resolution of the numerical solver is achieved by extrapolating the variables as lin-
ear, quadratic or higher-order functions in a cell, whereas first-order algorithms follow a
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piecewise constant approach. This is the general basis of the non-linear mechanism that
distinguishes modern methods from classical linear schemes. Additionally, high-resolution
methods are able to adapt to the behaviour of the local solution instead of treating each part
of the solution identically, resulting in a sensitivity to the state of the flow.

In this research, two forms of reconstruction methods are used and presented: different
variants of the Monotonic Upwind Scheme for Scalar Conservation Laws (MUSCL) as
originally introduced by Leer [93], and a Weighted Essentially Non-Oscillatory (WENO)
scheme following the ideas of Liu [94].

2.6.1 MUSCL Schemes

According to Toro [88], the left and right states of the conservative variables U at the cell
interface (i + 1/2) are computed for the MUSCL schemes as presented here:

UL,i+1/2 =Ui +
1
4

[
(1 − k) ϕ (rL) (Ui − Ui−1) + (1 + k) ϕ

(
1
rL

)
(Ui+1 − Ui)

]
,

UR,i+1/2 =Ui+1 −
1
4

[
(1 − k) ϕ (rR) (Ui+2 − Ui+1) + (1 + k) ϕ

(
1
rR

)
(Ui+1 − Ui)

]
,

(2.6.1)

where k is a free parameter in the interval [−1, 1] and ϕ is a limiter function based on the
slopes of the conserved variables within, for the second- and third-order accurate schemes,
the four-point stencil given by the cell averaged values at positions (i − 1), (i), (i + 1) and
(i + 2). For k = −1 or k = 0 the MUSCL extrapolation in Equations (2.6.1) is essentially a
full upwind scheme or a central difference scheme, respectively, and third-order of accuracy
can be obtained for k = 1/3 if the limiter is not entirely symmetric [88].

Second-order limiters: All second- and third-order accurate limiter functions use the fol-
lowing definitions of the left and the right ratio of the slopes:

rL =
Ui+1 − Ui

Ui − Ui−1
,

rR =
Ui+1 − Ui

Ui+2 − Ui+1
.

(2.6.2)

ϕMC =

0 if r ≤ 0
min(1+r

2 , 2, 2r) if r > 0
, (2.6.3)

with MC representing the Monotonized Central limiter.
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Fifth-order limiter: A fifth-order accurate MUSCL scheme was presented by [95] apply-
ing a six-point stencil, as opposed to the classical four-point stencil employed previously.
The slope ratios are defined as:

rL,i =
Ui+1 − Ui

Ui − Ui−1
,

rR,i =
Ui − Ui−1

Ui+1 − Ui
,

(2.6.4)

and ϕ is calculated by

ϕ∗L,M5 =
−2/rL,i−1 + 11 + 24rL,i − 3rL,irL,i+1

30
,

ϕ∗R,M5 =
−2/rR,i+2 + 11 + 24rR,i+1 − 3rR,i+1rR,i

30
.

(2.6.5)

2.6.2 WENO Schemes

Essentially Non-Oscillatory (ENO) concept originally proposed by Harten [96] has been
developed as a higher-order interpolation method. ENO aims at constructing high-order
schemes in smooth regions and through the use of adaptive stencils achieve high accuracy
up to discontinuities while at the same time providing high order solutions that are free
of spurious oscillations [53]. The ENO schemes select an interpolating stencil in which
the solution is supposed to be the smoothest one. If a cell is near a discontinuity, the
smoothest possible solution is assigned to this cell avoiding spurious oscillations [53]. So
to sum it up, high-degree polynomials are prone to oscillations even if the underlying data
is smooth. In order to control these oscillations, without using limiter functions like the
MUSCL schemes, ENO chooses the smoothest of many possible stencils to avoid disastrous
overshoots or undershoots, and as a result, does not formally satisfy the non-linear stability
criteria.

WENO is an extension of the ENO concept. WENO methods are primarily based on
the work of Balsara, Jiang and Liu [94, 97, 98]. Instead of choosing a single stencil, WENO
combines all possible stencils in order to produce a convexly weighted average based on
their smoothness. The sensitivity to small changes in the samples and the effects of the
truncation errors are significantly reduced with the use of the averaging. WENO schemes
ideally reach an order of accuracy calculated by 2s − 1, with s being the number of sample
points, whereas ENO methods achieve lower orders of accuracy because they discard most
of the points.

The WENO method employed in this thesis uses a stencil of five cells to either side of
the interface, resulting in a ninth order accurate scheme in one dimension. A third-order
WENO reconstruction derived from a linear interpolation with s = 2 is presented here in
order to illustrate the basic concept of the method. For the reconstruction within a cell i,
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Figure 2.6: Third-order WENO reconstruction stencils

two stencils S 0,1 comprising the cell-averaged values of two samples each are considered
(Figure 2.6)

S 0 =(xi−1, xi) ,
S 1 =(xi, xi+1) .

(2.6.6)

A standard linear interpolation using the stencils 0 and 1 leads to the following polyno-
mials

p0(x) =Ui +
Ui − Ui−1

∆x
(x − xi) ,

p1(x) =Ui +
Ui+1 − Ui

∆x
(x − xi) ,

(2.6.7)

where the right interface value at i − 1/2 and the left interface value at i + 1/2 are obtained
for x equal to xi−1/2 and xi+1/2, respectively. The weighted average P calculation gives the
reconstructed variables at the cell faces UR,i−1/2 and UL,i+1/2. The convex combination is
defined by:

P(x) =
a0

a0 + a1
p0(x) +

a1

a0 + a1
p1(x) , (2.6.8)

with

a0 =
C0

(ϵ + IS0)2 ,

a1 =
C1

(ϵ + IS1)2 .

(2.6.9)

where ϵ is a small positive number introduced in order to avoid a division by zero in a
perfectly smooth flow and C0,1 are the optimal weights. The smoothness indicators are
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Figure 2.7: Decomposition of a 2D global data domain over four processors

calculated by:

IS0 =(Ui − Ui−1)2 ,

IS1 =(Ui+1 − Ui)2 .
(2.6.10)

Higher-order method derivation follows the same idea but due to the equation complex-
ity, it can not be presented here. More details however can be found in [53, 97, 98].

2.7 Domain Decomposition

The study of turbulent three-dimensional flows using ILES is computationally expensive
because of the large amount of data required. In order to reduce the cost in time, the cases
must be solved using a set number of processors. This inevitably leads to an increase of the
cost in computational resources. The computational domain is divided into several smaller
ones that are assigned to a different processor. Each processor then solves the governing
equations in parallel with the other ones, splitting the problem into several smaller (local)
ones. This way the simulation time is significantly reduced, see Figure 2.7 .

The degree of domain decomposition is dependent on the number of processes avail-
able. Using parallel computing allows the calculation of problems that otherwise are
memory bound. A pre-processing programme is used to split the domain into its smaller
parts. For the simulation to work as if it was running in one processor, an exchange of data
between processors is required. In every iteration the neighbouring processors exchange
data according to the MPI-1 standard [99, 100]. With the use of MPI, the computational
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time is significantly reduced and the code remains in a portable form.

2.8 Forcing Term

The final issue that needs resolving is that of the periodic boundary conditions for the
straight duct case. Since the mass flux of the flow needs to be preserved, a forcing term
is introduced in the streamwise pressure gradient at the NSE and due to that it influences
the entire flow. Originally a compressible flow technique [101], it utilises an extra stream-
wise pressure gradient achieving the target mass flux through a pressure drop. After the
introduction of the forcing term the momentum and energy equations are written as:

∂

∂t
(ρui) +

∂

∂xi
(ρuiu j) +

∂p
∂xi
+ fiδi1 =

∂σi j

∂x j
(2.8.1)

∂E
∂t
+
∂

∂xi
(E + p)u j + fiu1 =

∂

∂x j
(σi jui) −

∂

∂x j
q j (2.8.2)

where t and xi the time and space variables, fi the forcing term, σi j the viscous stress
tensor, δi j the Kronecker symbol where δi j = 1 if i = j and δi j = 0 otherwise and q j the
heat flux. The process of the calculation of the forcing term is presented below.

After the momentum equation is averaged over xy planes and integrated in the wall
normal direction it produces:

∂

∂t
Qm =

1
Re

Ly

[
⟨µ⟩xy

∂ ⟨u1⟩
∂z

]2

z=0
− LyLz f1 (2.8.3)

with ⟨⟩xy being the average over the xy plane, Lz the width of the duct, Ly the duct span
and Qm the mean flux of the flow at yz plane.

Providing that:

⟨µ⟩xy
∂ ⟨u1⟩
∂z
∥z=2 = − ⟨µ⟩xy

∂ ⟨u1⟩
∂z
∥z=0 (2.8.4)

we get:
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∂

∂t
Qm = −LyLz f1 − 2

1
Re

Ly ⟨µ⟩xy
∂ ⟨u1⟩
∂z
∥z=0 (2.8.5)

It can be concluded from the above equation that the use of a constant forcing term will
lead to the decrease of the mass flux due to the higher shear stress of the transitional flow.

As a result, in order to have a constant mass flux for a fully developed turbulent flow,
the forcing term must have a time depended behaviour.

The previous method has been developed further in [102] in order to be time depended:

f n+1
1 = f n

1 +
∆t

LyLz

[
a(Qn+1 − Q0) + β(Qn − Qo)

]
(2.8.6)

with Q0, Qn and Qn+1 being the conserved mass flux, the mass flux at time step n and
n + 1 computed from

Qn+1 = Qn − ∆tgn (2.8.7)

gn = LyLz f n +
4Ly

Re
⟨µn⟩xy

∂
⟨
un

1

⟩
∂z
∥z=0 (2.8.8)

In the above formula we multiply by 4 taking into account that there are four walls
compared to the two walls in a channel flow. This also means that this formula can be used
for a square sectioned duct since span and gap lengths are equal. In an unsteady flow the
forcing term will be fluctuating near a mean value while in a steady case it will be constant.
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Straight Duct Flow

Channel flows are a traditional research topic for studying turbulence. Many cases can be
found in the literature regarding this area. The case of the duct flow though (especially
at high Reynolds numbers) can present even more interesting results considering its basic
difference to the channel, where instead of two parallel plates we have four. The flow is
confined in this space and surrounded by four walls. The basic difference to the channel
flow is the existence of the four corners whose effect can present an interesting study. The
flow is significantly affected by the existence of four walls because of the surrounding
turbulent boundary layer. All the above make this a suitable case for studying the ability
of a CFD algorithm to model turbulence in the presence of solid surfaces. Here, the flow
inside a straight duct with periodic boundary conditions will be studied. Different grids and
schemes will be employed in the investigation of the flow.

Besides the obvious and aforementioned reasons for studying the flow inside a straight
duct, there was one more reason for this study. The resulting developed turbulent flow will
be used to supply the L-bend case study, with a developed turbulent flow instead of simply
using a boundary profile that would be complicated to develop for a square sectioned case.
This way less time and more accuracy can be achieved in those simulations.

3.1 Problem Description

The geometry under investigation is a square sectioned duct with four walls with a 1 H
distance between them. The size of the duct is 6.28H x 1H x 1H in length (L), spanwise
width (W) and height (H) in x, y, z directions respectively. In this case since it is a square
sectioned duct (W) equals (H). The length of 6.28H or 2πH was based on a similar case for
a plane channel [1] where this was proved to be the length needed for the flow to develop.
A periodic boundary condition is used in the streamwise direction and a no-slip (wall)
condition along the surrounding walls. All the above are shown in Figures 3.1 and 3.2.

37
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Figure 3.1: Duct coordinate system

(a) X-Z plane BCs (b) Y-Z plane BCs

Figure 3.2: Boundary conditions
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Air at standard atmospheric ground level conditions is used as the modelled flow. The
Reynolds number is equal to 40,000 based on the bulk flow velocity. There are no ex-
perimental data for a straight duct at this Reynolds number so the results obtained will be
compared to an experiment conducted by Laufer [23] on a channel flow. The results will
be compared to the channel flow in order to locate the main differences between the two
cases and see how closely the profile is captured by the different grids and schemes. This
will not be a validation procedure since the cases are not identical and do not allow such as-
sumptions but will provide a comparison base for the differences between duct and channel
flows as well as useful information for the L-bend case that follows. The Reynolds number
of 40,000 was used since the flow developed inside the duct will be used as the incoming
flow in the case that follows for which that case there is an experiment providing a large
amount of data at this Reynolds number.

3.2 Computations

In this section the grid used along with the initial conditions and the methods for calculating
the flow properties are presented.

3.2.1 Grid

For the purposes of the simulations, three grids were generated using Gridgen V15.11.
These three grids were based on the same geometry but had a different number of cells
(coarse and fine grids). Most of the cells were located in the near wall region since that is
the more important area of study in this case. Besides the existence of smaller turbulent
scales in this region there is also a boundary layer because of the solid wall and viscous flow
combination. This way an additional parameter that needs to be captured is introduced.

The number of points in the z and y direction was the same and equalled to 49 for
the course, 73 for the medium and 97 for the fine grid. In the x direction 66, 96 and 129
points were used respectively resulting to the three grids of size 49x49x66, 73x73x96 and
97x97x129. The grid sizes and the distance of the first point from the wall are shown
in Table 3.1. Finally in Figures 3.3, 3.4 and 3.5 the grids are shown in order to make
the difference in clustering visually clear. The grid generation was based on the work of
Kokkinakis [1] for a plain channel adjusted in this case, based on the Reynolds number to
ensure that the simulation is wall resolved.

As mentioned before, the near wall region is very important in this (and all similar)
case. The near wall clustering is essential for the correct capture of the boundary layer.
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Grid Grid Size ∆z y+

Coarse 49x49x66 0.001 2.4
Medium 73x73x96 0.00075 1.8

Fine 97x97x129 0.0005 1.2

Table 3.1: Grid and first cell sizes

Y

Z

(a) coarse grid for straight duct

Y X

Z

(b) coarse grid closer to wall

Figure 3.3: Coarse Grid
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Y X

Z

(a) medium grid for straight duct

Y X

Z

(b) medium grid closer to the wall

Figure 3.4: Medium Grid
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Y

Z

(a) fine grid for straight duct

Y X

Z

(b) fine grid closer to the wall

Figure 3.5: Fine Grid
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3.2.2 Initial Conditions

A laminar parabolic profile along with perturbations (random noise ε) is used for the
streamwise velocity u initialisation while v and w velocities are calculated based on u.

p(t = 0) = 1
u(t = 0, z) = U0

[
1 − (z − 1)2

]
(1 + sε)

v(t = 0, z) = sε × u(t = 0, z)
w(t = 0, z) = sε × u(t = 0, z)

E(t = 0, z) = p
γ−1 +

ρ

2

(
u2 + v2 + w2

) (3.2.1)

where U0 is the centreline velocity, p is the pressure, s is the percent of perturbation and
ε is a random number from -1 to 1. For the simulations s was equal to 0.1 as a perturbation
of 10% was considered enough to help the flow reach a turbulent state.

The schemes employed were MUSCL 2nd MC with Low Mach Number Treatment
(referred to from now on as MC and plotted as MC_LMNT), MUSCL 5th with LMNT (re-
ferred to from now on as MUSCL 5th and plotted as Mus5th_LMNT) and finally WENO
9th with no LMNT (referred to from now on as WENO 9th and plotted as Weno9th_NLMNT).
The reason for not simulating using WENO 9th with LMNT is that the method becomes
so under-dissipative, as also pointed out by Kokkinakis [1], that it was not possible to ob-
tain a solution for any timestep chosen. At the same time the other two methods provided
significantly improved results when using LMNT [1].

3.2.3 Mean Flow Properties

In the simulations the timestep keeps changing since it is recalculated based on the new
solution obtained. This has to be taken into account since every timestep has a different
weight in the averaging procedure. The averaging is performed based on time and not
iteration number, thus taking into account the difference in duration of every timestep as
mentioned before. The mean value of a variable ω in time is obtained through:

ω̄ (t) =
1

tstart − tend

∑tend

tstart
ω∆t (3.2.2)

and is used, in its discretised form:

ω̄N+1 = ω̄N T N
total

T N+1
total

+ ωN+1 T N+1
current

T N+1
total

(3.2.3)
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This averaging procedure will be used to obtain the averaged values mentioned in the
following subsection.

3.2.4 High Order Statistics

For the analysis of the results some statistics were implemented to export, variable profiles,
Reynolds stresses, skewness and flatness. The following equation:

ω
′
= ω − ω̄ (3.2.4)

is used to calculate the variables fluctuating component so that the Reynolds stresses can
be calculated, withω being the unsteady variable,

(′)
denotes the fluctuating component and

(̄) the mean value of the variable. It should be noted that since the conservative form of the
NSE is used (calculation of momentum) the compressible solver can lead to variations in
density. In order to account for the compressibility effects, velocity needs to be decoupled
from the density and this is achieved through Favre averaging:

ω̄ =
¯ρω
ρ̄

(3.2.5)

where the overbars (e.g. ¯ρω) denote averages using the Reynolds decomposition. With
the fluctuating velocity fields the rest of the statistics can be obtained like the root mean
square (RMS):

ωrms =
√
ω′2 (3.2.6)

Skewness and flatness are high order statistics that can determine if the flow is fully
developed and are calculated as follows:

Skewness:

S ω′ =
ω′3

3√
ω′2

(3.2.7)

Flatness:

Fω′ =
ω′4

ω′2
2 (3.2.8)
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Skewness and flatness factors of velocity are statistical properties representing charac-
teristics of turbulence. The production of the rate of dissipation of turbulent kinetic energy
is directly related to skewness in isotropic turbulence [103].

3.3 Results and Discussion

In this section, some of the results obtained through the simulations will be presented. All
the results obtained are based on a Reynolds number of 40,000 (based on the bulk velocity).
In most similar channel or duct cases, an incompressible solver is used. In this case though,
since CNS3D is a compressible solver, a low mach number along with Low Mach Number
Treatment (LMNT) for some of the schemes were used. All the simulations here were
carried out at a Mach number of 0.2 as that was the best for the incompressible nature of
the flow based on a research conducted by Thornber [81].

The experimental data used for the following comparisons are based on an investigation
carried out by Laufer [23] for a plain channel flow. His experiments were conducted at three
Reynolds numbers, 12,300, 30,800 and 61,600. From a first study of the experimental data
it can be noticed that the differences between Reynolds of 30,800 and 61,600 are very small
compared to those of 12,300 to 30,800 thus allowing the assumption that although in the
simulations a Reynolds number of 40,000 is used, a comparison with the experimental data
at 30,800 can be performed.

The averaging window for this case is shown in Figure 3.6. From the fluctuations of the
value of Reτ and v velocity (for part of the window) it is made clear that the large scales are
repeated inside this window thus ensuring the statistical steady state. The averaging time
after the flow had developed was enough to ensure the statistical convergence of all length
scales.

The averaged data used and presented in the following sections were extracted from the
centre area of the domain along a line for the spacewise comparisons and from a marker
in the middle for the pointwise data as shown in Figure 3.7. Linear interpolation is used
whenever arbitrary lines are sampled from the computed flow field and presented here.
Since the solver operates in dimensionless variables, when instantaneous results are presen-
ted, the dimensionless solution time t∗ is given. The actual physical time can be recovered
by taking into account the non-dimensionalisation applied, which is described by Equations
2.1.15.
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Figure 3.6: Averaging window
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Figure 3.7: Data extraction areas for the straight duct
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Vorticity Magnitude
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Figure 3.8: Vorticity magnitude for straight duct (t∗=969)

3.3.1 Flow development

In this subsection flow features obtained from the fine grid, with the WENO 9th with No
Low Mach Number Treatment (NLMNT) scheme, are presented. The choice of this scheme
for presenting the results is based on the work of Kokkinakis [1] where in a similar research
(on a channel flow), it was the scheme presenting the most accurate results. The same was
true in comparisons following in the next subsections. This will help in an initial evaluation
of the code set-up. The different schemes will be compared more thoroughly and evaluated
in the next chapter where a more complex flow will be studied.

From the results most of the flow characteristics expected in this kind of a flow and
geometry were seen. Top velocities are located at the centre of the duct while velocities
drop as the flow gets closer to the walls. In Figure 3.8 where the instantaneous vorticity
magnitude is presented it can be seen that the highest values of vorticity are located near the
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walls and corners. The turbulent characteristics of the flow are, as expected, located near
the walls due to the boundary condition used. From a first observation of the results the
capture of the physics of the flow was as expected and correctly located along the domain.

An interesting part of the flow is the generation of secondary motion near the corners.
The corners cause secondary flows evident by the counter rotating vortices that can be
seen in the area. These secondary flows are stress indused duw to the existance of the
walls present in the area. Those flows are then transferred along the domain following the
stream due to the streamwise velocity. Those effects are not clearly visible in 3D images
of averaged or even instantaneous results so a closer look in the area is needed. Figure 3.9
presents the 2D vector projections for a duct slice along with a zoom close to a corner. The
figure shows how the secondary motion appears near all four corners. The results presented
in the figure were based on averaged data.

3.3.2 Grid comparisons

In order to perform an initial evaluation of the three different grids the WENO 9th scheme
results will be used again for the reasons explained earlier. The results obtained from this
method are presented here and compared to the channel experiment results. Because of the
geometrical difference between the two cases and the influence of the two extra walls in the
straight duct, all results were divided by the maximum value of the mean velocity in order
to compensate for the non uniform shear stress effects. The comparisons were performed
in the area shown in Figure 3.7.

The comparisons of the three grid sizes along with data from the experiment [23] are
shown in Figure 3.10. The differences in streamwise velocity (a) are very small between
the three grids providing satisfactory results compared to the experiment. The near wall
difference is caused by the difference in boundary thickness between the channel and the
duct and will be analysed in the following section when the schemes are compared. The
turbulent intensity in the streamwise direction (b) is underestimated by the coarse grid in
comparison to the medium and fine ones. The values closer to the wall are expected to
be higher in the duct but then they are expected to follow a similar profile to that of the
channel. The fine grid is in better agreement to the experimental data with the medium one
following closelly. The final comparisons are those of vrms and wrms (c,d) where the differ-
ences between the produced results from the different grid sizes are made more obvious.
Fine grid is in total agreement with the experimental data while the coarse grid significantly
underestimates the turbulent intensity. The medium grid results are significantly closer to
the fine grig ones than the coarse ones. In these two directions, duct results are expected to
be closer to the channel flow data. Although the coarse grid follows the same pattern as the
fine grid and the experiment, the values are significantly underestimated. The medium grid
underestimates the values as well but with values much closer to the fine grid ones and the
experiment.
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(a) slice at the middle of the duct
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(b) corner zoom

Figure 3.9: Velocity vectors at the middle of the duct (averaged field)
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Figure 3.10: Grid comparisons at the centre of the duct
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These observations lead to the safe conclusion that the flow inside the coarse grid may
have reached a turbulent state with the help of the high order schemes employed but its mag-
nitude was significantly lower to the one expected. The medium grid provided signifacantly
imroved results compared to those of the coarse grid and in closer aggreement to those of
the fine grid and the experimental data. Finally the fine grid presented a good agreement
to the experimental data in the areas where comparisons were possible and where second-
ary motion effects from the duct corners were not so intense. From these comparisons
the convergence towards the solution while the size of the grid increases is made obvious.
The dicrease in discrepancies between the fine and the medium grid compared to those
between the medium and the fine lead to the choice of the fine grid as the best choice for
the comparisons that will follow.

More analysis on the differences between the duct and the channel flow are presented
in the next subsection where the schemes employed are compared.

3.3.3 Numerical scheme comparisons

In this part the numerical results, in conjunction with experimental data for the channel
[23], are presented. The results acquired from the fine grid will be presented here since
they provide a better capture of the flow profile inside the duct as was also shown in the
previous subsection. The schemes compared for the simulations are, as mentioned earlier,
MC, MUSCL 5th and WENO 9th. The data for the comparisons are again drawn from the
same area as for the grid comparisons and shown in Figure 3.7.

Figure 3.11 presents the comparisons between the different schemes and the channel
experimental data for streamwise velocity and the turbulent intensity for all components of
velocity. Through these comparisons not only the differences between the schemes can be
seen but also the differences of the flow in a duct and a channel. The streamwise velocity
(a) is captured almost in the same way by all three schemes especially closer to the middle
of the bend (symmetry area) where the influence of the upper and lower walls in the duct
is not so intense. In the near wall region though there are some discrepancies as can be
expected. The flow in the channel accelerates closer to the wall compared to what happens
in the duct since there is less friction in the experiment because of the absence of a top and
bottom wall. Overall MUSCL 5th and WENO 9th have almost the same numerical results
and present the best resemblance to the velocity profile provided by the experiment.

In the vrms and wrms comparisons (c,d) there are not significant differences expected
between the duct and the channel flow. In both figures all schemes capture the profile found
in the experimental results with WENO 9th ones though presenting the maximum accuracy.
Especially in wrms MUSCL 5th and MC seem to underestimate the intensity while WENO
9th presents good results even for the near wall region. The final value for comparisons that
also presents interest in the differences between the simulation and experimental geometries
effect in the streamwise turbulence intensity urms (b). As was mentioned in the flow analysis
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Figure 3.11: Scheme comparisons at the centre of the duct
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the existence of corners in the duct causes secondary flows that travel streamwise. Those
are expected to affect the streamwise values compared to a channel flow where they do
not appear. The duct case has a thicker boundary layer to that of the channel something
that also affected the streamwise velocity as presented in (a). All these differences lead to
two observations deriving from the numerical comparisons. The channel flow reaches its
maximum turbulent intensity closer to the wall than the duct one but in the same time the
maximum values for the duct are significantly higher. Also the maximum values of the
turbulence intensity are retained for a larger area near the wall.

In order to locate differences between the schemes employed, small scales in the flow
need to be studied so instantaneous results will be used. Vorticity magnitude iso-surfaces
are presented in Figure 3.12. In theses plots only half of the domain is shown from the
wall to the symmetry area and at a value of vorticity magnitude equal to 0.5. All three
schemes seem to capture many small scales throughout the domain. The turbulence is
mostly located near the walls as expected with more of the small scales located in that
area. No clear differences in the turbulence intensity between the schemes can be seen
in this figure. Figure 3.13 shows the vorticity magnitude for a slice in the middle of the
domain. The higher vorticity is located in the surrounding walls with the only difference
between the schemes being the distance from the wall where these intense phenomena
present themselves. MC and MUSCL 5th seem to have high vorticity distributed from the
wall, up to a distance of 0.1 from it while WENO 9th has high vorticity magnitude values
closer to the wall. In general WENO 9th captures more small scales closer to the symmetry
area compared to the other schemes proving to be slightly under dissipative compared to the
other methods as was expected. LMNT though seems to assist both MC and MUSCL 5th
in developing a turbulent flow almost identical to that of WENO 9th that does not employ
it. The results presented in these figures where from instantaneous results since the small
scales are better visible this way, compared to averaged ones.

High order statistics like skewness and flatness along with the power spectra can provide
additional information about the nature of the flow. The data used are extracted from the
centre of the domain (centre marker) as seen in Figure 3.7. The changes of u velocity
at the marker over time are used to calculate the power spectra as well as the skewness
and flatness. The power spectra for all schemes is presented in Figure 3.14. Table 3.2
presents the slopes in comparison to Kolmogorov’s − 5

3 slope [104]. It is apparent, from the
presented data, that the flow is turbulent and not homogeneous but based on the slopes not
far from a similar state. It is remarkable that all three methods have an almost identical
slope pointing out again to the fact that turbulence is captured in almost the same way by
all methods. A higher computed value of the slope might indicate that the actual state of
the flow as computed is in fact less turbulent than one would have expected. Indeed it has
been observed in the past that values of the slope, higher than 5/3 are typical for transitional
flow regimes (e.g. [105]). One should however note that this “less turbulent” state inicated
by the spectral properties might be due to the fact that the sampling points for the spectra
were located in the middle of the duct, based on the assumption that the flow in the middle
of the duct is likely to be more homogeneous and less affected by the secondary flows.
However, the drawback of this approach is that due to the substantial clustering towards the
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(a) MC

(b) MUSCL 5th

(c) WENO 9th

Figure 3.12: Vorticity Magnitude iso-surfaces at a value of 0.5 (t∗=969)
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(a) MC

(b) MUSCL 5th

(c) WENO 9th

Figure 3.13: Vorticity Magnitude at the centre of the duct (t∗=969)
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(a) MC (b) MUSCL 5th

(c) WENO 9th

Figure 3.14: Power spectra for all schemes

wall, the mesh in the middle of the duct is quite coarse and therefore the dissipation of the
scheme, which is linked to the grid cell size in the middle of the duct, is higher. This higher
dissipation would also lead to the decrease of energy content in high frequencies, which
would result in the increase of the slope.

Finally Figure 3.15 and 3.16 show the skewness and flatness at the same marker over
time for WENO 9th. Based again on Kolmogov’s theory about homogeneous turbulent
flows [104] skewness is expected to fluctuate around zero and flatness around three over
time since the marker is located in the middle of the duct. The first observation is that the
fluctuations are insignificant after around 110 time units. This is an additional proof of
the statistical convergence of the solution. It is also made clear that skewness and flatness
fluctuate close and around the prementioned numbers thus providing further confirmation
of the turbulence nature of the flow. If the linear fit of the results after 110 time units
is taken the actual value of skewness and flatness can be calculated. These values are
presented in Table 3.3 for all schemes. Almost all cases are close to the numbers presented
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Slope
MC -2

MUSCL 5th -2
WENO 9th -1.99

Kolmogorov -1.667

Table 3.2: Power spectra slopes for all schemes

Figure 3.15: Skewness for WENO 9th

by Kolmogorov with WENO 9th though being closer to zero and three for skewness and
flatness respectively. Similar results were also presented by experiments and DNS research,
for the centre of duct flows but for lower Reynolds numbers as provided by Zhu et al. [106].

3.4 Conclusions

The flow inside a straight square sectioned duct was studied using ILES. The existence
of four walls and corners in the flow, generated some interesting flow phenomena such
as secondary motion. In the vicinity of the corners counter rotating vortices are formed
leading to secondary motion that travels streamwise with the flow. The square shape of the

S (u) F(u)
MC 0.25 4.6

MUSCL 5th 0.68 2.3
WENO 9th 0.22 2.8

Table 3.3: Skewness and Flatness for all schemes
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Figure 3.16: Flatness for WENO 9th

geometry makes the influence of this motion significant throughout the domain when in
very wide ducts its influence outside the corner areas could even be neglected [27].

Comparisons with a channel flow showed that the middle part of the flow is very similar
while the near wall region presents some differences based on the geometry effects. Stream-
wise velocity in the channel accelerates closer to the wall because of the lower friction and
thinner boundary layer. The surrounding walls and generated secondary motion tend to
affect the flow near the walls inside a duct compared to the channel. Streamwise turbulence
intensity provided proof of that since the higher values for the channel were located closer
to the wall compared to the duct where the magnitude rose further away. The duct’s urms

reached a much higher value that was also retained for a larger area while pulling away
from the walls, showing the significant effect of the secondary motion to the flow charac-
teristics. So, overall the value profiles in the duct and channel were almost identical with
the near wall region being affected by the ducts geometrical uniqueness.

The different schemes employed were MC, MUSCL 5th and WENO 9th with the first
two using LMNT as mentioned in the first parts of this chapter. The differences in the
produced results between the schemes were small with all of them capturing the flow in
almost the same way. LMNT proved to assist the capture of turbulence for the schemes
that employed it significantly since MC and MUSCL produced almost the same turbulence
intensities as WENO 9th that was expected to produce a lower numerical dissipation in
comparison. All three schemes provided a turbulent flow of near homogeneous state cap-
turing even small scales in the same way.

Since the comparisons were performed using channel flow experimental data, choosing
the best performing scheme would not be well justified. The point achieved though, through
this chapter, besides capturing flow phenomena and locating differences between a duct
and a channel is the turbulent nature of the flow inside the domain. Since all three schemes
provided a turbulent flow of almost the same magnitude they can be used in the next chapter
for studying the flow in a more complicated geometry. The developed turbulent flow from
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all three schemes will be used as the flow profile entering the L-bend geometry presented
next. In that chapter the differences between the schemes are expected to be more obvious
and along with the comparisons, towards experimental data, they are expected to indicate
the best performing scheme for these cases and at the same time further assess the influence
of LMNT.
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L-bend

As mentioned in the introduction there is great emphasis in the literature on geometries
with strong curvatures. The existence of curves in pipes, ducts and channels presents an
interesting case for study mostly because of the secondary flows developed and the flow
separations existing in some cases. CFD studies in these cases can provide an insight that
is not easily acquired through experiments.

4.1 Problem description

In the previous chapter the flow inside a square sectioned straight duct was studied. The
developed turbulent flow provided by that case will be used in this chapter as the developed
turbulent flow entering the domain. The geometry under study will be a square sectioned
duct with a 90o bend. The geometry was based on the one used in the experimental case by
Taylor et al. [30, 107] and simulations on that by Raisee et al. [108].

All the geometry dimensions will be presented in relation to the Characteristic Length
H which represents also the height of the duct. This length H is equal to 1 in this case
thus making nondimentionalization a much easier task. The bend radius to duct height
ratio (Rc/H ) of the geometry was kept steady at 2.3 while the rest of the dimensions were
adjusted to the simulation needs. Compared to the RANS simulations by Raisee et al. [108]
where the area before the bend was equal to 9 H, in order to allow the flow to develop before
it entered the bend, was replaced by 1.57 H in this case for the computational cost to be
minimised. This change was possible since as already mentioned the flow provided from
the previous case was fully developed so there was no need for extra space for the flow to
develop until it reached the bend. The length after the bend leading to the outlet was set
equal to 26H. The length of the downstream part of the duct leading to the outflow was
chosen on the basis of empirical correlations for entrance-length given by Munson et al.
[109].

60
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Figure 4.1: Coupled geometry with double boundary condition

The boundary conditions used were inflow, outflow and no-slip wall. The difference
in this case is how the developed turbulent flow was supplied to the main geometry with
the L-bend. The L-bend geometry and the straight duct one (presented in the previous
chapter) were coupled and simulated simultaneously for most of the running time. In order
to achieve this, a double boundary condition was implemented at the end of the straight duct
and the entrance of the L-bend. There, except for the periodic boundary condition that kept
recycling the flow in the straight duct, was the boundary condition that acted as the L-bend
inlet, thus after a while providing the L-bend geometry with a fully developed turbulent
flow. This can be made visibly clear in Figure 4.1. The simulations were conducted at a
Reynolds number of 40,000 as in the straight duct case and the experiment.

The experiment used for validation and general comparison purposes was conducted by
Taylor et al. [30, 97] using Laser-Doppler velocimetry. Their research was concerned with
hydrodynamically developing flow at the entrance to square cross section, 90o bends of 2.3
radius ratio for laminar and turbulent flow. They had two basic reasons for their research.
The first was to provide the basis for understanding the influence of developing entry flow
in bends under laminar and turbulent regimes [30] and the second to provide data for the
purpose of validation in future CFD studies. The experimental geometry consisted of a 90o

bend of 92mm mean radius and of ratio equal to 2.3, with upstream and downstream tangent
lengths of 0.3 and 2 meters respectively. The dimensions of the cross section (40x40 mm)
conformed closely to those of the tangents. The experimental geometry is illustrated in
Figure 4.2 [107].
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Figure 4.2: The experimental geometry
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Grid Grid Size ∆z y+

Coarse 49x49x129 0.001 2.4
Fine 97x97x257 0.0005 1.2

Table 4.1: Grid and first cell sizes

4.2 Computations

In this section the grid used along with the initial conditions and the methods for calculating
the flow properties are presented.

4.2.1 Grid

Two grids based on the same geometry and with a different number of cells (coarse and fine
for the lower and higher numbers respectively) were generated using Gridgen V15.11. The
grid generation and clustering were based on the straight duct case for the coupling of the
grids to work and the developed flow of the previous case to be easily used by entering this
case. As before, most of the cells were located in the near wall region but also in the bend
section of the geometry. The bend area is the main area of study since most of the flow
characteristics are either present in there or it is the location of cause for their formulation.

The number of points in the z and y direction were the same and equal to 49 for the
coarse and 97 for the fine grids respectively as in the previous case. In the x direction 129
and 257 points were used respectively resulting to the two grids of sizes 49x49x129 and
97x97x257. So in conjunction with the straight duct, that was coupled with the L-bend, the
resulting grids were 49x49x195 and 97x97x386 for the coarse and fine grids respectively.
The grid sizes and the distance of the first point from the wall are shown in Table 4.1.
Figures 4.3 to 4.5 show the grids along with the high clustering areas.

4.2.2 Initial Conditions

As mentioned above the inflow configuration for this case is based on the need for a cor-
rectly defined developed turbulent flow. The flow enters the geometry already developed
based on the parallel simulations on the straight periodic duct of the previous chapter. The
two geometries are coupled and the periodic boundary condition at the end of the straight
duct is at the same time the inflow for the L-bend grid. Some initial conditions though are
used in the L-bend grid to make the development of the flow inside this geometry smoother
and faster. The basic difference to the initialisation of the straight duct is that there is no
use of perturbation here and values are multiplied by a number based on the turning of the
stream while it enters and exits the bend. This way u and w velocities follow the i and k
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Figure 4.4: Coarse Grid - Bend Area
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Figure 4.5: Fine Grid - Bend Area
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Figure 4.6: L-bend boundary conditions

directions respectively so that the first will be the streamwise and the second the gapwise
velocity even when the flow turns inside the bend.

p(t = 0) = 1
u(t = 0, z) = U0 × cos(θ)

v(t = 0, z) = 0
w(t = 0, z) = U0 × sin(θ)

E(t = 0, z) = p
γ−1 +

ρ

2

(
u2 + v2 + w2

) (4.2.1)

where U0 is the centreline velocity, p is the pressure and θ is the angle of turn because
of the bend. The way θ is defined can be seen in Figure 4.7.

As mentioned before the boundary conditions used were inflow, outflow and wall, and
are as shown in Figure 4.6. All the simulations are performed with a Reynolds number of
40,000 based on the bulk velocity. As in the straight duct case, a compressible solver was
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used (CNS3D) with the same low Mach number of 0.2. The schemes employed were again
(as in the straight duct case):

• MUSCL 2nd MC with Low Mach Number Treatment (referred to from now on as
MC and plotted as MC_LMNT),

• MUSCL 5th with LMNT (referred to from now on as MUSCL 5th and plotted as
Mus5th_LMNT) and finally

• WENO 9th with no LMNT (referred to from now on as WENO 9th and plotted as
Weno9th_NLMNT).

The reason for not simulating using WENO 9th with LMNT is again the fact that the
method becomes so under-dissipative, as also pointed out by Kokkinakis [1], that it was
not possible to obtain a solution for any timestep chosen.

The procedure for the simulations can be considered complex but was designed in such
a way as to reduce the computational cost. Initially the straight duct with MC was sim-
ulated until the flow developed. Then the straight duct was coupled with the L-bend and
again simulations ran for some time until the flow reached an almost developed state for
the new domain. The produced data up to that point were used to initiate simulations for
the MUSCL 5th and WENO 9th schemes as well. Once a case reached a developed tur-
bulent flow the averaging commenced for a period of time, enough to ensure the statistical
convergence of the solution as shown in Figure 4.8 for the WENO 9th case. Through this
procedure computational costs were reduced since only one case had to be initialised based
on the equations mentioned above while the two others started with a profile much closer
to the desired one.

4.2.3 Mean Flow Properties and High Order Statistics

The mean flow properties and the high order statistics used in this case are the same as in
the straight duct and are shown in subsections 3.2.3 and 3.2.4.

4.3 Results and Discussion

In this section, the results obtained through the simulations are presented. The results used
for the comparisons (especially with the experimental data) were extracted from specific
areas in the domain where experimental data [107] was available. The comparisons were
made along five slices and along five lines on those slices. The slices were extracted at the
area right before the entrance of the bend (x = −0.25), three areas inside the bend (θ = 30o,
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Figure 4.7: Data areas used for comparisons

θ = 60o and θ = 77.5o) and finally the area right after the exit of the bend (z = 0.25).
On these slices data along five lines were extracted based on the distance from the bottom
(outer) wall at D = 0.1, 0.3, 0.5, 0.7 and 0.9. A full picture of the experimentation areas
is given in Figure 4.7. Linear interpolation is used whenever arbitrary lines are sampled
from the computed flow field and presented here. Linear interpolation is used whenever
arbitrary lines are sampled from the computed flow field and presented here. Again here
,as in chapter 3, because the solver operates in dimensionless variables, when instantaneous
results are presented - the dimensionless solution time t∗ is given. The actual physical
time can be recovered taking into account the non-dimensionalisation applied, which is
described by Equations 2.1.15.

The time window used to average the results was the same as in the straight duct case
and was enough to ensure the statistical convergence of all length scales, Figure 4.8.

4.3.1 Flow development

In this subsection, flow features obtained from the fine grid simulations are presented. The
results obtained using WENO 9th on the fine grid will be used since this was the set-up
presenting the best results compared to experimental data as will be shown in the following
subsections. The capture of certain flow physics is studied by seeing the outputted results
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Figure 4.8: Averaging window

based on what is expected from this kind of flow and geometry as found on experimental
and simulation results in the literature.

In the produced results flow characteristics that were expected, as in the straight duct
case, are seen again. Figure 4.10 shows the incoming flow in the bend area moving closer to
the upper wall due to the centrifugal forces and then moving away after a while transferring
to the opposite side of the bend as physically expected. The angle of the bend is such that
causes the flow to gradually move towards the outer wall without having a separated flow, a
note made also in the experiment by Taylor et. al. [107] where no separation was observed.

Figure 4.11 shows the pressure distribution in the bend. The pressure along the outer
wall of the bend starts rising while in the inner wall the opposite is observed. This change
in the pressure can also justify the attachment of the higher velocities on the inner part of
the bend. Pressure gradually tends towards a uniform state after the exit of the bend leading
to a gradual uniformity of the streamwise velocity as well, Figure 4.9. The effects of the
secondary motion present in the bend and the pressure difference between the entrance and
the exit of the bend cause a gradual deceleration of the flow along the inner part of the
bend and at the same time its acceleration at the outer part. After the exit of the bend, the
velocity is gradually brought to a balance between the inner and outer parts of the duct
(towards the outflow). These observations were made in the experiment as well [30, 107]
where an adverse pressure gradient was noticed in the outer wall region while a favourable
one existed on the inner wall causing deceleration and acceleration of the flow similar to



4.3 Results and Discussion 71

XY

Z

U velocity

0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02
0

Figure 4.9: L-bend case Streamwise Velocity (averaged field)
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Figure 4.10: Bend area Streamwise Velocity (averaged field)
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Figure 4.13: Streamwise Velocity on slices along the bend (averaged field)
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Figure 4.14: Bend area wrms (averaged field)

that found in our simulations.

In Figure 4.12, the vorticity magnitude along the bend is illustrated. Further to the
expected areas of intense vorticity like the near wall regions and the corners (secondary
flows as presented in the straight duct case) there are two areas of interest. The first one
is located at the entrance of the bend where vortices are observed close to the outer wall
area and are the ones showing the movement of the flow towards the inner wall especially
near the side wall areas. The second is a more intense phenomena and is located in the
inner wall starting around 45o. There are two counter rotating secondary vortices visible
that show the movement of the flow from the inside of the duct closer to the outside wall
and are induced by the curvature. The same vortices were pointed out in the experiment
based on their numerical results as well and were located in the same areas [30, 107]. In the
RANS simulations [108] the more intense vortices started forming again at around 45o with
approximately the same effect on the flow. The influence of these vortices in the streamwise
velocity can be seen in Figure 4.13 where the lower velocities near the inner wall and close
to the symmetry plane are caused by the vortices moving the flow towards the outer wall
at that area. The gradual effect of the bend is made clear in this figure since at 30o, where
the phenomena has not appeared yet, the higher velocities are near the outer wall but as the
effect appears it becomes more and more intense as the flow progresses towards the exit.

A study of the turbulence intensity can provide further detail and proof of the existence
and influence of the two counter rotating vortices and the generation of the secondary mo-
tion. The influence of the secondary motion is more obvious at around 60o and at the exit
of the bend the turbulence is anisotropic with high wrms near the outer wall (Figure 4.14)
and high urms near the inner wall (Figure 4.15). The data in both figures are averaged.

Based on the existing experimental data and flow patterns available in the literature,
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Figure 4.15: Bend area urms (averaged field)

as described above, it can be concluded that the simulations provide consistent physical
insights to the flow characteristics.

The basic advantage of this CFD approach to the problem at hand will be utilised in
order to provide a closer look and analysis of the important characteristics of a turbulent
flow in square sectioned duct with a 90o bend. The experiments provide data in some
specific areas and only a few (if any) visualisations of the flow. At the same time most of
the simulations in the literature provide either methods for producing yet more numerical
data in specific areas as well as limited 2D visualisations of the flow. An important target
of this research is to provide initially an accurate CFD tool for correctly capturing the flow
while at the same time provide averaged data for the whole domain. The ability to provide
complete 3D images for the whole domain for a number of variables provides a significant
advantage towards better analysing and locating the characteristics of this kind of flow. So
the initial observations made above can be further justified and analysed on more data.

Starting from the entrance of the bend and studying Figure 4.10 the flow accelerating
towards the inner part of the bend is shown. This movement of the flow can also be seen
in Figure 4.16 where some streamlines along the side wall of the bend are plotted. Even
before entering the bend the flow starts moving towards the inner wall, a movement that
is more intense closer to the side walls, an interesting observation made also by Taylor et
al [30, 107] in their experiments. The same figure shows the influence of the pressure that
leads the streamtraces closer to inner wall. The traces also show a swirling motion of the
flow. The first reason for this disposition is the rapid rise in pressure at the outer wall right
before the entrance of the bend and its gradual drop at the inner wall as seen in Figure 4.11.
The second reason is that the vortices forming in the outer wall of the bend force the flow
to move towards the inner area of the bend. This is made clear in Figure 4.17 where the
vortex forming in a corner close to the outer wall forms the streamlines leading inwards
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Figure 4.16: Streamtraces near the side wall of the bend

and closer to the convex (inner) wall. The figure shows a 2D projection of the streamlines
so the lines that look as if they are going through the bottom wall are actually following the
stream and go inwards. All data for the figures presented were based on averaged data.

As the flow moves further into the bend there is a second great influence to the flow
because of secondary motion effects. The flow starts accelerating at the outer and side walls
while decelerating in the middle (symmetry area) and closer to the inner wall. This is seen
by some strong counter rotating vortices as plotted in Figure 4.12. A slice at 60o inside the
bend shows the counter rotating vortices more closely (Figure 4.18). As seen in the vectors
along that area the flow from the outer wall is transferred towards the inner following a
path very close to the side walls and is then transferred back to the outer wall through the
symmetry area of the domain. This secondary motion affects the flow even after exiting the
bend as obvious from the prementioned figures mentioned before but gradually, as the flow
moves farther away from the bend, its intensity and effect diminishes leading to an evenly
distributed velocity flow away from the bend as was seen in Figure 4.9. In the experiment
the same effects at 60o can be seen with the streamwise velocity at the symmetry area near
the inner wall being significantly smaller than the rest of the domain [107]. In the RANS
simulations [108] the counter rotating vortices located show the same effect in the flow as
pointed out in this work. Figure 4.19 shows how the counter rotating vortices progress
inside the bend as the flow moves towards the exit. A first pair of counter rotating vortices
appears at around 45o. Remarkably, this pair was not observed in either experiments or
RANS simulations reported to date. However, the magnitude of these secondary vortices
as well as the corresponding values of gapwise velocity inducing this flow are quite small.
One might put forward a proposition that these were not observed experimentally because
of lack of resolution (experimental error in velocity measurement was ~3% [107]) and not
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Figure 4.17: Vortex in the lower corner of the bend entrance (averaged field)

observed in RANS because of excessive dissipation. On the other hand it is possible that
these vortices are an artefact in the ILES simulations because of the fine grid and insufficient
dissipation. It is not possible to assert one or the other conclusion at present stage without
a detailed experimental study designed to either prove or disprove the existence of these
structures. Later on, each vortex bifurcates into two forming the large counter rotating
vortices described in the experiment. As the flow moves closer to the exit the main pair of
vortices moves closer to the middle of the duct. At around 60o, two smaller vortices are
formed that are moving gradually closer to the inner wall, a feature again not presented in
the experiment but observed in the RANS simulations.

Finally more detailed observations can be made by studying the numerical changes
along the bend. In Figure 4.20 the changes in the streamwise velocity u and the turbulence
intensity urms along the bend from entrance to exit are presented. The areas shown are at
the centre of the flow and closer to the inner and outer walls. The data used are again from
the fine grid with WENO 9th.

Starting from the outer wall the streamwise velocity (a) is influenced by the vortices
located in the area thus having a magnitude drop near the symmetry area of the domain.
At 60o the flow is decelerated compared to the entrance but at the point it reaches the exit
it has been significantly accelerated. The vortices at the entrance near the outer wall cause
a rise of the turbulent intensity near the symmetry area (b) while when moving inside the
bend and towards the exit the intensity keeps dropping in the area as expected from the
experiment descriptions. At the same time near the inner wall the flow enters in an almost
uniform way (e) but is significantly accelerated in the near wall region inside the bend. The
two counter rotating vortices in the area cause the lower velocities seen in the symmetry
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Figure 4.18: Velocity vectors at a 60 degree angle slice (averaged field)

area as described both in the experiment and RANS simulations [107, 108]. The turbulent
intensity for the inner wall is higher after the influence of the counter rotating vortices with
it significantly rising close to the symmetry plane because of their existence (f). When
the flow reaches the exit it has been decelerated since the flow in the outer wall is the one
accelerating at this point. The flow at the centre of the flow (c) remains almost the same in
the symmetry area with the differences located near the side walls where the flow is higher
as the flow moves into the bend and towards the exit. The turbulent intensity in this area
remains almost steady throughout with a drop in the near side wall region compared to the
entrance of the bend (d) mostly due to the transfer of the disturbance closer to the inner
wall.

The amount of data available through this study presented an important advantage since
a number of variables could be extracted at any area of the domain and 3D graphics were
made available as well. This way, locating the flow characteristics and the influence of the
bend was made easier and their visualisation much clearer through 1D, 2D and 3D data
analysis.

4.3.2 Grid effect

The next step will be comparison of the different grids used based on the experimental
results provided (and mentioned in the introduction of this chapter) which will justify the
use of the fine grid results for the analysis above. The areas of importance for comparisons
are many, so only a few will be presented here, while more can be found in Appendix A.
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Figure 4.19: Streamlines along bend slices showing the counter rotating vortices (averaged field)
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Figure 4.20: Streamwise velocity and urms along the bend
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Figure 4.21: Comparisons at θ = 30 and D = 0.1

The WENO 9th scheme results will be used to represent the simulation data since that was
the scheme presenting the best accuracy (as will be shown in the next subsection).

From the figures presented below along with all those presented in Appendix A and the
the grid convergence study in the previous chapter many conclusions can be drawn as to the
grid that provides the best results. In order to save computational resources only a coarse
and fine grid were used for the simulations based on the grid comparisons of the previous
chapter.

The first area of investigation (Figure 4.21) is at the start of the bend at an angle of 30o

where the streamwise and gapwise velocity, along with the streamwise turbulence intensity
are being compared against experimental data. The sampling area is near the outer wall of
the bend at a distance of 0.1 from it. In the streamwise velocity both grids overestimate
the increase of its value near the wall since the value increases much faster than in the
experiment. The same happens in the gapwise velocity and streamwise turbulence intensity
mostly because of the possible error in the experiment to correctly capture the boundary
layer. Besides the discrepancy in the near wall region though, the rest of the values pattern
is covered correctly by the fine grid. Taking into account the error percentage provided
by the experiment (around 3-4%) the agreement of the experimental and the simulation
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Figure 4.22: Comparisons at θ = 60 and D = 0.5

results for the fine grid is very good. The absence of detailed data near the wall for the
experimental case makes the comparison closer to the wall difficult.

The next comparisons are presented in Figure 4.22, at θ = 60o, closer to the exit of
the bend. The effects of the bend are really intense in this area and the correct capture
of the flow is very important. The measurements are taken in the middle between the
inner and outer walls of the bend. The fine grid results have a great agreement with the
experimental data for the streamwise velocity while the coarse grid has great discrepancies
as the measurements move closer to the middle of the geometry. There is an overestimation
of the fine grid results for the turbulence intensity but the pattern is captured correctly along
with the near wall region results. Here, it is made more obvious that the lack of good
clustering in the coarse grid (especially away from the walls) is significantly influencing
the accuracy of the simulations. Closer to the middle of the geometry, where the number
of cells is small (especially for the coarse grid), the accuracy drops and even the results
pattern has no agreement to the experimental data in the coarse grid. The gapwise velocity
again confirms the overestimation of the top velocity near the wall region for both grids,
the accuracy of the fine grid results and the discrepancies in the coarse grid near the middle
of the geometry due to the small number of computational cells. Again though, the lack of
experimental data closer to the wall makes comparisons in that region difficult.
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Figure 4.23: Comparisons at z = 0.25 and D = 0.3
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The final area for discussion is after the exit of the bend at z = 0.25. The influence of
the bend area in the flow should be better obvious right after its exit and the accuracy of
the results in this area is very important. In Figure 4.23 the results are extracted closer to
the outer wall of the geometry. The observations made are again the same as the previous
comparison areas. The fine grid still overestimates the values closer to the wall but is more
accurate than the coarse grid and follows the profile very closely. The lack of sufficient grid
points in the middle of the bend in the coarse grid is again obvious through the comparisons.

From the comparison of the simulation results with the data from the experiment in all
areas, conclusions on the grid of choice can be made. The results presented in this section
along with those in Appendix A show that in some areas the coarse and fine grid results
are very close and in a few the coarse results can even be considered better. Taking all the
results into account though and especially in the areas of great flow physics phenomena,
for this case, the fine grid results present a high accuracy while the coarse grid ones have
significant discrepancies in most of the comparisons. The lack of a sufficient number of
points in the middle of the coarse grid lowers the accuracy of the method significantly and
the results produced can not , under any circumstance, be used for further analysis and
study. So this, along with the grid comparisons of the previous chapter, is why the fine grid
results are the ones used for any flow analysis and scheme comparisons.

4.3.3 Numerical scheme effect

The next step in the evaluation of the simulations conducted is the comparison of the differ-
ent schemes employed. Choosing the best scheme is imperative in understanding the flow
physics and evaluating the effectiveness of the different schemes used (for this and similar
cases) and for any future research on the same or similar geometries. Although the differ-
ences are smaller than expected between the different grid sizes the finer grid provides the
best results especially in areas of intense importance like the near wall regions, thus all the
comparisons are performed using the results obtained from the fine grid.

The comparison areas include the area before the entrance of the bend, three areas in
the bend at different angles and the area right at the exit of the bend. The amount of data
again is such that can not be presented on its whole so it will be presented for all areas in
Appendix B and only enough here to provide the basis for the analysis and discussion. The
data comparison areas can again be seen in Figure 4.7.

In Figure 4.24 the streamwise velocity and turbulence intensity are shown for the area
near the outer wall, from the entrance to the exit of the bend. All three schemes capture
u velocity the same way with MUSCL 5th presenting some discrepancies inside the bend
compared to the other two methods. In the entrance and inside the bend the flow in the
simulations accelerated closer to the wall compared to the experiment. The turbulence
intensity urms though presents the differences between the schemes. In the entrance of the
bend MUSCL 5th and WENO 9th capture the near wall region but present discrepancies
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Figure 4.24: Streamwise velocity and urms scheme comparisons close to the outer wall
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Figure 4.25: Streamwise velocity and urms scheme comparisons in middle of the flow
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Figure 4.26: Streamwise velocity and urms scheme comparisons close to the inner wall
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Figure 4.27: Gapwise Velocity at the middle of the flow and close to the inner wall
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closer to the symmetry area of the domain. This could be attributed to an earlier formation
of the outer wall vortices in the simulations compared to the experiment. Inside the bend,
MC is the only scheme presenting significant differences to the experimental data but once
the exit is reached it is made obvious that the capture of turbulence intencity by MUSCL
5th and MC is overestimated when WENO 9th captures it accurately.

Moving towards the centre of the flow in Figure 4.25 the same remarks can be made
about the streamwise velocity where all schemes present almost identical results and the
near side wall region is better captured by all schemes, compared to the outer wall region.
For the turbulence intensity there are some discrepancies at the entrance and inside the bend
with MUSCL 5th and WENO 9th capturing the near wall values more accurately than MC
with an overestimation though closer to the symmetry area. Again after the influence of
the bend on the flow and by looking at the results at the exit only WENO 9th manages to
capture the correct magnitude while the other methods widely overestimate the intensity.

The area with the most intense phenomena is that of the inner wall where the counter
rotating vortices are formed. The data comparisons for that area are shown in Figure 4.26.
The streamwise velocity is captured accurately by all schemes with MUSCL 5th probably
presenting slightly better results. At the entrance and inside the bend the same discrepan-
cies at the near wall region are seen as in the outer wall comparisons. Since these are seen
both in the inner and outer wall regions they can be attributed to a possible experimental
error. In their experiments Taylor et. al. [107] claimed that the secondary motion (from
the straight part of the duct) influencing the boundary until the mid of the bend was not
accurately captured. Considering that the secondary flow is located near the corners the
influence in the values near the inner and outer walls and close to the side walls can be sig-
nificant. This is probably why the observed discrepancies are higher at the entrance, lower
inside the bend and disappear at the exit. Finally looking into the results for the turbulence
intensity urms the same observations as before are made with WENO 9th capturing the pro-
file better especially at the exit of the bend and with some discrepancies for all methods at
the locations influenced by the counter rotating vortices.

The final comparisons are made at the areas in the middle of the flow and near the inner
wall for the gapwise velocity w, Figure 4.27. At D = 0.5 with the exception of the near
side wall region at the entrance of the bend all schemes produce almost the same results
with WENO 9th having a slightly better accuracy with almost no discrepancies towards the
experimental data. Inside the bend though where the flow phenomena are intense there are
discrepancies from all the methods especially at the entrance of the bend. Inside the bend
and at the exit WENO 9th again presents the best capture of the flow based on that of the
experiment.

As a result, from the analysis of the comparison plots above including those in Ap-
pendix B, some conclusions and remarks can be drawn. In some of the areas inside the
domain all three schemes present almost the same results with small differences but with
MUSCL 5th and WENO 9th presenting the highest accuracy compared to the experimental
data available. In some cases it is even difficult to choose between the two schemes. While
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the comparisons reached the end of the bend and its exit though, the choice of the best sim-
ulation set-up was made obvious. WENO 9th presented a high accuracy in the majority of
the comparisons performed. The areas sampled and compared towards experimental data
were more than enough to allow a safe and fair conclusion as to the accuracy of the scheme.
Besides some discrepancies that were expected because of the complexity of the flow and
the pre-existing error in the experimental measurements WENO 9th presented a well re-
solved case. It is safe to say that the fine grid, with WENO 9th as the scheme employed,
provided an accurate validation of the simulations performed so a flow analysis on this case
would provide important information on such a complex turbulent flow that would not be
possible in detail from the experiments alone.

For the turbulence intensity, although there were some oscillations in the solution, caus-
ing slight discrepancies towards the experimental data, the results for WENO 9th were still
within an acceptable margin of error. WENO 9th introduces a lower numerical dissipation
itself, compared to the other schemes, thus capturing the turbulent flow better even without
the assistance of a technique like LMNT.

The influence of LMNT in the schemes employing it is also very interesting. It can
be observed that LMNT significantly assists the MC and MUSCL 5th schemes to better
perform and keep the accuracy very close to that of the WENO 9th in many areas of the
domain. The problem though is that in many areas it overestimates the turbulence, com-
pared to the experimental data. This can be made more obvious in the turbulence intensity
where the two methods that use LMNT overestimate the values widely. So although WENO
9th was expected to produce the lowest numerical dissipation than the other two methods
the opposite happened because of the influence LMNT introduced. The most interesting
observation though is that LMNT assisted MUSCL 5th and MC in providing an accur-
ate capture of the turbulent flow for the straight duct (that was presented in the previous
chapter) and until the mid area of the bend. After the flow started becoming more complex
though, because of the effects of the bend, the schemes employing LMNT started produ-
cing overturbulent results. Overall from what was expected concerning the performance of
the schemes both MUSCL schemes performed very well with the help of LMNT but still
could not outperform WENO 9th.

The above observations can be further justified and analysed by looking into some iso-
surfaces, contour comparisons, the energy spectra and the high order statistics that follow.
Vorticity magnitude iso-surfaces of a low value can provide important information on the
development of turbulence inside the bend as well as the capture of the small scales by the
scheme. Figures 4.28 to 4.30 show the vorticity magnitude iso-surface at a low value of 0.5
in the bend area, including part of the entrance and outflow (instantaneous results were used
to capture small scales). From these figures the schemes are proved capable of resolving
3D turbulent structures. MUSCL 5th and MC provide a more turbulent solution since
smaller scales are captured compared to WENO 9th. Although the differences between
MUSCL 5th and MC are hardly visible in the figures, the maximum and minimum values
of vorticity were of higher magnitude for the MUSCL 5th scheme. The biggest differences
are seen at the exit area of the bend where these two methods show a more turbulent flow
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Figure 4.28: Vorticity Magnitude iso-surfaces for MUSCL 2nd order MC with LMNT (t∗=969)

compared to the WENO 9th scheme. Based on the comparisons with the experimental
data, the bigger discrepancies of MUSCL 5th and MC schemes are noticed in that area
while WENO 9th is capturing the flow correctly proving it to be the method providing the
correct turbulence magnitude in that area. It is made clear here that LMNT affected the
solution significantly after the bend, leading to an overestimation of turbulence from the
two methods that employed it.

Looking at the vorticity magnitude contours for small scales at the entrance, inside
the bend and at the exit for all three schemes presented in Figures 4.31 to 4.33 further
observations can be made. At the entrance of the bend all three schemes capture the small
scales of vorticity almost in the same areas and at the same intensity something that comes
in direct agreement to the numerical comparisons presented before. While moving inside
the bend, although the area near the inner wall where the vortices have formed is captured
in almost the same way by all three schemes, MC and MUSCL 5th schemes present some
intense vorticity areas near the outer wall that are not as present in the WENO 9th case.
Finally at the exit of the bend the observations about an overestimation of the turbulence by
MC and MUSCL 5th is made clear especially in the near wall regions both inner and outer.
Both the iso-surfaces and the vorticity magnitude vortices are derived from instantaneous
results so that small scales are better visible.

Similar conclusions can be derived by studying the power spectra for all schemes at
different areas. Point-wise data along time were collected in many areas of the domain.
Here, the changes of u velocity over time were used to calculate the power spectra as
well as the skewness and flatness that will be presented later. The areas of data collection
(markers) were at the entrance of the bend, at 60o inside the bend and at the exit. In all
cases the data were extracted from the middle of the domain as shown in Figure 4.34. The
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Figure 4.29: Vorticity Magnitude iso-surfaces for MUSCL 5th order with LMNT (t∗=969)

Figure 4.30: Vorticity Magnitude iso-surfaces for WENO 9th order without LMNT (t∗=969)
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Figure 4.31: Vorticity magnitude at x = −0.25 (t∗=969)
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Figure 4.32: Vorticity magnitude at θ = 60o (t∗=969)
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Figure 4.33: Vorticity magnitude at z = 0.25 (t∗=969)
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results obtained from the centre of the straight duct, presented in the previous chapter, will
be shown in the comparisons here as well, since it will provide a better view on how the
developed turbulent flow reaching the bend is influenced by its effect.

Although the flow inside the L-bend duct is not a periodic one, spectra, skewness and
flatness can still provide important information. Similar measurements were used in other
studies as well, like the one by Prasad et al. [110] for a lid-driven cavity. Table 4.2 presents
the slopes derived from the power spectra for all markers at all schemes compared to that of
Kolmogorov [104]. Based on the numbers presented in the table, the very turbulent nature
of the solution provided by MUSCL 5th and MC is shown again. In all three schemes the
flow is developed into a turbulent state in the straight duct at almost the same magnitude.
The flow enters the L-bend and reaches the bend entrance almost at the same state but once
it enters, the differences between the schemes start appearing. While there is a gradual
decrease in the turbulence intensity, based on the experimental results, the slope for MC
and MUSCL 5th remain almost the same inside the bend and at its exit (as was also shown
in Figures 4.28 and 4.29), while the slope for WENO 9th gradually increases (in absolute
value) compared to the Kolmogorov one. The reasons for the discrepancies between the
simulation acquired slopes and that of Kolmogorov can again be attributed to the same
reasons analysed in chapter 3. In total, the results here show (as expected because of the
geometry and the nature of the flow) that this is not a homogeneous turbulent flow but
although the slopes are not equal to Kolmogorov’s − 5

3 they are close enough for the areas
where the flow presents a near homogeneous state.

Finally through Figures 4.35 and 4.36, where the skewness and flatness for the WENO
9th scheme in all three L-bend marker areas is presented, the statistical convergence in all
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straight duct bend entrance bend at 60o bend exit
MC -2 -2.22 -2.1 -2.1

MUSCL 5th -2 -1.99 -2.1 -2
WENO 9th -1.99 -2.37 -3.4 -4.3

Kolmogorov -1.667

Table 4.2: Power spectra slopes for all schemes

areas is shown. The skewness and flatness are shown over time inside the averaging window
and are point-wise quantities. After some time the fluctuations of the value are insignificant
proving that the statistical convergence of the averaged data used in the previous sections.
The high order statistics for the MC and MUSCL 5th schemes presented similar results.

4.3.4 Conclusions

The turbulent flow inside a 90o bend was studied using ILES. Two different grids and three
different schemes were studied and tested for the accuracy of the produced results. Finally
all the produced data was processed and analysed.

The data obtained and presented in this chapter around the study of the flow in a 90o

bend finally provided us with many and interesting observations and conclusions. Initially
the computational method used and the set-up of the problem were successfully validated
towards experimental data. This procedure made the validity of the comments that followed
the study of the flow possible. The results of the analysis can be divided in two categories.
The first one concerns observations of certain flow characteristics of a turbulent flow inside
a duct with a bend. The second one is the analysis of the different schemes employed along
with the influence of the Low Mach Number Treatment technique.

In the L-bend the flow enters the bend in a uniform way but flow accelerates along the
inner part of the bend up to an angle of 50o when it starts to decelerate. This phenomena,
based on the centrifugal force, causes an opposite effect on the pressure where the pressure
drops in the inner part while it rises in the outer. The flow regains its uniformity gradually
after exiting the bend. Inside the bend there are two counter rotating secondary vortices,
that lead the flow from the inside of the duct closer to the outside wall, induced by the
curvature. Another interesting point is the possible confirmation of an observation made by
Taylor et al. [30, 107]. In their research they were worried that the streamwise secondary
flows that influence the flow significantly until around 40o inside the bend were not cor-
rectly captured by the boundary layer they used. The slight discrepancies in this area could
be possibly justified by a better capture of the secondary motion in the streamwise direction
at the entrance of the bend in the computational set-up used. In the simulations conducted
here, two extra pairs of counter rotating vortices appeared inside the bend and close to the
inner wall that where not presented in the experiment. One might assume that these were
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Figure 4.35: Skewness for WENO 9th scheme
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Figure 4.36: Flatness for WENO 9th scheme
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not observed experimentally because of lack of resolution and not observed in RANS be-
cause of excessive dissipation. On the other hand it is possible that these vortices are an
artefact in the ILES simulations. It is not possible to assert one or the other conclusion at
present stage without a detailed experimental study designed to either prove or disprove the
existence of these structures.

Finally the comparison of the different schemes used resulted in the WENO 9th outper-
forming MC and MUSCL 5th providing more accurate results. As the comparisons moved
to areas of more intense turbulent flow, where secondary flows were in motion, WENO 9th
seemed to function much better than the other schemes. The Low Mach Number Treatment
function employed for two of the schemes seemed to help in the development of a turbulent
flow in all grids but a negative side was that it lead to the overprediction of turbulence in
most of the areas. As a result WENO 9th without LMNT in a fine grid seems to be the set-
up that performs better, producing accurate results and capturing the flow characteristics in
geometries of this kind.
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Conclusions and Future Work

The turbulent flow inside a straight duct and a duct with a 90o bend were studied using
Implicit Large Eddy Simulation. Several high order schemes were used with the assistance
of LMNT for some of the cases. The first case studied was that of the straight duct. The
existence of four walls and corners in the geometry caused the generation of stress induced
secondary motion. Counter rotating vortices were generated near the corners showing the
existence of secondary flows that travelled in the streamwise direction in a swirling motion.
The presence of the corners presented the flow with its differences to a channel one. The
boundary layer in the duct was thicker than that of the channel causing lower velocities
near the wall but higher turbulence intensity values on the streamwise direction. MUSCL
2nd MC with LMNT, MUSCL 5th with LMNT and WENO 9th without LMNT presented
an almost similar turbulent flow that could be used as the incoming flow for the L-bend
case.

The next case, which was the L-bend duct, was coupled with the straight duct and was
using the produced turbulent flow as an inflow. The same schemes were used and their
results were compared towards experimental data. The flow entered the bend in a uniform
way but then accelerated along the inner part of the bend up to an angle of 50o before it
started decelerating. The pressure dropped in the inner part while it rose in the outer. The
flow regained its uniformity gradually after exiting the bend. Inside the bend there were
two main counter rotating secondary vortices transferring the flow from the inside of the
duct closer to the outside wall, a phenomenon induced by the curvature. Two more counter
rotating vortices were also observed very close to the inner wall and the symmetry area of
the bend.

An extra pair of vortices was observed in the simulation results at around 45o while this
was remarkably not observed or mentioned in either the experiment of the RANS simula-
tions available. Although in the experiment it is mentioned that they were worried that the
streamwise secondary flows that influence the flow up to that point may not be correctly
captured (that could explain the extra pair of vortices in the simulations) the extra vortices
can not be considered a "confirmed" flow characteristic. The magnitude of these secondary
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vortices as well as the corresponding values of gapwise velocity inducing this flow are quite
small. One might put forward a proposition that these were not observed experimentally
because of lack of resolution and not observed in RANS because of excessive dissipation.
On the other hand it is possible that these vortices are an artefact in the ILES simulations
because of the fine grid and insufficient dissipation. It is not possible to assert one or the
other conclusion at present stage without a detailed experimental study designed to either
prove or disprove the existence of these structures. So this find can trigger a future, more
detailed, study and analysis of this phenomena not only in an ILES context.

The comparison of the different schemes showed that WENO 9th outperformed MC
and MUSCL 5th providing more accurate results. As the comparisons moved to areas of
more intense phenomena, where secondary flows were in motion, WENO 9th seemed to
function much better than the other schemes. The Low Mach Number Treatment function,
employed for two of the schemes, seemed to assist in the development of a turbulent flow
in all grids but ended up leading to an overprediction of turbulence in most of the areas. As
a result WENO 9th without LMNT in a fine grid outperformed the rest, producing accurate
results and capturing the flow characteristics of the case. So overall LMNT was a very
helpful tool in providing lower dissipation for the two schemes employing it in the straight
part of the duct. As the flow went through the bend, where the flow became more complex,
the schemes using it ended up overestimating the turbulence compared to the experimental
data.

The results and their validation showed the accuracy for the state of the art methods
used. Although no turbulence models where used and less computational resources than
in LES where utilised the turbulence was captured and satisfactory results were provided.
This is one more case proving the importance and future of high-order, high-resolution
methods in ILES but there is still a lot of future work needed in the area.

The study of the LMNT effect on the schemes employing it provided us with some very
important and interesting results. The overestimation of turbulence is mostly noticed in
the area after the middle of the bend and while progressing towards the outflow. Finding
the reason for this is a hugely challenging task since too many state of the art methods are
being used together and locating an exact reason would be close to impossible. There is
an important assumption that can be made though and would offer for future studies in this
area and LMNT. The flow after the middle of the bend starts dropping in velocity forming
larger areas of uniformly low speed. This has as an effect low Mach numbers in the area
that with its turn leads to a more active use of LMNT in the simulation. The higher weights
in the LMNT technique could lead to a significant amount of dissipation being removed
that in the end produce the highly turbulent results observed. Further study in the reasons
for these discrepancies and on the way LMNT works, in the future, can provide a very
helpful tool for ILES. This further illustrates observations made previously by Kokkina-
kis [1] for the turbulence resolution in a plane channel case. The main challenge so far
in ILES schemes was associated with the dissipative error being too high and turbulence
being under-predicted. However as demonstrated in this study, combining high resolution
schemes with additional dissipation control provided by LMNT may in some cases lead
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to insufficient dissipation with the over-predicted rather than under-predicted turbulence
levels, while maintaining the overall stability and convergence of the numerical solution.
These observations lead to the question of what is “adequate” in terms of dissipative error
for ILES, which opens multiple opportunities for future research.

As this set-up successfully captured the flow inside a duct with a 90o bend more com-
plicated geometries can be studied in the future for the method to be further evaluated.
Geometries like U-bends, S-bends or even L-bends with a steeper turn could be studied.
The effect of different Reynolds numbers could also offer important information on duct
flows.

On the numerical aspect, the acquired data and observations could be used to further
improve some aspects of the methods employed. A more detailed study of the Low Mach
Number Treatment technique could lead to its improvement and deal with the issues of
overpredicting turbulence in cases like the one studied here. More data for this improve-
ment could be provided by studying the same case using MC and MUSCL without LMNT
so that the differences between employing LMNT and simulating without it can be located.
The computational cost of the simulations was too high for this study to be included here.
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L-bend grid comparisons

Grid result comparisons for the L-bend case against experimental data. Streamwise velocity
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L-bend scheme comparisons

Different scheme results comparison against experimental data for the L-bend case. Stream-
wise velocity U:
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Streamwise Reynold stresses Wrms
1:

Spanwise Direction

W
rm

s

0 0.2 0.40

0.01

0.02

0.03

0.04

0.05

MC_LMNT
Mus5th_LMNT
Weno9th_NLMNT
Experimental

x = −0.25, D = 0.1

Spanwise Direction

W
rm

s

0 0.2 0.40

0.01

0.02

0.03

0.04

0.05

0.06

0.07 MC_LMNT
Mus5th_LMNT
Weno9th_NLMNT
Experimental

Spanwise Direction

W
rm

s

0 0.2 0.4

0.01

0.02

0.03

0.04

0.05

0.06

MC_LMNT
Mus5th_LMNT
Weno9th_NLMNT
Experimental

x = −0.25, D = 0.3 and D = 0.5
1Some discrepancies can be expected here since comparisons are done using high order statistics of low

value variables and this is the reason why the simulation results can be easily affected by the slightest numer-
ical errors. Finally the experimental data include errors as well[107] that again can influence the produced
data significantly at these low values.
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