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Abstract 

Prostate cancer is a biologically heterogenous disease with considerable variation in 

clinical aggressiveness. Gleason grade, the universally accepted method for 

classification of prostate cancer, is subjective and gives limited predictive information 

regarding prostate cancer progression. There is a clinical need for an objective, reliable 

tool to help pathologists improve current prostate tissue analysis methods and better 

assess the malignant potential of prostate tumours. Fourier Transform Infrared (FTIR) 

microspectroscopy is a powerful bioanalytical technique that uses infrared light to 

interrogate biological tissue. The studies detailed in this thesis examine the ability of 

FTIR combined with multivariate analysis to discriminate between benign, 

premalignant and malignant prostate pathology in snap frozen, paraffinated and 

deparaffinated tissue.   
Prostate tissue was collected during and after urological procedures performed between 

2005 and 2008. The tissue was analysed utilising a bench top FTIR system in point and 

image mapping modes. The histology under interrogation was identified by a uro-

pathologist. Multivariate analysis was applied to the spectral dataset obtained. FTIR 

performance was evaluated. 

FTIR was able to reproducibly discriminate between benign and malignant prostate 

tissue in a pilot study. Cross validated diagnostic algorithms, constructed from the 

spectral dataset in this experiment, achieved sensitivities and specificities of 95% and 

89% respectively. 

FTIR analysis of transverse paraffinated and deparaffinated radical prostatectomy 

sections achieved good differentiation of the benign, premalignant and malignant 

 



pathology groups. However the performance of diagnostic algorithms constructed from 

this dataset under cross validation was poor. 

The work in this thesis illustrates the potential of FTIR to provide an objective method 

to assist the pathologist in the assessment of prostate samples. The limitations of the 

technique and directions for future work are presented. 
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 1

“ I had prostate cancer. It was rather painful and, in many ways, life changing ” 

Sir Roger Moore 1927- 

1  Introduction 

Prostate cancer is the most common cancer in men in the United Kingdom and the 

second most common male cancer in the world1. Despite a dramatic rise in prostate 

cancer incidence over the last decade, its aetiology and natural history remain poorly 

understood. Currently, histopathological analysis of prostate tissue obtained at 

transrectal ultrasound (TRUS) guided biopsy is the gold standard for diagnosis of 

prostate cancer and contributes to treatment strategy. Pathological interpretation of 

prostate specimens is time consuming and subjective. Although its current place as a 

standard is undisputed, it has an inherent weakness: - inter observer variation, which has 

been demonstrated repeatedly2,3,4,5. There is a need for alternative innovations to 

improve the cost, speed and accuracy of prostate cancer diagnosis. Progress in this field 

would improve patient management in addition to gaining a better understanding of the 

disease. 

Fourier Transform Infrared Spectroscopy (FTIR) is an optical technology capable of 

interrogating materials and objectively determining biochemical composition. FTIR is 

in widespread use in industry however its’ potential biomedical applications have only 

recently been evaluated. The studies which are detailed in this thesis investigate the 

ability of FTIR to discriminate between common prostate pathologies and identify 

where FTIR may create a niche in clinical practice. 

This chapter describes the normal anatomy and function of the prostate in addition to 

common pathological variants. The pathway to a prostate cancer diagnosis is outlined in 

addition to current management controversies. To conclude the literature regarding the 

biomedical applications of FTIR is reviewed and the aims and objectives of this thesis 

are stated. 



1.1 The Prostate Gland 

1.1.1  The Anatomy of the Normal Prostate  

The prostate gland was first described anatomically in 1538 by Vesalius and was named 

“the prostate” in 1611 by Casper Bartholin6. The prostate is an exocrine gland which 

forms part of the male reproductive system. The gland secretes an alkaline fluid that 

makes up a significant component of seminal fluid. The gland is inversely conical in 

shape and situated in the true pelvis (see Figure 1.1). The base of the prostate is in 

continuity with the bladder neck, the gland surrounds the first part of the urethra and the 

apex opposes the urogenital diaphragm. The anterior and posterior relations of the gland 

are the symphysis pubis and the rectum respectively7. The seminal vesicles which also 

contribute fluid towards the ejaculate are attached to the base of the prostate. The 

vesicles are separated from the rectum by the rectovesical pouch.  The glands of the 

seminal vesicles merge and join the ductus deferens to form the ejaculatory duct7. 

 

Figure 1.1 Median sagittal section of the male pelvis8 

The arterial supply to the prostate is derived from the internal iliac artery entering 

through neurovascular pedicles on the superolateral aspect of the gland bilaterally. 
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Venous drainage is into the prostatic plexus, in the pericapsular region, and 

subsequently into the internal iliac veins9. 

The lymphatic drainage of the prostate is primarily into the internal iliac nodes. The 

external and sacral nodes also receive drainage. These nodes are usually the first site of 

extraprostatic lymphatic spread from prostate cancer.  

The prostate is supplied by a rich neural plexus. The acini receive parasympathetic 

(cholinergic) innervation from the pelvic splanchnic nerves. The stroma which contract 

to empty the gland during ejaculation receive sympathetic innervation (adrenergic) from 

the inferior hypogastric plexus. The nerves penetrate the gland and may provide a route 

for intra or extraprostatic cancer spread. One theory is that this spread occurs because 

the nerves offer the path of least resistance. When seen as a pathological entity it is 

termed perineural invasion10. 

 

   

 

 

 

 

 

Figure 1.2 Sagittal and transverse prostate views illustrating McNeal’s zonal 

anatomy11 

The currently accepted anatomy of the prostate gland was first described by McNeal in 

1968. In his model, illustrated in figure 1.2, the prostate is divided into three main 

glandular zones (central, transitional, peripheral) orientated around the prostatic urethra. 

The key reference point is the 35o angle at the midpoint of the prostatic urethra which 
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separates the prostate into proximal and distal segments. The bulge of the 

verumontanum located on the posterior wall of the distal segment, defines the point of 

separation. The ejaculatory ducts and greater than 90% of the glands of the prostate 

empty into the distal urethra12,13,14 .  

Each zone has a different glandular organisation and proclivity for disease:- 

The central zone (CZ) encircles the ejaculatory ducts and is cone shaped, extending 

from the prostate base to the verumontanum. The CZ accounts for approximately 25% 

of normal prostatic volume. Approximately 10% of prostate cancers arise in the CZ14. 

The transitional zone (TZ) forms two pear shaped lobes on either side of the proximal 

urethra and accounts for 5% of normal prostate volume. The glands in the transitional 

zone are the primary site of benign prostatic hyperplasia (BPH). Approximately 15-20% 

of prostate cancers arise in the TZ14. 

The peripheral zone (PZ) surrounds the central and transitional zones in the basal 

portion of the gland and the distal prostatic urethra. The PZ constitutes the majority of 

normal prostate volume (70%). 70-75% of carcinomas arise in the PZ and it is a 

common site of prostatic intraepithelial neoplasia (PIN), inflammation, atrophy and 

occasionally hyperplasia14. 

The periurethral zone is composed of small glands around the proximal urethra lying 

within the confines of the preprostatic sphincter14. 

Important non glandular elements complete the model. Fibromuscular stroma, 

composed of compact collagen and smooth muscle bundles, surrounds the prostate and 

is sometimes described as a ‘capsule’. This is not a true capsule but is clinically 

important in defining and evaluating extraprostatic extension of carcinoma. The 

preprostatic sphincter forms a sleeve of smooth muscle fibres around the proximal 

urethra. The sphincter prevents retrograde flow of seminal fluid when it contracts during 

ejaculation. Striated muscle fibres are present inferior to the prostate apex. These are 

continuous with the external urethral sphincter and are responsible for urinary 

continence14. 
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1.1.2 Relevance of Prostate Anatomy in Current Clinical Practice  

The investigation and management of disorders of the prostate requires sound 

knowledge and application of anatomy. For example, the verumontanum is a key 

landmark for endoscopic procedures of the lower urinary tract. When performing 

endoscopic surgery to relieve bladder outflow obstruction (transurethral resection of the 

prostate (TURP) or bladder neck incision (BNI)), resection is not pursued distal to the 

verumontanum to avoid damage to the external urethral sphincter and preserve 

continence after surgery (Illustrated in figure 1.3). Pelvic lymph nodes (usually the 

obturator nodes) may be sampled during radical prostatectomy (surgery to remove the 

prostate in patients with prostate cancer) this may provide useful tumour staging 

information. The obturator nodes are usually the first to be involved in metastatic 

spread. 

 

V = Verumontanum 
L = Lateral lobe prostate 

L L

V

Figure 1.3 The internal anatomy of the prostate viewed at TURP 

The regions of the prostate sampled by core biopsy and transurethral resection of the 

prostate are likely to be quite different. Transrectal ultrasound guided core biopsies will 

mostly consist of tissue from the peripheral zone, seldom the central or transitional 

zones. TURP specimens are more likely to consist of tissue from the urethra, bladder 

neck, periurethral zone, transitional zone and anterior fibromuscular stroma14. Well 
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differentiated carcinoma found incidentally in TURP specimens is more likely to 

represent carcinoma which has arisen in the transitional zone. Poorly differentiated 

carcinoma in TURP specimens may represent tumour originating in the peripheral zone 

that invades the transitional zone15. In this thesis FTIR has been used to interrogate core 

biopsy tissue, TURP specimens and prostate sections in their entirety to establish 

spectroscopic parameters for all prostate tissue.  

1.1.3 The Histology of the Normal Prostate 

The prostate gland has a tubulo-alveolar organisation; the main zones (CZ, TZ, and PZ) 

all contain ducts and glands. The typical gland is lined by a basement membrane (BM), 

which is composed of type IV collagen, fibronectin, laminin, heparin sulphate and 

entactin16. The BM is separated from the secretory epithelial cells by a layer of basal 

cells lying parallel to the BM. These basal cells have little discernable cytoplasm and 

darkly stained nuclei12. Although basal cell function is poorly understood, histologically 

basal cells are important as their presence differentiates between benign disease and 

adenocarcinoma when they are not present. The epithelium consists of columnar shaped 

cells that secrete proteins such as prostate specific antigen (PSA) and prostatic acid 

phosphatase (PAP) into the seminal plasma17. The glands secrete mucins and produce 

lipofuscin18.  Biochemical products including citric acid and acid phosphatase are also 

secreted19. The glands empty into prostatic ducts and in turn the prostatic urethra. Ducts 

are lined by transitional cell epithelium just before they enter the urethra. 

1.1.4 Variation in Zonal Histology and Biochemistry 

Variation in normal histology exists between zones. The glands of the peripheral and 

transitional zones have rounded contours. Central zone glands are larger, more complex 

and often located in lobules around central ducts, ridges and arches. Central zone 

architecture may be mistaken for hyperplasia or prostatic intraepithelial neoplasia. 

Peripheral zone stroma is loosely woven with randomly arranged smooth muscle. 

Transitional zone stroma contains more compact, interlacing smooth muscle bundles. 

The stroma in the central zone is less abundant but contains compact smooth muscle 

fibres. 
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Biochemically, the central zone is the only zone which produces pepsinogen II and 

tissue plasminogen activator20,21. Lectin binding patterns have been found to reflect 

selective binding to specific cellular glycoconjugates which differ between the central 

and peripheral zone22.  

 7



1.2 Pathology of the Prostate 

The focus of pathological analysis of prostate tissue in routine clinical practice is 

primarily to identify whether and to what extent prostate cancer is present. The lay term 

cancer is frequently used to equate with malignant neoplasm. The term neoplasm (also 

known as tumour) is defined as an abnormal, poorly controlled proliferation of cells. A 

benign neoplasm remains localised in its tissue of origin with no propensity to spread. A 

malignant tumour comprises cells with the ability to invade adjacent tissues and spread 

to distant sites in the body, a process known as metastasis. Knowledge of benign 

pathologies of the prostate in addition to possible premalignant lesions is essential to 

enable differentiation between benign and malignant pathologies. This section will 

concentrate on common pathologies of the prostate that will be interrogated by FTIR in 

this thesis. 

1.2.1 Benign Prostatic Hyperplasia 

Benign prostatic hyperplasia (BPH) is common. The term is often used in relation to the 

symptom complex that is associated with it. Clinically, BPH is characterised by voiding 

and storage symptoms of variable severity23. Progression of the disease may lead to 

recurrent urinary tract infections, bladder calculi or urinary retention. BPH is however a 

pathological diagnosis and therefore can only accurately be made after prostate tissue 

analysis. 

Histologically, BPH represents specific deviations in architecture rather than simply an 

increase in cell population. Macroscopically the identification of hyperplastic glandular 

acini separated by fibrous stroma in a nodular pattern confirms the pathological 

diagnosis. In the transitional zone medium and large BPH glands may display 

architectural complexity and papillary infolding. Some nodules are cystically dilated 

and may contain a milky fluid. Other nodules contain calcified concretion ‘corpora 

amylacea’ – well circumscribed round structures with concentric lamellar rings.  
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Periurethral nodules have an abundance of pale ground material and a few collagen 

fibres. Microscopically the acini are tightly packed, lined by tall columnar epithelial 

cells with small basal nuclei24, as seen in Figure 1.4. 

 

Figure 1.4 Photomicrograph of Benign Prostatic Hyperplasia25 

The epithelium usually has a distinct double layer of secretory and basal cells. BPH 

cells are often thrown into folds however the nuclei remain aligned in a single row, 

which differs from PIN where the nuclei are irregularly arranged.  The cytoplasm in 

BPH is abundant and clear.  

BPH is intimately related to ageing26, its presence in autopsy studies rises from 

approximately 20% in men aged 41-50, to 50% in men aged 51-60 and to over 90% in 

men older than 8027. Although BPH is not life threatening, the effect of the lower 

urinary tract symptoms resulting from bladder outflow obstruction on patient quality of 

life can be significant28. Lifestyle modifications and medication29 form the mainstay of 

conservative treatments for BPH. Surgical treatments range from insertion of prostatic 

stents which maintain prostatic urethral patency to enucleation of prostate tissue by 

either open or endoscopic techniques. TURP is a commonly performed endoscopic 

operation to relive bladder outflow obstruction in men30, and is one of the sources of 

prostate tissue obtained in this project. 
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1.2.2 Prostatitis 

Inflammation of the prostate is termed prostatitis. The condition usually follows 

infection of the bladder or urethra, is benign, may be acute or chronic and have either 

definitive (for example: surgical instrumentation) or idiopathic precipitants. Acute 

bacterial prostatitis is the most common urologic diagnosis in men younger than 50 

years old31. Common causative organisms include E. Coli, Proteus and Chlamydia. 

Clinically patients may report a number of symptoms: fever, urinary frequency and 

urgency, dysuria, haematospermia and pain in the lower back, rectum and perineum. 

Acute bacterial prostatitis may culminate in abscess formation and the condition 

requires prompt medical treatment. The diagnosis of acute prostatitis is made from 

assessment of the clinical presentation, positive urine or blood cultures and the 

examination finding of a tender prostate at digital rectal examination. Chronic prostatitis 

may be asymptomatic or present with chronic pelvic pain. Men with chronic prostatitis 

may present solely with an elevated PSA and an abnormal digital rectal examination. In 

these men prostatitis may be diagnosed histologically from a prostate biopsy whilst 

being investigated for a suspected prostate cancer. 

The peripheral zone of the prostate is reported to be the most susceptible to prostatitis. 

The transitional zone is less predisposed but may display features of secondary 

inflammation in the presence of prostatic hyperplasia. The central zone is considered 

resistant to inflammation. Microscopically in acute prostatitis sheets of neutrophils are 

visualised in and around prostatic ducts and acini, in addition to desquamated 

epithelium and debris (see Figure 1.5). The stroma is oedematous, haemorrhagic and 

microabscesses may be observed. Granulomas, lymphocytes, plasma cells and 

macrophages may also be found in the prostate stroma in the presence of chronic 

disease32. 
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Figure 1.5 Photomicrograph of acute bacterial prostatitis 

1.2.3 Atrophy of the Prostate 

Atrophy is a benign process generally associated with ageing but may occur as an end 

result of inflammation. It is characterised by shrinkage of distal ductules, glands and 

stroma. Atrophy affects predominantly the peripheral zone. Clinically atrophy may be 

seen as a hyperechoic lesion on transrectal ultrasound which may be suspicious for 

carcinoma. It is important to be aware of atrophy as an entity because a lobular 

glandular organisation may not be apparent causing it to be mistaken for carcinoma of 

the prostate32. 

 1.2.4 Prostatic Intraepithelial Neoplasia 

Prostatic intraepithelial neoplasia (PIN) may be a precursor of invasive cancer33,34,35 . 

The term was first adopted by Bostwick and Brawer to describe all forms of atypical 

and malignant lesions of epithelial cells confined to the lumens of ducts and acini36. PIN 

is characterised by an intraluminal proliferation of secretory epithelium that 

demonstrates a spectrum of cytological changes. High grade PIN may strongly resemble 

carcinoma. Although initially described in three grades, the majority of pathologists 

now only report high grade PIN due to difficulties in consistency distinguishing the 

features of early PIN and the clinical significance of high grade PIN due to its strong 

association with invasive carcinoma37. PIN has been demonstrated to be more prevalent 
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with age38,39, and its presence is more common in prostatectomy specimens with 

carcinoma present36,39,40 . In core biopsies the incidence of isolated high grade PIN 

(without cancer) has been reported to be between 0.7 and 16.5% (mean 4%)41. PIN may 

predate the diagnosis of cancer by five years38,39. The identification of isolated high 

grade PIN within a specimen clinically may result in a higher index of suspicion for the 

presence of malignancy.  

 

Figure 1.6 Photomicrograph of High Grade Prostatic Intraepithelial Neoplasia42 

 

Microscopic features of high grade PIN are large prominent nucleoli, hyperchromasia 

and cytoplasmic eosinophilia, as seen in Figure 1.6. PIN glands stand out from normal 

ones because of their basophilic appearance. There may be partial loss of the basal cell 

layer. Four major architectural patterns have been described: tufted, micropapillary, 

cribriform and flat. PIN shares many similarities with prostate adenocarcinoma: it is 

predominantly identified in the peripheral zone, often adjacent to carcinoma43,44,45 and it 

demonstrates similar patterns of spread. The first pattern is the replacement of normal 

luminal secretory epithelium by neoplastic cells. The second is pagetoid spread along 

ducts, characterised by invagination of neoplastic cells between the basal layer and the 
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columnar secretory cell layer. The third pattern is direct microinvasion through the 

ductal or acinar wall, disrupting the basal cell layer and basement membrane36,46,47 .  

1.2.5 Atypical Small Acinar Proliferation 

Atypical small acinar proliferation (ASAP) describes a small focus of prostate glands 

that is suspicious but not diagnostic of Adenocarcinoma. ASAP is present in 2% of 

prostate core biopsies48. Microscopically ASAP has small acini lined with cytologically 

abnormal epithelial cells. The columnar cells have prominent nuclei containing nucleoli; 

the basal layer may be absent but the basement membrane is intact. Difficulties in 

diagnosing ASAP are acknowledged as it may only be present in small foci. Isolated 

ASAP in a biopsy raises the suspicion that cancer focus may have been missed. Studies 

have demonstrated cancer presence at subsequent biopsy in over 40% of cases49.  

 

Figure 1.7 Photomicrograph of atypical small acinar proliferation   

1.2.6 Adenocarcinoma of the Prostate 

Prostate adenocarcinoma (CaP) is an invasive malignant epithelial tumour consisting of 

secretory cells. The epidemiology and relevant clinical aspects of the disease will be 

outlined later in this thesis. Macroscopically on section grossly evident tumours appear 

firm and solid. Tumours usually extend microscopically beyond their macroscopic 

border. Subtle tumours may be recognised by structural asymmetry expanding and 
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obscuring boundaries of prostate zones. Anterior and apical tumours may be difficult to 

identify because of mixed stromal and nodular hyperplasia50. 

Microscopically, adenocarcinomas of the prostate range from well differentiated 

(difficult to distinguish from benign prostate glands) to poorly differentiated tumours 

(which may be devoid of features of prostatic origin). Common to virtually all cancers 

is the absence of a basal cell layer. Identification of basal cell absence may be difficult 

as certain cancers will have cells that mimic basal cells, therefore the use of special 

stains may be necessary to determine basal cell presence.  

When studying prostate tissue to determine whether cancer is present histopathologists 

focus on gland architectural, nuclear, cytoplasmic and intraluminal features in addition 

to searching for malignant specific features. Adenocarcinoma of the prostate is not 

recognised to elicit a stromal response therefore the stroma is not considered useful in 

prostate cancer diagnosis. 

Architectural features: Benign prostatic glands generally maintain a degree of order and 

are evenly dispersed. In contrast adenocarcinoma glands grow in a haphazard fashion. 

Features of infiltration include glands irregularly separated from each other by bundles 

of smooth muscle and the presence of small atypical glands situated between larger 

benign glands. More obvious features of malignancy are evident when there is loss of 

gland differentiation with the formation of cribriform structures, fused glands and 

poorly formed glands. Undifferentiated tumours may be composed of solid sheets, cords 

of cells or isolated individual cells. These above features are key components of the 

Gleason grading system (described in the next section). 

Nuclear features: The extent of nuclear atypia typically correlates with the architectural 

degree of differentiation. Nuclear enlargement with prominent nucleoli is a common 

feature in cancer cells but not diagnostic in isolation. In high grade cancer nuclear 

pleomorphism and mitotic figures may be seen. 

Cytoplasmic features: Prostate cancer glands tend to have a sharp luminal border in 

contrast with benign glands. Although cytoplasmic features of low grade prostate cancer 

glands are often not distinctive; tumour glands may have amphophilic cytoplasm. The 
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cytoplasm in all grades of prostate cancer generally lacks lipofuscin which is present in 

some benign prostate glands51.  

Intraluminal features: Crystalloids, eosinophilic crystal like structures may be seen 

frequently in low grade prostate cancer52. These structures may also be seen in benign 

glands but less frequently. Intraluminal pink acellular dense secretions or blue tinged 

mucinous secretions are findings seen preferentially in cancer53. In contrast corpora 

amylacea are common in benign glands and rarely seen in prostate cancer52.  

Malignant specific features: Perineural invasion, mucinous fibroplasia and 

glomerulations have not been described in benign tissue and are diagnostic of prostate 

cancer. Perineural invasion describes the presence of cancer cells circumferentially 

within the perineural space. Mucinous fibroplasia describes loose fibrous tissue with an 

ingrowth of fibroblasts. Glomerulations refers to gland with a cribriform pattern that is 

not transluminal. The cribriform structure may attach to only one edge of the gland thus 

resembling a glomerulus. 

1.2.7 The Gleason Grading System 

The Gleason grading system, named after Donald F Gleason, is the most widely used 

histopathological grading system for adenocarcinoma of the prostate. It was 

recommended by the World Health Organisation at a consensus conference in 199354. 

The Gleason grading system is based on glandular architecture; nuclear atypia is not 

evaluated55. Although other systems adopted nuclear atypia in their grading systems 

there has been no evidence that this added to the prognostic information obtained from 

glandular morphology56. The Gleason grading system describes five histological 

patterns or grades ranging from well differentiated to poorly differentiated (illustrated in 

figures 1.8-1.12, table 1.1). Prostate cancer is heterogeneous so more than one pattern 

may exist within a specimen. The most prevalent pattern and the second most prevalent 

pattern are combined to obtain a Gleason score between 2 and 10. Although the original 

classification did not account for patterns occupying less than 5% of the tumour or 

tertiary patterns, it is now recommended that the worst grade present should also be 

reported irrespective of its percentage present in radical prostatectomy specimens, 

because its presence is associated with a poorer prognosis57. In radical prostatectomy 
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specimens a higher Gleason pattern is reported as a tertiary grade if it occupies <5% of 

the tumour. In core biopsies the highest Gleason pattern is incorporated in the Gleason 

score irrespective of its percentage (higher Gleason grade is not applicable to core 

biopsies under current recommendations)58. Crush artefacts and evidence of hormone 

and radiation treatments within samples should not be Gleason graded. 
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Figure 1.8 Original schematic of the Gleason system 55 

 

Gleason Grade Histological Criteria  Differentiation 

1 Single, separate, uniform glands closely 
packed, with definite edge 

2 Single, separate uniform glands loosely 
packed, with irregular edge 

3A Single, separate uniform glands, scattered 

3B Single, separate, very small glands, scattered 

3C Papillary/cribriform masses, smoothly 
circumscribed 

4A Fused glands, raggedly infiltrating 

4B Same, with large pale cells (“hypernephroid”) 

5A Almost solid, rounded masses, necrosis 
(“comedocarcinoma”) 

5B Anaplastic, raggedly infiltrating 

Well differentiated 

 

 

 

 

 

 

 

 

Poorly differentiated 

Table 1.1 The histological criteria of Gleason 1-5 in the original wording55 
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Figure 1.9 Photomicrograph of Gleason pattern 2  

 

Figure 1.10 Photomicrograph of Gleason pattern 3 

 

Figure 1.11 Photomicrograph of Gleason pattern 4 

 

Figure 1.12 Photomicrograph of Gleason pattern 5 

1.2.8 Current Additional Cancer Molecular Profiling Techniques 

 

Immunohistochemistry currently plays a significant role in determining the presence of 

prostate cancer in samples which are difficult to classify; most commonly prostatic 
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biopsies. High molecular weight basal cell-specific cytokeratin, preferentially stains 

basal cells, confirmation of the presence of basal cells presence or absence is useful in 

the diagnosis of small acinar carcinoma59. Prostate specific markers such as PSA and 

PAP have limited role in identifying prostate tumours because antibodies of one or both 

are acknowledged to be present in both primary and secondary lesions, however benign 

glands may also be positive for these markers59. Neuroendocrine markers when used in 

well prepared prostate tissue are focally expressed in many adenocarcinomas although 

their role in carcinoma is unknown. There are a plethora of papers on genetic alterations 

present in prostate cancer: some appear to be random while others seem to be 

consistently present. Examples of markers which are being investigated include the 

proliferation markers: Ki-67, MIB-1 and PCNA60,61.  However the role of all these 

markers as providers of predictive or prognostic information has been limited by the 

heterogeneity of prostate tissue and conflicting results.  

 

DNA micro array technology has been used to quantitatively elucidate genes expressed 

by prostate cancer cells. The role of these genes in carcinogenesis can be further 

explored using micro array technology in combination with more complex statistical 

methods. The aim is to identify genes which could act as biomarkers for prostate cancer. 

However as one recently attempted meta-analysis of several microarray experiments has 

shown the comparison of genes from cells obtained from different laboratories is 

difficult because there are differences in preparation and experimental conditions62. 

Micro array technology has recently been used in combination with FTIR; this is 

discussed later in section 1.6.7. 

1.2.9 Limitations of Conventional Histopathology 

Prostate cancer diagnosis is dependent on obtaining prostate tissue specimens with the 

disease present. However because prostate cancers are often multifocal and 

heterogeneous in pathology, even if prostate biopsy targeting protocols are adhered to, 

negative biopsies do not exclude the possibility of prostate cancer. Similarly, positive 

biopsies may not contain or reflect the degree and severity of prostate cancer present 

within the prostate. 
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Pathology is the gold standard for prostate cancer diagnosis. Prostate core biopsies may 

contain limited carcinoma within the sample and cancer diagnoses can then be missed 

on account of human error. Several studies have demonstrated that when prostate cancer 

is present there is inter-observer variation in applying Gleason grade3,4,5,6,63. Uro-

pathologists achieve the best reproducibility in their assessment of Gleason grade 

(kappa 0.61-0.80). General pathologists have moderate inter-observer agreement (kappa 

0.41-0.60). These studies illustrate that variability in interpretation is a global 

phenomena63,64, under diagnosis of Gleason grade is the main problem. Specific 

difficulties include recognising the border areas between Gleason patterns and that 

microscopic foci of carcinoma do not necessarily represent low grade carcinoma. A 

criticism of these studies might be that they contain a small number of observers, 

however this is likely to represent current practice. Significant improvements in 

Gleason grading have been achieved by online tutorials65,66 and regular refresher 

courses may be beneficial for non specialist pathologists covering a urological 

workload. Egevad et al. performed an international survey of current Gleason grade 

practice and found that 77 genitourinary pathologists demonstrated varying opinions on 

the actual criteria themselves64. The subjectivity in interpretation of the Gleason grade is 

a concern because the pathological assessment guides treatment. Innovations to make 

pathological analysis more robust would be welcomed by all involved in ensuring the 

delivery of high quality patient care. 
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1.3 Prostate Cancer Epidemiology 

1.3.1 International Prostate Cancer Epidemiology 

Worldwide 670,000 men were diagnosed with prostate cancer in 2002, accounting for 

one in nine of all new male cancers. Three quarters of new diagnoses are made in the 

developed world with the highest rates in North America and the lowest rates in Asia1. 

An ageing population, increased surgery for benign prostatic hyperplasia, increased 

health awareness and screening for prostate cancer using the Prostate Specific Antigen 

(PSA) blood test are thought to account for the increasing incidence of the disease67.  

1.3.2 United Kingdom Prostate Cancer Epidemiology 

In 2006, 35,515 new cases were diagnosed in the UK, accounting for 24% of all new 

male cancer diagnoses. The current lifetime risk of being diagnosed with prostate cancer 

is one in ten68. The majority of men found to have prostate cancer are diagnosed over 

the age of 65 with the largest number of cases diagnosed in those aged between 70 and 

7469,70,71,72. Post mortem studies estimate that 50% of men over 50 will have histological 

evidence of prostate cancer, this percentage rises to 80% by the age of 80. However 

only one in 26 (3.8%) will die of the disease73. McGregor et al determined that of 

patients with detectable prostate cancer that would prove lethal by the age of 85 only 

16% would actually die from prostate cancer, the rest would die from other causes74. 

This data may be interpreted to conclude that ‘men are more likely to die with rather 

than from prostate cancer’. 

There were 10,239 deaths from prostate cancer in the UK in 2007, accounting for 13% 

of male deaths69,71,75 . Prostate cancer remains second to lung cancer as the leading 

cause of male cancer death in the UK, a situation mirrored in worldwide statistics. 

Despite a dramatic rise in the incidence of prostate cancer over the last twenty years, 

mortality rates only rose marginally until 2003/2004. Rates have fallen slightly since 

2003 but it is not possible to elicit whether this is attributable to improved cancer 

treatments, changes in cancer registry coding76, the attribution of death to prostate 

cancer77 or the effects of PSA testing. This is illustrated in Figure 1.13. 
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Survival rates in the UK have improved over the last twenty years. The relative five 

year survival rate from prostate cancer for diagnoses made in 2000 - 2001 in England 

and Wales was 71% compared with 31% for men with diagnoses made between 1971 – 

197578,79.  

Interpretation of these trends is difficult however because the case mix of patients 

diagnosed has changed. The statistical anomaly called ‘Will Rodgers phenomenon’ is 

well documented and may account for improved patient survival from prostate cancer. 

Between 1992 and 2002, interpretation of the Gleason grading system was amended to 

stop the diagnosis of Gleason 2 adenocarcinoma of the prostate. The lowest Gleason 

grade allocated to prostate specimens became 3+3=6. This had the effect of causing 

migration in Gleason grade i.e. Gleason 2 disease became Gleason 3 and an associated 

tendency for pathologists to promote higher Gleason grades accordingly. Gleason grade 

and stage are used to produce standardised disease outcome data. Therefore if 

contemporary Gleason grades are higher, survival from prostate cancer by Gleason 

grade may not actually have changed over time. Thus what has been represented in 

survival trends is purely the reclassification of Gleason grade80. 

The recent emphasis on early prostate cancer detection has led to increasing numbers of 

young patients being diagnosed with early cancers. Although some improvement in 

survival will be due to early diagnosis and improved prostate cancer treatment,  

urologists are aware that increasing numbers of early cancers which may have been 

clinically insignificant may be being identified, thereby causing lead–time bias (earlier 

diagnosis of disease with no lengthening of life). 
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Figure 1.13 Age specific mortality rates, prostate cancer, UK, 1971-200781 

 

1.3.3 Aetiology of Prostate Cancer 

Increasing age73, family history82 and ethnicity83 are currently the only established risk 

factors for prostate cancer. Despite a keen interest in establishing potentially modifiable 

factors, no definitive evidence to support a change in treatment strategy exists. Diet84, 

lifestyle85,86 , endogenous hormones87, and medical conditions88 / interventions89,90 have 

been and continue to be investigated. The difficulty of performing such epidemiological 

studies is firstly the confounding multifactorial influences affecting the development of 

prostate cancer and secondly the fact that we are in a PSA era (the PSA test will be 

discussed in detail in the following section) and variable thresholds for performing the 

investigation means a PSA detection bias exists91. 
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1.4 Diagnostic Modalities of Prostate Cancer 

Prostate cancer may cause prostate gland enlargement leading men to present with 

symptoms, however localised prostate cancer is often asymptomatic. Men commonly 

present now for investigation of their prostate because of concerns raised by 

increasingly prominent public health campaigns about prostate cancer or because 

relatives, friends or celebrities have been diagnosed with the disease. This section 

describes current clinical diagnostic modalities and practice. 

1.4.1 Clinical Signs and Symptoms 

The majority of prostate cancers arise in the peripheral zone, therefore it is unusual that 

sufficient enlargement will occur in the PZ to cause urinary symptoms in the form of 

urinary frequency and difficulty in passing urine. Although transitional zone tumours 

and large PZ tumours may cause urinary outflow symptoms; it is likely that coexisting 

transitional zone enlargement secondary to hyperplasia contributes towards most men 

presenting for investigation in this way. Haematuria, haematospermia and perineal 

discomfort may also cause men to present for investigation.  

Locally advanced prostate cancer may present with all the above features in addition to 

pelvic pain, rectal bleeding, or renal failure secondary to ureteric obstruction. Malignant 

priapism and rectal obstruction are rarely seen possible presenting symptoms. 

Metastatic prostate cancer is often occult however activity at sites of spread may cause 

symptoms. Bone pain, pathological fractures or spinal cord compression may result 

from bone metastasis. Lymphadenopathy may cause lower limb swelling due to the 

blockage of lymph channels. Other presentations may occur due to the generalised 

systemic effects of malignancy. 

1.4.2 Digital Rectal Examination 

Digital rectal examination (DRE) is performed to assess the external contour of the 

prostate gland. Most prostate cancers originate in the peripheral zone and may be 

detected by DRE when the volume is 0.2ml or larger. An abnormal DRE is not specific 
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for cancer; both prostatitis and benign prostatic hypertrophy may cause an abnormal 

examination. The risk of a positive DRE turning out to be a prostate cancer is closely 

related to the PSA value: the higher the PSA value the more likely the DRE assessment 

will be positive. An abnormal DRE in the presence of a normal PSA, < 4.0ng/ml, has a 

30% chance of predicting a prostate cancer, for this reason DRE is a vital part of the 

diagnostic process92. DRE is also important for the clinical staging of disease as 

described in the next section. 

1.4.3 Prostate Specific Antigen 

Prostate specific antigen (PSA) was discovered in 1979 by Wang et al93. PSA is a 

kallikrein-like serine protease produced almost exclusively by the epithelial cells of the 

prostate and secreted into the ductal system. The normal mode of existence in serum is 

in complex with α-1-anti-chymotrypsin and α-2-macroglobulin, only a small percentage 

of serum PSA is in its free form. Serum PSA is determined by immunoassay techniques. 

Currently there are many different commercial kits but no common international 

standard exists94. Monoclonal antibodies have been designed to detect the free form of 

PSA, the complex of PSA and α-1-anti-chymotrypsin and the total PSA. 

Total PSA has been found to correlate well with advancing age and it has been 

advocated that these values are taken into account with respect to PSA related 

diagnostic strategies95. There is no universally accepted cut off point or upper limit of a 

normal PSA; values over an arbitrary cut off point of 4.0ng/ml are inferred to be 

abnormal in manufacturers’ reference ranges; however many men may harbour prostate 

cancer with a low serum PSA. This is illustrated in table 1.2 which shows the rates of 

prostate cancer in relation to serum PSA, in men deemed to have normal PSA values, in 

the placebo arm of a US prevention study96.  
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PSA level ng/ml Risk of Prostate Cancer (%) 

0-0.5 6.6 

0.6-1 10.1 

1.1-2 17 

2.1-3 23.9 

3.1-4 26.9 

Table 1.2 The risk of prostate cancer in relation to low PSA values96 

In the decade that followed PSA’s discovery, studies demonstrated that PSA could be 

detected in human serum and that there was a positive correlation between an elevated 

serum PSA and prostate tumour volume and stage97,98. Based on the assumption that 

most adenocarcinomas secrete more PSA than normal or hyperplastic glands the PSA 

blood test gained widespread acceptance as a prostate cancer screening tool in clinical 

practice in the developed world. The original author Stamey, who identified the link 

between blood PSA levels and prostate cancer, recently questioned the validity of PSA 

in its current role. He presented evidence to support a significant body of opinion in the 

urological community that the majority of cancers picked up by PSA screening are 

clinically insignificant99. PSA is useful to detect recurrence and monitor response in 

patients with prostate cancer who have undergone therapy. The limitations of the PSA 

test are primarily that it is organ specific but not cancer specific and therefore may be 

raised in benign pathologies including urinary tract infection, BPH and prostatitis. PSA 

is a poor predictor of prostate cancer volume and severity especially at low levels 

(<10ng/ml) where the PSA value more accurately reflects the size of the gland99. 

Intertumoural variation in PSA secretion also limits the diagnostic sensitivity of the test 

as certain subtypes of prostate cancer for example small cell neuroendocrine carcinoma 

are associated with low PSA concentrations100. 

Improving the characteristics modifications of the PSA has been considered; PSA 

velocity (rate of change over time) and PSA density (PSA ratio to prostate volume) 

have not demonstrated a greater value than PSA alone in prostate cancer diagnosis96,101. 

Free PSA, the free form of PSA, is present in a greater proportion of men without 
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cancer. The concept of the free / total PSA ratio (f/t PSA) has been extensively 

investigated to attempt to differentiate between BPH and prostate cancer in men with 

PSA levels between 4 and 10ng/ml and a negative DRE. In a prospective multicentre 

trial, prostate cancer was found in 56% of men with a f/t PSA ratio of <0.10 but in 8% 

of men with a f/t PSA > 0.25102. Free PSA is however unstable at room temperature and 

at 4°C and assays are not standardised as there are many inactive isoforms of free PSA 

including pro-PSA and BPSA, therefore caution in clinical application of these results is 

necessary.   

1.4.4 Prostate Specific Antigen and Prostate Cancer Screening 

Wilson and Jungner established the criteria that should be upheld in a gold standard 

screening assessment103. Prostate cancer screening and specifically the PSA test do not 

fulfil most of these criteria. Controversy exists about whether with changing public 

healthcare expectations and advances in technology the Wilson and Jungner screening 

criteria should be modified. In the case of prostate cancer the debate ranges: from the 

advocates who say the relatively inexpensive test detects clinically significant disease, 

to the opponents of screening who highlight the low specificity, over diagnosis and 

morbidity and cost of further investigation and treatment of prostate cancer. Two large 

population based randomized trials were designed to evaluate the efficacy of screening 

using DRE and the PSA test and have recently reported their early findings.  

The Prostate, Lung, Colorectal and Ovary trial (PLCO) randomly assigned 76,693 men 

in the United States to receive either annual screening or usual care. The subjects were 

aged between 55 and 74 and a PSA of over 4.0ng/ml was deemed to be positive for 

prostate cancer. After seven to ten years of follow up although the screened group was 

associated with a 22% increase in the rate of prostate cancer detection and good 

compliance there was no difference in prostate cancer mortality between the two 

groups104. One of the limitations of this study is that in US healthcare is privately 

funded and the majority of men within this trial are likely to already have had a serum 

PSA prior to inclusion in the trial105. Men with significant tumours who were young and 

may have benefited from screening would not have been entered into the trial as they 
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would have been undergoing treatment. This may account for the lack of survival 

benefit of screening. 

The European Randomized Study of Screening for Prostate Cancer (ERSPC) 

randomized 182,000 men between the ages of 50 and 74 years to PSA screening at an 

average of once every four years and a control group receiving no screening. During a 

median follow up of nine years, this study found a higher proportion of prostate cancers 

in the screened group but concluded the rate of death from prostate cancer was reduced 

by 20%. However they also highlighted 1410 men would need to be screened and 48 

additional cases of prostate cancer would have to be treated to prevent one death from 

prostate cancer106.  The ERSPC also has limitations: the study was conducted in several 

different countries and therefore variability regarding the men included and strategies 

for screening and follow up occurred. The PSA threshold for prostate biopsy was also 

lower at 3.0ng/ml when compared to the PLCO trial. 

Further analyses of these trials will undoubtedly be reported in the future however both 

highlight the risks of over diagnosis and over treatment associated with PSA screening. 

Clinicians will evaluate the data in different ways but a shared decision making 

approach to PSA screening is currently more appropriate than ever. 

1.4.5 Biomarkers for Prostate Cancer Detection 

Biomarkers which can both identify prostate cancer and accurately differentiate indolent 

from aggressive cancers are being investigated. A brief summary of emerging markers 

is described below. 

Prostate Cancer Gene 3 (PCA3) is a biomarker that is being used in clinical practice 

albeit only in certain institutions in the United Kingdom. PCA3 is present in urine, 

expressed prostatic secretions, semen and prostate tissue. The marker usually is 

measured in urine after DRE and prostatic massage which allows shedding of prostate 

epithelial cells. The marker is evaluated using reverse transcriptase polymerase chain 

reaction (PCR). PCA3 is over expressed in 95% of prostate cancers and in studies to 

date a sensitivity and specificity of 66% and 89% respectively have been achieved. The 

sensitivity of PCA3 is increased in the subgroup of patients with a PSA less than 
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4.0ng/ml107,108. Although the results to date have been encouraging there is need for 

further refinement of this test before it would replace PSA in routine practice for 

screening. Currently the investigation is particularly useful for determining who to re-

biopsy in men with an elevated PSA level and no prostate cancer on initial biopsy, men 

who are found to have cancer with normal PSA levels, men with PSA levels elevated 

secondary to prostatitis and in active surveillance of men with suspected multifocal 

disease.   

Translocation or gene fusion markers are genes found in cancerous tissue, which are not 

expressed in benign tissue. ERG and ETV1 are two examples of genes that have been 

identified to be present specifically in prostate cancer109. 

Proteonomics is the large scale study of proteins. Proteins are the end product of gene 

expression and are the functional mediators of cellular changes in cancer. In the search 

for protein biomarkers, surface enhanced laser desorption/ionization time of flight 

(SELDI-TOF) and matrix assisted laser desorption/ionization-TOF mass spectrometry 

are currently the most common techniques used however reproducibility is currently a 

concern. Trials to establish the reproducibility of the technique have been 

commenced110,111.  

Autoantibodies directed against prostate cancer tumour specific antigens have also been 

discovered using high throughput proteonomic techniques. Multiple autoantibody 

signatures have been identified in serum and when used as a panel together have 

demonstrated a better specificity and sensitivity performance for prostate cancer 

detection than serum PSA112. However further studies are required in to develop this 

technology.  

Prostate stem cell antigen (PSCA) is a prostate specific glycoprotein that is expressed 

on surface of prostate cancer cells. This can be detected by immunohistochemistry and 

PSCA RNA in blood. Increased PSCA expression has been related to increased prostate 

cancer risk113,114. 
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Prostate specific proteins GSTP-1115,116, EPCA117, HK2118, Hepsin119 have all 

demonstrated promise as possible biomarkers however refinements in detection and 

further study is required to confirm their usefulness. 

High throughput technologies, like genomic microarrays, have facilitated biomarker 

discovery in different specimens including serum, urine and prostatic tissue however 

rigorous scientific investigation is necessary before any are introduced into routine 

practice. Researchers and clinicians are mindful of the legacy of the PSA test; which 

took more than 10 years to reach clinical practice after its discovery but took 

approximately the same amount of time to understand its limitations.       

1.4.6 Transrectal Ultrasonography and Prostatic Biopsies 

Transrectal ultrasonography (TRUS) enables the operator to measure gland volume and 

delineate obvious focal lesions. Although some prostate cancers may be visualised as a 

hypoechoic lesion in the peripheral zone the appearance is non specific120. The primary 

application remains the image guidance of transrectal or perineal biopsies. TRUS 

guided 18G core biopsy has become the standard way to obtain prostate tissue for 

pathological examination in patients suspected of having prostate cancer. Multiple cores 

may be taken with low complications if antibiotic prophylaxis is used121,122. Sampling 

sites should be as far posterior and lateral in the gland as possible. At least eight biopsy 

cores should be taken, more than twelve cores are not significantly more conclusive123. 

The British Prostate Testing for Cancer and Treatment Study has recommended ten core 

biopsies124. Current indications for re-biopsy are rising or persistently high PSA, a 

suspicious DRE, or findings of ASAP or extensive PIN125. The quantification of the 

amount of cancer on the needle biopsy, number of positive cores and core location give 

clinicians valuable information about individual tumour characteristics126. 

1.4.7 Magnetic Resonance Imaging, Computed Tomography and Nuclear Medicine 

Cross sectional imaging techniques such as magnetic resonance imaging (MRI) and 

computed tomography (CT) are used for disease staging of patients with prostate cancer 

(see section 1.4.6). Studies in the past have demonstrated low sensitivity to detect 

prostate cancer. MRI spectroscopy is being evaluated in a diagnostic role however its 
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ultimate role is also likely to be in staging prostate cancer (see section 1.7.2) and is 

currently predominantly a research technique. Radionucleotide bone scans provide a 

sensitive method for diagnosing bone metastases and play an important role in prostate 

cancer staging. Elderly patients or patients with multiple co-morbidities who present 

with a significantly elevated PSA and abnormal DRE may only have a bone scan to 

confirm their diagnosis. If the bone scan demonstrates bone metastases then the 

assumption may be made that prostate cancer is the primary however this is not routine 

clinical practice and a histological diagnosis is preferred. 

1.4.8 TNM Staging of the Prostate 

Staging is a method of describing the extent of local and distant spread of any tumour. 

Staging may be either clinical (based on examination and radiological findings) or 

pathological (based on pathology specimen analysis). Staging is important in clinical 

practice because it enables an assessment of prognosis and thus guides patient 

management. The Tumour Node Metastases (TNM) staging system is adopted by most 

urologists for prostate cancer127. T-stage describes the extent of local spread and is 

assessed by DRE and imaging. N-stage is assessed by imaging or biopsy of suspicious 

lymph nodes. M-stage is assessed by examination, imaging and biochemical 

investigations. The definitions of each stage are described in Table 1.3.
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T – Primary tumour 

Tx Primary tumour cannot be assessed 

T0 Evidence of primary tumour 

T1 Clinically inapparent tumour not visible by imaging 

T1a Tumour incidental histological finding 5% or less of tissue resected 

T1b Tumour incidental histological finding in more than 5% of tissue resected 

T1c Tumour identified by needle biopsy (e.g. because of elevated prostate 

specific antigen [PSA] level) 

T2 Tumour confined within the prostate 

T2a Tumour involves one half of one lobe or less 

T2b Tumour involves more than half of one lobe, but not both lobes 

T2c Tumour involves both lobes 

T3 Tumour extends through the prostatic capsule 

T3a Extracapsular extension (unilateral or bilateral) including microscopic 

bladder neck involvement 

T3b Tumour invades the seminal vesicle(s)  

T4 Tumour is fixed or invades adjacent structures other than seminal vesicles: 

external sphincter, rectum, levator muscles, and/or pelvic wall 

N – Regional lymph nodes 

Nx Regional lymph nodes cannot assessed 

N0 No regional lymph node metastasis 

N1 Regional lymph node metastasis 

M – Distant metastasis 

Mx Distant metastasis cannot be assessed 

M0 No distant metastasis 

M1a Non-regional lymph node(s) 

M1b Bone(s) 

M1c Other site(s) 

Table 1.3 TNM (2009) staging of adenocarcinoma of the prostate127 
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1.5 Management of Patients with Prostate Cancer 

The studies in this thesis focus on prostate cancer diagnosis. The management of 

patients with prostate cancer is a huge subject area; for the purpose of understanding 

some of the treatment options available for patients with prostate cancer, a brief 

discussion of treatment modalities follows.    

1.5.1 Management of Patients with Localised Prostate Cancer 

Men diagnosed with prostate cancer who have no obvious evidence of spread of their 

disease outside of the prostate are eligible for all radical (curative) treatment options. 

The National Institute for Health and Clinical Excellence (NICE) has recently published 

clear guidelines about how patients should be risk stratified and managed. This is 

illustrated in table 1.4. 

Watchful Waiting: This refers to the avoidance of treatment unless there is disease 

progression. Those who progress may be offered hormone therapy or palliation. This is 

usually offered to older men or those with multiple co-morbidities who are more likely 

to die from something other than prostate cancer. 
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Low-risk men (PSA 

≤ 10 ng/ml and Gleason 
score ≤ 6 and T1-T2a) 

 
Intermediate risk men 
(PSA 10-20 ng/ml or 

Gleason score 7 or T2b-2c) 

 
High-risk men 

(PSA ≥20 ng/ml or 
Gleason score ≥8 or 

T3-T4) 
 

Watchful waiting    

 
Active surveillance   X 

 
Brachytherapy 

 
  X 

 
Prostatectomy 

 
   

 
Radiotherapy 

 
   

 
Cryotherapy 

 
X* X* X* 

 
HIFU 

 
X* X* X* 

 

 

 

 

  

 

 

 

 

 

Table 1.4 NICE guidance on the management of men with localised prostate cancer128

 Preferred treatment 
 Treatment option 

X Not recommended 
X* Not recommended other than in the context of clinical trials 

• Should be treatment of choice 
in low-risk men who are 
suitable for radical treatment 

• Include at least 1 re-biopsy 
• If evidence of disease 

progression men should be 
offered radical treatment 

• Use 3D conformal 
radiotherapy 

• Minimum dose 74 
Gy (maximum 2 Gy 
per fraction) 
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Active Surveillance: Active surveillance aims to avoid the unnecessary treatment of 

early prostate cancers which may prove to be indolent. These men are kept under 

regular surveillance using the PSA blood test, DRE and if appropriate repeat prostatic 

biopsy. If their disease demonstrates any evidence of early progression the patients are 

offered radical treatment. This treatment has recently been advocated to avoid inflicting 

unnecessary morbidity on patients who have had a low risk early cancer diagnosed. 

Radical Prostatectomy: This is the surgical removal of the entire prostate gland and 

seminal vesicles. The approach can be open via either the retropubic or perineal 

approach or use the minimally invasive techniques of laparoscopy or robotic surgery. 

The risks of surgery are significant and include incontinence, erectile dysfunction and 

the possibility of surgically positive margins (failure to remove all cancer cells). 

External beam Radiotherapy: This is usually preceded by hormonal treatments such as 

Zoladex (goserelin) injections. Doses are delivered in fractions over a four to eight week 

period. Radiotherapy also has significant associated risks: disease recurrence, altered 

urinary and bowel activity and erectile dysfunction. Adjuvant hormone therapy may be 

continued post treatment. 

Brachytherapy: This is a form of radiotherapy in which the radiation is given through 

radioactive sources either permanently implanted seeds (low dose) or temporarily 

inserted wires (high dose). Brachytherapy may not be possible in a large prostate gland. 

Relative contraindications include men with bladder outflow obstruction symptoms. 

Brachytherapy shares similar risks with radiotherapy. 

HIFU and Cryotherapy: These techniques use technology to either heat or freeze the 

prostate. The objective is destruction of the prostate cancer; these techniques are 

currently in the early phases of rigorous scientific investigation. 

1.5.2 Management of Patients with Advanced Prostate Cancer 

The mainstay of treatment for patients who have metastatic prostate cancer is hormone 

therapy. Cytotoxic chemotherapy may be considered in patients with good performance 



status should the prostate cancer become androgen independent. Palliative care 

approaches are the mainstay of treatment in the terminal phase of the illness. 

1.5.3 The Practical Challenges of Prostate Cancer in Clinical Practice 

PSA screening irrespective of the evidence base to support it is for the moment 

commonplace in clinical practice. The PSA test has undoubtedly contributed not only to 

the increased incidence of known prostate cancer129, but also to the increased number of 

men presenting for urological review and prostate biopsy as a result of a raised PSA. 

Over diagnosis of prostate cancer is an accepted consequence of current practice. The 

concept of active surveillance was introduced to counter the unnecessary treatment of 

clinically insignificant prostate tumours130. Unfortunately though we can attribute 

tumour risk by analysis of its characteristics we do not yet have a test that can 

accurately differentiate clinically aggressive (significant) tumours from those that will 

be clinically insignificant. For this reason men diagnosed with localised prostate cancer 

have to deal with uncertainty and anxiety in addition to potential morbidity whether 

they have active surveillance or active intervention. There is a need for a marker to 

determine severity of disease. 

The management and follow up of patients with both suspected and confirmed prostate 

cancer accounts for a significant proportion of Urology and Oncology departments’ 

workloads and budgets. The publication of the NHS cancer plan in 2000131 has added 

external pressure from the Department of Health on minimising patients’ waiting time 

before they are seen in clinic. Currently patients in the UK with suspected prostate 

cancer should be seen within 2 weeks of referral132 and should not have to wait longer 

than 18 weeks from GP referral to treatment133. The burden on the histopathology 

service has increased exponentially as a result of the number of biopsies resulting from 

abnormal PSA tests. Pathology manpower shortages are rarely reported however 

anecdotally their existence is recognised and evident in clinical practice134. Novel 

approaches to speed up the diagnostic pathway will benefit both clinicians and their 

patients. 

The cost burden of prostate cancer treatment and management is significant. Wilson et 

al. compared the cost of prostate cancer treatments over 5.5 years in 4553 newly 
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diagnosed patients in America.  The individual cost in the first six months including 

treatment and follow up ranged from 2586 dollars (for a patient undergoing watchful 

waiting) to 24,204 dollars (for a patient undergoing external beam radiation). The 

average annual cost of follow up after the first year was 7740 dollars135. Cost savings in 

the current recession are necessary and prostate cancer management is no exception. 
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1.6 Fourier Transform Infrared Spectroscopy 

Isaac Newton (1642-1727) discovered that white light directed at a prism could be 

separated into its component colours, a spectrum, in 1704. Newton’s law of the 

composition of light was published in Optiks in 1704 and formed the origin of the 

science of spectroscopy – the study of spectra.  

Bunsen and Kirchoff invented the first spectroscope capable of analysing chemical 

composition in 1859. This device comprised a prism with a combination of lens and 

slits. Technological advances and refinements of the integral components have led to 

modern day spectrometers.  The work in this thesis concentrates on infrared 

spectroscopy and the theory which follows is relevant to this field. 

1.6.1 The Theory of Molecular Spectroscopy 

Electromagnetic radiation, of which visible light forms a small part, is composed of a 

magnetic and electric field positioned perpendicular to each other. The propagation of 

light from a source through space can be considered as a sinusoidal wave as illustrated 

in figure 1.14. Light will travel in a straight line unless interrupted by molecules or 

matter in its path. When the electric component of light interacts with matter it may 

absorbed, scattered or pass through it, producing a spectrum. Molecular spectroscopy is 

the quantitative and qualitative analysis of the spectra produced by this interaction. 
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A

π/ω 2π/ω 

Wavelength (λ) Displacement 

 

Figure 1.14 The Sinusoidal path of light through space 

The above figure illustrates a harmonic wave: this has the same properties of a sine 

wave: 

y=A sin θ   (1) 

For any point travelling along the wave: y is the displacement, A is the maximum value 

of the displacement and θ is an angle varying between 0 and 360° (or 0 and 2π radians) 

dependent upon its position on the curve. 

If it is considered that a point travels with uniform velocity ω rad s-1 then the time taken 

to complete an angle is equivalent to: 

θ= ωt    (2) 

From this it can be inferred that the displacement described in equation (1) can also be 

described as below: 

y= A sin θ = A sin ωt   (3) 

The time through a complete cycle is therefore: 
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2π/ω     (4) 

The number of times the cycle repeats itself in 1 second (s) is referred to as the 

frequency, v, the SI unit is Hertz (Hz) with the dimensions s-1: 

v=ω/2π    (5) 

From this, the following equation of wave motion can be written: 

y= A sin ωt = A sin 2πvt  (6) 

When considering a travelling wave, the distance variation of the displacement is 

important. The following distance-time relationship is essential for this where x is the 

distance covered in time t at speed c: 

x=ct     (7) 

Combining equations (6) and (7): 

y= A sin 2πvt = A sin (2πvx/c)  (8) 

The distance travelled by the wave in a complete cycle is referred to as its wavelength, 

λ. If velocity equals c metres per second and there are v cycles per second, there will be 

v waves in c metres or: 

vλ = c from which we can say λ = c/v metres (9) 

Combining equations (8) and (9): 

y= A sin (2πx/λ)   (10) 

In infrared spectroscopy the wavelength is usually given in micrometers (μm) also 

sometimes described as microns (1μm = 10-6m).  Electromagnetic radiation can also be 

characterised in terms of wavenumber ύ. This is the reciprocal of the wavelength and 

expressed in centimetres: 

ύ = 1 / λ cm-1    (11) 
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and hence: 

y = A sin 2πύx    (12) 

Wavenumber is the number of complete waves or cycles in each centimetre length of 

radiation. Due to the definition being based on centimetres rather than metres, 

wavenumber is not an official SI unit however it is still used for the discussion of 

infrared spectra.    

The current concept of how light interacts with matter was realised in 1900 by Max 

Planck. A molecule in space may have many sorts of energy: vibrational energy 

resulting from the periodic displacement of its atoms from equilibrium, and electronic 

energy due to the fact that electrons associated with each atom are in constant motion. 

Electrons in atoms or molecules exist in discrete energy levels: this energy is referred to 

as quantized. In the same way molecules in different vibrational states are quantized. To 

move from one level to another requires a sudden jump requiring a finite amount of 

energy. This is illustrated in figure 1.15 below. Transitions may take place between 

energy levels E1 and E2 (the suffixes 1 and 2 used to describe energy levels in fact 

represent quantum numbers). In order to move between the levels a specific amount of 

energy must be emitted or absorbed by the system, ∆E. 

E2

∆E 

E1
 

Figure 1.15 Quantized energy states of a molecule 
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Planck described that electromagnetic radiation could be emitted or absorbed during a 

transition between levels. The frequency of the radiation: 

v = ∆E/h Hz    (13) 

and therefore: 

∆E = hv    (14) 

where E is expressed as a joule and h is a universal constant – Planck’s constant. 

This is practically important in molecular spectroscopy because if we take a molecule in 

state E1 and direct a beam of electromagnetic radiation of one frequency v (i.e. 

monochromatic radiation) onto it, where v = ∆E/h, energy will be absorbed from the 

beam and the molecule will jump to state E2. If a detector was placed to collect the 

radiation after its interaction with the molecule the intensity of the beam will have 

decreased. To expand on this concept, if a beam containing a wide range of frequencies 

is directed on to a molecule, with a detector to collect the radiation, the detector will 

show that energy has been absorbed only from that frequency where v = ∆E/h, all the 

other frequencies will be unchanged in intensity. This is how an absorption spectrum is 

produced. An emission spectrum would be produced if the molecule reverted from state 

E2 to E1.  

The actual energy differences between the levels are very small and are expressed as 

joules per molecule. Planck’s constant has the value: 

h = 6.63 x 10 -34 joules s molecule -1 

Often if interested only in the total energy involved when a gram of a substance changes 

state, spectroscopists may multiply by the Avogadro number (N=6.02 x 1023).  

The electromagnetic spectrum is illustrated in figure 1.15. The molecular processes 

associated with each region are different. The infrared portion of the spectrum is 

between the 100μm and 1μm wavelength. Infrared light passes easily through air and is 

one of the most valuable spectroscopic regions. The infrared region can be subdivided 
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into near, mid and far infrared. Most Fourier Transform spectrometers and 

spectroscopists operate in the mid infrared region. 

 

Figure 1.16 The Electromagnetic Spectrum 

The concept of how a spectrum is represented can be likened to a conventional X-Ray. 

If radiation is shone at the plate and nothing is in between the radiation and the plate, 

the plate will show an even blackening over the frequencies emitted by the radiation 

source. If a part of the body is placed between the radiation and the plate over the 

frequencies where radiation is absorbed the blackening will only be present at the 

frequencies where radiation has not been absorbed. Where absorption has taken place an 

interaction between radiation and molecules will have occurred and be represented by 

absorption lines. The intensity of the absorption lines will be dependent on the degree of 

absorption that has occurred at a specific frequency, different body structures for 

example bone and soft tissue will absorb to different degrees. This represents the 

contrast between structures on an X-Ray.  

The other important concept is that when radiation is absorbed, to enable a transition a 

sample (material under investigation) will continue to demonstrate an absorption 

spectrum for as long as it is irradiated. There is a finite amount of sample, therefore the 

sample although seemingly capable of absorbing an infinite amount of energy must be 
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getting rid of the energy absorbed. Some of the energy will be lost as kinetic energy and 

the sample will become warmer. Another mechanism will be losing the energy as 

electromagnetic radiation as molecules revert to their ground or resting state. This 

energy is re-emitted in a random direction, essentially scattered and a negligible 

proportion reaches the detector in practice which is why it does not affect the absorption 

spectrum.   

1.6.2 Infrared Spectroscopy 

Infrared spectroscopy is possible because molecules vibrate when they interact with 

radiation. If a molecule is considered in its resting stable energy state it will have a 

number of degrees of freedom: the potential to change position in space and rotation. If 

N = the number of atoms in the molecule then the number of degrees of freedom if the 

molecule is non linear is:  3N-6 (3 translational and 3 rotational) and if the molecule 

linear: 3N-5 (3 translational and 2 rotational). To illustrate if we take oxygen (O2), 

shown below in figure 1.17, which is a diatomic linear molecule, only one stretch 

vibration exists ((3x2)-5 = 1).  

 

Figure 1.17 Vibrational stretch of oxygen 

 

If we take a non linear molecule such as water (H2O) it has ((3x3) – 6) = 3 degrees of 

freedom. This is illustrated in Figure 1.18. 
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Asymmetrical stretch       Symmetrical stretch  Deformation 

Figure 1.18 Vibrational modes of water 

Infrared spectroscopy is an absorption spectroscopy. If incident infrared radiation 

corresponds to the appropriate ∆E (previously described in section 1.5.1) to cause a 

molecule to be promoted to a higher energy state it will be absorbed. The change in 

energy state is represented in infrared spectroscopy by a change in vibrational mode. 

The key to a substance being infrared active is that there must be a change in dipole 

moment with the vibrational change. This change in moment is stimulated by the 

electrical field interaction with the molecules’ dipole moment and may be either parallel 

or perpendicular to the line of symmetry axis. 

If we consider carbon dioxide (CO2) for example as a linear molecule with essentially 

one degree of freedom in the mode of vibration ‘symmetric stretch’; the molecule is 

symmetrically stretched and compressed with both CO bonds changing simultaneously. 

The dipole moment or net charge remains unchanged throughout and therefore this 

vibration is infrared inactive (illustrated in Figure 1.19). 
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compressed 

normal 

stretched 

Oδ- Oδ- C 2δ+ 

Oδ- Oδ- C 2δ+ 

Oδ- Oδ- C 2δ+ 

Figure 1.19 Symmetrical stretching of Carbon Dioxide molecule 

However if CO2 is considered in the linear asymmetric stretch mode as shown in Figure 

1.20, there is a periodic alteration in dipole moment (illustrated with red arrow) and this 

vibration is infrared active. 

C 2δ+ 

Oδ- 

Oδ- 

C 2δ+ 

Oδ- 

Oδ- 

C 2δ+ 

Oδ- 

Oδ- 

C 2δ+ 

Oδ- 

Oδ- 

C 2δ+ 

Oδ- 

Oδ- 

 

Figure 1.20 Asymmetric stretching of carbon dioxide with change in dipole 

illustrated 

A complex molecule will have a large number of vibrational modes involving the whole 

molecule.  Infrared spectroscopists have defined frequencies at which characteristic 

bond vibrations will occur when known chemical groups are present within a sample. 
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Certain bonds will absorb at the same wavelength range regardless of the structure of 

the molecule. For example the C=O stretch of a carbonyl group occurs at approximately 

1700cm-1 in ketones, aldehydes and carboxylic acids. This is the principle upon which 

infrared spectroscopy can be used for chemical identification. Spectroscopists refer to 

the fingerprint region of a spectrum (<1500cm-1) which is unique for a molecule and the 

functional group region (1500-4000cm-1) which may be similar for molecules within the 

same group (illustrated in Figure 1.21). Apart from the qualitative data obtained from an 

infra-red spectrum, concentration can be estimated using Beer Lambert law: 

A=ɛ│c 

Where: A=absorbance; ɛ=absorptivity; │= pathlength; c = concentration 

 

Figure 1.21 The fingerprint region and functional group region with examples of 

groups that may be involved in the regions136 

 

 1.6.3 The Infrared Spectrometer 

A Fourier Transform Infrared spectrometer contains an infrared light source, an 

interferometer, a detector, an optical system with a motorised x-y-z stage and a 

computer to process the data, as shown in Figure 1.22.  

 47



 

Figure 1.22 The components in order of function of a FTIR Microspectrometer 

Traditional infrared spectrometers functioned by recording each part of the spectrum 

separately. The process started at one end of the frequency and swept to the other, and 

the detector signal was monitored and recorded. The process was slow and inefficient as 

apart from the frequencies where a transition occurred the majority of the time was 

spent recording background noise. A mathematical way of resolving complex waves 

(sinusoidal waves of different frequencies) into their frequency components was 

developed by Jean Baptiste Fourier in the early 1800s, however the technology to 

enable its application to spectroscopy was invented much later. The interferometer is the 

key component that has facilitated Fourier Transform Infrared Spectroscopy. The 

interferometer was invented by Michelson in 1880 and he was the first American to win 

a Nobel Prize in 1907 ‘for his optical precision instruments and the spectroscopic and 

metrological investigations carried out with their aid’. When a parallel beam of 

radiation is directed from a source to an interferometer the following happens: A beam 

splitter (a plate of transparent material coated in a suitable substance to reflect 50% of 

the radiation falling on it) splits the beam into two separate light paths. Half the 

radiation goes to a moving mirror and half to a fixed mirror (as illustrated in figure 

1.23). The radiation reflected from these mirrors comes back along the same path and is 

recombined to a single beam at the beam splitter (half the total radiation will be sent 

back to source). 

If monochromatic radiation is emitted by the source, the recombined beam leaving the 

beamsplitter towards the sample will show constructive or destructive interference 

depending on the relative pathlengths between the beamsplitter and the two mirrors. 
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Essentially if the pathlengths are identical or differ by an integral number of 

wavelengths, constructive interference will give a bright beam. If the difference is a half 

of an integral number of wavelengths the beams will cancel each other. The moving 

mirror governs the variation in pathlengths, and as it moves the intensity of the radiation 

leaving the beamsplitter to the detector will alternate. This is called an interference 

pattern – a perception of light intensity plotted against optical path difference. If the 

source emitted two monochromatic frequencies, two different interference patterns 

would be created and overlay each other. Although the detector would see a more 

complex pattern, computing the Fourier transform of the resultant signal would obtain 

the original frequencies and intensities emitted by the source. Taking the process 

further, the infrared light source in a FTIR spectrometer produces two broad band 

beams emitting all frequencies within its range, thus producing interference patterns that 

can be transformed back to the original distribution of frequencies. If the recombined 

beam is directed through a sample, the sample absorption will show up as a gap in the 

frequency distribution. Fourier transform analysis will convert this to a normal 

absorption spectrum. In practice the mirror is moved smoothly over a period of time 

through about 1 cm and the detector signal may be monitored every thousandth of a 

second into 1000 storage points. The computer then performs Fourier transform analysis 

on the stored data.  

Beamsplitter

Moving mirror 

IR source 

Sample 

Detector 

   Fixed mirror

Figure 1.23 A schematic of the interferometer in a Fourier transform spectrometer 

FTIR spectroscopy has several advantages over traditional infrared spectroscopy: 
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• Speed: it is not necessary to scan each wavenumber individually because the 

whole spectrum is contained in the interferogram which is measured in a few 

seconds 

• Resolution: Conventional instruments used a slit to focus the radiation but 

although a fine slit gives good resolving power it only allows a narrow spread of 

frequencies to fall on the detector at any moment so limited energy could be 

passed through the instrument and high gain was required resulting in significant 

noise. In FTIR because parallel beams are used no slit is required and all the 

energy passes through the instrument. The resolving power remains constant and 

is limited largely by the moving mirror and the computer capacity 

• The digital data obtained by FTIR is easier to analyse 

1.6.4 Additional Technical Considerations for Infrared Spectrometry 

Infrared microscopes are generally designed with two paths from the sample to the 

detectors: transmission and reflection. In transmission mode, the light passes through 

the sample and is collected on the other side. In reflection mode, the infrared light 

reflects off the sample and passes back through the illuminating objective. In reflection 

mode, approximately 40-50% of the incident light is blocked by a mirror that collects 

the reflected light. Thus transmission mode is preferred over reflection because of the 

increased incident flux on the sample. Reflectance is suitable for thin samples, highly 

reflective samples, materials which cannot be cut and when an infrared transparent 

substrate is either not available or prohibited due to budget but all these can cause 

different spectroscopic issues. 

Sample preparation is key to collecting good spectra. Organic samples are generally 

prepared with thicknesses of 10-15 microns. Specimens are mounted on a 1-2mm thick 

infrared transparent material; common materials used are listed in table 1.5. Of note 

potassium bromide is water soluble and diamond is expensive. 
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Material Transmission Range (cm-1) 

Calcium Fluoride (CaF2) 4000-1100 

Barium Fluoride (BaF2) 4000-800 

Zinc Sulphide (ZnS) 4000-600 

Potassium Bromide (KBr) 4000-400 

Diamond 4000-50 

Table 1.5 Materials with an infrared transparent window 

CO2 and H2O although only present in air in small percentages exert a significant 

absorption effect over much of the infrared spectrum. This obscures valuable spectra at 

similar frequencies. To remove this effect and study the regions impaired by these 

absorbances, the CO2 and H2O spectra would have to be subtracted from the spectrum 

of any sample analyzed under comparable conditions. However since the percentage of 

water vapour in the atmosphere is highly variable a background spectrum would have to 

be performed for each sample. This affects the quality of the spectra and is time 

consuming. There are two ways of overcoming this problem:  

1. Evacuation of CO2 and H2O from the spectrometer - this may be done by 

flushing a constant current of dry Nitrogen or dry CO2 free air though the 

system. This is unlikely to be completely effective as the equipment has many 

points that are permeable and let the outside atmosphere in. 

2. The alternative is to use two beams. The source radiation is divided into two by 

mirrors. One beam is brought into focus at the sample space, the other follows 

an equivalent path and is referred to as the reference beam. A moving mirror 

alternatively reflects the reference beam or allows the sample beam through the 

spaces into the monochromator. The detector sees the sample beam and the 

reference beam alternately. Both beams have travelled the same distance through 

the atmosphere and therefore are both reduced in energy by the same amount 

due to absorption by CO2 and H2O. If a sample capable of absorbing energy 

from the beam from the monochromator is placed in the sample beam, the 

detector will receive a signal altering in intensity because the sample beam 

carries less energy than the reference beam. This can be amplified and a 
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calibrated attenuator can be driven into the reference beam until the signal is 

reduced to zero, essentially both beams are balanced again. The distance 

travelled by the attenuator is a direct measure of the amount of energy absorbed 

by the sample. 

Most spectrometers use some form of amplification to magnify the signal produced by 

the detector. Every recorded spectrum will have a background of random fluctuations 

caused by the equipment and additional electronic signals. These fluctuations are 

referred to as noise. For a spectral peak to distinguish itself from noise its intensity must 

be approximately three to four times that of the noise. This may be referred to as a 

signal to noise ratio but highlights that there will be a lower limit on the intensity of 

observable signals. Computer averaging techniques can improve the effective signal to 

noise ratio.   

1.6.5 Attenuated Total Reflection FTIR 

Attenuated total reflection (ATR) is especially useful for samples which do not let light 

through because either they are highly absorbing or they cannot be cut into thin enough 

sections. The technique uses an ATR objective containing an ATR crystal made of an 

infrared transparent material, for example diamond, fitted to the FTIR spectrometer. The 

ATR crystal is used to probe the sample and must be in contact with the sample to 

work. Light entering the ATR crystal is totally internally reflected and collected in 

reflectance mode. When light normally inside the crystal escapes to be absorbed by a 

sample there is a reflection loss (evanescent waves). A reflection loss spectra can be 

created and adjusted for the depth of penetration of the sample. Although the ATR 

technique requires little sample preparation it can be time consuming when used with 

biological tissues, because the objective must be cleaned between spectral 

measurements at different points, and the sample must be raised and lowered between 

sample data points, therefore automated mapping is prohibitive. 

1.6.6 Synchrotron FTIR 

Synchrotron FTIR (S-FTIR) enables the acquisition of highly resolved images of 

microscopic areas less than 10 microns in diameter. This has practical application in the 
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analysis of the contents of small cells. This is achieved because the beam of radiation 

used by the synchrotron is approximately a few hundred microns in diameter; this is 100 

to 1000 times brighter than that emitted from a conventional infrared light source. 

Conventional spectrometers encounter a signal to noise ratio limitation when apertures 

confine the beam to 20-30 microns. S-FTIR is able to approach beamlines of 3 microns 

in diameter with an acceptable signal to noise ratio thus enabling the detailed 

interrogation of cells. 
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1.7 Biomedical Applications of Fourier 

Transform Infrared Spectroscopy 

Vibrational spectroscopy techniques including Fourier Transform Infrared Spectroscopy 

have recently been applied to address biomedical problems. The concept is not new; in 

1949 and 1952 Blout, Mellors and Woernley reported that infrared spectra of human 

and animal tissues could provide information on the molecular structure of tissue137,138. 

Unfortunately, at that time the technology required to practically realise their visions 

was not available. The development of sensitive and high throughput spectrometers in 

the last decade has enabled simultaneous global analysis of biological samples and high 

resolution molecular information to be obtained.  Spectroscopic findings are dependent 

on tissue architecture, the light absorbing or scattering properties of each layer, and the 

biochemical microenvironment of the tissue. Spectroscopy is non-destructive, requires 

no extrinsic contrast enhancing agents and allows samples to be analysed directly at 

room temperature and pressure. This section describes the broad range of FTIR’s 

biomedical applications before a critical review of FTIR experimental studies performed 

on the prostate. Competing technologies will be discussed in Chapter 1.8. 

1.7.1 FTIR Spectrometry for Molecular Structural Analysis 

In complex biological cells and tissues the infra red spectrum is an expression of the 

sum of all the biomolecules present. The most significant components of most 

biological tissues and cells are proteins, carbohydrates and lipids. Analysis of the 

structural information obtained about these constituents by FTIR enables the 

differentiation and determination of clinically relevant factors. 

Proteins: proteins are macromolecules, they consist of series’ of amino acids known as 

polypeptides. The way in which these polypeptides are put together is termed the 

secondary structure. FTIR can be used to determine the secondary structure of 

proteins139. The structure can be determined in terms of percentages of α helix, parallel / 

anti parallel β sheets, β turn and unordered structure present in a sample140. 

Spectroscopists commonly use amide groups to determine the secondary structure of 
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proteins. Amide I (-CONH2-) is located at approximately 1700-1600 cm-1, Amide II (-

CONH-) is located at approximately 1550cm-1. The position in the frequency range 

where the amide bands appear is dependent on the hydrogen bonding of the C=O and N-

H groups141,142. Differentiation of pathologies on the basis of changes in protein 

concentration alone has been demonstrated to be limited by the fact that significant 

variations in cellular protein structure may occur, dependent on the position of the cell 

in its cycle rather than only due to the carcinogenesis process143,144. 

Carbohydrates: carbohydrates are an important source of energy in cells and fuel the 

majority of processes in the cell. Carbohydrates are most commonly found stored as 

glycogen in the cell, a polysaccharide chain. Glycogen is broken down into its 

constituent units of glucose to provide energy for cellular processes. Carbohydrates may 

also be found bound to lipids, proteins or the ribose moiety of nucleic acids. Key FTIR 

carbohydrate absorbencies arise at 1170cm-1, 1050cm-1, 1030 cm-1 145. The significance 

of changes in concentration of carbohydrates in the cell may give an indication of 

pathological processes occurring in the cell and this is discussed later in the chapter.  

 

Lipids: Lipids are also present in cells, and comprise fatty acid chains. Their 

absorbencies are largely due to their long hydrocarbon chain moieties (CH2 and CH3). 

The carboxylic acid moiety of fatty acids has a carbonyl stretch absorbance at 

approximately 1725 cm-1 and the carbonyl group of phospholipids characteristically 

absorbs at 1740 cm-1. The phosphate component of phospholipids prevalent in cell 

membranes has absorbance peaks at 1080 cm-1 and 1240 cm-1 for symmetrical and 

asymmetrical modes of PO2 respectively146. Changes in lipid concentration may signify 

changes taking place in the membranes of the cell.   

 

1.7.2 The Cell Cycle 

 

The cell cycle is the process by which normal cells proliferate, essentially mitosis (cell 

division), and is illustrated in Figure 1.24. The cycle starts with G1, a gap phase, this is 

the time between previous mitotic division and the next phase beginning. During the S 

phase DNA synthesis occurs, leading to the cell DNA content to be doubled. Once 

synthesis is complete there is a second gap phase, G2, before cell division occurs. In the 
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M phase mitosis occurs in two stages: firstly the DNA separates and then cytokinesis 

occurs. After this phase cells enter the G0 phase, this is a period of growth arrest until 

cells are stimulated to resume the cell cycle147.  

 

G2 G1 

S

M

G0

Figure 1.24 The cell cycle 

 

Several mechanisms exist to control the cell cycle. Proteins which regulate the cell cycle 

include growth factors, cyclin dependent kinases and cyclins. Apoptosis (programmed 

cell death), is another important mechanism by which abnormal cells or cells which are 

not needed are eliminated thus regulating proliferation. In malignancy, the normal 

mechanisms of control of cell proliferation do not operate. One theory for proliferation 

in malignant prostate cells is that p53 and Bcl-2, proteins which control apoptosis, are 

over expressed leading to apoptotic resistance148. Differences in cell biochemistry 

resulting from alterations in the normal cell cycle may be identified by FTIR. 

 

1.7.3 Biochemical Changes During Carcinogenesis 

 

The proliferation of an invasive cancer cell capable of local and distant spread is 

dependent on oxygen delivery and glucose metabolism. Metastatic tumour cells have a 

high glycolytic metabolic profile and are likely to have low intercellular oxygen 

tensions (pO2) as a consequence of high respiration rates (both anaerobic and 

aerobic)149. An increase in glycolytic rate results in decreased cellular concentrations of 

glycogen, especially in tumour cells. Neoplastic cells must be within a 1-2mm3 
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proximity to a blood supply to survive otherwise they will become hypoxic and 

eventually necrotic150. A viable blood supply enables the transport of nutrients to 

proliferating cells but also enables the waste products of carcinogenesis to be removed. 

Tumours with the capability to induce formation of new vessels are particularly 

pathogenic; vascular endothelial growth factor (VEGF) is an example of a potent 

angiogenic factor151. Tumour cells with a poor micro-circulation become hypoxic. Low 

oxygen tension combined with a poor oxygen supply and removal mechanism leads to 

increased anaerobic respiration and a several fold lactic acid production152. It is 

acknowledged that even in aerobic respiration tumour cells produce large amounts of 

lactic acid; this is termed the Warburg effect152. The removal of lactic acid is also 

impaired by the poor circulation. Acidic intracellular and extracellular pH is therefore 

associated with tumour progression and also ischaemia. 

 

In the process of necrosis special enzymes are released by lysosomes, which are capable 

of digesting cell components or the entire cell. This tissue destruction also results in 

lactate production. 

 

Carcinogenesis is associated with increased free radical generation. This is 

acknowledged to induce the formation of lipid, protein and DNA peroxidation 

products153. Phosphocholine and Glycophosphocholine are important metabolites of 

phospholipid metabolism and are noted to be present in increased quantities in actively 

dividing or cancerous cells154. 

 

The critical review which follows describes the way that some of these factors have 

been used to form a basis of objective discrimination of pathologies. 

 

1.7.4 FTIR and Clinical Chemistry 

 

FTIR has been able to determine molecular concentrations of glucose and cholesterol in 

blood155, and protein, creatinine and urea present in urine156 with good accuracy 

compared to clinical gold standards. The practical application of this has been limited to 

date because frequently spectra from different molecules have overlapped in complex 
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biological molecules especially at protein absorptions. Proteins are major constituents of 

these fluids, and their spectra may mask the spectral information from other sample 

contents157. These limitations can be overcome by either modifying data processing 

methods or by using specific transparent windows which are wavelengths where 

minimal overlapping and known key absorptions occur. 

 

1.7.5 FTIR and Microbiology 

 

Fourier transform infrared spectroscopy is used to classify microorganisms in many 

non-medically related fields currently, including bioprocess and fermentation 

monitoring158. Organism identification using FTIR analysis is achieved by utilising 

pattern recognition algorithms such as cluster analysis or linear discriminant analysis 

(LDA). The principles have been applied to enable classification of common pathogens 

for example Enterococcus species, an organism found in the gut and a leading cause of 

noscomial infections. A comparative study combined the use of phenotypic, genotypic 

and vibrational spectroscopy techniques to type a collection of Enterococcus strains. 

Classification by FTIR identified discrepancies in strains classified using the phenotypic 

systems. The discrepancies were resolved by using elaborate polymerase chain reaction 

(PCR) and genotypic methods to reclassify the strains in question. The correct strains 

were consistent with FTIR findings159. Thus FTIR has demonstrated promise as a 

microbiological classification tool. 

 

1.7.6 FTIR and Pathology 

 

The potential of FTIR for rapid, high resolution, unstained biochemical tissue analysis 

is being investigated. Ultimately it is hoped that the technology will not only reliably 

distinguish between pathologies but also enable identification of premalignant 

pathologies and prediction of clinical outcome. FTIR has been applied/studied in the 

following malignancies: colon160, cervix161,162, stomach163, breast164, skin165, oral166, 

pancreas167, lung168 and cerebral169. To date although FTIR has been applied to a 

number of biological tissues to distinguish pathology, universal patterns for 

distinguishing between benign and cancerous tissues have proved elusive. Studies have 
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been limited by small sample numbers and their lack of clinical application; maybe due 

to the lack of partnership between spectroscopists and clinicians in study design. The 

next part of the chapter will review the literature specifically regarding FTIR and the 

prostate to illustrate the applications of FTIR to pathology. 

 

1.7.7 FTIR of the Prostate 

Fourier transform infrared spectroscopy has been applied to urological pathologies over 

the last decade. Exciting work has been reported in prostate tissue, cell and DNA 

studies. 

 

Tissue studies 

Pilot studies evaluating the ability of FTIR to distinguish between benign and malignant 

prostate pathology to date have used small highly selected numbers of spectra from a 

small number of prostate tissue samples to test the hypothesis. Gazi et al170, concluded 

that FTIR could discriminate between benign and malignant prostate pathology using an 

average of four spectra from each pathology, from five deparaffinated prostate tissue 

samples, each mounted on KBr and obtained at transurethral resection of the prostate 

(two BPH, three CaP). The FTIR spectra from single Gleason grades were examined, 

however no clear relationship was determined. A difference in pathology 

glycogen/phosphate ratio was proposed to explain the differentiation. Malignant cells 

have a high metabolic turnover and therefore a lower glycogen content. Thus benign 

samples had a glycogen/phosphate ratio of greater than or equal to 0.6, and malignant 

samples a ratio below 0.4. Similar findings have been reported in colorectal studies and 

pure biochemical studies of the prostate171,172. The potential negative effect of diathermy 

used at TURP on the biochemistry of tissue and thus biochemical analysis obtained at 

TURP was not addressed. Paluszkiewicz et al. used FTIR to analyse fresh frozen 

prostate tissue mounted on mylar foil173. Although the origin and number of samples 

was not defined, and the mylar foil may have affected the FTIR spectra,  it was 

concluded that cancerous tissue could be distinguished from non cancerous by FTIR 

using the vasCH2/vasCH3 peak ratios at 2930 cm-1 and 2960 cm-1 respectively, and 

the/vsCH3 peak ratios observed between 2852 - 2874 cm-1. Without knowledge of the 

origin and number of the tissue samples upon which this study was based in addition to 
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factoring in the variance of the mylar foil effect and the fact that the ratios proposed are 

outside the ‘fingerprint region’, further validatory studies are required to confirm these 

findings. 

 

More recently the same group has addressed some of the aforementioned issues. 

Synchrotron FTIR and FTIR Spectroscopy was used to evaluate five prostate samples 

mounted on mylar foil taken from five samples at prostatectomy174. Two 

prostatectomies were performed for benign disease, two were performed to remove 

prostate cancer and one prostate was removed during a cysto-prostatectomy for bladder 

cancer. This study concentrated on examining the spectral characteristics of prostate 

tissue between 3700 cm-1 and 2800 cm-1, particularly where the C-H stretching 

vibrations are located. They concluded that by using the CH2/CH3 ratio it was possible 

to differentiate between normal, benign prostatic hyperplasia and cancerous tissue using 

both FTIR and S-FTIR. Similar findings have been reported in FTIR analysis of breast 

cancer tissue and prostate cells175,176.   

 

Attempts have been made to correlate the FTIR spectra taken from cancerous prostate 

tissue with Gleason score and clinical stage of prostate cancer at the time of biopsy177. 

The heterogeneity of the tissue studied unfortunately may have affected / limited the 

interesting study findings. Of 40 cancer samples, all were originally paraffinated, and 

37/40 were TURP specimens. Fifty-nine percent of the samples came from patients who 

were undergoing hormone manipulation for their prostate cancer. In addition to this 

relatively few highly selected spectra from four samples were used to create the test 

model. A total of 383 spectra were collected. FTIR was able to predict precise Gleason 

grade with an accuracy of 20 % if two grades were present in the tissue, and 17% if only 

a single grade was present in the tissue. If the criteria were adapted to those used by 

Crow et al178 in Raman spectroscopy to determine the Gleason score of prostate cancer 

(<7, 7, >7), the sensitivities and specificities rose to greater than 70%. A poor 

correlation was found when it was attempted to determine disease stage from FTIR 

spectra. Gleason grade had a sensitivity and specificity of 71% and 67% respectively in 

determining disease stage. Further work by Baker et al has developed the technique 

further using supervised principal component discriminant function analysis. The 
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sensitivities and specificities of discrimination for Gleason <7,7,>7achieved are much 

improved 92.3% and 98.9% respectively and the potential of FTIR to stage disease have 

been explored179. This early work is promising but uses under 400 spectra from two 

separate paraffinated tissue sources (TURP and biopsy tissue from - a highly selected 

group) to build its diagnostic algorithm which may compromise its wider application.  

 

German et al used FTIR with an ATR crystal and synchrotron FTIR to investigate 

whether FTIR would be able to differentiate structural characteristics between different 

prostate zones180. Paraffinated samples were obtained from six patients who had 

undergone radical retro-pubic prostatectomy and analysed. In benign prostate tissue five 

spectra were taken at three individual points at each of three randomly chosen glandular 

elements. In cancerous tissue three spectra were taken at five randomly chosen 

glandular elements. Five randomly chosen measurements were taken from the adjacent 

stroma of both benign and cancerous tissue.  In contrast to Gazi’s findings, no tissue or 

region specific characteristics were determined, especially between 1000-1200 cm-1 in 

either epithelial or stromal cell regions. The authors comment on the presence of a 

prominent paraffin wax peak at 1462 cm-1. When principal component analysis was 

applied to the dataset, subtle differences between PZ, TZ and CaP regions were 

determined, especially in the region containing the DNA/RNA bands 1000-1490 cm-1 

using ATR spectroscopy, and between 1000-1200 cm-1 region in synchrotron FTIR 

analysis. Good separation was demonstrated between CaP free tissues (PZ, TZ) and 

CaP. The group also performed an interesting study of the PZ and TZ taken from a 

cancer free prostate gland taken at cysto-prostatectomy which was immediately snap 

frozen. The spectra were compared with spectra from deparaffinated prostate tissue. 

Although PZ spectra were tightly grouped there was variation between the TZ spectra. 

Differences were noted in both the PZ and TZ spectra between the 1700-1750 cm-1 

region, associated with the C=O stretching vibrations of lipids (1740 cm-1) with a peak 

not seen in deparaffinated sections. In the spectral region 1490-1000 cm-1, containing 

the DNA/RNA, median intensity elevations were determined in PZ tissue of 

glycoproteins (1380 cm-1), amide III (1260 cm-1), and carbohydrates (1155 cm-1) when 

compared to the TZ. This may point to differences between epithelial cells in this region 

or it may be a factor of the sample being affected by the processing as the prostate is a 
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large gland, to snap freeze the inner core will freeze at a different time to the periphery. 

Biopsy comparison may in the future remove this issue. 

 

Cell studies   

Fixatives are used in histopathology to preserve the structural and biochemical 

constituents of cells as close to in vivo conditions as possible. Without fixation, cells 

would initially alter in size, shape and consistency and eventually decompose by 

autolysis making morphological analysis impossible. For the same reason, biochemical 

analysis of a cell would not be representative of in vivo conditions if fixation was not 

used. However, the biochemistry of samples is also disrupted by cross-linking fixatives. 

FTIR studies to date have addressed this issue by studying fresh frozen tissue, but 

practically, FTIR analysis of fixed tissue is mandatory if this technology is going to be 

clinically useful and validated in the near future. 

 

Synchrotron FTIR has been used to evaluate some of the changes which take place 

within cells during the fixative process. Routinely used histopathological stains were 

used as a standard against which to compare the changes occurring. The prostate cancer 

cell line PC-3 was used for these studies. Tryptan blue was used to assess the effect of 

fixatives on membrane integrity morphologically. Cells with no fixative, formalin fixed, 

unfixed formalin and gluteraldehyde were assessed. Tryptan blue illustrated that only 

gluteraldehyde maintains membrane integrity when used in fixation. Synchrotron FTIR 

analysis was able to determine the cytoplasm and nucleus in formalin and 

gluteraldehyde fixed cells. S-FTIR was unable to differentiate the cell components 

clearly in unfixed cells181. Harvey et al recently determined that growth media and 

nuclear to cytoplasmic ratio are unlikely to explain FTIR’s differentiation of pathology; 

it is likely to be due to biochemical differences182.  

 

DNA Studies 

Malins et al have used FTIR to study DNA sourced from frozen benign and malignant 

prostate tissue. FTIR achieved sensitivities and specificities of greater than 95% when 

differentiating DNA extracted from normal tissue, BPH and prostate cancer in 29 

samples. No relationship between FTIR analysis and Gleason grade was established183. 
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DNA studies have demonstrated that it is also possible to differentiate between non 

metastatic prostate cancer DNA and metastatic prostate cancer DNA184. FTIR analysis 

of age related changes in prostate DNA, DNA in adjacent tissue areas and markers of 

susceptibility for prostate cancer have not yielded convincing results185,186.   

 

Tissue Microarray Studies 

FTIR spectroscopy has recently been combined with tissue microarray technology187. 

FTIR analysis of microarrays constructed from formalin fixed archival samples from 

sixteen patients representing the main prostate pathologies, achieved classification 

accuracies of greater than 95%. The reported ability of the technique to differentiate 

between nerves, blood vessels and lymphocytes is both novel and exciting. The origin 

and Gleason grade of the tissue used to create the microarrays was not discussed in the 

paper and is a potential weakness of the study, however the potential advantages of 

microarrays in FTIR laboratory studies are clear: 

• Microarray size and purity enable rapid acquisition of high quality FTIR data 

• Microarrays could facilitate large scale validation studies of FTIR analysis 

FTIR microarray studies may therefore accelerate the development of FTIR diagnostic 

algorithms which could be investigated in the clinical arena. 

 

1.7.8 Limitations of Prostate FTIR Studies To Date 

 

The studies discussed in this chapter illustrate the potential application of FTIR as a 

pathological classification tool. To date the majority of FTIR studies of the prostate 

include a small number of patient samples and varied methodology in tissue processing 

and analysis. Whilst a technique is being established, power calculations are less 

important than developing rigorous, repeatable methodology that may be used in large 

scale trials.  It is also important that the application is tested in the target population in 

which the technology is likely to be used. Complex computer programs are used to 

determine the spectral differences between pathologies, and cross-validation of the 

discriminating regions reported is also essential for the FTIR to be accepted in practice. 

Some of the proposed regions will be evaluated in the studies which follow. The 
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majority of studies have also failed to present FTIR analysis of control samples from the 

same patients in their results.  

 

The primary clinical aim for pursuing FTIR technology as a clinical tool is to enable 

rapid diagnosis of pathology in prepared or unprepared tissue. Whilst important small 

steps have been taken in understanding the technology and its versatility in prostate 

tissue analysis, there is still a need to validate the technique for its potential future 

clinical purpose before large scale studies can be commenced. These issues will be 

addressed in the experiments in this thesis. Ultimately it is hoped that FTIR may have 

the potential to identify the presence of cancer even if a morphologically normal sample 

is being interrogated, and aid early diagnosis of biologically significant prostate cancer. 
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1.8 Competing Technologies 

 

1.8.1 Raman Spectroscopy 

 

Raman spectroscopy is another form of vibrational spectroscopy which is 

complementary to infrared spectroscopy. Instead of analysing light passing through a 

sample, it collects and analyses how samples scatter light. Raman spectroscopy utilises 

monochromatic light from the ultra violet, visible or near infrared part of the 

electromagnetic spectrum. The optimum excitation wavelength for analysing human 

epithelial tissues has been found to be 830nm in the near infra red region of the 

spectrum188. The principle is that when a tissue is illuminated with monochromatic laser 

light, approximately one in a million of the light photons will inelastically interact with 

an intramolecular bond in a tissue. The interaction will result in energy being donated or 

received from the bond. This changes the vibrational state of both the bond and the 

photon. The resultant photon will have a different energy to the incident photon. This 

energy change is known as a Raman shift and is specific to each species of 

intermolecular bond. A Raman spectrometer collects all the photons with shifted 

wavelengths to produce a spectrum. The Raman spectrum is a plot of light scattering 

intensity against Raman shift. In the same way as FTIR, a Raman spectrum is a direct 

function of the molecular composition of the sample in question and therefore an 

objective measure of the pathology present. 

 

Molecular vibrations may be either infrared or Raman active or both, therefore the 

techniques may be used together to gain a greater understanding of a samples molecular 

structure. Key technical differences between the techniques are highlighted in table 1.6. 

 

Raman spectroscopy has demonstrated considerable potential in the identification of 

epithelial cancers189. In the urological field, Crow et al have demonstrated that Raman 

spectroscopy is capable of accurately identifying and grading bladder cancer and 

prostate cancer in vitro190. The potential of Raman spectroscopy for in vivo application 

has also been demonstrated by utilising a fibre-optic probe in vitro to distinguish 

between prostate and bladder malignancies191. A modification to the Raman 
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spectrometer called Kerr-gating has also demonstrated significant promise in increasing 

the sensitivity of Raman signal in the analysis of dark urological tissues192. The Kerr 

gate is a high speed shutter that limits the majority of fluorescence which can 

significantly affect the Raman signal collected in routine analysis. Kerr gating has 

allowed early work into depth profiling of prostate and bladder tissue with potential 

application in targeting prostate biopsies. 

 

Currently in urological tissue analysis, high quality infrared spectra are quicker to 

obtain than Raman spectra in vitro, developments in technology have allowed FTIR 

spectral imaging of samples to be performed, the benefit of this will be explored in this 

thesis. Raman has great potential as a probe, in vivo, application due to its spectra not 

being affected significantly by water and will no doubt be complementary as an optical 

technique ex vivo to FTIR. 
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Raman Spectroscopy Mid-Infrared spectroscopy 

Uses higher energy light photons in the 

form of a laser and measures the 

difference between ground state and first 

vibrational state by subtracting the energy 

of the inelastically scattered photon from 

the incident photon 

Uses low energy infrared light photons to 

result in a direct excitation of a molecule 

to its first vibrational state. The energy of 

the photon achieving this is identical to 

the energy difference between ground 

state and first vibrational state 

Results from a change in the 

polarizability of the electron cloud 

around the molecule 

Results from absorptions caused by 

change in dipole moment 

The Raman spectrometer displays the 

result of Raman scattering as a spectrum. 

The shift in energy from that of the laser 

beam is calculated by subtracting the 

scattered energy from the incident 

energy. The scattered light is collected by 

the spectrometer and the y axis represents 

scattered light detected versus 

wavenumber on the x axis. The 

maximum light detected is at the top of 

the trace 

In Infrared absorption spectra the y axis 

is the amount of light absorbed and the x 

axis wavenumber. The peaks represent 

the light energy absorbed by the 

molecule. Maximum absorbance is at the 

highest point of the trace. In 

transmittance maximum absorbance is at 

the lowest point of the trace. 

Region of interest 3600-200 cm-1 Region of interest 4000-400cm-1 

Water does not significantly interfere in 

near infrared Raman 

Water interferes in infrared spectroscopy 

as it is absorbed in the mid ir wavelengths

Hydroxyl and amine stretch groups in 

addition to carbonyl groups are weakly 

determined in Raman. However the C=C 

bond is strongly determined in Raman. 

Hydroxyl and amine stretch groups in 

addition to carbonyl groups are strong in 

infrared spectroscopy. The C=C bond 

does not feature in an infrared spectrum. 

   

Table 1.6 Contrasting features of infrared and Raman spectroscopy 
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1.8.2 Magnetic Resonance Spectroscopy 

 

Magnetic resonance spectroscopy (MR spectroscopy) is a technique which is able to 

determine the concentrations of organic compounds in vivo. MR spectroscopy is a 

theoretically complex tool based on the quantum mechanics of magnetic properties of 

an atom’s nucleus. Most of the atoms within samples placed within a magnetic field will 

spin along the axis of the field. The energy states of these atoms can be altered by 

changing the magnetic field from low energy spinning to high energy spinning. MR 

spectroscopy measures the energy difference between these states and produces a 

spectrum. Each individual atom will have its own characteristic spin. 

 

The technique is acknowledged to have the potential to provide diagnostic and 

prognostic information. The MR fingerprint from samples of the cervix193, brain194, 

thyroid195, colon196, ovary197, breast198, oesophagus199 and liver200 have detected and 

differentiated between disease with sensitivities and specificities of greater than 95%. 

Magnetic resonance spectroscopy has also been piloted to assess prognosis in human 

cancers201, 202. 

 

The technique has been applied to the prostate with success in differentiating benign 

and malignant pathologies. Choline, creatinine, citrate, myo-inositol, lipid, spermine 

and lysine have all been found to be useful in distinguishing the various patterns of 

prostatic disease203,204,205,206,207,208,209,210. MR spectroscopy has also demonstrated the 

capacity to be able to profile tumour location. Work is now being pursued to 

reproducibly characterize prostate cancer. 

 

The technique has demonstrated limitations in classifying central and transitional zone 

tumours but is likely to be a promising adjunct in the preoperative staging of prostate 

cancer. It is unlikely to be in direct competition with infrared spectroscopy as a 

diagnostic pathology tool. 
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1.8.3 Optical Coherence Tomography 

 

Optical coherence tomography (OCT) obtains high resolution cross-sectional imaging 

of human tissue. OCT works in a similar way to ultrasound; when light from a pulsed 

laser or superluminescent diode is directed at a tissue, it is reflected or backscattered by 

structures within the tissue. OCT uses the estimates from the time taken for light to 

return from the structures to produce detailed images. OCT has demonstrated promise in 

differentiating the architectural morphology of urological tissue211. This technology is 

being pursued to enhance surgical precision during prostate surgery. Although early 

work in vivo has demonstrated a reasonable correlation between urological surgical 

perceptions and OCT images of prostate tissue, further parallel histological studies are 

required to validate the findings of OCT imaging212.  

 

1.8.4 Recent Spectroscopic Technologies Applied to the Prostate 

 

Fluorescence spectroscopy evaluates the energy emitted by a molecule as it returns to its 

ground state after it has been excited by a light energy source. Emission radiation is also 

known as fluorescence and the emission wavelengths generally mirror the absorption 

spectrums. The fluorescence of a molecule is dependent on the number of emitted 

photons compared to the number absorbed and the time taken to return to ground state. 

Fluorescence may be dependent on natural endogenous properties or rely on exogenous 

chemicals to induce fluorescence. High frequency impedance spectroscopy uses the 

dielectric properties of a medium and its interaction with an external electric field to 

produce a spectrum. The result of a feasibility study of these novel technologies has 

recently been published, reporting differentiation of benign and malignant pathology 

with high sensitivity and specificity213.    
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1.9 Aims and Objectives 

 
A review has been presented demonstrating the clinical significance of prostate cancer 

and the urgent need for more sophisticated objective diagnostic and prognostic 

techniques. The concept of spectroscopic technologies potentially filling this role has 

been introduced and the limitations of previous FTIR prostate studies discussed. The 

body of the thesis which follows investigates the potential application of Fourier 

Transform Infrared spectroscopy (mid-IR) as a tissue diagnostic technique to 

complement histopathology by giving additional information and its potential for 

automation. The studies which follow are clinically based in principle encompassing the 

fundamental requirements of clinicians in any prostate gland investigation. 

 

The hypothesis being tested in the studies was that FTIR has the ability to distinguish 

objectively between prostate pathologies. 

 

The objectives of this study can be classified into two parts: 

 

Part One  

• Observe whether FTIR analysis can be correlated to histopathological analysis 

of benign, malignant and premalignant tissue in prostate studies. 

• Observe whether the ability of FTIR to classify pathologies is affected or 

changed by type of prostate tissue sample studied. Tissue from radical 

prostatectomy, trans-urethral resection of the prostate and prostate core biopsies 

(all possible clinically relevant samples) have been included in this study. 

• Observe the effects of fixation on FTIR analysis contrasted with analysis after 

the fixative has been removed, using the same sample to ensure an appropriate 

control. 

• Observe the contrast between FTIR analysis of tissue which has been fixed 

against fresh frozen tissue. 
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Part Two 

• If there are significant biochemical differences between prostate pathologies, 

evaluate whether they are transferable between tissue samples 

• To apply parametric non negative least squares analysis to the spectra obtained 

to attempt to gain further understanding of these differences and the 

carcinogenesis process 

 71



1.10 References 
1 International Agency for Research on Cancer. GLOBOCAN 2002 database: Cancer 
Incidence, Mortality and Prevalence Worldwide (2002 estimates). Cancer Mondial 
http://www.dep.iarc.fr (accessed 15th December 2008) 
2 Sooriakumaran P, Lovell DP, Henderson A, Denham P, Langley SEM, Laing RW. 
Gleason scoring varies among pathologists and this affects clinical risk in patients with 
prostate cancer. Clinical Oncology 2005, 17(8): 655-658 
3 Melia J, Moseley R, Ball RY, Griffiths DFR, Grigor K, Harnden P, Jarmulowicz M, 
McWilliam LJ, Montironi R, Waller M, Moss S, Parkinson MC. A UK-based 
investigation of inter- and intra- observer reproducibility of Gleason grading of prostatic 
biopsies. Histopathology 2006, 48(6): 644-654 
4 Allsbrook WC, Mangold KA, Johnson MH, Lane RB, Lane CG, Epstein JI. 
Interobserver reproducibility of Gleason grading of prostatic carcinoma: general 
pathologist. Human Pathology  2001, 32(1): 81-88  
5 Allsbrook WC, Mangold KA, Johnson MH, Lane RB, Lane CG, Amin MB, Bostwick 
DG, Humphrey PA, Jones EC, Reuter VE, Sakr W, Sesterhenn IA, Troncoso P, 
Wheeler TM, Epstein JI. Interobserver reproducibility of Gleason grading of prostatic 
carcinoma: urologic pathologists. Human Pathology 2001, 32(1): 74-80 
6 Shingleton B. Prostatic hyperplasia. In: Urology Board Review: Pearls of Wisdom, 2nd 
Ed, by Stephen W Leslie.  New York: McGraw Hill, 2006: 200 
7 Moore KL, Agur AM. Essential clinical anatomy, 1st Ed.  Baltimore: Lippincott 
Williams & Wilkins, 1995 
8 Grey, Henry. Anatomy of the Human Body. Philadelphia: Lea & Febiger, 1918. 
www.bartleby.com/107/illus1135.html (accessed 10th September 2009) 
9 Clegg EJ. The vascular arrangements within the human prostate gland. British Journal 
of Urology 1956, 28:428-435 
10 Vaalasti A, Hervonen A. Autonomic innervation of the human prostate. Investigative 
Urology 1980, 17:293-297 
11 De Marzo AM, Platz EA, Sutcliffe S, Jianfeng X, Gronberg H, Drake CG, Nakai Y, 
Issacs WB. Inflammation in prostate carcinogenesis. Nature Reviews Cancer 2007, 7: 
256-269. Adaptation of illustration of sagittal and transverse prostate views illustrating 
McNeal’s zonal anatomy (accessed 10th September 2009) 
12 McNeal JE. Regional morphology and pathology of the prostate. American Journal of 
Clinical Pathology 1968, 49(3): 347-357 
13 McNeal JE. The prostate and the prostatic urethra: a morphological synthesis. The 
Journal of Urology 1972, 107(6): 1008-1016 
14 McNeal JE. Normal histology of the prostate. American Journal of Surgical 
Pathology 1988, 12(8): 619-633 
15 McNeal JE, Price HM, Redwine EA, Freiha FS, Stamey TA. Stage A versus stage B 
Adenocarcinoma of the prostate: morphological comparison and biologic significance. 
The Journal of Urology 1988, 139(1): 61-65 
16 Support Cells and the Extracellular Matrix. In: Human Histology, 2nd Ed, by A 
Stevens, J Lowe. Edinburgh: Harcourt Publishers, 1997: 49-64 
17 Pontes EJ. Biological markers in prostate cancer. The Journal of Urology 1983, 130: 
1037-1047 
18 Leung CS, Srigley JR. Distribution of lipochrome pigment in the prostate gland: 
biological and diagnostic implications. Human Pathology 1995, 26(12): 1302-1307 

 72

http://www.dep.iarc.fr/
http://www.bartleby.com/107/illus1135.html


19 Brandes D, Bourne GH. Histochemistry of the human prostate gland: normal and 
neoplastic. The Journal of Pathology and Bacteriology 1956, 71(1): 33-36 
20 Reese JH, McNeal JE, Redwine EA, Samloff IM, Stamey TA. Differential 
distribution of pepsinogen II between the zones of the human prostate and the seminal 
vesicle. The Journal of Urology 1986, 136(5): 1148-1152 
21 Reese JH, McNeal JE, Redwine EA, Stamey TA, Freiha FS. Tissue type plasminogen 
activator as a marker for functional zones, within the human prostate gland. Prostate 
1988, 12(1): 47-53 
22 McNeal JE, Leav I, Alroy J, Skutelsky E. Differential lectin staining of central and 
peripheral zones of the prostate and alterations in dysplasia. American Journal of 
Clinical Pathology 1988, 89(1): 41-48 
23 Barry MJ, Fowler FJ Jr, O’Leary MP, Bruskewitz RC, Holtgrewe HL, Mebust WK, 
Cockett AT. The American Urological Association symptom index for benign prostatic 
hyperplasia. The Measurement Committee of the American Urological Association.  
The Journal of Urology 1992, 148(5): 1549-1557. 
24 Stevens A, Lowe J. Pathology, 2nd ed.  London: Mosby, 2000 
25 National High Magnetic Field Laboratory (NHMFL) Human Pathology Digital 
Image Library  www.microscopyu.com (accessed 15th November 2009) 
26 Chute CG, Panser LA, Girman CJ, Oesterling JE, Guess HA, Jacobsen SJ, Lieber 
MM. The prevalence of prostatism: a population-based survey of urinary symptoms. 
The Journal of Urology 1993, 150(1): 85-89 
27 Berry SJ, Coffey DS, Walsh PC, Ewing LL. The development of human benign 
prostatic hyperplasia with age. The Journal of Urology 1984, 132(3):474-479 
28 Donovan JL, Kay HE, Peters TJ, Abrams P, Coast J, Matos-Ferreira A, Rentzhog L, 
Bosch JL, Nordling J, Gajewski JB, Barbalias G, Schick E, Silva MM, Nissenkorn I, de 
la Rosette JJ. Using the ICSOoL to measure the impact of lower urinary tract symptoms 
on quality of life: evidence from the ICS-‘BPH’ study. International Continence Society 
– Benign Prostatic Hyperplasia. British Journal of Urology 1997, 80(5): 712-721 
29 McConnell JD, Roehrborn CG, Bautista OM, Andriole GL Jr, Dixon CM, Kusek JW, 
Lepor H, McVary KT, Nyberg LM Jr, Clarke HS, Crawford ED, Diokno A, Foley JP, 
Foster HE, Jacobs SC, Kaplan SA, Kreder KJ, Lieber MM, Lucia MS, Miller GJ, 
Menon M, Milam DF, Ramsdell JW, Schenkman NS, Slawin KM, Smith JA. The long-
term effect of doxazosin, finasteride, and combination therapy on the clinical 
progression of benign prostatic hyperplasia. New England Journal of Medicine 2003, 
349(25): 2387-2398  
30 Emberton M, Neal DE, Black N, Harrison M, Fordham M, McBrien MP, Williams 
RE, McPherson K, Devlin HB. The National Prostatectomy Audit: the clinical 
management of patients during hospital admission. British Journal of Urology 1995; 
75(3): 301-316 
31 Collins MM, Stafford RS, O’Leary MP, Barry MJ. How common is prostatitis? A 
national survey of physician visits. The Journal of Urology 1998, 159(4): 1224-1228 
32 Young RH, Srigley JR, Amin MB, Ulbright TM, Cubilla AL. Atlas of Tumour 
Pathology. 3rd series, Fascicle 28: Tumours of the Prostate Gland, Seminal Vesicles, 
Male Urethra and Penis. Washington DC: Armed Forces Institute of Pathology, 1998 
33 Bostwick DG. Premalignant lesions of the prostate. Seminars in Diagnostic 
Pathology 1988, 5(3): 240-253 
34 Bostwick DG. Prostatic intraepithelial neoplasia (PIN): current concepts. Journal of 
Cellular Biochemistry. Supplement 1992, 16H: 10-19  

 73

http://www.microscopyu.com/


35 Amin MB, Ro JY, Ayala AG. Putative precursor lesions of prostatic adenocarcinoma: 
fact or fiction? Modern pathology: an official journal of the United states and Canadian 
Academy of Pathology, Inc.1993, 6(4): 476-483 
36 Bostwick DG, Brawer MK. Prostatic intra-epithelial neoplasia and early invasion in 
prostate cancer. Cancer 1987, 59(4):788-794 
37 Drago JR, Mostofi FK, Lee F. Introductory remarks and a workshop summary. 
Urology Supplement 1989, 34:2-3 
38 Sakr WA, Grignon DJ, Crissman JD, Heilbrun LK, Cassin BJ, Pontes JJ, Haas GP. 
High grade prostatic intraepithelial neoplasia (HGPIN) and prostatic adenocarcinoma 
between the ages of 20-69: an autopsy study of 249 cases. In Vivo 1994, 8(3): 439-443 
39 Kovi J, Mostofi FK, Heshmat MY, Enterline JP. Large acinar atypical hyperplasia 
and carcinoma of the prostate. Cancer 1988, 61(3): 555-561 
40 Srigley J, King S, Van Nostrand AWP, Robinette M. The “preneoplastic” prostate: a 
giant-section whole-organ study of 72 radical prostatectomies. Laboratory Investigation 
1986, 54(1): 30 A 
41 Humphrey, Peter A. Prostate Pathology. Chicago: American Society of Clinical 
Pathology, 2003. 
42 UROlog: The Urology Website. http://www.urolog.nl (accessed 10th December 2009) 
43 Bostwick DG. High grade prostatic intraepithelial neoplasia: the most likely precursor 
of prostate cancer. Cancer 1995, 75: 1823-1836 
44 Quinn BD, Cho KR, Epstein JI. Relationship of severe dysplasia to stage B 
adenocarcinoma of the prostate. Cancer 1990, 65(10): 2328-2337.  
45 Tronsco P, Babaian RJ, Ro JY, Grignon DJ, Von Eschenbach AC, Ayala AG. 
Prostatic intraepithelial Neoplasia and invasive prostatic Adenocarcinoma in 
cystoprostatectomy specimens. Urology 1989. 34 (Supplement): 52-56 
46 McNeal JE, Reese JH, Redwine EA et al. Cribriform Adenocarcinoma of the prostate. 
Cancer 1986. 58: 1714 
47 Beckman WC Jr, Camps JL Jr, Weissman RM, Kaufman SL, Sanofsky SJ, Reddick 
RL, Siegal GP. The epithelial origin of a stromal cell population in adenocarcinoma of 
the rat prostate. American Journal of Pathology 1987, 128(3): 555-565 
48 Bostwick DG, Meiers I. Atypical Small Acinar Proliferation in the Prostate: Clinical 
Significance in 2006. Archives of Pathology and Laboratory Medicine 2006, 130: 952-
957 
49 Iczkowski KA, MacLennan GT, Bostwick DG. Atypical small acinar proliferation 
suspicious for malignancy in prostate needle biopsies: clinical significance in 33 cases. 
The American Journal of Surgical Pathology 1997, 21(12): 1489-1495 
50 Bostwick, DG and Foster CS. Examination of radical prostatectomy specimens: 
therapeutic and prognostic significance. In: Pathology of the Prostate, edited by DG 
Bostwick, CS Foster. Philadelphia: WB Saunders, 1997, p.172-189  
51 Brennick JB, O’Connell JX, Dickersin GR, Pilch BZ, Young RH. Lipofuscin 
pigmentation (so-called “melanosis”) of the prostate. American Journal of Surgical 
Pathology 1994, 18: 446-454 
52 Ro JY, Ayala AG, Ordonez NG, Cartwright J Jr, Mackay B. Intraluminal crystalloids 
in prostatic adenocarcinoma immunohistochemical, electron microscopic, and X-ray 
microanalytic studies. Cancer 1986, 57(12): 2397-2407 
53 Epstein JI. Diagnostic criteria of limited adenocarcinoma of the prostate on needle 
biopsy. Human Pathology 1995, 26(2): 223-229 

 74

http://www.urolog.nl/


54 Murphy GP, Busch C, Abrahamsson PA, Epstein JI, McNeal JE, Miller GJ, Mostofi 
FK, Nagle RB, Nordling S, Parkinson C et al. Histopathology of localised prostate 
cancer. Consensus Conference on Diagnosis and Prognostic Parameters in Localized 
Prostate Cancer. Stockholm, Sweden, May 12-13, 1993. Scandinavian Journal of 
Urology and Nephrology. Supplementum 1994, 162: 7-42 
55 Gleason DF, Mellinger GT. Prediction of prognosis for prostatic adenocarcinoma by 
combined histological grading and clinical staging. The Journal of Urology 1974, 
111(1): 58-64 
56 Mostofi FK, Davis CJ, Sesterhenn IA & Sobin LH. World Health Organisation 
International Histological Classification of Tumours: Histological Typing of Prostate 
Tumours, 2nd ed. New York: Springer-Verlag, 2002. 
57 Pan CC, Potter SR, Partin AW, Epstein JI. The prognostic significance of tertiary 
Gleason patterns of higher grade in radical prostatectomy specimens: a proposal to 
modify the Gleason grading system. The American Journal of Surgical Pathology 2000, 
24(4): 563-569 
58 Amin M, Boccon-Gibod L, Egevad L, Epstein JI, Humphrey PA, Mikuz G, Newling 
D, Nilsson S, Sakr W, Srigley JR, Wheeler TM, Montironi R.  Prognostic and predictive 
factors and reporting of prostate carcinoma in prostate needle biopsy specimens. 
Scandinavian Journal of Urology and Nephrology. Supplementum 2005, 216: 20-33 
59 Cote RJ, Taylor CR. Prostate, bladder and kidney. In: Immunomicroscopy: A 
Diagnostic Tool for the Surgical Pathologist. 2nd ed, edited by CR Taylor, RJ Cote. 
Philadelphia: WB Saunders, 1994, p.256-276 
60 Goel A, Abou-Ellela A, DeRose PB, Cohen C. The prognostic significance of 
proliferation in prostate cancer: an image cytometric quantitation of MIB-1. Journal of 
Urologic Pathology 1996, 4: 213-225 
61 Wiatrowska BA, Robertson S, Crook JM. Measures of proliferative activity in 
prostatic adenocarcinoma. Journal of Urologic Pathology 1997, 6: 131-138 
62 Ghosh D, Barette TR, Rhodes D, Chinnaiyan AM. Statistical issues and methods for 
meta-analysis of microarray data: a case study in prostate cancer. Functional & 
Integrative Genomics 2003, 3(4): 180-188 
63 Oyama T, Allsbrook WC Jr, Kurokawa K, Matsuda H, Segawa A, Sano T, Suzuki K, 
Epstein JI. A comparison of interobserver reproducibility of Gleason grading of 
prostatic carcinoma in Japan and the United States. Archives of Pathology and 
Laboratory Medicine 2005, 129(8): 1004-1010 
64 Egevad L, Allsbrook WC, Epstein JI. Current practice of Gleason grading among 
genitourinary pathologists. Human Pathology 2005, 36(1): 5-9 
65 Kronz JD, Silberman MA, Allsbrook WC, Epstein JI. A web-based tutorial improves 
practicing pathologists’ Gleason grading of images of prostate carcinoma specimens 
obtained by needle biopsy: validation of a new medical education paradigm. Cancer 
2000, 89(8): 1818-1823 
66 Kronz JD, Silberman MA, Allsbrook WC Jr et al. Pathology residents’ use of a Web-
based tutorial to improve Gleason grading of prostate carcinoma on needle biopsies. 
Human Pathology 2000; 31(9): 1044-1050 
67 Jemal A, Siegel R, Ward E et al. Cancer statistics, 2006. CA: A Cancer Journal for 
Clinicians 2006, 56(2): 106-130 
68 Cancer Research UK (2008). CancerStats: Prostate Cancer UK - 2008 Report 
(WWW document).  http://www.cancerresearchuk.org (accessed 10th November 2009) 

 75

http://www.cancerresearchuk.org/


69 Northern Ireland Cancer Registry (2008). Cancer Incidence and Mortality. (WWW 
document) http://www.qub.ac.uk/research-centres/nicr (accessed 10th November 2009) 
70 Welsh Cancer Intelligence and Surveillance Unit (2009). Trends in Incidence, 1985-
2007 (WWW document) 
http://www.wales.nhs.uk/sites3/page.cfm?orgid=242&pid=27758 (accessed 10th 
November 2009) 
71 NHS Scotland Information Services Division (2009). Cancer of the prostate: ICD-10 
C61: Summary of Incidence (WWW document) http://www.isdscotland.org/isd 
(accessed 10th November 2009) 
72 Office for National Statistics, Cancer Statistics Registration: Registrations of cancer 
diagnosed in 2005, England Series MB1 no.36. London: National Statistics, 2008. 
73 Selley SD, Donovan J, Faulkner A, Coast J, Gillatt D. Diagnosis, management and 
screening of early localised prostate cancer. Health Technology Assessment 1997, 
1(2):(whole volume) 
74 McGregor M, Hanley JA, Boivin JF, McLean RG. Screening for prostate cancer: 
estimating the magnitude of over detection. Canadian Medical Association Journal 
1998, 159(11): 1368-1372 
75 Office for National Statistics. Mortality statistics: Cause 2007-2008. London: 
National Statistics, 2009. 
76 Hankey BF, Feuer EJ, Clegg LX et al. Cancer surveillance series: interpreting trends 
in prostate cancer - Part I: Evidence of the effects of screening in recent prostate cancer 
incidence, mortality and survival rates. Journal of the National Cancer Institute 1999, 
91(12): 1017-1024 
77 AJ Swedlow, I dos Santos Silva, & R Doll. Cancer Incidence & Mortality in England 
& Wales: Trends and Risk Factors. London: Oxford University Press, 2001. 
78 Coleman M et al. Cancer Survival Trends in England & Wales, 1971-1995: 
Deprivation & NHS Region. London: The Stationery Office, 1999 
79 Coleman M, Rachet B, Woods LM et al. Trends in socioeconomic inequalities in 
cancer survival in England and Wales up to 2001. British Journal of Cancer 2004, 
90(7): 1367-1373 
80  Albertson PC, Hanley JA, Barrows GH, Penson DF, Kowalczyk PD, Sanders MM, 
Fine J. Prostate Cancer and the Will Rodgers phenomenon. Journal of the National 
Cancer Institute 2005, 97(17): 1248-1253 
81 Cancer Research UK (2009). Age-specific mortality rates: Prostate Cancer, UK, 
1971-2007 figure 2.4 in Prostate Cancer UK Mortality Statistics (WWW document) 
http://www.cancerresearchuk.org.uk (accessed 12th November 2009) 
82 Johns LE, Houlston RS. A systematic review and meta-analysis of familial prostate 
cancer risk. BJU International 2003, 91(9): 789-794 
83 Ben-Shlomo Y, Evans S, Ibrahim F et al. The risk of prostate cancer amongst black 
men in the United Kingdom: the PROCESS cohort study. European Urology 2008, 
53(1): 99-105 
84 Key TJ, Appleby PN, Travis RC et al. Plasma carotenoids, retinol, and tocopherols 
and the risk of prostate cancer in the European Prospective Investigation into Cancer 
and Nutrition study. The American Journal of Clinical Nutrition 2007, 86(3): 672-681 
85 Rohrmann S, Genkinger JM, Burke A et al. Smoking and risk of fatal prostate cancer 
in a prospective U.S. study. Urology 2007, 69(4): 721-725 

 76

http://www.cancerresearchuk.org.uk/


86 Renehan AG, Tyson M, Egger M et al. Body-mass index and incidence of cancer: a 
systematic review and meta-analysis of prospective observational studies. Lancet 2008, 
371(9612): 569-78 
87 Allen NE, Key TJ, Appleby PN et al. Serum insulin-like growth factor (IGF)-I and 
IGF-binding protein-3 concentrations and prostate cancer risk: results from the 
European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiology, 
Biomarkers & Prevention 2007, 16(6): 1121-1127 
88 Kasper JS, Giovannucci E. A meta-analysis of diabetes mellitus and the risk of 
prostate cancer. Cancer Epidemiology, Biomarkers & Prevention 2006, 15(11): 2056-
2062 
89 Dennis LK, Dawson DV, Resnick MI. Vasectomy and the risk of prostate cancer: a 
meta-analysis examining vasectomy status, age at vasectomy and time since vasectomy. 
Prostate Cancer and Prostatic Diseases 2002, 5(3): 193-203 
90 Browning DR, Martin RM. Statins and risk of cancer: a systematic review and 
metaanalysis. International Journal of Cancer 2007, 120(4): 833-843 
91 Platz EA, De Marzo AM, Giovannucci E. Prostate cancer association studies: pitfalls 
and solutions to cancer misclassification in the PSA era. Journal of Cellular 
Biochemistry 2004, 91(3): 553-571 
92 Catalona WJ, Ritchie JP, Ahmann FR, Hudson MA, Scardino PT, Flannigan RC, 
deKernion JB, Ratliff TL, Kavoussi LR, Dalkin BL, Waters WB, MacFarlane MT, 
Southwick PC. Comparison of digital rectal examination and serum prostate specific 
antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 
6,630 men. Journal of Urology 1994, 151(5): 1283-1290  
93 Wang MC, Valenzuela LA, Murphy GP, Chu TM. Purification of a human prostate 
specific antigen. Investigative Urology 1979, 17(2): 159-163 
94 Semjonow A, Brandt B, Oberpenning F, Roth S, Hertle L. Discordance of assay 
methods creates pitfalls for the interpretation of prostate-specific antigen values. The 
Prostate. Supplement 1996, 7: 3-16 
95 Partin AW, Criley SR, Subong EN, Zincke H, Walsh PC, Oesterling JE. Standard 
versus age-specific prostate specific antigen reference ranges among men with clinically 
localized prostate cancer: A pathological analysis. Journal of Urology 1996 155(4): 
1336-1339 
96 Thompson IM, Pauler DK, Goodman PJ, Tangen CM, Lucia MS, Parnes HL, 
Minasian LM, Ford LG, Lippman SM, Crawford ED, Crowley JJ, Coltman CA Jr. 
Prevalence of prostate cancer among men with a prostate-specific antigen level < or 
=4.0ng per milliliter. New England Journal of Medicine 2004; 350(22): 2239-2246 
97 Stamey T, Yang N, Hay AR, McNeal JE, Freiha FS, Redwine EA. Prostate-specific 
antigen as a serum marker for adenocarcinoma of the prostate. New England Journal of 
Medicine 1987, 317(15): 909-916 
98 Stamey TA, Kabalin JN. Prostate specific antigen in the diagnosis and treatment of 
adenocarcinoma of the prostate. I. Untreated patients. Journal of Urology 1989, 141(5): 
1070-1075 
99 Stamey TA, Caldwell, McNeal JE, Nolley R, Hemenez M, Downs J. The prostate 
specific antigen era in the United States is over for prostate cancer: what happened in 
the last 20 years? Journal of Urology 2004, 172(4): 1297-1301   
100 DeMarzo AM, Nelson WG, Isaacs WB, Epstein JI. Pathological and molecular 
aspects of prostate cancer. The Lancet 2003, 361(9631): 955-964 

 77



101 Thompson IM, Ankerst DP, Chi C, Goodman PJ, Tangen CM, Lucia MS et al. 
Assessing prostate cancer risk: results from the Prostate Cancer Prevention Trial. 
Journal of the National Cancer Institute 2006, 98(8): 529-534  
102 Catalona WJ, Partin AW, Slawin KM, Brawer MK, Flanigan RC, Patel A, Ritchie 
JP, deKernion JB, Walsh PC, Scardino PT, Lange PH, Subong EN, Parson RE, Gasior 
GH, Loveland KG, Southwick PC. Use of the percentage of free prostate-specific 
antigen to enhance differentiation of prostate cancer from benign prostatic disease: a 
prospective multicenter clinical trial. The Journal of the Medical Association 1998, 
279(19): 1542-1547 
103 Wilson JMG, Jungner G. Principles and practice of screening for disease. Public 
Health Papers No. 34. Geneva: World Health Organisation, 1968. 
104 Andriole GL, Crawford ED, Grubb RL 3rd, Buys SS, Chia D, Church TR et al. 
Mortality results from a randomized prostate-cancer screening trial. New England 
Journal of Medicine 2009, 360(13): 1310-1319 
105 Ross LE, Berkowitz Z, Ekwueme DU. Use of the prostate-specific antigen test 
among U.S. men: findings from the 2005 National Health Interview Survey. Cancer 
Epidemiology, Biomarkers & Prevention 2008, 17(3): 636-644 
106 Schroder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, Nelen V et al. 
Screening and prostate-cancer mortality in a randomized European study. New England 
Journal of Medicine 2009, 360(13): 1320-1328 
107 de Kok JB, Verhaegh GW, Roelofs RW, Hessels D, Kiemeney LA, Aalders TW et 
al. DD3(PCA3), a very sensitive and specific marker to detect prostate tumours. Cancer 
Research 2002, 62(9): 2695-2698 
108 Fradet Y, Saad F, Aprikian A, Dessureault J, Elhilali M, Trudel C et al. uPM3, a new 
molecular urine test for the detection of prostate cancer. Urology 2004, 64(2): 311-315  
109 Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW et al. 
Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. 
Science 2005, 310(5748): 644-648 
110 Adam BL, Qu Y, Davis JW, Ward MD, Clements MA, Cazares LH et al. Serum 
protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate 
cancer from benign prostate hyperplasia and healthy men. Cancer Research 2002, 
62(13): 3609-3614 
111 Grizzle WE, Semmes OJ, Basler J, Izbicka E, Feng Z, Kagan J et al. The early 
detection research network surface-enhanced laser desorption and ionization prostate 
cancer detection study: A study in biomarker validation in genitourinary oncology. 
Urologic Oncology 2004, 22(4): 337-343 
112 Wang X, Yu J, Sreekumar A, Varambally S, Shen R, Giacherio D et al. 
Autoantibody signatures in prostate cancer. New England Journal of Medicine 2005, 
353(12): 1224-1235 
113 Hara N, Kasahara T, Kawasaki T, Bilim V, Obara K, Takahashi K, Tomita Y. 
Reverse transcription-polymerase chain reaction detection of prostate-specific antigen, 
prostate-specific membrane antigen, and prostate stem cell antigen in one milliliter of 
peripheral blood: value for the staging of prostate cancer. Clinical Cancer Research 
2002, 8(6): 1794-1799 
114 Reiter RE, Gu Z, Watabe T, Thomas G, Szigeti K, Davis E et al. Prostate stem cell 
antigen: a cell surface marker overexpressed in prostate cancer. Proceedings of the 
National Academy of Sciences of the United States of America 1998, 95(4): 1735-1740 

 78



115 Harden SV, Sanderson H, Goodman SN, Partin AA, Walsh PC, Epstein JI et al. 
Quantitative GSTP1 methylation and the detection of prostate adenocarcinoma in 
sextant biopsies. Journal of the National Cancer Institute 2003, 95(21): 1634-1637 
116 Hoque MO, Topaloglu O, Begum S, Henrique R, Rosenbaum E, Van Criekinge W et 
al. Quantitative methylation-specific polymerase chain reaction gene patterns in urine 
sediment distinguish prostate cancer patients from control subjects. Journal of Clinical 
Oncology 2005, 23(27): 6569-6575 
117 Paul B, Dhir R, Landsittel D, Hitchens MR, Getzenberg RH. Detection of prostate 
cancer with a blood-based assay for early prostate cancer antigen. Cancer Research 
2005, 65(10): 4097-4100 
118 Stephan C, Jung K, Nakamura T, Yousef GM, Kristiansen G, Diamandis EP. Serum 
human glandular kallikrein 2 (hK2) for distinguishing stage and grade of prostate 
cancer. International Journal of Urology 2006, 13(3): 238-243 
119 Stephan C, Yousef GM, Scorilas A, Jung K, Jung M, Kristiansen G et al. Hepsin is 
highly over expressed in and a new candidate for a prognostic indicator in prostate 
cancer. The Journal of Urology 2004, 171(1): 187-191 
120 Lee F, Torp-Pedersen ST, Siders DB, Littrup PJ, McLeary RD. Transrectal 
ultrasound in the diagnosis and staging of prostate cancer. Radiology 1989, 170 (3): 
609-615 
121 Aus G, Ahlgren G, Bergdahl S, Hugosson J. Infection after transrectal core biopsies 
of the prostate – risk factors and antibiotic prophylaxis. British Journal of Urology 
1996, 77(6): 851-855 
122 Collins GN, Lloyd SN, Hehir M, McKelvie GB. Multiple transrectal ultrasound-
guided prostatic biopsies – true morbidity and patient acceptance. British Journal of 
Urology 1993, 71(4): 460-463 
123 Eichler K, Hempel S, Wilby J, Myers L, Bachmann LM, Kleijnen J. Diagnostic value 
of systematic biopsy methods in the investigation of prostate cancer: a systematic 
review. Journal of Urology 2006, 175(5): 1605-1612  
124 Donovan J, Hamdy F, Neal D, Peters T, Oliver S, Brindle L, Jewell D, Powell P, 
Gillatt D, Dedman D, Mills N, Smith M, Noble S, Lane A; ProtecT Study Group. 
Prostate Testing for Cancer and Treatment (ProtecT) feasibility study. Health 
Technology Assessment 2003, 7(14): 1-88 
125 Epstein JI, Herawi M. Prostate needle biopsies containing prostatic intraepithelial 
neoplasia or atypical foci suspicious for carcinoma: implications for patient care. 
Journal of Urology 2006, 175(3): 820-834 
126 Javidan J, Wood DP. Clinical interpretation of the prostate biopsy. Urologic 
Oncology 2003, 21(2): 141-144 
127 Heidenreich A, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V et al. EAU 
guidelines on prostate cancer. Part 1: screening, diagnosis and treatment of clinically 
localised disease. European Urology 2011, 59: 61-71  
128 National Institute for Health and Clinical Excellence. Prostate Cancer: Diagnosis 
and Treatment. Clinical Guideline 58, Issued February 2008.  PDF format available at 
http://guidance.nice.org.uk/CG58 (accessed 10th December 2009) 
129 Potosky AL, Miller BA, Albertsen PC, Kramer BS. The role of increasing detection 
in the rising incidence of prostate cancer. Journal of the American Medical Association 
1995, 273(7): 548-552 
130 Parker C. Active surveillance: towards a new paradigm in the management of early 
prostate cancer. The Lancet Oncology 2004, 5(2): 101-106 

 79



131 Department of Health. The NHS Cancer plan: a plan for investment, a plan for 
reform.  London, Crown Copyright, 2000. PDF format available at 
http://www.dh.gov.uk/en/Publicationsandstatistics/Publications/PublicationsPolicyand
Guidance/DH_4009609 (accessed 10th December 2009) 
132 National Institute for Health and Clinical Excellence. Referral guidelines for 
suspected cancer. Clinical Guideline 27, Issued June 2005. PDF format available at 
http://guidance.nice.org.uk/CG027 (accessed 10th December 2009) 
133 Department of Health. The NHS Improvement Plan: Putting people at the heart of 
public services.  London, Crown Copyright, 2004. PDF format available at 
http://www.dh.gov.uk/en/Publicationsandstatistics/Publications/PublicationsPolicyand
Guidance/DH_DH_4084476 (accessed 10th December 2009) 
134 Hamilton LT. Managing the laboratory technical workforce. Clinics in Laboratory 
Medicine 2007, 27(4): 807-821, vi-vii  
135 Wilson LS, Tesoro R, Elkin EP, Sadetsky N, Broering JM, Latini DM, DuChane J, 
Mody RR, Carroll PR. Cumulative cost pattern comparison of prostate cancer 
treatments. Cancer 2007, 109(3): 518-527 
136 Reusch W. Infrared Spectroscopy.  In: Virtual Textbook of Organic Chemistry, 
edited by W Reusch. Michigan State University, most recent revision 8.10.2007.  Image 
reproduced with permission. ©1999 William Reusch, All rights reserved. 
http://www.cem.msu.edu/~reusch/VirtTxtJml/Spectrpy/InfraRed/infrared.htm (accessed 
15th December 2009) 
137 Woernley DL. Infrared absorption curves for normal and neoplastic tissues and 
related biological substances. Cancer Research 1952, 12(7): 516-523 
138 Blout ER, Mellors RC. Infrared Spectra of Tissues. Science 1949, 110(2849): 137-
138 
139 Fabian H, Naumann D. Methods to study protein folding by stopped-flow FT-IR. 
Methods 2004, 34(1): 28-40 
140 Mantsch HH, Jackson M. The Use and Misuse of FTIR Spectroscopy in the 
Determination of Protein Structure. Critical reviews in Biochemistry and Molecular 
Biology 1995, 30(2): 95-120 
141 Pelton JT, McLean LR. Spectroscopic methods for analysis of protein secondary 
structure. Analytical Biochemistry 2000, 277(2): 167-176 
142 Krimm S, Bandekar J. Vibrational spectroscopy and conformation of peptides, 
polypeptides, and proteins. Advances in Protein Chemistry 1986, 38: 181-364 
143 Holman HY, Martin MC, Blakely EA, Bjornstad K, McKinney WR. IR 
spectroscopic characteristics of cell cycle and cell death probed by synchrotron 
radiation based Fourier Transform IR spectromicroscopy. Biopolymers 2000, 57(6): 
329-335  
144 Liu KZ, Schultz CP, Mohammad RM, Al Katib AM, Johnson JB, Mantsch HH. 
Similarities between the sensitivity to 2-chlorodeoxyadenosine of lymphocytes from 
CLL patients and bryostatin 1-treated WSU-CLL cells: an infrared spectroscopic study. 
Cancer Letters 1998, 127(1-2): 185-193 
145 Chirboga L, Xie P, Yee H, Vigorita V, Zarou D, Zakim D, Diem M. Infrared 
spectroscopy of human tissue. I. Differentiation and maturation of epithelial cells in the 
human cervix. Biospectroscopy 1998, 4: 43-53 
146 Gomez-Fernandez JC, Villalain J. The use of FT-IR for quantitative studies of the 
apparent pKa of lipid carboxyl groups and the dehydration degree of the phosphate 
group of the phospholipids. Chemistry and Physics of Lipids 1998, 96(1-2): 41-52 

 80

http://www.cem.msu.edu/%7Ereusch/VirtTxtJml/Spectrpy/InfraRed/infrared.htm


147 N Woolf. The cell cycle. In: Pathology: Basic and Systemic. London: WB Saunders 
Company Ltd, 1998 
148 Tang DG, Porter AT. Target to apoptosis: a hopeful weapon for prostate cancer. The 
Prostate 1997, 32(4): 284-293 
149 Vaupel P, Kelleher DK, Thews O. Modulation of tumor oxygenation. International 
Journal of Radiation Oncology, Biology, Physics 1998, 42(4): 843-848 
150 Vaupel P, Mayer A. Hypoxia and anemia: effects on tumor biology and treatment 
resistance. Transfusion Clinique et Biologique 2005, 12(1): 5-10 
151 Campbell SC. Advances in angiogenesis research: relevance to urological oncology. 
Journal of Urology 1997, 158: 1633-1674 
152 Stubbs M, Bashford CL, Griffiths JR. Understanding the tumor metabolic phenotype 
in the genomic era. Current Molecular Medicine 2003, 3(1): 49-59 
153 Zieba M, Suwalski S, Kwiatkowska S et al. Comparison of hydrogen peroxide 
generation and the content of lipid peroxidation products in lung cancer tissue and 
pulmonary parenchyma. Respiratory Medicine 2000, 94(8): 800-805 
154 Sharma U, Mehta A, Seenu V, Jagannathan NR. Biochemical characterization of 
metastatic lymph nodes of breast cancer patients by in vitro 1H magnetic resonance 
spectroscopy: a pilot study. Magnetic Resonance Imaging 2004, 22(5): 697-706 
155 Budinova G, Salva J, Volka K. Application of molecular spectroscopy in the mid-
infrared region to the determination of glucose and cholesterol in whole blood and in 
blood serum. Applied Spectroscopy 1997, 51(5): 631-635 
156 Shaw RA, Kotowich S, Mantsch HH, Leroux M. Quantitation of protein, creatinine 
and urea in urine by near-infrared spectroscopy. Clinical Biochemistry 1996, 29(1): 11-
19 
157 Davis AMC. Uncertainty testing in PLS regression. Spectroscopy Europe 2001, 
13(2): 16-19 
158 Schuster KC, Mertens F, Gapes JR. FTIR Spectroscopy applied to bacterial cells as a 
novel method for monitoring complex biotechnological processes. Vibrational 
Spectroscopy 1999, 19: 467-477 
159 Kirschner C, Maquelin K, Ngo Thi NA, Choo-Smith LP, Sockalingum GD, Sandt C, 
Ami D, Orsini F, Doglia SM, Allouch P, Mainfait M, Puppels GJ, Naumann D. 
Classification and Identification of Enterococci: a Comparative Phenotypic, Genotypic 
and Vibrational Spectroscopic Study. Journal of Clinical Microbiology 39(5): 1763-
1770 
160 Lasch P, Haensch W, Naumann D, Diem M. Imaging of colorectal adenocarcinoma 
using FT-IR microspectroscopy and cluster analysis. Biochimica et Biophysica Acta 
2004, 1688(2): 176-186 
161 Wood BR, Chiriboga L, Yee H, Quinn MA, McNaughton D, Diem M. Fourier 
transform infrared (FTIR) spectral mapping of the cervical transformation zone, and 
dysplastic squamous epithelium. Gynaecologic Oncology 2004, 93(1): 59-68 
162 Mordechai S, Sahu RK, Hammody Z, Mark S, Kantarovich K, Guterman H, 
Podshyvalov A, Goldstein J, Argov S. Possible common biomarkers from FTIR 
microspectroscopy of cervical cancer and melanoma. Journal of Microscopy 2004, 
215(1): 86-91 
163 Fujioka N, Morimoto Y, Arai T, Kikuchi M. Discrimination between normal and 
malignant human gastric tissues by Fourier transform infrared spectroscopy. Cancer 
Detection and Prevention 2004, 28(1): 32-36 

 81



164 Fabian H, Lasch P, Boese M, Haensch W. Mid–IR microspectroscopic imaging of 
breast tumour tissue sections. Biopolymers 2002, 67(4-5): 354-357 
165 Tfayli A, Piot O, Durlach A, Bernard P, Manfait M. Discriminating nevus and 
melanoma on paraffin-embedded skin biopsies using FTIR microspectroscopy. 
Biochimica et Biophysica Acta 2005, 1724(3): 262-269  
166 Lasch P, Boese M, Pacifico A, Diem M. FT-IR Spectroscopic Investigations of 
Single Cells on the Subcellular Level: An FT-IR spectroscopic study. Vibrational 
Spectroscopy 2002, 28(1): 147-157 
167 Kondepati VR, Keese M, Heise HM, Backhaus J. Detection of structural disorders in 
pancreatic tumour DNA with Fourier transform infrared spectroscopy. Vibrational 
Spectroscopy 2006, 40(1): 33-39 
168 Yano K, Ohoshima S, Gotou Y, Kumaido K, Moriguchi T, Katayama H. Direct 
measurement of human lung cancerous tissues and noncancerous tissues by fourier 
transform infrared microscopy: can an infrared microscope be used as a clinical tool? 
Analytical Biochemistry 2000, 287(2): 218-225 
169 Krafft C, Sobottka SB, Schackert G, Salzer R. Analysis of human brain tissue, brain 
tumors and tumor cells by infrared spectroscopic mapping. The Analyst 2004, 129(10): 
921-925  
170 Gazi E, Dwyer J, Gardner P, Ghanbari-Siahkali A, Wade AP, Miyan J, Lockyer NP, 
Vickerman JC, Clarke NW, Shanks JH, Scott LJ, Hart CA, Brown M. Applications of 
Fourier transform infrared microspectroscopy in studies of benign prostate and prostate 
cancer. A pilot study. The Journal of Pathology 2003, 201(1): 99-108 
171 Takahashi S, Satomi A, Yano K et al. Estimations of glycogen levels in human 
colorectal cancer tissue: relationship with cell cycle and tumor outgrowth. Journal of  
Gastroenterology 1999, 34(4): 474-480 
172 Swinnen JV, Verhoeven G. Androgens and the control of lipid metabolism in human 
prostate cancer cells. The Journal of Steroid Biochemistry and Molecular Biology 1998, 
65(1-6): 191-198 
173 Paluszkiewicz C, Kwiatek WM. Analysis of human cancer prostate tissue using 
FTIR microspectroscopy and SRIXE techniques. Journal of Molecular Structure 2001, 
565-566: 329-334 
174 Paluszkiewicz C, Kwiatek WM, Banas A, Kisiel A, Marcelli A, Piccinini M. SR-
FTIR spectroscopic preliminary findings of non-cancerous, cancerous and hyperplastic 
human prostate tissues. Vibrational Spectroscopy 2007, 43(1): 237-242 
175 Gazi E, Dwyer J, Lockyer NP, Miyan J, Gardner P, Hart CA, Brown MD, Clarke 
NW. A study of cytokinetic and motile prostate cancer cells using synchrotron-based 
FTIR microspectroscopic imaging. Vibrational Spectroscopy 2005, 38(1-2): 193-201 
176 Eckel R, Huo H, Guan HW, Hu X, Che X, Huang WD Characteristic infrared 
spectroscopic patterns in the protein bands of human breast cancer tissue. Vibrational 
Spectroscopy 2001, 27(2): 165-173 
177 Gazi E, Baker M, Dwyer J, Lockyer NP, Gardner P, Shanks JH, Reeve RS, Hart CA, 
Clarke NW, Brown MD. A correlation of FTIR spectra derived from prostate cancer 
biopsies with gleason grade and tumour stage. European Urology 2006, 50(4): 750-760 
178 Crow P, Stone N, Kendall CA et al. The use of Raman spectroscopy to identify and 
grade prostatic adenocarcinoma in vitro. British Journal of Cancer 2003, 89(1):106-108 
179 Baker MJ, Gazi E, Brown MD, Shanks JH, Gardner P, Clarke NW. FTIR-based 
spectroscopic analysis in the identification of clinically aggressive prostate cancer. 
British Journal of Cancer 2008, 99: 1859-1866 

 82

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6THW-44GH9PP-9&_user=10&_coverDate=12%2F07%2F2001&_alid=1157316994&_rdoc=1&_fmt=high&_orig=search&_cdi=5293&_sort=r&_docanchor=&view=c&_ct=1&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=ffbedd3c0a953d47506492a3e25e5694
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6THW-44GH9PP-9&_user=10&_coverDate=12%2F07%2F2001&_alid=1157316994&_rdoc=1&_fmt=high&_orig=search&_cdi=5293&_sort=r&_docanchor=&view=c&_ct=1&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=ffbedd3c0a953d47506492a3e25e5694


180 German MJ, Hammiche A, Ragavan N, Tobin MJ, Cooper LJ, Matanhelia SS, 
Hindley AC, Nicholson CM, Fullwood NJ, Pollock HM, Martin FL. Infrared 
spectroscopy with multivariate analysis potentially facilitates the segregation of 
different types of prostate cell. Biophysical Journal 2006, 90(10): 3783-3795 
181 Gazi E, Dwyer J, Lockyer NP, Miyan J, Gardner P, Hart C, Brown M, Clarke NW. 
Fixation protocols for subcellular imaging by synchrotron-based Fourier transform 
infrared spectroscopy. Biopolymers 2005, 77(1): 18-30 
182 Harvey TJ, Gazi E, Henderson A, Snook RD, Clarke NW, Brown M, Gardner P. 
Factors influencing the discrimination and classification of prostate cancer cell lines by 
FTIR microspectroscopy. The Analyst 2009, 134(6): 1083-1091 
183 Malins DC, Polissar NL, Gunselman SJ. Models of DNA structure achieve almost 
perfect discrimination between normal prostate, benign prostatic hyperplasia (BPH), 
and adenocarcinoma and have a high potential for predicting BPH and prostate cancer. 
Proceedings of the National Academy of Sciences of the United States of America 1997, 
94(1): 259-264 
184 Malins DC, Gilman NK, Green VM, Wheeler TM, Barker EA, Vinson MA, 
Sayeeduddin M, Hellstrom KE, Anderson KM. Metastatic cancer DNA phenotype 
identified in normal tissues surrounding metastasizing prostate carcinomas. Proceedings 
of the National Academy of Sciences of the United States of America 2004, 101(31): 
11428-11431 
185 Malins DC, Gilman NK, Green VM, Wheeler TM, Barker EA, Anderson KM. A 
cancer DNA phenotype in healthy prostates, conserved in tumors and adjacent normal 
cells, implies a relationship to carcinogenesis. Proceedings of the National Academy of 
Sciences of the United States of America 2005, 102(52): 19093-19096  
186 Malins DC, Johnson PM, Barker EA, Polissar NL, Wheeler TM, Anderson KM. 
Cancer-related changes in prostate DNA as men age and early identification of 
metastasis in primary prostate tumors. Proceedings of the National Academy of Sciences 
of the United States of America 2003, 100(9): 5401-5406 
187 Fernandez DC, Bhargava R, Hewitt SM, Levin IW. Infrared spectroscopic imaging 
for histopathologic recognition. Nature Biotechnology 2005, 23(4): 469-474 
188 Stone N. Raman Spectroscopy of Biological Tissue for Application in Optical 
Diagnosis of Malignancy. PhD Thesis, Cranfield University: Cranfield Press, 2001  
189 Stone N, Kendall C, Smith J, Crow P, Barr H. Raman spectroscopy for identification 
of epithelial cancers. Faraday Discussions 2004, 126: 141-157 
190 Crow P, Uff JS, Farmer JA, Wright MP, Stone N. The use of Raman spectroscopy to 
identify and characterize transitional cell carcinoma in vitro. BJU International 2004, 
93(9): 1232-1236 
191 Crow P, Molckovsky A, Stone N, Uff J, Wilson B, WongKeeSong LM. Assessment 
of fiberoptic near-infrared Raman spectroscopy for diagnosis of bladder and prostate 
cancer. Urology 2005, 65(6): 1126-1130 
192 Hart Prieto MC, Matousek P, Towrie M, Parker AW, Wright M, Ritchie AW, Stone 
N. Use of picosecond Kerr-gated Raman spectroscopy to suppress signals from both 
surface and deep layers in bladder and prostate tissue. Journal of Biomedical Optics 
2005, 10(4): 44006-44012 
193 Delikatny EJ, Russell P, Hunter JC et al. Proton MR and human cervical neoplasia: 
ex vivo spectroscopy allows distinction of invasive carcinoma of the cervix from 
carcinoma in situ and other preinvasive lesions. Radiology 1993, 188(3): 791-796 

 83



194 Rutter A Hugenholtz H, Saunders JK, Smith IC. Classification of brain tumours by 
ex vivo 1H NMR spectroscopy. Journal of Neurochemistry 1995, 64(4): 1655-1661 
195 Lean CL, Delbridge L, Russell P et al. Diagnosis of follicular thyroid lesions by 
proton magnetic resonance on fine needle biopsy. Journal of Clinical Endocrinology 
and Metabolism 1995, 80(4): 1306-1311 
196 Lean CL, Newland RC, Ende DA, Bokey EL, Smith IC, Mountford CE. Assessment 
of human colorectal biopsies by 1H MRS: correlation with histopathology. Magnetic 
Resonance in Medicine 1993, 30(5): 525-533 
197 Wallace JC, Raaphorst GP, Somorjai RL, et al. Classification of 1H MR spectra of 
biopsies from untreated and recurrent ovarian cancer using linear discriminant analysis. 
Magnetic Resonance in Medicine 1997, 38(4): 569-576 
198 Mackinnon WB, Barry PA, Malycha PL et al. Fine-needle biopsy specimens of 
benign breast lesions distinguished from invasive cancer ex vivo with proton MR 
spectroscopy. Radiology 1997, 204(3): 661-666 
199 Barry P, Wadstrom C, Falk G et al. What is the value of 1H MRS in detecting early 
malignant changes? In: The Esophagogastric Junction, edited by R Guili. Montrouge: 
John Libbey Eurotext, 1998, p. 1122-1127 
200 Soper R, Himmelreich U, Painter D, et al. Pathology of hepatocellular carcinoma 
and its precursors using proton magnetic resonance spectroscopy and a statistical 
classification strategies. Pathology 2002, 34(5): 417-422 
201 Lean CL, Somorjai RL, Smith ICP, Russell P, Mountford CE. Accurate diagnosis 
and prognosis of human cancers by proton MRS and a three stage classification 
strategy. In: Annual Reports on NMR Spectroscopy, edited by G Webb. London: 
Academic press, 2002, p. 71-111 
202 Mountford CE, Somorjai RL, Malycha P, et al. Diagnosis and prognosis of breast 
cancer by magnetic resonance spectroscopy of fine-needle aspirates analyzed using a 
statistical classification strategy. The British Journal of Surgery 2001, 88(9): 1234-1240 
203 Kurhanewicz J, Vigneron DB, Hricak H, Narayan P, Carroll P, Nelson SJ. Three-
dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high 
(0.24-0.7-cm3) spatial resolution. Radiology 1996, 198(3): 795-805 
204 Yacoe ME, Sommer G, Peehl D. In vitro proton spectroscopy of normal and 
abnormal prostate. Magnetic Resonance in Medicine 1991, 19(2): 429-438 
205 Cornel EB, Heerschap A, Smits GA, Oosterhof GO, Debruyne FM, Schalken JA. 
Magnetic resonance spectroscopy detects metabolic differences between seven Dunning 
rat prostate tumor sublines with different biological behaviour. The Prostate 1994, 
25(1): 19-28 
206 Kurhanewicz J, Dahiya R, Macdonald JM, Chang LH, James TL, Narayan P. Citrate 
alterations in primary and metastatic human prostatic adenocarcinomas: 1H magnetic 
resonance spectroscopy and biochemical study. Magnetic Resonance in Medicine 1993, 
29(2): 149-157 
207 Kurhanewicz J, Vigneron DB, Nelson SJ et al. Citrate as an in vivo marker  to 
discriminate prostate cancer from benign prostatic hyperplasia and normal prostate 
peripheral zone: detection via localized proton spectroscopy. Urology 1995, 45(3): 459-
466 
208 Lynch MJ, Nicholson JK. Proton MRS of human prostatic fluid: correlations 
between citrate, spermine and myo-inositol levels and changes with disease. The 
Prostate 1997, 30(4): 248-255 

 84



209 Swindle P, McCredie S, Russell P, Himmelreich U, Khadra M, Lean C, Mountford 
C. Pathologic characterization of human prostate tissue with proton MR spectroscopy. 
Radiology 2003, 228(1): 144-151 
210 Cheng LL, Burns MA, Taylor JL, He W, Halpern EF, McDougal WS, Wu CL. 
Metabolic characterization of human prostate cancer with tissue magnetic resonance 
spectroscopy. Cancer Research 2005, 65(8): 3030-3034. 
211 Tearney GJ, Brezinski ME, Southern JF, Bouma BE, Boppart SA, Fujimoto JG. 
Optical biopsy in human urologic tissue using optical coherence tomography. The 
Journal of Urology 1997, 157(5): 1915-1919 
212 Aron M, Kaouk JH, Hegarty NJ, Colombo JR, Haber GP, Chung BI, Zhou M, Gill 
IS. Preliminary experience with the Niris optical coherence tomography system during 
laparoscopic and robotic prostatectomy. Journal of Endourology 2007, 21(8): 814-8 
213 Salomon G, Hess T, Erbersdobler A, Eichelberg C, Greschner S, Sobchuk A, 
Korolik A, Nemkovich N, Scheiber J, Herms M. The Feasibility of Prostate Cancer 
Detection by Triple Spectroscopy. European Urology 2009, 55(2) 376-384 

 

 85



“ I think your solution is just; but why think? Why not try the experiment? ”  

John Hunter 1728-1793 

 

2. Materials and Methods 

 

Gloucestershire Local Research Ethics Committee granted ethical approval to collect 

prostate tissue from appropriately consented patients for FTIR spectroscopic studies 

(Gloucestershire Local Research Ethics Committee no. 00/159G). This section describes 

how samples were collected and prepared for analysis. The samples were analysed 

using a laboratory based bench-top Fourier Transform Infrared Microspectrometer at 

Gloucestershire Royal Hospital; the spectrometer and analysis methods will also be 

described. 

 

2.1 Prostate Tissue Collection and Preparation 

2.1.1 Transurethral Resection of the Prostate Specimens: Collection 

Transurethral resection of the prostate (TURP) samples were collected at routine 

operating lists at Gloucestershire Royal Hospital. All patients were undergoing surgery 

for bladder outflow obstruction and had consented to have one of their TURP chips 

used for research purposes. The samples were taken using a resectoscope (Stortz 27040 

DH). Figure 2.1 illustrates transurethral resection of a prostate chip. Figure 2.2 shows 

how multiple chips are obtained during this procedure. None of the patients were known 

to have prostate cancer prior to their procedure. Each prostate chip was positioned on a 

section of acetate paper which had been marked on one corner to enable orientation of 
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the sample. The acetate together with the sample was then placed in a 2ml cryogenic 

vial (Corning Incorporated). The vial was immediately placed into liquid nitrogen to 

snap freeze the sample. The sample was stored in a -80°C freezer between collection 

and sectioning. Each frozen sample was sectioned using a cold cryotome at 

approximately -28°C. Sections were 8-10μm in thickness. Consecutive sections were 

mounted onto a histology slide (Snowcoat X-tra, Surgipath) for standard haematoxylin 

and eosin staining and a calcium fluoride slide (Cystran Limited) for later FTIR 

analysis. The remainder of the sample was replaced in the cryogenic vial and returned to 

the -80°C freezer together with the mounted calcium fluoride slide pending FTIR 

examination. In total fifty TURP chips were collected, of which 27 TURP samples were 

used for the FTIR mapping studies. A relatively small number of prostate specimens 

were included in the final analysis due to difficulties obtaining suitable samples for 

FTIR analysis using the cryotome. Table 2.1 illustrates how the samples were broken 

down. 

 

 Benign 
 

Malignant 

Pathology 
 

BPH and stroma Adenocarcinoma prostate 

Number of 
Samples 

23 4 

 

Table 2.1 The pathology of the TURP samples included in study 
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C = Prostate chip 
R = Resecting loop 
P = Residual prostate 

R 
C 

P 

Figure 2.1 Resection of a prostate chip using electrode 

 

 

Figure 2.2 Example of total prostate tissue removed as multiple chips during 

TURP 
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2.1.2 Transrectal Ultrasound Guided Prostate Biopsy specimens: Collection 

Prostate biopsy samples were collected from patients at Gloucestershire Royal Hospital 

and Cheltenham General Hospital. Patients attending for biopsy had been previously 

reviewed by a urologist and were suspected to have prostate cancer on the basis of 

either an elevated PSA blood test or abnormal digital rectal examination or both. All 

patients gave consent for an extra biopsy to be taken and used for purely research 

purposes. The biopsy was positioned onto a section of acetate paper, which had been 

marked on one corner, placed in a cryogenic vial and snap frozen in liquid nitrogen. The 

sample was stored in a -80°C freezer between collection and sectioning.  The specimen 

was sectioned as described above in section (2.1.1). Of fifty biopsy samples obtained, 

33 were suitable for final FTIR analysis after sectioning. Figure 2.3 illustrates a biopsy 

section prior to FTIR analysis. Table 2.2 details the breakdown of pathology in the 33 

biopsies included in FTIR studies. Table 2.3 details the most recent PSA reported prior 

to TRUS biopsy (where recorded), the final formal TRUS biopsy histology and the 

research biopsy histology in each sample. 

Pathology No evidence of 
malignancy 

Adenocarcinoma 
of the prostate 

Prostatic 
Intraepithelial 

Neoplasia 
Number of 

samples 
28 4 1 

Table 2.2 The pathology of prostate biopsy sections included in study 

 

 
 

Figure 2.3 White light image of a prostate biopsy section prior to FTIR analysis 
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Sample No PSA TRUS pathology Research biopsy 
 

1 4.2 3+3=6, single left 
core 

NM 

2 8.5 3+3=6, multiple 
cores left and right 

NM 

4 8.5 NM NM 
5 9.0 3+4=7, multiple left 

cores 
NM 

6 288 5+3=8, multiple 
cores left and right 

Malignancy 

7 3.6 NM NM 
8  NM (2nd set Bx) NM 

10 7.8 4+5=9, multiple right 
cores 

NM 

11 170 5+4=9, multiple 
cores left and right 

Malignancy 

12 8.1 PIN NM 
13 13 3+2=5, multiple 

cores left and right 
NM 

14 6.8 NM NM 
15 30 4+3=7, multiple 

cores left and right 
NM 

18 5.4 NM NM 
19 15 NM NM 
20 7.9 NM NM 
21  NM NM 
22  NM NM 
23  NM NM 
25 17 NM NM 
26 14 3+3=6, multiple right 

cores 
NM 

27 12 NM NM 
28  NM NM 
29 139 4+4=8, multiple 

cores left and right 
Malignancy 

30  3+3=6, multiple 
cores left and right 

NM 

31 8 NM NM 
32 11 3+4=7, multiple 

cores left and right 
Malignancy 

33 6.7 NM NM 
34 93 3+4=7, multiple 

cores left and right 
NM 

36  4+4=8, multiple 
cores left and right 

NM 

38 4.1 NM NM 
39 27 3+4=7, multiple left 

cores 
PIN 

42 6.2 NM NM 
Table 2.3 The characteristics of the TRUS Biopsy specimens included in study 
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2.1.3 Radical Prostatectomy Specimens: Collection 

Patients undergoing radical prostatectomy for treatment of their prostate cancer at 

Gloucestershire Royal Hospital were consented for FTIR analysis of sections of their 

prostate after histological analysis of their prostates for formal post operative 

pathological staging had been completed. These samples differed from the tissue 

samples taken above because instead of snap freezing the prostate tissue, the prostate 

tissue was formalin fixed and paraffin embedded post operatively prior to histological 

and FTIR analysis. The analysis of this tissue forms a key part of this thesis because this 

represents how prostate tissue is routinely fixed and analysed in current clinical practice 

and the heterogeneity within each sample provides an intrinsic control for each 

specimen. A description of how the radical prostatectomy specimen was fixed follows 

below in section 2.2.3. Consecutive ten micron transverse prostate sections were taken 

from selected paraffin embedded blocks using a microtome, and mounted on glass and 

calcium fluoride slides for histological and FTIR analysis respectively. Sections were 

analysed by FTIR in both paraffinated and deparaffinated states. Table 2.4 details the 

pathology groups within each sample. 
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Radical prostatectomy specimen Pathologies within specimen 

1 BPH, Prostatitis, Prostatic Calculi, PIN, 
Gleason 4+3=7 

2 BPH, Gleason 3+4=7 

3 No BPH, Gleason 3+3=6 

4 PIN, Gleason 4+3=7 

5 BPH, Gleason 3+4=7 

6 No BPH, Gleason 3+4=7 

7 No BPH, PIN, Gleason 3+3=6 

8 No BPH, PIN, Gleason 3+3=6 

9 BPH, PIN, Gleason 3+4=7 

 

Table 2.4 Pathology of the radical prostatectomy specimens included in the study 

 

2.1.4 TURP, Prostate biopsy and Radical Prostatectomy Specimens: Histological 

Examination 

 

The stained haematoxylin and eosin (H & E) sections were examined by a consultant 

uropathologist at Gloucestershire Royal Hospital, Dr Jeremy Uff. The mark placed on 

the specimen prior to initial snap freezing allowed sample orientation and relative 

mapping of locations of prostate pathology present. The pathologist defined and 

recorded the prostate pathologies present within the sample with the principal researcher 

present. If prostate cancer was identified within a specimen, a Gleason grade was 

assigned and the sample was re-examined by a second consultant pathologist with a 

special urological interest and concordance in Gleason grade agreed. The areas of 
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interest were marked on the H & E slides in indelible ink, relative positions of the 

pathologies were measured and allocated (x, y) co-ordinates relative to an orientation 

mark in the bottom left hand corner of the sample. The FTIR spectrometer had an 

inbuilt (x, y) measurement facility enabling FTIR targeting of specific areas for spectral 

measurements.   

   

2.1.5 TURP, Prostate biopsy and Radical Prostatectomy Specimens: Exclusion 

criteria for FTIR analysis 

 

1) H & E sections had to be of sufficient quality to allow precise histological 

classification which could be compared with FTIR sample analysis – where 

classification could not be performed the sample was excluded 

2) Following cold cryotome sectioning, consecutive sections needed to be 

comparable to allow histological mapping – where this was not the case the 

sample was excluded 

3) Specimens which were damaged or uneven and therefore would not allow good 

quality FTIR spectra to be collected were excluded from the study.  Where 

possible adjacent consecutive specimens were analysed. 
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2.2 Prostate Tissue Fixation 

The aim of fixation is to maintain the form and structure of tissue elements in a 

condition as close to in vivo as possible. Prostate specimens obtained by TURP, TRUS 

biopsy and radical prostatectomy are routinely fixed in formalin prior to histological 

analysis in clinical practice today.  Without fixation, once the prostate tissue is removed 

from its blood supply autolysis (the enzymatic digestion of cells by the enzymes 

contained within them) and movements in intracellular water molecules will occur. 

Both of these factors may cause destruction of normal intracellular structures and 

biochemistry and thus may limit the value of FTIR analysis. In the studies which follow 

two methods of cell fixation have been used; flash freezing (for the biopsy and TURP 

specimens) and formalin fixation followed by paraffin embedding (for the radical 

prostatectomy specimens). 

 

2.2.1 Flash Freezing of Prostate Tissue 

Prostate tissue is hydrated when in vivo; when chemical reagents are used to preserve 

tissue their interactions to achieve dehydration invariably affect tissue biochemistry. 

Liquid nitrogen emersion of a sample within a cryo-vial enables a small specimen to be 

completely frozen in less than a second. The speed of freezing reduces the likelihood of 

intracellular ice crystal damage and preserves tissue biochemistry. Although studies 

have demonstrated in other tissues that freezing followed by drying may cause artefacts 

such as chemical migration and reduction in frozen cell size. Specifically in the prostate 

however, FTIR studies have demonstrated that valid spectra can be obtained from 

prostate cells or tissue which has been flash frozen1,2. The unstained frozen sections 
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used in this work were removed from the freezer and allowed to defrost and air dry for 

at least one hour prior to FTIR analysis. 

2.2.2 Formalin Fixation of Prostate Tissue 

Although many chemical fixatives exist, formalin is used universally in clinical practice 

for prostate and the radical prostatectomy specimens detailed in this thesis. Formalin 

fixation in radical prostatectomy specimens is necessary to determine the margin status, 

tumour volume and grade in routine histological practice3. The standard buffered 

formalin fixative is an aqueous solution containing formaldehyde 37% and methyl 

alcohol 10-15%. Formalin is a highly reactive dipolar compound that forms protein - 

nucleic acid and protein – protein crosslinks in vitro. Glycogen and lipids are also 

preserved by this process. Formalin fixation is followed by paraffin embedding in 

routine histological practice prior to haematoxylin and eosin staining and examination 

using white light microscopy4. Depending on the size of the gland, formalin fixation at 

Gloucestershire Royal Hospital takes at least 48 hours, followed by a further 24 hours 

for further processing and paraffin embedding. Although formalin fixation is a 

relatively simple process which provides superior morphological detail and consistency, 

it is time consuming and its limitations with respect to the potential effects of fixative 

cross linkage on molecular studies are acknowledged. 

 

2.2.3 Preparation of Radical Prostatectomy Specimens for FTIR Analysis 

Radical prostatectomy specimens were removed at operation, placed in buffered 

formalin and transferred to the pathology department at Gloucester Royal Hospital. All 

prostate specimens were prepared in a similar fashion. Formalin fixation of the 

specimen for a minimum of 48 hours was allowed. The specimen then underwent ‘cut 
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up’ by a pathologist. At ‘cut up’ the prostate was weighed, orientated and its dimensions 

measured. Macroscopic examination of the prostate specimen was performed. The 

external surface of the prostate was then marked with different colours (for example red 

for right, blue for left and green for base) to ensure orientation after further processing. 

The gland was sliced in 5mm intervals from apex up and laid in clearly labelled, 

consecutive individual cassettes, called blocks. The prostate sections in the blocks were 

then dehydrated in graded alcohols, cleared in xylene and embedded as flat as possible 

in paraffin wax using a processor and left to set. The Royal College of Pathologists 

prostate minimum dataset guidelines were adhered to in all processing steps. 10 μm 

sections were then harvested from selected blocks using a microtome. Consecutive 

sections were taken for histological and FTIR analysis respectively to enable mapping 

of pathology (Figures 2.4 and 2.5 respectively). To achieve deparaffination, sections 

were placed in a xylene bath followed by a warm water bath. Specimens were mounted 

on calcium fluoride slides and air dried prior to FTIR analysis. Sections for histological 

analysis were H & E stained. 
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Figure 2.4 Haematoxylin & eosin stained radical prostatectomy section 

 

 

Figure 2.5 White light image of unstained prostate section corresponding to above 

H&E section for FTIR analysis 
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2.3 Fourier Transform Infrared Spectroscopy 

2.3.1 Instrumentation 

Prostate specimens were analysed using a Perkin Elmer® Spotlight 300 Fourier 

Transform Infrared Spectroscopy system in a temperature and humidity controlled 

laboratory (see Figure 2.6). The system consists of a liquid nitrogen cooled single point 

100 x 100μm2 mercury-cadmium-telluride (MCT) detector and 16 x 1 element (400 x 

25 μm2) MCT array detector for image and single point measurements. Resolutions 

achieved by the single point MCT by the MCT array detectors are 25 and 6.25 μm 

respectively. The spectral range covered by the array and single point detector are 7800 

to 720cm-1 and 7800 to 580 cm-1 respectively. The spectrometer is attached to a 

microscope equipped with a CCD camera and white light LED illumination in order to 

view optical images of the sample. The x-y-z stage with sample holder was 

programmable. White light images could be collected together to construct map images. 

The aperture of the instrument to focus infrared light onto the sample and the cassigrain 

to collect the infrared light transmitted through the sample are adjustable. Settings for 

the FTIR studies are described below. On start-up of the FTIR spotlight spectrometer, 

calibration, stage and motor checks are performed automatically. Prior to measurements 

the liquid nitrogen cooled detector was filled with liquid nitrogen, the spectrometer 

ensured that sufficient energy was available to perform the studies and an alert warning 

informed the user if refilling of the detector was required to continue recording data. 

Background scans from a blank area of calcium fluoride were performed prior to all 

data acquisition and ratioed against the sample spectrum. 
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Figure 2.6 Perkin Elmer® Spotlight 300 FTIR Spectroscopy System 

 

2.3.2 Settings for Mapping Measurements of Prostate Specimens 

The term mapping describes the process of obtaining the spectral / biochemical 

equivalent of the visual representation obtained at microscopic analysis of tissue. Air 

dried or preserved prostate tissue specimens, mounted on calcium fluoride were placed 

on the silver sample holder and positioned on the stage. The software settings were set 

to image mode, FTIR spectra were measured in transmission mode, 8cm-1 wavelength 

resolution, 25 μm pixel resolution (interval steps), 16 co-scans per pixel and wavelength 

range of 4000-720cm-1. The mapping studies analysed areas of specific interest guided 

by histological analysis of the adjacent haematoxylin and eosin stained consecutive 

section. The white light mode and video capture from the microscope enabled the 

appropriate positioning of the sample for interrogation.  Map measurements were 

guided and recorded as number of steps in both the x and y direction across a specimen. 

The size of the map measured was limited by time constraints firstly to perform a map 
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using the above settings and secondly the duration of cooling conferred by the liquid 

nitrogen in the detector. A complete fill allowed for typically 8 hours of measurements. 

It was not possible to examine an entire large radical prostatectomy specimen without 

running out of liquid nitrogen in the detector.  Therefore the primary method used was 

to split the analysis of large specimens into size-compatible portions. The possible 

method of refilling the detector with liquid nitrogen during measurements was 

examined in the larger radical prostatectomy specimens’ analysis. On completion the 

intensity *.imp file, white light image *.vw and spectral map *.fsm data were saved on 

to the computer attached to the spectrometer. Hyperview® software enabled the map 

parameters to be viewed. The *.fsm map file was converted into an ASCII *.dat map 

file containing the transmittance and wavenumbers for each map. Matlab® programs 

designed in house by Dr Nick Stone were used to perform data processing: as described 

in section 2.3.4. 

 

2.3.3 Settings for Point Measurements 

Air dried or preserved prostate tissue samples, mounted on calcium fluoride, were 

analysed using the spectrometer in point mode, in transmission. The radical 

prostatectomy specimens were mapped in their entirety. Due to the constraints of the 

liquid nitrogen cooled detector the specimen was divided into smaller sections for 

manageable point maps (Illustrated in figure 2.7). The specimens were not removed 

from the stage until complete analysis had been performed. The effect of altering the 

spectral resolution, aperture and number of co-scans per pixel were explored in point 

map radical prostatectomy studies. Wavelength range was 4000-720cm-1. When 

targeted point spectra were taken from specific pathologies, ten selected spectra were 
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taken from each pathology present within a sample (Figure 2.8). Spectral files were 

saved to the computer attached to the spectrometer. The point maps of the radical 

prostate sections were converted from *.fsm files to ASCII *.dat map file in a similar 

fashion as in section 2.2.2 above.  The mean spectra from point spectra taken from 

selected pathology areas was analysed, compared and contrasted and will be discussed 

in the following results chapters. Matlab® programs designed in house by Dr Nick 

Stone were used to process the data: described in section 2.3.4. 

 

 

Figure 2.7 White light image illustrating methodology in point mapping of radical 

prostatectomy sections 
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Figure 2.8 White light image demonstrating targeting of point spectra (marked 

with a cross) enabling measurement of specific areas of interest 

 

2.3.4 Data Processing 

Matlab® was used to load the spectral data from the ASCII map file and generate 

Principle Component Analysis (PCA) pseudo-colour maps (Illustrated below in figures 

2.9 and 2.10). During the map loading process the spectra were interpolated to 4cm-1 

wavenumber spacing, converted to absorbance using (log(max(transmittance))-

log(transmittance)), where transmittance = Iout/Iin and smoothed using Savitzky-Golay 

(polynomial) to remove noise. The data was represented within Matlab® as a 3D 

matrix. The PCA score maps were compared to the white light image and H & E slide. 

A Matlab® script allowed regions to be selected from the pseudo-colour maps and 

labelled as to their appropriate pathology. Mean spectra from these pathologies could 

then be plotted and interrogated as described below. 
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Figure 2.9 White light image of selected area of interest in prostate TURP section 

 

Figure 2.10 PC score pseudocolour map corresponding with above white light 

image, the red squares illustrate how specific regions may be selected 
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2.4 Data Analysis 

Visual spectral interpretation has formed the backbone of spectroscopic analysis since 

the establishment of spectrometers but may be highly subjective, particularly in modern 

spectroscopy, where a huge amount of spectral data is collected by FTIR focal plane 

array detectors. Pattern recognition techniques are applied to infrared data, which 

attempt to remove subjectivity and allow realistic processing of large datasets. The 

choice of analysis technique is dependent on the samples’ spectral characteristics and 

individual group preference for data analysis software.  

 

2.4.1 Peak Position / Peak Height / Peak Area 

Peak position can be correlated with known verified tables of key functional group 

absorbance peak positions. Differences in key functional group may be observed 

between pathologies. Peak height and area correspond to relative concentration of 

constituents. Analysis of peak intensity ratios can be the most straightforward way of 

identifying concentrations and locations of different substances as long as the 

component groups can be easily distinguished. Peak intensity ratios may enable 

differentiation between pathologies either from directly comparing single peak 

intensities between samples or establishing the ratio between key peaks within one 

sample and then comparing this ratio with other pathologies in separate samples. 

 

2.4.2 Multivariate Analysis 

Multivariate analysis enables the majority of the data within an infrared spectrum to be 

utilised and is especially useful in determining and separating subtle differences in 

pathology groups under examination. Multivariate analysis is necessary in tissue 
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diagnostics because it permits simultaneous analysis of multiple independent and 

dependent variables present in the spectral dataset. This analysis may be supervised or 

unsupervised. In this thesis because histological analysis allows us to know the 

pathologies within a sample and their location when we attempt to associate the 

pathology groups with the inputted spectral dataset this is termed supervised analysis. 

Unsupervised analysis describes when input values are analysed on the basis of the 

differences between them within the dataset without external interference. The 

multivariate analysis employed to construct the diagnostic algorithms in this thesis was 

primarily principal component-fed linear discriminant analysis. Principal component 

analysis (PCA) is applied to the spectral dataset to compress the data without losing 

relevant information. PCA is unsupervised. Linear discriminant analysis (LDA) then 

accentuates the differences between groups in spectral morphology. LDA is supervised. 

PCA fed LDA can produce a diagnostic algorithm or model which can be tested. The 

sensitivity and specificity of this algorithm in determining pathologies can be evaluated. 

The following sections will describe these techniques in detail. 

 

2.4.3 Principal Component Analysis (PCA) 

Principal component analysis calculates principal components (PCs) from the spectral 

dataset. These PCs are also known as loads and describe the greatest variance of 

spectral data from its mean. The first PC load describes the maximum variance and the 

second the next highest, progressively decreasing accordingly. As PCs are 

representations of the original spectra, spectra may be reconstituted by multiplying the 

loads by a variable termed PC scores.  Thus spectra may be represented by either loads 

or scores. Using PC score data for analysis reduces the number of variables / data 
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needing to be processed within a dataset whilst retaining the spectral information, 

allowing each spectrum within the sample to be compared. Depending on the degree of 

variance of the sample under investigation the number of PC scores used is decided and 

the loads for the dataset were always retained. 

 

PCA also allows co-linear spectral variations to be considered together. Infrared spectra 

of tissues have multiple characteristic peaks corresponding to concentration of 

substances present. Changes in the concentrations of these substances may cause 

changes in the heights of peaks within the whole spectrum. Loads can therefore reflect 

significant changes in the concentration of a substance by resembling the substance 

spectra. This allows valuable insight into the important molecular differences which 

exist between different pathologies.  

 

PCA can be visualised in multiple ways as will be demonstrated in the Results chapter 

later. PCA pseudo-colour images of the sample under investigation can also be created 

by giving each score a colour rating. Each colour then represents the score of that 

component at each position where that spectrum was measured. 

 

2.4.4 Linear Discriminant Analysis (LDA) 

Linear discriminant analysis (LDA) is a technique used to improve the clustering of 

different pathological groups. In the context of this study, LDA takes into account the 

different variables (scores) determined by PCA and works out which pathological group 

the spectrum with that value is most likely to belong to. LDA in combination with PCA 

acts to maximise the variance in the data between pathological groups and minimize the 
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variation within a group. PCA ensures the LDA requirement, that the number of input 

variables (spectral wavenumbers) is less than the number of spectra in the dataset. LDA 

is supervised because it requires information as to how spectra are classified, 

specifically the pathological diagnosis which is input by the spectroscopist. PCA fed 

LDA was used to construct diagnostic algorithms for pathology groupings in this study. 

The algorithms were tested as to their accuracy.  

 

2.4.5 Testing the Diagnostic Algorithm 

The algorithms were tested using a ‘leave one sample out’ cross validation and using a 

separate population of test spectra.  

 

‘Leave one sample out’: A testing protocol is established where a diagnostic algorithm 

is established leaving the spectra from one sample out of the model and then testing the 

algorithm using the spectrum not included in constructing the algorithm. The advantage 

of this technique is that when the number of test spectra / more importantly sample 

number is low it allows the algorithm to be tested. 

 

Using test spectra population: In this thesis a test spectra group was created from 

separate samples and the algorithm tested using this separate group. The spectra were 

obtained from fresh frozen prostate biopsy and TURP samples. The effect of different 

sampling methods will be discussed in the next section. 
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2.4.6 Parametric Non-negative Least Squares Fitting  

This thesis will explore the application of parametric non negative-least squares fitting 

to describing and investigating possible biomarkers for prostate cancer. ‘Least squares 

fitting’ describes the technique of applying a best fit curve to a given number of points. 

This is performed on measured tissue spectra by: identifying the most likely dominant 

component constituents of the tissue; measuring the pure spectra of these components 

and then attempting to match the spectra in various combinations to the tissue spectra. 

The aim is to get a perfect fit with no residual. Residual describes the offset of the fitted 

curve from the actual spectra. This will be discussed later in this thesis. 
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“ What we anticipate seldom occurs; what we least expect generally happens. ” 

Benjamin Disraeli 1804 - 1881 

3 Results 

 

This chapter describes the analysis of the spectra recorded on the FTIR spotlight 

system. The sub-sections deal with progressive investigation of the different prostate 

specimens under investigation. 
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3.1 Preliminary Study of Prostate Tissue from 

TURP 

The purpose of this study was to determine whether FTIR image mapping could 

differentiate between benign and malignant prostate pathology. Specific areas of known 

pathology selected in concordance with the pathologists’ observations within fresh 

frozen prostate chippings were analysed by FTIR. Figure 3.1 overleaf illustrates the 

process of how FTIR images were obtained from each sample. 

 

TURP chips were obtained from fifty patients, of which 27 patient samples were 

suitable for FTIR analysis.  The sections were imaged in transmittance mode with a 

pixel size of 6.25μm. 203,629 spectra were obtained from the 27 samples. Total scan 

time 2327 minutes.  Selected spectra from histologically classified benign and 

malignant areas of epithelial and stromal tissue were then taken from PCA score maps. 

 

 Benign prostate tissue Malignant prostate tissue 
Number of patients 23 4 
Number of samples 23 4 
Number of spectra 7141 5168 

 

Table 3.1 Breakdown of samples measured by FTIR
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Figure 3.1 The process by 
which FTIR images of areas of 
interest are obtained 
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 Unstained corresponding section 

 

 FTIR pseudocolour image map of area of interest 

H & E section from TURP chip 



 

Although specific region selection was performed there was variability between the 

spectra collected, shown in figure 3.2. Part of this variability was expected because of 

differences between the pathology analysed, however a proportion of the variability 

results from the mapping process. There will be gaps between cells and the tissue in 

addition to external potential contaminants. This does not affect the majority of the 

spectra or the ability of the spectra to be used to discriminate between pathologies. It is 

possible to remove the spectra of concern when composing the model by a process of 

normalisation to exclude the spectra at extremes. 

3.1.1 TURP Spectral Data 

Figure 3.2 Total selected spectra from benign and malignant pathologies 

Figure 3.3 Normalised spectra from benign and malignant pathologies 
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Absorbance 

Absorbance 

Wavenumber (cm-1) 

Wavenumber (cm-1) 

 



Figure 3.3 illustrates the normalised spectral data. The data has been processed by 

removing the minimum value from all the spectra, thus making all spectra positive and 

using the amide region to ensure all the relevant spectra have been kept. The mean 

spectra from each pathology group was also calculated, and is shown in Figure 3.4. 

 

 

Figure 3.4 Mean spectra from benign (BPH) and malignant (CaP) pathologies 

 

3.1.2 Analysis of Peak Absorbance Ratios 

Although at first glance benign and malignant mean spectra appear identical in shape, 

for example similar peaks at 1456cm-1, 1550cm-1 and 1660cm-1, closer inspection 

reveals subtle differences. An extra peak in benign tissue at 1634cm-1, a less prominent 

peak at 1403 in benign tissue and an extra peak in malignant tissue at 1317cm-1is 

observed. Table 3.2 illustrates the potential biochemical differences between the 

pathologies on the basis of known peak assignments. 
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Biomolecule 

 
Bond Vibration Wavenumber 

(cm-1) 
References 

Amide I 
(random coil ~) 

H bonded amide / 
peptide 
groups 

1652-1695 
(α-helix ~1655) 
(β-sheet ~1637) 

Neviliappan et al 20021 
Beleites et al 20052 
Erukhimovitch et al 

20053 
Jackson et al 19954 
Diem et al 20005 

Proteins 
 
 

CH3 (methyl) 
CH2 (methylene) 

1400 
1450 

Neviliappan et al 20021 
Sule-Suso et al 20056 

Schultz et al 19967 
Carbohydrates 
(e.g. glycogen) 

 

C-O stretch 
C-OH bend 

C-OH stretch 
 

1200-900 
1025 
1047 
1085 
1155 

(1000-1190) 

Neviliappan et al 20021 
Erukhimovitch et al 

20053 
Lasch et al 20028,9 

 

Table 3.2 Referenced known infrared peak assignments corresponding to mean 

spectra differences between pathology groups 

 

3.1.3 Multivariate Analysis 

Multivariate analysis in the form of PCA fed linear discriminant analysis was applied to 

the spectral dataset as discussed in section 2.4. For each FTIR map analysed, ten 

principal components were calculated. The loads and scores were observed; see 

example in figure 3.5. The loads, which describe the variance from the mean of the 

dataset, reflect changes in molecular concentration of the substance. If significant 

differences in concentration are present, the loads may actually represent the spectrum 

of the substance which has changed. The score maps, which reduce the data needed to 

be processed, are a good representation of the tissue under analysis. 

 

 

 115



 116 

          

PC Loads 

 

White light image 
Figure 3.5 – PC scores 
and loads for a single 
prostate section analysis

PC Score maps  
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Linear discriminant analysis uses a linear discriminant function to maximise the 

distance between groups but minimise the distance between group members. The 

histogram in figure 3.6 below illustrates the degree of separation between benign and 

malignant pathologies achieved by PCA linear discriminant analysis. 

 

 

 

 

 

 

 

Number of spectra 

Linear Discriminant Analysis 

CaP 

BPH 

The predicted performance of the two group model created by the included spectra 

can also be demonstrated in tabular form (table 3.3).  The sensitivity and specificity of 

the algorithm may be determined from this. The sensitivity is the number of spectra 

from the pathological group correctly predicted to be in the right group (true 

positives). The specificity of the group is the number of spectra correctly identified as 

not belonging to the group (true negatives). The two group model sensitivity was 97% 

and the specificity was 90%. 

 

Figure 3.6 Histogram illustrating separation achieved between benign and 

malignant tissue with PCA fed Linear Discriminate Analysis 

 



 
  

FTIR Algorithm-predicted diagnosis (number of spectra) 
 

  
Benign 

 

 
Malignant 

 
Benign 

 

 
6909 

 
232 

 
 

Histological 
Diagnosis 

(number of 
spectra) 

  
Malignant 

 
499 

 

 
4669 

 

Table 3.3 Results achieved by two group algorithm: benign versus malignant 

tissue 

 

3.1.4 Expansion of the Diagnostic Algorithm Groups 

The pathology groupings for the primary analysis were benign and malignant tissue 

only, based on the rationale that the pathologies were clear and that the individual 

patient sample number was relatively low. Once the results discussed above were 

realised, the concept of more in depth analysis of tissues was explored. Sub-

classification of benign prostate tissue into epithelial tissue, ductal tissue and stroma 

in benign tissue was investigated. Sub-classification of malignant prostate tissue into 

adenocarcinoma (glandular and ductal areas) and cancerous stroma (surrounding 

cancer cells) was investigated. The tables which follow summarise the models 

performance. The key finding from a pathology perspective was the stromal analysis 

(tables 3.4 and 3.5); usually pathologists are unable to gain a significant amount of 

information from prostate stromal tissue, however PCA fed linear discriminant 

analysis elicits a clear distinction between stromal tissue related to benign tissue and 

stromal tissue related to malignant tissue. 
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Algorithm-predicted diagnosis (number of spectra) 

 
 Benign Stroma Malignant 

Stroma 
Total No 
Spectra 

Benign Stroma 
 

1500 1 1501 

 
Histological 
Diagnosis 

(number of 
spectra) Malignant 

Stroma 
4 679 683 

Sensitivity = 99.93; Specificity = 99.41 

Table 3.4 Results achieved by two group algorithm: benign versus malignant 

stroma 

 

  
FTIR Algorithm-predicted diagnosis (number of spectra) 

 
 BPH Benign 

stroma 
CAP Malignant 

stroma 
BPH 

 
3072 770 32 119 

Benign 
stroma 

194 1239 0 68 

CaP 
 

133 3 787 139 

 
 
 

Histological 
Diagnosis 

(number of 
spectra) 

Malignant 
stroma 

22 54 10 597 

 

Table 3.5 Results achieved by four group algorithm 

 

In the four group model, percentages of spectra allocated correctly for BPH, benign 

stroma, CaP and malignant stroma were 76.93%, 82.55%, 74.11% and 87.41% 

respectively (see table 3.5).  
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FTIR Algorithm-predicted diagnosis (number of spectra) 

 
 Benign 

Ductal 
BPH Benign 

Stroma 
CAP Malignant 

Ductal 
Malignant 
Stroma 

Benign 
Ductal 

1385 142 2 16 0 1 

BPH 
 

465 2726 617 10 75 100 

Benign 
Stroma 

79 202 1166 0 1 53 

CaP 
 

18 94 0 765 55 130 

Malignant 
Ductal 

12 22 6 5 254 67 

 
 
 
 
Histological 
Diagnosis 
(number of 
spectra) 

Malignant 
Stroma 

0 38 29 9 0 607 

 

Table 3.6 Results achieved by six group algorithm 

 

In the six group model, percentages of spectra allocated correctly for Benign ductal 

tissue, BPH, benign stroma, CaP, malignant ductal tissue and malignant stroma were 

89.59%, 68.27%, 77.68%, 72.03%, 69.40% and 88.87% respectively (see table 3.6).  
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3.1.5 Cross Validation of Diagnostic Algorithms  

‘Leave one sample out’ cross validation was used to evaluate the diagnostic 

algorithm. The testing protocol removed all the spectra of one sample from the 

diagnostic algorithm and used the removed spectra to test the algorithm. The process 

was repeated for all samples. This method is rigorous because the test spectra are not 

included in the constructed diagnostic algorithm. It is slightly less scientifically robust 

than evaluating the diagnostic algorithm with a large test cohort of new samples, 

however this method of analysis enables algorithm testing when the sample numbers 

are relatively low. The result of cross validation for benign versus malignant tissue 

spectra is illustrated in the table 3.7 below:  

  
FTIR algorithm-predicted diagnosis (number of spectra) 

 
 Benign Malignant Total No 

Spectra 
Benign 

 
3822 198 4020 

Malignant 
 

292 2362 2654 

 
 

Histological 
Diagnosis 

(number of 
spectra) 

Total no. of 
Spectra 

4114 2560 6674 

Sensitivity = 95%; Specificity = 89% 

Table 3.7 Cross validated results for two group algorithm benign versus 

malignant tissue spectra 

 

3.1.6 Commentary on Results from Preliminary TURP Study 

This preliminary study demonstrated that FTIR was able to interrogate prostate tissue 

and by analysis of FTIR spectra it was possible to discriminate between benign and 

malignant prostate pathology. The potential of FTIR to obtain useful biochemical 

information from all tissue under investigation including areas not normally utilised 

by the pathologist was also realised.  
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The limitations of the technique and the study were also recognised:- 

• Small sample number 

• The potential confounding effect of diathermy on TURP tissue biochemistry 

• The lack of a study control to account for differences between samples 

• How to determine true biochemical changes within samples 

• FTIR analysis had been performed only on fresh frozen tissue 

• The considerable time  required to FTIR map even small samples  

 

These thoughts stimulated the progression of the study to use FTIR to analyse radical 

prostatectomy sections in their entirety to address the aforementioned issues. 
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3.2 Study of Prostate Tissue from Radical 

Prostatectomy 

The purpose of the studies which follow in this section of the thesis were to evaluate 

the clinical potential of FTIR as a pathology classification tool by performing detailed 

analysis of radical prostatectomy specimens. The concept of point mapping was 

explored and related to formal FTIR mapping; the ability of FTIR to discriminate 

between pathologies within prostate specimens and between different prostate 

specimens was examined. The sections were able to act as their own controls in 

pathology studies as each contained multiple pathologies. Prostate sections were 

analysed in paraffinated and deparaffinated forms to examine whether spectral 

information was lost in the deparaffination process and inform the potential clinical 

application of the technique. The reproducibility of measurements was also assessed. 

Prostatic Intraepithelial Neoplasia was also interrogated by FTIR and its spectra 

analysed for the first time in such tissue studies. 

  

3.2.1 Point Map Analysis of Radical Prostatectomy Sections 

Initially, five radical prostatectomy sections were analysed in their entirety using the 

point map technique in both their paraffinated and deparaffinated forms. Table 3.8 

describes the data collected from each sample. Figure 3.7 illustrates the point mapping 

process. The step size interval (the distance between each point measurement) was 

calculated to allow measurement of equal sections of the prostate, each within the 

eight hour time constraint of effective detector function after filling with liquid 

nitrogen. Areas were measured using the microscope ruler. Spectra were obtained in 

point mode, transmission, spectral resolution 4cm-1, 16 co-scans, aperture size 100μm 
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x 100μm and wavelength range 4000-720cm-1
. Background scans were taken prior to 

each measurement. 

 

Radical 
prostatectomy 

specimen 

Step size 
interval 

(microns) 

Number of 
composite 
sections 

Total 
section 

dimensions 
x:y (mm) 

Total 
number of 

spectra 
collected 

Pathologies 
present 

1 500 3 42:25.5 4350 BPH, 
Prostatitis, 

PIN, 
Gleason 

3+4=7 CAP
2 700 4 45.5:32.2 3243 BPH, 

Gleason 
4+4=8 CAP

3 700 4 56:35 4074 Benign 
tissue, 

Gleason 
3+3=6 CAP

4 500 5 42:40 7209 PIN, 
Gleason 

4+3=7 CAP
5 600 4 47.4:42 5893 BPH, 

Gleason 
3+4=7 CAP

 

Table 3.8 Breakdown of data collected from prostate sections 
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Radical 
prostatectomy 
specimen 

Urethral catheter, 
left in situ post 
operation to 
orientate specimen 

Radical Prostatectomy Specimen 1
 

 

 

 

 

 

 

Figure 3.7 The point mapping process 

Corresponding unstained 10 micron 
section for FTIR analysis, crosses on grid 
illustrate where spectra were taken from 

Transverse H&E stained 10 micron 
section, after pathological analysis 

Prostatic calculi and 
surrounding prostatitis 

BPH 

PIN Urethra Prostate 
Cancer 
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Figure 3.8 Region selection in prostatectomy section one from pseudocolour PCA 
score map 

 

3.2.2 Radical Prostatectomy Five Section Specimen Spectral Analysis 

The point maps were zipped together using Matlab® software and converted into 

pseudocolour PCA score maps representative of the sections under analysis in a 

similar manner to that described in section 3.1. Region selection of specific spectra 

from identified pathologies was then performed. Figure 3.8 illustrates the region 

selection process in the large prostate sections. The spectra then underwent 

normalisation and mean spectra for the pathologies under analysis were produced for 

the individual sections alone and the cohort of five sections in both paraffinated and 

deparaffinated form. 

 

Using prostate section four as an example, this section contained benign and 

malignant prostate tissue in addition to PIN, in clearly demarcated areas. The mean 

spectra of the pathologies from section four in paraffinated and deparaffinated forms 

are shown in figures 3.10 and 3.11 respectively. 
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The first important observation is that excellent spectra may be obtained from both 

paraffinated and deparaffinated prostate sections. The paraffin peak is evident at 

approximately 1460cm-1 in the paraffinated sections and not when the same section 

has been deparaffinated. Although the paraffin peak obscures the tissue peak at 1460 

it does not seem to interfere with or prevent interpretation of absorbance at other 

wavenumbers. The second finding was that the spectral morphology seemed more 

distinctive when prostate tissue was analysed in its paraffinated form. Similar changes 

in spectral morphology are evident between benign and malignant prostate tissue as 

determined in the analysis of fresh frozen TURP chippings (section 3.1). There are 

peak ratio differences between different prostate pathologies in the Amide I region. 

Benign tissue has an additional peak at 1440cm-1. At approximately 1440cm-1 CaP 

has a prominent distinctive peak which is less prominent in benign tissue. The mean 

spectra of PIN has similar morphology to CaP. These findings were mirrored in all 

sections.  
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Absorbance 

Wavenumber (cm-1) 

Figure 3.10 Mean spectra from pathologies in paraffinated section four 

 Figure 3.11 Mean spectra from pathologies in deparaffinated section four 

Absorbance 

Wavenumber (cm-1) 
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Having determined clear distinction between the spectra of pathologies in 

heterogeneous individual prostate sections, the pooled mean spectra for all samples 

were then examined. The deparaffinated dataset is used to illustrate this in figure 3.12, 

the paraffin and CaF2 spectra have not been included. The findings were almost 

identical to the individual section findings. 

 

Figure 3.12 Analysis of mean spectra from all pathology groups from five 

sections 

 
 
3.2.3 Multivariate Analysis of the Five Section Spectral Dataset 
 
Principle component fed linear discriminant analysis was performed on the selected 

spectra. The degree of separation achieved for benign, malignant prostate tissue and 

PIN is illustrated in figure 3.13. The sensitivities and specificities achieved by the 

three pathology group model are described in table 3.9. 
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Pathology Benign  Prostate Cancer PIN 
FTIR Sensitivity 
(%) 

82 85 80 

FTIR Specificity 
(%) 

87 84 96 

 
 

Table 3.9 Sensitivities and specificities of the three pathology group algorithm 
 

 

Figure 3.13 Scatter plot illustrating linear discriminant analysis of pathologies  
 

 
 
3.2.4 Evaluating Why Discrimination of Pathologies May Not Be Perfect 

Although the above model achieved reasonably good classification of the main 

pathologies, an obvious critique is why is the classification not perfect? One 

hypothesis may be that individuals’ prostate cancer might differ biochemically. This 

might be accounted for by differences in Gleason grade between individuals, however 

before this theory may be explored further it was necessary to ascertain whether 

differences between cancers exist within a specimen. Three of the nine radical 
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prostatectomy sections used in this thesis contained multifocal tumours, allocated 

with the same Gleason grade within the specimen. The mean spectra from each area 

were compared. Radical prostatectomy specimen six and seven are used to illustrate 

these results. 

 

 

Figure 3.14 Prostatectomy section six: H & E stained section with two areas of 

Gleason 3+4=7 prostate cancer 

 

Figure 3.15 PC score map of prostatectomy section six: Region selection of two 

areas of Gleason 3+4=7 prostate cancer (mapped from H & E stained section in 

Figure 3.14 above) 
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Absorbance 

 
Wavenumber (cm-1)

Figure 3.16 Mean spectra from two separate Gleason 3+4 areas in prostatectomy 

section six 
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Absorbance 

Wavenumber (cm-1) 

Figure 3.17 Mean spectra from two separate Gleason 3+3=6 areas in 

prostatectomy section seven 

 

Figures 3.16 and 3.17 show the mean spectra of two areas of prostate cancer, of the 

same Gleason grade, exhibiting different mean spectra, in prostatectomy sections six 

and seven. 

 

3.2.5 Cross Validation of Three Group Model 

‘Leave One Sample Out’ Cross Validation of the three group model was performed 

for deparaffinated radical prostatectomy sections one to five. The performance of the 

algorithm is shown below in table 3.10. The percentages predicted correct for Benign, 

Cancer and PIN pathologies were 77%, 88% and 91% respectively. The overall 

training performance of the model was 83.16%; the prediction performance was 

24.62%. 
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FTIR algorithm-predicted diagnosis (number of spectra) 

 
 Benign Cancer PIN Total 

number of 
spectra 

Benign 
 

366 76 36 478 

Cancer 
 

27 396 27 450 

PIN 
 

7 3 107 117 

 
 
 
 

Histological 
diagnosis 

(Number of 
spectra) 

Total 
number of 

spectra 

400 475 170 1045 

 

Table 3.10 Leave one sample out cross validation results for three group model in 

prostatectomy sections one to five 

 

Blind Test Group Validation of the three group model was then performed by 

projecting the data from radical prostatectomy specimens six to nine onto the above 

prostatectomy sections’ three group model, as a test group.  Findings are shown in 

table 3.11. The percentages predicted correct for Benign, Cancer and PIN pathologies 

were 28%, 13% and 91% respectively. 
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FTIR algorithm-predicted diagnosis (number of spectra) 
 

 Benign Cancer PIN Total 
number of 

spectra 
Benign 

 
101 46 208 355 

Cancer 
 

40 44 245 329 

PIN 
 

2 1 32 35 

 
 
 
 

Histological 
diagnosis 

(number of 
spectra) 

Total 
number of 

spectra 

143 91 485 719 

 
Table 3.11 Blind test group validation of the three group model 

 
 
3.2.6 Commentary on Results from Point Map Analysis of Radical Prostatectomy 

Sections 

The results from point mapping of the specimens so far reinforce the hypothesis that 

FTIR may have a role as a potential histological classification tool. FTIR has 

differentiated between pathologies within the same specimen and in multiple 

specimens. It has been demonstrated that stain free biochemical imaging is possible of 

both paraffinated and deparaffinated specimens. Therefore practically this may have 

application as in practice it could remove the need for and time taken for processing 

steps. The spectra of PIN has been classified as an entity, and is similar in 

morphology to CaP, but more importantly is identifiable as a distinct pathology from 

benign and malignant tissue.  Point mapping, as a concept, allows a greater proportion 

of the tissue to be imaged and enables adequate spectral data collection of 

pathologies. The point mapping of entire sections has enabled the evaluation of 

heterogeneous tumours and their differences. The effect of TURP diathermy does not 
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appear to have a significant effect on prostate tissue biochemistry as the same spectral 

differences have been elicited in both TURP and Radical Prostatectomy tissue. 
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3.3 FTIR System Validation Experiments 

In clinical practice, point mapping of specimens would appear to be the ideal method 

to allow high throughput of samples with in depth image mapping reserved for 

specific areas of interest. The immediate concern regarding the point map technique is 

whether pathology would be missed by critical step size interval. In addition to this, 

knowledge with respect to the reproducibility of the technique is also important if 

FTIR is to have a clinical application. These issues were addressed in technique 

validation studies which are described in this section. 

 
 

3.3.1 Point Map Validation Studies  

The purpose of the studies in this section are to investigate the reproducibility of 

biochemical analysis achievable by the FTIR system; the effect of number of co-scans 

on the biochemical data obtained by FTIR; and finally evaluate the effect of step size 

on the detail of the biochemical data obtained by FTIR from prostate pathologies. 

Radical prostatectomy sections six and eight were used for this analysis. 

 

3.3.2 Reproducibility of the System 

These studies were performed on section eight which contained three pathologies: 

Cancer, Benign tissue and PIN. The aim was to establish whether the FTIR system 

analysis of pathologies were reproducible over a three day period. Each pathology 

was examined three times within a 24 hour period and subsequently at 24 hour 

intervals over a three day period. The specimen under analysis was not removed or 

repositioned between measurements. For each pathology, twenty targeted point 

spectra (see figure 2.8) were taken at each measurement and measurements were 

repeated three times each time the pathology was examined. If t = time of first 
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measurement, the time of measurements in hours were: (t), (t+1), (t+12), (t+24), 

(t+48), (t+72). The software settings were set to: point collection mode, transmission 

mode, aperture 30μm x 30μm, 1cm-1 spectral resolution, 75 number of co-scans / 128 

number of co-scans. The mean spectra obtained at (t) and (t+12) for PIN is illustrated 

in figure 3.18, the mean spectra obtained at (t+24), (t+48) and (t+72) for benign tissue 

are illustrated in figure 3.19. 

 

Absorbance 

Wavenumber (cm-1) 

Figure 3.18 Mean point spectra obtained from PIN at t (dataset 1) and t+12 

(dataset 2) with the difference between the curves illustrated   
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Wavenumber (cm-1) 

Absorbance 

 
Figure 3.19 Mean point spectra obtained from benign tissue at t+24, t+48, 

t+72 
 
 
In keeping with the findings shown in figures 3.18 and 3.19, there was no 

significant variation in the spectra obtained from all pathologies in section eight 

by FTIR over a three day period. This is reassuring as it implies that not only is 

FTIR analysis reproducible but also that the biochemical information contained in 

preserved sections does not degrade over time. 

 

3.3.3 The Effect of Co-scan Number on Prostate Tissue Analysis 

Each time point spectra are taken, the spectra recorded is a mean of the number of 

co-scans performed. Co-scans in infra-red spectroscopy refer to the co-adding of 

scans, this improves the signal to noise ratio. This is important because increasing 
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co-scan number achieves a higher signal to noise ratio but correlates with an 

increase in time taken for sample analysis. Therefore in these studies the co-scan 

number was varied but the aperture maintained at 30μm x 30μm and the spectral 

resolution set at 1cm-1. Targeted point spectra were taken from pathologies in 

section six which contained two pathologies; benign and malignant prostate tissue. 

Each measurement consisted of 20 spectra; measurements were repeated three 

times at each co-scan number setting. Both pathologies were evaluated at co-scan 

numbers 128, 75, 50, 25, 10, 5, 2 and 1. Figures 3.20 and 3.21 demonstrate the 

mean spectra obtained from each pathology at each co-scan setting. 

 

Absorbance 

Wavenumber (cm-1) 

 

Figure 3.20 Mean spectra obtained for benign tissue at labelled co-scan 

number 
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Absorbance 

Wavenumber (cm-1) 

Figure 3.21 Mean spectra obtained for prostate cancer tissue at labelled co-

scan number 

Although all co-scan numbers yielded good spectra between wavenumbers 2000- 

1000 cm-1, the lowest co-scan number to achieve good quality spectra without noise 

between 2000 and 720 cm-1 was 25. There was uniformity in this finding in both 

pathologies. 

 

3.3.4 The Effect of Step Size in the Evaluation of Prostate Pathologies 

The studies prior to this section (section 3.3.3) describe the evaluation of the optimum 

FTIR software settings for analysis of prostate pathology. This section of the thesis 

addresses the potential limitation of point mapping in FTIR tissue analysis – step size. 

The concern regarding step size for evaluating prostate pathologies is chiefly the risk 

of missing valuable biochemical information between the steps during tissue analysis. 

This concept is illustrated in figures 3.22 and 3.23. 
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Sample 
30µm aperture 

Figure 3.22 Point mapping of fictitious sample with narrow steps 

 

 
Sample 
30µm aperture 

Figure 3.23 Point mapping of a fictitious sample with wide steps 

 

The aim of this step size study was to investigate the effect of increasing step size on 

the quality of spectral information obtained from individual pathologies. Radical 

prostatectomy specimen Nine, which contained three pathologies, was evaluated in 

this analysis using the optimum FTIR software settings determined in the previous 

studies: spectral resolution 1cm-1, number of co-scans 25, aperture 30μm x 30μm. 
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Step sizes ranging from 25μm to 500μm were examined. Benign prostatic hyperplasia 

was the pathology interrogated. Figure 3.24 shows the sample under analysis and 

figures 3.25, 3.26 and 3.27 illustrate the results.   

 

         

Figure 3.24 White light image of central part of prostate section nine (A) and 

close up image of BPH and selected area for point mapping (B) 
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Figure 3.25 Plot of mean spectra from all point maps of BPH at different spatial 

resolutions 
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Figure 3.26 PCA score maps of 
BPH measured in step size 

study 
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Figure 3.27 PCA loads for 
BPH measured in step size 

study 



The mean spectra obtained for individual pathologies during this analysis demonstrate 

that increasing step size does not have a significant detrimental effect on the mean 

spectra required to differentiate prostate pathologies. However close examination of 

the principal component loads and scores clearly illustrate that important biochemical 

information and detail is lost with increasing step size. This detail may yield 

important information regarding borders of pathology. Thus for the in depth analysis 

of pathologies or differentiation / region selection of subtleties, a smaller step size is 

mandatory. 

3.3.5 Commentary on point map technique validation studies 

Knowledge of the optimum FTIR parameters for tissue analysis is crucial for the 

development of the technique as a relevant clinical tool. This is particularly important 

because the goal of gold standard tissue analysis is to collect the necessary amount of 

information to diagnose and assess severity of pathology and thus guide patient 

management. FTIR clearly reproducibly interrogates more information than visual 

morphological analysis alone. The biochemical information attained by FTIR may at 

the minimum complement histological analysis but the potential to both automate and 

yield greater objective information regarding tissue under analysis is attractive. As a 

research tool it may facilitate a rapid way to understand more about prostate cancer 

biopotential as archival prostate tissue may be analysed with high sensitivity and 

specificity. Practically, for clinical applications a compromise regarding resolution 

and time efficiency may be sought. A thorough understanding of the biochemical 

information obtained by FTIR from prostate tissue would also be necessary before 

clinicians would consider adoption of the technique. The best way of obtaining 

detailed biochemical information may be by using FTIR in image mapping mode, to 

obtain fine detail about areas of interest.  This is shown in Figures 3.28 and 3.29, 
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which illustrate specific targeting of image mapping at pathologies within the radical 

prostatectomy specimens. 

 

Figure 3.28 Image map of area of PIN from prostatectomy section one; with 

mean spectra overlaid 

 

 

Figure 3.29 Image map of an area of prostate cancer from paraffinated 

prostatectomy section two; with mean spectra overlaid

 147



 

3.4 Biochemical Analysis of Radical 

Prostatectomy Spectra 

This section describes the biochemical interpretations of spectra obtained from the 

radical prostatectomy studies, and attempts to apply a novel method of biochemical 

fitting of pure biochemical standards, using non-negative least squares analysis to 

describe the differences between pathologies.   

 

3.4.1 Parametric Non-Negative Least Squares Biochemical Fitting 

Discrimination between prostate pathologies has predominantly been on the basis of 

spectral characteristics and hypothesised underlying structural differences between 

pathologies to date. This section describes the experience of experimenting with a 

novel approach to achieving biochemical characterisation of prostate pathologies. The 

technique, in simple terms, involves combining the spectra from referenced pure 

biochemical standards to form a best fit curve, which best represents the spectra of the 

tissue pathology under analysis. The standards were measured locally and included 

constituents which were thought to best represent dominant components of prostate 

tissue. These constituents were deduced from the known biochemical reference peak 

assignments and accepted knowledge about cell constituents (i.e. proteins, amino 

acids, carbohydrates, lipids and nucleic acids). The component constituents were then 

fitted in various combinations against the mean spectra of each prostate pathology. 

The term residual is used in this study to define the difference between the 

constructed biochemical model spectra and the tissue pathology spectra. The 

concentrations of constituents (c) within the sample were estimated using parametric 
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non-negative least squares using the equation (1), where E is the matrix of the 

reference spectra and A is the measured composite spectra10: 

c =  (ETE)-1ETA  (1) 

The residuals visually demonstrate the quality of the biochemical model. In addition a 

process called orthogonality was performed to ensure that component spectra were 

not too similar. This was to avoid misjudging the component estimates. Orthogonality 

was calculated using the equation (2): 

a ● b = │a│ │b│ cosθ (2) 

A resulting dot product of 1 means no orthogonality and so perfect correlation, while 

a dot product of 0 represents no correlation and perfect orthogonality. In these 

experiments a threshold dot product of 0.95 was used to exclude components which 

were too similar to each other. Non-negative least squares fitting was applied to the 

radical prostatectomy spectral dataset described in section 3.2.1.2 from radical 

prostatectomy specimens one to five. In total, 1078 selected spectra were included 

from Benign, Malignant and PIN pathologies. The biochemical fitting was performed 

in Matlab® using programs written by Dr Martin Isabelle and Dr Nick Stone. Table 

3.12 illustrates the FTIR prediction of prostate pathology against histopathology; the 

sensitivity and specificity achieved by the three group algorithm was previously 

described in table 3.9. 
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FTIR algorithm-predicted diagnosis (number of spectra) 
 Benign Prostate 

cancer 
PIN Total 

Benign 
 

400 64 26 490 

Prostate 
cancer 

60 396 10 466 

PIN 
 

18 7 97 122 

 
 

Histological 
Diagnosis 

(number of 
spectra) 

Total 
 

478 467 133 1078 

  

Table 3.12 FTIR prostate pathology prediction against histopathology 

 
Radical prostatectomy section one is used to illustrate the technique in practice below. 

Figure 3.24 illustrates the composite spectra of the pure biochemical composite 

spectra, and figure 3.25 the mean spectra of the pathologies. 

 

Figure 3.30 The composite spectra of dominant biochemical constituents 
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Figure 3.31 Plot of normalised mean spectra for each pathology type 
 
 

Biochemical fitting was then applied to the individual pathologies’ mean spectra and 

the results are illustrated in figures 3.32, 3.33 and 3.34. 

 

Figure 3.32 Sub-plot of residual versus mean spectra for each pathology after 

non-negative least squares fitting 
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Figure 3.33 Bar chart illustrating estimated relative concentration between 

pathologies as determined by non-negative least squares fitting 

 
 

 
Figure 3.34 3D-Barchart illustrating orthogonality between individual reference 

constituents  
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The reference spectral dataset was obtained by measuring proteins (histone, collagen I 

and collagen IV), lipids (palmitic acid and stearic acid), carbohydrates (glucose), 

carboxylic acid (lactate) and nucleic acid (RNA). The orthogonality illustrated in 

figure 3.34 was used to ensure that the component spectra were not too similar. 

Monitoring the residuals enabled the best possible biochemical fit to be achieved 

which is illustrated in figure 3.32. An 80 % fit was achieved using the component 

constituent spectra.. The differences in biochemical concentrations between the 

pathologies are summarised in table 3.13. The relationships are described, using 

arrows, as the latter against the former. 

 
 

Biochemical 
constituent 

concentration 

Benign vs. PIN PIN vs. Cancer Benign vs. Cancer 

Histone ▼ ▲ ▲ 

Collagen I ▲ ▼ ▼ 

Collagen IV ▲ ▼  

Palmitic acid  ▼ ▼ 

Stearic acid ▼   

Glucose ▼ ▲ ▲ 

Lactate ▲ ▼ ▼ 

RNA  ▲ ▲ 

 

Table 3.13 Relative differences in biochemical concentration between pathologies 
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Figure 3.35 Bar chart illustrating estimated benign relative biochemical 

concentrations in prostatectomy sections one to five 
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Figure 3.36 Bar chart illustrating estimated cancer relative biochemical 
concentrations in prostatectomy sections one to five 
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Section 

 
Figure 3.37 Bar chart illustrating estimated PIN relative biochemical 

concentrations in prostatectomy sections one and four 
 

3.4.2 Commentary on non-negative least squares fitting study 

The non-negative least squares fitting analysis of prostatectomy section one shared 

some similar features with biochemical relationships in the other samples however the 

concentration ratio results were not reproduced in all of the sections. The hypothesis 

that increases in nucleic acids and DNA binding protein (histone) should be seen in 

malignant tissue due to an increase in nuclear to cytoplasmic ratio / mitotic activity 

and the hypothesis of higher glycolytic rates and anaerobic metabolism in tumour 

cells accounting for the changes in glucose and lactate in cancerous cells has not been 

proven in this analysis.  The black figures 3.35, 3.36 and 3.37 show the variance in 

relative biochemical concentrations between the prostatectomy sections for each 

individual pathology. Several factors may account for the lack of consistency of 

result: the cells of the tissue are likely to be in different stages of their cycle when 

analysed, and the tissue samples have different Gleason grades, which may mean that 
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in line with morphology the biochemistry of the tissues also changes. The major 

limitation of the non-negative least squares estimation method is that if one of the 

gross constituents in the model is unknown, the model may lead to biased estimations. 

In addition to this, the pure biochemical standards are not all from human sources and 

neither are they in the true cellular microenvironment when analysed, therefore it may 

be unsurprising that more conclusive findings have not been made. Future work may 

address this technique.  
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“ You see things and you say ‘why?’, I dream things that never were; and I say 

‘Why not?’ ”  

George Bernard Shaw 1856-1950 

4 Discussion 

 

4.1 Pilot Study Findings 

4.1.1 Summary of Pilot Study Findings 

Stain free FTIR imaging of snap frozen prostate tissue obtained at TURP was 

performed. Fourier Transform Infra Red spectra collected in imaging mode 

discriminated between benign and malignant prostate pathologies with high 

sensitivities and specificities. FTIR imaging enabled the fine detail of prostate 

histology to be interrogated and promising concordance was achieved between the 

histological diagnosis and FTIR algorithm especially in the four and six group 

algorithms which included ductal, glandular and stromal tissue. The differentiation 

between spectra from stroma associated with either benign or malignant tissue was 

particularly interesting because stroma is not normally utilised by the pathologist and 

this highlighted what FTIR could potentially add to conventional histology – total 

tissue analysis – this merits further investigation. Empirical analysis of the peak 

intensity ratios alone was not able to accurately differentiate between benign and 

malignant pathologies. Sophisticated multivariate analysis was used to achieve clear 

differentiation between pathologies and construct diagnostic algorithms. Cross 

validation of the two group algorithm using leave one sample out methodology 

achieved good results.  
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4.1.2 Pilot Study in the Context of the Literature  

The studies in this thesis were conceived, planned and performed between 2005 and 

2008. Prior to planning the studies, limited literature regarding the application of 

FTIR to prostate tissue analysis was available.  

Gazi et al had performed a pilot study investigating the potential of FTIR to 

differentiate between benign and malignant prostate epithelial cells in tissue obtained 

at TURP and cell lines1. The study contained small numbers of prostate samples (five) 

and used approximately four highly selected spectra per pathology upon which to base 

the conclusion that FTIR had the potential to rapidly discriminate between prostate 

pathologies including Gleason grade. Table 4.1 illustrates key differences between the 

Gazi study and the pilot study in this thesis. 

 

Study Gazi et al Aning 
Sample number (TURP 

chips) 
3 prostate cancer, 2 benign 4 prostate cancer, 23 

benign 
Primary tissue 

preparation 
Paraffin wax embedded Snap frozen 

FTIR imaging settings Bio-Rad FTS 6000 
spectrometer. 

Transmission mode. 
Number of co-scans 513, 
wavenumber range 750-

4000cm-1, spectral 
resolution 16 cm-1 

Perkin Elmer Spotlight 
300 spectrometer. 

Transmission mode. 
Number of co-scans 16, 
wavenumber range 720-

4000cm-1, spectral 
resolution 8 cm-1 

Number of spectra <100 used for analysis 12,309 used for analysis 
Peaks / peak ratios 

differentiating pathology 
1030cm-1/1080cm-1 1400cm-1/1450cm-1 

 

Table 4.1 The differences between the Gazi and Aning pilot studies 

 

Gazi’s pilot study was significant as its publication in the Journal of Pathology alerted 

clinicians and scientists to FTIR’s potential application as a diagnostic clinical tool 

because of its ability to discriminate between prostate pathologies. The pilot study in 
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this thesis was designed to establish primarily whether Gazi’s results were 

reproducible. Larger sample numbers and numbers of selected spectra were included; 

the sampling protocol was extended to include stromal, ductal and glandular areas 

within the tissue under interrogation. The results obtained in the pilot study in this 

thesis did not support the 1030cm-1/1080cm-1 peak ratio as the key discriminating 

factor between benign and malignant pathologies. This may have been because the 

sample areas in the study were more diverse, or alternatively the peak ratio difference 

may be accounted for by differences in cell cycle position at the time of analysis. The 

peak ratio 1400cm-1 / 1450cm-1 differed between pathologies, with the ratio closer to 

1.0 in malignant tissue as opposed to approximately 0.6 in benign tissue. This region 

corresponds to proteins and lipids (cholesterol) and may represent higher protein 

concentrations in cancerous cells with enlarged prominent nuclei. It has also been 

suggested that the amount of cholesterol in malignant tissues is lower2,3. 

 

Another explanation for the difference in spectra morphology between studies may be 

the fact that fresh snap frozen tissue rather than formalin fixed, archival de-

paraffinated tissue was evaluated. The effect of archiving or formalin cross-linkage 

with proteins in prostate tissue on FTIR spectra has not been previously reported, 

although its effect in prostate sub-cellular studies is acknowledged4. Despite the 

differences in spectral morphology, using multivariate analysis both studies 

demonstrated that FTIR has the potential to discriminate between benign and 

malignant prostate pathology. No attempt was made in the study to sub-classify 

spectra by Gleason grade, as the relative number of cancer samples within the cohort 

was small. This was a limitation of prospective prostate sample collection at TURP at 

which the yield of malignant tissue is expected to be low. Difficulties were 
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experienced in the sectioning of small fresh frozen prostate samples, which could be 

compared with corresponding H&E section under histological analysis. The only 

conclusion of the Gazi study which was not supported was with regard to speed of 

analysis; imaging of relatively small areas took a considerable amount of time even 

with a comparatively low co-scan number. 

 

Fernandez et al published work in April 2005 regarding FTIR imaging of 

microarrays, coupled with statistical pattern recognition techniques to differentiate 

benign from malignant prostate epithelium5. They proposed that by using this 

methodology, high throughput and fast classification, learning algorithms facilitated 

the measurement of all cell types including the least prevalent (for example nerves 

and lymphocytes). Each microarray contained 86 samples with up to eight samples 

each from 16 patients. In total the authors recorded over 9.5 million spectra from over 

870 samples and reported a subset of approximately 3 million spectra from 262 

samples. The paper quoted near perfect prostate pathology recognition accuracy. 

Whilst groundbreaking work, the results were almost too good; achieving over 95% 

classification accuracy in all but neural tissue. Fernandez et al acknowledged FTIR 

spectrometers may achieve high throughput and spatially resolved measurements but 

questioned how success in small studies would translate into practical clinical 

applications. if one was reliant on detecting significant biochemical changes in the 

form of spectral changes within small patient sets or by the examination of molecular 

moieties. Absence of suitable control samples has been cited as a limitation within 

previous FTIR studies. 
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The limitations of the pilot study were evident, as discussed in the commentary in the 

results section 3.1.6. However the promising pilot study findings merited further 

investigation of FTIR in tissue studies. The complex FTIR analysis proposed by 

Fernandez was not achievable within our laboratory and seemed to involve additional 

processing steps which FTIR as a technique intuitively was meant to avoid. 

Undoubtedly, the high throughput analysis of tissue microarrays, once validated, may 

represent the future in terms of evaluating large sample numbers in large phase trials 

however a thorough understanding of how FTIR may discriminate between 

pathologies is still necessary to judge its clinical niche and thus requires small scale 

tissue studies to continue. Prostate tissue is characteristically heterogeneous, therefore 

the FTIR prostate section studies were planned in the knowledge each section could 

act as its own intrinsic control.  
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4.2 FTIR Analysis of Prostatectomy Specimens 

4.2.1 Summary of the Results from FTIR Analysis of Radical Prostatectomy 

Sections 

FTIR analysis of nine radical prostatectomy sections in their entirety was performed. 

In knowledge of the constraints of image mapping in the pilot study, the concept of 

point mapping was explored. Formalin fixed prostate sections were interrogated in 

their paraffinated and deparaffinated forms. Interpretable spectra were obtained from 

both paraffinated tissue and deparaffinated tissue. The main pathologies present 

within the sections; benign tissue, prostate cancer and PIN were differentiated by both 

their spectra and multivariate analysis in paraffinated and deparaffinated 

corresponding sections. When the means of the total spectral data for all pathologies 

were examined, differentiation between pathologies was possible using the 1030cm-

1/1080cm-1 peak ratio proposed in Gazi’s pilot study1 however multivariate analysis 

was required to separate the pathologies more definitively. Superficially the three 

group model differentiated pathologies with reasonably good sensitivity and 

specificity. However when a diagnostic algorithm was constructed using the spectra 

from sections one to five and tested by leave one sample out validation, poor 

algorithm prediction was achieved. The model was then tested using a set of test 

spectra which had not been used to construct the model, and an even poorer 

performance of the diagnostic algorithm was achieved. Further investigation of the 

models poor performance was performed by re-analysing the individual section data. 

Sections which contained pathologist verified identical Gleason grade multifocal 

prostate tumours (without perineural invasion) were examined. It was evident from 

the spectra and multivariate analysis that although the pathologies may be of the same 

Gleason grade, their biochemical composition was different.  
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Technical validation studies of the FTIR microspectrometer were then performed 

using the pathology within the radical prostatectomy sections. The analysis of the 

spectrometer was reproducible over a three day period without the need to purge the 

atmosphere in the spectrometer with an inert gas. Optimum co-scan number and step 

size were also assessed. Reproducibility of FTIR analysis was confirmed the optimum 

settings will be utilised in future studies. 

 

Non-negative least squares fitting was applied to the spectral dataset to attempt to 

classify changes in biochemical concentrations between pathologies, the findings 

were interesting but not robust more work is required to develop this technique.   

  

4.2.2 Radical Prostatectomy Study Findings in the Context of the Literature 

As far as the author is aware to date, the studies detailed in this thesis are the first to 

describe the FTIR analysis of radical prostatectomy specimens in their entirety, to 

follow through the concept of and the application of point mapping in prostate 

specimen analysis and to utilise FTIR to evaluate intra and inter patient pathologies 

and thus allowing for an adequate control for every FTIR measurement. 

 

Radical prostatectomy specimens proved excellent specimens for FTIR prostate tissue 

analysis. The advantages observed in this study were: 

• Each specimen acted as its own control 

• Each specimen contained multiple pathologies for analysis 

• The pathologists found it easier to clearly identify significant pathologies at 

which to target FTIR analysis 
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• The pathologists commented that radical prostatectomy specimens facilitated 

accurate Gleason grade allocation especially compared to the other tissues 

examined within this study. 

 

The use of radical prostatectomy specimens provided a robust test of FTIR’s true 

ability to discriminate between prostate pathologies. Multivariate analysis 

demonstrated good separation of benign tissue, malignant tissue and PIN, however the 

performance of the diagnostic algorithm was poor especially when a test spectra set 

was projected on the model. The poor performance is likely to be due to multiple 

factors: the small sample number (n=9), contaminants, the point map technique 

missing vital biochemical signatures between steps and potential misclassification of 

spectra in the model. However from the findings in this study – confirmed by follow 

up FTIR image mapping of specific areas, a hypothesis that the poor classification 

achieved by the model is due to the true heterogeneity in the biochemistry of tissue 

pathologies under analysis would not be unfounded. This is illustrated by the 

observation of biochemical differences between seemingly identical Gleason pattern 

tumours in this study. Although the patient numbers within this study are small, this 

finding supports the clinical concern that Gleason grade has significant limitations 

and tumours of the same Gleason grade may behave differently. Further work is 

required to study this finding in depth.  

 

It is clear from the studies in this thesis that the challenges of achieving a universal 

FTIR classification model are significant. Studies focusing on forming diagnostic 

algorithms based on the flawed Gleason classification, including highly selected 

spectra from small prostate samples, may not have widespread clinical application if 
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to tissue outside of the prostate transitional zone6,7,8. The transitional zone has been 

demonstrated to express a different FTIR biochemical signature to other prostate 

zones9, and the tumours which arise there may be clinically different to those that 

arise in the peripheral zone. In addition to this the majority of clinically significant 

prostate cancers are not diagnosed at TURP. Therefore in light of the findings of this 

thesis, broadening the horizons of specimen analysis to include radical prostatectomy 

specimens for all researchers in this field may in fact further enhance the credibility of 

FTIR analysis and its potential for automation.  

 

FTIR imaging of tissue enables fine detail analysis of prostate tissue. However it is 

time consuming and produces a huge amount of data which must be processed prior to 

analysis.  Practically, to achieve automation with current technology, a balance may 

have to be struck between the resolution of the technique i.e. sufficient to enable 

identification of pathology and analysis time. Point mapping allows larger sample 

areas to be examined in a reasonable period of time. The concern regarding point 

mapping is missing significant pathology, however it is envisaged by the author that 

image mapping of specific areas would complement abnormal areas identified using 

point mapping. The validation experiments enable the optimum characteristics to be 

used in future FTIR analysis. The limitation of point map techniques are 

acknowledged though10. 
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4.3 Comparison of Study Results with Other 

Spectroscopic Techniques 

Raman spectroscopy has achieved 89% accuracy, using leave one sample out 

validation, in the classification of BPH, Gleason <7, Gleason 7 and Gleason>7 when 

targeted at specific areas of pathology11. The diagnostic model in this study was 

constructed from 27 tissue samples and 450 spectra were recorded in total. The issue 

of control spectra has not been addressed in Raman studies of the prostate. The 

limitations of utilising Gleason grade, an imperfect standard, for the differentiation of 

prostate pathology has not been addressed. The potential for automation of the 

technique in the form of large section point map analysis has not to the authors 

knowledge been explored. Currently however it is not possible to measure good 

quality Raman spectra from paraffin embedded tissue12. This technology may 

compete in the future with FTIR as a pathological tool. OCT has yet to be applied to 

histological analysis of prostate tissue.  
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4.4 Conclusions 

Prostate cancer diagnostic strategies must evolve. The stimulus for this is not only 

novel technologies but also a drive from department of health policy makers to 

achieve early diagnosis and tailored patient management strategies in all cancers13. 

 

FTIR microspectroscopy has demonstrated in the studies in this thesis that it is a 

powerful bioanalytical technique which when combined with multivariate analysis 

has the ability to discriminate between prostate pathologies in snap frozen, 

paraffinated and deparaffinated tissue. The validation studies in this thesis have 

established that FTIR analysis is robust and versatile. Radical prostatectomy sections 

have been identified as a potential gold standard specimen for FTIR prostate tissue 

analysis.   
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4.5 Summary of Contribution to Knowledge  

 

• The studies in this thesis have demonstrated that FTIR is able to accurately 

identify benign, premalignant and malignant pathology in unstained snap 

frozen, parrifinated and deparrifinated prostate tissue.  

 

• The studies in this thesis have validated the results of previous pilot FTIR 

prostate tissue studies1 and in addition demonstrated that multivariate analysis 

refines the discrimination achieved between pathologies. 

 

• The studies in this thesis were the first to evaluate radical prostatectomy 

sections in their entirety and highlight the importance of having an appropriate 

control in order to truly validate FTIR studies. 

 

• The studies in this thesis were the first to analyse PIN and identify differences 

in the stroma surrounding benign and malignant glandular tissue. 

 

• The studies in this thesis were the first to introduce and investigate the concept 

of utilising non-negative least squares biochemical fitting to explain 

hypothesised FTIR structural differences between prostate pathologies.           
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4.6 Future Prospects 

The studies within this thesis and those performed by other groups have illustrated the 

potential for FTIR to be used as a pathology laboratory tool. Further work is required 

to increase the sample size used to construct the algorithms and the pathologies within 

them. This may require collaboration between different teams to achieve the large 

population required. Ultimately for FTIR to become established as a technique, the 

original work of Gleason must be replicated using FTIR instead of a pathologist and 

archival radical prostatectomy specimens instead of autopsy prostates.  

The prostate core biopsy specimens detailed in the methodology section were 

collected and analysed at the end of the research period in late 2007. Due to time 

constraints and the necessity to share the Biophotonic Research Group facilities these 

specimens have been FTIR image mapped but not fully analysed. The intention was 

primarily to use these biopsy specimens as a test spectra group to blind test the TURP 

algorithm. The prostate cores were also to be used to investigate whether: the spectra 

obtained from non-malignant specimens in patients whose other prostate biopsies 

were also benign, were different to, the spectra obtained in non malignant specimens 

from patients whose other prostate biopsies were positive for prostate cancer.  The 

next investigator will pursue this work in addition to attempting to create a FTIR 

spectral and hence biochemical representation of a whole prostate and including all 

the pathology contained within the specimen. 
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