

CRANFIELD UNIVERSITY

R. G. DRURY

TRAJECTORY GENERATION

FOR AUTONOMOUS UNMANNED AIRCRAFT

USING INVERSE DYNAMICS

SCHOOL OF ENGINEERING

PhD THESIS

Academic Year 2009-2010

Supervisors: Professor A. Tsourdos and Dr A. K. Cooke

September 2010

© Cranfield University 2010. All rights reserved. No part of this publication may be

reproduced without the written permission of the copyright owner.

i

ABSTRACT

The problem addressed in this research is the in-flight generation of trajectories for

autonomous unmanned aircraft, which requires a method of generating pseudo-optimal

trajectories in near-real-time, on-board the aircraft, and without external intervention.

The focus of this research is the enhancement of a particular inverse dynamics direct

method that is a candidate solution to the problem. This research introduces the

following contributions to the method.

A quaternion-based inverse dynamics model is introduced that represents all

orientations without singularities, permits smooth interpolation of orientations, and

generates more accurate controls than the previous Euler-angle model.

Algorithmic modifications are introduced that: overcome singularities arising from

parameterization and discretization; combine analytic and finite difference expressions

to improve the accuracy of controls and constraints; remove roll ill-conditioning when

the normal load factor is near zero, and extend the method to handle negative-g

orientations. It is also shown in this research that quadratic interpolation improves the

accuracy and speed of constraint evaluation.

The method is known to lead to a multimodal constrained nonlinear optimization

problem. The performance of the method with four nonlinear programming algorithms

was investigated: a differential evolution algorithm was found to be capable of over

99% successful convergence, to generate solutions with better optimality than the quasi-

Newton and derivative-free algorithms against which it was tested, but to be up to an

order of magnitude slower than those algorithms. The effects of the degree and form of

polynomial airspeed parameterization on optimization performance were investigated,

and results were obtained that quantify the achievable optimality as a function of the

parameterization degree.

Overall, it was found that the method is a potentially viable method of on-board near-

real-time trajectory generation for unmanned aircraft but for this potential to be realized

in practice further improvements in computational speed are desirable. Candidate

optimization strategies are identified for future research.

ii

Keywords:

Autonomy; differential evolution; direct methods; inverse dynamics; near-real-time;

negative-g; nonlinear programming; numerical optimization; optimal control;

quaternions; trajectory generation; UAV; unmanned aircraft.

iii

ACKNOWLEDGEMENTS

My partner, Fiona Pearson, has given unstinting and generous support that has enabled

me to fulfil a long-standing ambition. She has provided encouragement and advice

throughout, without which I could not have undertaken this adventure. (She is also the

most significant financial supporter of this work!)

My supervisors, Professor Antonios Tsourdos and Dr Alastair Cooke, have both

provided excellent help and support whenever I have needed it. Antonios' knowledge of

optimal control and trajectory generation has been combined with excellent advice on

the process of research and publication which has had a big positive impact on the

quality of my work. I would not have completed this work without him and am very

grateful. Alastair's advice on flight dynamics and Cranfield's processes is similarly

appreciated. Mike Cook provided valuable advice at the outset and in my first year,

particularly on flight control, as well as arranging the EPSRC CASE award under which

this work was formally funded. Professor Rafał Żbikowski gave me advice on

optimization which I had struggled to find: his exposition was clear, enthusiastic and

one of the most useful contributions that I have received in the last 3 years.

I was very fortunate to find good friends among my fellow students, who have shared

their own experiences and not only helped me in my work but also enriched the

experience for me. Mike Riley tolerated my rambling descriptions of my work,

frequently came up with questions and answers that enabled me to move forward,

introduced me to Differential Evolution, and freely shared his ideas and advice.

Without his advice on hardware and software it is unlikely that I would have been able

to carry out my experiments: his espresso coffee also helped! Deborah Saban made me

feel welcome from my first day, helped me to get started and throughout she gave freely

of her own findings and experiences. Most importantly, she showed me a very different

perspective on life and shared some thoughts and ideas which I very much value.

Pierre-Daniel Jameson and Stuart Andrews also helped me with their comments and

advice. I am most grateful to Mike, Deborah, Pierre-Daniel and Stuart and wish them

well in their careers.

v

TABLE OF CONTENTS

Abstract .. i
Acknowledgements ... iii
List of Figures .. ix
List of Tables ... xi

Nomenclature... xiii
1 Introduction .. 1
2 Background: Trajectory Generation Methods .. 9

2.1 Graph-Based Approaches ... 9

2.2 Geometric Guidance and Navigation ... 10
2.3 Dynamic Programming... 11
2.4 Optimal Control .. 12

2.4.1 Statement of the Optimal Control Problem .. 12

2.4.2 Indirect Methods ... 13
2.4.2.1 Numerical Methods for Indirect Methods ... 14
2.4.2.2 Attributes of Indirect Methods .. 15

2.4.3 Direct Methods ... 16

2.4.3.1 Control Parameterization: Shooting Methods 18
2.4.3.2 State and Control Parameterization ... 18

2.4.3.3 State Parameterization ... 22

2.5 Nonlinear Programming Algorithms .. 28

2.5.1 Gradient Algorithms ... 29
2.5.2 Derivative-Free Algorithms .. 33

2.5.3 Stochastic and Evolutionary Algorithms .. 37
2.5.4 Discussion ... 40

3 The Inverse Dynamics Method... 43

3.1 Introduction .. 43
3.2 The Baseline Algorithm.. 44

3.2.1 Virtual Arc .. 45
3.2.2 Aircraft Dynamical Model.. 46

3.2.3 Spatial and Airspeed Parameterization ... 47

3.2.4 Boundary Conditions .. 48

3.2.5 Trajectory Evaluation ... 49
3.2.6 Penalty Function and Initial Guesses ... 50

3.3 Hardware and Software Environment .. 51
3.4 Analysis .. 52

3.4.1 Singularity of the Euler-Angle Model .. 52

3.4.2 Assumption 2: Non-Zero Normal Load Factor .. 53
3.4.3 Ill-Conditioning of Spatial Parameterization .. 53
3.4.4 A Pathological Example: Course Reversal ... 54
3.4.5 Zero Spatial Parametric Speed ... 56

3.4.6 Airspeed ≤ 0 ... 57

3.4.7 Constraints .. 58

3.4.8 Convexity and Multimodality ... 60
3.4.9 Segment and Node Variables ... 63

3.4.9.1 Evaluation of t and  ... 63

vi

3.4.9.2 Evaluation of Path Constraints .. 65

3.4.9.3 Evaluation of Euler-Angle Orientation ... 67
3.4.9.4 Evaluation of Tangential Acceleration .. 67

3.4.10 Further Observations .. 67
3.4.10.1 Bank Rate and the Third Derivative .. 68

3.4.10.2 Speed Factors 0 and f .. 68
3.4.10.3 Objective Quadrature .. 68
3.4.10.4 Initial Guess... 69
3.4.10.5 Penalty Function and Penalty Weights.. 69

3.4.10.6 Evaluation of Angle of Attack .. 70
3.4.10.7 Interpolation of Controls for Flight Controllers 70

3.5 Constraint Accuracy ... 71
3.5.1 Method .. 72

3.5.1.1 Local Quadratic Interpolation ... 73
3.5.1.2 Local Cubic Interpolation.. 74

3.5.2 Results and Analysis ... 74

4 Quaternion-Based Point-Mass Aircraft Model ... 79
4.1 Introduction .. 79
4.2 Unit Quaternion-Based Point-Mass Model State Equations 80
4.3 Model Inverse Dynamics .. 81

4.4 Differential Flatness ... 83
4.5 Computation of Time Derivative of Wind Frame z-Axis 84

4.6 Computational Load ... 85
4.7 Example Results ... 87

4.8 Control Expressions .. 91
4.8.1 Derivation of Alternative Angular Velocity Expressions 91

4.8.2 Evaluation of Orientation ... 93
4.8.3 Evaluation of the First Derivative of Orientation 94
4.8.4 Numerical Comparison of Control Expressions 96

4.8.4.1 Test Setup .. 96
4.8.4.2 Results ... 97

4.8.5 Conclusion .. 99

4.9 Computation of Normal Load Factor ... 100

4.10 Singular Arc .. 100

4.11 Revised Trajectory Evaluation Algorithm .. 100
5 Airspeed Parameterization .. 105

5.1 Introduction .. 105
5.2 Direct Evaluation of Maximum Feasible Airspeed 105

5.2.1 Normal Load Factor.. 106

5.2.2 Maximum Thrust .. 106
5.2.3 Minimum Thrust ... 108

5.2.4 Bank Rate ... 109
5.2.5 Evaluation of Minimum Feasible Airspeed .. 110
5.2.6 Computation Times – Direct Evaluation .. 111

5.3 Airspeed Optimization .. 112

5.3.1 Aircraft Data and Test Database ... 115

5.3.2 NLP Settings ... 116
5.3.3 Results and Analysis ... 117

vii

5.3.3.1 Computation Times ... 117

5.3.3.2 Optimization Convergence, Optimality and Speed 117
5.4 Discussion ... 125

6 Optimization ... 129
6.1 Introduction .. 129
6.2 Method .. 130

6.2.1 Hardware and Software Environment .. 132
6.2.2 Aircraft Data ... 132
6.2.3 Test Database and Settings ... 132
6.2.4 Optimization Vector ... 134
6.2.5 Initial Guess .. 134

6.2.6 NLP Algorithm Settings ... 136
6.2.6.1 DE.. 136
6.2.6.2 SNM and SHJ .. 138

6.2.6.3 SNOPT .. 141
6.3 Results and Analysis ... 142

6.3.1 Robustness .. 142
6.3.2 The Effects of dv on Optimality .. 145

6.3.3 Comparative Optimality of the NLP Algorithms 149
6.3.4 Computational Speed .. 153

6.3.4.1 Computation Times ... 161
6.4 Discussion ... 162

6.4.1 Objective 1: The Effects of dv on Optimality .. 162
6.4.2 Objective 2: Optimality ... 162

6.4.3 Objective 3: Robustness and Computational Speed 163
6.4.4 Objective 4: Computation Times .. 165
6.4.5 Objective 5: Optimization Approaches .. 165

7 Bank Angle Ill-Conditioning and Negative-g Trajectories 167
7.1 Introduction .. 167
7.2 Algorithmic Extensions .. 168

7.2.1 Determining Orientation ... 169

7.2.2 Updating the Inversion Domain ... 170
7.2.3 Inverting the Orientation .. 171

7.3 Numerical Examples ... 172
8 Conclusion .. 177
References .. 181

ix

LIST OF FIGURES

Figure 1-1. Two Degrees of Freedom Architecture .. 2

Figure 3-1. Discontinuous Euler-Angle States and Controls for a Vertical Loop 52

Figure 3-2. Course Reversal Caused by f ... 55

Figure 3-3. Zero Spatial Parametric Speed Caused by 0x .. 56

Figure 3-4. Example n-V Diagram .. 58

Figure 3-5. Final Flight Time as a Function of f .. 61

Figure 3-6. Normal Load Factor Constraint Violation as a Function of f 62

Figure 3-7. Maximum Thrust Constraint Violation as a Function of f 62

Figure 3-8. Comparison of Node-Based and Segment-Based Load Factors 66

Figure 3-9. Example of Local Interpolations... 72

Figure 3-10. Error in Maxima: Node Values and Chebyshev Interpolation 75

Figure 3-11. Expansion of Figure 3-10 ... 75

Figure 3-12. Error in Maxima: Quadratic and Cubic Interpolation 77

Figure 3-13. Expansion of Figure 3-12 ... 77

Figure 4-1. Vertical Loop Trajectory .. 88

Figure 4-2. Control Vector for Vertical Loop Trajectory .. 88

Figure 4-3. Vertical Helix Trajectory .. 89

Figure 4-4. Control Vector for Vertical Helix Trajectory ... 90

Figure 4-5. Peak Error as a Function of Tolerance for the Shoemake Algorithm 94

Figure 4-6. Difference Between Maximum Errors, Eq. (4.47) - Eq. (4.49) 97

Figure 4-7. Difference Between Maximum Errors, Eq. (4.43) - Eq. (4.47) 98

Figure 4-8. Yaw Rates for Course Reversal .. 99

Figure 5-1. Example of vmax and Chebyshev Interpolants ... 114

Figure 5-2. Loss of Optimality, SNM with Chebyshev Parameterization 118

Figure 5-3. Trajectory Evaluations, SNM with Chebyshev Parameterization 118

Figure 5-4. Robustness, SNM with Chebyshev Parameterization............................ 118

Figure 5-5. Loss of Optimality, SNM with Bernstein Parameterization 118

Figure 5-6. Trajectory Evaluations, SNM with Bernstein Parameterization 118

Figure 5-7. Robustness, SNM with Bernstein Parameterization 118

Figure 5-8. Loss of Optimality, SNM with Lagrange Parameterization 119

Figure 5-9. Trajectory Evaluations, SNM with Lagrange Parameterization 119

Figure 5-10. Robustness, SNM with Lagrange Parameterization 119

Figure 5-11. Loss of Optimality, SNM with Power Series Parameterization 119

Figure 5-12. Trajectory Evaluations, SNM with Power Series Parameterization 119

Figure 5-13. Robustness, SNM with Power Series Parameterization 119

Figure 5-14. Loss of Optimality, SHJ with Chebyshev Parameterization 120

Figure 5-15. Trajectory Evaluations, SHJ with Chebyshev Parameterization 120

Figure 5-16. Robustness, SHJ with Chebyshev Parameterization 120

Figure 6-1. Pseudo-Optimal Values of f for 2000 Test Cases................................. 135

Figure 6-2. Percentage Success Rates vs dv ... 143

Figure 6-3. Percentage Success Rates vs NLP .. 144

Figure 6-4. Optimality Profiles for Each NLP, vs dv ... 146

file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008827
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008828
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008829
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008830
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008831
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008832
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008833
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008834
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008835
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008836
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008837
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008838
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008839
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008840
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008841
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008842
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008843
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008844
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008845
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008845
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008845
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008846
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008846
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008846
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008847
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008848
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008849
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008850
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008851
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008852
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008853
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008854
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008855
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008856
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008857
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008858
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008859
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008860
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008861
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008862
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008863
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008864
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008865
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008866
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008867

x

Figure 6-5. Scaled Optimality Profiles for Each NLP, vs dv 147

Figure 6-6. Percentage Each NLP was Closest to Optimal vs dv 149

Figure 6-7. Percentage Each NLP was Within 2% of Optimal vs dv 150

Figure 6-8. Percentage Each NLP was Within 5% of Optimal vs dv 151

Figure 6-9. Scaled Optimality Profiles for Each dv, vs NLP 152

Figure 6-10. Trajectory Evaluations, All Test Cases.. 154

Figure 6-11. Expansion of Figure 6-10 ... 154

Figure 6-12.  Profiles for Each dv, vs NLP, All Test Cases 156

Figure 6-13 Trajectory Evaluations, Successful Test Cases 158

Figure 6-14. Expansion of Figure 6-13 ... 158

Figure 6-15. Scaled  Profiles for Each dv, vs NLP, Successful Tests 160

Figure 7-1. Climbing and Descending Over a Small Hill ... 173

Figure 7-2. Steep Descent and Pull-Up ... 174

Figure 7-3. Bank Angle and Bank Rate for the Trajectory of Figure 7-2 175

file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008868
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008869
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008870
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008871
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008872
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008873
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008874
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008875
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008876
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008877
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008878
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008879
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008880
file:///C:\Users\Rick\Documents\PhD\Thesis\Thesis%201_0.docx%23_Toc280008881

xi

LIST OF TABLES

Table 2-1. Attributes of Selected NLP Algorithms ... 42

Table 3-1. Estimates of Floating Point Operations on a 64-bit Processor 51

Table 4-1 Ratio of Quaternion CPU Time to Euler-Angle CPU Time 86

Table 5-1. Computation Times – Direct Evaluation (s) .. 112

Table 5-2. NLP Settings .. 116

Table 5-3. Mean Loss of Optimality (%) .. 121

Table 5-4. Standard Deviation of Loss of Optimality (%) .. 121

Table 5-5. Mean Trajectory Evaluations ... 122

Table 5-6. Standard Deviation of Trajectory Evaluations ... 122

Table 5-7. Unsuccessful Cases per 100,000 Trajectories .. 123

Table 6-1. DE Settings .. 138

Table 6-2. SNM and SHJ Settings ... 141

Table 6-3. Percentage Success Rates ... 143

Table 6-4. SNM Loss of Optimality vs dv ... 148

Table 6-5. DE Loss of Optimality vs dv .. 149

Table 6-6. Mean Trajectory Evaluations, All Test Cases .. 153

Table 6-7. Standard Deviation of Trajectory Evaluations, All Test Cases................ 153

Table 6-8. Mean Trajectory Evaluations, Successful Test Cases 157

Table 6-9. Standard Deviation of Trajectory Evaluations, Successful Test Cases.... 157

Table 6-10. Mean Elapsed Computation Times, All Test Cases (s) 161

Table 6-11. Percentage Differences in Computation Times per Node 161

xiii

NOMENCLATURE

AR = aspect ratio

a = acceleration

a = acceleration magnitude; spatial coefficient; quadrature interval factor

a1, a2, aA = temporary acceleration variables (Chapter 5)

ax = tangential acceleration

b = Hooke-Jeeves base exploration flag

C = Bernstein form coefficient

CD = drag coefficient

CD0 = drag coefficient at minimum drag

CL = lift coefficient

CLminD = lift coefficient at minimum drag

CL = lift curve slope

C
n
 = at least n times continuously differentiable

Cr = differential evolution crossover probability

c = constraint vector

ci = i-th constraint violation

D = drag; NLP dimension

D1, D2 = temporary drag variables (Chapter 5)

d = positive or negative-g alignment (Chapter 7)

dv = airspeed polynomial degree

E = 4x3 quaternion propagation matrix

E = set of equality constraints

e = unit quaternion (e0, e1, e2, e3)
T

F = differential evolution mutation scale factor

fM = total force per unit mass

f = optimization objective; degree N – 1 Chebyshev interpolant

fb = best objective in differential evolution population (Chapter 6)

fbase = base point objective in Hooke-Jeeves algorithm (Chapter 6)

fexp = explore point objective in Hooke-Jeeves algorithm (Chapter 6)

fmax = best objective in Nelder-Mead simplex (Chapter 6)

fmin = worst objective in Nelder-Mead simplex (Chapter 6)

fw = worst objective in differential evolution population (Chapter 6)

g = gravity vector (0, 0, g)
T
 in flat Earth frame

gc = mean gravitational acceleration over inter-node segment

gz = gravity vector component in wind frame z-axis

g = gravitational acceleration

H = rotation matrix

H = Hamiltonian

h = quaternion representation of 180º rotation in bank

h = Hooke-Jeeves step reduction count; load factor limit vs ≤ v ≤ va

hmax = Maximum count of Hooke-Jeeves step reductions

I = set of inequality constraints

j = node index

k = penalty weight

L = lift

xiv

lz = normal load factor

lstruct = structural load factor limit

lz = normal load factor magnitude

l
+
 = positive-g normal load factor limit

l
-
 = negative-g normal load factor limit (Chapter 7)

M = aircraft mass

m = local quadratic interpolation function

N = number of discretization nodes per trajectory

NF = feasible set size in differential evolution population (Chapter 6)

Np = differential evolution population size (Chapter 6)

P = penalty function

p, q, r = roll, pitch and yaw angular velocities in the wind frame

pmax = maximum rate of change of bank angle

R = residual

r = position vector (x, y, z)
T

S = wing reference area

S
3
 = 3-sphere

s = path length

T = thrust in wind frame x-axis

Tmax = maximum thrust, wind frame

Tmin = minimum thrust, wind frame

tf = final flight time

tI = time required for inversion within angular velocity constraints

 (Chapter 7)

tRef = reference final flight time at vmax (Chapter 5)

u = control vector

v = airspeed

va = manoeuvring airspeed

v1, v2, vlim = temporary airspeed variables (Chapter 5)

vB = lower limit on airspeed during manoeuvre (Chapter 5)

vl = maximum airspeed that satisfies the load factor constraint (Chapter 5)

vmax = maximum airspeed that satisfies all path constraints (Chapter 5)

vmin = minimum airspeed that satisfies all path constraints (Chapter 5)

vne = never-exceed airspeed

vp = maximum airspeed that satisfies bank rate constraint (Chapter 5)

vs = stall speed, straight and level

vTmax = maximum airspeed that satisfies Tmax constraint (Chapter 5)

vTmin = maximum airspeed that satisfies Tmin constraint (Chapter 5)

w = quadrature weight
, ,x y z
  

 = coordinate axes (unit vectors)
x, y, z = position components, flat Earth axes unless otherwise specified

 = angle of attack

s = stall limit of angle of attack

0, 2, 5 = optimality scores (Chapter 6)

 = sideslip angle; optimization success ratio

 = flight path angle

 = quaternion interpolation step size; optimization tolerance

f 0, f min = initial and minimum objective ranges (Chapter 6)

xv

f = termination objective tolerance (Chapter 6)

f thresh = objective threshold (Chapter 6)

 = maximum -norm of differential evolution population (Chapter 6)

sj = segment distance, node j -1 to node j

tj = segment duration, node j -1 to node j

j  segment virtual arc, node j -1 to node j

ε


 = Frenet frame coordinate axis unit vector

 = Oswald efficiency factor

 = multiplication or reduction factor (Chapter 6)

η = constraint violation; inversion permissible flag

ηmax = maximum permitted constraint violation

ηtol = SNOPT post-optimization constraint tolerance (Chapter 6)

 = angle between quaternions

 = curvature

 = inversion cost function (Chapter 7)

 = speed factor

 = bank angle

 = heading

 = air density; radius of curvature; penalty weighting parameter

max = maximum penalty weighting parameter

 = count of trajectory evaluations

max = termination limit on 

g = differential evolution generation count limit (Chapter 6)

 = virtual arc independent variable

 = optimization performance profile factor; roll angle

 = vector of optimization parameters

0 = initial step size for Hooke-Jeeves or Nelder-Mead (Chapter 6)

b = best vector in differential evolution population (Chapter 6)

w = worst vector in differential evolution population (Chapter 6)

max = best vector in Nelder-Mead simplex (Chapter 6)

min = worst vector in Nelder-Mead simplex (Chapter 6)

 = inversion demand flag (Chapter 7)

 = set of contiguous intervals between two or more nodes (Chapter 7)

 = 4x4 quaternion propagation matrix

ω = angular velocity cross product equivalent matrix

 = angular velocity in wind frame (p, q, r)
T

Superscripts or subscripts

a = index; manoeuvring speed

b = index; best solution in differential evolution population

E = inertial flat-Earth frame, north-east-down axes

f = final boundary point; optimization function value

i, j, k = indices

m = node index at end of inversion

ne = never-exceed speed

s = stall speed; node index at start of inversion

xvi

seg = segment variable

t, n = Frenet frame tangential and normal axes

V = velocity frame

W = wind frame

w = worst solution in differential evolution population

0 = initial boundary point; initialization value

* = optimal or pseudo-optimal value

+ = nonnegative constraint violation; positive-g

- = negative-g

Operators

* = quaternion multiplication; as superscript quaternion conjugation

 = derivative with respect to 
× = vector cross product
 = 2-norm

All quantities are expressed in the International System of Units. Scalars use italic

Latin or Greek fonts; vectors and matrices use bold Latin or Greek fonts.

Chapter 2 uses chapter-specific variables, not those listed above.

1

1 INTRODUCTION

Unmanned air vehicles (UAVs) are in operational use for intelligence, surveillance,

target acquisition, reconnaissance, and ground attack missions supporting our Armed

Forces. They are also being used for civil purposes including security patrolling and

environmental monitoring. Operational trajectories are typically 2D or 3D paths

generated on the ground before the flight (or mission segment) and flown as waypoint

sequences with pre-programmed manoeuvres such as standard rate turns. Many current

UAVs require more than one ground-based operator per aircraft to plan the mission and

flight path, fly the aircraft, and operate the sensors and weapons
23, 97

. Further, the

associated communications between operator and aircraft reduce the bandwidth

available to the sensor and weapon systems, which is a critical resource for UAV

operations.

Autonomous generation of pseudo-optimal trajectories on board the aircraft would

enable

 The communications bandwidth required to operate the UAV to be reduced.

 The operator workload to be reduced.

 Trajectories closer to optimal to be generated.

It should also enable the UAV to react autonomously to changes in its operating

environment such as moving or unforeseen targets, obstacles, or threats, and to changes

to the mission such as air-air refuelling or time-varying rendezvous points.

As well as minimizing an objective such as time of flight or fuel consumed, trajectories

must satisfy constraints arising from boundary conditions, aircraft dynamics, sensor

dynamics and from the changing environment, such as obstacles. To provide the inputs

required by a flight control system, the trajectory generator should produce not only the

desired flight path but also suitable control trajectories. The trajectory optimization

problem may therefore be formulated as an optimal control problem, which is then

transcribed to a parameter optimization problem and solved by the application of a

constrained nonlinear programming (NLP) algorithm. Sufficient computing power to

solve the NLP problem in real time and within typical UAV weight and power

2

limitations is not yet available for operational use, but the architecture shown in Figure

1-1, adapted from Åström and Murray
3
, shows a system architecture that separates the

trajectory generation task from the trajectory following task. The timing demand on the

trajectory generator is relaxed from real time to near real time and, in isolation, the

trajectory generator itself becomes open loop, making the problem potentially

achievable if a suitably fast and reliable method of solving the open loop optimal

control problem is used.

Figure 1-1. Two Degrees of Freedom Architecture

Indirect methods of the calculus of variations are not currently feasible for real-time

implementation by on-board aircraft systems. They solve the optimal control problem

by formulating the first order optimality conditions, applying Pontryagin’s Maximum

Principle and using NLP to solve the resulting two-point boundary value problem

numerically. Direct methods, which seek to directly minimize the objective, are not

guaranteed to result in an optimal solution but compared to indirect methods will

usually generate a pseudo-optimal trajectory more robustly (it is not necessary to solve

Flight Manager

Δ

Noise

Trajectory Generator

Aircraft

and

Flight Control System

Feedback

Compensator

ud

xd

3

potentially ill-conditioned combinations of state, costate, and stationarity/Pontryagin

conditions) and have a larger radius of convergence.

Comparing ground-based generation of a pre-planned spacecraft manoeuvre with on-

board generation of a UAV manoeuvre highlights the relative strengths of these

methods. The spacecraft manoeuvre typically requires a one-off solution, with hours or

days available to solve the problem, and the solution must be of high accuracy. Indirect

methods are therefore well suited to this problem (although pseudospectral and inverse

dynamics methods have also been used). In contrast the UAV problem requires

repeated solution of time-varying problems in near real time, whilst wind, noise,

uncertainty and continual updating reduce the importance of high accuracy. Direct

methods are well suited to this type of problem.

A particular direct method that is computationally fast, does not require large data

storage, and guarantees satisfaction of spatial and airspeed boundary conditions, has

been developed from ideas introduced by Taranenko in Russia in 1968
126

. In

1999-2000 Yakimenko introduced an inverse dynamics variant of the method to the

West
133, 134

. As a direct method it is computationally cheaper than indirect methods and

does not require good initial guesses of constrained arcs or of non-intuitive costate

variables. Numerical simulations
5, 17, 114, 135

 suggest that it is faster than other candidate

direct methods such as shooting or pseudospectral methods. However, it has a number

of limitations and only small samples of data on its performance with NLP algorithms

have been published. In this document it is referred to as "the inverse dynamics

method" and is applied to the minimization of the flight time of a conventional fixed

wing aeroplane.

The thesis that motivates this research is that the inverse dynamics method is a

potentially viable method of on-board near-real-time trajectory generation for

unmanned aircraft, and research into its four main parts can further improve its

capabilities. The contributions from this research therefore address the four parts of the

method:

 Objective, controls, and constraints evaluation algorithm.

 Aircraft inverse dynamics model.

4

 State vector parameterization.

 Constrained nonlinear optimization.

The following contributions to the inverse dynamics method have been introduced in

this research:

 A quaternion-based inverse dynamics model that represents all orientations without

singularities, permits smooth interpolation of orientations, and generates more

accurate controls than the previous Euler-angle model.

 Algorithmic modifications that overcome singularities arising from zeros of the

spatial parametric speed, airspeed, and normal load factor.

 Combinations of analytic and finite difference expressions that improve the

accuracy of controls and constraints.

 Local quadratic interpolation of constraints that improve accuracy and

computational speed.

 An algorithm that evaluates maximum feasible airspeed without using numerical

optimization.

 Algorithmic modifications, in conjunction with the quaternion-based model, that

remove roll ill-conditioning when the normal load factor is near zero, and extend the

method to handle negative-g orientations.

 Quantification of the effects on optimality, robustness and computational speed of

polynomial airspeed parameterization.

 Comparison of the optimality, robustness and computational speed achieved with

four nonlinear programming algorithms. A differential evolution algorithm was

found to be capable of over 99% successful convergence, to generate solutions with

better optimality than the quasi-Newton and derivative-free algorithms against

which it was tested, but to be up to an order of magnitude slower than them.

 Identification of candidate optimization strategies for future research.

This document describes the research and contributions as follows.

Chapter 2 provides background and contextual material from the literature on methods

of trajectory generation and optimization, focusing on direct methods of optimal control

and showing how the inverse dynamics method relates to them, to underpin the thesis

5

stated above. The chapter also provides background material on relevant NLP

algorithms.

Chapter 3 describes the inverse dynamics method as previously published and analyses

it to identify limitations. The chapter then introduces modifications to address the

limitations and increase the accuracy and robustness of evaluation of the objective,

controls, and constraints. The contributions of this chapter are: the handling of the

algorithmic singularities (Sections 3.4.2 - 3.4.6); the observations on constraint

discontinuities and the examples of multimodality (Section 3.4.8); the combination of

node and segment-based expressions (Section 3.4.9); the observations in Section 3.4.10;

and the introduction in Section 3.5 of local quadratic interpolation of constraints.

Chapter 4 introduces a new quaternion-based point-mass inverse dynamics aircraft

model that removes the singularities inherent in Euler-angle orientation representation

and the discontinuities in the controls associated with those singularities. The main

contribution of this chapter is the quaternion inverse dynamics model, specifically the

derivation of the model in Sections 4.2, 4.3, 4.4, and 4.5, the test results of Sections 4.6

and 4.7, and the improved control expressions derived and tested in Section 4.8.

Section 4.9 describes a minor contribution to the method.

Chapter 5 describes an investigation into the effects of the degree and form of airspeed

polynomial parameterization on the robustness, optimality, and computational speed of

optimization. The chapter presents results for Chebyshev, Bernstein, barycentric

Lagrange and power series polynomials. The contributions of this chapter are: the

introduction in Section 5.2 of an algorithm for evaluating maximum feasible airspeed

without requiring airspeed parameterization or optimization; and the quantification of

the effects of the degree and form of polynomial airspeed parameterization on

optimization performance presented in Sections 5.3.3 and 5.4.

Chapter 6 extends the optimization research of Chapter 5 by investigating the combined

effects of spatial and airspeed parameterizations and the choice of NLP algorithm on

robustness, optimality, and computational speed. It provides comparative numerical

assessments of several NLP algorithms when applied to the minimization of final flight

time using the inverse dynamics method and quaternion model. The contributions of

6

this chapter are: the comparison of the performance of four different NLP algorithms

applied to the inverse dynamics method over a range of degrees of airspeed

parameterization as presented in Sections 6.3 and 6.4, in particular the performance of

differential evolution compared to quasi-Newton and derivative-free NLP algorithms;

and the identification of candidate optimization strategies in Section 6.4.5.

Chapter 7 describes an extension of the method to include negative-g trajectories. This

overcomes the ill-conditioning in roll which otherwise arises when the normal load

factor transitions through zero, thus removing unwanted step changes in bank angle at

zero normal load factor and making the generated trajectories more suitable for aircraft

operating as surveillance platforms. The contributions of this chapter are described in

Section 7.2: improving platform stability around zero normal load factor; and permitting

negative-g trajectories to be generated.

The following papers
29-33

 have been published, accepted, or submitted for publication as

a result of the research described in this document.

Journal papers:

Drury, R. G., Tsourdos, A., and Cooke, A. K., "Negative-g Trajectory Generation Using

Quaternion-Based Inverse Dynamics", Journal of Guidance, Control, and Dynamics,

Vol. 34, No. 1, 2011, (to appear)..

Drury, R. G., and Whidborne, J. F., "Quaternion-Based Inverse Dynamics Model for

Evaluating Aerobatic Aircraft Trajectories," Journal of Guidance, Control, and

Dynamics, Vol. 32, No. 4, 2009, pp. 1388-1391.

Conference papers:

Drury, R. G., Tsourdos, A., and Cooke, A. K., "Negative-g Trajectory Generation Using

Quaternion-Based Inverse Dynamics," Proceedings of the AIAA Atmospheric Flight

Mechanics Conference, Toronto, 2010.

Drury, R. G., Tsourdos, A., and Cooke, A. K., "Real-Time Trajectory Generation:

Improving the Optimality and Speed of an Inverse Dynamics Method," Proceedings of

the IEEE Aerospace Conference, Big Sky, 2010.

7

Drury, R. G., and Whidborne, J. F., "A Quaternion-Based Inverse Dynamics Model for

Real-Time Trajectory Generation," Proceedings of the AIAA Guidance, Navigation,

and Control Conference and Exhibit, Chicago, 2009.

9

2 BACKGROUND: TRAJECTORY GENERATION

METHODS

Many approaches to trajectory generation have appeared, particularly in recent years as

computational power has increased so that near-real-time trajectory generators are

becoming feasible. This chapter provides the contextual background to the inverse

dynamics direct method to support the thesis stated in Chapter 1.

2.1 Graph-Based Approaches

Most aircraft rely on pre-flight preparation of flight paths, which are typically prepared

manually (or with basic computer support) as a sequence of waypoints, times, and

altitudes interconnected by linear tracks, pre-determined airspeeds, and standard rate or

procedural turns. These paths are input manually or electronically to the on-board flight

management system or autopilot which then generates the control demands to track the

desired flight path using feedback controllers. The dynamic constraints of the equations

of motion and aircraft limits such as maximum normal load factor, maximum thrust and

control limits are taken into account indirectly by restricting the paths to known feasible

rates of climb/descent, airspeeds, and manoeuvres such as standard rate turns.

Graph theory and combinatorics can be applied effectively to path planning problems

because such problems do not usually directly impose dynamic constraints (which is

one way of distinguishing between path planning and trajectory generation). The field

of robotics has given rise to path planning techniques such as subdivision of the overall

path into cells, each of which is relatively simple to solve, and reconstituting the path by

linking the cells to each other and to the boundary conditions using graph-theoretic

(“roadmap”) methods such as Voronoi diagrams or visibility graphs
8
. Roadmap

methods construct a subset of paths that span the feasible space, then seek to select the

path that is closest to optimal from the subset. Krozel and Andrisani
82

 applied Voronoi

diagrams to path planning in mountainous terrain. Bortoff
15

 used a combination of

Voronoi diagrams to generate an initial estimate followed by a potential field approach

to model combinations of threats (hostile radar) and dynamic constraints on the

trajectory; resulting in a nonlinear programming problem. Frazzoli et al.
51

 described a

10

probabilistic approach to motion planning that incorporated dynamic constraints, using

motion primitives and rapidly-exploring random trees; the approach assumes that the

vehicle can be guided from any state to any desired final state, which itself requires the

solution of an optimal control problem. Yang and Zhao
136

 approached the problem of

incorporating dynamic constraints within a graph-based method by discretizing the path

and representing the dynamic constraints as bounds on consecutive nodes; the A* direct

search method was then applied to the 4D search space with a linear objective function.

Gu et al.
59

 gave an overview of five path planning approaches, including Voronoi

diagrams, visibility lines (constructing straight line segments that do not intersect with

obstacles), and Mixed Integer Linear Programming (MILP), and concluded that

visibility lines was an efficient path planning method, although it did not take account

of dynamic constraints. Kamal et al.
70

 combined MILP with branch-and-bound

algorithms to solve path planning problems but concluded that MILP was too

computationally expensive for real-time application.

Eele and Richards
35

 described a method for generating globally optimal 2D trajectories

that avoid fixed obstacles, whilst taking nonlinear dynamics into account. They

modified a branch-and-bound algorithm to decide which side of an obstacle to pass,

then solved the resulting sub-problem using interior point optimization. This method

has elements of both graph-based and optimal control approaches.

2.2 Geometric Guidance and Navigation

In 1957 Dubins
34

 showed that in two dimensions the shortest distance between two

boundary conditions which include position and orientation, subject to a path constraint

on maximum curvature, is a combination of straight lines and circular arcs. Anderson et

al.
1
 described a method of generating 2D trajectories in two stages: firstly a waypoint

sequence is produced without time constraints then a Dubins set is constructed and

optimized, using curvature and airspeed as constraints on the turn radius and

minimizing the deviation from the straight line between waypoints. Shanmugavel et

al.
117

 used Dubins sets as the basis for generating 2D trajectories for multiple

cooperating UAVs, and extended that work into 3D
118

, optimizing the path length using

curvature as the primary constraint.

11

Classical missile guidance is a differential-geometric approach using line of sight (LOS)

information as a primary input to the control law. To obtain LOS information semi-

active missile sensors rely on a separate emitter to illuminate the target, passive sensors

detect emissions generated by the target, and active missiles illuminate the target

themselves. Active and passive missiles therefore have a degree of autonomy after

launch. Proportional navigation (PN) is widely-used to guide the missile to the target.

Ho et al.
63

 showed that PN is an optimal control in that missile normal acceleration is

minimized. Lewis and Syrmos
88

 also give a derivation of PN as the solution to an

optimal control problem. White et al.
131

 categorized PN as True PN or Pure PN, which

are distinguished by the direction in which missile normal acceleration is oriented:

perpendicular to the line of sight for True PN and perpendicular to missile velocity for

Pure PN. However, PN design is based on a constant target velocity vector, and does

not take account of obstacles conflicting with the flight path. White et al.
132

 examined

the application of differential geometry to missile guidance for manoeuvring targets,

also using LOS information. Ariff et al.
2
 identified three shortcomings of PN:

dependence on line of sight information; limited effectiveness against manoeuvring

targets (which is dependent on permitted missile lateral acceleration; Ariff et al. also

noted that this limitation can be partially mitigated by modifications to PN); and lack of

direct control over the missile trajectory. They applied differential geometry, modelling

the target trajectory by its curvature and torsion, to overcome these shortcomings

without resorting to optimal control.

2.3 Dynamic Programming

In 1957 Bellman
9
 published the dynamic programming approach to optimization based

on the “principle of optimality”. Considering a time sequence of decisions, Bellman’s

principle of optimality states that on an optimal path remaining decisions must be

optimal irrespective of the preceding decisions or of the initial state. Therefore a

decision path can be decomposed, starting from the end point, into shorter paths and

working backwards in time optimal decisions can be calculated sequentially until the

initial time is reached. Application of this principle to the continuous-time optimal

control problem results in a system of first order nonlinear partial differential equations,

known as the Hamilton-Jacobi-Bellman equation. The Hamilton-Jacobi-Bellman

12

equation leads to an optimal control via a two point boundary value problem which is

not, in general, solvable analytically.

The Euler-Lagrange equations, Pontryagin’s Maximum Principle
105

 and Hamilton-

Jacobi-Bellman equation are inter-related and can be derived from each other
22, 88

.

The computational and storage loads imposed by dynamic programming are subject to

the “curse of dimensionality” (Bellman
9
) and the method is not “computationally

competitive” (Betts
12

) and is therefore not a promising candidate for on-board near-real-

time trajectory generation.

2.4 Optimal Control

The optimal control approach to trajectory generation is to treat it as a calculus of

variations problem: the optimization of a functional in a continuous, infinite

dimensional space subject to nonlinear constraints. However, in general the resulting

differential-algebraic system is not solvable analytically and the problem is transformed

by discretization and parameterization to a finite-dimensional parameter optimization

problem, which is then solved by the application of an NLP algorithm.

2.4.1 Statement of the Optimal Control Problem

The continuous optimal control problem may be written (Bryson and Ho
22

, Lewis and

Syrmos
88

, Subchan and Żbikowski
125

) as the task of finding the admissible control u

(and, optionally, the associated state x) that minimizes the scalar objective function

0

((),) ((), (),)
ft

f f
t

J t t L t t t dt  x x u (2.1)

subject to

 () and ()n mt t x u  (2.2)

 () (, ,)t tx f x u (2.3)

 0 0() specifiedt x x (2.4)

13

 ((),) 0, : ,n q

f ft t q n   x     (2.5)

Eq. (2.1) is written in the Bolza form with scalar final cost function ϕ and an integral

general cost function. Eqs. (2.3) are the state equations of the dynamical system, and

the problem is subject to q constraints on the final state ψ (Eq. (2.5)).

In practical problems additional algebraic path constraints c on the state and control

variables are also likely to apply:

(, ,) 0,

(, ,) 0,

i

i

c t i E

c t i I

 

 

x u

x u
 (2.6)

with

 {1,... }eE m (2.7)

 { 1,... }e cI m m  (2.8)

In Eqs. (2.6) each ci is either an equality or inequality path constraint and may or may

not be explicitly dependent on x or u.

2.4.2 Indirect Methods

The calculus of variations and Lagrange theory
14

 provide a theoretical basis for solving

the optimal control problem. As is well-known (e.g. Bryson and Ho
22

) the state

equations can be adjoined to the objective function to form the Hamiltonian

 (, ,) (, ,) (, ,)TH t L t t x u x u f x u (2.9)

Path constraints can also be adjoined to the Hamiltonian using Lagrange multipliers.

Setting the first variation of the Hamiltonian to zero gives the first order optimality

conditions, comprising the state equations (Eq. (2.3)), the differential costate equation

H

 
x

 (2.10)

and the algebraic stationarity condition

14

 0
H


u

 (2.11)

When control constraints are present, as will be the case in practical problems, the

stationarity condition must be modified by applying Pontryagin's Maximum Principle
105

which states that on the optimal trajectory the Hamiltonian is minimal with respect to

the controls, which can be written

 (, , ,) (, , ,),H t H t U     x u λ x u λ u (2.12)

Eqs. (2.3), (2.10), and (2.12), together with algebraic boundary (transversality)

conditions at the two end points, form a differential-algebraic system that can, in

principle, be solved as a two-point boundary value problem. However, solving the two-

point boundary value problem analytically is difficult, and not feasible for most

practical problems. Numerical methods are therefore required, as described in the next

section. Unfortunately these are not currently fast enough to produce solutions in near

real time. An initial estimate of the costate variables is also required.

2.4.2.1 Numerical Methods for Indirect Methods

Betts
12

 described shooting and collocation methods for transforming the optimality

conditions, path constraints and boundary conditions into an NLP problem. Shooting

methods treat the two-point boundary value problem as a series of initial value problems

and use well-known numerical integration schemes, such as the Runge-Kutta 4th order

scheme or multi-step schemes such as Adams-Moulton or Adams-Bashforth
65, 124

, to

solve the initial value problems. Path constraints require that the sequence of

constrained and unconstrained arcs be determined a priori, and that the trajectory be

divided into corresponding phases. This in turn requires the introduction of additional

variables and junction constraints. Betts
12

 and Bryson and Ho
22

 noted that shooting can

produce “wild” trajectories and is very sensitive to a good initial guess, due to the

instability of the integration which coupled with a poor initial guess can lead to

divergence. In addition, Betts noted that small changes early in the trajectory have a

disproportionate effect on the trajectory than similar changes late in the trajectory, and

that this can have a “catastrophic” effect on the shooting method.

15

In 1989 Oberle and Grimm
100

 described a software package, BNDSCO, that implements

an indirect multiple shooting method in which the trajectory is divided into segments

and shooting is used to solve each segment. The dimension of the problem is larger

than for single-segment shooting since additional variables and constraints must be

introduced at inter-segment boundaries. (The segments are not the same as the phases

of constrained/unconstrained arcs: the segments are introduced to overcome the

numerical limitations of single-segment shooting, and within each segment there may

be multiple phases
12

.) Subchan and Żbikowski
125

 compared BNDSCO with various

direct collocation methods, and found it to produce more accurate solutions than the

direct methods, but that it was sensitive to initial guesses: direct methods were used to

generate good initial guesses for the BNDSCO method.

In their 1992 paper, von Stryk and Bulirsch
130

 used a hybrid direct/indirect method. A

direct local collocation method was used to provide good initial guesses of the variables

including the costates, constrained and unconstrained arcs. They found that the

accuracy of their direct method was typically 1%. The BNDSCO package was then

used to provide a more accurate solution. Pesch’s 1994 paper
102

 also described the use

of multiple shooting for offline solution of a number of aerospace problems, and

suggested that parallel implementations of multiple shooting might be fast enough for

on-line trajectory generation if computational power increased sufficiently.

Collocation is a technique in which a residual function is minimized at a sequence of

nodes, and it has been applied to indirect methods since at least the 1970s. Fahroo and

Ross
39

 described an indirect collocation method. Collocation avoids the

computationally expensive numerical integration of the shooting methods, but when

used as part of an indirect method it still requires good initial guesses of the costates and

the constrained and unconstrained arcs
12, 102, 130

. It is widely used as part of a direct

method, and to generate initial guesses for indirect multiple shooting. Collocation is

described in the context of pseudospectral methods below.

2.4.2.2 Attributes of Indirect Methods

The key attributes of indirect methods (Betts
12, 13

, Bryson and Ho
22

, and Subchan and

Żbikowski
125

) are:

16

1. Indirect methods seek a solution to the first order optimality conditions, and

therefore, when a solution is found it will be accurate to the tolerance of the

chosen NLP algorithm.

2. The radius of convergence is small.

3. Initial estimates of the costate variables, which are not physical variables and

therefore are not intuitive, are required.

4. Initial estimates of the number and locations of the constrained and unconstrained

arcs are required.

5. The combination of the state, costate and Maximum Principle equations can be

ill-conditioned.

6. It is necessary to formulate the first order optimality conditions using the Euler-

Lagrange equations and boundary conditions, and to solve the resulting two point

boundary value problem.

7. Analytic derivatives are required in order to formulate the optimality conditions.

8. The dimension of the problem is increased by the inclusion of the costate

variables.

9. Singular arcs may arise.

The main difficulties with indirect methods are: the creation of good initial guesses,

including the costates, constrained and unconstrained arcs; small radii of convergence;

the potential ill-conditioning of the equations; and the computational load of evaluating

the state, costate and transversality conditions.

2.4.3 Direct Methods

For ease of comparison with the indirect methods of the previous sub-section, the key

attributes of direct methods are listed here and discussed in the next sub-sections:

1. Direct methods seek to minimize the objective function directly, by transforming

the functional optimization to a parameter optimization without formulating and

solving the first order optimality conditions; therefore the solutions are not

guaranteed to be accurate.

2. Direct methods in general result in multimodal optimization problems, so a

solution is not guaranteed to be globally optimal.

17

3. The radius of convergence is larger than for indirect methods.

4. No initial guess of the costate variables or constrained arcs is required.

5. The methods are more robust because it is not necessary to solve potentially ill-

conditioned state, costate and Maximum Principle systems.

6. The accuracy of a direct method depends on the approximations used to represent

the states and controls, and on the number and distribution of discretization nodes

(and collocation nodes if collocation is used).

7. The dimension of a direct method depends on the actual method chosen, but does

not have to include the costate variables.

8. Singular arcs may, depending on the actual method, cause similar problems to

those caused to indirect methods.

9. Estimates of the costates are not available as outputs from all direct methods.

10. The methods are computationally simpler.

For on-board near-real-time trajectory generation when the overall system accuracy is

limited by atmospheric conditions, sensor precision, the accuracy of the aircraft model,

and noise, high accuracy is less important than timely generation of a feasible solution

that approximates an optimal solution. Moreover, the task is to repeatedly solve a

sequence of related time-critical problems defined by time-varying boundary conditions

and path constraints, rather than to solve one problem to high accuracy: each solution

has only a short period of validity. The priority is to generate pseudo-optimal solutions

within the required time intervals, a task for which fast direct methods are well suited.

Various authors have used different taxonomies for direct methods, with the same

names being used with different meanings. In 1996, Rutherford and Thomson
114

categorized inverse simulation direct methods as either integration or differentiation

methods according to whether time-stepping numerical integration was used in the

method; this categorization can be applied to other direct methods. They also presented

numerical results showing that differentiation methods could be an order of magnitude

faster than integration methods. Boyd
18

 describes a similar categorization.

A useful categorization was described by Hull
65

 in 1997. He categorized direct methods

by the subset of state and control variables that are parameterized. If only control and

some of the state variables are parameterized then time-stepping numerical integration

18

of the remaining state equations is required (e.g. direct shooting or direct multiple

shooting), but if all state variables are parameterized, then time-stepping numerical

integration is not required (e.g. direct transcription
60

, pseudospectral
10, 40, 60

, differential

inclusion
83, 116

 or inverse dynamics). The next three sections use this categorization.

2.4.3.1 Control Parameterization: Shooting Methods

If only controls are parameterized the state equations are numerically integrated and

iteration is used to find the control parameters that produce a pseudo-optimal trajectory

that satisfies the state equations, boundary conditions and path constraints. Direct

shooting and direct multiple shooting are analogous to the corresponding indirect

methods, use the same numerical integration algorithms, and are also at risk of

divergence and instability. If gradients must be obtained by finite differencing then n

trajectories must be numerically integrated for each gradient at each NLP iteration
12

.

Hence although they typically result in a lower dimension NLP problem than

pseudospectral methods, they are slower due to numerical integration of many candidate

trajectories with small time steps. Hull also noted that path constraints could be

incorporated into shooting and collocation methods but in general were only satisfied at

discrete nodes in the trajectory and not across inter-node segments. In these methods

constraint satisfaction may be improved by increasing the number of nodes, and in

practice if the segment duration is sufficiently short an infeasible trajectory will violate

control constraints.

Shooting methods are therefore not well suited to on-board near-real-time trajectory

generation due to their poor stability and slow computation.

Betts
12

 gives a detailed description of direct shooting, and further references can be

found in von Stryk and Bulirsch
130

. A modification of the shooting methods, the

Adjoint method, is described in Polak
104

.

2.4.3.2 State and Control Parameterization

Parameterization of the states and controls leads to a system of algebraic equations from

which the parameters may be determined. The states and controls are parameterized in

the form

19

0

() ()
N

i i

i

t t 


y (2.13)

and, for a set of coefficients  and trial functions , the parameterized candidate

solution is substituted into the state equations (2.3) to give a residual error vector R at

each node. Then the inner product of R with test functions w provides constraints:

 , 0,k k k K w R (2.14)

where K is a set of discrete nodes along the trajectory.

Three widely-used methods for implementing Eq. (2.14) are:

 Lanczos-. Lanczos introduced the  method for determining the coefficients in

1938
86

; he used Chebyshev polynomials as the test functions w with the Chebyshev

inner product.

 Galerkin. In the Galerkin method the original basis functions are transformed into

new basis functions that satisfy the boundary conditions and then the new basis

functions are also used as the test functions w, i.e. the test functions are the same as

the trial functions
25

.

 Collocation. In the collocation method, the test functions are Dirac Delta functions,

which simplifies Eq. (2.14) to setting the residuals to zero
18

:

 0,k k K R (2.15)

Whichever method is chosen, the resulting parameter optimization problem is solved

using an NLP algorithm.

Hargraves and Paris
60

 and von Stryk and Bulirsch
130

 described direct collocation

methods using local parameterization functions. The NTG algorithm
96

 used B-splines

because of their local support property, and allowed the user to specify the distribution

of the collocation nodes.

Spectral methods
18, 129

 are widely used for solving ordinary and partial differential

equations, particularly in fluid dynamics, and use global parameterization functions.

20

Spectral methods that use collocation were termed pseudospectral methods by Orszag in

1972
101

. Fahroo and Ross
44

 described pseudospectral methods as spectral methods with

global interpolants and collocation at Gauss, Gauss-Radau or Gauss-Lobatto points, i.e.

the roots or extrema of orthogonal polynomials (“orthogonal collocation”) together with

0,1, or 2 end points. Hence orthogonal collocation and pseudospectral are often used

synonymously; Enright and Conway
38

 explained the relationship between direct

transcription and direct collocation as two perspectives on the same approach, and

Hull
65

 equated direct transcription with collocation. There are many variations on local,

spectral and pseudospectral methods, and due to the long history and wide range of

application of these methods the terminology varies considerably across the literature.

The preface in Trefethen
129

 and Chapters 3 and 21 of Boyd
18

 provide further

background on the origin and development of spectral and pseudospectral methods for

solving partial and ordinary differential equations.

In a pseudospectral method for optimal control on the interval   [-1,1], the states and

controls are interpolated over two sets of interpolation nodes N and M respectively

 () () ()i i

i N

L  


x x (2.16)

 () () ()i i

i M

L  



u u (2.17)

where the ~ accent denotes the parameterized approximations, and the basis functions L

and L

 are Lagrange polynomials (Fahroo and Ross

113
 showed that in general these need

not be Lagrange polynomials). Then

 () () ()i i

i N

L  


x x  (2.18)

The residual is evaluated at a set of collocation nodes K

 () ((), (),),k k k k k k K     R x f x u   (2.19)

21

For any given choice of nodes K, the derivatives of x at the nodes K can be expressed as

functions only of the values of x at the interpolation nodes N using a differentiation

matrix D

 () ()k ki i

i N

D 


x x (2.20)

The differentiation matrix is a key feature of pseudospectral methods and is readily

determined (Press et al.
108

, Berrut and Trefethen
11

, Fahroo and Ross
44

)

, ,

,

()

() ,
()

k j

j N j i k

ki i k

i N i j

j N j i

D L k K

 


 

 



 



  






 (2.21)

Clearly Dki is only dependent on the choice of two sets of nodes: the state interpolation

nodes N and the collocation nodes K, so it can be computed offline once, and does not

need to be updated during the optimization.

The residual conditions then become

1

() ((), (),) 0,
N

k ki i k k k

i

D k K   


   R x f x u  (2.22)

The integral term in Eq. (2.1) is evaluated by numerical quadrature, so the nodes used to

evaluate the objective are chosen to minimize the error in the quadrature formula, i.e.

Gaussian quadrature is used at the roots or extrema of orthogonal polynomials
18, 129

. If

the interpolation nodes are chosen in this way, the ill-conditioning that arises with

polynomial interpolation on uniformly-spaced grids is avoided. Since the Gauss nodes

do not include the end points, many methods employ Gauss-Radau or Gauss-Lobatto

nodes to explicitly include the initial and/or final boundary points. The interpolation

nodes N, M and the collocation nodes K need not be identical sets, and some methods

(e.g. the Gauss pseudospectral method
10

) use multiple overlapping node sets to enhance

accuracy and generate costate estimates.

Parameterizing the states and controls, using quadrature to approximate the integral in

the objective, and requiring that the residual be zero at the collocation nodes together

22

with the path constraints and boundary conditions, transforms the optimal control

problem into a constrained parameter optimization problem.

In the aerospace field pseudospectral methods are widely used for trajectory generation,

usually distinguished by the choice of the collocation points. In 1995 Elnagar et al.
37

described a Legendre pseudospectral method using Lagrange polynomial

parameterization with Legendre-Gauss-Lobatto points, and in 1998 Elnagar and

Kazemi
36

 described a variant using Chebyshev-Gauss-Lobatto points. Fahroo and Ross

have published a number of papers on both Chebyshev-Gauss-Lobatto
42

 and Legendre
40

pseudospectral methods, including the use of Legendre-Gauss-Radau points
43, 44

.

Another variant is the Gauss pseudospectral method described by Benson et al.
10

 in

2006 which uses Legendre-Gauss points.

An advantage of the Gauss and Legendre pseudospectral methods is the development of

methods to produce estimates of the costates
10, 40, 55

, by parameterizing the costates in a

similar form to x and u. These estimates are useful in two ways: they enable the

accuracy of the solution to be assessed, and if required they can be used as part of an

initial guess for an indirect method, typically multiple shooting.

A disadvantage of pseudospectral methods compared to inverse dynamics is the

dimension of the resulting NLP problem. For the Gauss pseudospectral method the

dimension is n(K+2)+mK (Huntington
66

) which, even with a low number of nodes

(typically 5-20), typically leads to dimensions of 𝒪(100); for example Yakimenko et al.
5

showed that using an Euler-angle point-mass aircraft model with only 6 states and 3

controls, for 200 nodes the dimension was 1801. For the inverse dynamics method the

dimension is dependent on the degrees of the spatial and airspeed parameterizations but

independent of the number of nodes, typically leading to a 4-15 dimension NLP

problem.

2.4.3.3 State Parameterization

Differential Inclusions

In 1994 Seywald
116

 introduced a direct method using differential inclusions, as an

alternative to collocation methods. The differential inclusion method does not require

23

the controls to be parameterized because a change of variables is used to replace the

controls with approximations to the states and state rates of change, and the control

constraints are replaced by constraining the state rates over each inter-node segment to

the attainable set. The states are parameterized and the required approximations of the

states are defined as functions of the parameterized values at the nodes

 1 1;
2

i i i i
i i

it
  

 
x x x x

x x (2.23)

The state equations are solved for u as functions of the states and state rates

 (,)u u x x (2.24)

Eqs. (2.23) are used to approximate u as

 (,)u u x x (2.25)

Eqs. (2.23) and (2.25) are substituted into the control constraints and state equations to

give algebraic constraint equations which, with any state constraints, form a set of

constraint equations for input to an NLP algorithm. Kumar and Seywald
83

 showed that

the dimension of an NLP problem in differential inclusion form was smaller, for the

same number of nodes, than the equivalent collocation form, and hence argued that the

solution would converge more quickly. Conway and Larson
26

 showed that the state rate

approximation Eq. (2.23) was equivalent to using implicit Euler quadrature, and argued

that collocation with higher order quadrature rules would achieve the same accuracy as

differential inclusions but require fewer nodes, and hence have lower NLP dimension.

Fahroo and Ross
41

 presented an analysis of the application of differential inclusions

with the Legendre pseudospectral method
40

, in which the differentiation matrix

increased the accuracy of the state derivative without needing to increase the number of

nodes; they concluded that this approach to discretizing the differential inclusions was

computationally competitive.

An advantage of the differential inclusion method is that it does not require u to be

parameterized, nor any initial guess of u. However, irrespective of the dimension of the

24

NLP problem compared to a collocation formulation, the differential inclusion method

suffers from four disadvantages:

 Unless the state equations are linear in u, solving them for u is difficult and likely to

require an iterative method
61, 83

.

 It is more difficult to obtain analytical derivatives of the constraints than for the

collocation formulation
83

.

 It does not provide a solution for u, which must be evaluated once the state solution

has been found.

 A Bolza problem has to be transformed to a Mayer problem (which can usually be

accomplished by introducing one additional state variable)
41

.

In passing, it is noted that the well-known point-mass model of wind-axes aircraft

equations of motion using Euler-angles to represent orientation (e.g. Stengel
122

) is not

linear in all the controls (Section 3.2.2). The quaternion-based point-mass model

introduced in Chapter 4 is linear in u and is therefore better suited to a differential

inclusion formulation than the Euler-angle model.

Inverse Simulation

In the 1990s two classes of “inverse simulation” methods to solve trajectory generation

problems appeared in the literature: integration-based and differentiation-based

methods. In 1991 Hess et al.
61

 described an integration-based method, in which an

output trajectory is discretized, an initial guess of u(t0) is applied to a numerical

integration routine to generate an output at the next discretization node, the error

between the desired output trajectory and the generated output is evaluated and

Newton’s method is used to minimize this error over admissible u. The process is then

repeated for the next discretization segment. Although the method avoided the inherent

noisiness of numerical differentiation, the method was susceptible to oscillations
89

. It

also required numerical integration, which is computationally expensive. The similarity

to shooting methods is clear.

In 1996 Rutherford and Thomson
114

 described and compared integration-based and

differentiation-based inverse simulation. The differentiation-based approach used

numerical differentiation to derive the state rates and controls directly from the desired

25

states using the state equations, again using Newton’s method for solving the system of

equations. They concluded that both the integration and differentiation inverse

simulation methods suffered from instabilities in certain cases, and that the

differentiation method was an order of magnitude faster.

Inverse Dynamics

Inverse dynamics has been used for many years for flight control (Hess et al.
61

, Lane

and Stengel
87

) to evaluate the controls that drive a system to follow a desired state

trajectory.

In 1993 Lu
91

 described how inverse dynamics could be extended to trajectory

optimization applied to a low-Earth orbit ascent trajectory; he used a point mass vehicle

model in polar coordinates, cubic splines as parameterization functions, and

parameterized one state and one control thus also using numerical integration. In their

1996 paper, Kato and Sugiura
74

 described an inverse dynamics approach to trajectory

generation in which the control vector was calculated from the parameterized output

trajectory by inverting the state equations. They used a body-axes aircraft model, with

angle of attack (), sideslip () and roll angle () as controls, and manipulated the force

and moment equations to obtain a system of nonlinear equations in , , and , which

was then solved using an iterative method. They used finite differences for numerical

differentiation. Sentoh and Bryson
115

 adapted Kato and Sugiura’s method as an initial

guess for an optimal control method. Lou and Bryson
90

 used a wind-axes aircraft model

with , bank angle () and thrust as controls; since they parameterized thrust but did not

parameterize a sufficient subset of the states (see next but one paragraph), their method

required numerical integration. They used the inverse dynamics output as an initial

guess for an optimal control problem formulated as a differential inclusion problem.

In 1999 Jaddu and Shimemura
68, 69

 used state parameterization by Chebyshev

polynomials to transform an optimal control problem with quadratic performance index

0

() () ()
ft

T T T

f fJ t t dt  x Sx x Qx u Ru (2.26)

subject to state equations (2.3), boundary conditions (2.4) and (2.5), and linear bounds

on u, into a quadratic NLP problem with u as a function of the coefficients of the state

26

parameterization coefficients, i.e. the problem was treated as an inverse dynamics

trajectory generation problem.

For a consistent set of n state equations with m controls, if m  n then the state equations

form an over-determined system for the m controls and, provided that sufficient states

are parameterized with suitably smooth functions to enable the remaining states to be

expressed as a function of the parameterized states, all the controls are uniquely defined

by the set of parameterized states and their analytic derivatives, without numerical

integration of any of the state equations. The parameterization functions must be

chosen to be sufficiently continuous that all required derivatives are available

analytically. Therefore, it is desirable that the state equations allow a set of

parameterized states to be chosen such that each control can be expressed as

  (), , ,... b

j j P P P Pu u x x x x  (2.27)

where

    : | , : 1,... ,P ix i p p n   x P P (2.28)

so that the controls can be evaluated analytically from xp and its derivatives. If the

controls cannot be evaluated analytically, then an iterative approach is required.

Fliess et al.
48, 49

 introduced the idea of differential flatness, which is a generalized set of

conditions for evaluating the controls from outputs that are functions of the states and

controls:

 the state and control vectors must be directly expressible, without integrating any

differential equations, as real analytic functions of a flat output y and a finite

number of its derivatives:

() ()(, , ,...); (, , ,...); ,s q s q   x g y y y y u h y y y y     (2.29)

and

27

 any component of the flat output y must be expressible as a real analytic function of

the state vector, control vector, and a finite number of derivatives of the control

vector:

()(, , , ,...);r r  y w x u u u u   (2.30)

The same authors
49

 also showed that a differentially flat system is controllable, and

Martin
93

 showed that a conventional fixed wing aircraft in forward flight is

differentially flat.

The key benefit of differential flatness in this context is that it guarantees that, for a

given y trajectory, the corresponding x and u trajectories can be evaluated without

integrating any of the state equations. The inverse dynamics method for solving a

trajectory generation problem is then reduced to the NLP problem of finding an output

trajectory y

 that satisfies the boundary conditions (Eqs. (2.4) and (2.5)) and

 arg min ()J




y Y
y y (2.31)

where Y is the set of admissible output trajectories and path constraints are expressed as

functions of the output space

 (, , ,...) s y y y 0  (2.32)

Ross and Fahroo
112

 note that the choice of outputs y instead of states x might make the

objective, boundary conditions, and constraints more complicated, and hence might

worsen real time trajectory generation. In the inverse dynamics method investigated in

this research the outputs are simply a subset of the states, which avoids this potential

problem.

In aircraft state-space models the state vector usually includes the aircraft position. It is

obvious that, when position variables are parameterized with respect to time, the time

derivatives of position are then also defined, i.e. the velocity of the dynamical system is

defined and cannot be optimized independently of the position variables. Lu
91

addressed this problem by transforming the aircraft model so that polar angle was the

independent variable. In his 2000 paper that introduced the inverse dynamics method to

28

the West
133

 Yakimenko described work carried out in Russia by Taranenko and

colleagues
126, 127

, originating in the 1960s. In this work Taranenko introduced, as part of

a collocation method, the concept of a real nonnegative strictly monotonically

increasing “virtual arc” [0f]: parameterizing the states with respect to  allows the

speed to be parameterized (also with respect to ) independently of position. Taranenko

also defined the scalar “speed factor” ≔ d/dt (not costates or Lagrange multipliers)

which defines the relationship between functions of  and functions of time.

Taranenko used low-order polynomials and trigonometric functions for

parameterization, in collaboration with Momdzhi he also used cubic splines; other

Russian research described by Yakimenko used trigonometric functions for helical

manoeuvres.

In his 2000, 2008 and 2010 papers
5, 133, 135

 Yakimenko used the virtual arc with degree 7

global polynomials to parameterize the position states of a point-mass aircraft model

that satisfied Eq. (2.27). He discussed using polynomials to parameterize v, but in his

examples chose to parameterize one control (throttle) as a bang-bang control with two

switching points and to numerically integrate the corresponding state equation.

Kaminer et al.
71-73

 applied the method to generate trajectories for multiple unmanned

aircraft and described parameterizing airspeed explicitly, or implicitly via , thus

parameterizing a sufficient subset of states and obviating the need for integration of any

state equations to evaluate u.

Numerical simulations
5, 17, 114, 135

 suggest that this inverse dynamics method is faster

than other candidate direct methods such as shooting or pseudospectral methods, and

fast enough for on-board near-real-time aircraft trajectory generation. However, the

literature typically examines a few examples of the performance of the method in detail,

rather than a statistical analysis of performance across a larger sample.

2.5 Nonlinear Programming Algorithms

Indirect and direct methods transcribe the optimal control problem from a functional

optimization (infinite-dimensional) problem into a parameter optimization (finite-

dimensional) problem which is solved using a nonlinear programming algorithm. The

29

choice of NLP algorithm is critical to the robustness, optimality, and computational

speed of the method in which it is used. This choice is separate from the choice of

indirect or direct method, but the two decisions are inter-related, by for example the

availability of analytic gradients and second derivatives, by the quality of initial

guesses, or by choice of merit function for a line search
12

.

The parameter optimization problem may be written

 arg min ()J




x X
x x (2.33)

subject to

 { | , }n

l u   X x x x x x  (2.34)

() 0,

() 0,

i

i

f i E

f i I

 

 

x

x
 (2.35)

with

 {1,... }eE m (2.36)

 { 1,... }eI m m  (2.37)

In this section the nomenclature is different to that of the preceding sections; in

particular n, x, , f, and J have different meanings: n is the dimension of the problem, x

is a vector of n parameters (free variables), xl and xu are upper and lower bounds on x, f

is a vector of constraint functions,  (to appear below) is a vector of Lagrange

multipliers (not costates), and J is a scalar objective function of x.

2.5.1 Gradient Algorithms

For an unconstrained problem E=I=, the classical Newton’s method (e.g. Fletcher
47

)

uses the iteration

(1) () ()k k k  x x p (2.38)

30

where the Newton search direction p is defined by

  
1

() () ()k k k


 p G g (2.39)

The superscript denotes the iteration count, g is the gradient of J and G is the Hessian of

J. For a quadratic function, Newton’s method converges in a single iteration to a

solution that satisfies the first and second order necessary conditions for optimality

2

() : ()

() : () 0

J

J



 

 

 

g x x 0

G x x
 (2.40)

The second order sufficient condition is that G(x

) be positive definite. Clearly

Newton’s method requires that J be at least twice continuously differentiable.

Newton’s method is quadratically convergent close to a minimum provided that G(x
(k)

)

is positive definite, but the method may be slow to converge, or may diverge (because

although the Newton direction at a local minimum x

 is zero it may be uphill at x

(k)
, if

for example the underlying quadratic model is not a good approximation to J at x
(k)

, and

G(x
(k)

) may not be positive definite). This restricts the radius of convergence of the

method. Two approaches to modifying Eqs. (2.38)-(2.39) to stabilize the method are

line searches and trust regions (Nocedal and Wright
99

).

In the line search approach (Powell
106

, Gill
54

) a step length  is introduced

(1) () ()k k k  x x p (2.41)

The step length is usually determined either by a minimum of a local cubic or quadratic

model, and to satisfy a sufficient decrease condition. Trust region methods handle non-

symmetric-positive-definite Hessians (Kelley
75

), and modify not just the step length but

also the search direction to minimize a model function within an n-dimensional region

around the current iterate.

The requirement to evaluate the inverse of the Hessian to solve Eq. (2.39) is a major

limitation. First order gradient methods use the gradient but not the Hessian: the

method of steepest descent is equivalent to replacing the Hessian in Eq. (2.39) with the

31

identity matrix. Other methods such as conjugate gradient and Levenberg-Marquadt

use modified search directions based on the gradient but not on the Hessian. Although

these methods retain global convergence (convergence to a local minimum from any

starting point, but not necessarily convergence to a global minimum), they are generally

less efficient than quasi-Newton methods.

Quasi-Newton methods seek to retain the efficiency of Newton’s method without the

problems of evaluating G by replacing it in Eq. (2.39) with a symmetric-positive-

definite approximation that is updated iteratively and converges to G; the most widely-

used technique in known as the BFGS update after Broyden, Fletcher, Goldfarb, and

Shanno who independently proposed the update in 1970 (Fletcher
47

). Hence quasi-

Newton methods seek solutions that satisfy first order optimality conditions, utilizing

function and gradient information and an approximation to the Hessian.

When m constraints apply (including inequality and equality constraints), Newton or

quasi-Newton methods can be applied by replacing J with an augmented objective, the

Lagrangian, using m Lagrange multipliers 

T

aJ J  f (2.42)

In this case, subject to appropriate constraint qualifications (Bazaraa et al.
7
), the first

order optimality conditions become the Karush-Kuhn-Tucker (KKT) necessary

conditions

() : (,)

() 0,

() 0,

0,

() 0,

a

i

i

i

i i

J

f x i E

f x i I

i I

f x i E I





 







 

  

 

 

 

  

g x x 0

 (2.43)

Under suitable convexity and differentiability conditions
7
 on J and f, the KKT

conditions are also sufficient for x to be a local minimum of J. The KKT conditions can

be used to determine the search direction for a line search method and to verify that an

32

optimal solution has been found. The Lagrange multipliers can be used to identify the

active set and assess the sensitivity of the optimal solution to changes in the constraints.

The quasi-Newton update is usually implemented as part of a sequential quadratic

programming (SQP) method. At each major iteration the objective is approximated by

a quadratic function with linearized constraints and an estimate of the active set. Since

the objective, constraints, and active set are approximations, the solution of the sub-

problem is only an approximation to the solution of the original problem, which is used

to generate a step length and direction, and updated active set estimate, for the next

major iteration. The BFGS update is applied at each major iteration (the quadratic sub-

problem assumes a constant Hessian by definition). Maintaining estimates of the active

set is computationally expensive, since there are 2
a
 possible sets of a inequality

constraints.

Sequential quadratic programming methods have the advantages of global convergence,

rapid convergence through exploitation of the Hessian approximation, accuracy through

satisfaction of the KKT conditions, and direct handling of equality and inequality

constraints, but they also require expensive arithmetic operations to

 Update the Hessian approximation.

 Update the quadratic objective, linearized constraints and active set.

 Solve the quadratic sub-problems.

 Apply line search or trust region stabilization of step length and direction.

 Evaluate the KKT conditions.

These methods are sensitive to the smoothness and convexity of the objective and

constraints. If analytic derivatives are not available and must be evaluated by finite

differences then the concomitant errors will, at best, slow convergence, and may cause

non-convergence. Nocedal and Wright
99

 also note that SQP methods tend to be most

efficient when there are almost as many active constraints as dimensions.

Quasi-Newton SQP algorithms such as SNOPT
52, 53

 have been used successfully in

well-known implementations of the Gauss, Legendre, and Chebyshev pseudospectral

methods described in Section 2.4.3.2.

33

2.5.2 Derivative-Free Algorithms

Trajectory generation objectives and constraints are in general nonsmooth, analytic

derivatives are impracticable, and the requirement that the objective and constraints be

at least one or two times continuously differentiable may not be satisfied. Derivative-

free unconstrained optimization methods are characterized by not requiring the gradient

or Hessian of the objective. They do not evaluate the KKT conditions or maintain

active set estimates, and as such are computationally simpler, may have a larger radius

of convergence, and can be more robust on nonsmooth or discontinuous problems, but

the solution may not be an accurate minimum or a KKT point. Since they do not

exploit derivatives the search directions may be less optimal than for gradient methods,

especially those that use exact or approximate Hessians: convergence is therefore

slower. Derivative-free methods have been published since at least the 1950s, but

analysis and proofs of multi-dimensional convergence are still appearing
81, 84

. Two of

the most successful derivative-free methods are the Nelder-Mead simplex algorithm
98

and the Hooke-Jeeves pattern search
64

, introduced in 1961 and 1965 respectively.

The Nelder-Mead simplex algorithm has been widely used in many fields, despite a lack

of convergence proofs until the late 1990s. The algorithm builds a simplex of points,

initially regular, about the initial guess and evaluates the objective at each point of the

simplex. It then uses a search direction away from the worst point, through the centroid

of the remaining points, with a user-defined step length. If this “reflection” point is an

improvement on the second worst point in the simplex, but not on the best simplex

point, it is accepted. If the reflection is better than the best simplex point an expansion

point is evaluated by stepping further in the same direction and the best of the reflection

or expansion points is accepted. Otherwise contraction points are evaluated by using

reduced step lengths with the same search direction. If a better point than the worst

point is found, it is accepted. Once a point has been accepted, the accepted point

replaces the worst point in the simplex; if no point is accepted, the simplex volume is

shrunk. The process is then iterated until the termination criteria are satisfied. The

1997 paper by Lagarias et al.
84

 provides an updated description of the algorithm which

removes some ambiguities of the original paper, and provides a convergence analysis.

34

In 2002 Price et al.
109

 described a provably-convergent variant (for C
1
 functions subject

to certain conditions) of the Nelder-Mead algorithm, building on Lagarias et al.
84

. Prior

to Price’s paper there was little convergence theory for the algorithm despite its wide

use, and in 1998 McKinnon (see Powell
107

) demonstrated that it failed on a class of

convex smooth functions in two dimensions, due to degeneration of the simplex. Price

modified the algorithm to measure the volume of the simplex, evaluate the function at

an additional point and reshape the simplex using a new basis set of orthogonal vectors

if the simplex failed to meet volume requirements, so as to guarantee convergence. The

shrink step of the original algorithm was removed. These modifications improve

theoretical convergence, but complicate the algorithm; however it remains less complex

than the SQP methods.

The Hooke-Jeeves algorithm explores around a base point (initialized to the initial

guess) along n fixed search directions starting with a user-specified step length (which

may be different in each direction). In the original algorithm, the exploration search

directions are the dimensions of x. If a reduction in the objective is found, the

algorithm makes a pattern move from the base point of twice the vector difference of

the base point and the current best point. An exploration is then made around this

pattern point; if a reduction is found compared to the base point, the base point is

updated with the latest best point and a further pattern move is made. When a pattern

move fails the previous best point becomes the base point and an exploration is made

around this new base point; if a base point exploration fails the step length is reduced,

and a new exploration around the same base point is made. When the improvement in

the objective and the step length are less than user-specified values the algorithm

terminates. The algorithm is easily implemented and code is readily available, e.g.

Kelley
75

, who also provided a convergence proof and implemented a caching strategy to

reduce re-evaluation of points, or Bunday
24

. In 1997 Torczon
128

 provided a

convergence proof that relied only on simple decrease in the objective (as used in the

original algorithm) rather than sufficient decrease. These proofs assume that the

objective has continuous first derivatives (Powell
107

), although the derivatives are not

used by the algorithm.

35

Each Hooke-Jeeves exploration requires up to 2n function evaluations; the number of

reflection, expansion and contraction points in each iteration of the Nelder-Mead

algorithm is not explicitly dependent on n. Hence the number of function evaluations

required by the Nelder-Mead algorithm is less sensitive to n than that of the Hooke-

Jeeves algorithm.

The Nelder-Mead and Hooke-Jeeves algorithms require adaptation to apply to

constrained optimization. To incorporate nonlinear constraints the constrained problem

may be transformed to a sequence of unconstrained problems by adding a barrier or

penalty function to the objective.

Barrier functions seek to keep x within a feasible region by increasing the modified

objective as a constraint boundary is approached; common barrier functions are the

logarithm or inverse
16

. These methods may fail when a constraint is violated because

the barrier function makes it difficult for the algorithm to re-enter a feasible region

(Price et al.
110

). A second disadvantage of these methods is that the edges of the

feasible regions, where an optimal solution might be expected to lie, are penalized.

Penalty functions include a term for each constraint which is zero when the constraint is

not violated and positive otherwise (Nocedal and Wright
99

), thus not penalizing the

edges of feasible regions and creating a pressure towards feasibility. The standard

transformation
56

 of the parameter optimization problem (Eqs. (2.33)-(2.37)) using

penalty functions may be written

 arg min(() ())J P 


 

x X
x x c (2.44)

subject to

 l u x x x (2.45)

where

(),

max(0, ()),

i

i

i

c i E
c

c i I




 


x

x
 (2.46)

36

The penalty function is a weighted sum of the terms in c
+
; the penalty weights ki are

chosen by trial and error so as to balance the relative importance of each constraint.

From an engineering perspective, the penalty weights may also be considered as

ensuring that the dimensions (mass, distance, time, etc) of each term are consistent with

the other terms.

Common penalty functions are the quadratic or squared two-norm

2

2

i i

i E I

P k c

 

  (2.47)

or the one, two or infinity norms

 , {1,2, }i i a
i E I

P k c a

 

   (2.48)

The squared two-norm is smooth but not exact: exact penalty functions have the

property that a finite value of  exists at which the solution x

 of Eq. (2.44) equals the

solution of the constrained problem Eq. (2.33). However, exact penalty functions are

nonsmooth, hence the optimization may not converge to a KKT point. Griffin and

Kolda
56

 described a number of exact, smooth, and “smoothed exact” penalty functions

in their 2007 paper, and presented comparative results using the Asynchronous Parallel

Pattern Search (APPS) algorithm (Kolda
80

 and Kolda et al
81

).

Griffin and Kolda also described an algorithmic framework for implementing a

sequential derivative-free algorithm; this framework is the basis for all of the sequential

derivative-free optimization results in this document and is described in Section 6.2.6.2.

It is based on the convergence requirement (Nocedal and Wright
99

) that a sequence of

unconstrained problems Eq. (2.44) is solved with    so that the sequence of

solutions of Eq. (2.44) converges to the minimizer of the constrained problem. The rate

at which  is increased is not critical to the convergence proof, but does affect the rate

of convergence.

37

2.5.3 Stochastic and Evolutionary Algorithms

The convergence analyses of the SQP and derivative-free algorithms rely on the

convexity and smoothness of the objective and constraints. They are not global

optimization algorithms: a local minimum produced by them may not be a global

minimum and will depend on the relative locations of the initial guess and local minima.

Methods that depend on a single initial guess are therefore not well suited to

optimization of multimodal functions unless the initial guess can be tuned to the specific

instance of the problem. Von Stryk and Bulirsch
130

 reported examples, from their own

work and others’, of discretized optimal control problems with multiple local minima,

and noted that direct methods may only find a local minimum well away from the true

solution of the optimality conditions of the two point boundary value problem.

Examples are given in Sections 3.4.4, 3.4.7 and 3.4.8 below that show that the objective

and constraints of the inverse dynamics method may in general be nonsmooth, non-

convex, and multimodal. Hence an algorithm that accepts only downhill moves from a

single initial guess may not converge to the true solution. This motivates consideration

of algorithms that either accept uphill moves or that use multiple initial guesses.

Simulated Annealing (SA) (Kirkpatrick et al.
78

) is a widely-used stochastic algorithm

that accepts uphill moves starting with a single initial guess. At each iteration k, with

current iterate xb, a user-specified move function M is used to generate a candidate

iterate x. The selection criterion for choosing whether to replace xb with x requires two

user-specified functions: an acceptance probability function P (distinct from the penalty

function) and a “temperature” function T, where

  ((), (), ()), 0,1bP P J J T k P x x (2.49)

and T is monotonically decreasing with k, P > 0 when J(xb) > J(x), and P  0 as

(T  0  J(xb) > J(x)); this ensures that the probability of accepting an uphill move

decreases as T decreases. The original P function was

() ()

min 1,exp bJ J
P

T

   
   

  

x x
 (2.50)

38

and it has been shown (see Ingber
67

 who also describes the origins of the algorithm and

numerous improvements to it including ensembles to exploit parallel processing) that if

M uses a Gaussian distribution then the algorithm statistically converges, but slowly, if

T is given by

 0

ln

T
T

k
 (2.51)

The user must therefore provide three functions: M, T and P. If a random search is used

for M, the algorithm does not exploit any structure of the objective or constraints and

will therefore be slow but, for problems with discontinuities or in which function values

away from the minimum convey little information about the location of the minimum,

will be robust. The rate of convergence and robustness is also dependent on the choice

of annealing schedule and acceptance probability functions, which must usually be

determined empirically. Parameter bounds may be incorporated in M, and nonlinear

problem constraints are typically incorporated via penalty functions.

Lu
92

 used a continuous variant of SA, for which convergence to a global minimum had

been proved, to solve three examples of aircraft trajectory generation problems using a

six degrees of freedom aircraft model. The variant of SA randomly generated a search

direction and a step length, constrained to lie in a feasible parameter space, with a

modified T function based on a chi-squared distribution and the closeness of the iterate

to the optimal. Controls were parameterized, equality constraints were included by

penalty functions, and direct shooting was used to generate the trajectory. Lu found that

the algorithm was not sensitive to penalty weights and that the solutions were more

accurate than those obtained using a Nelder-Mead algorithm (it is inferred that the

Nelder-Mead algorithm was not applied sequentially). He noted that Nelder-Mead, and

two unnamed SQP algorithms, often failed to converge to any solution whereas SA

converged in each case.

Differential Evolution (DE)
110

 is a global optimization algorithm introduced by Price

and Storn in 1995 that uses multiple pseudo-random initial guesses. It is different from

genetic algorithms in that it uses floating-point encoding and arithmetic operations,

rather than bit encoding and logical operations, so that it is designed to handle

39

continuous problems. It uses an initial population of Np values of x generated by a

pseudo-random number generator. Any initial distribution may be used, but the most

common approach is a uniform distribution.

In the most widely-used unconstrained version, denoted by Price as “DE/Rand/1/Bin”,

the objectives at each x of a generation are evaluated once; for each x (the target) three

other distinct points (r0, r1, and r2) are randomly chosen from the current population

and a new vector v is derived by combining (mutation) r0, r1, and r2. A scale factor F is

used as a weighting function in mutation. The new vector v is then combined with the

target x by selecting elements from x or v (crossover) depending on whether a pseudo-

random number (generated separately for each element) is less than a user-defined

crossover probability Cr, to create a trial vector u. "Rand" denotes that r0 is chosen

randomly from the population, "1" denotes that a single vector difference is used in

mutation, and "Bin" denotes that crossover selects trial vector elements pseudo-

randomly from each of x and v. In the unconstrained version, x or u is selected

(selection) to be added to the next generation according to which has the lowest

objective value. The algorithm uses random numbers to generate the initial population,

to select r0, r1, and r2 for each x from the current generation, and as comparators with Cr

to decide, for each element of u, whether the element is copied from x or v (the

algorithm ensures that at least one element comes from v).

Lampinen
85

 modified the algorithm to take account of equality and inequality nonlinear

constraints in 2002, directly using the feasibility of candidate vectors rather than

requiring penalty functions or associated weights. Bounds on x are easily applied, a

simple technique recommended by Price
110

 is to replace any element of u which

exceeds a bound by a randomly-chosen value between the corresponding value of x and

the exceeded bound.

DE has a significant drawback for use in aerospace applications: a lack of convergence

proofs despite empirical success.

40

2.5.4 Discussion

There are very many other nonlinear programming algorithms in the literature,

including variants of gradient algorithms, interior-point algorithms, derivative-free

algorithms, augmented Lagrangian algorithms and genetic and evolutionary algorithms,

which might also be applicable to aircraft trajectory generation. Each algorithm

requires user-specified settings which have a significant effect on whether or not the

algorithm converges, its rate of convergence, and the optimality of the solution: SNOPT

has approximately 70 settings although typically only a few will need to be explicitly

chosen by the user; the derivative-free algorithms and DE each have 10-20 settings

dependent on implementation.

SNOPT is reasonably claimed by Yakimenko et al.
5, 135

 to be likely to improve the

computational speed of the inverse dynamics method over the Hooke-Jeeves method

used in their work, but there is no specific published data to support this claim. In his

2000 paper
133

 Yakimenko recommended the Nelder-Mead or Hooke-Jeeves algorithms

for convergence robustness, and a two-stage approach in which a feasible solution is

obtained in the first stage that is then used as an initial guess for the second stage.

SNOPT, Sequential Hooke-Jeeves (SHJ), and Sequential Nelder-Mead (SNM) are

therefore chosen to test these claims and recommendations and to provide additional

data with which to assess the performance of the inverse dynamics method.

DE is naturally well suited to parallel implementation, handles parameter bounds and

nonlinear constraints directly without penalty functions or weights, and does not rely on

a single initial guess. The lack of convergence proofs is a disadvantage, but Nelder-

Mead and Hooke-Jeeves were widely used without such proofs for many years, and

most proofs rely on convexity and differentiability of the objective and constraints;

these conditions are not, in general, true for the inverse dynamics method (Chapter 3).

DE has therefore been included in the comparative numerical performance analysis of

Chapter 6.

SA is also attractive due to its ability to accept uphill moves and hence find a global

solution, but requires a user-specified M function (which may be pseudo-random) to

generate a search step and direction and a sufficiently slow annealing schedule: it may

41

be slow to converge and less robust than DE; analysis of its performance with the

inverse dynamics method is left as possible future research.

An obvious and well-known two-stage approach would be to use a global algorithm to

generate initial guesses for a deterministic local algorithm, e.g. to use DE or SA to

generate initial guesses for SNOPT, Hooke-Jeeves or Nelder-Mead algorithms. Parallel

DE is attractive in this scenario.

The performance of SNOPT, SNM, SHJ, and DE with the inverse dynamics method is

described in Chapter 6. Table 2-1 summarizes the key attributes on which these

algorithms were selected.

42

Algorithm Attributes

SNOPT Quasi-Newton; single initial guess;

local not global solution;

utilizes gradient and the BFGS Hessian approximation for

efficiency;

satisfies KKT conditions for accuracy;

requires good initial guess;

sensitive to scaling and conditioning;

explicitly handles parameter bounds and nonlinear

constraints without penalty weights;

computationally complex and hence less easy to implement

with limited on-board hardware;

can use finite differences for gradients;

disadvantaged by non-availability of analytic derivatives;

many user-specified settings;

algorithm of choice for Gauss, Legendre, and Chebyshev

pseudospectral methods.

Hooke-Jeeves

(sequential)

Derivative-free; single initial guess;

local not global solution;

less efficient than gradient methods;

does not explicitly satisfy KKT conditions;

convergence proofs exist for smooth objectives;

easy to apply parameter bounds;

requires penalty weights to handle constraints;

requires sequential implementation to handle constraints;

search direction set cannot degenerate;

more robust on nonsmooth problems than quasi-Newton;

used by Yakimenko and others with the inverse dynamics

method.

Nelder-Mead

(sequential)

As for Hooke-Jeeves, except that the simplex can

degenerate so Price’s modification is required;

more complex than Hooke-Jeeves;

difficult to apply parameter bounds;

number of points evaluated per iteration is less dependent

than Hooke-Jeeves on problem dimension.

Differential Evolution Global solution; multiple initial guesses;

easy to implement in parallel;

few, simple, user-specified settings;

stochastic therefore slow;

lack of convergence proofs;

explicitly handles parameter bounds and nonlinear

constraints without penalty weights;

easy to implement with limited on-board hardware.

Table 2-1. Attributes of Selected NLP Algorithms

43

3 THE INVERSE DYNAMICS METHOD

3.1 Introduction

This chapter focuses on the algorithm of the inverse dynamics method. The next two

sections are preparatory: Section 3.2 describes the inverse dynamics method as

previously published, and Section 3.3 describes the hardware and software environment

on which the experiments described in this document were carried out.

Section 3.4 presents the author's analysis of the method, including numerical results

obtained using the environment of Section 3.3, and introduces modifications to

overcome some of the limitations identified in the analysis. The analysis is presented in

the following sequence although the order of the sub-sections is not critical: Section

3.4.1, in preparation for Chapter 4, describes, in the context of the inverse dynamics

method, the well-known limitations of the Euler-angle model; Sections 3.4.2 - 3.4.6

describe problems and limitations arising from assumptions, parameterization, and

discretization; Section 3.4.7 describes constraint discontinuities; Section 3.4.8 describes

the multimodality of the constrained objective; Section 3.4.9 describes the need to use

node and segment variables; and Section 3.4.10 describes further observations on the

method.

Section 3.5 describes research into the use of local quadratic and cubic interpolation for

evaluating constraints, leading to the finding that using local quadratic interpolation

improves computational speed and constraint accuracy compared to the previous

reliance on node values only.

The main contributions in this chapter are: the handling of the algorithmic singularities

in Sections 3.4.2 - 3.4.6; the observations on constraint discontinuities and the examples

of multimodality in Section 3.4.8; the combination of node and segment-based

expressions in Section 3.4.9; the observations in Sections 3.4.10; and the introduction in

Section 3.5 of local quadratic interpolation of constraints.

44

3.2 The Baseline Algorithm

Yakimenko combined the following ideas in his seminal 2000 paper
133

 on the inverse

dynamics method:

 Taranenko’s virtual arc and speed factor thereby allowing independent

parameterization of position and airspeed.

 Degree 7 power series polynomials as global parameterization functions for x, y,

and z.

 A wind frame Euler-angle-based point-mass aircraft model that satisfies Eq. (2.27)

when x, y, z, and v are parameterized, so that u may be evaluated analytically.

These attributes allow analytic evaluation of the controls from the state equations, and

bring three potential advantages over other direct methods:

 When the airspeed is explicitly parameterized by a global polynomial that satisfies

velocity and acceleration conditions at the boundary points, the NLP dimension of

this method is 1+nr+nv : 1 for the value of  at the final boundary, nr for the free

spatial coefficients (for degree 7 polynomials nr =6), and nv for the free airspeed

coefficients (e.g. for a quintic polynomial nv =2), leading to a typical dimension of

9.

 In pseudospectral methods, the state equations are enforced at collocation nodes by

explicit constraints on residuals, i.e. the search space includes trajectories that

violate the state equations. The search space of the inverse dynamics method is

automatically restricted to a region that satisfies the state equations. (In both

methods control constraints are applied to ensure control feasibility.) Hence the

ratio of feasible trajectory space to the search space should be larger for the inverse

dynamics method than for a pseudospectral method.

 No numerical integration or differentiation of the state equations is required,

although quadrature is required for evaluation of any integral terms in the objective

function.

45

The following assumptions are applied

Assumption 1 0v 

Assumption 2 , 0W z z z  z l l l


Assumption 3 0 

i.e. positive airspeed, wind frame z-axis aligned with the negative direction of the non-

zero normal load factor, and zero sideslip. Zero wind is also assumed. Assumption 1 is

required physically for aerodynamic lift and mathematically for excluding singularities.

Assumption 2 sets the bank angle, and in this form limits the method to positive-g

trajectories; Chapter 7 introduces an extension to the method to allow negative-g

trajectories.

Without loss of generality, t0 ≔ 0 and 0 ≔ 0. Each trajectory is discretized at N nodes

j  {1,...N}; each inter-node interval is denoted as a "segment". For uniformly-spaced

nodes

1

f

N


 


 (3.1)

3.2.1 Virtual Arc

With  defined as

 :
d

dt


  (3.2)

then, as described by Kaminer et al.
73

d d

v
dt d




 
r r

 (3.3)

and since can be varied independently of r, r is not a function of r and position and

airspeed can be parameterized independently with respect to .

For an arbitrary variable  Eq. (3.2) leads directly to

46

    (3.4)

   ,         (3.5)

3 2 2 23 ()                  (3.6)

3.2.2 Aircraft Dynamical Model

The state space model of the aircraft dynamics is chosen to balance fidelity against

computational load; simple point-mass models of conventional aircraft flight dynamics

have been well known since at least the 1960s (e.g. Miele
95

); Menon
94

 described a

point-mass dynamical model for aircraft pursuit-evasion modelling using Cartesian

coordinates and Euler-angle orientation representation, and Lou and Bryson
90

investigated point mass models for precision aerobatic manoeuvres. These wind frame

models are simpler than body frame models because angle of attack and sideslip do not

appear explicitly, and the models satisfy Eq. (2.27): u can therefore be evaluated

analytically.

A well-known Euler-angle system with state vector (x, y, z, v,  )
T
 and control vector

(ax, lz, )
T

 is defined by the state equations

cos cos , cos sin , sin

(cos cos) sin
, ,

cos

z z
x

x v y v z v

l g l
v a

v v

    

  
 



   


  

  


 (3.7)

with controls

 sinx

T D
a g

M



  (3.8)

     
1

222
cos cosz zl v g v      l  (3.9)

cos

arctan
cos

v

v g

 


 

 
  

 




 (3.10)

47

where arctan is the 4-quadrant inverse tangent. Clearly, with outputs (x, y, z)
T
 the above

model is differentially flat, subject to assumptions 1-3, except when 2   .

3.2.3 Spatial and Airspeed Parameterization

Spatial parameterization by a global degree 7 power-series polynomial in each

dimension is guaranteed to meet position, velocity and acceleration boundary

conditions, and allows the third derivatives of the position vector (“jerk”) at the

boundary points as a vector of six free optimization variables
133

.

Position in each dimension is parameterized as

7

0

() i

i

i

x a 


 (3.11)

where the coefficients are defined by third-order Hermite interpolation at the boundary

points

0 0 1 0 2 0 3 0

0 0 0 0

4 2 3 4

0 0 0 0

5 2 3 4 5

6

, , / 2, / 6,

2 8 30 60 180 240 420()1

12

10 20 140 200 780 900 1680()1

20

1

3

f f f f

f f f f

f f f f

f f f f

a x a x a x a x

x x x x x x x x
a

x x x x x x x x
a

a

   

   

     

         
      

 

         
     

 


0 0 0 0

3 4 5 6

0 0 0 0

7 4 5 6 7

15 20 195 225 1020 1080 2100()

0

7() 84() 420() 840()1

42

f f f f

f f f f

f f f f

f f f f

x x x x x x x x

x x x x x x x x
a

   

   

         
     
 

         
     

 

 (3.12)

Airspeed may be parameterized explicitly by a global polynomial of degree dv. If

airspeed and acceleration are defined and higher derivatives are free, then airspeed

requires at least a cubic polynomial to satisfy the boundary conditions with zero degrees

of freedom, and for dv > 3 there are dv  3 additional free airspeed parameters. The NLP

dimension is then 1 + 6 + dv  3 = dv + 4 and the vector of free optimization parameters

is

48

 0(, , ,)f f  χ r r h (3.13)

where r = (x, y, z)
T
 and h is the vector of dv  3 airspeed free variables.

Alternatively airspeed may be parameterized indirectly by parameterizing thrust: since

thrust appears linearly in the state equations ((3.7) and (3.8)), for a minimum-time

problem Yakimenko
133

 parameterized thrust as a bang-bang control with 2 switching

points and reduced the NLP dimension further by setting

0 0 0(0,0,0) and (sin , cos ,0)T T

f k k   r r (3.14)

where k is a free variable. For a minimum-fuel problem he suggested using relative

throttle or thrust as a free variable.

It is also possible to parameterize  instead of v, since from Eq. (3.6)

 v s s   (3.15)

where

 : ; ; :
ds

s s s
d


    r r (3.16)

Since airspeed is an intuitive variable, and for many light aircraft (such as many UAVs)

an on-off thrust profile is impracticable, in this work airspeed has been parameterized

explicitly as a global polynomial and investigation of -parameterization is left as an

open question (Boyarko et al.
17

 described one form of -parameterization for spacecraft

reorientation).

Horner's algorithm
108

 was used to evaluate all power series polynomials and their

derivatives.

3.2.4 Boundary Conditions

For spatial parameterization by degree 7 polynomials, boundary conditions on the states

may be defined by conditions at  {0,f} on any set of variables from which position,

49

velocity, and acceleration in each dimension may be uniquely derived. It is intuitive to

choose position, airspeed, tangential acceleration, normal load factor, and orientation,

i.e. {x, y, z, v, ax, lz,   }. With the values of these variables defined at the initial and

final boundary points it is straightforward to evaluate the boundary values of the first

and second time derivatives { , , }vr r   and, and Eqs. (3.4)-(3.6) are applied to transform

the boundary conditions to derivatives with respect to . The third derivatives r at

each boundary point are defined as part of the optimization vector, and these are then

substituted into Eq. (3.12) (and a corresponding equation for v) to determine the

coefficients of the spatial parameterization. The coefficients of the airspeed

parameterization is similarly derived from the airspeed boundary conditions.

The transformation requires 0 and f to be defined. Yakimenko
133

 suggested

 0 0: , and :f fv v   (3.17)

from which

 0
0

0

, and
f

f

f

vv

v v
   


 (3.18)

3.2.5 Trajectory Evaluation

Using the Euler-angle model and given r, v and their derivatives with respect to from

the parameterization functions, the following expressions
133

 are evaluated at each node

j  [2,N]

1j j js  r r (3.19)

 1 2

j

j

j j

s
t

v v


 






 (3.20)

 j

jt





 (3.21)

50

 arctan
j

j

j

y

x


 
    

 (3.22)

 arcsin
j

j

j

z

s




 
   

 

 (3.23)

 x j j ja v  (3.24)

     
1

22 2

cos cosz j j j j j j j j jl v g v         (3.25)

cos

arctan
cos

j j j j

j

j j j j

v

v g

  


  

 
     

 (3.26)

3.2.6 Penalty Function and Initial Guesses

In his 2000 paper Yakimenko used a derivative-free NLP algorithm with a penalty

function of the form

1
2

2

0 () max(0,)N f i i

i I

P k v v k c


 
   
 

 (3.27)

where

1,...

maxi ij
j N

c c


 (3.28)

and ki, i  I, are penalty weights that scale the penalty terms relative to each other to

achieve the desired balance (Section 2.5.2).

When v is parameterized so as to satisfy the boundary conditions, the first term in Eq.

(3.27) is identically zero.

Each of the local NLP algorithms requires an initial guess of the free variables ;

Yakimenko
133

 suggested the following for f

51

    0 01 0.3f f f     r r (3.29)

3.3 Hardware and Software Environment

The hardware used in the experiments described in this document (except for Section

4.6) was a 64-bit Intel quad core i7 975 CPU clocked at 4.2 GHz, with 6 GB of RAM,

running the 64-bit Windows 7 operating system. All the code was run under the

Matlab
®
 R2009a 64-bit environment. Timings were made using a single processor.

The machine was not connected to any network and no anti-virus or other monitoring

software was installed.

Estimates of floating point operations (flops) were made using timing tests: addition,

subtraction, multiplication, division, square, square root, tangent, sine, cosine, 4-

quadrant inverse tangent, inverse sine, and inverse cosine functions were repeated at

least 10
9
 times in non-vectorized Matlab loops, and the elapsed times were recorded; the

process was repeated 10 times. Function tests were interleaved with empty loops, the

times for which were subtracted from the results. The times for each operation were

divided by the times for the addition operation, to give estimates of the flop value, with

one flop ≔ one addition (including an assignment to a variable). Table 3-1 shows the

floating point estimates for each operation produced by this combination of hardware

and software.

 - × / ^2 √ sin cos asin acos atan2

Mean 1.00 1.50 5.77 0.99 38.22 29.31 29.09 37.99 39.72 30.92

Std Dev 0.00 0.00 0.00 0.00 3.28 0.01 0.01 0.01 0.01 0.01

Max 1.00 1.50 5.77 0.99 48.06 29.32 29.10 38.02 39.73 30.94

Min 1.00 1.50 5.77 0.99 37.10 29.29 29.08 37.97 39.69 30.90

Table 3-1. Estimates of Floating Point Operations on a 64-bit Processor

52

3.4 Analysis

Sections 3.4.1 - 3.4.6 describe problems and limitations arising from the Euler-angle

model, assumptions, discretization, and the spatial and airspeed parameterizations.

3.4.1 Singularity of the Euler-Angle Model

It is well-known that any model dependent on an Euler angle representation of

orientation will exhibit singularities. For the conventional aerospace Euler angles these

singularities are at 2   , hence the model cannot represent sustained vertical

flight. Although in theory a trajectory which transitions through the vertical can be

evaluated using an Euler-angle model if the discretization nodes do not coincide with

vertical flight, in practice  and  may be discontinuous over the transition, and  may

be nonsmooth, leading to step inputs to the trajectory-following flight controller: Figure

3-1 shows the discontinuous Euler-angle model controls for a vertical loop. A unit

quaternion-based model that overcomes these limitations is described in Chapter 4.

Figure 3-1. Discontinuous Euler-Angle States and Controls for a Vertical Loop

0 5 10 15 20
-200

0

200

time (s)


 (

º)

0 5 10 15 20
-100

0

100

time (s)


(º

)

0 5 10 15 20
0

100

200

time (s)


 (

º)

53

3.4.2 Assumption 2: Non-Zero Normal Load Factor

Assumption 2 relies on lz ≠ 0, whilst Eq. (3.25) shows that lz = 0 will occur during "free

fall" or steady vertical flight. Apart from the Euler-angle singularity,  and Wz


become

indeterminate when lz = 0. Hence specifying that, if lz j = 0

 1 1,j j W j W j    z z
 

 (3.30)

is sufficient to handle lz = 0 (it is assumed that lz ≠ 0 at 0, a condition that is easily

checked). The ill-conditioning in bank angle that occurs when lz reverses direction is

discussed and overcome in Chapter 7.

3.4.3 Ill-Conditioning of Spatial Parameterization

Eq. (3.12) can be written in matrix form

00

01

0

0

2 7

2 6

5

4

7

1 0 0

0 1 0 0

0 0 2 0 . . . 0 .

0 0 0 6 . . . 0 .

1

0 1 2 3 . . . 7 .

0 0 2 6 . . . 42 .

0 0 0 6 24 . . 210

ff f f

f f f f

f f f

f f f

xa

xa

x

x

x

x

x

a x

  

  

 

 

   
    
   
   
  
      

  
  

   
  

        











 (3.31)

from which it is clear that the parameterization is ill-conditioned (the minimum

condition number of the matrix is 2.910
4
 at f1.97).

Eq. (3.31) could be rewritten to reduce the condition number of the matrix by defining

the coefficients as coefficients of x instead of as coefficients of x

54

00

01

0

0

2 71 1
2 210

2 61 1
2 30

51
5

4

7

1 0 0

0 1 0 0

0 0 1 0 . . . 0 .

0 0 0 1 . . . 0 .

1

0 1

0 0 1

0 0 0 1 . .

ff f f

f f f f

f f f

f f f

xa

xa

x

x

x

x

x

a x

  

  

 

 

   
   
  
   
  
      

  
  

   
  

        













 (3.32)

but this would only reduce the minimum condition number to 7.910
3
 at f2.77.

Similarly, defining the coefficients as the coefficients of x or x does not solve the ill-

conditioning problem.

Although Eq. (3.12) will give values of the coefficients even when the parameterization

is ill-conditioned, small changes in the boundary conditions will cause large changes in

the coefficients, and therefore in the trajectory, which will make it difficult for the NLP

algorithm to find the optimal solution accurately and efficiently. A value of f greater

than 2, but otherwise as small as possible, therefore appears to be a good initial guess;

this is investigated further in Chapter 6.

The ill-conditioning can be reduced by transforming the power series to the interval

[0,1], or by using Chebyshev, Bernstein, or other basis functions; this is left as future

research.

3.4.4 A Pathological Example: Course Reversal

A further effect of f is shown in Figure 3-2 which plots the effect of various f values

on spatial parameterization for an example trajectory from the origin to a point 1000 m

due north, in level flight with zero bank angle at a constant airspeed of 25 m/s with the

remaining free variables set to zero. At low f the parametric speed (x) starts low,

increases, then decreases symmetrically about the mid-point and is always positive; the

path is a straight line with varying parametric speed. At a critical value of f (74 in this

example), x = 0 at the mid-point (and s = 0 since y = z = 0 for this trajectory). For

higher f , x < 0 for a portion of the path around the mid-point. Hence for f > 74, the

55

path is a straight line with reducing parametric speed (but constant airspeed) until the

aircraft reverses direction, then at a later point it again reverses direction: there are two

instantaneous 180° course reversals at constant airspeed interconnected by straight and

level flight and at each reversal s = 0 and s is nonsmooth. For finite N and floating-

point arithmetic each reversal will take place entirely within a segment even as N  .

This example demonstrates that f has a critical effect on the path, that s = 0 can occur

at trajectory-specific values of f , and that it can cause physically infeasible trajectories

such as an instantaneous course reversal. Eqs. (3.22), (3.25), and (3.26) for , lz, and 

are indeterminate at the course reversal. Since f is a free variable and therefore

adjusted by the NLP algorithm, the user cannot force it to a particular value. The

trajectory evaluation must therefore detect this infeasibility using appropriate

constraints, which will be nonsmooth and possibly discontinuous at the critical value of

f . The existence and location of maxima and minima of r are obviously also

dependent on the free variables 0 and f
 r r so the constraints may also be nonsmooth

with respect to these variables. Hence the Jacobian matrix of the constraint vector will

not, in general, be analytic over the search space.

Figure 3-2. Course Reversal Caused by f

0 50 100 150 200 250
0

200

400

600

800

1000


f

x
 (

m
)


f
=3


f
=74


f
=100

56

The controls produced by the Euler-angle model using Eqs. (3.25) and (3.26) will be

invalid over the course reversal because lz = 1g and  = 0 at the bracketing nodes. A

segment-based expression using finite differences can be used for lz (Eq. (3.45) below),

and a finite difference expression using  may be used to approximate , but in its

standard form the Euler-angle model does not generate accurate controls for the course

reversal.

3.4.5 Zero Spatial Parametric Speed

A zero of s can also arise as a consequence of other optimization variables. For

example, Figure 3-3 shows how variation in x at the initial point can affect the spatial

parameterization and cause a course reversal (assuming y= z= 0). For this example

f = 100, x0 = -1000, xf = 1000, and 0 23x v   .

If s = 0 then x = 0 and y = 0 and Eq. (3.22) is indeterminate. It is therefore necessary

to handle s= 0 algorithmically.

Figure 3-3. Zero Spatial Parametric Speed Caused by 0x

0 50 100 150 200 250
-1000

-500

0

500

1000

1500



x
 (

m
)

x'''
0
=0.5

x'''
0
=0.25

x'''
0
=0

x'''
0
=-0.25

x'''
0
=-0.5

57

In general no closed form analytic solution of s = 0 exists, and iterative root finding

(e.g. by Brent's method
21, 108

 which is used in Chapter 5) would be computationally

expensive. However, if x, y, and z are parameterized by functions with known finite

maximum numbers bx, by, bz of real roots (e.g. global polynomials), then there can exist

no more than b = min (bx, by, bz) zeros of s. Three possible actions to take at any node

at which s = 0 are to: 1) skip the node entirely; or 2) add a small arbitrary quantity to s;

or 3) move the node by iterating j  j +  where  is an arbitrary number such that -

1    1, until s 0. The first approach effectively doubles the segment length

between the preceding and succeeding nodes which reduces the confidence level of

trajectory feasibility. The second approach can only be implemented by adding an

arbitrary quantity to x, y, and/or z which introduces an unnecessary error and may

make the inverse dynamics ill-conditioned (e.g. adding machine precision (eps) to x

only, compared to adding it to y only, causes  to change by /2). The third approach

adds no more than b nodes per trajectory to the computational load, and does not reduce

confidence level or introduce an unnecessary error (except into the quadrature of the

objective which is small due to the small displacement of only one of N nodes); this

approach has been adopted in this work.

If sj = 0 then from Eq. (3.20) tj = 0. However, provided that s  0 and v  0 then for

this case t may instead be expressed as

s

t
v

 


 (3.33)

3.4.6 Airspeed ≤ 0

Assumption 1, v > 0, is required for aerodynamic lift, to avoid singularities in

Eq. (3.20), and to avoid errors in Eq. (3.25) and any constraints that depend on v > 0.

As in the case of s = 0, in general finding the roots of v = 0 would be computationally

expensive. However, if vj  0 at any node j, setting vj =  where  is a small arbitrary

value such that 0 <  << vs ensures that vj > 0 and vj + vj-1 > 0 and that the stall speed

constraint will be violated.

58

If airspeed is parameterized using Bernstein basis functions then placing a lower bound

of zero plus a small tolerance on each coefficient ensures that v > 0, which might help

convergence since it excludes any parameterization with vj ≤ 0 from the search space.

3.4.7 Constraints

Section 3.4.4 showed that constraints may be nonsmooth; in this section it is shown that

they may be discontinuous.

For a wind-frame point-mass aircraft model, a basis set of inequality path constraints is

normal load factor, thrust (maximum and minimum), rate of change of bank angle (in

each direction of rotation), never-exceed speed, and stall speed:

{lz, Tmax, Tmin, pmax, pmin, vne, vs}. Curvature is not, in itself, a valid constraint because

the load on the aircraft is a function of curvature and gravity, and the gravity component

is dependent on orientation.

Below manoeuvring speed the positive-g load factor is limited by the angle of attack

stall limit s, and at higher airspeeds by a structural limit (lstruct). Figure 3-4 shows an

example of the positive-g part of an "n-V" diagram.

Figure 3-4. Example n-V Diagram

0 10 20 30 40
0

0.5

1

1.5

2

2.5

3

3.5

4

v (m/s)

n
z
 (

g
 u

n
it
s
)

v
s

59

The discontinuity at v = vs will cause a concomitant discontinuity in the load factor

constraint for some values of lz and v.

The positive-g load factor limit may be written

0,

(),

,

s

s a

struct a

v v

l h v v v v

l v v



 


  
 

 (3.34)

In this work it is assumed that s, mass (M), lift curve slope (CL), and air density ()

are constant, and that h(v) may be expressed as

  
2

()
2

L s

v
h v C b

M



  (3.35)

(Alternative expressions for h(v) can be used. In this work the constant b was derived

from the requirement that h(v) must pass through the three points {0, 0}, {vs, g}, and

{va, lstruct}.)

Given lz (e.g. from Eq. (3.25)), in this work thrust and drag have been evaluated using

(in conventional notation)

2

2 z
L

l M
C

v S
 (3.36)

 

2

min

0

L L D

D D

C C
C C

AR


  (3.37)

21

2 DD v SC (3.38)

  sinT v g M D    (3.39)

Thrust T in Eqs. (3.8), (3.39), and (3.50) is the thrust component in the wind frame x-

axis. Thrust limits are in general dependent on airspeed, air density, and a throttle

response delay function, and drag is dependent on . Explicit incorporation of  into

the aircraft model would lead to a more complicated model which may not satisfy

60

Eq. (2.27) hence iteration would be required to invert the state equations (e.g. Kato and

Sugiura
74

). Instead in this work it is assumed that Tmax, and Tmin take account of the

effects of , and simple scalar bounds Tmax and Tmin have been used. Similarly vs, vne,

and pmax have been specified as simple bounds. For example the effect on maximum

roll rate of the torque reaction due to the rotation of the propeller for a typical single-

engine, propeller-driven aircraft has been excluded, and pmin ≔ -pmax. Higher fidelity

expressions could be substituted for Eqs. (3.36)-(3.39), for the constraint bounds, or a

higher fidelity aircraft model could be used, without invalidating the inverse dynamics

method provided that Eq. (2.27) remains satisfied and additional iteration is not

required.

The constraint vector may be expressed as

 

 

 

 

 

 

 

[1,..]

max
[1,..]

min
[1,..]

max
[1,..]

max
[1,..]

[1,..]

[1,..]

max

max

max

max

max

max

max

z j
j N

j
j N

j
j N

j
j N

j
j N

s j
j N

j ne
j N

l l

T T

T T

p p

p p

v v

v v

















 
 
 

 
 

 
 
  
 
 

  
 

 
 
 
 

c (3.40)

An alternative, more efficient, formulation is introduced in Section 3.5.

3.4.8 Convexity and Multimodality

This section provides examples of the multimodality of the method, which is a critical

factor in numerical optimization (the performance of four different optimization

algorithms is described in Chapter 6).

Von Stryk and Bulirsch
130

 reported that they and others had found that direct methods

resulted in multimodal problems. Boyd
18

 noted that algorithms for solving algebraic

equations arising as a result of discretization of differential equations have multiple

61

solutions. Sections 3.4.4 and 3.4.7 above showed that constraints will in general be

nonsmooth and possibly discontinuous functions of ; therefore discontinuities may

arise in the gradients of the constraints. Figures 3-5, 3-6, and 3-7 plot final flight time,

the lz constraint violation (c1), and the Tmax constraint violation (c2), respectively against

the optimization parameter f , for one example trajectory. They show that, even though

in this case the objective is smooth and convex, the constraints are nonsmooth, non-

convex and multimodal.

Figure 3-5. Final Flight Time as a Function of f

0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000


f

t f

62

Figure 3-7. Maximum Thrust Constraint Violation as a Function of f

0 10 20 30 40 50
-100

0

100

200

300

400

500


f

c
2

Figure 3-6. Normal Load Factor Constraint Violation as a Function of f

0 10 20 30 40 50
0

200

400

600

800

1000


f

c
1

63

The convergence analyses for the SNOPT, Nelder-Mead and Hooke-Jeeves algorithms

rely on smooth objectives and constraints for convergence to a local minimum: in

consequence there is no guarantee that these algorithms will converge, or that if they do

converge they will do so to a KKT point. Further, when the constraints are multi-

modal, even if the algorithm converges to a local minimum, it may not be a global

minimum or even a feasible solution. For convergence to a feasible global minimum

the initial guess must lie in a basin of attraction around the desired minimum. This

criterion is satisfied if a convex connected region exists which includes both the initial

guess and the desired minimum. If such a region exists except that it contains a finite

number of stationary points other than the desired minimum, then convergence of a

gradient algorithm is dependent on the algorithm implementation, and a derivative-free

algorithm may step over the stationary points and converge to the desired minimum but

convergence is not guaranteed.

These observations reinforce the case for using a global optimization routine such as DE

or SA, at least to find a basin of attraction to a feasible global minimum, if one exists.

3.4.9 Segment and Node Variables

This section examines the combination of instantaneous analytic variables together with

finite differences approximations. It is shown that both types of expression are required

in the method.

3.4.9.1 Evaluation of t and 

Eqs. (3.20) and (3.21) define t and  as segment variables, i.e. they are defined as

functions of values at both ends of a segment. It is also possible to define t and  as

functions of instantaneous values at a single node

 and
j

j j

j j

v
t

s


 


 


 (3.41)

Since t is the time interval between two consecutive nodes it is clearly a segment

variable. However,  can be considered as a node variable used to transform between

64

instantaneous values of derivatives with respect to t and instantaneous derivatives with

respect to , and as a segment variable defining the relationship between t and  .

Three possible pairs of expressions for t and  are Eq. (3.41) above, the original

expressions

 1

 and =
2

j

j j

jj j

s
t

tv v

 
  







 (3.42)

and, defining t as a segment variable and  as a node variable

 1

 and =
2

j j

j j

jj j

s v
t

sv v


  






 (3.43)

A comparison of the effects of these variants on the accuracy of control evaluation was

made for N  {33, 65, 129, 257, 513, 1025, 2049}, using the quaternion-based model of

Chapter 4 with controls derived using Eq. (4.47) for over 3000 trajectories.

The condition sj = 0 (Section 3.4.5) did not occur during any of these experiments and

consequently did not affect the results. Eq. (3.43) achieved the lowest tracking errors

for approximately 45% of tests with tracking errors (as a percentage of path length) of

0.4 % reducing to 10
-4

 % as N was increased. The original version Eq. (3.42) produced

results within 3 significant digits of those of Eq. (3.43). Tracking errors produced by

Eq. (3.41) were, at best, 9 times worse than the other expressions, and for high N this

factor increased to over 500. Since Eq. (3.43) is no more computationally expensive

than Eq. (3.42) and it is marginally more accurate, it is the preferred version.

Differentiating the expression for  in Eq. (3.43) leads to

v s

s




 
 


 (3.44)

Replacing  with a simple finite difference introduced a relative error of less than 10
-6

,

but because Eq. (3.44) is only marginally computationally slower, Eq. (3.44) was

retained.

65

3.4.9.2 Evaluation of Path Constraints

As noted by Hull
65

, path constraints can be incorporated into shooting and collocation

methods but in general are only satisfied at discrete points in the trajectory and not

across inter-node segments. In those methods constraint satisfaction may be improved

by increasing the number of nodes, and in practice if the segment duration is sufficiently

short an infeasible trajectory will violate control constraints. However, the course

reversal case of Section 3.4.4 shows that this is not necessarily true for the inverse

dynamics method. The load factors given by Eq. (3.25) at j - 1 and at j will be 1g, but it

is obvious that an aircraft would have had to generate a higher load factor during the

segment to carry out the turn: the segment load factor would have to exceed the values

at the nodes. Therefore evaluating path constraints at a node using only instantaneous

values at that node is insufficient to ensure feasibility.

The inverse dynamics method admits the evaluation of a normal load factor constraint

across segments: linear interpolation between the nodes gives the following expression

for lz across each segment

     1 1 1| 0.5seg seg seg

z j j j n z j z jv v      l ε g g


 (3.45)

where

 W
s






r
x


 (3.46)

 1arccos W j W jseg

jt







x x
 

 (3.47)

 

1

1

, if 0

0,0,0, otherwise

W j W j seg

seg
W j W jn

T







  




x x

x xε

 

 
 (3.48)

  2 2

2
, ,z

g
xz yz x y

s
   g     


 (3.49)

66

Eq. (3.46) determines the wind frame x-axis. Eq. (3.47) determines the angular velocity

across the segment, Eq. (3.48) determines the direction of the normal acceleration

vector, and gz is the gravity vector component parallel to the wind frame z-axis.

Figure 3-8 shows an example of the difference between computed values of lz and
seg

zl

for the level course reversal trajectory described above.

The main source of inaccuracy in Eq. (3.45) is Eq. (3.48): the direction of the finite

difference should be perpendicular to Wx


, but as the angular difference increases the

difference vector direction rotates until it is parallel to Wx


 when the angle equals 180.

Empirically, it has not been found necessary to use a more accurate expression than

Eq. (3.45).

For thrust, instead of using Eq. (3.39) a segment-based value of T may be used

1

1 1 1sin
j j

j j j

j

v v
T g M D

t






  

 
    
 

 (3.50)

Figure 3-8. Comparison of Node-Based and Segment-Based Load Factors

21.5 22 22.5 23
0

50

100

150

200

250

300

time (s)

n
o

rm
a

l
lo

a
d

 f
a

c
to

r
(m

/s
2
)

l
z

seg

l
z

67

3.4.9.3 Evaluation of Euler-Angle Orientation

Eq. (3.23) uses the segment variable sj whereas all other variables used to evaluate the

wind frame orientation (Eqs. (3.22) and (3.26)) are node-based. Since the method relies

on aligning the aircraft wind axes with the flight path at each node, accuracy is

improved if Eq. (3.23) is replaced by

 arcsin
j

j

j

z

s


 
    

 (3.51)

This change also removes the singularity at sj = 0; the singularity at s= 0 is addressed

in Section 3.4.5 above.

3.4.9.4 Evaluation of Tangential Acceleration

It is more accurate to evaluate tangential acceleration (acceleration in the direction of

the wind frame x-axis) as a segment variable

1

1

j j

x j

j

v v
a

t






 (3.52)

3.4.10 Further Observations

This section describes some additional observations on:

 The connection between boundary values of the third derivative of position and the

rate of change of bank angle.

 Boundary values of the speed factor .

 The application of numerical quadrature to evaluate the trajectory flight time.

 Initial guesses for f .

 Penalty functions and weights.

 Angle of attack evaluation.

 The interpolation of generated controls.

68

3.4.10.1 Bank Rate and the Third Derivative

A consequence of using r as part of the optimization vector is that p at the boundary

points is not under user control (since p depends on r), i.e. the bank rate at the

boundaries is varied by the NLP algorithm. If it is necessary to satisfy specific

boundary conditions on p then either the degree of the spatial polynomials must be

increased or a reduced NLP dimension must be accepted (which may increase the rate

of convergence but reduce optimality). For example, Yakimenko's choice of Eq. (3.14)

reduces the NLP dimension by three and ensures that pf = 0.

3.4.10.2 Speed Factors 0 and f

For the minimum-time problem, the objective function is

0

1f

ft d








 (3.53)

Hence smaller values of  lead to smaller values of f for a given final time, which has

been shown in Sections 3.4.3 and 3.4.4 to be desirable, and rather than using Eq. (3.17)

the following has been used to set  at the boundary points

0

0

: 1, and : 1

: 0, and : 0

f

f

 

 

 

  
 (3.54)

Tests using SNOPT, DE and Hooke-Jeeves on a number of pseudo-random trajectories

(see Section 6.2.3 for the test trajectory definitions) confirmed that Eq. (3.54) required

fewer trajectory evaluations and produced lower values of tf than Eq. (3.17); Eq. (3.54)

has therefore been used in this work.

3.4.10.3 Objective Quadrature

The objective function in this work was to minimize the trajectory flight time

0

0 1

()
f

f
Nt j

f f j

j j

ss
t dt d a w

v v



 



  




 (3.55)

69

Computationally the quadrature requires only element-wise vector division, matrix-

vector multiplication and summation once per trajectory. The factor a transforms the

sum to the interval [0,f]. The quadrature weights w and factor a depend only on N and

the node distribution and can therefore be evaluated outside the NLP algorithm. For

most experiments Chebyshev-Gauss-Lobatto nodes were used with Clenshaw-Curtis

quadrature
129

; for uniform node spacing the extended trapezoidal or Simpson's rules

were used
108

.

It is possible to use 2

ft as the objective to try to avoid the NLP algorithm converging

towards tf = -. However, if this approach is used with the virtual arc then unless

additional conditions are applied the method may generate a solution with f < 0, which

is physically meaningless.

3.4.10.4 Initial Guess

Eq. (3.29) leads to large values of f, for example for a 7 km Euclidean distance from r0

to rf it gives f = 710
3
 yet tf = 280 s for a straight path at 25 m/s. Chapter 6 Figure 6-1

shows values of f for 1000 optimized trajectories based on pseudo-random boundary

conditions: from this data an initial guess of f = 10 can be seen to be closer to the

optimal value than that generated by Eq. (3.29). In Section 2.5.4 the use of a global

optimization algorithm to produce an initial guess for a quasi-Newton algorithm was

suggested; this approach is discussed in Section 6.4.5.

3.4.10.5 Penalty Function and Penalty Weights

For experiments using the Nelder-Mead and Hooke-Jeeves NLP algorithms the

constraint vector must be transformed to a penalty function and added to the objective.

The squared two-norm
2

2l was used as a penalty function for most experiments because

of its smoothness. A number of ad-hoc trials of the exact infinity-norm penalty function

were carried out, with no consistent pattern distinguishing its performance from that of

the squared two-norm. However, the data sample was very small. For the
2

2l penalty

function

70

  fJ t P   c (3.56)

 max(0,), {1,...7}i ic c i   (3.57)

where P is given by Eq. (2.47) and ci by Eq.(3.40).

Unity penalty weights have been used in this work, because the individual constraints

were of similar magnitude (Tmax  30, vne  40, lstruct  40). Although pmax  7, this

constraint was found to be rarely exceeded in isolation.

3.4.10.6 Evaluation of Angle of Attack

Angle of attack  may be evaluated from the segment load factor using a variety of

expressions according to the desired fidelity. In this work the following expression was

used

02

21 seg

z
L

L

l
C

C M v S




 
  

 
 (3.58)

3.4.10.7 Interpolation of Controls for Flight Controllers

Clearly the output values of the controls and states at each node may be interpolated to

provide inputs to a flight control system. However,  varies with time so the time-based

node distribution is not the same as the -based node distribution, and high-degree

global interpolation of u (or r or x) to create input functions for a flight controller may

introduce the Runge phenomenon. This is less likely, but cannot be guaranteed not to

occur, if  is based on a Chebyshev-Gauss or Legendre-Gauss distribution (with or

without end points).

71

3.5 Constraint Accuracy

This section describes the use of local low-degree interpolation to improve the accuracy

with which constraints are evaluated. It is shown that using local quadratic

interpolation improves the trade-off between accuracy and computational speed.

The optimality and feasibility of generated trajectories depend on the accuracy with

which the extrema of the constraint violations are evaluated. In the literature each

constraint is evaluated at each discretization node and the violation for that constraint

over the trajectory is defined as the maximum positive value at any node (Eq. (3.40)).

This approach does not allow for a limiting value occurring between nodes:

interpolation is needed to capture this possibility. It is equivalent to using piecewise

linear interpolation and it is well-known that quadratic or cubic interpolation reduces

interpolation error compared to piecewise linear interpolation. Local quadratic or cubic

interpolation requires only the roots of linear or quadratic equations, at small

computational cost, and these low degree interpolants are not dependent on any

particular node distribution. Hence the accuracy of constraint evaluation can be

improved by using local quadratic or local cubic interpolation of constraints instead of

relying on the worst-case node value.

Figure 3-9 shows an example of four node values of an arbitrary variable, with

quadratic interpolation over the last three of those values and cubic interpolation over

all four values: the maxima can be seen to be different in each case. There is no

information obtainable from that graph to determine the most accurate maximum. This

section quantifies the effect of these three approaches to determine which of them has

the shortest computation time for a given accuracy.

72

A reference is required to quantify the accuracy of each approach. This reference was

obtained by interpolating by an degree N-1 Chebyshev interpolant f (), and evaluating

the global maximum of that function over [0,f]. It is not guaranteed a priori that f ()

has a stationary point in [0,f], so it was necessary to find the real roots of f () on [0,f]

and evaluate f () at those roots and at the boundary points to establish the maximum.

Boyd
20

 described the stable and robust Chebyshev-Frobenius matrix method for

rootfinding and gave assessments of the computational load of that method compared to

other methods
19

.

3.5.1 Method

The aircraft data and test database of feasible spatial paths described in 5.3.1 were used

to provide test trajectories, and the maximum and minimum feasible airspeeds (vmax and

vmin) were evaluated as described in Section 5.2.

Using lz as the constrained variable, the method used to evaluate constraint accuracy as

N varied was, for each trajectory in the database and each N:

Figure 3-9. Example of Local Interpolations

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30



c

nodes

quadratic

cubic

73

1. Parameterize airspeed by a degree 10 Bernstein polynomial such that airspeed

and acceleration boundary conditions were met; set the other seven airspeed

coefficients to alternate between 0.85vmin and 1.15vmax through the trajectory to

ensure significant variation of lz.

2. Discretize the trajectory in N Chebyshev-Gauss-Lobatto nodes.

3. Construct the degree N - 1 Chebyshev interpolant f () to lz using the chebfun

operators developed by Battles and Trefethen
6
 to calculate the coefficients of f ()

and the algorithm in Boyd
20

 to calculate the coefficients of f ().

4. Apply the Chebyshev-Frobenius matrix method to find the roots of f  () and

hence the maximum of f ().

5. Evaluate lz at each node and record the maximum node value.

6. Evaluate, using the local quadratic and local cubic interpolations described in

Sections 3.5.1.1 and 3.5.1.2 below, the corresponding maxima.

The upper bound on N was set to 1025 by doubling N until the difference between the

maxima of f () over all trajectories changed by less than 0.1 m/s
2
 for successive values

of N. For each trajectory the maximum of f () for N = 1025 was used as the reference.

For each N over all trajectories the errors between the reference and each of the

maximum values obtained in steps 4, 5, and 6 above were recorded.

3.5.1.1 Local Quadratic Interpolation

Local quadratic interpolation was applied at j = {3,…N} over the interval [j-2,j] (i.e.

nodes {j - 2, j - 1, j}) if and only if

 1 2 1j j j jc c c c    (3.59)

where c is the variable of which the maximum is required and the constraint index i is

omitted for clarity.

The purpose of condition (3.59) is to accelerate the trajectory evaluation while ensuring

that every inter-node segment that may contain the maximum is interpolated. Eq. (3.59)

is a sufficient, but not a necessary, condition for a maximum to exist in the interval

[j-2,j]; if it is true for one interval it cannot be true for the adjacent intervals. Hence it

74

imposes an upper bound of (N - 2)/3 on the number of quadratic interpolations that will

be performed. It is possible that a maximum exists on an interval for which cj-1 exceeds

one end node value but not the other. Consider cj-1 > cj-2 but cj-1 < cj and assume that a

maximum exists in [j-1,j]. Eq. (3.59) evaluates to false over [j-2,j] but if the

maximum in [j-1,j] is a maximum of the whole function then cj+1 < cj and Eq. (3.59)

will be true for [j-1,j+1], causing interpolation of that interval.

Only 3 divisions, 16 multiplications, 18 additions/subtractions with 2 conditions and 1

max function over 2 variables were required to evaluate the 3 quadratic coefficients and

find the maximum over the interval.

3.5.1.2 Local Cubic Interpolation

Local cubic interpolation was applied at j = {4,…N} over {j - 3, j - 2, j - 1, j}. Newton

interpolation was used, evaluating the coefficients of the quadratic derivative from the

finite divided differences, finding the root(s) of the quadratic and evaluating the cubic at

the in-range root(s). This required 1 square root, 8 divisions, 25 multiplications and 48

additions/subtractions, with 5 conditions and 1 max function over 6 variables.

Unfortunately, no simple condition corresponding to Eq. (3.59) was found for the cubic

case.

3.5.2 Results and Analysis

Figures 3-10 and 3-11 show the maximum interpolation errors for node values and for

high-degree interpolation over the test database using a constraint tolerance of 0.5 m⁄s
2

(since load factor limits are typically expressed with a tolerance of ±0.05g, equivalent to

~1.3% tolerance on a typical limit of 3.8g). Chebyshev-Gauss-Lobatto node

distributions were used. Figure 3-11 shows that reliance on node values would require

N > ~390 while degree N - 1 Chebyshev interpolation would require only N > ~133, an

improvement factor of ~3. It can be seen that this factor is reasonably insensitive to the

chosen tolerance: the range of the factor is ~[2,4.5] over the domain [0.1,1].

75

Figure 3-11. Expansion of Figure 3-10

0 200 400 600 800
0

0.2

0.4

0.5

0.6

0.8

1

N

E
rr

o
r

(m
/s

2
)

nodes

Cheb
N-1

Figure 3-10. Error in Maxima: Node Values and Chebyshev Interpolation

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

N

E
rr

o
r

(m
/s

2
)

nodes

Cheb
N-1

76

The computational cost of the rootfinding for the Chebyshev interpolation is too high

for practical use in the inverse dynamics method: between 10n
3
 and 12n

3

(n = degree = N - 1) floating-point operations (flops)
19

, which for N = 133 results in at

least 2.3×10
7
 flops. Although the cost of a 13-N/tredecic rootfinder

19
 is only

22000n+42n
2
 this would still require 3.6×10

6
 flops. Evaluation of a single node,

without the degree N - 1 Chebyshev interpolation and rootfinding, was found to require

approximately 600-800 flops, hence incorporating the Chebyshev interpolation and

rootfinding, even for a single constraint, would incur significantly larger computational

cost than increasing N to obtain equivalent accuracy and is not viable for real-time

application.

Figures 3-12 and 3-13 show the errors using local quadratic and cubic interpolation

compared to node values and degree N - 1 Chebyshev interpolation, plotted using

expanded scales. The minimum N values required to achieve a maximum error less

than 0.5 m⁄s
2
 were found to be 210 for quadratic and 165 for cubic interpolation.

Quadratic or cubic interpolation would be required for each constraint or constrained

variable. For 8 constrained variables (the 7 variables of Eq. (3.40) plus a negative load

factor limit for the negative-g trajectories of Chapter 7), and dv = 8, the quadratic

interpolation would add approximately 20% (flops) to each node evaluation, and the

cubic would add approximately 150%. Hence, with the Chebyshev-Gauss-Lobatto node

distribution, the net effect of quadratic interpolation would be to increase computational

speed by 35% (1-(1.2×210⁄390)) compared to reliance on node values.

For comparison, the tests were repeated with uniformly-spaced nodes. The minimum N

values required were found to be 345, 175, and 145 for node values, quadratic and cubic

interpolation respectively, indicating that quadratic interpolation can increase

computational speed by 40% (1-(1.2×175⁄345)) with uniform node spacing.

Hence using local quadratic interpolation for evaluating constraints can provide a 35%-

40% increase in computational speed by allowing the use of fewer discretization nodes

while maintaining the accuracy of evaluated constraints, compared to the previously-

used node values.

77

Figure 3-12. Error in Maxima: Quadratic and Cubic Interpolation

0 200 400 600 800
0

1

2

3

4

5

N

E
rr

o
r

(m
/s

2
)

nodes

quadratic

cubic

Cheb
N-1

Figure 3-13. Expansion of Figure 3-12

0 200 400 600 800
0

0.2

0.4

0.5

0.6

0.8

1

N

E
rr

o
r

(m
/s

2
)

nodes

quadratic

cubic

Cheb
N-1

78

The minimum values of N are only valid for this particular aircraft, tolerance, and for

trajectories of durations similar to those in the test database (which ranged from 15 s to

1153 s, with 85% of flight times < 200 s. However, it is reasonable to conjecture, since

Figure 6-1 indicates that f is not sensitive to tf and the interpolation is with respect to ,

that these values of N may apply to a wider range of trajectories.

79

4 QUATERNION-BASED POINT-MASS AIRCRAFT

MODEL

4.1 Introduction

This chapter describes a unit-quaternion-based inverse dynamics model that was

conceived by the author to overcome the singularities of the Euler-angle model, to

improve the accuracy of the controls, to further the investigation of aerobatic and

negative-g trajectories, and to introduce the possibility of parameterizing orientation.

The model was stimulated by the discussions on quaternions in the books by Stengel
122

and Stevens and Lewis
123

.

Unit quaternions can be used to represent all orientations without singularities, and can

be smoothly parameterized and interpolated. The quaternion-based inverse dynamics

model also has the advantage over an Euler-angle model of producing angular velocity

and/or quaternion attitude control vectors. Kaminer et al.
72, 73

 described path following

and coordinated control of multiple unmanned aircraft by trajectory-following flight

controllers using pitch and yaw rates as the control vector. Knoebel et al.
79

 described a

flight controller for an unmanned aircraft using quaternion feedback. The quaternion

model is also well suited to the imposition of path constraints on wind-axis angular

velocity. It is not restricted only to the inverse dynamics method, it could be applied in

pseudospectral or other methods.

Sections 4.2, 4.3, 4.4, and 4.5 describe the original derivation of the model, and

corresponding test results are given in Section 4.6 which show that the model is

computationally efficient. Section 4.7 shows the controls generated for two trajectory

examples. Further research into the accuracy of the controls was carried out after the

original model derivation: Section 4.8 describes this further research and the use of

quaternion calculus to generate more accurate controls. Section 4.9 describes a minor

change to the algorithm that improves computational efficiency. Section 4.10 notes that

the quaternion model state equations are linear in the controls. Section 4.11

summarizes, for convenience, the revised algorithm and model, bringing together the

improvements of Chapters 3 and 4.

80

4.2 Unit Quaternion-Based Point-Mass Model State Equations

A unit quaternion may be written as

  0 1 2 3, , ,
T

e e e ee (4.1)

where e0 is the scalar component and

  
1

22 2 2 2

0 1 2 3 1e e e e    e (4.2)

The orthogonal transformation matrix between flat-Earth axes and wind axes is well

known and can be expressed in both Euler-angle and quaternion forms
103, 122, 123

.

Defining a state vector (x, y, z, v, e
T
)

T
 and control vector (ax, p, q, r)

T
 , equating

corresponding elements of the two forms of the transformation matrix, and

incorporating the quaternion kinematic equation ė=e gives the following system of

state equations

  2 2 2 2

0 1 2 3x v e e e e    (4.3)

  1 2 0 32y v e e e e  (4.4)

  1 3 0 22z v e e e e  (4.5)

 xv a (4.6)

 e Ωe (4.7)

where

0

01

02

0

p q r

p r q

q r p

r q p

   
 


 
 
 

 

Ω (4.8)

81

4.3 Model Inverse Dynamics

Let x, y, and z be parameterized by functions that are at least C
3
 continuous, then from

Eqs. (3.16)

  
1
22 2 2s x y z      (4.9)

  
1

s xx y y zz
s

      


 (4.10)

Tangential acceleration ax is given by

 x

T D gz
a

M s


 




 (4.11)

Using Frenet's formulae
4
 leads to

 ; : t
t n

d

s ds
 

εr
ε ε

 


 (4.12)

and

    

1
222

3

1 s

s




   
 

r r r r   


 (4.13)

Differentiating Eq. (4.12) and cancelling tε


2

t n

s


 r sε ε

   (4.14)

  2n s s
s


 ε r r

   


 (4.15)

2

n n

s
s

s
  

r
a ε r

   


 (4.16)

The velocity frame V is the flat-Earth frame rotated through  and  only, hence

82

 V
s


r

x



 (4.17)

   2 2 2 2
, ,0

T

V

y x

x y x y

 
 

   
 

y
 

   
 (4.18)

   

 

 

2 2

2 2 2 2 2 2
, ,

V V V

T

x yxz yz

s x y s x y s x y

 

   
    
 

z x y
  

   

        

 (4.19)

Clearly W Vx x
 

. From Eq. (4.16) and W tx ε
 

 and V Vz x
 

 and n tε ε
 

 then

 , where , 0V n Wk k k   z ε x
  

 (4.20)

Thus the plane containing and V nz a


is perpendicular to Wx


 and the gravity component

in that plane is given by  V Vg z z
 

. From Eq. (4.19)

    2 2

2
, ,V v

g
xz yz x y

s
    g z z
      


 (4.21)

therefore

 

 2 2

2
, ,

z n V v

s g
xz yz x y

s s

  

     

l a g z z

r
r

 


     

 

 (4.22)

and applying Assumption 2

z

W

z

 
l

z
l


 (4.23)

 W W W y z x
  

 (4.24)

The relationship between the angular velocity of a frame and the transformation matrix

is given by the strapdown (Poisson kinematic) equation

83

  
T

W W

E Eω H H (4.25)

which can be derived from the transport theorem
4, 123

, and where the angular velocity

cross-product equivalent matrix ω is

0

0

0

r q

r p

q p

 
 

  
  

ω (4.26)

and

T

W

W T

E W

T

W

 
 

  
 
 

x

H y

z






 (4.27)

Equating elements on each side of Eq. (4.25) gives a set of control expressions

, or

, or

, or

W W W W

W W W WW

W W W W

p p

q q

r r

    

    

    

y z z y

z x x z

y x x y

    

    

    

 (4.28)

Eq. (4.28) uses only node-based values to evaluate the controls and p depends on r

whilst ax, q, r, and the Euler-angle model controls only require the first and second

derivatives of r. In Section 4.8 segment-based expressions are derived which use

interpolated angular velocity instead of r for improved accuracy.

4.4 Differential Flatness

To confirm that the unit quaternion system of Eqs. (4.3)-(4.7) is differentially flat, r is

defined as the flat output. Eq. (4.28) shows that p, q, and r are real analytic functions of

, , and W W Wx y z
  

; Eqs. (4.17), (4.22), (4.23), and (4.24) express , , and W W Wx y z
  

as real

analytic functions of r and its derivatives; ax is obviously a function of r and its

derivatives, hence the controls are real analytic functions of a flat output r.

To show that e can be expressed as a real analytic function of r and its derivatives, let

84

 , {1,2,3}, {1,2,3}W

E ijh i j    H (4.29)

and re-arrange to give the standard result
123

   

   

   

   

   

2 2

0 11 22 33 1 11 22 33

2 2

2 11 22 33 3 11 22 33

0 1 23 32 1 2 12 21

0 2 31 13 2 3 23 32

0 3 12 21 1 3 13 31

1 / 4 1 / 4

1 / 4 1 / 4

/ 4 / 4

/ 4 / 4

/ 4 / 4

e h h h e h h h

e h h h e h h h

e e h h e e h h

e e h h e e h h

e e h h e e h h

       

       

   

   

   

 (4.30)

Therefore e is a real analytic function of the elements of
W

EH , and of , , and W W Wx y z
  

and, subject to Assumptions 2 and 3, the model is differentially flat.

4.5 Computation of Time Derivative of Wind Frame z-Axis

This section describes a computational algorithm for evaluating the time derivative of

the wind frame z-axis, which is required to evaluate the controls using Eq. (4.28). This

computation is superseded by the control expressions derived in Section 4.8 but is

included here for completeness.

The time derivatives , , and W W Wx y z
     required by Eq. (4.28) can be obtained by

analytically differentiating Eqs. (4.17), (4.24), and (4.23) but for , and W Wy z
   the

equations become computationally expensive to implement; Wy
 can be avoided by

using the first expressions in Eq. (4.28) and Wz
 may be evaluated as follows. Define l as

a vector and z as the unit vector parallel to l, dl to be the total differential of l, dlt to be

the component of dl parallel to l, dz to be the total differential of z, dzt to be the

component of dz parallel to z, and dzn to be the component of dz perpendicular to z.

Then

85

 

 

  

,

1

t

t

t

n t

d d
d d d

d d
d

d d d d d


   


 

    

l l l
z l z l z z

l l

l l z z
z

l l

z z z l l z z
l

 (4.31)

Therefore, substituting lz for l and W  z z


   
1

W z z W W

z

   z l l z z
l

     (4.32)

where lz is obtained by differentiating Eq. (4.22). (As noted above, evaluating the

controls using the expressions in Section 4.8 obviates the need for , , and W W Wx y z
     but

Eq. (4.32) is included here for completeness.)

4.6 Computational Load

Computational speed is a key attribute of the inverse dynamics method. Hence the

speed with which the quaternion model can be evaluated, compared to that of the Euler-

angle model, is of interest. In this section numerical comparisons of the computational

speeds of the Euler-angle and quaternion models are presented.

To assess computational performance, each model was applied to 19 different

trajectories for which the parameterization function types were as follows: three linear,

four vertical helices, two vertical loops, three horizontal helices, one quadratic

polynomial, five quintic polynomials and one degree 7 polynomial. Each trajectory was

run in Matlab on a 32-bit PC using the quaternion model then using the Euler-angle

model, for N = 2
n
 + 1; n  {17,16,...7}, and the ratio of CPU time consumed by the

quaternion model to CPU time consumed by the Euler-angle model was recorded. The

measurements were then repeated but running the Euler-angle model first. For

N  2
13

+1 each trajectory was repeated 2
14

/(N-1) times to reduce any effects from the

Matlab CPU timer quantization. The times include the processing necessary to extract r

and its derivatives from the parameterization functions at each node, but exclude

86

trajectory parameterization setup, constraint evaluations, and transforming controls to

physical variables. Controls were evaluated using Eq. (4.28), i.e. excluding evaluation

of Eqs. (4.62)-(4.65) below but including Eq. (4.32).

As tested the Euler-angle inverse dynamics routine performed, at each node: 1 square

root, 3 inverse trigonometric functions, 1 cosine, 22 multiplications, 3 divisions and 15

additions/subtractions (no functions were evaluated more than once) compared to: 1

square root, 52 multiplications, 20 divisions and 44 additions/subtractions for the

quaternion inverse dynamics routine; in both cases assignments and simple conditions

were also performed. CPU times depend not only on the hardware and the model but on

the efficiency with which the compiler and run-time environment implement the square

root and trigonometric functions and on memory management; for the Matlab

environment Table 1 shows the mean, standard deviation and range of the CPU times

from which it can be seen that for this version of the quaternion model mean CPU time

was comparable with that of the Euler-angle model.

N Mean Std Dev Max Min

131073 0.42 0.01 0.45 0.38

65537 0.85 0.04 0.90 0.8

32769 0.95 0.02 1.00 0.91

16385 1.01 0.05 1.10 0.91

8193 1.01 0.05 1.15 0.93

4097 1.02 0.04 1.13 0.94

2049 1.03 0.06 1.14 0.94

1025 1.03 0.04 1.13 0.93

513 1.06 0.06 1.17 0.96

257 1.03 0.05 1.13 0.96

129 1.03 0.05 1.12 0.93

65 1.04 0.05 1.17 0.94

Overall 0.96 0.18 1.17 0.38

Table 4-1 Ratio of Quaternion CPU Time to Euler-Angle CPU Time

(using 32-bit hardware and software)

87

4.7 Example Results

This section describes two trajectory examples, one of which includes vertical flight, to

demonstrate the quaternion model. For these examples aircraft data representative of a

small unmanned aircraft were used: mass 11 kg, maximum thrust 20 N, 15  v  60 m/s

and lz  3g.

Figures 4-1 and 4-2 show a vertical loop trajectory and the control vector produced

using Eq. (4.28). The trajectory was defined as a loop through 360 with constant

normal acceleration and constant airspeed, starting and ending in level flight heading

45, and discretized into 129 uniformly-spaced nodes. The control values are clearly

feasible. Figure 4-2 shows the error deviation of the computed values of the control

vector to be comparable to machine precision (ax, p, and r should be zero and q should

be constant). Repeating the calculation with varying N from 2
17

+1 to 2
4
+1 (equivalent

to t = 1.1 s) confirmed that the error variation was comparable to machine precision

over this range. For comparison, controls were also evaluated using finite differences

(Eq. (4.36) below) which produced, because the curvature was constant, a constant q

error which reduced as t was reduced; for N = 129 (t = 0.15 s) the q error was ~10
-4

rad/sec and the maximum position error was 0.2 m.

88

Figure 4-1. Vertical Loop Trajectory

-100

0

100

-100

0

100
0

50

100

150

200

y (m)x (m)

-z
 (

m
)

Figure 4-2. Control Vector for Vertical Loop Trajectory

0 5 10 15
-2

0

2
x 10

-15

time (s)

a
x
 (

m
/s

2
)

0 5 10 15
-4

-2

0

2

4
x 10

-15

time (s)

p
 (

ra
d
/s

)

0 5 10 15
-1

0

1

2
x 10

-16

time (s)

q
-q

m
e

a
n
 (

ra
d
/s

)

0 5 10 15
-4

-2

0

2

4
x 10

-16

time (s)

r
(r

a
d
/s

)

89

Figure 4-3 shows a constant airspeed vertical helix trajectory In this case the angular

velocities should be constant: Figure 4-4 shows that the errors in the node-based

controls are of the order of machine precision.

These examples demonstrate that, for these trajectories, Eq. (4.28) produces accurate

and feasible control vectors.

Figure 4-3. Vertical Helix Trajectory

0

500

1000

-500

0

500
-1000

-500

0

y (m)x (m)

-z
 (

m
)

90

Figure 4-4. Control Vector for Vertical Helix Trajectory

0 50 100 150
-1

0

1
x 10

-15

time (s)

a
x
 (

m
/s

2
)

0 50 100 150
-3

-2.5

-2

x 10
-17

time (s)

p
-p

m
e

a
n
 (

ra
d
/s

)

0 50 100 150
-2.4

-2

-1.4

x 10
-17

time (s)

q
-q

m
e

a
n
 (

ra
d
/s

)

0 50 100 150

-1.6

-1.4

-1.2
x 10

-16

time (s)

r-
r m

e
a

n
 (

ra
d
/s

)

91

4.8 Control Expressions

In this section more accurate control expressions are derived to replace those derived in

Section 4.3. The revised controls use quaternion calculus and therefore require accurate

expressions for orientation and the first derivative of orientation. This section is divided

into sub-sections covering: the derivation of alternative angular velocity expressions

(Section 4.8.1); the evaluation of orientation, including a comparison of two common

algorithms, (Section 4.8.2); the evaluation of the first derivative of orientation (Section

4.8.3); a numerical comparison of the candidate control expressions (Section 4.8.4); and

a brief conclusion (Section 4.8.5). It is shown that the most accurate of the alternative

expressions produces accurate controls even for trajectories such as the course reversal

case of Section 3.4.4.

4.8.1 Derivation of Alternative Angular Velocity Expressions

Using

    1 2 3: , , : , ,
T T

p q r    ω (4.33)

the first set of expressions of Eq. (4.28) becomes

W W

W W

W W

  
 

   
  

y z

ω z x

y x

 
 
 

 (4.34)

Eq. (4.34) uses only instantaneous analytic derivatives at nodes, thereby avoiding the

inherent ill-conditioning of numerical differentiation. However, error arises in controls

derived from analytic derivatives because in general for a nonlinear function f(t)

 () () ()(), [,]b a a b a a bf t f t f t t t t t t    (4.35)

and for a nonsmooth function the error does not necessarily reduce to zero as

0b at t  .

An alternative is two-point finite differences

92

 

 

 

1

1 1

1

W W j W j j

j W W j W j j

W W j W j j

t

t

t









 



   
 
    
 
  
 

y z z

ω z x x

y x x

  

  

  

 (4.36)

If controls are calculated using Eq. (4.36) instead of (4.34), reductions of 27

multiplications, 6 divisions, and 15 additions/subtractions are possible. However, for

large rotations significant error arises in the direction of the finite difference

approximations (the derivative of a unit vector is orthogonal to the unit vector, but the

direction of the finite difference is not: e.g. it is parallel to the unit vector for a 180

change).

Control accuracy can be improved by rewriting Eq. (4.7) as

 e Eω (4.37)

where

31 2

20 3

13 0

02 1

1

2

ee e

ee e

ee e

ee e

  
 

 
 
 
 

E (4.38)

The structure of E enables the exact solution of the over-determined system Eq. (4.37)

to be derived by the least squares method, without recourse to the cost of the Moore-

Penrose pseudoinverse. Define the residual

2

:R  e Eω (4.39)

then

  
4

1 1 2 2 3 3

1

2 , 1,2,3i i i i in

in

R
e n  

 


    


 E E E E (4.40)

and the least squares solution is given by

93

 0, 1,2,3
n

R
n




 


 (4.41)

hence

0 1 1 0 2 3 3 2

0 2 1 3 2 0 3 1

0 3 1 2 2 1 3 0

2

e e e e e e e e

e e e e e e e e

e e e e e e e e

    
 

     
     

ω

   

   

   

 (4.42)

is the exact solution of Eq. (4.37). Alternative derivations may be found in Shuster
121

.

4.8.2 Evaluation of Orientation

Evaluation of Eq. (4.42) requires orientation e which may be derived from the rotation

matrix of Eq. (4.27). A number of algorithms have been proposed for this purpose e.g.

Grubin
57, 58

, Reynolds
111

, Shoemake
120

, and Shepperd
119

. Grubin's algorithm has a

singularity; Reynolds' algorithm is elegant and efficient, but uses vector dot and cross

products which can become zero or indeterminate and the conditions which must be

evaluated to handle these cases are computationally expensive. The two most widely

used algorithms are those of Shoemake and Shepperd.

Shoemake’s algorithm is efficient but it relies on a tolerance which determines how the

matrix elements are combined. Shepperd’s algorithm does not use a tolerance: it

automatically uses the combination that minimizes round-off error. Figure 4-5 shows

the peak error (error was defined as 1 - |ea  eb|) arising from the Shoemake algorithm as

a function of the tolerance. These results were obtained by implementing

  2 1b ae f f e , using a standard algorithm
120, 123

 for 1 : W

a Ef e H , and the Shoemake

algorithm for 2 : W

E bf H e where the domain of ea covered the set of 3D orientations at

intervals 1° in each dimension.

The minimum peak error of the Shoemake algorithm was found to be 610
-6

 at a

tolerance of 110
-11

. The error was high at very small tolerances due to round-off error,

and increased again at high tolerances because this forced at least one element of the

quaternion to be zero. The peak error of the Shepperd algorithm, over the same domain,

94

was found to be 910
-15

. Although the Shepperd algorithm was found to be 50-80%

slower, it has been used to evaluate e because of its accuracy.

4.8.3 Evaluation of the First Derivative of Orientation

It remains to choose expressions for ė for substitution into Eq. (4.42). A compact

analytic expression for the first derivative of a unit quaternion was described by Kim et

al.
76

, but this approach would suffer from discretization error in the same way as

Eq. (4.34). Writing ė as a finite difference gives

1

1

j j

j

jt








e e
e (4.43)

However, ė is the velocity of the unit quaternion on the surface of the 3-sphere S
3
,

whereas ej - ej-1 is the straight line between ej-1 and ej and is therefore inside S
3
 except at

the ends. Therefore although Equation (4.43) generates smaller errors than Eq. (4.36),

(because the denominator has a single source of direction error whereas Eq. (4.36)

Figure 4-5. Peak Error as a Function of Tolerance for the Shoemake Algorithm

10
-20

10
-15

10
-10

10
-5

10
0

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Tolerance

E
rr

o
r

95

introduces three direction errors separately), errors may be significant for large

rotations.

This can be readily overcome by interpolating between ej-1 and ej such that the

interpolant lies on a great circle on the surface of S
3
. Spherical linear interpolation

(slerp) satisfies this requirement and may be defined
120

 as

  sin 1 sin()

slerp(; ,) : , [0,1]
sin

a b

a b

t t
t t

 



 
 

e e
e e (4.44)

where

 arccos()a b  e e (4.45)

The singularities in Eq. (4.44) when sin = 0 may be handled by selecting the sign of ej

such that ej  ej-1  0 and setting e = ej if  = 0.

Slerp can be applied to the evaluation of ė by defining

 1: slerp(; ,)j j  e e e (4.46)

It is only necessary to evaluate Eq. (4.46) at a single  and to express ėj-1 as

1

1

j

j

jt



 










e e
e (4.47)

The interpolating variable  is chosen such that e - ej-1 is small enough, even for large

, to avoid discretization error and large enough, even for small , to avoid round-off

error. An empirical value of  = 0.001 was used.

The quaternion exponential map
77

 is defined by

     

  
1

1
exp 0, , , : 0, , ,

!

cos ,sin , ,

i

i

a b c a b c
i

a b c

 

 










 (4.48)

96

where (a, b, c) is a unit vector,  is an arbitrary scalar, and the transposition operator

has been omitted for clarity.

The quaternion logarithm is defined as the inverse of the exponential and can be used in

an alternative (equivalent) definition of slerp, which leads to

1 1

1

ln()j j j

j

jt



 



 


e e e
e (4.49)

Eq. (4.49) is equivalent to the limit of Eq. (4.47) as   0, and is therefore

mathematically preferable, but computationally Eq. (4.47) requires fewer operations

(approximately 25 fewer flops) than Eq. (4.49).

4.8.4 Numerical Comparison of Control Expressions

The five candidate angular velocity control expressions described in this chapter are:

 Eq. (4.34).

 Eq. (4.36).

 Eq. (4.42) with (4.43).

 Eq. (4.42) with (4.47).

 Eq. (4.42) with (4.49).

A numerical comparison of these expression was carried out in two stages: since Eqs.

(4.47) and (4.49) should give the most accurate results, these two expressions were

compared against each other, then the worst of the two was compared against the

remaining expressions.

4.8.4.1 Test Setup

A test database of trajectories was created by manually generating arbitrary boundary

conditions. Pairs of horizontal positions in the range [-2300,2300] m and distributed

across the four horizontal quadrants were generated, with vertical displacements in the

range [-200,500] m, five values of heading (a value in each quadrant, and zero), three

values of flight path angle and three values of bank angle all in the range [-10°,5°], and

97

two values of load factor (9.81 and 15 m/s
2
). Airspeed was held constant to eliminate

any errors arising from ax. These boundary conditions were combined with an

optimization vector of (60,0,0,0,0,0,0)
T
, resulting in 2160 different trajectories. The

tests were carried out using uniformly-spaced nodes with N = 129. The Matlab ode45

(Runge-Kutta 4/5) function was used to numerically integrate the state equations, and

error was defined as the two-norm of the difference between demanded position and the

ode45 position at each node.

4.8.4.2 Results

Figure 4-6 shows the peak differences in errors for Eqs. (4.47) and (4.49). Eq. (4.49)

was found to produce tracking errors of less than approximately 0.02% of path length,

(Using N = 257 and Eq. (4.49), the tracking error reduced to 0.005% of path length.)

The percentages of trajectories for which each expression resulted in the lowest

maximum position errors were recorded. Eq. (4.49) was more accurate than Eq. (4.47)

for 83% of the trajectories, and Eq. (4.49) position errors were never more than

approximately 310
-7

% of path length (equivalent to 10
-6

 m) worse than the Eq. (4.47)

Figure 4-6. Difference Between Maximum Errors, Eq. (4.47) - Eq. (4.49)

 (Positive values mean Eq. (4.47) has larger error)

0 500 1000 1500 2000

0

5

10

15
x 10

-4

Trajectory

D
if
fe

re
n

c
e

 i
n

 M
a

x
 E

rr
o

r
(m

)

98

position errors. Although less accurate, Eq. (4.47) peak errors were within 0.3%

(1.510
-3

 m) of the Eq. (4.49) errors, confirming that Eq. (4.49) is slightly more

accurate than Eq. (4.47), but that both produce good tracking results. Corroborating

results were obtained using Chebyshev-Gauss-Lobatto node distribution and higher N:

as N increased the accuracy of both expressions increased, and the difference

consequently reduced.

As the slightly less accurate of the two, Eq. (4.47) was used as the basis for comparison

with the other three expressions: Eq. (4.47) was the most accurate for approximately

97% of trajectories, and Eq. (4.43) for the remaining 3% of trajectories. Further,

Eq. (4.47) position errors were never more than approximately 0.01 m worse than the

Eq. (4.43) position errors, but Eq. (4.43) position errors were often significantly worse

than those from Eq. (4.47), as shown in Figure 4-7. Eqs. (4.34) and (4.36) were less

accurate than Eq. (4.47) for all trajectories, Eq. (4.34) producing errors over 6000 m

worse than Eq. (4.47) and Eq. (4.36) producing errors over 3700 m worse than Eq.

(4.47). Results for a range of values of N and for Chebyshev-Gauss-Lobatto node

spacing corroborated these findings.

Figure 4-7. Difference Between Maximum Errors, Eq. (4.43) - Eq. (4.47)

 (Positive values mean Eq. (4.43) has larger error)

0 500 1000 1500 2000

0

200

400

600

800

1000

1200

1400

Trajectory

D
if
fe

re
n

c
e

 i
n

 M
a

x
 E

rr
o

r
(m

)

99

Eqs. (4.34), (4.36), (4.42) with (4.43), and (4.42) with (4.47) were evaluated for a

course reversal trajectory (Section 3.4.4) in which at every node the aircraft was in

straight and level unaccelerated flight and the path had two 180° course reversals, each

course reversal taking place entirely between two consecutive nodes. Uniformly-spaced

nodes with N = 210 were used. For all four control expressions, the errors in the

evaluated bank and pitch rates were less than 10
-6

 (to be expected since they should be

zero). Figure 4-8 shows the yaw rates over a course reversal. The time t between

nodes 154 and 155 was 0.1262 s: a 180° track change over that interval requires a yaw

rate of approximately 1426 °/s. The relative error in the yaw rate generated by the

combination of Eqs. (4.42) with (4.47) was less than 10
-6

, showing that the controls can

accurately track this trajectory despite its singularity due to s' = 0.

4.8.5 Conclusion

For mathematical accuracy, the Shepperd algorithm to evaluate e, Eq. (4.49) for ė, and

Eq. (4.42) to evaluate u should be chosen. This analysis assumes that there are no

disturbances, noise or uncertainty, and that the model accurately represents the aircraft.

Figure 4-8. Yaw Rates for Course Reversal

153 154 155
-2000

-1500

-1000

-500

0

Node

Y
a

w
 r

a
te

 (
º/

s
)

Eq. (4.34)

Eq. (4.36)

Eq. (4.43)

Eq. (4.47)

100

In practice the overall system relies on feedback to compensate for these unwanted

effects, so the computational cost of the higher accuracy of Eq. (4.49) over Eq. (4.47)

may not be justified. This design decision depends on the particular aircraft and

mission requirements.

4.9 Computation of Normal Load Factor

A more computationally efficient node-based expression for lz than Eq. (4.22) is to

resolve the total force per unit mass on the model into tangential and normal

components:

 M  f r g (4.50)

  x M W W f f x x
 

 (4.51)

 z M x l f f (4.52)

The node-based value of Eq. (4.52) is required to evaluate Wz


 to ensure that the model

is aligned with the parameterized spatial trajectory at each node; accurate magnitude is

not critical for this purpose because Wz


 is a unit vector. The segment-based value of

Eq. (3.45) is used for constraint evaluation, for which magnitude is essential.

4.10 Singular Arc

The quaternion model state equations (4.3)-(4.8) are linear in u. For the minimum time

problem this leads to a singular arc because f/u = 0, the Hamiltonian becomes

H = 1 + 

f, therefore H/u = 0 for all admissible u. The inverse dynamics method

handles the singular arc without problems, but this property of the model may limit its

use in methods that have difficulty handling singular arcs.

4.11 Revised Trajectory Evaluation Algorithm

For convenience, the expressions required at each node, using the quaternion-based

model, are listed below. The list assumes that r, v, their derivatives with respect to 

and s and s have been evaluated at the node and that s = 0, sj = 0, lz = 0 and v  0 are

101

handled as already described. The subscript j is omitted in the equations below except

when both j and j - 1 appear.

1j j js  r r (4.53)

 1

, if 0
2

, if 0

j

j j

j j

j

j

j j

j

s
s

v v
t

s
s

v


 



 







 







 (4.54)

v

s
 


 (4.55)

v s

s




 
 


 (4.56)

1

1

j j

x j

j

v v
a

t






 (4.57)

 W
s






r
x


 (4.58)

       r r r (4.59)

     z W W    l r g r g x x
   (4.60)

z

W

z

 
l

z
l


 (4.61)

  Shepperd , ,W W W W e x z x z
   

 (4.62)

1, if 0

, otherwise

j j j

j

j

 
 



e e e
e

e
 (4.63)

1 1

1

ln()j j j

j

jt



 



 


e e e
e (4.64)

102

0 1 1 0 2 3 3 2

0 2 1 3 2 0 3 1

0 3 1 2 2 1 3 0

2

e e e e e e e e

e e e e e e e e

e e e e e e e e

    
 

     
     

ω

   

   

   

 (4.65)

 

 

     

2 2

2

1

2

1 1 1 1

2

, ,

arccos

1
| 0.5

sin

z

W j W j

seg

z j j j W j W j z j z j

j

g
x z y z x y

s

v v
t











   

        


 

  
         

g

x x

l x x g g

 

 

 (4.66)

 x

gz
T a M D

s

 
   

 
 (4.67)

The three expressions in Eq. (4.66) implement Eq. (3.45).

The constraints may be evaluated using quadratic interpolation. Define a function m

that applies local quadratic interpolation to find the maximum of a curve passing

through N node values then

  

  

  

  

  

  

  

max

min

max

max

, 1,

, 1,

, 1,

, 1,

, 1,

, 1,

, 1,

seg

z j j

j

j

j

j

s j

j ne

m l l j N

m T T j N

m T T j N

m p p j N

m p p j N

m v v j N

m v v j N

   
 
   
 
   
 
    
 
    
 
   
 
   
 

c (4.68)

The final flight time is evaluated by

1

()
N

j

f f j

j j

s
t a w

v





  (4.69)

where a(f) and the weights w are determined using standard formulae dependent only

on the node distribution and N.

103

If a penalty function is required because of the particular NLP algorithm being used, the

penalized objective may be evaluated by

 ()fJ t P   c (4.70)

where

 max(0,), {1,...7}i ic c i   (4.71)

The penalty function used in this work was the squared two-norm

7

2

2
1

() i i

i

P k c 



c (4.72)

105

5 AIRSPEED PARAMETERIZATION

5.1 Introduction

The optimality of a solution to a minimum-time aircraft trajectory generation problem

depends on the closeness of the generated airspeed to the maximum airspeed that

satisfies all path and boundary constraints. Hence the accuracy and computational

speed of airspeed determination is a critical part of the method. Low-degree polynomial

parameterization reduces optimality, but high-degree parameterization increases the

dimension of the optimization problem. No structured approach to choosing the most

appropriate airspeed parameterization was found in the literature. This chapter

describes a new computational approach to estimate maximum feasible airspeed without

airspeed parameterization or optimization. Results obtained with this approach are then

used to measure the effects of the degree and form of polynomial airspeed

parameterization on the robustness, optimality and computational speed of optimization

in the inverse dynamics method. The effects of Chebyshev, barycentric Lagrange,

Bernstein and power series polynomial basis functions are compared.

The computation times taken by direct evaluation of maximum feasible airspeed are

also compared to the times taken to optimize parameterized airspeed, as a guide to

whether direct evaluation of maximum airspeed is a practicable alternative to airspeed

optimization.

5.2 Direct Evaluation of Maximum Feasible Airspeed

The airspeed profile of a minimum-time trajectory is the maximum airspeed that

satisfies all constraints. In this section instead of parameterizing airspeed and

optimizing the parameters (airspeed coefficients), the maximum feasible airspeed (vmax)

and corresponding minimum feasible final flight times (tRef) are derived directly from

the spatial path without optimization.

Section 3.4.7 describes a set of aircraft constraints {lz, Tmax, Tmin, pmax, pmin, vne, vs}.

From this set the maximum feasible airspeed vmax may be written

106

  min , , , ,max ne l Tmax Tmin pv v v v v v (5.1)

where vl, vTmax, vTmin, and vp are the maximum airspeeds that satisfy their respective

constraints. Clearly if vmax < vs then there is no feasible airspeed for that spatial path.

Each trajectory is discretized and each element of Eq. (5.1) is evaluated at each node as

described below, assuming that N is sufficiently large that acceleration between nodes

may be assumed constant and the Euclidean distance between nodes is a good

approximation to the corresponding arc length.

The next four sections describe the evaluation of vl, vTmax, vTmin and vp at each node. All

the expressions apply to values at node j unless subscripted to apply at node j-1.

5.2.1 Normal Load Factor

The load factor magnitude at each node may be expressed as an explicit function of v

 2

z n zl v  ε g


 (5.2)

where gz is given by Eq. (3.49),  by Eq. (4.13) and nε


by Eq. (4.15). Eq. (5.2) is

equivalent to Eq. (4.22). The expression

  max |l zv v l l  (5.3)

can be solved using any suitable univariate zero-finding algorithm. Brent’s

method
21, 108

 is robust, stable and efficient, with superlinear and guaranteed

convergence. To ensure convergence, it is only necessary to bracket the zero by

subdividing the speed range at v = va and checking the sign of l
+
- lz at v = vs, v = va, and

v =vne.

5.2.2 Maximum Thrust

The load-factor-limited airspeed vl at any node j ∈ {1,…N} may be evaluated solely on

data at j, but thrust-limited airspeeds vTmax and vTmin depend on values at multiple nodes.

Given an initial airspeed v0 and a drag polar D(v, lz, M), (Eqs. (3.36)-(3.38)) the

107

following algorithm may be used to evaluate the maximum airspeed (vTmax) that satisfies

the upper thrust limit (Tmax).

1. Set vmax = vl, j  {1,...N}.

2. Set vTmax 1 = v0 and vTmax N = vf.

3. Iterate for j ∈ {2,…N - 1}:

Evaluate drag D1 at vmax j-1 and D2 at vne

   1 max 1 max 1, ,j z jD D v l v M  (5.4)

   2 , ,ne z neD D v l v M (5.5)

Evaluate the mean gravitational component

1

0.5c

j j

gz gz
g

s s

  
     

 (5.6)

Evaluate the available acceleration aA over [j-1,j]

   max 1 20.5A ca T D D M g    (5.7)

Evaluate the acceleration a2 required to reach vne over [j-1,j]

   2 1 1 2ne max j ne max j ja v v v v s    (5.8)

If aA  a2 then vTmax j = vne ; else

 Evaluate the acceleration a1 required to reach vs

   1 1 1 2s max j s max j ja v v v v s    (5.9)

 If aA < a1 then trajectory is infeasible, stop.

 Else apply Brent’s method to solve

108

   

  

1

1 1

0.5 , ,

0
2

max Tmax j z

Tmax j max j Tmax j max j

j

T D v l M D gz

M s

v v v v

s

 

  




 
 

 (5.10)

 for vTmax j.

4. Loop to step 3.

5.2.3 Minimum Thrust

Clearly at each node the aircraft must be flying sufficiently slowly so that if maximum

deceleration was applied (which would occur at minimum thrust) the deceleration

would be sufficient to reduce the airspeeds at all later nodes to within the maximum

airspeeds imposed by load factor, maximum thrust, bank rate and vne at those later

nodes. Therefore maximum feasible airspeed is also constrained by the deceleration

achievable at minimum thrust, to ensure that the aircraft can decelerate so as to not

exceed  min , ,l Tmax nev v v at any later node. Defining vTmin as the maximum airspeed

that ensures that at minimum thrust the aircraft can decelerate sufficiently to satisfy this

requirement, the following algorithm may be used to evaluate vTmin without requiring

iterative zero-finding.

1. Set vTmin N = vf and vlim = vf

2. j ∈ {1,…N} set  1 min , ,j l Tmax nev v v v

3. Iterate backwards for j  {N - 1,…1}:

Evaluate drag   1 1, ,j z jD v l v M , acceleration  1 mina T D M gz s    , the

time t taken to cover the Euclidean distance s between j and j+1 starting at

speed v1 with acceleration a1

109

1

1

2 2
1 1 1 1

1 1

1

1

, if 0

2
, if (0)

2

2
, otherwise

s
a

v

v v a s v
t a a

a s

s

v














    

    
 





 (5.11)

Evaluate the minimum achievable speed v2 at j+1 given by
2 1 1jv v a t 

If v2 > vlim then

If j > 1 then

 Evaluate drag   , ,lim z limD v l v M

 Evaluate acceleration  2 mina T D M gz s   

 Evaluate limiting airspeed
2

2 22Tmin jv v a s 

 Reset vlim = vTmin j

Else (i.e. j = 1) trajectory is infeasible, stop.

Else (i.e v2 ≤ vlim) continue iteration

4. Loop to step 3.

5.2.4 Bank Rate

Bank rate p is a function of  z z
, ,r l l and depends on values at multiple nodes. It is not

necessary to solve pmax - p = 0 since the primary purpose of directly evaluating vmax for

the reference paths is to create reference maximum airspeeds and final flight times and

the secondary purpose is to measure computation times. It is only necessary to

categorize as infeasible any trajectories for which p > pmax when

v = min(vne, vl, vTmax, vTmin). Since vp has not been evaluated in this work the

computation times will be shorter than evaluation of vmax including vp.

Load factor and thrust constraints tend to be more restrictive than the bank rate for small

aircraft, so the pmax condition should not reduce the number of feasible trajectories in the

110

database significantly: for the test database used in this work it only removed

approximately 0.05% of otherwise feasible trajectories.

5.2.5 Evaluation of Minimum Feasible Airspeed

Parenthetically, minimum feasible airspeed vmin may be readily evaluated without

iterative zero-finding, since it is constrained by vs, Tmax and Tmin only (assuming

vmax ≥ vs).

To evaluate the minimum thrust effect, set vmin 1 = v0, vmin N = vf and iterate for

j  {2,…N - 1}: evaluate drag   1 1, ,min j z min jD v l v M  , acceleration

 mina T D M gz s    , and the time t taken to cover the Euclidean distance s

between j - 1 and j with acceleration a using Eq. (5.11) then set

 1max ,min j s min jv v v a t  and continue the iteration.

Some manoeuvres, such as a sustained steep climb, may cause deceleration even at

maximum thrust; hence the aircraft must start such a manoeuvre at a sufficiently high

airspeed to ensure that the airspeed remains above vs throughout. We define the

minimum airspeed that satisfies this requirement as vB. After the preliminary evaluation

of vmin j  {1…N} using the preceding paragraph, vB and hence vmin can be evaluated

as follows:

1. Set vlim = vf

2. Iterate backwards for j  {N - 1,…1}:

Evaluate drag   , ,min j z min jD v l v M ,

Evaluate acceleration  maxa T D M gz s   

Evaluate the time t taken to cover the Euclidean distance s between j and j+1

starting at speed v1 with acceleration a using Eq. (5.11)

Evaluate the maximum achievable speed v2 given by
2 min jv v a t 

If v2 < vlim then

111

If j > 1 then

 Evaluate drag   , ,lim z limD v l v M

 Evaluate acceleration  maxa T D M gz s   

 Evaluate
2

2 2B jv v a s 

 Reset vlim = vB j and continue iteration

Else (i.e. j=1) trajectory is infeasible, stop.

Else (i.e v2  vlim) set vlim = vmin j and continue iteration

3. Loop to step 2.

4. Set    max , , 2,... 1min j min j B jv v v j N    .

The range of feasible arrival times at the final point is defined by vmax and vmin: a

feasible airspeed profile for any in-range desired final flight time may be obtained by

linear interpolation, for example to achieve a rendezvous.

5.2.6 Computation Times – Direct Evaluation

To obtain results for a large sample of boundary conditions, a test database of feasible

spatial paths was created (Section 5.3.1), and the maximum feasible airspeed vmax and

corresponding final flight time tRef for each spatial path in the test database were

evaluated.

The computation time taken to directly evaluate vmax will depend on the number of

iterations required by the zero-finding algorithm, on the values of the conditional

expressions, and on the hardware and software environment. As a guide the mean time

taken to compute vmax per trajectory, averaged over a test database of the feasible spatial

paths (Section 5.3.1), with N = 257, was 0.14 s.

The mean times taken to evaluate vmax per node, over all trajectories and over only

feasible trajectories (i.e. trajectories for which vmax  vs   [0,f]), for various N are

shown in Table 5-1.

112

N All trajectories: mean

time per node (s)

Feasible trajectories:

mean time per node (s)

257 2.4110
-4

 5.4710
-4

390 2.3910
-4

 5.4710
-4

513 2.4110
-4

 5.4610
-4

764 2.4110
-4

 5.4510
-4

Table 5-1. Computation Times – Direct Evaluation (s)

The direct evaluation algorithm detects infeasibility as it iterates and will terminate after

infeasibility is detected, so the mean time for an infeasible trajectory will, over a

sufficiently large sample, tend to be significantly less than that for a feasible trajectory.

This effect is clear in Table 5-1.

In Section 5.3.3.1 these times are compared to the computation times taken by airspeed

optimization.

5.3 Airspeed Optimization

This section quantifies the effects of low-degree polynomial airspeed parameterization

on the optimality, robustness and computational speed of the inverse dynamics method.

Airspeed was parameterized by polynomials of degree dv, and the dv + 1 coefficients

were used as the vector of optimization parameters that was input to the NLP

algorithms. The NLP problem was to minimize tf subject to

 0, 1,2ic i   (5.12)

where

  
{1,... }

max 0, , 1,2i i
j N

c c i


  (5.13)

1

2

, {1,... }

, {1,... }

j j max j

j s j

c v v j N

c v v j N

   

   
 (5.14)

113

Choosing the constraint set {vmax, vs} in Eq. (5.14) removed the effects of

approximations in the evaluation of vmax from the optimization results, and obviated the

need for any non-unity penalty weights.

The Sequential Nelder-Mead (SNM) algorithm was chosen as the primary NLP

algorithm for the airspeed optimization tests because derivative-free algorithms were

expected to be more robust than SNOPT, and the SNM algorithm was expected to be

less dependent on the NLP dimension than the Sequential Hooke-Jeeves (SHJ)

algorithm (Section 2.5.2). The SHJ algorithm was used in one experiment set, with

Chebyshev parameterization and dv  {4,...16}, to confirm this expectation. The

squared two-norm penalty function was used with a constraint tolerance of 0.1 m/s,

which introduces the possibility that the NLP algorithm may produce a final flight time

less than tRef .

Since the SNM and SHJ algorithms are local algorithms, it was necessary to use an

initial airspeed guess as close as possible to the desired solution (vmax): the minimax

interpolant to vmax would satisfy this requirement but computing an exact minimax

interpolant is computationally expensive. Truncated Chebyshev interpolants
18

 are close

to the minimax interpolant and are readily computed. Hence the degree N – 1

Chebyshev interpolant to the vmax profile for each spatial path in the test database was

generated, using the Chebyshev-Gauss-Lobatto node distribution to avoid ill-

conditioning
50

, then truncated to degree dv to form the initial guess.

Figure 5-1 shows an example of vmax and the corresponding truncated Chebyshev

interpolants for dv = {4,8,16}. The nonsmooth points in vmax arise where the active

constraint changes, e.g. from lz to vne. The constraint values used in this example were

chosen by trial and error to produce multiple switching points. As expected, the

interpolation error reduces as dv increases.

A cubic is the minimum degree polynomial that can be guaranteed to meet the four

initial and final boundary values of airspeed and tangential acceleration: a quartic is the

lowest degree that has a degree of freedom available for optimization. The inverse

dynamics method uses low-degree parameterization: hence dv  [4,16] was chosen for

this work.

114

Since any choice of polynomial basis functions can be used to exactly represent any

polynomial, the optimal solution is not dependent on the choice of the basis functions

(except in so far as the choice causes the NLP algorithm not to converge to an optimal

solution) but only the degree of the function itself. However, the relative magnitudes of

the coefficients of the function and of its derivatives do vary with choice of basis

functions i.e. the function gradient is dependent on the basis functions, so the

convergence of an NLP algorithm will depend on the choice of basis functions.

To compare different forms of parameterization, the truncated Chebyshev interpolants

were transformed to the Bernstein form
46

, the barycentric Lagrange form
11

, and power

series form. These forms were chosen because the Bernstein basis is optimally stable

(Farouki and Goodman
45

), the Lagrange form retains node values as coefficients and the

power form is widely used. The Chebyshev-Gauss-Lobatto node distribution was used

for all experiments to avoid any ill-conditioning.

To retain the closeness of the initial guesses to vmax, basis conversions were carried out

after truncation of the degree N -1 Chebyshev interpolation. If the conversion relies on

inverting a Van Der Monde matrix (for example for the Bernstein and power series

Figure 5-1. Example of vmax and Chebyshev Interpolants

0 20 40 60 80 100 120
20

25

30

35

40



v
 (

m
/s

)

v
max

d
v
=4

d
v
=8

d
v
=16

115

forms), the conversion may be ill-conditioned. The accuracy of the conversion was

checked and it was found that the errors introduced by transforming the initial guesses

from Chebyshev to Lagrange, Bernstein and power series form were less than 10
-13

,

10
-4

, and 210
-5

 respectively.

For Chebyshev parameterization the optimization vector is the set of dv +1 Chebyshev

coefficients, each of which has global effect, and the coefficients tend to decrease to

zero for smooth functions as the degree of the associated term increases.

For the Bernstein form the optimization vector is the set of dv +1 control point values.

This form is particularly well suited to Hermite interpolation at the boundary points

because the k +1 coefficients at each end of the optimization vector are directly related

to v and its first k derivatives at the boundary points; the NLP dimension can therefore

easily be reduced by four by fixing the first two and last two coefficients using airspeed

and acceleration at the boundary points (this was not used in this chapter, but was used

in Chapter 6, see Section 6.2.4). The control points form a convex hull of the curve, so

each parameter affects the whole curve, but its effect is most concentrated in its own

locality.

For Lagrange form parameterization the vector is the set of values of airspeed at dv + 1

points: each coefficient therefore has most effect in a small locality.

Algorithms for manipulating Chebyshev polynomials are well-known
18, 20, 108

. The

chebfun operator introduced by Battles and Trefethen
6
 was used to generate the

Chebyshev coefficients, from which the Clenshaw recurrence
108

 was used to evaluate

the degree dv interpolants. The algorithms described by Farouki and Rajan
46

 were used

to generate Bernstein coefficients and evaluate the polynomials, and the algorithms

described by Berrut and Trefethen
11

 were used with the barycentric Lagrange

parameterizations.

5.3.1 Aircraft Data and Test Database

The aircraft data were: M = 11 kg, lzstruct = 27 m/s
2
, 0 ≤ T ≤ 30 N, vs = 15 m/s, vne = 40

m/s, pmax = 400 °/s.

116

To provide test spatial paths, a series of ranges of arbitrary (manually generated)

boundary values defining {r, r', r'', r'''} were chosen with path lengths covering

approximately 500 m to 30 km, with boundary airspeeds in the range [18, 35] m/s,

tangential accelerations in the range [-1, 2] m/s
2
, load factors in the range [0.5g, 2g],

bank angles in the range [-40 40] degrees, flight path angles in the range [-6, 10]

degrees, and f values in the range [20, 120]. These ranges were chosen as reasonably

representative for the aircraft data being used. Combinations of these values were used

to define test spatial paths; each path was then evaluated as described in Section 5.2

resulting in a set of over 49,000 feasible spatial paths (i.e. vmax  vs,   [0, f]) and

their associated vmax profiles; these profiles were used as the starting points for the

initial guesses for the optimizations and as the test set for the evaluation of constraint

accuracy in Section 3.5.

5.3.2 NLP Settings

Section 6.2.6.2 describes the SNM and SHJ algorithms and settings used in Chapter 6;

in this chapter the same settings were used except for the SNM settings shown in Table

5-2.

Variable Description Value

max Maximum trajectory evaluations 150000

f 0 Initial objective range 128

f thresh Objective threshold 1

f min Minimum objective range 10
-4

 Maximum -norm of w-b 1

 0 Initial step vector 0.05

Table 5-2. NLP Settings

It was found that, for all trajectories, with SNM and the power series form when dv  10

the initial simplex exceeded the maximum objective value; the limit was raised to 10
20

and the minimum initial simplex step size was reduced from 2.510
-4

 to 2.510
-17

 to

overcome this.

117

5.3.3 Results and Analysis

5.3.3.1 Computation Times

Mean computation time to optimize airspeed per trajectory, using the Chebyshev form

of airspeed parameterization, over successful optimizations and with N = 257, was

0.044 s. Comparing this value with the time taken to estimate vmax given in Section

5.2.6 shows that airspeed optimization using the SNM/Chebyshev combination was

approximately 3 times faster than the algorithm of Section 5.2, although since spatial

optimization was not performed this finding does not necessarily generalize to

combined spatial and airspeed optimization. Further, to use direct evaluation of vmax as

a replacement for parameterized airspeed, vp would have to be evaluated instead of

being imposed indirectly (Section 5.2.4). Hence direct evaluation is not a promising

approach but may warrant future research.

5.3.3.2 Optimization Convergence, Optimality and Speed

Loss of optimality for each trajectory was defined as

f Ref

Ref

t t

t


 (5.15)

Robustness was defined as the percentage of test cases for which the NLP algorithm

satisfied the termination criteria within the constraint tolerance and within the allowed

total number of trajectory evaluations (1.510
4
).

Computational speed was measured by the number of trajectory evaluations () invoked

by the NLP algorithm.

The results are shown graphically in Figures 5-2 to 5-16 and in tabular form in Tables

5-3 to 5-7.

118

Figure 5-2. Loss of Optimality,

SNM with Chebyshev Parameterization

Figure 5-3. Trajectory Evaluations,

SNM with Chebyshev Parameterization

Figure 5-4. Robustness,

SNM with Chebyshev Parameterization

4 6 8 10 12 14 16
0

2

4

6

8

10

12

Degree

%
 L

o
s
s
 o

f
O

p
ti
m

a
lit

y

Mean+SD

Mean

4 6 8 10 12 14 16
0

500

1000

1500

2000

2500

3000

Degree



Mean+SD

Mean

4 6 8 10 12 14 16
99.965

99.97

99.975

99.98

99.985

99.99

99.995

100

Degree

%
 S

u
c
c
e

s
s
fu

l
C

o
n

v
e

rg
e

n
c
e

Figure 5-5. Loss of Optimality,

SNM with Bernstein Parameterization

Figure 5-6. Trajectory Evaluations,

SNM with Bernstein Parameterization

Figure 5-7. Robustness,

SNM with Bernstein Parameterization

4 6 8 10 12 14 16
0

2

4

6

8

10

Degree

%
 L

o
s
s
 o

f
O

p
ti
m

a
lit

y

Mean+SD

Mean

4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3
x 10

4

Degree



Mean+SD

Mean

4 6 8 10 12 14 16
92

93

94

95

96

97

98

99

100

Degree

%
 S

u
c
c
e

s
s
fu

l
C

o
n

v
e

rg
e

n
c
e

119

Figure 5-8. Loss of Optimality,

SNM with Lagrange Parameterization

Figure 5-9. Trajectory Evaluations,

SNM with Lagrange Parameterization

Figure 5-10. Robustness,

SNM with Lagrange Parameterization

4 6 8 10 12 14 16
0

2

4

6

8

10

Degree

%
 L

o
s
s
 o

f
O

p
ti
m

a
lit

y

Mean+SD

Mean

4 6 8 10 12 14 16
0

1000

2000

3000

4000

5000

6000

7000

8000

Degree



Mean+SD

Mean

4 6 8 10 12 14 16
99.93

99.94

99.95

99.96

99.97

99.98

99.99

100

Degree

%
 S

u
c
c
e

s
s
fu

l
C

o
n

v
e

rg
e

n
c
e

Figure 5-11. Loss of Optimality,

SNM with Power Series Parameterization

Figure 5-12. Trajectory Evaluations,

SNM with Power Series Parameterization

Figure 5-13. Robustness,

SNM with Power Series Parameterization

4 6 8 10 12 14 16
0

5

10

15

20

25

Degree

%
 L

o
s
s
 o

f
O

p
ti
m

a
lit

y

Mean+SD

Mean

4 6 8 10 12 14 16
0

1

2

3

4

5
x 10

4

Degree



Mean+SD

Mean

4 6 8 10 12 14 16
40

50

60

70

80

90

100

Degree

%
 S

u
c
c
e

s
s
fu

l
C

o
n

v
e

rg
e

n
c
e

120

Figure 5-14. Loss of Optimality,

SHJ with Chebyshev Parameterization

Figure 5-15. Trajectory Evaluations,

SHJ with Chebyshev Parameterization

Figure 5-16. Robustness,

SHJ with Chebyshev Parameterization

4 6 8 10 12 14 16
0

2

4

6

8

10

Degree

%
 L

o
s
s
 o

f
O

p
ti
m

a
lit

y

Mean+SD

Mean

4 6 8 10 12 14 16
0

500

1000

1500

2000

2500

3000

Degree



Mean+SD

Mean

4 6 8 10 12 14 16
98.5

99

99.5

100

Degree

%
 S

u
c
c
e

s
s
fu

l
C

o
n

v
e

rg
e

n
c
e

121

Combination Degree

 4 5 6 7 8 9 10 11 12 13 14 15 16

SNM and Chebyshev 6.4 5.2 3.9 3.2 2.7 2.4 2.1 1.9 1.7 1.6 1.4 1.3 1.2

SNM and Bernstein 5.3 4.1 3.1 2.5 2.0 1.7 1.4 1.2 1.1 1.0 0.9 0.9 0.9

SNM and Lagrange 5.4 4.3 3.3 2.8 2.4 2.2 2.0 1.8 1.7 1.6 1.5 1.4 1.4

SNM and power series 9.2 8.3 6.6 5.2 4.1 3.3 2.7 2.5 2.2 1.6 1.2 1.0 0.4

SHJ and Chebyshev 5.8 4.7 3.4 2.6 2.2 1.8 1.7 1.4 1.2 1.2 1.1 1.0 1.0

Table 5-3. Mean Loss of Optimality (%)

Combination Degree

 4 5 6 7 8 9 10 11 12 13 14 15 16

SNM and Chebyshev 5.1 4.3 3.2 2.6 2.4 2.2 1.9 1.7 1.6 1.5 1.4 1.4 1.3

SNM and Bernstein 4.2 3.7 3.0 2.5 2.2 2.1 2.3 2.0 2.1 1.5 1.0 0.9 1.0

SNM and Lagrange 3.7 3.0 2.3 1.9 1.8 1.7 1.8 1.7 1.7 1.7 1.7 1.7 1.7

SNM and power series 12.6 14.6 12.4 9.9 8.1 6.8 5.5 5.1 4.5 2.9 2.0 1.6 1.4

SHJ and Chebyshev 3.9 3.5 2.6 2.1 1.9 1.6 1.6 1.4 1.3 1.2 1.2 1.1 1.1

Table 5-4. Standard Deviation of Loss of Optimality (%)

122

Combination Degree

 4 5 6 7 8 9 10 11 12 13 14 15 16

SNM and Chebyshev 175 145 147 153 162 167 175 186 197 208 219 231 243

SNM and Bernstein 365 445 513 618 765 987 1296 1686 2176 2868 3997 5311 6579

SNM and Lagrange 447 517 649 802 980 1194 1434 1702 1996 2344 2778 3325 4107

SNM and power series 5586 3835 4791 7127 9014 11362 14987 19061 21942 20177 19167 20627 17933

SHJ and Chebyshev 374 479 533 627 704 726 858 840 892 954 1021 1109 1194

Table 5-5. Mean Trajectory Evaluations

Combination Degree

 4 5 6 7 8 9 10 11 12 13 14 15 16

SNM and Chebyshev 2641 1356 961 234 115 101 96 101 107 105 105 111 118

SNM and Bernstein 361 697 534 817 966 1751 1845 3408 4614 7716 12379 16529 19472

SNM and Lagrange 3969 3122 2511 1805 994 752 434 1199 793 1067 1526 2107 3218

SNM and power series 23619 16386 15496 17719 17093 19707 21379 24390 25787 22520 25590 27760 28650

SHJ and Chebyshev 487 619 799 861 1098 709 1127 774 822 878 965 1120 1306

Table 5-6. Standard Deviation of Trajectory Evaluations

123

Combination Degree

 4 5 6 7 8 9 10 11 12 13 14 15 16

SNM and Chebyshev 30 8 4 0 0 0 0 0 0 0 0 0 0

SNM and Bernstein 0 2 6 2 2 20 16 43 100 445 2468 4840 7145

SNM and Lagrange 67 43 26 14 4 2 0 2 0 0 0 0 0

SNM and power series 1787 1419 955 1216 1106 1458 1895 2604 3812 16588 25711 30568 52984

SHJ and Chebyshev 1203 911 1248 1187 506 112 144 41 47 100 57 73 79

Table 5-7. Unsuccessful Cases per 100,000 Trajectories

124

Confidence intervals for each mean value in Table 5-5 were calculated using a 90%

confidence level; the large sample size (49192) led to the half-width of the confidence

interval of each population mean being ~0.007 the corresponding sample standard

deviation. The confidence intervals for the NLP/parameterization form combinations

were non-overlapping, except for the SNM/Chebyshev combination when dv  {5,6,7},

the SNM/power combination when dv  {11,14}, and the dv = 11 values for

SNM/Lagrange and SNM/Bernstein.

The Chebyshev, Bernstein, and Lagrange forms, and the SHJ-Chebyshev combination,

all produced similar optimality results, with mean and standard deviation at dv = 10 of

approximately 2% and 4%, and decreasing with higher dv. The power series form

performance was worse than the other forms: for dv  9 mean optimality was

approximately 1-4% worse than that of the other forms, and the standard deviation was

larger; overall the power series form lost of the order of twice as much optimality as any

of the other forms.

The Chebyshev form with SNM resulted in the lowest mean  , which was low for all dv

with the slowest (dv = 16) only 67% slower than the fastest (dv = 5). The optimization

was robust: even the worst case (dv = 4) was unsuccessful in only 0.03% of cases. The

standard deviation of  was also low except for dv  6. The combination performed

well on all measures compared to the other combinations.

The Bernstein form was, on average, the next fastest of the four SNM combinations for

dv  11, and mean plus standard deviation of  (which covers approximately 85% of the

distribution) was lower for the Bernstein form than for the Chebyshev form for dv  6.

The mean robustness (≔ success rate) of the Bernstein form was higher than that for

the Chebyshev form over dv  [4,8], although the robustness of both forms was greater

than 99.97% over that range. However, the Bernstein form became much slower than

the Chebyshev form as dv increased above 6, being at least an order of magnitude

slower for dv  9, and its robustness reduced rapidly as dv increased above 10.

The Lagrange form was slower than both Bernstein and Chebyshev forms up to

approximately dv = 9. Although it was not as fast or robust as the Chebyshev form for

125

any dv, like the Chebyshev form its robustness increased as dv increased, and for dv  9

it was successful on all but 0.002% of cases, comparable with the Chebyshev form.

The power series form was slow for all dv: its mean  was approximately an order of

magnitude slower than for the Bernstein form for dv  12 and still approximately a

factor of 3 slower at dv = 16. The need to raise the absolute objective limit for the

Nelder-Mead initial simplex and reduce the initial step size (Section 5.3.2) is attributed

to ill-conditioning. Even after these changes its best robustness was approximately 99%

at dv = 6, but was below 90% for dv  13.

With the SNM algorithm the Chebyshev and the Lagrange forms showed clear minima,

for dv  [8,10], in the mean plus standard deviation results; these minima were not

present in the mean data. The corresponding Bernstein values showed a minimum at

dv = 6, but the value was close to a best fit curve; the power series data shows a

minimum for dv  [5,6]. The SHJ results did not exhibit these minima, although the

data around dv  [8,10] do not appear to fit on a smooth curve through the other data

points.

For the SHJ algorithm,  was, as expected, more dependent on N than the SNM

algorithm was, and SHJ was less robust than SNM over the whole dv range, although it

still achieved better than 98.5% robustness.

5.4 Discussion

Direct evaluation of maximum feasible airspeed can be accomplished but was found to

be approximately 3 times slower than the best tested NLP/parameterization

combination. However, the initial guess is critical to optimization performance and

optimization was set up with initial guesses close to the known solutions; in practical

use this is a reasonable (but perhaps optimistic) assumption since the previous solution

may be a good approximation to the next solution, subject to the comments in Section

3.4.8.

The accuracy of parameterization as an approximation to vmax is low at low dv, and there

are fewer degrees of freedom for the NLP algorithm to adjust which limits achievable

126

optimality and affects computational speed. At high dv the accuracy of the

approximation is high so the achievable optimality improves, but the NLP dimension is

also high: how these two factors affect convergence at high dv is dependent on how the

optimization parameters (the coefficients) control the shape of the approximation, i.e.

how the next iterate depends on the coefficients and how these are used by the NLP

algorithm. Hence both the form of airspeed parameterization and the choice of NLP

algorithm affect robustness and computational speed.

For the Chebyshev form the coefficients have global influence but the high-degree

terms have small coefficients, which helps reduce ill-conditioning at high dv and enables

the Chebyshev form to be robust and relatively fast. The Bernstein form has global

coefficients but their influence is concentrated in neighbourhoods, and they form a

convex hull of the curve. Despite its numerical stability as a polynomial basis, the

Bernstein form lost robustness as dv increased which may be due to ill-conditioning with

respect to f at high dv , due to the Van Der Monde matrix implicit in the relationship

between the coefficients and the values of the curve at the dv + 1 control points.

The Lagrange coefficients do not have the diminishing property of the Chebyshev

coefficients, but they are values of the curve at dv + 1 points and are therefore more

strongly localized than the Bernstein coefficients: the effect of each coefficient is

concentrated in a small neighbourhood of the curve which may have contributed to the

robustness at high dv and the relative speed compared to the Bernstein form (slower at

low dv, faster at high dv).

The degree and form of the airspeed parameterization clearly affected the convergence

of the optimization, but the effects were dependent on the NLP algorithm. With the

SNM algorithm, measured by mean plus standard deviation of  the Bernstein form was

the fastest and most robust for dv  6, but for higher dv the Chebyshev form was the

fastest and most robust. As the degree increased the Chebyshev form maintained its

computational speed while the Bernstein form slowed, such that for dv  9 the Bernstein

form was more than an order of magnitude slower than the Chebyshev form. Measured

by mean trajectory evaluations, the Chebyshev form was the fastest, in some cases by

an order of magnitude, for all dv.

127

Both the Chebyshev and Bernstein forms were at least 99.97% successful for dv  [4,8],

but the Bernstein form is not suitable for use above degree 8 due to its poor robustness.

The barycentric Lagrange form was approximately as robust as the Chebyshev form for

dv  9, but it was not sufficiently robust for low degrees, and was slower than one or

both of the Chebyshev or Bernstein forms for all dv.

The power series form was slower, less optimal and less robust than the other three

forms, on all measures.

Except for the power series form, the form of the parameterization did not significantly

affect the loss of optimality, the range dv  [8,10] resulting in about 2-5% loss of

optimality together with low mean plus standard deviation of trajectory evaluations and

high robustness. If ~3% mean loss of optimality due to the airspeed parameterization is

tolerated, then there is no need to use polynomials of degree > 8 in order to obtain a

good balance between optimality, robustness, and computational speed, provided that

the power series form is not chosen. The choice should be either the Chebyshev or

Bernstein forms depending on which measure is most important to the user.

In this chapter the spatial path was excluded from the optimization in order to isolate the

effects of airspeed parameterization: in operation both spatial and airspeed parameters

would normally be included in the optimization vector. The increase in degrees of

freedom with spatial parameterization included in the optimization vector should reduce

the time spent by the NLP algorithm in attempting to optimize infeasible trajectories,

and is therefore likely to reduce the most advantageous value of dv. Chapter 6 describes

research into the performance of combined spatial and airspeed optimization.

129

6 OPTIMIZATION

6.1 Introduction

The overall performance of the inverse dynamics method may be measured by the

optimality of its solutions and the robustness and computational speed with which the

solutions are generated: these are dependent on the formulation of the problem and the

performance of the NLP algorithm. In Chapter 5 it was found that for the minimum-

time problem, using the SNM algorithm with spatial parameterization excluded from

the optimization, optimality, robustness, and computational speed were dependent on

the degree of the airspeed parameterization. In the work described in this chapter the

minimum-time problem was formulated to include both spatial and airspeed

optimization, and the performance of the method was investigated with each of the four

NLP algorithms selected in Chapter 2.

The objectives of the work described in this chapter were to:

1. Confirm that achievable optimality is dependent on dv and improves as dv increases,

when spatial parameterization is included in the optimization vector.

2. Investigate whether the theoretical optimality advantages of SNOPT over the

derivative-free SNM and SHJ algorithms (Section 2.5) are achieved in practice with

the inverse dynamics method, and compare SNOPT optimality with DE optimality.

3. Investigate the effects of the choice of NLP algorithm on robustness and

computational speed, especially the performance of DE because of the lack of

previous empirical results for DE with the inverse dynamics method and the absence

of convergence proofs.

4. Measure achieved computation times to assess whether the inverse dynamics

method would be computationally fast enough for near-real-time application if used

with the tested NLP algorithms on the test hardware and software.

5. Identify candidate optimization approaches for near-real-time application.

130

6.2 Method

The input test space was:

 The four NLP algorithms DE, SNM, SHJ, and SNOPT.

 Airspeed parameterization by Bernstein form polynomials with dv  {3,...8}.

Bernstein form polynomials were selected for the airspeed parameterization because of

their robustness and computational speed compared to Chebyshev, barycentric Lagrange

and power series forms, and their suitability for Hermite interpolation at the boundary

points. The set {3,...8} for the degree of airspeed parameterization was selected

because:

 A cubic removes airspeed from the optimization vector and is the lowest degree

polynomial which can be guaranteed to satisfy boundary conditions on airspeed and

tangential acceleration.

 The findings of Chapter 5 indicate that it is not necessary to use higher than degree

8 for airspeed parameterization.

The NLP problem was defined as minimizing the flight time (tf), subject to the

constraint set defined by Eq. (4.68). Optimality was measured by:

 0 ≔ the percentage of all test cases for which  < max and tf was the lowest of the

tf values produced by any of the NLP algorithms for that test case

 2 ≔ the percentage of all test cases for which the algorithm achieved within 2% of

the corresponding lowest tf (subject to  < max)

 5 ≔ the percentage of all test cases for which the algorithm achieved within 5% of

the corresponding lowest tf (subject to  < max).

These are all relative measures: they quantify the optimality of each NLP algorithm and

each parameterization degree relative to the other algorithms and degrees, not against

true optimality.

Robustness was measured by the ratio () of successful test cases to total test cases.

Success was defined as satisfying the NLP termination criteria without triggering

131

termination by the maximum trajectory evaluations limit (max) specified for each

algorithm, and satisfying  < max.

The computational speed was measured by the number () of trajectory evaluations

invoked by the NLP algorithm. For SNOPT  included all trajectory evaluations that

SNOPT invoked to evaluate gradient approximations. The computational loads of the

NLP algorithms themselves are discussed in Section 6.3.4.1 below.

A database of pairs of pseudo-random boundary conditions (“test cases”) was created;

simple checks were applied to reduce the number of infeasible test cases in the database.

Initial guess expressions were created to be used by SNM, SHJ, and SNOPT. DE was

used to guide the choice of an initial guess for f. Subsets of the test database were used

to guide the choice of values for the NLP algorithm settings.

A series of experiments was carried out in which a combination of an NLP algorithm

with each degree of airspeed parameterization, together with an initial guess expression

when required, was applied to 1000 test cases. Optimality, robustness, trajectory

evaluation counts, and average computational times were recorded.

To assist the analysis of the results the performance profile graphs introduced by Dolan

and Moré
27, 28

 were used to analyze the tf and  results, based on the Matlab

implementation described by Higham
62

. The profiles summarize the relative

performance of each test combination by plotting, against  as a percentage, the

cumulative probability that the result (tf or ) produced by a combination was less than

or equal to  times the best (i.e. least and successful) result obtained for the same test

case from any of the combinations for which the results were plotted. Since the profiles

compare each combination and test case against the other combinations for the same test

case, the profiles show only relative performance: addition, removal or changes to the

results of any combination changes the displayed values for all the combinations in the

experiment. Tabular results are also given.

132

6.2.1 Hardware and Software Environment

The hardware and packaged software environment used in the experiments described in

this Chapter was the same as that described in Section 3.3. Controls were evaluated

using Eq. (4.47) rather than Eq. (4.64), for computational speed.

6.2.2 Aircraft Data

The aircraft data were: M = 11 kg, lstruct = 3.8g, 0 ≤ T ≤ 25 N, vs = 15 m/s, vne = 40 m/s,

pmax = 200 °/s.

6.2.3 Test Database and Settings

A database of 2000 unique pairs of boundary conditions was created with pseudo-

random values that satisfied the following bounds i  {[1,2000] ∩ ℤ}

 0 0 0 0x y z   (6.1)

 

 

10000,10000 , if 1000

5000,5000 , otherwise
f

i
x

  




 (6.2)

 

 

10000,10000 , if 1000

5000,5000 , otherwise
f

i
y

  




 (6.3)

 

 

1000,1000 , if 1000

500,500 , otherwise
f

i
z

  




 (6.4)

  0, 1.05 ,0.95f s nev v v (6.5)

  0, 0.5 ,2.1z fl g g (6.6)

  0, 0,2f  (6.7)

   0, 10,10
180f

   (6.8)

133

   0, 60,60
180f

   (6.9)

The following conditions were also applied and any boundary value pair that violated

any condition was pseudo-randomly re-generated.

0, 0, 0,1.5(),1.5()f s f ne fv v v v v     (6.10)

0

2max ,
sin 7

10

f

f f f

f

z
x y z

v v

 
  
 
  


 (6.11)

  0, min max,fT T T (6.12)

0, 0,z fl l   (6.13)

The two ranges of final position in Eqs. (6.2)-(6.4) were used to spread the path length

over a larger range than would have been obtained if only one range had been used. Eq.

(6.10) was used to exclude boundary accelerations that would be likely to be infeasible

for all optimization vectors; the generated range of v was observed to be (-3.49, 3.25).

Eq. (6.11) imposed an approximate minimum flight time of 10 s, the 7 value being

approximately the maximum flight path angle that the aircraft could sustain at

maximum thrust. Eq. (6.12) ensured that the thrust required at the boundary points

satisfied the aircraft limits. No duplicate boundary condition pairs were allowed, hence

each test case was unique in the database.

Except where stated a subset of 1000 test cases, i  {501,...1500}, was used together

with Chebyshev-Gauss-Lobatto node distribution, N = 210, and local quadratic

interpolation for constraint evaluation (from the results in Section 3.5.2). Clenshaw-

Curtis quadrature was used to evaluate tf.

134

6.2.4 Optimization Vector

Degree 7 power series polynomials were used for the spatial parameterization, with the

third derivatives at both boundary points included in the optimization vector  in order

to exploit the maximum available degrees of freedom.

The first two and the last two coefficients C0, C1, Cdv-1, and Cdv of the Bernstein form

airspeed parameterization were derived directly from the boundary conditions by

 0
0 0 1 0 1, , ,

v v

f

d f d f

v v

vv
C v C v C v C v

d d
     


 (6.14)

This construction ensured that the airspeed parameterization satisfied the boundary

conditions without any need for airspeed constraint checking at the first and the last

nodes. When dv = 3 airspeed was determined entirely by the boundary conditions and

there was no airspeed optimization; for dv  4 the remaining airspeed coefficients were

included in .

Hence the optimization vector
Dχ  was (omitting transposition operators for clarity)

 

 
0

0 2 2

, , , if 3

, , , ,... , if {4,...8}
v

f f v

f f d v

d

C C d



 

   
 

  

r r
χ

r r
 (6.15)

and D (the NLP dimension)  [7,12] accordingly.

6.2.5 Initial Guess

In Chapter 3 it was found that the inverse dynamics method produced multimodal NLP

problems. Hence for gradient or derivative-free NLP algorithms successful

convergence is critically dependent on the initial guess being in a suitable basin of

attraction to a feasible local minimum, and optimality is dependent on the closeness of

the initial guess to a feasible global minimum.

It was shown in Section 3.4.3 that an initial guess of f greater than but close to 2 would

keep the ill-conditioning of the spatial interpolation close to its minimum. In order to

135

investigate suitable initial guesses for f , DE was run against the test database with

N = 210, uniformly-spaced nodes, and linear constraint interpolation. Figure 6-1 shows

the resulting pseudo-optimal values of f . The tests were also run with Chebyshev-

Gauss-Lobatto node distribution and with quadratic constraint interpolation: consistent

results were obtained and f = 10 was chosen for the initial guess because it was near,

but within, the lower limit of the range of pseudo-optimal values.

For the 6 spatial coefficients the simple and obvious initial guess
0 (0,0,0)T

f
  r r was

used.

Eq. (6.14) obviates any need for an initial guess of the airspeed coefficients for dv = 3.

An obvious initial guess for dv > 3 that satisfies the boundary conditions is to elevate to

the required degree the cubic given by substituting dv = 3 into Eq. (6.14); this is readily

carried out using standard relationships
46

. This approach was used for all experiments.

Figure 6-1. Pseudo-Optimal Values of f for 2000 Test Cases

0 500 1000 1500 2000
0

10

20

30

40

50

60

70

80

Test Case

 f

136

6.2.6 NLP Algorithm Settings

The DE, SNM, and SHJ algorithms were implemented from the references given in

Section 2.5. The SNOPT version 7.2 package was run as a mexw64 file under an

academic licence.

DE was implemented as a Matlab script and was called directly by a top-level Matlab

script; the Nelder-Mead and Hooke-Jeeves algorithms were implemented as Matlab

functions and called from an intermediate script. SNOPT was called as a mexw64

function from an intermediate script that was adapted from the Matlab script provided

with SNOPT. The trajectory evaluation algorithm was implemented as a Matlab

function, with no sub-functions except a private quadratic interpolation function. It was

adapted to evaluate the penalty function, if required, and to match the objective and

constraint formats required by the NLP algorithms, but was otherwise identical for each

NLP algorithm.

Settings for each of the four NLP algorithms were chosen to balance two objectives: to

allow valid comparisons between the algorithms, and to allow each algorithm to obtain

results representative of the potential of each algorithm. Since finding an optimal

solution to this problem is itself a multi-objective high-dimension optimization problem,

the settings were chosen heuristically, guided by small numbers of experiments.

6.2.6.1 DE

Price et al.
110

 described four major versions of DE, and many variations. The version

used in this work was DE/Rand/1/Bin with upper and lower bounds on elements of 

and Lampinen's constraint handling
85

 (Section 2.5.3). The initial pseudo-random

population was generated with a uniform distribution; subsequently the target, base, and

pairs of mutation vectors were all distinct and obtained by pseudo-random permutation

of the population (Matlab's randperm function, with offsets of 1, 3 and 7 from the target

for the base and mutation vectors). The scale factor F and the crossover probability Cr

were set to 0.9 after a small number of tests. Although Price suggests that the

population Np should be up to 5D, it was found that with Np = 15 DE was robust and the

137

solutions were closer to optimal than those achieved with the other NLP algorithms for

the tested range of D  [7,12]; i.e. it was not necessary to use higher values of Np.

DE does not require an initial guess, but bounds are required by Matlab's random

number generator rand which was used to populate the first generation. The

initialization bounds were

0

6
3, max ,

sin 7°

f

f f f f

f

z
x y z

v v


   
             

 (6.16)

 0, [10,10]f
  r (6.17)

  [0,2], 2,... 2i ne vC v i d    (6.18)

The expression in the maximum function in Eq. (6.16) is three times the expression in

Eq. (6.11).

Only a single bound was applied after the first generation: f  3 to ensure that no

negative final times could be generated. Hence DE was not limited only to solutions

within the initialization bounds, although it may be slow to find solutions significantly

outside those bounds.

In principle, DE does not require any constraint violation tolerance, but to avoid round-

off error affecting feasibility a tolerance of 2
-42

 (1024eps) was incorporated in each

constraint.

Termination criteria for DE, SNM, and SHJ were chosen to ensure that the solution was

close to optimality by requiring that the difference between defined objective (tf) values,

and the difference between the corresponding  vectors, were both within tolerances f

and  respectively. For DE, the termination criterion was

         max /g p F p w b f w bN N N f f    


     χ χ   (6.19)

138

where fw is the worst (highest) objective value in the current generation, fb is the best

(lowest) objective value, w and b are the corresponding optimization vectors, and NF

is the number of members of the latest generation that are feasible. The first term

implemented an overriding limit on , which was expressed as max/Np generations

because the termination criteria were only applied at the completion of each generation.

The term containing NF required that all members of the population were feasible.

The g count (but not the overall  count) was reset to 1 at the generation which

generated the first feasible solution. This was tried because during the settings testing it

appeared that once it had one feasible solution, DE rapidly found feasible solutions for

the remaining Np - 1 population members, and that this reset would therefore

significantly improve robustness with only a small increase in . However, it was

found that the effect was small: it added one success to each of dv  {3,...6}, two to

dv = 7, and zero to dv = 8. The results below include these successes.

The settings used for DE are shown in Table 6-1.

Variable Description DE

Value

max Maximum trajectory evaluations 45000

f Maximum spread of objective values over

population

0.1

 Maximum -norm of w-b 1

F Mutation scale factor 0.9

Cr Crossover probability 0.9

Np Population size 15

Table 6-1. DE Settings

6.2.6.2 SNM and SHJ

For SNM and SHJ Eqs. (4.70)-(4.72) were used for the penalized objective, constraints

and squared two-norm penalty function. Unity penalty weights (k) were used (Section

3.4.10.5).

139

The sequential outer loop used with the Nelder-Mead and Hooke-Jeeves algorithms was

based on that described by Griffin and Kolda
56

, slightly simplified because use of the

squared two-norm penalty function obviated the need for a smoothing parameter. The

outer loop (excluding housekeeping operations) was

Until Finished

 Hooke-Jeeves (or Nelder-Mead)

 if ( < max) ∩ (f  f thresh)

 Finished = true, successful

 else if (inner loop failed)  ( > max)

 Finished = true, unsuccessful

 else

 f  max (f /f , f min)

 if   max

   min (p, max)

 stagnation check

 end

 end

end

The value of f used by the Nelder-Mead and Hooke-Jeeves algorithms was initialized

to f 0 , and at each outer iteration it was divided by a factor f subject to a lower limit

of f min. Outer loop successful termination was inhibited until f reached a threshold

value f thresh (unless max was reached). The penalty parameter  was initialized to 0

and at each outer iteration it was multiplied by a factor p subject to an upper bound of

max.

The stagnation check was included to cause the outer loop to exit if  and  were

unchanged compared to the previous loop, and the number of trajectory evaluations in

the last two inner loops were equal. This check was added after it was found that the

Nelder-Mead algorithm could reach a stagnation condition in which it looped without

changing the simplex under some conditions.

140

The fminsearch function in Matlab (as described in the Matlab software help file) is an

implementation of the Nelder-Mead algorithm based on Lagarias et al.
84

. To form the

initial simplex it perturbs each element of the initial guess by a factor of 5%, or by

2.510
-4

 if the element is zero. It was found that a specified initial step length ( 0) in

each dimension was more effective for the SNM algorithm. The same  0 was used to

set the initial step length for the Nelder-Mead and Hooke-Jeeves algorithms.

The termination criteria for the Nelder-Mead algorithm used tests on the objective and 

values in the simplex, analogous to Eq. (6.19)

       max max min max minff f    


    χ χ  (6.20)

A maximum absolute value of the objectives in the initial simplex was also imposed to

prevent divergence to  .

The core Hooke-Jeeves algorithm was terminated when a base point exploration failed,

the step size had been reduced hmax times, and the most recent base and explore point

objective values were within f of each other

       max exp maxbase ff f b h h        (6.21)

Upper and lower bounds on  are readily applied in the Hooke-Jeeves algorithm: only

f  3 was used, matching DE. The Nelder-Mead algorithm is not so well suited to

maintaining parameter bounds, hence a limit of 10
10

 on the absolute function value was

imposed instead.

The Hooke-Jeeves algorithm cached the most recent 4D trajectory evaluation results to

reduce duplicated trajectory evaluations (Kelley
75

). Over a small number of setup tests

this was observed to reduce  by 5-10%.

The settings used for the SNM and SHJ algorithms are shown in Table 6-2. The core

Nelder-Mead algorithm also requires a number of other settings. In this work Price's

parameters  and h were set to 10
-15

 and 1 respectively and all other settings were as

specified in Lagarias et al.
84

 and Price et al.
109

.

141

The settings in Tables 6-1 and 6-2 and the associated termination criteria were chosen

after a small number of tests. It is probable that improvements in the performance of

each NLP algorithm could be obtained by modifying the settings and criteria. For

example the SHJ termination criteria Eq. (6.21) includes a limit on the number of step

size reductions as the means of terminating when the final step size is sufficiently small:

0.002 from the settings in Table 6-2. If hmax was increased, SHJ optimality (which was

the worst of the four algorithms, as described in Section 6.3.3 below) may be improved

at the expense of computational speed and/or robustness, although the SHJ condition is

already more onerous than that of SNM.

Variable Description Value

max Maximum trajectory evaluations 45000

max Maximum constraint violation 0.1

0 Initial penalty parameter 1

max Maximum penalty parameter 2
28

f 0 Initial objective range 1

f thresh Objective threshold 1

f min Minimum objective range 0.01

 Maximum -norm of w-b (Nelder-Mead) 0.5

hmax Maximum step reductions (Hooke-Jeeves) 3

 0 Initial step vector (2,...)

f f reduction factor 2

p  multiplication factor 2

h h reduction factor (Hooke-Jeeves) 10

 Maximum absolute objective (Nelder-Mead) 10
10

Table 6-2. SNM and SHJ Settings

6.2.6.3 SNOPT

For SNOPT "Derivative Option 0" was set because analytic derivatives were not

available. The maximum permitted constraint violation was imposed by setting the

upper bound for each constraint equal to max. It was found that, for any value of

max  {-0.1,0,0.05,0.1}, SNOPT was less than 6% successful if success was defined as

142

 max  (6.22)

but that if success was instead defined (for the purpose of analysis) as

 max tol    (6.23)

with tol = 0.1 in Eq. (6.23), then success rates of the order of 60-70% were obtained.

Hence max = 0 was specified in the input to SNOPT, and tol = 0.1 was applied during

data analysis to make the effective SNOPT constraint violation tolerance equal to the

SNM and SHJ constraint violation tolerance.

SNOPT requires bounds on the optimization variables: using  was not effective, the

DE values in Eqs. (6.16)-(6.18) were tried but better results were obtained with the

following bounds, which were therefore used in the comparative experiments

 [3,]f   (6.24)

 0, [2000,2000]f
  r (6.25)

  [200,200], 2,... 2i vC i d     (6.26)

Default SNOPT values were used for all other settings including iteration count limits.

6.3 Results and Analysis

6.3.1 Robustness

Table 6-3, and Figures 6-2 and 6-3, show the percentages of test cases for which each

NLP algorithm succeeded () for each dv.

143

NLP Degree of Airspeed Parameterization

 3 4 5 6 7 8

DE 93.9 99.1 99.7 99.7 99.9 99.8

SNM 82.3 91.8 94.2 94.9 95.1 95.7

SHJ 80.7 91.0 92.9 94.4 95.4 95.7

SNOPT 65.7 68.1 67.6 66.0 64.2 65.7

Table 6-3. Percentage Success Rates

Confidence intervals for each proportion in Table 6-3 were calculated using a 90%

confidence level. With airspeed included in the optimization, for DE the half-width was

less than 0.5%, for SNM and SHJ it was less than 1.5%, and for SNOPT it was

approximately 2.5%.

Figure 6-2. Percentage Success Rates vs dv

3 4 5 6 7 8
0

20

40

60

80

100

d
v


 (

%
 s

u
c
c
e

s
s
)

DE

SNM

SHJ

SNOPT

144

DE, SNM, and SHJ showed reduced robustness when airspeed was excluded from the

optimization even though this had the lowest NLP dimension. Although all the test

cases in the database were solved by DE for dv  5 and therefore had feasible solutions,

at zero constraint tolerance 4 of the test cases were not solved by any of the four

algorithms for dv = 4, and 43 of the test cases were not solved by any of the four

algorithms for dv = 3, despite multiple retries. Therefore including airspeed in the

optimization enabled DE, SNM, and SHJ to converge successfully for a wider range of

boundary conditions. SNOPT's mean robustness varied by less than 4% over

dv  {3,...8}, which is within the 90% confidence interval: hence the data do not support

the same conclusion for SNOPT.

For dv  4 the results were more sensitive to the choice of NLP algorithm than to dv (and

therefore to the NLP dimension D = dv + 4). DE's robustness peaked at dv = 7, although

it was within the confidence interval for dv  4 so the data only weakly support the

presence of a peak. The robustness of both SNM and SHJ increased with dv, but by less

than 5% over dv  {4,...8}. Hence the inclusion or exclusion of airspeed from the

Figure 6-3. Percentage Success Rates vs NLP

DE SNM SHJ SNOPT
50

60

70

80

90

100

NLP


 (

%
 s

u
c
c
e

s
s
)

d
v
=3

d
v
=4

d
v
=5

d
v
=6

d
v
=7

d
v
=8

145

optimization had a more significant effect on robustness than the variation of NLP

dimension for DE, SNM, and SHJ.

SNOPT was less robust than the other three algorithms, reaching only 66-68%, whereas

for dv  4 SNM and SHJ achieved 91-96% and DE achieved over 99% successful test

cases.

6.3.2 The Effects of dv on Optimality

Figure 6-4 shows the relative optimality of each of the four NLP algorithms across the

range of dv  {3,...8}. It is clear from the spacing of the curves that for each of the four

algorithms optimality improved with increasing dv.

The relatively poor robustness of SNOPT limited the number of test cases for which it

was possible for SNOPT to be the closest to optimal (i.e. it places an upper bound on 0

measured over all test cases). To remove the limiting effects of robustness the data of

Figure 6-4 was divided by  and re-plotted as Figure 6-5.

146

Figure 6-4. Optimality Profiles for Each NLP, vs dv

100 120 140
0

50

100

DE

 (%)

C
u

m
 %

:
 t f <

=
 

 %
 o

f
b

e
s
t
t f

100 120 140
0

50

100

SNM

 (%)

C
u

m
 %

:
 t f <

=
 

 %
 o

f
b

e
s
t
t f

100 120 140
0

50

100

SHJ

 (%)

C
u

m
 %

:
 t f <

=
 

 %
 o

f
b

e
s
t
t f

100 120 140
0

50

100

SNOPT

 (%)

C
u

m
 %

:
 t f <

=
 

 %
 o

f
b

e
s
t
t f

d
v
=3

d
v
=4

d
v
=5

d
v
=6

d
v
=7

d
v
=8

147

From Figure 6-5 it can be seen that a tolerance of approximately 28% loss of optimality

would be required to cover 50% of the successful test cases for dv = 3, whereas with

airspeed included in the optimization only 4% tolerance would be required to cover

50% of successful test cases. Hence not only was 0 better when airspeed was included

in the optimization but the dispersion of optimality was also better (i.e. more results

were within a given tolerance of the lowest tf).

Parenthetically, Figure 6-5 appears to show that optimality was approximately a linear

function of tolerance for dv = 3. This is an artefact of the -axis scales: if the graphs had

Figure 6-5. Scaled Optimality Profiles for Each NLP, vs dv

(Using the same colour coding as Figure 6-4)

100 120 140
0

50

100

DE

 (%)

C
u

m
 %

:
 t f <

=
 

 %
 o

f
b

e
s
t
t f

100 120 140
0

50

100

SNM

 (%)

C
u

m
 %

:
 t f <

=
 

 %
 o

f
b

e
s
t
t f

100 120 140
0

50

100

SHJ

 (%)

C
u

m
 %

:
 t f <

=
 

 %
 o

f
b

e
s
t
t f

100 120 140
0

50

100

SNOPT

 (%)

C
u

m
 %

:
 t f <

=
 

 %
 o

f
b

e
s
t
t f

148

been displayed with the -axis extended out to  = 3000% then the dv = 3 curves would

be seen to have the same pattern as the other curves.

To relate these results to the results presented in Chapter 5 for the Bernstein form Table

6-4 shows, for SNM, the percentage loss of relative optimality that would have to be

tolerated to bring 50% and 68% respectively of the successful test cases within the

tolerance. The 50% and 68% points were chosen as approximations to the mean and

mean plus standard deviation values (assuming approximately symmetric Gaussian

distributions). The data in Table 6-4 are relative to the best value obtained by

optimization for each test case (which was most often the DE result for dv = 8), whereas

the optimality results in Chapter 5 are relative to vmax: hence the values in Table 6-4

should be less than the values in Table 5-3 and Table 5-4 of Section 5.3.3.2 by

approximately the Table 5-3 and Table 5-4 dv = 8 values. It can be seen that this is the

case.

SNM: Loss of optimality for p% of successful

test cases

dv p = 50% p = 68%

3 28.6 42.0

4 4.0 5.5

5 2.6 3.8

6 1.0 2.0

7 0.4 0.9

8 0 0.2

Table 6-4. SNM Loss of Optimality vs dv

The corresponding data for the most robust algorithm, DE, are shown in Table 6-5 and

are consistent with the data in Table 6-4..

149

DE: Loss of optimality for p% of successful

test cases

dv p = 50% p = 68%

3 27.5 42.5

4 3.9 5.5

5 2.9 4.1

6 0.9 1.9

7 0.4 1.1

8 0 0.2

Table 6-5. DE Loss of Optimality vs dv

These results therefore support the results of Chapter 5 on the dependence of optimality

on the degree of airspeed parameterization.

6.3.3 Comparative Optimality of the NLP Algorithms

Figure 6-6 shows 0, the number of test cases for which each algorithm produced the

lowest tf, for each dv, measured over all test cases.

Figure 6-6. Percentage Each NLP was Closest to Optimal vs dv

3 4 5 6 7 8
0

20

40

60

80

100

d
v


0
 (

%
 c

lo
s
e

s
t
to

 o
p

ti
m

a
l)

DE

SNM

SHJ

SNOPT

150

SNOPT, as the only one of the four NLP algorithms to explicitly use the KKT

conditions, was expected to produce results closer to optimal than the other algorithms,

and therefore to have the highest 0 score. However, DE achieved the highest 0 score:

48% versus 36% for SNOPT, although SNOPT achieved an 0 score 2% higher than

DE for dv = 8. SNM achieved an 0 score of 10-16%, and SHJ only 2-4%, all measured

over all test cases.

Figures 6-7 and 6-8 show the 2 and 5 scores over all test cases. In these figures

SNOPT results reduced in optimality more steeply than any of the other three

algorithms: SNOPT dropped from second place to DE for 0 (Figure 6-6) to third place

for 2 (Figure 6-7) and to last place for 5 (Figure 6-8): this was due to SNOPT's lack

of robustness which bounded SNOPT's optimality scores.

Figure 6-7. Percentage Each NLP was Within 2% of Optimal vs dv

3 4 5 6 7 8
0

20

40

60

80

100

d
v


2
 (

%
 w

it
h

in
 2

 %
 o

f
m

o
s
t
o

p
ti
m

a
l)

DE

SNM

SHJ

SNOPT

151

To remove the limiting effects of robustness from the analysis the optimality of each

algorithm was analyzed over only successful tests, and the data was divided by .

Figure 6-9 shows the resulting performance profiles.

These graphs show that when SNOPT was successful it consistently produced better

values of tf than the two derivative-free algorithms. However, the figures also confirm

that DE was not only the most robust but also the most consistently optimal. Although

over successful cases SNOPT achieved the lowest tf more often than DE for dv  5,

(shown by the intersection of the curves with the y-axis), the crossover points, at which

more DE results were within a tolerance than SNOPT results, were at tolerances of

0.02%, 0.2%, 1.4% and 1% for dv  {5,...8} respectively. This shows that DE

optimality was more consistently close to optimal than was SNOPT, even when SNOPT

was successful.

Figure 6-8. Percentage Each NLP was Within 5% of Optimal vs dv

3 4 5 6 7 8
0

20

40

60

80

100

d
v


5
 (

%
 w

it
h

in
 5

 %
 o

f
m

o
s
t
o

p
ti
m

a
l)

DE

SNM

SHJ

SNOPT

152

Figure 6-9. Scaled Optimality Profiles for Each dv, vs NLP

100 120 140
0

20

40

60

80

100

d
v
=3

 (%)

C
u

m
 %

:
 t f <

=
 

 %
 o

f
b

e
s
t
t f

100 120 140
0

20

40

60

80

100

d
v
=4

 (%)

C
u

m
 %

:
 t f <

=
 

 %
 o

f
b

e
s
t
t f

100 120 140
0

20

40

60

80

100

d
v
=5

 (%)

C
u

m
 %

:
 t f <

=
 

 %
 o

f
b

e
s
t
t f

100 120 140
0

20

40

60

80

100

d
v
=6

 (%)

C
u

m
 %

:
 t f <

=
 

 %
 o

f
b

e
s
t
t f

100 120 140
0

20

40

60

80

100

d
v
=7

 (%)

C
u

m
 %

:
 t f <

=
 

 %
 o

f
b

e
s
t
t f

100 120 140
0

20

40

60

80

100

d
v
=8

 (%)

C
u

m
 %

:
 t f <

=
 

 %
 o

f
b

e
s
t
t f

DE

SNM

SHJ

SNOPT

153

When the effects of robustness are removed, Figure 6-9 shows that for dv  5 all of the

NLP algorithms produced solutions within 10% of the lowest tf in 95% of cases.

However, when airspeed was excluded from the optimization only DE achieved more

than 95% (98%) of successful results within 10% of the lowest tf (SNOPT achieved

92%, SNM achieved 90% and SHJ achieved 82%).

SNM consistently outperformed SHJ for optimality but both achieved low optimality

scores: 0 = 10-16% for SNM and 0 = 2-4% for SHJ.

6.3.4 Computational Speed

The means and standard deviations of  for all test cases are shown in Tables 6-6 and

6-7 and in Figures 6-10 and 6-11.

NLP Degree of Airspeed Parameterization

 3 4 5 6 7 8

DE 12101 11088 12248 14422 16371 18266

SNM 10553 5672 4553 4520 4579 4671

SHJ 1573 1400 1333 1424 1610 1780

SNOPT 1428 1390 1483 1494 1601 1702

Table 6-6. Mean Trajectory Evaluations, All Test Cases

NLP Degree of Airspeed Parameterization

 3 4 5 6 7 8

DE 9414 5013 4073 4181 4627 4838

SNM 19055 13031 10795 10363 10079 9759

SHJ 2960 1609 1326 1495 1618 1825

SNOPT 1101 1184 1001 1001 1074 1063

Table 6-7. Standard Deviation of Trajectory Evaluations, All Test Cases

154

3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3
x 10

4

d
v



DE mean

DE mean+SD

SNM mean

SNM mean+SD

SHJ mean

SHJ mean+SD

SNOPT mean

SNOPT mean+SD

3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

7000

d
v



Figure 6-10. Trajectory Evaluations,

 All Test Cases
Figure 6-11. Expansion of Figure 6-10

155

A two-factor ANOVA was performed: at a significance level of 0.01, the effects of the

NLP algorithm, of dv, and of the interaction between NLP and dv, were statistically

significant.

DE was the slowest of the four algorithms: measured by mean  over all test cases it

required 8-12 times as many trajectory evaluations as did the two fastest algorithms SHJ

and SNOPT, and up to 4 times as many as SNM. Mean  for DE had a minimum at

dv = 4 and the standard deviation of  was close to a minimum for dv  {4,5}.

Figure 6-11 shows the data of Figure 6-10 against an expanded y-axis, to present the

data for SHJ and SNOPT more clearly: the two algorithms required similar numbers of

trajectory evaluations but SHJ showed more sensitivity to dv.

The means and standard deviations of  for SNM were also high: for dv = 3 their sum

was 50% higher than that of DE. The SNM mean  reduced as dv increased to 6, but

then showed a small rate of increase up to dv = 8. The SNM standard deviation reduced

steeply as dv increased to 5, then continued to decrease, but at a lower rate, as dv

increased to dv = 8. SNM showed a monotonic decrease in mean plus standard

deviation of  as dv increased, i.e. the increase in degrees of freedom increased the rate

of convergence faster than the NLP dimension reduced it, up to the highest dv tested

(dv = 8).

Figure 6-12 shows the  performance profiles for all test cases including failures to

converge successfully: SHJ was most often the fastest for every value of dv, but for

dv  4 the SNOPT curves cross over the SHJ curves: this means that over a sufficiently

large tolerance SNOPT would produce more results within the tolerance than SHJ.

156

Figure 6-12.  Profiles for Each dv, vs NLP, All Test Cases

200 400 600 800
0

20

40

60

80

100

d
v
=3

 (%)

C
u

m
 %

:
 

<

=
 

 %
 o

f
b

e
s
t


200 400 600 800
0

20

40

60

80

100

d
v
=4

 (%)

C
u

m
 %

:
 

<

=
 

 %
 o

f
b

e
s
t


200 400 600 800
0

20

40

60

80

100

d
v
=5

 (%)

C
u

m
 %

:
 

<

=
 

 %
 o

f
b

e
s
t


200 400 600 800
0

20

40

60

80

100

d
v
=6

 (%)

C
u

m
 %

:
 

<

=
 

 %
 o

f
b

e
s
t


200 400 600 800
0

20

40

60

80

100

d
v
=7

 (%)

C
u

m
 %

:
 

<

=
 

 %
 o

f
b

e
s
t


200 400 600 800
0

20

40

60

80

100

d
v
=8

 (%)

C
u

m
 %

:
 

<

=
 

 %
 o

f
b

e
s
t


DE

SNM

SHJ

SNOPT

157

These results were due in part to the different behaviours of DE and SNM compared to

SHJ and SNOPT for unsuccessful test cases: DE and SNM continued until the trajectory

evaluation limit max was reached, whereas SHJ and SNOPT terminated quickly. Tables

6-8 and 6-9 show the data when only successful test cases are included.

NLP Degree of Airspeed Parameterization

 3 4 5 6 7 8

DE 9964 10777 12149 14322 16340 18212

SNM 2112 1895 1963 2160 2316 2659

SHJ 830 1146 1115 1245 1400 1560

SNOPT 1543 1592 1648 1724 1886 2029

Table 6-8. Mean Trajectory Evaluations, Successful Test Cases

NLP Degree of Airspeed Parameterization

 3 4 5 6 7 8

DE 4407 3825 3660 3761 4523 4692

SNM 3769 1934 1288 1177 970 1379

SHJ 1655 1141 848 1118 1047 1230

SNOPT 890 1288 962 998 1044 1005

Table 6-9. Standard Deviation of Trajectory Evaluations, Successful Test Cases

The 90% confidence intervals for Table 6-8 were all non-overlapping, except for the

following pairs: SNM dv  {4,5}; SHJ dv  {4,5}; and SNOPT dv  {3,4}, dv  {4,5},

and dv  {5,6}.

The same data is shown graphically in Figures 6-13 and 6-14.

Considering only successful test cases, on mean  DE was the slowest algorithm by a

factor of 5-12 compared to the other three algorithms. For dv = 3 it was faster over

successful cases than over all test cases, confirming that the apparent minimum in the

DE "all test cases" data was due to the unsuccessful test cases.

158

3 4 5 6 7 8
0

0.5

1

1.5

2

2.5
x 10

4

d
v



DE mean

DE mean+SD

SNM mean

SNM mean+SD

SHJ mean

SHJ mean+SD

SNOPT mean

SNOPT mean+SD

3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

7000

d
v



Figure 6-14. Expansion of Figure 6-13 Figure 6-13 Trajectory Evaluations, Successful

Test Cases

159

Since for dv  4 DE was over 99% successful, excluding unsuccessful test cases only

changed DE mean  by less than 3% for dv = 4 and less than 1% for dv  5. The

computational speed of DE for dv  4 (D  8) was approximately linear in the NLP

dimension. Over only successful test cases, Table 6-8 shows that on mean  SHJ was

26% to 46% faster than SNOPT.

The performance profiles of Figure 6-15, which include only successful test cases and

scale the data by a factor of  to remove the effects of relative robustness, show that if

each algorithm was 100% robust, SHJ would be the fastest for all dv, and SNOPT,

although scoring higher than SNM at  = 100%, would be overtaken by SNM for a

sufficiently large tolerance (of the order of a factor of 3). DE would remain the slowest.

160

Figure 6-15. Scaled  Profiles for Each dv, vs NLP, Successful Tests

200 400 600 800
0

20

40

60

80

100

d
v
=3

 (%)

C
u

m
 %

:
 

<

=
 

 %
 o

f
b

e
s
t


200 400 600 800
0

20

40

60

80

100

d
v
=4

 (%)

C
u

m
 %

:
 

<

=
 

 %
 o

f
b

e
s
t


200 400 600 800
0

20

40

60

80

100

d
v
=5

 (%)

C
u

m
 %

:
 

<

=
 

 %
 o

f
b

e
s
t


200 400 600 800
0

20

40

60

80

100

d
v
=6

 (%)

C
u

m
 %

:
 

<

=
 

 %
 o

f
b

e
s
t


200 400 600 800
0

20

40

60

80

100

d
v
=7

 (%)

C
u

m
 %

:
 

<

=
 

 %
 o

f
b

e
s
t


200 400 600 800
0

20

40

60

80

100

d
v
=8

 (%)

C
u

m
 %

:
 

<

=
 

 %
 o

f
b

e
s
t


DE

SNM

SHJ

SNOPT

161

6.3.4.1 Computation Times

Table 6-10 shows mean computation times in seconds averaged over all test cases. The

times excluded reading stored data such as boundary conditions from disc, initializing

variables and arrays that were not dependent on the boundary conditions, and writing

output data to disc. The times included transforming the boundary conditions to the

virtual domain (Section 3.2.4), creating the corresponding initial guess if required

(Section 6.2.5), invoking the NLP algorithm, and assigning the results to arrays.

NLP Degree of Airspeed Parameterization

 3 4 5 6 7 8

DE 303 279 307 361 416 468

SNM 268 146 116 116 115 118

SHJ 40 35 35 36 41 48

SNOPT 37 36 38 38 41 44

Table 6-10. Mean Elapsed Computation Times, All Test Cases (s)

Table 6-11 shows the percentage differences between computation times per trajectory

node for each NLP algorithm relative to DE, because DE was the most efficient

algorithm being fastest (per node) for 14 of the 18 comparisons in the table. Although it

was the most complicated of the algorithms, SNOPT was comparable in speed with

SNM and SHJ: this is attributed to the use of compiled mexw64 code counterbalancing

the additional complexity.

NLP Degree of Airspeed Parameterization

 3 4 5 6 7 8

DE 0.0 0.0 0.0 0.0 0.0 0.0

SNM 1.4 2.6 1.5 2.3 -0.8 -1.1

SHJ 1.8 0.8 4.6 1.5 -0.6 6.1

SNOPT 2.8 1.8 1.0 2.1 0.3 -0.2

Table 6-11. Percentage Differences in Computation Times per Node

162

The mean time taken to evaluate one trajectory node (N = 210), averaged over all test

cases, all NLP algorithms and all dv values, was 1.2210
-4

 s, and the standard deviation

of this value over all the algorithms and dv values was less than 2% of the mean.

The mean computation times for DE were approximately 0.5-4% of the mean pseudo-

optimal tf times for dv  {3,...8} (higher with higher dv).

6.4 Discussion

Taking each of the three measures in isolation, on robustness DE was the most robust

and SNOPT the least; on optimality DE was the most optimal and SHJ the least; on

computational speed SHJ was the fastest and DE the slowest.

6.4.1 Objective 1: The Effects of dv on Optimality

The results for all four NLP algorithms support the findings of Chapter 5 that

achievable optimality depends on, and increases with, dv. The results also show that this

remains valid when the spatial path is optimized (using global degree 7 power series

polynomials as spatial parameterization functions).

In all the results, the optimality achieved when airspeed was excluded from the

optimization was lower than that achieved when airspeed was included in the

optimization. Figure 6-9 shows that for dv  5 all of the NLP algorithms, when they

converged successfully, produced solutions within 10% of the lowest tf in 95% of cases.

However, when airspeed was excluded from the optimization only DE achieved more

than 95% of successful results within 10% of the lowest tf . Not only peak optimality

but the dispersion of optimality was better (i.e. more results were within a given

tolerance of the lowest tf) when airspeed was included in the optimization.

6.4.2 Objective 2: Optimality

DE was found to produce the most pseudo-optimal solutions: it achieved 2 = 94%

averaged over all dv and all test cases. Since DE had no constraint violation tolerance

whereas SNOPT, SNM, and SHJ each used a tolerance of 0.1, DE's high optimality and

robustness are more favourable to DE than the basic arithmetic implies.

163

SNM achieved 2 = 69% over all test cases, equivalent to 74% over successful cases.

These results were lower than those of DE and SNOPT. SHJ's optimality results were

the worst of the four algorithms: only 2 = 45% over all test cases, equivalent to 49%

over successful test cases.

When it converged successfully SNOPT was found to produce a high percentage of

results close to optimal, better than SNM and SHJ but not as good as DE. It was

expected to score highest for optimality due to its use of the KKT optimality conditions,

but it achieved only 2 = 58% over all test cases, equivalent to 88% over successful test

cases. It only achieved an overall success rate of 66% which is attributed to the low

frequency with which the initial guess was in a basin of attraction to feasible local

minima because of the multimodality of the problem, and that SNOPT is more sensitive

to the accuracy of the initial guess than SNM or SHJ.

Further, for test cases in which DE achieved a solution closer to optimal than any of the

three "local" algorithms SNOPT, SNM, and SHJ, there are two causes to consider:

either the local algorithms all failed to converge to a global minimum despite a good

initial guess, or the initial guesses were not close enough to a feasible global minimum.

Given DE's high 0, 2, and 5 scores, investigation of improved initial guesses is a

worthwhile area for future research.

No analytic method has yet appeared that is guaranteed to find an initial guess that lies

in a basin of attraction to a feasible global minimum (if such a method does exist then it

reduces the global optimization problem to a local optimization problem). One

alternative is to use solutions of relaxed or similar problems, such as finding feasible

solutions without minimizing an objective: Yakimenko reported
133

 good results using

this latter approach in 2000. However, even if this approach were to raise SNOPT's

robustness to the same as DE, SNOPT's optimality would still be lower than that of DE.

6.4.3 Objective 3: Robustness and Computational Speed

DE was found to be the most robust of the four algorithms: it generated a successful

solution in more than 99% of all test cases for dv  4, and in 94% of all test cases when

164

airspeed optimization was excluded (dv = 3). SNOPT achieved an overall success rate

of 66%.

The two derivative-free algorithms SNM and SHJ achieved higher robustness than

SNOPT, but lower than DE. In particular when higher values of dv were used

(dv  {6,7,8}), the additional degrees of freedom helped both SNM and SHJ to achieve

success rates of 93-96%, thus exceeding the 66% achieved by SNOPT and supporting

(for these test data) Yakimenko's comments
133

 that the Nelder-Mead and Hooke-Jeeves

algorithms are more robust than gradient-based algorithms.

Airspeed optimization enabled DE, SNM, and SHJ to converge successfully for a wider

range of boundary conditions than when airspeed was excluded from the optimization.

When airspeed was included in the optimization the robustness of DE, SNM, and SHJ

improved compared to robustness without airspeed optimization: from 94% to >99% for

DE and from 81-82% to > 91% for SNM and SHJ. For dv = 6 the success rates of DE,

SNM, and SHJ were 99.7%, 95.1% and 95.4% respectively. SNOPT showed only a 4%

variation in robustness over the tested range of dv, including dv = 3.

Except for DE results over only successful test cases, computational speed was faster

when airspeed was included in the optimization provided that dv was low. For DE

results over only successful cases, excluding airspeed from the optimization was faster

but by only 1.6%, for a 25-38% loss of optimality.

When both successful and unsuccessful test cases were included, it was found that SHJ

was most often the fastest, that SNOPT was the fastest over a sufficiently large

tolerance, that SNM was a factor of 3-7 times slower than SNOPT/SHJ, and that DE

was the slowest by a factor of 8-12. When only successful test cases were included, DE

was the slowest by a factor of 5-12, and SHJ was the fastest but at the expense of

optimality.

The combination of the accelerating effect of increasing degrees of freedom and the

decelerating effect of increasing NLP dimension produced minima in some measures of

computational speed as a function of dv. The corresponding values of dv were

165

dependent on the choice of NLP algorithm and which measures of computational speed

were used.

6.4.4 Objective 4: Computation Times

The mean computation times of 35-50 s that were achieved by SNOPT and SHJ with

N = 210 were only approximately 0.05-0.4% of the corresponding tf times. Yakimenko

et al.
5, 135

 reported a computation time of 3 s and a compute:flight time ratio of

approximately 10%, but based on only a single problem, and with no data on the

number of trajectory evaluations invoked.

6.4.5 Objective 5: Optimization Approaches

The main weaknesses of each algorithm were:

 DE. DE was 8-12 times slower overall than SNOPT/SHJ.

 SNOPT. The robustness of SNOPT was 66%, compared to DE with over 99% and

SNM/SHJ with ~95%.

 SNM. SNM was 3-7 times slower than SNOPT/SHJ, and less optimal than DE and

SNOPT for successful test cases.

 SHJ. The optimality of SHJ, measured by 2 but including only successful test

cases, was only 49% compared to 88% for SNOPT and 94% for DE.

DE is well suited to parallel implementation, because each member of a generation can

be processed independently of the processing of each other member of the population,

and each process always involves one trajectory evaluation. Therefore Np processors

used in parallel to process each generation, with a further processor for synchronization

and data management, would increase computational speed by a factor approaching Np.

For Np = 15 as used in this work, this would reduce the elapsed computation times per

test case to approximately 18-31 s (assuming N = 210 and no net change due to

processor clock speeds or changing from a Matlab to compiled code environment)

which is only 51-71% of the shortest times in Table 6-10.

Two obvious initial guess approaches are:

166

 When the boundary conditions are in the same neighbourhood as the previous

boundary conditions, use the previous pseudo-optimal solution as the new initial

guess.

 Otherwise use a global algorithm to generate initial guesses for a deterministic local

algorithm, e.g. use parallel DE to generate initial guesses for SNOPT.

The computation times were achieved using N = 210, and are approximately linear in N.

Hence reducing N would improve the computational speed, albeit at the cost of

accuracy. A possible two-stage optimization approach would be to use a low N value to

obtain an initial guess then use higher N for the solution, an approach that was used by

Yakimenko et al.
5, 135

 to improve the performance of the Gauss and Legendre

pseudospectral methods.

Therefore three promising paths to achieve the computational speed needed for on-

board near-real-time trajectory generation with the inverse dynamics method are:

improving the computational speed of DE through parallel processing; improving the

robustness of SNOPT through better initial guesses; a combination of the two

approaches to exploit the advantages of both DE and SNOPT. A fourth possibility is to

seek to improve the optimality and robustness of SHJ through better initial guesses

and/or termination criteria. These areas are suggested for future research.

167

7 BANK ANGLE ILL-CONDITIONING AND

NEGATIVE-G TRAJECTORIES

7.1 Introduction

For surveillance and reconnaissance missions it is critical that the UAV provides a

stable platform for its on-board sensors and communications. However, Assumption 2

(Section 3.2) restricts the aircraft model, and therefore the trajectories, to positive-g

orientations and this restriction leads to ill-conditioning in orientation when lz  0:

small changes in lz, for example due to round-off errors, can cause repeated large

changes in bank angle. Such abrupt manoeuvres are difficult for the flight control

system to track accurately and are likely to cause control actuator saturation. Further,

even if the flight control system response is fast and accurate, the bank angle changes

would demand high-bandwidth sensor dynamics, or very wide sensor fields of view, to

maintain target tracking. Although this problem is most acute in sustained near-vertical

flight it may occur at any orientation, such as during low level terrain following or

during direction changes to avoid obstacles in an urban environment.The ill-

conditioning can be removed by aligning the lift vector with either the positive or the

negative direction of the load factor, whichever is nearest to the orientation at the

previous node. This aim of the work described in this chapter is to reduce the

probability of control actuator saturation or loss of sensor tracking due to the ill-

conditioning by admitting negative-g trajectories and meeting the following objectives:

 Minimize rotation, subject to maintaining coordinated flight ( = 0) except during

inversion.

 Implement inversions over time domains that minimize a defined objective function.

 Smoothly interpolate orientations during inversions.

In this chapter, "invert" and "inversion" refer to a rotation from positive to negative

alignment of the lift vector with the normal load factor, or vice-versa.

The Euler-angle model has singularities at 2   , is sequence-dependent, and

cannot in general be smoothly interpolated. Although mathematically correct, the

168

controls can be difficult for a flight control system to track: for example when

transitioning through the vertical in a loop, both heading  and bank  have

discontinuities of approximately 180 (Figure 3-1). The quaternion-based model of

Chapter 4 does not have orientation singularities, the magnitude of a change in

orientation can be readily evaluated as a scalar, and orientations can be smoothly

interpolated. These latter two properties are exploited to enable the negative-g

extensions described in this chapter.

7.2 Algorithmic Extensions

The method may be extended to select the negative-g orientation e
-
 when e

-
 requires a

smaller rotation from ej-1 than the positive-g orientation e
+
, subject to a negative-g load

factor limit l
-
, by replacing Assumption 2 by

1

, if 0

, otherwise

z j

z j
j z j

W j

W j

d



 





l

l
l

z
z 


 (7.1)

The node-based load factor is used in Eq. (7.1) to align the bank angle with the load

factor at each node.

The variable d{-1,+1} represents the alignment of the bank angle where d = +1

corresponds to positive-g orientation, and initial and final values of d, (d0 and df), are

included in the boundary conditions.

Three steps are required at each node j  [2, N]:

1. Determine the orientation e nearest to ej-1 that satisfies Eq. (7.1), and set a flag 

if the orientation has to be inverted.

2. Update the inversion domain [js, jm] over which a cost function  has a minimal

value.

3. If  is true, interpolate the orientation at each node in [js+1, jm+1] , re-evaluate

the controls over [js, j-1] and reset the orientations over [jm, j] to match.

At the final node (j = N) step 1 is modified so that  is set to true if d ≠ df .

169

Although the algorithm is described with the implicit assumption that the positive-g

load factor limit is higher than the negative-g load factor limit because this is the usual

case, the algorithm may be applied to the opposite case with only minor adaptations.

7.2.1 Determining Orientation

The orientation nearest to ej-1 that satisfies Eq. (7.1) may be evaluated as (omitting the

suffix j from Eqs. (7.2)-(7.6) for clarity)

 Shepperd , ,z z
W W

z z


  

   
 

l l
e x x

l l

 
 (7.2)

1, if 0

, otherwise

j

 





  
 



e e e
e

e
 (7.3)

  0,
T

T

Wh x


 (7.4)

   e h e (7.5)

1, if 0

, otherwise

j

 





  
 



e e e
e

e
 (7.6)

 

 1
,

arg maxj j  


 
e e e

e e e (7.7)

1 if

1 if

j

j

j

d





 
 



e e

e e
 (7.8)

Eqs. (7.3) and (7.6) ensure that e
+
 and e

-
 are the nearest quaternions to ej-1 on S

3
 that

satisfy Eqs. (7.2) and (7.5), and are required because the unit quaternion group double

covers SO(3) , i.e. e and -e represent the same rotation.

The resulting orientation is rotation-minimizing subject to maintaining zero sideslip.

The “invert” flag is given by

170

   true, if

false, otherwise

seg

j z j l


   
 


e e l
 (7.9)

An additional flag, , denotes whether the load factor is within the negative load factor

limit

true, if

false, otherwise

seg

z j

j

l


 
 


l
 (7.10)

The segment-based load factor (Eq.(4.66)) is used in Eqs. (7.9) and (7.10) because load

factor magnitude is required.

7.2.2 Updating the Inversion Domain

When a requirement for inversion is detected at a node j by Eq. (7.9) evaluating to true,

the inversion can be distributed over any contiguous sequence of segments starting from

the nearest preceding node k for which k = false:

  max | false, 2,ik i i i j    (7.11)

and terminating at the current node j, providing that the path constraints remain

satisfied. The inversion domain [js, jm] is defined as the domain that minimizes a cost

function 

 [,] arg mins mj j


 (7.12)

 s.t. () ()m s It j t j t  (7.13)

where

   , , , , ,a b a k b a b j a b      (7.14)

and

  
 

 
,

, max seg

zi
i a b

a b


 l (7.15)

171

No additional iteration is required to solve Eq. (7.12), only a comparison of the current

inversion domain with any new candidate domains as each node is processed.

Eq. (7.13) expresses the constraint that the time interval corresponding to [js, jm] is

sufficiently long to enable the generated angular velocities to satisfy their constraints. If

t(j)-t(k) < tI then Eq. (7.13) will be violated: this may be handled in the same way as

other constraint violations. Eq. (7.15) is the cost function for the inversion; as

expressed here it ensures that inversion takes place when the normal load factor is

minimized, but other functions could be chosen.

7.2.3 Inverting the Orientation

The required orientation at the end of an inversion is given by

 if 1 and 0

 if 1 and 0

if 1 and 0

 otherwise

m s m

m s m

m

m s m

d

d

d









    

    

 
  



e e e

e e e
e

e e e

e

 (7.16)

Quaternion interpolation may be applied to evaluate the orientation at each node during

the inversion

    
()

slerp , , , , 1, 1
() ()

i i s m i s m

m s

t i
t t i j j

t j t j

 
      

 
e e e (7.17)

The angular velocity at each node is evaluated by applying Eq. (4.64) (or Eq. (4.47)) to

the orientations produced by Eq. (7.17). Hence two stages of interpolation are applied

during inversion: one stage to evaluate the orientations and a second stage to evaluate

the angular velocities.

Between the end of the inversion and the current node, the orientations are inverted

simply by exchanging e
+
 and e

-
, and the controls are inverted by setting q = -q and

r = -r.

172

7.3 Numerical Examples

Figure 7-1 shows results for a trajectory representing an aircraft flying at constant

airspeed over a small hill which, if the aircraft remained erect, would cause a negative

load factor around the peak of the trajectory. Figure 7-1a shows the vertical profile and

Figure 7-1b shows the load factor for an erect aircraft. After 7.4 s as the aircraft pitched

down the load factor changed from positive to negative: with the positive-g restriction

active this caused a demand for a 180° step change in bank angle which can be seen as

the positive red spike in Figure 7-1c. After 8.4 s the load factor changed again as the

aircraft started to pitch up (relative to the erect vertical) causing a second spike in bank

rate as shown in Figure 7-1c, from which it is clear that the demanded bank rates were

infeasible and were likely to cause control actuator saturation. Figures 7-1c and 7-1d

show that when negative-g orientations were allowed the bank rates were feasible (zero

in this example) and the aircraft remained erect.

Figure 7-2 shows how the algorithm operates for a trajectory in which the load factor

exceeds its negative limit. (Note that Figure 7-2 is plotted against node values for

clarity.) Figure 7-2a shows the vertical profile: from straight and level flight the aircraft

initiated a steep (80°) descent followed by a short climb then level-off into level flight.

The aircraft maintained constant airspeed throughout. The boundary conditions

included d0 = -1 and df = 1 so that the aircraft started inverted and finished erect. Figure

7-2b shows what the load factor would be if negative-g were enabled but inversions

were disabled: from an initial value of -1g the load factor would have increased to

approximately +1g then decreased to a small negative value, with a local minimum of

the load factor at j = 58, until the aircraft started to climb (still inverted). It can be seen

that at j = 125 and 1seg

z l d = l , hence an inversion should be demanded over the

inversion domain [js, jm] that minimizes  (inversions were disabled for Figure 7-2b to

show the event at j = 125). Figure 7-2c shows that js = 57 at j = 125 so that the

algorithm back-stepped to node 57 to start the inversion; this can be seen in Figure 7-2d

which shows the load factor for the negative-g algorithm with inversions enabled.

Figure 7-2d also shows that the orientation satisfied the boundary conditions on d.

173

Figures 7-1 and 7-2 demonstrate that the algorithm removed the ill-conditioning of bank

angle when 0z l by selecting the coordinated flight orientation that satisfied the

minimum rotation criterion. Figure 7-2 also demonstrates that, when an inversion was

necessary to satisfy the negative load factor limit, the algorithm implemented the

inversion over a time domain that minimized the defined cost function. Figure 7-3

shows the bank rate and demanded bank angle for the trajectory of Figure 7-2, with

inversions enabled, plotted against time. At t = 28 s (j = 57), a feasible bank rate was

generated and maintained until the required inversion was complete.

Figure 7-1. Climbing and Descending Over a Small Hill

a) the vertical profile, b) the load factor for an erect aircraft,

c) the bank rate controls, d) the bank angle demand

0 5 10 15 20
0

20

40

60

80

100
(a)

Time (s)

H
e

ig
h

t
 (

m
)

0 5 10 15 20
-30

-20

-10

0

10

20

30
(b)

Time (s)

N
o

rm
a

l
lo

a
d

 f
a

c
to

r
 (

m
/s

2
)

l
+

-l
 -

0 5 10 15 20
-3000

-2000

-1000

0

1000

2000

3000
(c)

Time (s)

B
a

n
k
 r

a
te

(º

/s
)

+ve g only

+ve or -ve g

0 5 10 15 20

0

50

100

150

200
(d)

Time (s)

B
a

n
k
 a

n
g

le

(º

)

+ve g only

+ve or -ve g

174

Figure 7-3 shows that the orientation was smoothly interpolated and a feasible bank rate

was generated during the inversion. The final position error for the trajectory of Figures

7-2 and 7-3, using ode45 to integrate the state equations, was < 0.3 m over a total path

length of 3.3 km, confirming the accuracy of the interpolated controls.

Figure 7-2. Steep Descent and Pull-Up

a) the vertical profile, b) the load factor when inversion is disabled,

c) the start node of the inversion domain,

d) the load factor when inversion is enabled

0 100 200 300
-3000

-2500

-2000

-1500

-1000

-500

0
(a)

Node

H
e

ig
h

t
(m

)

0 50 100 150 200 250
-30

-20

-10

0

10

20

30

(b)

Node

N
o

rm
a

l
lo

a
d

 f
a

c
to

r
 (

m
/s

2
) l

+

-l
 -

0 100 200 300
0

10

20

30

40

50

60
(c)

Node

S
ta

rt
 n

o
d

e
 (
j s

)
o

f
in

v
e

rs
io

n
 d

o
m

a
in

0 50 100 150 200 250
-30

-20

-10

0

10

20

30

(d)

Node

N
o

rm
a

l
lo

a
d

 f
a

c
to

r
 (

m
/s

2
) l

+

-l
 -

175

Figure 7-3. Bank Angle and Bank Rate for the Trajectory of Figure 7-2

0 20 40 60 80 100 120
0

100

200

Time (s)

B
a

n
k
 a

n
g

le
 (

º)

0 20 40 60 80 100 120
-60

-40

-20

0

Time (s)

B
a

n
k
 r

a
te

(º

/s
)

177

8 CONCLUSION

The inverse dynamics method, applied to the minimization of flight time of a

conventional fixed wing aeroplane, is algorithmically simple, does not require large data

storage, and guarantees satisfaction of spatial, airspeed, acceleration and orientation

boundary conditions. As a direct method it is computationally cheaper than indirect

methods of the calculus of variations, has a larger radius of convergence, and does not

require good initial guesses of constrained arcs or of non-intuitive costate variables. It

has an NLP dimension typically in the range 4-15, automatically restricts the search

space to regions in which the boundary conditions and state equations are satisfied, and

does not require integration of the state equations. The method uses simple wind-axes

point-mass aircraft models for computational speed and requires parameterization of the

state vector: global low-degree polynomials have been used in most implementations to

date.

The inverse dynamics method has a number of limitations that have been investigated in

this work. Singularities arise from zeros of the spatial parametric speed, airspeed, and

normal load factor: computational techniques to handle these singularities have been

introduced. It has been shown that combining analytic and finite-difference expressions

improves the accuracy of evaluation of algorithmic variables, constraints and controls.

In particular it has been found that it is necessary for feasibility to use segment-based

expressions for some path constraints: it is not sufficient to rely on analytic derivatives

at the discretization nodes to evaluate the constraints and controls. Local quadratic

interpolation of constraints has been found to improve computational efficiency by

35-40%. It has been found that in general the method produces multimodal

optimization problems, with nonsmooth and potentially discontinuous constraints.

The singularities inherent in Euler-angle based orientation representation have been

overcome by introducing a new wind-axes point-mass inverse dynamics model using

unit quaternions to represent orientation. The model is approximately as

computationally efficient as the Euler-angle model, permits smooth orientation

parameterization and interpolation, and is linear in the controls. Five variants of control

expressions have been derived and compared, and it was found that the maximum

178

position errors generated using the most accurate controls were within ~0.005% of path

length using 257 nodes (in the absence of disturbances such as wind or noise).

The method has previously been limited to positive-g aircraft orientation, which leads to

ill-conditioning of bank angle when the normal load factor transitions through zero. In

turn this may cause control actuator saturation and/or exceed the ability of the sensor

dynamics to maintain sensor tracking. An algorithmic extension has been introduced

that admits negative-g orientations and exploits the new quaternion-based model by

evaluating the magnitude of a change in orientation as a scalar, and smoothly

interpolating orientation. This removes the ill-conditioning, thus improving platform

stability around zero normal load factor, reducing the probability of control actuator

saturation and the demands on sensor dynamics.

The optimality of a solution to a minimum-time aircraft trajectory generation problem

depends on the closeness of the generated airspeed to the maximum airspeed that

satisfies all path and boundary constraints. Airspeed is typically determined by

optimizing the coefficients of low-degree airspeed polynomial parameterization. A new

computational approach has been introduced to estimate maximum feasible airspeed

without airspeed parameterization or optimization. Results obtained with this approach

were used to measure the effects of the degree and form of polynomial airspeed

parameterization on the robustness, optimality and computational speed of optimization.

The effects of using Chebyshev, Bernstein, barycentric Lagrange and power series

polynomial basis functions were compared. It was found that the form of the

parameterization did not significantly affect the optimality of the solutions (except for

the power series form): if a tolerance of ~3% mean loss of optimality due to airspeed

parameterization was allowed, then there would be no need to use polynomials of

degree higher than 8 for airspeed parameterization. However, the form of the airspeed

parameterization did affect the robustness and rate of convergence: the power series

form was found to perform worse than the other forms on optimality, robustness, and

computational speed. The Chebyshev or Bernstein forms performed better.

Overall performance depends on the combined effects of spatial parameterization,

airspeed parameterization, the fidelity of the aircraft dynamical model, initial guesses,

and the chosen NLP algorithm. The performance of the quasi-Newton algorithm

179

SNOPT, sequential implementations of the derivative-free algorithms Nelder-Mead

(SNM) and Hooke-Jeeves (SHJ), and the evolutionary algorithm Differential Evolution

(DE), were compared. Using the measures defined in Chapter 6, DE was the most

robust (achieving up to 99.9% success) and SNOPT the least (66%); DE was the most

optimal (94%) and SHJ the least (45%); on computational speed SHJ was the fastest

and DE the slowest (by an order of magnitude).

Mean computation times of 35-50 s were achieved by SNOPT and SHJ with N = 210.

Whether the times are fast enough for on-board near-real-time trajectory generation

depends on the architecture within which the inverse dynamics method is applied and

the required trajectory update rate. However, the times justify the assertion that the

method is potentially viable for such use.

Key areas for future research are: an optimization approach, including the choice of

NLP algorithm (or algorithms) and initial guess expressions; hardware and software

implementation; overall system analysis and design incorporating trajectory following,

trajectory updates, the stability of the overall system, and the effects of disturbances

such as wind; and reversionary modes required for flight safety.

The thesis, stated in Chapter 1, that the inverse dynamics method is a potentially viable

method of on-board near-real-time trajectory generation for unmanned aircraft, is

therefore maintained, but for this potential to be realized in practice further

improvements in computational speed are desirable.

181

REFERENCES

1. Anderson, E. P., Beard, R. W., and McLain, T. W., "Real-Time Dynamic

Trajectory Smoothing for Unmanned Air Vehicles", IEEE Transactions on

Control Systems Technology, Vol. 13, No. 3, 2005, pp. 471-477.

2. Ariff, O., Żbikowski, R., Tsourdos, A., and White, B. A., "Differential

Geometric Guidance Based on the Involute of the Target's Trajectory", Journal

of Guidance, Control, and Dynamics, Vol. 28, No. 5, 2005, pp. 990-996.

3. Åström, K. J., and Murray, R. M., Feedback Systems : an Introduction for

Scientists and Engineers, Princeton, 2008.

4. Baruh, H., Analytical Dynamics, McGraw-Hill, Boston, 1999.

5. Basset, G., Xu, Y., and Yakimenko, O. A., "Computing Short-Time Aircraft

Maneuvers Using Direct Methods", Journal of Computer and Systems Sciences

International, Vol. 49, No. 3, 2010, pp. 481-513.

6. Battles, Z., and Trefethen, L. N., "An Extension of Matlab to Continuous

Functions and Operators", Journal of Scientific Computing, Vol. 25, 2004, pp.

1743-1770.

7. Bazaraa, M. S., Sherali, H. D., and Shetty, C. M., Nonlinear Programming

Theory and Algorithms, 3rd ed., Wiley, Hoboken, 2006.

8. Bellingham, J., Richards, A., and How, J. P., "Receding Horizon Control of

Autonomous Aerial Vehicles", Proceedings of the American Control

Conference, Evanston Illinois, 2002, pp. 3741-3746.

9. Bellman, R. E., Dynamic Programming, Princeton University Press, Princeton,

1957.

10. Benson, D. A., Huntington, G. T., Thorvaldsen, T. P., and Rao, A. V., "Direct

Trajectory Optimization and Costate Estimation via an Orthogonal Collocation

Method", Journal of Guidance, Control, and Dynamics, Vol. 29, No. 6, 2006,

pp. 1435-1440.

11. Berrut, J.-P., and Trefethen, L. N., "Barycentric Lagrange Interpolation", SIAM

Review, Vol. 46, No. 3, 2004, pp. 501-517.

12. Betts, J. T., "Survey of Numerical Methods for Trajectory Optimization",

Journal of Guidance, Control, and Dynamics, Vol. 21, No. 2, 1998, pp. 193-

207.

13. Betts, J. T., Practical Methods for Optimal Control Using Nonlinear

Programming, SIAM, Philadelphia, 2001.

182

14. Boas, M. L., Mathematical Methods in the Physical Sciences, Wiley, New York,

1966.

15. Bortoff, S. A., "Path Planning for UAVs", Proceedings of the American Control

Conference, Chicago, 2000, pp. 364-368.

16. Boukari, D., and Fiacco, A. V., "Survey of Penalty, Exact-Penalty and Multiplier

Methods from 1968 to 1993", Optimization, Vol. 32, 1995, pp. 301-334.

17. Boyarko, G. A., Romano, M., and Yakimenko, O. A., "Time-Optimal

Reorientation of a Spacecraft Using a Direct Optimization Method Based on

Inverse Dynamics", Proceedings of the IEEE Aerospace Conference, Big Sky,

2010.

18. Boyd, J. P., Chebyshev and Fourier Spectral Methods, 2nd ed., Dover, New

York, 2001.

19. Boyd, J. P., "Computing Real Roots of a Polynomial in Chebyshev Series Form

Through Subdivision with Linear Testing and Cubic Solves", Applied

Mathematics and Computation, Vol. 174, 2006, pp. 1642-1658.

20. Boyd, J. P., "Computing the Zeros, Maxima, and Inflection Points of

Chebyshev, Legendre and Fourier Series: Solving Transcendental Equations by

Spectral Interpolation and Polynomial Rootfinding", Journal of Engineering

Mathematics, Vol. 56, 2006, pp. 203-219.

21. Brent, R. P., Minimization Without Derivatives, Englewood Cliffs, Prentice-

Hall, New Jersey, 1973.

22. Bryson, A. E., and Ho, Y. C., Applied Optimal Control, Optimization,

Estimation, and Control, Revised Printing 1988, Taylor and Francis, New York,

1975.

23. Bulteel, C., "MQ-1 Predator and MQ-9 Reaper Operations", Proceedings of the

25th Bristol International UAV Systems Conference, Bristol, 2010.

24. Bunday, B. D., Basic Optimisation Methods, Edward Arnold, London, 1984.

25. Canuto, C. G., Hussaini, M. Y., Quarteroni, A., and Zang, T. A., Spectral

Methods: Fundamentals in Single Domains, Springer-Verlag, Berlin, 2006.

26. Conway, B. A., and Larson, K. M., "Collocation vs Differential Inclusion in

Direct Optimization", Journal of Guidance, Control, and Dynamics, Vol. 21,

No. 5, 1998, pp. 780-785.

27. Dolan, E. D., and Moré, J. J., "Benchmarking Optimization Software with

Performance Profiles", Mathematical Programming, Vol. 91, No. 2, 2002, pp.

201-213.

183

28. Dolan, E. D., Moré, J. J., and Munson, T. S., "Optimality Measures for

Performance Profiles", SIAM Journal on Optimization, Vol. 16, No. 3, 2006, pp.

891-909.

29. Drury, R. G., Tsourdos, A., and Cooke, A. K., "Negative-g Trajectory

Generation Using Quaternion-Based Inverse Dynamics", Proceedings of the

AIAA Atmospheric Flight Mechanics Conference, Toronto, 2010.

30. Drury, R. G., Tsourdos, A., and Cooke, A. K., "Real-Time Trajectory

Generation: Improving the Optimality and Speed of an Inverse Dynamics

Method", Proceedings of the IEEE Aerospace Conference, Big Sky, 2010.

31. Drury, R. G., Tsourdos, A., and Cooke, A. K., "Negative-g Trajectory

Generation Using Quaternion-Based Inverse Dynamics", Journal of Guidance,

Control, and Dynamics, Vol. 34, No. 1, 2011, (to appear).

32. Drury, R. G., and Whidborne, J. F., "Quaternion-Based Inverse Dynamics

Model for Evaluating Aerobatic Aircraft Trajectories", Journal of Guidance,

Control, and Dynamics, Vol. 32, No. 4, 2009, pp. 1388-1391.

33. Drury, R. G., and Whidborne, J. F., "A Quaternion-Based Inverse Dynamics

Model for Real-Time Trajectory Generation", Proceedings of the AIAA

Guidance, Navigation, and Control Conference and Exhibit, Chicago, 2009.

34. Dubins, L. E., "On Curves of Minimal Length With a Constraint on Average

Curvature and With Prescribed Initial and Terminal Positions and Tangent",

American Journal of Mathematics, Vol. 79, 1957, pp. 497-516.

35. Eele, A., and Richards, A., "Path-Planning with Avoidance using Nonlinear

Branch-and-Bound Optimization", Journal of Guidance, Control, and

Dynamics, Vol. 32, No. 2, 2007, pp. 384-394.

36. Elnagar, J., and Kazemi, M. A., "Pseudospectral Chebyshev Optimal Control of

Constrained Nonlinear Dynamical Systems", Computational Optimization and

Applications, Vol. 11, 1998, pp. 195-217.

37. Elnagar, J., Kazemi, M. A., and Razzaghi, M., "The Pseudospectral Legendre

Method for Discretizing Optimal Control Problems", IEEE Transactions on

Automatic Control, Vol. 40, No. 10, 1995, pp. 1793-1796.

38. Enright, P. J., and Conway, B. A., "Discrete Approximations to Optimal

Trajectories Using Direct Transcription and Nonlinear Programming", Journal

of Guidance, Control, and Dynamics, Vol. 15, No. 4, 1992, pp. 994-1001.

39. Fahroo, F., and Ross, I. M., "Trajectory Optimization by Indirect Spectral

Collocation Methods", Proceedings of the AIAA/AAS Astrodynamics Specialist

Conference, Denver, 2000, pp. 123-129.

184

40. Fahroo, F., and Ross, I. M., "Costate Estimation by a Legendre Pseudospectral

Method", Journal of Guidance, Control, and Dynamics, Vol. 24, No. 2, 2001,

pp. 270-277.

41. Fahroo, F., and Ross, I. M., "Second Look at Approximating Differential

Inclusions", Journal of Guidance, Control, and Dynamics, Vol. 24, No. 1, 2001,

pp. 131-133.

42. Fahroo, F., and Ross, I. M., "Direct Trajectory Optimization by a Chebyshev

Pseudospectral Method", Journal of Guidance, Control, and Dynamics, Vol. 25,

No. 1, 2002, pp. 160-166.

43. Fahroo, F., and Ross, I. M., "Pseudospectral Methods for Infinite Horizon

Nonlinear Optimal Control Problems", Proceedings of the AIAA Guidance,

Navigation, and Control Conference and Exhibit, San Francisco, 2005.

44. Fahroo, F., and Ross, I. M., "Advances in Pseudospectral Methods for Optimal

Control", Proceedings of the AIAA Guidance, Navigation, and Control

Conference and Exhibit, Honolulu, 2008.

45. Farouki, R. T., and Goodman, T. N. T., "On the Optimal Stability of the

Bernstein Basis", Mathematics of Computation, Vol. 65, No. 216, 1996, pp.

1553-1566.

46. Farouki, R. T., and Rajan, V. T., "Algorithms for Polynomials in Bernstein

Form", Computer Aided Geometric Design, Vol. 5, 1988, pp. 1-26.

47. Fletcher, R., Practical Methods of Optimization, 2nd ed., Wiley, Chichester,

1987.

48. Fliess, M., Levine, J., Martin, P., and Rouchon, P., "On Differentially Flat

Nonlinear Systems", Proceedings of the IFAC Symposium NOLCOS’92,

Bordeaux, France, 1992, pp. 408-412.

49. Fliess, M., Levine, J., Martin, P., and Rouchon, P., "Flatness and Defect of

Nonlinear Systems: Introductory Theory and Examples", International Journal

of Control, Vol. 61, No. 6, 1995, pp. 1327-1361.

50. Fornberg, B., A Practical Guide to Pseudospectral Methods, Cambridge

University Press, Cambridge, 1996.

51. Frazzoli, E., Dahleh, M. A., and Feron, E., "Real-Time Motion Planning for

Agile Autonomous Vehicles", Journal of Guidance, Control, and Dynamics,

Vol. 25, No. 1, 2002, pp. 116-129.

52. Gill, P. E., Murray, W., and Saunders, M. A., "SNOPT: an SQP Algorithm for

Large-Scale Constrained Optimization ", SIAM Journal on Optimization, Vol.

12, 2002, pp. 979-1006.

185

53. Gill, P. E., Murray, W., and Saunders, M. A., "User's Guide for SNOPT Version

7: Software for Large-Scale Nonlinear Programming", Department of

Mathematics, University of California, San Diego, 2007.

54. Gill, P. E., Murray, W., and Wright, M. H., Practical Optimization, Academic

Press, London, 1981.

55. Gong, Q., Ross, I. M., Kang, W., and Fahroo, F., "Connections Between the

Covector Mapping Theorem and Convergence of Pseudospectral Methods for

Optimal Control", Computational Optimization and Applications, Vol. 41, No.

3, 2008, pp. 307-335.

56. Griffin, J. D., and Kolda, T. G., "Nonlinearly-Constrained Optimization Using

Asynchronous Parallel Generating Set Search", Report SAND2007-3257, Sandia

National Laboratories, Albuquerque, 2007.

57. Grubin, C., "Derivation of the Quaternion Scheme via the Euler Axis and

Angle", Journal of Spacecraft and Rockets, Vol. 7, No. 10, 1970, pp. 1261-1263.

58. Grubin, C., "Quaternion Singularity Revisited", Journal of Guidance, Control,

and Dynamics, Vol. 2, No. 3, 1979, pp. 255-256.

59. Gu, D.-W., Postlethwaite, I., and Kim, Y., "A Comprehensive Study on Flight

Path Selection Algorithms", Proceedings of the IEE Seminar on Target

Tracking: Algorithms and Applications, Birmingham, 2005, pp. 77-90.

60. Hargraves, C. R., and Paris, S. W., "Direct Trajectory Optimization using

Nonlinear Programming and Collocation", Journal of Guidance, Control, and

Dynamics, Vol. 10, No. 4, 1987, pp. 338-342.

61. Hess, R. A., Gao, C., and Wang, S. H., "Generalized Technique for Inverse

Simulation Applied to Aircraft Maneuvers", Journal of Guidance, Control, and

Dynamics, Vol. 14, No. 5, 1991, pp. 920-926.

62. Higham, D. J., and Higham, N. J., Matlab Guide, 2nd ed., SIAM, Philadelphia,

2005.

63. Ho, Y. C., Bryson, A. E., and Baron, S., "Differential Games and Optimal

Pursuit Evasion Strategies", IEEE Transactions on Automatic Control, Vol. 10,

1965, pp. 385-389.

64. Hooke, R., and Jeeves, T. A., "Direct Search Solution of Numerical and

Statistical Problems", Journal of the Association for Computing Machinery, Vol.

8, No. 2, 1961, pp. 212-229.

65. Hull, D. G., "Conversion of Optimal Control Problems into Parameter

Optimization Problems", Journal of Guidance, Control, and Dynamics, Vol. 20,

No. 1, 1997, pp. 57-61.

186

66. Huntington, G. T., "Advancement and Analysis of a Gauss Pseudospectral

Transcription for Optimal Control Problems", PhD Thesis, Department of

Aeronautics and Astronautics, Massachusetts Institute of Technology, 2007.

67. Ingber, A. L., "Simulated Annealing: Practice vs Theory", Mathematical and

Computer Modelling, Vol. 18, No. 11, 1993, pp. 29-57.

68. Jaddu, H., and Shimemura, E., "Computation of Optimal Control Trajectories

Using Chebyshev Polynomials, Parameterization, and Quadratic Programming",

Optimal Control Applications and Methods, Vol. 20, 1999, pp. 21-42.

69. Jaddu, H., and Shimemura, E., "Computational Method Based on State

Parameterization for Solving Constrained Nonlinear Optimal Control Problems",

International Journal of Systems Science, Vol. 30, No. 3, 1999, pp. 275-282.

70. Kamal, W. A., Gu, D.-W., and Postlethwaite, I., "MILP and its Application in

Flight Planning", Proceedings of the 16th IFAC World Congress, Prague, 2005.

71. Kaminer, I. I., Yakimenko, O. A., Dobrokhodov, V. N., Lizarraga, M. I., and

Pascoal, A. M., "Cooperative Control of Small UAVs for Naval Applications",

Proceedings of the IEEE Conference on Decision and Control, Atlantis,

Bahamas, 2004, pp. 626-631.

72. Kaminer, I. I., Yakimenko, O. A., and Pascoal, A. M., "Coordinated Control of

Multiple UAVs for Time-Critical Applications", Proceedings of the IEEE

Aerospace Conference, Big Sky, 2006.

73. Kaminer, I. I., Yakimenko, O. A., Pascoal, A. M., and Ghabcheloo, R., "Path

Generation, Path Following and Coordinated Control for Time Critical Missions

of Multiple UAVs", Proceedings of the American Control Conference,

Minneapolis, 2006, pp. 4906-4913.

74. Kato, O., and Sugiura, I., "An Interpretation of Airplane General Motion and

Control as Inverse Problem", Journal of Guidance, Control, and Dynamics, Vol.

9, No. 2, 1986, pp. 198-204.

75. Kelley, C. T., Iterative Methods for Optimization, SIAM, Philadelphia, 1999.

76. Kim, M.-J., Kim, M.-S., and Shin, S. Y., "A Compact Differential Formula for

the First Derivative of a Unit Quaternion Curve", Journal of Visualization and

Computer Animation, Vol. 7, No. 1, 1996, pp. 43-57.

77. Kim, M.-S., and Nam, K.-W., "Interpolating Solid Orientations with Circular

Blending Quaternion Curves", Computer-Aided Design, Vol. 27, No. 5, 1995,

pp. 385-398.

78. Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., "Optimization by Simulated

Annealing", Science, Vol. 220, No. 4598, 1983, pp. 671-680.

187

79. Knoebel, N. B., Osborne, S. R., Snyder, D. O., McLain, T. W., Beard, R. W.,

and Eldredge, A. M., "Preliminary Modeling, Control, and Trajectory Design for

Minature Autonomous Tailsitters", Proceedings of the AIAA Guidance,

Navigation, and Control Conference and Exhibit, Keystone, 2006.

80. Kolda, T. G., "Revisiting Asynchronous Parallel Pattern Search for Nonlinear

Optimization", SIAM Journal on Optimization, Vol. 16, No. 2, 2005, pp. 563-

586.

81. Kolda, T. G., Lewis, R. M., and Torczon, V., "Optimization by Direct Search:

New Perspectives on Some Classical and Modern Methods", SIAM Review, Vol.

45, No. 3, 2003, pp. 385-482.

82. Krozel, J., and Andrisani, D., "Navigation Path Planning for Autonomous

Aircraft: Voronoi Diagram Approach", Journal of Guidance, Control, and

Dynamics, Vol. 13, No. 6, 1990, pp. 1152-1154.

83. Kumar, R., and Seywald, H., "Should Controls be Eliminated While Solving

Optimal Control Problems via Direct Methods?", Journal of Guidance, Control,

and Dynamics, Vol. 19, No. 2, 1996, pp. 418-423.

84. Lagarias, J. C., Reeds, J. A., Wright, M. H., and Wright, P. E., "Convergence

Properties of the Nelder-Mead Simplex Algorithm in Low Dimensions", Report

96-4-07, Computing Sciences Research Center, Bell Laboratories, New Jersey,

1997.

85. Lampinen, J. A., "A Constraint Handling Approach for the Differential

Evolution Algorithm", Proceedings of the Congress on Evolutionary

Computation, Honolulu, 2002, pp. 1468-1473.

86. Lanczos, C., "Trigonometric Interpolation of Empirical and Analytical

Functions", Journal of Mathematics and Physics, Vol. 17, 1938, pp. 123-199.

87. Lane, S. H., and Stengel, R. F., "Flight Control Design Using Nonlinear Inverse

Dynamics", Journal of Guidance, Control, and Dynamics, Vol. 24, No. 4, 1988,

pp. 471-483.

88. Lewis, F. L., and Syrmos, V. L., Optimal Control, 2nd ed., Wiley, New York,

1995.

89. Lin, K.-C., "Comment on Generalized Technique for Inverse Simulation

Applied to Aircraft Maneuvers", Journal of Guidance, Control, and Dynamics,

Vol. 16, No. 6, 1993, pp. 1196-1199.

90. Lou, K. Y., and Bryson, A. E., "Inverse and Optimal Control for Precision

Aerobatic Maneuvers", Journal of Guidance, Control, and Dynamics, Vol. 19,

No. 2, 1996, pp. 483-488.

188

91. Lu, P., "Inverse Dynamics Approach to Trajectory Optimization for an

Aerospace Plane", Journal of Guidance, Control, and Dynamics, Vol. 16, No. 4,

1993, pp. 726-732.

92. Lu, P., and Khan, M. A., "Nonsmooth Trajectory Optimization: an Approach

Using Continuous Simulated Annealing", Journal of Guidance, Control, and

Dynamics, Vol. 17, No. 4, 1993, pp. 685-691.

93. Martin, P., Murray, R. M., and Rouchon, P., "Flat Systems, Equivalence and

Trajectory Generation", Report CDS 2003-008, California Institute of

Technology, Pasadena, 2003.

94. Menon, P. K. A., "Short-Range Nonlinear Feedback Strategies for Aircraft

Pursuit-Evasion", Journal of Guidance, Control, and Dynamics, Vol. 12, No. 1,

1989, pp. 27-32.

95. Miele, A., Flight Mechanics, Addison-Wesley, Massachusetts, 1962.

96. Milam, M. B., "Real-Time Optimal Trajectory Generation for Constrained

Dynamical Systems", PhD Thesis, California Institute of Technology, 2003.

97. Miller, N., "Watchkeeper in the UK - Update", Proceedings of the 25th Bristol

International UAV Systems Conference, Bristol, 2010.

98. Nelder, J. A., and Mead, R., "A Simplex Method for Function Minimization",

The Computer Journal, Vol. 8, No. 7, 1965, pp. 308-313.

99. Nocedal, J., and Wright, S. J., Numerical Optimization, 2nd ed., Springer, New

York, 2006.

100. Oberle, H. J., and Grimm, W., "BNDSCO - a Program for the Numerical

Solution of Optimal Control Problems", Report DLR IB 515-89/22, Institut für

Dynamik der FlugSysteme, DLR, Oberpfaffenhofen, 1989.

101. Orszag, S. A., "Comparison of Pseudospectral and Spectral Approximations",

Studies in Applied Mathematics, Vol. 51, No. 3, 1972, pp. 253-259.

102. Pesch, H. J., "A Practical Guide to the Solution of Real-Life Optimal Control

Problems", Control and Cybernetics, Vol. 23, 1994, pp. 7-60.

103. Phillips, W. F., Hailey, C. E., and Gebert, G. A., "Review of Attitude

Representations Used for Aircraft Kinematics", Journal of Aircraft, Vol. 38, No.

4, 2001, pp. 718-737.

104. Polak, E., Optimization - Algorithms and Consistent Approximations, Springer-

Verlag, New York, 1998.

105. Pontryagin, L. S., Boltjanskiy, V. G., Gamkrelidze, R. V., and Mishenko, E. F.,

The Mathematical Theory of Optimal Processes, Interscience, New York, 1962.

189

106. Powell, M. J. D., "Problems Related to Unconstrained Optimization", in

Numerical Methods for Unconstrained Optimization, Murray, W. (Ed.),

Academic Press, London, 1972.

107. Powell, M. J. D., "A View of Algorithms for Optimization Without

Derivatives", Mathematics Today, Vol. 43, No. 5, 2007, pp. 170-174.

108. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.,

Numerical Recipes: The Art of Scientific Computing, 3rd ed., Cambridge

University Press, New York, 2007.

109. Price, C. J., Coope, I. D., and Byatt, D., "A Convergent Variant of the Nelder-

Mead Algorithm", Journal of Optimization Theory and Applications, Vol. 113,

No. 1, 2002, pp. 5-19.

110. Price, K. V., Storn, R. M., and Lampinen, J. A., Differential Evolution: a

Practical Approach to Global Optimization, Springer-Verlag, Berlin, 2005.

111. Reynolds, R. G., "Quaternion Parameterization and a Simple Algorithm for

Global Attitude Estimation", Journal of Guidance, Control, and Dynamics, Vol.

21, No. 4, 1998, pp. 669-671.

112. Ross, I. M., and Fahroo, F., "Pseudospectral Methods for Optimal Motion

Planning of Differentially Flat Systems", IEEE Transactions on Automatic

Control, Vol. 49, No. 8, 2004, pp. 1410-1413.

113. Ross, I. M., Gong, Q., and Sekhavat, P., "Low-Thrust, High Accuracy

Trajectory Optimization", Journal of Guidance, Control, and Dynamics, Vol.

30, No. 4, 2007, pp. 921-933.

114. Rutherford, S., and Thomson, D. G., "Improved Methodology for Inverse

Simulation", The Aeronautical Journal, Vol. 100, No. 993, 1996, pp. 79-86.

115. Sentoh, E., and Bryson, A. E., "Inverse and Optimal Control for Desired

Outputs", Journal of Guidance, Control, and Dynamics, Vol. 15, No. 3, 1992,

pp. 687-691.

116. Seywald, H., "Trajectory Optimization Based on Differential Inclusions",

Journal of Guidance, Control, and Dynamics, Vol. 17, No. 3, 1994, pp. 480-

487.

117. Shanmugavel, M., Tsourdos, A., Zbikowski, R., and White, B. A., "Path

Planning of Multiple UAVs Using Dubins Sets", Proceedings of the AIAA

Guidance, Navigation, and Control Conference and Exhibit, San Francisco,

2005.

118. Shanmugavel, M., Tsourdos, A., Zbikowski, R., and White, B. A., "3D Dubins

Sets Based Coordinated Path Planning for Swarm of UAVs", Proceedings of the

AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone,

2006.

190

119. Shepperd, S. W., "Quaternion from Rotation Matrix", Journal of Guidance and

Control, Vol. 1, No. 3, 1978, pp. 223-224.

120. Shoemake, K., "Animating Rotation with Quaternion Curves", Computer

Graphics, Vol. 19, No. 3, 1985, pp. 245-254.

121. Shuster, M. D., "A Survey of Attitude Representations", Journal of the

Astronautical Sciences, Vol. 41, No. 4, 1993, pp. 439-517.

122. Stengel, R. F., Flight Dynamics, Princeton University Press, Princeton, 2004.

123. Stevens, B. L., and Lewis, F. L., Aircraft Control and Simulation, 2nd ed.,

Wiley, Hoboken, 2003.

124. Stoer, J., and Bulirsch, R., Introduction to Numerical Analysis, 3rd ed.,

Springer-Verlag, New York, 2002.

125. Subchan, S., and Żbikowski, R., Computational Optimal Control: Tools and

Practice, Wiley, Chichester, 2009.

126. Taranenko, V. T., "Experience of Employment of Ritz's, Poincaré's and

Lyapunov's Methods for Solving the Problems of Flight Dynamics", Soviet Air

Force Engineering Academy, Moscow, 1968, (in Russian).

127. Taranenko, V. T., and Momdzhi, V. G., Direct Method of Calculus of Variations

in Boundary Problems of Flight Dynamics, Mashinostroenie Press, Moscow,

1986, (in Russian).

128. Torczon, V., "On the Convergence of Pattern Search Algorithms", SIAM Journal

on Optimization, Vol. 7, No. 1, 1997, pp. 1-25.

129. Trefethen, L. N., Spectral Methods in Matlab, SIAM, Philadelphia, 2000.

130. von Stryk, O., and Bulirsch, R., "Direct and Indirect Methods for Trajectory

Optimization", Annals of Operational Research, Vol. 37, 1992, pp. 357-373.

131. White, B. A., Zbikowski, R., and Tsourdos, A., "Aim Point Guidance: an

Extension of Proportional Navigation to the Control of Terminal Guidance",

Proceedings of the American Control Conference, Denver, 2003, pp. 384-389.

132. White, B. A., Zbikowski, R., and Tsourdos, A., "Direct Intercept Guidance using

Differential Geometry Concepts", Proceedings of the AIAA Guidance,

Navigation, and Control Conference and Exhibit, San Francisco, 2005.

133. Yakimenko, O. A., "Direct Method for Rapid Prototyping of Near-Optimal

Aircraft Trajectories", Journal of Guidance, Control, and Dynamics, Vol. 23,

No. 5, 2000, pp. 865-875.

191

134. Yakimenko, O. A., and Kaminer, I. I., "Near-optimal trajectory generation for

autonomous aircraft landing", Proceedings of the IEEE International Symposium

on Computer Aided Control System Design, Honolulu, 1999, pp. 445-450.

135. Yakimenko, O. A., Xu, Y., and Basset, G., "Computing Short-Time Aircraft

Maneuvers Using Direct Methods", Proceedings of the AIAA Guidance,

Navigation, and Control Conference and Exhibit, Honolulu, 2008.

136. Yang, H. I., and Zhao, Y. J., "Trajectory Planning for Autonomous Aerospace

Vehicles amid Known Obstacles and Conflicts", Journal of Guidance, Control,

and Dynamics, Vol. 27, No. 6, 2004, pp. 997-1008.

