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ABSTRACT 

The problem addressed in this research is the in-flight generation of trajectories for 

autonomous unmanned aircraft, which requires a method of generating pseudo-optimal 

trajectories in near-real-time, on-board the aircraft, and without external intervention.  

The focus of this research is the enhancement of a particular inverse dynamics direct 

method that is a candidate solution to the problem.  This research introduces the 

following contributions to the method. 

A quaternion-based inverse dynamics model is introduced that represents all 

orientations without singularities, permits smooth interpolation of orientations, and 

generates more accurate controls than the previous Euler-angle model.   

Algorithmic modifications are introduced that: overcome singularities arising from 

parameterization and discretization; combine analytic and finite difference expressions 

to improve the accuracy of controls and constraints; remove roll ill-conditioning when 

the normal load factor is near zero, and extend the method to handle negative-g 

orientations.  It is also shown in this research that quadratic interpolation improves the 

accuracy and speed of constraint evaluation. 

The method is known to lead to a multimodal constrained nonlinear optimization 

problem.  The performance of the method with four nonlinear programming algorithms 

was investigated: a differential evolution algorithm was found to be capable of over 

99% successful convergence, to generate solutions with better optimality than the quasi-

Newton and derivative-free algorithms against which it was tested, but to be up to an 

order of magnitude slower than those algorithms.  The effects of the degree and form of 

polynomial airspeed parameterization on optimization performance were investigated, 

and results were obtained that quantify the achievable optimality as a function of the 

parameterization degree.   

Overall, it was found that the method is a potentially viable method of on-board near-

real-time trajectory generation for unmanned aircraft but for this potential to be realized 

in practice further improvements in computational speed are desirable.  Candidate 

optimization strategies are identified for future research. 
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lz = normal load factor 
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p, q, r = roll, pitch and yaw angular velocities in the wind frame 

pmax = maximum rate of change of bank angle 

R = residual 

r = position vector (x, y, z)
T 

S = wing reference area 

S
3
 = 3-sphere 

s = path length 

T = thrust in wind frame x-axis 

Tmax = maximum thrust, wind frame 

Tmin = minimum thrust, wind frame 

tf = final flight time 

tI = time required for inversion within angular velocity constraints  

  (Chapter 7) 

tRef = reference final flight time at vmax (Chapter 5) 

u = control vector 

v = airspeed 

va = manoeuvring airspeed 

v1, v2, vlim = temporary airspeed variables (Chapter 5) 

vB = lower limit on airspeed during manoeuvre (Chapter 5) 

vl = maximum airspeed that satisfies the load factor constraint (Chapter 5) 

vmax = maximum airspeed that satisfies all path constraints (Chapter 5) 

vmin = minimum airspeed that satisfies all path constraints (Chapter 5) 

vne = never-exceed airspeed 

vp = maximum airspeed that satisfies bank rate constraint (Chapter 5) 

vs = stall speed, straight and level 

vTmax = maximum airspeed that satisfies Tmax constraint (Chapter 5) 

vTmin = maximum airspeed that satisfies Tmin constraint (Chapter 5) 

w = quadrature weight 
, ,x y z
  

 = coordinate axes (unit vectors) 
x, y, z = position components, flat Earth axes unless otherwise specified 

 = angle of attack 

s = stall limit of angle of attack 

0, 2, 5 = optimality scores (Chapter 6) 

 = sideslip angle; optimization success ratio 

 = flight path angle 

 = quaternion interpolation step size; optimization tolerance 

f 0, f  min = initial and minimum objective ranges (Chapter 6) 
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f = termination objective tolerance (Chapter 6) 

f  thresh = objective threshold (Chapter 6) 

 = maximum -norm of differential evolution population (Chapter 6) 

sj = segment distance, node j -1 to node j 

tj = segment duration, node j -1 to node j 

j  segment virtual arc, node j -1 to node j 

ε


 = Frenet frame coordinate axis unit vector 

 = Oswald efficiency factor 

 = multiplication or reduction factor (Chapter 6) 

η = constraint violation; inversion permissible flag 

ηmax = maximum permitted constraint violation 

ηtol = SNOPT post-optimization constraint tolerance (Chapter 6) 

 = angle between quaternions 

 = curvature 

 = inversion cost function (Chapter 7) 

 = speed factor 

 = bank angle 

 = heading 

 = air density; radius of curvature; penalty weighting parameter 

max = maximum penalty weighting parameter 

 = count of trajectory evaluations 

max = termination limit on  

g = differential evolution generation count limit (Chapter 6) 

 = virtual arc independent variable 

 = optimization performance profile factor; roll angle 

 = vector of optimization parameters 

0 = initial step size for Hooke-Jeeves or Nelder-Mead (Chapter 6) 

b = best vector in differential evolution population (Chapter 6) 

w = worst vector in differential evolution population (Chapter 6) 

max = best vector in Nelder-Mead simplex (Chapter 6) 

min = worst vector in Nelder-Mead simplex (Chapter 6) 

 = inversion demand flag (Chapter 7) 

 = set of contiguous intervals between two or more nodes (Chapter 7) 

 = 4x4 quaternion propagation matrix 

ω  = angular velocity cross product equivalent matrix 

 = angular velocity in wind frame (p, q, r)
T 

 

Superscripts or subscripts 

a = index; manoeuvring speed 

b = index; best solution in differential evolution population 

E = inertial flat-Earth frame, north-east-down axes 

f = final boundary point; optimization function value 

i, j, k = indices 

m = node index at end of inversion 

ne = never-exceed speed 

s = stall speed; node index at start of inversion 
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seg = segment variable 

t, n = Frenet frame tangential and normal axes 

V = velocity frame 

W = wind frame 

w = worst solution in differential evolution population 

0 = initial boundary point; initialization value 

* = optimal or pseudo-optimal value 

+ = nonnegative constraint violation; positive-g 

- = negative-g 

 

Operators 

* = quaternion multiplication; as superscript quaternion conjugation 

 = derivative with respect to  
× = vector cross product 
  = 2-norm 

 

All quantities are expressed in the International System of Units.  Scalars use italic 

Latin or Greek fonts; vectors and matrices use bold Latin or Greek fonts. 

 

Chapter 2 uses chapter-specific variables, not those listed above. 
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1 INTRODUCTION 

Unmanned air vehicles (UAVs) are in operational use for intelligence, surveillance, 

target acquisition, reconnaissance, and ground attack missions supporting our Armed 

Forces.  They are also being used for civil purposes including security patrolling and 

environmental monitoring.  Operational trajectories are typically 2D or 3D paths 

generated on the ground before the flight (or mission segment) and flown as waypoint 

sequences with pre-programmed manoeuvres such as standard rate turns.  Many current 

UAVs require more than one ground-based operator per aircraft to plan the mission and 

flight path, fly the aircraft, and operate the sensors and weapons
23, 97

.  Further, the 

associated communications between operator and aircraft reduce the bandwidth 

available to the sensor and weapon systems, which is a critical resource for UAV 

operations. 

Autonomous generation of pseudo-optimal trajectories on board the aircraft would 

enable 

 The communications bandwidth required to operate the UAV to be reduced. 

 The operator workload to be reduced. 

 Trajectories closer to optimal to be generated. 

It should also enable the UAV to react autonomously to changes in its operating 

environment such as moving or unforeseen targets, obstacles, or threats, and to changes 

to the mission such as air-air refuelling or time-varying rendezvous points. 

As well as minimizing an objective such as time of flight or fuel consumed, trajectories 

must satisfy constraints arising from boundary conditions, aircraft dynamics, sensor 

dynamics and from the changing environment, such as obstacles.  To provide the inputs 

required by a flight control system, the trajectory generator should produce not only the 

desired flight path but also suitable control trajectories.  The trajectory optimization 

problem may therefore be formulated as an optimal control problem, which is then 

transcribed to a parameter optimization problem and solved by the application of a 

constrained nonlinear programming (NLP) algorithm.  Sufficient computing power to 

solve the NLP problem in real time and within typical UAV weight and power 



2 

limitations is not yet available for operational use, but the architecture shown in Figure 

1-1, adapted from Åström and Murray
3
, shows a system architecture that separates the 

trajectory generation task from the trajectory following task.  The timing demand on the 

trajectory generator is relaxed from real time to near real time and, in isolation, the 

trajectory generator itself becomes open loop, making the problem potentially 

achievable if a suitably fast and reliable method of solving the open loop optimal 

control problem is used. 

 

Figure 1-1.    Two Degrees of Freedom Architecture 

Indirect methods of the calculus of variations are not currently feasible for real-time 

implementation by on-board aircraft systems.  They solve the optimal control problem 

by formulating the first order optimality conditions, applying Pontryagin’s Maximum 

Principle and using NLP to solve the resulting two-point boundary value problem 

numerically.  Direct methods, which seek to directly minimize the objective, are not 

guaranteed to result in an optimal solution but compared to indirect methods will 

usually generate a pseudo-optimal trajectory more robustly (it is not necessary to solve 
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potentially ill-conditioned combinations of state, costate, and stationarity/Pontryagin 

conditions) and have a larger radius of convergence. 

Comparing ground-based generation of a pre-planned spacecraft manoeuvre with on-

board generation of a UAV manoeuvre highlights the relative strengths of these 

methods.  The spacecraft manoeuvre typically requires a one-off solution, with hours or 

days available to solve the problem, and the solution must be of high accuracy.  Indirect 

methods are therefore well suited to this problem (although pseudospectral and inverse 

dynamics methods have also been used).  In contrast the UAV problem requires 

repeated solution of time-varying problems in near real time, whilst wind, noise, 

uncertainty and continual updating reduce the importance of high accuracy.  Direct 

methods are well suited to this type of problem. 

A particular direct method that is computationally fast, does not require large data 

storage, and guarantees satisfaction of spatial and airspeed boundary conditions, has 

been developed from ideas introduced by Taranenko in Russia in 1968
126

.  In  

1999-2000 Yakimenko introduced an inverse dynamics variant of the method to the 

West
133, 134

.  As a direct method it is computationally cheaper than indirect methods and 

does not require good initial guesses of constrained arcs or of non-intuitive costate 

variables.  Numerical simulations
5, 17, 114, 135

 suggest that it is faster than other candidate 

direct methods such as shooting or pseudospectral methods.  However, it has a number 

of limitations and only small samples of data on its performance with NLP algorithms 

have been published.  In this document it is referred to as "the inverse dynamics 

method" and is applied to the minimization of the flight time of a conventional fixed 

wing aeroplane. 

The thesis that motivates this research is that the inverse dynamics method is a 

potentially viable method of on-board near-real-time trajectory generation for 

unmanned aircraft, and research into its four main parts can further improve its 

capabilities.  The contributions from this research therefore address the four parts of the 

method: 

 Objective, controls, and constraints evaluation algorithm. 

 Aircraft inverse dynamics model. 
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 State vector parameterization. 

 Constrained nonlinear optimization. 

The following contributions to the inverse dynamics method have been introduced in 

this research: 

 A quaternion-based inverse dynamics model that represents all orientations without 

singularities, permits smooth interpolation of orientations, and generates more 

accurate controls than the previous Euler-angle model. 

 Algorithmic modifications that overcome singularities arising from zeros of the 

spatial parametric speed, airspeed, and normal load factor. 

 Combinations of analytic and finite difference expressions that improve the 

accuracy of controls and constraints. 

 Local quadratic interpolation of constraints that improve accuracy and 

computational speed. 

 An algorithm that evaluates maximum feasible airspeed without using numerical 

optimization. 

 Algorithmic modifications, in conjunction with the quaternion-based model, that 

remove roll ill-conditioning when the normal load factor is near zero, and extend the 

method to handle negative-g orientations. 

 Quantification of the effects on optimality, robustness and computational speed of 

polynomial airspeed parameterization. 

 Comparison of the optimality, robustness and computational speed achieved with 

four nonlinear programming algorithms.  A differential evolution algorithm was 

found to be capable of over 99% successful convergence, to generate solutions with 

better optimality than the quasi-Newton and derivative-free algorithms against 

which it was tested, but to be up to an order of magnitude slower than them. 

 Identification of candidate optimization strategies for future research. 

This document describes the research and contributions as follows. 

Chapter 2 provides background and contextual material from the literature on methods 

of trajectory generation and optimization, focusing on direct methods of optimal control 

and showing how the inverse dynamics method relates to them, to underpin the thesis 
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stated above.  The chapter also provides background material on relevant NLP 

algorithms.   

Chapter 3 describes the inverse dynamics method as previously published and analyses 

it to identify limitations.  The chapter then introduces modifications to address the 

limitations and increase the accuracy and robustness of evaluation of the objective, 

controls, and constraints.  The contributions of this chapter are: the handling of the 

algorithmic singularities (Sections 3.4.2 - 3.4.6); the observations on constraint 

discontinuities and the examples of multimodality (Section 3.4.8); the combination of 

node and segment-based expressions (Section 3.4.9); the observations in Section 3.4.10; 

and the introduction in Section 3.5 of local quadratic interpolation of constraints. 

Chapter 4 introduces a new quaternion-based point-mass inverse dynamics aircraft 

model that removes the singularities inherent in Euler-angle orientation representation 

and the discontinuities in the controls associated with those singularities.  The main 

contribution of this chapter is the quaternion inverse dynamics model, specifically the 

derivation of the model in Sections 4.2, 4.3, 4.4, and 4.5, the test results of Sections 4.6 

and 4.7, and the improved control expressions derived and tested in Section 4.8.  

Section 4.9 describes a minor contribution to the method. 

Chapter 5 describes an investigation into the effects of the degree and form of airspeed 

polynomial parameterization on the robustness, optimality, and computational speed of 

optimization.  The chapter presents results for Chebyshev, Bernstein, barycentric 

Lagrange and power series polynomials.  The contributions of this chapter are: the 

introduction in Section 5.2 of an algorithm for evaluating maximum feasible airspeed 

without  requiring airspeed parameterization or optimization; and the quantification of 

the effects of the degree and form of polynomial airspeed parameterization on 

optimization performance presented in Sections 5.3.3 and 5.4. 

Chapter 6 extends the optimization research of Chapter 5 by investigating the combined 

effects of spatial and airspeed parameterizations and the choice of NLP algorithm on 

robustness, optimality, and computational speed.  It provides comparative numerical 

assessments of several NLP algorithms when applied to the minimization of final flight 

time using the inverse dynamics method and quaternion model.  The contributions of 
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this chapter are: the comparison of the performance of four different NLP algorithms 

applied to the inverse dynamics method over a range of degrees of airspeed 

parameterization as presented in Sections 6.3 and 6.4, in particular the performance of 

differential evolution compared to quasi-Newton and derivative-free NLP algorithms; 

and the identification of candidate optimization strategies in Section 6.4.5. 

Chapter 7 describes an extension of the method to include negative-g trajectories.  This 

overcomes the ill-conditioning in roll which otherwise arises when the normal load 

factor transitions through zero, thus removing unwanted step changes in bank angle at 

zero normal load factor and making the generated trajectories more suitable for aircraft 

operating as surveillance platforms.  The contributions of this chapter are described in 

Section 7.2: improving platform stability around zero normal load factor; and permitting 

negative-g trajectories to be generated.   

The following papers
29-33

 have been published, accepted, or submitted for publication as 

a result of the research described in this document. 

Journal papers: 

Drury, R. G., Tsourdos, A., and Cooke, A. K., "Negative-g Trajectory Generation Using 

Quaternion-Based Inverse Dynamics", Journal of Guidance, Control, and Dynamics, 

Vol. 34, No. 1, 2011, (to appear).. 

Drury, R. G., and Whidborne, J. F., "Quaternion-Based Inverse Dynamics Model for 

Evaluating Aerobatic Aircraft Trajectories," Journal of Guidance, Control, and 

Dynamics, Vol. 32, No. 4, 2009, pp. 1388-1391. 

Conference papers: 

Drury, R. G., Tsourdos, A., and Cooke, A. K., "Negative-g Trajectory Generation Using 

Quaternion-Based Inverse Dynamics," Proceedings of the AIAA Atmospheric Flight 

Mechanics Conference, Toronto, 2010. 

Drury, R. G., Tsourdos, A., and Cooke, A. K., "Real-Time Trajectory Generation: 

Improving the Optimality and Speed of an Inverse Dynamics Method," Proceedings of 

the IEEE Aerospace Conference, Big Sky, 2010. 
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Drury, R. G., and Whidborne, J. F., "A Quaternion-Based Inverse Dynamics Model for 

Real-Time Trajectory Generation," Proceedings of the AIAA Guidance, Navigation, 

and Control Conference and Exhibit, Chicago, 2009. 
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2 BACKGROUND: TRAJECTORY GENERATION 

METHODS 

Many approaches to trajectory generation have appeared, particularly in recent years as 

computational power has increased so that near-real-time trajectory generators are 

becoming feasible.  This chapter provides the contextual background to the inverse 

dynamics direct method to support the thesis stated in Chapter 1. 

2.1 Graph-Based Approaches 

Most aircraft rely on pre-flight preparation of flight paths, which are typically prepared 

manually (or with basic computer support) as a sequence of waypoints, times, and 

altitudes interconnected by linear tracks, pre-determined airspeeds, and standard rate or 

procedural turns. These paths are input manually or electronically to the on-board flight 

management system or autopilot which then generates the control demands to track the 

desired flight path using feedback controllers.  The dynamic constraints of the equations 

of motion and aircraft limits such as maximum normal load factor, maximum thrust and 

control limits are taken into account indirectly by restricting the paths to known feasible 

rates of climb/descent, airspeeds, and manoeuvres such as standard rate turns.   

Graph theory and combinatorics can be applied effectively to path planning problems 

because such problems do not usually directly impose dynamic constraints (which is 

one way of distinguishing between path planning and trajectory generation).  The field 

of robotics has given rise to path planning techniques such as subdivision of the overall 

path into cells, each of which is relatively simple to solve, and reconstituting the path by 

linking the cells to each other and to the boundary conditions using graph-theoretic 

(“roadmap”) methods such as Voronoi diagrams or visibility graphs
8
.  Roadmap 

methods construct a subset of paths that span the feasible space, then seek to select the 

path that is closest to optimal from the subset.  Krozel and Andrisani
82

 applied Voronoi 

diagrams to path planning in mountainous terrain.  Bortoff
15

 used a combination of 

Voronoi diagrams to generate an initial estimate followed by a potential field approach 

to model combinations of threats (hostile radar) and dynamic constraints on the 

trajectory; resulting in a nonlinear programming problem.  Frazzoli et al.
51

 described a 
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probabilistic approach to motion planning that incorporated dynamic constraints, using 

motion primitives and rapidly-exploring random trees; the approach assumes that the 

vehicle can be guided from any state to any desired final state, which itself requires the 

solution of an optimal control problem.  Yang and Zhao
136

 approached the problem of 

incorporating dynamic constraints within a graph-based method by discretizing the path 

and representing the dynamic constraints as bounds on consecutive nodes; the A* direct 

search method was then applied to the 4D search space with a linear objective function.  

Gu et al.
59

 gave an overview of five path planning approaches, including Voronoi 

diagrams, visibility lines (constructing straight line segments that do not intersect with 

obstacles), and Mixed Integer Linear Programming (MILP), and concluded that 

visibility lines was an efficient path planning method, although it did not take account 

of dynamic constraints.  Kamal et al.
70

 combined MILP with branch-and-bound 

algorithms to solve path planning problems but concluded that MILP was too 

computationally expensive for real-time application. 

Eele and Richards
35

 described a method for generating globally optimal 2D trajectories 

that avoid fixed obstacles, whilst taking nonlinear dynamics into account.  They 

modified a branch-and-bound algorithm to decide which side of an obstacle to pass, 

then solved the resulting sub-problem using interior point optimization. This method 

has elements of both graph-based and optimal control approaches. 

2.2 Geometric Guidance and Navigation 

In 1957 Dubins
34

 showed that in two dimensions the shortest distance between two 

boundary conditions which include position and orientation, subject to a path constraint 

on maximum curvature, is a combination of straight lines and circular arcs.  Anderson et 

al.
1
 described a method of generating 2D trajectories in two stages: firstly a waypoint 

sequence is produced without time constraints then a Dubins set is constructed and 

optimized, using curvature and airspeed as constraints on the turn radius and 

minimizing the deviation from the straight line between waypoints.  Shanmugavel et 

al.
117

 used Dubins sets as the basis for generating 2D trajectories for multiple 

cooperating UAVs, and extended that work into 3D
118

, optimizing the path length using 

curvature as the primary constraint. 
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Classical missile guidance is a differential-geometric approach using line of sight (LOS) 

information as a primary input to the control law.  To obtain LOS information semi-

active missile sensors rely on a separate emitter to illuminate the target, passive sensors 

detect emissions generated by the target, and active missiles illuminate the target 

themselves.  Active and passive missiles therefore have a degree of autonomy after 

launch.  Proportional navigation (PN) is widely-used to guide the missile to the target.  

Ho et al.
63

 showed that PN is an optimal control in that missile normal acceleration is 

minimized.  Lewis and Syrmos
88

 also give a derivation of PN as the solution to an 

optimal control problem.  White et al.
131

 categorized PN as True PN or Pure PN, which 

are distinguished by the direction in which missile normal acceleration is oriented: 

perpendicular to the line of sight for True PN and perpendicular to missile velocity for 

Pure PN.  However, PN design is based on a constant target velocity vector, and does 

not take account of obstacles conflicting with the flight path.  White et al.
132

 examined 

the application of differential geometry to missile guidance for manoeuvring targets, 

also using LOS information.  Ariff et al.
2
 identified three shortcomings of PN: 

dependence on line of sight information; limited effectiveness against manoeuvring 

targets (which is dependent on permitted missile lateral acceleration; Ariff et al. also 

noted that this limitation can be partially mitigated by modifications to PN); and lack of 

direct control over the missile trajectory.  They applied differential geometry, modelling 

the target trajectory by its curvature and torsion, to overcome these shortcomings 

without resorting to optimal control.   

2.3 Dynamic Programming 

In 1957 Bellman
9
 published the dynamic programming approach to optimization based 

on the “principle of optimality”.  Considering a time sequence of decisions, Bellman’s 

principle of optimality states that on an optimal path remaining decisions must be 

optimal irrespective of the preceding decisions or of the initial state.  Therefore a 

decision path can be decomposed, starting from the end point, into shorter paths and 

working backwards in time optimal decisions can be calculated sequentially until the 

initial time is reached.  Application of this principle to the continuous-time optimal 

control problem results in a system of first order nonlinear partial differential equations, 

known as the Hamilton-Jacobi-Bellman equation.  The Hamilton-Jacobi-Bellman 
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equation leads to an optimal control via a two point boundary value problem which is 

not, in general, solvable analytically. 

The Euler-Lagrange equations, Pontryagin’s Maximum Principle
105

 and Hamilton-

Jacobi-Bellman equation are inter-related and can be derived from each other
22, 88

. 

The computational and storage loads imposed by dynamic programming are subject to 

the “curse of dimensionality” (Bellman
9
) and the method is not “computationally 

competitive” (Betts
12

) and is therefore not a promising candidate for on-board near-real-

time trajectory generation. 

2.4 Optimal Control 

The optimal control approach to trajectory generation is to treat it as a calculus of 

variations problem: the optimization of a functional in a continuous, infinite 

dimensional space subject to nonlinear constraints.  However, in general the resulting 

differential-algebraic system is not solvable analytically and the problem is transformed 

by discretization and parameterization to a finite-dimensional parameter optimization 

problem, which is then solved by the application of an NLP algorithm. 

2.4.1 Statement of the Optimal Control Problem 

The continuous optimal control problem may be written (Bryson and Ho
22

, Lewis and 

Syrmos
88

, Subchan and Żbikowski
125

) as the task of finding the admissible control u 

(and, optionally, the associated state x) that minimizes the scalar objective function 

 
0

( ( ), ) ( ( ), ( ), )
ft

f f
t

J t t L t t t dt  x x u  (2.1) 

subject to 

 ( )  and ( )n mt t x u   (2.2) 

 ( ) ( , , )t tx f x u  (2.3) 

 0 0( )  specifiedt x x  (2.4) 
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 ( ( ), ) 0, : ,n q

f ft t q n   x      (2.5) 

Eq. (2.1) is written in the Bolza form with scalar final cost function ϕ and an integral 

general cost function.  Eqs. (2.3) are the state equations of the dynamical system, and 

the problem is subject to q constraints on the final state ψ (Eq. (2.5)). 

In practical problems additional algebraic path constraints c on the state and control 

variables are also likely to apply: 

 
( , , ) 0,

( , , ) 0,

i

i

c t i E

c t i I

 

 

x u

x u
 (2.6) 

with 

 {1,... }eE m  (2.7) 

 { 1,... }e cI m m   (2.8) 

In Eqs. (2.6) each ci is either an equality or inequality path constraint and may or may 

not be explicitly dependent on x or u. 

2.4.2 Indirect Methods 

The calculus of variations and Lagrange theory
14

 provide a theoretical basis for solving 

the optimal control problem.   As is well-known (e.g. Bryson and Ho
22

) the state 

equations can be adjoined to the objective function to form the Hamiltonian 

 ( , , ) ( , , ) ( , , )TH t L t t x u x u f x u  (2.9) 

Path constraints can also be adjoined to the Hamiltonian using Lagrange multipliers.  

Setting the first variation of the Hamiltonian to zero gives the first order optimality 

conditions, comprising the state equations (Eq. (2.3)), the differential costate equation 

 
H

 
x

  (2.10) 

and the algebraic stationarity condition 
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 0
H


u

 (2.11) 

When control constraints are present, as will be the case in practical problems, the 

stationarity condition must be modified by applying Pontryagin's Maximum Principle
105

 

which states that on the optimal trajectory the Hamiltonian is minimal with respect to 

the controls, which can be written 

 ( , , , ) ( , , , ),H t H t U     x u λ x u λ u  (2.12) 

Eqs. (2.3), (2.10), and (2.12), together with algebraic boundary (transversality) 

conditions at the two end points, form a differential-algebraic system that can, in 

principle, be solved as a two-point boundary value problem.  However, solving the two-

point boundary value problem analytically is difficult, and not feasible for most 

practical problems.  Numerical methods are therefore required, as described in the next 

section. Unfortunately these are not currently fast enough to produce solutions in near 

real time.  An initial estimate of the costate variables is also required.   

2.4.2.1 Numerical Methods for Indirect Methods 

Betts
12

 described shooting and collocation methods for transforming the optimality 

conditions, path constraints and boundary conditions into an NLP problem.  Shooting 

methods treat the two-point boundary value problem as a series of initial value problems 

and use well-known numerical integration schemes, such as the Runge-Kutta 4th order 

scheme or multi-step schemes such as Adams-Moulton or Adams-Bashforth
65, 124

, to 

solve the initial value problems.  Path constraints require that the sequence of 

constrained and unconstrained arcs be determined a priori, and that the trajectory be 

divided into corresponding phases.  This in turn requires the introduction of additional 

variables and junction constraints.  Betts
12

 and Bryson and Ho
22

 noted that shooting can 

produce “wild” trajectories and is very sensitive to a good initial guess, due to the 

instability of the integration which coupled with a poor initial guess can lead to 

divergence.  In addition, Betts noted that small changes early in the trajectory have a 

disproportionate effect on the trajectory than similar changes late in the trajectory, and 

that this can have a “catastrophic” effect on the shooting method. 
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In 1989 Oberle and Grimm
100

 described a software package, BNDSCO, that implements 

an indirect multiple shooting method in which the trajectory is divided into segments 

and shooting is used to solve each segment.  The dimension of the problem is larger 

than for single-segment shooting since additional variables and constraints must be 

introduced at inter-segment boundaries.  (The segments are not the same as the phases 

of constrained/unconstrained arcs: the segments are introduced to overcome the 

numerical limitations of single-segment shooting, and within each segment there may 

be multiple phases
12

.)  Subchan and Żbikowski
125

 compared BNDSCO with various 

direct collocation methods, and found it to produce more accurate solutions than the 

direct methods, but that it was sensitive to initial guesses: direct methods were used to 

generate good initial guesses for the BNDSCO method. 

In their 1992 paper, von Stryk and Bulirsch
130

 used a hybrid direct/indirect method.  A 

direct local collocation method was used to provide good initial guesses of the variables 

including the costates, constrained and unconstrained arcs.  They found that the 

accuracy of their direct method was typically 1%.  The BNDSCO package was then 

used to provide a more accurate solution.  Pesch’s 1994 paper
102

 also described the use 

of multiple shooting for offline solution of a number of aerospace problems, and 

suggested that parallel implementations of multiple shooting might be fast enough for 

on-line trajectory generation if computational power increased sufficiently. 

Collocation is a technique in which a residual function is minimized at a sequence of 

nodes, and it has been applied to indirect methods since at least the 1970s.  Fahroo and 

Ross
39

 described an indirect collocation method.  Collocation avoids the 

computationally expensive numerical integration of the shooting methods, but when 

used as part of an indirect method it still requires good initial guesses of the costates and 

the constrained and unconstrained arcs
12, 102, 130

.  It is widely used as part of a direct 

method, and to generate initial guesses for indirect multiple shooting.  Collocation is 

described in the context of pseudospectral methods below. 

2.4.2.2 Attributes of Indirect Methods 

The key attributes of indirect methods (Betts
12, 13

, Bryson and Ho
22

, and Subchan and 

Żbikowski
125

) are: 
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1. Indirect methods seek a solution to the first order optimality conditions, and 

therefore, when a solution is found it will be accurate to the tolerance of the 

chosen NLP algorithm. 

2. The radius of convergence is small. 

3. Initial estimates of the costate variables, which are not physical variables and 

therefore are not intuitive, are required. 

4. Initial estimates of the number and locations of the constrained and unconstrained 

arcs are required. 

5. The combination of the state, costate and Maximum Principle equations can be 

ill-conditioned. 

6. It is necessary to formulate the first order optimality conditions using the Euler-

Lagrange equations and boundary conditions, and to solve the resulting two point 

boundary value problem. 

7. Analytic derivatives are required in order to formulate the optimality conditions. 

8. The dimension of the problem is increased by the inclusion of the costate 

variables. 

9. Singular arcs may arise. 

The main difficulties with indirect methods are: the creation of good initial guesses, 

including the costates, constrained and unconstrained arcs; small radii of convergence; 

the potential ill-conditioning of the equations; and the computational load of evaluating 

the state, costate and transversality conditions. 

2.4.3 Direct Methods  

For ease of comparison with the indirect methods of the previous sub-section, the key 

attributes of direct methods are listed here and discussed in the next sub-sections: 

1. Direct methods seek to minimize the objective function directly, by transforming 

the functional optimization to a parameter optimization without formulating and 

solving the first order optimality conditions; therefore the solutions are not 

guaranteed to be accurate. 

2. Direct methods in general result in multimodal optimization problems, so a 

solution is not guaranteed to be globally optimal. 
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3. The radius of convergence is larger than for indirect methods. 

4. No initial guess of the costate variables or constrained arcs is required. 

5. The methods are more robust because it is not necessary to solve potentially ill-

conditioned state, costate and Maximum Principle systems. 

6. The accuracy of a direct method depends on the approximations used to represent 

the states and controls, and on the number and distribution of discretization nodes 

(and collocation nodes if collocation is used). 

7. The dimension of a direct method depends on the actual method chosen, but does 

not have to include the costate variables. 

8. Singular arcs may, depending on the actual method, cause similar problems to 

those caused to indirect methods. 

9. Estimates of the costates are not available as outputs from all direct methods. 

10. The methods are computationally simpler. 

For on-board near-real-time trajectory generation when the overall system accuracy is 

limited by atmospheric conditions, sensor precision, the accuracy of the aircraft model, 

and noise, high accuracy is less important than timely generation of a feasible solution 

that approximates an optimal solution.  Moreover, the task is to repeatedly solve a 

sequence of related time-critical problems defined by time-varying boundary conditions 

and path constraints, rather than to solve one problem to high accuracy: each solution 

has only a short period of validity.  The priority is to generate pseudo-optimal solutions 

within the required time intervals, a task for which fast direct methods are well suited. 

Various authors have used different taxonomies for direct methods, with the same 

names being used with different meanings. In 1996, Rutherford and Thomson
114

 

categorized inverse simulation direct methods as either integration or differentiation 

methods according to whether time-stepping numerical integration was used in the 

method; this categorization can be applied to other direct methods.  They also presented 

numerical results showing that differentiation methods could be an order of magnitude 

faster than integration methods.  Boyd
18

 describes a similar categorization. 

A useful categorization was described by Hull
65

 in 1997.  He categorized direct methods 

by the subset of state and control variables that are parameterized. If only control and 

some of the state variables are parameterized then time-stepping numerical integration 
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of the remaining state equations is required (e.g. direct shooting or direct multiple 

shooting), but if all state variables are parameterized, then time-stepping numerical 

integration is not required (e.g. direct transcription
60

, pseudospectral
10, 40, 60

, differential 

inclusion
83, 116

 or inverse dynamics).  The next three sections use this categorization. 

2.4.3.1 Control Parameterization: Shooting Methods 

If only controls are parameterized the state equations are numerically integrated and 

iteration is used to find the control parameters that produce a pseudo-optimal trajectory 

that satisfies the state equations, boundary conditions and path constraints.  Direct 

shooting and direct multiple shooting are analogous to the corresponding indirect 

methods, use the same numerical integration algorithms, and are also at risk of 

divergence and instability.  If gradients must be obtained by finite differencing then n 

trajectories must be numerically integrated for each gradient at each NLP iteration
12

.  

Hence although they typically result in a lower dimension NLP problem than 

pseudospectral methods, they are slower due to numerical integration of many candidate 

trajectories with small time steps.  Hull also noted that path constraints could be 

incorporated into shooting and collocation methods but in general were only satisfied at 

discrete nodes in the trajectory and not across inter-node segments.  In these methods 

constraint satisfaction may be improved by increasing the number of nodes, and in 

practice if the segment duration is sufficiently short an infeasible trajectory will violate 

control constraints. 

Shooting methods are therefore not well suited to on-board near-real-time trajectory 

generation due to their poor stability and slow computation. 

Betts
12

 gives a detailed description of direct shooting, and further references can be 

found in von Stryk and Bulirsch
130

.  A modification of the shooting methods, the 

Adjoint method, is described in Polak
104

. 

2.4.3.2 State and Control Parameterization 

Parameterization of the states and controls leads to a system of algebraic equations from 

which the parameters may be determined.  The states and controls are parameterized in 

the form 
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0

( ) ( )
N

i i

i

t t 


y  (2.13) 

and, for a set of coefficients  and trial functions , the parameterized candidate 

solution is substituted into the state equations (2.3) to give a residual error vector R at 

each node.  Then the inner product of R with test functions w provides constraints: 

 , 0,k k k K w R  (2.14) 

where K is a set of discrete nodes along the trajectory. 

Three widely-used methods for implementing Eq. (2.14) are: 

 Lanczos-.  Lanczos introduced the   method for determining the coefficients in 

1938
86

; he used Chebyshev polynomials as the test functions w with the Chebyshev 

inner product. 

 Galerkin.  In the Galerkin method the original basis functions are transformed into 

new basis functions that satisfy the boundary conditions and then the new basis 

functions are also used as the test functions w, i.e. the test functions are the same as 

the trial functions
25

. 

 Collocation. In the collocation method, the test functions are Dirac Delta functions, 

which simplifies Eq. (2.14) to setting the residuals to zero
18

: 

 0,k k K R  (2.15) 

Whichever method is chosen, the resulting parameter optimization problem is solved 

using an NLP algorithm. 

Hargraves and Paris
60

 and von Stryk and Bulirsch
130

 described direct collocation 

methods using local parameterization functions.  The NTG algorithm
96

 used B-splines 

because of their local support property, and allowed the user to specify the distribution 

of the collocation nodes. 

Spectral methods
18, 129

 are widely used for solving ordinary and partial differential 

equations, particularly in fluid dynamics, and use global parameterization functions.  
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Spectral methods that use collocation were termed pseudospectral methods by Orszag in 

1972
101

.  Fahroo and Ross
44

 described pseudospectral methods as spectral methods with 

global interpolants and collocation at Gauss, Gauss-Radau or Gauss-Lobatto points, i.e. 

the roots or extrema of orthogonal polynomials (“orthogonal collocation”) together with 

0,1, or 2 end points.  Hence orthogonal collocation and pseudospectral are often used 

synonymously; Enright and Conway
38

 explained the relationship between direct 

transcription and direct collocation as two perspectives on the same approach, and 

Hull
65

 equated direct transcription with collocation.  There are many variations on local, 

spectral and pseudospectral methods, and due to the long history and wide range of 

application of these methods the terminology varies considerably across the literature. 

The preface in Trefethen
129

 and Chapters 3 and 21 of Boyd
18

 provide further 

background on the origin and development of spectral and pseudospectral methods for 

solving partial and ordinary differential equations. 

In a pseudospectral method for optimal control on the interval   [-1,1], the states and 

controls are interpolated over two sets of interpolation nodes N and M respectively 

 ( ) ( ) ( )i i

i N

L  


x x  (2.16) 

 ( ) ( ) ( )i i

i M

L  



u u  (2.17) 

where the ~ accent denotes the parameterized approximations, and the basis functions L 

and L

 are Lagrange polynomials (Fahroo and Ross

113
 showed that in general these need 

not be Lagrange polynomials).  Then 

 ( ) ( ) ( )i i

i N

L  


x x   (2.18) 

The residual is evaluated at a set of collocation nodes K 

 ( ) ( ( ), ( ), ),k k k k k k K     R x f x u    (2.19) 
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For any given choice of nodes K, the derivatives of x at the nodes K can be expressed as 

functions only of the values of x at the interpolation nodes N using a differentiation 

matrix D 

 ( ) ( )k ki i

i N

D 


x x  (2.20) 

The differentiation matrix is a key feature of pseudospectral methods and is readily 

determined (Press et al.
108

, Berrut and Trefethen
11

, Fahroo and Ross
44

) 
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,
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
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

  






  (2.21) 

Clearly Dki is only dependent on the choice of two sets of nodes: the state interpolation 

nodes N and the collocation nodes K, so it can be computed offline once, and does not 

need to be updated during the optimization. 

The residual conditions then become 

 
1

( ) ( ( ), ( ), ) 0,
N

k ki i k k k

i

D k K   


   R x f x u   (2.22) 

The integral term in Eq. (2.1) is evaluated by numerical quadrature, so the nodes used to 

evaluate the objective are chosen to minimize the error in the quadrature formula, i.e. 

Gaussian quadrature is used at the roots or extrema of orthogonal polynomials
18, 129

.  If 

the interpolation nodes are chosen in this way, the ill-conditioning that arises with 

polynomial interpolation on uniformly-spaced grids is avoided.  Since the Gauss nodes 

do not include the end points, many methods employ Gauss-Radau or Gauss-Lobatto 

nodes to explicitly include the initial and/or final boundary points.  The interpolation 

nodes N, M and the collocation nodes K need not be identical sets, and some methods 

(e.g. the Gauss pseudospectral method
10

) use multiple overlapping node sets to enhance 

accuracy and generate costate estimates. 

Parameterizing the states and controls, using quadrature to approximate the integral in 

the objective, and requiring that the residual be zero at the collocation nodes together 
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with the path constraints and boundary conditions, transforms the optimal control 

problem into a constrained parameter optimization problem. 

In the aerospace field pseudospectral methods are widely used for trajectory generation, 

usually distinguished by the choice of the collocation points.  In 1995 Elnagar et al.
37

 

described a Legendre pseudospectral method using Lagrange polynomial 

parameterization with Legendre-Gauss-Lobatto points, and in 1998 Elnagar and 

Kazemi
36

 described a variant using Chebyshev-Gauss-Lobatto points.  Fahroo and Ross 

have published a number of papers on both Chebyshev-Gauss-Lobatto
42

 and Legendre
40

 

pseudospectral methods, including the use of Legendre-Gauss-Radau points
43, 44

.  

Another variant is the Gauss pseudospectral method described by Benson et al.
10

 in 

2006 which uses Legendre-Gauss points. 

An advantage of the Gauss and Legendre pseudospectral methods is the development of 

methods to produce estimates of the costates
10, 40, 55

, by parameterizing the costates in a 

similar form to x and u.  These estimates are useful in two ways: they enable the 

accuracy of the solution to be assessed, and if required they can be used as part of an 

initial guess for an indirect method, typically multiple shooting. 

A disadvantage of pseudospectral methods compared to inverse dynamics is the 

dimension of the resulting NLP problem.  For the Gauss pseudospectral method the 

dimension is n(K+2)+mK (Huntington
66

) which, even with a low number of nodes 

(typically 5-20), typically leads to dimensions of 𝒪(100); for example Yakimenko et al.
5
 

showed that using an Euler-angle point-mass aircraft model with only 6 states and 3 

controls, for 200 nodes the dimension was 1801.  For the inverse dynamics method the 

dimension is dependent on the degrees of the spatial and airspeed parameterizations but 

independent of the number of nodes, typically leading to a 4-15 dimension NLP 

problem. 

2.4.3.3 State Parameterization 

Differential Inclusions 

In 1994 Seywald
116

 introduced a direct method using differential inclusions, as an 

alternative to collocation methods.  The differential inclusion method does not require 
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the controls to be parameterized because a change of variables is used to replace the 

controls with approximations to the states and state rates of change, and the control 

constraints are replaced by constraining the state rates over each inter-node segment to 

the attainable set.  The states are parameterized and the required approximations of the 

states are defined as functions of the parameterized values at the nodes 

 1 1;
2

i i i i
i i

it
  

 
x x x x

x x  (2.23) 

The state equations are solved for u as functions of the states and state rates 

 ( , )u u x x  (2.24) 

Eqs. (2.23) are used to approximate u as 

 ( , )u u x x  (2.25) 

Eqs. (2.23) and (2.25) are substituted into the control constraints and state equations to 

give algebraic constraint equations which, with any state constraints, form a set of 

constraint equations for input to an NLP algorithm.  Kumar and Seywald
83

 showed that 

the dimension of an NLP problem in differential inclusion form was smaller, for the 

same number of nodes, than the equivalent collocation form, and hence argued that the 

solution would converge more quickly.  Conway and Larson
26

 showed that the state rate 

approximation Eq. (2.23) was equivalent to using implicit Euler quadrature, and argued 

that collocation with higher order quadrature rules would achieve the same accuracy as 

differential inclusions but require fewer nodes, and hence have lower NLP dimension.  

Fahroo and Ross
41

 presented an analysis of the application of differential inclusions 

with the Legendre pseudospectral method
40

, in which the differentiation matrix 

increased the accuracy of the state derivative without needing to increase the number of 

nodes; they concluded that this approach to discretizing the differential inclusions was 

computationally competitive. 

An advantage of the differential inclusion method is that it does not require u to be 

parameterized, nor any initial guess of u.  However, irrespective of the dimension of the 
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NLP problem compared to a collocation formulation, the differential inclusion method 

suffers from four disadvantages: 

 Unless the state equations are linear in u, solving them for u is difficult and likely to 

require an iterative method
61, 83

. 

 It is more difficult to obtain analytical derivatives of the constraints than for the 

collocation formulation
83

. 

 It does not provide a solution for u, which must be evaluated once the state solution 

has been found. 

 A Bolza problem has to be transformed to a Mayer problem (which can usually be 

accomplished by introducing one additional state variable)
41

. 

In passing, it is noted that the well-known point-mass model of wind-axes aircraft 

equations of motion using Euler-angles to represent orientation (e.g. Stengel
122

) is not 

linear in all the controls (Section 3.2.2).  The quaternion-based point-mass model  

introduced in Chapter 4 is linear in u and is therefore better suited to a differential 

inclusion formulation than the Euler-angle model. 

Inverse Simulation 

In the 1990s two classes of “inverse simulation” methods to solve trajectory generation 

problems appeared in the literature: integration-based and differentiation-based 

methods. In 1991 Hess et al.
61

 described an integration-based method, in which an 

output trajectory is discretized, an initial guess of u(t0) is applied to a numerical 

integration routine to generate an output at the next discretization node, the error 

between the desired output trajectory and the generated output is evaluated and 

Newton’s method is used to minimize this error over admissible u.  The process is then 

repeated for the next discretization segment.  Although the method avoided the inherent 

noisiness of numerical differentiation, the method was susceptible to oscillations
89

.  It 

also required numerical integration, which is computationally expensive.  The similarity 

to shooting methods is clear. 

In 1996 Rutherford and Thomson
114

 described and compared integration-based and 

differentiation-based inverse simulation.  The differentiation-based approach used 

numerical differentiation to derive the state rates and controls directly from the desired 
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states using the state equations, again using Newton’s method for solving the system of 

equations.  They concluded that both the integration and differentiation inverse 

simulation methods suffered from instabilities in certain cases, and that the 

differentiation method was an order of magnitude faster. 

Inverse Dynamics 

Inverse dynamics has been used for many years for flight control (Hess et al. 
61

, Lane 

and Stengel
87

) to evaluate the controls that drive a system to follow a desired state 

trajectory.  

In 1993 Lu
91

 described how inverse dynamics could be extended to trajectory 

optimization applied to a low-Earth orbit ascent trajectory; he used a point mass vehicle 

model in polar coordinates, cubic splines as parameterization functions, and 

parameterized one state and one control thus also using numerical integration.  In their 

1996 paper, Kato and Sugiura
74

 described an inverse dynamics approach to trajectory 

generation in which the control vector was calculated from the parameterized output 

trajectory by inverting the state equations.  They used a body-axes aircraft model, with 

angle of attack (), sideslip () and roll angle () as controls, and manipulated the force 

and moment equations to obtain a system of nonlinear equations in , , and , which 

was then solved using an iterative method.  They used finite differences for numerical 

differentiation.  Sentoh and Bryson
115

 adapted Kato and Sugiura’s method as an initial 

guess for an optimal control method.  Lou and Bryson
90

 used a wind-axes aircraft model 

with , bank angle () and thrust as controls; since they parameterized thrust but did not 

parameterize a sufficient subset of the states (see next but one paragraph), their method 

required numerical integration.  They used the inverse dynamics output as an initial 

guess for an optimal control problem formulated as a differential inclusion problem. 

In 1999 Jaddu and Shimemura
68, 69

 used state parameterization by Chebyshev 

polynomials to transform an optimal control problem with quadratic performance index 

 
0

( ) ( ) ( )
ft

T T T

f fJ t t dt  x Sx x Qx u Ru  (2.26) 

subject to state equations (2.3), boundary conditions (2.4) and (2.5), and linear bounds 

on u, into a quadratic NLP problem with u as a function of the coefficients of the state 
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parameterization coefficients, i.e. the problem was treated as an inverse dynamics 

trajectory generation problem. 

For a consistent set of n state equations with m controls, if m  n then the state equations 

form an over-determined system for the m controls and, provided that sufficient states 

are parameterized with suitably smooth functions to enable the remaining states to be 

expressed as a function of the parameterized states, all the controls are uniquely defined 

by the set of parameterized states and their analytic derivatives, without numerical 

integration of any of the state equations.  The parameterization functions must be 

chosen to be sufficiently continuous that all required derivatives are available 

analytically.  Therefore, it is desirable that the state equations allow a set of 

parameterized states to be chosen such that each control can be expressed as  

  ( ), , ,... b

j j P P P Pu u x x x x   (2.27) 

where 

    : | , : 1,... ,P ix i p p n   x P P  (2.28) 

so that the controls can be evaluated analytically from xp and its derivatives.  If the 

controls cannot be evaluated analytically, then an iterative approach is required.   

Fliess et al.
48, 49

 introduced the idea of differential flatness, which is a generalized set of 

conditions for evaluating the controls from outputs that are functions of the states and 

controls: 

 the state and control vectors must be directly expressible, without integrating any 

differential equations, as real analytic functions of a flat output y and a finite 

number of its derivatives: 

 
( ) ( )( , , ,... ); ( , , ,... ); ,s q s q   x g y y y y u h y y y y      (2.29) 

and 
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 any component of the flat output y must be expressible as a real analytic function of 

the state vector, control vector, and a finite number of derivatives of the control 

vector: 

 
( )( , , , ,... );r r  y w x u u u u    (2.30) 

The same authors
49

 also showed that a differentially flat system is controllable, and 

Martin
93

 showed that a conventional fixed wing aircraft in forward flight is 

differentially flat.   

The key benefit of differential flatness in this context is that it guarantees that, for a 

given y trajectory, the corresponding x and u trajectories can be evaluated without 

integrating any of the state equations.  The inverse dynamics method for solving a 

trajectory generation problem is then reduced to the NLP problem of finding an output 

trajectory y

 that satisfies the boundary conditions (Eqs. (2.4) and (2.5)) and 

 arg min ( )J




y Y
y y  (2.31) 

where Y is the set of admissible output trajectories and path constraints are expressed as 

functions of the output space 

 ( , , ,...) s y y y 0   (2.32) 

Ross and Fahroo
112

 note that the choice of outputs y instead of states x might make the 

objective, boundary conditions, and constraints more complicated, and hence might 

worsen real time trajectory generation.  In the inverse dynamics method investigated in 

this research the outputs are simply a subset of the states, which avoids this potential 

problem. 

In aircraft state-space models the state vector usually includes the aircraft position.  It is 

obvious that, when position variables are parameterized with respect to time, the time 

derivatives of position are then also defined, i.e. the velocity of the dynamical system is 

defined and cannot be optimized independently of the position variables.  Lu
91

 

addressed this problem by transforming the aircraft model so that polar angle was the 

independent variable.  In his 2000 paper that introduced the inverse dynamics method to 
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the West
133

 Yakimenko described work carried out in Russia by Taranenko and 

colleagues
126, 127

, originating in the 1960s. In this work Taranenko introduced, as part of 

a collocation method, the concept of a real nonnegative strictly monotonically 

increasing  “virtual arc” [0f]: parameterizing the states with respect to  allows the 

speed to be parameterized (also with respect to ) independently of position.  Taranenko 

also defined the scalar “speed factor” ≔ d/dt (not costates or Lagrange multipliers) 

which defines the relationship between functions of  and functions of time. 

Taranenko used low-order polynomials and trigonometric functions for 

parameterization, in collaboration with Momdzhi he also used cubic splines; other 

Russian research described by Yakimenko used trigonometric functions for helical 

manoeuvres. 

In his 2000, 2008 and 2010 papers
5, 133, 135

 Yakimenko used the virtual arc with degree 7 

global polynomials to parameterize the position states of a point-mass aircraft model 

that satisfied Eq. (2.27).  He discussed using polynomials to parameterize v, but in his 

examples chose to parameterize one control (throttle) as a bang-bang control with two 

switching points and to numerically integrate the corresponding state equation.  

Kaminer et al.
71-73

 applied the method to generate trajectories for multiple unmanned 

aircraft and described parameterizing airspeed explicitly, or implicitly via , thus 

parameterizing a sufficient subset of states and obviating the need for integration of any 

state equations to evaluate u. 

Numerical simulations
5, 17, 114, 135

 suggest that this inverse dynamics method is faster 

than other candidate direct methods such as shooting or pseudospectral methods, and 

fast enough for on-board near-real-time aircraft trajectory generation.  However, the 

literature typically examines a few examples of the performance of the method in detail, 

rather than a statistical analysis of performance across a larger sample. 

2.5 Nonlinear Programming Algorithms 

Indirect and direct methods transcribe the optimal control problem from a functional 

optimization (infinite-dimensional) problem into a parameter optimization (finite-

dimensional) problem which is solved using a nonlinear programming algorithm.  The 
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choice of NLP algorithm is critical to the robustness, optimality, and computational 

speed of the method in which it is used.  This choice is separate from the choice of 

indirect or direct method, but the two decisions are inter-related, by for example the 

availability of analytic gradients and second derivatives, by the quality of initial 

guesses, or by choice of merit function for a line search
12

.  

The parameter optimization problem may be written 

 arg min ( )J




x X
x x  (2.33) 

subject to 

 { | , }n

l u   X x x x x x   (2.34) 
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with 

 {1,... }eE m  (2.36) 

 { 1,... }eI m m   (2.37) 

In this section the nomenclature is different to that of the preceding sections; in 

particular n, x, , f, and J have different meanings: n is the dimension of the problem, x 

is a vector of n parameters (free variables), xl and xu are upper and lower bounds on x, f 

is a vector of constraint functions,  (to appear below) is a vector of Lagrange 

multipliers (not costates), and J is a scalar objective function of x. 

2.5.1 Gradient Algorithms 

For an unconstrained problem E=I=, the classical Newton’s method (e.g. Fletcher
47

) 

uses the iteration 

 
( 1) ( ) ( )k k k  x x p  (2.38) 
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where the Newton search direction p is defined by 

  
1

( ) ( ) ( )k k k


 p G g  (2.39) 

The superscript denotes the iteration count, g is the gradient of J and G is the Hessian of 

J.  For a quadratic function, Newton’s method converges in a single iteration to a 

solution that satisfies the first and second order necessary conditions for optimality 

 
2

( ) : ( )

( ) : ( ) 0

J

J



 

 
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g x x 0

G x x
 (2.40) 

The second order sufficient condition is that G(x

) be positive definite.  Clearly 

Newton’s method requires that J be at least twice continuously differentiable. 

Newton’s method is quadratically convergent close to a minimum provided that G(x
(k)

) 

is positive definite, but the method may be slow to converge, or may diverge (because 

although the Newton direction at a local minimum x

 is zero it may be uphill at x

(k)
, if 

for example the underlying quadratic model is not a good approximation to J at x
(k)

, and 

G(x
(k)

) may not be positive definite).  This restricts the radius of convergence of the 

method.  Two approaches to modifying Eqs. (2.38)-(2.39) to stabilize the method are 

line searches and trust regions (Nocedal and Wright
99

). 

In the line search approach (Powell
106

, Gill
54

) a step length  is introduced 

 
( 1) ( ) ( )k k k  x x p  (2.41) 

The step length is usually determined either by a minimum of a local cubic or quadratic 

model, and to satisfy a sufficient decrease condition.  Trust region methods handle non-

symmetric-positive-definite Hessians (Kelley
75

), and modify not just the step length but 

also the search direction to minimize a model function within an n-dimensional region 

around the current iterate. 

The requirement to evaluate the inverse of the Hessian to solve Eq. (2.39) is a major 

limitation.  First order gradient methods use the gradient but not the Hessian: the 

method of steepest descent is equivalent to replacing the Hessian in Eq. (2.39) with the 
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identity matrix.  Other methods such as conjugate gradient and Levenberg-Marquadt 

use modified search directions based on the gradient but not on the Hessian. Although 

these methods retain global convergence (convergence to a local minimum from any 

starting point, but not necessarily convergence to a global minimum), they are generally 

less efficient than quasi-Newton methods. 

Quasi-Newton methods seek to retain the efficiency of Newton’s method without the 

problems of evaluating G by replacing it in Eq. (2.39) with a symmetric-positive-

definite approximation that is updated iteratively and converges to G; the most widely-

used technique in known as the BFGS update after Broyden, Fletcher, Goldfarb, and 

Shanno who independently proposed the update in 1970 (Fletcher
47

).  Hence quasi-

Newton methods seek solutions that satisfy first order optimality conditions, utilizing 

function and gradient information and an approximation to the Hessian.  

When m constraints apply (including inequality and equality constraints), Newton or 

quasi-Newton methods can be applied by replacing J with an augmented objective, the 

Lagrangian, using m Lagrange multipliers  

 
T

aJ J  f  (2.42) 

In this case, subject to appropriate constraint qualifications (Bazaraa et al.
7
), the first 

order optimality conditions become the Karush-Kuhn-Tucker (KKT) necessary 

conditions 
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 (2.43) 

Under suitable convexity and differentiability conditions
7
 on J and f, the KKT 

conditions are also sufficient for x to be a local minimum of J.  The KKT conditions can 

be used to determine the search direction for a line search method and to verify that an 
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optimal solution has been found.  The Lagrange multipliers can be used to identify the 

active set and assess the sensitivity of the optimal solution to changes in the constraints. 

The quasi-Newton update is usually implemented as part of a sequential quadratic 

programming (SQP) method.  At each major iteration the objective is approximated by 

a quadratic function with linearized constraints and an estimate of the active set.  Since 

the objective, constraints, and active set are approximations, the solution of the sub-

problem is only an approximation to the solution of the original problem, which is used 

to generate a step length and direction, and updated active set estimate, for the next 

major iteration.  The BFGS update is applied at each major iteration (the quadratic sub-

problem assumes a constant Hessian by definition).  Maintaining estimates of the active 

set is computationally expensive, since there are 2
a
 possible sets of a inequality 

constraints.  

Sequential quadratic programming methods have the advantages of global convergence, 

rapid convergence through exploitation of the Hessian approximation, accuracy through 

satisfaction of the KKT conditions, and direct handling of equality and inequality 

constraints, but they also require expensive arithmetic operations to 

 Update the Hessian approximation. 

 Update the quadratic objective, linearized constraints and active set. 

 Solve the quadratic sub-problems. 

 Apply line search or trust region stabilization of step length and direction. 

 Evaluate the KKT conditions. 

These methods are sensitive to the smoothness and convexity of the objective and 

constraints.  If analytic derivatives are not available and must be evaluated by finite 

differences then the concomitant errors will, at best, slow convergence, and may cause 

non-convergence.  Nocedal and Wright
99

 also note that SQP methods tend to be most 

efficient when there are almost as many active constraints as dimensions. 

Quasi-Newton SQP algorithms such as SNOPT
52, 53

 have been used successfully in 

well-known implementations of the Gauss, Legendre, and Chebyshev pseudospectral 

methods described in Section 2.4.3.2. 
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2.5.2 Derivative-Free Algorithms 

Trajectory generation objectives and constraints are in general nonsmooth, analytic 

derivatives are impracticable, and the requirement that the objective and constraints be 

at least one or two times continuously differentiable may not be satisfied.  Derivative-

free unconstrained optimization methods are characterized by not requiring the gradient 

or Hessian of the objective.  They do not evaluate the KKT conditions or maintain 

active set estimates, and as such are computationally simpler, may have a larger radius 

of convergence, and can be more robust on nonsmooth or discontinuous problems, but 

the solution may not be an accurate minimum or a KKT point.  Since they do not 

exploit derivatives the search directions may be less optimal than for gradient methods, 

especially those that use exact or approximate Hessians: convergence is therefore 

slower.  Derivative-free methods have been published since at least the 1950s, but 

analysis and proofs of multi-dimensional convergence are still appearing
81, 84

.  Two of 

the most successful derivative-free methods are the Nelder-Mead simplex algorithm
98

 

and the Hooke-Jeeves pattern search
64

, introduced in 1961 and 1965 respectively. 

The Nelder-Mead simplex algorithm has been widely used in many fields, despite a lack 

of convergence proofs until the late 1990s.  The algorithm builds a simplex of points, 

initially regular, about the initial guess and evaluates the objective at each point of the 

simplex. It then uses a search direction away from the worst point, through the centroid 

of the remaining points, with a user-defined step length. If this “reflection” point is an 

improvement on the second worst point in the simplex, but not on the best simplex 

point, it is accepted. If the reflection is better than the best simplex point an expansion 

point is evaluated by stepping further in the same direction and the best of the reflection 

or expansion points is accepted.  Otherwise contraction points are evaluated by using 

reduced step lengths with the same search direction.  If a better point than the worst 

point is found, it is accepted.  Once a point has been accepted, the accepted point 

replaces the worst point in the simplex; if no point is accepted, the simplex volume is 

shrunk.  The process is then iterated until the termination criteria are satisfied.  The 

1997 paper by Lagarias et al.
84

 provides an updated description of the algorithm which 

removes some ambiguities of the original paper, and provides a convergence analysis. 
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In 2002 Price et al.
109

 described a provably-convergent variant (for C
1
 functions subject 

to certain conditions) of the Nelder-Mead algorithm, building on Lagarias et al.
84

.  Prior 

to Price’s paper there was little convergence theory for the algorithm despite its wide 

use, and in 1998 McKinnon (see Powell
107

) demonstrated that it failed on a class of 

convex smooth functions in two dimensions, due to degeneration of the simplex.  Price 

modified the algorithm to measure the volume of the simplex, evaluate the function at 

an additional point and reshape the simplex using a new basis set of orthogonal vectors 

if the simplex failed to meet volume requirements, so as to guarantee convergence.  The 

shrink step of the original algorithm was removed.  These modifications improve 

theoretical convergence, but complicate the algorithm; however it remains less complex 

than the SQP methods. 

The Hooke-Jeeves algorithm explores around a base point (initialized to the initial 

guess) along n fixed search directions starting with a user-specified step length (which 

may be different in each direction).  In the original algorithm, the exploration search 

directions are the dimensions of x.  If a reduction in the objective is found, the 

algorithm makes a pattern move from the base point of twice the vector difference of 

the base point and the current best point.  An exploration is then made around this 

pattern point; if a reduction is found compared to the base point, the base point is 

updated with the latest best point and a further pattern move is made.  When a pattern 

move fails the previous best point becomes the base point and an exploration is made 

around this new base point; if a base point exploration fails the step length is reduced, 

and a new exploration around the same base point is made.  When the improvement in 

the objective and the step length are less than user-specified values the algorithm 

terminates.  The algorithm is easily implemented and code is readily available, e.g. 

Kelley
75

, who also provided a convergence proof and implemented a caching strategy to 

reduce re-evaluation of points, or Bunday
24

.  In 1997 Torczon
128

 provided a 

convergence proof that relied only on simple decrease in the objective (as used in the 

original algorithm) rather than sufficient decrease.  These proofs assume that the 

objective has continuous first derivatives (Powell
107

), although the derivatives are not 

used by the algorithm. 
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Each Hooke-Jeeves exploration requires up to 2n function evaluations; the number of 

reflection, expansion and contraction points in each iteration of the Nelder-Mead 

algorithm is not explicitly dependent on n.  Hence the number of function evaluations 

required by the Nelder-Mead algorithm is less sensitive to n than that of the Hooke-

Jeeves algorithm. 

The Nelder-Mead and Hooke-Jeeves algorithms require adaptation to apply to 

constrained optimization.  To incorporate nonlinear constraints the constrained problem 

may be transformed to a sequence of unconstrained problems by adding a barrier or 

penalty function to the objective.   

Barrier functions seek to keep x within a feasible region by increasing the modified 

objective as a constraint boundary is approached; common barrier functions are the 

logarithm or inverse
16

.  These methods may fail when a constraint is violated because 

the barrier function makes it difficult for the algorithm to re-enter a feasible region 

(Price et al.
110

).  A second disadvantage of these methods is that the edges of the 

feasible regions, where an optimal solution might be expected to lie, are penalized.   

Penalty functions include a term for each constraint which is zero when the constraint is 

not violated and positive otherwise (Nocedal and Wright
99

), thus not penalizing the 

edges of feasible regions and creating a pressure towards feasibility. The standard 

transformation
56

 of the parameter optimization problem (Eqs. (2.33)-(2.37)) using 

penalty functions may be written 

 arg min( ( ) ( ))J P 


 

x X
x x c  (2.44) 

subject to 

 l u x x x  (2.45) 
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The penalty function is a weighted sum of the terms in c
+
; the penalty weights ki are 

chosen by trial and error so as to balance the relative importance of each constraint.  

From an engineering perspective, the penalty weights may also be considered as 

ensuring that the dimensions (mass, distance, time, etc) of each term are consistent with 

the other terms. 

Common penalty functions are the quadratic or squared two-norm 
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P k c
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   (2.47) 

or the one, two or infinity norms 
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The squared two-norm is smooth but not exact: exact penalty functions have the 

property that a finite value of  exists at which the solution x

 of Eq. (2.44) equals the 

solution of the constrained problem Eq. (2.33).  However, exact penalty functions are 

nonsmooth, hence the optimization may not converge to a KKT point.  Griffin and 

Kolda
56

 described a number of exact, smooth, and “smoothed exact” penalty functions 

in their 2007 paper, and presented comparative results using the Asynchronous Parallel 

Pattern Search (APPS) algorithm (Kolda
80

 and Kolda et al
81

).   

Griffin and Kolda also described an algorithmic framework for implementing a 

sequential derivative-free algorithm; this framework is the basis for all of the sequential 

derivative-free optimization results in this document and is described in Section 6.2.6.2.  

It is based on the convergence requirement (Nocedal and Wright
99

) that a sequence of 

unconstrained problems Eq. (2.44) is solved with    so that the sequence of 

solutions of Eq. (2.44) converges to the minimizer of the constrained problem.  The rate 

at which  is increased is not critical to the convergence proof, but does affect the rate 

of convergence. 
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2.5.3 Stochastic and Evolutionary Algorithms 

The convergence analyses of the SQP and derivative-free algorithms rely on the 

convexity and smoothness of the objective and constraints.  They are not global 

optimization algorithms: a local minimum produced by them may not be a global 

minimum and will depend on the relative locations of the initial guess and local minima.  

Methods that depend on a single initial guess are therefore not well suited to 

optimization of multimodal functions unless the initial guess can be tuned to the specific 

instance of the problem.  Von Stryk and Bulirsch
130

 reported examples, from their own 

work and others’, of discretized optimal control problems with multiple local minima, 

and noted that direct methods may only find a local minimum well away from the true 

solution of the optimality conditions of the two point boundary value problem.  

Examples are given in Sections 3.4.4, 3.4.7 and 3.4.8 below that show that the objective 

and constraints of the inverse dynamics method may in general be nonsmooth, non-

convex, and multimodal.  Hence an algorithm that accepts only downhill moves from a 

single initial guess may not converge to the true solution.  This motivates consideration 

of algorithms that either accept uphill moves or that use multiple initial guesses. 

Simulated Annealing (SA) (Kirkpatrick et al.
78

) is a widely-used stochastic algorithm 

that accepts uphill moves starting with a single initial guess.  At each iteration k, with 

current iterate xb, a user-specified move function M is used to generate a candidate 

iterate x.  The selection criterion for choosing whether to replace xb with x requires two 

user-specified functions: an acceptance probability function P (distinct from the penalty 

function) and a “temperature” function T, where 

  ( ( ), ( ), ( )), 0,1bP P J J T k P x x  (2.49) 

and T is monotonically decreasing with k, P > 0 when J(xb) > J(x), and P  0 as 

(T  0  J(xb) > J(x)); this ensures that the probability of accepting an uphill move 

decreases as T decreases.  The original P function was 
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min 1,exp bJ J
P

T
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and it has been shown (see Ingber
67

 who also describes the origins of the algorithm and 

numerous improvements to it including ensembles to exploit parallel processing) that if 

M uses a Gaussian distribution then the algorithm statistically converges, but slowly, if 

T is given by 

 0

ln

T
T

k
  (2.51) 

The user must therefore provide three functions: M, T and P.  If a random search is used 

for M, the algorithm does not exploit any structure of the objective or constraints and 

will therefore be slow but, for problems with discontinuities or in which function values 

away from the minimum convey little information about the location of the minimum, 

will be robust.  The rate of convergence and robustness is also dependent on the choice 

of annealing schedule and acceptance probability functions, which must usually be 

determined empirically.  Parameter bounds may be incorporated in M, and nonlinear 

problem constraints are typically incorporated via penalty functions. 

Lu
92

 used a continuous variant of SA, for which convergence to a global minimum had 

been proved, to solve three examples of aircraft trajectory generation problems using a 

six degrees of freedom aircraft model.  The variant of SA randomly generated a search 

direction and a step length, constrained to lie in a feasible parameter space, with a 

modified T function based on a chi-squared distribution and the closeness of the iterate 

to the optimal.  Controls were parameterized, equality constraints were included by 

penalty functions, and direct shooting was used to generate the trajectory.  Lu found that 

the algorithm was not sensitive to penalty weights and that the solutions were more 

accurate than those obtained using a Nelder-Mead algorithm (it is inferred that the 

Nelder-Mead algorithm was not applied sequentially).  He noted that Nelder-Mead, and 

two unnamed SQP algorithms, often failed to converge to any solution whereas SA 

converged in each case. 

Differential Evolution (DE)
110

 is a global optimization algorithm introduced by Price 

and Storn in 1995 that uses multiple pseudo-random initial guesses.  It is different from 

genetic algorithms in that it uses floating-point encoding and arithmetic operations, 

rather than bit encoding and logical operations, so that it is designed to handle 



39 

continuous problems. It uses an initial population of Np values of x generated by a 

pseudo-random number generator.  Any initial distribution may be used, but the most 

common approach is a uniform distribution.  

In the most widely-used unconstrained version, denoted by Price as “DE/Rand/1/Bin”, 

the objectives at each x of a generation are evaluated once; for each x (the target) three 

other distinct points (r0, r1, and r2) are randomly chosen from the current population 

and a new vector v is derived by combining (mutation) r0, r1, and r2.  A scale factor F is 

used as a weighting function in mutation.  The new vector v is then combined with the 

target x by selecting elements from x or v (crossover) depending on whether a pseudo-

random number (generated separately for each element) is less than a user-defined 

crossover probability Cr, to create a trial vector u.  "Rand" denotes that r0 is chosen 

randomly from the population, "1" denotes that a single vector difference is used in 

mutation, and "Bin" denotes that crossover selects trial vector elements pseudo-

randomly from each of x and v.  In the unconstrained version, x or u is selected 

(selection) to be added to the next generation according to which has the lowest 

objective value.  The algorithm uses random numbers to generate the initial population, 

to select r0, r1, and r2 for each x from the current generation, and as comparators with Cr 

to decide, for each element of u, whether the element is copied from x or v (the 

algorithm ensures that at least one element comes from v). 

Lampinen
85

 modified the algorithm to take account of equality and inequality nonlinear 

constraints in 2002, directly using the feasibility of candidate vectors rather than 

requiring penalty functions or associated weights.  Bounds on x are easily applied, a 

simple technique recommended by Price
110

 is to replace any element of u which 

exceeds a bound by a randomly-chosen value between the corresponding value of x and 

the exceeded bound. 

DE has a significant drawback for use in aerospace applications:  a lack of convergence 

proofs despite empirical success. 
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2.5.4 Discussion 

There are very many other nonlinear programming algorithms in the literature, 

including variants of gradient algorithms, interior-point algorithms, derivative-free 

algorithms, augmented Lagrangian algorithms and genetic and evolutionary algorithms, 

which might also be applicable to aircraft trajectory generation.  Each algorithm 

requires user-specified settings which have a significant effect on whether or not the 

algorithm converges, its rate of convergence, and the optimality of the solution: SNOPT 

has approximately 70 settings although typically only a few will need to be explicitly 

chosen by the user; the derivative-free algorithms and DE each have 10-20 settings 

dependent on implementation.   

SNOPT is reasonably claimed by Yakimenko et al.
5, 135

 to be likely to improve the 

computational speed of the inverse dynamics method over the Hooke-Jeeves method 

used in their work, but there is no specific published data to support this claim.  In his 

2000 paper
133

 Yakimenko recommended the Nelder-Mead or Hooke-Jeeves algorithms 

for convergence robustness, and a two-stage approach in which a feasible solution is 

obtained in the first stage that is then used as an initial guess for the second stage.  

SNOPT, Sequential Hooke-Jeeves (SHJ), and Sequential Nelder-Mead (SNM) are 

therefore chosen to test these claims and recommendations and to provide additional 

data with which to assess the performance of the inverse dynamics method. 

DE is naturally well suited to parallel implementation, handles parameter bounds and 

nonlinear constraints directly without penalty functions or weights, and does not rely on 

a single initial guess.  The lack of convergence proofs is a disadvantage, but Nelder-

Mead and Hooke-Jeeves were widely used without such proofs for many years, and 

most proofs rely on convexity and differentiability of the objective and constraints; 

these conditions are not, in general, true for the inverse dynamics method (Chapter 3).  

DE has therefore been included in the comparative numerical performance analysis of 

Chapter 6. 

SA is also attractive due to its ability to accept uphill moves and hence find a global 

solution, but requires a user-specified M function (which may be pseudo-random) to 

generate a search step and direction and a sufficiently slow annealing schedule: it may 
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be slow to converge and less robust than DE; analysis of its performance with the 

inverse dynamics method is left as possible future research. 

An obvious and well-known two-stage approach would be to use a global algorithm to 

generate initial guesses for a deterministic local algorithm, e.g. to use DE or SA to 

generate initial guesses for SNOPT, Hooke-Jeeves or Nelder-Mead algorithms.  Parallel 

DE is attractive in this scenario. 

The performance of SNOPT, SNM, SHJ, and DE with the inverse dynamics method is 

described in Chapter 6.  Table 2-1 summarizes the key attributes on which these 

algorithms were selected. 
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Algorithm Attributes 

SNOPT Quasi-Newton; single initial guess;  

local not global solution; 

utilizes gradient and the BFGS Hessian approximation for 

efficiency; 

satisfies KKT conditions for accuracy; 

requires good initial guess; 

sensitive to scaling and conditioning; 

explicitly handles parameter bounds and nonlinear 

constraints without penalty weights; 

computationally complex and hence less easy to implement 

with limited on-board hardware; 

can use finite differences for gradients; 

disadvantaged by non-availability of analytic derivatives; 

many user-specified settings; 

algorithm of choice for Gauss, Legendre, and Chebyshev 

pseudospectral methods. 

Hooke-Jeeves 

(sequential) 

Derivative-free; single initial guess; 

local not global solution; 

less efficient than gradient methods; 

does not explicitly satisfy KKT conditions; 

convergence proofs exist for smooth objectives; 

easy to apply parameter bounds; 

requires penalty weights to handle constraints; 

requires sequential implementation to handle constraints; 

search direction set cannot degenerate; 

more robust on nonsmooth problems than quasi-Newton; 

used by Yakimenko and others with the inverse dynamics 

method. 

Nelder-Mead 

(sequential) 

As for Hooke-Jeeves, except that the simplex can 

degenerate so Price’s modification is required; 

more complex than Hooke-Jeeves; 

difficult to apply parameter bounds; 

number of points evaluated per iteration is less dependent 

than Hooke-Jeeves on problem dimension. 

Differential Evolution Global solution; multiple initial guesses; 

easy to implement in parallel; 

few, simple, user-specified settings; 

stochastic therefore slow; 

lack of convergence proofs; 

explicitly handles parameter bounds and nonlinear 

constraints without penalty weights; 

easy to implement with limited on-board hardware. 

Table 2-1.    Attributes of Selected NLP Algorithms 



43 

3 THE INVERSE DYNAMICS METHOD 

3.1 Introduction 

This chapter focuses on the algorithm of the inverse dynamics method.  The next two 

sections are preparatory: Section 3.2 describes the inverse dynamics method as 

previously published, and Section 3.3 describes the hardware and software environment 

on which the experiments described in this document were carried out. 

Section 3.4 presents the author's analysis of the method, including numerical results 

obtained using the environment of Section 3.3, and introduces modifications to 

overcome some of the limitations identified in the analysis.  The analysis is presented in 

the following sequence although the order of the sub-sections is not critical: Section 

3.4.1, in preparation for Chapter 4, describes, in the context of the inverse dynamics 

method, the well-known limitations of the Euler-angle model; Sections 3.4.2 - 3.4.6 

describe problems and limitations arising from assumptions, parameterization, and 

discretization; Section 3.4.7 describes constraint discontinuities; Section 3.4.8 describes 

the multimodality of the constrained objective; Section 3.4.9 describes the need to use 

node and segment variables; and Section 3.4.10 describes further observations on the 

method. 

Section 3.5 describes research into the use of local quadratic and cubic interpolation for 

evaluating constraints, leading to the finding that using local quadratic interpolation 

improves computational speed and constraint accuracy compared to the previous 

reliance on node values only. 

The main contributions in this chapter are: the handling of the algorithmic singularities 

in Sections 3.4.2 - 3.4.6; the observations on constraint discontinuities and the examples 

of multimodality in Section 3.4.8; the combination of node and segment-based 

expressions in Section 3.4.9; the observations in Sections 3.4.10; and the introduction in 

Section 3.5 of local quadratic interpolation of constraints. 
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3.2 The Baseline Algorithm 

Yakimenko combined the following ideas in his seminal 2000 paper
133

 on the inverse 

dynamics method: 

 Taranenko’s virtual arc and speed factor thereby allowing independent 

parameterization of position and airspeed. 

 Degree 7 power series polynomials as global parameterization functions for x, y,  

and z. 

 A wind frame Euler-angle-based point-mass aircraft model that satisfies Eq. (2.27) 

when x, y, z, and v are parameterized, so that u may be evaluated analytically. 

These attributes allow analytic evaluation of the controls from the state equations, and 

bring three potential advantages over other direct methods: 

 When the airspeed is explicitly parameterized by a global polynomial that satisfies 

velocity and acceleration conditions at the boundary points, the NLP dimension of 

this method is 1+nr+nv : 1 for the value of  at the final boundary, nr for the free 

spatial coefficients (for degree 7 polynomials nr =6), and nv for the free airspeed 

coefficients (e.g. for a quintic polynomial nv =2), leading to a typical dimension of 

9. 

 In pseudospectral methods, the state equations are enforced at collocation nodes by 

explicit constraints on residuals, i.e. the search space includes trajectories that 

violate the state equations. The search space of the inverse dynamics method is 

automatically restricted to a region that satisfies the state equations.  (In both 

methods control constraints are applied to ensure control feasibility.)  Hence the 

ratio of feasible trajectory space to the search space should be larger for the inverse 

dynamics method than for a pseudospectral method. 

 No numerical integration or differentiation of the state equations is required, 

although quadrature is required for evaluation of any integral terms in the objective 

function. 
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The following assumptions are applied 

Assumption 1   0v   

Assumption 2   , 0W z z z  z l l l


 

Assumption 3   0    

i.e. positive airspeed, wind frame z-axis aligned with the negative direction of the non-

zero normal load factor, and zero sideslip.  Zero wind is also assumed.  Assumption 1 is 

required physically for aerodynamic lift and mathematically for excluding singularities.  

Assumption 2 sets the bank angle, and in this form limits the method to positive-g 

trajectories; Chapter 7 introduces an extension to the method to allow negative-g 

trajectories. 

Without loss of generality, t0 ≔ 0 and 0 ≔ 0.  Each trajectory is discretized at N nodes 

j  {1,...N}; each inter-node interval is denoted as a "segment".  For uniformly-spaced 

nodes 

 
1

f

N


 


 (3.1) 

3.2.1 Virtual Arc 

With  defined as 

 :
d

dt


   (3.2) 

then, as described by Kaminer et al.
73

 

 
d d

v
dt d




 
r r

 (3.3) 

and since can be varied independently of r, r is not a function of r  and position and 

airspeed can be parameterized independently with respect to . 

For an arbitrary variable  Eq. (3.2) leads directly to 
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     (3.4) 

   ,          (3.5) 

 
3 2 2 23 ( )                   (3.6) 

3.2.2 Aircraft Dynamical Model 

The state space model of the aircraft dynamics is chosen to balance fidelity against 

computational load; simple point-mass models of conventional aircraft flight dynamics 

have been well known since at least the 1960s (e.g. Miele
95

); Menon
94

 described a 

point-mass dynamical model for aircraft pursuit-evasion modelling using Cartesian 

coordinates and Euler-angle orientation representation, and Lou and Bryson
90

 

investigated point mass models for precision aerobatic manoeuvres.  These wind frame 

models are simpler than body frame models because angle of attack and sideslip do not 

appear explicitly, and the models satisfy Eq. (2.27): u can therefore be evaluated 

analytically.   

A well-known Euler-angle system with state vector (x, y, z, v,  )
T
 and control vector 

(ax, lz, )
T 

 is defined by the state equations 
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where arctan is the 4-quadrant inverse tangent.  Clearly, with outputs (x, y, z)
T
 the above 

model is differentially flat, subject to assumptions 1-3, except when 2   . 

3.2.3 Spatial and Airspeed Parameterization 

Spatial parameterization by a global degree 7 power-series polynomial in each 

dimension is guaranteed to meet position, velocity and acceleration boundary 

conditions, and allows the third derivatives of the position vector (“jerk”) at the 

boundary points as a vector of six free optimization variables
133

. 

Position in each dimension is parameterized as 
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 (3.12) 

Airspeed may be parameterized explicitly by a global polynomial of degree dv.  If 

airspeed and acceleration are defined and higher derivatives are free, then airspeed 

requires at least a cubic polynomial to satisfy the boundary conditions with zero degrees 

of freedom, and for dv > 3 there are dv  3 additional free airspeed parameters.  The NLP 

dimension is then 1 + 6 + dv  3 = dv + 4 and the vector of free optimization parameters 

is 
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 0( , , , )f f  χ r r h  (3.13) 

where r = (x, y, z)
T
 and h is the vector of dv  3 airspeed free variables. 

Alternatively airspeed may be parameterized indirectly by parameterizing thrust: since 

thrust appears linearly in the state equations ((3.7) and (3.8)), for a minimum-time 

problem Yakimenko
133

 parameterized thrust as a bang-bang control with 2 switching 

points and reduced the NLP dimension further by setting 

 
0 0 0(0,0,0)  and ( sin , cos ,0)T T

f k k   r r  (3.14) 

where k is a free variable. For a minimum-fuel problem he suggested using relative 

throttle or thrust as a free variable. 

It is also possible to parameterize  instead of v, since from Eq. (3.6) 

 v s s    (3.15) 

where 

 : ; ; :
ds

s s s
d


    r r  (3.16) 

Since airspeed is an intuitive variable, and for many light aircraft (such as many UAVs) 

an on-off thrust profile is impracticable, in this work airspeed has been parameterized 

explicitly as a global polynomial and investigation of -parameterization is left as an 

open question (Boyarko et al.
17

 described one form of -parameterization for spacecraft 

reorientation). 

Horner's algorithm
108

 was used to evaluate all power series polynomials and their 

derivatives. 

3.2.4 Boundary Conditions 

For spatial parameterization by degree 7 polynomials, boundary conditions on the states 

may be defined by conditions at  {0,f} on any set of variables from which position, 



49 

velocity, and acceleration in each dimension may be uniquely derived.  It is intuitive to 

choose position, airspeed, tangential acceleration, normal load factor, and orientation, 

i.e. {x, y, z, v, ax, lz,   }. With the values of these variables defined at the initial and 

final boundary points it is straightforward to evaluate the boundary values of the first 

and second time derivatives { , , }vr r   and, and Eqs. (3.4)-(3.6) are applied to transform 

the boundary conditions to derivatives with respect to .  The third derivatives r at 

each boundary point are defined as part of the optimization vector, and these are then 

substituted into Eq. (3.12) (and a corresponding equation for v) to determine the 

coefficients of the spatial parameterization.  The coefficients of the airspeed 

parameterization is similarly derived from the airspeed boundary conditions. 

The transformation requires 0 and f  to be defined.  Yakimenko
133

 suggested  

 0 0: , and :f fv v    (3.17) 

from which 

 0
0

0

, and
f

f

f

vv

v v
   


 (3.18) 

3.2.5 Trajectory Evaluation 

Using the Euler-angle model and given r, v and their derivatives with respect to from 

the parameterization functions, the following expressions
133

 are evaluated at each node 

j  [2,N] 

 
1j j js  r r  (3.19) 
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 x j j ja v   (3.24) 
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3.2.6 Penalty Function and Initial Guesses 

In his 2000 paper Yakimenko used a derivative-free NLP algorithm with a penalty 

function of the form 

 

1
2

2

0 ( ) max(0, )N f i i

i I

P k v v k c


 
   
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where 

 
1,...

maxi ij
j N

c c


  (3.28) 

and ki, i  I, are penalty weights that scale the penalty terms relative to each other to 

achieve the desired balance (Section 2.5.2). 

When v is parameterized so as to satisfy the boundary conditions, the first term in Eq. 

(3.27) is identically zero. 

Each of the local NLP algorithms requires an initial guess of the free variables ; 

Yakimenko
133

 suggested the following for f 
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    0 01 0.3f f f     r r  (3.29) 

3.3 Hardware and Software Environment 

The hardware used in the experiments described in this document (except for Section 

4.6) was a 64-bit Intel quad core i7 975 CPU clocked at 4.2 GHz, with 6 GB of RAM, 

running the 64-bit Windows 7 operating system.  All the code was run under the 

Matlab
®
 R2009a 64-bit environment.  Timings were made using a single processor.  

The machine was not connected to any network and no anti-virus or other monitoring 

software was installed.   

Estimates of floating point operations (flops) were made using timing tests:  addition, 

subtraction, multiplication, division, square, square root, tangent, sine, cosine, 4-

quadrant inverse tangent, inverse sine, and inverse cosine functions were repeated at 

least 10
9
 times in non-vectorized Matlab loops, and the elapsed times were recorded; the 

process was repeated 10 times.  Function tests were interleaved with empty loops, the 

times for which were subtracted from the results.  The times for each operation were 

divided by the times for the addition operation, to give estimates of the flop value, with 

one flop ≔ one addition (including an assignment to a variable).  Table 3-1 shows the 

floating point estimates for each operation produced by this combination of hardware 

and software. 

 - × / ^2 √ sin cos asin acos atan2 

Mean 1.00 1.50 5.77 0.99 38.22 29.31 29.09 37.99 39.72 30.92 

Std Dev 0.00 0.00 0.00 0.00 3.28 0.01 0.01 0.01 0.01 0.01 

Max 1.00 1.50 5.77 0.99 48.06 29.32 29.10 38.02 39.73 30.94 

Min 1.00 1.50 5.77 0.99 37.10 29.29 29.08 37.97 39.69 30.90 

Table 3-1.    Estimates of Floating Point Operations on a 64-bit Processor 
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3.4 Analysis 

Sections 3.4.1 - 3.4.6 describe problems and limitations arising from the Euler-angle 

model, assumptions, discretization, and the spatial and airspeed parameterizations. 

3.4.1 Singularity of the Euler-Angle Model 

It is well-known that any model dependent on an Euler angle representation of 

orientation will exhibit singularities.  For the conventional aerospace Euler angles these 

singularities are at 2   , hence the model cannot represent sustained vertical 

flight.  Although in theory a trajectory which transitions through the vertical can be 

evaluated using an Euler-angle model if the discretization nodes do not coincide with 

vertical flight, in practice  and  may be discontinuous over the transition, and  may 

be nonsmooth, leading to step inputs to the trajectory-following flight controller: Figure 

3-1 shows the discontinuous Euler-angle model controls for a vertical loop.  A unit 

quaternion-based model that overcomes these limitations is described in Chapter 4. 

 

Figure 3-1.    Discontinuous Euler-Angle States and Controls for a Vertical Loop 
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3.4.2 Assumption 2: Non-Zero Normal Load Factor 

Assumption 2 relies on lz ≠ 0, whilst Eq. (3.25) shows that lz = 0 will occur during "free 

fall" or steady vertical flight.  Apart from the Euler-angle singularity,  and Wz


become 

indeterminate when lz = 0.  Hence specifying that, if lz j = 0 

 1 1,j j W j W j    z z
 

 (3.30) 

is sufficient to handle lz = 0 (it is assumed that lz ≠ 0 at 0, a condition that is easily 

checked).  The ill-conditioning in bank angle that occurs when lz reverses direction is 

discussed and overcome in Chapter 7. 

3.4.3 Ill-Conditioning of Spatial Parameterization 

Eq. (3.12) can be written in matrix form 

 

00

01

0

0

2 7

2 6

5

4

7

1 0 . . . . . 0

0 1 0 . . . . 0

0 0 2 0 . . . 0 .

0 0 0 6 . . . 0 .

1 . . . . .

0 1 2 3 . . . 7 .

0 0 2 6 . . . 42 .

0 0 0 6 24 . . 210

ff f f

f f f f

f f f

f f f

xa

xa

x

x

x

x

x

a x

  

  

 

 

   
    
   
   
  
      

  
  

   
  

        











 (3.31) 

from which it is clear that the parameterization is ill-conditioned (the minimum 

condition number of the matrix is 2.910
4
 at f1.97). 

Eq. (3.31) could be rewritten to reduce the condition number of the matrix by defining 

the coefficients as coefficients of x instead of as coefficients of x 
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 (3.32) 

but this would only reduce the minimum condition number to 7.910
3
 at f2.77. 

Similarly, defining the coefficients as the coefficients of x or x does not solve the ill-

conditioning problem. 

Although Eq. (3.12) will give values of the coefficients even when the parameterization 

is ill-conditioned, small changes in the boundary conditions will cause large changes in 

the coefficients, and therefore in the trajectory, which will make it difficult for the NLP 

algorithm to find the optimal solution accurately and efficiently.  A value of f  greater 

than 2, but otherwise as small as possible, therefore appears to be a good initial guess; 

this is investigated further in Chapter 6. 

The ill-conditioning can be reduced by transforming the power series to the interval  

[0,1], or by using Chebyshev, Bernstein, or other basis functions; this is left as future 

research. 

3.4.4 A Pathological Example: Course Reversal 

A further effect of f  is shown in Figure 3-2 which plots the effect of various f  values 

on spatial parameterization for an example trajectory from the origin to a point 1000 m 

due north, in level flight with zero bank angle at a constant airspeed of 25 m/s with the 

remaining free variables set to zero.  At low f  the parametric speed (x) starts low, 

increases, then decreases symmetrically about the mid-point and is always positive; the 

path is a straight line with varying parametric speed. At a critical value of f  (74 in this 

example), x = 0 at the mid-point (and s = 0 since y = z = 0 for this trajectory).  For 

higher f , x < 0 for a portion of the path around the mid-point.  Hence for f  > 74, the 
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path is a straight line with reducing parametric speed (but constant airspeed) until the 

aircraft reverses direction, then at a later point it again reverses direction: there are two 

instantaneous 180° course reversals at constant airspeed interconnected by straight and 

level flight and at each reversal s = 0 and s is nonsmooth.  For finite N and floating-

point arithmetic each reversal will take place entirely within a segment even as N  .   

This example demonstrates that f  has a critical effect on the path, that s = 0 can occur 

at trajectory-specific values of f , and that it can cause physically infeasible trajectories 

such as an instantaneous course reversal.  Eqs. (3.22), (3.25), and (3.26) for , lz, and  

are indeterminate at the course reversal.  Since f  is a free variable and therefore 

adjusted by the NLP algorithm, the user cannot force it to a particular value.  The 

trajectory evaluation must therefore detect this infeasibility using appropriate 

constraints, which will be nonsmooth and possibly discontinuous at the critical value of 

f .  The existence and location of maxima and minima of r are obviously also 

dependent on the free variables 0  and f
 r r  so the constraints may also be nonsmooth 

with respect to these variables.  Hence the Jacobian matrix of the constraint vector will 

not, in general, be analytic over the search space. 

 

Figure 3-2.    Course Reversal Caused by f 
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The controls produced by the Euler-angle model using Eqs. (3.25) and (3.26) will be 

invalid over the course reversal because lz = 1g and  = 0 at the bracketing nodes.  A 

segment-based expression using finite differences can be used for lz (Eq. (3.45) below), 

and a finite difference expression using  may be used to approximate , but in its 

standard form the Euler-angle model does not generate accurate controls for the course 

reversal. 

3.4.5 Zero Spatial Parametric Speed 

A zero of s can also arise as a consequence of other optimization variables.  For 

example, Figure 3-3 shows how variation in x at the initial point can affect the spatial 

parameterization and cause a course reversal (assuming y= z= 0).  For this example  

f  = 100,  x0 = -1000,  xf = 1000, and 0 23x v   . 

If s = 0 then x = 0 and y = 0 and Eq. (3.22) is indeterminate.  It is therefore necessary 

to handle s= 0 algorithmically. 

 

Figure 3-3.    Zero Spatial Parametric Speed Caused by 0x  
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In general no closed form analytic solution of s = 0 exists, and iterative root finding 

(e.g. by Brent's method
21, 108

 which is used in Chapter 5) would be computationally 

expensive.  However, if x, y, and z are parameterized by functions with known finite 

maximum numbers bx, by, bz of real roots (e.g. global polynomials), then there can exist 

no more than b = min (bx, by, bz) zeros of s. Three possible actions to take at any node 

at which s = 0 are to: 1) skip the node entirely; or 2) add a small arbitrary quantity to s; 

or 3) move the node by iterating j  j +  where  is an arbitrary number such that -

1    1, until s 0.  The first approach effectively doubles the segment length 

between the preceding and succeeding nodes which reduces the confidence level of 

trajectory feasibility.  The second approach can only be implemented by adding an 

arbitrary quantity to x, y, and/or z which introduces an unnecessary error and may 

make the inverse dynamics ill-conditioned (e.g. adding machine precision (eps) to x 

only, compared to adding it to y only, causes  to change by /2).  The third approach 

adds no more than b nodes per trajectory to the computational load, and does not reduce 

confidence level or introduce an unnecessary error (except into the quadrature of the 

objective which is small due to the small displacement of only one of N nodes); this 

approach has been adopted in this work. 

If sj = 0 then from Eq. (3.20) tj = 0.  However, provided that s  0 and v  0 then for 

this case t may instead be expressed as 

 
s

t
v

 


  (3.33) 

3.4.6 Airspeed ≤ 0 

Assumption 1, v > 0, is required for aerodynamic lift, to avoid singularities in  

Eq. (3.20), and to avoid errors in Eq. (3.25) and any constraints that depend on v > 0.  

As in the case of s = 0, in general finding the roots of v = 0 would be computationally 

expensive.  However, if vj  0 at any node j, setting vj =  where  is a small arbitrary 

value such that 0 <  << vs ensures that vj > 0 and vj + vj-1 > 0 and that the stall speed 

constraint will be violated. 
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If airspeed is parameterized using Bernstein basis functions then placing a lower bound 

of zero plus a small tolerance on each coefficient ensures that v > 0, which might help 

convergence since it excludes any parameterization with vj ≤ 0 from the search space. 

3.4.7 Constraints 

Section 3.4.4 showed that constraints may be nonsmooth; in this section it is shown that 

they may be discontinuous. 

For a wind-frame point-mass aircraft model, a basis set of inequality path constraints is 

normal load factor, thrust (maximum and minimum), rate of change of bank angle (in 

each direction of rotation), never-exceed speed, and stall speed: 

{lz, Tmax, Tmin, pmax, pmin, vne, vs}.  Curvature is not, in itself, a valid constraint because 

the load on the aircraft is a function of curvature and gravity, and the gravity component 

is dependent on orientation. 

Below manoeuvring speed the positive-g load factor is limited by the angle of attack 

stall limit s, and at higher airspeeds by a structural limit (lstruct).  Figure 3-4 shows an 

example of the positive-g part of an "n-V" diagram. 

 

Figure 3-4.    Example n-V Diagram 
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The discontinuity at v = vs will cause a concomitant discontinuity in the load factor 

constraint for some values of lz and v. 

The positive-g load factor limit may be written 
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 (3.34) 

In this work it is assumed that s, mass (M), lift curve slope (CL), and air density () 

are constant, and that h(v) may be expressed as 

  
2

( )
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L s

v
h v C b

M



   (3.35) 

(Alternative expressions for h(v) can be used.  In this work the constant b was derived 

from the requirement that h(v) must pass through the three points {0, 0}, {vs, g}, and 

{va, lstruct}.) 

Given lz (e.g. from Eq. (3.25)), in this work thrust and drag have been evaluated using 

(in conventional notation) 
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2 DD v SC  (3.38) 

  sinT v g M D     (3.39) 

Thrust T in Eqs. (3.8), (3.39), and (3.50) is the thrust component in the wind frame x-

axis.  Thrust limits are in general dependent on airspeed, air density, and a throttle 

response delay function, and drag is dependent on .  Explicit incorporation of  into 

the aircraft model would lead to a more complicated model which may not satisfy 
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Eq. (2.27) hence iteration would be required to invert the state equations (e.g. Kato and 

Sugiura
74

).  Instead in this work it is assumed that Tmax, and Tmin take account of the 

effects of , and simple scalar bounds Tmax and Tmin have been used.  Similarly vs, vne, 

and pmax have been specified as simple bounds.  For example the effect on maximum 

roll rate of the torque reaction due to the rotation of the propeller for a typical single-

engine, propeller-driven aircraft has been excluded, and pmin ≔ -pmax.  Higher fidelity 

expressions could be substituted for Eqs. (3.36)-(3.39), for the constraint bounds, or a 

higher fidelity aircraft model could be used, without invalidating the inverse dynamics 

method provided that Eq. (2.27) remains satisfied and additional iteration is not 

required. 

The constraint vector may be expressed as 
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An alternative, more efficient, formulation is introduced in Section 3.5. 

3.4.8 Convexity and Multimodality 

This section provides examples of the multimodality of the method, which is a critical 

factor in numerical optimization (the performance of four different optimization 

algorithms is described in Chapter 6). 

Von Stryk and Bulirsch
130

 reported that they and others had found that direct methods 

resulted in multimodal problems.  Boyd
18

 noted that algorithms for solving algebraic 

equations arising as a result of discretization of differential equations have multiple 
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solutions.  Sections 3.4.4 and 3.4.7 above showed that constraints will in general be 

nonsmooth and possibly discontinuous functions of ; therefore discontinuities may 

arise in the gradients of the constraints.  Figures 3-5, 3-6, and 3-7 plot final flight time, 

the lz constraint violation (c1), and the Tmax constraint violation (c2), respectively against 

the optimization parameter f , for one example trajectory.  They show that, even though 

in this case the objective is smooth and convex, the constraints are nonsmooth, non-

convex and multimodal. 

 

 

Figure 3-5.    Final Flight Time as a Function of f 
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Figure 3-7.    Maximum Thrust Constraint Violation as a Function of f 
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Figure 3-6.    Normal Load Factor Constraint Violation as a Function of f 
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The convergence analyses for the SNOPT, Nelder-Mead and Hooke-Jeeves algorithms 

rely on smooth objectives and constraints for convergence to a local minimum: in 

consequence there is no guarantee that these algorithms will converge, or that if they do 

converge they will do so to a KKT point.  Further, when the constraints are multi-

modal, even if the algorithm converges to a local minimum, it may not be a global 

minimum or even a feasible solution.  For convergence to a feasible global minimum 

the initial guess must lie in a basin of attraction around the desired minimum.  This 

criterion is satisfied if a convex connected region exists which includes both the initial 

guess and the desired minimum.  If such a region exists except that it contains a finite 

number of stationary points other than the desired minimum, then convergence of a 

gradient algorithm is dependent on the algorithm implementation, and a derivative-free 

algorithm may step over the stationary points and converge to the desired minimum but 

convergence is not guaranteed. 

These observations reinforce the case for using a global optimization routine such as DE 

or SA, at least to find a basin of attraction to a feasible global minimum, if one exists. 

3.4.9 Segment and Node Variables 

This section examines the combination of instantaneous analytic variables together with 

finite differences approximations.  It is shown that both types of expression are required 

in the method. 

3.4.9.1 Evaluation of t and  

Eqs. (3.20) and (3.21) define t and  as segment variables, i.e. they are defined as 

functions of values at both ends of a segment.  It is also possible to define t and  as 

functions of instantaneous values at a single node 

  and
j

j j

j j

v
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
 (3.41) 

Since t is the time interval between two consecutive nodes it is clearly a segment 

variable.  However,  can be considered as a node variable used to transform between 
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instantaneous values of derivatives with respect to t and instantaneous derivatives with 

respect to , and as a segment variable defining the relationship between t and  .   

Three possible pairs of expressions for t and  are Eq. (3.41) above, the original 

expressions 
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and, defining t as a segment variable and  as a node variable  
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A comparison of the effects of these variants on the accuracy of control evaluation was 

made for N  {33, 65, 129, 257, 513, 1025, 2049}, using the quaternion-based model of 

Chapter 4 with controls derived using Eq. (4.47) for over 3000 trajectories.   

The condition sj = 0  (Section 3.4.5) did not occur during any of these experiments and 

consequently did not affect the results.  Eq. (3.43) achieved the lowest tracking errors 

for approximately 45% of tests with tracking errors (as a percentage of path length) of 

0.4 % reducing to 10
-4

 % as N was increased.  The original version Eq. (3.42) produced 

results within 3 significant digits of those of Eq. (3.43).  Tracking errors produced by 

Eq. (3.41) were, at best, 9 times worse than the other expressions, and for high N this 

factor increased to over 500.  Since Eq. (3.43) is no more computationally expensive 

than Eq. (3.42) and it is marginally more accurate, it is the preferred version.   

Differentiating the expression for  in Eq. (3.43) leads to 

 
v s

s
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 (3.44) 

Replacing  with a simple finite difference introduced a relative error of less than 10
-6

, 

but because Eq. (3.44) is only marginally computationally slower, Eq. (3.44) was 

retained. 
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3.4.9.2 Evaluation of Path Constraints 

As noted by Hull
65

, path constraints can be incorporated into shooting and collocation 

methods but in general are only satisfied at discrete points in the trajectory and not 

across inter-node segments.  In those methods constraint satisfaction may be improved 

by increasing the number of nodes, and in practice if the segment duration is sufficiently 

short an infeasible trajectory will violate control constraints.  However, the course 

reversal case of Section 3.4.4 shows that this is not necessarily true for the inverse 

dynamics method.  The load factors given by Eq. (3.25) at j - 1 and at j will be 1g, but it 

is obvious that an aircraft would have had to generate a higher load factor during the 

segment to carry out the turn: the segment load factor would have to exceed the values 

at the nodes.  Therefore evaluating path constraints at a node using only instantaneous 

values at that node is insufficient to ensure feasibility. 

The inverse dynamics method admits the evaluation of a normal load factor constraint 

across segments: linear interpolation between the nodes gives the following expression 

for lz across each segment 
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where 

 W
s






r
x


 (3.46) 

 
 1arccos W j W jseg

jt







x x
 

 (3.47) 

 

 

1

1

, if 0

0,0,0, otherwise

W j W j seg

seg
W j W jn

T







  




x x

x xε

 

 
 (3.48) 

  2 2

2
, ,z

g
xz yz x y

s
   g     


 (3.49) 



66 

Eq. (3.46) determines the wind frame x-axis.  Eq. (3.47) determines the angular velocity 

across the segment, Eq. (3.48) determines the direction of the normal acceleration 

vector, and gz is the gravity vector component parallel to the wind frame z-axis. 

Figure 3-8 shows an example of the difference between computed values of lz and 
seg

zl  

for the level course reversal trajectory described above. 

The main source of inaccuracy in Eq. (3.45) is Eq. (3.48): the direction of the finite 

difference should be perpendicular to Wx


, but as the angular difference increases the 

difference vector direction rotates until it is parallel to Wx


 when the angle equals 180.  

Empirically, it has not been found necessary to use a more accurate expression than 

Eq. (3.45). 

For thrust, instead of using Eq. (3.39) a segment-based value of T may be used 
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 (3.50) 

 

Figure 3-8.    Comparison of Node-Based and Segment-Based Load Factors 
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3.4.9.3 Evaluation of Euler-Angle Orientation 

Eq. (3.23) uses the segment variable sj whereas all other variables used to evaluate the 

wind frame orientation (Eqs. (3.22) and (3.26)) are node-based.  Since the method relies 

on aligning the aircraft wind axes with the flight path at each node, accuracy is 

improved if Eq. (3.23) is replaced by 

 arcsin
j

j

j

z

s


 
    

 (3.51) 

This change also removes the singularity at sj = 0; the singularity at s= 0 is addressed 

in Section 3.4.5 above. 

3.4.9.4 Evaluation of Tangential Acceleration 

It is more accurate to evaluate tangential acceleration (acceleration in the direction of 

the wind frame x-axis) as a segment variable 
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3.4.10 Further Observations  

This section describes some additional observations on: 

 The connection between boundary values of the third derivative of position and the 

rate of change of bank angle. 

 Boundary values of the speed factor . 

 The application of numerical quadrature to evaluate the trajectory flight time. 

 Initial guesses for f . 

 Penalty functions and weights. 

 Angle of attack evaluation. 

 The interpolation of generated controls. 
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3.4.10.1 Bank Rate and the Third Derivative 

A consequence of using r as part of the optimization vector is that p at the boundary 

points is not under user control (since p depends on r), i.e. the bank rate at the 

boundaries is varied by the NLP algorithm.  If it is necessary to satisfy specific 

boundary conditions on p then either the degree of the spatial polynomials must be 

increased or a reduced NLP dimension must be accepted (which may increase the rate 

of convergence but reduce optimality).  For example, Yakimenko's choice of Eq. (3.14) 

reduces the NLP dimension by three and ensures that pf = 0. 

3.4.10.2 Speed Factors 0  and f 

For the minimum-time problem, the objective function is  
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 (3.53) 

Hence smaller values of  lead to smaller values of f  for a given final time, which has 

been shown in Sections 3.4.3 and 3.4.4 to be desirable, and rather than using Eq. (3.17) 

the following has been used to set  at the boundary points 

 
0

0

: 1, and : 1

: 0, and : 0

f

f

 

 

 

  
 (3.54) 

Tests using SNOPT, DE and Hooke-Jeeves on a number of pseudo-random trajectories 

(see Section 6.2.3 for the test trajectory definitions) confirmed that Eq. (3.54) required 

fewer trajectory evaluations and produced lower values of tf  than Eq. (3.17); Eq. (3.54) 

has therefore been used in this work. 

3.4.10.3 Objective Quadrature 

The objective function in this work was to minimize the trajectory flight time 
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Computationally the quadrature requires only element-wise vector division, matrix-

vector multiplication and summation once per trajectory.  The factor a transforms the 

sum to the interval [0,f]. The quadrature weights w and factor a depend only on N and 

the node distribution and can therefore be evaluated outside the NLP algorithm.  For 

most experiments Chebyshev-Gauss-Lobatto nodes were used with Clenshaw-Curtis 

quadrature
129

; for uniform node spacing the extended trapezoidal or Simpson's rules 

were used
108

.   

It is possible to use 2

ft  as the objective to try to avoid the NLP algorithm converging 

towards tf = -.  However, if this approach is used with the virtual arc then unless 

additional conditions are applied the method may generate a solution with f < 0, which 

is physically meaningless. 

3.4.10.4 Initial Guess 

Eq. (3.29) leads to large values of f, for example for a 7 km Euclidean distance from r0 

to rf it gives f  = 710
3
 yet tf = 280 s for a straight path at 25 m/s.  Chapter 6 Figure 6-1 

shows values of f  for 1000 optimized trajectories based on pseudo-random boundary 

conditions: from this data an initial guess of f  = 10 can be seen to be closer to the 

optimal value than that generated by Eq. (3.29).  In Section 2.5.4 the use of a global 

optimization algorithm to produce an initial guess for a quasi-Newton algorithm was 

suggested; this approach is discussed in Section 6.4.5. 

3.4.10.5 Penalty Function and Penalty Weights 

For experiments using the Nelder-Mead and Hooke-Jeeves NLP algorithms the 

constraint vector must be transformed to a penalty function and added to the objective.  

The squared two-norm 
2

2l  was used as a penalty function for most experiments because 

of its smoothness.  A number of ad-hoc trials of the exact infinity-norm penalty function 

were carried out, with no consistent pattern distinguishing its performance from that of 

the squared two-norm.  However, the data sample was very small.  For the 
2

2l  penalty 

function 
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  fJ t P   c  (3.56) 

 max(0, ), {1,...7}i ic c i    (3.57) 

where P is given by Eq. (2.47) and ci by Eq.(3.40). 

Unity penalty weights have been used in this work, because the individual constraints 

were of similar magnitude (Tmax  30, vne  40, lstruct  40).  Although pmax  7, this 

constraint was found to be rarely exceeded in isolation. 

3.4.10.6 Evaluation of Angle of Attack 

Angle of attack  may be evaluated from the segment load factor using a variety of 

expressions according to the desired fidelity.  In this work the following expression was 

used 
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3.4.10.7 Interpolation of Controls for Flight Controllers 

Clearly the output values of the controls and states at each node may be interpolated to 

provide inputs to a flight control system.  However,  varies with time so the time-based 

node distribution is not the same as the -based node distribution, and high-degree 

global interpolation of u (or r or x) to create input functions for a flight controller may 

introduce the Runge phenomenon.  This is less likely, but cannot be guaranteed not to 

occur, if  is based on a Chebyshev-Gauss or Legendre-Gauss distribution (with or 

without end points). 
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3.5 Constraint Accuracy 

This section describes the use of local low-degree interpolation to improve the accuracy 

with which constraints are evaluated.  It is shown that using local quadratic 

interpolation improves the trade-off between accuracy and computational speed. 

The optimality and feasibility of generated trajectories depend on the accuracy with 

which the extrema of the constraint violations are evaluated.  In the literature each 

constraint is evaluated at each discretization node and the violation for that constraint 

over the trajectory is defined as the maximum positive value at any node (Eq. (3.40)). 

This approach does not allow for a limiting value occurring between nodes: 

interpolation is needed to capture this possibility. It is equivalent to using piecewise 

linear interpolation and it is well-known that quadratic or cubic interpolation reduces 

interpolation error compared to piecewise linear interpolation.  Local quadratic or cubic 

interpolation requires only the roots of linear or quadratic equations, at small 

computational cost, and these low degree interpolants are not dependent on any 

particular node distribution.  Hence the accuracy of constraint evaluation can be 

improved by using local quadratic or local cubic interpolation of constraints instead of 

relying on the worst-case node value.    

Figure 3-9 shows an example of four node values of an arbitrary variable, with 

quadratic interpolation over the last three of those values and cubic interpolation over 

all four values: the maxima can be seen to be different in each case.  There is no 

information obtainable from that graph to determine the most accurate maximum.  This 

section quantifies the effect of these three approaches to determine which of them has 

the shortest computation time for a given accuracy. 
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A reference is required to quantify the accuracy of each approach. This reference was 

obtained by interpolating by an degree N-1 Chebyshev interpolant f (), and evaluating 

the global maximum of that function over [0,f].  It is not guaranteed a priori that f () 

has a stationary point in [0,f], so it was necessary to find the real roots of f () on [0,f] 

and evaluate f () at those roots and at the boundary points to establish the maximum.  

Boyd
20

 described the stable and robust Chebyshev-Frobenius matrix method for 

rootfinding and gave assessments of the computational load of that method compared to 

other methods
19

. 

3.5.1 Method 

The aircraft data and test database of feasible spatial paths described in 5.3.1 were used 

to provide test trajectories, and the maximum and minimum feasible airspeeds (vmax and 

vmin) were evaluated as described in Section 5.2. 

Using lz as the constrained variable, the method used to evaluate constraint accuracy as 

N varied was, for each trajectory in the database and each N: 

 

Figure 3-9.    Example of Local Interpolations 
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1. Parameterize airspeed by a degree 10 Bernstein polynomial such that airspeed 

and acceleration boundary conditions were met; set the other seven airspeed 

coefficients to alternate between 0.85vmin and 1.15vmax  through the trajectory to 

ensure significant variation of lz. 

2. Discretize the trajectory in N Chebyshev-Gauss-Lobatto nodes. 

3. Construct the degree N - 1 Chebyshev interpolant f () to lz using the chebfun 

operators developed by Battles and Trefethen
6
 to calculate the coefficients of f () 

and the algorithm in Boyd
20

 to calculate the coefficients of f (). 

4. Apply the Chebyshev-Frobenius matrix method to find the roots of f  () and 

hence the maximum of f (). 

5. Evaluate lz at each node and record the maximum node value. 

6. Evaluate, using the local quadratic and local cubic interpolations described in 

Sections 3.5.1.1 and 3.5.1.2 below, the corresponding maxima. 

The upper bound on N was set to 1025 by doubling N until the difference between the 

maxima of f () over all trajectories changed by less than 0.1 m/s
2
 for successive values 

of N.  For each trajectory the maximum of f () for N = 1025 was used as the reference.  

For each N over all trajectories the errors between the reference and each of the 

maximum values obtained in steps 4, 5, and 6 above were recorded. 

3.5.1.1 Local Quadratic Interpolation 

Local quadratic interpolation was applied at j = {3,…N} over the interval [j-2,j] (i.e. 

nodes {j - 2, j - 1, j}) if and only if 

 1 2 1j j j jc c c c     (3.59) 

where c is the variable of which the maximum is required and the constraint index i is 

omitted for clarity. 

The purpose of condition (3.59) is to accelerate the trajectory evaluation while ensuring 

that every inter-node segment that may contain the maximum is interpolated.  Eq. (3.59) 

is a sufficient, but not a necessary, condition for a maximum to exist in the interval  

[j-2,j]; if it is true for one interval it cannot be true for the adjacent intervals.  Hence it 
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imposes an upper bound of (N - 2)/3 on the number of quadratic interpolations that will 

be performed.  It is possible that a maximum exists on an interval for which cj-1 exceeds 

one end node value but not the other.  Consider cj-1 > cj-2 but cj-1 < cj and assume that a 

maximum exists in [j-1,j].  Eq. (3.59) evaluates to false over [j-2,j] but if the 

maximum in [j-1,j] is a maximum of the whole function then cj+1 < cj and Eq. (3.59) 

will be true for [j-1,j+1], causing interpolation of that interval. 

Only 3 divisions, 16 multiplications, 18 additions/subtractions with 2 conditions and 1 

max function over 2 variables were required to evaluate the 3 quadratic coefficients and 

find the maximum over the interval. 

3.5.1.2 Local Cubic Interpolation 

Local cubic interpolation was applied at j = {4,…N} over {j - 3, j - 2, j - 1, j}.  Newton 

interpolation was used, evaluating the coefficients of the quadratic derivative from the 

finite divided differences, finding the root(s) of the quadratic and evaluating the cubic at 

the in-range root(s).  This required 1 square root, 8 divisions, 25 multiplications and 48 

additions/subtractions, with 5 conditions and 1 max function over 6 variables.  

Unfortunately, no simple condition corresponding to Eq. (3.59) was found for the cubic 

case. 

3.5.2 Results and Analysis 

Figures 3-10 and 3-11 show the maximum interpolation errors for node values and for 

high-degree interpolation over the test database using a constraint tolerance of 0.5 m⁄s
2
 

(since load factor limits are typically expressed with a tolerance of ±0.05g, equivalent to 

~1.3% tolerance on a typical limit of 3.8g).  Chebyshev-Gauss-Lobatto node 

distributions were used.  Figure 3-11 shows that reliance on node values would require 

N  > ~390 while degree N - 1 Chebyshev interpolation would require only N > ~133, an 

improvement factor of ~3.  It can be seen that this factor is reasonably insensitive to the 

chosen tolerance: the range of the factor is ~[2,4.5] over the domain [0.1,1]. 
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Figure 3-11.  Expansion of Figure 3-10 
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Figure 3-10.  Error in Maxima: Node Values and Chebyshev Interpolation 
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The computational cost of the rootfinding for the Chebyshev interpolation is too high 

for practical use in the inverse dynamics method: between 10n
3
 and 12n

3
  

(n = degree = N - 1) floating-point operations (flops)
19

, which for N = 133 results in at 

least 2.3×10
7
 flops.  Although the cost of a 13-N/tredecic rootfinder

19
 is only 

22000n+42n
2
 this would still require 3.6×10

6
 flops.  Evaluation of a single node, 

without the degree N - 1 Chebyshev interpolation and rootfinding, was found to require 

approximately 600-800 flops, hence incorporating the Chebyshev interpolation and 

rootfinding, even for a single constraint, would incur significantly larger computational 

cost than increasing N to obtain equivalent accuracy and is not viable for real-time 

application.  

Figures 3-12 and 3-13 show the errors using local quadratic and cubic interpolation 

compared to node values and degree N - 1 Chebyshev interpolation, plotted using 

expanded scales.  The minimum N values required to achieve a maximum error less 

than 0.5 m⁄s
2
 were found to be 210 for quadratic and 165 for cubic interpolation.  

Quadratic or cubic interpolation would be required for each constraint or constrained 

variable.  For 8 constrained variables (the 7 variables of Eq. (3.40) plus a negative load 

factor limit for the negative-g trajectories of Chapter 7), and dv = 8, the quadratic 

interpolation would add approximately 20% (flops) to each node evaluation, and the 

cubic would add approximately 150%.  Hence, with the Chebyshev-Gauss-Lobatto node 

distribution, the net effect of quadratic interpolation would be to increase computational 

speed by 35% ( 1-(1.2×210⁄390) ) compared to reliance on node values. 

For comparison, the tests were repeated with uniformly-spaced nodes.  The minimum N 

values required were found to be 345, 175, and 145 for node values, quadratic and cubic 

interpolation respectively, indicating that quadratic interpolation can increase 

computational speed by 40% ( 1-(1.2×175⁄345) ) with uniform node spacing. 

Hence using local quadratic interpolation for evaluating constraints can provide a 35%-

40%  increase in computational speed by allowing the use of fewer discretization nodes 

while maintaining the accuracy of evaluated constraints, compared to the previously-

used node values. 
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Figure 3-12.  Error in Maxima: Quadratic and Cubic Interpolation 
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Figure 3-13.  Expansion of Figure 3-12 
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The minimum values of N are only valid for this particular aircraft, tolerance, and for 

trajectories of durations similar to those in the test database (which ranged from 15 s to 

1153 s, with 85% of flight times < 200 s.  However, it is reasonable to conjecture, since 

Figure 6-1 indicates that f is not sensitive to tf and the interpolation is with respect to , 

that these values of N may apply to a wider range of trajectories. 
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4 QUATERNION-BASED POINT-MASS AIRCRAFT 

MODEL 

4.1 Introduction 

This chapter describes a unit-quaternion-based inverse dynamics model that was 

conceived by the author to overcome the singularities of the Euler-angle model, to 

improve the accuracy of the controls, to further the investigation of aerobatic and 

negative-g trajectories, and to introduce the possibility of parameterizing orientation.  

The model was stimulated by the discussions on quaternions in the books by Stengel
122

 

and Stevens and Lewis
123

. 

Unit quaternions can be used to represent all orientations without singularities, and can 

be smoothly parameterized and interpolated.  The quaternion-based inverse dynamics 

model also has the advantage over an Euler-angle model of producing angular velocity 

and/or quaternion attitude control vectors.  Kaminer et al.
72, 73

 described path following 

and coordinated control of multiple unmanned aircraft by trajectory-following flight 

controllers using pitch and yaw rates as the control vector.  Knoebel et al.
79

 described a 

flight controller for an unmanned aircraft using quaternion feedback.  The quaternion 

model is also well suited to the imposition of path constraints on wind-axis angular 

velocity.  It is not restricted only to the inverse dynamics method, it could be applied in 

pseudospectral or other methods. 

Sections 4.2, 4.3, 4.4, and 4.5 describe the original derivation of the model, and 

corresponding test results are given in Section 4.6 which show that the model is 

computationally efficient.  Section 4.7 shows the controls generated for two trajectory 

examples.  Further research into the accuracy of the controls was carried out after the 

original model derivation: Section 4.8 describes this further research and the use of 

quaternion calculus to generate more accurate controls.  Section 4.9 describes a minor 

change to the algorithm that improves computational efficiency.  Section 4.10 notes that 

the quaternion model state equations are linear in the controls.  Section 4.11 

summarizes, for convenience, the revised algorithm and model, bringing together the 

improvements of Chapters 3 and 4. 
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4.2 Unit Quaternion-Based Point-Mass Model State Equations 

A unit quaternion may be written as 

  0 1 2 3, , ,
T

e e e ee  (4.1) 

where e0 is the scalar component and 

  
1

22 2 2 2

0 1 2 3 1e e e e    e  (4.2) 

The orthogonal transformation matrix between flat-Earth axes and wind axes is well 

known and can be expressed in both Euler-angle and quaternion forms
103, 122, 123

.  

Defining a state vector (x, y, z, v, e
T
)

T
 and control vector (ax, p, q, r)

T
 , equating 

corresponding elements of the two forms of the transformation matrix, and 

incorporating the quaternion kinematic equation ė=e gives the following system of 

state equations 

  2 2 2 2

0 1 2 3x v e e e e     (4.3) 

  1 2 0 32y v e e e e   (4.4) 

  1 3 0 22z v e e e e   (4.5) 

 xv a  (4.6) 

 e Ωe  (4.7) 

where 

 

0

01

02

0

p q r

p r q

q r p

r q p

   
 


 
 
 

 

Ω  (4.8) 
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4.3 Model Inverse Dynamics 

Let x, y, and z be parameterized by functions that are at least C
3
 continuous, then from 

Eqs. (3.16) 

  
1
22 2 2s x y z       (4.9) 

  
1

s xx y y zz
s

      


 (4.10) 

Tangential acceleration ax is given by 

 x

T D gz
a

M s


 




 (4.11) 

Using Frenet's formulae
4
 leads to 

 ; : t
t n

d

s ds
 

εr
ε ε

 


 (4.12) 

and 

 
    

1
222

3

1 s

s




   
 

r r r r   


 (4.13) 

Differentiating Eq. (4.12) and cancelling tε


 

 

2

t n

s


 r sε ε

    (4.14) 

  2n s s
s


 ε r r

   


 (4.15) 

 

2

n n

s
s

s
  

r
a ε r

   


 (4.16) 

The velocity frame V is the flat-Earth frame rotated through  and  only, hence 
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 V
s


r

x



 (4.17) 

 

   2 2 2 2
, ,0

T

V

y x

x y x y

 
 

   
 

y
 

   
 (4.18) 

 

   

 

 

2 2

2 2 2 2 2 2
, ,

V V V

T

x yxz yz

s x y s x y s x y

 

   
    
 

z x y
  

   

        

 (4.19) 

Clearly W Vx x
 

.  From Eq. (4.16) and W tx ε
 

 and V Vz x
 

 and n tε ε
 

 then 

 , where , 0V n Wk k k   z ε x
  

  (4.20) 

Thus the plane containing  and V nz a


is perpendicular to Wx


 and the gravity component 

in that plane is given by  V Vg z z
 

.  From Eq. (4.19) 

    2 2

2
, ,V v

g
xz yz x y

s
    g z z
      


 (4.21) 

therefore 

 

 

 2 2

2
, ,

z n V v

s g
xz yz x y

s s

  

     

l a g z z

r
r

 


     

 

 (4.22) 

and applying Assumption 2 

 
z

W

z

 
l

z
l


 (4.23) 

 W W W y z x
  

 (4.24) 

The relationship between the angular velocity of a frame and the transformation matrix 

is given by the strapdown (Poisson kinematic) equation 
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  
T

W W

E Eω H H  (4.25) 

which can be derived from the transport theorem
4, 123

, and where the angular velocity 

cross-product equivalent matrix ω  is 

 

0

0

0

r q

r p

q p

 
 

  
  

ω  (4.26) 

and 

 

T

W

W T

E W

T

W

 
 

  
 
 

x

H y

z






 (4.27) 

Equating elements on each side of Eq. (4.25) gives a set of control expressions 

 

, or 

, or 

, or 

W W W W

W W W WW

W W W W

p p

q q

r r

    

    

    

y z z y

z x x z

y x x y

    

    

    

 (4.28) 

Eq. (4.28) uses only node-based values to evaluate the controls and p depends on r 

whilst ax, q, r, and the Euler-angle model controls only require the first and second 

derivatives of r.  In Section 4.8 segment-based expressions are derived which use 

interpolated angular velocity instead of r for improved accuracy.  

4.4 Differential Flatness 

To confirm that the unit quaternion system of Eqs. (4.3)-(4.7) is differentially flat, r is 

defined as the flat output.  Eq. (4.28) shows that p, q, and r are real analytic functions of 

, , and W W Wx y z
  

;  Eqs. (4.17), (4.22), (4.23), and (4.24) express , , and W W Wx y z
  

as real 

analytic functions of r and its derivatives; ax is obviously a function of r and its 

derivatives, hence the controls are real analytic functions of a flat output r. 

To show that e can be expressed as a real analytic function of r and its derivatives, let 
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 , {1,2,3}, {1,2,3}W

E ijh i j    H  (4.29) 

and re-arrange to give the standard result
123

 

 

   

   

   

   

   

2 2

0 11 22 33 1 11 22 33

2 2

2 11 22 33 3 11 22 33

0 1 23 32 1 2 12 21

0 2 31 13 2 3 23 32

0 3 12 21 1 3 13 31

1 / 4 1 / 4

1 / 4 1 / 4

/ 4 / 4

/ 4 / 4

/ 4 / 4

e h h h e h h h

e h h h e h h h

e e h h e e h h

e e h h e e h h

e e h h e e h h

       

       

   

   

   

 (4.30) 

Therefore e is a real analytic function of the elements of 
W

EH , and of , , and W W Wx y z
  

and, subject to Assumptions 2 and 3, the model is differentially flat. 

4.5 Computation of Time Derivative of Wind Frame z-Axis  

This section describes a computational algorithm for evaluating the time derivative of 

the wind frame z-axis, which is required to evaluate the controls using Eq. (4.28).  This 

computation is superseded by the control expressions derived in Section 4.8 but is 

included here for completeness. 

The time derivatives , , and W W Wx y z
     required by Eq. (4.28) can be obtained by 

analytically differentiating Eqs. (4.17), (4.24), and (4.23) but for , and W Wy z
   the 

equations become computationally expensive to implement; Wy
 can be avoided by 

using the first expressions in Eq. (4.28) and Wz
 may be evaluated as follows.  Define l as 

a vector and z as the unit vector parallel to l, dl to be the total differential of l, dlt to be 

the component of dl parallel to l, dz to be the total differential of z, dzt to be the 

component of dz parallel to z, and dzn to be the component of dz perpendicular to z. 

Then 
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 

 

  

,

1

t

t

t

n t

d d
d d d

d d
d

d d d d d


   


 

    

l l l
z l z l z z

l l

l l z z
z

l l

z z z l l z z
l

 (4.31) 

Therefore, substituting lz for l and W  z z


 

   
1

W z z W W

z

   z l l z z
l

      (4.32) 

where lz is obtained by differentiating Eq. (4.22).  (As noted above, evaluating the 

controls using the expressions in Section 4.8 obviates the need for , , and W W Wx y z
      but 

Eq. (4.32) is included here for completeness.) 

4.6 Computational Load 

Computational speed is a key attribute of the inverse dynamics method.  Hence the 

speed with which the quaternion model can be evaluated, compared to that of the Euler-

angle model, is of interest.  In this section numerical comparisons of the computational 

speeds of the Euler-angle and quaternion models are presented. 

To assess computational performance, each model was applied to 19 different 

trajectories for which the parameterization function types were as follows: three linear, 

four vertical helices, two vertical loops, three horizontal helices, one quadratic 

polynomial, five quintic polynomials and one degree 7 polynomial.  Each trajectory was 

run in Matlab on a 32-bit PC using the quaternion model then using the Euler-angle 

model, for N = 2
n
 + 1; n  {17,16,...7}, and the ratio of CPU time consumed by the 

quaternion model to CPU time consumed by the Euler-angle model was recorded.  The 

measurements were then repeated but running the Euler-angle model first.  For 

N  2
13

+1 each trajectory was repeated 2
14

/(N-1) times to reduce any effects from the 

Matlab CPU timer quantization.  The times include the processing necessary to extract r 

and its derivatives from the parameterization functions at each node, but exclude 
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trajectory parameterization setup, constraint evaluations, and transforming controls to 

physical variables.  Controls were evaluated using Eq. (4.28), i.e. excluding evaluation 

of Eqs. (4.62)-(4.65) below but including Eq. (4.32). 

As tested the Euler-angle inverse dynamics routine performed, at each node: 1 square 

root, 3 inverse trigonometric functions, 1 cosine, 22 multiplications, 3 divisions and 15 

additions/subtractions (no functions were evaluated more than once) compared to: 1 

square root, 52 multiplications, 20 divisions and 44 additions/subtractions for the 

quaternion inverse dynamics routine; in both cases assignments and simple conditions 

were also performed.  CPU times depend not only on the hardware and the model but on 

the efficiency with which the compiler and run-time environment implement the square 

root and trigonometric functions and on memory management; for the Matlab 

environment Table 1 shows the mean, standard deviation and range of the CPU times 

from which it can be seen that for this version of the quaternion model mean CPU time 

was comparable with that of the Euler-angle model. 

N Mean Std Dev Max Min 

131073 0.42 0.01 0.45 0.38 

65537 0.85 0.04 0.90 0.8 

32769 0.95 0.02 1.00 0.91 

16385 1.01 0.05 1.10 0.91 

8193 1.01 0.05 1.15 0.93 

4097 1.02 0.04 1.13 0.94 

2049 1.03 0.06 1.14 0.94 

1025 1.03 0.04 1.13 0.93 

513 1.06 0.06 1.17 0.96 

257 1.03 0.05 1.13 0.96 

129 1.03 0.05 1.12 0.93 

65 1.04 0.05 1.17 0.94 

Overall 0.96 0.18 1.17 0.38 

Table 4-1     Ratio of Quaternion CPU Time to Euler-Angle CPU Time 

(using 32-bit hardware and software) 
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4.7 Example Results 

This section describes two trajectory examples, one of which includes vertical flight, to 

demonstrate the quaternion model.  For these examples aircraft data representative of a 

small unmanned aircraft were used: mass 11 kg, maximum thrust 20 N, 15  v  60 m/s 

and lz  3g. 

Figures 4-1 and 4-2 show a vertical loop trajectory and the control vector produced 

using Eq. (4.28).  The trajectory was defined as a loop through 360 with constant 

normal acceleration and constant airspeed, starting and ending in level flight heading 

45, and discretized into 129 uniformly-spaced nodes.  The control values are clearly 

feasible.  Figure 4-2 shows the error deviation of the computed values of the control 

vector to be comparable to machine precision (ax, p, and r should be zero and q should 

be constant).  Repeating the calculation with varying N from 2
17

+1 to 2
4
+1 (equivalent 

to t = 1.1 s) confirmed that the error variation was comparable to machine precision 

over this range.  For comparison, controls were also evaluated using finite differences 

(Eq. (4.36) below) which produced, because the curvature was constant, a constant q 

error which reduced as t was reduced; for N = 129 (t  = 0.15 s) the q error was ~10
-4

 

rad/sec and the maximum position error was 0.2 m. 
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Figure 4-1.    Vertical Loop Trajectory 
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Figure 4-2.    Control Vector for Vertical Loop Trajectory 
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Figure 4-3 shows a constant airspeed vertical helix trajectory  In this case the angular 

velocities should be constant:  Figure 4-4 shows that the errors in the node-based 

controls are of the order of machine precision. 

These examples demonstrate that, for these trajectories, Eq. (4.28) produces accurate 

and feasible control vectors. 

  

 

Figure 4-3.    Vertical Helix Trajectory 
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Figure 4-4.    Control Vector for Vertical Helix Trajectory 

 

 

 

 

 

0 50 100 150
-1

0

1
x 10

-15

time (s)

a
x
 (

m
/s

2
)

0 50 100 150
-3

-2.5

-2

x 10
-17

time (s)

p
-p

m
e

a
n
 (

ra
d
/s

)

0 50 100 150
-2.4

-2

-1.4

x 10
-17

time (s)

q
-q

m
e

a
n
 (

ra
d
/s

)

0 50 100 150

-1.6

-1.4

-1.2
x 10

-16

time (s)

r-
r m

e
a

n
 (

ra
d
/s

)



91 

4.8 Control Expressions 

In this section more accurate control expressions are derived to replace those derived in 

Section 4.3.  The revised controls use quaternion calculus and therefore require accurate 

expressions for orientation and the first derivative of orientation.  This section is divided 

into sub-sections covering: the derivation of alternative angular velocity expressions 

(Section 4.8.1); the evaluation of orientation, including a comparison of two common 

algorithms, (Section 4.8.2); the evaluation of the first derivative of orientation (Section 

4.8.3); a numerical comparison of the candidate control expressions (Section 4.8.4); and 

a brief conclusion (Section 4.8.5).  It is shown that the most accurate of the alternative 

expressions produces accurate controls even for trajectories such as the course reversal 

case of Section 3.4.4. 

4.8.1 Derivation of Alternative Angular Velocity Expressions 

Using 

    1 2 3: , , : , ,
T T

p q r    ω  (4.33) 

the first set of expressions of Eq. (4.28) becomes 
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  

y z

ω z x

y x

 
 
 

 (4.34) 

Eq. (4.34) uses only instantaneous analytic derivatives at nodes, thereby avoiding the 

inherent ill-conditioning of numerical differentiation.  However, error arises in controls 

derived from analytic derivatives because in general for a nonlinear function f(t) 

 ( ) ( ) ( )( ), [ , ]b a a b a a bf t f t f t t t t t t     (4.35) 

and for a nonsmooth function the error does not necessarily reduce to zero as  

0b at t  .   

An alternative is two-point finite differences 
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 (4.36) 

If controls are calculated using Eq. (4.36) instead of (4.34), reductions of 27 

multiplications, 6 divisions, and 15 additions/subtractions are possible.  However, for 

large rotations significant error arises in the direction of the finite difference 

approximations (the derivative of a unit vector is orthogonal to the unit vector, but the 

direction of the finite difference is not: e.g. it is parallel to the unit vector for a 180 

change). 

Control accuracy can be improved by rewriting Eq. (4.7) as 

 e Eω  (4.37) 

where 
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E  (4.38) 

The structure of E enables the exact solution of the over-determined system Eq. (4.37) 

to be derived by the least squares method, without recourse to the cost of the Moore-

Penrose pseudoinverse. Define the residual 

 
2

:R  e Eω  (4.39) 

then 

  
4

1 1 2 2 3 3

1

2 , 1,2,3i i i i in

in

R
e n  

 


    


 E E E E  (4.40) 

and the least squares solution is given by 
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hence 
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 (4.42) 

is the exact solution of Eq. (4.37).  Alternative derivations may be found in Shuster
121

. 

4.8.2 Evaluation of Orientation 

Evaluation of Eq. (4.42) requires orientation e which may be derived from the rotation 

matrix of Eq. (4.27).  A number of algorithms have been proposed for this purpose e.g. 

Grubin
57, 58

, Reynolds
111

, Shoemake
120

, and Shepperd
119

.  Grubin's algorithm has a 

singularity; Reynolds' algorithm is elegant and efficient, but uses vector dot and cross 

products which can become zero or indeterminate and the conditions which must be 

evaluated to handle these cases are computationally expensive.  The two most widely 

used algorithms are those of Shoemake and Shepperd.   

Shoemake’s algorithm is efficient but it relies on a tolerance which determines how the 

matrix elements are combined.  Shepperd’s algorithm does not use a tolerance: it 

automatically uses the combination that minimizes round-off error.  Figure 4-5 shows 

the peak error (error was defined as 1 - |ea  eb|) arising from the Shoemake algorithm as 

a function of the tolerance.  These results were obtained by implementing 

  2 1b ae f f e , using a standard algorithm
120, 123

 for  1 : W

a Ef e H , and the Shoemake 

algorithm for 2 : W

E bf H e  where the domain of ea covered the set of 3D orientations at 

intervals 1° in each dimension. 

The minimum peak error of the Shoemake algorithm was found to be 610
-6

 at a 

tolerance of 110
-11

.  The error was high at very small tolerances due to round-off error, 

and increased again at high tolerances because this forced at least one element of the 

quaternion to be zero.  The peak error of the Shepperd algorithm, over the same domain, 
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was found to be 910
-15

.  Although the Shepperd algorithm was found to be 50-80% 

slower, it has been used to evaluate e because of its accuracy. 

 

4.8.3 Evaluation of the First Derivative of Orientation 

It remains to choose expressions for ė for substitution into Eq. (4.42).  A compact 

analytic expression for the first derivative of a unit quaternion was described by Kim et 

al.
76

, but this approach would suffer from discretization error in the same way as 

Eq. (4.34).  Writing ė as a finite difference gives 
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1
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
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e e
e  (4.43) 

However, ė is the velocity of the unit quaternion on the surface of the 3-sphere S
3
, 

whereas ej - ej-1 is the straight line between ej-1 and ej and is therefore inside S
3
 except at 

the ends.  Therefore although Equation (4.43) generates smaller errors than Eq. (4.36), 

(because the denominator has a single source of direction error whereas Eq. (4.36) 

 

Figure 4-5.    Peak Error as a Function of Tolerance for the Shoemake Algorithm 
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introduces three direction errors separately), errors may be significant for large 

rotations. 

This can be readily overcome by interpolating between ej-1 and ej such that the 

interpolant lies on a great circle on the surface of S
3
.  Spherical linear interpolation 

(slerp) satisfies this requirement and may be defined
120

 as 

 
  sin 1 sin( )

slerp( ; , ) : , [0,1]
sin

a b

a b

t t
t t

 



 
 

e e
e e  (4.44) 

where 

 arccos( )a b  e e  (4.45) 

The singularities in Eq. (4.44) when sin  = 0 may be handled by selecting the sign of ej 

such that ej  ej-1  0 and setting e = ej if   = 0. 

Slerp can be applied to the evaluation of ė by defining 

 1: slerp( ; , )j j  e e e  (4.46) 

It is only necessary to evaluate Eq. (4.46) at a single  and to express ėj-1 as 
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e e
e  (4.47) 

The interpolating variable  is chosen such that e - ej-1 is small enough, even for large 

, to avoid discretization error and large enough, even for small , to avoid round-off 

error.  An empirical value of  = 0.001 was used. 

The quaternion exponential map
77

 is defined by 
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
 (4.48) 



96 

where (a, b, c) is a unit vector,  is an arbitrary scalar, and the transposition operator 

has been omitted for clarity. 

The quaternion logarithm is defined as the inverse of the exponential and can be used in 

an alternative (equivalent) definition of slerp, which leads to 

 
1 1

1

ln( )j j j

j

jt



 



 


e e e
e  (4.49) 

Eq. (4.49) is equivalent to the limit of Eq. (4.47) as   0, and is therefore 

mathematically preferable, but computationally Eq. (4.47) requires fewer operations 

(approximately 25 fewer flops) than Eq. (4.49).  

4.8.4 Numerical Comparison of Control Expressions 

The five candidate angular velocity control expressions described in this chapter are: 

 Eq. (4.34). 

 Eq. (4.36). 

 Eq. (4.42) with (4.43). 

 Eq. (4.42) with (4.47). 

 Eq. (4.42) with (4.49). 

A numerical comparison of these expression was carried out in two stages:  since Eqs. 

(4.47) and (4.49) should give the most accurate results, these two expressions were 

compared against each other, then the worst of the two was compared against the 

remaining expressions. 

4.8.4.1 Test Setup 

A test database of trajectories was created by manually generating arbitrary boundary 

conditions.  Pairs of horizontal positions in the range [-2300,2300] m and distributed 

across the four horizontal quadrants were generated, with vertical displacements in the 

range [-200,500] m, five values of heading (a value in each quadrant, and zero), three 

values of flight path angle and three values of bank angle all in the range [-10°,5°], and 
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two values of load factor (9.81 and 15 m/s
2
).  Airspeed was held constant to eliminate 

any errors arising from ax.  These boundary conditions were combined with an 

optimization vector of (60,0,0,0,0,0,0)
T
, resulting in 2160 different trajectories.  The 

tests were carried out using uniformly-spaced nodes with N = 129.  The Matlab ode45 

(Runge-Kutta 4/5) function was used to numerically integrate the state equations, and 

error was defined as the two-norm of the difference between demanded position and the 

ode45 position at each node. 

4.8.4.2 Results 

Figure 4-6 shows the peak differences in errors for Eqs. (4.47) and (4.49).  Eq. (4.49) 

was found to produce tracking errors of less than approximately 0.02% of path length, 

(Using N = 257 and Eq. (4.49), the tracking error reduced to 0.005% of path length.) 

The percentages of trajectories for which each expression resulted in the lowest 

maximum position errors were recorded.  Eq. (4.49) was more accurate than Eq. (4.47) 

for 83% of the trajectories, and Eq. (4.49) position errors were never more than 

approximately 310
-7

% of path length (equivalent to 10
-6

 m) worse than the Eq. (4.47) 

 

Figure 4-6.    Difference Between Maximum Errors, Eq. (4.47) - Eq. (4.49) 

     (Positive values mean Eq. (4.47) has larger error) 
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position errors.  Although less accurate, Eq. (4.47) peak errors were within 0.3% 

(1.510
-3

 m) of the Eq. (4.49) errors, confirming that Eq. (4.49) is slightly more 

accurate than Eq. (4.47), but that both produce good tracking results.  Corroborating 

results were obtained using Chebyshev-Gauss-Lobatto node distribution and higher N: 

as N increased the accuracy of both expressions increased, and the difference 

consequently reduced.   

As the slightly less accurate of the two, Eq. (4.47) was used as the basis for comparison 

with the other three expressions: Eq. (4.47) was the most accurate for approximately 

97% of trajectories, and Eq. (4.43) for the remaining 3% of trajectories.  Further, 

Eq. (4.47) position errors were never more than approximately 0.01 m worse than the 

Eq. (4.43) position errors, but Eq. (4.43) position errors were often significantly worse 

than those from Eq. (4.47), as shown in Figure 4-7.  Eqs. (4.34) and (4.36) were less 

accurate than Eq. (4.47) for all trajectories, Eq. (4.34) producing errors over 6000 m 

worse than Eq. (4.47) and Eq. (4.36) producing errors over 3700 m worse than Eq. 

(4.47).  Results for a range of values of N and for Chebyshev-Gauss-Lobatto node 

spacing corroborated these findings. 

 

Figure 4-7.    Difference Between Maximum Errors, Eq. (4.43) - Eq. (4.47) 

     (Positive values mean Eq. (4.43) has larger error) 
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Eqs. (4.34), (4.36), (4.42) with (4.43), and (4.42) with (4.47) were evaluated for a 

course reversal trajectory (Section 3.4.4) in which at every node the aircraft was in 

straight and level unaccelerated flight and the path had two 180° course reversals, each 

course reversal taking place entirely between two consecutive nodes.  Uniformly-spaced 

nodes with N = 210 were used.  For all four control expressions, the errors in the 

evaluated bank and pitch rates were less than 10
-6

 (to be expected since they should be 

zero).  Figure 4-8 shows the yaw rates over a course reversal.  The time t between 

nodes 154 and 155 was 0.1262 s: a 180° track change over that interval requires a yaw 

rate of approximately 1426 °/s.  The relative error in the yaw rate generated by the 

combination of Eqs. (4.42) with (4.47) was less than 10
-6

, showing that the controls can 

accurately track this trajectory despite its singularity due to s' = 0. 

4.8.5 Conclusion 

For mathematical accuracy, the Shepperd algorithm to evaluate e, Eq. (4.49) for ė, and 

Eq. (4.42) to evaluate u should be chosen.  This analysis assumes that there are no 

disturbances, noise or uncertainty, and that the model accurately represents the aircraft.  

 

Figure 4-8.    Yaw Rates for Course Reversal 
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In practice the overall system relies on feedback to compensate for these unwanted 

effects, so the computational cost of the higher accuracy of Eq. (4.49) over Eq. (4.47) 

may not be justified.  This design decision depends on the particular aircraft and 

mission requirements.   

4.9 Computation of Normal Load Factor 

A more computationally efficient node-based expression for lz than Eq. (4.22) is to 

resolve the total force per unit mass on the model into tangential and normal 

components: 

 M  f r g  (4.50) 

  x M W W f f x x
 

 (4.51) 

 z M x l f f  (4.52) 

The node-based value of Eq. (4.52) is required to evaluate Wz


 to ensure that the model 

is aligned with the parameterized spatial trajectory at each node; accurate magnitude is 

not critical for this purpose because Wz


 is a unit vector.  The segment-based value of 

Eq. (3.45) is used for constraint evaluation, for which magnitude is essential. 

4.10 Singular Arc 

The quaternion model state equations (4.3)-(4.8) are linear in u.  For the minimum time 

problem this leads to a singular arc because f/u = 0, the Hamiltonian becomes 

H = 1 + 

f, therefore H/u = 0 for all admissible u.  The inverse dynamics method 

handles the singular arc without problems, but this property of the model may limit its 

use in methods that have difficulty handling singular arcs. 

4.11 Revised Trajectory Evaluation Algorithm 

For convenience, the expressions required at each node, using the quaternion-based 

model, are listed below.  The list assumes that r, v, their derivatives with respect to  

and s and s have been evaluated at the node and that s = 0, sj = 0, lz = 0 and v  0 are 
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handled as already described.  The subscript j is omitted in the equations below except 

when both j and j - 1 appear. 

 
1j j js  r r  (4.53) 
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       r r r  (4.59) 
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The three expressions in Eq. (4.66) implement Eq. (3.45). 

The constraints may be evaluated using quadratic interpolation.  Define a function m 

that applies local quadratic interpolation to find the maximum of a curve passing 

through N node values then 
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The final flight time is evaluated by 
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where a(f) and the weights w are determined using standard formulae dependent only 

on the node distribution and N. 
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If a penalty function is required because of the particular NLP algorithm being used, the 

penalized objective may be evaluated by 

 ( )fJ t P   c  (4.70) 

where 

 max(0, ), {1,...7}i ic c i    (4.71) 

The penalty function used in this work was the squared two-norm 
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5 AIRSPEED PARAMETERIZATION 

5.1 Introduction 

The optimality of a solution to a minimum-time aircraft trajectory generation problem 

depends on the closeness of the generated airspeed to the maximum airspeed that 

satisfies all path and boundary constraints.  Hence the accuracy and computational 

speed of airspeed determination is a critical part of the method.  Low-degree polynomial 

parameterization reduces optimality, but high-degree parameterization increases the 

dimension of the optimization problem.  No structured approach to choosing the most 

appropriate airspeed parameterization was found in the literature.  This chapter 

describes a new computational approach to estimate maximum feasible airspeed without 

airspeed parameterization or optimization.  Results obtained with this approach are then 

used to measure the effects of the degree and form of polynomial airspeed 

parameterization on the robustness, optimality and computational speed of optimization 

in the inverse dynamics method.  The effects of Chebyshev, barycentric Lagrange, 

Bernstein and power series polynomial basis functions are compared. 

The computation times taken by direct evaluation of maximum feasible airspeed are 

also compared to the times taken to optimize parameterized airspeed, as a guide to 

whether direct evaluation of maximum airspeed is a practicable alternative to airspeed 

optimization. 

5.2 Direct Evaluation of Maximum Feasible Airspeed 

The airspeed profile of a minimum-time trajectory is the maximum airspeed that 

satisfies all constraints. In this section instead of parameterizing airspeed and 

optimizing the parameters (airspeed coefficients), the maximum feasible airspeed (vmax) 

and corresponding minimum feasible final flight times (tRef) are derived directly from 

the spatial path without optimization. 

Section 3.4.7 describes a set of aircraft constraints {lz, Tmax, Tmin, pmax, pmin, vne, vs}.  

From this set the maximum feasible airspeed vmax may be written 
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  min , , , ,max ne l Tmax Tmin pv v v v v v  (5.1) 

where vl, vTmax, vTmin, and vp are the maximum airspeeds that satisfy their respective 

constraints.  Clearly if vmax < vs then there is no feasible airspeed for that spatial path. 

Each trajectory is discretized and each element of Eq. (5.1) is evaluated at each node as 

described below, assuming that N is sufficiently large that acceleration between nodes 

may be assumed constant and the Euclidean distance between nodes is a good 

approximation to the corresponding arc length. 

The next four sections describe the evaluation of vl, vTmax, vTmin and vp at each node.  All 

the expressions apply to values at node j unless subscripted to apply at node j-1. 

5.2.1 Normal Load Factor 

The load factor magnitude at each node may be expressed as an explicit function of v 

 2

z n zl v  ε g


 (5.2) 

where gz is given by Eq. (3.49),  by Eq. (4.13) and nε


by Eq. (4.15).  Eq. (5.2) is 

equivalent to Eq. (4.22).  The expression 

  max |l zv v l l   (5.3) 

can be solved using any suitable univariate zero-finding algorithm.  Brent’s  

method
21, 108

 is robust, stable and efficient, with superlinear and guaranteed 

convergence.  To ensure convergence, it is only necessary to bracket the zero by 

subdividing the speed range at v = va and checking the sign of l
+
- lz  at v = vs, v = va, and 

v =vne. 

5.2.2 Maximum Thrust 

The load-factor-limited airspeed vl at any node j ∈ {1,…N} may be evaluated solely on 

data at j, but thrust-limited airspeeds vTmax and vTmin depend on values at multiple nodes.  

Given an initial airspeed v0 and a drag polar D(v, lz, M), (Eqs. (3.36)-(3.38)) the 
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following algorithm may be used to evaluate the maximum airspeed (vTmax) that satisfies 

the upper thrust limit (Tmax). 

1. Set vmax = vl, j  {1,...N}. 

2. Set vTmax 1 = v0 and vTmax N = vf. 

3. Iterate for j ∈ {2,…N - 1}: 

Evaluate drag D1 at vmax j-1 and D2 at vne 

   1 max 1 max 1, ,j z jD D v l v M   (5.4) 

   2 , ,ne z neD D v l v M  (5.5) 

Evaluate the mean gravitational component 

 
1

0.5c

j j

gz gz
g

s s

  
     

 (5.6) 

Evaluate the available acceleration aA over [j-1,j] 

   max 1 20.5A ca T D D M g     (5.7) 

Evaluate the acceleration a2 required to reach vne over [j-1,j] 

   2 1 1 2ne max j ne max j ja v v v v s     (5.8) 

If aA  a2 then vTmax j = vne ; else 

  Evaluate the acceleration a1 required to reach vs  

   1 1 1 2s max j s max j ja v v v v s     (5.9) 

  If aA < a1 then trajectory is infeasible, stop. 

  Else apply Brent’s method to solve 
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   

  

1

1 1

0.5 , ,

0
2

max Tmax j z

Tmax j max j Tmax j max j

j

T D v l M D gz

M s

v v v v

s

 

  




 
 

 (5.10) 

  for vTmax j. 

4. Loop to step 3. 

5.2.3 Minimum Thrust 

Clearly at each node the aircraft must be flying sufficiently slowly so that if maximum 

deceleration was applied (which would occur at minimum thrust) the deceleration 

would be sufficient to reduce the airspeeds at all later nodes to within the maximum 

airspeeds imposed by load factor, maximum thrust, bank rate and vne at those later 

nodes.  Therefore maximum feasible airspeed is also constrained by the deceleration 

achievable at minimum thrust, to ensure that the aircraft can decelerate so as to not 

exceed  min , ,l Tmax nev v v  at any later node.  Defining vTmin as the maximum airspeed 

that ensures that at minimum thrust the aircraft can decelerate sufficiently to satisfy this 

requirement, the following algorithm may be used to evaluate vTmin without requiring 

iterative zero-finding. 

1. Set vTmin N = vf  and vlim = vf 

2. j ∈ {1,…N} set  1 min , ,j l Tmax nev v v v  

3. Iterate backwards for j  {N - 1,…1}: 

Evaluate drag   1 1, ,j z jD v l v M , acceleration  1 mina T D M gz s    , the 

time t taken to cover the Euclidean distance s between j and j+1 starting at 

speed v1 with acceleration a1  
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  (5.11) 

Evaluate the minimum achievable speed v2 at j+1 given by 
2 1 1jv v a t   

If v2 > vlim then 

If j > 1 then  

 Evaluate drag   , ,lim z limD v l v M  

 Evaluate acceleration  2 mina T D M gz s      

 Evaluate limiting airspeed 
2

2 22Tmin jv v a s    

 Reset vlim = vTmin j 

Else (i.e. j = 1) trajectory is infeasible, stop. 

Else (i.e v2 ≤ vlim) continue iteration 

4. Loop to step 3. 

5.2.4 Bank Rate 

Bank rate p is a function of  z z
, ,r l l  and depends on values at multiple nodes.  It is not 

necessary to solve pmax - p = 0 since the primary purpose of directly evaluating vmax for 

the reference paths is to create reference maximum airspeeds and final flight times and 

the secondary purpose is to measure computation times.  It is only necessary to 

categorize as infeasible any trajectories for which p > pmax when 

v = min(vne, vl, vTmax, vTmin).  Since vp has not been evaluated in this work the 

computation times will be shorter than evaluation of vmax including vp. 

Load factor and thrust constraints tend to be more restrictive than the bank rate for small 

aircraft, so the pmax condition should not reduce the number of feasible trajectories in the 
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database significantly: for the test database used in this work it only removed 

approximately 0.05% of otherwise feasible trajectories. 

5.2.5 Evaluation of Minimum Feasible Airspeed 

Parenthetically, minimum feasible airspeed vmin may be readily evaluated without 

iterative zero-finding, since it is constrained by vs, Tmax and Tmin only (assuming 

vmax ≥ vs). 

To evaluate the minimum thrust effect, set vmin 1 = v0, vmin N = vf  and iterate for 

j  {2,…N - 1}:  evaluate drag   1 1, ,min j z min jD v l v M  , acceleration 

 mina T D M gz s    , and the time t taken to cover the Euclidean distance s 

between j - 1 and j with acceleration a using Eq. (5.11) then set 

 1max ,min j s min jv v v a t   and continue the iteration. 

Some manoeuvres, such as a sustained steep climb, may cause deceleration even at 

maximum thrust; hence the aircraft must start such a manoeuvre at a sufficiently high 

airspeed to ensure that the airspeed remains above vs throughout. We define the 

minimum airspeed that satisfies this requirement as vB. After the preliminary evaluation 

of vmin  j  {1…N} using the preceding paragraph, vB and hence vmin can be evaluated 

as follows: 

1. Set vlim = vf   

2. Iterate backwards for j  {N - 1,…1}: 

Evaluate drag   , ,min j z min jD v l v M ,  

Evaluate acceleration  maxa T D M gz s     

Evaluate the time t taken to cover the Euclidean distance s between j and j+1 

starting at speed v1 with acceleration a using Eq. (5.11)  

Evaluate the maximum achievable speed v2 given by 
2 min jv v a t   

If v2 < vlim then 
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If j > 1 then  

 Evaluate drag   , ,lim z limD v l v M  

 Evaluate acceleration  maxa T D M gz s      

 Evaluate 
2

2 2B jv v a s    

 Reset vlim = vB j  and continue iteration 

Else (i.e. j=1) trajectory is infeasible, stop. 

Else (i.e v2  vlim) set vlim = vmin j and continue iteration 

3. Loop to step 2. 

4. Set    max , , 2,... 1min j min j B jv v v j N    . 

The range of feasible arrival times at the final point is defined by vmax and vmin: a 

feasible airspeed profile for any in-range desired final flight time may be obtained by 

linear interpolation, for example to achieve a rendezvous.  

5.2.6 Computation Times – Direct Evaluation 

To obtain results for a large sample of boundary conditions, a test database of feasible 

spatial paths was created (Section 5.3.1), and the maximum feasible airspeed vmax  and 

corresponding final flight time tRef for each spatial path in the test database were 

evaluated. 

The computation time taken to directly evaluate vmax will depend on the number of 

iterations required by the zero-finding algorithm, on the values of the conditional 

expressions, and on the hardware and software environment. As a guide the mean time 

taken to compute vmax per trajectory, averaged over a test database of the feasible spatial 

paths (Section 5.3.1), with N = 257, was 0.14 s.   

The mean times taken to evaluate vmax per node, over all trajectories and over only 

feasible trajectories (i.e. trajectories for which vmax  vs   [0,f]), for various N are 

shown in Table 5-1. 
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N All trajectories: mean 

time per node (s) 

Feasible trajectories: 

mean time per node (s) 

257 2.4110
-4

 5.4710
-4

 

390 2.3910
-4

 5.4710
-4

 

513 2.4110
-4

 5.4610
-4

 

764 2.4110
-4

 5.4510
-4

 

Table 5-1.    Computation Times – Direct Evaluation (s) 

 

The direct evaluation algorithm detects infeasibility as it iterates and will terminate after 

infeasibility is detected, so the mean time for an infeasible trajectory will, over a 

sufficiently large sample, tend to be significantly less than that for a feasible trajectory.  

This effect is clear in Table 5-1. 

In Section 5.3.3.1 these times are compared to the computation times taken by airspeed 

optimization. 

5.3 Airspeed Optimization 

This section quantifies the effects of low-degree polynomial airspeed parameterization 

on the optimality, robustness and computational speed of the inverse dynamics method. 

Airspeed was parameterized by polynomials of degree dv, and the dv + 1 coefficients 

were used as the vector of optimization parameters that was input to the NLP 

algorithms.  The NLP problem was to minimize tf  subject to 

 0, 1,2ic i    (5.12) 

where  

  
{1,... }

max 0, , 1,2i i
j N

c c i


   (5.13) 

 
1

2

, {1,... }

, {1,... }

j j max j

j s j

c v v j N

c v v j N

   

   
 (5.14) 
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Choosing the constraint set {vmax, vs} in Eq. (5.14) removed the effects of 

approximations in the evaluation of vmax from the optimization results, and obviated the 

need for any non-unity penalty weights. 

The Sequential Nelder-Mead (SNM) algorithm was chosen as the primary NLP 

algorithm for the airspeed optimization tests because derivative-free algorithms were 

expected to be more robust than SNOPT, and the SNM algorithm was expected to be 

less dependent on the NLP dimension than the Sequential Hooke-Jeeves (SHJ) 

algorithm (Section 2.5.2).  The SHJ algorithm was used in one experiment set, with 

Chebyshev parameterization and dv  {4,...16}, to confirm this expectation.  The 

squared two-norm penalty function was used with a constraint tolerance of 0.1 m/s, 

which introduces the possibility that the NLP algorithm may produce a final flight time 

less than tRef .   

Since the SNM and SHJ algorithms are local algorithms, it was necessary to use an 

initial airspeed guess as close as possible to the desired solution (vmax): the minimax 

interpolant to vmax would satisfy this requirement but computing an exact minimax 

interpolant is computationally expensive.  Truncated Chebyshev interpolants
18

 are close 

to the minimax interpolant and are readily computed.  Hence the degree N – 1 

Chebyshev interpolant to the vmax profile for each spatial path in the test database was 

generated, using the Chebyshev-Gauss-Lobatto node distribution to avoid ill-

conditioning
50

, then truncated to degree dv to form the initial guess. 

Figure 5-1 shows an example of vmax and the corresponding truncated Chebyshev 

interpolants for dv = {4,8,16}.  The nonsmooth points in vmax arise where the active 

constraint changes, e.g. from lz to vne.  The constraint values used in this example were 

chosen by trial and error to produce multiple switching points.  As expected, the 

interpolation error reduces as dv increases.  

A cubic is the minimum degree polynomial that can be guaranteed to meet the four 

initial and final boundary values of airspeed and tangential acceleration: a quartic is the 

lowest degree that has a degree of freedom available for optimization. The inverse 

dynamics method uses low-degree parameterization: hence dv  [4,16] was chosen for 

this work.   
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Since any choice of polynomial basis functions can be used to exactly represent any 

polynomial, the optimal solution is not dependent on the choice of the basis functions 

(except in so far as the choice causes the NLP algorithm not to converge to an optimal 

solution) but only the degree of the function itself.  However, the relative magnitudes of 

the coefficients of the function and of its derivatives do vary with choice of basis 

functions i.e. the function gradient is dependent on the basis functions, so the 

convergence of an NLP algorithm will depend on the choice of basis functions. 

To compare different forms of parameterization, the truncated Chebyshev interpolants 

were transformed to the Bernstein form
46

, the barycentric Lagrange form
11

, and power 

series form.  These forms were chosen because the Bernstein basis is optimally stable 

(Farouki and Goodman
45

), the Lagrange form retains node values as coefficients and the 

power form is widely used.  The Chebyshev-Gauss-Lobatto node distribution was used 

for all experiments to avoid any ill-conditioning. 

To retain the closeness of the initial guesses to vmax, basis conversions were carried out 

after truncation of the degree N -1 Chebyshev interpolation.  If the conversion relies on 

inverting a Van Der Monde matrix (for example for the Bernstein and power series 

 

Figure 5-1.    Example of vmax and Chebyshev Interpolants 
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forms), the conversion may be ill-conditioned.  The accuracy of the conversion was 

checked and it was found that the errors introduced by transforming the initial guesses 

from Chebyshev to Lagrange, Bernstein and power series form were less than 10
-13

,  

10
-4

, and 210
-5

 respectively. 

For Chebyshev parameterization the optimization vector is the set of dv +1 Chebyshev 

coefficients, each of which has global effect, and the coefficients tend to decrease to 

zero for smooth functions as the degree of the associated term increases. 

For the Bernstein form the optimization vector is the set of dv +1 control point values.  

This form is particularly well suited to Hermite interpolation at the boundary points 

because the k +1 coefficients at each end of the optimization vector are directly related 

to v and its first k derivatives at the boundary points; the NLP dimension can therefore 

easily be reduced by four by fixing the first two and last two coefficients using airspeed 

and acceleration at the boundary points (this was not used in this chapter, but was used 

in Chapter 6, see Section 6.2.4).  The control points form a convex hull of the curve, so 

each parameter affects the whole curve, but its effect is most concentrated in its own 

locality.   

For Lagrange form parameterization the vector is the set of values of airspeed at dv + 1 

points: each coefficient therefore has most effect in a small locality.   

Algorithms for manipulating Chebyshev polynomials are well-known
18, 20, 108

.  The 

chebfun operator introduced by Battles and Trefethen
6
 was used to generate the 

Chebyshev coefficients, from which the Clenshaw recurrence
108

 was used to evaluate 

the degree dv interpolants.  The algorithms described by Farouki and Rajan
46

 were used 

to generate Bernstein coefficients and evaluate the polynomials, and the algorithms 

described by Berrut and Trefethen
11

 were used with the barycentric Lagrange 

parameterizations. 

5.3.1 Aircraft Data and Test Database 

The aircraft data were: M = 11 kg, lzstruct = 27 m/s
2
, 0 ≤ T ≤ 30 N, vs = 15 m/s, vne = 40 

m/s, pmax = 400 °/s. 
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To provide test spatial paths, a series of ranges of arbitrary (manually generated)  

boundary values defining {r, r', r'', r'''} were chosen with path lengths covering 

approximately 500 m to 30 km, with boundary airspeeds in the range [18, 35] m/s, 

tangential accelerations in the range [-1, 2] m/s
2
, load factors in the range [0.5g, 2g], 

bank angles in the range [-40 40] degrees, flight path angles in the range [-6, 10] 

degrees, and f values in the range [20, 120].  These ranges were chosen as reasonably 

representative for the aircraft data being used.  Combinations of these values were used 

to define test spatial paths; each path was then evaluated as described in Section 5.2 

resulting in a set of over 49,000 feasible spatial paths (i.e. vmax  vs,   [0, f]) and 

their associated vmax profiles; these profiles were used as the starting points for the 

initial guesses for the optimizations and as the test set for the evaluation of constraint 

accuracy in Section 3.5. 

5.3.2 NLP Settings 

Section 6.2.6.2 describes the SNM and SHJ algorithms and settings used in Chapter 6; 

in this chapter the same settings were used except for the SNM settings shown in Table 

5-2.  

Variable Description Value 

max Maximum trajectory evaluations 150000 

f 0 Initial objective range 128 

f thresh Objective threshold 1 

f min Minimum objective range 10
-4

 

 Maximum -norm of w-b  1 

 0 Initial step vector  0.05 

Table 5-2.    NLP Settings 

It was found that, for all trajectories, with SNM and the power series form when dv  10 

the initial simplex exceeded the maximum objective value; the limit was raised to 10
20

 

and the minimum initial simplex step size was reduced from 2.510
-4

 to 2.510
-17

 to 

overcome this. 
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5.3.3 Results and Analysis 

5.3.3.1 Computation Times 

Mean computation time to optimize airspeed per trajectory, using the Chebyshev form 

of airspeed parameterization, over successful optimizations and with N = 257, was 

0.044 s.  Comparing this value with the time taken to estimate vmax given in Section 

5.2.6 shows that airspeed optimization using the SNM/Chebyshev combination was 

approximately 3 times faster than the algorithm of Section 5.2, although since spatial 

optimization was not performed this finding does not necessarily generalize to 

combined spatial and airspeed optimization.  Further, to use direct evaluation of vmax as 

a replacement for parameterized airspeed, vp would have to be evaluated instead of 

being imposed indirectly (Section 5.2.4).  Hence direct evaluation is not a promising 

approach but may warrant future research. 

5.3.3.2 Optimization Convergence, Optimality and Speed 

Loss of optimality for each trajectory was defined as 

 
f Ref

Ref

t t

t


 (5.15) 

Robustness was defined as the percentage of test cases for which the NLP algorithm 

satisfied the termination criteria within the constraint tolerance and within the allowed 

total number of trajectory evaluations (1.510
4
). 

Computational speed was measured by the number of trajectory evaluations () invoked 

by the NLP algorithm. 

The results are shown graphically in Figures 5-2 to 5-16 and in tabular form in Tables 

5-3 to 5-7. 
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Figure 5-2.    Loss of Optimality,  

SNM with Chebyshev Parameterization 

 

 

Figure 5-3.    Trajectory Evaluations,  

SNM with Chebyshev Parameterization 

 

 

Figure 5-4.    Robustness,  

SNM with Chebyshev Parameterization 
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Figure 5-5.    Loss of Optimality,  

SNM with Bernstein Parameterization 

 

 

Figure 5-6.    Trajectory Evaluations,  

SNM with Bernstein Parameterization 

 

 

Figure 5-7.    Robustness,  

SNM with Bernstein Parameterization 
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Figure 5-8.    Loss of Optimality,  

SNM with Lagrange Parameterization 

 

 

Figure 5-9.    Trajectory Evaluations,  

SNM with Lagrange Parameterization 

 

 

Figure 5-10.  Robustness,  

SNM with Lagrange Parameterization 
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Figure 5-11.  Loss of Optimality,  

SNM with Power Series Parameterization 

 

 

Figure 5-12.  Trajectory Evaluations,  

SNM with Power Series Parameterization 

 

 

Figure 5-13.  Robustness,  

SNM with Power Series Parameterization 
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Figure 5-14.  Loss of Optimality,  

SHJ with Chebyshev Parameterization 

 

 

Figure 5-15.  Trajectory Evaluations,  

SHJ with Chebyshev Parameterization 

 

 

Figure 5-16.  Robustness,  

SHJ with Chebyshev Parameterization 
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Combination Degree 

 4 5 6 7 8 9 10 11 12 13 14 15 16 

SNM and Chebyshev 6.4 5.2 3.9 3.2 2.7 2.4 2.1 1.9 1.7 1.6 1.4 1.3 1.2 

SNM and Bernstein 5.3 4.1 3.1 2.5 2.0 1.7 1.4 1.2 1.1 1.0 0.9 0.9 0.9 

SNM and Lagrange 5.4 4.3 3.3 2.8 2.4 2.2 2.0 1.8 1.7 1.6 1.5 1.4 1.4 

SNM and power series 9.2 8.3 6.6 5.2 4.1 3.3 2.7 2.5 2.2 1.6 1.2 1.0 0.4 

SHJ and Chebyshev 5.8 4.7 3.4 2.6 2.2 1.8 1.7 1.4 1.2 1.2 1.1 1.0 1.0 

Table 5-3.    Mean Loss of Optimality (%) 

 

Combination Degree 

 4 5 6 7 8 9 10 11 12 13 14 15 16 

SNM and Chebyshev 5.1 4.3 3.2 2.6 2.4 2.2 1.9 1.7 1.6 1.5 1.4 1.4 1.3 

SNM and Bernstein 4.2 3.7 3.0 2.5 2.2 2.1 2.3 2.0 2.1 1.5 1.0 0.9 1.0 

SNM and Lagrange 3.7 3.0 2.3 1.9 1.8 1.7 1.8 1.7 1.7 1.7 1.7 1.7 1.7 

SNM and power series 12.6 14.6 12.4 9.9 8.1 6.8 5.5 5.1 4.5 2.9 2.0 1.6 1.4 

SHJ and Chebyshev 3.9 3.5 2.6 2.1 1.9 1.6 1.6 1.4 1.3 1.2 1.2 1.1 1.1 

Table 5-4.    Standard Deviation of Loss of Optimality (%) 
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Combination Degree 

 4 5 6 7 8 9 10 11 12 13 14 15 16 

SNM and Chebyshev 175 145 147 153 162 167 175 186 197 208 219 231 243 

SNM and Bernstein 365 445 513 618 765 987 1296 1686 2176 2868 3997 5311 6579 

SNM and Lagrange 447 517 649 802 980 1194 1434 1702 1996 2344 2778 3325 4107 

SNM and power series 5586 3835 4791 7127 9014 11362 14987 19061 21942 20177 19167 20627 17933 

SHJ and Chebyshev 374 479 533 627 704 726 858 840 892 954 1021 1109 1194 

Table 5-5.    Mean Trajectory Evaluations 

 

Combination Degree 

 4 5 6 7 8 9 10 11 12 13 14 15 16 

SNM and Chebyshev 2641 1356 961 234 115 101 96 101 107 105 105 111 118 

SNM and Bernstein 361 697 534 817 966 1751 1845 3408 4614 7716 12379 16529 19472 

SNM and Lagrange 3969 3122 2511 1805 994 752 434 1199 793 1067 1526 2107 3218 

SNM and power series 23619 16386 15496 17719 17093 19707 21379 24390 25787 22520 25590 27760 28650 

SHJ and Chebyshev 487 619 799 861 1098 709 1127 774 822 878 965 1120 1306 

Table 5-6.    Standard Deviation of Trajectory Evaluations 
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Combination Degree 

 4 5 6 7 8 9 10 11 12 13 14 15 16 

SNM and Chebyshev 30 8 4 0 0 0 0 0 0 0 0 0 0 

SNM and Bernstein 0 2 6 2 2 20 16 43 100 445 2468 4840 7145 

SNM and Lagrange 67 43 26 14 4 2 0 2 0 0 0 0 0 

SNM and power series 1787 1419 955 1216 1106 1458 1895 2604 3812 16588 25711 30568 52984 

SHJ and Chebyshev 1203 911 1248 1187 506 112 144 41 47 100 57 73 79 

Table 5-7.    Unsuccessful Cases per 100,000 Trajectories 
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Confidence intervals for each mean value in Table 5-5 were calculated using a 90% 

confidence level; the large sample size (49192) led to the half-width of the confidence 

interval of each population mean being ~0.007 the corresponding sample standard 

deviation.  The confidence intervals for the NLP/parameterization form combinations 

were non-overlapping, except for the SNM/Chebyshev combination when dv  {5,6,7}, 

the SNM/power combination when dv  {11,14}, and the dv = 11 values for 

SNM/Lagrange and SNM/Bernstein. 

The Chebyshev, Bernstein, and Lagrange forms, and the SHJ-Chebyshev combination,  

all produced similar optimality results, with mean and standard deviation at dv = 10 of 

approximately 2% and 4%, and decreasing with higher dv.  The power series form 

performance was worse than the other forms: for dv  9 mean optimality was 

approximately 1-4% worse than that of the other forms, and the standard deviation was 

larger; overall the power series form lost of the order of twice as much optimality as any 

of the other forms. 

The Chebyshev form with SNM resulted in the lowest mean  , which was low for all dv 

with the slowest (dv = 16) only 67% slower than the fastest (dv = 5).  The optimization 

was robust: even the worst case (dv = 4) was unsuccessful in only 0.03% of cases.  The 

standard deviation of  was also low except for dv  6.  The combination performed 

well on all measures compared to the other combinations. 

The Bernstein form was, on average, the next fastest of the four SNM combinations for 

dv  11, and mean plus standard deviation of  (which covers approximately 85% of the 

distribution) was lower for the Bernstein form than for the Chebyshev form for dv  6.  

The mean robustness ( ≔ success rate) of the Bernstein form was higher than that for 

the Chebyshev form over dv  [4,8], although the robustness of both forms was greater 

than 99.97% over that range.  However, the Bernstein form became much slower than 

the Chebyshev form as dv increased above 6, being at least an order of magnitude 

slower for dv  9, and its robustness reduced rapidly as dv increased above 10. 

The Lagrange form was slower than both Bernstein and Chebyshev forms up to 

approximately dv = 9.  Although it was not as fast or robust as the Chebyshev form for 
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any dv, like the Chebyshev form its robustness increased as dv increased, and for dv  9 

it was successful on all but 0.002% of cases, comparable with the Chebyshev form. 

The power series form was slow for all dv: its mean  was approximately an order of 

magnitude slower than for the Bernstein form for dv  12 and still approximately a 

factor of 3 slower at dv = 16.  The need to raise the absolute objective limit for the 

Nelder-Mead initial simplex and reduce the initial step size (Section 5.3.2) is attributed 

to ill-conditioning.  Even after these changes its best robustness was approximately 99% 

at dv = 6, but was below 90% for dv  13.   

With the SNM algorithm the Chebyshev and the Lagrange forms showed clear minima, 

for dv  [8,10], in the mean plus standard deviation results; these minima were not 

present in the mean data.  The corresponding Bernstein values showed a minimum at 

dv = 6, but the value was close to a best fit curve; the power series data shows a 

minimum for dv  [5,6].  The SHJ results did not exhibit these minima, although the 

data around dv  [8,10] do not appear to fit on a smooth curve through the other data 

points. 

For the SHJ algorithm,  was, as expected, more dependent on N than the SNM 

algorithm was, and SHJ was less robust than SNM over the whole dv range, although it 

still achieved better than 98.5% robustness. 

5.4 Discussion 

Direct evaluation of maximum feasible airspeed can be accomplished but was found to 

be approximately 3 times slower than the best tested NLP/parameterization 

combination.  However, the initial guess is critical to optimization performance and 

optimization was set up with initial guesses close to the known solutions; in practical 

use this is a reasonable (but perhaps optimistic) assumption since the previous solution 

may be a good approximation to the next solution, subject to the comments in Section 

3.4.8. 

The accuracy of parameterization as an approximation to vmax is low at low dv, and there 

are fewer degrees of freedom for the NLP algorithm to adjust which limits achievable 
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optimality and affects computational speed.  At high dv the accuracy of the 

approximation is high so the achievable optimality improves, but the NLP dimension is 

also high: how these two factors affect convergence at high dv is dependent on how the 

optimization parameters (the coefficients) control the shape of the approximation, i.e. 

how the next iterate depends on the coefficients and how these are used by the NLP 

algorithm.  Hence both the form of airspeed parameterization and the choice of NLP 

algorithm affect robustness and computational speed. 

For the Chebyshev form the coefficients have global influence but the high-degree 

terms have small coefficients, which helps reduce ill-conditioning at high dv and enables 

the Chebyshev form to be robust and relatively fast.  The Bernstein form has global 

coefficients but their influence is concentrated in neighbourhoods, and they form a 

convex hull of the curve.  Despite its numerical stability as a polynomial basis, the 

Bernstein form lost robustness as dv increased which may be due to ill-conditioning with 

respect to f  at high dv , due to the Van Der Monde matrix implicit in the relationship 

between the coefficients and the values of the curve at the dv + 1 control points. 

The Lagrange coefficients do not have the diminishing property of the Chebyshev 

coefficients, but they are values of the curve at dv + 1 points and are therefore more 

strongly localized than the Bernstein coefficients: the effect of each coefficient is 

concentrated in a small neighbourhood of the curve which may have contributed to the 

robustness at high dv and the relative speed compared to the Bernstein form (slower at 

low dv, faster at high dv). 

The degree and form of the airspeed parameterization clearly affected the convergence 

of the optimization, but the effects were dependent on the NLP algorithm.  With the 

SNM algorithm, measured by mean plus standard deviation of  the Bernstein form was 

the fastest and most robust for dv  6, but for higher dv the Chebyshev form was the 

fastest and most robust.  As the degree increased the Chebyshev form maintained its 

computational speed while the Bernstein form slowed, such that for dv  9 the Bernstein 

form was more than an order of magnitude slower than the Chebyshev form. Measured 

by mean trajectory evaluations, the Chebyshev form was the fastest, in some cases by 

an order of magnitude, for all dv.  
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Both the Chebyshev and Bernstein forms were at least 99.97% successful for dv  [4,8], 

but the Bernstein form is not suitable for use above degree 8 due to its poor robustness. 

The barycentric Lagrange form was approximately as robust as the Chebyshev form for 

dv  9, but it was not sufficiently robust for low degrees, and was slower than one or 

both of the Chebyshev or Bernstein forms for all dv.  

The power series form was slower, less optimal and less robust than the other three 

forms, on all measures. 

Except for the power series form, the form of the parameterization did not significantly 

affect the loss of optimality, the range dv   [8,10] resulting in about 2-5% loss of 

optimality together with low mean plus standard deviation of trajectory evaluations and 

high robustness.  If ~3% mean loss of optimality due to the airspeed parameterization is 

tolerated, then there is no need to use polynomials of degree > 8 in order to obtain a 

good balance between optimality, robustness, and computational speed, provided that 

the power series form is not chosen.  The choice should be either the Chebyshev or 

Bernstein forms depending on which measure is most important to the user. 

In this chapter the spatial path was excluded from the optimization in order to isolate the 

effects of airspeed parameterization: in operation both spatial and airspeed parameters 

would normally be included in the optimization vector. The increase in degrees of 

freedom with spatial parameterization included in the optimization vector should reduce 

the time spent by the NLP algorithm in attempting to optimize infeasible trajectories, 

and is therefore likely to reduce the most advantageous value of dv.  Chapter 6 describes 

research into the performance of combined spatial and airspeed optimization. 
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6 OPTIMIZATION 

6.1 Introduction 

The overall performance of the inverse dynamics method may be measured by the 

optimality of its solutions and the robustness and computational speed with which the 

solutions are generated: these are dependent on the formulation of the problem and the 

performance of the NLP algorithm.  In Chapter 5 it was found that for the minimum-

time problem, using the SNM algorithm with spatial parameterization excluded from 

the optimization, optimality, robustness, and computational speed were dependent on 

the degree of the airspeed parameterization.  In the work described in this chapter the 

minimum-time problem was formulated to include both spatial and airspeed 

optimization, and the performance of the method was investigated with each of the four 

NLP algorithms selected in Chapter 2. 

The objectives of the work described in this chapter were to: 

1. Confirm that achievable optimality is dependent on dv and improves as dv increases, 

when spatial parameterization is included in the optimization vector.   

2. Investigate whether the theoretical optimality advantages of SNOPT over the 

derivative-free SNM and SHJ algorithms (Section 2.5) are achieved in practice with 

the inverse dynamics method, and compare SNOPT optimality with DE optimality. 

3. Investigate the effects of the choice of NLP algorithm on robustness and 

computational speed, especially the performance of DE because of the lack of 

previous empirical results for DE with the inverse dynamics method and the absence 

of convergence proofs. 

4. Measure achieved computation times to assess whether the inverse dynamics 

method would be computationally fast enough for near-real-time application if used 

with the tested NLP algorithms on the test hardware and software. 

5. Identify candidate optimization approaches for near-real-time application. 



130 

6.2 Method 

The input test space was: 

 The four NLP algorithms DE, SNM, SHJ, and SNOPT. 

 Airspeed parameterization by Bernstein form polynomials with dv  {3,...8}. 

Bernstein form polynomials were selected for the airspeed parameterization because of 

their robustness and computational speed compared to Chebyshev, barycentric Lagrange 

and power series forms, and their suitability for Hermite interpolation at the boundary 

points.  The set {3,...8} for the degree of airspeed parameterization was selected 

because: 

 A cubic removes airspeed from the optimization vector and is the lowest degree 

polynomial which can be guaranteed to satisfy boundary conditions on airspeed and 

tangential acceleration. 

 The findings of Chapter 5 indicate that it is not necessary to use higher than degree 

8 for airspeed parameterization. 

The NLP problem was defined as minimizing the flight time (tf), subject to the 

constraint set defined by Eq. (4.68).  Optimality was measured by: 

 0 ≔ the percentage of all test cases for which  < max and tf was the lowest of the 

tf values produced by any of the NLP algorithms for that test case 

 2 ≔ the percentage of all test cases for which the algorithm achieved within 2% of 

the corresponding lowest tf  (subject to  < max) 

 5 ≔ the percentage of all test cases for which the algorithm achieved within 5% of 

the corresponding lowest tf  (subject to  < max).  

These are all relative measures: they quantify the optimality of each NLP algorithm and 

each parameterization degree relative to the other algorithms and degrees, not against 

true optimality. 

Robustness was measured by the ratio () of successful test cases to total test cases.  

Success was defined as satisfying the NLP termination criteria without triggering 
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termination by the maximum trajectory evaluations limit (max) specified for each 

algorithm, and satisfying  < max. 

The computational speed was measured by the number () of trajectory evaluations 

invoked by the NLP algorithm.  For SNOPT  included all trajectory evaluations that 

SNOPT invoked to evaluate gradient approximations.  The computational loads of the 

NLP algorithms themselves are discussed in Section 6.3.4.1 below. 

A database of pairs of pseudo-random boundary conditions (“test cases”) was created; 

simple checks were applied to reduce the number of infeasible test cases in the database. 

Initial guess expressions were created to be used by SNM, SHJ, and SNOPT.  DE was 

used to guide the choice of an initial guess for f.  Subsets of the test database were used 

to guide the choice of values for the NLP algorithm settings. 

A series of experiments was carried out in which a combination of an NLP algorithm 

with each degree of airspeed parameterization, together with an initial guess expression 

when required, was applied to 1000 test cases.  Optimality, robustness, trajectory 

evaluation counts, and average computational times were recorded. 

To assist the analysis of the results the performance profile graphs introduced by Dolan 

and Moré
27, 28

 were used to analyze the tf  and  results, based on the Matlab 

implementation described by Higham
62

.  The profiles summarize the relative 

performance of each test combination by plotting, against  as a percentage, the 

cumulative probability that the result (tf  or ) produced by a combination was less than 

or equal to  times the best (i.e. least and successful) result obtained for the same test 

case from any of the combinations for which the results were plotted.  Since the profiles 

compare each combination and test case against the other combinations for the same test 

case, the profiles show only relative performance: addition, removal or changes to the 

results of any combination changes the displayed values for all the combinations in the 

experiment.  Tabular results are also given. 
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6.2.1 Hardware and Software Environment 

The hardware and packaged software environment used in the experiments described in 

this Chapter was the same as that described in Section 3.3.  Controls were evaluated 

using Eq. (4.47) rather than Eq. (4.64), for computational speed. 

6.2.2 Aircraft Data 

The aircraft data were: M = 11 kg, lstruct = 3.8g, 0 ≤ T ≤ 25 N, vs = 15 m/s, vne = 40 m/s, 

pmax = 200 °/s. 

6.2.3 Test Database and Settings 

A database of 2000 unique pairs of boundary conditions was created with pseudo-

random values that satisfied the following bounds i  {[1,2000] ∩ ℤ} 

 0 0 0 0x y z    (6.1) 
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  0, 1.05 ,0.95f s nev v v  (6.5) 

  0, 0.5 ,2.1z fl g g  (6.6) 

  0, 0,2f   (6.7) 

   0, 10,10
180f

    (6.8) 
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   0, 60,60
180f

    (6.9) 

The following conditions were also applied and any boundary value pair that violated 

any condition was pseudo-randomly re-generated. 

 
0, 0, 0,1.5( ),1.5( )f s f ne fv v v v v      (6.10) 
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  0, min max,fT T T  (6.12) 

 
0, 0,z fl l    (6.13) 

The two ranges of final position in Eqs. (6.2)-(6.4) were used to spread the path length 

over a larger range than would have been obtained if only one range had been used.  Eq. 

(6.10) was used to exclude boundary accelerations that would be likely to be infeasible 

for all optimization vectors; the generated range of v  was observed to be (-3.49, 3.25).  

Eq. (6.11) imposed an approximate minimum flight time of 10 s, the 7 value being 

approximately the maximum flight path angle that the aircraft could sustain at 

maximum thrust.  Eq. (6.12) ensured that the thrust required at the boundary points 

satisfied the aircraft limits.  No duplicate boundary condition pairs were allowed, hence 

each test case was unique in the database. 

Except where stated a subset of 1000 test cases, i  {501,...1500}, was used together 

with Chebyshev-Gauss-Lobatto node distribution, N = 210, and local quadratic 

interpolation for constraint evaluation (from the results in Section 3.5.2).  Clenshaw-

Curtis quadrature was used to evaluate tf. 
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6.2.4 Optimization Vector 

Degree 7 power series polynomials were used for the spatial parameterization, with the 

third derivatives at both boundary points included in the optimization vector  in order 

to exploit the maximum available degrees of freedom. 

The first two and the last two coefficients C0, C1, Cdv-1, and Cdv of the Bernstein form 

airspeed parameterization were derived directly from the boundary conditions by 

 0
0 0 1 0 1, , ,

v v

f

d f d f

v v

vv
C v C v C v C v

d d
     


 (6.14) 

This construction ensured that the airspeed parameterization satisfied the boundary 

conditions without any need for airspeed constraint checking at the first and the last 

nodes.  When dv = 3 airspeed was determined entirely by the boundary conditions and 

there was no airspeed optimization; for dv  4 the remaining airspeed coefficients were 

included in . 

Hence the optimization vector 
Dχ   was (omitting transposition operators for clarity) 

 
 
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 (6.15) 

and D (the NLP dimension )  [7,12] accordingly. 

6.2.5 Initial Guess 

In Chapter 3 it was found that the inverse dynamics method produced multimodal NLP 

problems.  Hence for gradient or derivative-free NLP algorithms successful 

convergence is critically dependent on the initial guess being in a suitable basin of 

attraction to a feasible local minimum, and optimality is dependent on the closeness of 

the initial guess to a feasible global minimum. 

It was shown in Section 3.4.3 that an initial guess of f  greater than but close to 2 would 

keep the ill-conditioning of the spatial interpolation close to its minimum.  In order to 
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investigate suitable initial guesses for f , DE was run against the test database with 

N = 210, uniformly-spaced nodes, and linear constraint interpolation.  Figure 6-1 shows 

the resulting pseudo-optimal values of f .  The tests were also run with Chebyshev-

Gauss-Lobatto node distribution and with quadratic constraint interpolation: consistent 

results were obtained and f  = 10 was chosen for the initial guess because it was near, 

but within, the lower limit of the range of pseudo-optimal values. 

For the 6 spatial coefficients the simple and obvious initial guess 
0 (0,0,0)T

f
  r r  was 

used. 

Eq. (6.14) obviates any need for an initial guess of the airspeed coefficients for dv = 3.  

An obvious initial guess for dv > 3 that satisfies the boundary conditions is to elevate to 

the required degree the cubic given by substituting dv = 3 into Eq. (6.14); this is readily 

carried out using standard relationships
46

.  This approach was used for all experiments. 

 

Figure 6-1.    Pseudo-Optimal Values of f  for 2000 Test Cases 
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6.2.6 NLP Algorithm Settings 

The DE, SNM, and SHJ algorithms were implemented from the references given in 

Section 2.5.  The SNOPT version 7.2 package was run as a mexw64 file under an 

academic licence. 

DE was implemented as a Matlab script and was called directly by a top-level Matlab 

script; the Nelder-Mead and Hooke-Jeeves algorithms were implemented as Matlab 

functions and called from an intermediate script.  SNOPT was called as a mexw64 

function from an intermediate script that was adapted from the Matlab script provided 

with SNOPT.  The trajectory evaluation algorithm was implemented as a Matlab 

function, with no sub-functions except a private quadratic interpolation function.  It was 

adapted to evaluate the penalty function, if required, and to match the objective and 

constraint formats required by the NLP algorithms, but was otherwise identical for each 

NLP algorithm. 

Settings for each of the four NLP algorithms were chosen to balance two objectives: to 

allow valid comparisons between the algorithms, and to allow each algorithm to obtain 

results representative of the potential of each algorithm.  Since finding an optimal 

solution to this problem is itself a multi-objective high-dimension optimization problem, 

the settings were chosen heuristically, guided by small numbers of experiments. 

6.2.6.1 DE 

Price et al.
110

 described four major versions of DE, and many variations.  The version 

used in this work was DE/Rand/1/Bin with upper and lower bounds on elements of  

and Lampinen's constraint handling
85

 (Section 2.5.3).  The initial pseudo-random 

population was generated with a uniform distribution; subsequently the target, base, and 

pairs of mutation vectors were all distinct and obtained by pseudo-random permutation 

of the population (Matlab's randperm function, with offsets of 1, 3 and 7 from the target 

for the base and mutation vectors).  The scale factor F and the crossover probability Cr 

were set to 0.9 after a small number of tests.  Although Price suggests that the 

population Np should be up to 5D, it was found that with Np = 15 DE was robust and the 
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solutions were closer to optimal than those achieved with the other NLP algorithms for 

the tested range of D  [7,12]; i.e. it was not necessary to use higher values of Np. 

DE does not require an initial guess, but bounds are required by Matlab's random 

number generator rand which was used to populate the first generation.  The 

initialization bounds were 

 
0

6
3, max ,

sin 7°

f

f f f f

f

z
x y z

v v


   
             

 (6.16) 

 0, [ 10,10]f
  r  (6.17) 

  [0,2 ], 2,... 2i ne vC v i d     (6.18) 

The expression in the maximum function in Eq. (6.16) is three times the expression in 

Eq. (6.11). 

Only a single bound was applied after the first generation: f  3 to ensure that no 

negative final times could be generated. Hence DE was not limited only to solutions 

within the initialization bounds, although it may be slow to find solutions significantly 

outside those bounds. 

In principle, DE does not require any constraint violation tolerance, but to avoid round-

off error affecting feasibility a tolerance of 2
-42

 (1024eps) was incorporated in each 

constraint. 

Termination criteria for DE, SNM, and SHJ were chosen to ensure that the solution was 

close to optimality by requiring that the difference between defined objective (tf) values, 

and the difference between the corresponding  vectors, were both within tolerances f 

and  respectively.  For DE, the termination criterion was  

         max /g p F p w b f w bN N N f f    


     χ χ    (6.19) 
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where fw is the worst (highest) objective value in the current generation, fb is the best 

(lowest) objective value, w and b are the corresponding optimization vectors, and NF 

is the number of members of the latest generation that are feasible.  The first term 

implemented an overriding limit on , which was expressed as max/Np generations 

because the termination criteria were only applied at the completion of each generation.  

The term containing NF  required that all members of the population were feasible.   

The g count (but not the overall  count) was reset to 1 at the generation which 

generated the first feasible solution.  This was tried because during the settings testing it 

appeared that once it had one feasible solution, DE rapidly found feasible solutions for 

the remaining Np - 1 population members, and that this reset would therefore 

significantly improve robustness with only a small increase in .  However, it was 

found that the effect was small: it added one success to each of dv  {3,...6}, two to 

dv = 7, and zero to dv = 8.  The results below include these successes. 

The settings used for DE are shown in Table 6-1. 

Variable Description DE 

Value 

max Maximum trajectory evaluations 45000 

f Maximum spread of objective values over 

population 

0.1 

 Maximum -norm of w-b 1 

F Mutation scale factor 0.9 

Cr Crossover probability 0.9 

Np Population size 15 

Table 6-1.    DE Settings 

6.2.6.2 SNM and SHJ 

For SNM and SHJ Eqs. (4.70)-(4.72) were used for the penalized objective, constraints 

and squared two-norm penalty function.  Unity penalty weights (k) were used (Section 

3.4.10.5).  
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The sequential outer loop used with the Nelder-Mead and Hooke-Jeeves algorithms was 

based on that described by Griffin and Kolda
56

, slightly simplified because use of the 

squared two-norm penalty function obviated the need for a smoothing parameter.  The 

outer loop (excluding housekeeping operations) was 

Until Finished 

 Hooke-Jeeves (or Nelder-Mead) 

 if ( < max) ∩ (f    f thresh ) 

  Finished = true, successful 

 else if (inner loop failed)   ( > max) 

  Finished = true, unsuccessful 

 else 

  f   max (f /f , f min) 

  if   max  

     min (p, max) 

   stagnation check 

  end 

 end 

end 

The value of f  used by the Nelder-Mead and Hooke-Jeeves algorithms was initialized 

to f 0 , and at each outer iteration it was divided by a factor f  subject to a lower limit 

of f min.  Outer loop successful termination was inhibited until f  reached a threshold 

value f thresh (unless max was reached).  The penalty parameter  was initialized to 0 

and at each outer iteration it was multiplied by a factor p subject to an upper bound of 

max.  

The stagnation check was included to cause the outer loop to exit if  and  were 

unchanged compared to the previous loop, and the number of trajectory evaluations in 

the last two inner loops were equal.  This check was added after it was found that the 

Nelder-Mead algorithm could reach a stagnation condition in which it looped without 

changing the simplex under some conditions. 
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The fminsearch function in Matlab (as described in the Matlab software help file) is an 

implementation of the Nelder-Mead algorithm based on Lagarias et al.
84

.  To form the 

initial simplex it perturbs each element of the initial guess by a factor of 5%, or by 

2.510
-4

 if the element is zero.  It was found that a specified initial step length ( 0) in 

each dimension was more effective for the SNM algorithm.  The same  0 was used to 

set the initial step length for the Nelder-Mead and Hooke-Jeeves algorithms. 

The termination criteria for the Nelder-Mead algorithm used tests on the objective and  

values in the simplex, analogous to Eq. (6.19) 

       max max min max minff f    


    χ χ   (6.20) 

A maximum absolute value of the objectives in the initial simplex was also imposed to 

prevent divergence to  . 

The core Hooke-Jeeves algorithm was terminated when a base point exploration failed, 

the step size had been reduced hmax times, and the most recent base and explore point 

objective values were within f  of each other 

       max exp maxbase ff f b h h         (6.21) 

Upper and lower bounds on  are readily applied in the Hooke-Jeeves algorithm: only 

f  3 was used, matching DE.  The Nelder-Mead algorithm is not so well suited to 

maintaining parameter bounds, hence a limit of 10
10

 on the absolute function value was 

imposed instead. 

The Hooke-Jeeves algorithm cached the most recent 4D trajectory evaluation results to 

reduce duplicated trajectory evaluations (Kelley
75

).  Over a small number of setup tests 

this was observed to reduce  by 5-10%. 

The settings used for the SNM and SHJ algorithms are shown in Table 6-2.  The core 

Nelder-Mead algorithm also requires a number of other settings.  In this work Price's 

parameters  and h were set to 10
-15

 and 1 respectively and all other settings were as 

specified in Lagarias et al.
84

 and Price et al.
109

. 
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The settings in Tables 6-1 and 6-2 and the associated termination criteria were chosen 

after a small number of tests.  It is probable that improvements in the performance of 

each NLP algorithm could be obtained by modifying the settings and criteria.  For 

example the SHJ termination criteria Eq. (6.21) includes a limit on the number of step 

size reductions as the means of terminating when the final step size is sufficiently small: 

0.002 from the settings in Table 6-2.  If hmax was increased, SHJ optimality (which was 

the worst of the four algorithms, as described in Section 6.3.3 below) may be improved 

at the expense of computational speed and/or robustness, although the SHJ condition is 

already more onerous than that of SNM. 

Variable Description Value 

max Maximum trajectory evaluations 45000 

max Maximum constraint violation 0.1 

0 Initial penalty parameter 1 

max Maximum penalty parameter 2
28

 

f 0 Initial objective range 1 

f thresh Objective threshold 1 

f min Minimum objective range 0.01 

 Maximum -norm of w-b (Nelder-Mead) 0.5 

hmax Maximum step reductions (Hooke-Jeeves) 3 

 0 Initial step vector (2,...) 

f f  reduction factor 2 

p  multiplication factor 2 

h h reduction factor (Hooke-Jeeves) 10 

 Maximum absolute objective (Nelder-Mead) 10
10

 

Table 6-2.    SNM and SHJ Settings 

6.2.6.3 SNOPT 

For SNOPT "Derivative Option 0" was set because analytic derivatives were not 

available.  The maximum permitted constraint violation was imposed by setting the 

upper bound for each constraint equal to max.  It was found that, for any value of 

max  {-0.1,0,0.05,0.1}, SNOPT was less than 6% successful if success was defined as 
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 max   (6.22) 

but that if success was instead defined (for the purpose of analysis) as  

 max tol     (6.23) 

with tol = 0.1 in Eq. (6.23), then success rates of the order of 60-70% were obtained.  

Hence max = 0 was specified in the input to SNOPT, and tol = 0.1 was applied during 

data analysis to make the effective SNOPT constraint violation tolerance equal to the 

SNM and SHJ constraint violation tolerance.   

SNOPT requires bounds on the optimization variables: using  was not effective, the 

DE values in Eqs. (6.16)-(6.18) were tried but better results were obtained with the 

following bounds, which were therefore used in the comparative experiments 

 [3, ]f    (6.24) 

 0, [ 2000,2000]f
  r  (6.25) 

  [ 200,200], 2,... 2i vC i d      (6.26) 

Default SNOPT values were used for all other settings including iteration count limits. 

6.3 Results and Analysis 

6.3.1 Robustness 

Table 6-3, and Figures 6-2 and 6-3, show the percentages of test cases for which each 

NLP algorithm succeeded () for each dv. 
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NLP      Degree of Airspeed Parameterization 

 3 4 5 6 7 8 

DE 93.9 99.1 99.7 99.7 99.9 99.8 

SNM 82.3 91.8 94.2 94.9 95.1 95.7 

SHJ 80.7 91.0 92.9 94.4 95.4 95.7 

SNOPT 65.7 68.1 67.6 66.0 64.2 65.7 

Table 6-3.    Percentage Success Rates 

 

Confidence intervals for each proportion in Table 6-3 were calculated using a 90% 

confidence level.  With airspeed included in the optimization, for DE the half-width was 

less than 0.5%, for SNM and SHJ it was less than 1.5%, and for SNOPT it was 

approximately 2.5%. 

 

 

Figure 6-2.    Percentage Success Rates vs dv 
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DE, SNM, and SHJ showed reduced robustness when airspeed was excluded from the 

optimization even though this had the lowest NLP dimension.  Although all the test 

cases in the database were solved by DE for dv  5 and therefore had feasible solutions, 

at zero constraint tolerance 4 of the test cases were not solved by any of the four 

algorithms for dv = 4, and 43 of the test cases were not solved by any of the four 

algorithms for dv = 3, despite multiple retries.  Therefore including airspeed in the 

optimization enabled DE, SNM, and SHJ to converge successfully for a wider range of 

boundary conditions.  SNOPT's mean robustness varied by less than 4% over 

dv  {3,...8}, which is within the 90% confidence interval: hence the data do not support 

the same conclusion for SNOPT. 

For dv  4 the results were more sensitive to the choice of NLP algorithm than to dv (and 

therefore to the NLP dimension D = dv + 4).  DE's robustness peaked at dv = 7, although 

it was within the confidence interval for dv  4 so the data only weakly support the 

presence of a peak.  The robustness of both SNM and SHJ increased with dv, but by less 

than 5% over dv  {4,...8}.  Hence the inclusion or exclusion of airspeed from the 

 

Figure 6-3.    Percentage Success Rates vs NLP 
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optimization had a more significant effect on robustness than the variation of NLP 

dimension for DE, SNM, and SHJ. 

SNOPT was less robust than the other three algorithms, reaching only 66-68%, whereas 

for dv  4 SNM and SHJ achieved 91-96% and DE achieved over 99% successful test 

cases. 

6.3.2 The Effects of dv on Optimality 

Figure 6-4 shows the relative optimality of each of the four NLP algorithms across the 

range of dv  {3,...8}.  It is clear from the spacing of the curves that for each of the four 

algorithms optimality improved with increasing dv. 

The relatively poor robustness of SNOPT limited the number of test cases for which it 

was possible for SNOPT to be the closest to optimal (i.e. it places an upper bound on 0 

measured over all test cases).  To remove the limiting effects of robustness the data of 

Figure 6-4 was divided by  and re-plotted as Figure 6-5. 
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Figure 6-4.    Optimality Profiles for Each NLP, vs dv 
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From Figure 6-5 it can be seen that a tolerance of approximately 28% loss of optimality 

would be required to cover 50% of the successful test cases for dv = 3, whereas with 

airspeed included in the optimization only 4% tolerance would be required to cover 

50% of successful test cases.  Hence not only was 0 better when airspeed was included 

in the optimization but the dispersion of optimality was also better (i.e. more results 

were within a given tolerance of the lowest tf). 

Parenthetically, Figure 6-5 appears to show that optimality was approximately a linear 

function of tolerance for dv = 3.  This is an artefact of the -axis scales: if the graphs had 

 

Figure 6-5.    Scaled Optimality Profiles for Each NLP, vs dv  

(Using the same colour coding as Figure 6-4) 
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been displayed with the -axis extended out to  = 3000% then the dv = 3 curves would 

be seen to have the same pattern as the other curves.  

To relate these results to the results presented in Chapter 5 for the Bernstein form Table 

6-4 shows, for SNM, the percentage loss of relative optimality that would have to be 

tolerated to bring 50% and 68% respectively of the successful test cases within the 

tolerance.  The 50% and 68% points were chosen as approximations to the mean and 

mean plus standard deviation values (assuming approximately symmetric Gaussian 

distributions).  The data in Table 6-4 are relative to the best value obtained by 

optimization for each test case (which was most often the DE result for dv = 8), whereas 

the optimality results in Chapter 5 are relative to vmax: hence the values in Table 6-4 

should be less than the values in Table 5-3 and Table 5-4 of Section 5.3.3.2 by 

approximately the Table 5-3 and Table 5-4 dv = 8 values.  It can be seen that this is the 

case. 

SNM: Loss of optimality for p% of successful 

test cases 

dv p = 50% p = 68% 

3 28.6 42.0 

4 4.0 5.5 

5 2.6 3.8 

6 1.0 2.0 

7 0.4 0.9 

8 0 0.2 

Table 6-4.    SNM Loss of Optimality vs dv 

 

The corresponding data for the most robust algorithm, DE, are shown in Table 6-5 and 

are consistent with the data in Table 6-4.. 
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DE: Loss of optimality for p% of successful 

test cases 

dv p = 50% p = 68% 

3 27.5 42.5 

4 3.9 5.5 

5 2.9 4.1 

6 0.9 1.9 

7 0.4 1.1 

8 0 0.2 

Table 6-5.    DE Loss of Optimality vs dv 

 

These results therefore support the results of Chapter 5 on the dependence of optimality 

on the degree of airspeed parameterization. 

6.3.3 Comparative Optimality of the NLP Algorithms 

Figure 6-6 shows 0, the number of test cases for which each algorithm produced the 

lowest tf, for each dv, measured over all test cases. 

 

Figure 6-6.    Percentage Each NLP was Closest to Optimal vs dv 
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SNOPT, as the only one of the four NLP algorithms to explicitly use the KKT 

conditions, was expected to produce results closer to optimal than the other algorithms, 

and therefore to have the highest 0 score.  However, DE achieved the highest 0 score: 

48% versus 36% for SNOPT, although SNOPT achieved an 0 score 2% higher than 

DE for dv = 8.  SNM achieved an 0 score of 10-16%, and SHJ only 2-4%, all measured 

over all test cases. 

Figures 6-7 and 6-8 show the 2 and 5 scores over all test cases.  In these figures 

SNOPT results reduced in optimality more steeply than any of the other three 

algorithms: SNOPT dropped from second place to DE for 0 (Figure 6-6) to third place 

for 2 (Figure 6-7) and to last place for 5 (Figure 6-8): this was due to SNOPT's lack 

of robustness which bounded SNOPT's optimality scores. 

 

 

Figure 6-7.    Percentage Each NLP was Within 2% of Optimal vs dv 
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To remove the limiting effects of robustness from the analysis the optimality of each 

algorithm was analyzed over only successful tests, and the data was divided by .  

Figure 6-9 shows the resulting performance profiles. 

These graphs show that when SNOPT was successful it consistently produced better 

values of tf than the two derivative-free algorithms.  However, the figures also confirm 

that DE was not only the most robust but also the most consistently optimal.  Although 

over successful cases SNOPT achieved the lowest tf more often than DE for dv  5, 

(shown by the intersection of the curves with the y-axis), the crossover points, at which 

more DE results were within a tolerance than SNOPT results, were at tolerances of 

0.02%, 0.2%, 1.4% and 1% for dv  {5,...8} respectively.  This shows that DE 

optimality was more consistently close to optimal than was SNOPT, even when SNOPT 

was successful. 

 

Figure 6-8.    Percentage Each NLP was Within 5% of Optimal vs dv 
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Figure 6-9.    Scaled Optimality Profiles for Each dv, vs NLP 
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When the effects of robustness are removed, Figure 6-9 shows that for dv  5 all of the 

NLP algorithms produced solutions within 10% of the lowest tf in 95% of cases.  

However, when airspeed was excluded from the optimization only DE achieved more 

than 95% (98%) of successful results within 10% of the lowest tf  (SNOPT achieved 

92%, SNM achieved 90% and SHJ achieved 82%). 

SNM consistently outperformed SHJ for optimality but both achieved low optimality 

scores: 0 = 10-16% for SNM and 0 = 2-4% for SHJ. 

6.3.4 Computational Speed 

The means and standard deviations of  for all test cases are shown in Tables 6-6 and 

6-7 and in Figures 6-10 and 6-11. 

NLP Degree of Airspeed Parameterization 

 3 4 5 6 7 8 

DE 12101 11088 12248 14422 16371 18266 

SNM 10553 5672 4553 4520 4579 4671 

SHJ 1573 1400 1333 1424 1610 1780 

SNOPT 1428 1390 1483 1494 1601 1702 

Table 6-6.    Mean Trajectory Evaluations, All Test Cases 

 

NLP Degree of Airspeed Parameterization 

 3 4 5 6 7 8 

DE 9414 5013 4073 4181 4627 4838 

SNM 19055 13031 10795 10363 10079 9759 

SHJ 2960 1609 1326 1495 1618 1825 

SNOPT 1101 1184 1001 1001 1074 1063 

Table 6-7.    Standard Deviation of Trajectory Evaluations, All Test Cases 
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A two-factor ANOVA was performed: at a significance level of 0.01, the effects of the 

NLP algorithm, of dv, and of the interaction between NLP and dv, were statistically 

significant. 

DE was the slowest of the four algorithms: measured by mean   over all test cases it 

required 8-12 times as many trajectory evaluations as did the two fastest algorithms SHJ 

and SNOPT, and up to 4 times as many as SNM.  Mean   for DE had a minimum at 

dv = 4 and the standard deviation of   was close to a minimum for dv  {4,5}.   

Figure 6-11 shows the data of Figure 6-10 against an expanded y-axis, to present the 

data for SHJ and SNOPT more clearly: the two algorithms required similar numbers of 

trajectory evaluations but SHJ showed more sensitivity to dv. 

The means and standard deviations of   for SNM were also high: for dv = 3 their sum 

was 50% higher than that of DE.  The SNM mean   reduced as dv increased to 6, but 

then showed a small rate of increase up to dv = 8.  The SNM standard deviation reduced 

steeply as dv increased to 5, then continued to decrease, but at a lower rate, as dv 

increased to dv = 8.  SNM showed a monotonic decrease in mean plus standard 

deviation of   as dv increased, i.e. the increase in degrees of freedom increased the rate 

of convergence faster than the NLP dimension reduced it, up to the highest dv tested 

(dv = 8). 

Figure 6-12 shows the  performance profiles for all test cases including failures to 

converge successfully:  SHJ was most often the fastest for every value of dv, but for 

dv  4 the SNOPT curves cross over the SHJ curves: this means that over a sufficiently 

large tolerance SNOPT would produce more results within the tolerance than SHJ.   
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Figure 6-12.   Profiles for Each dv, vs NLP, All Test Cases 
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These results were due in part to the different behaviours of DE and SNM compared to 

SHJ and SNOPT for unsuccessful test cases: DE and SNM continued until the trajectory 

evaluation limit max was reached, whereas SHJ and SNOPT terminated quickly.  Tables 

6-8 and 6-9 show the data when only successful test cases are included. 

NLP Degree of Airspeed Parameterization 

 3 4 5 6 7 8 

DE 9964 10777 12149 14322 16340 18212 

SNM 2112 1895 1963 2160 2316 2659 

SHJ 830 1146 1115 1245 1400 1560 

SNOPT 1543 1592 1648 1724 1886 2029 

Table 6-8.    Mean Trajectory Evaluations, Successful Test Cases 

 

NLP Degree of Airspeed Parameterization 

 3 4 5 6 7 8 

DE 4407 3825 3660 3761 4523 4692 

SNM 3769 1934 1288 1177 970 1379 

SHJ 1655 1141 848 1118 1047 1230 

SNOPT 890 1288 962 998 1044 1005 

Table 6-9.    Standard Deviation of Trajectory Evaluations, Successful Test Cases 

 

The 90% confidence intervals for Table 6-8 were all non-overlapping, except for the 

following pairs: SNM dv  {4,5}; SHJ dv  {4,5}; and SNOPT dv  {3,4}, dv  {4,5}, 

and dv  {5,6}. 

The same data is shown graphically in Figures 6-13 and 6-14. 

Considering only successful test cases, on mean   DE was the slowest algorithm by a 

factor of 5-12 compared to the other three algorithms.  For dv = 3 it was faster over 

successful cases than over all test cases, confirming that the apparent minimum in the 

DE "all test cases" data was due to the unsuccessful test cases.  
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Since for dv  4 DE was over 99% successful, excluding unsuccessful test cases only 

changed DE mean   by less than 3% for dv = 4 and less than 1% for dv  5.  The 

computational speed of DE for dv  4 (D  8) was approximately linear in the NLP 

dimension.  Over only successful test cases, Table 6-8 shows that on mean   SHJ was 

26% to 46% faster than SNOPT. 

The performance profiles of Figure 6-15, which include only successful test cases and 

scale the data by a factor of  to remove the effects of relative robustness, show that if 

each algorithm was 100% robust, SHJ would be the fastest for all dv, and SNOPT, 

although scoring higher than SNM at  = 100%, would be overtaken by SNM for a 

sufficiently large tolerance (of the order of a factor of 3).  DE would remain the slowest. 
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6.3.4.1 Computation Times 

Table 6-10 shows mean computation times in seconds averaged over all test cases.  The 

times excluded reading stored data such as boundary conditions from disc, initializing 

variables and arrays that were not dependent on the boundary conditions, and writing 

output data to disc.  The times included transforming the boundary conditions to the 

virtual domain (Section 3.2.4), creating the corresponding initial guess if required 

(Section 6.2.5), invoking the NLP algorithm, and assigning the results to arrays.   

NLP Degree of Airspeed Parameterization 

 3 4 5 6 7 8 

DE 303 279 307 361 416 468 

SNM 268 146 116 116 115 118 

SHJ 40 35 35 36 41 48 

SNOPT 37 36 38 38 41 44 

Table 6-10.  Mean Elapsed Computation Times, All Test Cases (s) 

 

Table 6-11 shows the percentage differences between computation times per trajectory 

node for each NLP algorithm relative to DE, because DE was the most efficient 

algorithm being fastest (per node) for 14 of the 18 comparisons in the table.  Although it 

was the most complicated of the algorithms, SNOPT was comparable in speed with 

SNM and SHJ: this is attributed to the use of compiled mexw64 code counterbalancing 

the additional complexity. 

NLP Degree of Airspeed Parameterization 

 3 4 5 6 7 8 

DE 0.0 0.0 0.0 0.0 0.0 0.0 

SNM 1.4 2.6 1.5 2.3 -0.8 -1.1 

SHJ 1.8 0.8 4.6 1.5 -0.6 6.1 

SNOPT 2.8 1.8 1.0 2.1 0.3 -0.2 

Table 6-11.  Percentage Differences in Computation Times per Node 
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The mean time taken to evaluate one trajectory node (N = 210), averaged over all test 

cases, all NLP algorithms and all dv values, was 1.2210
-4

 s, and the standard deviation 

of this value over all the algorithms and dv values was less than 2% of the mean. 

The mean computation times for DE were approximately 0.5-4% of the mean pseudo-

optimal tf times for dv  {3,...8} (higher with higher dv). 

6.4 Discussion 

Taking each of the three measures in isolation, on robustness DE was the most robust 

and SNOPT the least; on optimality DE was the most optimal and SHJ the least; on 

computational speed SHJ was the fastest and DE the slowest. 

6.4.1 Objective 1:  The Effects of dv on Optimality 

The results for all four NLP algorithms support the findings of Chapter 5 that 

achievable optimality depends on, and increases with, dv. The results also show that this 

remains valid when the spatial path is optimized (using global degree 7 power series 

polynomials as spatial parameterization functions). 

In all the results, the optimality achieved when airspeed was excluded from the 

optimization was lower than that achieved when airspeed was included in the 

optimization.  Figure 6-9 shows that for dv  5 all of the NLP algorithms, when they 

converged successfully, produced solutions within 10% of the lowest tf in 95% of cases.  

However, when airspeed was excluded from the optimization only DE achieved more 

than 95% of successful results within 10% of the lowest tf .  Not only peak optimality 

but the dispersion of optimality was better (i.e. more results were within a given 

tolerance of the lowest tf) when airspeed was included in the optimization. 

6.4.2 Objective 2:  Optimality 

DE was found to produce the most pseudo-optimal solutions: it achieved 2 = 94% 

averaged over all dv and all test cases.  Since DE had no constraint violation tolerance 

whereas SNOPT, SNM, and SHJ each used a tolerance of 0.1, DE's high optimality and 

robustness are more favourable to DE than the basic arithmetic implies. 
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SNM achieved 2 = 69% over all test cases, equivalent to 74% over successful cases.  

These results were lower than those of DE and SNOPT.  SHJ's optimality results were 

the worst of the four algorithms: only 2 = 45% over all test cases, equivalent to 49% 

over successful test cases.   

When it converged successfully SNOPT was found to produce a high percentage of 

results close to optimal, better than SNM and SHJ but not as good as DE.  It was 

expected to score highest for optimality due to its use of the KKT optimality conditions, 

but it achieved only 2 = 58% over all test cases, equivalent to 88% over successful test 

cases.  It only achieved an overall success rate of 66% which is attributed to the low 

frequency with which the initial guess was in a basin of attraction to feasible local 

minima because of the multimodality of the problem, and that SNOPT is more sensitive 

to the accuracy of the initial guess than SNM or SHJ.   

Further, for test cases in which DE achieved a solution closer to optimal than any of the 

three "local" algorithms SNOPT, SNM, and SHJ, there are two causes to consider: 

either the local algorithms all failed to converge to a global minimum despite a good 

initial guess, or the initial guesses were not close enough to a feasible global minimum.  

Given DE's high 0, 2, and 5 scores, investigation of improved initial guesses is a 

worthwhile area for future research. 

No analytic method has yet appeared that is guaranteed to find an initial guess that lies 

in a basin of attraction to a feasible global minimum (if such a method does exist then it 

reduces the global optimization problem to a local optimization problem).  One 

alternative is to use solutions of relaxed or similar problems, such as finding feasible 

solutions without minimizing an objective: Yakimenko reported
133

 good results using 

this latter approach in 2000.  However, even if this approach were to raise SNOPT's 

robustness to the same as DE, SNOPT's optimality would still be lower than that of DE. 

6.4.3 Objective 3:  Robustness and Computational Speed 

DE was found to be the most robust of the four algorithms: it generated a successful 

solution in more than 99% of all test cases for dv  4, and in 94% of all test cases when 



164 

airspeed optimization was excluded (dv = 3).  SNOPT achieved an overall success rate 

of 66%. 

The two derivative-free algorithms SNM and SHJ achieved higher robustness than 

SNOPT, but lower than DE.  In particular when higher values of dv were used 

(dv  {6,7,8}), the additional degrees of freedom helped both SNM and SHJ to achieve 

success rates of 93-96%, thus exceeding the 66% achieved by SNOPT and supporting 

(for these test data) Yakimenko's comments
133

 that the Nelder-Mead and Hooke-Jeeves 

algorithms are more robust than gradient-based algorithms.   

Airspeed optimization enabled DE, SNM, and SHJ to converge successfully for a wider 

range of boundary conditions than when airspeed was excluded from the optimization. 

When airspeed was included in the optimization the robustness of DE, SNM, and SHJ 

improved compared to robustness without airspeed optimization: from 94% to >99% for 

DE and from 81-82% to > 91% for SNM and SHJ.  For dv = 6 the success rates of DE, 

SNM, and SHJ were 99.7%, 95.1% and 95.4% respectively.  SNOPT showed only a 4% 

variation in robustness over the tested range of dv, including dv = 3. 

Except for DE results over only successful test cases, computational speed was faster 

when airspeed was included in the optimization provided that dv was low.  For DE 

results over only successful cases, excluding airspeed from the optimization was faster 

but by only 1.6%, for a 25-38% loss of optimality. 

When both successful and unsuccessful test cases were included, it was found that SHJ 

was most often the fastest, that SNOPT was the fastest over a sufficiently large 

tolerance, that SNM was a factor of 3-7 times slower than SNOPT/SHJ, and that DE 

was the slowest by a factor of 8-12.  When only successful test cases were included, DE 

was the slowest by a factor of 5-12, and SHJ was the fastest but at the expense of 

optimality. 

The combination of the accelerating effect of increasing degrees of freedom and the 

decelerating effect of increasing NLP dimension produced minima in some measures of 

computational speed as a function of dv.  The corresponding values of dv were 
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dependent on the choice of NLP algorithm and which measures of computational speed 

were used. 

6.4.4 Objective 4: Computation Times 

The mean computation times of 35-50 s that were achieved by SNOPT and SHJ with 

N = 210 were only approximately 0.05-0.4% of the corresponding tf  times.  Yakimenko 

et al.
5, 135

 reported a computation time of 3 s and a compute:flight time ratio of 

approximately 10%, but based on only a single problem, and with no data on the 

number of trajectory evaluations invoked.   

6.4.5 Objective 5: Optimization Approaches 

The main weaknesses of each algorithm were: 

 DE.  DE was 8-12 times slower overall than SNOPT/SHJ. 

 SNOPT.  The robustness of SNOPT was 66%, compared to DE with over 99% and 

SNM/SHJ with ~95%. 

 SNM.  SNM was 3-7 times slower than SNOPT/SHJ, and less optimal than DE and 

SNOPT for successful test cases. 

 SHJ. The optimality of SHJ, measured by 2 but including only successful test 

cases, was only 49% compared to 88% for SNOPT and 94% for DE. 

DE is well suited to parallel implementation, because each member of a generation can 

be processed independently of the processing of each other member of the population, 

and each process always involves one trajectory evaluation.  Therefore Np processors 

used in parallel to process each generation, with a further processor for synchronization 

and data management, would increase computational speed by a factor approaching Np.  

For Np = 15 as used in this work, this would reduce the elapsed computation times per 

test case to approximately 18-31 s (assuming N = 210 and no net change due to 

processor clock speeds or changing from a Matlab to compiled code environment) 

which is only 51-71% of the shortest times in Table 6-10. 

Two obvious initial guess approaches are: 
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 When the boundary conditions are in the same neighbourhood as the previous 

boundary conditions, use the previous pseudo-optimal solution as the new initial 

guess. 

 Otherwise use a global algorithm to generate initial guesses for a deterministic local 

algorithm, e.g. use parallel DE to generate initial guesses for SNOPT. 

The computation times were achieved using N = 210, and are approximately linear in N.  

Hence reducing N would improve the computational speed, albeit at the cost of 

accuracy.  A possible two-stage optimization approach would be to use a low N value to 

obtain an initial guess then use higher N for the solution, an approach that was used by 

Yakimenko et al.
5, 135

 to improve the performance of the Gauss and Legendre 

pseudospectral methods. 

Therefore three promising paths to achieve the computational speed needed for on-

board near-real-time trajectory generation with the inverse dynamics method are: 

improving the computational speed of DE through parallel processing; improving the 

robustness of SNOPT through better initial guesses; a combination of the two 

approaches to exploit the advantages of both DE and SNOPT.  A fourth possibility is to 

seek to improve the optimality and robustness of SHJ through better initial guesses 

and/or termination criteria.  These areas are suggested for future research. 
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7 BANK ANGLE ILL-CONDITIONING AND  

NEGATIVE-G TRAJECTORIES 

7.1 Introduction 

For surveillance and reconnaissance missions it is critical that the UAV provides a 

stable platform for its on-board sensors and communications.  However, Assumption 2 

(Section 3.2) restricts the aircraft model, and therefore the trajectories, to positive-g 

orientations and this restriction leads to ill-conditioning in orientation when lz  0: 

small changes in lz, for example due to round-off errors, can cause repeated large 

changes in bank angle.  Such abrupt manoeuvres are difficult for the flight control 

system to track accurately and are likely to cause control actuator saturation.  Further, 

even if the flight control system response is fast and accurate, the bank angle changes 

would demand high-bandwidth sensor dynamics, or very wide sensor fields of view, to 

maintain target tracking.  Although this problem is most acute in sustained near-vertical 

flight it may occur at any orientation, such as during low level terrain following or 

during direction changes to avoid obstacles in an urban environment.The ill-

conditioning can be removed by aligning the lift vector with either the positive or the 

negative direction of the load factor, whichever is nearest to the orientation at the 

previous node.  This aim of the work described in this chapter is to reduce the 

probability of control actuator saturation or loss of sensor tracking due to the ill-

conditioning by admitting negative-g trajectories and meeting the following objectives: 

 Minimize rotation, subject to maintaining coordinated flight ( = 0) except during 

inversion. 

 Implement inversions over time domains that minimize a defined objective function. 

 Smoothly interpolate orientations during inversions. 

In this chapter, "invert" and "inversion" refer to a rotation from positive to negative 

alignment of the lift vector with the normal load factor, or vice-versa. 

The Euler-angle model has singularities at 2   , is sequence-dependent, and 

cannot in general be smoothly interpolated.  Although mathematically correct, the 
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controls can be difficult for a flight control system to track: for example when 

transitioning through the vertical in a loop, both heading  and bank  have 

discontinuities of approximately 180 (Figure 3-1).  The quaternion-based model of 

Chapter 4 does not have orientation singularities, the magnitude of a change in 

orientation can be readily evaluated as a scalar, and orientations can be smoothly 

interpolated.  These latter two properties are exploited to enable the negative-g 

extensions described in this chapter. 

7.2 Algorithmic Extensions 

The method may be extended to select the negative-g orientation e
-
 when e

-
 requires a 

smaller rotation from ej-1 than the positive-g orientation e
+
, subject to a negative-g load 

factor limit l 
-
, by replacing Assumption 2 by 
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, if 0

, otherwise
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

l

l
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z
z 


 (7.1) 

The node-based load factor is used in Eq. (7.1) to align the bank angle with the load 

factor at each node. 

The variable d{-1,+1} represents the alignment of the bank angle where d = +1 

corresponds to positive-g orientation, and initial and final values of d, (d0 and df), are 

included in the boundary conditions. 

Three steps are required at each node j  [2, N]: 

1. Determine the orientation e nearest to ej-1 that satisfies Eq. (7.1), and set a flag  

if the orientation has to be inverted. 

2. Update the inversion domain [js, jm] over which a cost function  has a minimal 

value. 

3. If  is true, interpolate the orientation at each node in [js+1, jm+1] , re-evaluate 

the controls over [js, j-1] and reset the orientations over [jm, j] to match. 

At the final node (j = N) step 1 is modified so that  is set to true if d ≠ df . 
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Although the algorithm is described with the implicit assumption that the positive-g 

load factor limit is higher than the negative-g load factor limit because this is the usual 

case, the algorithm may be applied to the opposite case with only minor adaptations. 

7.2.1 Determining Orientation 

The orientation nearest to ej-1 that satisfies Eq. (7.1) may be evaluated as (omitting the 

suffix j from Eqs. (7.2)-(7.6) for clarity) 

 Shepperd , ,z z
W W

z z
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  
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 

l l
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Eqs. (7.3) and (7.6) ensure that e
+
 and e

-
 are the nearest quaternions to ej-1 on S

3
 that 

satisfy Eqs. (7.2) and (7.5), and are required because the unit quaternion group double 

covers SO(3) , i.e. e and -e represent the same rotation. 

The resulting orientation is rotation-minimizing subject to maintaining zero sideslip.  

The “invert” flag is given by 
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   true, if 

false, otherwise                             

seg

j z j l

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 
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e e l
 (7.9) 

An additional flag, , denotes whether the load factor is within the negative load factor 

limit 

 
true, if 

false, otherwise       

seg

z j

j

l

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

l
 (7.10) 

The segment-based load factor (Eq.(4.66)) is used in Eqs. (7.9) and (7.10) because load 

factor magnitude is required.  

7.2.2 Updating the Inversion Domain 

When a requirement for inversion is detected at a node j by Eq. (7.9) evaluating to true, 

the inversion can be distributed over any contiguous sequence of segments starting from 

the nearest preceding node k for which k = false: 

  max | false, 2,ik i i i j     (7.11) 

and terminating at the current node j, providing that the path constraints remain 

satisfied.  The inversion domain [js, jm] is defined as the domain that minimizes a cost 

function  

 [ , ] arg mins mj j


  (7.12) 

 s.t. ( ) ( )m s It j t j t   (7.13) 

where 

   , , , , ,a b a k b a b j a b       (7.14) 

and 

  
 
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,

, max seg

zi
i a b

a b


 l  (7.15) 
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No additional iteration is required to solve Eq. (7.12), only a comparison of the current 

inversion domain with any new candidate domains as each node is processed.   

Eq. (7.13) expresses the constraint that the time interval corresponding to [js, jm] is 

sufficiently long to enable the generated angular velocities to satisfy their constraints.  If 

t(j)-t(k) < tI then Eq. (7.13) will be violated: this may be handled in the same way as 

other constraint violations.  Eq. (7.15) is the cost function for the inversion; as 

expressed here it ensures that inversion takes place when the normal load factor is 

minimized, but other functions could be chosen.   

7.2.3 Inverting the Orientation 

The required orientation at the end of an inversion is given by 
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Quaternion interpolation may be applied to evaluate the orientation at each node during 

the inversion 

    
( )

slerp , , , , 1, 1
( ) ( )

i i s m i s m

m s

t i
t t i j j

t j t j

 
      

 
e e e  (7.17) 

The angular velocity at each node is evaluated by applying Eq. (4.64) (or Eq. (4.47)) to 

the orientations produced by Eq. (7.17).  Hence two stages of interpolation are applied 

during inversion: one stage to evaluate the orientations and a second stage to evaluate 

the angular velocities. 

Between the end of the inversion and the current node, the orientations are inverted 

simply by exchanging e
+
 and e

-
, and the controls are inverted by setting q = -q and  

r = -r. 



172 

7.3 Numerical Examples 

Figure 7-1 shows results for a trajectory representing an aircraft flying at constant 

airspeed over a small hill which, if the aircraft remained erect, would cause a negative 

load factor around the peak of the trajectory.  Figure 7-1a shows the vertical profile and 

Figure 7-1b shows the load factor for an erect aircraft.  After 7.4 s as the aircraft pitched 

down the load factor changed from positive to negative: with the positive-g restriction 

active this caused a demand for a 180° step change in bank angle which can be seen as 

the positive red spike in Figure 7-1c.  After 8.4 s the load factor changed again as the 

aircraft started to pitch up (relative to the erect vertical) causing a second spike in bank 

rate as shown in Figure 7-1c, from which it is clear that the demanded bank rates were 

infeasible and were likely to cause control actuator saturation.  Figures 7-1c and 7-1d 

show that when negative-g orientations were allowed the bank rates were feasible (zero 

in this example) and the aircraft remained erect. 

Figure 7-2 shows how the algorithm operates for a trajectory in which the load factor 

exceeds its negative limit.  (Note that Figure 7-2 is plotted against node values for 

clarity.)  Figure 7-2a shows the vertical profile: from straight and level flight the aircraft 

initiated a steep (80°) descent followed by a short climb then level-off into level flight.  

The aircraft maintained constant airspeed throughout.  The boundary conditions 

included d0 = -1 and df = 1 so that the aircraft started inverted and finished erect.  Figure 

7-2b shows what the load factor would be if negative-g were enabled but inversions 

were disabled: from an initial value of -1g the load factor would have increased to 

approximately +1g then decreased to a small negative value, with a local minimum of 

the load factor at j = 58, until the aircraft started to climb (still inverted).  It can be seen 

that at j = 125  and 1seg

z l d = l , hence an inversion should be demanded over the 

inversion domain [js, jm] that minimizes  (inversions were disabled for Figure 7-2b to 

show the event at j = 125).  Figure 7-2c shows that js = 57 at j = 125 so that the 

algorithm back-stepped to node 57 to start the inversion; this can be seen in Figure 7-2d 

which shows the load factor for the negative-g algorithm with inversions enabled.  

Figure 7-2d also shows that the orientation satisfied the boundary conditions on d. 
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Figures 7-1 and 7-2 demonstrate that the algorithm removed the ill-conditioning of bank 

angle when 0z l  by selecting the coordinated flight orientation that satisfied the 

minimum rotation criterion.  Figure 7-2 also demonstrates that, when an inversion was 

necessary to satisfy the negative load factor limit, the algorithm implemented the 

inversion over a time domain that minimized the defined cost function.  Figure 7-3 

shows the bank rate and demanded bank angle for the trajectory of Figure 7-2, with 

inversions enabled, plotted against time. At t = 28 s (j = 57), a feasible bank rate was 

generated and maintained until the required inversion was complete.   

 

Figure 7-1.    Climbing and Descending Over a Small Hill 

a) the vertical profile, b) the load factor for an erect aircraft,  

c) the bank rate controls, d) the bank angle demand 
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Figure 7-3 shows that the orientation was smoothly interpolated and a feasible bank rate 

was generated during the inversion. The final position error for the trajectory of Figures 

7-2 and 7-3, using ode45 to integrate the state equations, was < 0.3 m over a total path 

length of 3.3 km, confirming the accuracy of the interpolated controls. 

 

Figure 7-2.    Steep Descent and Pull-Up 

a) the vertical profile, b) the load factor when inversion is disabled,  

c) the start node of the inversion domain,  

d) the load factor when inversion is enabled 
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Figure 7-3.    Bank Angle and Bank Rate for the Trajectory of Figure 7-2 
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8 CONCLUSION 

The inverse dynamics method, applied to the minimization of flight time of a 

conventional fixed wing aeroplane, is algorithmically simple, does not require large data 

storage, and guarantees satisfaction of spatial, airspeed, acceleration and orientation 

boundary conditions.  As a direct method it is computationally cheaper than indirect 

methods of the calculus of variations, has a larger radius of convergence, and does not 

require good initial guesses of constrained arcs or of non-intuitive costate variables.  It 

has an NLP dimension typically in the range 4-15, automatically restricts the search 

space to regions in which the boundary conditions and state equations are satisfied, and 

does not require integration of the state equations.  The method uses simple wind-axes 

point-mass aircraft models for computational speed and requires parameterization of the 

state vector: global low-degree polynomials have been used in most implementations to 

date.   

The inverse dynamics method has a number of limitations that have been investigated in 

this work.  Singularities arise from zeros of the spatial parametric speed, airspeed, and 

normal load factor: computational techniques to handle these singularities have been 

introduced.  It has been shown that combining analytic and finite-difference expressions 

improves the accuracy of evaluation of algorithmic variables, constraints and controls.  

In particular it has been found that it is necessary for feasibility to use segment-based 

expressions for some path constraints: it is not sufficient to rely on analytic derivatives 

at the discretization nodes to evaluate the constraints and controls.  Local quadratic 

interpolation of constraints has been found to improve computational efficiency by  

35-40%.  It has been found that in general the method produces multimodal 

optimization problems, with nonsmooth and potentially discontinuous constraints. 

The singularities inherent in Euler-angle based orientation representation have been 

overcome by introducing a new wind-axes point-mass inverse dynamics model using 

unit quaternions to represent orientation.  The model is approximately as 

computationally efficient as the Euler-angle model, permits smooth orientation 

parameterization and interpolation, and is linear in the controls.  Five variants of control 

expressions have been derived and compared, and it was found that the maximum 
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position errors generated using the most accurate controls were within ~0.005% of path 

length using 257 nodes (in the absence of disturbances such as wind or noise). 

The method has previously been limited to positive-g aircraft orientation, which leads to 

ill-conditioning of bank angle when the normal load factor transitions through zero.  In 

turn this may cause control actuator saturation and/or exceed the ability of the sensor 

dynamics to maintain sensor tracking.  An algorithmic extension has been introduced 

that admits negative-g orientations and exploits the new quaternion-based model by 

evaluating the magnitude of a change in orientation as a scalar, and smoothly 

interpolating orientation.  This removes the ill-conditioning, thus improving platform 

stability around zero normal load factor, reducing the probability of control actuator 

saturation and the demands on sensor dynamics. 

The optimality of a solution to a minimum-time aircraft trajectory generation problem 

depends on the closeness of the generated airspeed to the maximum airspeed that 

satisfies all path and boundary constraints.  Airspeed is typically determined by 

optimizing the coefficients of low-degree airspeed polynomial parameterization. A new 

computational approach has been introduced to estimate maximum feasible airspeed 

without airspeed parameterization or optimization.  Results obtained with this approach 

were used to measure the effects of the degree and form of polynomial airspeed 

parameterization on the robustness, optimality and computational speed of optimization.  

The effects of using Chebyshev, Bernstein, barycentric Lagrange and power series 

polynomial basis functions were compared.  It was found that the form of the 

parameterization did not significantly affect the optimality of the solutions (except for 

the power series form): if a tolerance of ~3% mean loss of optimality due to airspeed 

parameterization was allowed, then there would be no need to use polynomials of 

degree higher than 8 for airspeed parameterization.  However, the form of the airspeed 

parameterization did affect the robustness and rate of convergence: the power series 

form was found to perform worse than the other forms on optimality, robustness, and 

computational speed.  The Chebyshev or Bernstein forms performed better. 

Overall performance depends on the combined effects of spatial parameterization, 

airspeed parameterization, the fidelity of the aircraft dynamical model, initial guesses, 

and the chosen NLP algorithm.  The performance of the quasi-Newton algorithm 
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SNOPT, sequential implementations of the derivative-free algorithms Nelder-Mead 

(SNM) and Hooke-Jeeves (SHJ), and the evolutionary algorithm Differential Evolution 

(DE), were compared.  Using the measures defined in Chapter 6, DE was the most 

robust (achieving up to 99.9% success) and SNOPT the least (66%); DE was the most 

optimal (94%) and SHJ the least (45%); on computational speed SHJ was the fastest 

and DE the slowest (by an order of magnitude). 

Mean computation times of 35-50 s were achieved by SNOPT and SHJ with N = 210.  

Whether the times are fast enough for on-board near-real-time trajectory generation 

depends on the architecture within which the inverse dynamics method is applied and 

the required trajectory update rate.  However, the times justify the assertion that the 

method is potentially viable for such use. 

Key areas for future research are: an optimization approach, including the choice of 

NLP algorithm (or algorithms) and initial guess expressions; hardware and software 

implementation; overall system analysis and design incorporating trajectory following, 

trajectory updates, the stability of the overall system, and the effects of disturbances 

such as wind; and reversionary modes required for flight safety. 

The thesis, stated in Chapter 1, that the inverse dynamics method is a potentially viable 

method of on-board near-real-time trajectory generation for unmanned aircraft, is 

therefore maintained, but for this potential to be realized in practice further 

improvements in computational speed are desirable.   
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