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ABSTRACT 
The decisions taken during the aircraft conceptual design stage are of paramount 

importance since these commit up to eighty percent of the product life cycle costs. Thus 

in order to obtain a sound baseline which can then be passed on to the subsequent 

design phases, various studies ought to be carried out during this stage. These include 

trade-off analysis and multidisciplinary optimisation performed on computational 

processes assembled from hundreds of relatively simple mathematical models 

describing the underlying physics and other relevant characteristics of the aircraft. 

However, the growing complexity of aircraft design in recent years has prompted 

engineers to substitute the conventional algebraic equations with compiled software 

programs (referred to as models in this thesis) which still retain the mathematical 

models, but allow for a controlled expansion and manipulation of the computational 

system. This tendency has posed the research question of how to dynamically assemble 

and solve a system of non-linear models. In this context, the objective of the present 

research has been to develop methods which significantly increase the flexibility and 

efficiency with which the designer is able to operate on large scale computational 

multidisciplinary systems at the conceptual design stage.  

In order to achieve this objective a novel computational process modelling method has 

been developed for generating computational plans for a system of non-linear models. 

The computational process modelling was subdivided into variable flow modelling, 

decomposition and sequencing. A novel method named Incidence Matrix Method 

(IMM) was developed for variable flow modelling, which is the process of identifying 

the data flow between the models based on a given set of input variables. This method 

has the advantage of rapidly producing feasible variable flow models, for a system of 

models with multiple outputs. In addition, criteria were derived for choosing the optimal 

variable flow model which would lead to faster convergence of the system. 

Following the variable flow modelling, the decomposition and sequencing of the models 

were performed. During the decomposition process, the non-hierarchical (strongly 

coupled) models were identified and grouped into a single set. Subsequently, the 

strongly coupled sets and the remaining models were sequentially arranged by applying 

a graph theoretical algorithm.  In order to reduce the execution time, the models within 



the strongly coupled sets were rearranged using genetic algorithm, where several 

candidate fitness functions were tried and tested. After extensive tests using different 

solvers on an aircraft conceptual design test case supplied by industry, it was found that 

the fitness function for the rearrangement was dependent on the solver used for the 

strongly coupled sets. In the current context, number of feedback loops was chosen as 

the fitness function for rearrangement.  

A computational framework, the Cranfield Workflow Management Device (CWMD) 

was designed and developed by the author using the MATLAB programming language. 

CWMD is an object-oriented framework which provides the computational 

infrastructure for performing flexible design studies and was used for test and 

evaluation of the proposed methods.  

Results obtained after applying the computational process plan on various test cases, 

including industrial ones, indicated significant reduction in the iterations required for 

the convergence of the system. Feedback provided by aircraft conceptual design 

engineers from industry confirmed the flexibility offered by the CWMD. 
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1 INTRODUCTION 
The ever increasing competitiveness and customer demand compel aircraft 

manufacturers to produce better products in shorter time scales and at reduced cost. In 

order to achieve these requirements, new and innovative technologies and methods have 

to be introduced in each stage of the aircraft design.  

The aircraft design consists of three consecutive stages; the conceptual, the preliminary 

and the detailed design stage. Among these three stages, the decisions taken during the 

conceptual design phase commit to around eighty percent of the product life cycle cost 

(Howe, 2000). Thus an inaccurate baseline design generated during the conceptual 

design phase will create significant cost overruns if the selected design has to be altered 

at the later stages of the design process. 

Compared to other design stages where high-fidelity software codes are used, during the 

conceptual design the physics and characterises of the aircraft are represented usually in 

a system consisting of hundreds of algebraic equations. This simplicity in the 

representation tends to reduce the computing time of the system which in turn aids the 

designer in studying and analysing more feasible configurations of the aircraft within a 

limited time scale. However, the growing complexity of the aircraft design in recent 

years has prompted engineers to substitute the conventional algebraic equations, with 

simple software programs (models). The models retain the algebraic equations, but 

allow for a controlled expansion of the computational system. However, operating on 

and solving a system of non-linear models were much complicated compared to those of 

solving the equations. This, however, has posed the challenge of how to retain the 

flexibility with which the designer can operate the computational process.  

A simplified aircraft system comprising of a number of models and their associated 

variables is shown in Figure 1-1 in a graphical format.  The rectangular boxes are the 

models and the ovals are the associated variables. Figure 1-1 signifies the complexity 

involved in managing and solving the models and variables in an aircraft system. It 

should be emphasised that this example is a simplified version and in real cases the 

system will be much larger and more complex.  
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Figure 1-1 A simplified aircraft computational system (adopted from a real test case 

supplied by industry, (VIVACE, 2005)) 

A single analysis run of the system of models in the conceptual design phase takes 

relatively less execution time compared to the other design stages. However, the 

numerous trade and optimisation design studies conducted during the conceptual design 

phase, each making hundreds of calls to the system (Figure 1-2), and demanding a 

converged solution during each call, increases the overall computing time significantly. 

Thus, reducing the execution time of the system contributes to a considerable reduction 

in the overall computing time. 

System

Design study treatment
e.g. MDO, sensitivity analysis

etc.

 

Figure 1-2 Design studies conducted over an aircraft system 

In this context, the research is focused on organizing and rearranging the models within 

a system according to the relevant input variables defined by the designer, which plays a 

central role in increasing the flexibility and the efficiency of the computational design 

process. 
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1.1 Terminology 

This subsection provides a brief explanation of the basic terminology which is used in 

this thesis.  

Models: The software programs which are used to represent the physics and 

characteristics of the aircraft system are referred to as models.  Models have either 

single or multiple inputs and outputs. The models are considered as black boxes since 

the contained information is generally unavailable (e.g. compiled code). Figure 1-3 

shows an example model for calculating the atmospheric pressure and temperature, 

given the aircraft cruise altitude and air density. 

non_stand_atmos_crz
disa_crz

alt_crz

Pamb_crz

Tamb_crz
 

Figure 1-3 Models for calculating atmosphere pressure and temperature 

Strongly connected component (SCC): Strongly connected component is a group of 

models which are coupled through shared variables. SCCs are distinguished because of 

the computational difficulties associated with their handling and solving, both 

individually and as part of the overall system. The term SCC is derived from graph 

theory and formally an SCC is a subset of nodes in a directed graph such that there is a 

path from every node in the set to every other node. 

Subprocess: A subprocess is a collection of models which captures the relevant 

characteristics of a particular discipline in a mathematical form. An example of a 

subprocess for an aircraft, which represents the engine discipline, is shown in Figure 

1-4. The inputs and outputs of the models are not shown in the figure. 

sfc factor

specific fuel cons

nacelle diameter

nacelle wetted area

BPR

FNslst

sfc

wAnac

Ksfc

dnac

Engine

 

Figure 1-4 An engine subprocess 
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System:  A system is collection of models which captures all the relevant physics and 

characteristics of the product under development. A mathematical system of an aircraft 

at the conceptual design stage contains hundred of models in order to capture all the 

characteristics of the aircraft. 

Modified model: A modified model is a model which has some of its input and output 

variables swapped. The solving of such modified models is accomplished by applying 

relevant mathematical treatments (solvers). Figure 1-5 shows an example for a modified 

payload model where the input Npax and output PL are swapped. 

Payload PL
Payload

Mat hema tical Treat ment

Npax

PL

Wpax

Npax
Wpax

(a) Payload model (b) Modified payload model  

Figure 1-5 Example of a modified model 

Mathematical treatment: A mathematical treatment refers to either the design studies 

performed over a model, a system or a subprocess, or a solver used to solve an SCC or a 

modified model.  Optimisation, sensitivity analysis, design of experiments etc. are 

examples of mathematical treatments for design studies. Fixed point iteration, Gauss-

Newton methods are the examples of mathematical treatments for solving an SCC or a 

modified model. 

Sub-system: A sub-system is the general term used to signify a subset of model or 

models in a system, which requires a mathematical treatment to be applied for solving 

them. An example for a sub-system is an SCC or a modified model. 

1.2 Background 

1.2.1 Aircraft conceptual design 

As mentioned earlier aircraft design consists of three consecutive design phases. The 

conceptual design phase is the most critical phase. The decisions taken during this stage 

commit around eighty percentage of the entire life-cycle cost of the aircraft. During the 
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conceptual phase questions regarding configuration arrangement, size, weight and 

performance are answered. The conceptual design phase initiates after the requirements 

for the new aircraft are sufficiently well defined. The requirements definition is based 

on the (customer) needs that are beyond the capability of the existing aircraft, for 

example, an extended range. There are cases where the new requirements arise based on 

the operational experience and limitations identified on a current aircraft. Additionally 

requirements can be identified within the manufacturing organisation or from the user 

(if different from the customer).  Airline manufactures constantly seek feedback from 

the airline operators to identify the future needs. 

The requirements for a new aircraft are divided into three categories; performance 

requirements, flight requirements and structural design requirements (Howe, 2004). The 

performance requirements consist of take-off and landing field lengths, residual climb 

capacity in case of an engine failure and performance when a landing approach is 

abandoned. The flight requirements consist of control characteristics and effectiveness, 

static and dynamic stability and manoeuvre capacity at critical flight phases. The 

structural design requirements are classified into two categories, the stiffness and 

strength. These requirements ensure that the airframe will not deform beyond specified 

limits during various flight manoeuvres which may compromise flight safety. 

Once the requirements for the new aircraft are defined the next step is to analyse the 

way of meeting these. These are identified as; 

a) An adaptation or a special version of an existing aircraft 

b) A major modification of an existing type 

c) A completely new design. 

The first case involves alterations in the airframe and change of equipment. The cost 

involved in this case is relatively small. The second case can be more expensive because 

of major changes to the airframe including, extended fuselage, new wings, new power 

plant and also equipment changes. The third phase is the most expensive option and also 

involves the greatest risk. 

To reach a decision to proceed with one of the above three choices, the physical 

characteristics of the aircraft have to be obtained based on its properties. The 
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characteristic is a physical parameter and property is an operational parameter (the 

requirements for the aircraft are generally the properties of the aircraft). In order to 

obtain the characteristics of the aircraft, hundreds of mathematical models with 

thousands of associated variables, which represent the physics of the aircraft, are 

generally operated upon.  

The mathematical models which represent the physics of the aircraft usually have the 

characteristics of the aircraft as input and the aircraft property as the output (Figure 

1-6). However, the design process usually has to deal with the reverse problem, that is, 

some of the properties (requirements) of the aircraft are initially available and the 

mathematical models are used to calculate the characteristics of the aircraft. Thus the 

aircraft properties is the available input to the system and the characteristics of the 

aircraft has to be calculated based on this input. This change of inputs to the system is 

the root cause of most of the computational complications in an aircraft design or any 

other complex system. Because of the limited reversibility of the models, alternative 

aircraft characteristics have to be provided as inputs to the system in order to obtain the 

necessary aircraft properties. Currently the effects of these changes on the aircraft 

properties have to be analysed by extensive trade and optimisation studies, in order to 

satisfy the requirements which acts as constraints over the system.  

This reversal of inputs and outputs is one of the problems addressed in this research and 

is associated with several issues outlined in section1.2.3. 

Model
Aircraft Characteristics Aircraft Properties

Physics

 

Figure 1-6 A general aircraft mathematical model  

The next subsection briefly outlines various trade and optimisation studies conducted 

during the conceptual design phase of aircraft design. 

1.2.2 Design studies during the aircraft conceptual design 

Various design studies are performed on the system during the aircraft conceptual 

design phase in order to obtain a sound baseline, which meets or exceeds the 
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requirements for the aircraft. This baseline is then passed on to the subsequent design 

phases for further detailed analyses. The most common design studies conducted at 

conceptual design stage are trade and optimisation studies. 

Trade studies are conducted to explore wide range of alternative configurations in a 

design process. Here the designer studies the effects of variation of one or more 

parameters on the values of other parameters. If the range calculated, for example, is 

10,000km which is less than the customer requirement, a “range trade” can be 

calculated if an increase in the take-off gross weight (TOGW) could increase the range 

to the required level (Raymer, 1999). During trade studies the system is executed each 

time a new set of inputs have to be evaluated. An example graph plot for a trade study is 

shown in Figure 1-7 

 

Figure 1-7 Range trade (Raymer, 1999) 

Various optimisation studies are performed during the conceptual design phase, which 

help to meet the requirements for the aircraft and also to exceed the requirements. The 

optimisation studies assist the designer to explore the global optimum of a design 

subjected to various constraints. The most common optimisation criteria are the 

minimisation of the weight and cost (Howe, 2004).  During optimisation studies 

thousands of calls are made to the aircraft system, hence the system execution time 

plays a significant role in the overall optimisation study execution time. 

Optimisation is an evolving field and various methods are currently being researched 

and developed in this area. Optimisation has developed in the recent years from single 

objective to multi-criteria, and further to multidisciplinary design optimisation. Some of 

the commonly used optimisation techniques during conceptual design are NAND 
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(Nested Analysis and Design) (Balling and Sobieszczanski, 1996), SAND 

(Simultaneous Analysis and Design) (Balling and Sobieszczanski, 1996), CO 

(Collaborative Optimisation) (Kroo et.al., 1994), CSSO (Concurrent Subspace 

Optimization)( Sobieszczanski, 1988) and BLISS (Bi-Level System Synthesis) 

(Sobieszczanski et.al., 1998), out of which BLISS  is latest development in the field of 

multidisciplinary design optimisation (MDO). 

The next section explains the basics of computational process modelling. 

1.2.3 Computational process modelling for complex systems 

Figure 1-1 illustrated the potential complexity involved in managing and solving the 

numerous models in a system. We have already explained the importance of reducing 

the execution time for a system which plays a significant role in reducing the overall 

design study time. 

 Computational process modelling is the process of organising a complex system of 

models in order to calculate quickly the output variables based on the input variables 

given for the system.  

There can be many ways, in terms of computational sequence and information flows, in 

which a system can be solved to calculate the required output variables. The main task 

for computational process modelling is to identify the most appropriate organisation and 

ordering of the models with in the system, so that on execution, the system of models 

converges quickly and generates the outputs in minimum time.  

In this section the basics of computational process modelling are introduced. 

Computational process modelling is subdivided into three parts; variable flow 

modelling, system decomposition and scheduling, all subject of the present research.  

The next three subsections introduce each part in more detail. 

1.2.3.1 Variable flow modelling 

Variable flow modelling is the process of identifying the information flow among the 

models based on the input variables selected by the designer for the system. The 

information flow among the models helps to determine the output variables which could 

be calculated according to the input variables provided by the designer. 
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 In the system, a model becomes executable when all of its input variables are known. 

Initially the input variables provided by the designer are the only known variables. The 

computable variables are determined sequentially with respect to the outputs of the 

executable models. An example of variable flow modelling operation is shown in Figure 

1-8 (Buckley et al., 1992). 

 

Figure 1-8 Variable flow modelling for a system of three mathematical models (Buckley et 

al., 1992) 

Figure 1-8 (a) and (b) shows a system of algebraic equations and its corresponding 

models for balancing the weight of an aircraft with its lift. Arrows entering the boxes 

(Figure 1-8 (b)) represent the inputs and arrows leaving the boxes represent the outputs. 

Figure 1-8 (c) shows, in graphical format, the variable flow models for the system.  In 

this figure, variable nodes are oval shaped and model nodes are rectangular shaped. An 

arrow marked from a variable node to the model node denotes that variable is an input 

of the model. If the arrow is directed from the model to the variable, then that variable is 

output of the model. 

 Variables V and CL (denoted as dual ovals in the figure) are the inputs provided by the 

designer in this case. Similarly Figure 1-8 (d) shows the variable flow model for the 

system with Ws and CL as inputs. For the first case it can be noted that model1 has CL 

and q as inputs and Ws as output, model 2 has ρ and V as inputs and q as output and 

model 3 produces ρ as output.  

The sequence for determining the output variables in this case is shown in the Figure 

1-9. Here V and CL are the initial know inputs. In the first step, model3 is identified as 

executable since model3 does not need any input variables. Hence the output of model 
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3, ρ is added in the known variables list. Now model2 is executable since all its inputs 

(ρ and V) are now known. Hence its output q is added in the known variables list. 

Finally model 1 is identified as executable and its output Ws is added in the list.  

CL

3

ρ

V

CLV

2

q ρ CLV

1

Ws

Known Variables

q ρ CLV

Known Variables

Known Variables

Known Variables  

Figure 1-9 Sequence for finding the output variables 

For the second case in Figure 1-8 (d), after variable flow modelling, model1 has Ws and 

CL as input and q as output. But the actual model1 as shown in Figure 1-8 (b) has q and 

CL as input and Ws as output. In this case the inputs and output variables of the model1 

are swapped and therefore model1 is considered as a modified model. The term 

modified model was defined in the section 1.1. Solving a modified algebraic equation 

can be done by symbolic methods, but for models numerical solving techniques 

(mathematical treatments) has to be applied, which is another problem tackled in the 

current research.  

The example discussed here is a very simple one. In case of real aircraft conceptual 

design problems there are hundreds of models and thousands of associated variables. In 

such cases, obtaining variable flow models will be a complicated process and particular 

methods are required to obtain the variable flow models. Presence of strongly connected 

components will further add to the difficulty.  

As specified in the terminology section-1.1, strongly connected components (SCC) are 

those groups of models which are strongly coupled through shared variables. The term 

SCC is derived from graph theory and formally an SCC is a subset of nodes in a 

directed graph such that there is a path from every node in the set to every other node 
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(Buckley et al., 1992). In the context of a system of models the SCCs are those clusters 

of models in which each model requires input from one or more models from the same 

cluster. Presence of SCCs in a system adds to the complexity of the computational 

process modelling, including variable flow modelling, decomposition and scheduling. In 

addition, SCCs requires iterative solving of the constituent models. Therefore numerical 

solving schemes has to be applied which adds to the computational burden on the 

system.  

 

Figure 1-10 An example for a system of models 

The process of sequentially determining the known variables, as described earlier, 

cannot be carried out in the presence of SCC. For example for the system of models in 

Figure 1-10, if variable ‘g’ is declared as the independent (known), the procedure for 

determining the outputs variables is shown in Figure 1-11. 

5

d

g

2

f

Known Variables

Known Variables

Known Variables

g

d g

 

Figure 1-11 Sequence for finding the output variables 
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Figure 1-11 shows that with variable g given as the input, only variables f and d can be 

calculated from the system of models. However, there is a variable flow model for this 

system which helps to calculate all the variables of the system. This variable flow model 

is displayed in Figure 1-12. It should be noted that it could not be identified using 

procedure adopted in the Figure 1-11 because of the presence of a SCC. In this example 

models 1, 3 and 6 are strongly connected. Variable flow modelling in the presence of 

SCC is another issue which is addressed in this research. 

 

Figure 1-12 Directed Bipartite Graph for models in Figure 1-10 with variable ‘g’ as input 

(Buckley et al., 1992) 

A number of variable flow methods have been developed earlier for finding the 

information flow for system algebraic equations. The variable flow models generated 

for the equations consider that a single variable is calculated by an equation i.e., each 

equation generates one output. However models generated multiple outputs and hence 

the available variable flow modelling method has to be reformed to apply in this 

context. 

1.2.3.2 System decomposition 

 System decomposition is the process of decomposing a complex system into a number 

of sub-problems. Decomposing reduces the complexity of solving a large-scale system 

into a number of sub-problems. Decomposition has a wide range of applications in 

concurrent engineering for identifying the manufacturing processes that can be run in 

parallel. 

In the context of solving an aircraft system, the system decomposition corresponds to 

identifying the models which are strongly connected and grouping them as sub-systems. 
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The system of models in Figure 1-10 after decomposition is shown in Figure 1-13. In 

this example models 1, 3 and 6 are strongly connected and represent a subsystem. 

Decomposition is another issue which is addressed in this research. 

 

Figure 1-13 Decomposition of a system of  models 

1.2.3.3 Scheduling 

Scheduling is the process of sequencing the models in a system for the purpose of 

executing them after eliminating or reducing the feedback loops among the models. In 

the decomposed system shown in Figure 1-13(b), if the execution sequence is 

considered to be from left to right, the arrows shown pointing from right to left below 

the models denote the feedback loops. A feedback loop requires certain models to be 

executed before all their inputs are available. For example, in Figure 1-13(b), model 2 

requires an input from model 5 which follows later on in the execution sequence.  

In complex design systems a complete elimination of iterative feedback loops by 

scheduling the models is usually not always possible. Those group of models whose 

feedback loops cannot be eliminated are the strongly connect components. In such cases 

the models which were identified as SCCs during the decomposition process are 

grouped into sub-systems. These sub-systems along with the remaining models are 

further sequenced during the scheduling process. 

In the example in Figure 1-13(b) the models and subsystem after scheduling are shown 

in Figure 1-14. Compared to the arrangement in the Figure 1-13(b), the number of 

feedback loops (also called as feedback number) has reduced from four to two. The 

remaining two feedback loops are part of the SCC and these loops cannot be eliminated. 
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Figure 1-14 The mathematical models of Figure 1.6 after scheduling 

Even though the feedback loops belonging to the SCC cannot be eliminated, rearranging 

these models can lead to a reduced number of feedback loops. This issue of reducing or 

eliminating the feedback loop in an SCC, which plays a significant role in reducing the 

convergence cost of the SCC, was a fundamental issue addressed in this research. 

1.3 Summary of Aims and Objectives 

The growing complexity of aircraft design in recent years has prompted engineers to 

substitute the conventional algebraic equations with software programs (black boxes or 

models) which still retain the mathematical models, but allow for a controlled expansion 

and manipulation of the computational system. This tendency has posed the research 

question of how to dynamically assemble and solve a system of non-linear models. In 

this context, the overall aim is to develop a method which significantly increases the 

flexibility and efficiency with which the designer is able to operate on large scale 

computational multidisciplinary systems at the conceptual design stage.  

In support of the aim the following objectives have been identified: 

  Develop a method for variable flow modelling for a system of models with 

multiple outputs, which will assist the designer in choosing alternative combination of 

inputs for the system. In addition, criteria need to be derived for choosing from the 

alternative variable flow models for a system, the one which would lead to faster 

convergence. 

 Develop methods for decomposing and scheduling the models in a system 

 Combine variable flow modelling, decomposition and sequencing into a novel 

method for computational process modelling.  

 Develop methods for reducing the execution time for SCCs.  
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 Investigate and develop mathematical treatments for the modified models in order 

to achieve the swapping of input and output variables of the models. 

 Develop a prototype computational framework for performing flexible design 

studies which is to be used for test and evaluation of the proposed methods.  

1.4 Thesis Structure 

This thesis is subdivided into seven chapters. The first chapter introduces the aircraft 

conceptual design stage and the design studies conducted during this stage. The basic 

terminology which is widely used in the thesis is also covered in this chapter.  

Thereafter an introduction regarding the computational process modelling and its 

subdivisions, the variable flow modelling, scheduling and decomposition are presented. 

This is followed by the aim and objectives of this research. 

The second chapter is the ‘literature survey’ which gives a comprehensive review of the 

various currently available computational methods and tools, which have the potential 

to be applied in the current research context. A critical analysis of the various 

computational process modelling methods, including variable flow modelling, 

decomposition and sequencing is given in this chapter. A critical review of the various 

computational tools commonly used in aircraft design is also presented.  

The third chapter ‘computational process modelling for complex systems’ covers the 

novel methods developed as part of this research for computational process modelling. 

The individual features of the computational process modeller, which is developed for 

computational process modelling, including the novel variable flow modelling method 

along with the decomposition and scheduling methods, are described in the 

corresponding sections. A comprehensive example is given which demonstrates the 

working structure of the entire computational process modeller.  

The fourth chapter ‘solvers for sub-systems’ is focussed on the mathematical treatments, 

used for solving the sub-systems. Application of the Gauss-Newton method for solving 

the modified model is presented. Further, application of fixed point iteration and the 

Gauss-Newton method for solving the strongly connected components are also 

presented. A method for solving the modified models and strongly connected 

components together at the system level is also described.  
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The fifth chapter presents the various tests performed for evaluating methods and 

approaches developed as part of this research. USMAC, an aircraft conceptual design 

test case which was widely used for testing is explained initially. Following this, an 

evaluation of the two objective functions which were chosen for scheduling the coupled 

models by genetic algorithm is given. Thereafter a detailed description regarding the 

testing conducted in order to evaluate the proposed computational process modeller is 

given. Finally, the conclusions are presented. 

The sixth chapter describes the object oriented software framework which has been 

developed in Matlab for implementing and testing the proposed methods and 

approaches. The various modules of CWMD along with its GUIs, which assist in the 

easy implementation of the computational plans developed by the computational 

process modeller, are also explained. 

The seventh chapter describes the summary and conclusions of this research. This 

chapter also explains the current limitations of the proposed methods and applications 

developed in this research. In addition, the areas which will be of interest for future 

work are also outlined in this chapter. 
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2 LITERATURE SURVEY 

2.1 Introduction 

The aim of the literature survey was to investigate and evaluate various computational 

methods and tools, which had the potential to be applied in the current research context. 

Section-2.2 investigates and performs a critical analysis of the various currently 

available computational process modelling methods, including variable flow modelling, 

decomposition and scheduling. Section-2.3 provides a critical review of the various 

computational tools commonly used in aircraft design. Conclusions are drawn in 

Section-2.4.  

2.2 Computational Process Modelling Methods 

Computational process modelling is the process of organising a complex system of 

models in order to calculate the output variables based on the selected input variables. 

During the literature review it was identified that the various methods available for 

computational process modelling can be classified into variable flow modelling, 

decomposition and scheduling methods.  

2.2.1 Variable flow modelling methods 

Variable flow modelling is the process of identifying the information flow among the 

models based on the system input variables selected by the designer. Constraint 

propagation approaches have been utilised by several researchers for variable flow 

modelling in conceptual design systems. In this approach the equations are represented 

as constraints between the variables, and the changes in the variable’s values are 

propagated across the constraint network.  

Serrano (1987), developed a graph theoretical approach to constraint management. The 

constraint networks were represented as directed graphs, where nodes represent 

parameters and arcs represent constraint relationships. The direction of the arcs 

represented the dependencies among the parameters. Parameter dependencies (variable 

flow modelling) were generated automatically using bipartite matching representation. 

Serrano reports two algorithms for bipartite matching. The first one is modelling the 
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bipartite matching as a network flow problem and the second is bipartite matching 

based on linear programming. 

Modelling the bipartite matching as a network flow problem involves maximizing the 

flow from a source node to the sink node in a graph representation of the constraint 

management problem, without exceeding the capacity (maximum allowable flow on the 

arc) of any one arc on the path. This problem is commonly known as maximal flow 

problems (Cormen et.al, 1991, p.643). The method used by Serrrano for maximal flow 

problem is the Max-flow min-cut theorem (Cormen et.al, 1991, p.657). There are many 

other algorithms for maximal flow problems, some of these are, Ford-Fulkerson 

algorithm, Brute-force search, Edmonds-Karp algorithm, Relabel-to-front algorithm, 

etc., (Cormen et.al, 1991). The Max-flow min-cut theorem is described below. 

The max-flow min-cut theorem is a statement in optimization theory about maximal 

flows in flow networks. It states that “The maximal amount of flow is equal to the 

capacity of a minimal cut”. 

Suppose G(V,E) is a finite directed graph and every edge (u,v) has a capacity c(u,v) (a 

non-negative real number). Further assume two vertices, the source s and the sink t. A 

cut is a split of the nodes into two sets S and T, such that s is in S and t is in T. The 

value of the cut is the sum of all the flows of the arcs that are separated by the cut. The 

cut that produces the smallest flow will ensure the maximum flow for the networks. The 

arcs along the cut carry their maximum flow. For bipartite matching problems the 

capacity of each arc is assigned a value of 1. 

The second method for bipartite matching, linear programming, is performed by 

remodelling the matching problem into a linear optimisation problem. Each arc in the 

bipartite graph has an upper limit which is the capacitance value uij. The unknown in the 

optimisation problem are the flows xij from node i to node j. The optimisation problem 

is represented as  

Maximise:   xso-si;   here so-source, si-sink 

Subject to: 0ij jkx x− =∑ ∑ ; 0 ij ijx u≤ ≤  
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Serrano’s graph theoretical approach was developed primarily for systems consisting of 

algebraic equations. The approach did not address the computational complications that 

would have been encountered if the system contained models. The variable flow models 

generated for the equations consider that a single variable is calculated by an equation 

i.e., each equation generates one output. Models generate multiple outputs and hence 

require modification in the variable flow modelling scheme mentioned above. 

However, Serrano’s approach had an implicit reference to variable flow modelling for 

models with multiple inputs and outputs, but lacked a detailed demonstration or testing. 

This approach also did not explore the different feasible variable flow models that can 

be generated for a system. 

Bouchard et al. (1988) used directed constraints between design variables and numerical 

solution approaches to allow rapid production of trade-off studies. The limitation of this 

approach was that the designer had to decide in advance the input and output variables. 

Buckley et.al (1992) has developed a bipartite graph method for variable flow 

modelling. The system was represented in a bipartite graph with square nodes 

representing equations and the oval shaped nodes representing variables. The edges in 

the graph connect equation nodes to the variable nodes, which indicate that the variable 

is present in the equation. An example bipartite graph is shown in the Figure 2-1. 

 

Figure 2-1 A system of non-linear equations with its corresponding undirected bipartite 

graph (adapted from Buckley et.al, 1992) 
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The directing of the graph, based on the known variables, is accomplished using a 

variant of the Ford-Fulkerson algorithm (Cormen et.al, 1991) for finding maximal 

matching on bipartite graphs. Ford-Fulkerson algorithm as mentioned earlier is one of 

the methods for maximum flow problem. The algorithm finds an initial pairing of 

equations and the variable nodes. Then it finds the paths in the graph where directions 

can be reversed to improve the matching. Figure 2-2 shows the directed graph for the 

example given in Figure 2-1 with variables Ws and CL specified as the known variables 

by the designer. 

 

Figure 2-2 Directed bipartite graph (adapted from Buckley et.al, 1992) 

 

The Ford-Fulkerson algorithm computes the maximum flow in a flow network (Cormen 

et.al, 1991, p.651). The idea behind the algorithm is “As long as there is a path from the 

source (start node) to the sink (end node), with available capacity on all edges in the 

path, we send flow along one of these paths. Then we find another path, and so on”. For 

a graph G(V,E), with capacity c(u,v) and flow f(u,v)  for the edge from u to v, in order 

find the maximum flow from the source s to the sink t, after every step in the 

algorithm(which searches for an augmented path) the following is maintained.  

( , ) ( , )f u v c u v≤ . The flow from u to v is limited to its maximum capacity 

( , ) ( , )f u v f v u= − . Conserves the net flow between u and v. (value of f(u,v) is 

initially set to zero) 
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( , ) 0 ( ) ( )in out
v

f u v f u f v= ⇔ =∑  for all nodes u except s and t. Flow into a node 

is equal to a flow leaving a node. 

The path search is performed by a breadth-first search or a depth-first search algorithm 

(Cormen et.al, 1991).  

As in the previous cases, Buckley et al. (1992) focused on obtaining variable flow 

models for algebraic equations and not models. In addition, the alternative solutions 

(variable flow models) for a system were not explored. 

Ramaswamy and Ulrich (1993) have developed an adjacency matrix based heuristic 

algorithm for variable flow modelling. Serrano’s (1987) work considered the case where 

the set of known and unknown variables were specified completely. Ramaswamy’s 

work dealt with situations where only some members of the known variables set have 

been specified and the remaining variables could be chosen by the designer. The basic 

idea behind the Ramaswamy’s algorithm was, “when a variable in an equation is 

changed we can use another variable in the same equation to compensate for the change 

and thus keep the equation satisfied. Since variables may appear in several equations, 

the effect of changing any variable must be propagated”. Ramaswamy’s algorithm had 

the restriction that the functional forms must be either algebraic or transcendental 

functions. Recursive functions and iterative computer programs (models) were 

explicitly excluded. 

2.2.2 System decomposition and scheduling methods 

System decomposition is the process of decomposing a complex system into a number 

of sub-problems and scheduling is the process of sequencing the models for the purpose 

of executing them after eliminating or reducing the feedback loops among the models.  

Decomposition and scheduling methods have application in various fields of 

engineering. Here the author reviews the decomposition and scheduling methods in two 

areas; the first one is for process management in industries and the second one for the 

mathematical models in a computational system.  

The decomposition and scheduling methods are reviewed in a single section because 

most of the research conducted in these two areas had reference to each other. 
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2.2.2.1 Decomposition and Scheduling Methods for Process Management 

Process management methods are used for arranging the processes involved in the 

manufacturing of a product in an industrial environment. The rearrangement identifies 

the execution sequence of the processes and also the processes which could be executed 

concurrently. By this arrangement the manufacturing time of the final product could be 

reduced significantly. Since there is a requirement for arranging the models in a system 

which is similar to process management, various methods in this area have been 

reviewed during this research. 

Most of the process management methods have evolved from graph theory (Rogers, 

1999). Graph representation consists of nodes and edges. An edge connects two nodes. 

Directed, non-directed, cyclic, acyclic, bipartite, etc., are various types of graph 

representations. Graphs can be represented in numerous forms, and the most commonly 

used representation is the adjacency matrix. Adjacency matrix is a square matrix with 

values of either 1’s or 0’s. A value of 1 denotes a link from the process in the row to the 

process in the corresponding column. If there is no link then the value will be zero. An 

example graph and its corresponding adjacency matrix are shown in Figure 2-3.  

 

Figure 2-3 Graph representation of a process and the corresponding adjacency matrix 

One of the earliest available tools for process management was PERT (Rogers, 1999). 

PERT network is a directed, weighted, acyclic graph. The weights of the edges in a 

PERT network represent the time needed to complete that process. An example PERT 

network is shown in Figure 2-4. 
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Figure 2-4 Sample PERT Chart  

In the figure, for example, the time needed to complete the process represented by the 

arc (3, 4) is 20 minutes. It can be noted that process (5, 6) cannot be started until process 

(4, 5) is finished. Even though the path (1, 2, 5) takes only 25 minutes, process (5, 6) 

cannot be started until the process (1, 3, 4, 5), which takes 45 minutes is completed. 

This implies that any delay in the process in the path (1, 3, 4, 5) will delay the entire 

project. However, some time delays are acceptable for the processes in the path (1, 2, 5). 

A path which will cause project to be delayed if any of its constituent processes (tasks) 

is delayed is called a critical path. The main objective of a PERT chart is to reduce the 

critical path which will aid in reducing the execution time for the entire project. The 

PERT tool is applicable only to sequential activities and cannot handle non-sequential 

activities. This makes PERT chart unsuitable for aircraft conceptual design, where non-

sequential activities (SCC) are commonly encountered. 

Steward (1981) had developed another tool for displaying a process sequence called the 

design structure matrix (DSM). DSM serves as a highly efficient tool for process 

management.  DSM is similar to the adjacency matrix and is derived from graph theory. 

An example DSM is displayed in Figure 2-5. 

 

Figure 2-5 Design Structure Matrix  

In the DSM shown in Figure 2-5(b), the processes are shown in the numbered boxes 

along the diagonal. The off-diagonal small black squares that join the horizontal and 
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vertical lines represent the coupling between the processes, which means the output 

from the process connected to the horizontal line is given as input to the process 

attached to the corresponding vertical line. Squares above the diagonal denotes feed 

forward coupling and those below the diagonal indicates feedback coupling. The data is 

fed forward in a feed forward coupling, which means that the data required to run a 

process is available from the process which appears earlier in the sequence. However, in 

a feedback coupling the data required for executing a process is not available 

beforehand and it has to be obtained from a process which appears later in the sequence. 

The advantage of DSM compared to PERT is the capability to group and display the 

iterative sub-cycles (SCC) found in a design project. 

Tang et al. (2000) have introduced a DSM based method for decomposition, which is 

the identification of the processes which form iterative sub-cycles (SCCs) in a system. 

The paper also introduces a method for sequentially arranging the decoupled activities 

and identifying the processes which could be executed in parallel. Tang’s algorithm was 

developed to arrange the process in a manufacturing environment.  For identifying the 

iterative sub-cycles first a binary DSM, ‘A’ of the system was created. Binary DSM 

consists of a matrix with row and columns representing the processes. An element ‘1’ in 

the matrix denotes the process of the column has an input from the process in the row. 

Further the following sequence of operations was performed on the matrix A: 

1

; ;
j

T n T

n

P A K P J K K
=

= = =∑  

In the final matrix J if the values of the rows are equal, then the processes which 

represented the corresponding rows have been identified as strongly connected. 

 In Tang’s paper, the sequential arrangement of the processes is performed by applying 

a theorem from Xiao and Fei (1997).  Before performing this operation, the rows and 

columns which represent the strongly connected processes and their corresponding 

variables are collapsed into a single row and column in the matrix P. 

Tang’s algorithm does not take into account the arrangement of the processes which 

forms iterative sub-cycles. Nevertheless the sequential arrangement algorithm for the 

non coupled process has been utilised in the present research. 
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Kusiak and Wang (1993) have developed a method for decomposing design processes 

in order to enhance concurrency. Incidence matrix was used to represent the 

dependency between tasks and parameters in a design process. The rows represented the 

tasks and columns the parameters. In the matrix, an entry ‘*’ denotes that the parameter 

in the column is dependent on the task in the corresponding row. The objective is to 

group the rows and columns in such a way that the matrix separates into mutually 

exclusive sub-matrices. This grouping was accomplished by using the Cluster 

identification (CI) algorithm (Kusiak and Chow, 1987).  In case of non-decomposable 

systems, this grouping was not possible with the CI algorithm. The paper proposes an 

improved CI algorithm (Kusiak and Cheng, 1990), which identifies the overlapping 

parameters (or tasks) which are removed from the matrix for further grouping. In 

addition to the task-parameter matrix, this method had application to complex design 

problems involving large number of constraints and variables. When applied to such 

cases the matrix had constraints in the rows and variables in the columns. For a non-

decomposable constraint-variable incidence matrix, the coupling variables were 

identified and removed from the matrix using the earlier mentioned improved CI 

algorithm. Examples of decomposed incidence matrices are shown in Figure 2-6. 

 

Figure 2-6 (a) Decomposed incidence matrix, (b) Decomposed incidence matrix which has 

overlapping constraints (c)Decomposed incidence matrix with overlapping variables (Kusiak and 

Wang, 1993) 

Kusiak’s algorithm is suitable for decomposing large non-hierarchical systems into 

smaller mutually exclusive sub-systems for parallel execution. The arrangement of the 

processes within the sub-systems is not addressed in this work. 

Chen et al. (2005) have proposed a formal two-phase method for decomposing complex 

design problems to more tractable sub-problems. Unlike Kusiak’s approach, this method 
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decouples the decomposition process into mutually exclusive function components: 

dependency analysis and matrix partitioning. Dependency analysis is achieved via an 

extended Hierarchical Cluster Analysis (HCA) and matrix partitioning by a Partition 

Point Analysis (PPA). Further to the application of these two algorithms, a non-

organised incidence matrix is decomposed into a block-angular structured matrix. In the 

first phase the extended HCA is applied to reorder the unorganized incidence matrix 

into a banded diagonal matrix. The extended HCA comprises of the Binary Tree 

Construction (BTC), Binary Tree Branch Association (BTBA) and Binary Tree 

Association (BTA) algorithms. In the second phase, the PPA is applied to further 

transform the banded diagonal matrix into a block-angular matrix according to 

decomposition criteria set by the user. The function of each algorithm and the overall 

view of the formal two-phase algorithm are shown in the Figure 2-7. 

 

Figure 2-7 Workflow of the two-phase decomposition method (Chen et.al., 2005) 

Chen et al.’s algorithm, like Kusiak’s, did not address the arrangement of the processes 

within the subsystems and focuses only on the decomposition of the system into sub-

systems. However, this algorithm provides the user with the flexibility in the choice of 

the different settings of the decomposition criteria, by which the incidence matrix can be 

decomposed  into either a column based, row-based or a hybrid block-angular structure 

matrix. Chen et al. claims this algorithm will be more efficient than Kusiak’s since 

recursive solving of the matrix is not involved for the decomposition.  

2.2.2.2 Decomposition and Scheduling Methods for computational systems 

This sub-section provides the decomposition and scheduling methods for design 

problems represented in computational systems. 
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Rogers (1997) has developed a software tool named Design Manager’s aid for 

Intelligent Decomposition (DeMAID), for decomposing and sequencing of the models. 

DSM has been widely used in this tool as a method for sequencing and decomposition. 

Initially a knowledge based tool was developed for sequencing the models (Rogers, 

1989). The knowledge based approach could only examine a limited number of 

orderings of the models which are part of iterative sub-cycles (SCC). In order to 

overcome this limitation Rogers in his later work (Rogers, 1997) has introduced a 

genetic algorithm (GA) based rearrangement method for rearranging the models in the 

iterative sub-cycles. GA scans a large number of orderings of the models and obtains an 

optimised ordering based on computational cost. Initially, GA created populations of 

strings with each string representing an ordering of the design process. The subsequent 

generation of population was created based on the selection, crossover and mutation 

operation on the current population. Selection of the string from the pool of population 

was based on the value of the objective function of each string. The strings with best 

objective values were selected for crossover. Crossover is the operation of mating of 

two strings in the hope of producing a child string with better objective values. Cross 

over operation was accomplished by position based cross over (Syswerda, 1990). 

Finally, the mutation operation was performed through the order-based mutation 

operation.  The objective function used by GA is shown in Equation 2-1, where f is the 

number of feedback, c is the number of crossovers, time is the total time required to 

converge the circuit, cost is the total cost to converge the circuit; and wf, wc, wtime and 

wcost are user-definable weights. 

Equation 2-1 Fitness function for rearrangement of the DSM 

1.0 /(( * * * cos *cos )**4)fitness wf f wc c wtime time w t t= + + +  

Figure 2-8 shows an example DSM before and after rearrangement. It can be noted that 

the total cost has reduced from 19,640 to 3,950 units and time from 21,340 to 4,570 

units. 

Rogers’s approach required an estimate of the strength of the feedback loops for each 

arrangement of the design process, to calculate the objective values. The strength of the 

feedback loops was estimated based on the number of iterations required for the 

convergence of each loop in the system. This operation can turn out to be 
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computationally expensive, since each arrangement has to be executed at least once to 

obtain the strengths. Furthermore, excluding the strength of the feedback loops from the 

objective function could reduce the quality of the objective function. 

 

Figure 2-8 An example DSM before and after rearrangement (Rogers, 1997) 

Altus et al. (1996) have developed a computer program called ‘A GENetic algorithm for 

Decomposition of Analyses’ (AGENDA). The methods used by Rogers for 

decomposition and sequencing of the design problem were further developed in this 

tool. Unlike Rogers’s work this research was focused on the decomposition of the 

design problems for conducting multidisciplinary design optimization (MDO) studies. 

Furthermore, the approach focused also on decomposing large design problems into 

sub-problems besides arranging the analysis subroutines for efficient execution. The 

benefit of this type of decomposition was that the sub-problems could be executed in 

parallel, thus reducing the total computational time. In addition, the solving efforts in 

each sub-problem can focus on local information, and temporarily the details of other 

sub-problems can be ignored. A GA based decomposition approach was developed in 

this work. Similar to the Roger’s approach, the GA population consists of string 

representing the ordering of the analysis subroutines. Crossover operation was 

accomplished by position based crossover and the mutation operation was performed 

through the order-based mutation operation. The decomposition to sub-problems was 

achieved by introducing “breaks”, or boundaries between sub-problems. Including m 

breaks creates m+1 sub-problems. Then the string generated will be of length m+n 
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where n represents the number of analysis subroutines. For example, a task with 7 

subroutines to be split into 3 sub-problems, n=7 and m=2. Figure 2-9 shows a sample 

genetic string and its corresponding computational system. 

The objective function was formulated based on the Dependence matrix (DM). 

Dependency matrix is an extension of the DSM with integers in the off-diagonal 

elements. A value DM(i,j) represents the number of outputs from routine i which are 

inputs to routine j. The feedback length, which was the objective function that was 

formulated in this approach, is shown in Equation 2-2. 

The feedback length which is used as the objective function in Altus’s approach 

provides only a rough estimate of the iteration required for solving the system. The 

convergence of a coupled system depends on the execution time of each subroutine, the 

solver used, the strengths of the coupling, starting points and so forth. These aspects 

were not addressed in the formulated objective function in Equation 2-2. However, 

AGENDA offers the provision for user-defined objective functions. 
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Figure 2-9 Decoding of genetic string into subroutine order and sub-problems 

 

Equation 2-2 Objective function (feedback length)  (Altus et al., 1996) 
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Papalambros (1995) in his research has formulated the decomposition of a large scale 

system into subsystems, as an optimization problem.  In his optimal model-based 

partitioning (OMBP) scheme the focus was to obtain a balance between the size or 

number of sub-problems and the interdependence among them. Fewer number of sub-

systems interaction allowed concurrency, but more subsystems required more co-

ordination effort. OMBP was formulated as an optimization problem with multiple 

objectives. The first objective was to minimize the size of the master problem by 

minimizing the number of linking variables and the second objective was to minimize 

the size of sub-problems by maximizing number of partitions of similar size which 

accounted for load balancing among sub-problems. The paper discusses Network 

Reliability Optimization formulation which is an OMBP formulation. The objectives 

here were to maximize the number of functioning links and to minimise a measure of 

network reliability. The formulation corresponds to identifying the critical linking 

variables and assigning their control to the master problem. The control of the 

remaining variables was assigned to the sub-problems. Figure 2-10 shows an example 

of pareto points obtained for each optimal partition. 

 

Figure 2-10 Pareto solution of an optimal decomposition problem (Papalambros, 1995) 

At point A each variable is a linking one and the problem is fully disconnected. At point 

B each variable is a local and the problem is fully connected. Intermediate Pareto points 

are compromises and the selection can be performed based on the trade-offs between 

the size of the master problem and the sub-problems. The formal Pareto model for the 

optimal partitioning is shown in Equation 2-3. 
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Equation 2-3 Formal Pareto model for optimal partitioning 
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AΦ  and PCΦ represent the measures of all terminal and pair-connected reliability and 

are functions of the binary edge indicator vector e, ei=1 (0) if edge i is functioning 

(failed). All-terminal recognizes the edges that partition the network and pair-connected 

measures the equality in the size of the partitions. 

Papalambros has solved the decomposition of large scale systems as a multi-objective 

optimization problem. He has studied the trade-offs of solving the problem as a whole 

or solving it as sub-systems. However, during conceptual design studies where a 

number MDO studies are conducted, introducing additional objective and constraints 

(for decomposition) can significantly increase the computational burden during this 

design stage.  

2.3 Computational tools for Complex Systems 

There are various computational design tools available for each stage of aircraft design. 

The literature review conducted by the author in this area has identified that the number 

of commercial tools available for preliminary and detailed stage were much higher 

compared to the number of tools available for conceptual design stage. Research in 

innovative concepts is conducted generally for those products which have a highly 

competitive market and requires continuous changes and improvement so as to meet or 

exceed the customer requirements. Examples of such products are automotive, aircraft 

etc. However, majority of the other products has their concepts being fixed and further 

research is conducted on these products for better performance mostly through the 

detailed design process. This could be one of the reasons for the limited number of 

industries which use computational tools for conceptual design compared to Computer 

Aided Design (CAD) and Computer Aided Engineering (CAE) tools which has 

application during the conceptual as well as the detailed design process. In addition, it 

should be also noted that some industries, especially aerospace have their own in-house 
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tools for conceptual design, but the details of the majority of these are unpublished 

because of confidentiality issues.  

This section investigates some of the computational tools which have already been used 

or have the potential to be applied to computational studies in conceptual design. The 

section is divided into two sub-sections; the first part investigates the tools which can be 

applied to solve simple mathematical models of complex systems. The second part 

investigates the tools which are used for integrating high-fidelity mathematical models 

(CFD, CAD, etc.). The tools reviewed in the second part were some of the well known 

tools which have been used primarily during preliminary and detailed design stages. In 

contrast, the present research investigates the applicability of such high-fidelity 

integration tools to the conceptual design stage.  

2.3.1 Computational tools for low-fidelity mathematical models 

This section investigates computational tools for solving low-fidelity mathematical 

models at conceptual design stage. The variable flow modelling and system 

decomposition and scheduling methods used in some of the tools were discussed in the 

previous chapter and will not be discussed further.  

2.3.1.1 Concept modeller 

Concept modeller (Serrano, 1987) was one of the earliest tools developed for constraint 

management. The design problems were represented and solved as a constraint 

satisfaction problem. Graph theoretical methods were applied for constraint 

management. The variable flow modelling methods used in this tool were discussed 

earlier in section 2.2.1. The tool had the ability to detect the under and over-constrained 

systems and also was able to identify the redundant and conflicting constraints. In 

addition, the tool also had the capability to handle equality and inequality constraints. 

Concept modeller was developed for constraint management, but was not robust enough 

to manage the dynamic solving capability required for conducting conceptual design 

studies. The system was developed mainly for solving system of non-linear equations 

and had very little reference to solving models.  
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2.3.1.2 Design Sheet 

Design-Sheet (Buckley et.al, 1992) is a computational tool for conducting flexible 

trade-off studies during conceptual design stage. The tool was developed mainly on the 

ideas from Concept Modeller, which were advanced further to make it suitable for 

conceptual design studies. Concept Modeller was a tool resulting from academic 

research, while Design Sheet is a commercial tool. 

Design sheet permitted the user to enter a set of algebraic equations and create 

computable systems based on the input variables defined by the user. The designer was 

also given the flexibility to change the input variables and the tool would create the 

corresponding computable system. The computational process modelling diagram for 

design sheet is shown in Figure 2-11.  

The tool also had the provision for conducting optimisation, trade studies and sensitivity 

analysis on the system models. 

 

Figure 2-11 Workflow diagram for Design Sheet (Buckley et.al, 1992) 

As in the case of Concept Modeller, Design Sheet was developed for solving algebraic 

equations and not models. The variable flow modelling method used by this tool, which 

was discussed in section 2.2.1, considers only single output produced by the algebraic 

equation which would not be the case for models, where multiple outputs are generated. 

Also Design sheet does not investigate the alternative variable flow models that could 

be produced for a given set of input variables. Arrangement of the execution sequence 

of the equations which are strongly connected, and which could have made significant 

reduction on the convergence time of the system, was not investigated either. 
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2.3.1.3 DeMAID 

Design Manager’s Aid for Intelligent Decomposition (DeMAID) is a tool developed by 

NASA for decomposing large, complex multidisciplinary processes (Rogers, 1997). 

DeMAID identifies the iterative sub-cycles in a design process, arranges these to reduce 

the feedback couplings and sequences the iterative sub-cycles and in a hierarchical 

order. The sequencing of the iterative sub-cycles is performed using GA. The 

sequencing scheme used in DeMAID is explained briefly in section 2.2.2.2. In 

DeMAID, the user is able to enter the details of the models, decompose and finally 

execute these to obtain the results.   

DeMAID software was more a decomposition and sequencing tool rather than a 

conceptual design tool where design studies could be conducted. The flexibility 

provided by Design Sheet in terms of choosing the input variables for the system was 

limited in DeMAID. Here, the input variables of the system are fixed according to those 

variables which are only inputs to the models in the system and were not output of any 

of the models in the system under consideration. The variable flow modelling which 

could improve the dynamicity in selecting the input variables for the system was not 

considered in this tool. This limitation can significantly affect the flexibility required in 

choosing the inputs while performing conceptual design studies. 

2.3.1.4 AGENDA 

A GENetic algorithm for Decomposition of Analyses (AGENDA) was a computer 

program developed at Stanford University for decomposition of system into subsystems 

(Altus et.al., 1996). The decomposition scheme applied in this tool was described earlier 

in the section 2.2.2.2. The decomposition scheme could reduce a system to subsystems 

based on the decomposition criteria set by the designer. AGENDA has the provision for 

the designer to input his/her own decomposition criteria for splitting the system into 

subsystems. Compared to DeMAID, AGENDA exhibited similar drawbacks in terms of 

flexibility in choosing the input variables to the system. 

2.3.2 Computational tools for high-fidelity mathematical models 

This section investigates several well known tools for integrating and solving high-

fidelity mathematical models (e.g. CFD, FEA tools) which are generally used during the 
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preliminary and detailed design stages of the design. The review of these tools was 

performed to investigate their applicability to the conceptual design stage. 

2.3.2.1 Fiper 

Fiper is a software framework for integrating various design tools in a coordinated 

fashion into a single environment (Wujek et al., 2002). This aids the designer to conduct 

an overall design analysis in a single space, and focuses more on the product analysis 

and development rather than on the tool integration aspects. Fiper was developed by 

Engineous Inc. in a collaborative effort with General Electric, Goodrich, Parker 

Hannifin, Ohio University, the Ohio Aerospace Institute and Stanford University. 

Figure 2-12 shows a pictorial view of the FIPER architecture.  

  

Figure 2-12 Overview of the FIPER architecture (Wujek et al., 2002) 

Fiper incorporates various tools as components, by using a Java-based wrapping 

mechanism. This component-based architecture provides seamless integration of 

various heterogeneous tools located locally and also in a geographically distributed 

environment. Fiper also provides parallel execution of tools where necessary thus 

reducing the computing time. 

Fiper is meant for integrating high-fidelity analysis tools and was developed with focus 

on the preliminary design stages of the design rather than conceptual design. The 

facility for automated integration of the tools was not addressed in Fiper. However the 
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wrapping mechanism incorporated in this tool could be a potential application which 

can be incorporated in a tool for conceptual design stage. 

2.3.2.2 Spineware 

Spineware (Vankan and Laban, 2002) is a software tool developed at NLR for 

integrating and executing high and low fidelity design and analysis tools in a distributed 

and heterogeneous computing environment. Spineware CDE (Computational Design 

Engine) was developed as part of the MOB (Morris, 2002) project and has played a 

significant role in the design and analysis of the BWB (Blended Wing Body) aircraft. 

Spineware is defined as “An object-oriented system that supports the construction and 

usage of user-defined working environments in heterogeneous computer networks”.  

Spineware consists of two layers. The first layer is the system level implementation of 

the Computational Design Engine (CDE), which includes a number of design and 

analysis tools. The second layer, the SPINEware User Shell, facilitated a more user-

friendly environment for the designer to operate on the CDE. The second layer was 

developed based on object-oriented concepts and the object interaction was 

accomplished using CORBA standards. The java applet implementation of the 

SPINEware User Shell provided accessibility of the objects via web browsers. Figure 

2-13 (b) shows an example for Spineware object browser. 

Spineware was developed for integrating high fidelity analysis tools, primarily for the 

preliminary design stage of the aircraft design. In the current research context hundred 

of simple mathematical models were needed to be integrated and solved in a dynamic 

environment.  

 

Figure 2-13 (a) Functional structure of the design process of the BWB in the CDE (b) An 

example for Spineware object browser (Vankan and Laban, 2002) 
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2.3.2.3 Phoenix Integration 

Phoenix integration is a software tool for integrating heterogeneous computing 

applications to generate a more efficient engineering process (Scott, 2001). The 

software is developed based on a client-server configuration. The software has three 

components for integrating the tool:  

• The Enterprise Analysis Server (EAS) is used to create wrappers for the 

various tools which have to be integrated into a single environment. The 

wrapping allows for converting the analysis software into reusable tools that 

can be published for others to use. EAS is java-based software server. The 

published components can be accessed from any computer on the network 

regardless of the platform. 

• The ModelCenter has the capability to access the wrapped applications and 

build the engineering process. ModelCenter provides a graphical user 

interface for linking the wrapped applications. It also provides an open 

Application Protocol Interface (API), which can be called from C++, Java or 

COM, for the designers to access the integration engine behind the user-

interface. ModelCenter has various in-built design exploration tools such as 

optimisation, design of experiments and response surface modelling. 

• ModelRunner is built in mind for the designers who do not want to wrap 

their code with EAS, but want to perform trade-studies on already built 

models. ModelRunner is provided with a graphical user interface. Most of 

the design exploration tools mentioned earlier is also present in the 

ModelRunner. ModelRunner is provided with an API for integrating third 

party trade study algorithms. 

Limitations of FIPER which makes it unsuitable to be applied in the conceptual design 

studies are encountered in Phoenix integrations also. 

2.3.2.4 AML 

The Adaptive Modelling Language (AML) is an object-oriented, knowledge-based 

engineering modelling framework. AML is the main product of Technosoft Inc.  AML 
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consists of the following components, each tailored for various purposes (Zweber, 

2002):  

• TIE provides a completely graphical environment for product and process 

modelling, integration, and optimization. TIE contains a wide selection of 

modules for interface with common engineering tools.  

• AMOpt is a suite of tools for performing optimization and probabilistic 

design studies within AML applications and TIE models. AMOpt enables 

multidisciplinary system-level trade studies such as cost versus performance. 

The AMOpt suite includes the following methods and algorithms: Multi-

Objective Genetic Algorithm (GA), Design of Experiments (DOE), 

Sequential Quadratic Programming (SQP), Powell Method, Nelder-Mead 

Simplex Method, Monte Carlo Simulation and Response Surface 

Methodology (RSM) 

Similar to FIPER and Phoenix Integration, AML is also a tool for integrating various 

design and analysis software. The limitations in FIPER and Phoenix Integration are also 

found in AML, which makes it currently unsuitable for the conceptual design phase. 

2.4 Summary and Conclusions 

The majority of the methods for variable flow modelling reviewed in this chapter are 

applicable to algebraic equations. These methods need modification for application in 

the current research context, where models are used instead of algebraic equations. 

Furthermore, most of the methods reviewed here focussed on obtaining single feasible 

variable flow model for solving a system, while there can be multiple feasible variable 

flow models for a system. This limits the chances of obtaining the one which could lead 

to relatively shorter execution time.  

The above mentioned drawbacks pose the research need for developing a novel variable 

flow modelling method which could overcome the limitations of solving the models and 

also for exploring multiple feasible variable flows. 

The decomposition and scheduling section was sub-divided into methods for process 

management and computational systems. The methods reviewed in process management 
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were relevant for identifying strongly coupled processes. These methods have the 

potential for identifying the SCCs in a system, in the current research context.  

The methods reviewed in the computational systems section are used for decomposing 

and scheduling the models for faster convergence. Except the Rogers method, all other 

methods were for decomposing the strongly coupled models into sub-problems in order 

to execute them in parallel for faster convergence. Rogers’s method was for scheduling 

the models belonging to iterative sub-cycles (SCC), based on the values of the objective 

function calculated for various arrangements of the constituent models. These objective 

functions are design problem and solver dependent, and therefore needs further 

investigation for applying to the current research context. 

The current computational process modelling methods which were available for models 

have focussed only on decomposition and scheduling and not on variable flow 

modelling (e.g. DeMAID). This has limited the flexibility for choosing the user defined 

combination of inputs to the system of models, and thus limits the effectiveness of 

conducting design studies. Therefore there is a research need to combine the variable 

flow modelling methods and the decomposition and scheduling methods to generate a 

novel computational process modeller which ensures the flexibility in choosing the 

inputs to the system and to improve the efficiency (through decomposition and 

scheduling) of solving the system. 

Various computational tools for low and high fidelity mathematical models were 

reviewed to identify the potential of those tools in the conceptual design stage. Among 

the low-fidelity tools, Concept Modeller and Design Sheet were developed for solving 

algebraic equations and AGENDA and DeMAID for solving the models. Even though 

the latter tools were able to solve the models, they lacked the flexibility in selecting the 

inputs for the system.  

High-fidelity tools included various novel mechanisms for integrating different CAE 

tools into a single environment. However, these tools lacked the automated integration 

capability and the flexibility required for integrating numerous simple models in a 

dynamic environment. This poses a need for the development of a conceptual design 

tool which ensures the above mentioned limitations are tackled. 
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3 COMPUTATIONAL PROCESS MODELLING FOR 
COMPLEX SYSTEMS 

3.1 Introduction 

Presented in this chapter is a novel method for computational process modelling for 

complex systems. The limitations of the most recent methods were described in detail in 

section 2.4.  The novel process modeller tackles these limitations and generates a 

computational arrangement for the system, which leads to shorter execution time. 

Section 3.2 describes the computational process modeller in detail with the help of a 

flow chart. The individual features of the computational process modeller including the 

novel variable flow modelling method along with the decomposition and scheduling 

methods are described in the corresponding sub-sections. Section 3.3 describes a 

comprehensive example which demonstrates the working structure of the entire 

computational process modeller. Finally summary and conclusions are presented in 

Section 3.4. 

3.2 The Computational Process Modeller 

Computational process modelling is the process of organising a complex system, in 

order to efficiently compute the output variables, according to the specific input 

variables selected by the designer. As described in Chapter 1, while performing trade 

studies the designer selects various combinations of input variables and further 

computational process modelling has to be performed to obtain the computational plan 

for the system. 

In this section a computational process modeller is introduced for computational process 

modelling and is depicted in the Figure 3-1.    

A detailed explanation of the flow chart is given in the later sections. Each box in the 

flowchart is briefly explained here as follows. 
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Figure 3-1 The computational process modeller 

START 

• Independent variables and system of models: Initially, the designer 

provides the system of models with a choice of independent (input) variables 

for computational process modelling. Independent variables are those 

variables from among all the variables associated with the models in the 

system, for which the values are known (e.g. the requirement for the aircraft 

(e.g. Range, MTOW etc), which are known in advance, can be defined as 

independent during the design study process) and which the designer decides 
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to provide as inputs to the system. Hence these variables should be always 

inputs to the models in the system so that recalculating of these variables by 

the models within the system can be avoided. 

• Variable flow modelling using IMM: Variable flow modelling is performed 

using the incidence matrix method (IMM) to determine the information 

(data) flow among the models. All feasible variable flow models of the 

system are explored in this step. 

• Decomposition: Each variable flow model generated is decomposed into 

hierarchically decomposable and non-hierarchically decomposable system of 

models. Non-hierarchically decomposable systems are also called as strongly 

connected components (SCC).  

• Schedule SCCs with GA: Given a SCC, its constituent models are 

rearranged by means of Genetic Algorithm (GA). 

• Select the optimal variable flow model: The optimal variable flow model is 

selected in this step based on the value of the objective function (obtained 

after rearranging the constituent SCCs) and the number of modified models 

in each variable flow model. 

• Populate DSM with the SCCs and the remaining models: Each of the 

rearranged SCCs is regarded as a single model and along with the remaining 

models and is populated in a DSM. The population is based on the data flow 

depicted in the selected optimal variable flow model. 

• Populate models in a DSM: If SCCs do not exist, then the models are 

populated directly in a DSM based on data flow obtained from the variable 

flow model. 

• Schedule DSM: The DSM is rearranged into a lower triangular matrix based 

on a graph theoretical algorithm. This rearrangement eliminates the feedback 

loops and thus the final computational plan is obtained for the system.  

.END 
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The following sub-sections explain in detail the significant individual tasks 

mentioned above. 

3.2.1 Variable flow modelling 

Variable flow modelling is the process of identifying the data flow among the models 

within a system according to the input (independent) variables selected by the designer.  

A novel incidence matrix method (IMM) is proposed here which dynamically obtains 

the information flow within the system. The first sub-section of this section explains the 

incidence matrix method, which populates the matrix on a rules based approach. The 

following sub-section describes the formalisation of this method. 

3.2.1.1 Variable flow modelling using incidence matrix method 

In mathematics, an incidence matrix is a matrix that shows the relationship between two 

classes of objects. If the first class is X and the second is Y, the matrix has one row for 

each element of X and one column for each element of Y. The entry in row x and 

column y is 1 if x and y are related (called incident in this context) and 0 if they are not 

(Weisstein, 2007).  

In the current research context, the two classes of objects are the models and the 

variables. In the incidence matrix, each row denotes a model and each column a 

variable. An entry ‘*’ in the matrix symbolises that the variable representing the 

corresponding column is either an input or output of the model in the corresponding 

row.  An example of initial incidence matrix for a simple system is shown in Figure 3-2. 

 

Figure 3-2 Incidence matrix for a system of three models 

The aim of the incidence matrix method is to substitute the ‘*’ in the matrix with either 

‘o’ (signifying output) or ‘i’ (signifying input) depending on whether the variable in the 
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corresponding column will be an input or an output of the model in the corresponding 

row. This replacement procedure will be called ‘population of incidence matrix’. The 

incidence matrix is populated from its initial state according to the rules stated below.  

Rule1: An independent variable should be always input to the models.  

Rule2: If a variable is associated with only one model and if it is not an independent 

variable, then it should be the output of that model.  

Rule3: If a model is associated with only one variable, that variable should be output of 

that model  

Rule4: Each variable should be output of at most one model in the system.  

Rule5: The number of outputs identified through variable flow modelling, for a 

particular model, should correspond to the number of outputs of the original model.  

Given below is further explanation of the meaning of each rule. 

Rule1: This rule implies that all the ‘*’s in the columns of the independent variables 

should be replaced with ‘i’s.  

This replacement ensures that the independent variables are always input to the system. 

Rule2: This rule implies that if the elements of a column are all empty except a single 

‘*’ entry, and if the corresponding variable, which represents the column, is not an 

independent variable then that ‘*’ should be replaced with an ‘o’. 

In this case the variable is associated with only a single model, and if this variable is not 

marked as independent (which means the variable is not input to the model), then the 

only relation for the variable to model is to be an output. 

Rule3: This rule implies that if the elements of a row are all empty except a single ‘*’ 

entry, and if the corresponding data variable in the column is not an independent 

variable, then the ‘*’ should be replaced with an ‘o’. 

The case signifies a model with a single variable. If this variable is not output of the 

particular model then there was no requirement for such a model in the system and 

hence the variable is as marked as output 

Rule4: This rule implies that except for the columns of the independent variables, all 

other columns should have ‘o’ marked in exactly one element. 
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Each column represents a variable, and since each variable has to be computed, they 

should be output of a model from the system.  

Rule5: This rule implies that every row should have the same number of ‘o’s as the 

number of outputs of the associated model. 

As mentioned earlier certain models have their input and output variables interchanged 

as a result of variable flow modelling. These modified models are solved using non-

linear least-square problem solvers (e.g. Gauss-Newton method) (refer section 4.2). 

Rule5 ensures that these modified models are determined (not under or over 

determined) and therefore solvable using the non-linear least square problem solvers.  

The above five rules are applied on the incidence matrix in a particular sequence 

thereby populating the matrix in order to obtain the final information flow. It has to be 

ensured that while populating the incidence matrix by applying a particular rule (applied 

for a ‘*’ considering its row/column), other rules (when verified for the same ‘*’ 

considering its column/row) are not violated. The flow chart which explains the 

sequence of application of the rules is shown in Figure 3-3. 

The flow chart is briefly explained as follows: 

1. Incidence matrix is initially created for the models and the variables. 

2. The ‘*’s in the columns of the independent variables are replaced with ‘i’s 

based on Rule1. 

3. Further Rule2 is applied which replaces the ‘*’ with ‘o’ in the single-

element-columns of the matrix. 

4. Rule3 is then applied on the matrix which replaces the ‘*’ with ‘o’ in the 

single-element-rows of the matrix. 

5. Further, each remaining ‘*’ in the matrix is scanned and examined once, 

whether they could be replaced with either ‘i’ or ‘o’, based on the logic 

from rules 4 and 5.  

6. Once all the ‘*’s are scanned and examined, and if there are still some ‘*’s 

remaining with out being replaced, then the preceding step (step5) is 

repeated iteratively until all the ‘*’s are substituted. 
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Figure 3-3 Flow chart for incidence matrix method (IMM) 

The procedure is explained with two simple examples. The first example has a set of 

three models in the system. The second example has four models with one of the model 

generating multiple outputs. 

Example1 

Figure 3-4 shows a simple set of models for balancing the weight of an aircraft with its 

lift (Buckley et al., 1992). The example models are for demonstration purpose only. 

Data variables entering the models are the inputs and data variables leaving the models 
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are the outputs. In this example, Ws and V are chosen as independent variables for the 

system (The aim of IMM is to generate variable flow models for a system, given any set 

of independent variables. In order to demonstrate this capability of IMM, in the current 

example Ws and V were randomly chosen as independent from the set of variables in 

the system). 

 

Figure 3-4 Models balancing the weight of aircraft with its lift 

Population of the corresponding incidence matrix for the models in Figure 3-4, based on 

the six steps depicted in Figure 3-3, is described below. 

Step1: 

The initial incidence matrix is created as shown in Figure 3-5. 

 Ws CL q ρ V 
Model1 * * *   
Model2   * * * 
Model3    *  
Figure 3-5: Initial Incidence matrix for models in Figure 3-4 

Step2: 

Since Ws and V are the independent variables, according to rule1, the ‘*’s in the 

corresponding columns of the variables are substituted with ‘i’. The updated matrix is 

shown in Figure 3-6. 

 Ws CL q ρ V 
Model1 i * *   
Model2   * * i 
Model3    *  

Figure 3-6 Incidence matrix for system in Figure 3-4 with independent variables defined 
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Step3 

According to rule2, the ‘*’ in the single-element-column (column2 in the current 

example) is replaced with ‘o’. The updated matrix is shown in Figure 3-7. 

 Ws CL q ρ V 
Model1 i o *   
Model2   * * i 
Model3    *  

Figure 3-7 Incidence matrix for system in Figure 3-4 after applying rule2 on element (1,2) 

Step4 

According to rule3 the ‘*’ in the single-element-row is to be replaced with ‘o’. The 

updated matrix is shown in Figure 3-8. 

 Ws CL q ρ V 
Model1 i o *   
Model2   * * i 
Model3    o  

Figure 3-8 Incidence matrix for system in Figure 3-4 after applying rule3 on element (3,4) 

Step5 

In this step each ‘*’ in the incidence matrix is scanned to examine whether it could be 

replaced with either an ‘i’ or ‘o’. The elements (1, 3), (2, 3) and (2, 4) are scanned in 

this step. The first element (1,3), based on rule 5, is replaced with ‘i’. Since here the 

number of outputs for the original model1 is one, and since variable CL is already 

defined as the output of model1, the variable q is defined as input for the model. The 

updated incidence matrix is given in the Figure 3-9. 

 Ws CL q ρ V 
Model1 i o i   
Model2   * * i 
Model3    o  

Figure 3-9 Incidence matrix for system in Figure 3-4 after applying rule5 on element (1,3) 

The second element (2,3) in the list is now replaced with ‘o’ based on rule4. Each 

variable in the system has to be output of at least one model and since the variable q is 

already defined as input to model1 it has to be output of model2. The updated incidence 

matrix is given in the Figure 3-10. 
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 Ws CL q ρ V 
Model1 i o i   
Model2   o * i 
Model3    o  

Figure 3-10 Incidence matrix for system in Figure 3-4 after applying rule4 on element (2,3) 

 The third element (2,4) in the list is now replaced with ‘i’ based on rule4. The updated 

incidence matrix is given in the Figure 3-11. 

 Ws CL q ρ V 
Model1 i o i   
Model2   o i i 
Model3    o  

Figure 3-11 Incidence matrix for system in Figure 3-4 after applying rule4 on element (2,4) 

Step6 

Since all the ‘*’s in the incidence matrix have been replaced, there is no requirement for 

further iteration through step 5. 

Figure 3-11 shows the final populated matrix obtained for the system. The final matrix 

indicates that model1 has Ws and q as input and CL as output, model2 has ρ and V as 

input and q as output and model3 has ρ as output. 

Example 2 

This example has four models with model ‘std_atmos’ producing multiple outputs. The 

models are shown in Figure 3-12. The models are part of an aircraft sizing problem. 

Variables Tamb, alt, MTOW, Aref, Kvs, rho and FNslst are selected as independent 

variables for this case. 

Step by step population of the corresponding incidence matrix for this system of models 

is shown in Figure 3-13 . It can be noted that the matrix was fully populated after the 

first pass of step5 of the algorithm shown in Figure 3-3. Further iterations were not 

necessary in this case also. 

The two examples demonstrated above were trivial. Solving the incidence matrix was 

straightforward and always led to a solution. This is not the case for systems which are 

either under or over-determined (explained in the next paragraph) or which have SCCs.  
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Figure 3-12 Models for example2 
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Step5

 

Figure 3-13: Population of the incidence matrix for the models in the system in Figure 3-12. 
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For these system certain ‘*’s could never be replaced by iterating through step 5 and 6 

of the incidence matrix method. Hence the IMM flow chart in Figure 3-3 generates 

feasible variable flow models only for determined systems which do not have the 

presence of SCCs.  These three cases along with their resolution schemes are explained 

in the following paragraphs.  

Over and under-determined systems 

Under-determined systems are those systems where the number of independent 

variables set by the designer is less than the number required for solving the models in 

order to compute all unknown variables in the system. 

Over-determined systems are those systems where the number of independent variables 

set by the designer is greater than the number required for solving the models in order to 

compute all unknown variables. 

For a system of algebraic equations, to derive a unique solution, the number of 

unknowns should be equal to the number of equations. The same theory is applicable 

for a system of non-linear models. However, since the models can have multiple 

outputs, the criteria for determining the solvability of a system are shown in Equation 

3-1. 

Equation 3-1 Criteria for determining the solvability of a system 

TNvar –NIvar-Noutmod = 0   determined system 

TNvar –NIvar-Noutmod > 0     under-determined system 

TNvar –NIvar-Noutmod < 0    over-determined system 

Where, 

TNvar-Total number of variables 

NIvar- Number of independent variables 

Noutmod- Sum of the total number of outputs of each model in a system 

Noutmod in Equation 3-1 accounts for the multiple outputs generated by the models. 

The Equation 3-1 is derived from the following equation 
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Equation 3-2  Derivation for Equation 3-1 

Nmod= TNvar-NIvar-(Noutmod-Nmod) 

The RHS of the Equation 3-2 calculates the number of unknown variables in the system, 

taking into account the multiple outputs generated by certain models. Since the multiple 

outputs for a model can be calculated simultaneously once that model’s inputs are 

known, these outputs are considered as a single unknown variable in the above 

equation. This is taken in to account by the term Noutmod-Nmod. The value calculated 

in the RHS (Number of models) should equal to the LHS (Number of unknowns) 

signifies thus a determined system.  

Thus for example 1 (Figure 3-4) 

TNvar=5 

NIvar=2 

Noutmod=3 

TNvar –NIvar-Noutmod = 5-2-3 = 0 

Thus the system is determined. 

And for example 2 (Figure 3-12) 

TNvar=12 

NIvar=7 

Noutmod=5 

TNvar –NIvar-Noutmod = 12-7-5 = 0  

Thus the system in the example 2 is also determined. 

It can be noted that in both examples if the number of independent variables (NIvar) 

provided by the designer was less than the one specified, then the system would have 

become under-determined, and if NIvar was greater than the one specified, the system 

would have been over-determined. In these cases a variable flow model could not have 

been achieved by following the flow chart shown in Figure 3-3. 
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For resolving the under-determined system the designer will have to choose additional 

variables as independent so that the value obtained from ‘TNvar –NIvar-Noutmod’ will 

equal zero. 

 After population, the incidence matrix for the system in example1, with only Ws 

chosen as independent, is displayed in Figure 3-14 . Iterations through step5 and step 6 

will not resolve the ‘*’ in the matrix. This is because replacing the ‘*’ (in element (2,2)) 

based on rule4, which states that each variable should be output of one model, by ‘o’, 

will violate rule5 for the model in the column. Alternatively, replacing the ‘*’ with ‘i’ 

based on rule5 for the row will violate rule 4 for the column. 

 

Figure 3-14 Populated incidence matrix for an under-determined system. 

Here, TNvar –NIvar-Noutmod (=5-1-3=1), is greater than zero and hence according to 

Equation 3-1 the system is under determined. The option to resolve this system to make 

it determined is to declare an additional variable, either q, CL, V or ρ, as independent 

along with Ws. 

Over-determined systems can be resolved by deselecting relevant independent variables 

so that the value obtained from ‘TNvar –NIvar-Noutmod’ will equal zero. For example, 

in Figure 3-15 variables Ws, CL and V are declared independent, and the figure shows 

the corresponding populated incidence matrix. Equation 3-1 proves this system as over-

determined (TNvar –NIvar-Noutmod =5-3-3= -1 < 0). If the ‘*’ in the matrix is replaced 

with ‘o’, based on rule5, will violate rule 4. Alternatively, if the ‘*’is replaced with ‘i’, 

based on rule 4, will violate rule 5.  

 

Figure 3-15 Populated incidence matrix for an over-determined system. 
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The option to resolve such a system is to deselect the surplus independent variables so 

that the system remains determined. In the above example removing any one variable 

(Ws, CL or V) from the set of independent variables will make the system determined. 

Strongly connected components (SCC) 

Presence of SCCs in a system also leads to unresolved ‘*’s in the populated incidence 

matrix. Unlike under and over determined systems, in the presence of SCCs the system 

is proven determined on applying Equation 3-1. However one or more of the constituent 

models of a SCC requires inputs from at least one other model from the same group. 

This characteristic of the SCC is the reason for the unresolved ‘*’s. An example of a 

system with a SCC along with its corresponding populated incidence matrix is shown in 

Figure 3-16.  

 

Figure 3-16 (a) System of models (b) Corresponding populated incidence matrix with X3 as 

the independent variable 

In this example variable X3 is given as the independent variable. Applying Equation 

3-1; 

TNvar –NIvar-Noutmod⇒  8-1-7 = 0  

The value obtained implies that the system is determined. However, Figure 3-16 (b) 

shows some ‘*’s which are unresolved, after applying IMM. This situation has arisen as 

a result of models 1,2,3,5 and 6 being strongly connected through shared variables. 

Hence those models which have still *’s remaining in the matrix after applying IMM is 

considered as part of SCC. Thus one additional advantage of the incidence matrix 

method is that the presence of at least one SCC can be identified while performing 

variable flow modelling. However, mutually exclusive SCCs that can occur in a system 
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could not be identified during incidence matrix method, and hence a decomposition 

scheme has to be applied for this purpose. The decomposition scheme is explained 

further in section 3.2.2. 

As mentioned earlier if the system is proven determined, there is a solution existing for 

the system (see section 1.2.3.1). However, since the presence of SCC leads to 

unresolved incidence matrix (presence of unreplaced *s, after attempting to fully 

populate it), the next step is to resolve this problem. This is done by guessing the inputs 

and output variables of any one of the models belonging to the SCC and thereafter 

populating the matrix by applying IMM. Guessing the input and output variables can be 

made in a number of alternative ways and therefore each different guess will lead to a 

different variable flow model. Since our aim is to reduce the number of modified 

models (modified models leads to high execution time for the system, because of the 

numerical solving involved in the case of modified models (refer section 4.2)) in the 

system as much as possible, the criteria for selecting the models (for guessing the inputs 

and outputs) should be based on this objective. A new rule is introduced to account for 

this objective. 

Rule6: Among the models which are part of a SCC for which not all ‘*’ have been 

replaced after applying the first five rules of the IMM, the models for which the new 

inputs differ from the original ones are selected for guessing. If no such model exists, 

the incidence matrix is populated with the original inputs and outputs of the models. 

Rule6 limits the unnecessary generation of modified models in a system and also the 

creation of alternative variable flow models to the ones which have minimum modified 

models. If there is more than one model which have its variables already modified then 

any of those models can be selected for guessing, one at a time. 

In the presence of SCC the additional steps necessary for populating the matrix are 

depicted in Figure 3-17. 
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after applying IMM

Guess  i/o variables for the
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START

END
 

Figure 3-17 Additional steps for IMM in the presence of SCC 

Example3. 

The system shown in Figure 3-16(a) is considered in this example.  Figure 3-16(b) 

shows the corresponding populated incidence matrix obtained, after applying the IMM. 

In the matrix, models 1,2,3,5 and 6 are strongly connected.  

According to Figure 3-16(b) variable X3 is input to model6, but the real model6 has X3 

as output (see Figure 3-16(a)). Such a modification is not present in any other 

constituent model of the SCC. Hence, based on rule 6, model6 is chosen for guessing 

the input and output variables. There are three guesses possible as shown in Figure 3-18. 

 

Figure 3-18 Alternative guesses for i/o variables of model6 
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Figure 3-19 (a) Populated incidence matrix after the arrangement of model6 as shown in 

Figure 3-18(a), (b) Populated incidence matrix after the arrangement of model6 as shown in Figure 

3-18(b), (c) Incidence matrix after the arrangement of model6 as shown in Figure 3-18(c) 

 

 

Figure 3-20 Populated incidence matrix for the arrangement of model6 as shown in Figure 

3-18(c), in the second iteration 
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Each arrangement for model6 replaces in turn the sixth row of model6 of the populated 

matrix shown in Figure 3-16(b). Following this, step 5 and 6 of IMM is applied to 

populate the new matrix. The result obtained for each case is shown in Figure 3-19. 

In Figure 3-19(c) it can be noted that no further population is possible and the matrix 

has reached the similar situation as before, with unresolved ‘*’s. This matrix now has to 

go through another iteration as specified in Figure 3-17. In the second iteration from the 

unresolved models 2 and 5, the former is chosen for guessing based on rule6. There are 

two possible alternative guesses of input and outputs variables for model2. After 

replacing the guessed variables in the matrix and further applying step6 of IMM the two 

flow models obtained are shown in Figure 3-20. 

Thus in total, four alternative variable flow models are obtained for solving the system. 

These are shown in Figure 3-19(a), Figure 3-19(b), Figure 3-20(a) and Figure 3-20(b), 

respectively. 

Example 4 

This example is for the system shown in Figure 3-16(a) with variable X7 as the selected 

independent variable. The corresponding populated incidence matrix after applying 

IMM is shown in Figure 3-21. 

 

Figure 3-21 Populated incidence matrix, for the system of models in Figure 3 17(a), with X7 

as the independent variable. 

The matrix shows that model1, model3 and model6 are strongly connected. However, 

here inputs or outputs currently defined for any of the models in the SCC are not 

different from those of the original model (Figure 3-16(a)).According to rule 6(the 

second sentence), the incidence matrix is populated with inputs and outputs of the 

original models. Thus the final populated matrix is shown in Figure 3-22 . 
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Figure 3-22 Populated incidence matrix, for the system of models in Figure 3-16(a), with X7 

as the independent variable, after resolving the SCC. 

3.2.1.2 Variable flow modelling formalisation 

In the previous section the incidence matrix method was explained in terms of six rules. 

This section describes an improved formal incidence matrix method which populates a 

numerical matrix instead of a character matrix. This method operates in a similar 

fashion to the earlier one, except that the rules are reformed into a mathematical 

procedure. This method reduces the memory (RAM) required since numerical arrays are 

used instead of character arrays. In addition, computer programming of the rules is 

straightforward since these are in a mathematical form. 

 

Figure 3-23 Incidence matrix earlier and latest representations. 

Figure 3-23 shows the incidence matrix with its corresponding new representation, 

named as ‘incm’. Presence of a variable in the model is represented with ‘1’ (‘*’ used 

previously), an input by ‘2’ (‘i’ used previously) and output with ‘3’(‘o’ used 

previously) and ‘0’ denotes no relation between the variable and the model. The 

population of the incidence matrix in this case signifies replacing 1 with either 2 or 3. 

The algorithm for populating the numerical incidence matrix is given in the flow chart 

shown in Figure 3-24. 
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Figure 3-24 Flow chart for improved formal IMM 

In the Figure 3-24;  

incm- incidence matrix which will be populated for obtaining the variable flow model . 

An example for incm is given in Figure 3-23(b). Intially incm will have only ‘1’s and 

‘0’s, on population using formal IMM the ‘1’s are replace with either ‘2’s or ‘3’s. 

incmf- foundation incidence matrix, which corresponds to the real inputs and outputs of 

the model. The foundation matrix has the elements filled with ‘2’ and ‘3’ depending on 

inputs and outputs of the original model. The incmf for the system in Figure 3-4 will be, 
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Equation 3-3 Equation for calculating valrf(r) 
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Equation 3-5 Equation for calculating valr(r) 
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Equation 3-6 Equation for calculating valc(c) 
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Equation 3-7 Equation for calculating valr2(r,c) 
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Equation 3-8 Equation for calculating valr3(r,c) 
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Equation 3-9 Equation for calculating valc2(r,c) 
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Equation 3-10 Equation for calculating valc3(r,c) 
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⎛ ⎞
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Here; 

r represents the row number 

c represents the column number 

n represents the number of rows of the incm matrix 

m represents the number of columns of the incm matrix 

valrf(r) is the product of non-zero elements of row r of incmf 

valcf(c) is the product of non-zero elements of column c of incmf 

valr(r) is the product of non-zero elements of row r of incm 

valc(c) is the product of non-zero elements of column c of incm 

Values of valr2, valr3, valc2 and valc3 determine whether the ‘1’ in the incm matrix 

should be replaced with either 2 or 3.  

Explanation  

Equation 3-7 could be rewritten as 

2( , ) ( )2
( )

valr r c valrf r
valr r

=  

The right hand side (RHS) of the above equation calculates the product of the values of 

the elements of row ‘r’ of the incm matrix with current value 1, as if these were replaced 

with combinations of ‘2’s and ‘3’s. If valr2(r,c)  is an integer this means that RHS can 
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be represented as multiples of 2. It signifies that the values which can replace the ‘1’s in 

the row r should all be ‘2’s.  

Equation 3-8 could be rewritten as 

3( , ) ( )3
( )

valr r c valrf r
valr r

=
 

The RHS of the above equation calculates the product of the values, that the elements of 

the row ‘r’ with value 1 could be replaced, in the incm matrix. If valr3(r,c)  is an integer 

means RHS is all multiples of 3. It signifies that the value that could be replaced for ‘1’ 

in the row r should be all ‘3’s.  

Equation 3-9 could be rewritten as 

2( , ) ( )2
( )

valc r c valcf c
valc c

=  

The RHS of the above equation calculates the product of the values, that the elements of 

the column ‘c’ with value 1 could be replaced, in the incm matrix. If valc2(r,c)  is an 

integer means RHS is all multiples of 2. It signifies that the value that could be replaced 

for ‘1’ in the column c should be all ‘2’s.  

Equation 3-10 could be rewritten as 

3( , ) ( )3
( )

valc r c valcf c
valc c

=
 

The RHS of the above equation calculates the product of the values, that the elements of 

the column ‘c’ with value 1 could be replaced, in the incm matrix. If valc2(r,c)  is an 

integer means RHS is all multiples of 3. It signifies that the value that could be replaced 

for ‘1’ in the column c should be all ‘3’s.  

The queries in the decision box (D1 to D4) of Figure 3-24 checks whether the 

replacement of 1s in the incm, with either 2 or 3 is achievable. The first sentence in the 

queries ensures that the element 1, which is in consideration for substitution, can be 

replaced with either 2 or 3 based on remaining elements in the column (row). This is 
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indicated by the value calculated by the corresponding equation. The second sentence of 

the queries makes sure that, during the replacement the orthogonal row (column) of the 

element can accept the changes. 

For example, the first decision box (D1) in the Figure 3-24 states: ‘if valr2 is an integer 

and valc3 is not’. If true, the first sentence in the query, ‘if valr2 is an integer’, ensures 

that the ‘1’ can be substituted only with ‘2’. Based on this decision while replacing the 

‘1’ with ‘2’ the second part of the query, ‘and valc3 is not’, ensures that the replacement 

does not intervene with values of the column orthogonal to the element which is being 

replaced. valc3 not being an integer ensures that the replacement is not strictly restricted 

to ‘3’ with regard to the other elements in the column. Similar explanations can be 

derived for the queries in the other decision boxes. 

The equations and the queries together, implicitly satisfy the five rules stated in the 

earlier IMM. 

An example demonstrating the improved incidence matrix method is given below. 

Example 5 

The example used for demonstrating the earlier IMM is reused here. The system 

considered is given in Figure 3-4. In this example, Ws and V are chosen as independent 

variables.  

Step 1 

The initial incidence matrix, incm, and foundation incidence matrix incmf are given 

below 

incm= 
1 1 1 0 0
0 0 1 1 1
0 0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

    

incmf= 
3 2 2 0 0
0 0 3 2 2
0 0 0 3 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The above matrix representation is based on the layout of the models and variables in 

Figure 3-5. 
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Step 2 

In the next step, the non-zero elements of the corresponding columns of the independent 

variables (Ws and V) are replaced with 2. 

Incm=
2 1 1 0 0
0 0 1 1 2
0 0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Step 3 

Each element 1 in the matrix is now scanned and analysed to check whether it could be 

replaced. The details are given below 

For incm(1,2) 

5

1

(1) (1, )   0

              =3 2 2
              =12

c

valrf incmf c for incmf
=

= ≠

× ×

∏
 

1

(2) 3     ; since ( , 2)  ; ( , 2)   2
m

r

valcf incmprod incmf r incmf r
=

= = =∏  

5

1

(1) (1, )   0

              =2 1 1
              =2

c

valr incm c for incm
=

= ≠

× ×

∏
 

3

1

(2) ( , 2)   0

              =1
r

valc incm r for incm
=

= ≠∏  

( ) 12log log
( ) 22(1,2) 2.5850

log(2) log(2)

valrf r
valr r

valr

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= = =  

(1) 12log log
(1) 23(1, 2) 1.6309

log(3) log(3)

valrf
valr

valr

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= = =  
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(2) 3log log
(2) 12(1, 2) 1.5850

log(2) log(2)

valcf
valc

valc

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= = =  

(2) 3log log
(2) 13(1,2) 1

log(3) log(3)

valcf
valc

valc

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= = =  

 

Now the queries in the decision boxes D1 to D4 are checked. 

Decision box D1 

valr2=2.508  non-integer 

valc3=0.6309  non-integer 

Therefore D1is unsatisfied 

Decision box D2 

valc2=1.5850  non-integer 

valr3=1.6309  non-integer 

Therefore D2 is unsatisfied 

Decision box D3 

valr3=1.6309  non-integer 

valc2=1.5850  non-integer 

Therefore D3 is unsatisfied 

Decision box D4 

valc3=1  integer 

valr2=2.5850  non-integer 

D4 is satisfied. 

Decision box D4 is satisfied therefore the element(1,2) is replaced with 3. The updated 

incidence matrix is shown below. 
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incm=
2 3 1 0 0
0 0 1 1 2
0 0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

For incm(1,3) 

valrf(1)=12 

valcf(3) =6 

valr(1)=6 

valc(3)=1 

valr2(1, 3)=1 

valr3(1, 3)=0.6309 

valc2(1, 3)=2.5850 

valc3(1, 3)=1.6309 

Here decision box D1 is satisfied therefore incm(1,3) is replaced with 2. 

Incm=
2 3 2 0 0
0 0 1 1 2
0 0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

For incm(2,3) 

valrf(2)=12 

valcf(3) =6 

valr(2)= 2 

valc(3)=2 

valr2(2, 3)=2.5850 

valr3(2, 3)=1.6309 

valc2(2, 3)=1.5850 

valc3(2, 3)=1 

Here decision box D4 is satisfied therefore incm(2,3) is replaced with 3. 
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incm=
2 3 2 0 0
0 0 3 1 2
0 0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

For incm(2,4) 

valrf(2)=12 

valcf(4) =6 

valr(2)= 6 

valc(4)=1 

valr2(2,4)=1 

valr3(2,4)=0.6309 

valc2(2,4)=2.5850 

valc3(2,4)=1.6309 

Here decision box D1 is satisfied therefore incm(2,4) is replaced with 2. 

incm=
2 3 2 0 0
0 0 3 2 2
0 0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

For incm(3,4) 

valrf(3)=3 

valcf(4) =6 

valr(3)= 1 

valc(4)=2 

valr2(3,4)=1.5850 

valr3(3,4)=1 

valc2(3,4)=1.5850 

valc3(3,4)=1 

Here decision box D3 (and D4) is satisfied therefore incm(3,4) is replaced with 3. 
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incm=
2 3 2 0 0
0 0 3 2 2
0 0 0 3 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Step 4 

Since all the ‘1’ in the incm matrix are now replaced with either 2’s or 3’s, there is no 

requirement to iterate through step 3 again. 

The final matrix indicates that model1 has Ws and q as input and CL as output, model2 

has ρ and V as input and q as output and Model3 has ρ as output. The result obtained 

here is the same as the one obtained by applying the earlier IMM (see Figure 3-11). The 

populated matrix is obtained here in a single iteration, for larger cases more iteration 

may be required to arrive at a solution. 

In the current formal IMM, the over-determined, under-determined and strongly 

connected components are resolved in the same manner as explained earlier. The 

additional steps required for resolving SCC for the formal IMM are shown in Figure 

3-25. The chart is similar to the one in Figure 3-17, but is modified according to the 

notations used in the formal IMM.  

Unresolved incm
after applying IMM

Guess  i/o variables for the
model selected based on rule6

Perform  steps 3 and 4 of
formal IMM

check for '1'
in the matrix

yes

no

START

END
 

Figure 3-25 Additional steps for formal IMM in the presence of SCC 
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3.2.2 System Decomposition 

The next step, after the variable flow models have been generated, is to perform system 

decomposition. This is the process of decomposing a complex system into a number of 

sub-problems. In the context of solving an aircraft system, the system decomposition 

corresponds to identifying the models which are strongly connected and grouping these 

as sub-systems. 

In the incidence matrix section it was shown that for determined systems during 

variable flow modelling, the models which had unresolved ‘*’ (or 1’s in case of formal 

IMM) after applying the IMM, were considered as strongly connected. This dynamic 

identification of SCC is a significant advantage. However, since IMM cannot identify 

mutually exclusive SCCs we have to employ an additional method for dealing with this 

problem. 

Here we adopt an algorithm (Tang et al., 2000) used for identifying the coupled 

activities in a manufacturing environment, in order to identify the SCCs. The algorithm 

was briefly explained in the literature review chapter. A more detailed explanation 

follows. 

A design process can be represented in a directed graph; it consists of a set of nodes, 

representing the design activities and a set of directed lines connecting these nodes. The 

directed lines represent the linkage between the design processes.  

 In the proposed algorithm the design activities are represented in a binary design 

structure matrix (DSM). In the DSM both rows and column represent a design activity 

(models in our case). In the matrix an element ‘1’ denotes, the model representing the 

column of the element has an input from the model representing the corresponding row. 

‘1’ marked above the diagonal denotes the feed forward loop and ‘1’ below the diagonal 

denotes the feedback loop.  

The problem of recognising coupled activities set is translated into the problem of 

seeking SCC in a directed graph.  

Let D denotes the DSM, 

Accessibility Matrix P= 
1

j
n

n
D

=
∑   where j= number of design activities. 
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In the accessibility matrix the values of the elements which are greater than 1 are 

replaced with 1. Then the Hadamard (entry wise) product of  P and  PT
 is performed. 

2
11 12 1 11 21 1 11 12 21 1 1

2
21 22 2 12 22 2 21 12 22 2 2

2
1 2 1 2 1 1 2 2

... ... . ... .

... ... . ... .
... ... ... ... ... ... ... ... ... ... ... ...

... ... . . ...

n n n n

n nT n n

n n nn n n nn n n n n

p p p p p p p p p p p
p p p p p p p p p p p

P P

p p p p p p p p p p p

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ nn

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Here PT is the transpose of P. Pij=1 denotes that design activity representing the row (i) 

is accessible from the design activity in the column (j). Similarly if the design activity 

representing the column (j) is accessible from the design activity in the row (i) then 

Pji=1. Thus both these design activities are accessible to each other if and only if 

Pij.Pji=1. Therefore in the matrix P ° PT
, if the non-zero elements in the ith row are in the 

j1
th, j2

th,… jk
th column then the design activities representing the rows 1,2..k are strongly 

coupled. 

The above mentioned method is applied in the current context to identify SCC in a 

system. An example is given below which explains the procedure. 

Example 6 

The system shown in Figure 3-16 (a) is considered in this example. The variable flow 

model obtained for this system, given X6 as the independent variable, is shown in 

Figure 3-26. 

 

Figure 3-26 Populated incidence matrix for the system shown in Figure 3-16 with X6 given 

as the independent variable 

 

 The DSM for the system, populated based on the data flow from the variable flow 

model (Figure 3-26) is given below.  
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                1    2 3 4 5 6
mod 1 1 0 1 0 0 1
mod 2 1 1 0 0 1 0
mod 3 1 0 1 0 0 1
mod 4 0 0 0 1 0 0
mod 5 0 1 0 1 1 0
mod 6 0 0 1 1 0 1

el
el
el

D
el
el
el

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Accessibility matrix P, is calculated as follows. 

1 2 3 4 5 6

144 0 232 138 0 232
144 63 169 138 63 169
144 0 232 138 0 232

0 0 0 6 0 0
88 63 81 94 63 81
88 0 144 94 0 144

P D D D D D D

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= + + + + + = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

The non-zero elements of the matrix are now replaced with 1. 

1 0 1 1 0 1
1 1 1 1 1 1
1 0 1 1 0 1
0 0 0 1 0 0
1 1 1 1 1 1
1 0 1 1 0 1

P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Now the Hadamard product of  P and  PT is, 

1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 0 0 1
1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 0 1 0
1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 0 0 1
0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 1 0 0
1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 0 1 0
1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 0 0 1

TP P

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

In the above matrix rows 1, 3 and 6 are equal and so are rows 2 and 5. Hence according 

to the method described before, the models which represent these rows are strongly 

coupled. More specifically in the current example there are two mutually exclusive 
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SCCs. model1, model3 and model6 belong to the first SCC and model2 and model5 to 

the second. Thus system is now decomposed into the following 

• SCC_1 (model1, mode3, model6) 

• SCC_2 (model2, model5) 

• model4. 

3.2.3 System scheduling 

Scheduling is the process of sequencing the models in a system for the purpose of 

executing them after eliminating or reducing the feedback loops among the models. As 

mentioned earlier, in complex systems an entire elimination of feedback loops may not 

be possible. System decomposition identified those set of models in which feedback 

loops cannot be eliminated, as SCCs.  

The first subsection explains how these coupled sets of models belonging to SCCs are 

rearranged so that feedback loops are reduced. 

 In the section 3.2.1.1 it was proven that a system can have multiple feasible variable 

flow models, in the presence of SCCs. In this section we also explain how the optimal 

variable flow model could be selected from the feasible ones. Selection of the optimal 

variable flow model is related to the rearrangement of models of the SCC, and hence it 

is described in this section. 

The second subsection describes the arrangement of non-coupled models in a sequence. 

3.2.3.1 Scheduling of coupled models 

Presence of feedback loops in the SCCs makes it necessary to employ iterative methods 

to solve them. The more feedback loops, the more time and computational cost is 

required for solving. Feedback loops are formed when a model, requires input from 

another model which comes later in the execution sequence. Reducing the feedback 

loops can thus reduce the time and computational cost for solving a SCC. Rearranging 

the models in the SCC can reduce the feedback loops. 

A genetic algorithm based approach for ordering complex design processes (Rogers, 

1997) is used here for the rearrangement. Here we consider the number of feedback 

loops as the objective function to be minimised (This objective function has been 
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chosen after conducting extensive testing with different candidate objective functions on 

an aircraft conceptual design test case. The tests conducted are explained in section 

5.3.). Genetic algorithm has been chosen since compared to other scheduling methods, it 

is independent of problem formulation, and therefore different objective functions can 

be formulated for different scheduling architectures. 

Genetic algorithms work on the principle of evolution. They search a population of 

design points, with each design point having a vector of design parameters. Successive 

populations are generated by selection, crossover and mutation operations. Selection 

determines those members of the population that are fit to participate in the production 

of members of the next generation. Selection is based on the value of the objective 

function of each member, and the members with better objective survive. Crossover is 

the process of mating of members selected through selection operation, hoping to 

produce children which have better objective level than the parents. The final mutation 

operation prevents the genetic algorithm from reaching local minimum by preventing 

the search space becoming too narrow. 

Traditionally binary coding is used in GA; the values of design variables are coded as 

binary numbers and then concatenated. This approach works well with numerical 

problems, but is not efficient for sequencing problems. In case of rearranging a SCC, 

the order in which models are to be executed form the genetic string. For example, if 

there are three models model1, model2 and model3.The initial string 1, 2, 3 indicate the 

execution sequence as model1, model2 and then model3. Then a string 2, 3, 1 will 

denote model2, model3 and then model1 as the execution order. In this case special 

operators are required for mutation and cross over operations. 

 

Figure 3-27 Position based crossover 
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Position-based cross over (Syswerda, 1990) is used here and is shown in Figure 3-27. 

From the first parent several models are selected to be passed on to the same location in 

the child string. From the second string those models which were not selected from the 

first parent are passed on to the spaces in the child string. The final child string will now 

have one copy of each model.  

 

Figure 3-28 Order based mutation 

 

Order based mutation operation is shown in Figure 3-28. Each string position is polled 

and if it is chosen for mutation then it is swapped with a randomly selected position in 

the same string. 

The equation formulated for calculating the objective function (feedback number) is 

given in Equation 3-11(a). In the equation, D is a reformed DSM created from the 

incidence matrix of a SCC. In the reformed DSM, ‘1’ marked above the diagonal 

denotes the feed forward loop and ‘1’ below the diagonal denotes the feedback loop. 

Additionally, the number ‘1’ marked on the diagonal elements denotes modified 

models. This number ‘1’ represents the additional computational expenditure required 

for modified models. The rest of the diagonal elements are marked ‘0’. 

Equation 3-11 Equations for calculating number of feedback loops and number of 

modified models 

1

2 1

1

a) Number of feedback loops, nFdb ( , )

b) Number of modified models, nMm= ( , )

n i

i j

n

k

D i j

D k k

−

= =

=

=∑∑

∑
 

The models are rearranged based on the objective function represented in Equation 

3-11(a).  
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Selecting the optimal variable flow model 

The Equation 3-11(b) suffices the purpose of selecting the optimal variable flow model 

from the group of variable flow models created by IMM, which is explained in the 

following paragraph. 

In the section 3.2.1 it was proved that there can be multiple feasible variable flow 

models for a system, in the presence of SCC. To choose the optimal variable flow 

model which can lead to the shortest execution time, the number of feedback loops of 

and the number of modified models in the constituent SCCs of each variable flow model 

is taken into consideration. The flow model which has the lowest number of modified 

models in the constituent SCC is chosen as the optimal and is selected for further 

solving. If there are multiple variable flow models with same number of modified 

models then the one which have lesser number of feedback loops is chosen as the 

optimum. The first criteria of number of modified models for selecting the optimal 

variable flow model compared to the number of feedback loops has been decided after 

conducting various tests (These tests are explained later in section 5.4). These tests 

identified that the modified models add more to the computing cost compared to the 

feedback number. Higher the number of modified models higher was the computational 

cost. However, the number of feedback loops plays a significant role in rearranging the 

models of the SCC in each variable flow model, which significantly reduces the 

computational cost for the SCC. 

The scheduling procedure thus satisfies two aims: scheduling the models in the SCC 

and choosing the optimum variable flow model. 

Example 7 

This example is a continuation of example3. In example 3 there were four variable flow 

models obtained for solving the SCC as shown in Figure 3-19(a), Figure 3-19(b), Figure 

3-20(a) and Figure 3-20(b). After system decomposition it was identified that for all 

four variable flow models, models 1,2,3,5 and 6 are strongly coupled.  

The current example shows how the constituent SCCs of each variable flow model are 

rearranged to reduce the number of feedback loops. In addition, this example also shows 

how the optimal variable flow model can be chosen based on the criteria defined earlier. 



 

77 

Figure 3-29(a) to (d) shows the corresponding DSM representation of the four variable 

flow models represented in Figure 3-19(a), Figure 3-19(b), Figure 3-20(a) and Figure 

3-20(b). For the flow model in Figure 3-19(a), model1, model5 and model6 are 

modified models and hence the diagonal elements of the corresponding DSM in the 

Figure 3-29(a) are given a value of 1. Similarly for the other DSMs the respective 

diagonal elements are given values of 1, according to the modified models in the 

corresponding variable flow models. 

 

Figure 3-29 DSM representation of the variable flow models obtained in example 3 

Each DSM in Figure 3-29 is rearranged using genetic algorithm with number of 

feedback loops as the objective function to be minimised. The final rearranged DSMs 

are shown in the Figure 3-30(a) to (d).It can be noted that the number of feedback loops 

of all the DSMs is reduced as a result of the rearrangement.  

 

Figure 3-30 Rearranged DSMs of Figure 3-29 
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The next step is to identify the optimal variable flow model based on the number of 

modified model and the number of feedback loops in the constituent SCC of each 

variable flow model. Since the first criteria for choosing the optimal variable flow 

model is the number of modified models, the variable flow model corresponding to the 

fourth DSM (Figure 3-30 (d)) which has the least number of modified models of 2 is 

chosen as the optimal. Hence the corresponding variable flow model, which is chosen as 

the optimum, is given in Figure 3-20(b). The final execution sequence for models of the 

SCC for this variable flow model is model5 model1 model3 model6 model2, 

which is based on the arrangement shown in the fourth DSM (Figure 3-30(d)).  

In this example since there are no variable flow models which have equal number of 

modified models, the second criteria, number of feedback loops, was not required to be 

considered for choosing the optimal variable flow model.  

3.2.3.2 Scheduling of non-coupled models 

In the previous section scheduling of the coupled models were explained. This section 

explains the scheduling of non-coupled models in a sequential order. The models which 

belong to SCC, which are already arranged using the method described in the previous 

sub-section, are confined into a single subsystem and are sequentially arranged along 

with the remaining non-coupled models.  

Here we also adopt an algorithm (Tang et al., 2000) used for sequentially arranging the 

design process in concurrent engineering. The algorithm works according to the 

following theorem; 

Theorem (Xiao and Fei, 1997): If P is the accessibility matrix (explained in the 

previous section) of a directed graph G, P.Er-1=(p1,p2….pm)T
, where r≥1, 1≤m≤n (m is 

the number of nodes in the graph); the m-dimension vector E0=(1,1,….,1)T; 

Er=(e1,e2,…,em)T, where 

{ }
{ }
0,1 ;0

      ( 1,2,...., )
0,1 ;1

i
i

i

p
e i m

p
∈⎧

= =⎨ ∉⎩
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The necessary and sufficient condition of Lr= {vi} is pi=1, where Lr indicates that the 

level of node vi is r in the graph G. Here level refers to the position in the rearranged 

sequence of the nodes. 

The above theorem sequentially arranges the models considering the following 

 If all the elements in a column of the DSM are zero then the models 

corresponding to that column should be executed as early as possible since 

they do not need any input from other activities. 

 If all the elements of a row are zero, the model representing that row should be 

executed after all other non all zero element models because it provides no 

input to any other models 

 The ultimate objective of the rearrangement is to schedule the rows and 

columns of the DSM into a lower triangular form. 

The following example will explain the procedure in detail 

Example8 

The system shown in Figure 3-16(a) with X7 as the chosen independent variable 

(corresponding incidence matrix, shown in Figure 3-22) is considered in this example 

for sequential arrangement. On decomposition of the incidence matrix models 1, 3 and 6 

were identified as strongly coupled. The SCC which contains these models and the 

remaining non-coupled models are represented in Figure 3-31. The scheduling of 

models in the SCCs was explained in the previous section. 

 

Figure 3-31: Confined SCC and the remaining models 

The theorem mentioned above is applied to this case for rearranging it sequentially. The 

DSM for the system populated based on the variable flow model shown in the incidence 
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matrix in Figure 3-22 is given below. It has to be noted that the models belonging to 

SCC are regarded as a single model, with inputs and outputs as shown in Figure 3-31. 

model2 1 1 0 1
model4 0 1 0 0
model5 1 0 1 1
SCC 0 1 0 1

D

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

1 2 3 4

4 20 0 10
0 4 0 0

10 25 4 20
0 10 0 4

D D D D

⎡ ⎤
⎢ ⎥
⎢ ⎥+ + + =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Replacing non-zero values in the above matrix with 1 

Accessibility matrix P=

1 1 0 1
0 1 0 0
1 1 1 1
0 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

The order levels of all the models are figured out as follows: 

0

0

1

(1,1,1,1)

. (3,1, 4,2)
mod el4

T

T

E

P E
L

=

=
=

 

Here the second element of P.E0 had 1. Hence according to the theorm model4 was 

added in the level L1.  Similarly the models for the subsequent levels are identified as 

follows; 

1

1

2

(1,0,1,1)

. (2,0,3,1)
SCC

T

T

E

P E
L

=

=
=

 

2

2

3

(1,0,1,0)

. (1,0,2,0)
mod el2

T

T

E

P E
L

=

=
=

 

3

3

4

(0,0,1,0)

. (0,0,1,0)
mod el5

T

T

E

P E
L

=

=
=
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L1, L2, L3 and L4 represent the order levels obtained. The DSM for the order obtained 

from the above method is 

model4 1 0 0 0
SCC 1 1 0 0

model2 1 1 1 0
model5 0 1 1 1

D

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

The rearranged DSM is in a lower triangular form. It has to be noted that since the 

above theorem rearranges the DSM into a lower triangular form, the execution sequence 

for the activities representing the rows will be from bottom to top. The sequential 

execution order for the system will therefore be mode5 model2 SCC model4. 

3.3 Computational Process Modelling Example 

The individual methods incorporated in the computational process modeller were 

explained in the previous sections with specific examples. This section demonstrates the 

application and implementation of the entire computational process modeller, for 

generating computational plans for systems, with the help of an aircraft sizing example.  
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Figure 3-32 System of models 
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The case considered here is a subset of an aircraft system. The explanation is in 

correspondence with the flowchart for computational process modeller shown in Figure 

3-1. 

Figure 3-32 shows the system of models considered for this example. In the system 

there are 12 models and 31 variables. Variables Aref, Avt, BPR, Kcx0, Lev, Lref, Mach, 

Mprop, ar, cx0, cz, lfus, mass, vsnd, wAfus, wAht, wAvt and wAwing, which were 

chosen randomnly, are considered as independent variables. 

The first step in the computational process modeller is to perform the variable flow 

modelling. Formal incidence matrix method is used in this example for variable flow 

modelling. Figure 3-33 shows the initial incidence matrix representation of the system 

with the relevant element of the columns of the independent variables replaced with 2 

(after applying step2 of the formal IMM). 

 

Figure 3-33 Initial incidence matrix for the system in Figure 3-32 (Blank cells denote ‘0’) 

Figure 3-34 shows the incidence matrix populated after applying steps 3 and 4 of the 

formal IMM (Figure 3-24). 

 

Figure 3-34 Populated incidence matrix according to formal IMM (Blank cells denote ‘0’) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3-35 Four different variable flow models obtained for the system in Figure 

3-32(Blank cells denote ‘0’) 
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In the Figure 3-34 there are some ‘1’s still existing in some rows of the matrix. Since 

the system is determined (TNvar –NIvar-Noutmod ⇒  31-18-13 = 0), those rows 

indicate the presence of at least one SCC. aspect_ratio, fin_size, levl_flgt, stand_atmos, 

grav_acc, nac_wet_area, fric_drag, engine_mass and nac_dia are the unresolved models 

in the matrix and hence are part of the SCC. 

The additional steps required for the formal IMM in the presence of SCC are further 

performed according to the steps given in the flowchart of Figure 3-25. Subsequently 

four different variable flow models are obtained for the system. They are represented in 

Figure 3-35 (a) to (d). The matices not only show the models of the SCC but also other 

models. 

The next step is to perform the decomposition of the system for each variable flow 

model.  For the first variable flow model (Figure 3-35 (a)), the various matrix 

manipulations performed for decomposition are given below. 
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From the PoPT matrix, there are three sets of similar rows (2,3), (5,6,7) and 

(9,10,11,12). Hence there are three SCCs in this system;  1)aspect_ratio and fin_size 

2)levl_flgt, stand_atmos and grav_acc 3)nac_wet_area, fric_drag, engine_mass and 

nac_dia. 

Similar decomposition is performed on the rest of the variable flow models. In all the 

three cases the same SCCs were identified. Therefore, the decomposition procedure for 

the other three variable flow models is not described here. 

The next step is to perform the scheduling of coupled models (SCCs). The scheduling of 

the SCCs (by genetic algorithm) of each of the four variable flow models is given 

below.  

For the first variable flow model (Blank cells denotes ‘0’):  
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The total number of feedback number is 3(1+1+1) and total number of modified models 

is 6(2+2+2) 

For the second variable flow model (Blank cells denotes ‘0’):  

 

The total number of feedback loops is 3(1+1+1) and total number of modified models is 

8(2+2+4). 

For the third variable flow model (Blank cells denotes ‘0’):  
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The total number of feedback loops is 3(1+1+1) and the total number of modified 

models is 7(2+3+2). 

Finally for the fourth variable flow model (Blank cells denotes ‘0’):  

 

The total number of feedback loops is 3(1+1+1) and the total number of modified 

models is 9(2+3+4). 

The first criterion for choosing the optimal variable flow model is the number of 

modified models. Compared to the others the first variable flow model which has the 

least number of modified models of 6 is hence chosen as the optimal. The 

corresponding variable flow model, which is therefore chosen as the optimum, is given 

in Figure 3-35 (a). 

The execution sequences for the models in the SCCs are given below. 

SCC 1 : aspect_ratio fin_size 

SCC 2 : levl_flgt stand_atmos grav_acc 

SCC 3: nac_wet_area fric_drag engine_mass nac_dia 

In this example since there are no variable flow models which have equal number of 

modified models, the second criteria, number of feedback loops, was not required to be 

considered for choosing the optimal variable flow model.  
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The next step is to sequentially arrange the SCCs with the remaining non-coupled 

modes. The models belonging to SCC are regarded as a single model with inputs and 

output. The SCCs and the remaining models are represented in Figure 3-36. 
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Figure 3-36 SCCs and the remaining models 

The corresponding DSM populated based on the optimal variable flow model shown in 

Figure 3-35 (a) is given below. 

1 1 1 0 0 0 0
2 0 1 0 0 0 0
3 0 0 1 0 0 0

_ 1 0 0 1 0 0
_ _ 0 0 0 0 1 0

_ 0 0 1 0 0 1

SCC
SCC
SCC

D
sound vel

fus wet area
fin vol

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Accessibility Matrix,     

1 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 1 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 1

P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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The order levels of all the models are determined as follows: 

0

0

1

(1,1,1,1,1)

. (2,1,1,3,1,2)
2, 3, _ _

T

T

E

P E
L SCC SCC fus wet area

=

=
=

 

1

1

2
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. (1,0,0,2,0,1)
1, _

T

T

E

P E
L SCC fin vol

=

=
=

 

2

2

3

(0,0,0,1,0,0)
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_
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E

P E
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=

=
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The DSM for the order obtained from the above method is 

2 1 0 0 0 0 0
3 0 1 0 0 0 0

_ _ 0 0 1 0 0 0
1 1 0 0 1 0 0

_ 0 1 0 0 1 0
_ 0 0 0 1 0 1

SCC
SCC

fus wet area
D

SCC
fin vol

sound vel

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

It can be noted that the rearranged DSM is in a lower triangular form. Hence the 

execution sequence for the system is sound_vel  fin_vol  SCC1 (aspect_ratio  

fin_size)  fus_wet_area  SCC3 (nac_wet_area  fric_drag  engine_mass  

nac_dia)  SCC2 (levl_flgt  stand_atmos  grav_acc). 

3.4 Summary and Conclusions 

Presented in this chapter is a novel method for computational process modelling. The 

computational process modeller was subdivided into variable flow modelling, 

decomposition and scheduling.  

The IMM and the modified formal IMM for variable flow modelling are introduced. 

Compared to IMM, the formal IMM is easier to implement and takes less memory space 

while computing. These novel methods have the advantage of generating multiple 

variable flow models for a system which consists of models with multiple outputs. .  

Until now this feature has not been available even in computational process modelling 
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methods for algebraic equations, were the focus has always been on generating a single 

feasible variable flow model.  

Decomposition was performed based on an algorithm from concurrent engineering for 

identifying coupled design processes.  

Scheduling the coupled models (SCC) was performed by genetic algorithm with number 

of feedback loops as the objective function to be minimised. The number of modified 

models and the value of the objective function of the constituent SCCs of the multiple 

flow models, generated during variable flow modelling, were considered as the criteria 

for choosing the optimum flow model. As a result this scheduling procedure satisfied 

two aims: scheduling the models in the SCC and choosing the optimum variable flow 

model. 

The non-coupled models were sequentially arranged based on an algorithm from 

concurrent engineering for arranging design tasks.  

An example system consisting of 13 models and 31 variables demonstrated the step by 

step procedure for computational process modelling. 
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4 SOLVERS FOR SUB-SYSTEMS 

4.1 Introduction 

The computational process modeller generates the optimum execution sequence of the 

models in a system. The system is then solved based on the obtained execution 

sequence to compute the unknown variables. The solving is carried out by the sequential 

execution of the models, SCCs and modified models in the system. Unlike the models, 

where the execution is straightforward, SCCs and modified models require 

mathematical treatments for solving them. The treatments and approaches used in this 

research for solving these sub-systems are discussed below. 

4.2 Scheme for Solving Modified Models 

A modified model is a model which has some of its input and output variables swapped 

as a result of variable flow modelling. Since the original model accepts only its real 

inputs, numerical solving has to be relied on in order to accomplish the required 

modification. An example of a modified model is given in Figure 4-1. 

Payload PL
Payload

Mat hema tical Treat ment

Npax

PL

Wpax

Npax
Wpax

(a) Payload model (b) Modified payload model  

Figure 4-1 An example for modified model  

A model m can be represented as  

1 1( ),   ,.....,   ,......n my m x where x x x and y y y= = =  

Here x is the input variables and y the output variables. In the case of a modified model 

a subset of variables in x and y is interchanged. Let xm and ym denote that subset 

(number of elements xm is equal to the number of element in ym). Hence a modified 

model can be represented as 
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( ,  ) ( ,  )  
where
yr xm mm xr ym

xr x xm
yr y ym

=

= ∩
= ∩

 

Here xr and ym are the known values and the aim is to compute yr and xm. 

Various schemes which are available for solving a system of non-linear equations can 

be reformed to be applied for solving the modified models. In this research solvers 

available for non-linear least-squares problem are considered for solving the modified 

models. The Gauss-Newton method, which is one of the available methods for solving 

the non-linear least squares problem, is chosen for solving the modified models. There 

are various solving schemes such as the Newton method, Gauss-Newton Algorithm, 

Levenberg-Marquardt algorithm, etc., available for solving non-linear least-square 

problems (Dennis and Robert, 1983). The Newton method is generally used for 

unconstrained minimisation and the other two for solving system of non-linear 

equations. Since this research did not have the aim of choosing the most appropriate 

solver for modified model no much investigation was performed in choosing the solver. 

Gauss-Newton method was chosen because of its proven efficiency as a solver for non-

linear least-squares problems. The plan described below for solving the modified 

models will be similar if any other solvers are used. Hence Gauss-Newton method can 

be replaced with any solver with out any modification in the plan, for solving the 

modified models. 

For solving the modified model, initially guessed values for xm along with the known xr 

variables are given as inputs to the model m. On execution, the values of the output 

variables, generated by m are compared with the corresponding known inputs ym of the 

modified model. If the difference is more than the required tolerance then a new set of 

guessed values for xm which are calculated based on the Gauss-Newton method, are 

provided again as input to model m.  

This iterative procedure is repeated until convergence is attained. The convergence here 

means the difference between the output variables generated by m and the known input 

variables ym become less than the minimum required tolerance level set by the designer. 

Figure 4-2 shows a flow chart depicting the solving of the modified models. 
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In the flow diagram xmc
 represents the initial guessed values for xm and tol is the 

tolerance level. ymd is the output generated by model m, which has to be compared with 

ym. If the difference is above the required tolerance then the iteration is repeated until 

convergence is reached.  

 

G-N method

model m

xmc

xr

xm

ymd,yr

if ymd-ym <
tol

ym

ymd-ym

no
yes

xm,yr

 
 

In
pu

ts

Outputs

denotes iterative loop

 

Figure 4-2 Flowchart for solving modified models 

In the Gauss-Newton method the vector xm during each iteration is calculated by the 

Equation 4-1. 

Equation 4-1 Equation for calculating values of the iterative variables of modified models, 

using Gauss-Newton method 

( ) 11 ( ) . ( ) . ( ) . ( )k k k T k k T k
f f fxm xm J xm J xm J xm f xm

−+ = −  

Here k represents the iteration number and Jf (xm) is the jacobian of function f at xm. 

Function f(x) involves one single execution of the original model m (with xr and xm as 

input) and the output of f(x) is the vector containing ymd-ym.  
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Since models are black-boxes and are not directly differentiable, finite difference 

method is employed for obtaining the Jacobians in the Gauss-Newton method.  For 

more details on the Gauss-Newton method see Appendix-II.  

Example 

Modified model given in Figure 4-1 is solved as described below.  

For this modified model, 

{ }
{ }
{ }
{ }

,x Npax Wpax

y PL

xm Npax

ym PL

=

=

=

=

 

Hence 

{ }
{ }

xr Wpax

yr

=

=
 

Given the inputs PL=17250 and Wpax=115, the output Npax is calculated as follows. 

The initial guessed value for xm, xmc is given as 1. On solving, based on the flowchart 

in Figure 4-2, 150 is the solution obtained for PL.  Table 4-1 shows the progress of 

different values (depicted in the flow chart), during each iteration.  

Table 4-1 Variation in the swapped variables during the solving of ‘Payload’ modified 

model 

Iteration xm(Npax) ymd(PL) ymd-ym 

1 1 115 -17135 

2 2 230 -17020 

3 4.5 517.5 -16732 

4 10.75 1236.3 -16014 

5 26.375 3033.1 -14217 

6 65.4375 7525.3 -9724.7 

7 150 17250 2.5705e-004 
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Here the convergence is attained in seven iterations. The tolerance level is kept 1e-3, 

hence the iteration terminated when the values of ymd-ym reached 2.5705e-4. 

The limitation of solving the modified models using Gauss-Newton method is that the 

solution obtained is greatly dependent upon the starting points (xmc). For example, 

Figure 4-3 shows a curve for the function y=sin(x). Let us consider that this function is 

modified in order to generate output x, given input y. Considering a case where input y 

is given a value of 0.6, a starting guess of 200 (for x) will generate 143.1301 as output 

(for x). However, if a value of 400 is given as the initial guess, then 396.8695 will be 

the computed output for x. 

 

Figure 4-3 Sine curve 

Additionally, by using Gauss-Newton method the iterations may not always converge to 

a root, especially when the starting points are too far away from the solution.  

A problem associated with solving the modified model is that, if the switched variables 

in a modified model are insensitive to each other, then a solution will not be achievable.  

The problem is discussed in the next paragraph. 

y=sin(x)
z=tan(j)

x
j

y
z

m

 

Figure 4-4 A model for demonstrating sensitivity of switched variables. 

In Figure 4-4, for the modelm, x and j are the inputs and y and z are the outputs. Models 

are black boxes and the constituent equations are generally hidden, but in the Figure 4-4 
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these are shown only for demonstration purpose.It is clear from the equations that the 

input x and output z of the model m will be unrelated. This means that variable z is 

insensitive to variable x. If after variable flow modelling, these variables are switched, 

then obtaining a solution for x, given z as input is impossible. Such situation will lead to 

an unsolvable modified model. The same applies to input j and output y.  

The above example is a case where the switched variables are totally insensitive to each 

other. There will be cases where the switched variables will be weakly sensitive to each 

other. Switching these variables will lead to numerous iterations required for 

convergence for a modified model which adds to the computing cost for the system. 

In complicated aircraft design problems similar situations as the cases described above 

might arise. Unlike the above example, the information within the models is generally 

unavailable. Therefore to obtain the sensitivity of the input variables to the output 

variables of the models, sensitivity analysis (Cacuci, 2003) has to be carried out. The 

results obtained should be used to decide which variable can be switched in a model. 

The sensitivity of the switched variables of the modified models in practice should be 

taken into consideration while generating the variable flow models in order to avoid 

unsolvable modified models.  

The systems used for testing in this research did not have any models which totally 

insensitive inputs and outputs variables. Hence the sensitivity of the switched variables 

was not considered while generating the variable flow models.  

The solvability of a modified model is dependent on the sensitivity of the switched 

variables, the starting point chosen for the unknown variables and various other issues 

which are yet to be identified. Normalising the models based on this information will 

assist in grading these models in the system according to its solvability and thus 

providing a criterion for   intelligently choosing the models which are to be modified 

(i.e. choosing that variable flow model as the optimum, in which the contained modified 

models are quickly solvable) during the computational design process modelling. 

Conducting sensitivity analysis for each model and normalising them was out of scope 

of the current research context and therefore is left as a future work.  
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4.3 Schemes for Solving Strongly Connected Components 

This section describes the application of two different methods for solving the SCCs, 

the Fixed-point-iteration (FPI) method and the Gauss-Newton (GN) method. The Fixed-

point-iteration method is applied in two different manners for solving the SCCs.  

4.3.1 Solving SCC using Fixed point iteration method 

SCCs contain iterative loops, the presence of which necessitate certain variables to be 

known before they actually become available as output from models which appear later 

in the execution sequence. A simple SCC is shown in Figure 4-5. 

model1

model2

x1 y1

y2

y3
 

Figure 4-5 A simple SCC 

For this SCC, model1 has x1 and y2 as input and y1 as output, and model2 has y1 as 

input and y2 and y3 as outputs. The execution sequence for this SCC is 

model1 model2. It can be noted from the execution sequence that model1 requires y2 

as input in order to be executed. However, y2 is computed by model2 which appears 

later in the execution sequence. This situation is always encountered in a SCC and is the 

main difficulty when solving it. 

The fixed point iteration method (FPI) tackles this situation by starting with an initial 

guess of the unknown inputs. Thereafter once the real values of these variables are 

available from the models which appear later in the execution sequence, these values are 

fed back into the earlier model and the execution is repeated. The iterative execution 

sequence is continued until the difference between the guessed values and the real 

values obtained are below the required tolerance level.  

For the above example, initial guessed value of y2g is given as input to model1. 

Thereafter model1 and then model2 is executed. If the difference between y2, obtained 

as output from model2, and y2g
 is above the required tolerance then the new y2 is given 

as input to model1 and the execution is repeated. The iteration is continued until y2 

equals y2g or their difference is below the minimum tolerance level. 
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A detailed explanation of the fixed point iterative method is given in the Appendix-III. 

Now we explain two different ways of executing the models in a SCC while solving it 

using Fixed-point-iterative method. These will be called as Fixed-point-iterative first 

method and Fixed-point-iterative second method 

In the first method, the sequence of executing the models is determined according to the 

presence of the feedback variables and their convergence. The models covered by a 

particular feedback loop are executed iteratively until the feedback variable attains 

convergence. Once the convergence is established the execution is continued with the 

subsequent models.  

1

2

3

4

a

b

c  

Figure 4-6 An example SCC with three feedback loops 

In the SCC shown in the Figure 4-6, the iterative loops are represented as a, b and c. 

The execution sequence for this sub-system is 1 2 3 4. However, according to the 

method described above, the execution of the models is re-established based on the 

feedback loops. In this example, initially models 1 and 2, covered by the feedback loop 

a are iteratively executed until the feedback variable attains convergence. Thereafter the 

subsequent model 3 is executed, which is again part of another loop b and hence 

execution is diverted back to model 2. The execution of model 2 with the new inputs 

obtained from model 3 might create a new value for the feedback variable of loop a and 

thus violating the convergence attained earlier. Therefore the iteration of loop a is 

continued further. This iterative solving procedure is continued until all the feedback 

variables attain convergence. 

In the second method for solving the SCC using Fixed-point-iteration method, the 

execution sequence is not re-established as in the previous method. Here the feedback 

variables are updated at the end of each iteration. Here a single iteration involves 
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executing once all the models in the SCC. For example, for the SCC shown in Figure 

4-6, one iteration involves executing the models 1 2 3 4, thereafter feedback 

variables of the loops a, b, c are updated with the new values obtained after the 

execution. Subsequently this iterative procedure is repeated until the convergence is 

attained i.e., the values of the feedback variable obtained as output after the execution 

equals to values which were given as inputs before execution. 

The convergence of Fixed-point-iteration is highly dependent on the starting guess 

provided for the feedback variables by the designer. The nearer the guessed value to the 

solution the faster is the convergence. 

4.3.2 Solving SCC using Gauss-Newton method 

Solving the SCC using Gauss-Newton method involves solving it as a non-linear least-

square problem.  

In the above mentioned FPI –second method, the latest computed values were used for 

the feedback variables for the subsequent iteration. In contrast, while applying the 

Gauss-Newton method the values of the feedback variables during each iteration are 

calculated by the Equation 4-2. However, the execution sequence for the models is 

similar to FPI-second method. 

Equation 4-2 Equation for calculating values of the iterative variables of SCC, using 

Gauss-Newton method 

( ) 11 ( ) . ( ) . ( ) . ( )k k k T k k T k
f f fx x J x J x J x f x

−+ = −  

Here x is the vector of feedback variables, k represents the iteration number and Jf (x) is 

the jacobian of function f at x. Function f(x) involves one single sequential execution of 

all models in the SCC (with x as inputs) and the output of f(x) is the vector containing 

the difference of the feedback variables in the previous and the current iteration. 

Solving the SCC involves executing all the models in a sequence and thereafter iterating 

with the new feedback variables generated by the Equation 4-2 until convergence is 

attained. The aim is to make the output of function f(x) to zero. 

Here also solution obtained is greatly dependent upon the starting points of the feedback 

variables. Additionally, by using Gauss-Newton method the iterations may not always 
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converge to a root, especially when the starting points are too far away from the 

solution. 

4.4 Solving SCC and Modified Models at System Level 

The presence of modified models adds complexity when solving the SCC in a system. 

This is because the modified models have to be solved during each iteration of solving 

the SCC.  

There are two approaches to solve such cases. The first approach is rather straight-

forward: here the SCC and the modified models are solved independently. The 

difficulty is that the modified models have to be solved during each iteration of the SCC 

and this will add significantly to the computing time in order to attain total convergence. 

If there are multiple modified models then the problem amplifies. 

The second method is to solve SCC and the modified models jointly at the system level. 

Since the Gauss-Newton method is applicable for solving both the SCC and modified 

models, the problem has been reformed to solve these together. 

The feedback variables of the SCC and the xm variables of the modified models are 

solved together. During each iteration of the SCC all these variables are computed by 

the Gauss-Newton method and passed on to the required models. The iterative solving is 

continued until convergence is attained. The example given below explains the 

procedure in detail. 

 

Figure 4-7 An example SCC with modified models  
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The Figure 4-7 shows a SCC with three models. From the incidence matrix it is clear 

that model3 and model1 are modified. The graphical view of the system is shown in 

Figure 4-8. 

Here, 

Feedback variable for the SCC= {X1} 

xm for model1= {X4} 

xm for model3={X1} 

The equation for computing the iterative variables is the same as Equation 4-2. How 

ever here, the vector x will contain the feedback variables of SCC and also the xm 

variables of the modified models. The function f involves executing once the models in 

the SCC. The output of the function will be the vector containing the difference in the 

feedback variables in the previous and current iteration (for the SCC) and also ym-ymd 

(which was described earlier) (for the modified models).  

modified
model1

model2

modified
model3

X4

X5

X6

X7

X1

X3

X3

X3

X1

 

Figure 4-8 Graphical view of the SCC with modified models 

 

In the above example, the vector x which has to be computed during each iteration of 

the SCC using the Gauss-Newton method will be {X1, X4}. In this particular case the 

Jacobian matrix for the Gauss-Newton method will be non-square because the length of 

the vector of output (3 in this case) of function f is different from the input vector (2 in 

this case).  

Solving the SCC sub-system in this manner has shown faster convergence rate 

compared to the first method.  
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4.5 Summary and Conclusions 

This chapter has explained the various methods that were used in this research for 

solving the modified models and the SCCs.  

Gauss-Newton method, used for solving non-linear least-squares problems, is 

introduced here for solving the modified models.  

Two methods, the fixed-point-iterative method and the Gauss-Newton method, used in 

this research for solving the SCC are described in this chapter. In addition, two different 

ways for applying the fixed-point-iterative method to solve SCC, are also explained.  

An approach was also introduced to solve the SCC and inherent modified models jointly 

by the Gauss-Newton method.  

It is also shown here that while conducting variable flow modelling, the sensitivity of 

the switched variables of the modified models has to be taken into consideration in 

order to avoid unsolvable modified models. The implementation of this aspect is left as 

a future work. 
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5 RESULTS AND DISCUSSION 

5.1 Introduction 

This chapter explains the various tests conducted in order to evaluate the methods and 

approaches developed as part of this research. The chapter has four sections. The first 

section explains the USMAC, an aircraft conceptual design test case which was widely 

used for testing. The second section evaluates the two objective functions which were 

chosen for scheduling the coupled models by genetic algorithm. The third section 

describes the testing of the proposed computational process modeller on two test cases. 

Finally, the conclusions are presented. 

5.2 The USMAC Test Case 

The Ultra Simplified Model of Aircraft (USMAC) is an aircraft conceptual design test 

case supplied by the industrial partner (VIVACE, 2005) and has been widely used for 

testing the various methods developed in this research. Even though it is a simplified 

version, the case incorporates the most relevant aspects of aircraft conceptual design, 

such as the multidisciplinary nature of computation, heterogeneous data and non-linear 

models. The simplification is done so that the computation can be as simple and as fast 

as possible while still being representative of real design practice. 

The USMAC is a set of 97 models and 124 variables; most of the models are not longer 

than single line expressions. 

Example: Range estimation based on Breguet-Leduc formula 

   Model: RA = range_(Kra,TOW,LDW,Mach,vsnd,g,lod,sfc) 

      RA = Kra*(vsnd*Mach*lod)/(sfc*g)*log(TOW/LDW)  

   End 

The details of the models and the variables in USMAC are given in a tabular format in 

the Appendix-IV. 
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5.3 Evaluation of the Objective Function  

A genetic algorithm based approach was presented in section 3.2.3.1 for scheduling the 

coupled models (SCC). Number of feedback loops number (feedback number) was 

considered as the objective function to be minimised.  

In this section we analyse the most commonly used objective functions for 

rearrangement, which are the number of feedback loops (Rogers, 1997) and the 

feedback length (Altus et al., 1996), in the context of aircraft conceptual design. The 

equation to calculate the feedback length is given in Equation 2-2. In the equation the 

term DM is the same as the term D in Equation 3-11. 

The testing is performed by studying the effect of feedback length and number of 

feedback loops, on the computing time of the SCC in a system. 

The USMAC test case is setup for testing with the following independent variables. 

Independent Variables: Awing, BPR, FNslst, Fuel, Mach_clb, Mach_crz, Mach_cth, 

Naisle, Npax, NpaxFront, alt_app, alt_clb, alt_crz, alt_cth, alt_to, disa_clb, disa_crz, 

disa_cth, disa_to, ne, phi, span, tuc. 

After computational process modelling, out of the 97 models, 15 models are identified 

as strongly connected. They are: 

take_off_weight_,system_mass_,landing_gear_mass_,wing_mass_,manu_weight_empt

y_,ope_weight_empty_,landing_weight_,mean_cruise_mass_crz,level_flight_crz,frictio

n_drag_crz,induced_drag_crz,drag_factor_crz,lift_to_drag_crz,range_crz,operator_item

_mass_. 

In this case there was only a single variable flow model identified for the system and 

there was no modified model present in the system. 

 In order to evaluate the objective functions, models belonging to the SCC are arranged 

in various sequences. Each sequence has its corresponding feedback length and 

feedback number (i.e. the number of feedback loops). Each arrangement of the SCC and 

the remaining non-coupled models are assembled into fully executable systems which 

can compute all the unknown variables. Since the convergence of the SCC can be solver 

dependent, each SCC sub-system has been solved individually with Fixed-point 

iteration first method, Fixed-point iteration second method and Gauss-Newton method, 
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as solvers. (The features of those solvers were explained in section 4.3).  The number of 

calls made to each model in the SCC while solving them are considered as the criteria 

for deciding the computational cost involved in solving the SCC. Different tests 

conducted have proven that these ‘number of calls’ correspond to the computing time 

and cost for the system. 

For testing the efficiency of the feedback number as the objective function, each system 

is arranged according to the increasing feedback number for its constituent SCC and 

further executed. The sum of the calls made to each model of the SCC, while solving 

the SCCs using each of the three solvers, which corresponds to its computational cost 

are given in Table 5-1. In the table, the systems are arranged in the increasing order of 

the feedback number. The corresponding graph (curve fit) is given in Figure 5-1. It can 

be noted that there are many arrangements possible for the models in the SCC for the 

same feedback number. For example there were 12 ways of arranging the models in the 

SCC with feedback number of 4. All these arrangement were taken into consideration so 

that the net effect can be observed rather considering just a single arrangement for a 

particular feedback number. 

In Table 5-1, the fifth column for Gauss-Newton method represents the sum of calls 

made to each model in the SCC for solving, excluding the ones for calculating 

Jacobians. The subsequent sixth column sums up all the calls. The starting points for the 

feedback variables, while solving the SCC, for all the three solvers are given the value 

of unity. 

Table 5-1 Number of calls made by each solver to solve the SCC 

  Sum of the calls made to each model in the SCC 

USMAC 
System 

No. 

Feedback 
number 

FPI- first 
method 

FPI-second 
method 

Gauss-Newton 
method 

Gauss-Newton 
method 

(including calls 
for calculating 

jacobians) 
1 2 387 360 165 540 
2 3 428 630 285 1200 
3 3 441 435 195 840 
4 4 486 570 285 1440 
5 4 486 555 285 1440 
6 4 486 615 285 1500 
7 4 1279 660 375 1890 
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8 4 1304 660 375 1890 
9 4 1309 660 375 1890 
10 4 1324 660 375 1890 
11 4 1334 660 375 1890 
12 4 1349 660 375 1890 
13 4 1349 660 375 1890 
14 4 1354 660 375 1890 
15 4 1359 660 375 1890 
16 5 1443 645 285 1800 
17 5 1468 630 285 1725 
18 5 1493 630 285 1725 
19 5 1498 645 285 1800 
20 5 1513 660 285 1725 
21 5 1523 630 285 1725 
22 5 1528 630 285 1725 
23 5 1533 630 285 1725 
24 5 1538 630 285 1725 
25 5 3197 735 390 2355 
26 5 3314 735 390 2355 
27 5 3382 735 390 2355 
28 5 3398 735 390 2355 
29 5 3398 735 390 2355 
30 5 3420 735 390 2355 
31 5 3455 735 390 2355 
32 5 3466 735 390 2355 
33 5 3474 735 390 2355 
34 5 3485 735 390 2355 
35 5 3485 735 390 2355 
36 5 3542 735 390 2355 
37 6 3741 735 285 2100 
38 6 3798 735 285 2100 
39 6 3809 720 285 2100 
40 6 3825 720 285 2100 
41 6 3828 735 285 2100 
42 6 3828 720 285 2100 
43 6 3844 720 285 2100 
44 6 3882 720 285 2100 
45 6 3901 720 285 2100 
46 6 3912 735 285 2100 
47 6 3931 735 285 2100 
48 6 4010 810 390 2745 
49 6 4113 810 390 2745 
50 6 4137 810 390 2745 
Average calls 2475.74 681.6 328.5 1984.8 
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Figure 5-1 Feedback number versus sum of the calls made to each model in the SCC by 

each solver (The graph is curve fitted) 

From the graph in the Figure 5-1 it is clear that, while solving the SCC in the system 

with FPI-first solver and Gauss-Newton, there is an increase in the sum of the calls to 

the models with increase in the feedback number. For FPI-second solver the effect of 

the feedback number on the sum of the calls to the models is negligible. 

Compared to the other two solvers FPI-second solver has taken the least average 

number of calls to solve the SCC (Average number of calls: FPI-first: 2475, FPI-

second: 681 and GN: 1984 calls). This indicates that FPI-second is the most efficient 

solver for SCC in this case.  

As the next step, in order to test the efficiency of the feedback length as the objective 

function, each system is arranged according to the increasing feedback length for its 

constituent SCC and further executed. The sum of the calls made to each model of the 

SCC for solving it, for each system arrangement, by each of the three solvers, are given 

in the Table 5-2. In the table, the systems are arranged in the increasing order of the 

feedback length.  The corresponding graph (spline fit) representation is in Figure 5-2. 
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Table 5-2 Number of calls made by each solver to solve the SCC 

  Sum of the calls made to each model in the SCC 

USMAC 
system   

No. 

Feedback 
length 

FPI- first 
method 

FPI-second 
method 

Gauss-
Newton 
method 

Gauss-Newton 
method (including 

calls for calculating 
jacobians) 

1 23 610 255 285 870 
2 23 610 255 285 870 
3 24 611 210 150 495 
4 25 657 210 150 495 
5 25 675 435 285 1200 
6 25 702 255 285 870 
7 25 976 255 285 870 
8 25 976 255 285 870 
9 26 663 210 150 495 
10 26 703 210 150 495 
11 26 748 255 285 870 
12 26 1037 255 285 870 
13 27 195 210 165 360 
14 27 699 210 150 495 
15 27 749 210 150 495 
16 29 996 300 285 1155 
17 29 1083 300 285 1155 
18 30 747 240 285 870 
19 30 1078 300 285 1155 
20 31 315 255 180 585 
21 31 590 255 180 780 
22 31 761 240 285 870 
23 31 1117 300 285 1155 
24 31 1638 300 285 1155 
25 32 1182 255 180 780 
26 33 328 255 180 585 
27 33 643 255 180 780 
28 33 1155 255 180 780 
29 33 2185 255 180 780 
30 33 2903 300 285 1155 
31 34 1173 255 180 780 
32 34 1283 300 285 1155 
33 35 671 300 285 1155 
34 35 696 255 180 780 
35 35 1329 300 285 1155 
36 35 1989 300 285 1155 
37 36 717 300 285 1155 
38 36 732 300 285 1155 
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39 36 780 255 180 780 
40 37 1332 255 180 780 

Average 
calls  975.85 264.375 232.875 860.25 

 

 

Figure 5-2 Feedback length versus sum of the calls made to each model in the SCC by each 

solver (The graph is curve fitted) 

In this case, the sum of the calls made to the models (Figure 5-2), by each of the three 

solvers, for solving the SCC, did not show any particular pattern of influence from the 

feedback length. The effect was much more evident in the previous case of feedback 

number. 

As in the previous case, compared to the other two solvers, FPI-second solver has taken 

the least average calls to solve the SCC (Average number of calls: FPI-first: 975, FPI-

second: 264 and GN: 860 calls). 

From the above two case setup it can be concluded that, compared to the feedback 

length,  increase in the feedback number lead to increased computational cost for the 

SCC especially when FPI-first method is used for solving it.  
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The conclusions derived from the testing performed above prove that during the 

rearrangement of the models in the SCC by GA, reducing the feedback number actually 

reduces the computing cost for the SCC. This confirms the appropriateness of feedback 

number being chosen as the objective function while rearranging the SCC.  

Even though FPI-second solver had the least average calls in solving the SCC, the 

chosen objective functions did not correspond with the computational cost associated 

with the FPI-second solver. From this observation it can be concluded that the objective 

function is solver depended and cannot be generalised for any solver. Since the 

currently tested objective function of number of feedback loops has shown good 

correspondence with the FPI-first solver, they were used as the objective function and 

solver during the various tests conducted during this research. 

5.4 Computational Process Modelling Evaluation 

The computational process modeller for computational process modelling of 

complex systems was presented in Chapter 3. This section analyses the effectiveness of 

this process plan in generating optimal computational plan for the systems by applying 

and testing it on a simple sizing test case and the USMAC case.  

After applying the computational process modeller to each case the 

computational cost for the optimal computational plan obtained is compared with the 

non-optimal ones generated while performing the computational process modeller. Here 

the computational plan refers to the data flow obtained after variable flow modelling 

and also the execution sequence obtained for the models after the decomposition and 

scheduling. The non-optimal computational plan refers to thecomputational plan based 

on those variable flow models for the SCCs which were not selected as the optimal. The 

comparison is performed on the basis of the number of calls made to the models of the 

SCC during the solving process. Here, the number of calls corresponds to the 

computational cost for the system and hence chosen as the standard for comparison.   

The strongly connected components are solved using FPI- first method, since the 

objective function (feedback number) used for rearranging the coupled models in the 

SCC fits well with this solver. This was proven in the previous section. In all the cases 

the unknown variables are given a starting point of unity while solving. 
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The next two sections describe the testing of the computational process modeller 

on a simplified sizing test case and the USMAC test case. 

5.4.1 Simplified sizing test case 

A simplified set of aircraft sizing equations from Buckley (1992) is considered for 

testing the computational process modeller. The equations are shown in Figure 5-3. 

 

Figure 5-3 Simplified aircraft sizing problem (test case) 

 

Here We is the empty weight, Wo is the gross take off weight, Sref is the wing 

area and R represents the range. This set of equations is for the mission profile shown in 

Figure 5-4. The symbols W# in Figure 5-4 represent the weight of aircraft at each 

position of the mission. These equations have been considered for testing purpose only 

and may not represent a real aircraft case. 

 

Figure 5-4 Mission profile for the sizing problem 

 

1. We=Wo*2.61*Wo(-0.1)*(Wo/Sref)(-0.05) 
2. Wo=Wf+We 
3. Walt=0.985*WLO 
4. Wx=0.995*Wec 
5. Wf=1.06*(1-Wx/Wo)*We 
6. WLO=0.97*Wo 
7. Wec=Exp[0.00043R]*Walt 
8
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Since in this research the focus is on generating computational plans for models, 

these equations are compiled and formed as models. The inputs and outputs for each 

model are shown in Figure 5-5. 

 

 

Figure 5-5 Models for simplified aircraft sizing problem 

This test case is set up with two different sets of independent variables. Both cases have 

two variables as inputs, which leads to a determined system: 

TNvar –NIvar-Noutmod = 9-2-7=0  determined system 

Table 5-3 Independent variables selected for each case 

 Independent 
variables 

Case1 R, We 

Case 2 R, Sref 

The set of input variables in each case are given in Table 5-3. The two cases are diverse 

in terms of the generated computational plan. The first case has six models and the 

second case has all the seven models constituting the SCC. 

5.4.1.1 Case1 

The final matrix obtained after applying IMM with R and We as independent variables 

is shown in the Figure 5-6. 
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Figure 5-6 Incidence matrix for Case1 of the sizing test case (Blank cells denote ‘0’). 

From the figure it is clear that models 2, 3, 4, 5, 6 and 7 are part of the SCC, since there 

are 1s stills remaining in the corresponding rows of the matrix (The decomposition 

performed later has shown that these models belong to a single SCC). On further 

solving for the SCC, three variable flow models are generated. The variable flow 

models and the corresponding rearranged DSMs obtained for the SCC are shown in 

Figure 5-7. In the DSMs shown in the figure, value of 1 on the diagonal elements 

represents the models which are modified as a result of variable flow modelling. 

 

Figure 5-7  Variable flow models  and corresponding rearranged DSMs of the SCCs for 

case 1 of the sizing test case (Blank cells denote ‘0’). 
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Solving 

For a comparative testing each variable flow model obtained for the SCC (shown in 

Figure 5-7 ) are setup and executed. Table 5-4 provides the details of the variable flow 

models for the SCC, along with their execution and other relevant details. 

Table 5-4 Details of computational process modeling and solving of SCC for case 1 of the 

sizing test case. 

Computational process modelling Solving 

Variable 
flow 
model 

 

Number 
of 

feedback 
loops 

(nFdb) 

Number 
of 

modified 
models 

(nMm) 

Optimal 
flow 

model 

(chosen 
by process 

plan) 

Number of 
calls to the 
models in 

SCC 

% additional 
computational cost 

1 2 2  340 529% more  

2 1 6  434 703% more 

3 1 0 ■ 54 base 
 

Discussion 

The optimal variable flow model selected by the computational process modeller is the 

third one which has the least number of modified models (zero in this case). On 

executing, from the number of calls made to the models belonging to the SCC for each 

of the three different variable flow models it is clear that the third variable flow model 

has made the least number of calls. This agrees with the computational process 

modeller’s choice of optimal flow model.  

Since there were no variable flow models which have equal number of modified 

models, there was no requirement for comparing and selecting from them the optimal 

one based on the feedback number. However it has to be noted that the SCC for each 

variable flow model was rearranged using genetic algorithm in order to obtain the 

arrangement with least feedback number.   

From the table it is also understandable that as the number of modified models increases 

the computational cost increases. 
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The final computational plan generated by the computational process modeller, after 

applying the final scheduling, is given below. 

Computational Plan 

Inputs for the system 

R, We  

Outputs of the system 

Sref,Walt,Wec,Wf,Wlo,Wo,Wx  

Execution sequence 

1) scc_1, 2) modified_model1 

In the list above, the models with prefix ‘modified’ means, modified models.The SCC 

in the system are represented with prefix ‘scc’. The process number 1 in the process 

execution sequence given above is a strongly connected component. The details of this 

process are given below. 

Strongly Connected Components 

1. scc_1 

Inputs to SCC  

            R, We  

Outputs of SCC  

Walt, Wec, Wf, Wlo, Wo, Wx 

Execution sequence  

           model2, model6, model3, model7, model4, model5 

           Treatment (Solver) 

FPI-first method 

The variable flow model for this SCC is the variable flow model number 3 shown in the 

Figure 5-7. 

5.4.1.2 Case2 

The final matrix obtained after applying IMM with R and Sref as independent variables 

is shown in the Figure 5-8. From the Figure 5-8 it is clear that all the models in the 

system are part of the SCC, since there are 1s stills remaining in each row of the matrix 

(The decomposition performed later has shown that these models belong to a single 

SCC). On further solving for the SCC, four variable flow models are generated.  
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Figure 5-8 Incidence matrix for Case2 of the sizing test case (Blank cells denote ‘0’). 

The variable flow models and the corresponding rearranged DSMs obtained are shown 

in the Figure 5-9. 

 

Figure 5-9  Variable flow models of the SCCs for case 2 of the sizing test case (Blank cells 

denote ‘0’). 
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Solving 

Table 5-5 provides the details of the variable flow models for the SCC, along with their 

execution and other relevant details. The variable flow models are given in the Figure 

5-9. 

Table 5-5 Details of computational process modeling and solving of SCC for case 2 of the 

sizing test case. 

Computational process modelling Solving 

Variable 
flow 

model 

 

nFdb nMm 

Optimal 
flow model 

(chosen by 
process 
plan) 

Number of 
calls to the 
models in 

SCC 

% additional 
computational cost 

1 1 6  1167 495% more 

2 2 0 ■ 196 base 

3 2 2  579 195% more 

4 2 3  853 335% more 

Discussion 

The optimal variable flow model selected by the computational process modeller is the 

second one which has the least number of modified models (zero in this case). While 

solving, the second variable flow model for the SCC has the least number of calls to the 

models. This supports the computational process modeller’s choice of the second 

variable flow model as the optimum one.  

As in the previous case, from the table it is also understandable that as the number of 

modified models increases the computational cost increases. 

The final computational plan generated by the computational process modeller, after 

applying the final scheduling, is given below. 

Computational Plan 

Inputs for the system 

R, Sref  

Outputs of the system 

We,Walt,Wec,Wf,Wlo,Wo,Wx  
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Execution sequence  

1) scc_1 

The process number 1 in the process execution sequence given above is a strongly 

connected component. The details of this process are given below. 

Strongly Connected Components 

1. scc_1 

Inputs to SCC  

            R, Sref 

Outputs of SCC  

We,Walt, Wec, Wf, Wlo, Wo, Wx 

Execution Sequence 

                      model2, model6, model3, model7, model4, model1, model5 

                      Treatment (Solver) 

                      FPI-first method 

The variable flow model for this SCC is the variable flow model number 2 (which was 

chosen as the optimum) shown in the Figure 5-9. 

5.4.2 USMAC case 

The USMAC test case is set up in three different ways with each one having a different 

set of variables as inputs. All the three cases had 23 variables as inputs, which leads to a 

determined system. 

TNvar –NIvar-Noutmod = 124-23-101=0  determined system 

 The three cases were setup in order to demonstrate the capability of the computational 

process modeller in generating computational plans for the system with randomly 

chosen inputs. The three cases were diverse in terms of the generated computational 

plan. The first two cases had one SCC and the last case had two SCCs in the final 

computational plan. The contained models of the SCC were also different in the three 

cases. 

As in the previous cases the unknown variables are given a starting point of unity while 

solving. The detailed explanations regarding how the final computational plan for each 
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case was generated are not given here. However, the details of the final computational 

plan obtained are given for each case. 

5.4.2.1 Case1 

The inputs variables given for system are Awing, Leh, MTOW, Mach_clb, Mach_crz, 

Mach_cth, PL, RA, alt_clb, alt_crz, alt_cth, alt_to, dfus, disa_clb, disa_crz, disa_cth, 

disa_to, dnac, g_app, ne, phi, span and tuc.  

After decomposition thirteen models are identified as strongly connected in the system. 

They are; 

level_flight_crz,induced_drag_crz,mean_cruise_mass_crz,friction_drag_crz,drag_factor

_crz,landing_weight,ope_weight_empty,manu_weight_empty,lift_to_drag_crz,engine_

mass, range_crz, spec_fuel_cons and nacelle_diameter. 

  There were twelve variable flow models generated for the SCC. However, only four 

variable flow models produced a converged solution and hence only these will be 

discussed here. The non-converged once were those variable flow models which have 

higher number of modified models and feedback numbers. The details of one of the 

twelve variable flow models which gave a non converged solution are also given for 

completeness. The incidence matrices and the corresponding rearranged DSMs of these 

five flow models are given in the Appendix-V.i (Figure A- 3 to Figure A- 12). 

Table 5-6 Details of computational process modeling and solving of SCC for case 1 

Computational process modelling Solving 

Variable 
flow 

model 

 

nFdb nMm 

Optimal 
flow model 

(chosen by 
process 
plan) 

Number of 
calls to the 
models in 

SCC 

% additional 
computational cost 

1 3 6  117 95% more 

2 5 11  158 163 % more 

3 6 3 ■ 60 base 

4 5 9  198 230% more 

5 8 11  Non 
converged - 
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Solving 

Table 5-6 provides the details of the variable flow models for the SCC, along with their 

execution and other relevant details. 

 

Discussion 

The variable flow model 3 was chosen by the computational process modeller as the 

optimal one, since this flow model has the least number of modified models. Since there 

were no variable flow models which have equal number of modified models, there was 

no requirement for comparing and selecting from them the optimal one based on the 

feedback number.  

It is shown in the Table 5-6, that the selected optimal flow model has the lowest 

computational cost for the SCC in comparison with the other variable flow models.  

From the Table 5-6 it is also clear that when the number of modified models increases 

the computational cost for the SCC also increases. However, for the variable flow 

model number 4, even though the number of modified models is less than the one for 

the flow model 2, it has taken more calls to obtain a converged solution.  

This discrepancy was studied in detail. It was identified that they occurred because the 

convergence of the SCC was not only depended on the number of modified models and 

the feedback number, but also on various other factors such as, the starting point for the 

unknown variables, mutual sensitivity of the switched variables of the modified models 

(see section 4.2 for more details) and other factors which are yet to be discovered. In the 

current research, the focus has been on the modified models and the feedback number. 

The variable flow model 5 which had the highest number of modified models and 

feedback number lead to a non-converged solution. This approves the fact that higher 

the number of modified models and feedback number, higher will be the computational 

cost for the system. 

 

The final computational plan obtained for USMAC after performing the computational 

process modelling using the computational process modeller, is given in the next 
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paragraph. The incidence matrix which displays the variable flow model generated by 

IMM, for this system is shown in Figure A- 1 in the Appendix-V.i. In the figure models 

belonging to SCC are confined into a single process. 

 

 

 

Computational Plan 

Inputs for the system 

Awing, Leh, MTOW, Mach_clb, Mach_crz, Mach_cth, PL, RA, alt_clb, alt_crz, 

alt_cth, alt_to, dfus, disa_clb, disa_crz, disa_cth, disa_to, dnac, g_app, ne, phi, 

span, tuc 

Outputs of the system 

lod_crz, lod_cth, mass_clb, mass_crz, mass_cth, rho_clb, rho_cth, rho_to, sfc, 

tofl, vapp, vsnd_clb, vsnd_crz, vsnd_cth, vz_clb, wAfus, wAht, wAnac, wAvt, 

wAwing 

Execution sequence  

1)aspect_ratio_,2)fin_lever_arm_,3)fin_volume_factor_,4)tail_volume_factor_,5

)reference_length_,6)gravity_acc_cth,7)non_stand_atmos_cth,8)top_of_climb_

mass_cth,9)gravity_acc_clb,10)non_stand_atmos_clb,11)top_of_climb_mass_cl

b,12)one_pax_weight_,13)Cz_max_TO_factor_,14)fin_size_,15)tail_size_,16)m

odified_tail_lever_arm__tr,17)reference_area_,18)gravity_acc_to,19)non_stan

d_atmos_to,20)level_flight_cth,21)level_flight_clb,22)non_stand_atmos_crz,23)

modified_Payload__tr,24)Cz_max_TO_,25)ref_mach_number_,26)fric_drag_f

actor_,27)ind_drag_factor_,28)press_drag_factor_,29)fin_wetted_area_,30)tail_

wetted_area_,31)wing_wetted_area_,32)fus_wetted_area_,33)nac_wetted_area_,

34)Mach_stall_to_,35)Kvs_Take_Off,36)friction_drag_cth,37)induced_drag_cth

,38)pressure_drag_cth,39)friction_drag_clb,40)induced_drag_clb,41)pressure_dr

ag_clb,42)pressure_drag_crz,43)gravity_acc_crz,44)sound_velocity_crz,45)MW

E_factor_,46)operator_item_mass_,47)furnishing_mass_,48)fin_mass_,49)tail_

mass_,50)wing_mass_,51)system_mass_,52)landing_gear_mass_,53)fuselage_

mass_,54)sfc_factor,55)secured_Mach_to,56)air_density_to,57)drag_factor_cth,

58)air_density_cth,59)drag_factor_clb,60)air_density_clb,61)Cz_max_LD_facto
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r_,62)scc_test_smac_tr,63)Kvs_Landing,64)max_take_off_factor,65)net_thrust

_to,66)net_thrust_cth,67)lift_to_drag_cth,68)max_climb_factor,69)net_thrust_cl

b,70)lift_to_drag_clb,71)sound_velocity_clb,72)max_cruise_factor,73)modified

_take_off_weight__tr,74)wing_fuel,75)Cz_max_LD_,76)modified_fuselage_le

ngth__tr,77)app_speed_1,78)modified_gravity_acc_app_tr,79)tofl_1,80)cruise

_thrust_1,81)sound_velocity_cth,82)climb_rate_1,83)time_crz,84)fus_fuel_ratio

_,85)modified_fuselage_diameter__tr  

The process number 62 in the process execution sequence given above is a strongly 

connected component. The details of this process are given below. 

Strongly Connected Components 

62. scc_test_smac_tr 

Inputs to SCC  

Aref, Kcx0, Kind, Kmwe, Ksfc, Lref, MTOW, Mach_crz, Mfurn, Mfus, 

Mgear, Mht, Mop, Msys, Mvt, Mwing, PL, Pamb_crz, RA, Tamb_crz, 

ar, cxc_crz, dnac, g_crz, lfus, ne, vsnd_crz, wAfus, wAht, wAnac, wAvt, 

wAwing 

Outputs of SCC  

BPR, FNslst, LDW, MWE, Mprop, OWE, cx0_crz, cx_crz, cxi_crz, 

cz_crz, lod_crz, mass_crz, sfc 

Execution sequence 

level_flight_crz,induced_drag_crz,mean_cruise_mass_crz,friction_drag_

crz,drag_factor_crz,landing_weight,ope_weight_empty,manu_weight_e

mpty,lift_to_drag_crz,engine_mass,modified_range_crz_tr, 

modified_spec_fuel_cons, modified_nacelle_diameter  

  Treatment (Solver) 

   FPI-first method 

 

The variable flow model for this SCC is the variable flow model number 3 (which was 

chosen as the optimum) shown in the Figure A- 8. 

The values of the input and output variables obtained after executing the system are 

given in the Table 5-7. 
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Table 5-7 Values of the input and output variables obtained after executing the system for 

case1 

 

5.4.2.2 Case2 

In this case the inputs variables given for system are Awing, Leh, MTOW, MWE, 

Mach_clb, Mach_cth, Mprop, Npax, RA, alt_app, alt_clb, alt_crz, alt_cth, alt_to, dfus, 

disa_clb, disa_crz, disa_cth, disa_to, ne, sfc, span and tuc.  

After decomposition seven models are identified as strongly connected in the system. 

They are; 

level_flight_crz,range_crz,lift_to_drag_crz,induced_drag_crz,friction_drag_crz,pressure

_drag_crz,drag_factor_crz 

There were seven variable flow models generated for the SCC. However, only three 

variable flow models gave a converged solution and hence only these will be discussed 

here. The non-converged once were those variable flow models which had higher 

number of modified models and feedback numbers. The details of one of the seven 

variable flow models which gave a non converged solution are also given for 

completeness. The incidence matrices and the corresponding rearranged DSMs of these 

four flow models are given in the Appendix-V.ii (Figure A- 15 to Figure A- 22). 
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Solving 

Table 5-8 provides the details of the SCC and its variables flow models, along with their 

solving details. 

Table 5-8 Details of computational process modeling and solving of SCC for case 2 

Computational process modelling Solving 

Variable 
flow 

model 

 

nFdb nMm 

Optimal flow 
model selected by 

computational 
process modeller 

Number of 
calls to the 
models in 

SCC 

% additional 
computational 

cost 

1 1 4  220 base 

2 1 5  900 309% more 

3 2 3 ■ 253 15% more 

4 2 5  Non-
converged - 

 

Discussion 

Since the third flow model has the lowest number of modified models (three), this was 

chosen during computational process modeller as the optimal one. However after 

execution it was found that, variable flow model 1 had lower computational cost 

compared to flow model 3 even though the number of modified models was higher for 

this flow model. The reasons for this have been explained in the previous case-1. 

Nevertheless, the computational process modeller has chosen a variable flow model 3 

which still has much less computational cost compared to the flow model number 2. It 

can also be noted that the variable flow model number 4 which had the highest number 

of modified model and feedback number lead to a non converged solution. 

The final computational plan obtained for USMAC is given in the next paragraph. The 

incidence matrix, which displays the variable flow model generated by IMM for this 

system is given in Figure A- 13 in the Appendix-V.ii. In the figure models belonging to 

SCC are confined into a single process. 

Computational Plan 

Inputs to the system 
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Awing, Leh, MTOW, MWE, Mach_clb, Mach_cth, Mprop, Npax, RA, alt_app, 

alt_clb, alt_crz, alt_cth, alt_to, dfus, disa_clb, disa_crz, disa_cth, disa_to, ne, sfc, 

span, tuc 

Outputs of the system 

Aht, Aref, Avt, BPR, FNslst, Fn_clb, Fn_cth, Fn_to, Fuel, Fwing, Kcx0, Kcxp, 

KczmaxLD, KczmaxTO, Kff, Kind, Kmcl, Kmcr, Kmto, Kmwe, Ksfc, LDW, 

Lev, Lref, Mach_crz, Mach_stall_to, Mach_to, Mchar, Mfurn, Mfus, Mgear, 

Mht, Mop, Msys, Mvt, Mwing, Naisle, NpaxFront, OWE, PL, Pamb_clb, 

Pamb_crz, Pamb_cth, Pamb_to, RA_time, Tamb_clb, Tamb_crz, Tamb_cth, 

Tamb_to, Vht, Vvt, Wpax, ar, cx0_clb, cx0_crz, cx0_cth, cx_clb, cx_crz, 

cx_cth, cxc_clb, cxc_crz, cxc_cth, cxi_clb, cxi_crz, cxi_cth, cz_clb, cz_crz, 

cz_cth, czmax_LD, czmax_TO, dnac, g_app, g_clb, g_crz, g_cth, g_to, kfn_cth, 

kvs_LD, kvs_TO, lfus, lod_clb, lod_crz, lod_cth, mass_clb, mass_crz, mass_cth, 

phi, rho_clb, rho_cth, rho_to, tofl, vapp, vsnd_clb, vsnd_crz, vsnd_cth, vz_clb, 

wAfus, wAht, wAnac, wAvt, wAwing 

Execution sequence  

1)aspect_ratio_,2)tail_volume_factor_,3)reference_length_,4)fin_volume_factor

_,5)fin_lever_arm_,6)tail_size_,7)modified_tail_lever_arm__tr,8)fin_size_,9)t

ail_mass_,10)system_mass_,11)sfc_factor,12)landing_gear_mass_,13)fuselage_

mass_,14)furnishing_mass_,15)fin_mass_,16)MWE_factor_,17)modified_spec

_fuel_cons_tr,18)modified_manu_weight_empty__tr,19)modified_engine_m

ass__tr,20)modified_wing_mass__tr,21)top_of_climb_mass_cth,22)top_of_cli

mb_mass_clb,23)reference_area_,24)operator_item_mass_,25)one_pax_weight_

,26)non_stand_atmos_cth,27)non_stand_atmos_clb,28)nacelle_diameter_,29)gra

vity_acc_cth,30)gravity_acc_clb,31)Cz_max_TO_factor_,32)wing_wetted_area

_,33)tail_wetted_area_,34)ref_mach_number_,35)press_drag_factor_,36)ope_w

eight_empty_,37)non_stand_atmos_to,38)nac_wetted_area_,39)level_flight_cth,

40)level_flight_clb,41)ind_drag_factor_,42)gravity_acc_to,43)fus_wetted_area_

,44)fric_drag_factor_,45)fin_wetted_area_,46)Payload_,47)Cz_max_TO_,48)pr

essure_drag_cth,49)pressure_drag_clb,50)non_stand_atmos_crz,51)landing_wei

ght_,52)induced_drag_cth,53)induced_drag_clb,54)friction_drag_cth,55)friction

_drag_clb,56)Mach_stall_to_,57)Kvs_Take_Off,58)sound_velocity_crz,59)secu
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red_Mach_to,60)mean_cruise_mass_crz,61)gravity_acc_crz,62)drag_factor_cth,

63)drag_factor_clb,64)air_density_to,65)air_density_cth,66)air_density_clb,67)

Cz_max_LD_factor_,68)wing_fuel,69)modified_take_off_weight__tr,70)sound

_velocity_clb,71)net_thrust_to,72)net_thrust_cth,73)net_thrust_clb,74)max_take

_off_factor,75)max_cruise_factor,76)max_climb_factor,77)lift_to_drag_cth,78)l

ift_to_drag_clb,79)gravity_acc_app,80)modified_fuselage_length__tr,81)scc_1

_tr,82)Kvs_Landing,83)Cz_max_LD_,84)tofl_1,85)time_crz,86)sound_velocity

_cth,87)modified_fuselage_diameter__tr,88)fus_fuel_ratio_,89)cruise_thrust_1

,90)climb_rate_1,91)app_speed_1 

The process number 81 in the execution sequence given above is a strongly connected 

component. The details of this SCC are given below. 

Strongly Connected Components 

81. scc_1_tr 

Inputs to SCC  

Aref, Kcx0, Kcxp, Kind, LDW, Lref, MTOW, Mchar, Pamb_crz, RA, 

Tamb_crz, ar, g_crz, lfus, mass_crz, ne, sfc, vsnd_crz, wAfus, wAht, 

wAnac, wAvt, wAwing 

Outputs of SCC  

Mach_crz, cx0_crz, cx_crz, cxc_crz, cxi_crz, cz_crz, lod_crz 

Execution Sequence 

modified_level_flight_crz,modified_range_crz,modified_lift_to_drag

_crz,induced_drag_crz,friction_drag_crz,pressure_drag_crz,drag_factor_

crz 

                       Treatment (Solver) 

                        FPI-first method 

 

 The variable flow model for this SCC is the variable flow model number 3 (which was 

chosen as the optimum) shown in the Figure A- 20. 

The values of the input variables, and output variables obtained after executing the 

system, are given in the Table 5-9. 
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Table 5-9 Values of the input variables, and output variables obtained after executing the 

system for case2 

 

5.4.2.3 Case3 

In this case the inputs variables given for system are Fwing, LDW, Lev, Mach_crz, 

Mach_cth, Mfurn, alt_app, alt_clb, alt_crz, alt_cth, alt_to, cx_crz, czmax_TO, disa_clb, 

disa_crz, disa_cth, disa_to, dnac, lod_clb, mass_crz, ne, span and tuc.  

After decomposition here two SCCs were identified in this case. The first SCC had 

seven models and the second SCC had six models. The models belonging to each SCC 

are given below. 

SCC 1 

nacelle_diameter,spec_fuel_cons,range_crz,operator_item_mass,ope_weight_empty, 

manu_weight_empty, engine_mass 

SCC 2 

lift_to_drag_clb,induced_drag_clb,level_flight_clb,friction_drag_clb,pressure_drag_clb

,drag_factor_clb 

For the first SCC, two variable flow models were generated and for the second one there 

were six variable flow models. For the second case three variable flow models produced 

a converged solution and hence only these will be discussed here. The incidence matrix 
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and the corresponding rearranged DSM of these flow models are given in the Appendix-

V.iii (Figure A- 25 to Figure A- 34). 

Solving 

Table 5-10 provides the details of all the SCCs and their variables flow models, along 

with the execution details. 

Table 5-10 Details of computational process modeling and solving of SCCs for case 2 

Computational process modelling Solving 

SCC 

Variable 
flow 

model 

 

nFdb nMm 
Optimal 

flow 
model 

Number 
of calls 
to the 

models 
in SCC 

% additional 
computation

al cost 

1 1 4 ■ 110 base 
SCC 1 

2 1 5  110 equal 

1 1 3  74 base 

2 1 4  320 332% more SCC2 

3 1 2 ■ 86 16.2% more 
 

Discussion 

In this case, for the first SCC, the computational process modeller has selected the first 

variable flow model as the solution. For the second SCC the third variable flow model 

was the selected solution. From the sixth column in Table 5-10 it is clear the flow model 

selected by the computational process modeller was not the optimum in terms of 

computational cost for the second SCC, because variable flow model 1 made less 

number of calls to system compared to flow model 3 which was chosen as the optimum. 

But it is clear that these selections were reasonable choice since the chosen flow models 

lead to faster convergence of the SCCs compared to variable flow model 2 which 

produces a converged solution after 320 calls to the models. The reasons for these sub-

optimal choices were discussed earlier. 

The final computational plan obtained for USMAC is given in the next paragraph.. The 

incidence matrix for this system, which displays the variable flow model generated by 
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IMM, is given in the Figure A- 23 in the Appendix-V.iii. In the figure models belonging 

to SCC are confined into a single process. 

 

Computational Plan 

Inputs for the system 

Fwing, LDW, Lev, Mach_crz, Mach_cth, Mfurn, alt_app, alt_clb, alt_crz, 

alt_cth, alt_to, cx_crz, czmax_TO, disa_clb, disa_crz, disa_cth, disa_to, dnac, 

lod_clb, mass_crz, ne, span, tuc 

Outputs of the system 

Aht, Aref, Avt, Awing, BPR, FNslst, Fn_clb, Fn_cth, Fn_to, Fuel, Kcx0, Kcxp, 

KczmaxLD, KczmaxTO, Kff, Kind, Kmcl, Kmcr, Kmto, Kmwe, Ksfc, Leh, 

Lref, MTOW, MWE, Mach_clb, Mach_stall_to, Mach_to, Mchar, Mfus, Mgear, 

Mht, Mop, Mprop, Msys, Mvt, Mwing, Naisle, Npax, NpaxFront, OWE, PL, 

Pamb_clb, Pamb_crz, Pamb_cth, Pamb_to, RA, RA_time, Tamb_clb, 

Tamb_crz, Tamb_cth, Tamb_to, Vht, Vvt, Wpax, ar, cx0_clb, cx0_crz, cx0_cth, 

cx_clb, cx_cth, cxc_clb, cxc_crz, cxc_cth, cxi_clb, cxi_crz, cxi_cth, cz_clb, 

cz_crz, cz_cth, czmax_LD, dfus, g_app, g_clb, g_crz, g_cth, g_to, kfn_cth, 

kvs_LD, kvs_TO, lfus, lod_crz, lod_cth, mass_clb, mass_cth, phi, rho_clb, 

rho_cth, rho_to, sfc, tofl, vapp, vsnd_clb, vsnd_crz, vsnd_cth, vz_clb, wAfus, 

wAht, wAnac, wAvt, wAwing 

Execution sequence for the models 

1)modified_wing_fuel_tr,2)Cz_max_TO_factor_,3)reference_area_,4)non_stan

d_atmos_crz,5)gravity_acc_crz,6)aspect_ratio_,7)modified_Cz_max_TO__tr,8

)tail_volume_factor_,9)reference_length_,10)ref_mach_number_,11)press_drag

_factor_,12)level_flight_crz,13)ind_drag_factor_,14)fin_volume_factor_,15)mo

dified_fin_lever_arm__tr,16)tail_size_,17)pressure_drag_crz,18)induced_drag

_crz,19)fin_size_,20)wing_wetted_area_,21)tail_wetted_area_,22)modified_tail

_lever_arm__tr,23)nac_wetted_area_,24)modified_mean_cruise_mass_crz_tr,

25)fric_drag_factor_,26)fin_wetted_area_,27)modified_drag_factor_crz_tr,28)

top_of_climb_mass_cth,29)one_pax_weight_,30)non_stand_atmos_cth,31)gravi

ty_acc_cth,32)modified_furnishing_mass__tr,33)modified_friction_drag_crz

_tr,34)non_stand_atmos_to,35)level_flight_cth,36)gravity_acc_to,37)modified_
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fus_wetted_area__tr,38)Payload_,39)wing_mass_,40)top_of_climb_mass_clb,

41)tail_mass_,42)system_mass_,43)sound_velocity_crz,44)sfc_factor,45)pressur

e_drag_cth,46)non_stand_atmos_clb,47)lift_to_drag_crz,48)modified_landing_

weight__tr,49)landing_gear_mass_,50)induced_drag_cth,51)gravity_acc_clb,52

)fuselage_mass_,53)friction_drag_cth,54)fin_mass_,55)Mach_stall_to_,56)MW

E_factor_,57)Kvs_Take_Off,58)secured_Mach_to,59)scc_1_tr,60)drag_factor_

cth,61)scc_2_tr,62)air_density_to,63)air_density_cth,64)air_density_clb,65)Cz_

max_LD_factor_,66)modified_take_off_weight__tr,67)sound_velocity_clb,68)

net_thrust_to,69)net_thrust_cth,70)net_thrust_clb,71)max_take_off_factor,72)m

ax_cruise_factor,73)max_climb_factor,74)lift_to_drag_cth,75)gravity_acc_app,

76)modified_fuselage_length__tr,77)Kvs_Landing,78)Cz_max_LD_,79)tofl_1,

80)time_crz,81)sound_velocity_cth,82)modified_fuselage_diameter__tr,83)fus

_fuel_ratio_,84)cruise_thrust_1,85)climb_rate_1,86)app_speed_1 

In this case there are two SCCs. These are the process number 59 and 61 in the list of 

the execution sequence of the models. The details of these SCCs are given below. 

Strongly Connected Components 

59. scc_1_tr 

Inputs to SCC  

Kmwe, Ksfc, LDW, MTOW, Mach_crz, Mfurn, Mfus, Mgear, Mht, 

Msys, Mvt, Mwing, Npax, OWE, dnac, g_crz, lod_crz, ne, vsnd_crz 

Outputs of SCC  

BPR, FNslst, MWE, Mop, Mprop, RA, sfc 

Execution Sequence 

modified_nacelle_diameter,spec_fuel_cons,range_crz,operator_item_m

ass,modified_ope_weight_empty,modified_manu_weight_empty,mod

ified_engine_mass_ 

Treatment (Solver) 

FPI-first method 

61. scc_2_tr 

Inputs to SCC  

Aref, Kcx0, Kcxp, Kind, Lref, Mchar, Pamb_clb, Tamb_clb, ar, g_clb, 

lfus, lod_clb, mass_clb, ne, wAfus, wAht, wAnac, wAvt, wAwing 
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Outputs of SCC  

Mach_clb, cx0_clb, cx_clb, cxc_clb, cxi_clb, cz_clb, 

Execution Sequence 

modified_lift_to_drag_clb,induced_drag_clb,modified_level_flight_cl

b,friction_drag_clb,pressure_drag_clb,drag_factor_clb 

Treatment (Solver) 

FPI-first method 

The variable flow model for the first SCC is the variable flow model number 1 (which 

was chosen as the optimum) shown in the Figure A- 26. The variable flow model for the 

second SCC is the variable flow model number 3 (which was chosen as the optimum) 

shown in the Figure A- 34. 

Table 5-11 Values of the input and output variables obtained after executing the system for 

case3 

 

The values of the input and output variables obtained after executing the system are 

given in the Table 5-11. 

5.5 Conclusion 

Presented in this chapter are the tests conducted in order to evaluate the methods and 

approaches developed as part of this research. 

Initially the tests were performed in order to finalise the objective function for 

scheduling the coupled models. Feedback length was proven inefficient to provide an 
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estimate of the computational cost for solving the SCC in a system. In contrast, 

feedback number provided a good quality estimate, if the solver for SCC is either FPI-

first or GN. This, however, proves that the objective function should be formulated 

based on the solver and cannot be generalised for solving SCCs using any solver. In the 

current context of testing the computational process modeller, FPI-first was used as the 

solver for SCC and hence feedback number, which was proven to fit well with this 

solver, was chosen as the objective function for scheduling the coupled models. 

The different tests performed on the simple sizing and the USMAC test case for 

evaluating the computational process modeller, have confirmed the effectiveness of this 

modeller for generating optimal execution plans for complex aircraft conceptual design 

systems. Even though there were a few sub-optimal choices, when tested on USMAC, 

with regard to computational cost, all choices for computational flow made by the 

system were among the best. The sub-optimal were inevitable since the computational 

cost for a system was found to be not just depended on the feedback number and the 

number of modified models (which were the focus of this research), but also on the 

starting guess for the unknown variables, mutual sensitivity of the switched variables of 

the modified models (see section 4.2) and possibly other factors which are yet to be 

discovered. The various tests also proved that in the majority of the cases an increase in 

the number of modified models in the system increased the computational cost. This 

finding confirms the choice of incorporating the number of modified models also as a 

criterion for choosing the optimal variable flow model. 

The three tests with USMAC were performed on the same system of models, but with 

different set of input variables. The computational process modeller was able to 

generate sound execution plans for all of the cases, in order to compute the unknown 

variables. This demonstrates the ability of the computational process modeller to 

provide flexibility for the designer in choosing the independent (input) variables during 

the design process. 
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6 FRAMEWORK DESIGN AND DEVELOPMENT: 
CRANFIELD WORKFLOW MANAGEMENT DEVICE 
(CWMD) 

6.1 Introduction 

This chapter describes the implementation of an object-oriented framework for 

dynamically setting up the computational plans that are generated by the computational 

process modeller. The framework has been developed for test and evaluation of the 

proposed methods and approaches.  

6.2 Overview of CWMD 

The CWMD is an object-oriented framework for conducting design studies on 

mathematical models, which represent the physics and other characteristics of an 

aircraft. The software tool is implemented in Matlab programming language. Matlab has 

a variety of inbuilt functions which make programming easier compared to other 

languages. Even though Matlab is not a fully object-oriented programming language 

compared to C++ or C#, it has the capabilities to incorporate object-oriented 

programming. 

CWMD accepts the models and their associated variables and wraps these in the form of 

specific objects. These objects can be further modified and grouped, according to the 

plan generated by computational process modeller, in order to form executable systems. 

These executable systems can be saved as objects in CWMD. Further, various 

mathematical treatments, can be applied to these objects for conducting design studies 

on the system. The object model of the framework is presented in the next section.  

6.3 Object Oriented Modelling of CWMD 

6.3.1 Basic Concepts of Object Oriented Modelling 

Fundamental terms used in object oriented programming, which are used in this thesis, 

are given below: 
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Class   

A class defines an entity, including the entity's characteristics (e.g., attributes, fields or 

properties) and the things it can do (e.g., behaviours, or methods or features) (Booch, 

1993). Classes provide modularity and structure in an object-oriented computer 

program. Also, the code for a class should be relatively self-contained. Collectively, the 

properties and methods defined by a class are called members. 

Object   

An object is a particular instance of a class. The set of values of the attributes of a 

particular object is called its state. The object consists of state and behaviour.  

Method   

A method represents an object's abilities. The method is implemented as a function 

associated with the object.  

6.3.2 CWMD Class Diagram 

The class diagram developed for CWMD is shown in Figure 6-1. Here five classes are 

identified; data, model, subprocess, treatment and study. A brief description of each 

class is given below. A more detailed description of these is followed in the next 

section. 

1. Data (DO) 

Data object contains all information required to describe a data (variable) 

element. 

2. Model  (MO) 

A model object is an elementary black box (a simple software program or 

model) with inputs, outputs and a program. Inputs and outputs of the model 

objects are data objects.  

3. Subprocess (SP) 

A subprocess is an object that defines mathematical treatment on one   or   more 

model objects (and/or subprocess objects). A subprocess can also be a container 

of a group of discipline specific models (and/or subprocess objects), without a 

mathematical treatment.  
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4. Treatment (TR) 

A treatment object contains all the information of a particular mathematical 

treatment, which can applied on a model or a subprocess object. For example, an 

optimisation treatment applied on a computational process or a solver applied to 

solve a SCC or a modified model. 

5. Study  (ST) 

A study object is an assembly of subprocesses (or models) with one or more 

treatments in order to conduct a design study over the entire system. 

 

Figure 6-1 Class diagram for CWMD 

 

The links in the class diagram shown in the Figure 6-1 are described in the  

Table 6-1. 
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Table 6-1 Links and description of the class diagram for CWMD 

Links Description 

MO-DO MO contains one or more DOs 

SP-DO SP contains one or more DOs 

SP- MO SP can contain one or more MOs 

SP- TR SP can contain zero or more TRs 

SP-SP SP can contain zero or more SPs 

ST -DO ST can contain one or more DOs 

ST- MO ST can contain zero or one MOs 

ST-SP ST can contain zero or one SPs 

ST- TR ST can contain one TR 
 

6.3.3 CWMD Object Models  

This section describes in more detail the various objects in CWMD, their associated 

methods and attributes. 

6.3.3.1 Data object 

Input and output variables associated with models are modelled as data objects in 

CWMD. A data object contains all the relevant information regarding the corresponding 

variable. The following are the attributes currently available for a data object. 

Attribute Explanation 

Name Name of the variable 

Type Type of the variable (scalar, array or structure) 

Values Value associated with variable 

Range  Range of the variable (minimum and maximum value) 

Unit Unit of the variable (e.g., Kg, Kg/m2) 
 

An example for the attributes of a data object, MTOW (Maximum takeoff weight) is 

given below. 
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Attribute Example 

Name MTOW 

Type scalar 

Values 91596 

Range  Min:91500, Max:99000 

Unit Kg 

There are no methods associated with a data object. 

6.3.3.2 Model object 

A model object is an elementary black box (a simple software program or model) with 

inputs, outputs and a program. Inputs and   outputs of the model object are data objects. 

The following are the attributes for a model object. 

Attribute Explanation 

Name Name of the model object (this also refers to the name of the 
software program which will be executed on executing the 
model) 

Inputs Input data objects for the model 

Outputs Output data objects for the model 
An example for a model object is given below. 

Name: Engine_mass 

Inputs: ne, FNslst 

Outputs: Mprop 

Here ne, FNslst and Mprop are data objects.  

The methods associated with the model objects are given below. 

Methods Explanation 

Execute Executes the software program associated with the model object 
with inputs from the values of the input data objects, and 
thereafter updates the output data objects with the outputs of 
obtained after executing the program. 

6.3.3.3 Subprocess object 

A subprocess object can be of two types; the first type is for modelling a modified 

model or an SCC. This is done by integrating the constituent model (or models in the 
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case of SCC) with the corresponding mathematical treatment object used to solve the 

modified model (or SCC). The second type is for assembling a set of models, or a set of 

models and subprocesses, into a higher level subprocess. In this case subprocess 

contains only models with out any treatment. This wrapping allows the multilevel and 

hierarchical arrangement of a system which minimises the difficulty involved in 

managing thousands of models in a complex system. 

The computational plan generated after applying the computational process modeller for 

systems is saved as subprocess in CWMD.  

The attributes of a subprocess are given below 

Attribute Explanation 

Name Name of the subprocess 

Inputs Input data objects of the subprocess 

Outputs Output data objects of the subprocess 

Process Model and subprocess objects included in this subprocess 

Treatments Treatment objects included in this subprocess 
 

The methods associated with the subprocess are given below. 

Methods Explanation 

Execute If treatment attribute is empty 

Executes the objects in the process atttribute (in the 
sequence in which it is added in the process attribute), 
with inputs from the values of the input data objects. On 
execution, the outputs obtained are updated in output 
data objects of the subprocess.  

If treatment attribute is not empty 

The treatment function is executed with the models 
(and/or subprocess) in the process attribute of the 
subprocess object given as inputs. 

view_d Plots the subprocess as a design structure matrix 

view_g Plots the subprocess in a graphical format 

view_i Plots the subprocess as an incidence matrix 

view_t Plots the subprocess in a tabular format 
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More details on the methods associated with the plotting of the subprocesses (view_d, 

view_g, view_i, view_t) are given in section 6.5. 

Examples for the two types of subprocess objects are given below. 

Subprocess for assembling models and/or subprocess 

This example demonstrates the assembling of four models into a subprocess. The four 

model objects are given in the table below 

Name of the 
models 

Inputs Outputs 

sfc_factor - Ksfc 

spec_fuel_con Ksfc,BPR sfc 

nacelle_dia BPR,FNslst dnac 

nac_wet_area dnac wAnac 

 

The attributes for the subprocess in which these four models are grouped, are given 

below. 

Name: Engines 

Inputs: BPR, FNslst 

Outputs: sfc, wAnac, dnac, Ksfc 

Process: sfc_factor, spec_fuel_con, nacelle_dia, nac_wet_area 

Treatments: Nil 

This subprocess ‘Engines’ now performs like a model with inputs BPR and  FNslst and 

generating sfc, wAnac, dnac and Ksfc as outputs, on execution. 

This ‘engines’ subprocess, can now be assembled with other models or subprocesses in 

order to create a higher level subprocess.  

Subprocess for modified models or SCCs 

An example for a modified model is given in Figure 4-1 

The attributes of the subprocess for modelling this modified model are: 

Name: modified_Payload 

Inputs: PL, Wpax 
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Output: Npax 

Process: Payload 

Treatments: modifier (Gauss-Newton method) 

Thus the ‘modified_Payload’ subprocess performs like a model with inputs PL and 

Wpax and generating Npax as output, on execution.  

In the case of SCCs, the treatment applied will be different (e.g., sccsolver) and the 

process attribute contains the models and/or subprocesses which are strongly connected. 

The advantage of this subprocess representation is that the modified models and SCC 

can be treated as simple models with inputs and outputs, concealing the complications 

involved in solving and simplifying the difficulty involved in modelling these, each 

time a new computational plan is generated. 

6.3.3.4 Study object 

A study object is similar to a subprocess object, however, the distinction is made since 

the study object represents a top level design study process, while the treatment applied 

to the subprocess (or model) is a design study function (optimisation or design of 

experiment etc). 

The attributes of a study object are given below: 

Attribute Explanation 

Name Name of the study 

Inputs Input data objects for the study 

Outputs Output data objects of the study 

Process Model and subprocess objects included in this study 

Treatments Treatment objects included in this study 

The methods associated with the study are given below. 

Methods Explanation 

Execute The treatment function(in the treatment attribute) is executed 
with the models (and or subprocess) in the process attribute of 
the study object provided as inputs. 

view_s Plots the study object as a block diagram 
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The example given below represents a study object. This object is for conducting 

optimisation study on the ‘engines’ subprocess. 

Name: engines_optimise 

Inputs: BPR, FNslst 

Output: sfc, wAnac, dnac, Ksfc 

Process: Engines 

Treatments: Optimiser 

6.3.3.5 Treatment object 

A treatment is a mathematical operation applied on a model or a subprocess object. The 

attributes for a treatment object is given below. 

Attribute Explanation 

Name Name of the treatment 

function The name of the software program associated with the 
treatment 

There are no methods associated with the treatment. 

6.4 Example Case 

Figure 6-2 shows a system of models which represents a simplified set of aircraft sizing 

equations (Buckley et al., 1992). This example demonstrates the object modelling for 

this system when it is setup in CWMD. 

 

Figure 6-2 System of models 
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All the models and the variables in the system are modelled in CWMD as model and 

data objects. The data objects for the variables are given in the table below. Since the 

case study is only for demonstration purposes, the values and range attributes are not 

given. 

DATA OBJECTS 

Name Type Unit 

We ‘Scalar’ Kg 

Wlo ‘Scalar’ Kg 

Sref ‘Scalar’ m2 

Wf ‘Scalar’ Kg 

Wo ‘Scalar’ Kg 

Walt ‘Scalar’ Kg 

R ‘Scalar’ m 

Wec ‘Scalar’ Kg 

Wx ‘Scalar’ Kg 
 

The attributes of the models objects for the models are given in the table below 

Name of the 
model 

Inputs Outputs 

a Sref, Wo We 

b We, Wf Wo 

c Wlo Walt 

d Wec Wx 

e Wo,We,Wx Wf 

f Wo Wlo 
 

The attributes for the treatment objects are given in the table below 

Name  function 

modifier gauss-newton 

sccsolver Fixed-point-first 

optimiser gradient-based 
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For the system shown in Figure 6-2, considering a case where R, Walt are independent 

variables the corresponding variable flow model generated by the computational process 

modeller is given below. 

 

Figure 6-3 Variable flow models for the system of models shown in Figure 6-2 

In this system models b and e are identified as strongly connected and the models c, f, a 

and b are modified models. The final computational plan obtained for this system after 

applying the computational process modeller is, 

g modified_c modified_f d SCC(e modified_b) a. The hierarchical 

arrangement of the subprocess formed for this system by CWMD is represented 

symbolically in Figure 6-4. The data objects are not shown in the figure for clarity 

purpose. 
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SP: Sizing

M O: g SP: mod(c) SP: mod(f) MO: d SP: SCC SP:mod(a)

MO: e SP: mod(b)

TR : SCC Solver

M O: c

TR : Modifier

MO: f

TR: Modifier

M O: b

TR :Modifier

MO: a

TR: Modifier

Execution Order

 

Figure 6-4 Symbolic representation of the subprocess for the system in Figure 6-2 with R 

and Walt given as input variables.  

 

The attributes of each subprocess in the Figure 6-4 are given in the table below. 

Name  Inputs Outputs Process Treatments 

Sizing R  

Walt 

Sref 

We 

Wec 

Wf 

Wlo 

Wo 

Wx 

g 

mod(c) 

mod(f) 

d 

SCC 

mod(a) 

- 

mod(c) Walt Wlo c modifier 

mod(f) Wlo Wo f modifier 

SCC Wo 

Wx 

We 

Wf 

mod(b) 

e 

sccsolver 

mod(b) Wf We b modifier 
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Wo 

mod(a) We 

Wo 

Sref a modifier 

 

The top-level subprocess ‘Sizing’ now performs like a model with R and Walt as inputs 

and the generating the remaining variables as outputs, on execution. 

If a design study, for example an optimization study, has to be conducted on this 

subprocess, then the corresponding attributes for the study object which models this 

design study, are as given below. 

Name: sizing_optimise 

Inputs: R, Walt 

Output: Sref,We,Wec,Wf,Wlo,Wo,Wx 

Process: sizing 

Treatments: Optimiser 

6.5 Modules of CWMD 

This section explains the different modules of CWMD which include the creator, 

executer and the viewer. The creator section explains how the different objects are 

created. The executor section describes the execution of the model, subprocess and 

study objects. The viewer section explains the various viewers for subprocess objects 

available in CWMD. The architecture of the CWMD is given in the Appendix-VI. 

Shown in Figure 6-5 is the main interface for CWMD. 
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Figure 6-5 CWMD main window 

 

In this main interface the lists boxes (DATA OBJECTS, MODEL OBJECTS, SUBPRO 

OBJECTS, STUDY OBJECTS, and TREATMENT OBJECTS) display the 

corresponding objects created. The push buttons in the panel ‘Create’, ‘Run’ and 

‘Delete’ are used for creating, executing and deleting the objects. The radio button in 

the panel ‘Plot’ plots the selected objects in the chosen format. The ‘Save’ button saves 

all the objects in the current window in file name specified by the design, in ‘.mat’ 

format. The ‘Load File’ button loads the objects saved in files, into the CWMD 

window.  

Currently there is no provision in CWMD for creating treatment objects and therefore 

the treatment objects currently available are inbuilt in CWMD. The available treatments 

are ‘Gauss-Newton’, ‘Fixed point iteration- first’, ‘Fixed point iteration- second’ and 

‘Optimiser’. The first three treatments are for solving SCCs and modified models, and 

the last one is for conducting optimisation studies. Gauss-Newton method is also used 

as treatment for modified models. The ‘optimiser’ treatment is a gradient based 

optimiser.   

6.5.1 Creator 

The buttons in the ‘Create’ panel of the main CWMD window are used for creating the 

different objects. The following sections describe how each object is created.  

Data object creator 
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Data object is created using ‘Data creator’ GUI (Graphical User Interface). It has the 

provision for entering the attributes for a data object. Data Creator GUI can be activated 

on clicking ‘DT’ button in the ‘Create’ panel of the CWMD window. The GUI is 

displayed in the Figure 6-6. 

 

Figure 6-6 Data creator GUI 

 

Clicking on the ‘Create’ button will create the data object, with the entered attributes, 

and places the object in the data objects list box in the Main (CWMD) window. 

Model object creator 

Model object is created using ‘Model creator’ GUI. It has the provision for entering the 

attributes for a Model object. Model Creator GUI can be activated on clicking ‘MD’ 

button in the ‘Create’ panel of the CWMD window. The GUI is displayed in the Figure 

6-7. 

 

Figure 6-7 Model creator GUI 
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In the three windows displayed in Figure 6-7, the first window is for selecting the inputs 

for the models, from the list of available data objects. The second window is for 

selecting the outputs for the model object and the third window is for entering the name 

of the model object. Clicking on the ‘Create’ button will create the model object, with 

the entered attributes, and places the object in the ‘model objects’ list box in the Main 

(CWMD) window. 

Subprocess Object Creator 

Subprocess object is created using ‘Subprocess creator’ GUI. This GUI has the 

provision for entering the attributes for the subprocess object to be created. In addition, 

the main function of this GUI includes defining the inputs (models and the independent 

variables) required for generating the computational plan for the selected models by 

applying the computational process modeller. The GUI is directly interfaced with the 

code for computational process modeller. Once the computational plan is generated 

based on the given inputs, the corresponding subprocess object is created which on 

execution will follow the generated computational plan.   

‘Subprocess Creator’ GUI can be activated on clicking ‘SP’ button in the ‘Create’ panel 

of the CWMD window. The GUI is displayed in Figure 6-8. 
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Figure 6-8 Subprocess creator GUI 

In this interface the ‘Build’ push button will activate the computational process 

modeller with models selected in the ‘SELECTED MD/SP’ list box and the independent 

variables in the ‘SELECTED INDEPENDENT VARIABLES’ list box, as the inputs for 

the process plan. The computational process modeller generates the computational plan 

for the selected models and based on this plan a temporary subprocess is created by 

CWMD. The details of this subprocess will be displayed in the ‘DETAILS OF 

SUBPROCESS’ list box. Once the designer is satisfied with the generated subprocess, 

clicking on the push button ‘CREATE SUBPROCESS’ will create the subprocess 

object and places this object in the ‘subprocess objects’ list box in the Main (CWMD) 

window. The presence of a SCC in the system will activate the window shown in Figure 

6-9 during the creation process. From this window the designer will be able to choose 

the type of solver for solving the SCC which will be inserted in the treatment attribute 
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of the SCC subprocess. For modified models, Gauss-Newton method is automatically 

applied as the treatment for solving these. 

 

Figure 6-9 GUI for selecting the solver for SCC 

 The subprocess can be plotted in various formats with the push buttons in the ‘Plot’ 

panel. 

Study Object Creator 

Study object is created using ‘Study creator’ GUI. It has the provision for entering the 

attributes for the Study object. ‘Study creator’ GUI can be activated on clicking ‘ST’ 

button in the ‘Create’ panel of the CWMD window. The GUI is displayed in Figure 

6-10.  

In this GUI the attributes for the study object which are the process and the treatment, 

can be selected from the ‘MD/SP SELECTOR’ and ‘TREATMENT SELECTOR’ list 

box. Currently these selections are limited to a single model or subprocess and a single 

treatment. The inputs and outputs attributes for the study object are the same as that of 

the selected model or subprocess and therefore entered automatically while the study 

object is created. The details of the created study object are displayed in the ‘DETAILS 

OF THE STUDY’ window.  
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.  

Figure 6-10 Study creator GUI 

6.5.2 Executer 

The GUI for executing the models or subprocess object can be activated by clicking on 

the MD (in case of model object) or SP (in case of subprocess object) push button in the 

‘Run’ panel of the CWMD window. The interface for executing the models and the 

subprocess are the same.  

On clicking the MD or SP button in the ‘Run’ panel in the CWMD window, the GUI 

shown in Figure 6-11 will appear with the corresponding selected model or subprocess 

which has to be executed, loaded in it. The values of the input variables for the loaded 

model or subprocess can be modified by selecting and editing the corresponding 

variable in the ‘INPUTS’ list box. The value of the selected variable is displayed in the 

box on the right hand side of the ‘INPUTS’ list box which can be edited and further set 

by clicking the ‘SET VALUE’ button. 

The ‘EXECUTE’ button will activate the ‘execute’ method associated with the loaded 

model or subprocess. Once executed, the outputs obtained are listed in the ‘OUTPUTS’ 

list box. 
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Figure 6-11 GUI for executing the objects 

There is currently no interface available for executing the study objects. The selected 

study object in the ‘STUDY OBJECTS’ list box in the CWMD window is directly 

executed (by activating the execute method associated with the study object) when the 

‘ST’ push button in the ‘Run’ panel is clicked. 

6.5.3 Viewer 

In CWMD, a subprocess can be viewed in four different formats which are the DSM, 

Incidence Matrix, Graph and tabular format.  

Double clicking the subprocess objects in the objects list box of the CWMD window 

will display the corresponding objects in the format chosen in the ‘Plot’ panel. 

 

Plotting as incidence matrix 

Incidence matrix plot for a subprocess has the constituent models and/or subprocesses 

representing the rows, and the constituent variables representing the columns. An ‘I’ 
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marked in a cell denotes that variable representing the column of the cell is an input to 

the model/subprocess representing the corresponding row. Similarly an ‘O’ marked in a 

cell shows that the variable in the column is an output of the model/subprocess in the 

corresponding row. The cells with ‘I’ and ‘O’ are coloured in green and red for clarity 

purpose. 

 

Figure 6-12 Incidence matrix plot by CWMD 

This plot is activated by the ‘view_i’ method of the subprocess object. The incidence 

matrix display for the ‘engines’ example subprocess is shown in Figure 6-12. 

Plotting as DSM 

A DSM plot for a subprocess has models/subprocess in its process attribute, 

representing both rows and columns of the matrix. A black dot marked in cell denotes 

the data flow from the model/subprocess representing the row to the model/subprocess 

representing the column. A dot above the diagonal denotes a feed forward loop and a 

dot below the diagonal denotes a feedback loop.  

This plot is activated by the ‘view_d’ method of the subprocess object. An example 

DSM plot is shown in Figure 6-13. 
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Figure 6-13 Design structure matrix plot by CWMD 

Plotting as graph 

A Graph plot for a subprocess displays in a graphical format the interaction among 

different models/subprocesses, through their variables. The models/subprocess and the 

associated variables in the subprocess are displayed in oval shaped boxes, with directed 

arrows representing their mutual association. Double clicking on a subprocess in the 

graph will display the graph plot of that subprocess in another window.  

This plot is activated by the ‘view_g’ method of the subprocess object. An example 

graph plot is shown in Figure 6-14. 

 

 

Figure 6-14 Graph plot of a subprocess by CWMD 
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Plotting in tabular format 

A tabular plot for a subprocess displays the attributes of the subprocess in a tabular 

format. Double clicking on a subprocess listed in the ‘PROCESS’ list box, will display 

the tabular plot of that subprocess in the same window. 

This plot is activated by the ‘view_t’ method of the subprocess object. An example 

tabular plot is shown in Figure 6-15. 

 

Figure 6-15 Tabular plot of a subprocess by CWMD 

6.6 Convergence Monitoring in CWMD 

SCC’s and modified model’s convergence monitoring are implemented in CWMD. For 

SCCs, while solving using FPI-second method and Gauss-Newton method, the 

difference in the values of the feedback variables, in the previous and the current 

iteration, are plotted against the iteration number, for monitoring the convergence. The 

residual approaching zero indicates convergence. An example plot which shows the 

convergence of the feedback variables MTOW (Maximum Takeoff Weight) and RA 

(Range) in an SCC is given in the Figure 6-16. 
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Figure 6-16 Convergence monitoring for SCC 

In case if the FPI-first method is used for solving the SCC, CWMD displays two plots. 

The first one highlights, in a DSM format the loop in which the current iteration is 

taking place and the second one plots the difference in the value of the feedback 

variable of that loop, in the previous and current iteration, against the iteration number. 

An example for this is given in Figure 6-17. 

 

Figure 6-17 Convergence monitoring for SCC when FPI-first solver is used. 

For the modified models the convergence monitoring is similar to the one shown in 

Figure 6-16. Here instead of the feedback variables, ym-ymd (which was explained in 

section 4.2 ) are plotted against the iteration number. 
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6.7 Summary and Conclusions 

This chapter has described the software framework which has been developed in order 

to test and evaluate the various methods and techniques developed as part of this 

research.  

The object oriented approach applied to the design and implementation of the CWMD 

has brought the following advantages: 

• The variables were modelled as data objects, which generalised the 

representation of heterogeneous variables in a system into a common object 

model. This representation supported similar handling capability for different 

types of variables.  

• The models were represented as model objects, which generalised the 

heterogeneous models in a system into a common object notation. The general 

representation assisted easier interaction among the models which was vital 

during data transfer. 

• The subprocess object representation allowed complicated systems to be 

modelled and saved into executable subprocess objects.  

• The commonality in model and subprocess objects allowed easier interaction 

among these, which also enabled their assembling into higher level 

subprocesses.  

• The subprocess allowed hierarchical organisation of complicated systems, which 

minimized the chaos of dealing with numerous models.  

• The object oriented programming allowed easier implementation of the 

computational plan developed by the computational process modeller, for 

systems. This allows the designer to focus more on the design study itself 

instead on the implementation issues of the computational plans. 

• The ability to replace the solvers in the treatment attribute of the subprocess 

allows SCCs and modified models to be custom solved with different solvers (in 

case if a particular solver is not leading to convergence) without the need for 

major modifications. 
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In addition, CWMD has different types of viewers for subprocess, which helps the 

designer to visualise and study the process clearly.  

The evaluation provided by the industry partner confirmed the flexibility and efficiency 

offered by the CWMD in terms of choosing the inputs for the system, implementing the 

computational plans, visualising the process and the solving the systems. 

The current limitations for CWMD are listed below.  

• Currently only Matlab functions can be implemented as model objects in 

CWMD. External compiled codes cannot be accessed as model objects.  

• Even though a number of treatment objects can be incorporated in a study 

object, currently it has been tested with only a single treatment. 

• ‘FMINCON’ function of Matlab for optimisation is currently implemented as 

optimiser treatment in CWMD. Equalities and inequality constraints are not yet 

implemented. 

• External treatment functions cannot be currently modelled in CWMD as 

treatment objects, through the GUI. However, all the necessary requirements for 

incorporating this feature are implemented in CWMD. 

• The options settings (number of iterations etc.) for SCC solvers, modified model 

solvers and optimiser are currently hard coded. For all the solvers tolerance is set 

to 1e-10 and Maximum iterations to 5000. 

• There are currently no automated resolution schemes implemented for over and 

under determined systems. The user is only warned in case of such systems. 

 



 

159 

7 SUMMARY AND CONCLUSIONS 
Presented in this thesis is a computational process modeller for dynamically assembling 

and solving a system of non-linear models which represent the physics and other 

characteristics of the aircraft at the conceptual design stage. The primary objective of 

this research has been to develop methods and techniques which significantly increase 

the flexibility and efficiency with which the designer is able to operate on large scale 

computational multidisciplinary systems. This objective has been met through the 

development of the computational process modeller and the software framework, 

CWMD. 

In this research the computational process modeller was developed with focus on 

aircraft conceptual design. However, the applicability of the computational process 

modeller is not just limited to the aircraft domain. It has the potential to be applied to 

the conceptual design phase of any complex product which can be represented in the 

form of models (e.g. financial modelling). 

7.1 Literature Review 

The comprehensive literature review which has been conducted has identified a number 

of existing methods for computational process modelling. The majority of the methods 

for variable flow modelling, which is the first step in computational process modelling, 

were applicable to algebraic equations, but needed modification for application in the 

current research context, where models are used. In addition, the current computational 

process modelling methods which were available for models have focussed only on 

decomposition and scheduling and not on variable flow modelling, which limits the 

flexibility in choosing the independent variables for the system of models.  

Various computational tools for solving low and high fidelity mathematical models 

were also reviewed to identify the potential of those tools to be applied in the aircraft 

conceptual design stage. None of the existing low-fidelity tools has the flexibility in 

selecting the inputs for the system of models. As for the higher-fidelity tools, these 

currently lack an automated integration capability and the flexibility required for 

integrating numerous simple models in a dynamic computational environment. 
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7.2 Computational Process Modelling 

A novel computational process modeller which generates optimal computational plans 

for systems while ensuring the flexibility in choosing the inputs to the system and 

improving the efficiency in solving the system has been developed. The novel method is 

an integrated scheme which incorporates variable flow modelling, decomposition and 

scheduling methods.  

For variable flow modelling, a novel incidence matrix method (IMM) has been 

introduced which has the advantage of rapidly producing feasible variable flow models 

for systems which contain models that can generate multiple outputs. In addition, the 

IMM approach is capable of exploring all feasible variable flow models for a system.  

Until now this feature has not been available even in computational process modelling 

methods for algebraic equations, were the focus has always been on generating a single 

feasible variable flow model. Criteria were derived for choosing the optimal variable 

flow model from the group which would lead to faster convergence of the system. A 

modified formal IMM was also introduced which, compared to IMM, is easier to 

implement and takes less memory space while computing. The method also accounted 

for over and underdetermined systems and derived resolution schemes. 

Decomposition was performed based on an algorithm from concurrent engineering for 

identifying coupled design processes. 

 Scheduling the coupled models (SCC) was performed by genetic algorithm with the 

number of feedback loops as the objective function to be minimised. The number of 

modified models was chosen as the first criteria for selecting the optimal variable flow 

model. The objective function obtained after rearranging the SCCs was chosen as the 

second criteria for choosing the optimal variable flow models if there were more than 

one variable flow model with equal number of modified models. As a result the 

scheduling procedure satisfied the aims of scheduling the models in the SCC and 

choosing the optimum variable flow model.  

The non-coupled models were sequentially arranged based on an algorithm from 

concurrent engineering for arranging design tasks.  

In this research the computational process modeller was developed with focus on 

aircraft conceptual design stage. All the testing and evaluation were performed on 



 

161 

aircraft conceptual design test cases. The objective function for rearrangement and the 

solvers for the sub-systems were chosen after conducting tests on the available models 

representing the physics and characteristics of the aircraft. However, the applicability of 

the computational process modeller is not just limited to aircraft conceptual design 

cases. It has the potential to be applied to any complex product which can be 

represented in the form of models. 

Applying the computational process modeller to any other system will require 

reformulation of the objective function for rearrangement and also the solvers for the 

sub-systems. These will depend on the characteristics of models being used. A test, as 

explained in the results and discussion chapter can be performed in order to formulate 

the objective function and the appropriate solver in such cases. 

7.3 Testing and Evaluation 

Different tests were performed in order to finalise the objective function for scheduling 

the coupled models. After the tests it was identified that the objective function should be 

formulated based on the specific solver and cannot be generalised for solving SCCs 

using any solver. Objective functions, feedback length and feedback number were 

investigated with FPI-first, FPI second and Gauss-Newton as solvers for SCC. Feedback 

length was proven inefficient to provide an estimate of the computational cost. In 

contrast, feedback number provided a good quality estimate, if the solver for SCC was 

either FPI-first or GN.  

The various tests conducted for evaluating the computational process modeller also 

proved that in the majority of the cases an increase in the number of modified models in 

the system increased the computational cost. Based on this observation the number of 

modified models in the system was also incorporated in choosing the optimal variable 

flow model. 

The different tests performed on the USMAC test case for evaluating the computational 

process modeller, have confirmed the effectiveness of this modeller for generating 

optimal computational plans for complex aircraft conceptual design systems. Even 

though there were a few sub-optimal choices with regard to computational cost, all 

choices for computational flow made by the system were among the best.  
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 The different tests conducted have demonstrated the ability of the computational 

process modeller to provide the flexibility for the designer in choosing the independent 

variables during the design process. The tests have also proven the improvement in the 

efficiency of solving the systems by applying the computational plan generated by the 

computational process modeller.  

7.4 Framework: CWMD 

The CWMD framework developed for testing and evaluating the various methods and 

techniques developed in this research has brought in several advantages because of its 

object-oriented design and implementation. The variables and models which were 

modelled as objects generalised the representation of heterogeneous variables and 

models in a system, into a common object model. This representation supported similar 

handling capability for different types of variables and easier interaction among the 

models which was vital during data transfer. The subprocess object representation 

allowed complicated systems to be modelled and saved into executable subprocess 

objects and also allowed quick implementation of the computational plan developed by 

the computational process modeller. This capability allows the designer to focus more 

on the design study itself rather than the implementation issues of the computational 

plans. The ability to replace the solvers in the treatment attribute of the subprocess 

allows SCCs and modified models to be custom solved with different solvers (in case if 

a particular solver is not leading to convergence) without the need for major 

modification in the implementation. The evaluation provided by the industry partner 

confirmed the flexibility and efficiency offered by the CWMD in terms of choosing the 

inputs for the system, implementing the computational plans, visualising the process 

and the solving systems.  

7.5 Current Limitations 

The application of the computational process modeller is limited to systems with simple 

models containing scalar variables.  

The FPI-first, FPI-second and Gauss-Newton method were used in this research for 

solving the SCCs, and the Gauss-Newton method was used for solving the modified 

models. The limitation identified for solving the SCCs and modified models using these 
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methods was that the convergence and final results obtained after solving were greatly 

dependent upon the starting points given during the iterative solving of the unknown 

variables. The current research focussed only on obtaining a feasible solution and more 

investigation is necessary to explore the results, where multiple solutions exist. This 

area was beyond the scope of this research. 

Further investigation is necessary in order to formulate an objective function for 

rearranging the models in SCC when FPI-second is used as the solver. This solver was 

computationally less expensive compared to other solvers when tested, but has not 

shown any dependency between the currently formulated objective function, and the 

computational cost associated with FPI-second solver. 

There were a few sub-optimal choices made by computational process modeller when 

tested on the USMAC test case. These sub-optimal choices of the variable flow models 

for the SCCs by the computational process modeller were inevitable since the 

computational cost for a system was found to be not only depended on the feedback 

number and the number of modified models, but also on the starting guess for the 

unknown variables, mutual sensitivity of the switched variables of the modified models 

and possibly other factors which are yet to be discovered. The current criteria for 

selecting the optimal variable flow model has to be further modified to incorporate the 

above mentioned factors, which will subsequently further reduce or eliminate altogether 

the sub-optimal choices. 

Since solving the modified models is dependent on the starting points and the mutual 

sensitivity of the switched variables, certain modified models may require additional 

computational cost to solve, compared to others. This might challenge the association 

noticed during our testing between the number of modified models and computational 

cost, if tested with different starting points for the same problem. This will require 

modification of criteria for selecting the optimal variable flow model which accounts for 

the computational expense due to modified models. Currently the first criterion for 

selecting the optimal variable flow model is set as the minimum number of modified 

models and the second is the feedback number. The above mentioned challenge 

suggests further investigation in this area. 
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There are currently a few limitations of the CWMD which can be improved further. 

More relevant attributes can be added to objects to capture more details of the element 

being modelled. An example for this will be an attribute which can capture the 

propagation of uncertainty while solving the models. Currently only Matlab functions 

can be implemented as model objects in CWMD. External compiled codes cannot be 

accessed as model objects. 

Even though a number of treatment objects can be incorporated in a study object, 

currently it has been tested with only a single treatment. Further development of this 

aspect will enable to model multidisciplinary design optimisation studies in the study 

object which will allow sequential and cyclic application of various treatments on the 

systems.  

7.6 Future Work 

Future work could address the current limitations of the proposed methods for 

computational process modelling and CWMD, namely; 

• Investigation of the influence of the starting guesses for unknown values 

of the SCCs and modified models on convergence. 

• Study of the effect of the mutual sensitivity of switched model variables 

on solving the modified models, and its implications on the convergence 

of the derived variable flow models. 

• Normalising the models based on its solving complexity. This will help in 

grading the models in the system and providing a criterion for   

intelligently choosing the models which are to be modified (i.e. choosing 

the optimal variable flow model) during the computational design process 

modelling. 

• Identification of other factors which can possibly affect the convergence of 

the SCCs and modified models. 

• Improvement of the criteria for selecting the optimal variable flow model 

considering the above factors, in order to eliminate the sub-optimal 

choices by the computational process modeller. 
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• Investigation of various other solvers for SCCs and modified models, and 

generating corresponding objective functions for these. 

• Exploration of the multiple solutions that can be generated while solving 

the modified models and SCCs. 

• Derivation of improved resolution schemes for under and over determined 

systems. 

• Improvement of the study object in order to incorporate multidisciplinary 

design optimisation studies, by including multiple treatments. 
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II. Gauss-Newton Method 

Given m functions f1,…,fm consisting of n parameters x1,…,xn with m≥n and we have to 

minimise the sum 

2

1

( ) ( ( ))
m

i
i

S x f x
=

= ∑  

Here x stands for the vector (x1,…xn) 

The aim here is to find x which leads to minimum S. Gauss-Newton algorithm (Dennis 

and Robert, 1983) (Gauss Newton Method, 2007) is an iterative procedure, the user 

provides the initial guess for x, denoted as x0 and the subsequent guesses for  xk are the 

calculated as follows 

( ) 11 ( ) . ( ) . ( ) . ( )k k k T k k T k
f f fx x J x J x J x f x

−+ = −  

Here f= (f1,…,fm) and Jf(x) is the Jacobian of f at x. 
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The matrix inversion in never computed in practise; instead the equation is reformulated 

to: 

1k k kx x δ+ = +  

Here δk is computed by solving the linear system 

( )( ) . ( ) ( ) . ( )k T k k k T k
f f fJ x J x J x f xδ = −  

The models are black-boxes and cannot be differentiated directly. Therefore finite 

difference methods are used for computing the Jacobians. 

 

III. Fixed Point Iteration Method 

In Fixed point iteration method (Dyer, 2002), for solving an equation f(x)=0, the 

equation is reformed to the format x=g(x). Finding a value for x for which x=g(x) is thus 

equivalent to finding a solution of the equation f(x)=0. The function g(x) defines a map 

on the real line over which x varies, so that for each value of x, g(x) maps that point to a 

new point, x` on the real line. Usually x` thus obtained and x are at some distance apart. 

If this distance is equal to zero for a particular point x=xp, we call xp a fixed point of the 

function g(x). Thus xp=g(xp), hence f(xp)=0. 

If we are able to choose a point x0 which lies near to the fixed point xp, of g(x), where 

we don’t know the value of xp, the iterative scheme based on fixed point method can be 

defined as 
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1 ( )n nx g x+ =  

Where n=0,1,…, the iteration is continued until the difference between successive xn is 

as small as the required tolerance. The final value of xn approximates a fixed point of 

g(x), and hence approximates a zero of f(x). 

IV.  Variables and Models of USMAC Test Case 

The models and variables of the USMAC testcase are given below. The definitions of 

the variable and the units of the variables are given in the Table A- 1 for variables. The 

inputs and outputs and the category in which the model belongs are given in the Table 

A- 2 for the models. 

Table A- 1 Variables of USMAC test case 

VARIABLES 
 Variables Definition  Unit 
1 Aht Tail size   
2 alt_app Current altitude m 
3 alt_clb Current altitude m 
4 alt_crz cruise altitude m 
5 alt_cth Current altitude m 
6 alt_to Current altitude m 
7 ar Aspect ratio   
8 Aref Reference wing area m2 
9 Avt Fin size   
10 Awing Wing planform area m2 
11 BPR Bypass ratio of the engines   
12 cx_clb Climb drag factor   
13 cx_crz Cruise drag factor   
14 cx_cth Cruise drag factor   
15 cx0_clb Climb friction drag   
16 cx0_crz Cruise friction drag   
17 cx0_cth Cruise friction drag   
18 cxc_clb Climb pressure drag   
19 cxc_crz Cruise pressure drag   
20 cxc_cth Cruise pressure drag   
21 cxi_clb Climb induced drag   
22 cxi_crz Cruise induced drag   
23 cxi_cth Cruise induced drag   
24 cz_clb level_flight_climb   
25 cz_crz level_flight_cruise   
26 cz_cth level_flight_ Cruise   
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27 czmax_LD Maximum lift factor at landing   
28 czmax_TO Maximum lift factor at take off   
29 dfus Fuselage diameter m 
30 disa_clb standard temperature shift K 
31 disa_crz standard temperature shift K 
32 disa_cth standard temperature shift K 
33 disa_to standard temperature shift K 
34 dnac Nacelle diameter m 
35 Fn_clb Thrust N 
36 Fn_cth Cruise Thrust N 
37 Fn_to Thrust N 
38 FNslst Sea level static net thrust of one 

single engine (Newton) 
N 

39 Fuel Nominal fuel (kg) Kg 
40 Fwing Wing fuel tank capacity (kg) Kg 
41 g_app Current gravity m/s2 
42 g_clb Climb gravity m/s2 
43 g_crz Cruise gravity m/s2 
44 g_cth Cruise gravity m/s2 
45 g_to Gravity at take-off m/s2 
46 Kcx0 Friction drag factor   
47 Kcxp Pressure drag factor   
48 KczmaxLD Cz maximum LD factor   
49 KczmaxTO Cz maximum TO factor   
50 Kff Proportion of fuel in the fuselage 

(kg) 
Kg 

51 kfn_cth Fuselage length m 
52 Kind Induced drag factor   
53 Kmcl Maximum climb factor   
54 Kmcr Maximum cruise factor   
55 Kmto Maximum takeoff  factor   
56 Kmwe MWE factor   
57 Ksfc SFC factor   
58 kvs_LD Kvs Landing   
59 kvs_TO Kvs Takeoff   
60 LDW Nominal landing weight (kg) Kg 
61 Leh Tail lever arm m 
62 Lev Fin lever arm m 
63 lfus Fuselage length m 
64 lod_clb Lift to drag ratio at climb   
65 lod_crz Lift to drag ratio at cruise   
66 lod_cth Mean cruise mass at Cruise Kg 
67 Lref Reference length m 
68 Mach_clb current Mach number   
69 Mach_crz cruise Mach number   
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70 Mach_cth current Mach number   
71 Mach_stall_to Mach_stall_to   
72 Mach_to current Mach number   
73 mass_clb Mean cruise mass at climb Kg 
74 mass_crz Mean cruise mass at cruise Kg 
75 mass_cth Number of engines   
76 Mchar Characteristic Mach number   
77 Mfurn Furnishing mass Kg 
78 Mfus Fuselage mass Kg 
79 Mgear Landing gear mass Kg 
80 Mht Tail mass Kg 
81 Mop Operator item mass Kg 
82 Mprop Engine mass Kg 
83 Msys System mass Kg 
84 MTOW Maximum take off weight (kg) Kg 
85 Mvt Fin mass Kg 
86 MWE Manufacturer weight empty (kg) Kg 
87 Mwing Wing mass Kg 
88 Naisle Number of aisle in the main deck   
89 ne Number of engines   
90 Npax Total number of seats   
91 NpaxFront Maximum number of seats on a 

row 
  

92 OWE Operational weight empty (kg) Kg 
93 Pamb_clb Climb atmospheric pressure N/m2 
94 Pamb_crz Cruise atmospheric pressure N/m2 
95 Pamb_cth Cruise atmospheric pressure N/m2 
96 Pamb_to takeoff atmospheric pressure N/m2 
97 phi Wing characteristic sweep angle 

(rad) 
radians 

98 PL Payload Kg 
99 RA Nominal range (m) m 
100 RA_time Cruise time s 
101 rho_clb Climb air density Kg/m3 
102 rho_cth Sound velocity at cruise m/s 
103 rho_to Takeoff air density Kg/m3 
104 sfc Specific fuel consumption (kg/N/s) kg/N/s 
105 span Wing span (m) m 
106 Tamb_clb Climb atmospheric temperature K 
107 Tamb_crz Cruise atmospheric temperature K 
108 Tamb_cth Cruise atmospheric temperature K 
109 Tamb_to takeoff atmospheric temperature K 
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110 tofl take off field length m 
111 tuc Wing characteristic thickness to 

chord ratio 
  

112 vapp approach speed m/s 
113 Vht Tail volume factor   
114 vsnd_clb Sound velocity at climb m/s 
115 vsnd_crz Sound velocity at cruise m/s 
116 vsnd_cth Cruise speed m/s 
117 Vvt Fin volume factor   
118 vz_clb climb speed m/s 
119 wAfus Fuselage wetted area m2 
120 wAht Tail wetted area m2 
121 wAnac Nacelle wetted area m2 
122 wAvt Fin wetted area m2 
123 wAwing Wing wetted area m2 
124 Wpax One passenger weight Kg 
 

 

Table A- 2 Models of USMAC test case 

MODELS 

 Function name Outputs  Inputs  Category 

1 aspect_ratio_  ar span,Awing geometry 
2 Cz_max_LD_  czmax_LD KczmaxLD, phi aerodynamic 
3 Cz_max_LD_fact

or_  
KczmaxLD  aerodynamic 

4 Cz_max_TO_  czmax_TO KczmaxTO, phi aerodynamic 
5 Cz_max_TO_fact

or_  
KczmaxTO  aerodynamic 

6 engine_mass_  Mprop ne, FNslst weight 
7 fin_lever_arm_  Lev Leh geometry 
8 fin_mass_  Mvt Avt weight 
9 fin_size_  Avt Awing, span, Lev, 

Vvt 
handling qualities 

10 fin_volume_facto
r_  

Vvt  handling qualities 

11 fin_wetted_area_  wAvt Avt geometry 
12 fric_drag_factor_  Kcx0  aerodynamic 
13 furnishing_mass_  Mfurn Npax weight 
14 fus_fuel_ratio_  Kff Fuel, Fwing weight 
15 fus_wetted_area_  wAfus dfus, lfus geometry 
16 fuselage_diameter dfus NpaxFront, Naisle geometry 
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_  
17 fuselage_length_  lfus Npax, NpaxFront, 

dfus 
geometry 

18 fuselage_mass_  Mfus dfus, lfus weight 
19 ind_drag_factor_  Kind  aerodynamic 
20 Kvs_Landing  kvs_LD  performance 
21 Kvs_Take_Off kvs_TO  performance 
22 landing_gear_mas

s_  
Mgear MTOW weight 

23 landing_weight_  LDW PL,OWE weight 
24 manu_weight_em

pty_  
MWE Kmwe, Mfus, Mwing, 

Mht, Mvt, Mgear, 
Mprop, Msys, Mfurn 

weight 

25 MWE_factor_  Kmwe  weight 
26 nac_wetted_area_  wAnac dnac geometry 
27 nacelle_diameter_  dnac BPR, FNslst geometry 
28 one_pax_weight_  Wpax  weight 
29 ope_weight_empt

y_  
OWE MWE, Mop weight 

30 operator_item_ma
ss_  

Mop RA, Npax weight 

31 Payload_  PL Npax, Wpax weight 
32 press_drag_factor

_  
Kcxp  aerodynamic 

33 ref_mach_number
_  

Mchar phi, tuc aerodynamic 

34 reference_area_  Aref Awing aerodynamic 
35 reference_length_  Lref Awing, ar aerodynamic 
36 sfc_factor  Ksfc  engine 
37 spec_fuel_cons  sfc Ksfc, BPR engine 
38 system_mass_  Msys MTOW weight 
39 tail_lever_arm_  Leh lfus handling qualities 
40 tail_mass_  Mht Aht weight 
41 tail_size_  Aht Awing, Lref, Leh, Vht handling qualities 
42 tail_volume_facto

r_  
Vht  handling qualities 

43 tail_wetted_area_  wAht Aht geometry 
44 take_off_weight_  MTOW_eff Fuel, PL, OWE weight 
45 wing_fuel  Fwing Awing, tuc geometry 
46 wing_mass_  Mwing MTOW, Awing, Lref, 

span, phi, tuc 
weight 

47 wing_wetted_area
_  

wAwing Awing Geometry 

48 mean_cruise_mas
s_crz 

mass_crz MTOW,LDW weight 

49 non_stand_atmos Pamb_crz,Ta disa_crz,alt_crz atmosphere 
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_crz mb_crz 
50 sound_velocity_c

rz 
vsnd_crz Tamb_crz atmosphere 

51 gravity_acc_crz g_crz alt_crz Earth 
52 level_flight_crz cz_crz mass_crz, g_crz, 

Mach_crz, Pamb_crz, 
Aref 

performance 

53 pressure_drag_crz cxc_crz Mach_crz, Mchar, 
Kcxp 

aerodynamic 

54 induced_drag_crz cxi_crz cz_crz,ar, Kind aerodynamic 
55 friction_drag_crz cx0_crz cz_crz,Mach_crz,Pam

b_crz,Tamb_crz,wAw
ing,wAht,wAvt,wAfu
s,wAnac,lfus,Aref,Lre
f,ne,Kcx0 

aerodynamic 

56 drag_factor_crz cx_crz cx0_crz,cxi_crz,cxc_c
rz 

aerodynamic 

57 lift_to_drag_crz lod_crz cz_crz,cx_crz Lift over Drag 
definition 

58 max_cruise_facto
r 

Kmcr  engine 

59 range_crz RA_eff MTOW,LDW,Mach_
crz,vsnd_crz,g_crz,lo
d_crz,sfc 

mission 

60 time_crz RA_time RA_eff,Mach_crz,vsn
d_crz 

Mission 

61 top_of_climb_ma
ss_clb 

mass_clb MTOW weight 

62 non_stand_atmos
_clb 

Pamb_clb,Ta
mb_clb 

disa_clb,alt_clb atmosphere 

63 air_density_clb rho_clb Pamb_clb,Tamb_clb atmosphere 
64 sound_velocity_cl

b 
vsnd_clb Tamb_clb atmosphere 

65 gravity_acc_clb g_clb alt_clb Earth 
66 level_flight_clb cz_clb mass_clb,g_clb,Mach

_clb,Pamb_clb,Aref 
performance 

67 pressure_drag_clb cxc_clb Mach_clb,Mchar,Kcx
p 

aerodynamic 

68 induced_drag_clb cxi_clb cz_clb,ar,Kind aerodynamic 
69 friction_drag_clb cx0_clb cz_clb,Mach_clb,Pam

b_clb,Tamb_clb,wAw
ing,wAht,wAvt,wAfu
s,wAnac,lfus,Aref,Lre
f,ne,Kcx0 

aerodynamic 

70 drag_factor_clb cx_clb cx0_clb,cxi_clb,cxc_c aerodynamic 
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lb 
71 lift_to_drag_clb lod_clb cz_clb,cx_clb Lift over Drag 

definition 
72 net_thrust_clb Fn_clb Mach_clb,rho_clb,FN

slst 
engine 

73 max_climb_factor Kmcl  engine 
74 climb_rate_1 vz_clb mass_clb,Mach_clb,F

n_clb,Kmcl,lod_clb,v
snd_clb,g_clb,ne 

Performance 

75 top_of_climb_ma
ss_cth 

mass_cth MTOW weight 

76 non_stand_atmos
_cth 

Pamb_cth,Ta
mb_cth 

disa_cth,alt_cth atmosphere 

77 air_density_cth rho_cth Pamb_cth,Tamb_cth atmosphere 
78 sound_velocity_ct

h 
vsnd_cth Tamb_cth atmosphere 

79 gravity_acc_cth g_cth alt_cth Earth 
80 level_flight_cth cz_cth mass_cth,g_cth,Mach

_cth,Pamb_cth,Aref 
performance 

81 pressure_drag_cth cxc_cth Mach_cth,Mchar,Kcx
p 

aerodynamic 

82 induced_drag_cth cxi_cth cz_cth,ar,Kind aerodynamic 
83 friction_drag_cth cx0_cth cz_cth,Mach_cth,Pam

b_cth,Tamb_cth,wAw
ing,wAht,wAvt,wAfu
s,wAnac,lfus,Aref,Lre
f,ne,Kcx0 

aerodynamic 

84 drag_factor_cth cx_cth cx0_cth,cxi_cth,cxc_c
th 

aerodynamic 

85 lift_to_drag_cth lod_cth cz_cth,cx_cth Lift over Drag 
definition 

86 net_thrust_cth Fn_cth Mach_cth,rho_cth,FN
slst 

engine 

87 cruise_thrust_1 kfn_cth mass_cth,Fn_cth,Kmc
r,lod_cth,g_cth,ne 

Performance 

88 gravity_acc_app g_app alt_app Earth 
89 app_speed_1 vapp LDW,czmax_LD,Aref,g_a

pp,kvs_LD 
Performance 

90 non_stand_atmos
_to 

Pamb_to,Tam
b_to 

disa_to,alt_to atmosphere 

91 air_density_to rho_to Pamb_to,Tamb_to atmosphere 
92 gravity_acc_to g_to alt_to Earth 
93 Mach_stall_to_ Mach_stall_to MTOW,Aref,czmax_

TO,Pamb_to,g_to 
performance 

94 secured_Mach_to Mach_to kvs_TO,Mach_stall_t performance 
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o 
95 net_thrust_to Fn_to Mach_to,rho_to,FNsls

t 
engine 

96 max_take_off_fac
tor 

Kmto  engine 

97 tofl_1 tofl Fn_to,Kmto,MTOW,c
zmax_TO,rho_to,ne,A
ref,kvs_TO 

performance 
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V. Additional Figures 

i. USMAC test case: Case1 

 

Figure A- 1: Incidence matrix for Case-1 (X and Y labels given in Figure A- 2 ) of USMAC test case 



 

188 

 

Figure A- 2: X and Y axis labels for the incidence matrix in Figure A- 1 
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Variable flow model for SCC: 1 

Feedback number: 3, Number of modified models: 6 

 

Figure A- 3: Design Structure Matrix of the SCC (Variable flow model-1) for Case-1 of USMAC test case 
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Figure A- 4: Incidence Matrix of the SCC (Variable flow model-1) for Case-1 of USMAC test case 
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Variable flow model for SCC: 2 

Feedback number: 5, Number of modified models: 11 

 

Figure A- 5: Design Structure Matrix of the SCC (Variable flow model-2) for Case-1 of USMAC test case 
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Figure A- 6: Incidence Matrix of the SCC (Variable flow model-2) for Case-1 of USMAC test case 
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Variable flow model for SCC: 3 

Feedback number: 6, Number of modified models: 3 

 

 

Figure A- 7: Design Structure Matrix of the SCC (Variable flow model-3) for Case-1 of USMAC test case 
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Figure A- 8: Incidence Matrix of the SCC (Variable flow model-3) for Case-1 of USMAC test case 
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Variable flow model for SCC: 4 

Feedback number: 5, Number of modified models: 9 

 

Figure A- 9: Design Structure Matrix of the SCC (Variable flow model-4) for Case-1 of USMAC test case 
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Figure A- 10: Incidence Matrix of the SCC (Variable flow model-4) for Case-1 of USMAC test case 
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Variable flow model for SCC: 5 

Feedback number: 8, Number of modified models: 11 

 

Figure A- 11 Design Structure Matrix of the SCC (Variable flow model-5) for Case-1 of USMAC test case 
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Figure A- 12 Incidence Matrix of the SCC (Variable flow model-5) for Case-1 of USMAC test case 
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ii. USMAC test case: Case2 

 
Figure A- 13: Incidence matrix for Case-2 (X and Y labels are given in Figure A- 14) of USMAC test case 
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Figure A- 14: X and Y axis labels for the incidence matrix in Figure A- 13 
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Variable flow model for SCC: 1 

Feedback number: 1, Number of modified models: 4 

 

 

Figure A- 15: Design Structure Matrix of the SCC (Variable flow model-1) for Case-2 of USMAC test case 
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Figure A- 16: Incidence Matrix of the SCC (Variable flow model-1) for Case-2 of USMAC test case 
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Variable flow model for SCC: 2 

Feedback number: 1, Number of modified models: 5 

 

 

Figure A- 17: Design Structure Matrix of the SCC (Variable flow model-2) for Case-2 of USMAC test case 
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Figure A- 18: Incidence Matrix of the SCC (Variable flow model-2) for Case-2 of USMAC test case 
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Variable flow model for SCC: 3 

Feedback number:2, Number of modified models: 3 

 

Figure A- 19: Design Structure Matrix of the SCC (Variable flow model-3) for Case-2 of USMAC test case 
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Figure A- 20: Incidence Matrix of the SCC (Variable flow model-3) for Case-2 of USMAC test case 
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Variable flow model for SCC: 4 

Feedback number:2, Number of modified models: 5 

 

Figure A- 21 Design Structure Matrix of the SCC (Variable flow model-4) for Case-2 of USMAC test case 
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Figure A- 22 Incidence Matrix of the SCC (Variable flow model-4) for Case-2 of USMAC test case 
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iii. USMAC test case: Case3 

 

Figure A- 23: Incidence matrix for Case-3 (X and Y labels are given in Figure A- 24) of USMAC test case 
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Figure A- 24: X and Y axis labels for the incidence matrix in Figure A- 23 
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Variable flow model for first SCC: 1 

Feedback number: 1, Number of modified models: 4 

 

 

Figure A- 25: Design Structure Matrix of the first SCC (Variable flow model-1) for Case-3 of USMAC test case 
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Figure A- 26: Incidence Matrix of the first SCC (Variable flow model-1) for Case-3 of USMAC test case 
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Variable flow model for first SCC: 2 

Feedback number: 1, Number of modified models: 5 

 

 

Figure A- 27: Design Structure Matrix of the first SCC (Variable flow model-2) for Case-3 of USMAC test case 
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Figure A- 28: Incidence Matrix of the first SCC (Variable flow model-2) for Case-3 of USMAC test case 
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Variable flow model for second SCC: 1 

Feedback number: 1, Number of modified models: 3 

 

Figure A- 29: Design Structure Matrix of the second SCC (Variable flow model-1) for Case-3 of USMAC test case 
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Figure A- 30: Incidence Matrix of the second SCC (Variable flow model-1) for Case-3 of USMAC test case 
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Variable flow model for second SCC: 2 

Feedback number: 1, Number of modified models: 4 

 

Figure A- 31: Design Structure Matrix of the second SCC (Variable flow model-2) for Case-3 of USMAC test case 
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Figure A- 32: Incidence Matrix of the second SCC (Variable flow model-2) for Case-3 of USMAC test case 
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Variable flow model for second SCC: 3 

Feedback number: 1, Number of modified models: 2 

 

Figure A- 33: Design Structure Matrix of the second SCC (Variable flow model-3) for Case-3 of USMAC test case 
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Figure A- 34: Incidence Matrix of the second SCC (Variable flow model-3) for Case-3 of USMAC test case 
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VI. Architecture of CWMD 

This section contains the architectural, interface and design (Implementation) 

description of the CWMD. 

i. Functional top-level decomposition 

Functional top-level decomposition diagram in Figure A- 35 indicates the four main 

functions of CWMD and its interaction with the graphical user interface. ‘Objects’ in 

the figure corresponds to data, model, subprocess and study.  
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Figure A- 35 Top level functional flow systems diagram 

ii. Functional application mapping 
The functional top-level decomposition with its internal structure is shown in Figure A- 

36. The purpose is to show the first level structure of application components and how 

functional packages are allocated to components. 
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Figure A- 36 Functional top-level decomposition with its internal structure 

 

iii. Product breakdown structure (PBS) 
The hierarchical tree structure for the components is given below. The function of each 

component is self explanatory. 

1. GUI 
1.1. CWMD GUI (Figure A- 38) 
1.2. DATA CREATOR (Figure A- 39) 
1.3. MODEL CREATOR (Figure A- 40) 
1.4. SUBPROCESS CREATOR (Figure A- 41) 
1.5. STUDY CREATOR (Figure A- 42) 
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1.6. RUNNER (Figure A- 43) 
2. CREATE OBJECTS 

2.1. CREATE DATA  (Figure A- 44) 
2.2. CREATE MODEL (Figure A- 45) 
2.3. CREATE SUBPROCESS (Figure A- 46) 
2.4. CREATE STUDY (Figure A- 47) 
2.5. CREATE TREATMENT (Figure A- 48) 

3. REARRANGE (Figure A- 49) 
3.1. PERFORM VARAIBLE FLOW MODELLING USING IMM 

(Figure A- 50) 
3.2. REARRANGE SCCS USING GENETIC ALGORITHM (Figure A- 

51) 
3.3. REARRANGE MODELS/SPS HEIRARCHICALLY (Figure A- 52) 

4. PLOT MD/SP 
4.1. PLOT INCIDENCE MATRIX (Figure A- 53) 
4.2. PLOT DESIGN STRUCTURE MATRIX (Figure A- 54) 
4.3. PLOT GRAPH (Figure A- 55) 
4.4. PLOT TEXT (Figure A- 56) 

5. EXECUTE OBJECTS 
5.1. EXECUTE MODEL (Figure A- 57) 
5.2. EXECUTE SUBPROCESS (Figure A- 58) 
5.3. EXECUTE STUDY (Figure A- 59) 

The flow diagram for each component is shown in Figure A- 38 till Figure A- 59.  A 

detailed flow diagram which combines all the component level flow diagrams is 

represented in Figure A- 37. 

Symbols used in the Flow diagrams 

Graphical User Interface

function

Button on a GUI

Decision

input/output  
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Figure A- 37 Functional flow systems diagram (attached sheet provides a zoomed view) 

iv. Architecture Breakdown Diagrams  
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Figure A- 38 Flow diagram for CWMD GUI (Component 1.1) 
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Figure A- 39 Flow diagram for 'data creator' GUI (Component 1.2) 
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Figure A- 40 Flow diagram for 'model creator' GUI (Component 1.3) 
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Figure A- 41 Flow diagram for 'subprocess creator' GUI (Component 1.4) 
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Figure A- 42 Flow diagram for 'study creator' GUI (Component 1.5) 
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Figure A- 43 Flow diagram for 'runner' GUI (Component 1.6) 
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Data

 

Figure A- 44 Flow diagram for creating data object creator (Component 2.1) 
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Figure A- 45Flow diagram for creating model object (Component 2.2) 
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Figure A- 46 Flow diagram for creating subprocess object (Component 2.3) 
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Figure A- 47 Flow diagram for creating study object (Component 2.4) 
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Figure A- 48 Flow diagram for creating treatment object (Component 2.5) 
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Figure A- 49 Flow diagram for rearrangement (Component 3) 
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Figure A- 50 Flow diagram for variable flow modelling using incidence matrix 

method(Component 3.1) 
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Figure A- 51 Flow diagram for rearrangement of SCCs by applying genetic algorithm 

(Component 3.2) 
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Figure A- 52 Flow diagram for rearing models/SPs hierarchically (Component 3.3) 
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view_i

Model/Subprocess object

 

Figure A- 53 Flow diagram for representing MD/SP in an incidence matrix (Component 

4.1) 
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Figure A- 54 Flow diagram for representing MD/SP in a DSM (Component 4.2) 
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Figure A- 55 Flow diagram for representing MD/SP in a graph format (Component 4.3) 
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Figure A- 56 Flow diagram for representing MD/SP in a text GUI (Component 4.4) 
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Figure A- 57 Flow diagram for executing model objects (Component 5.1) 
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Figure A- 58 Flow diagram for executing subprocess objects (Component 5.2) 
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Figure A- 59 Flow diagram for executing study objects (Component 5.3) 

v. Description of components of CWMD 

The description of each component given in the Figure A- 38 till Figure A- 59 is given 

in the Table A- 3. 

Table A- 3 Description of components of CWMD 

Component ID Short Title Description Covered Function 
1. 1 (Figure A- 
38) 

CWMD GUI 
 

This is the main graphical user interface. There are 
options to create, execute, plot, delete and copy 
Objects (data, model, subprocess, study and 
treatments). The objects created can be loaded and 
saved using ‘Load’ and ‘SAVE’ buttons. 

CWMD 
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Component ID Short Title Description Covered Function 
1. 2(Figure A- 
39) 

DATA CREATOR The function of this interface is to create data 
objects. The inputs to create the data (name, value, 
type, range) has to be provided by the user. This 
GUI can be activated from ‘CWMD’ window . 
 

dater 

1. 3(Figure A- 
40) 

MODEL 
CREATOR 

The function of this interface is to create model 
objects. The data objects loaded in the CWMD 
GUI will be the inputs to this GUI. The name of 
the model object to be created, its inputs and 
outputs has to be provided by the user. This GUI 
can be activated from ‘CWMD’ window . 
 

modeller 

1. 3(Figure A- 
41) 

SUBPROCESS 
CREATOR 

The function of this interface is to create 
subprocess objects. The model and subprocess 
objects loaded in the CWMD GUI will be the 
inputs to this GUI. The subprocess is created based 
on the models/sub processes and the independent 
variables selected by the user. This GUI can be 
activated from ‘CWMD’ window . 
 

subprocr 

1. 4(Figure A- 
42) 

STUDY 
CREATOR 

The function of this interface is to create study 
objects. The model and subprocess objects loaded 
in the CWMD GUI will be the inputs to this GUI. 
The study object is created based on the 
models/subprocesses and the treatment objects 
selected by the user. This GUI can be activated 
from ‘CWMD’ window . 
  

studycr 

1. 5(Figure A- 
43) 

RUNNER The function of this interface is to execute the 
model and subprocess objects. The 
model/subprocess  selected from the CWMD GUI 
will be the inputs to this GUI. This GUI can be 
activated from ‘CWMD’ window . 
 

runner 

2.1(Figure A- 
44) 

CREATE DATA Creates data object. Data 

2.2(Figure A- 
45) 

CREATE MODEL Creates data object. model 

2.3(Figure A- 
46) 

CREATE 
SUBPROCESS 

Creates subprocess object. 
 

subprocess 

2.4 (Figure A- 
47) 

CREATE STUDY Creates study object. study 

2.5(Figure A- 
48) 

CREATE 
TREATMENT 

Creates treatment object. treatment 

3(Figure A- 49) REARRANGE The main calling function for computational 
process plan 
Functions called 
imminit 
dtclassifynew 
subprocess(Component ID 2.3) 
 
 

Rearrange_imm_m
ath 

3(Figure A- 49) REARRANGE 
imminit 
 

Inititalises the incm matrix and creates the 
incmreal matrix 
Functions called 
datasaccum 
incmcreate 
imm(Component ID 3.1) 
 

imminit 

3(Figure A- 49) REARRANGE 
Imminit 
datasaccum 
 

Creates a list of variables in the models and 
subprocess 

datasaccum 
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Component ID Short Title Description Covered Function 
3(Figure A- 49) REARRANGE 

Imminit 
incmcreate 
 

Creates the foundation matrix of the 
models/subprocess in the process. 

incmcreate 

3(Figure A- 49) REARRANGE 
Imminit 
createmodifier 
 

Adds mathematical treatments for the 
subprocess/models which has its inputs and outputs 
modified and creates a subprocess 
Functions called 
Subprocess 
 
 

createmodifier 
 

3(Figure A- 49) REARRANGE 
Imminit 
o createscc_arr
ange 

Adds mathematical treatments for the 
subprocess/models which are part of the SCC, and 
creates a subprocess. 
Functions called 
Subprocess 
Sccsubprocreate 
 

createscc_arrange  

3(Figure A- 49) REARRANGE 
dtclassifynew 

Creates a cell array of the inputs and outputs for 
the group of models\subprocess given as inputs to 
‘dtclassify’ 
 

dtclassifynew 

3.1(Figure A- 
50) 

PERFORM 
VARAIBLE FLOW 
MODELLING 
USING IMM 

Performs variable flow modelling based on 
incidence matrix method. The final incidence 
matrix, list of SCCs, the arrangement of SCCs etc 
are produced as outputs. 
Functions called 
indepcheck 
spm 
fillasinput 
incidence_explore 
incmsettodsmset 
sccleastfeedback(componenet ID 3.2) 
sequenceprocess(componenet ID 3.3) 

imm 

3.1(Figure A- 
50) 

PERFORM 
VARIBALE FLOW 
MODELLING 
USING IMM 
 
- indepcheck 

Checks whether incm will lead to violation of the 
constraints and leads to an unsolvable system. 
 

indepcheck 

3.1(Figure A- 
50) 

PERFORM 
VARIBALE FLOW 
MODELLING 
USING IMM 
 
-spm 

Conducts the incidence matrix method on the incm 
matrix provided. 
 

spm 

3.1(Figure A- 
50) 

PERFORM 
VARIBALE FLOW 
MODELLING 
USING IMM 
 
-fillasinput 

If the system is under constrained then this 
function will make certain variables to be 
independent and in parallel making sure that none 
of the constraints are violated. 
 

fillasinput 
 

3.1(Figure A- 
50) 

PERFORM 
VARIBALE FLOW 
MODELLING 
USING IMM 
-incidence_explore 
 

If the system is under constrained then this 
function will make certain variables to be 
independent and in parallel making sure that none 
of the constraints are violated. 
Functions called 
fillasinput 
spm 
findchanval (finds the rows of incm where the 
models associated variable are modified) 
incidence_explore 

incidence_explore 
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Component ID Short Title Description Covered Function 
3.1(Figure A- 
50) 

PERFORM 
VARIBALE FLOW 
MODELLING 
USING IMM 
-incmsettodsmset 
 

If the system is under constrained then this 
function will make certain variables to be 
independent and in parallel ensuring that none of 
the constraints are violated. 
Functions called 
Spmtodsm (converts IM to DSM) 

incmsettodsmset 
 

3.2(Figure A- 
51) 

REARRANGE 
SCCS USING 
GENETIC 
ALGORITHM 

Rearranges the elements of SCCs using genetic 
algorithm, based on the criteria(‘feedback length’ 
or ‘feedback number’) provided by the user 
Functions called 
clusidentif 
spmtodsm 
ga_rearg 

sccleastfeedback 

3.2(Figure A- 
51) 

REARRANGE 
SCCS USING 
GENETIC 
ALGORITHM 
-clusidentif 

Identifies the SCCs in the dsm provided and give 
as output the list of elements in each SCC 
 

clusidentif 

3.2(Figure A- 
51) 

REARRANGE 
SCCS USING 
GENETIC 
ALGORITHM 
- ga_rearg 

Identifies the SCCs in the dsm provided and give 
as output the list of elements in each SCC 
Functions called 
ga- Matlab function 
optimtest 
numfdb 
rearg_cross 
rearg_mut 
rearg_pop 

ga_rearg 

3.2(Figure A- 
51) 

REARRANGE 
SCCS USING 
GENETIC 
ALGORITHM 
- ga_rearg 
    - optimtest 

Calculates the feedback length based on the dsm 
and the order in which dsm has to be rearranged. 
Functions called 
magicdsm 
fdblng 

optimtest 

3.2(Figure A- 
51) 

REARRANGE 
SCCS USING 
GENETIC 
ALGORITHM 
- ga_rearg 
    - optimtest 
        -magicdsm 

Creates a rearranged DSM(mdsm) out of the new 
arrangement of disciplines according to input from 
disp 
 

ga_rearg 

3.2(Figure A- 
51) 

REARRANGE 
SCCS USING 
GENETIC 
ALGORITHM 
- ga_rearg 
    - optimtest 
        -fdblng 

Finds feedback length given a DSM using the 
equation sum(DM(i,j)(i-j)),i=2:n,j=1:i-1 
 

fdblng 

3.2(Figure A- 
51) 

REARRANGE 
SCCS USING 
GENETIC 
ALGORITHM 
- ga_rearg 
    - rearg_cross 

Position based crossover for rearranging the dsm 
 

rearg_cross 

3.2(Figure A- 
51) 

REARRANGE 
SCCS USING 
GENETIC 
ALGORITHM 
- ga_rearg 
    - rearg_mut 

Mutation for rearranging the dsm 
 

rearg_mut 
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Component ID Short Title Description Covered Function 
3.2(Figure A- 
51) 

REARRANGE 
SCCS USING 
GENETIC 
ALGORITHM 
- ga_rearg 
    - rearg_pop 

Creates population given the GenomeLength  
 

rearg_pop 

3.2(Figure A- 
51) 

REARRANGE 
SCCS USING 
GENETIC 
ALGORITHM 
- ga_rearg 
    - numfdb 

Calculates the feedback number based on the dsm 
and the order in which dsm has to be rearranged. 
 

numfdb 

3.3(Figure A- 
52) 

REARRANGE 
MODELS/SPS 
HEIRARCHICALL
Y 

Rearrangement of the DSM based on graph theory 
Functions called 
clusidentif(refer component 3.2) 
dsmrg 

sequenceprocess 

3.3(Figure A- 
52) 

REARRANGE 
MODELS/SPS 
HEIRARCHICALL
Y 
    -dsmrg 

Rearrangement of the accessibility matrix based on 
graph theory 
Functions called 
flgrc 
redmtx 
fargmt 
unpck 

dsmrg 

3.3(Figure A- 
52) 

REARRANGE 
MODELS/SPS 
HEIRARCHICALL
Y 
    -dsmrg 
       -flgrc 

Inserts flags for the rows and columns of 
accessibility matrix  which are identical. 
 

flgrc 

3.3(Figure A- 
52) 

REARRANGE 
MODELS/SPS 
HEIRARCHICALL
Y 
    -dsmrg 
       -redmtx 

The rows and columns of the acces matrix which 
are identical are collapsed into single rows and 
columns. 
 

redmtx 

3.3(Figure A- 
52) 

REARRANGE 
MODELS/SPS 
HEIRARCHICALL
Y 
    -dsmrg 
       - fargmt 
 

Final rearrangement based on graph theory 
 

fargmt 

3.3(Figure A- 
52) 

REARRANGE 
MODELS/SPS 
HEIRARCHICALL
Y 
    -dsmrg 
       - unpck 
 

Final rearrangement based on graph theory 
 

unpck 

4.1 (Figure A- 
53) 

PLOT 
INCIDENCE 
MATRIX 

Plots the subprocess which is given as input, as an 
incidence matrix. 
Functions called 
form_icm 
form_x_tckl 
form_y_tckl 
graph_matrix  
 

view_i 

4.2(Figure A- 
54) 

PLOT DESIGN 
STRUCTURE 
MATRIX 

Plots the subprocess which is given as input, as a 
design structure matrix. 
Functions called 
settingp 
dsmatrix 

view_d 
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Component ID Short Title Description Covered Function 
intercnt 
graph_matrix 

4.3(Figure A- 
55) 

PLOT GRAPH Plots the subprocess which is given as input, as a 
graph. 
Functions called 
views 
graph_to_dot 
dot_to_graph 
my_setdiff 
graph_draw 
textoval 
ellipse 
textbox 
make_layout 
arrow1 

view_gi 

4.4 (Figure A- 
56) 

PLOT TEXT Plots subprocess and models in the tabular 
format  
 

view_t 

5.1(Figure A- 
57) 

EXECUTE 
MODEL 

Executes model.  
 

executer 

5.2(Figure A- 
58) 

EXECUTE 
SUBPROCESS 

Executes subprocess.  
Functions called 
Valuefillpre- the results obtained after execution is 
updated for all data objects(inputs and outputs of 
the subprocess) embedded in the subprocess 
sccfsolver 
Sccfixedpoint 
modifier 
 

executer 

5.2(Figure A- 
59) 

EXECUTE 
SUBPROCESS 
   -sccfsolver 

Solving SCC using the fsolve function of 
MATLAB. For details on FSOLVE function refer 
the user manual for MATLAB. 
Functions called 
Fsolve- Matlab function 
Findguess- finds the variables which are part of the 
feedback loops 
Invrscc- the objective function for fsolve 

sccfsolver 

5.2(Figure A- 
59) 

EXECUTE 
SUBPROCESS 
   -sccfixedpoint 

Solving SCC using fixed point iteration. 
Functions called 
Settingp- converts the attributes of  'models’  into a 
cell array  
Dsmatrix-Finds the strongly connected 
components(SCC) 
dsmvarfind- finds the variables which are part of the 
feedback loops 
intercnt-mapping inputs and outputs of models 

sccfixedpoint 

5.2(Figure A- 
59) 

EXECUTE 
SUBPROCESS 
   -modifier 

Solving SCC using the fsolve function of 
MATLAB. For details on FSOLVE function refer 
the user manual for MATLAB. 
Functions called 
Fsolve- Matlab function 
Findunk- checking variables which are modified 
Invrs- objective function for fsolve 

modifier 

5.3(Figure A- 
59) 

EXECUTE 
STUDY 

Executes study.  
Functions called 
Valuefillpre- the results obtained after execution is 
updated for all data objects(inputs and outputs of 
the subprocess) embedded in the study 
DHCBI 
Optimiser 

executer 
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