
Cranfield University

LIBISH KALATHIL BALACHANDRAN

COMPUTATIONAL WORKFLOW MANAGEMENT FOR
CONCEPTUAL DESIGN OF COMPLEX SYSTEMS: AN

AIR-VEHICLE DESIGN PERSPECTIVE

SCHOOL OF ENGINEERING

PhD

Cranfield University

SCHOOL OF ENGINEERING

PhD THESIS

 2007

LIBISH KALATHIL BALACHANDRAN

COMPUTATIONAL WORKFLOW MANAGEMENT FOR
CONCEPTUAL DESIGN OF COMPLEX SYSTEMS: AN AIR-

VEHICLE DESIGN PERSPECTIVE

Supervisor: PROF. MARIN D GUENOV

Academic Year 2004 to 2007

© Cranfield University, 2007. All rights reserved. No part of this publication may be

reproduced without the written permission of the copyright holder.

ABSTRACT
The decisions taken during the aircraft conceptual design stage are of paramount

importance since these commit up to eighty percent of the product life cycle costs. Thus

in order to obtain a sound baseline which can then be passed on to the subsequent

design phases, various studies ought to be carried out during this stage. These include

trade-off analysis and multidisciplinary optimisation performed on computational

processes assembled from hundreds of relatively simple mathematical models

describing the underlying physics and other relevant characteristics of the aircraft.

However, the growing complexity of aircraft design in recent years has prompted

engineers to substitute the conventional algebraic equations with compiled software

programs (referred to as models in this thesis) which still retain the mathematical

models, but allow for a controlled expansion and manipulation of the computational

system. This tendency has posed the research question of how to dynamically assemble

and solve a system of non-linear models. In this context, the objective of the present

research has been to develop methods which significantly increase the flexibility and

efficiency with which the designer is able to operate on large scale computational

multidisciplinary systems at the conceptual design stage.

In order to achieve this objective a novel computational process modelling method has

been developed for generating computational plans for a system of non-linear models.

The computational process modelling was subdivided into variable flow modelling,

decomposition and sequencing. A novel method named Incidence Matrix Method

(IMM) was developed for variable flow modelling, which is the process of identifying

the data flow between the models based on a given set of input variables. This method

has the advantage of rapidly producing feasible variable flow models, for a system of

models with multiple outputs. In addition, criteria were derived for choosing the optimal

variable flow model which would lead to faster convergence of the system.

Following the variable flow modelling, the decomposition and sequencing of the models

were performed. During the decomposition process, the non-hierarchical (strongly

coupled) models were identified and grouped into a single set. Subsequently, the

strongly coupled sets and the remaining models were sequentially arranged by applying

a graph theoretical algorithm. In order to reduce the execution time, the models within

the strongly coupled sets were rearranged using genetic algorithm, where several

candidate fitness functions were tried and tested. After extensive tests using different

solvers on an aircraft conceptual design test case supplied by industry, it was found that

the fitness function for the rearrangement was dependent on the solver used for the

strongly coupled sets. In the current context, number of feedback loops was chosen as

the fitness function for rearrangement.

A computational framework, the Cranfield Workflow Management Device (CWMD)

was designed and developed by the author using the MATLAB programming language.

CWMD is an object-oriented framework which provides the computational

infrastructure for performing flexible design studies and was used for test and

evaluation of the proposed methods.

Results obtained after applying the computational process plan on various test cases,

including industrial ones, indicated significant reduction in the iterations required for

the convergence of the system. Feedback provided by aircraft conceptual design

engineers from industry confirmed the flexibility offered by the CWMD.

Keywords:

Aircraft Conceptual Design, Computational Tools, Constraint Management,

Decomposition, Design Structure Matrix, Incidence Matrix, Object Oriented Modelling,

Rearrangement, Scheduling, Strongly Connected Components, Variable Flow

Modelling

ACKNOWLEDGEMENTS

I would like to thank my supervisor Professor Marin D Guenov for his support and

valuable guidance throughout the project. His guidance and direction helped me to well

plan my research and successfully achieve the research goals and objectives.

Many thanks to Dr. Helen Lockett for her supervision during the initial days of my

research and also for her support in preparing the state-of-the-art report for VIVACE.

Many thanks also to Dr. Dunbing Tang who helped me with my research in the first

year.

I am grateful to people from Airbus-Toulouse for their support and timely delivery of

test cases and the in-house aircraft conceptual design tools. These test cases were very

useful for testing the novel methods developed as part of this research. I would like to

particularly thank Thierry Druot, Luc Delaire, Claus Brandl, Yannick Caillabet and

Bruno Mourguiart from Airbus-Toulouse for their support.

I am grateful to European Union Project-VIVACE and the School of Engineering for

funding my studies at Cranfield University.

My special thanks to other PhD students in our research group, Paolo, Yves, Jeremy,

Mattia and Marco for their friendship and support. It has been great working with you

all.

I would also like to thank the staff of the Cranfield university library, computer centre,

accommodation office, administration and also the School of Engineering secretaries,

Elizabeth and Diane for helping me at different points during my stay at Cranfield

University.

Finally my heartfelt thanks to my beloved parents for supporting and encouraging me

through out my academic career. With out your love and support I would not have

achieved this goal. Many thanks also to my sisters and their family for their love.

i

TABLE OF CONTENTS

TABLE OF FIGURES ... IV

TABLE OF TABLES ... IX

TABLE OF EQUATIONS ...X

ABBREVIATIONS... XI

1 INTRODUCTION..1
1.1 TERMINOLOGY ..3
1.2 BACKGROUND...4

1.2.1 Aircraft conceptual design ..4
1.2.2 Design studies during the aircraft conceptual design ..6
1.2.3 Computational process modelling for complex systems...8

1.3 SUMMARY OF AIMS AND OBJECTIVES ..14
1.4 THESIS STRUCTURE...15

2 LITERATURE SURVEY..17
2.1 INTRODUCTION..17
2.2 COMPUTATIONAL PROCESS MODELLING METHODS ..17

2.2.1 Variable flow modelling methods ...17
2.2.2 System decomposition and scheduling methods ...21

2.3 COMPUTATIONAL TOOLS FOR COMPLEX SYSTEMS...31
2.3.1 Computational tools for low-fidelity mathematical models ...32
2.3.2 Computational tools for high-fidelity mathematical models..34

2.4 SUMMARY AND CONCLUSIONS ...38

3 COMPUTATIONAL PROCESS MODELLING FOR COMPLEX SYSTEMS40
3.1 INTRODUCTION..40
3.2 THE COMPUTATIONAL PROCESS MODELLER..40

3.2.1 Variable flow modelling ..43
3.2.2 System Decomposition...70
3.2.3 System scheduling..73

3.3 COMPUTATIONAL PROCESS MODELLING EXAMPLE...81
3.4 SUMMARY AND CONCLUSIONS ...89

4 SOLVERS FOR SUB-SYSTEMS ..91
4.1 INTRODUCTION..91
4.2 SCHEME FOR SOLVING MODIFIED MODELS..91
4.3 SCHEMES FOR SOLVING STRONGLY CONNECTED COMPONENTS ...97

4.3.1 Solving SCC using Fixed point iteration method ...97

ii

4.3.2 Solving SCC using Gauss-Newton method ...99
4.4 SOLVING SCC AND MODIFIED MODELS AT SYSTEM LEVEL ..100
4.5 SUMMARY AND CONCLUSIONS ...102

5 RESULTS AND DISCUSSION..103
5.1 INTRODUCTION..103
5.2 THE USMAC TEST CASE..103
5.3 EVALUATION OF THE OBJECTIVE FUNCTION ..104
5.4 COMPUTATIONAL PROCESS MODELLING EVALUATION ...110

5.4.1 Simplified sizing test case..111
5.4.2 USMAC case..118

5.5 CONCLUSION...131

6 FRAMEWORK DESIGN AND DEVELOPMENT: CRANFIELD WORKFLOW

MANAGEMENT DEVICE (CWMD)...133
6.1 INTRODUCTION..133
6.2 OVERVIEW OF CWMD..133
6.3 OBJECT ORIENTED MODELLING OF CWMD...133

6.3.1 Basic Concepts of Object Oriented Modelling ...133
6.3.2 CWMD Class Diagram ...134
6.3.3 CWMD Object Models ..136

6.4 EXAMPLE CASE...141
6.5 MODULES OF CWMD ...145

6.5.1 Creator...146
6.5.2 Executer ...151
6.5.3 Viewer ..152

6.6 CONVERGENCE MONITORING IN CWMD...155
6.7 SUMMARY AND CONCLUSIONS ...157

7 SUMMARY AND CONCLUSIONS..159
7.1 LITERATURE REVIEW..159
7.2 COMPUTATIONAL PROCESS MODELLING..160
7.3 TESTING AND EVALUATION ..161
7.4 FRAMEWORK: CWMD..162
7.5 CURRENT LIMITATIONS ..162
7.6 FUTURE WORK..164

REFERENCES...166

BIBLIOGRAPHY..170

APPENDICES..177
I. PUBLICATIONS BY THE AUTHOR RELATED TO THIS THESIS..177

iii

II. GAUSS-NEWTON METHOD...177
III. FIXED POINT ITERATION METHOD..178
IV. VARIABLES AND MODELS OF USMAC TEST CASE..179
V. ADDITIONAL FIGURES..187

i. USMAC test case: Case1 ...187
ii. USMAC test case: Case2 ...199
iii. USMAC test case: Case3 ...209

VI. ARCHITECTURE OF CWMD ..221
i. Functional top-level decomposition...221
ii. Functional application mapping..221
iii. Product breakdown structure (PBS)..222
iv. Architecture Breakdown Diagrams ...224
v. Description of components of CWMD...232

iv

TABLE OF FIGURES
Figure 1-1 A simplified aircraft computational system (adopted from a real test case

supplied by industry, (VIVACE, 2005)) .. 2

Figure 1-2 Design studies conducted over an aircraft system.. 2

Figure 1-3 Models for calculating atmosphere pressure and temperature........................ 3

Figure 1-4 An engine subprocess ... 3

Figure 1-5 Example of a modified model... 4

Figure 1-6 A general aircraft mathematical model... 6

Figure 1-7 Range trade (Raymer, 1999)... 7

Figure 1-8 Variable flow modelling for a system of three mathematical models (Buckley

et al., 1992) ... 9

Figure 1-9 Sequence for finding the output variables .. 10

Figure 1-10 An example for a system of models ... 11

Figure 1-11 Sequence for finding the output variables .. 11

Figure 1-12 Directed Bipartite Graph for models in Figure 1-10 with variable ‘g’ as

input (Buckley et al., 1992) .. 12

Figure 1-13 Decomposition of a system of models... 13

Figure 1-14 The mathematical models of Figure 1.6 after scheduling........................... 14

Figure 2-1 A system of non-linear equations with its corresponding undirected bipartite

graph (adapted from Buckley et.al, 1992) .. 19

Figure 2-2 Directed bipartite graph (adapted from Buckley et.al, 1992) 20

Figure 2-3 Graph representation of a process and the corresponding adjacency matrix 22

Figure 2-4 Sample PERT Chart.. 23

Figure 2-5 Design Structure Matrix ... 23

Figure 2-6 (a) Decomposed incidence matrix, (b) Decomposed incidence matrix which

has overlapping constraints (c)Decomposed incidence matrix with overlapping variables

(Kusiak and Wang, 1993)... 25

Figure 2-7 Workflow of the two-phase decomposition method (Chen et.al., 2005)...... 26

Figure 2-8 An example DSM before and after rearrangement (Rogers, 1997).............. 28

Figure 2-9 Decoding of genetic string into subroutine order and sub-problems............ 29

Figure 2-10 Pareto solution of an optimal decomposition problem (Papalambros, 1995)

.. 30

v

Figure 2-11 Workflow diagram for Design Sheet (Buckley et.al, 1992) 33

Figure 2-12 Overview of the FIPER architecture (Wujek et al., 2002).......................... 35

Figure 2-13 (a) Functional structure of the design process of the BWB in the CDE (b)

An example for Spineware object browser (Vankan and Laban, 2002)......................... 36

Figure 3-1 The computational process modeller .. 41

Figure 3-2 Incidence matrix for a system of three models ... 43

Figure 3-3 Flow chart for incidence matrix method (IMM)... 46

Figure 3-4 Models balancing the weight of aircraft with its lift..................................... 47

Figure 3-5: Initial Incidence matrix for models in Figure 3-4.. 47

Figure 3-6 Incidence matrix for system in Figure 3-4 with independent variables defined

.. 47

Figure 3-7 Incidence matrix for system in Figure 3-4 after applying rule2 on element

(1,2) .. 48

Figure 3-8 Incidence matrix for system in Figure 3-4 after applying rule3 on element

(3,4) .. 48

Figure 3-9 Incidence matrix for system in Figure 3-4 after applying rule5 on element

(1,3) .. 48

Figure 3-10 Incidence matrix for system in Figure 3-4 after applying rule4 on element

(2,3) .. 49

Figure 3-11 Incidence matrix for system in Figure 3-4 after applying rule4 on element

(2,4) .. 49

Figure 3-12 Models for example2 .. 50

Figure 3-13: Population of the incidence matrix for the models in the system in Figure

3-12... 50

Figure 3-14 Populated incidence matrix for an under-determined system..................... 53

Figure 3-15 Populated incidence matrix for an over-determined system....................... 53

Figure 3-16 (a) System of models (b) Corresponding populated incidence matrix with

X3 as the independent variable ... 54

Figure 3-17 Additional steps for IMM in the presence of SCC 56

Figure 3-18 Alternative guesses for i/o variables of model6.. 56

Figure 3-19 (a) Populated incidence matrix after the arrangement of model6 as shown in

Figure 3-18(a), (b) Populated incidence matrix after the arrangement of model6 as

vi

shown in Figure 3-18(b), (c) Incidence matrix after the arrangement of model6 as shown

in Figure 3-18(c)... 57

Figure 3-20 Populated incidence matrix for the arrangement of model6 as shown in

Figure 3-18(c), in the second iteration.. 57

Figure 3-21 Populated incidence matrix, for the system of models in Figure 3 17(a),

with X7 as the independent variable... 58

Figure 3-22 Populated incidence matrix, for the system of models in Figure 3-16(a),

with X7 as the independent variable, after resolving the SCC.. 59

Figure 3-23 Incidence matrix earlier and latest representations..................................... 59

Figure 3-24 Flow chart for improved formal IMM .. 60

Figure 3-25 Additional steps for formal IMM in the presence of SCC.......................... 69

Figure 3-26 Populated incidence matrix for the system shown in Figure 3-16 with X6

given as the independent variable... 71

Figure 3-27 Position based crossover... 74

Figure 3-28 Order based mutation.. 75

Figure 3-29 DSM representation of the variable flow models obtained in example 3... 77

Figure 3-30 Rearranged DSMs of Figure 3-29... 77

Figure 3-31: Confined SCC and the remaining models ... 79

Figure 3-32 System of models.. 81

Figure 3-33 Initial incidence matrix for the system in Figure 3-32 (Blank cells denote

‘0’) .. 82

Figure 3-34 Populated incidence matrix according to formal IMM (Blank cells denote

‘0’) .. 82

Figure 3-35 Four different variable flow models obtained for the system in Figure

3-32(Blank cells denote ‘0’) ... 83

Figure 3-36 SCCs and the remaining models... 88

Figure 4-1 An example for modified model... 91

Figure 4-2 Flowchart for solving modified models.. 93

Figure 4-3 Sine curve ... 95

Figure 4-4 A model for demonstrating sensitivity of switched variables. 95

Figure 4-5 A simple SCC ... 97

Figure 4-6 An example SCC with three feedback loops .. 98

vii

Figure 4-7 An example SCC with modified models .. 100

Figure 4-8 Graphical view of the SCC with modified models 101

Figure 5-1 Feedback number versus sum of the calls made to each model in the SCC by

each solver (The graph is curve fitted) ... 107

Figure 5-2 Feedback length versus sum of the calls made to each model in the SCC by

each solver (The graph is curve fitted) ... 109

Figure 5-3 Simplified aircraft sizing problem (test case) ... 111

Figure 5-4 Mission profile for the sizing problem ... 111

Figure 5-5 Models for simplified aircraft sizing problem .. 112

Figure 5-6 Incidence matrix for Case1 of the sizing test case (Blank cells denote ‘0’).

.. 113

Figure 5-7 Variable flow models and corresponding rearranged DSMs of the SCCs for

case 1 of the sizing test case (Blank cells denote ‘0’). ... 113

Figure 5-8 Incidence matrix for Case2 of the sizing test case (Blank cells denote ‘0’).

.. 116

Figure 5-9 Variable flow models of the SCCs for case 2 of the sizing test case (Blank

cells denote ‘0’). ... 116

Figure 6-1 Class diagram for CWMD .. 135

Figure 6-2 System of models.. 141

Figure 6-3 Variable flow models for the system of models shown in Figure 6-2........ 143

Figure 6-4 Symbolic representation of the subprocess for the system in Figure 6-2 with

R and Walt given as input variables. ... 144

Figure 6-5 CWMD main window... 146

Figure 6-6 Data creator GUI... 147

Figure 6-7 Model creator GUI.. 147

Figure 6-8 Subprocess creator GUI.. 149

Figure 6-9 GUI for selecting the solver for SCC ... 150

Figure 6-10 Study creator GUI... 151

Figure 6-11 GUI for executing the objects... 152

Figure 6-12 Incidence matrix plot by CWMD ... 153

Figure 6-13 Design structure matrix plot by CWMD... 154

Figure 6-14 Graph plot of a subprocess by CWMD... 154

viii

Figure 6-15 Tabular plot of a subprocess by CWMD .. 155

Figure 6-16 Convergence monitoring for SCC .. 156

Figure 6-17 Convergence monitoring for SCC when FPI-first solver is used. 156

ix

TABLE OF TABLES
Table 4-1 Variation in the swapped variables during the solving of ‘Payload’ modified

model .. 94

Table 5-1 Number of calls made by each solver to solve the SCC 105

Table 5-2 Number of calls made by each solver to solve the SCC 108

Table 5-3 Independent variables selected for each case... 112

Table 5-4 Details of computational process modeling and solving of SCC for case 1 of

the sizing test case. ... 114

Table 5-5 Details of computational process modeling and solving of SCC for case 2 of

the sizing test case. ... 117

Table 5-6 Details of computational process modeling and solving of SCC for case 1 119

Table 5-7 Values of the input and output variables obtained after executing the system

for case1.. 123

Table 5-8 Details of computational process modeling and solving of SCC for case 2 124

Table 5-9 Values of the input variables, and output variables obtained after executing

the system for case2.. 127

Table 5-10 Details of computational process modeling and solving of SCCs for case 2

.. 128

Table 5-11 Values of the input and output variables obtained after executing the system

for case3.. 131

Table 6-1 Links and description of the class diagram for CWMD 136

x

TABLE OF EQUATIONS
Equation 2-1 Fitness function for rearrangement of the DSM 27

Equation 2-2 Objective function (feedback length) (Altus et al., 1996) 29

Equation 2-3 Formal Pareto model for optimal partitioning .. 31

Equation 3-1 Criteria for determining the solvability of a system 51

Equation 3-2 Derivation for Equation 3-1... 52

Equation 3-3 Equation for calculating valrf(r) ... 61

Equation 3-4 Equation for calculating valcf(c) .. 61

Equation 3-5 Equation for calculating valr(r) .. 61

Equation 3-6 Equation for calculating valc(c).. 61

Equation 3-7 Equation for calculating valr2(r,c).. 61

Equation 3-8 Equation for calculating valr3(r,c).. 61

Equation 3-9 Equation for calculating valc2(r,c) ... 62

Equation 3-10 Equation for calculating valc3(r,c) ... 62

Equation 3-11 Equations for calculating number of feedback loops and number of

modified models ... 75

Equation 4-1 Equation for calculating values of the iterative variables of modified

models, using Gauss-Newton method .. 93

Equation 4-2 Equation for calculating values of the iterative variables of SCC, using

Gauss-Newton method ... 99

xi

ABBREVIATIONS
CAD- Computer Aided Design

CFD- Computational Fluid Dynamics

CORBA- Common Object Request Broker Architecture

CWMD- Cranfield Workflow Management Device

DM- Dependence Matrix

DO- Data Object

DSM- Design Structure Matrix

FPI- Fixed Point Iteration

GA- Genetic Algorithm

GN- Gauss-Newton

GUI- Graphical User Interface

IM- Incidence Matrix

IMM- Incidence Matrix Method

MDO- Multidisciplinary Design and Optimisation

MO- Model Object

nFdb- Number of Feedback Loops (Feedback Number)

NIvar- Number of Independent Variables

nMm- Number of Modified Models

Noutmod- Sum of the Total Number of Outputs of each Model in System

SCC- Strongly Connected Components

SP- Subprocess Object

ST- Study Object

TNvar- Total number of Variables

TR- Treatment Object

USMAC- Ultra Simplified Model of Aircraft

1

1 INTRODUCTION
The ever increasing competitiveness and customer demand compel aircraft

manufacturers to produce better products in shorter time scales and at reduced cost. In

order to achieve these requirements, new and innovative technologies and methods have

to be introduced in each stage of the aircraft design.

The aircraft design consists of three consecutive stages; the conceptual, the preliminary

and the detailed design stage. Among these three stages, the decisions taken during the

conceptual design phase commit to around eighty percent of the product life cycle cost

(Howe, 2000). Thus an inaccurate baseline design generated during the conceptual

design phase will create significant cost overruns if the selected design has to be altered

at the later stages of the design process.

Compared to other design stages where high-fidelity software codes are used, during the

conceptual design the physics and characterises of the aircraft are represented usually in

a system consisting of hundreds of algebraic equations. This simplicity in the

representation tends to reduce the computing time of the system which in turn aids the

designer in studying and analysing more feasible configurations of the aircraft within a

limited time scale. However, the growing complexity of the aircraft design in recent

years has prompted engineers to substitute the conventional algebraic equations, with

simple software programs (models). The models retain the algebraic equations, but

allow for a controlled expansion of the computational system. However, operating on

and solving a system of non-linear models were much complicated compared to those of

solving the equations. This, however, has posed the challenge of how to retain the

flexibility with which the designer can operate the computational process.

A simplified aircraft system comprising of a number of models and their associated

variables is shown in Figure 1-1 in a graphical format. The rectangular boxes are the

models and the ovals are the associated variables. Figure 1-1 signifies the complexity

involved in managing and solving the models and variables in an aircraft system. It

should be emphasised that this example is a simplified version and in real cases the

system will be much larger and more complex.

2

Figure 1-1 A simplified aircraft computational system (adopted from a real test case

supplied by industry, (VIVACE, 2005))

A single analysis run of the system of models in the conceptual design phase takes

relatively less execution time compared to the other design stages. However, the

numerous trade and optimisation design studies conducted during the conceptual design

phase, each making hundreds of calls to the system (Figure 1-2), and demanding a

converged solution during each call, increases the overall computing time significantly.

Thus, reducing the execution time of the system contributes to a considerable reduction

in the overall computing time.

System

Design study treatment
e.g. MDO, sensitivity analysis

etc.

Figure 1-2 Design studies conducted over an aircraft system

In this context, the research is focused on organizing and rearranging the models within

a system according to the relevant input variables defined by the designer, which plays a

central role in increasing the flexibility and the efficiency of the computational design

process.

3

1.1 Terminology

This subsection provides a brief explanation of the basic terminology which is used in

this thesis.

Models: The software programs which are used to represent the physics and

characteristics of the aircraft system are referred to as models. Models have either

single or multiple inputs and outputs. The models are considered as black boxes since

the contained information is generally unavailable (e.g. compiled code). Figure 1-3

shows an example model for calculating the atmospheric pressure and temperature,

given the aircraft cruise altitude and air density.

non_stand_atmos_crz
disa_crz

alt_crz

Pamb_crz

Tamb_crz

Figure 1-3 Models for calculating atmosphere pressure and temperature

Strongly connected component (SCC): Strongly connected component is a group of

models which are coupled through shared variables. SCCs are distinguished because of

the computational difficulties associated with their handling and solving, both

individually and as part of the overall system. The term SCC is derived from graph

theory and formally an SCC is a subset of nodes in a directed graph such that there is a

path from every node in the set to every other node.

Subprocess: A subprocess is a collection of models which captures the relevant

characteristics of a particular discipline in a mathematical form. An example of a

subprocess for an aircraft, which represents the engine discipline, is shown in Figure

1-4. The inputs and outputs of the models are not shown in the figure.

sfc factor

specific fuel cons

nacelle diameter

nacelle wetted area

BPR

FNslst

sfc

wAnac

Ksfc

dnac

Engine

Figure 1-4 An engine subprocess

4

System: A system is collection of models which captures all the relevant physics and

characteristics of the product under development. A mathematical system of an aircraft

at the conceptual design stage contains hundred of models in order to capture all the

characteristics of the aircraft.

Modified model: A modified model is a model which has some of its input and output

variables swapped. The solving of such modified models is accomplished by applying

relevant mathematical treatments (solvers). Figure 1-5 shows an example for a modified

payload model where the input Npax and output PL are swapped.

Payload PL
Payload

Mat hema tical Treat ment

Npax

PL

Wpax

Npax
Wpax

(a) Payload model (b) Modified payload model

Figure 1-5 Example of a modified model

Mathematical treatment: A mathematical treatment refers to either the design studies

performed over a model, a system or a subprocess, or a solver used to solve an SCC or a

modified model. Optimisation, sensitivity analysis, design of experiments etc. are

examples of mathematical treatments for design studies. Fixed point iteration, Gauss-

Newton methods are the examples of mathematical treatments for solving an SCC or a

modified model.

Sub-system: A sub-system is the general term used to signify a subset of model or

models in a system, which requires a mathematical treatment to be applied for solving

them. An example for a sub-system is an SCC or a modified model.

1.2 Background

1.2.1 Aircraft conceptual design

As mentioned earlier aircraft design consists of three consecutive design phases. The

conceptual design phase is the most critical phase. The decisions taken during this stage

commit around eighty percentage of the entire life-cycle cost of the aircraft. During the

5

conceptual phase questions regarding configuration arrangement, size, weight and

performance are answered. The conceptual design phase initiates after the requirements

for the new aircraft are sufficiently well defined. The requirements definition is based

on the (customer) needs that are beyond the capability of the existing aircraft, for

example, an extended range. There are cases where the new requirements arise based on

the operational experience and limitations identified on a current aircraft. Additionally

requirements can be identified within the manufacturing organisation or from the user

(if different from the customer). Airline manufactures constantly seek feedback from

the airline operators to identify the future needs.

The requirements for a new aircraft are divided into three categories; performance

requirements, flight requirements and structural design requirements (Howe, 2004). The

performance requirements consist of take-off and landing field lengths, residual climb

capacity in case of an engine failure and performance when a landing approach is

abandoned. The flight requirements consist of control characteristics and effectiveness,

static and dynamic stability and manoeuvre capacity at critical flight phases. The

structural design requirements are classified into two categories, the stiffness and

strength. These requirements ensure that the airframe will not deform beyond specified

limits during various flight manoeuvres which may compromise flight safety.

Once the requirements for the new aircraft are defined the next step is to analyse the

way of meeting these. These are identified as;

a) An adaptation or a special version of an existing aircraft

b) A major modification of an existing type

c) A completely new design.

The first case involves alterations in the airframe and change of equipment. The cost

involved in this case is relatively small. The second case can be more expensive because

of major changes to the airframe including, extended fuselage, new wings, new power

plant and also equipment changes. The third phase is the most expensive option and also

involves the greatest risk.

To reach a decision to proceed with one of the above three choices, the physical

characteristics of the aircraft have to be obtained based on its properties. The

6

characteristic is a physical parameter and property is an operational parameter (the

requirements for the aircraft are generally the properties of the aircraft). In order to

obtain the characteristics of the aircraft, hundreds of mathematical models with

thousands of associated variables, which represent the physics of the aircraft, are

generally operated upon.

The mathematical models which represent the physics of the aircraft usually have the

characteristics of the aircraft as input and the aircraft property as the output (Figure

1-6). However, the design process usually has to deal with the reverse problem, that is,

some of the properties (requirements) of the aircraft are initially available and the

mathematical models are used to calculate the characteristics of the aircraft. Thus the

aircraft properties is the available input to the system and the characteristics of the

aircraft has to be calculated based on this input. This change of inputs to the system is

the root cause of most of the computational complications in an aircraft design or any

other complex system. Because of the limited reversibility of the models, alternative

aircraft characteristics have to be provided as inputs to the system in order to obtain the

necessary aircraft properties. Currently the effects of these changes on the aircraft

properties have to be analysed by extensive trade and optimisation studies, in order to

satisfy the requirements which acts as constraints over the system.

This reversal of inputs and outputs is one of the problems addressed in this research and

is associated with several issues outlined in section1.2.3.

Model
Aircraft Characteristics Aircraft Properties

Physics

Figure 1-6 A general aircraft mathematical model

The next subsection briefly outlines various trade and optimisation studies conducted

during the conceptual design phase of aircraft design.

1.2.2 Design studies during the aircraft conceptual design

Various design studies are performed on the system during the aircraft conceptual

design phase in order to obtain a sound baseline, which meets or exceeds the

7

requirements for the aircraft. This baseline is then passed on to the subsequent design

phases for further detailed analyses. The most common design studies conducted at

conceptual design stage are trade and optimisation studies.

Trade studies are conducted to explore wide range of alternative configurations in a

design process. Here the designer studies the effects of variation of one or more

parameters on the values of other parameters. If the range calculated, for example, is

10,000km which is less than the customer requirement, a “range trade” can be

calculated if an increase in the take-off gross weight (TOGW) could increase the range

to the required level (Raymer, 1999). During trade studies the system is executed each

time a new set of inputs have to be evaluated. An example graph plot for a trade study is

shown in Figure 1-7

Figure 1-7 Range trade (Raymer, 1999)

Various optimisation studies are performed during the conceptual design phase, which

help to meet the requirements for the aircraft and also to exceed the requirements. The

optimisation studies assist the designer to explore the global optimum of a design

subjected to various constraints. The most common optimisation criteria are the

minimisation of the weight and cost (Howe, 2004). During optimisation studies

thousands of calls are made to the aircraft system, hence the system execution time

plays a significant role in the overall optimisation study execution time.

Optimisation is an evolving field and various methods are currently being researched

and developed in this area. Optimisation has developed in the recent years from single

objective to multi-criteria, and further to multidisciplinary design optimisation. Some of

the commonly used optimisation techniques during conceptual design are NAND

8

(Nested Analysis and Design) (Balling and Sobieszczanski, 1996), SAND

(Simultaneous Analysis and Design) (Balling and Sobieszczanski, 1996), CO

(Collaborative Optimisation) (Kroo et.al., 1994), CSSO (Concurrent Subspace

Optimization)(Sobieszczanski, 1988) and BLISS (Bi-Level System Synthesis)

(Sobieszczanski et.al., 1998), out of which BLISS is latest development in the field of

multidisciplinary design optimisation (MDO).

The next section explains the basics of computational process modelling.

1.2.3 Computational process modelling for complex systems

Figure 1-1 illustrated the potential complexity involved in managing and solving the

numerous models in a system. We have already explained the importance of reducing

the execution time for a system which plays a significant role in reducing the overall

design study time.

 Computational process modelling is the process of organising a complex system of

models in order to calculate quickly the output variables based on the input variables

given for the system.

There can be many ways, in terms of computational sequence and information flows, in

which a system can be solved to calculate the required output variables. The main task

for computational process modelling is to identify the most appropriate organisation and

ordering of the models with in the system, so that on execution, the system of models

converges quickly and generates the outputs in minimum time.

In this section the basics of computational process modelling are introduced.

Computational process modelling is subdivided into three parts; variable flow

modelling, system decomposition and scheduling, all subject of the present research.

The next three subsections introduce each part in more detail.

1.2.3.1 Variable flow modelling

Variable flow modelling is the process of identifying the information flow among the

models based on the input variables selected by the designer for the system. The

information flow among the models helps to determine the output variables which could

be calculated according to the input variables provided by the designer.

9

 In the system, a model becomes executable when all of its input variables are known.

Initially the input variables provided by the designer are the only known variables. The

computable variables are determined sequentially with respect to the outputs of the

executable models. An example of variable flow modelling operation is shown in Figure

1-8 (Buckley et al., 1992).

Figure 1-8 Variable flow modelling for a system of three mathematical models (Buckley et

al., 1992)

Figure 1-8 (a) and (b) shows a system of algebraic equations and its corresponding

models for balancing the weight of an aircraft with its lift. Arrows entering the boxes

(Figure 1-8 (b)) represent the inputs and arrows leaving the boxes represent the outputs.

Figure 1-8 (c) shows, in graphical format, the variable flow models for the system. In

this figure, variable nodes are oval shaped and model nodes are rectangular shaped. An

arrow marked from a variable node to the model node denotes that variable is an input

of the model. If the arrow is directed from the model to the variable, then that variable is

output of the model.

 Variables V and CL (denoted as dual ovals in the figure) are the inputs provided by the

designer in this case. Similarly Figure 1-8 (d) shows the variable flow model for the

system with Ws and CL as inputs. For the first case it can be noted that model1 has CL

and q as inputs and Ws as output, model 2 has ρ and V as inputs and q as output and

model 3 produces ρ as output.

The sequence for determining the output variables in this case is shown in the Figure

1-9. Here V and CL are the initial know inputs. In the first step, model3 is identified as

executable since model3 does not need any input variables. Hence the output of model

10

3, ρ is added in the known variables list. Now model2 is executable since all its inputs

(ρ and V) are now known. Hence its output q is added in the known variables list.

Finally model 1 is identified as executable and its output Ws is added in the list.

CL

3

ρ

V

CLV

2

q ρ CLV

1

Ws

Known Variables

q ρ CLV

Known Variables

Known Variables

Known Variables

Figure 1-9 Sequence for finding the output variables

For the second case in Figure 1-8 (d), after variable flow modelling, model1 has Ws and

CL as input and q as output. But the actual model1 as shown in Figure 1-8 (b) has q and

CL as input and Ws as output. In this case the inputs and output variables of the model1

are swapped and therefore model1 is considered as a modified model. The term

modified model was defined in the section 1.1. Solving a modified algebraic equation

can be done by symbolic methods, but for models numerical solving techniques

(mathematical treatments) has to be applied, which is another problem tackled in the

current research.

The example discussed here is a very simple one. In case of real aircraft conceptual

design problems there are hundreds of models and thousands of associated variables. In

such cases, obtaining variable flow models will be a complicated process and particular

methods are required to obtain the variable flow models. Presence of strongly connected

components will further add to the difficulty.

As specified in the terminology section-1.1, strongly connected components (SCC) are

those groups of models which are strongly coupled through shared variables. The term

SCC is derived from graph theory and formally an SCC is a subset of nodes in a

directed graph such that there is a path from every node in the set to every other node

11

(Buckley et al., 1992). In the context of a system of models the SCCs are those clusters

of models in which each model requires input from one or more models from the same

cluster. Presence of SCCs in a system adds to the complexity of the computational

process modelling, including variable flow modelling, decomposition and scheduling. In

addition, SCCs requires iterative solving of the constituent models. Therefore numerical

solving schemes has to be applied which adds to the computational burden on the

system.

Figure 1-10 An example for a system of models

The process of sequentially determining the known variables, as described earlier,

cannot be carried out in the presence of SCC. For example for the system of models in

Figure 1-10, if variable ‘g’ is declared as the independent (known), the procedure for

determining the outputs variables is shown in Figure 1-11.

5

d

g

2

f

Known Variables

Known Variables

Known Variables

g

d g

Figure 1-11 Sequence for finding the output variables

12

Figure 1-11 shows that with variable g given as the input, only variables f and d can be

calculated from the system of models. However, there is a variable flow model for this

system which helps to calculate all the variables of the system. This variable flow model

is displayed in Figure 1-12. It should be noted that it could not be identified using

procedure adopted in the Figure 1-11 because of the presence of a SCC. In this example

models 1, 3 and 6 are strongly connected. Variable flow modelling in the presence of

SCC is another issue which is addressed in this research.

Figure 1-12 Directed Bipartite Graph for models in Figure 1-10 with variable ‘g’ as input

(Buckley et al., 1992)

A number of variable flow methods have been developed earlier for finding the

information flow for system algebraic equations. The variable flow models generated

for the equations consider that a single variable is calculated by an equation i.e., each

equation generates one output. However models generated multiple outputs and hence

the available variable flow modelling method has to be reformed to apply in this

context.

1.2.3.2 System decomposition

 System decomposition is the process of decomposing a complex system into a number

of sub-problems. Decomposing reduces the complexity of solving a large-scale system

into a number of sub-problems. Decomposition has a wide range of applications in

concurrent engineering for identifying the manufacturing processes that can be run in

parallel.

In the context of solving an aircraft system, the system decomposition corresponds to

identifying the models which are strongly connected and grouping them as sub-systems.

13

The system of models in Figure 1-10 after decomposition is shown in Figure 1-13. In

this example models 1, 3 and 6 are strongly connected and represent a subsystem.

Decomposition is another issue which is addressed in this research.

Figure 1-13 Decomposition of a system of models

1.2.3.3 Scheduling

Scheduling is the process of sequencing the models in a system for the purpose of

executing them after eliminating or reducing the feedback loops among the models. In

the decomposed system shown in Figure 1-13(b), if the execution sequence is

considered to be from left to right, the arrows shown pointing from right to left below

the models denote the feedback loops. A feedback loop requires certain models to be

executed before all their inputs are available. For example, in Figure 1-13(b), model 2

requires an input from model 5 which follows later on in the execution sequence.

In complex design systems a complete elimination of iterative feedback loops by

scheduling the models is usually not always possible. Those group of models whose

feedback loops cannot be eliminated are the strongly connect components. In such cases

the models which were identified as SCCs during the decomposition process are

grouped into sub-systems. These sub-systems along with the remaining models are

further sequenced during the scheduling process.

In the example in Figure 1-13(b) the models and subsystem after scheduling are shown

in Figure 1-14. Compared to the arrangement in the Figure 1-13(b), the number of

feedback loops (also called as feedback number) has reduced from four to two. The

remaining two feedback loops are part of the SCC and these loops cannot be eliminated.

14

Figure 1-14 The mathematical models of Figure 1.6 after scheduling

Even though the feedback loops belonging to the SCC cannot be eliminated, rearranging

these models can lead to a reduced number of feedback loops. This issue of reducing or

eliminating the feedback loop in an SCC, which plays a significant role in reducing the

convergence cost of the SCC, was a fundamental issue addressed in this research.

1.3 Summary of Aims and Objectives

The growing complexity of aircraft design in recent years has prompted engineers to

substitute the conventional algebraic equations with software programs (black boxes or

models) which still retain the mathematical models, but allow for a controlled expansion

and manipulation of the computational system. This tendency has posed the research

question of how to dynamically assemble and solve a system of non-linear models. In

this context, the overall aim is to develop a method which significantly increases the

flexibility and efficiency with which the designer is able to operate on large scale

computational multidisciplinary systems at the conceptual design stage.

In support of the aim the following objectives have been identified:

 Develop a method for variable flow modelling for a system of models with

multiple outputs, which will assist the designer in choosing alternative combination of

inputs for the system. In addition, criteria need to be derived for choosing from the

alternative variable flow models for a system, the one which would lead to faster

convergence.

 Develop methods for decomposing and scheduling the models in a system

 Combine variable flow modelling, decomposition and sequencing into a novel

method for computational process modelling.

 Develop methods for reducing the execution time for SCCs.

15

 Investigate and develop mathematical treatments for the modified models in order

to achieve the swapping of input and output variables of the models.

 Develop a prototype computational framework for performing flexible design

studies which is to be used for test and evaluation of the proposed methods.

1.4 Thesis Structure

This thesis is subdivided into seven chapters. The first chapter introduces the aircraft

conceptual design stage and the design studies conducted during this stage. The basic

terminology which is widely used in the thesis is also covered in this chapter.

Thereafter an introduction regarding the computational process modelling and its

subdivisions, the variable flow modelling, scheduling and decomposition are presented.

This is followed by the aim and objectives of this research.

The second chapter is the ‘literature survey’ which gives a comprehensive review of the

various currently available computational methods and tools, which have the potential

to be applied in the current research context. A critical analysis of the various

computational process modelling methods, including variable flow modelling,

decomposition and sequencing is given in this chapter. A critical review of the various

computational tools commonly used in aircraft design is also presented.

The third chapter ‘computational process modelling for complex systems’ covers the

novel methods developed as part of this research for computational process modelling.

The individual features of the computational process modeller, which is developed for

computational process modelling, including the novel variable flow modelling method

along with the decomposition and scheduling methods, are described in the

corresponding sections. A comprehensive example is given which demonstrates the

working structure of the entire computational process modeller.

The fourth chapter ‘solvers for sub-systems’ is focussed on the mathematical treatments,

used for solving the sub-systems. Application of the Gauss-Newton method for solving

the modified model is presented. Further, application of fixed point iteration and the

Gauss-Newton method for solving the strongly connected components are also

presented. A method for solving the modified models and strongly connected

components together at the system level is also described.

16

The fifth chapter presents the various tests performed for evaluating methods and

approaches developed as part of this research. USMAC, an aircraft conceptual design

test case which was widely used for testing is explained initially. Following this, an

evaluation of the two objective functions which were chosen for scheduling the coupled

models by genetic algorithm is given. Thereafter a detailed description regarding the

testing conducted in order to evaluate the proposed computational process modeller is

given. Finally, the conclusions are presented.

The sixth chapter describes the object oriented software framework which has been

developed in Matlab for implementing and testing the proposed methods and

approaches. The various modules of CWMD along with its GUIs, which assist in the

easy implementation of the computational plans developed by the computational

process modeller, are also explained.

The seventh chapter describes the summary and conclusions of this research. This

chapter also explains the current limitations of the proposed methods and applications

developed in this research. In addition, the areas which will be of interest for future

work are also outlined in this chapter.

17

2 LITERATURE SURVEY

2.1 Introduction

The aim of the literature survey was to investigate and evaluate various computational

methods and tools, which had the potential to be applied in the current research context.

Section-2.2 investigates and performs a critical analysis of the various currently

available computational process modelling methods, including variable flow modelling,

decomposition and scheduling. Section-2.3 provides a critical review of the various

computational tools commonly used in aircraft design. Conclusions are drawn in

Section-2.4.

2.2 Computational Process Modelling Methods

Computational process modelling is the process of organising a complex system of

models in order to calculate the output variables based on the selected input variables.

During the literature review it was identified that the various methods available for

computational process modelling can be classified into variable flow modelling,

decomposition and scheduling methods.

2.2.1 Variable flow modelling methods

Variable flow modelling is the process of identifying the information flow among the

models based on the system input variables selected by the designer. Constraint

propagation approaches have been utilised by several researchers for variable flow

modelling in conceptual design systems. In this approach the equations are represented

as constraints between the variables, and the changes in the variable’s values are

propagated across the constraint network.

Serrano (1987), developed a graph theoretical approach to constraint management. The

constraint networks were represented as directed graphs, where nodes represent

parameters and arcs represent constraint relationships. The direction of the arcs

represented the dependencies among the parameters. Parameter dependencies (variable

flow modelling) were generated automatically using bipartite matching representation.

Serrano reports two algorithms for bipartite matching. The first one is modelling the

18

bipartite matching as a network flow problem and the second is bipartite matching

based on linear programming.

Modelling the bipartite matching as a network flow problem involves maximizing the

flow from a source node to the sink node in a graph representation of the constraint

management problem, without exceeding the capacity (maximum allowable flow on the

arc) of any one arc on the path. This problem is commonly known as maximal flow

problems (Cormen et.al, 1991, p.643). The method used by Serrrano for maximal flow

problem is the Max-flow min-cut theorem (Cormen et.al, 1991, p.657). There are many

other algorithms for maximal flow problems, some of these are, Ford-Fulkerson

algorithm, Brute-force search, Edmonds-Karp algorithm, Relabel-to-front algorithm,

etc., (Cormen et.al, 1991). The Max-flow min-cut theorem is described below.

The max-flow min-cut theorem is a statement in optimization theory about maximal

flows in flow networks. It states that “The maximal amount of flow is equal to the

capacity of a minimal cut”.

Suppose G(V,E) is a finite directed graph and every edge (u,v) has a capacity c(u,v) (a

non-negative real number). Further assume two vertices, the source s and the sink t. A

cut is a split of the nodes into two sets S and T, such that s is in S and t is in T. The

value of the cut is the sum of all the flows of the arcs that are separated by the cut. The

cut that produces the smallest flow will ensure the maximum flow for the networks. The

arcs along the cut carry their maximum flow. For bipartite matching problems the

capacity of each arc is assigned a value of 1.

The second method for bipartite matching, linear programming, is performed by

remodelling the matching problem into a linear optimisation problem. Each arc in the

bipartite graph has an upper limit which is the capacitance value uij. The unknown in the

optimisation problem are the flows xij from node i to node j. The optimisation problem

is represented as

Maximise: xso-si; here so-source, si-sink

Subject to: 0ij jkx x− =∑ ∑ ; 0 ij ijx u≤ ≤

19

Serrano’s graph theoretical approach was developed primarily for systems consisting of

algebraic equations. The approach did not address the computational complications that

would have been encountered if the system contained models. The variable flow models

generated for the equations consider that a single variable is calculated by an equation

i.e., each equation generates one output. Models generate multiple outputs and hence

require modification in the variable flow modelling scheme mentioned above.

However, Serrano’s approach had an implicit reference to variable flow modelling for

models with multiple inputs and outputs, but lacked a detailed demonstration or testing.

This approach also did not explore the different feasible variable flow models that can

be generated for a system.

Bouchard et al. (1988) used directed constraints between design variables and numerical

solution approaches to allow rapid production of trade-off studies. The limitation of this

approach was that the designer had to decide in advance the input and output variables.

Buckley et.al (1992) has developed a bipartite graph method for variable flow

modelling. The system was represented in a bipartite graph with square nodes

representing equations and the oval shaped nodes representing variables. The edges in

the graph connect equation nodes to the variable nodes, which indicate that the variable

is present in the equation. An example bipartite graph is shown in the Figure 2-1.

Figure 2-1 A system of non-linear equations with its corresponding undirected bipartite

graph (adapted from Buckley et.al, 1992)

20

The directing of the graph, based on the known variables, is accomplished using a

variant of the Ford-Fulkerson algorithm (Cormen et.al, 1991) for finding maximal

matching on bipartite graphs. Ford-Fulkerson algorithm as mentioned earlier is one of

the methods for maximum flow problem. The algorithm finds an initial pairing of

equations and the variable nodes. Then it finds the paths in the graph where directions

can be reversed to improve the matching. Figure 2-2 shows the directed graph for the

example given in Figure 2-1 with variables Ws and CL specified as the known variables

by the designer.

Figure 2-2 Directed bipartite graph (adapted from Buckley et.al, 1992)

The Ford-Fulkerson algorithm computes the maximum flow in a flow network (Cormen

et.al, 1991, p.651). The idea behind the algorithm is “As long as there is a path from the

source (start node) to the sink (end node), with available capacity on all edges in the

path, we send flow along one of these paths. Then we find another path, and so on”. For

a graph G(V,E), with capacity c(u,v) and flow f(u,v) for the edge from u to v, in order

find the maximum flow from the source s to the sink t, after every step in the

algorithm(which searches for an augmented path) the following is maintained.

(,) (,)f u v c u v≤ . The flow from u to v is limited to its maximum capacity

(,) (,)f u v f v u= − . Conserves the net flow between u and v. (value of f(u,v) is

initially set to zero)

21

(,) 0 () ()in out
v

f u v f u f v= ⇔ =∑ for all nodes u except s and t. Flow into a node

is equal to a flow leaving a node.

The path search is performed by a breadth-first search or a depth-first search algorithm

(Cormen et.al, 1991).

As in the previous cases, Buckley et al. (1992) focused on obtaining variable flow

models for algebraic equations and not models. In addition, the alternative solutions

(variable flow models) for a system were not explored.

Ramaswamy and Ulrich (1993) have developed an adjacency matrix based heuristic

algorithm for variable flow modelling. Serrano’s (1987) work considered the case where

the set of known and unknown variables were specified completely. Ramaswamy’s

work dealt with situations where only some members of the known variables set have

been specified and the remaining variables could be chosen by the designer. The basic

idea behind the Ramaswamy’s algorithm was, “when a variable in an equation is

changed we can use another variable in the same equation to compensate for the change

and thus keep the equation satisfied. Since variables may appear in several equations,

the effect of changing any variable must be propagated”. Ramaswamy’s algorithm had

the restriction that the functional forms must be either algebraic or transcendental

functions. Recursive functions and iterative computer programs (models) were

explicitly excluded.

2.2.2 System decomposition and scheduling methods

System decomposition is the process of decomposing a complex system into a number

of sub-problems and scheduling is the process of sequencing the models for the purpose

of executing them after eliminating or reducing the feedback loops among the models.

Decomposition and scheduling methods have application in various fields of

engineering. Here the author reviews the decomposition and scheduling methods in two

areas; the first one is for process management in industries and the second one for the

mathematical models in a computational system.

The decomposition and scheduling methods are reviewed in a single section because

most of the research conducted in these two areas had reference to each other.

22

2.2.2.1 Decomposition and Scheduling Methods for Process Management

Process management methods are used for arranging the processes involved in the

manufacturing of a product in an industrial environment. The rearrangement identifies

the execution sequence of the processes and also the processes which could be executed

concurrently. By this arrangement the manufacturing time of the final product could be

reduced significantly. Since there is a requirement for arranging the models in a system

which is similar to process management, various methods in this area have been

reviewed during this research.

Most of the process management methods have evolved from graph theory (Rogers,

1999). Graph representation consists of nodes and edges. An edge connects two nodes.

Directed, non-directed, cyclic, acyclic, bipartite, etc., are various types of graph

representations. Graphs can be represented in numerous forms, and the most commonly

used representation is the adjacency matrix. Adjacency matrix is a square matrix with

values of either 1’s or 0’s. A value of 1 denotes a link from the process in the row to the

process in the corresponding column. If there is no link then the value will be zero. An

example graph and its corresponding adjacency matrix are shown in Figure 2-3.

Figure 2-3 Graph representation of a process and the corresponding adjacency matrix

One of the earliest available tools for process management was PERT (Rogers, 1999).

PERT network is a directed, weighted, acyclic graph. The weights of the edges in a

PERT network represent the time needed to complete that process. An example PERT

network is shown in Figure 2-4.

23

1

3

2

4

10

15
20 5

15

10 610

Figure 2-4 Sample PERT Chart

In the figure, for example, the time needed to complete the process represented by the

arc (3, 4) is 20 minutes. It can be noted that process (5, 6) cannot be started until process

(4, 5) is finished. Even though the path (1, 2, 5) takes only 25 minutes, process (5, 6)

cannot be started until the process (1, 3, 4, 5), which takes 45 minutes is completed.

This implies that any delay in the process in the path (1, 3, 4, 5) will delay the entire

project. However, some time delays are acceptable for the processes in the path (1, 2, 5).

A path which will cause project to be delayed if any of its constituent processes (tasks)

is delayed is called a critical path. The main objective of a PERT chart is to reduce the

critical path which will aid in reducing the execution time for the entire project. The

PERT tool is applicable only to sequential activities and cannot handle non-sequential

activities. This makes PERT chart unsuitable for aircraft conceptual design, where non-

sequential activities (SCC) are commonly encountered.

Steward (1981) had developed another tool for displaying a process sequence called the

design structure matrix (DSM). DSM serves as a highly efficient tool for process

management. DSM is similar to the adjacency matrix and is derived from graph theory.

An example DSM is displayed in Figure 2-5.

Figure 2-5 Design Structure Matrix

In the DSM shown in Figure 2-5(b), the processes are shown in the numbered boxes

along the diagonal. The off-diagonal small black squares that join the horizontal and

24

vertical lines represent the coupling between the processes, which means the output

from the process connected to the horizontal line is given as input to the process

attached to the corresponding vertical line. Squares above the diagonal denotes feed

forward coupling and those below the diagonal indicates feedback coupling. The data is

fed forward in a feed forward coupling, which means that the data required to run a

process is available from the process which appears earlier in the sequence. However, in

a feedback coupling the data required for executing a process is not available

beforehand and it has to be obtained from a process which appears later in the sequence.

The advantage of DSM compared to PERT is the capability to group and display the

iterative sub-cycles (SCC) found in a design project.

Tang et al. (2000) have introduced a DSM based method for decomposition, which is

the identification of the processes which form iterative sub-cycles (SCCs) in a system.

The paper also introduces a method for sequentially arranging the decoupled activities

and identifying the processes which could be executed in parallel. Tang’s algorithm was

developed to arrange the process in a manufacturing environment. For identifying the

iterative sub-cycles first a binary DSM, ‘A’ of the system was created. Binary DSM

consists of a matrix with row and columns representing the processes. An element ‘1’ in

the matrix denotes the process of the column has an input from the process in the row.

Further the following sequence of operations was performed on the matrix A:

1

; ;
j

T n T

n

P A K P J K K
=

= = =∑

In the final matrix J if the values of the rows are equal, then the processes which

represented the corresponding rows have been identified as strongly connected.

 In Tang’s paper, the sequential arrangement of the processes is performed by applying

a theorem from Xiao and Fei (1997). Before performing this operation, the rows and

columns which represent the strongly connected processes and their corresponding

variables are collapsed into a single row and column in the matrix P.

Tang’s algorithm does not take into account the arrangement of the processes which

forms iterative sub-cycles. Nevertheless the sequential arrangement algorithm for the

non coupled process has been utilised in the present research.

25

Kusiak and Wang (1993) have developed a method for decomposing design processes

in order to enhance concurrency. Incidence matrix was used to represent the

dependency between tasks and parameters in a design process. The rows represented the

tasks and columns the parameters. In the matrix, an entry ‘*’ denotes that the parameter

in the column is dependent on the task in the corresponding row. The objective is to

group the rows and columns in such a way that the matrix separates into mutually

exclusive sub-matrices. This grouping was accomplished by using the Cluster

identification (CI) algorithm (Kusiak and Chow, 1987). In case of non-decomposable

systems, this grouping was not possible with the CI algorithm. The paper proposes an

improved CI algorithm (Kusiak and Cheng, 1990), which identifies the overlapping

parameters (or tasks) which are removed from the matrix for further grouping. In

addition to the task-parameter matrix, this method had application to complex design

problems involving large number of constraints and variables. When applied to such

cases the matrix had constraints in the rows and variables in the columns. For a non-

decomposable constraint-variable incidence matrix, the coupling variables were

identified and removed from the matrix using the earlier mentioned improved CI

algorithm. Examples of decomposed incidence matrices are shown in Figure 2-6.

Figure 2-6 (a) Decomposed incidence matrix, (b) Decomposed incidence matrix which has

overlapping constraints (c)Decomposed incidence matrix with overlapping variables (Kusiak and

Wang, 1993)

Kusiak’s algorithm is suitable for decomposing large non-hierarchical systems into

smaller mutually exclusive sub-systems for parallel execution. The arrangement of the

processes within the sub-systems is not addressed in this work.

Chen et al. (2005) have proposed a formal two-phase method for decomposing complex

design problems to more tractable sub-problems. Unlike Kusiak’s approach, this method

26

decouples the decomposition process into mutually exclusive function components:

dependency analysis and matrix partitioning. Dependency analysis is achieved via an

extended Hierarchical Cluster Analysis (HCA) and matrix partitioning by a Partition

Point Analysis (PPA). Further to the application of these two algorithms, a non-

organised incidence matrix is decomposed into a block-angular structured matrix. In the

first phase the extended HCA is applied to reorder the unorganized incidence matrix

into a banded diagonal matrix. The extended HCA comprises of the Binary Tree

Construction (BTC), Binary Tree Branch Association (BTBA) and Binary Tree

Association (BTA) algorithms. In the second phase, the PPA is applied to further

transform the banded diagonal matrix into a block-angular matrix according to

decomposition criteria set by the user. The function of each algorithm and the overall

view of the formal two-phase algorithm are shown in the Figure 2-7.

Figure 2-7 Workflow of the two-phase decomposition method (Chen et.al., 2005)

Chen et al.’s algorithm, like Kusiak’s, did not address the arrangement of the processes

within the subsystems and focuses only on the decomposition of the system into sub-

systems. However, this algorithm provides the user with the flexibility in the choice of

the different settings of the decomposition criteria, by which the incidence matrix can be

decomposed into either a column based, row-based or a hybrid block-angular structure

matrix. Chen et al. claims this algorithm will be more efficient than Kusiak’s since

recursive solving of the matrix is not involved for the decomposition.

2.2.2.2 Decomposition and Scheduling Methods for computational systems

This sub-section provides the decomposition and scheduling methods for design

problems represented in computational systems.

27

Rogers (1997) has developed a software tool named Design Manager’s aid for

Intelligent Decomposition (DeMAID), for decomposing and sequencing of the models.

DSM has been widely used in this tool as a method for sequencing and decomposition.

Initially a knowledge based tool was developed for sequencing the models (Rogers,

1989). The knowledge based approach could only examine a limited number of

orderings of the models which are part of iterative sub-cycles (SCC). In order to

overcome this limitation Rogers in his later work (Rogers, 1997) has introduced a

genetic algorithm (GA) based rearrangement method for rearranging the models in the

iterative sub-cycles. GA scans a large number of orderings of the models and obtains an

optimised ordering based on computational cost. Initially, GA created populations of

strings with each string representing an ordering of the design process. The subsequent

generation of population was created based on the selection, crossover and mutation

operation on the current population. Selection of the string from the pool of population

was based on the value of the objective function of each string. The strings with best

objective values were selected for crossover. Crossover is the operation of mating of

two strings in the hope of producing a child string with better objective values. Cross

over operation was accomplished by position based cross over (Syswerda, 1990).

Finally, the mutation operation was performed through the order-based mutation

operation. The objective function used by GA is shown in Equation 2-1, where f is the

number of feedback, c is the number of crossovers, time is the total time required to

converge the circuit, cost is the total cost to converge the circuit; and wf, wc, wtime and

wcost are user-definable weights.

Equation 2-1 Fitness function for rearrangement of the DSM

1.0 /((* * * cos *cos)**4)fitness wf f wc c wtime time w t t= + + +

Figure 2-8 shows an example DSM before and after rearrangement. It can be noted that

the total cost has reduced from 19,640 to 3,950 units and time from 21,340 to 4,570

units.

Rogers’s approach required an estimate of the strength of the feedback loops for each

arrangement of the design process, to calculate the objective values. The strength of the

feedback loops was estimated based on the number of iterations required for the

convergence of each loop in the system. This operation can turn out to be

28

computationally expensive, since each arrangement has to be executed at least once to

obtain the strengths. Furthermore, excluding the strength of the feedback loops from the

objective function could reduce the quality of the objective function.

Figure 2-8 An example DSM before and after rearrangement (Rogers, 1997)

Altus et al. (1996) have developed a computer program called ‘A GENetic algorithm for

Decomposition of Analyses’ (AGENDA). The methods used by Rogers for

decomposition and sequencing of the design problem were further developed in this

tool. Unlike Rogers’s work this research was focused on the decomposition of the

design problems for conducting multidisciplinary design optimization (MDO) studies.

Furthermore, the approach focused also on decomposing large design problems into

sub-problems besides arranging the analysis subroutines for efficient execution. The

benefit of this type of decomposition was that the sub-problems could be executed in

parallel, thus reducing the total computational time. In addition, the solving efforts in

each sub-problem can focus on local information, and temporarily the details of other

sub-problems can be ignored. A GA based decomposition approach was developed in

this work. Similar to the Roger’s approach, the GA population consists of string

representing the ordering of the analysis subroutines. Crossover operation was

accomplished by position based crossover and the mutation operation was performed

through the order-based mutation operation. The decomposition to sub-problems was

achieved by introducing “breaks”, or boundaries between sub-problems. Including m

breaks creates m+1 sub-problems. Then the string generated will be of length m+n

29

where n represents the number of analysis subroutines. For example, a task with 7

subroutines to be split into 3 sub-problems, n=7 and m=2. Figure 2-9 shows a sample

genetic string and its corresponding computational system.

The objective function was formulated based on the Dependence matrix (DM).

Dependency matrix is an extension of the DSM with integers in the off-diagonal

elements. A value DM(i,j) represents the number of outputs from routine i which are

inputs to routine j. The feedback length, which was the objective function that was

formulated in this approach, is shown in Equation 2-2.

The feedback length which is used as the objective function in Altus’s approach

provides only a rough estimate of the iteration required for solving the system. The

convergence of a coupled system depends on the execution time of each subroutine, the

solver used, the strengths of the coupling, starting points and so forth. These aspects

were not addressed in the formulated objective function in Equation 2-2. However,

AGENDA offers the provision for user-defined objective functions.

5

3

1

6

4

2

7

5
3
1
*

6
4
*

2
7

Figure 2-9 Decoding of genetic string into subroutine order and sub-problems

Equation 2-2 Objective function (feedback length) (Altus et al., 1996)

1

2 1
(,) ()

n i

i j
j D M i j i j

−

= =

= −∑ ∑

30

Papalambros (1995) in his research has formulated the decomposition of a large scale

system into subsystems, as an optimization problem. In his optimal model-based

partitioning (OMBP) scheme the focus was to obtain a balance between the size or

number of sub-problems and the interdependence among them. Fewer number of sub-

systems interaction allowed concurrency, but more subsystems required more co-

ordination effort. OMBP was formulated as an optimization problem with multiple

objectives. The first objective was to minimize the size of the master problem by

minimizing the number of linking variables and the second objective was to minimize

the size of sub-problems by maximizing number of partitions of similar size which

accounted for load balancing among sub-problems. The paper discusses Network

Reliability Optimization formulation which is an OMBP formulation. The objectives

here were to maximize the number of functioning links and to minimise a measure of

network reliability. The formulation corresponds to identifying the critical linking

variables and assigning their control to the master problem. The control of the

remaining variables was assigned to the sub-problems. Figure 2-10 shows an example

of pareto points obtained for each optimal partition.

Figure 2-10 Pareto solution of an optimal decomposition problem (Papalambros, 1995)

At point A each variable is a linking one and the problem is fully disconnected. At point

B each variable is a local and the problem is fully connected. Intermediate Pareto points

are compromises and the selection can be performed based on the trade-offs between

the size of the master problem and the sub-problems. The formal Pareto model for the

optimal partitioning is shown in Equation 2-3.

31

Equation 2-3 Formal Pareto model for optimal partitioning

{ }
1

min ; ()

0,1

() 0 1

m

i PC
i

m

j
A

e e

e

e or

=

⎧ ⎫− Φ⎨ ⎬
⎩ ⎭

∈

Φ =

∑

AΦ and PCΦ represent the measures of all terminal and pair-connected reliability and

are functions of the binary edge indicator vector e, ei=1 (0) if edge i is functioning

(failed). All-terminal recognizes the edges that partition the network and pair-connected

measures the equality in the size of the partitions.

Papalambros has solved the decomposition of large scale systems as a multi-objective

optimization problem. He has studied the trade-offs of solving the problem as a whole

or solving it as sub-systems. However, during conceptual design studies where a

number MDO studies are conducted, introducing additional objective and constraints

(for decomposition) can significantly increase the computational burden during this

design stage.

2.3 Computational tools for Complex Systems

There are various computational design tools available for each stage of aircraft design.

The literature review conducted by the author in this area has identified that the number

of commercial tools available for preliminary and detailed stage were much higher

compared to the number of tools available for conceptual design stage. Research in

innovative concepts is conducted generally for those products which have a highly

competitive market and requires continuous changes and improvement so as to meet or

exceed the customer requirements. Examples of such products are automotive, aircraft

etc. However, majority of the other products has their concepts being fixed and further

research is conducted on these products for better performance mostly through the

detailed design process. This could be one of the reasons for the limited number of

industries which use computational tools for conceptual design compared to Computer

Aided Design (CAD) and Computer Aided Engineering (CAE) tools which has

application during the conceptual as well as the detailed design process. In addition, it

should be also noted that some industries, especially aerospace have their own in-house

32

tools for conceptual design, but the details of the majority of these are unpublished

because of confidentiality issues.

This section investigates some of the computational tools which have already been used

or have the potential to be applied to computational studies in conceptual design. The

section is divided into two sub-sections; the first part investigates the tools which can be

applied to solve simple mathematical models of complex systems. The second part

investigates the tools which are used for integrating high-fidelity mathematical models

(CFD, CAD, etc.). The tools reviewed in the second part were some of the well known

tools which have been used primarily during preliminary and detailed design stages. In

contrast, the present research investigates the applicability of such high-fidelity

integration tools to the conceptual design stage.

2.3.1 Computational tools for low-fidelity mathematical models

This section investigates computational tools for solving low-fidelity mathematical

models at conceptual design stage. The variable flow modelling and system

decomposition and scheduling methods used in some of the tools were discussed in the

previous chapter and will not be discussed further.

2.3.1.1 Concept modeller

Concept modeller (Serrano, 1987) was one of the earliest tools developed for constraint

management. The design problems were represented and solved as a constraint

satisfaction problem. Graph theoretical methods were applied for constraint

management. The variable flow modelling methods used in this tool were discussed

earlier in section 2.2.1. The tool had the ability to detect the under and over-constrained

systems and also was able to identify the redundant and conflicting constraints. In

addition, the tool also had the capability to handle equality and inequality constraints.

Concept modeller was developed for constraint management, but was not robust enough

to manage the dynamic solving capability required for conducting conceptual design

studies. The system was developed mainly for solving system of non-linear equations

and had very little reference to solving models.

33

2.3.1.2 Design Sheet

Design-Sheet (Buckley et.al, 1992) is a computational tool for conducting flexible

trade-off studies during conceptual design stage. The tool was developed mainly on the

ideas from Concept Modeller, which were advanced further to make it suitable for

conceptual design studies. Concept Modeller was a tool resulting from academic

research, while Design Sheet is a commercial tool.

Design sheet permitted the user to enter a set of algebraic equations and create

computable systems based on the input variables defined by the user. The designer was

also given the flexibility to change the input variables and the tool would create the

corresponding computable system. The computational process modelling diagram for

design sheet is shown in Figure 2-11.

The tool also had the provision for conducting optimisation, trade studies and sensitivity

analysis on the system models.

Figure 2-11 Workflow diagram for Design Sheet (Buckley et.al, 1992)

As in the case of Concept Modeller, Design Sheet was developed for solving algebraic

equations and not models. The variable flow modelling method used by this tool, which

was discussed in section 2.2.1, considers only single output produced by the algebraic

equation which would not be the case for models, where multiple outputs are generated.

Also Design sheet does not investigate the alternative variable flow models that could

be produced for a given set of input variables. Arrangement of the execution sequence

of the equations which are strongly connected, and which could have made significant

reduction on the convergence time of the system, was not investigated either.

34

2.3.1.3 DeMAID

Design Manager’s Aid for Intelligent Decomposition (DeMAID) is a tool developed by

NASA for decomposing large, complex multidisciplinary processes (Rogers, 1997).

DeMAID identifies the iterative sub-cycles in a design process, arranges these to reduce

the feedback couplings and sequences the iterative sub-cycles and in a hierarchical

order. The sequencing of the iterative sub-cycles is performed using GA. The

sequencing scheme used in DeMAID is explained briefly in section 2.2.2.2. In

DeMAID, the user is able to enter the details of the models, decompose and finally

execute these to obtain the results.

DeMAID software was more a decomposition and sequencing tool rather than a

conceptual design tool where design studies could be conducted. The flexibility

provided by Design Sheet in terms of choosing the input variables for the system was

limited in DeMAID. Here, the input variables of the system are fixed according to those

variables which are only inputs to the models in the system and were not output of any

of the models in the system under consideration. The variable flow modelling which

could improve the dynamicity in selecting the input variables for the system was not

considered in this tool. This limitation can significantly affect the flexibility required in

choosing the inputs while performing conceptual design studies.

2.3.1.4 AGENDA

A GENetic algorithm for Decomposition of Analyses (AGENDA) was a computer

program developed at Stanford University for decomposition of system into subsystems

(Altus et.al., 1996). The decomposition scheme applied in this tool was described earlier

in the section 2.2.2.2. The decomposition scheme could reduce a system to subsystems

based on the decomposition criteria set by the designer. AGENDA has the provision for

the designer to input his/her own decomposition criteria for splitting the system into

subsystems. Compared to DeMAID, AGENDA exhibited similar drawbacks in terms of

flexibility in choosing the input variables to the system.

2.3.2 Computational tools for high-fidelity mathematical models

This section investigates several well known tools for integrating and solving high-

fidelity mathematical models (e.g. CFD, FEA tools) which are generally used during the

35

preliminary and detailed design stages of the design. The review of these tools was

performed to investigate their applicability to the conceptual design stage.

2.3.2.1 Fiper

Fiper is a software framework for integrating various design tools in a coordinated

fashion into a single environment (Wujek et al., 2002). This aids the designer to conduct

an overall design analysis in a single space, and focuses more on the product analysis

and development rather than on the tool integration aspects. Fiper was developed by

Engineous Inc. in a collaborative effort with General Electric, Goodrich, Parker

Hannifin, Ohio University, the Ohio Aerospace Institute and Stanford University.

Figure 2-12 shows a pictorial view of the FIPER architecture.

Figure 2-12 Overview of the FIPER architecture (Wujek et al., 2002)

Fiper incorporates various tools as components, by using a Java-based wrapping

mechanism. This component-based architecture provides seamless integration of

various heterogeneous tools located locally and also in a geographically distributed

environment. Fiper also provides parallel execution of tools where necessary thus

reducing the computing time.

Fiper is meant for integrating high-fidelity analysis tools and was developed with focus

on the preliminary design stages of the design rather than conceptual design. The

facility for automated integration of the tools was not addressed in Fiper. However the

36

wrapping mechanism incorporated in this tool could be a potential application which

can be incorporated in a tool for conceptual design stage.

2.3.2.2 Spineware

Spineware (Vankan and Laban, 2002) is a software tool developed at NLR for

integrating and executing high and low fidelity design and analysis tools in a distributed

and heterogeneous computing environment. Spineware CDE (Computational Design

Engine) was developed as part of the MOB (Morris, 2002) project and has played a

significant role in the design and analysis of the BWB (Blended Wing Body) aircraft.

Spineware is defined as “An object-oriented system that supports the construction and

usage of user-defined working environments in heterogeneous computer networks”.

Spineware consists of two layers. The first layer is the system level implementation of

the Computational Design Engine (CDE), which includes a number of design and

analysis tools. The second layer, the SPINEware User Shell, facilitated a more user-

friendly environment for the designer to operate on the CDE. The second layer was

developed based on object-oriented concepts and the object interaction was

accomplished using CORBA standards. The java applet implementation of the

SPINEware User Shell provided accessibility of the objects via web browsers. Figure

2-13 (b) shows an example for Spineware object browser.

Spineware was developed for integrating high fidelity analysis tools, primarily for the

preliminary design stage of the aircraft design. In the current research context hundred

of simple mathematical models were needed to be integrated and solved in a dynamic

environment.

Figure 2-13 (a) Functional structure of the design process of the BWB in the CDE (b) An

example for Spineware object browser (Vankan and Laban, 2002)

37

2.3.2.3 Phoenix Integration

Phoenix integration is a software tool for integrating heterogeneous computing

applications to generate a more efficient engineering process (Scott, 2001). The

software is developed based on a client-server configuration. The software has three

components for integrating the tool:

• The Enterprise Analysis Server (EAS) is used to create wrappers for the

various tools which have to be integrated into a single environment. The

wrapping allows for converting the analysis software into reusable tools that

can be published for others to use. EAS is java-based software server. The

published components can be accessed from any computer on the network

regardless of the platform.

• The ModelCenter has the capability to access the wrapped applications and

build the engineering process. ModelCenter provides a graphical user

interface for linking the wrapped applications. It also provides an open

Application Protocol Interface (API), which can be called from C++, Java or

COM, for the designers to access the integration engine behind the user-

interface. ModelCenter has various in-built design exploration tools such as

optimisation, design of experiments and response surface modelling.

• ModelRunner is built in mind for the designers who do not want to wrap

their code with EAS, but want to perform trade-studies on already built

models. ModelRunner is provided with a graphical user interface. Most of

the design exploration tools mentioned earlier is also present in the

ModelRunner. ModelRunner is provided with an API for integrating third

party trade study algorithms.

Limitations of FIPER which makes it unsuitable to be applied in the conceptual design

studies are encountered in Phoenix integrations also.

2.3.2.4 AML

The Adaptive Modelling Language (AML) is an object-oriented, knowledge-based

engineering modelling framework. AML is the main product of Technosoft Inc. AML

38

consists of the following components, each tailored for various purposes (Zweber,

2002):

• TIE provides a completely graphical environment for product and process

modelling, integration, and optimization. TIE contains a wide selection of

modules for interface with common engineering tools.

• AMOpt is a suite of tools for performing optimization and probabilistic

design studies within AML applications and TIE models. AMOpt enables

multidisciplinary system-level trade studies such as cost versus performance.

The AMOpt suite includes the following methods and algorithms: Multi-

Objective Genetic Algorithm (GA), Design of Experiments (DOE),

Sequential Quadratic Programming (SQP), Powell Method, Nelder-Mead

Simplex Method, Monte Carlo Simulation and Response Surface

Methodology (RSM)

Similar to FIPER and Phoenix Integration, AML is also a tool for integrating various

design and analysis software. The limitations in FIPER and Phoenix Integration are also

found in AML, which makes it currently unsuitable for the conceptual design phase.

2.4 Summary and Conclusions

The majority of the methods for variable flow modelling reviewed in this chapter are

applicable to algebraic equations. These methods need modification for application in

the current research context, where models are used instead of algebraic equations.

Furthermore, most of the methods reviewed here focussed on obtaining single feasible

variable flow model for solving a system, while there can be multiple feasible variable

flow models for a system. This limits the chances of obtaining the one which could lead

to relatively shorter execution time.

The above mentioned drawbacks pose the research need for developing a novel variable

flow modelling method which could overcome the limitations of solving the models and

also for exploring multiple feasible variable flows.

The decomposition and scheduling section was sub-divided into methods for process

management and computational systems. The methods reviewed in process management

39

were relevant for identifying strongly coupled processes. These methods have the

potential for identifying the SCCs in a system, in the current research context.

The methods reviewed in the computational systems section are used for decomposing

and scheduling the models for faster convergence. Except the Rogers method, all other

methods were for decomposing the strongly coupled models into sub-problems in order

to execute them in parallel for faster convergence. Rogers’s method was for scheduling

the models belonging to iterative sub-cycles (SCC), based on the values of the objective

function calculated for various arrangements of the constituent models. These objective

functions are design problem and solver dependent, and therefore needs further

investigation for applying to the current research context.

The current computational process modelling methods which were available for models

have focussed only on decomposition and scheduling and not on variable flow

modelling (e.g. DeMAID). This has limited the flexibility for choosing the user defined

combination of inputs to the system of models, and thus limits the effectiveness of

conducting design studies. Therefore there is a research need to combine the variable

flow modelling methods and the decomposition and scheduling methods to generate a

novel computational process modeller which ensures the flexibility in choosing the

inputs to the system and to improve the efficiency (through decomposition and

scheduling) of solving the system.

Various computational tools for low and high fidelity mathematical models were

reviewed to identify the potential of those tools in the conceptual design stage. Among

the low-fidelity tools, Concept Modeller and Design Sheet were developed for solving

algebraic equations and AGENDA and DeMAID for solving the models. Even though

the latter tools were able to solve the models, they lacked the flexibility in selecting the

inputs for the system.

High-fidelity tools included various novel mechanisms for integrating different CAE

tools into a single environment. However, these tools lacked the automated integration

capability and the flexibility required for integrating numerous simple models in a

dynamic environment. This poses a need for the development of a conceptual design

tool which ensures the above mentioned limitations are tackled.

40

3 COMPUTATIONAL PROCESS MODELLING FOR
COMPLEX SYSTEMS

3.1 Introduction

Presented in this chapter is a novel method for computational process modelling for

complex systems. The limitations of the most recent methods were described in detail in

section 2.4. The novel process modeller tackles these limitations and generates a

computational arrangement for the system, which leads to shorter execution time.

Section 3.2 describes the computational process modeller in detail with the help of a

flow chart. The individual features of the computational process modeller including the

novel variable flow modelling method along with the decomposition and scheduling

methods are described in the corresponding sub-sections. Section 3.3 describes a

comprehensive example which demonstrates the working structure of the entire

computational process modeller. Finally summary and conclusions are presented in

Section 3.4.

3.2 The Computational Process Modeller

Computational process modelling is the process of organising a complex system, in

order to efficiently compute the output variables, according to the specific input

variables selected by the designer. As described in Chapter 1, while performing trade

studies the designer selects various combinations of input variables and further

computational process modelling has to be performed to obtain the computational plan

for the system.

In this section a computational process modeller is introduced for computational process

modelling and is depicted in the Figure 3-1.

A detailed explanation of the flow chart is given in the later sections. Each box in the

flowchart is briefly explained here as follows.

41

Independent variables and
system of models

Variable flow modeling using IMM

Decomposition

SCC Schedule SCC w ith GA

Schedule DSM

Selec t the optimal variable flow
model

yes

no

START

END

Populate DSM w ith the SCCs and
the remaining models

IMM- Inc idence Matrix Method
SCC- Strongly Connec ted Components
DSM- Design Structure Matrix
GA- Genetic Algorithm

Populate models in a DSM

Figure 3-1 The computational process modeller

START

• Independent variables and system of models: Initially, the designer

provides the system of models with a choice of independent (input) variables

for computational process modelling. Independent variables are those

variables from among all the variables associated with the models in the

system, for which the values are known (e.g. the requirement for the aircraft

(e.g. Range, MTOW etc), which are known in advance, can be defined as

independent during the design study process) and which the designer decides

42

to provide as inputs to the system. Hence these variables should be always

inputs to the models in the system so that recalculating of these variables by

the models within the system can be avoided.

• Variable flow modelling using IMM: Variable flow modelling is performed

using the incidence matrix method (IMM) to determine the information

(data) flow among the models. All feasible variable flow models of the

system are explored in this step.

• Decomposition: Each variable flow model generated is decomposed into

hierarchically decomposable and non-hierarchically decomposable system of

models. Non-hierarchically decomposable systems are also called as strongly

connected components (SCC).

• Schedule SCCs with GA: Given a SCC, its constituent models are

rearranged by means of Genetic Algorithm (GA).

• Select the optimal variable flow model: The optimal variable flow model is

selected in this step based on the value of the objective function (obtained

after rearranging the constituent SCCs) and the number of modified models

in each variable flow model.

• Populate DSM with the SCCs and the remaining models: Each of the

rearranged SCCs is regarded as a single model and along with the remaining

models and is populated in a DSM. The population is based on the data flow

depicted in the selected optimal variable flow model.

• Populate models in a DSM: If SCCs do not exist, then the models are

populated directly in a DSM based on data flow obtained from the variable

flow model.

• Schedule DSM: The DSM is rearranged into a lower triangular matrix based

on a graph theoretical algorithm. This rearrangement eliminates the feedback

loops and thus the final computational plan is obtained for the system.

.END

43

The following sub-sections explain in detail the significant individual tasks

mentioned above.

3.2.1 Variable flow modelling

Variable flow modelling is the process of identifying the data flow among the models

within a system according to the input (independent) variables selected by the designer.

A novel incidence matrix method (IMM) is proposed here which dynamically obtains

the information flow within the system. The first sub-section of this section explains the

incidence matrix method, which populates the matrix on a rules based approach. The

following sub-section describes the formalisation of this method.

3.2.1.1 Variable flow modelling using incidence matrix method

In mathematics, an incidence matrix is a matrix that shows the relationship between two

classes of objects. If the first class is X and the second is Y, the matrix has one row for

each element of X and one column for each element of Y. The entry in row x and

column y is 1 if x and y are related (called incident in this context) and 0 if they are not

(Weisstein, 2007).

In the current research context, the two classes of objects are the models and the

variables. In the incidence matrix, each row denotes a model and each column a

variable. An entry ‘*’ in the matrix symbolises that the variable representing the

corresponding column is either an input or output of the model in the corresponding

row. An example of initial incidence matrix for a simple system is shown in Figure 3-2.

Figure 3-2 Incidence matrix for a system of three models

The aim of the incidence matrix method is to substitute the ‘*’ in the matrix with either

‘o’ (signifying output) or ‘i’ (signifying input) depending on whether the variable in the

44

corresponding column will be an input or an output of the model in the corresponding

row. This replacement procedure will be called ‘population of incidence matrix’. The

incidence matrix is populated from its initial state according to the rules stated below.

Rule1: An independent variable should be always input to the models.

Rule2: If a variable is associated with only one model and if it is not an independent

variable, then it should be the output of that model.

Rule3: If a model is associated with only one variable, that variable should be output of

that model

Rule4: Each variable should be output of at most one model in the system.

Rule5: The number of outputs identified through variable flow modelling, for a

particular model, should correspond to the number of outputs of the original model.

Given below is further explanation of the meaning of each rule.

Rule1: This rule implies that all the ‘*’s in the columns of the independent variables

should be replaced with ‘i’s.

This replacement ensures that the independent variables are always input to the system.

Rule2: This rule implies that if the elements of a column are all empty except a single

‘*’ entry, and if the corresponding variable, which represents the column, is not an

independent variable then that ‘*’ should be replaced with an ‘o’.

In this case the variable is associated with only a single model, and if this variable is not

marked as independent (which means the variable is not input to the model), then the

only relation for the variable to model is to be an output.

Rule3: This rule implies that if the elements of a row are all empty except a single ‘*’

entry, and if the corresponding data variable in the column is not an independent

variable, then the ‘*’ should be replaced with an ‘o’.

The case signifies a model with a single variable. If this variable is not output of the

particular model then there was no requirement for such a model in the system and

hence the variable is as marked as output

Rule4: This rule implies that except for the columns of the independent variables, all

other columns should have ‘o’ marked in exactly one element.

45

Each column represents a variable, and since each variable has to be computed, they

should be output of a model from the system.

Rule5: This rule implies that every row should have the same number of ‘o’s as the

number of outputs of the associated model.

As mentioned earlier certain models have their input and output variables interchanged

as a result of variable flow modelling. These modified models are solved using non-

linear least-square problem solvers (e.g. Gauss-Newton method) (refer section 4.2).

Rule5 ensures that these modified models are determined (not under or over

determined) and therefore solvable using the non-linear least square problem solvers.

The above five rules are applied on the incidence matrix in a particular sequence

thereby populating the matrix in order to obtain the final information flow. It has to be

ensured that while populating the incidence matrix by applying a particular rule (applied

for a ‘*’ considering its row/column), other rules (when verified for the same ‘*’

considering its column/row) are not violated. The flow chart which explains the

sequence of application of the rules is shown in Figure 3-3.

The flow chart is briefly explained as follows:

1. Incidence matrix is initially created for the models and the variables.

2. The ‘*’s in the columns of the independent variables are replaced with ‘i’s

based on Rule1.

3. Further Rule2 is applied which replaces the ‘*’ with ‘o’ in the single-

element-columns of the matrix.

4. Rule3 is then applied on the matrix which replaces the ‘*’ with ‘o’ in the

single-element-rows of the matrix.

5. Further, each remaining ‘*’ in the matrix is scanned and examined once,

whether they could be replaced with either ‘i’ or ‘o’, based on the logic

from rules 4 and 5.

6. Once all the ‘*’s are scanned and examined, and if there are still some ‘*’s

remaining with out being replaced, then the preceding step (step5) is

repeated iteratively until all the ‘*’s are substituted.

46

Create Incidence matrix

Populate matrix based on Rule1

Populate matrix based on Rule2

For each element in
the matrix with '*'

if any element
with unreplaced
'*' in the matrix

ye
s

START

END

no

Check Rule4

Check Rule5

Replace '*,'with 'i' or 'o'
depending on t he conclusion

derived from the rules
if valid yes

Populate matrix based on Rule3

1

2

3

4

5

6

no

if valid yes

no
ye

s

Al l *s in the
matrix scanned

no

Figure 3-3 Flow chart for incidence matrix method (IMM)

The procedure is explained with two simple examples. The first example has a set of

three models in the system. The second example has four models with one of the model

generating multiple outputs.

Example1

Figure 3-4 shows a simple set of models for balancing the weight of an aircraft with its

lift (Buckley et al., 1992). The example models are for demonstration purpose only.

Data variables entering the models are the inputs and data variables leaving the models

47

are the outputs. In this example, Ws and V are chosen as independent variables for the

system (The aim of IMM is to generate variable flow models for a system, given any set

of independent variables. In order to demonstrate this capability of IMM, in the current

example Ws and V were randomly chosen as independent from the set of variables in

the system).

Figure 3-4 Models balancing the weight of aircraft with its lift

Population of the corresponding incidence matrix for the models in Figure 3-4, based on

the six steps depicted in Figure 3-3, is described below.

Step1:

The initial incidence matrix is created as shown in Figure 3-5.

 Ws CL q ρ V
Model1 * * *
Model2 * * *
Model3 *
Figure 3-5: Initial Incidence matrix for models in Figure 3-4

Step2:

Since Ws and V are the independent variables, according to rule1, the ‘*’s in the

corresponding columns of the variables are substituted with ‘i’. The updated matrix is

shown in Figure 3-6.

 Ws CL q ρ V
Model1 i * *
Model2 * * i
Model3 *

Figure 3-6 Incidence matrix for system in Figure 3-4 with independent variables defined

48

Step3

According to rule2, the ‘*’ in the single-element-column (column2 in the current

example) is replaced with ‘o’. The updated matrix is shown in Figure 3-7.

 Ws CL q ρ V
Model1 i o *
Model2 * * i
Model3 *

Figure 3-7 Incidence matrix for system in Figure 3-4 after applying rule2 on element (1,2)

Step4

According to rule3 the ‘*’ in the single-element-row is to be replaced with ‘o’. The

updated matrix is shown in Figure 3-8.

 Ws CL q ρ V
Model1 i o *
Model2 * * i
Model3 o

Figure 3-8 Incidence matrix for system in Figure 3-4 after applying rule3 on element (3,4)

Step5

In this step each ‘*’ in the incidence matrix is scanned to examine whether it could be

replaced with either an ‘i’ or ‘o’. The elements (1, 3), (2, 3) and (2, 4) are scanned in

this step. The first element (1,3), based on rule 5, is replaced with ‘i’. Since here the

number of outputs for the original model1 is one, and since variable CL is already

defined as the output of model1, the variable q is defined as input for the model. The

updated incidence matrix is given in the Figure 3-9.

 Ws CL q ρ V
Model1 i o i
Model2 * * i
Model3 o

Figure 3-9 Incidence matrix for system in Figure 3-4 after applying rule5 on element (1,3)

The second element (2,3) in the list is now replaced with ‘o’ based on rule4. Each

variable in the system has to be output of at least one model and since the variable q is

already defined as input to model1 it has to be output of model2. The updated incidence

matrix is given in the Figure 3-10.

49

 Ws CL q ρ V
Model1 i o i
Model2 o * i
Model3 o

Figure 3-10 Incidence matrix for system in Figure 3-4 after applying rule4 on element (2,3)

 The third element (2,4) in the list is now replaced with ‘i’ based on rule4. The updated

incidence matrix is given in the Figure 3-11.

 Ws CL q ρ V
Model1 i o i
Model2 o i i
Model3 o

Figure 3-11 Incidence matrix for system in Figure 3-4 after applying rule4 on element (2,4)

Step6

Since all the ‘*’s in the incidence matrix have been replaced, there is no requirement for

further iteration through step 5.

Figure 3-11 shows the final populated matrix obtained for the system. The final matrix

indicates that model1 has Ws and q as input and CL as output, model2 has ρ and V as

input and q as output and model3 has ρ as output.

Example 2

This example has four models with model ‘std_atmos’ producing multiple outputs. The

models are shown in Figure 3-12. The models are part of an aircraft sizing problem.

Variables Tamb, alt, MTOW, Aref, Kvs, rho and FNslst are selected as independent

variables for this case.

Step by step population of the corresponding incidence matrix for this system of models

is shown in Figure 3-13 . It can be noted that the matrix was fully populated after the

first pass of step5 of the algorithm shown in Figure 3-3. Further iterations were not

necessary in this case also.

The two examples demonstrated above were trivial. Solving the incidence matrix was

straightforward and always led to a solution. This is not the case for systems which are

either under or over-determined (explained in the next paragraph) or which have SCCs.

50

std_atmos
disa

alt

Pamb

Mach_st
Pamb

MTOW
Mach_stall

Sec_mach
Mach_stall

Kvs
Mach

net_thrust
Mach

rho
Fn

Tamb

Aref

FNslst

Figure 3-12 Models for example2

Step1

Step2

Step3

Step5

Figure 3-13: Population of the incidence matrix for the models in the system in Figure 3-12.

51

For these system certain ‘*’s could never be replaced by iterating through step 5 and 6

of the incidence matrix method. Hence the IMM flow chart in Figure 3-3 generates

feasible variable flow models only for determined systems which do not have the

presence of SCCs. These three cases along with their resolution schemes are explained

in the following paragraphs.

Over and under-determined systems

Under-determined systems are those systems where the number of independent

variables set by the designer is less than the number required for solving the models in

order to compute all unknown variables in the system.

Over-determined systems are those systems where the number of independent variables

set by the designer is greater than the number required for solving the models in order to

compute all unknown variables.

For a system of algebraic equations, to derive a unique solution, the number of

unknowns should be equal to the number of equations. The same theory is applicable

for a system of non-linear models. However, since the models can have multiple

outputs, the criteria for determining the solvability of a system are shown in Equation

3-1.

Equation 3-1 Criteria for determining the solvability of a system

TNvar –NIvar-Noutmod = 0 determined system

TNvar –NIvar-Noutmod > 0 under-determined system

TNvar –NIvar-Noutmod < 0 over-determined system

Where,

TNvar-Total number of variables

NIvar- Number of independent variables

Noutmod- Sum of the total number of outputs of each model in a system

Noutmod in Equation 3-1 accounts for the multiple outputs generated by the models.

The Equation 3-1 is derived from the following equation

52

Equation 3-2 Derivation for Equation 3-1

Nmod= TNvar-NIvar-(Noutmod-Nmod)

The RHS of the Equation 3-2 calculates the number of unknown variables in the system,

taking into account the multiple outputs generated by certain models. Since the multiple

outputs for a model can be calculated simultaneously once that model’s inputs are

known, these outputs are considered as a single unknown variable in the above

equation. This is taken in to account by the term Noutmod-Nmod. The value calculated

in the RHS (Number of models) should equal to the LHS (Number of unknowns)

signifies thus a determined system.

Thus for example 1 (Figure 3-4)

TNvar=5

NIvar=2

Noutmod=3

TNvar –NIvar-Noutmod = 5-2-3 = 0

Thus the system is determined.

And for example 2 (Figure 3-12)

TNvar=12

NIvar=7

Noutmod=5

TNvar –NIvar-Noutmod = 12-7-5 = 0

Thus the system in the example 2 is also determined.

It can be noted that in both examples if the number of independent variables (NIvar)

provided by the designer was less than the one specified, then the system would have

become under-determined, and if NIvar was greater than the one specified, the system

would have been over-determined. In these cases a variable flow model could not have

been achieved by following the flow chart shown in Figure 3-3.

53

For resolving the under-determined system the designer will have to choose additional

variables as independent so that the value obtained from ‘TNvar –NIvar-Noutmod’ will

equal zero.

 After population, the incidence matrix for the system in example1, with only Ws

chosen as independent, is displayed in Figure 3-14 . Iterations through step5 and step 6

will not resolve the ‘*’ in the matrix. This is because replacing the ‘*’ (in element (2,2))

based on rule4, which states that each variable should be output of one model, by ‘o’,

will violate rule5 for the model in the column. Alternatively, replacing the ‘*’ with ‘i’

based on rule5 for the row will violate rule 4 for the column.

Figure 3-14 Populated incidence matrix for an under-determined system.

Here, TNvar –NIvar-Noutmod (=5-1-3=1), is greater than zero and hence according to

Equation 3-1 the system is under determined. The option to resolve this system to make

it determined is to declare an additional variable, either q, CL, V or ρ, as independent

along with Ws.

Over-determined systems can be resolved by deselecting relevant independent variables

so that the value obtained from ‘TNvar –NIvar-Noutmod’ will equal zero. For example,

in Figure 3-15 variables Ws, CL and V are declared independent, and the figure shows

the corresponding populated incidence matrix. Equation 3-1 proves this system as over-

determined (TNvar –NIvar-Noutmod =5-3-3= -1 < 0). If the ‘*’ in the matrix is replaced

with ‘o’, based on rule5, will violate rule 4. Alternatively, if the ‘*’is replaced with ‘i’,

based on rule 4, will violate rule 5.

Figure 3-15 Populated incidence matrix for an over-determined system.

54

The option to resolve such a system is to deselect the surplus independent variables so

that the system remains determined. In the above example removing any one variable

(Ws, CL or V) from the set of independent variables will make the system determined.

Strongly connected components (SCC)

Presence of SCCs in a system also leads to unresolved ‘*’s in the populated incidence

matrix. Unlike under and over determined systems, in the presence of SCCs the system

is proven determined on applying Equation 3-1. However one or more of the constituent

models of a SCC requires inputs from at least one other model from the same group.

This characteristic of the SCC is the reason for the unresolved ‘*’s. An example of a

system with a SCC along with its corresponding populated incidence matrix is shown in

Figure 3-16.

Figure 3-16 (a) System of models (b) Corresponding populated incidence matrix with X3 as

the independent variable

In this example variable X3 is given as the independent variable. Applying Equation

3-1;

TNvar –NIvar-Noutmod⇒ 8-1-7 = 0

The value obtained implies that the system is determined. However, Figure 3-16 (b)

shows some ‘*’s which are unresolved, after applying IMM. This situation has arisen as

a result of models 1,2,3,5 and 6 being strongly connected through shared variables.

Hence those models which have still *’s remaining in the matrix after applying IMM is

considered as part of SCC. Thus one additional advantage of the incidence matrix

method is that the presence of at least one SCC can be identified while performing

variable flow modelling. However, mutually exclusive SCCs that can occur in a system

55

could not be identified during incidence matrix method, and hence a decomposition

scheme has to be applied for this purpose. The decomposition scheme is explained

further in section 3.2.2.

As mentioned earlier if the system is proven determined, there is a solution existing for

the system (see section 1.2.3.1). However, since the presence of SCC leads to

unresolved incidence matrix (presence of unreplaced *s, after attempting to fully

populate it), the next step is to resolve this problem. This is done by guessing the inputs

and output variables of any one of the models belonging to the SCC and thereafter

populating the matrix by applying IMM. Guessing the input and output variables can be

made in a number of alternative ways and therefore each different guess will lead to a

different variable flow model. Since our aim is to reduce the number of modified

models (modified models leads to high execution time for the system, because of the

numerical solving involved in the case of modified models (refer section 4.2)) in the

system as much as possible, the criteria for selecting the models (for guessing the inputs

and outputs) should be based on this objective. A new rule is introduced to account for

this objective.

Rule6: Among the models which are part of a SCC for which not all ‘*’ have been

replaced after applying the first five rules of the IMM, the models for which the new

inputs differ from the original ones are selected for guessing. If no such model exists,

the incidence matrix is populated with the original inputs and outputs of the models.

Rule6 limits the unnecessary generation of modified models in a system and also the

creation of alternative variable flow models to the ones which have minimum modified

models. If there is more than one model which have its variables already modified then

any of those models can be selected for guessing, one at a time.

In the presence of SCC the additional steps necessary for populating the matrix are

depicted in Figure 3-17.

56

Unresolved incidence matrix
after applying IMM

Guess i/o variables for the
model selected based on rule6

Perform step5 and step 6
of IMM

any unresolved
'*' in the matrix

yes

no

START

END

Figure 3-17 Additional steps for IMM in the presence of SCC

Example3.

The system shown in Figure 3-16(a) is considered in this example. Figure 3-16(b)

shows the corresponding populated incidence matrix obtained, after applying the IMM.

In the matrix, models 1,2,3,5 and 6 are strongly connected.

According to Figure 3-16(b) variable X3 is input to model6, but the real model6 has X3

as output (see Figure 3-16(a)). Such a modification is not present in any other

constituent model of the SCC. Hence, based on rule 6, model6 is chosen for guessing

the input and output variables. There are three guesses possible as shown in Figure 3-18.

Figure 3-18 Alternative guesses for i/o variables of model6

57

Figure 3-19 (a) Populated incidence matrix after the arrangement of model6 as shown in

Figure 3-18(a), (b) Populated incidence matrix after the arrangement of model6 as shown in Figure

3-18(b), (c) Incidence matrix after the arrangement of model6 as shown in Figure 3-18(c)

Figure 3-20 Populated incidence matrix for the arrangement of model6 as shown in Figure

3-18(c), in the second iteration

58

Each arrangement for model6 replaces in turn the sixth row of model6 of the populated

matrix shown in Figure 3-16(b). Following this, step 5 and 6 of IMM is applied to

populate the new matrix. The result obtained for each case is shown in Figure 3-19.

In Figure 3-19(c) it can be noted that no further population is possible and the matrix

has reached the similar situation as before, with unresolved ‘*’s. This matrix now has to

go through another iteration as specified in Figure 3-17. In the second iteration from the

unresolved models 2 and 5, the former is chosen for guessing based on rule6. There are

two possible alternative guesses of input and outputs variables for model2. After

replacing the guessed variables in the matrix and further applying step6 of IMM the two

flow models obtained are shown in Figure 3-20.

Thus in total, four alternative variable flow models are obtained for solving the system.

These are shown in Figure 3-19(a), Figure 3-19(b), Figure 3-20(a) and Figure 3-20(b),

respectively.

Example 4

This example is for the system shown in Figure 3-16(a) with variable X7 as the selected

independent variable. The corresponding populated incidence matrix after applying

IMM is shown in Figure 3-21.

Figure 3-21 Populated incidence matrix, for the system of models in Figure 3 17(a), with X7

as the independent variable.

The matrix shows that model1, model3 and model6 are strongly connected. However,

here inputs or outputs currently defined for any of the models in the SCC are not

different from those of the original model (Figure 3-16(a)).According to rule 6(the

second sentence), the incidence matrix is populated with inputs and outputs of the

original models. Thus the final populated matrix is shown in Figure 3-22 .

59

Figure 3-22 Populated incidence matrix, for the system of models in Figure 3-16(a), with X7

as the independent variable, after resolving the SCC.

3.2.1.2 Variable flow modelling formalisation

In the previous section the incidence matrix method was explained in terms of six rules.

This section describes an improved formal incidence matrix method which populates a

numerical matrix instead of a character matrix. This method operates in a similar

fashion to the earlier one, except that the rules are reformed into a mathematical

procedure. This method reduces the memory (RAM) required since numerical arrays are

used instead of character arrays. In addition, computer programming of the rules is

straightforward since these are in a mathematical form.

Figure 3-23 Incidence matrix earlier and latest representations.

Figure 3-23 shows the incidence matrix with its corresponding new representation,

named as ‘incm’. Presence of a variable in the model is represented with ‘1’ (‘*’ used

previously), an input by ‘2’ (‘i’ used previously) and output with ‘3’(‘o’ used

previously) and ‘0’ denotes no relation between the variable and the model. The

population of the incidence matrix in this case signifies replacing 1 with either 2 or 3.

The algorithm for populating the numerical incidence matrix is given in the flow chart

shown in Figure 3-24.

60

START

Create 'incm'

If any '1'
elements left in

the incm

no

END

Replace '1' in the column of
independent variables with

'2'

D1

D2

D3

D4

Decision maker

For each element '1' in the
matrix

Compute valr2, valr3 valc2,
valc3

repla ce 1 with 2

If valr2 is an integer
and valc3 is not

If valr3 is an integer
and valc2 is not

If valc2 is an integer
and valr3 is not

If valc3 is an integer
and valr2 is not

replace 1 with 3

yes

yes

yes

yes
no

no
no

If all eleme nt s
a re scanned

no

ye
s

ye
s

1

2

3

4

Figure 3-24 Flow chart for improved formal IMM

In the Figure 3-24;

incm- incidence matrix which will be populated for obtaining the variable flow model .

An example for incm is given in Figure 3-23(b). Intially incm will have only ‘1’s and

‘0’s, on population using formal IMM the ‘1’s are replace with either ‘2’s or ‘3’s.

incmf- foundation incidence matrix, which corresponds to the real inputs and outputs of

the model. The foundation matrix has the elements filled with ‘2’ and ‘3’ depending on

inputs and outputs of the original model. The incmf for the system in Figure 3-4 will be,

61

Equation 3-3 Equation for calculating valrf(r)

1

() (,) ; (,) 0
m

c

valrf r incmf r c incmf r c
=

= ≠∏

Equation 3-4 Equation for calculating valcf(c)

1

3 if 2
()

if 2

, (,) ; (,) 0
n

r

incmprod
valcf c

incmprod incmprod

Here incmprod incmf r c incmf r c
=

=⎧
= ⎨ ≠⎩

= ≠∏

Equation 3-5 Equation for calculating valr(r)

1

() (,) ; (,) 0
m

c

valr r incm r c incm r c
=

= ≠∏

Equation 3-6 Equation for calculating valc(c)

1

() (,) ; (,) 0
n

r

valc c incm r c incm r c
=

= ≠∏

Equation 3-7 Equation for calculating valr2(r,c)

()

()log
()

2(,)
log 2

valrf r
valr r

valr r c

⎛ ⎞
⎜ ⎟
⎝ ⎠=

Equation 3-8 Equation for calculating valr3(r,c)

()

()log
()

3(,)
log 3

valrf r
valr r

valr r c

⎛ ⎞
⎜ ⎟
⎝ ⎠=

62

Equation 3-9 Equation for calculating valc2(r,c)

()

()log
()

2(,)
log 2

valcf c
valc c

valc r c

⎛ ⎞
⎜ ⎟
⎝ ⎠=

Equation 3-10 Equation for calculating valc3(r,c)

()

()log
()

3(,)
log 3

valcf c
valc c

valc r c

⎛ ⎞
⎜ ⎟
⎝ ⎠=

Here;

r represents the row number

c represents the column number

n represents the number of rows of the incm matrix

m represents the number of columns of the incm matrix

valrf(r) is the product of non-zero elements of row r of incmf

valcf(c) is the product of non-zero elements of column c of incmf

valr(r) is the product of non-zero elements of row r of incm

valc(c) is the product of non-zero elements of column c of incm

Values of valr2, valr3, valc2 and valc3 determine whether the ‘1’ in the incm matrix

should be replaced with either 2 or 3.

Explanation

Equation 3-7 could be rewritten as

2(,) ()2
()

valr r c valrf r
valr r

=

The right hand side (RHS) of the above equation calculates the product of the values of

the elements of row ‘r’ of the incm matrix with current value 1, as if these were replaced

with combinations of ‘2’s and ‘3’s. If valr2(r,c) is an integer this means that RHS can

63

be represented as multiples of 2. It signifies that the values which can replace the ‘1’s in

the row r should all be ‘2’s.

Equation 3-8 could be rewritten as

3(,) ()3
()

valr r c valrf r
valr r

=

The RHS of the above equation calculates the product of the values, that the elements of

the row ‘r’ with value 1 could be replaced, in the incm matrix. If valr3(r,c) is an integer

means RHS is all multiples of 3. It signifies that the value that could be replaced for ‘1’

in the row r should be all ‘3’s.

Equation 3-9 could be rewritten as

2(,) ()2
()

valc r c valcf c
valc c

=

The RHS of the above equation calculates the product of the values, that the elements of

the column ‘c’ with value 1 could be replaced, in the incm matrix. If valc2(r,c) is an

integer means RHS is all multiples of 2. It signifies that the value that could be replaced

for ‘1’ in the column c should be all ‘2’s.

Equation 3-10 could be rewritten as

3(,) ()3
()

valc r c valcf c
valc c

=

The RHS of the above equation calculates the product of the values, that the elements of

the column ‘c’ with value 1 could be replaced, in the incm matrix. If valc2(r,c) is an

integer means RHS is all multiples of 3. It signifies that the value that could be replaced

for ‘1’ in the column c should be all ‘3’s.

The queries in the decision box (D1 to D4) of Figure 3-24 checks whether the

replacement of 1s in the incm, with either 2 or 3 is achievable. The first sentence in the

queries ensures that the element 1, which is in consideration for substitution, can be

replaced with either 2 or 3 based on remaining elements in the column (row). This is

64

indicated by the value calculated by the corresponding equation. The second sentence of

the queries makes sure that, during the replacement the orthogonal row (column) of the

element can accept the changes.

For example, the first decision box (D1) in the Figure 3-24 states: ‘if valr2 is an integer

and valc3 is not’. If true, the first sentence in the query, ‘if valr2 is an integer’, ensures

that the ‘1’ can be substituted only with ‘2’. Based on this decision while replacing the

‘1’ with ‘2’ the second part of the query, ‘and valc3 is not’, ensures that the replacement

does not intervene with values of the column orthogonal to the element which is being

replaced. valc3 not being an integer ensures that the replacement is not strictly restricted

to ‘3’ with regard to the other elements in the column. Similar explanations can be

derived for the queries in the other decision boxes.

The equations and the queries together, implicitly satisfy the five rules stated in the

earlier IMM.

An example demonstrating the improved incidence matrix method is given below.

Example 5

The example used for demonstrating the earlier IMM is reused here. The system

considered is given in Figure 3-4. In this example, Ws and V are chosen as independent

variables.

Step 1

The initial incidence matrix, incm, and foundation incidence matrix incmf are given

below

incm=
1 1 1 0 0
0 0 1 1 1
0 0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

incmf=
3 2 2 0 0
0 0 3 2 2
0 0 0 3 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

The above matrix representation is based on the layout of the models and variables in

Figure 3-5.

65

Step 2

In the next step, the non-zero elements of the corresponding columns of the independent

variables (Ws and V) are replaced with 2.

Incm=
2 1 1 0 0
0 0 1 1 2
0 0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Step 3

Each element 1 in the matrix is now scanned and analysed to check whether it could be

replaced. The details are given below

For incm(1,2)

5

1

(1) (1,) 0

 =3 2 2
 =12

c

valrf incmf c for incmf
=

= ≠

× ×

∏

1

(2) 3 ; since (, 2) ; (, 2) 2
m

r

valcf incmprod incmf r incmf r
=

= = =∏

5

1

(1) (1,) 0

 =2 1 1
 =2

c

valr incm c for incm
=

= ≠

× ×

∏

3

1

(2) (, 2) 0

 =1
r

valc incm r for incm
=

= ≠∏

() 12log log
() 22(1,2) 2.5850

log(2) log(2)

valrf r
valr r

valr

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= = =

(1) 12log log
(1) 23(1, 2) 1.6309

log(3) log(3)

valrf
valr

valr

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= = =

66

(2) 3log log
(2) 12(1, 2) 1.5850

log(2) log(2)

valcf
valc

valc

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= = =

(2) 3log log
(2) 13(1,2) 1

log(3) log(3)

valcf
valc

valc

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= = =

Now the queries in the decision boxes D1 to D4 are checked.

Decision box D1

valr2=2.508 non-integer

valc3=0.6309 non-integer

Therefore D1is unsatisfied

Decision box D2

valc2=1.5850 non-integer

valr3=1.6309 non-integer

Therefore D2 is unsatisfied

Decision box D3

valr3=1.6309 non-integer

valc2=1.5850 non-integer

Therefore D3 is unsatisfied

Decision box D4

valc3=1 integer

valr2=2.5850 non-integer

D4 is satisfied.

Decision box D4 is satisfied therefore the element(1,2) is replaced with 3. The updated

incidence matrix is shown below.

67

incm=
2 3 1 0 0
0 0 1 1 2
0 0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

For incm(1,3)

valrf(1)=12

valcf(3) =6

valr(1)=6

valc(3)=1

valr2(1, 3)=1

valr3(1, 3)=0.6309

valc2(1, 3)=2.5850

valc3(1, 3)=1.6309

Here decision box D1 is satisfied therefore incm(1,3) is replaced with 2.

Incm=
2 3 2 0 0
0 0 1 1 2
0 0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

For incm(2,3)

valrf(2)=12

valcf(3) =6

valr(2)= 2

valc(3)=2

valr2(2, 3)=2.5850

valr3(2, 3)=1.6309

valc2(2, 3)=1.5850

valc3(2, 3)=1

Here decision box D4 is satisfied therefore incm(2,3) is replaced with 3.

68

incm=
2 3 2 0 0
0 0 3 1 2
0 0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

For incm(2,4)

valrf(2)=12

valcf(4) =6

valr(2)= 6

valc(4)=1

valr2(2,4)=1

valr3(2,4)=0.6309

valc2(2,4)=2.5850

valc3(2,4)=1.6309

Here decision box D1 is satisfied therefore incm(2,4) is replaced with 2.

incm=
2 3 2 0 0
0 0 3 2 2
0 0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

For incm(3,4)

valrf(3)=3

valcf(4) =6

valr(3)= 1

valc(4)=2

valr2(3,4)=1.5850

valr3(3,4)=1

valc2(3,4)=1.5850

valc3(3,4)=1

Here decision box D3 (and D4) is satisfied therefore incm(3,4) is replaced with 3.

69

incm=
2 3 2 0 0
0 0 3 2 2
0 0 0 3 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Step 4

Since all the ‘1’ in the incm matrix are now replaced with either 2’s or 3’s, there is no

requirement to iterate through step 3 again.

The final matrix indicates that model1 has Ws and q as input and CL as output, model2

has ρ and V as input and q as output and Model3 has ρ as output. The result obtained

here is the same as the one obtained by applying the earlier IMM (see Figure 3-11). The

populated matrix is obtained here in a single iteration, for larger cases more iteration

may be required to arrive at a solution.

In the current formal IMM, the over-determined, under-determined and strongly

connected components are resolved in the same manner as explained earlier. The

additional steps required for resolving SCC for the formal IMM are shown in Figure

3-25. The chart is similar to the one in Figure 3-17, but is modified according to the

notations used in the formal IMM.

Unresolved incm
after applying IMM

Guess i/o variables for the
model selected based on rule6

Perform steps 3 and 4 of
formal IMM

check for '1'
in the matrix

yes

no

START

END

Figure 3-25 Additional steps for formal IMM in the presence of SCC

70

3.2.2 System Decomposition

The next step, after the variable flow models have been generated, is to perform system

decomposition. This is the process of decomposing a complex system into a number of

sub-problems. In the context of solving an aircraft system, the system decomposition

corresponds to identifying the models which are strongly connected and grouping these

as sub-systems.

In the incidence matrix section it was shown that for determined systems during

variable flow modelling, the models which had unresolved ‘*’ (or 1’s in case of formal

IMM) after applying the IMM, were considered as strongly connected. This dynamic

identification of SCC is a significant advantage. However, since IMM cannot identify

mutually exclusive SCCs we have to employ an additional method for dealing with this

problem.

Here we adopt an algorithm (Tang et al., 2000) used for identifying the coupled

activities in a manufacturing environment, in order to identify the SCCs. The algorithm

was briefly explained in the literature review chapter. A more detailed explanation

follows.

A design process can be represented in a directed graph; it consists of a set of nodes,

representing the design activities and a set of directed lines connecting these nodes. The

directed lines represent the linkage between the design processes.

 In the proposed algorithm the design activities are represented in a binary design

structure matrix (DSM). In the DSM both rows and column represent a design activity

(models in our case). In the matrix an element ‘1’ denotes, the model representing the

column of the element has an input from the model representing the corresponding row.

‘1’ marked above the diagonal denotes the feed forward loop and ‘1’ below the diagonal

denotes the feedback loop.

The problem of recognising coupled activities set is translated into the problem of

seeking SCC in a directed graph.

Let D denotes the DSM,

Accessibility Matrix P=
1

j
n

n
D

=
∑ where j= number of design activities.

71

In the accessibility matrix the values of the elements which are greater than 1 are

replaced with 1. Then the Hadamard (entry wise) product of P and PT
 is performed.

2
11 12 1 11 21 1 11 12 21 1 1

2
21 22 2 12 22 2 21 12 22 2 2

2
1 2 1 2 1 1 2 2

...

...
...

...

n n n n

n nT n n

n n nn n n nn n n n n

p p p p p p p p p p p
p p p p p p p p p p p

P P

p p p p p p p p p p p

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ nn

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Here PT is the transpose of P. Pij=1 denotes that design activity representing the row (i)

is accessible from the design activity in the column (j). Similarly if the design activity

representing the column (j) is accessible from the design activity in the row (i) then

Pji=1. Thus both these design activities are accessible to each other if and only if

Pij.Pji=1. Therefore in the matrix P ° PT
, if the non-zero elements in the ith row are in the

j1
th, j2

th,… jk
th column then the design activities representing the rows 1,2..k are strongly

coupled.

The above mentioned method is applied in the current context to identify SCC in a

system. An example is given below which explains the procedure.

Example 6

The system shown in Figure 3-16 (a) is considered in this example. The variable flow

model obtained for this system, given X6 as the independent variable, is shown in

Figure 3-26.

Figure 3-26 Populated incidence matrix for the system shown in Figure 3-16 with X6 given

as the independent variable

 The DSM for the system, populated based on the data flow from the variable flow

model (Figure 3-26) is given below.

72

 1 2 3 4 5 6
mod 1 1 0 1 0 0 1
mod 2 1 1 0 0 1 0
mod 3 1 0 1 0 0 1
mod 4 0 0 0 1 0 0
mod 5 0 1 0 1 1 0
mod 6 0 0 1 1 0 1

el
el
el

D
el
el
el

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Accessibility matrix P, is calculated as follows.

1 2 3 4 5 6

144 0 232 138 0 232
144 63 169 138 63 169
144 0 232 138 0 232

0 0 0 6 0 0
88 63 81 94 63 81
88 0 144 94 0 144

P D D D D D D

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= + + + + + = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

The non-zero elements of the matrix are now replaced with 1.

1 0 1 1 0 1
1 1 1 1 1 1
1 0 1 1 0 1
0 0 0 1 0 0
1 1 1 1 1 1
1 0 1 1 0 1

P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Now the Hadamard product of P and PT is,

1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 0 0 1
1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 0 1 0
1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 0 0 1
0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 1 0 0
1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 0 1 0
1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 0 0 1

TP P

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

In the above matrix rows 1, 3 and 6 are equal and so are rows 2 and 5. Hence according

to the method described before, the models which represent these rows are strongly

coupled. More specifically in the current example there are two mutually exclusive

73

SCCs. model1, model3 and model6 belong to the first SCC and model2 and model5 to

the second. Thus system is now decomposed into the following

• SCC_1 (model1, mode3, model6)

• SCC_2 (model2, model5)

• model4.

3.2.3 System scheduling

Scheduling is the process of sequencing the models in a system for the purpose of

executing them after eliminating or reducing the feedback loops among the models. As

mentioned earlier, in complex systems an entire elimination of feedback loops may not

be possible. System decomposition identified those set of models in which feedback

loops cannot be eliminated, as SCCs.

The first subsection explains how these coupled sets of models belonging to SCCs are

rearranged so that feedback loops are reduced.

 In the section 3.2.1.1 it was proven that a system can have multiple feasible variable

flow models, in the presence of SCCs. In this section we also explain how the optimal

variable flow model could be selected from the feasible ones. Selection of the optimal

variable flow model is related to the rearrangement of models of the SCC, and hence it

is described in this section.

The second subsection describes the arrangement of non-coupled models in a sequence.

3.2.3.1 Scheduling of coupled models

Presence of feedback loops in the SCCs makes it necessary to employ iterative methods

to solve them. The more feedback loops, the more time and computational cost is

required for solving. Feedback loops are formed when a model, requires input from

another model which comes later in the execution sequence. Reducing the feedback

loops can thus reduce the time and computational cost for solving a SCC. Rearranging

the models in the SCC can reduce the feedback loops.

A genetic algorithm based approach for ordering complex design processes (Rogers,

1997) is used here for the rearrangement. Here we consider the number of feedback

loops as the objective function to be minimised (This objective function has been

74

chosen after conducting extensive testing with different candidate objective functions on

an aircraft conceptual design test case. The tests conducted are explained in section

5.3.). Genetic algorithm has been chosen since compared to other scheduling methods, it

is independent of problem formulation, and therefore different objective functions can

be formulated for different scheduling architectures.

Genetic algorithms work on the principle of evolution. They search a population of

design points, with each design point having a vector of design parameters. Successive

populations are generated by selection, crossover and mutation operations. Selection

determines those members of the population that are fit to participate in the production

of members of the next generation. Selection is based on the value of the objective

function of each member, and the members with better objective survive. Crossover is

the process of mating of members selected through selection operation, hoping to

produce children which have better objective level than the parents. The final mutation

operation prevents the genetic algorithm from reaching local minimum by preventing

the search space becoming too narrow.

Traditionally binary coding is used in GA; the values of design variables are coded as

binary numbers and then concatenated. This approach works well with numerical

problems, but is not efficient for sequencing problems. In case of rearranging a SCC,

the order in which models are to be executed form the genetic string. For example, if

there are three models model1, model2 and model3.The initial string 1, 2, 3 indicate the

execution sequence as model1, model2 and then model3. Then a string 2, 3, 1 will

denote model2, model3 and then model1 as the execution order. In this case special

operators are required for mutation and cross over operations.

Figure 3-27 Position based crossover

75

Position-based cross over (Syswerda, 1990) is used here and is shown in Figure 3-27.

From the first parent several models are selected to be passed on to the same location in

the child string. From the second string those models which were not selected from the

first parent are passed on to the spaces in the child string. The final child string will now

have one copy of each model.

Figure 3-28 Order based mutation

Order based mutation operation is shown in Figure 3-28. Each string position is polled

and if it is chosen for mutation then it is swapped with a randomly selected position in

the same string.

The equation formulated for calculating the objective function (feedback number) is

given in Equation 3-11(a). In the equation, D is a reformed DSM created from the

incidence matrix of a SCC. In the reformed DSM, ‘1’ marked above the diagonal

denotes the feed forward loop and ‘1’ below the diagonal denotes the feedback loop.

Additionally, the number ‘1’ marked on the diagonal elements denotes modified

models. This number ‘1’ represents the additional computational expenditure required

for modified models. The rest of the diagonal elements are marked ‘0’.

Equation 3-11 Equations for calculating number of feedback loops and number of

modified models

1

2 1

1

a) Number of feedback loops, nFdb (,)

b) Number of modified models, nMm= (,)

n i

i j

n

k

D i j

D k k

−

= =

=

=∑∑

∑

The models are rearranged based on the objective function represented in Equation

3-11(a).

76

Selecting the optimal variable flow model

The Equation 3-11(b) suffices the purpose of selecting the optimal variable flow model

from the group of variable flow models created by IMM, which is explained in the

following paragraph.

In the section 3.2.1 it was proved that there can be multiple feasible variable flow

models for a system, in the presence of SCC. To choose the optimal variable flow

model which can lead to the shortest execution time, the number of feedback loops of

and the number of modified models in the constituent SCCs of each variable flow model

is taken into consideration. The flow model which has the lowest number of modified

models in the constituent SCC is chosen as the optimal and is selected for further

solving. If there are multiple variable flow models with same number of modified

models then the one which have lesser number of feedback loops is chosen as the

optimum. The first criteria of number of modified models for selecting the optimal

variable flow model compared to the number of feedback loops has been decided after

conducting various tests (These tests are explained later in section 5.4). These tests

identified that the modified models add more to the computing cost compared to the

feedback number. Higher the number of modified models higher was the computational

cost. However, the number of feedback loops plays a significant role in rearranging the

models of the SCC in each variable flow model, which significantly reduces the

computational cost for the SCC.

The scheduling procedure thus satisfies two aims: scheduling the models in the SCC

and choosing the optimum variable flow model.

Example 7

This example is a continuation of example3. In example 3 there were four variable flow

models obtained for solving the SCC as shown in Figure 3-19(a), Figure 3-19(b), Figure

3-20(a) and Figure 3-20(b). After system decomposition it was identified that for all

four variable flow models, models 1,2,3,5 and 6 are strongly coupled.

The current example shows how the constituent SCCs of each variable flow model are

rearranged to reduce the number of feedback loops. In addition, this example also shows

how the optimal variable flow model can be chosen based on the criteria defined earlier.

77

Figure 3-29(a) to (d) shows the corresponding DSM representation of the four variable

flow models represented in Figure 3-19(a), Figure 3-19(b), Figure 3-20(a) and Figure

3-20(b). For the flow model in Figure 3-19(a), model1, model5 and model6 are

modified models and hence the diagonal elements of the corresponding DSM in the

Figure 3-29(a) are given a value of 1. Similarly for the other DSMs the respective

diagonal elements are given values of 1, according to the modified models in the

corresponding variable flow models.

Figure 3-29 DSM representation of the variable flow models obtained in example 3

Each DSM in Figure 3-29 is rearranged using genetic algorithm with number of

feedback loops as the objective function to be minimised. The final rearranged DSMs

are shown in the Figure 3-30(a) to (d).It can be noted that the number of feedback loops

of all the DSMs is reduced as a result of the rearrangement.

Figure 3-30 Rearranged DSMs of Figure 3-29

78

The next step is to identify the optimal variable flow model based on the number of

modified model and the number of feedback loops in the constituent SCC of each

variable flow model. Since the first criteria for choosing the optimal variable flow

model is the number of modified models, the variable flow model corresponding to the

fourth DSM (Figure 3-30 (d)) which has the least number of modified models of 2 is

chosen as the optimal. Hence the corresponding variable flow model, which is chosen as

the optimum, is given in Figure 3-20(b). The final execution sequence for models of the

SCC for this variable flow model is model5 model1 model3 model6 model2,

which is based on the arrangement shown in the fourth DSM (Figure 3-30(d)).

In this example since there are no variable flow models which have equal number of

modified models, the second criteria, number of feedback loops, was not required to be

considered for choosing the optimal variable flow model.

3.2.3.2 Scheduling of non-coupled models

In the previous section scheduling of the coupled models were explained. This section

explains the scheduling of non-coupled models in a sequential order. The models which

belong to SCC, which are already arranged using the method described in the previous

sub-section, are confined into a single subsystem and are sequentially arranged along

with the remaining non-coupled models.

Here we also adopt an algorithm (Tang et al., 2000) used for sequentially arranging the

design process in concurrent engineering. The algorithm works according to the

following theorem;

Theorem (Xiao and Fei, 1997): If P is the accessibility matrix (explained in the

previous section) of a directed graph G, P.Er-1=(p1,p2….pm)T
, where r≥1, 1≤m≤n (m is

the number of nodes in the graph); the m-dimension vector E0=(1,1,….,1)T;

Er=(e1,e2,…,em)T, where

{ }
{ }
0,1 ;0

 (1,2,....,)
0,1 ;1

i
i

i

p
e i m

p
∈⎧

= =⎨ ∉⎩

79

The necessary and sufficient condition of Lr= {vi} is pi=1, where Lr indicates that the

level of node vi is r in the graph G. Here level refers to the position in the rearranged

sequence of the nodes.

The above theorem sequentially arranges the models considering the following

 If all the elements in a column of the DSM are zero then the models

corresponding to that column should be executed as early as possible since

they do not need any input from other activities.

 If all the elements of a row are zero, the model representing that row should be

executed after all other non all zero element models because it provides no

input to any other models

 The ultimate objective of the rearrangement is to schedule the rows and

columns of the DSM into a lower triangular form.

The following example will explain the procedure in detail

Example8

The system shown in Figure 3-16(a) with X7 as the chosen independent variable

(corresponding incidence matrix, shown in Figure 3-22) is considered in this example

for sequential arrangement. On decomposition of the incidence matrix models 1, 3 and 6

were identified as strongly coupled. The SCC which contains these models and the

remaining non-coupled models are represented in Figure 3-31. The scheduling of

models in the SCCs was explained in the previous section.

Figure 3-31: Confined SCC and the remaining models

The theorem mentioned above is applied to this case for rearranging it sequentially. The

DSM for the system populated based on the variable flow model shown in the incidence

80

matrix in Figure 3-22 is given below. It has to be noted that the models belonging to

SCC are regarded as a single model, with inputs and outputs as shown in Figure 3-31.

model2 1 1 0 1
model4 0 1 0 0
model5 1 0 1 1
SCC 0 1 0 1

D

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 2 3 4

4 20 0 10
0 4 0 0

10 25 4 20
0 10 0 4

D D D D

⎡ ⎤
⎢ ⎥
⎢ ⎥+ + + =
⎢ ⎥
⎢ ⎥
⎣ ⎦

Replacing non-zero values in the above matrix with 1

Accessibility matrix P=

1 1 0 1
0 1 0 0
1 1 1 1
0 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

The order levels of all the models are figured out as follows:

0

0

1

(1,1,1,1)

. (3,1, 4,2)
mod el4

T

T

E

P E
L

=

=
=

Here the second element of P.E0 had 1. Hence according to the theorm model4 was

added in the level L1. Similarly the models for the subsequent levels are identified as

follows;

1

1

2

(1,0,1,1)

. (2,0,3,1)
SCC

T

T

E

P E
L

=

=
=

2

2

3

(1,0,1,0)

. (1,0,2,0)
mod el2

T

T

E

P E
L

=

=
=

3

3

4

(0,0,1,0)

. (0,0,1,0)
mod el5

T

T

E

P E
L

=

=
=

81

L1, L2, L3 and L4 represent the order levels obtained. The DSM for the order obtained

from the above method is

model4 1 0 0 0
SCC 1 1 0 0

model2 1 1 1 0
model5 0 1 1 1

D

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

The rearranged DSM is in a lower triangular form. It has to be noted that since the

above theorem rearranges the DSM into a lower triangular form, the execution sequence

for the activities representing the rows will be from bottom to top. The sequential

execution order for the system will therefore be mode5 model2 SCC model4.

3.3 Computational Process Modelling Example

The individual methods incorporated in the computational process modeller were

explained in the previous sections with specific examples. This section demonstrates the

application and implementation of the entire computational process modeller, for

generating computational plans for systems, with the help of an aircraft sizing example.

fin_vol_fac Vvt

fin_size
span

Avt

fus_wet_area
dfus

wAfus

aspect_ratioAwing ar

sound_velTamb vsnd

stand_atmos
alt

grav_accalt g

span

Awing
Lev
Vvt

levl_flgt
Aref

cz
Mach
Pamb

g
mass

disa

lfus
nac_wet_areadnac wAnac

engine_mass
ne

Mprop
FNslst

fric_drag cx0

nac_dia
BPR

dnac
FNslst

cz
Mach
Pamb
Tamb

wAwing
wAht
wAvt

wAfus
wAnac

lfus
Aref
Lref
ne

Kcx0

Pamb
Tamb

Figure 3-32 System of models

82

The case considered here is a subset of an aircraft system. The explanation is in

correspondence with the flowchart for computational process modeller shown in Figure

3-1.

Figure 3-32 shows the system of models considered for this example. In the system

there are 12 models and 31 variables. Variables Aref, Avt, BPR, Kcx0, Lev, Lref, Mach,

Mprop, ar, cx0, cz, lfus, mass, vsnd, wAfus, wAht, wAvt and wAwing, which were

chosen randomnly, are considered as independent variables.

The first step in the computational process modeller is to perform the variable flow

modelling. Formal incidence matrix method is used in this example for variable flow

modelling. Figure 3-33 shows the initial incidence matrix representation of the system

with the relevant element of the columns of the independent variables replaced with 2

(after applying step2 of the formal IMM).

Figure 3-33 Initial incidence matrix for the system in Figure 3-32 (Blank cells denote ‘0’)

Figure 3-34 shows the incidence matrix populated after applying steps 3 and 4 of the

formal IMM (Figure 3-24).

Figure 3-34 Populated incidence matrix according to formal IMM (Blank cells denote ‘0’)

83

(a)

(b)

(c)

(d)

Figure 3-35 Four different variable flow models obtained for the system in Figure

3-32(Blank cells denote ‘0’)

84

In the Figure 3-34 there are some ‘1’s still existing in some rows of the matrix. Since

the system is determined (TNvar –NIvar-Noutmod ⇒ 31-18-13 = 0), those rows

indicate the presence of at least one SCC. aspect_ratio, fin_size, levl_flgt, stand_atmos,

grav_acc, nac_wet_area, fric_drag, engine_mass and nac_dia are the unresolved models

in the matrix and hence are part of the SCC.

The additional steps required for the formal IMM in the presence of SCC are further

performed according to the steps given in the flowchart of Figure 3-25. Subsequently

four different variable flow models are obtained for the system. They are represented in

Figure 3-35 (a) to (d). The matices not only show the models of the SCC but also other

models.

The next step is to perform the decomposition of the system for each variable flow

model. For the first variable flow model (Figure 3-35 (a)), the various matrix

manipulations performed for decomposition are given below.

85

From the PoPT matrix, there are three sets of similar rows (2,3), (5,6,7) and

(9,10,11,12). Hence there are three SCCs in this system; 1)aspect_ratio and fin_size

2)levl_flgt, stand_atmos and grav_acc 3)nac_wet_area, fric_drag, engine_mass and

nac_dia.

Similar decomposition is performed on the rest of the variable flow models. In all the

three cases the same SCCs were identified. Therefore, the decomposition procedure for

the other three variable flow models is not described here.

The next step is to perform the scheduling of coupled models (SCCs). The scheduling of

the SCCs (by genetic algorithm) of each of the four variable flow models is given

below.

For the first variable flow model (Blank cells denotes ‘0’):

86

The total number of feedback number is 3(1+1+1) and total number of modified models

is 6(2+2+2)

For the second variable flow model (Blank cells denotes ‘0’):

The total number of feedback loops is 3(1+1+1) and total number of modified models is

8(2+2+4).

For the third variable flow model (Blank cells denotes ‘0’):

87

The total number of feedback loops is 3(1+1+1) and the total number of modified

models is 7(2+3+2).

Finally for the fourth variable flow model (Blank cells denotes ‘0’):

The total number of feedback loops is 3(1+1+1) and the total number of modified

models is 9(2+3+4).

The first criterion for choosing the optimal variable flow model is the number of

modified models. Compared to the others the first variable flow model which has the

least number of modified models of 6 is hence chosen as the optimal. The

corresponding variable flow model, which is therefore chosen as the optimum, is given

in Figure 3-35 (a).

The execution sequences for the models in the SCCs are given below.

SCC 1 : aspect_ratio fin_size

SCC 2 : levl_flgt stand_atmos grav_acc

SCC 3: nac_wet_area fric_drag engine_mass nac_dia

In this example since there are no variable flow models which have equal number of

modified models, the second criteria, number of feedback loops, was not required to be

considered for choosing the optimal variable flow model.

88

The next step is to sequentially arrange the SCCs with the remaining non-coupled

modes. The models belonging to SCC are regarded as a single model with inputs and

output. The SCCs and the remaining models are represented in Figure 3-36.

sound_vel
(Modified)vsnd Tamb

fin_vol Vvt

fus_wet_area
(Modified)

wAfus
dfus

lfus
SCC 2

Aref
Mach
Tamb

cz
mass

Pamb
alt

disa
g

SCC 3

Aref
BPR
Kcx)
Lref

Mach
Mprop
Pamb
Tamb
cx0
cz

lfus
wAfus
wAht
wAvt

wAwign

FNslst
dnac
ne

wAnac

SCC 1

Avt
Lev
Vvt
ar

Awing
span

Figure 3-36 SCCs and the remaining models

The corresponding DSM populated based on the optimal variable flow model shown in

Figure 3-35 (a) is given below.

1 1 1 0 0 0 0
2 0 1 0 0 0 0
3 0 0 1 0 0 0

_ 1 0 0 1 0 0
_ _ 0 0 0 0 1 0

_ 0 0 1 0 0 1

SCC
SCC
SCC

D
sound vel

fus wet area
fin vol

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Accessibility Matrix,

1 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 1 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 1

P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

89

The order levels of all the models are determined as follows:

0

0

1

(1,1,1,1,1)

. (2,1,1,3,1,2)
2, 3, _ _

T

T

E

P E
L SCC SCC fus wet area

=

=
=

1

1

2

(1,0,0,1,0,1)

. (1,0,0,2,0,1)
1, _

T

T

E

P E
L SCC fin vol

=

=
=

2

2

3

(0,0,0,1,0,0)

. (0,0,0,1,0,0)
_

T

T

E

P E
L sound vel

=

=
=

The DSM for the order obtained from the above method is

2 1 0 0 0 0 0
3 0 1 0 0 0 0

_ _ 0 0 1 0 0 0
1 1 0 0 1 0 0

_ 0 1 0 0 1 0
_ 0 0 0 1 0 1

SCC
SCC

fus wet area
D

SCC
fin vol

sound vel

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

It can be noted that the rearranged DSM is in a lower triangular form. Hence the

execution sequence for the system is sound_vel fin_vol SCC1 (aspect_ratio

fin_size) fus_wet_area SCC3 (nac_wet_area fric_drag engine_mass

nac_dia) SCC2 (levl_flgt stand_atmos grav_acc).

3.4 Summary and Conclusions

Presented in this chapter is a novel method for computational process modelling. The

computational process modeller was subdivided into variable flow modelling,

decomposition and scheduling.

The IMM and the modified formal IMM for variable flow modelling are introduced.

Compared to IMM, the formal IMM is easier to implement and takes less memory space

while computing. These novel methods have the advantage of generating multiple

variable flow models for a system which consists of models with multiple outputs. .

Until now this feature has not been available even in computational process modelling

90

methods for algebraic equations, were the focus has always been on generating a single

feasible variable flow model.

Decomposition was performed based on an algorithm from concurrent engineering for

identifying coupled design processes.

Scheduling the coupled models (SCC) was performed by genetic algorithm with number

of feedback loops as the objective function to be minimised. The number of modified

models and the value of the objective function of the constituent SCCs of the multiple

flow models, generated during variable flow modelling, were considered as the criteria

for choosing the optimum flow model. As a result this scheduling procedure satisfied

two aims: scheduling the models in the SCC and choosing the optimum variable flow

model.

The non-coupled models were sequentially arranged based on an algorithm from

concurrent engineering for arranging design tasks.

An example system consisting of 13 models and 31 variables demonstrated the step by

step procedure for computational process modelling.

91

4 SOLVERS FOR SUB-SYSTEMS

4.1 Introduction

The computational process modeller generates the optimum execution sequence of the

models in a system. The system is then solved based on the obtained execution

sequence to compute the unknown variables. The solving is carried out by the sequential

execution of the models, SCCs and modified models in the system. Unlike the models,

where the execution is straightforward, SCCs and modified models require

mathematical treatments for solving them. The treatments and approaches used in this

research for solving these sub-systems are discussed below.

4.2 Scheme for Solving Modified Models

A modified model is a model which has some of its input and output variables swapped

as a result of variable flow modelling. Since the original model accepts only its real

inputs, numerical solving has to be relied on in order to accomplish the required

modification. An example of a modified model is given in Figure 4-1.

Payload PL
Payload

Mat hema tical Treat ment

Npax

PL

Wpax

Npax
Wpax

(a) Payload model (b) Modified payload model

Figure 4-1 An example for modified model

A model m can be represented as

1 1(), ,....., ,......n my m x where x x x and y y y= = =

Here x is the input variables and y the output variables. In the case of a modified model

a subset of variables in x and y is interchanged. Let xm and ym denote that subset

(number of elements xm is equal to the number of element in ym). Hence a modified

model can be represented as

92

(,) (,)
where
yr xm mm xr ym

xr x xm
yr y ym

=

= ∩
= ∩

Here xr and ym are the known values and the aim is to compute yr and xm.

Various schemes which are available for solving a system of non-linear equations can

be reformed to be applied for solving the modified models. In this research solvers

available for non-linear least-squares problem are considered for solving the modified

models. The Gauss-Newton method, which is one of the available methods for solving

the non-linear least squares problem, is chosen for solving the modified models. There

are various solving schemes such as the Newton method, Gauss-Newton Algorithm,

Levenberg-Marquardt algorithm, etc., available for solving non-linear least-square

problems (Dennis and Robert, 1983). The Newton method is generally used for

unconstrained minimisation and the other two for solving system of non-linear

equations. Since this research did not have the aim of choosing the most appropriate

solver for modified model no much investigation was performed in choosing the solver.

Gauss-Newton method was chosen because of its proven efficiency as a solver for non-

linear least-squares problems. The plan described below for solving the modified

models will be similar if any other solvers are used. Hence Gauss-Newton method can

be replaced with any solver with out any modification in the plan, for solving the

modified models.

For solving the modified model, initially guessed values for xm along with the known xr

variables are given as inputs to the model m. On execution, the values of the output

variables, generated by m are compared with the corresponding known inputs ym of the

modified model. If the difference is more than the required tolerance then a new set of

guessed values for xm which are calculated based on the Gauss-Newton method, are

provided again as input to model m.

This iterative procedure is repeated until convergence is attained. The convergence here

means the difference between the output variables generated by m and the known input

variables ym become less than the minimum required tolerance level set by the designer.

Figure 4-2 shows a flow chart depicting the solving of the modified models.

93

In the flow diagram xmc
 represents the initial guessed values for xm and tol is the

tolerance level. ymd is the output generated by model m, which has to be compared with

ym. If the difference is above the required tolerance then the iteration is repeated until

convergence is reached.

G-N method

model m

xmc

xr

xm

ymd,yr

if ymd-ym <
tol

ym

ymd-ym

no
yes

xm,yr

In
pu

ts

Outputs

denotes iterative loop

Figure 4-2 Flowchart for solving modified models

In the Gauss-Newton method the vector xm during each iteration is calculated by the

Equation 4-1.

Equation 4-1 Equation for calculating values of the iterative variables of modified models,

using Gauss-Newton method

() 11 () . () . () . ()k k k T k k T k
f f fxm xm J xm J xm J xm f xm

−+ = −

Here k represents the iteration number and Jf (xm) is the jacobian of function f at xm.

Function f(x) involves one single execution of the original model m (with xr and xm as

input) and the output of f(x) is the vector containing ymd-ym.

94

Since models are black-boxes and are not directly differentiable, finite difference

method is employed for obtaining the Jacobians in the Gauss-Newton method. For

more details on the Gauss-Newton method see Appendix-II.

Example

Modified model given in Figure 4-1 is solved as described below.

For this modified model,

{ }
{ }
{ }
{ }

,x Npax Wpax

y PL

xm Npax

ym PL

=

=

=

=

Hence

{ }
{ }

xr Wpax

yr

=

=

Given the inputs PL=17250 and Wpax=115, the output Npax is calculated as follows.

The initial guessed value for xm, xmc is given as 1. On solving, based on the flowchart

in Figure 4-2, 150 is the solution obtained for PL. Table 4-1 shows the progress of

different values (depicted in the flow chart), during each iteration.

Table 4-1 Variation in the swapped variables during the solving of ‘Payload’ modified

model

Iteration xm(Npax) ymd(PL) ymd-ym

1 1 115 -17135

2 2 230 -17020

3 4.5 517.5 -16732

4 10.75 1236.3 -16014

5 26.375 3033.1 -14217

6 65.4375 7525.3 -9724.7

7 150 17250 2.5705e-004

95

Here the convergence is attained in seven iterations. The tolerance level is kept 1e-3,

hence the iteration terminated when the values of ymd-ym reached 2.5705e-4.

The limitation of solving the modified models using Gauss-Newton method is that the

solution obtained is greatly dependent upon the starting points (xmc). For example,

Figure 4-3 shows a curve for the function y=sin(x). Let us consider that this function is

modified in order to generate output x, given input y. Considering a case where input y

is given a value of 0.6, a starting guess of 200 (for x) will generate 143.1301 as output

(for x). However, if a value of 400 is given as the initial guess, then 396.8695 will be

the computed output for x.

Figure 4-3 Sine curve

Additionally, by using Gauss-Newton method the iterations may not always converge to

a root, especially when the starting points are too far away from the solution.

A problem associated with solving the modified model is that, if the switched variables

in a modified model are insensitive to each other, then a solution will not be achievable.

The problem is discussed in the next paragraph.

y=sin(x)
z=tan(j)

x
j

y
z

m

Figure 4-4 A model for demonstrating sensitivity of switched variables.

In Figure 4-4, for the modelm, x and j are the inputs and y and z are the outputs. Models

are black boxes and the constituent equations are generally hidden, but in the Figure 4-4

96

these are shown only for demonstration purpose.It is clear from the equations that the

input x and output z of the model m will be unrelated. This means that variable z is

insensitive to variable x. If after variable flow modelling, these variables are switched,

then obtaining a solution for x, given z as input is impossible. Such situation will lead to

an unsolvable modified model. The same applies to input j and output y.

The above example is a case where the switched variables are totally insensitive to each

other. There will be cases where the switched variables will be weakly sensitive to each

other. Switching these variables will lead to numerous iterations required for

convergence for a modified model which adds to the computing cost for the system.

In complicated aircraft design problems similar situations as the cases described above

might arise. Unlike the above example, the information within the models is generally

unavailable. Therefore to obtain the sensitivity of the input variables to the output

variables of the models, sensitivity analysis (Cacuci, 2003) has to be carried out. The

results obtained should be used to decide which variable can be switched in a model.

The sensitivity of the switched variables of the modified models in practice should be

taken into consideration while generating the variable flow models in order to avoid

unsolvable modified models.

The systems used for testing in this research did not have any models which totally

insensitive inputs and outputs variables. Hence the sensitivity of the switched variables

was not considered while generating the variable flow models.

The solvability of a modified model is dependent on the sensitivity of the switched

variables, the starting point chosen for the unknown variables and various other issues

which are yet to be identified. Normalising the models based on this information will

assist in grading these models in the system according to its solvability and thus

providing a criterion for intelligently choosing the models which are to be modified

(i.e. choosing that variable flow model as the optimum, in which the contained modified

models are quickly solvable) during the computational design process modelling.

Conducting sensitivity analysis for each model and normalising them was out of scope

of the current research context and therefore is left as a future work.

97

4.3 Schemes for Solving Strongly Connected Components

This section describes the application of two different methods for solving the SCCs,

the Fixed-point-iteration (FPI) method and the Gauss-Newton (GN) method. The Fixed-

point-iteration method is applied in two different manners for solving the SCCs.

4.3.1 Solving SCC using Fixed point iteration method

SCCs contain iterative loops, the presence of which necessitate certain variables to be

known before they actually become available as output from models which appear later

in the execution sequence. A simple SCC is shown in Figure 4-5.

model1

model2

x1 y1

y2

y3

Figure 4-5 A simple SCC

For this SCC, model1 has x1 and y2 as input and y1 as output, and model2 has y1 as

input and y2 and y3 as outputs. The execution sequence for this SCC is

model1 model2. It can be noted from the execution sequence that model1 requires y2

as input in order to be executed. However, y2 is computed by model2 which appears

later in the execution sequence. This situation is always encountered in a SCC and is the

main difficulty when solving it.

The fixed point iteration method (FPI) tackles this situation by starting with an initial

guess of the unknown inputs. Thereafter once the real values of these variables are

available from the models which appear later in the execution sequence, these values are

fed back into the earlier model and the execution is repeated. The iterative execution

sequence is continued until the difference between the guessed values and the real

values obtained are below the required tolerance level.

For the above example, initial guessed value of y2g is given as input to model1.

Thereafter model1 and then model2 is executed. If the difference between y2, obtained

as output from model2, and y2g
 is above the required tolerance then the new y2 is given

as input to model1 and the execution is repeated. The iteration is continued until y2

equals y2g or their difference is below the minimum tolerance level.

98

A detailed explanation of the fixed point iterative method is given in the Appendix-III.

Now we explain two different ways of executing the models in a SCC while solving it

using Fixed-point-iterative method. These will be called as Fixed-point-iterative first

method and Fixed-point-iterative second method

In the first method, the sequence of executing the models is determined according to the

presence of the feedback variables and their convergence. The models covered by a

particular feedback loop are executed iteratively until the feedback variable attains

convergence. Once the convergence is established the execution is continued with the

subsequent models.

1

2

3

4

a

b

c

Figure 4-6 An example SCC with three feedback loops

In the SCC shown in the Figure 4-6, the iterative loops are represented as a, b and c.

The execution sequence for this sub-system is 1 2 3 4. However, according to the

method described above, the execution of the models is re-established based on the

feedback loops. In this example, initially models 1 and 2, covered by the feedback loop

a are iteratively executed until the feedback variable attains convergence. Thereafter the

subsequent model 3 is executed, which is again part of another loop b and hence

execution is diverted back to model 2. The execution of model 2 with the new inputs

obtained from model 3 might create a new value for the feedback variable of loop a and

thus violating the convergence attained earlier. Therefore the iteration of loop a is

continued further. This iterative solving procedure is continued until all the feedback

variables attain convergence.

In the second method for solving the SCC using Fixed-point-iteration method, the

execution sequence is not re-established as in the previous method. Here the feedback

variables are updated at the end of each iteration. Here a single iteration involves

99

executing once all the models in the SCC. For example, for the SCC shown in Figure

4-6, one iteration involves executing the models 1 2 3 4, thereafter feedback

variables of the loops a, b, c are updated with the new values obtained after the

execution. Subsequently this iterative procedure is repeated until the convergence is

attained i.e., the values of the feedback variable obtained as output after the execution

equals to values which were given as inputs before execution.

The convergence of Fixed-point-iteration is highly dependent on the starting guess

provided for the feedback variables by the designer. The nearer the guessed value to the

solution the faster is the convergence.

4.3.2 Solving SCC using Gauss-Newton method

Solving the SCC using Gauss-Newton method involves solving it as a non-linear least-

square problem.

In the above mentioned FPI –second method, the latest computed values were used for

the feedback variables for the subsequent iteration. In contrast, while applying the

Gauss-Newton method the values of the feedback variables during each iteration are

calculated by the Equation 4-2. However, the execution sequence for the models is

similar to FPI-second method.

Equation 4-2 Equation for calculating values of the iterative variables of SCC, using

Gauss-Newton method

() 11 () . () . () . ()k k k T k k T k
f f fx x J x J x J x f x

−+ = −

Here x is the vector of feedback variables, k represents the iteration number and Jf (x) is

the jacobian of function f at x. Function f(x) involves one single sequential execution of

all models in the SCC (with x as inputs) and the output of f(x) is the vector containing

the difference of the feedback variables in the previous and the current iteration.

Solving the SCC involves executing all the models in a sequence and thereafter iterating

with the new feedback variables generated by the Equation 4-2 until convergence is

attained. The aim is to make the output of function f(x) to zero.

Here also solution obtained is greatly dependent upon the starting points of the feedback

variables. Additionally, by using Gauss-Newton method the iterations may not always

100

converge to a root, especially when the starting points are too far away from the

solution.

4.4 Solving SCC and Modified Models at System Level

The presence of modified models adds complexity when solving the SCC in a system.

This is because the modified models have to be solved during each iteration of solving

the SCC.

There are two approaches to solve such cases. The first approach is rather straight-

forward: here the SCC and the modified models are solved independently. The

difficulty is that the modified models have to be solved during each iteration of the SCC

and this will add significantly to the computing time in order to attain total convergence.

If there are multiple modified models then the problem amplifies.

The second method is to solve SCC and the modified models jointly at the system level.

Since the Gauss-Newton method is applicable for solving both the SCC and modified

models, the problem has been reformed to solve these together.

The feedback variables of the SCC and the xm variables of the modified models are

solved together. During each iteration of the SCC all these variables are computed by

the Gauss-Newton method and passed on to the required models. The iterative solving is

continued until convergence is attained. The example given below explains the

procedure in detail.

Figure 4-7 An example SCC with modified models

101

The Figure 4-7 shows a SCC with three models. From the incidence matrix it is clear

that model3 and model1 are modified. The graphical view of the system is shown in

Figure 4-8.

Here,

Feedback variable for the SCC= {X1}

xm for model1= {X4}

xm for model3={X1}

The equation for computing the iterative variables is the same as Equation 4-2. How

ever here, the vector x will contain the feedback variables of SCC and also the xm

variables of the modified models. The function f involves executing once the models in

the SCC. The output of the function will be the vector containing the difference in the

feedback variables in the previous and current iteration (for the SCC) and also ym-ymd

(which was described earlier) (for the modified models).

modified
model1

model2

modified
model3

X4

X5

X6

X7

X1

X3

X3

X3

X1

Figure 4-8 Graphical view of the SCC with modified models

In the above example, the vector x which has to be computed during each iteration of

the SCC using the Gauss-Newton method will be {X1, X4}. In this particular case the

Jacobian matrix for the Gauss-Newton method will be non-square because the length of

the vector of output (3 in this case) of function f is different from the input vector (2 in

this case).

Solving the SCC sub-system in this manner has shown faster convergence rate

compared to the first method.

102

4.5 Summary and Conclusions

This chapter has explained the various methods that were used in this research for

solving the modified models and the SCCs.

Gauss-Newton method, used for solving non-linear least-squares problems, is

introduced here for solving the modified models.

Two methods, the fixed-point-iterative method and the Gauss-Newton method, used in

this research for solving the SCC are described in this chapter. In addition, two different

ways for applying the fixed-point-iterative method to solve SCC, are also explained.

An approach was also introduced to solve the SCC and inherent modified models jointly

by the Gauss-Newton method.

It is also shown here that while conducting variable flow modelling, the sensitivity of

the switched variables of the modified models has to be taken into consideration in

order to avoid unsolvable modified models. The implementation of this aspect is left as

a future work.

103

5 RESULTS AND DISCUSSION

5.1 Introduction

This chapter explains the various tests conducted in order to evaluate the methods and

approaches developed as part of this research. The chapter has four sections. The first

section explains the USMAC, an aircraft conceptual design test case which was widely

used for testing. The second section evaluates the two objective functions which were

chosen for scheduling the coupled models by genetic algorithm. The third section

describes the testing of the proposed computational process modeller on two test cases.

Finally, the conclusions are presented.

5.2 The USMAC Test Case

The Ultra Simplified Model of Aircraft (USMAC) is an aircraft conceptual design test

case supplied by the industrial partner (VIVACE, 2005) and has been widely used for

testing the various methods developed in this research. Even though it is a simplified

version, the case incorporates the most relevant aspects of aircraft conceptual design,

such as the multidisciplinary nature of computation, heterogeneous data and non-linear

models. The simplification is done so that the computation can be as simple and as fast

as possible while still being representative of real design practice.

The USMAC is a set of 97 models and 124 variables; most of the models are not longer

than single line expressions.

Example: Range estimation based on Breguet-Leduc formula

 Model: RA = range_(Kra,TOW,LDW,Mach,vsnd,g,lod,sfc)

 RA = Kra*(vsnd*Mach*lod)/(sfc*g)*log(TOW/LDW)

 End

The details of the models and the variables in USMAC are given in a tabular format in

the Appendix-IV.

104

5.3 Evaluation of the Objective Function

A genetic algorithm based approach was presented in section 3.2.3.1 for scheduling the

coupled models (SCC). Number of feedback loops number (feedback number) was

considered as the objective function to be minimised.

In this section we analyse the most commonly used objective functions for

rearrangement, which are the number of feedback loops (Rogers, 1997) and the

feedback length (Altus et al., 1996), in the context of aircraft conceptual design. The

equation to calculate the feedback length is given in Equation 2-2. In the equation the

term DM is the same as the term D in Equation 3-11.

The testing is performed by studying the effect of feedback length and number of

feedback loops, on the computing time of the SCC in a system.

The USMAC test case is setup for testing with the following independent variables.

Independent Variables: Awing, BPR, FNslst, Fuel, Mach_clb, Mach_crz, Mach_cth,

Naisle, Npax, NpaxFront, alt_app, alt_clb, alt_crz, alt_cth, alt_to, disa_clb, disa_crz,

disa_cth, disa_to, ne, phi, span, tuc.

After computational process modelling, out of the 97 models, 15 models are identified

as strongly connected. They are:

take_off_weight_,system_mass_,landing_gear_mass_,wing_mass_,manu_weight_empt

y_,ope_weight_empty_,landing_weight_,mean_cruise_mass_crz,level_flight_crz,frictio

n_drag_crz,induced_drag_crz,drag_factor_crz,lift_to_drag_crz,range_crz,operator_item

mass.

In this case there was only a single variable flow model identified for the system and

there was no modified model present in the system.

 In order to evaluate the objective functions, models belonging to the SCC are arranged

in various sequences. Each sequence has its corresponding feedback length and

feedback number (i.e. the number of feedback loops). Each arrangement of the SCC and

the remaining non-coupled models are assembled into fully executable systems which

can compute all the unknown variables. Since the convergence of the SCC can be solver

dependent, each SCC sub-system has been solved individually with Fixed-point

iteration first method, Fixed-point iteration second method and Gauss-Newton method,

105

as solvers. (The features of those solvers were explained in section 4.3). The number of

calls made to each model in the SCC while solving them are considered as the criteria

for deciding the computational cost involved in solving the SCC. Different tests

conducted have proven that these ‘number of calls’ correspond to the computing time

and cost for the system.

For testing the efficiency of the feedback number as the objective function, each system

is arranged according to the increasing feedback number for its constituent SCC and

further executed. The sum of the calls made to each model of the SCC, while solving

the SCCs using each of the three solvers, which corresponds to its computational cost

are given in Table 5-1. In the table, the systems are arranged in the increasing order of

the feedback number. The corresponding graph (curve fit) is given in Figure 5-1. It can

be noted that there are many arrangements possible for the models in the SCC for the

same feedback number. For example there were 12 ways of arranging the models in the

SCC with feedback number of 4. All these arrangement were taken into consideration so

that the net effect can be observed rather considering just a single arrangement for a

particular feedback number.

In Table 5-1, the fifth column for Gauss-Newton method represents the sum of calls

made to each model in the SCC for solving, excluding the ones for calculating

Jacobians. The subsequent sixth column sums up all the calls. The starting points for the

feedback variables, while solving the SCC, for all the three solvers are given the value

of unity.

Table 5-1 Number of calls made by each solver to solve the SCC

 Sum of the calls made to each model in the SCC

USMAC
System

No.

Feedback
number

FPI- first
method

FPI-second
method

Gauss-Newton
method

Gauss-Newton
method

(including calls
for calculating

jacobians)
1 2 387 360 165 540
2 3 428 630 285 1200
3 3 441 435 195 840
4 4 486 570 285 1440
5 4 486 555 285 1440
6 4 486 615 285 1500
7 4 1279 660 375 1890

106

8 4 1304 660 375 1890
9 4 1309 660 375 1890
10 4 1324 660 375 1890
11 4 1334 660 375 1890
12 4 1349 660 375 1890
13 4 1349 660 375 1890
14 4 1354 660 375 1890
15 4 1359 660 375 1890
16 5 1443 645 285 1800
17 5 1468 630 285 1725
18 5 1493 630 285 1725
19 5 1498 645 285 1800
20 5 1513 660 285 1725
21 5 1523 630 285 1725
22 5 1528 630 285 1725
23 5 1533 630 285 1725
24 5 1538 630 285 1725
25 5 3197 735 390 2355
26 5 3314 735 390 2355
27 5 3382 735 390 2355
28 5 3398 735 390 2355
29 5 3398 735 390 2355
30 5 3420 735 390 2355
31 5 3455 735 390 2355
32 5 3466 735 390 2355
33 5 3474 735 390 2355
34 5 3485 735 390 2355
35 5 3485 735 390 2355
36 5 3542 735 390 2355
37 6 3741 735 285 2100
38 6 3798 735 285 2100
39 6 3809 720 285 2100
40 6 3825 720 285 2100
41 6 3828 735 285 2100
42 6 3828 720 285 2100
43 6 3844 720 285 2100
44 6 3882 720 285 2100
45 6 3901 720 285 2100
46 6 3912 735 285 2100
47 6 3931 735 285 2100
48 6 4010 810 390 2745
49 6 4113 810 390 2745
50 6 4137 810 390 2745
Average calls 2475.74 681.6 328.5 1984.8

107

Figure 5-1 Feedback number versus sum of the calls made to each model in the SCC by

each solver (The graph is curve fitted)

From the graph in the Figure 5-1 it is clear that, while solving the SCC in the system

with FPI-first solver and Gauss-Newton, there is an increase in the sum of the calls to

the models with increase in the feedback number. For FPI-second solver the effect of

the feedback number on the sum of the calls to the models is negligible.

Compared to the other two solvers FPI-second solver has taken the least average

number of calls to solve the SCC (Average number of calls: FPI-first: 2475, FPI-

second: 681 and GN: 1984 calls). This indicates that FPI-second is the most efficient

solver for SCC in this case.

As the next step, in order to test the efficiency of the feedback length as the objective

function, each system is arranged according to the increasing feedback length for its

constituent SCC and further executed. The sum of the calls made to each model of the

SCC for solving it, for each system arrangement, by each of the three solvers, are given

in the Table 5-2. In the table, the systems are arranged in the increasing order of the

feedback length. The corresponding graph (spline fit) representation is in Figure 5-2.

108

Table 5-2 Number of calls made by each solver to solve the SCC

 Sum of the calls made to each model in the SCC

USMAC
system

No.

Feedback
length

FPI- first
method

FPI-second
method

Gauss-
Newton
method

Gauss-Newton
method (including

calls for calculating
jacobians)

1 23 610 255 285 870
2 23 610 255 285 870
3 24 611 210 150 495
4 25 657 210 150 495
5 25 675 435 285 1200
6 25 702 255 285 870
7 25 976 255 285 870
8 25 976 255 285 870
9 26 663 210 150 495
10 26 703 210 150 495
11 26 748 255 285 870
12 26 1037 255 285 870
13 27 195 210 165 360
14 27 699 210 150 495
15 27 749 210 150 495
16 29 996 300 285 1155
17 29 1083 300 285 1155
18 30 747 240 285 870
19 30 1078 300 285 1155
20 31 315 255 180 585
21 31 590 255 180 780
22 31 761 240 285 870
23 31 1117 300 285 1155
24 31 1638 300 285 1155
25 32 1182 255 180 780
26 33 328 255 180 585
27 33 643 255 180 780
28 33 1155 255 180 780
29 33 2185 255 180 780
30 33 2903 300 285 1155
31 34 1173 255 180 780
32 34 1283 300 285 1155
33 35 671 300 285 1155
34 35 696 255 180 780
35 35 1329 300 285 1155
36 35 1989 300 285 1155
37 36 717 300 285 1155
38 36 732 300 285 1155

109

39 36 780 255 180 780
40 37 1332 255 180 780

Average
calls 975.85 264.375 232.875 860.25

Figure 5-2 Feedback length versus sum of the calls made to each model in the SCC by each

solver (The graph is curve fitted)

In this case, the sum of the calls made to the models (Figure 5-2), by each of the three

solvers, for solving the SCC, did not show any particular pattern of influence from the

feedback length. The effect was much more evident in the previous case of feedback

number.

As in the previous case, compared to the other two solvers, FPI-second solver has taken

the least average calls to solve the SCC (Average number of calls: FPI-first: 975, FPI-

second: 264 and GN: 860 calls).

From the above two case setup it can be concluded that, compared to the feedback

length, increase in the feedback number lead to increased computational cost for the

SCC especially when FPI-first method is used for solving it.

110

The conclusions derived from the testing performed above prove that during the

rearrangement of the models in the SCC by GA, reducing the feedback number actually

reduces the computing cost for the SCC. This confirms the appropriateness of feedback

number being chosen as the objective function while rearranging the SCC.

Even though FPI-second solver had the least average calls in solving the SCC, the

chosen objective functions did not correspond with the computational cost associated

with the FPI-second solver. From this observation it can be concluded that the objective

function is solver depended and cannot be generalised for any solver. Since the

currently tested objective function of number of feedback loops has shown good

correspondence with the FPI-first solver, they were used as the objective function and

solver during the various tests conducted during this research.

5.4 Computational Process Modelling Evaluation

The computational process modeller for computational process modelling of

complex systems was presented in Chapter 3. This section analyses the effectiveness of

this process plan in generating optimal computational plan for the systems by applying

and testing it on a simple sizing test case and the USMAC case.

After applying the computational process modeller to each case the

computational cost for the optimal computational plan obtained is compared with the

non-optimal ones generated while performing the computational process modeller. Here

the computational plan refers to the data flow obtained after variable flow modelling

and also the execution sequence obtained for the models after the decomposition and

scheduling. The non-optimal computational plan refers to thecomputational plan based

on those variable flow models for the SCCs which were not selected as the optimal. The

comparison is performed on the basis of the number of calls made to the models of the

SCC during the solving process. Here, the number of calls corresponds to the

computational cost for the system and hence chosen as the standard for comparison.

The strongly connected components are solved using FPI- first method, since the

objective function (feedback number) used for rearranging the coupled models in the

SCC fits well with this solver. This was proven in the previous section. In all the cases

the unknown variables are given a starting point of unity while solving.

111

The next two sections describe the testing of the computational process modeller

on a simplified sizing test case and the USMAC test case.

5.4.1 Simplified sizing test case

A simplified set of aircraft sizing equations from Buckley (1992) is considered for

testing the computational process modeller. The equations are shown in Figure 5-3.

Figure 5-3 Simplified aircraft sizing problem (test case)

Here We is the empty weight, Wo is the gross take off weight, Sref is the wing

area and R represents the range. This set of equations is for the mission profile shown in

Figure 5-4. The symbols W# in Figure 5-4 represent the weight of aircraft at each

position of the mission. These equations have been considered for testing purpose only

and may not represent a real aircraft case.

Figure 5-4 Mission profile for the sizing problem

1. We=Wo*2.61*Wo(-0.1)*(Wo/Sref)(-0.05)
2. Wo=Wf+We
3. Walt=0.985*WLO
4. Wx=0.995*Wec
5. Wf=1.06*(1-Wx/Wo)*We
6. WLO=0.97*Wo
7. Wec=Exp[0.00043R]*Walt
8

112

Since in this research the focus is on generating computational plans for models,

these equations are compiled and formed as models. The inputs and outputs for each

model are shown in Figure 5-5.

Figure 5-5 Models for simplified aircraft sizing problem

This test case is set up with two different sets of independent variables. Both cases have

two variables as inputs, which leads to a determined system:

TNvar –NIvar-Noutmod = 9-2-7=0 determined system

Table 5-3 Independent variables selected for each case

 Independent
variables

Case1 R, We

Case 2 R, Sref

The set of input variables in each case are given in Table 5-3. The two cases are diverse

in terms of the generated computational plan. The first case has six models and the

second case has all the seven models constituting the SCC.

5.4.1.1 Case1

The final matrix obtained after applying IMM with R and We as independent variables

is shown in the Figure 5-6.

113

Figure 5-6 Incidence matrix for Case1 of the sizing test case (Blank cells denote ‘0’).

From the figure it is clear that models 2, 3, 4, 5, 6 and 7 are part of the SCC, since there

are 1s stills remaining in the corresponding rows of the matrix (The decomposition

performed later has shown that these models belong to a single SCC). On further

solving for the SCC, three variable flow models are generated. The variable flow

models and the corresponding rearranged DSMs obtained for the SCC are shown in

Figure 5-7. In the DSMs shown in the figure, value of 1 on the diagonal elements

represents the models which are modified as a result of variable flow modelling.

Figure 5-7 Variable flow models and corresponding rearranged DSMs of the SCCs for

case 1 of the sizing test case (Blank cells denote ‘0’).

114

Solving

For a comparative testing each variable flow model obtained for the SCC (shown in

Figure 5-7) are setup and executed. Table 5-4 provides the details of the variable flow

models for the SCC, along with their execution and other relevant details.

Table 5-4 Details of computational process modeling and solving of SCC for case 1 of the

sizing test case.

Computational process modelling Solving

Variable
flow
model

Number
of

feedback
loops

(nFdb)

Number
of

modified
models

(nMm)

Optimal
flow

model

(chosen
by process

plan)

Number of
calls to the
models in

SCC

% additional
computational cost

1 2 2 340 529% more

2 1 6 434 703% more

3 1 0 ■ 54 base

Discussion

The optimal variable flow model selected by the computational process modeller is the

third one which has the least number of modified models (zero in this case). On

executing, from the number of calls made to the models belonging to the SCC for each

of the three different variable flow models it is clear that the third variable flow model

has made the least number of calls. This agrees with the computational process

modeller’s choice of optimal flow model.

Since there were no variable flow models which have equal number of modified

models, there was no requirement for comparing and selecting from them the optimal

one based on the feedback number. However it has to be noted that the SCC for each

variable flow model was rearranged using genetic algorithm in order to obtain the

arrangement with least feedback number.

From the table it is also understandable that as the number of modified models increases

the computational cost increases.

115

The final computational plan generated by the computational process modeller, after

applying the final scheduling, is given below.

Computational Plan

Inputs for the system

R, We

Outputs of the system

Sref,Walt,Wec,Wf,Wlo,Wo,Wx

Execution sequence

1) scc_1, 2) modified_model1

In the list above, the models with prefix ‘modified’ means, modified models.The SCC

in the system are represented with prefix ‘scc’. The process number 1 in the process

execution sequence given above is a strongly connected component. The details of this

process are given below.

Strongly Connected Components

1. scc_1

Inputs to SCC

 R, We

Outputs of SCC

Walt, Wec, Wf, Wlo, Wo, Wx

Execution sequence

 model2, model6, model3, model7, model4, model5

 Treatment (Solver)

FPI-first method

The variable flow model for this SCC is the variable flow model number 3 shown in the

Figure 5-7.

5.4.1.2 Case2

The final matrix obtained after applying IMM with R and Sref as independent variables

is shown in the Figure 5-8. From the Figure 5-8 it is clear that all the models in the

system are part of the SCC, since there are 1s stills remaining in each row of the matrix

(The decomposition performed later has shown that these models belong to a single

SCC). On further solving for the SCC, four variable flow models are generated.

116

Figure 5-8 Incidence matrix for Case2 of the sizing test case (Blank cells denote ‘0’).

The variable flow models and the corresponding rearranged DSMs obtained are shown

in the Figure 5-9.

Figure 5-9 Variable flow models of the SCCs for case 2 of the sizing test case (Blank cells

denote ‘0’).

117

Solving

Table 5-5 provides the details of the variable flow models for the SCC, along with their

execution and other relevant details. The variable flow models are given in the Figure

5-9.

Table 5-5 Details of computational process modeling and solving of SCC for case 2 of the

sizing test case.

Computational process modelling Solving

Variable
flow

model

nFdb nMm

Optimal
flow model

(chosen by
process
plan)

Number of
calls to the
models in

SCC

% additional
computational cost

1 1 6 1167 495% more

2 2 0 ■ 196 base

3 2 2 579 195% more

4 2 3 853 335% more

Discussion

The optimal variable flow model selected by the computational process modeller is the

second one which has the least number of modified models (zero in this case). While

solving, the second variable flow model for the SCC has the least number of calls to the

models. This supports the computational process modeller’s choice of the second

variable flow model as the optimum one.

As in the previous case, from the table it is also understandable that as the number of

modified models increases the computational cost increases.

The final computational plan generated by the computational process modeller, after

applying the final scheduling, is given below.

Computational Plan

Inputs for the system

R, Sref

Outputs of the system

We,Walt,Wec,Wf,Wlo,Wo,Wx

118

Execution sequence

1) scc_1

The process number 1 in the process execution sequence given above is a strongly

connected component. The details of this process are given below.

Strongly Connected Components

1. scc_1

Inputs to SCC

 R, Sref

Outputs of SCC

We,Walt, Wec, Wf, Wlo, Wo, Wx

Execution Sequence

 model2, model6, model3, model7, model4, model1, model5

 Treatment (Solver)

 FPI-first method

The variable flow model for this SCC is the variable flow model number 2 (which was

chosen as the optimum) shown in the Figure 5-9.

5.4.2 USMAC case

The USMAC test case is set up in three different ways with each one having a different

set of variables as inputs. All the three cases had 23 variables as inputs, which leads to a

determined system.

TNvar –NIvar-Noutmod = 124-23-101=0 determined system

 The three cases were setup in order to demonstrate the capability of the computational

process modeller in generating computational plans for the system with randomly

chosen inputs. The three cases were diverse in terms of the generated computational

plan. The first two cases had one SCC and the last case had two SCCs in the final

computational plan. The contained models of the SCC were also different in the three

cases.

As in the previous cases the unknown variables are given a starting point of unity while

solving. The detailed explanations regarding how the final computational plan for each

119

case was generated are not given here. However, the details of the final computational

plan obtained are given for each case.

5.4.2.1 Case1

The inputs variables given for system are Awing, Leh, MTOW, Mach_clb, Mach_crz,

Mach_cth, PL, RA, alt_clb, alt_crz, alt_cth, alt_to, dfus, disa_clb, disa_crz, disa_cth,

disa_to, dnac, g_app, ne, phi, span and tuc.

After decomposition thirteen models are identified as strongly connected in the system.

They are;

level_flight_crz,induced_drag_crz,mean_cruise_mass_crz,friction_drag_crz,drag_factor

_crz,landing_weight,ope_weight_empty,manu_weight_empty,lift_to_drag_crz,engine_

mass, range_crz, spec_fuel_cons and nacelle_diameter.

 There were twelve variable flow models generated for the SCC. However, only four

variable flow models produced a converged solution and hence only these will be

discussed here. The non-converged once were those variable flow models which have

higher number of modified models and feedback numbers. The details of one of the

twelve variable flow models which gave a non converged solution are also given for

completeness. The incidence matrices and the corresponding rearranged DSMs of these

five flow models are given in the Appendix-V.i (Figure A- 3 to Figure A- 12).

Table 5-6 Details of computational process modeling and solving of SCC for case 1

Computational process modelling Solving

Variable
flow

model

nFdb nMm

Optimal
flow model

(chosen by
process
plan)

Number of
calls to the
models in

SCC

% additional
computational cost

1 3 6 117 95% more

2 5 11 158 163 % more

3 6 3 ■ 60 base

4 5 9 198 230% more

5 8 11 Non
converged -

120

Solving

Table 5-6 provides the details of the variable flow models for the SCC, along with their

execution and other relevant details.

Discussion

The variable flow model 3 was chosen by the computational process modeller as the

optimal one, since this flow model has the least number of modified models. Since there

were no variable flow models which have equal number of modified models, there was

no requirement for comparing and selecting from them the optimal one based on the

feedback number.

It is shown in the Table 5-6, that the selected optimal flow model has the lowest

computational cost for the SCC in comparison with the other variable flow models.

From the Table 5-6 it is also clear that when the number of modified models increases

the computational cost for the SCC also increases. However, for the variable flow

model number 4, even though the number of modified models is less than the one for

the flow model 2, it has taken more calls to obtain a converged solution.

This discrepancy was studied in detail. It was identified that they occurred because the

convergence of the SCC was not only depended on the number of modified models and

the feedback number, but also on various other factors such as, the starting point for the

unknown variables, mutual sensitivity of the switched variables of the modified models

(see section 4.2 for more details) and other factors which are yet to be discovered. In the

current research, the focus has been on the modified models and the feedback number.

The variable flow model 5 which had the highest number of modified models and

feedback number lead to a non-converged solution. This approves the fact that higher

the number of modified models and feedback number, higher will be the computational

cost for the system.

The final computational plan obtained for USMAC after performing the computational

process modelling using the computational process modeller, is given in the next

121

paragraph. The incidence matrix which displays the variable flow model generated by

IMM, for this system is shown in Figure A- 1 in the Appendix-V.i. In the figure models

belonging to SCC are confined into a single process.

Computational Plan

Inputs for the system

Awing, Leh, MTOW, Mach_clb, Mach_crz, Mach_cth, PL, RA, alt_clb, alt_crz,

alt_cth, alt_to, dfus, disa_clb, disa_crz, disa_cth, disa_to, dnac, g_app, ne, phi,

span, tuc

Outputs of the system

lod_crz, lod_cth, mass_clb, mass_crz, mass_cth, rho_clb, rho_cth, rho_to, sfc,

tofl, vapp, vsnd_clb, vsnd_crz, vsnd_cth, vz_clb, wAfus, wAht, wAnac, wAvt,

wAwing

Execution sequence

1)aspect_ratio_,2)fin_lever_arm_,3)fin_volume_factor_,4)tail_volume_factor_,5

)reference_length_,6)gravity_acc_cth,7)non_stand_atmos_cth,8)top_of_climb_

mass_cth,9)gravity_acc_clb,10)non_stand_atmos_clb,11)top_of_climb_mass_cl

b,12)one_pax_weight_,13)Cz_max_TO_factor_,14)fin_size_,15)tail_size_,16)m

odified_tail_lever_arm__tr,17)reference_area_,18)gravity_acc_to,19)non_stan

d_atmos_to,20)level_flight_cth,21)level_flight_clb,22)non_stand_atmos_crz,23)

modified_Payload__tr,24)Cz_max_TO_,25)ref_mach_number_,26)fric_drag_f

actor_,27)ind_drag_factor_,28)press_drag_factor_,29)fin_wetted_area_,30)tail_

wetted_area_,31)wing_wetted_area_,32)fus_wetted_area_,33)nac_wetted_area_,

34)Mach_stall_to_,35)Kvs_Take_Off,36)friction_drag_cth,37)induced_drag_cth

,38)pressure_drag_cth,39)friction_drag_clb,40)induced_drag_clb,41)pressure_dr

ag_clb,42)pressure_drag_crz,43)gravity_acc_crz,44)sound_velocity_crz,45)MW

E_factor_,46)operator_item_mass_,47)furnishing_mass_,48)fin_mass_,49)tail_

mass_,50)wing_mass_,51)system_mass_,52)landing_gear_mass_,53)fuselage_

mass_,54)sfc_factor,55)secured_Mach_to,56)air_density_to,57)drag_factor_cth,

58)air_density_cth,59)drag_factor_clb,60)air_density_clb,61)Cz_max_LD_facto

122

r_,62)scc_test_smac_tr,63)Kvs_Landing,64)max_take_off_factor,65)net_thrust

_to,66)net_thrust_cth,67)lift_to_drag_cth,68)max_climb_factor,69)net_thrust_cl

b,70)lift_to_drag_clb,71)sound_velocity_clb,72)max_cruise_factor,73)modified

_take_off_weight__tr,74)wing_fuel,75)Cz_max_LD_,76)modified_fuselage_le

ngth__tr,77)app_speed_1,78)modified_gravity_acc_app_tr,79)tofl_1,80)cruise

_thrust_1,81)sound_velocity_cth,82)climb_rate_1,83)time_crz,84)fus_fuel_ratio

_,85)modified_fuselage_diameter__tr

The process number 62 in the process execution sequence given above is a strongly

connected component. The details of this process are given below.

Strongly Connected Components

62. scc_test_smac_tr

Inputs to SCC

Aref, Kcx0, Kind, Kmwe, Ksfc, Lref, MTOW, Mach_crz, Mfurn, Mfus,

Mgear, Mht, Mop, Msys, Mvt, Mwing, PL, Pamb_crz, RA, Tamb_crz,

ar, cxc_crz, dnac, g_crz, lfus, ne, vsnd_crz, wAfus, wAht, wAnac, wAvt,

wAwing

Outputs of SCC

BPR, FNslst, LDW, MWE, Mprop, OWE, cx0_crz, cx_crz, cxi_crz,

cz_crz, lod_crz, mass_crz, sfc

Execution sequence

level_flight_crz,induced_drag_crz,mean_cruise_mass_crz,friction_drag_

crz,drag_factor_crz,landing_weight,ope_weight_empty,manu_weight_e

mpty,lift_to_drag_crz,engine_mass,modified_range_crz_tr,

modified_spec_fuel_cons, modified_nacelle_diameter

 Treatment (Solver)

 FPI-first method

The variable flow model for this SCC is the variable flow model number 3 (which was

chosen as the optimum) shown in the Figure A- 8.

The values of the input and output variables obtained after executing the system are

given in the Table 5-7.

123

Table 5-7 Values of the input and output variables obtained after executing the system for

case1

5.4.2.2 Case2

In this case the inputs variables given for system are Awing, Leh, MTOW, MWE,

Mach_clb, Mach_cth, Mprop, Npax, RA, alt_app, alt_clb, alt_crz, alt_cth, alt_to, dfus,

disa_clb, disa_crz, disa_cth, disa_to, ne, sfc, span and tuc.

After decomposition seven models are identified as strongly connected in the system.

They are;

level_flight_crz,range_crz,lift_to_drag_crz,induced_drag_crz,friction_drag_crz,pressure

_drag_crz,drag_factor_crz

There were seven variable flow models generated for the SCC. However, only three

variable flow models gave a converged solution and hence only these will be discussed

here. The non-converged once were those variable flow models which had higher

number of modified models and feedback numbers. The details of one of the seven

variable flow models which gave a non converged solution are also given for

completeness. The incidence matrices and the corresponding rearranged DSMs of these

four flow models are given in the Appendix-V.ii (Figure A- 15 to Figure A- 22).

124

Solving

Table 5-8 provides the details of the SCC and its variables flow models, along with their

solving details.

Table 5-8 Details of computational process modeling and solving of SCC for case 2

Computational process modelling Solving

Variable
flow

model

nFdb nMm

Optimal flow
model selected by

computational
process modeller

Number of
calls to the
models in

SCC

% additional
computational

cost

1 1 4 220 base

2 1 5 900 309% more

3 2 3 ■ 253 15% more

4 2 5 Non-
converged -

Discussion

Since the third flow model has the lowest number of modified models (three), this was

chosen during computational process modeller as the optimal one. However after

execution it was found that, variable flow model 1 had lower computational cost

compared to flow model 3 even though the number of modified models was higher for

this flow model. The reasons for this have been explained in the previous case-1.

Nevertheless, the computational process modeller has chosen a variable flow model 3

which still has much less computational cost compared to the flow model number 2. It

can also be noted that the variable flow model number 4 which had the highest number

of modified model and feedback number lead to a non converged solution.

The final computational plan obtained for USMAC is given in the next paragraph. The

incidence matrix, which displays the variable flow model generated by IMM for this

system is given in Figure A- 13 in the Appendix-V.ii. In the figure models belonging to

SCC are confined into a single process.

Computational Plan

Inputs to the system

125

Awing, Leh, MTOW, MWE, Mach_clb, Mach_cth, Mprop, Npax, RA, alt_app,

alt_clb, alt_crz, alt_cth, alt_to, dfus, disa_clb, disa_crz, disa_cth, disa_to, ne, sfc,

span, tuc

Outputs of the system

Aht, Aref, Avt, BPR, FNslst, Fn_clb, Fn_cth, Fn_to, Fuel, Fwing, Kcx0, Kcxp,

KczmaxLD, KczmaxTO, Kff, Kind, Kmcl, Kmcr, Kmto, Kmwe, Ksfc, LDW,

Lev, Lref, Mach_crz, Mach_stall_to, Mach_to, Mchar, Mfurn, Mfus, Mgear,

Mht, Mop, Msys, Mvt, Mwing, Naisle, NpaxFront, OWE, PL, Pamb_clb,

Pamb_crz, Pamb_cth, Pamb_to, RA_time, Tamb_clb, Tamb_crz, Tamb_cth,

Tamb_to, Vht, Vvt, Wpax, ar, cx0_clb, cx0_crz, cx0_cth, cx_clb, cx_crz,

cx_cth, cxc_clb, cxc_crz, cxc_cth, cxi_clb, cxi_crz, cxi_cth, cz_clb, cz_crz,

cz_cth, czmax_LD, czmax_TO, dnac, g_app, g_clb, g_crz, g_cth, g_to, kfn_cth,

kvs_LD, kvs_TO, lfus, lod_clb, lod_crz, lod_cth, mass_clb, mass_crz, mass_cth,

phi, rho_clb, rho_cth, rho_to, tofl, vapp, vsnd_clb, vsnd_crz, vsnd_cth, vz_clb,

wAfus, wAht, wAnac, wAvt, wAwing

Execution sequence

1)aspect_ratio_,2)tail_volume_factor_,3)reference_length_,4)fin_volume_factor

_,5)fin_lever_arm_,6)tail_size_,7)modified_tail_lever_arm__tr,8)fin_size_,9)t

ail_mass_,10)system_mass_,11)sfc_factor,12)landing_gear_mass_,13)fuselage_

mass_,14)furnishing_mass_,15)fin_mass_,16)MWE_factor_,17)modified_spec

_fuel_cons_tr,18)modified_manu_weight_empty__tr,19)modified_engine_m

ass__tr,20)modified_wing_mass__tr,21)top_of_climb_mass_cth,22)top_of_cli

mb_mass_clb,23)reference_area_,24)operator_item_mass_,25)one_pax_weight_

,26)non_stand_atmos_cth,27)non_stand_atmos_clb,28)nacelle_diameter_,29)gra

vity_acc_cth,30)gravity_acc_clb,31)Cz_max_TO_factor_,32)wing_wetted_area

_,33)tail_wetted_area_,34)ref_mach_number_,35)press_drag_factor_,36)ope_w

eight_empty_,37)non_stand_atmos_to,38)nac_wetted_area_,39)level_flight_cth,

40)level_flight_clb,41)ind_drag_factor_,42)gravity_acc_to,43)fus_wetted_area_

,44)fric_drag_factor_,45)fin_wetted_area_,46)Payload_,47)Cz_max_TO_,48)pr

essure_drag_cth,49)pressure_drag_clb,50)non_stand_atmos_crz,51)landing_wei

ght_,52)induced_drag_cth,53)induced_drag_clb,54)friction_drag_cth,55)friction

_drag_clb,56)Mach_stall_to_,57)Kvs_Take_Off,58)sound_velocity_crz,59)secu

126

red_Mach_to,60)mean_cruise_mass_crz,61)gravity_acc_crz,62)drag_factor_cth,

63)drag_factor_clb,64)air_density_to,65)air_density_cth,66)air_density_clb,67)

Cz_max_LD_factor_,68)wing_fuel,69)modified_take_off_weight__tr,70)sound

_velocity_clb,71)net_thrust_to,72)net_thrust_cth,73)net_thrust_clb,74)max_take

_off_factor,75)max_cruise_factor,76)max_climb_factor,77)lift_to_drag_cth,78)l

ift_to_drag_clb,79)gravity_acc_app,80)modified_fuselage_length__tr,81)scc_1

_tr,82)Kvs_Landing,83)Cz_max_LD_,84)tofl_1,85)time_crz,86)sound_velocity

_cth,87)modified_fuselage_diameter__tr,88)fus_fuel_ratio_,89)cruise_thrust_1

,90)climb_rate_1,91)app_speed_1

The process number 81 in the execution sequence given above is a strongly connected

component. The details of this SCC are given below.

Strongly Connected Components

81. scc_1_tr

Inputs to SCC

Aref, Kcx0, Kcxp, Kind, LDW, Lref, MTOW, Mchar, Pamb_crz, RA,

Tamb_crz, ar, g_crz, lfus, mass_crz, ne, sfc, vsnd_crz, wAfus, wAht,

wAnac, wAvt, wAwing

Outputs of SCC

Mach_crz, cx0_crz, cx_crz, cxc_crz, cxi_crz, cz_crz, lod_crz

Execution Sequence

modified_level_flight_crz,modified_range_crz,modified_lift_to_drag

_crz,induced_drag_crz,friction_drag_crz,pressure_drag_crz,drag_factor_

crz

 Treatment (Solver)

 FPI-first method

 The variable flow model for this SCC is the variable flow model number 3 (which was

chosen as the optimum) shown in the Figure A- 20.

The values of the input variables, and output variables obtained after executing the

system, are given in the Table 5-9.

127

Table 5-9 Values of the input variables, and output variables obtained after executing the

system for case2

5.4.2.3 Case3

In this case the inputs variables given for system are Fwing, LDW, Lev, Mach_crz,

Mach_cth, Mfurn, alt_app, alt_clb, alt_crz, alt_cth, alt_to, cx_crz, czmax_TO, disa_clb,

disa_crz, disa_cth, disa_to, dnac, lod_clb, mass_crz, ne, span and tuc.

After decomposition here two SCCs were identified in this case. The first SCC had

seven models and the second SCC had six models. The models belonging to each SCC

are given below.

SCC 1

nacelle_diameter,spec_fuel_cons,range_crz,operator_item_mass,ope_weight_empty,

manu_weight_empty, engine_mass

SCC 2

lift_to_drag_clb,induced_drag_clb,level_flight_clb,friction_drag_clb,pressure_drag_clb

,drag_factor_clb

For the first SCC, two variable flow models were generated and for the second one there

were six variable flow models. For the second case three variable flow models produced

a converged solution and hence only these will be discussed here. The incidence matrix

128

and the corresponding rearranged DSM of these flow models are given in the Appendix-

V.iii (Figure A- 25 to Figure A- 34).

Solving

Table 5-10 provides the details of all the SCCs and their variables flow models, along

with the execution details.

Table 5-10 Details of computational process modeling and solving of SCCs for case 2

Computational process modelling Solving

SCC

Variable
flow

model

nFdb nMm
Optimal

flow
model

Number
of calls
to the

models
in SCC

% additional
computation

al cost

1 1 4 ■ 110 base
SCC 1

2 1 5 110 equal

1 1 3 74 base

2 1 4 320 332% more SCC2

3 1 2 ■ 86 16.2% more

Discussion

In this case, for the first SCC, the computational process modeller has selected the first

variable flow model as the solution. For the second SCC the third variable flow model

was the selected solution. From the sixth column in Table 5-10 it is clear the flow model

selected by the computational process modeller was not the optimum in terms of

computational cost for the second SCC, because variable flow model 1 made less

number of calls to system compared to flow model 3 which was chosen as the optimum.

But it is clear that these selections were reasonable choice since the chosen flow models

lead to faster convergence of the SCCs compared to variable flow model 2 which

produces a converged solution after 320 calls to the models. The reasons for these sub-

optimal choices were discussed earlier.

The final computational plan obtained for USMAC is given in the next paragraph.. The

incidence matrix for this system, which displays the variable flow model generated by

129

IMM, is given in the Figure A- 23 in the Appendix-V.iii. In the figure models belonging

to SCC are confined into a single process.

Computational Plan

Inputs for the system

Fwing, LDW, Lev, Mach_crz, Mach_cth, Mfurn, alt_app, alt_clb, alt_crz,

alt_cth, alt_to, cx_crz, czmax_TO, disa_clb, disa_crz, disa_cth, disa_to, dnac,

lod_clb, mass_crz, ne, span, tuc

Outputs of the system

Aht, Aref, Avt, Awing, BPR, FNslst, Fn_clb, Fn_cth, Fn_to, Fuel, Kcx0, Kcxp,

KczmaxLD, KczmaxTO, Kff, Kind, Kmcl, Kmcr, Kmto, Kmwe, Ksfc, Leh,

Lref, MTOW, MWE, Mach_clb, Mach_stall_to, Mach_to, Mchar, Mfus, Mgear,

Mht, Mop, Mprop, Msys, Mvt, Mwing, Naisle, Npax, NpaxFront, OWE, PL,

Pamb_clb, Pamb_crz, Pamb_cth, Pamb_to, RA, RA_time, Tamb_clb,

Tamb_crz, Tamb_cth, Tamb_to, Vht, Vvt, Wpax, ar, cx0_clb, cx0_crz, cx0_cth,

cx_clb, cx_cth, cxc_clb, cxc_crz, cxc_cth, cxi_clb, cxi_crz, cxi_cth, cz_clb,

cz_crz, cz_cth, czmax_LD, dfus, g_app, g_clb, g_crz, g_cth, g_to, kfn_cth,

kvs_LD, kvs_TO, lfus, lod_crz, lod_cth, mass_clb, mass_cth, phi, rho_clb,

rho_cth, rho_to, sfc, tofl, vapp, vsnd_clb, vsnd_crz, vsnd_cth, vz_clb, wAfus,

wAht, wAnac, wAvt, wAwing

Execution sequence for the models

1)modified_wing_fuel_tr,2)Cz_max_TO_factor_,3)reference_area_,4)non_stan

d_atmos_crz,5)gravity_acc_crz,6)aspect_ratio_,7)modified_Cz_max_TO__tr,8

)tail_volume_factor_,9)reference_length_,10)ref_mach_number_,11)press_drag

factor,12)level_flight_crz,13)ind_drag_factor_,14)fin_volume_factor_,15)mo

dified_fin_lever_arm__tr,16)tail_size_,17)pressure_drag_crz,18)induced_drag

_crz,19)fin_size_,20)wing_wetted_area_,21)tail_wetted_area_,22)modified_tail

_lever_arm__tr,23)nac_wetted_area_,24)modified_mean_cruise_mass_crz_tr,

25)fric_drag_factor_,26)fin_wetted_area_,27)modified_drag_factor_crz_tr,28)

top_of_climb_mass_cth,29)one_pax_weight_,30)non_stand_atmos_cth,31)gravi

ty_acc_cth,32)modified_furnishing_mass__tr,33)modified_friction_drag_crz

_tr,34)non_stand_atmos_to,35)level_flight_cth,36)gravity_acc_to,37)modified_

130

fus_wetted_area__tr,38)Payload_,39)wing_mass_,40)top_of_climb_mass_clb,

41)tail_mass_,42)system_mass_,43)sound_velocity_crz,44)sfc_factor,45)pressur

e_drag_cth,46)non_stand_atmos_clb,47)lift_to_drag_crz,48)modified_landing_

weight__tr,49)landing_gear_mass_,50)induced_drag_cth,51)gravity_acc_clb,52

)fuselage_mass_,53)friction_drag_cth,54)fin_mass_,55)Mach_stall_to_,56)MW

E_factor_,57)Kvs_Take_Off,58)secured_Mach_to,59)scc_1_tr,60)drag_factor_

cth,61)scc_2_tr,62)air_density_to,63)air_density_cth,64)air_density_clb,65)Cz_

max_LD_factor_,66)modified_take_off_weight__tr,67)sound_velocity_clb,68)

net_thrust_to,69)net_thrust_cth,70)net_thrust_clb,71)max_take_off_factor,72)m

ax_cruise_factor,73)max_climb_factor,74)lift_to_drag_cth,75)gravity_acc_app,

76)modified_fuselage_length__tr,77)Kvs_Landing,78)Cz_max_LD_,79)tofl_1,

80)time_crz,81)sound_velocity_cth,82)modified_fuselage_diameter__tr,83)fus

_fuel_ratio_,84)cruise_thrust_1,85)climb_rate_1,86)app_speed_1

In this case there are two SCCs. These are the process number 59 and 61 in the list of

the execution sequence of the models. The details of these SCCs are given below.

Strongly Connected Components

59. scc_1_tr

Inputs to SCC

Kmwe, Ksfc, LDW, MTOW, Mach_crz, Mfurn, Mfus, Mgear, Mht,

Msys, Mvt, Mwing, Npax, OWE, dnac, g_crz, lod_crz, ne, vsnd_crz

Outputs of SCC

BPR, FNslst, MWE, Mop, Mprop, RA, sfc

Execution Sequence

modified_nacelle_diameter,spec_fuel_cons,range_crz,operator_item_m

ass,modified_ope_weight_empty,modified_manu_weight_empty,mod

ified_engine_mass_

Treatment (Solver)

FPI-first method

61. scc_2_tr

Inputs to SCC

Aref, Kcx0, Kcxp, Kind, Lref, Mchar, Pamb_clb, Tamb_clb, ar, g_clb,

lfus, lod_clb, mass_clb, ne, wAfus, wAht, wAnac, wAvt, wAwing

131

Outputs of SCC

Mach_clb, cx0_clb, cx_clb, cxc_clb, cxi_clb, cz_clb,

Execution Sequence

modified_lift_to_drag_clb,induced_drag_clb,modified_level_flight_cl

b,friction_drag_clb,pressure_drag_clb,drag_factor_clb

Treatment (Solver)

FPI-first method

The variable flow model for the first SCC is the variable flow model number 1 (which

was chosen as the optimum) shown in the Figure A- 26. The variable flow model for the

second SCC is the variable flow model number 3 (which was chosen as the optimum)

shown in the Figure A- 34.

Table 5-11 Values of the input and output variables obtained after executing the system for

case3

The values of the input and output variables obtained after executing the system are

given in the Table 5-11.

5.5 Conclusion

Presented in this chapter are the tests conducted in order to evaluate the methods and

approaches developed as part of this research.

Initially the tests were performed in order to finalise the objective function for

scheduling the coupled models. Feedback length was proven inefficient to provide an

132

estimate of the computational cost for solving the SCC in a system. In contrast,

feedback number provided a good quality estimate, if the solver for SCC is either FPI-

first or GN. This, however, proves that the objective function should be formulated

based on the solver and cannot be generalised for solving SCCs using any solver. In the

current context of testing the computational process modeller, FPI-first was used as the

solver for SCC and hence feedback number, which was proven to fit well with this

solver, was chosen as the objective function for scheduling the coupled models.

The different tests performed on the simple sizing and the USMAC test case for

evaluating the computational process modeller, have confirmed the effectiveness of this

modeller for generating optimal execution plans for complex aircraft conceptual design

systems. Even though there were a few sub-optimal choices, when tested on USMAC,

with regard to computational cost, all choices for computational flow made by the

system were among the best. The sub-optimal were inevitable since the computational

cost for a system was found to be not just depended on the feedback number and the

number of modified models (which were the focus of this research), but also on the

starting guess for the unknown variables, mutual sensitivity of the switched variables of

the modified models (see section 4.2) and possibly other factors which are yet to be

discovered. The various tests also proved that in the majority of the cases an increase in

the number of modified models in the system increased the computational cost. This

finding confirms the choice of incorporating the number of modified models also as a

criterion for choosing the optimal variable flow model.

The three tests with USMAC were performed on the same system of models, but with

different set of input variables. The computational process modeller was able to

generate sound execution plans for all of the cases, in order to compute the unknown

variables. This demonstrates the ability of the computational process modeller to

provide flexibility for the designer in choosing the independent (input) variables during

the design process.

133

6 FRAMEWORK DESIGN AND DEVELOPMENT:
CRANFIELD WORKFLOW MANAGEMENT DEVICE
(CWMD)

6.1 Introduction

This chapter describes the implementation of an object-oriented framework for

dynamically setting up the computational plans that are generated by the computational

process modeller. The framework has been developed for test and evaluation of the

proposed methods and approaches.

6.2 Overview of CWMD

The CWMD is an object-oriented framework for conducting design studies on

mathematical models, which represent the physics and other characteristics of an

aircraft. The software tool is implemented in Matlab programming language. Matlab has

a variety of inbuilt functions which make programming easier compared to other

languages. Even though Matlab is not a fully object-oriented programming language

compared to C++ or C#, it has the capabilities to incorporate object-oriented

programming.

CWMD accepts the models and their associated variables and wraps these in the form of

specific objects. These objects can be further modified and grouped, according to the

plan generated by computational process modeller, in order to form executable systems.

These executable systems can be saved as objects in CWMD. Further, various

mathematical treatments, can be applied to these objects for conducting design studies

on the system. The object model of the framework is presented in the next section.

6.3 Object Oriented Modelling of CWMD

6.3.1 Basic Concepts of Object Oriented Modelling

Fundamental terms used in object oriented programming, which are used in this thesis,

are given below:

134

Class

A class defines an entity, including the entity's characteristics (e.g., attributes, fields or

properties) and the things it can do (e.g., behaviours, or methods or features) (Booch,

1993). Classes provide modularity and structure in an object-oriented computer

program. Also, the code for a class should be relatively self-contained. Collectively, the

properties and methods defined by a class are called members.

Object

An object is a particular instance of a class. The set of values of the attributes of a

particular object is called its state. The object consists of state and behaviour.

Method

A method represents an object's abilities. The method is implemented as a function

associated with the object.

6.3.2 CWMD Class Diagram

The class diagram developed for CWMD is shown in Figure 6-1. Here five classes are

identified; data, model, subprocess, treatment and study. A brief description of each

class is given below. A more detailed description of these is followed in the next

section.

1. Data (DO)

Data object contains all information required to describe a data (variable)

element.

2. Model (MO)

A model object is an elementary black box (a simple software program or

model) with inputs, outputs and a program. Inputs and outputs of the model

objects are data objects.

3. Subprocess (SP)

A subprocess is an object that defines mathematical treatment on one or more

model objects (and/or subprocess objects). A subprocess can also be a container

of a group of discipline specific models (and/or subprocess objects), without a

mathematical treatment.

135

4. Treatment (TR)

A treatment object contains all the information of a particular mathematical

treatment, which can applied on a model or a subprocess object. For example, an

optimisation treatment applied on a computational process or a solver applied to

solve a SCC or a modified model.

5. Study (ST)

A study object is an assembly of subprocesses (or models) with one or more

treatments in order to conduct a design study over the entire system.

Figure 6-1 Class diagram for CWMD

The links in the class diagram shown in the Figure 6-1 are described in the

Table 6-1.

136

Table 6-1 Links and description of the class diagram for CWMD

Links Description

MO-DO MO contains one or more DOs

SP-DO SP contains one or more DOs

SP- MO SP can contain one or more MOs

SP- TR SP can contain zero or more TRs

SP-SP SP can contain zero or more SPs

ST -DO ST can contain one or more DOs

ST- MO ST can contain zero or one MOs

ST-SP ST can contain zero or one SPs

ST- TR ST can contain one TR

6.3.3 CWMD Object Models

This section describes in more detail the various objects in CWMD, their associated

methods and attributes.

6.3.3.1 Data object

Input and output variables associated with models are modelled as data objects in

CWMD. A data object contains all the relevant information regarding the corresponding

variable. The following are the attributes currently available for a data object.

Attribute Explanation

Name Name of the variable

Type Type of the variable (scalar, array or structure)

Values Value associated with variable

Range Range of the variable (minimum and maximum value)

Unit Unit of the variable (e.g., Kg, Kg/m2)

An example for the attributes of a data object, MTOW (Maximum takeoff weight) is

given below.

137

Attribute Example

Name MTOW

Type scalar

Values 91596

Range Min:91500, Max:99000

Unit Kg

There are no methods associated with a data object.

6.3.3.2 Model object

A model object is an elementary black box (a simple software program or model) with

inputs, outputs and a program. Inputs and outputs of the model object are data objects.

The following are the attributes for a model object.

Attribute Explanation

Name Name of the model object (this also refers to the name of the
software program which will be executed on executing the
model)

Inputs Input data objects for the model

Outputs Output data objects for the model
An example for a model object is given below.

Name: Engine_mass

Inputs: ne, FNslst

Outputs: Mprop

Here ne, FNslst and Mprop are data objects.

The methods associated with the model objects are given below.

Methods Explanation

Execute Executes the software program associated with the model object
with inputs from the values of the input data objects, and
thereafter updates the output data objects with the outputs of
obtained after executing the program.

6.3.3.3 Subprocess object

A subprocess object can be of two types; the first type is for modelling a modified

model or an SCC. This is done by integrating the constituent model (or models in the

138

case of SCC) with the corresponding mathematical treatment object used to solve the

modified model (or SCC). The second type is for assembling a set of models, or a set of

models and subprocesses, into a higher level subprocess. In this case subprocess

contains only models with out any treatment. This wrapping allows the multilevel and

hierarchical arrangement of a system which minimises the difficulty involved in

managing thousands of models in a complex system.

The computational plan generated after applying the computational process modeller for

systems is saved as subprocess in CWMD.

The attributes of a subprocess are given below

Attribute Explanation

Name Name of the subprocess

Inputs Input data objects of the subprocess

Outputs Output data objects of the subprocess

Process Model and subprocess objects included in this subprocess

Treatments Treatment objects included in this subprocess

The methods associated with the subprocess are given below.

Methods Explanation

Execute If treatment attribute is empty

Executes the objects in the process atttribute (in the
sequence in which it is added in the process attribute),
with inputs from the values of the input data objects. On
execution, the outputs obtained are updated in output
data objects of the subprocess.

If treatment attribute is not empty

The treatment function is executed with the models
(and/or subprocess) in the process attribute of the
subprocess object given as inputs.

view_d Plots the subprocess as a design structure matrix

view_g Plots the subprocess in a graphical format

view_i Plots the subprocess as an incidence matrix

view_t Plots the subprocess in a tabular format

139

More details on the methods associated with the plotting of the subprocesses (view_d,

view_g, view_i, view_t) are given in section 6.5.

Examples for the two types of subprocess objects are given below.

Subprocess for assembling models and/or subprocess

This example demonstrates the assembling of four models into a subprocess. The four

model objects are given in the table below

Name of the
models

Inputs Outputs

sfc_factor - Ksfc

spec_fuel_con Ksfc,BPR sfc

nacelle_dia BPR,FNslst dnac

nac_wet_area dnac wAnac

The attributes for the subprocess in which these four models are grouped, are given

below.

Name: Engines

Inputs: BPR, FNslst

Outputs: sfc, wAnac, dnac, Ksfc

Process: sfc_factor, spec_fuel_con, nacelle_dia, nac_wet_area

Treatments: Nil

This subprocess ‘Engines’ now performs like a model with inputs BPR and FNslst and

generating sfc, wAnac, dnac and Ksfc as outputs, on execution.

This ‘engines’ subprocess, can now be assembled with other models or subprocesses in

order to create a higher level subprocess.

Subprocess for modified models or SCCs

An example for a modified model is given in Figure 4-1

The attributes of the subprocess for modelling this modified model are:

Name: modified_Payload

Inputs: PL, Wpax

140

Output: Npax

Process: Payload

Treatments: modifier (Gauss-Newton method)

Thus the ‘modified_Payload’ subprocess performs like a model with inputs PL and

Wpax and generating Npax as output, on execution.

In the case of SCCs, the treatment applied will be different (e.g., sccsolver) and the

process attribute contains the models and/or subprocesses which are strongly connected.

The advantage of this subprocess representation is that the modified models and SCC

can be treated as simple models with inputs and outputs, concealing the complications

involved in solving and simplifying the difficulty involved in modelling these, each

time a new computational plan is generated.

6.3.3.4 Study object

A study object is similar to a subprocess object, however, the distinction is made since

the study object represents a top level design study process, while the treatment applied

to the subprocess (or model) is a design study function (optimisation or design of

experiment etc).

The attributes of a study object are given below:

Attribute Explanation

Name Name of the study

Inputs Input data objects for the study

Outputs Output data objects of the study

Process Model and subprocess objects included in this study

Treatments Treatment objects included in this study

The methods associated with the study are given below.

Methods Explanation

Execute The treatment function(in the treatment attribute) is executed
with the models (and or subprocess) in the process attribute of
the study object provided as inputs.

view_s Plots the study object as a block diagram

141

The example given below represents a study object. This object is for conducting

optimisation study on the ‘engines’ subprocess.

Name: engines_optimise

Inputs: BPR, FNslst

Output: sfc, wAnac, dnac, Ksfc

Process: Engines

Treatments: Optimiser

6.3.3.5 Treatment object

A treatment is a mathematical operation applied on a model or a subprocess object. The

attributes for a treatment object is given below.

Attribute Explanation

Name Name of the treatment

function The name of the software program associated with the
treatment

There are no methods associated with the treatment.

6.4 Example Case

Figure 6-2 shows a system of models which represents a simplified set of aircraft sizing

equations (Buckley et al., 1992). This example demonstrates the object modelling for

this system when it is setup in CWMD.

Figure 6-2 System of models

142

All the models and the variables in the system are modelled in CWMD as model and

data objects. The data objects for the variables are given in the table below. Since the

case study is only for demonstration purposes, the values and range attributes are not

given.

DATA OBJECTS

Name Type Unit

We ‘Scalar’ Kg

Wlo ‘Scalar’ Kg

Sref ‘Scalar’ m2

Wf ‘Scalar’ Kg

Wo ‘Scalar’ Kg

Walt ‘Scalar’ Kg

R ‘Scalar’ m

Wec ‘Scalar’ Kg

Wx ‘Scalar’ Kg

The attributes of the models objects for the models are given in the table below

Name of the
model

Inputs Outputs

a Sref, Wo We

b We, Wf Wo

c Wlo Walt

d Wec Wx

e Wo,We,Wx Wf

f Wo Wlo

The attributes for the treatment objects are given in the table below

Name function

modifier gauss-newton

sccsolver Fixed-point-first

optimiser gradient-based

143

For the system shown in Figure 6-2, considering a case where R, Walt are independent

variables the corresponding variable flow model generated by the computational process

modeller is given below.

Figure 6-3 Variable flow models for the system of models shown in Figure 6-2

In this system models b and e are identified as strongly connected and the models c, f, a

and b are modified models. The final computational plan obtained for this system after

applying the computational process modeller is,

g modified_c modified_f d SCC(e modified_b) a. The hierarchical

arrangement of the subprocess formed for this system by CWMD is represented

symbolically in Figure 6-4. The data objects are not shown in the figure for clarity

purpose.

144

SP: Sizing

M O: g SP: mod(c) SP: mod(f) MO: d SP: SCC SP:mod(a)

MO: e SP: mod(b)

TR : SCC Solver

M O: c

TR : Modifier

MO: f

TR: Modifier

M O: b

TR :Modifier

MO: a

TR: Modifier

Execution Order

Figure 6-4 Symbolic representation of the subprocess for the system in Figure 6-2 with R

and Walt given as input variables.

The attributes of each subprocess in the Figure 6-4 are given in the table below.

Name Inputs Outputs Process Treatments

Sizing R

Walt

Sref

We

Wec

Wf

Wlo

Wo

Wx

g

mod(c)

mod(f)

d

SCC

mod(a)

-

mod(c) Walt Wlo c modifier

mod(f) Wlo Wo f modifier

SCC Wo

Wx

We

Wf

mod(b)

e

sccsolver

mod(b) Wf We b modifier

145

Wo

mod(a) We

Wo

Sref a modifier

The top-level subprocess ‘Sizing’ now performs like a model with R and Walt as inputs

and the generating the remaining variables as outputs, on execution.

If a design study, for example an optimization study, has to be conducted on this

subprocess, then the corresponding attributes for the study object which models this

design study, are as given below.

Name: sizing_optimise

Inputs: R, Walt

Output: Sref,We,Wec,Wf,Wlo,Wo,Wx

Process: sizing

Treatments: Optimiser

6.5 Modules of CWMD

This section explains the different modules of CWMD which include the creator,

executer and the viewer. The creator section explains how the different objects are

created. The executor section describes the execution of the model, subprocess and

study objects. The viewer section explains the various viewers for subprocess objects

available in CWMD. The architecture of the CWMD is given in the Appendix-VI.

Shown in Figure 6-5 is the main interface for CWMD.

146

Figure 6-5 CWMD main window

In this main interface the lists boxes (DATA OBJECTS, MODEL OBJECTS, SUBPRO

OBJECTS, STUDY OBJECTS, and TREATMENT OBJECTS) display the

corresponding objects created. The push buttons in the panel ‘Create’, ‘Run’ and

‘Delete’ are used for creating, executing and deleting the objects. The radio button in

the panel ‘Plot’ plots the selected objects in the chosen format. The ‘Save’ button saves

all the objects in the current window in file name specified by the design, in ‘.mat’

format. The ‘Load File’ button loads the objects saved in files, into the CWMD

window.

Currently there is no provision in CWMD for creating treatment objects and therefore

the treatment objects currently available are inbuilt in CWMD. The available treatments

are ‘Gauss-Newton’, ‘Fixed point iteration- first’, ‘Fixed point iteration- second’ and

‘Optimiser’. The first three treatments are for solving SCCs and modified models, and

the last one is for conducting optimisation studies. Gauss-Newton method is also used

as treatment for modified models. The ‘optimiser’ treatment is a gradient based

optimiser.

6.5.1 Creator

The buttons in the ‘Create’ panel of the main CWMD window are used for creating the

different objects. The following sections describe how each object is created.

Data object creator

147

Data object is created using ‘Data creator’ GUI (Graphical User Interface). It has the

provision for entering the attributes for a data object. Data Creator GUI can be activated

on clicking ‘DT’ button in the ‘Create’ panel of the CWMD window. The GUI is

displayed in the Figure 6-6.

Figure 6-6 Data creator GUI

Clicking on the ‘Create’ button will create the data object, with the entered attributes,

and places the object in the data objects list box in the Main (CWMD) window.

Model object creator

Model object is created using ‘Model creator’ GUI. It has the provision for entering the

attributes for a Model object. Model Creator GUI can be activated on clicking ‘MD’

button in the ‘Create’ panel of the CWMD window. The GUI is displayed in the Figure

6-7.

Figure 6-7 Model creator GUI

148

In the three windows displayed in Figure 6-7, the first window is for selecting the inputs

for the models, from the list of available data objects. The second window is for

selecting the outputs for the model object and the third window is for entering the name

of the model object. Clicking on the ‘Create’ button will create the model object, with

the entered attributes, and places the object in the ‘model objects’ list box in the Main

(CWMD) window.

Subprocess Object Creator

Subprocess object is created using ‘Subprocess creator’ GUI. This GUI has the

provision for entering the attributes for the subprocess object to be created. In addition,

the main function of this GUI includes defining the inputs (models and the independent

variables) required for generating the computational plan for the selected models by

applying the computational process modeller. The GUI is directly interfaced with the

code for computational process modeller. Once the computational plan is generated

based on the given inputs, the corresponding subprocess object is created which on

execution will follow the generated computational plan.

‘Subprocess Creator’ GUI can be activated on clicking ‘SP’ button in the ‘Create’ panel

of the CWMD window. The GUI is displayed in Figure 6-8.

149

Figure 6-8 Subprocess creator GUI

In this interface the ‘Build’ push button will activate the computational process

modeller with models selected in the ‘SELECTED MD/SP’ list box and the independent

variables in the ‘SELECTED INDEPENDENT VARIABLES’ list box, as the inputs for

the process plan. The computational process modeller generates the computational plan

for the selected models and based on this plan a temporary subprocess is created by

CWMD. The details of this subprocess will be displayed in the ‘DETAILS OF

SUBPROCESS’ list box. Once the designer is satisfied with the generated subprocess,

clicking on the push button ‘CREATE SUBPROCESS’ will create the subprocess

object and places this object in the ‘subprocess objects’ list box in the Main (CWMD)

window. The presence of a SCC in the system will activate the window shown in Figure

6-9 during the creation process. From this window the designer will be able to choose

the type of solver for solving the SCC which will be inserted in the treatment attribute

150

of the SCC subprocess. For modified models, Gauss-Newton method is automatically

applied as the treatment for solving these.

Figure 6-9 GUI for selecting the solver for SCC

 The subprocess can be plotted in various formats with the push buttons in the ‘Plot’

panel.

Study Object Creator

Study object is created using ‘Study creator’ GUI. It has the provision for entering the

attributes for the Study object. ‘Study creator’ GUI can be activated on clicking ‘ST’

button in the ‘Create’ panel of the CWMD window. The GUI is displayed in Figure

6-10.

In this GUI the attributes for the study object which are the process and the treatment,

can be selected from the ‘MD/SP SELECTOR’ and ‘TREATMENT SELECTOR’ list

box. Currently these selections are limited to a single model or subprocess and a single

treatment. The inputs and outputs attributes for the study object are the same as that of

the selected model or subprocess and therefore entered automatically while the study

object is created. The details of the created study object are displayed in the ‘DETAILS

OF THE STUDY’ window.

151

.

Figure 6-10 Study creator GUI

6.5.2 Executer

The GUI for executing the models or subprocess object can be activated by clicking on

the MD (in case of model object) or SP (in case of subprocess object) push button in the

‘Run’ panel of the CWMD window. The interface for executing the models and the

subprocess are the same.

On clicking the MD or SP button in the ‘Run’ panel in the CWMD window, the GUI

shown in Figure 6-11 will appear with the corresponding selected model or subprocess

which has to be executed, loaded in it. The values of the input variables for the loaded

model or subprocess can be modified by selecting and editing the corresponding

variable in the ‘INPUTS’ list box. The value of the selected variable is displayed in the

box on the right hand side of the ‘INPUTS’ list box which can be edited and further set

by clicking the ‘SET VALUE’ button.

The ‘EXECUTE’ button will activate the ‘execute’ method associated with the loaded

model or subprocess. Once executed, the outputs obtained are listed in the ‘OUTPUTS’

list box.

152

Figure 6-11 GUI for executing the objects

There is currently no interface available for executing the study objects. The selected

study object in the ‘STUDY OBJECTS’ list box in the CWMD window is directly

executed (by activating the execute method associated with the study object) when the

‘ST’ push button in the ‘Run’ panel is clicked.

6.5.3 Viewer

In CWMD, a subprocess can be viewed in four different formats which are the DSM,

Incidence Matrix, Graph and tabular format.

Double clicking the subprocess objects in the objects list box of the CWMD window

will display the corresponding objects in the format chosen in the ‘Plot’ panel.

Plotting as incidence matrix

Incidence matrix plot for a subprocess has the constituent models and/or subprocesses

representing the rows, and the constituent variables representing the columns. An ‘I’

153

marked in a cell denotes that variable representing the column of the cell is an input to

the model/subprocess representing the corresponding row. Similarly an ‘O’ marked in a

cell shows that the variable in the column is an output of the model/subprocess in the

corresponding row. The cells with ‘I’ and ‘O’ are coloured in green and red for clarity

purpose.

Figure 6-12 Incidence matrix plot by CWMD

This plot is activated by the ‘view_i’ method of the subprocess object. The incidence

matrix display for the ‘engines’ example subprocess is shown in Figure 6-12.

Plotting as DSM

A DSM plot for a subprocess has models/subprocess in its process attribute,

representing both rows and columns of the matrix. A black dot marked in cell denotes

the data flow from the model/subprocess representing the row to the model/subprocess

representing the column. A dot above the diagonal denotes a feed forward loop and a

dot below the diagonal denotes a feedback loop.

This plot is activated by the ‘view_d’ method of the subprocess object. An example

DSM plot is shown in Figure 6-13.

154

Figure 6-13 Design structure matrix plot by CWMD

Plotting as graph

A Graph plot for a subprocess displays in a graphical format the interaction among

different models/subprocesses, through their variables. The models/subprocess and the

associated variables in the subprocess are displayed in oval shaped boxes, with directed

arrows representing their mutual association. Double clicking on a subprocess in the

graph will display the graph plot of that subprocess in another window.

This plot is activated by the ‘view_g’ method of the subprocess object. An example

graph plot is shown in Figure 6-14.

Figure 6-14 Graph plot of a subprocess by CWMD

155

Plotting in tabular format

A tabular plot for a subprocess displays the attributes of the subprocess in a tabular

format. Double clicking on a subprocess listed in the ‘PROCESS’ list box, will display

the tabular plot of that subprocess in the same window.

This plot is activated by the ‘view_t’ method of the subprocess object. An example

tabular plot is shown in Figure 6-15.

Figure 6-15 Tabular plot of a subprocess by CWMD

6.6 Convergence Monitoring in CWMD

SCC’s and modified model’s convergence monitoring are implemented in CWMD. For

SCCs, while solving using FPI-second method and Gauss-Newton method, the

difference in the values of the feedback variables, in the previous and the current

iteration, are plotted against the iteration number, for monitoring the convergence. The

residual approaching zero indicates convergence. An example plot which shows the

convergence of the feedback variables MTOW (Maximum Takeoff Weight) and RA

(Range) in an SCC is given in the Figure 6-16.

156

Figure 6-16 Convergence monitoring for SCC

In case if the FPI-first method is used for solving the SCC, CWMD displays two plots.

The first one highlights, in a DSM format the loop in which the current iteration is

taking place and the second one plots the difference in the value of the feedback

variable of that loop, in the previous and current iteration, against the iteration number.

An example for this is given in Figure 6-17.

Figure 6-17 Convergence monitoring for SCC when FPI-first solver is used.

For the modified models the convergence monitoring is similar to the one shown in

Figure 6-16. Here instead of the feedback variables, ym-ymd (which was explained in

section 4.2) are plotted against the iteration number.

157

6.7 Summary and Conclusions

This chapter has described the software framework which has been developed in order

to test and evaluate the various methods and techniques developed as part of this

research.

The object oriented approach applied to the design and implementation of the CWMD

has brought the following advantages:

• The variables were modelled as data objects, which generalised the

representation of heterogeneous variables in a system into a common object

model. This representation supported similar handling capability for different

types of variables.

• The models were represented as model objects, which generalised the

heterogeneous models in a system into a common object notation. The general

representation assisted easier interaction among the models which was vital

during data transfer.

• The subprocess object representation allowed complicated systems to be

modelled and saved into executable subprocess objects.

• The commonality in model and subprocess objects allowed easier interaction

among these, which also enabled their assembling into higher level

subprocesses.

• The subprocess allowed hierarchical organisation of complicated systems, which

minimized the chaos of dealing with numerous models.

• The object oriented programming allowed easier implementation of the

computational plan developed by the computational process modeller, for

systems. This allows the designer to focus more on the design study itself

instead on the implementation issues of the computational plans.

• The ability to replace the solvers in the treatment attribute of the subprocess

allows SCCs and modified models to be custom solved with different solvers (in

case if a particular solver is not leading to convergence) without the need for

major modifications.

158

In addition, CWMD has different types of viewers for subprocess, which helps the

designer to visualise and study the process clearly.

The evaluation provided by the industry partner confirmed the flexibility and efficiency

offered by the CWMD in terms of choosing the inputs for the system, implementing the

computational plans, visualising the process and the solving the systems.

The current limitations for CWMD are listed below.

• Currently only Matlab functions can be implemented as model objects in

CWMD. External compiled codes cannot be accessed as model objects.

• Even though a number of treatment objects can be incorporated in a study

object, currently it has been tested with only a single treatment.

• ‘FMINCON’ function of Matlab for optimisation is currently implemented as

optimiser treatment in CWMD. Equalities and inequality constraints are not yet

implemented.

• External treatment functions cannot be currently modelled in CWMD as

treatment objects, through the GUI. However, all the necessary requirements for

incorporating this feature are implemented in CWMD.

• The options settings (number of iterations etc.) for SCC solvers, modified model

solvers and optimiser are currently hard coded. For all the solvers tolerance is set

to 1e-10 and Maximum iterations to 5000.

• There are currently no automated resolution schemes implemented for over and

under determined systems. The user is only warned in case of such systems.

159

7 SUMMARY AND CONCLUSIONS
Presented in this thesis is a computational process modeller for dynamically assembling

and solving a system of non-linear models which represent the physics and other

characteristics of the aircraft at the conceptual design stage. The primary objective of

this research has been to develop methods and techniques which significantly increase

the flexibility and efficiency with which the designer is able to operate on large scale

computational multidisciplinary systems. This objective has been met through the

development of the computational process modeller and the software framework,

CWMD.

In this research the computational process modeller was developed with focus on

aircraft conceptual design. However, the applicability of the computational process

modeller is not just limited to the aircraft domain. It has the potential to be applied to

the conceptual design phase of any complex product which can be represented in the

form of models (e.g. financial modelling).

7.1 Literature Review

The comprehensive literature review which has been conducted has identified a number

of existing methods for computational process modelling. The majority of the methods

for variable flow modelling, which is the first step in computational process modelling,

were applicable to algebraic equations, but needed modification for application in the

current research context, where models are used. In addition, the current computational

process modelling methods which were available for models have focussed only on

decomposition and scheduling and not on variable flow modelling, which limits the

flexibility in choosing the independent variables for the system of models.

Various computational tools for solving low and high fidelity mathematical models

were also reviewed to identify the potential of those tools to be applied in the aircraft

conceptual design stage. None of the existing low-fidelity tools has the flexibility in

selecting the inputs for the system of models. As for the higher-fidelity tools, these

currently lack an automated integration capability and the flexibility required for

integrating numerous simple models in a dynamic computational environment.

160

7.2 Computational Process Modelling

A novel computational process modeller which generates optimal computational plans

for systems while ensuring the flexibility in choosing the inputs to the system and

improving the efficiency in solving the system has been developed. The novel method is

an integrated scheme which incorporates variable flow modelling, decomposition and

scheduling methods.

For variable flow modelling, a novel incidence matrix method (IMM) has been

introduced which has the advantage of rapidly producing feasible variable flow models

for systems which contain models that can generate multiple outputs. In addition, the

IMM approach is capable of exploring all feasible variable flow models for a system.

Until now this feature has not been available even in computational process modelling

methods for algebraic equations, were the focus has always been on generating a single

feasible variable flow model. Criteria were derived for choosing the optimal variable

flow model from the group which would lead to faster convergence of the system. A

modified formal IMM was also introduced which, compared to IMM, is easier to

implement and takes less memory space while computing. The method also accounted

for over and underdetermined systems and derived resolution schemes.

Decomposition was performed based on an algorithm from concurrent engineering for

identifying coupled design processes.

 Scheduling the coupled models (SCC) was performed by genetic algorithm with the

number of feedback loops as the objective function to be minimised. The number of

modified models was chosen as the first criteria for selecting the optimal variable flow

model. The objective function obtained after rearranging the SCCs was chosen as the

second criteria for choosing the optimal variable flow models if there were more than

one variable flow model with equal number of modified models. As a result the

scheduling procedure satisfied the aims of scheduling the models in the SCC and

choosing the optimum variable flow model.

The non-coupled models were sequentially arranged based on an algorithm from

concurrent engineering for arranging design tasks.

In this research the computational process modeller was developed with focus on

aircraft conceptual design stage. All the testing and evaluation were performed on

161

aircraft conceptual design test cases. The objective function for rearrangement and the

solvers for the sub-systems were chosen after conducting tests on the available models

representing the physics and characteristics of the aircraft. However, the applicability of

the computational process modeller is not just limited to aircraft conceptual design

cases. It has the potential to be applied to any complex product which can be

represented in the form of models.

Applying the computational process modeller to any other system will require

reformulation of the objective function for rearrangement and also the solvers for the

sub-systems. These will depend on the characteristics of models being used. A test, as

explained in the results and discussion chapter can be performed in order to formulate

the objective function and the appropriate solver in such cases.

7.3 Testing and Evaluation

Different tests were performed in order to finalise the objective function for scheduling

the coupled models. After the tests it was identified that the objective function should be

formulated based on the specific solver and cannot be generalised for solving SCCs

using any solver. Objective functions, feedback length and feedback number were

investigated with FPI-first, FPI second and Gauss-Newton as solvers for SCC. Feedback

length was proven inefficient to provide an estimate of the computational cost. In

contrast, feedback number provided a good quality estimate, if the solver for SCC was

either FPI-first or GN.

The various tests conducted for evaluating the computational process modeller also

proved that in the majority of the cases an increase in the number of modified models in

the system increased the computational cost. Based on this observation the number of

modified models in the system was also incorporated in choosing the optimal variable

flow model.

The different tests performed on the USMAC test case for evaluating the computational

process modeller, have confirmed the effectiveness of this modeller for generating

optimal computational plans for complex aircraft conceptual design systems. Even

though there were a few sub-optimal choices with regard to computational cost, all

choices for computational flow made by the system were among the best.

162

 The different tests conducted have demonstrated the ability of the computational

process modeller to provide the flexibility for the designer in choosing the independent

variables during the design process. The tests have also proven the improvement in the

efficiency of solving the systems by applying the computational plan generated by the

computational process modeller.

7.4 Framework: CWMD

The CWMD framework developed for testing and evaluating the various methods and

techniques developed in this research has brought in several advantages because of its

object-oriented design and implementation. The variables and models which were

modelled as objects generalised the representation of heterogeneous variables and

models in a system, into a common object model. This representation supported similar

handling capability for different types of variables and easier interaction among the

models which was vital during data transfer. The subprocess object representation

allowed complicated systems to be modelled and saved into executable subprocess

objects and also allowed quick implementation of the computational plan developed by

the computational process modeller. This capability allows the designer to focus more

on the design study itself rather than the implementation issues of the computational

plans. The ability to replace the solvers in the treatment attribute of the subprocess

allows SCCs and modified models to be custom solved with different solvers (in case if

a particular solver is not leading to convergence) without the need for major

modification in the implementation. The evaluation provided by the industry partner

confirmed the flexibility and efficiency offered by the CWMD in terms of choosing the

inputs for the system, implementing the computational plans, visualising the process

and the solving systems.

7.5 Current Limitations

The application of the computational process modeller is limited to systems with simple

models containing scalar variables.

The FPI-first, FPI-second and Gauss-Newton method were used in this research for

solving the SCCs, and the Gauss-Newton method was used for solving the modified

models. The limitation identified for solving the SCCs and modified models using these

163

methods was that the convergence and final results obtained after solving were greatly

dependent upon the starting points given during the iterative solving of the unknown

variables. The current research focussed only on obtaining a feasible solution and more

investigation is necessary to explore the results, where multiple solutions exist. This

area was beyond the scope of this research.

Further investigation is necessary in order to formulate an objective function for

rearranging the models in SCC when FPI-second is used as the solver. This solver was

computationally less expensive compared to other solvers when tested, but has not

shown any dependency between the currently formulated objective function, and the

computational cost associated with FPI-second solver.

There were a few sub-optimal choices made by computational process modeller when

tested on the USMAC test case. These sub-optimal choices of the variable flow models

for the SCCs by the computational process modeller were inevitable since the

computational cost for a system was found to be not only depended on the feedback

number and the number of modified models, but also on the starting guess for the

unknown variables, mutual sensitivity of the switched variables of the modified models

and possibly other factors which are yet to be discovered. The current criteria for

selecting the optimal variable flow model has to be further modified to incorporate the

above mentioned factors, which will subsequently further reduce or eliminate altogether

the sub-optimal choices.

Since solving the modified models is dependent on the starting points and the mutual

sensitivity of the switched variables, certain modified models may require additional

computational cost to solve, compared to others. This might challenge the association

noticed during our testing between the number of modified models and computational

cost, if tested with different starting points for the same problem. This will require

modification of criteria for selecting the optimal variable flow model which accounts for

the computational expense due to modified models. Currently the first criterion for

selecting the optimal variable flow model is set as the minimum number of modified

models and the second is the feedback number. The above mentioned challenge

suggests further investigation in this area.

164

There are currently a few limitations of the CWMD which can be improved further.

More relevant attributes can be added to objects to capture more details of the element

being modelled. An example for this will be an attribute which can capture the

propagation of uncertainty while solving the models. Currently only Matlab functions

can be implemented as model objects in CWMD. External compiled codes cannot be

accessed as model objects.

Even though a number of treatment objects can be incorporated in a study object,

currently it has been tested with only a single treatment. Further development of this

aspect will enable to model multidisciplinary design optimisation studies in the study

object which will allow sequential and cyclic application of various treatments on the

systems.

7.6 Future Work

Future work could address the current limitations of the proposed methods for

computational process modelling and CWMD, namely;

• Investigation of the influence of the starting guesses for unknown values

of the SCCs and modified models on convergence.

• Study of the effect of the mutual sensitivity of switched model variables

on solving the modified models, and its implications on the convergence

of the derived variable flow models.

• Normalising the models based on its solving complexity. This will help in

grading the models in the system and providing a criterion for

intelligently choosing the models which are to be modified (i.e. choosing

the optimal variable flow model) during the computational design process

modelling.

• Identification of other factors which can possibly affect the convergence of

the SCCs and modified models.

• Improvement of the criteria for selecting the optimal variable flow model

considering the above factors, in order to eliminate the sub-optimal

choices by the computational process modeller.

165

• Investigation of various other solvers for SCCs and modified models, and

generating corresponding objective functions for these.

• Exploration of the multiple solutions that can be generated while solving

the modified models and SCCs.

• Derivation of improved resolution schemes for under and over determined

systems.

• Improvement of the study object in order to incorporate multidisciplinary

design optimisation studies, by including multiple treatments.

166

REFERENCES

Altus.S.S, Kroo I.M, Gage P.J (1996), A genetic algorithm for scheduling and

decomposition of multidisciplinary design problems, Transactions of ASME, DEC-

1996, Vol.118

Balling, R.J., Sobieszczanski-Sobieski, J. (1994), Optimization of Couples Systems: A

Critical Overview of Approaches, AIAA-94-4330-CP, Proceedings of the 5th

AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization,

pp.697-707, Panama City, Florida, September 7-9.

Booch, G (1993). Object-Oriented Analysis and Design with Applications, 2nd edition,

Addison-Wesley. ISBN 0-8053-5340-2.

Bouchard, E. E., Kidwall, G. H., and Rogan, J. E. (1988), The Application of Artificial

Intelligence Technology to Aeronautical System Design, AIAA 88-4426, AIAA Aircraft

Design Systems and Operations Meeting, Atlanta, Georgia.

Buckley, M.J., Fertig, K.W. and Smith, D.E. (1992), Design Sheet: An environment for

facilitating flexible trade studies during conceptual design, AIAA 92-1191, Aerospace

Design Conference, Irvine, California

Cacuci, D. G. (2003), Sensitivity and uncertainty analysis. Volume I, Theory, Chapman

& Hall/CRC Press, 1 edition, NW, USA

Chen, L., Ding, Z., and Li, S. (2005), A formal two-phase method for decomposition of

design problems, Journal of Mechanical Design, 127:184--195, March 2005.

Cormen, T., Leiserson, C., and Rivest, R., 1991, Introduction to Algorithms., McGraw-

Hill Book Company, New York.

Denniz, J.E., Jr., Robert, B., 1983, Numerical Methods for Unconstrained Optimization

and Nonlinear Equations, Prentice –Hall, Inc. Englewood Cliffs, New Jersey

167

Dyer, C. (2002), Fixed Point Iteration, Citing internet resources,

http://pathfinder.scar.utoronto.ca/~dyer/csca57/book_P/node34.html ,(accessed 21st

August 2007)

Gauss Newton Method (2007), Citing internet resources,

http://en.wikipedia.org/wiki/Gauss-Newton_algorithm ,(accessed 21st August 2007)

Howe, D. (2000), Aircraft Conceptual Design Synthesis, John Wiley & Sons, West

Sussex, England

Kroo, I., Altus, S., Braun, R., Gage, P., Sobieski, I. (1994), Multidisciplinary

Optimization Methods for Aircraft Preliminary Design, AIAA-94-4325-CP,

Proceedings of the 5th AIAA/ NASA/USAF/ISSMO Symposium on Multidisciplinary

Analysis and Optimization, pp.697-707, Panama City, Florida, September 7-9

Kusiak, A., and Cheng, C. H. , 1990, A Branch-and-Bound Algorithm for Solving the

Group Technology Problem, Annals of Operations Research, Vol. 26, pp. S415-431

Kusiak, A., and Chow, W. S. , 1987, Efficient Solving of the Group Technology

Problem, Journal of Manufacturing Systems, Vol. 6, No.2, pp.117, 124

Kusiak, A., and Wang, J. (1993), Decomposition of the design process, Journal of

Mechanical Design, Vol. 115, No. 4, 1993

Morris A.M.J. (2002), MOB-A European Distributed Multi-disciplinary Design and

Optimisation Project, 9th AIAA/ISSMO Conference, Atlanta, GA, USA, September 2002.

AIAA-2002-5444.

Padula S.L., Korte J.J., Dunn H.J., Salas A.O. (1999), Multidisciplinary Optimization

Branch Experience Using iSIGHT Software, NASA Technical Report, NASA/TM-

1999-209714

Papalambros, P.Y., Optimal Design of Mechanical Engineering Systems, Journal of

Mechanical Design, 1995. 117(June): p. 55-62.

168

Ramaswamy, R., and Ulrich, K. (1993), A Designer's Spreadsheet, Proceedings of the

Design Theory and Methodology Conference, DE-Vol. 53, ASME, New York, pp. 105-

113.

Raymer, D.P. (1999), Aircraft Design: A Conceptual Approach, AIAA Education

Series, Washington, D.C.

Rogers, J.L. (1989), A Knowledge-Based Tool for multilevel decomposition of a

complex design problem, NASA Technical paper 2903, 1989

Rogers, J.L. (1997), Reducing design cycle time and cost through process resequencing,

Proceedings of the International Conference on Engineering Design, ICED 97,

Tampere, Aug 19-21, 1997

Rogers, J. L. (1999), Tools and Techniques for Decomposing and Managing Complex

Design projects, Journal of Aircraft, Vol. 36 No. 1, Jan.-Feb. 1999, pp. 266-274.

Scott A.T. (2001), An evaluation of three commercially available integrated design

framework packages for use in the Space Systems Design Lab, White Paper, Phoenix

Integration

Serrano, D., (1987), Constraint Management in Conceptual Design, Ph.D. Dissertation,

MIT, Department of Mechanical Engineering, Cambridge, Massachusetts

Sobieszczanski-Sobieski, J. (1988), Optimization by Decomposition: A Step from

Hierarchic to Non-Hierarchic Systems, NASA Conference Publication 3031, Part 1,

Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis

and Optimization, Hampton, Virginia, September 28-30

Sobieszczanski-Sobieski, J., Agte, J., and Sandusky, Jr. (1998), Bi-level Integrated

System Synthesis (BLISS) , AIAA 98-4916, 7th AIAA/USAF/NASA/ISSMOSymposium

on Multidisciplinary Analysis and Optimization, September 2-4, 1998, St. Louis, MO.

Steward, D. V. (1993), Re-engineering the Design Process, Proceedings of the Second

Workshop on Enabling Technologies, Infrastructure for Collaborative Enterprises,

April, Morgantown, WV,

169

Steward, D. V. (1981), Systems Analysis and Management: Structure, Strategy and

Design. Petrocelli Books Inc., New York. 1981.

Syswerda, G. (1990), Scheduling Optimization Using Genetic Algorithms, Handbook of

Genetic Algorithms, Davis, I., ed. Van Nostrand Reinhold, New York.

Tang, D., Zheng, L. and Zhizhong, L. (2000), Re-engineering of the design process for

concurrent engineering, Computers and Industrial Engineering 38(2000) 479-491

Vankan W. J. and Laban M. (2002), A Spineware Based Computational Design Engine

for Integrated Multi-disciplinary Aircraft Design, AIAA 2002-5445, Proceedings of the

9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 4-6

September 2002, Atlanta, Georgia

VIVACE (2005), Citing internet resources, http://ww.vivaceproject.com, (accessed 21st

August 2007)

Weisstein. E.W. (2007), Wolfram Mathworld, http://ww.mathworld.wolfram.com/

IncidenceMatrix.html, Retrieved on 21 June 2007

Wujek B.A., Koch P.N., McMillan M., Chiang W.S., (2002), A Distributed,

Component-Based Integration Environment for Multidisciplinary Optimal and Quality

Design, AIAA-2002-5476, 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis

and Optimization, September 4-6, 2002, Atlanta, Georgia.

Xiao, R., & Fei, Q. (1997), Application of the improved method in structural modelling

to comprehensive management of the Mine Bereaus. System Engineering: Theory and

Practise, 17(3), 57-62

Zweber J.V., Kabis H., Follett W.W., Ramabadran N. (2002), Towards An Integrated

Environment For Hypersonic Vehicle Design and Synthesis, AIAA 2002-5172,

AIAA/AAAF 11th International Space Planes and Hypersonic Systems and

Technologies Conference, 29 Sep - 4 Oct 2002, Orleans.

170

BIBLIOGRAPHY

AIAA Techical Committee on Multidisciplinary Design Optimization(MDO), (1991),

White Paper on Current State of the ART, American Institue of Aeronautics and

Astronautics, Inc., Januray 15.

Antonie, N., Kroo, I., Willcox, K. and Barter, G. (2004), A Framework for Aircraft

Conceptual Design and Environmental Performance Studies, 10th AIAA/ISSMO

Multidisciplinary Analysis and Optimization Conference, 30 August-1 September,

Albany, New York.

Arian, E. (1997), Convergence Estimates for Multidisciplinary Analysis and

Optimization, NASA/CR-201752, ICASE Report No.97-57, NASA Langley Research

Center, Hampton, Virginia.

Balachandran, L. K., Fantini, P. F. and Guenov, M. D., (2007), Computational Process

Management for Aircraft Conceptual Design, 7th AIAA Aviation Technology,

Integration and Operations (ATIO) Conference, September 18-21, 2007, Belfast,

Northern Ireland.

Bela, B. (1979), Graph Theory: An Introductory Course., Springer-Verlag, New York.

Blouin, V. Y., Summers, J. D. and Fadel, G. M. (2004), Intrinsic Analysis of

Decomposition and Coordination Strategies for Complex Design Problems, 10th

AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 30 August-1

September, Albany, New York.

Bouchard, E. E., Kidwell and G. H., Rogan, J. E. (1988), The Application of Artificial

Intelligence Technology to Aeronautical System Design, AIAA/AHS/ASEE Aircraft

Design Systems and Operations Meeting, September 7-9, 1988/Atlanta, Georgia.

Browning, T. R. (2002), Process Integration Using the Design Structure Matrix,

Systems Engineering, Volume 5, Issue 3 , Pages 180 – 193, Wiley Periodicals, Inc.

171

Carty, A. (2002), An Approach to Multidisciplinary Design Analysis and Optimization

For Rapid Conceptual Design, AIAA-2002-5438, 9th AIAA/ISSMO Symposium on

Multidisciplinary Analysis and Optimization, September 4-6, 2002, Atlanta, Georgia.

Chanron, V., and Lewis, L. (2005), A study of Convergence in Decentralized Design

Processes, Research in Engineering Design(2005), 16: 133-145.

Chen, L., Ding, Z., and Li, S. (2005), Analysis of Decomposability and Complexity for

Design Problems in the Context of Decomposition, Journal of Mechanical Design, Vol.

127, July 2005.

Chen., L., Simon, L. (2005), Analysis of decomposability and complexity for design

problems in the context of decomposition, Journal of Mechanical design, ASME, 2005,

Vol 127/545.

Dent, D., Paprzycki, M. and Kucaba-Pietal, A. (2000), Recent advances in solvers for

nonlinear algebraic equations, Comput. Assist. Mech. Eng. Sci. (CAMES) 7 (2000)

493-505.

Design Sheet (2004), Citing internet resources, http://www.design-sheet.com (accessed

21st August 2007).

 English, K. (2002), Combined System Reduction and Sequencing in Complex System

Optimization, AIAA-2002-5412, 9th AIAA/ISSMO Symposium on Multidisciplinary

Analysis and Optimization, September 4-6, 2002, Atlanta, Georgia.

Fang, H., Horstemeyer, H. F. (2004), An Integrated Design Optimization Framework

Using Object-oriented Programming, AIAA 2004-4499, 10th AIAA/ISSMO

Multidisciplinary Analysis and Optimization Conference, 30 August-1 September,

Albany, New York.

Fantini, P. F., Balachandran, L. K., and Guenov, M. D., (2007), Computational

Intelligence in Multi Disciplinary Optimization at Feasibility Design Stage, First

International Conference on Multidisciplinary Design Optimization and Applications,

April 2007, Besancon, France.

172

Fiper (1996), Citing internet resources, http://www.engineous.com , (accessed 21st

August 2007).

Gould, R. J.(1988), Graph theory, Benjamin-Cummings Pub Co, Menlo Park, CA

Guenov, M. D., Balachandran, L. K., Tang, D., Lockett, H.,(2006) Computational

Process Modelling, ICAS conference, 25th Congress of International Council of the

Aeronautical Sciences, September-2006, Hamburg, Germany

Hulme, K. F. (2000), The Design of a Simulation-based Framework for the

Development Approaches in Multidisciplinary Design Optimization, PhD Dissertation,

University at Buffalo, Buffalo, NY

Hulme, K. F. and Bloebaum, C. L (1999), A Comparison of Formal and Heuristic

Strategies for Iterative Convergence of a Coupled Multidisciplinary Analysis, Third

World Congress on Structural and Multidisciplinary Optimization, May, 1999,

Amherst, NY.

Hulme, K. F., Bloebaum, C. L. and Nozaki, Y. (2000), A Performance-Based

Investigation of Parellel and Serial Approaches to Multidisciplinary Analaysis

Convergence, AIAA-2000-4812, AIAA/USAF/NASA/ISSMO Symposium on

Multidisciplinary Analysis and Optimization, 8th, , Sept. 6-8, 2000 Long Beach, CA.

Kolb, M. A., (1996), An Object-Oriented Framework for Multidisciplinary Robust

Preliminary Design, AIAA-1996-4105, NASA, and ISSMO, Symposium on

Multidisciplinary Analysis and Optimization, Sept. 4-6, 6th, Bellevue, WA,

Krishnamachari, R. S., and Papalambros, P., (1997), Optimal Hierarchical

Decomposition Synthesis Using Integer Programming, ASME Journal of Mechanical.

Design., 119(4), pp. 440–447.

Krishnan, R. (1998), Evaluation of Frameworks for HSCT Design Optimization,

NASA/CR-1998-208731, NASA Langley Research Center, Hampton, Virginia

Kumar, V., Algorithms for constraint-satisfaction problems: A survey. AI Magazine,

http://citeseer.ist.psu.edu/article/kumar92algorithms.html

173

Laban, M. (2004), Multi-Disciplinary Analysis and Optimisation of Supersonic

Transport Aircraft Wing Planforms, AIAA 2004-4542, 10th AIAA/ISSMO

Multidisciplinary Analysis and Optimization Conference, 30 August - 1 September

2004, Albany, New York

Lano, R. J. (1977), The N2 Chart, Systems Engineering and Integration Division One

Space Park, Redondo Beach, California.

Malone, B., Woyak, S. (1995), An Object- Oriented Analysis and Optimization Control

Environment for the Concpetual Design of Aircraft, AIAA-1995-3862 Aircraft

Engineering, Technology, and Operations Congress, 1st, Sept 19-21, 1995 ,Los

Angeles, CA,

Matlab 7.0 (2004), Matlab Graphics, The Mathworks Inc., Natick MA.

Matlab 7.0 (2004), Matlab Mathematics, The Mathworks Inc., Natick MA.

Matlab 7.0 (2004), Matlab Programming, The Mathworks Inc., Natick MA.

Matlab 7.0 (2004), Symbolic Math Tool box, The Mathworks Inc., Natick MA.

Messac, A., Yahaya, A. I., Mattson, C. A. (2003), The Normalized Normal Constraint

Method for Generating the Pareto Frontier, Structural and Multidisciplinary

Optimization, Vol. 25, No. 2, 2003, pp. 86-98.

Michelena, N. F., and Papalambros, P. Y. (1994), A network reliability approach to

optimal decomposition of design problems, Advances in Design Automation--1994, B.

Gilmore, ed., 1994, ASME, pp. 195—204, vol. 2, New York.

Padula, S. L., Alexandrov, N. and Green, L. L.(1996), MDO Test Suite at NASA

Langley Research Center, Sixth AIAA/NASA/ISSMO Symposium on Multidisciplinary

Analysis and Opitmization, September 4-6, 1996, Bellevue, Washington.

Parashar, S. and Bloebaum, C. L. (2005), Descision Support Tool for Multidisciplnary

Design Optimization (MDO) using Multi-Domain Decomposition, 46th

174

AIAA/ASME/ASCE/AHS/ASC Structures Strucutral Dynamics and Materials

Conference, 18-21 April 2005, Austin, Texas.

Park, H. W., Kim, M. S., Choi, D. H. and Marvis, D. N. (2002), Optimizaing the

Parallel Process Flow for the Individual Discipline Feasible Method, AIAA-2002-5411,

9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,

September 4-6, 2002, Atlanta, Georgia.

Phoenix Intergration (1995), Citing internet resources, http://ww.phoenix-int.com,

(accessed 21st August 2007).

Ramaswamy, V. and Lewis, K. E. (1998), Conceptual Design of a Complex

Engineering System Through Coupled Selection, AIAA-1998-4882,

AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,

7th, Sept. 2-4, 1998, St. Louis, MO.

Rao S. S. (1998), Engineering Optimization Theory and Practise, New Age

International (P) Limited, New Delhi, India.

Reddy, S. Y. and Fertig K. W. (1996), Design Sheet: A System for Exploring Design

Space, Application to Automotive Drive Train Analysis, Fourth International

Conference on Artificial Intelligence in Design (AID'96), Standford Univeristy.

Reddy, S. Y. and Fertig, K. W. (1998), Managing Function Constrints in Design Sheet,

Proceedings of DETC’98 1998 Design Engineering Technical Conferences, September

13-16, 1998, Atlanta, Gerogia.

Reddy, S. Y. and Fertig, K.W. (1995), Facilitating Infrared Seeker Performance Trade

Studies Using Design Sheet, Rockwell Palo Alto Laboratory technical report, Rockwell

Science Center, Palo Alto Laboratory, USA.

Reddy, S. Y., Fertig, K. W. and Smith, D. E. (1996), Constraint Management

Methodology for Conceptual Design Trade-off Studies, Proceedings of the 1996 ASME

Design Engineering Technical Conferences and Computers in Engineering Conference,

August 18-22, 1996, Irvine, California.

175

Reddy, S. Y., Fertig, K.W. and McCormick D.J (2006), Constrained Exploration of

Trade Spaces, Proceedings of the 2nd IEEE International Conference on Space Mission

Challenges for Information Technology, IEEE Computer Society Washington, DC,

USA.

Reddy, S. Y., Fertig, K.W. and Smith D.E. (1996), Constraint Management

Methodology for Conceptual Design Tradeoff Studies, Proceeding of the 1996 ASME

Design Engineering Technical Conference and Computers in Engineering Conference,

August 18-22, 1996, Irvine, California.

Rogers, J. L. (1996), DeMAID/GA - An enhanced design manager's aid for intelligent

decomposition, AIAA-1996-4157, NASA, and ISSMO, Symposium on

Multidisciplinary Analysis and Optimization, 6th, Sept. 4-6, 1996, Bellevue, WA.

Rogers, J. L., Korte, J. J. and Bilardo, V. J. (2006), Development of a Genetic

Algorithm to Automate Clustering of a Dependency Structure Matrix, , NASA/TM-2006-

214279, NASA Langley Research Center, Hampton, Virginia.

Rogers, J. L., McCulley, C. M. and Bloebaum, C. L. (1996), Integrating a Genetic

Algorithm Into a Knowledge-Based System for Orderign Complex Design Processses,

NASA Techinal Memorandum 110247, NASA Langley Research Center, Hampton,

Virginia

Salas, A. O. and Rogers, J. L. (1997), A Web-Based System for Monitoring and

Controlling Multidisciplinary Design Projects, NASA/TM-97-206287, National

Aeronautics and Space Administration, Langley Research Center, Hampton, Virginia.

Sampath, R. and Kolonay, R. M.(2002), 2D/3D CFD Design Optimization Using the

Federated Intelligent Product Environment (FIPER) Technology, 9th AIAA/ISSMO

Symposium on Multidisciplinary Analysis and Optimization, September 4-6, 2002,

Atlanta, Georgia.

Sobieszczanski-Sobieski, J., Haftka, R. T. (1997), Multidisciplinary Aerospace Design

Optimization: Survey of Recent Development, Structural and Multidisciplinary

Optimization, Springer Berlin / Heidelberg, Volume 14, Number 1 / August, 1997.

176

Sullivan, B. O. (2002), Constraint-Aided Conceptual Design, Engineering Research

Series, Professional Engineering Publishing Limited, London, UK.

Townsend, J. C. and Salas, A. O. (2002), Managing MDO Software Development

Projects, 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,

September 4-6, 2002, Atlanta, Georgia.

Vankan W. J., Schulthesis, B. C. and Baalbergen, E. H. (2002), ICT Environment for

Integrated Multidisciplinary Aircraft Design Analysis, NLR-TP-2001-338, National

Aerospace Laboratory, NLR.

Wujek B.A., Koch P.N. and Chiang W.S., (2002), A Workflow Paradigm for Flexible

Design for Flexible Design Process Configuration in Fiper , AIAA-2000-4868, 8th

AIAA/USA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,

September 5-8, 2000, Long Beach, CA.

Xie, S., Milthorpe, J. and Smith, W. F.(2004), A Contribution-based Decomposition

Method for Multidisciplinary Engineering Optimization, 10th AIAA/ISSMO

Multidisciplinary Analysis and Optimization Conference, 30 August-1 September,

Albany, New York.

Yu, L. Y., Yassine, A. A. and Goldberg, D. E.(2003), A Genetic Algorithm for

Developing Modular Product Architectures, Proceedings of DETC’03, ASME 2003

International Design Engineering Technical Conferences and Computers and

Information in Engineering Conference, September 2-6, 2003, Chicago, Illinois, USA.

177

APPENDICES

I. Publications by the author related to this thesis

Balachandran, L. K., Fantini, P. F. and Guenov, M. D., (2007), Computational Process

Management for Aircraft Conceptual Design, 7th AIAA Aviation Technology,

Integration and Operations (ATIO) Conference, September 18-21, 2007, Belfast,

Northern Ireland.

Guenov, M. D., Balachandran, L. K., Tang, D., Lockett, H.,(2006) Computational

Process Modelling, ICAS conference, 25th Congress of International Council of the

Aeronautical Sciences, September-2006, Hamburg, Germany

Fantini, P. F., Balachandran, L. K., and Guenov, M. D., (2007), Computational

Intelligence in Multi Disciplinary Optimization at Feasibility Design Stage, First

International Conference on Multidisciplinary Design Optimization and Applications,

April 2007, Besancon, France.

II. Gauss-Newton Method

Given m functions f1,…,fm consisting of n parameters x1,…,xn with m≥n and we have to

minimise the sum

2

1

() (())
m

i
i

S x f x
=

= ∑

Here x stands for the vector (x1,…xn)

The aim here is to find x which leads to minimum S. Gauss-Newton algorithm (Dennis

and Robert, 1983) (Gauss Newton Method, 2007) is an iterative procedure, the user

provides the initial guess for x, denoted as x0 and the subsequent guesses for xk are the

calculated as follows

() 11 () . () . () . ()k k k T k k T k
f f fx x J x J x J x f x

−+ = −

Here f= (f1,…,fm) and Jf(x) is the Jacobian of f at x.

178

1 1

1

1

...

. .
() ...

. .

...

n

f

m m

n

f f
x x

J x

f f
x x

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥∂ ∂
⎢ ⎥∂ ∂⎣ ⎦

The matrix inversion in never computed in practise; instead the equation is reformulated

to:

1k k kx x δ+ = +

Here δk is computed by solving the linear system

()() . () () . ()k T k k k T k
f f fJ x J x J x f xδ = −

The models are black-boxes and cannot be differentiated directly. Therefore finite

difference methods are used for computing the Jacobians.

III. Fixed Point Iteration Method

In Fixed point iteration method (Dyer, 2002), for solving an equation f(x)=0, the

equation is reformed to the format x=g(x). Finding a value for x for which x=g(x) is thus

equivalent to finding a solution of the equation f(x)=0. The function g(x) defines a map

on the real line over which x varies, so that for each value of x, g(x) maps that point to a

new point, x` on the real line. Usually x` thus obtained and x are at some distance apart.

If this distance is equal to zero for a particular point x=xp, we call xp a fixed point of the

function g(x). Thus xp=g(xp), hence f(xp)=0.

If we are able to choose a point x0 which lies near to the fixed point xp, of g(x), where

we don’t know the value of xp, the iterative scheme based on fixed point method can be

defined as

179

1 ()n nx g x+ =

Where n=0,1,…, the iteration is continued until the difference between successive xn is

as small as the required tolerance. The final value of xn approximates a fixed point of

g(x), and hence approximates a zero of f(x).

IV. Variables and Models of USMAC Test Case

The models and variables of the USMAC testcase are given below. The definitions of

the variable and the units of the variables are given in the Table A- 1 for variables. The

inputs and outputs and the category in which the model belongs are given in the Table

A- 2 for the models.

Table A- 1 Variables of USMAC test case

VARIABLES
 Variables Definition Unit
1 Aht Tail size
2 alt_app Current altitude m
3 alt_clb Current altitude m
4 alt_crz cruise altitude m
5 alt_cth Current altitude m
6 alt_to Current altitude m
7 ar Aspect ratio
8 Aref Reference wing area m2
9 Avt Fin size
10 Awing Wing planform area m2
11 BPR Bypass ratio of the engines
12 cx_clb Climb drag factor
13 cx_crz Cruise drag factor
14 cx_cth Cruise drag factor
15 cx0_clb Climb friction drag
16 cx0_crz Cruise friction drag
17 cx0_cth Cruise friction drag
18 cxc_clb Climb pressure drag
19 cxc_crz Cruise pressure drag
20 cxc_cth Cruise pressure drag
21 cxi_clb Climb induced drag
22 cxi_crz Cruise induced drag
23 cxi_cth Cruise induced drag
24 cz_clb level_flight_climb
25 cz_crz level_flight_cruise
26 cz_cth level_flight_ Cruise

180

27 czmax_LD Maximum lift factor at landing
28 czmax_TO Maximum lift factor at take off
29 dfus Fuselage diameter m
30 disa_clb standard temperature shift K
31 disa_crz standard temperature shift K
32 disa_cth standard temperature shift K
33 disa_to standard temperature shift K
34 dnac Nacelle diameter m
35 Fn_clb Thrust N
36 Fn_cth Cruise Thrust N
37 Fn_to Thrust N
38 FNslst Sea level static net thrust of one

single engine (Newton)
N

39 Fuel Nominal fuel (kg) Kg
40 Fwing Wing fuel tank capacity (kg) Kg
41 g_app Current gravity m/s2
42 g_clb Climb gravity m/s2
43 g_crz Cruise gravity m/s2
44 g_cth Cruise gravity m/s2
45 g_to Gravity at take-off m/s2
46 Kcx0 Friction drag factor
47 Kcxp Pressure drag factor
48 KczmaxLD Cz maximum LD factor
49 KczmaxTO Cz maximum TO factor
50 Kff Proportion of fuel in the fuselage

(kg)
Kg

51 kfn_cth Fuselage length m
52 Kind Induced drag factor
53 Kmcl Maximum climb factor
54 Kmcr Maximum cruise factor
55 Kmto Maximum takeoff factor
56 Kmwe MWE factor
57 Ksfc SFC factor
58 kvs_LD Kvs Landing
59 kvs_TO Kvs Takeoff
60 LDW Nominal landing weight (kg) Kg
61 Leh Tail lever arm m
62 Lev Fin lever arm m
63 lfus Fuselage length m
64 lod_clb Lift to drag ratio at climb
65 lod_crz Lift to drag ratio at cruise
66 lod_cth Mean cruise mass at Cruise Kg
67 Lref Reference length m
68 Mach_clb current Mach number
69 Mach_crz cruise Mach number

181

70 Mach_cth current Mach number
71 Mach_stall_to Mach_stall_to
72 Mach_to current Mach number
73 mass_clb Mean cruise mass at climb Kg
74 mass_crz Mean cruise mass at cruise Kg
75 mass_cth Number of engines
76 Mchar Characteristic Mach number
77 Mfurn Furnishing mass Kg
78 Mfus Fuselage mass Kg
79 Mgear Landing gear mass Kg
80 Mht Tail mass Kg
81 Mop Operator item mass Kg
82 Mprop Engine mass Kg
83 Msys System mass Kg
84 MTOW Maximum take off weight (kg) Kg
85 Mvt Fin mass Kg
86 MWE Manufacturer weight empty (kg) Kg
87 Mwing Wing mass Kg
88 Naisle Number of aisle in the main deck
89 ne Number of engines
90 Npax Total number of seats
91 NpaxFront Maximum number of seats on a

row

92 OWE Operational weight empty (kg) Kg
93 Pamb_clb Climb atmospheric pressure N/m2
94 Pamb_crz Cruise atmospheric pressure N/m2
95 Pamb_cth Cruise atmospheric pressure N/m2
96 Pamb_to takeoff atmospheric pressure N/m2
97 phi Wing characteristic sweep angle

(rad)
radians

98 PL Payload Kg
99 RA Nominal range (m) m
100 RA_time Cruise time s
101 rho_clb Climb air density Kg/m3
102 rho_cth Sound velocity at cruise m/s
103 rho_to Takeoff air density Kg/m3
104 sfc Specific fuel consumption (kg/N/s) kg/N/s
105 span Wing span (m) m
106 Tamb_clb Climb atmospheric temperature K
107 Tamb_crz Cruise atmospheric temperature K
108 Tamb_cth Cruise atmospheric temperature K
109 Tamb_to takeoff atmospheric temperature K

182

110 tofl take off field length m
111 tuc Wing characteristic thickness to

chord ratio

112 vapp approach speed m/s
113 Vht Tail volume factor
114 vsnd_clb Sound velocity at climb m/s
115 vsnd_crz Sound velocity at cruise m/s
116 vsnd_cth Cruise speed m/s
117 Vvt Fin volume factor
118 vz_clb climb speed m/s
119 wAfus Fuselage wetted area m2
120 wAht Tail wetted area m2
121 wAnac Nacelle wetted area m2
122 wAvt Fin wetted area m2
123 wAwing Wing wetted area m2
124 Wpax One passenger weight Kg

Table A- 2 Models of USMAC test case

MODELS

 Function name Outputs Inputs Category

1 aspect_ratio_ ar span,Awing geometry
2 Cz_max_LD_ czmax_LD KczmaxLD, phi aerodynamic
3 Cz_max_LD_fact

or_
KczmaxLD aerodynamic

4 Cz_max_TO_ czmax_TO KczmaxTO, phi aerodynamic
5 Cz_max_TO_fact

or_
KczmaxTO aerodynamic

6 engine_mass_ Mprop ne, FNslst weight
7 fin_lever_arm_ Lev Leh geometry
8 fin_mass_ Mvt Avt weight
9 fin_size_ Avt Awing, span, Lev,

Vvt
handling qualities

10 fin_volume_facto
r_

Vvt handling qualities

11 fin_wetted_area_ wAvt Avt geometry
12 fric_drag_factor_ Kcx0 aerodynamic
13 furnishing_mass_ Mfurn Npax weight
14 fus_fuel_ratio_ Kff Fuel, Fwing weight
15 fus_wetted_area_ wAfus dfus, lfus geometry
16 fuselage_diameter dfus NpaxFront, Naisle geometry

183

_
17 fuselage_length_ lfus Npax, NpaxFront,

dfus
geometry

18 fuselage_mass_ Mfus dfus, lfus weight
19 ind_drag_factor_ Kind aerodynamic
20 Kvs_Landing kvs_LD performance
21 Kvs_Take_Off kvs_TO performance
22 landing_gear_mas

s_
Mgear MTOW weight

23 landing_weight_ LDW PL,OWE weight
24 manu_weight_em

pty_
MWE Kmwe, Mfus, Mwing,

Mht, Mvt, Mgear,
Mprop, Msys, Mfurn

weight

25 MWE_factor_ Kmwe weight
26 nac_wetted_area_ wAnac dnac geometry
27 nacelle_diameter_ dnac BPR, FNslst geometry
28 one_pax_weight_ Wpax weight
29 ope_weight_empt

y_
OWE MWE, Mop weight

30 operator_item_ma
ss_

Mop RA, Npax weight

31 Payload_ PL Npax, Wpax weight
32 press_drag_factor

_
Kcxp aerodynamic

33 ref_mach_number
_

Mchar phi, tuc aerodynamic

34 reference_area_ Aref Awing aerodynamic
35 reference_length_ Lref Awing, ar aerodynamic
36 sfc_factor Ksfc engine
37 spec_fuel_cons sfc Ksfc, BPR engine
38 system_mass_ Msys MTOW weight
39 tail_lever_arm_ Leh lfus handling qualities
40 tail_mass_ Mht Aht weight
41 tail_size_ Aht Awing, Lref, Leh, Vht handling qualities
42 tail_volume_facto

r_
Vht handling qualities

43 tail_wetted_area_ wAht Aht geometry
44 take_off_weight_ MTOW_eff Fuel, PL, OWE weight
45 wing_fuel Fwing Awing, tuc geometry
46 wing_mass_ Mwing MTOW, Awing, Lref,

span, phi, tuc
weight

47 wing_wetted_area
_

wAwing Awing Geometry

48 mean_cruise_mas
s_crz

mass_crz MTOW,LDW weight

49 non_stand_atmos Pamb_crz,Ta disa_crz,alt_crz atmosphere

184

_crz mb_crz
50 sound_velocity_c

rz
vsnd_crz Tamb_crz atmosphere

51 gravity_acc_crz g_crz alt_crz Earth
52 level_flight_crz cz_crz mass_crz, g_crz,

Mach_crz, Pamb_crz,
Aref

performance

53 pressure_drag_crz cxc_crz Mach_crz, Mchar,
Kcxp

aerodynamic

54 induced_drag_crz cxi_crz cz_crz,ar, Kind aerodynamic
55 friction_drag_crz cx0_crz cz_crz,Mach_crz,Pam

b_crz,Tamb_crz,wAw
ing,wAht,wAvt,wAfu
s,wAnac,lfus,Aref,Lre
f,ne,Kcx0

aerodynamic

56 drag_factor_crz cx_crz cx0_crz,cxi_crz,cxc_c
rz

aerodynamic

57 lift_to_drag_crz lod_crz cz_crz,cx_crz Lift over Drag
definition

58 max_cruise_facto
r

Kmcr engine

59 range_crz RA_eff MTOW,LDW,Mach_
crz,vsnd_crz,g_crz,lo
d_crz,sfc

mission

60 time_crz RA_time RA_eff,Mach_crz,vsn
d_crz

Mission

61 top_of_climb_ma
ss_clb

mass_clb MTOW weight

62 non_stand_atmos
_clb

Pamb_clb,Ta
mb_clb

disa_clb,alt_clb atmosphere

63 air_density_clb rho_clb Pamb_clb,Tamb_clb atmosphere
64 sound_velocity_cl

b
vsnd_clb Tamb_clb atmosphere

65 gravity_acc_clb g_clb alt_clb Earth
66 level_flight_clb cz_clb mass_clb,g_clb,Mach

_clb,Pamb_clb,Aref
performance

67 pressure_drag_clb cxc_clb Mach_clb,Mchar,Kcx
p

aerodynamic

68 induced_drag_clb cxi_clb cz_clb,ar,Kind aerodynamic
69 friction_drag_clb cx0_clb cz_clb,Mach_clb,Pam

b_clb,Tamb_clb,wAw
ing,wAht,wAvt,wAfu
s,wAnac,lfus,Aref,Lre
f,ne,Kcx0

aerodynamic

70 drag_factor_clb cx_clb cx0_clb,cxi_clb,cxc_c aerodynamic

185

lb
71 lift_to_drag_clb lod_clb cz_clb,cx_clb Lift over Drag

definition
72 net_thrust_clb Fn_clb Mach_clb,rho_clb,FN

slst
engine

73 max_climb_factor Kmcl engine
74 climb_rate_1 vz_clb mass_clb,Mach_clb,F

n_clb,Kmcl,lod_clb,v
snd_clb,g_clb,ne

Performance

75 top_of_climb_ma
ss_cth

mass_cth MTOW weight

76 non_stand_atmos
_cth

Pamb_cth,Ta
mb_cth

disa_cth,alt_cth atmosphere

77 air_density_cth rho_cth Pamb_cth,Tamb_cth atmosphere
78 sound_velocity_ct

h
vsnd_cth Tamb_cth atmosphere

79 gravity_acc_cth g_cth alt_cth Earth
80 level_flight_cth cz_cth mass_cth,g_cth,Mach

_cth,Pamb_cth,Aref
performance

81 pressure_drag_cth cxc_cth Mach_cth,Mchar,Kcx
p

aerodynamic

82 induced_drag_cth cxi_cth cz_cth,ar,Kind aerodynamic
83 friction_drag_cth cx0_cth cz_cth,Mach_cth,Pam

b_cth,Tamb_cth,wAw
ing,wAht,wAvt,wAfu
s,wAnac,lfus,Aref,Lre
f,ne,Kcx0

aerodynamic

84 drag_factor_cth cx_cth cx0_cth,cxi_cth,cxc_c
th

aerodynamic

85 lift_to_drag_cth lod_cth cz_cth,cx_cth Lift over Drag
definition

86 net_thrust_cth Fn_cth Mach_cth,rho_cth,FN
slst

engine

87 cruise_thrust_1 kfn_cth mass_cth,Fn_cth,Kmc
r,lod_cth,g_cth,ne

Performance

88 gravity_acc_app g_app alt_app Earth
89 app_speed_1 vapp LDW,czmax_LD,Aref,g_a

pp,kvs_LD
Performance

90 non_stand_atmos
_to

Pamb_to,Tam
b_to

disa_to,alt_to atmosphere

91 air_density_to rho_to Pamb_to,Tamb_to atmosphere
92 gravity_acc_to g_to alt_to Earth
93 Mach_stall_to_ Mach_stall_to MTOW,Aref,czmax_

TO,Pamb_to,g_to
performance

94 secured_Mach_to Mach_to kvs_TO,Mach_stall_t performance

186

o
95 net_thrust_to Fn_to Mach_to,rho_to,FNsls

t
engine

96 max_take_off_fac
tor

Kmto engine

97 tofl_1 tofl Fn_to,Kmto,MTOW,c
zmax_TO,rho_to,ne,A
ref,kvs_TO

performance

187

V. Additional Figures

i. USMAC test case: Case1

Figure A- 1: Incidence matrix for Case-1 (X and Y labels given in Figure A- 2) of USMAC test case

188

Figure A- 2: X and Y axis labels for the incidence matrix in Figure A- 1

189

Variable flow model for SCC: 1

Feedback number: 3, Number of modified models: 6

Figure A- 3: Design Structure Matrix of the SCC (Variable flow model-1) for Case-1 of USMAC test case

190

Figure A- 4: Incidence Matrix of the SCC (Variable flow model-1) for Case-1 of USMAC test case

191

Variable flow model for SCC: 2

Feedback number: 5, Number of modified models: 11

Figure A- 5: Design Structure Matrix of the SCC (Variable flow model-2) for Case-1 of USMAC test case

192

Figure A- 6: Incidence Matrix of the SCC (Variable flow model-2) for Case-1 of USMAC test case

193

Variable flow model for SCC: 3

Feedback number: 6, Number of modified models: 3

Figure A- 7: Design Structure Matrix of the SCC (Variable flow model-3) for Case-1 of USMAC test case

194

Figure A- 8: Incidence Matrix of the SCC (Variable flow model-3) for Case-1 of USMAC test case

195

Variable flow model for SCC: 4

Feedback number: 5, Number of modified models: 9

Figure A- 9: Design Structure Matrix of the SCC (Variable flow model-4) for Case-1 of USMAC test case

196

Figure A- 10: Incidence Matrix of the SCC (Variable flow model-4) for Case-1 of USMAC test case

197

Variable flow model for SCC: 5

Feedback number: 8, Number of modified models: 11

Figure A- 11 Design Structure Matrix of the SCC (Variable flow model-5) for Case-1 of USMAC test case

198

Figure A- 12 Incidence Matrix of the SCC (Variable flow model-5) for Case-1 of USMAC test case

199

ii. USMAC test case: Case2

Figure A- 13: Incidence matrix for Case-2 (X and Y labels are given in Figure A- 14) of USMAC test case

200

Figure A- 14: X and Y axis labels for the incidence matrix in Figure A- 13

201

Variable flow model for SCC: 1

Feedback number: 1, Number of modified models: 4

Figure A- 15: Design Structure Matrix of the SCC (Variable flow model-1) for Case-2 of USMAC test case

202

Figure A- 16: Incidence Matrix of the SCC (Variable flow model-1) for Case-2 of USMAC test case

203

Variable flow model for SCC: 2

Feedback number: 1, Number of modified models: 5

Figure A- 17: Design Structure Matrix of the SCC (Variable flow model-2) for Case-2 of USMAC test case

204

Figure A- 18: Incidence Matrix of the SCC (Variable flow model-2) for Case-2 of USMAC test case

205

Variable flow model for SCC: 3

Feedback number:2, Number of modified models: 3

Figure A- 19: Design Structure Matrix of the SCC (Variable flow model-3) for Case-2 of USMAC test case

206

Figure A- 20: Incidence Matrix of the SCC (Variable flow model-3) for Case-2 of USMAC test case

207

Variable flow model for SCC: 4

Feedback number:2, Number of modified models: 5

Figure A- 21 Design Structure Matrix of the SCC (Variable flow model-4) for Case-2 of USMAC test case

208

Figure A- 22 Incidence Matrix of the SCC (Variable flow model-4) for Case-2 of USMAC test case

209

iii. USMAC test case: Case3

Figure A- 23: Incidence matrix for Case-3 (X and Y labels are given in Figure A- 24) of USMAC test case

210

Figure A- 24: X and Y axis labels for the incidence matrix in Figure A- 23

211

Variable flow model for first SCC: 1

Feedback number: 1, Number of modified models: 4

Figure A- 25: Design Structure Matrix of the first SCC (Variable flow model-1) for Case-3 of USMAC test case

212

Figure A- 26: Incidence Matrix of the first SCC (Variable flow model-1) for Case-3 of USMAC test case

213

Variable flow model for first SCC: 2

Feedback number: 1, Number of modified models: 5

Figure A- 27: Design Structure Matrix of the first SCC (Variable flow model-2) for Case-3 of USMAC test case

214

Figure A- 28: Incidence Matrix of the first SCC (Variable flow model-2) for Case-3 of USMAC test case

215

Variable flow model for second SCC: 1

Feedback number: 1, Number of modified models: 3

Figure A- 29: Design Structure Matrix of the second SCC (Variable flow model-1) for Case-3 of USMAC test case

216

Figure A- 30: Incidence Matrix of the second SCC (Variable flow model-1) for Case-3 of USMAC test case

217

Variable flow model for second SCC: 2

Feedback number: 1, Number of modified models: 4

Figure A- 31: Design Structure Matrix of the second SCC (Variable flow model-2) for Case-3 of USMAC test case

218

Figure A- 32: Incidence Matrix of the second SCC (Variable flow model-2) for Case-3 of USMAC test case

219

Variable flow model for second SCC: 3

Feedback number: 1, Number of modified models: 2

Figure A- 33: Design Structure Matrix of the second SCC (Variable flow model-3) for Case-3 of USMAC test case

220

Figure A- 34: Incidence Matrix of the second SCC (Variable flow model-3) for Case-3 of USMAC test case

221

VI. Architecture of CWMD

This section contains the architectural, interface and design (Implementation)

description of the CWMD.

i. Functional top-level decomposition

Functional top-level decomposition diagram in Figure A- 35 indicates the four main

functions of CWMD and its interaction with the graphical user interface. ‘Objects’ in

the figure corresponds to data, model, subprocess and study.

CREATE OBJECTS

GUI

PLOT OBJECTS EXECUTE
OBJECTS

ob
je

ct
s

ob
je

ct
s

ob
je

ct
s

REARRANGE

ob
je

ct
s

Figure A- 35 Top level functional flow systems diagram

ii. Functional application mapping
The functional top-level decomposition with its internal structure is shown in Figure A-

36. The purpose is to show the first level structure of application components and how

functional packages are allocated to components.

222

EXECUTE

Execute Model

Execute Subprocess

Execute Study

Plot IM

Plot DSM

Plot Graph

Plot Text

PLOT

Create Data Create Model

CREATE OBJECTS

Create Subprocess Create Study

Create Treatment

objects

objects

ob
je

ct
s

ob
je

ct
s

Perform variable flow
modelling using IMM

Rearrange SCCs using
Genet ic Algorithm

Rearrange models / Subproces s
hierarchically

Add treatments for SCCs
and modified models

REA RRANGE

GUI

Data Creator

Subprocess Creator

Study Creator

Model Creator

CWMD

Runner

Figure A- 36 Functional top-level decomposition with its internal structure

iii. Product breakdown structure (PBS)
The hierarchical tree structure for the components is given below. The function of each

component is self explanatory.

1. GUI
1.1. CWMD GUI (Figure A- 38)
1.2. DATA CREATOR (Figure A- 39)
1.3. MODEL CREATOR (Figure A- 40)
1.4. SUBPROCESS CREATOR (Figure A- 41)
1.5. STUDY CREATOR (Figure A- 42)

223

1.6. RUNNER (Figure A- 43)
2. CREATE OBJECTS

2.1. CREATE DATA (Figure A- 44)
2.2. CREATE MODEL (Figure A- 45)
2.3. CREATE SUBPROCESS (Figure A- 46)
2.4. CREATE STUDY (Figure A- 47)
2.5. CREATE TREATMENT (Figure A- 48)

3. REARRANGE (Figure A- 49)
3.1. PERFORM VARAIBLE FLOW MODELLING USING IMM

(Figure A- 50)
3.2. REARRANGE SCCS USING GENETIC ALGORITHM (Figure A-

51)
3.3. REARRANGE MODELS/SPS HEIRARCHICALLY (Figure A- 52)

4. PLOT MD/SP
4.1. PLOT INCIDENCE MATRIX (Figure A- 53)
4.2. PLOT DESIGN STRUCTURE MATRIX (Figure A- 54)
4.3. PLOT GRAPH (Figure A- 55)
4.4. PLOT TEXT (Figure A- 56)

5. EXECUTE OBJECTS
5.1. EXECUTE MODEL (Figure A- 57)
5.2. EXECUTE SUBPROCESS (Figure A- 58)
5.3. EXECUTE STUDY (Figure A- 59)

The flow diagram for each component is shown in Figure A- 38 till Figure A- 59. A

detailed flow diagram which combines all the component level flow diagrams is

represented in Figure A- 37.

Symbols used in the Flow diagrams

Graphical User Interface

function

Button on a GUI

Decision

input/output

224

Figure A- 37 Functional flow systems diagram (attached sheet provides a zoomed view)

iv. Architecture Breakdown Diagrams

CWMD

Create

Plot

Execute

Load

Save

Copy

Delete

Figure A- 38 Flow diagram for CWMD GUI (Component 1.1)

225

datacr

dataobject

CREA TE

name type values min max

dataobject

Data

Figure A- 39 Flow diagram for 'data creator' GUI (Component 1.2)

modelcr

modelobject

CREA TE

functionname inputdata outputdata

modelobject

dataobjects

Model

Figure A- 40 Flow diagram for 'model creator' GUI (Component 1.3)

rearrange_imm_math

case modelobjects/
subproc ess ob jec ts

dataobjects

sp

subprocr

subprocesobjects

CREATE

name trmts modelobjects/s
ubproc ess objec ts

inputdata outputdata

subprocessobject

modelobjects subprocesobj
ects

BUILD

subprocess

Figure A- 41 Flow diagram for 'subprocess creator' GUI (Component 1.4)

226

studycr

studyobjects

modelobjects subprocesobje
cts treatments

insert(treatm
ent)

CREATE

dataobject

name trmts modelobjects/s ubproc e
ss ob jec t s inputdata outputdata

Study

DHCBI

OPTIMISER

modelobjects/subprocess
objects

dhcbitreatments

optimisertreatments

modelobjects/subprocess
objects

Figure A- 42 Flow diagram for 'study creator' GUI (Component 1.5)

runner executerExecute

executer

Subprocess object

Subprocess object

Model object

Model object

Model/subprcoess object

Model/subprcoess object

Figure A- 43 Flow diagram for 'runner' GUI (Component 1.6)

227

name type values range_min range_max

dataobject

Data

Figure A- 44 Flow diagram for creating data object creator (Component 2.1)

functionname inputdata outputdata

modelobject

Model

Figure A- 45Flow diagram for creating model object (Component 2.2)

name trmts models/Suprocess inputdata outputdata

subprocessobject

subprocess

Figure A- 46 Flow diagram for creating subprocess object (Component 2.3)

name trmts models/Suprocess inputdata outputdata

subprocessobject

Study

Figure A- 47 Flow diagram for creating study object (Component 2.4)

228

name function inputdata outputdata

Treatmentobject

Treatment

Figure A- 48 Flow diagram for creating treatment object (Component 2.5)

rearrange_imm_math

case modelobjects/s ubpro
c es s objec ts dataobjects

sp

imminit

process depvars

process

datasaccum

process

datasobjnew datas

incmcreate

process datas

incmreal

imm

incmreal indep

icm dsmarr clus_final rearr_c lus _final

dtclassifynew

process inputs outputs

inputs outputs

name trmts process inputs outputs

sp

subprocess
process icm datas datasobjnew

createmodifier

process

process dsmarr clus_f inal rearr_clus_final

createscc_arrange

process

name sccs

sccsubprocreate

sccobj

treatment

subprocess

treatment

subprocess

Figure A- 49 Flow diagram for rearrangement (Component 3)

229

imm

incmreal indep

icm dsmarr clus_final rearr_clus_final

spm

incm noutvalr noutvalc

incm

incm noutvalr noutvalc

fillasinput

incm

incm incmreal noutvalr noutvalc

incidence explore

incmset

incmset

incmsettodsmset

dsmset

spmtodsm

spm

dsm

dsmset incmset incmreal

sccleastfeedback

fullfeedback clusset rearr_clusset

sequenceprocess

dsm

ds m

Figure A- 50 Flow diagram for variable flow modelling using incidence matrix

method(Component 3.1)

230

dsmset incmset incmreal

sccleastfeedback

fullfeedback clusset rearr_clusset

clusidentif

dsm

clus access

spmtodsm

spm

dsm

dsm fdself criter ia

ga_rearg

X FVAL

ga

fitnessfunction nvars options

X FVAL

Figure A- 51 Flow diagram for rearrangement of SCCs by applying genetic algorithm

(Component 3.2)

sequenceprocess

dsm

clusidentif

dsm

clus access

dsmrg

acce ss

dsm_arr

flgrc

flgrc

access

redmtx

acss

nmdl access

fargmnt

acss

acss

unpck

dsm

acss access

dsm

Figure A- 52 Flow diagram for rearing models/SPs hierarchically (Component 3.3)

231

view_i

Model/Subprocess object

Figure A- 53 Flow diagram for representing MD/SP in an incidence matrix (Component

4.1)

view_d

Model/Subprocess object

Figure A- 54 Flow diagram for representing MD/SP in a DSM (Component 4.2)

view_g

Model/Subprocess object

Figure A- 55 Flow diagram for representing MD/SP in a graph format (Component 4.3)

view_t

Model/Subprocess object

Figure A- 56 Flow diagram for representing MD/SP in a text GUI (Component 4.4)

Executer

Model Object

Model Object

Figure A- 57 Flow diagram for executing model objects (Component 5.1)

232

Executer

Subprocess object

Subprocess object

sccfsolver

Subprocess object

Subprocess object

sccfixedpointfit

Subprocess object

Subprocess object

modifier

Subprocess object

Subprocess object

Figure A- 58 Flow diagram for executing subprocess objects (Component 5.2)

Executer

Study Object

Study Object

DHCBI

Optimiser

Figure A- 59 Flow diagram for executing study objects (Component 5.3)

v. Description of components of CWMD

The description of each component given in the Figure A- 38 till Figure A- 59 is given

in the Table A- 3.

Table A- 3 Description of components of CWMD

Component ID Short Title Description Covered Function
1. 1 (Figure A-
38)

CWMD GUI

This is the main graphical user interface. There are
options to create, execute, plot, delete and copy
Objects (data, model, subprocess, study and
treatments). The objects created can be loaded and
saved using ‘Load’ and ‘SAVE’ buttons.

CWMD

233

Component ID Short Title Description Covered Function
1. 2(Figure A-
39)

DATA CREATOR The function of this interface is to create data
objects. The inputs to create the data (name, value,
type, range) has to be provided by the user. This
GUI can be activated from ‘CWMD’ window .

dater

1. 3(Figure A-
40)

MODEL
CREATOR

The function of this interface is to create model
objects. The data objects loaded in the CWMD
GUI will be the inputs to this GUI. The name of
the model object to be created, its inputs and
outputs has to be provided by the user. This GUI
can be activated from ‘CWMD’ window .

modeller

1. 3(Figure A-
41)

SUBPROCESS
CREATOR

The function of this interface is to create
subprocess objects. The model and subprocess
objects loaded in the CWMD GUI will be the
inputs to this GUI. The subprocess is created based
on the models/sub processes and the independent
variables selected by the user. This GUI can be
activated from ‘CWMD’ window .

subprocr

1. 4(Figure A-
42)

STUDY
CREATOR

The function of this interface is to create study
objects. The model and subprocess objects loaded
in the CWMD GUI will be the inputs to this GUI.
The study object is created based on the
models/subprocesses and the treatment objects
selected by the user. This GUI can be activated
from ‘CWMD’ window .

studycr

1. 5(Figure A-
43)

RUNNER The function of this interface is to execute the
model and subprocess objects. The
model/subprocess selected from the CWMD GUI
will be the inputs to this GUI. This GUI can be
activated from ‘CWMD’ window .

runner

2.1(Figure A-
44)

CREATE DATA Creates data object. Data

2.2(Figure A-
45)

CREATE MODEL Creates data object. model

2.3(Figure A-
46)

CREATE
SUBPROCESS

Creates subprocess object.

subprocess

2.4 (Figure A-
47)

CREATE STUDY Creates study object. study

2.5(Figure A-
48)

CREATE
TREATMENT

Creates treatment object. treatment

3(Figure A- 49) REARRANGE The main calling function for computational
process plan
Functions called
imminit
dtclassifynew
subprocess(Component ID 2.3)

Rearrange_imm_m
ath

3(Figure A- 49) REARRANGE
imminit

Inititalises the incm matrix and creates the
incmreal matrix
Functions called
datasaccum
incmcreate
imm(Component ID 3.1)

imminit

3(Figure A- 49) REARRANGE
Imminit
datasaccum

Creates a list of variables in the models and
subprocess

datasaccum

234

Component ID Short Title Description Covered Function
3(Figure A- 49) REARRANGE

Imminit
incmcreate

Creates the foundation matrix of the
models/subprocess in the process.

incmcreate

3(Figure A- 49) REARRANGE
Imminit
createmodifier

Adds mathematical treatments for the
subprocess/models which has its inputs and outputs
modified and creates a subprocess
Functions called
Subprocess

createmodifier

3(Figure A- 49) REARRANGE
Imminit
o createscc_arr
ange

Adds mathematical treatments for the
subprocess/models which are part of the SCC, and
creates a subprocess.
Functions called
Subprocess
Sccsubprocreate

createscc_arrange

3(Figure A- 49) REARRANGE
dtclassifynew

Creates a cell array of the inputs and outputs for
the group of models\subprocess given as inputs to
‘dtclassify’

dtclassifynew

3.1(Figure A-
50)

PERFORM
VARAIBLE FLOW
MODELLING
USING IMM

Performs variable flow modelling based on
incidence matrix method. The final incidence
matrix, list of SCCs, the arrangement of SCCs etc
are produced as outputs.
Functions called
indepcheck
spm
fillasinput
incidence_explore
incmsettodsmset
sccleastfeedback(componenet ID 3.2)
sequenceprocess(componenet ID 3.3)

imm

3.1(Figure A-
50)

PERFORM
VARIBALE FLOW
MODELLING
USING IMM

- indepcheck

Checks whether incm will lead to violation of the
constraints and leads to an unsolvable system.

indepcheck

3.1(Figure A-
50)

PERFORM
VARIBALE FLOW
MODELLING
USING IMM

-spm

Conducts the incidence matrix method on the incm
matrix provided.

spm

3.1(Figure A-
50)

PERFORM
VARIBALE FLOW
MODELLING
USING IMM

-fillasinput

If the system is under constrained then this
function will make certain variables to be
independent and in parallel making sure that none
of the constraints are violated.

fillasinput

3.1(Figure A-
50)

PERFORM
VARIBALE FLOW
MODELLING
USING IMM
-incidence_explore

If the system is under constrained then this
function will make certain variables to be
independent and in parallel making sure that none
of the constraints are violated.
Functions called
fillasinput
spm
findchanval (finds the rows of incm where the
models associated variable are modified)
incidence_explore

incidence_explore

235

Component ID Short Title Description Covered Function
3.1(Figure A-
50)

PERFORM
VARIBALE FLOW
MODELLING
USING IMM
-incmsettodsmset

If the system is under constrained then this
function will make certain variables to be
independent and in parallel ensuring that none of
the constraints are violated.
Functions called
Spmtodsm (converts IM to DSM)

incmsettodsmset

3.2(Figure A-
51)

REARRANGE
SCCS USING
GENETIC
ALGORITHM

Rearranges the elements of SCCs using genetic
algorithm, based on the criteria(‘feedback length’
or ‘feedback number’) provided by the user
Functions called
clusidentif
spmtodsm
ga_rearg

sccleastfeedback

3.2(Figure A-
51)

REARRANGE
SCCS USING
GENETIC
ALGORITHM
-clusidentif

Identifies the SCCs in the dsm provided and give
as output the list of elements in each SCC

clusidentif

3.2(Figure A-
51)

REARRANGE
SCCS USING
GENETIC
ALGORITHM
- ga_rearg

Identifies the SCCs in the dsm provided and give
as output the list of elements in each SCC
Functions called
ga- Matlab function
optimtest
numfdb
rearg_cross
rearg_mut
rearg_pop

ga_rearg

3.2(Figure A-
51)

REARRANGE
SCCS USING
GENETIC
ALGORITHM
- ga_rearg
 - optimtest

Calculates the feedback length based on the dsm
and the order in which dsm has to be rearranged.
Functions called
magicdsm
fdblng

optimtest

3.2(Figure A-
51)

REARRANGE
SCCS USING
GENETIC
ALGORITHM
- ga_rearg
 - optimtest
 -magicdsm

Creates a rearranged DSM(mdsm) out of the new
arrangement of disciplines according to input from
disp

ga_rearg

3.2(Figure A-
51)

REARRANGE
SCCS USING
GENETIC
ALGORITHM
- ga_rearg
 - optimtest
 -fdblng

Finds feedback length given a DSM using the
equation sum(DM(i,j)(i-j)),i=2:n,j=1:i-1

fdblng

3.2(Figure A-
51)

REARRANGE
SCCS USING
GENETIC
ALGORITHM
- ga_rearg
 - rearg_cross

Position based crossover for rearranging the dsm

rearg_cross

3.2(Figure A-
51)

REARRANGE
SCCS USING
GENETIC
ALGORITHM
- ga_rearg
 - rearg_mut

Mutation for rearranging the dsm

rearg_mut

236

Component ID Short Title Description Covered Function
3.2(Figure A-
51)

REARRANGE
SCCS USING
GENETIC
ALGORITHM
- ga_rearg
 - rearg_pop

Creates population given the GenomeLength

rearg_pop

3.2(Figure A-
51)

REARRANGE
SCCS USING
GENETIC
ALGORITHM
- ga_rearg
 - numfdb

Calculates the feedback number based on the dsm
and the order in which dsm has to be rearranged.

numfdb

3.3(Figure A-
52)

REARRANGE
MODELS/SPS
HEIRARCHICALL
Y

Rearrangement of the DSM based on graph theory
Functions called
clusidentif(refer component 3.2)
dsmrg

sequenceprocess

3.3(Figure A-
52)

REARRANGE
MODELS/SPS
HEIRARCHICALL
Y
 -dsmrg

Rearrangement of the accessibility matrix based on
graph theory
Functions called
flgrc
redmtx
fargmt
unpck

dsmrg

3.3(Figure A-
52)

REARRANGE
MODELS/SPS
HEIRARCHICALL
Y
 -dsmrg
 -flgrc

Inserts flags for the rows and columns of
accessibility matrix which are identical.

flgrc

3.3(Figure A-
52)

REARRANGE
MODELS/SPS
HEIRARCHICALL
Y
 -dsmrg
 -redmtx

The rows and columns of the acces matrix which
are identical are collapsed into single rows and
columns.

redmtx

3.3(Figure A-
52)

REARRANGE
MODELS/SPS
HEIRARCHICALL
Y
 -dsmrg
 - fargmt

Final rearrangement based on graph theory

fargmt

3.3(Figure A-
52)

REARRANGE
MODELS/SPS
HEIRARCHICALL
Y
 -dsmrg
 - unpck

Final rearrangement based on graph theory

unpck

4.1 (Figure A-
53)

PLOT
INCIDENCE
MATRIX

Plots the subprocess which is given as input, as an
incidence matrix.
Functions called
form_icm
form_x_tckl
form_y_tckl
graph_matrix

view_i

4.2(Figure A-
54)

PLOT DESIGN
STRUCTURE
MATRIX

Plots the subprocess which is given as input, as a
design structure matrix.
Functions called
settingp
dsmatrix

view_d

237

Component ID Short Title Description Covered Function
intercnt
graph_matrix

4.3(Figure A-
55)

PLOT GRAPH Plots the subprocess which is given as input, as a
graph.
Functions called
views
graph_to_dot
dot_to_graph
my_setdiff
graph_draw
textoval
ellipse
textbox
make_layout
arrow1

view_gi

4.4 (Figure A-
56)

PLOT TEXT Plots subprocess and models in the tabular
format

view_t

5.1(Figure A-
57)

EXECUTE
MODEL

Executes model.

executer

5.2(Figure A-
58)

EXECUTE
SUBPROCESS

Executes subprocess.
Functions called
Valuefillpre- the results obtained after execution is
updated for all data objects(inputs and outputs of
the subprocess) embedded in the subprocess
sccfsolver
Sccfixedpoint
modifier

executer

5.2(Figure A-
59)

EXECUTE
SUBPROCESS
 -sccfsolver

Solving SCC using the fsolve function of
MATLAB. For details on FSOLVE function refer
the user manual for MATLAB.
Functions called
Fsolve- Matlab function
Findguess- finds the variables which are part of the
feedback loops
Invrscc- the objective function for fsolve

sccfsolver

5.2(Figure A-
59)

EXECUTE
SUBPROCESS
 -sccfixedpoint

Solving SCC using fixed point iteration.
Functions called
Settingp- converts the attributes of 'models’ into a
cell array
Dsmatrix-Finds the strongly connected
components(SCC)
dsmvarfind- finds the variables which are part of the
feedback loops
intercnt-mapping inputs and outputs of models

sccfixedpoint

5.2(Figure A-
59)

EXECUTE
SUBPROCESS
 -modifier

Solving SCC using the fsolve function of
MATLAB. For details on FSOLVE function refer
the user manual for MATLAB.
Functions called
Fsolve- Matlab function
Findunk- checking variables which are modified
Invrs- objective function for fsolve

modifier

5.3(Figure A-
59)

EXECUTE
STUDY

Executes study.
Functions called
Valuefillpre- the results obtained after execution is
updated for all data objects(inputs and outputs of
the subprocess) embedded in the study
DHCBI
Optimiser

executer

238

