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Abstract: This paper presents a study on the application of the weight function and finite
element methods to evaluate residual stress intensity factors in welded test samples. Three
specimen geometries and various residual stress profiles were studied. Comparisons of the
two different methods were made in terms of the accuracy, easiness to use, conditions and
limitations. Calculated residual stress intensity factors by the two different methods are in
general in good agreement for all the configurations studied. Computational issues involved
in executing these methods are discussed. Some practical issues are also addressed, e.g.
treatment of incomplete or limited residual stress measurements, influence of transverse
residual stresses, and modelling residual stress in short-length specimens. The finite element
method is validated by well-established weight functions and thus can be applied to complex
geometries following the procedures recommended in this paper.
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Nomenclature
a half or full crack length in centre crack or edge crack geometry
E, G Young’s modulus, Shear modulus
E effective Young’s modulus, E for plane stress or E/(1-2) for plane strain
h(a, x) weight function

K, K stress intensity factors (SIF), SIF for Mode I crack
Kapp, Kres, Ktot SIF due to applied, residual and combined stress fields
W half width of plate with centre crack, width of plate with edge crack
  = (3–) /(1+) for plane stress or (3-4 for plane strain
 Poisson’s ratio

1. Introduction

Since the adoption of modern welding techniques for manufacturing aerospace structures,
evaluation of crack tip stress intensity factors (SIF) resulting from welding induced residual
stresses has become an indispensable part to the damage tolerance analysis. This so-called
residual stress intensity factor (Kres) is required in the prediction of fatigue crack growth rates
as well as in the residual strength calculations [1-6]. Current analysis methods are based on
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the superposition rule of linear elastic fracture mechanics (LEFM). One popular engineering
method is to determine the effective stress intensity factor ratio (Reff) to account for the
residuals stress effect [1-2]. An alternative method is based on the crack closure concept
originally proposed by Elber [7] by calculating the effective stress intensity factor range
(Keff) in a combined stress field of the applied and residual. The validity of both methods has
been generally accepted. Both Reff andKeff are determined by calculating the Kres and using
the superposition method [2-4, 8]. Therefore, the key task is to evaluate the Kres.
The weight function method (WFM) and the finite element method (FEM) have been widely
employed for calculating SIFs. The former has been successfully used by many researchers
for welded test samples [1,5,9]. Closed-form or approximate analytical solutions are available
for calculating the Kres and, in general, the solutions are exact or accurate enough. However,
most weight functions were developed for simple geometries or require finite width correction.
Some weight functions are in very complicated forms that the calculation process involves
solving complex integral equations. On the other hand, the FEM is a more robust and versatile
tool for complex geometries and loading conditions. It has been successfully used in the
fracture analysis in welds [3,10,11]. This method is getting more popular owing to the rapid
development of fast computers and implementation of fracture mechanics analysis routines in
the commercial FE packages. The most important case is that welded structural components
are usually in complex geometry for which FEM is more powerful than WFM in evaluating
the effect of residual stresses on crack tip stress field. However, although the FEM is used in
many studies of Kres for many years and one recent study has shown good agreement with
WFM calculated Kres for the mid-crack tension geometry [11], the FEM delivered Kres

solutions are yet to be validated for further application to complex structural configurations
and/or residual stress distributions. There are a few aspects that need to be explored to make
sure the FE results are correct or acceptable.
The objectives of this paper are to validate the FEM by the well-established WFM for simple
geometries and to establish good practices and procedures for application of FEM to complex
welded structures. The available weight functions and their application in residual stress field
are summarized firstly. Then, the procedure of evaluating Kres via FEM is described.
Discussion is made for the aspects of introducing residual stresses into FE model, dealing
with incomplete measured residual stresses and effect of transverse residual stresses. The
study cases include three specimen configurations and various residual stress profiles
resulting from two welding processes and different crack positions. Comparisons of the two
different methods are performed in terms of their accuracy, easiness for the users, and
application scope and conditions. Computational issues and influential factors in these two
methods are also discussed.

2. Weight function method in residual stress field

2.1 The concept

Two-dimensional plane stress or plane strain problems of a crack length a in an infinite body
subjected to an arbitrary symmetrical loading can be solved provided that certain results are

known for one symmetrical loading, i.e. displacement of the crack faces,   xav ,1 , and the

stress intensity factor,  1
K [12]. The SIF for any other symmetrical loading at the crack tip

ax  is given by

   

a

xxahxK
0

d, (1)

where  x is the stress over the crack site in an un-cracked body,  xah , the weight function

that is independent of  x .
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The Green’s function is an earlier approach that is similar to the weight function method [13].
In order to apply the method, it is necessary to know the appropriate Green’s function and the
distribution of stress along the crack site in the un-cracked solid. Once these are known, the
technique will give exact solutions. Often this may not be available and it is then necessary to
make approximations [12]. For the case of a two-dimensional problem of a cracked sheet
containing a crack of length 2a subjected to localized forces P acting at points on the crack
surface and normal to the crack faces, the SIF is calculated by:
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If a pressure,  xp , acts normal to the crack faces, axa  , then
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The Green’s function,  xG , for this particular problem is:
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Eq. (4) is consentaneous to Eq. (1) in form.
In the following sections, both weight functions and Green’s functions are expressed
as  xah , , and the stresses acting on the crack-free body are expressed by  x .

In order to apply the WFM to calculate the SIF resulting from weld thermal residual stresses,
it is necessary to know  x and  xah , . The residual stress distributions,  x , can be

obtained by either experimental measurements [14-15], e.g. the diffraction methods, the hole
drilling, and the cut-compliance method, or the inverse method from crack growth rate data
[16], or via thermal stress analysis of welding process. The availability of  x is the

prerequisite of both the WFM and FEM.
The WFM should give exact solution providing that the correct  xah , is used. Many

different weight functions of either closed-form or approximate are available for simple
configurations, i.e. centre crack and edge crack(s) [17].

2.2 Available weight functions for simple configurations

Although the distributions of weld residual stresses always manifest different characteristics
and profiles due to the different welding processes, from the numerical integration method
point of view, load acting on the crack length interval a can be treated as point load
when a is infinitesimal. So, all the weight functions, including the approximate forms,
developed for the point load can be applied for calculating SIF due to distributed residual
stress.

1) Weight functions for an infinite sheet
Green’s function, Eq. (4) and (5), is the simplest form of weight function for an infinite with
centre crack of length 2a, Fig. 1a, [18, 19]. For edge crack in a semi-infinite sheet, Fig. 1b,
Sih [20] used the approximate form of weight function expressed by Eq. (6).
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Fig. 1 Configurations of infinite sheet with centre (a) and edge crack (b).

2) Weight functions for finite width sheet
Several weight functions are developed for the simple configurations of finite width sheet
with a centre or edge crack as shown in Fig. 2.
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Fig. 2 Configuration of finite width sheet with a center or edge crack: (a) Infinite length
center crack; (b) finite length center crack; (c) infinite length edge crack; (d) finite length edge

crack
Tada et al. [19] developed a weight function expressed by Eq. (7) for finite width, infinite
length sheet with centre crack subjected symmetrical point loads as shown in fig. 2a. Tada
stated that this weight function should give better accuracy if 5.0Wa
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Wu and Carlsson [17] derived Eq. (8) for a centre crack in a finite rectangular plate, Fig. 2b.
For the special cases of 0.2WH , Eq. (9) can be used to determine the simple expressions

for the  Wai functions (within 1% for the weight function for 5.0Wa ).
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The weight functions for infinite sheet, i.e. Green’s function in Eq. (5) and Sih’s function in
Eq. (6), etc., can also be applied to finite width when multiplying a correction function, such
as the Isida’s finite width correction function [21].
A weight function for single edge crack in a finite width but infinite length sheet, Fig. 2c, was
firstly developed by Bueckner [22], Eq. (10).
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Kaya and Erdogan [23] also presented a weight function for such geometry, Eq. (12),
where  Wagi , 4,3,2,1i , can be found in [23] and are listed in the Appendix of this paper.
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Wu and Carlsson also presented a weight function for this configuration in [17],
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where  Wai is much more complicated than that in Eq. (8)-(9), and can be expressed by

several equations [17]. For simplification in application, Wu and Carlsson provided some
discrete values of  Wai for selected non-dimensional crack lengths which are listed in the

Appendix A, Table A1.
If the edge crack is in a plate of finite width and length as shown Fig. 2d, e.g. the compact
tension, C(T), then the effect of sample’s length on the SIF must be taken into account by
choosing a suitable weight function.
Fett and Munz [24] developed a weight function for the C(T) geometry, Eq. (14), by using the
fundamental principle of Petroski and Achenbach [25].
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where,  ,A are the weight function coefficients and listed in the Appendix A, Table A2.

Wu and Carlsson [17] also proposed a weight function for the C(T) geometry, Eq. (15).
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where  Wai are different from those in Eq. (8) and Eq. (13). The discrete values of

 Wai for selected non-dimensional crack lengths are listed in the Appendix A, Table A3.

3) Other weight functions
Beghini and Bertini [26,27] developed weight functions for inclined cracks at sharp V-
notches and semi-plane. Weight function for a 3D surface crack is also available [28]. For
other configurations, such as a centre crack in a circular disc, double edge crack, multiple
cracks, etc., corresponding weight functions have been developed by Tada [19], Wu [17], Fett
and Munz [24] et al. Weight functions of general forms were also proposed by Fett et al. [29],
and Sha and Yang [30].

2.3 Evaluating SIF due to welding residual stresses by WFM

2.3.1 Available SIF solutions

Various kinds of weight functions have been applied to determine the intensity of the crack
tip elastic field for cracks introduced into the residual stress field (including thermal stresses).
In the absence of external loads, residual stressed are self-balanced, built-in field, which
require no special treatment when using the WFM. The method is based on the superposition
principle [19].

There are some closed-form SIF solutions that are deduced by the WFM. Tada et al. [31]
presented SIF solutions for various crack-absent residual stress distributions and crack
geometries. For example, they used the Green’s function to obtain the SIF solution for centre
crack in infinite width plate. When the residual stress distribution is expressed by Eq. (16),
Fig. 3a, K is given by Eq. (17).
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For a finite width rectangular plate, Wu and Carlsson [17] presented the SIF solution
according to this stress distribution using their weight function, Eq. (8). Tada’s and Wu’s
solutions are compared in Fig. 3b, which shows that: (1) The SIF results given by Tada and
Wu agree with each other very well when the width of the plate is adequate compared with
the distribution of residual stress. (2) For inadequate width ratio, e.g. 4cW , although the
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stress at the edge is almost zero, the width effect could not be ignored; weight functions with
width correction gives more accurate result in this case.
However, weld residual stresses as measured are not always in the single peak form as Fig. 3a
and Eq. (16) describe. Most cases need numerical integration of Eq. (1). This will be
demonstrated through practical examples in Section 4.
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Fig. 3 WF solution of SIF given for a given residual stress field; (a) residual stress distribution;
(b) comparison of Tada’s and Wu’s solutions

2.3.2 Influence of incomplete residual stress measurement data

Residual stresses should be self-balanced in the absence of external loads. However, during
residual stress measurement experiments tensile residual stresses often attract more attention
than compressive stresses. Consequently measured stress distribution is often incomplete and
dominated by tensile stresses resulting in un-balanced stress field. If the equilibrium condition
is not fulfilled, evaluated SIF distribution as a whole is in general meaningless. However, in
some cases of engineering failure assessment, attention is on crack propagation in the weld
zone. Thus, if the values of Kres are correct in region of interest, then the assessment is
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meaningful. The purpose of the work presented in this section is to understand the effect of
incomplete RS on Kres if measured residual stresses are available only in the crack growth
region.

Two cases are studied: case 1 is centre crack with a longitudinal weld in the middle of plate,
Fig. 4a; case 2 is edge crack with longitudinal weld, Fig. 4b. For demonstration purpose, the
analytical stress distribution in Eq. (16) is used and plotted in Fig. 4; solid and dotted lines
form a full and balanced stress field. Assumed un-balanced residual stress is achieved by
limiting )(x to region cxc 1.11.1  (solid line); stresses outside this region (dotted line)

are set to zero. For simplicity and emphasising on the effect of un-balanced stress, effect of
sample length is not considered. Wu and Carlsson weight function, Eq. (8), is used for case 1,
and Bueckner’s weight function, Eq. (10), is used for case 2. Normalized SIF values for case
1 and 2 are shown in Figs. 5a and 5b, respectively, and compared with those SIF solutions due
to balanced stresses. It indicates that: (1) For the centre crack that has the same symmetric
axis as the stress distribution, the imbalance of the stresses has no influence on resK while the

crack length a is within the boundary of the region where the residual stresses are known. (2)
For the edge crack, the result obtained from un-balanced stresses is totally different from that
gained by balanced stresses. Therefore, for the edge crack geometry full and balanced residual
stress field is necessary for evaluating residual SIF by WFM. In other words, if a crack is
completely embedded in the region where the residual stress is evaluated or correctly
interpolated and the crack and the residual stress distribution have the same symmetric axis,
(e.g. the centre crack case), then partial knowledge of the stress is not a problem when using
the WFM. The required function (x) is enough for obtaining the correct Kres, and the stresses
in other regions do not affect the result. However, the problem of partial knowledge of
residual stresses arises when the WFM is applied to a crack for which residual stress is known
only on a portion of the crack length (e.g. an edge crack). In this case application of the WFM
needs the residual stress to be reasonably extrapolated on the whole crack domain and the
equilibrium condition has to be correctly fulfilled.

crack

weld line

2W

crack

weld line

0.4W 0.6W

(a) (b)

Fig. 4 Balanced and incomplete residual stresses ( cW 10 ) in (a) centre crack and (b) edge
crack samples
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Fig.5 Influence of incomplete residual stress on SIF: (a) centre crack; (b) edge crack.

3. Finite element method

3.1 Introduction of residual stresses into FE models

For evaluating Kres, it is important to input correct initial stress conditions to numerical
models to characterise measured residual stresses. The function of defining initial stress
condition is available in many commercial FE software packages, e.g. ABAQUS subroutine
SIGINI [32], ANSYS command INISTATE [33]. These initial stresses should be equilibrated
in the first analysis step to result in zero stresses in model’s free edges and self-equilibrium
condition without any constraint. ABAQUS command “UN-BALANCED STRESSES” can
be called to do this, while in ANSYS, the initial stress must be applied in the first load step
and be equilibrated automatically.
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According to the experimental measurements, the profiles of weld residual stresses are almost
identical along the y-axis that is parallel to the weld line. Therefore, elements with the same x
coordinate should have the same initial stress condition. In other words, if the residual stress
distribution is expressed by discrete value i at ix , ( ni ,,2,1  ), initial stress   21 ii  

should be introduced to all the elements located within  ii xx ,1 .

To obtain correct Kres value, it is necessary to make sure that the resulted stress distribution in
the FE model after the equilibrium is in accordance with the measured residual stress field
within an acceptable discrepancy. However, it is not always possible to obtain the same
output stress field as the input residual stress. For configurations of relatively short length
with respect to the width, such as the C(T) geometry, obtained residual stresses are found to
be much lower than inputted values after the equilibrium step. This issue was also mentioned
in [34].
An example is given here to demonstrate the influence of specimen length. The residual
stress distribution follows eq. (16), letting 10c mm, and is introduced to the FE model with
discrete values over every 1 mm distance. Case 1 has the average residual stress   21 ii  

introduced to all the elements located within  ii xx ,1 , whereas in case 2 residual stresses are

only inputted into the elements within 10y mm (to model a short-length specimen). After

the self-equilibrium balance, the resultant residual stresses being kept in the FE model of the
case 2 is much lower than the actual input values as shown in Fig. 6.

Fig. 6 Input and output of initial stresses

Therefore, when dealing with the C(T) configuration, the input initial stresses should be
increased so that the actual residual stresses in the FE model, after the self-equilibrium step,
can match the measured values. In [34], the proportional integral (PI) adjustment, which is
widely used in the area of automatic control, was applied to introduce residual stresses into
FE models. It is a good way to solve this problem. The adjustment equation is:
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        jjj
xxxx outputtargetinput
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(18)

The procedure starts with the adjustment step 0j and    targetinput xx   , and ends when

the agreement between  outputx and  targetx is satisfied, where  targetx is the measured

residual stress distribution.
Welding process also introduces transverse residual stresses. Although, the magnitude of
transverse residual stress is usually much smaller than that of the longitudinal residual stress,
introducing transverse residual stress to FE model will affect the magnitude of the
longitudinal residual stress after the equilibrium step; consequently, evaluated Kres value will
be affected. Therefore, it is important to check the output value of the longitudinal residual
stress in the FE model to make sure that the residual stresses are introduced correctly.

3.2 Calculating Kres by FEM

There are a few methods for evaluating the SIF by FEM, such as the crack tip displacements
extrapolation, the J-integral, the strain energy approach, e.g. the virtual crack extension
technique. The displacement extrapolation and J-integral methods are widely used practices
and implemented in commercial FE software packages. However, the J-integral is no longer
path-independent in the presence of thermal strains, path dependent plastic strains, body
forces within the integration area, and pressure on the crack surface. Therefore, J-integral
method is not suitable for evaluating SIF due to weld thermal residual stresses. For linear
elastic analysis, the displacement extrapolation method is a good choice, which is simple and
straightforward to obtain the SIF values based on FE results.
According to the LEFM, the crack tip displacement field in the load direction for a 2D
problem is [35]:
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where, yu , r ,  are defined in crack tip coordinate, Fig. 7.

Fig. 7 Coordinate at crack tip and path for displacement extrapolation

The SIFs can be calculated from the FE solution according to the displacement extrapolation
procedure [34] using Eq. (20).
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where, yu is the displacement between the corresponding nodes located on the upper and

lower crack surfaces, r is the node coordinate. Away from the crack tip, yu r can be

fitted by a linear function of r :



12

yu
A B r

r


   (21)

lim

0 yu
r A

r


  (22)

Thus,
2

2
1

GA
K 


 


(23)

The displacement extrapolation needs not to be done manually; the procedure is now
implemented in some commercial FE packages and can be executed by calling a
corresponding command. For example, in the ANSYS code, the “KCALC” command can be
called in the general postprocessor after defining the path. When executing this command,
care should be taken to define either the plane stress or plane strain state for a 2D problem. It
is recommended to use a refined mesh in the region around the crack tip to capture the rapidly
varying stress and deformation fields. The singularity elements at the crack tip mesh will
result in more accurate SIF for linear elastic problems. However, the embedded procedure in
ANSYS soft package uses the absolute value of the displacement when evaluating SIF via the
“KCALC” command, the SIF values calculated by ANSYS will always be positive or zero. If
the SIF is evaluated by the energy approach (e.g. the J-integral), then the value will also be
positive or zero. While the influence of residual stresses on the SIF can be either positive or
negative as shown in Fig. 5, i.e. resK , which reflects the influence of residual stresses on

crack tip stress field, resK is no longer a strict SIF that cannot be negative. To avoid modelling

a nonlinear contact problem, we have used the following method. For negative residual
stresses, both residual stress and external tension stress are applied to the FE model
simultaneously to keep the crack completely open, i.e. 0yu  at any position of the crack

face. resK is then evaluated based on the superposition principle [35], Eq. (24).

apptotres KKK  (24)

3.3 Influence of incomplete residual stresses on Kres

As mentioned in section 2.3, measured residual stresses are usually incomplete and tension
dominated, which will result in inaccurate SIF when using the WFM. The same problem
exists for using the FEM to evaluate resK . Attempts have been made to balance the initial

stresses artificially when inputting them to the FE models. A equilibrium-based least-squares
smoothing method was proposed in [36] to obtain full-field residual stress using a set of
residual stress data acquired by neutron diffraction over a limited region. Extensive FE
calculations are required when using this method. To facilitate simple engineering
calculations, two simple cases of artificially balanced stresses are studied in the present paper
to demonstrate their influences on the resK . The two geometries used in Section 2.3 and

shown in Fig. 4 are used, and set W = 100 mm, c = 10 mm, 10  MPa. The resK results

from four different initial stresses cases are evaluated. Case 1 is the full-field balanced initial
stress  x expressed by Eq. (16). Case 2 is the un-balanced case with incomplete  x

located within cxc 1.11.1  . These two cases are the same as those discussed in Section
2.3 for the WFM and shown in Fig. 4. Case 3 and Case 4 are two artificially balanced initial
stress distributions shown in Fig. 8 (artificial balancing stresses are plotted by dashed lines).
Incomplete initial stresses are balanced by either concentrated compressive stresses in case 3
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or distributed stresses in case 4. Calculated resK values are compared in Fig. 9. It can be said

that: (1) For the region where the initial residual stress is known, calculated resK from un-

balanced residual stress (case 2) is lower than the resK values calculated from balanced

stresses. (2) The artificially balanced initial stress fields give acceptable resK values in the

region where initial residual stress is known. (3) For the area where the initial residual stress
is unknown, the authentic resK cannot be obtained.
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Fig. 8 Artificially balanced residual stresses: (a) with concentrated stress (case 3); (b) with
distributed stress (case 4).
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Fig. 9 FE results of resK for cases of different residual stress: (a) centre crack; (b) edge crack.

The FE results for the cases 1 and 2 are also compared with the WFM results and shown in
Fig. 10. For the area where residual stress is known, it indicates that: (1) For centre crack
configuration, the WFM calculated resK for the un-balanced residual stress field is exactly the

same as that obtained by the self-balanced initial stress, whereas, the FEM results is 5.8%
lower. (2) For the edge crack configuration, the WFM overestimates the resK , whereas, the

FEM underestimates the resK if the initial residual stress is un-balanced.
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Fig.10 Comparison of FE and WF results for balanced (case 1) and unbalanced (case 2)
residual stresses: (a) center crack, (b) edge crack.

4. Case studies - comparison of WFM and FEM

4.1 VPPA welded AA 2024 M(T) specimen
The Variable Polarity Plasma Arc (VPPA) welding technology has been widely used in the
aerospace industry. Residual stress distributions usually show multiple peaks. VPPA welded
M(T) and C(T) configurations have been studied by Liljedahl et al [37] in terms of residual
stress measurement and crack growth prediction. These two test sample geometries and
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measured residual stresses are used in this study to compare the FEM with the WFM. Test
samples dimensions are shown in Fig. 11. A measured residual stress distribution for the M(T)
configuration was presented in [37] and shown here in Fig. 12a. The residual stress
distribution is considered to be symmetric, so it is averaged and mirrored before calculating
the resK . For the WFM analysis, residual stress plot was firstly fitted by a multi-peak function,

eq. (25). For the FEM analysis, residual stress profile was artificially balanced (see the dotted
lines in Fig. 12a).
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where Ai, Wi, and XCi are fitting parameters, n is the number of peaks.
The resK results obtained by the Wu and Carlsson weight function, eq. (8), and the FEA are

compared in Fig. 12b. It can be seen from Fig. 12b that the WFM and FEM results agree very
well to each other when a < 24 mm (a/W < 0.6). Since the error of Wu and Carlsson weight
function is said to be less than 1% when 5.0Wa [17], when the crack length is much

longer (a/W > 0.6), FEM gives more accurate evaluation.

360

75

Fig. 11 M(T) and C(T) specimens with a longitudinal VPPA weld; C(T) is cut form an M(T)
specimen [37]; unit: mm.

4.2 VPPA welded AA 2024 C(T) specimen

For the C(T) geometry, Fig. 11, measured residual stress distribution is taken from [37] and
shown here in Fig. 13a. Since the C(T) was cut off from the M(T) specimen, the original
residual stress distribution should be the same as the M(T). However, cutting has resulted in
stress redistribution and the measured residual stress field in the C(T) specimen is hence
asymmetric and compressive at the weld centre contrary to the stresses in the M(T).
The redistribution of residual stress can be evaluated by FE analysis, which is in good
agreement with the measured profile and values. The residual stress distribution introduced to
the FE model should be the one before the cutting induced redistribution, i.e. the same as the
M(T) and then introduce the notch and let the FE to release the stresses for the C(T). For the
WFM, the residual stress should be the one without the notch (crack-free stresses). The resK

results obtained by the Fett and Munz weight function, Eq. (14), and FE calculation for this
geometry are compared in Fig. 13b. Notch tip is at x = -10 mm. The WFM and FEM results
agree with each other very well. The difference at the beginning (notch tip) is due to the
asymmetric geometry of the CT. The difference in the final part is due to the inherent
limitation of the weight function for longer crack lengths.
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Fig. 12 (a) Longitudinal residual stress distributions; (b) calculated resK in the VPPA welded

2024 M(T) sample.

4.3 FSW welded AA 2195 ESE(T) specimen

Friction Stir Welding (FSW) is an innovative solid-state welding technique developed for the
aerospace applications. Residual stress distribution in the FS welds usually has the character
of double peaks. Measured residual stress distribution for eccentrically-loaded single edge
crack under tension, ESE(T), geometry was presented in [8], from which the specimen
configuration and measured longitudinal residual stress distribution are taken for this study
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and shown in Fig. 14 and Fig. 15a. Residual stress measurement was conducted after cutting
the notch, which results in the asymmetric stress profile. Since the initial stress for both the
WFM and FEM should be the one without the notch, measured residual stress was mirrored
from right to left and fitted by a multi-peak function with five peaks. Calculated resK by the

Bueckner’s weight function, eq. (10), and FE result are compared in Fig. 15b. It can be seen
that the WFM and FEM results agree with each other when 6.0Wa .
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Fig. 13 (a) Residual stress redistribution in the C(T); (b) calculated resK for the VPPA 2024

C(T) specimen
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Fig. 14 ESE(T) specimen with longitudinal FSW line; unit: mm.
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Fig. 15 (a) Residual stress redistributions; (b) calculated resK for the FSW 2195 ESE(T)

specimen.
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5. Conclusions and recommended calculation procedures
An overview of the WFM and FEM procedures has been performed for evaluating residual
stress intensity factors. According to the study described in this paper, especially on the
treatment of un-balanced residual stresses, inputting residual stresses into FE models and SIF
solution of negative residual stresses for the edge crack problem, following conclusions can
be drawn:

1) For the M(T), C(T) and ESE(T) configurations presented in this paper, residual stress
intensity factor solutions obtained by the WFM and FEM agree very well for a/W < 0.6. For
larger a/W ratio, the difference between the two methods is caused by the inherent limitation
of the WFM for longer crack lengths.

2) FE analysis procedures have been developed and validated by well-established weight
functions; therefore, the FEM can be employed with confidence for longer crack lengths and
for more complex geometries and structures.

3) Incomplete residual stress data have significant influence on the resK distribution

evaluated by both the WFM and FEM when they are applied to a crack for which the residual
stress is known only on a portion of the crack length (for instance an edge crack). If an
incomplete measured stress distribution is artificially balanced, then the resK calculated by the

FEM is acceptable in the region where the initial residual stresses are known from the
measurement.

Following calculation procedures are recommenced for the FEM:
1) Measured residual stresses should be firstly processed, e.g. averaged, smoothed, fitted

and mirrored, etc., before conducting FE analysis to obtain more accurate resK results. This is

also recommended for the WFM solution process.
2) For incomplete or un-balanced residual stress data, adding artificial balancing stress

will help to obtain acceptable resK values in the region where residual stresses are known.

3) In order to maintain self-equilibrium condition without any constraints and keep the
model boundaries free of stresses, it is necessary to apply the “equilibrium” step in FE
packages after inputting measured residual stresses.

4) For short-length geometries, higher (than the measured) residual stresses should be
inputted into the FE model to accommodate the adjustment in the self-equilibrium step.

5) For cracks located in compressive residual stress field, external stress should be
applied simultaneously to the residual stress field to make the crack surface completely open
for calculating the total SIF. The residual SIF can then be found by the superposition principle.
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APPENDIX
1.  Wagi in Kaya and Erdogan weight function for single edge crack in a finite width plate,

in Eq. (12) [23].
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2. Discrete value of coefficient  Wai in Wu and Carlsson weight function for single edge

crack in a finite width plate in Eq. (13) [17].

Table A1  Wai in Eq. (13)

Wa 1 2 3 4 5

0.01 2.00 0.9765 1.1420 -0.3504 -0.0912
0.05 2.00 1.0927 1.1506 -0.3662 -0.0819
0.10 2.00 1.4187 1.1378 -0.3550 -0.0763
0.20 2.00 2.5366 1.2378 -0.3474 -0.0562
0.30 2.00 4.2381 1.6796 -0.4095 -0.0188
0.40 2.00 6.6359 2.8048 -0.6105 0.0394
0.50 2.00 10.0222 5.4999 -1.3401 0.2178
0.60 2.00 15.0359 11.8784 -3.6067 0.7858
0.70 2.00 29.5188 45.5066 -18.9281 4.8834
0.80 2.00 38.8128 78.7524 -36.5957 9.8712
0.85 2.00 53.8457 151.2119 -79.0151 22.2696
0.90 2.00 82.6869 350.9961 -207.0916 60.8592

3. Coefficient  ,A in Fett and Munz weight function for C(T) geometry in Eq. (14) [24].

Table A2  ,A in Eq. (14)

 0 1 2 3 4

0 2.673 -8.604 20.621 -14.635 0.477
1 -3.557 24.9726 -53.398 50.707 -11.837
2 1.230 -8.411 16.957 -12.157 -0.940
3 -0.157 0.954 -1.284 -0.393 1.655

4. Discrete value of coefficient  Wai in Wu and Carlsson weight function for C(T)

geometry in Eq. (15) [17].
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Table A3  Wai in Eq. (15)

Wa 1 2 3 4

0.2 2.0 3.3270 1.4351 -0.4652
0.3 2.0 4.9886 1.7280 -0.4130
0.4 2.0 7.2610 2.7054 -0.4570
0.5 2.0 10.4356 5.2943 -0.7632
0.6 2.0 15.1033 11.3700 -1.6671
0.7 2.0 22.6843 26.0237 -4.0924
0.75 2.0 28.5976 41.2320 -6.7399
0.8 2.0 37.2393 69.1970 -11.7568
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