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ABSTRACT 

This Project is an investigation to determine the position that a 17
th

 Century musket 

ball was fired from a musket, when given the position it was found on the battlefield. 

Prior to this research the main concerns with making predictions were considered to 

be associated with the deformed shape of the musket balls affecting their drag 

coefficient and therefore, their distance to ground impact. The distance they would 

continue after impact due to bounce and roll was unknown. Previous research has 

been used and built upon to recreate the conditions of the English Civil War as 

accurately as possible. It was found that the average distance to ground impacts were 

in good agreement with predictions using the drag coefficient for a sphere showing 

that the distorted shape resulting from the firing process of the musket ball made little 

difference to its drag coefficient in the majority of cases. However, the distance 

travelled after the first ground impact greatly exceeded expectations, with the musket 

balls almost doubling the total average distance to their final resting positions - an 

increase of 81%. From these findings the initial factors thought to have had high 

relevance to the final resting position of the musket ball (velocity variation and drag 

co-efficient) become less significant and factors such as ground hardness become 

more prominent. The knowledge gained during this investigation will re-establish 

more accurate information to be obtained on the firing positions of opposing forces 

during conflicts in the English Civil War.  

 

 

 

 

 



D Miller – Ballistics of 17th Century Muskets 

 

 4 

 

ACKNOWLEDGEMENTS 

 
I would like to thank all who have contributed and helped with this project 

particularly Dr Derek Allsop for his guidance, enthusiasm, assistance and patience.  

Thanks also to Mr Mike Teagle for his invaluable “hands on” help on the long hard 

outdoor trials. 

Thanks to Dr Glenn Foard and all the other volunteers for spending time searching for 

musket balls with metal detectors. 

Thanks to the National Trust for allowing the use of Ashdown House for the long 

range firings. Particularly Mr Keith Blaxhall   

I would also like to thank Mrs Celia Watson, Dr Jon Painter, Dr Derek Bray, 

Dr Mark Finnis, Prof Ian Horsfall, Mr Steve Champion, Mr Alan Peare, Mr Adrian 

Musty, Master Richard Miller, Mr Andrew Pearson and Mrs Susan Pearson (English 

Civil War Society) and Dr Clair Knock for their help. 

Lastly I would like to thank Miss Kate Hewins, Mrs Claire Lankester, Mrs Maggie 

Teagle and Mr Mike Teagle for their help and knowledge of Thesis writing. 

 

 

 

 

 

 

 

 

 

 

 

 

 



D Miller – Ballistics of 17th Century Muskets 

 

 5 

 

 

CONTENTS 

DISCLAIMER    2 

ABSTRACT    3 

AKNOWLEDGEMENTS    4 

List of Tables    10 

List of Figures    13 

ABBREVIATIONS    19 

GLOSSARY    20 

 

Chapter 1: GENERAL INTRODUCTION     21 

1.1 Introduction        21 

1.2 Project Outline       22 

 

Chapter 2: LITERATURE SURVEY      24 

2.1 Black Powder        24 

2.1.2  Early Powder Manufacture     26 

2.2 Internal Ballistics       30 

2.3 Choice of Powder       32 

2.4 The Internal Ballistics Cycle      35 

2.5 Burning Rate        37 

2.6 Propellant Charge       39 

2.7 The Ballistic Performance of a Musket    41 

2.8 External Ballistics       43 

2.8.1  Forbody Drag       44 

2.8.2  Base Drag       45 

2.8.3  Skin Friction       45 

2.8.4  Transonic Zone      45 

2.9 Projectile Trajectory       46 

2.10 Armour Penetration       51 

2.11 The Civil War Musket      51 

2.12 The Civil War Musket Ball      53 



D Miller – Ballistics of 17th Century Muskets 

 

 6 

2.13 Banding        54 

2.14 Windage        55 

2.14.1  Fouling       56 

2.15 Wads         56 

 

Chapter 3:  PROJECTILE SOFT CAPTURE METHODS   58 

3.0 Introduction        58 

3.1  Manufacture of Musket Balls      58 

3.2 Experimental Setup       60 

3.3 Firing Procedure       62 

3.3.1  Loading       62 

3.3.2  Soft Capture Method – Shredded Rubber   65 

3.3.2.1 Results       66 

3.3.3  Soft Capture Method – Foam and Rags   67 

3.3.3.1 Results       68 

3.3.4  Soft Capture Method – Water Tank    68 

3.3.4.1 Results       70 

3.3.5  Soft Capture Method – Kevlar    71 

3.3.5.1 Results       73 

3.3.6  Soft Capture Method – Plastzoate (R) Lure   74 

3.3.6.1 Results       75 

3.3.6.2 Depth of Penetration into Plastozote   78 

Chapter 4:  MUSKET TEST FIRINGS      80 

4.1 Introduction        80 

4.2 Instrumentation       80 

4.3 Black Powder Selection      82 

4.4 Pressure Time plots       83 

4.5 Experimental Musket Trials with Wadding    84 

4.5.1  Powder type: 3A, Charge 12.5 grams, wadded  84 

4.5.2  Powder type: G12, Charge 12.5 grams, wadded  84 

4.5.3  Powder type: Swiss No.1, Charge 12.5 grams, wadded 85 



D Miller – Ballistics of 17th Century Muskets 

 

 7 

4.5.4  Comparative results of the three black powders  85 

4.5.5  Discussion of Results for wadded trial.   87 

4.6 Experimental Musket Trials without Wadding   88 

4.6.1  Powder type: 3A, Charge 12.5 grams, no wadding  88 

4.6.2  Powder type: G12, Charge 12.5grams, no wadding  88 

4.6.3  Discussion of results for Unwadded trials   89 

4.7  Discussion of Powder with and without wadding   91 

4.8 Effect of Barrel Diameter      92 

4.8.1  Discussion of Results      95 

4.8.2  Summary of Results      95 

4.8.3 Comparison of recovered musket balls   96 

4.8.3.1 Physical appearance     96 

4.8.3.2 Weight loss of balls     98 

4.8.3.3 Diameter Across Banding    99 

4.8.3.4 Barrel Fouling      100 

4.9  The Cause of the banding      103 

4.91  Results of banding testing     104 

 

Chapter 5: TRAJECTORY PREDICTIONS      106 

5.1 Introduction        106 

5.2 Methodology        106 

5.3 Results         107 

5.4 Discussion        115 

 5.4.1  Angle of Elevation      116 

5.5 Conclusions        120 

 



D Miller – Ballistics of 17th Century Muskets 

 

 8 

Chapter 6:  PREDICTIONS FOR BOUNCE AND ROLL   121 

6.1 Introduction        121 

6.2 Results         121 

 

Chapter 7:  LONG DISTANCE FIRINGS-ASHDOWN HOUSE  124 

7.1 First Long Range Firing Trials     124 

 7.1.1  Setup        125 

 7.1.2  Results        127 

7.1.3  Comparison of valid shots     128 

7.1.4  Musket Ball final Resting Positions    131 

7.2 Second Long range Firing Trials     132 

 7.2.1  Experimental Setup      133 

7.2.2  Results A1-A5 (19.49mm Bore Barrel)   134 

 7.2.3  Analysis of Results shots A1 to A5 (19.49 mm Bore barrel) 136 

7.2.4. Results A6 to A7 (18.7mm bore barrel) and A8 to A9 

  (20.4mm bore barrel)      139 

             7.2.5  Bounce and Roll      141 

 7.2.6  Analysis of Results for impact and bounce from shots 

 A1to A5 and from shots A6 to A9    143 

 7.2.7  Distance to Musket Ball Final Position   144 

7.2.8  Distance to Ground Impacts    145 

7.2.9  Maximum Variation of Recorded Ground Impacts (Left to 

Right)    146 

7.2.10  Maximum Variation of Recorded Final Recovery Position 

(Left to Right)       146 



D Miller – Ballistics of 17th Century Muskets 

 

 9 

 7.2.11 Musket Ball Skids    147 

7.3 Third Long Range Firing    148 

 7.3.1  Setup        149 

 7.3.2  Results        149 

7.4 Effects of ground Hardness    155 

Chapter 8:  DISCUSSION    156 

Chapter 9:  CONCLUSIONS       165 

Chapter 10:  Recommendations for Further Work     167 

11: REFERENCES         169 

12: APPENDIX A  Trials with wadding     173 

13: APPENDIX B  Trials with wadding     175 

14: APPENDIX C  High speed video     177 

15: APPENDIX D  Tables from Long Range Firings   180 

16: APPENDIX E  Weights and dimensions of musket balls pre and  

   Post firing.      184  

 

 

 

 



D Miller – Ballistics of 17th Century Muskets 

 

 10 

LIST OF TABLES PAGE 

Table 2.1 Black powder comparison. (Tudge, 2002) 34 

Table 2.2 X and Y coordinates from a velocity of 400 m/s showing 

range and projectile drop in 0.1 second steps.(Eyers 2006) 

46 

Table 3.1 Velocities from varied charge weights 64 

Table 3.2 Velocity and distance travelled by musket ball into 

Plastozote 

 

78 

Table 4.1 Powder grain size 83 

Table 4.2 Comparison of three types of black powder with wadding 85 

Table 4.3 Comparison of three types of black powder without wadding 89 

Table 4.4 Results showing effect of barrel diameter on pressure and 

velocity of musket ball with 18 grams G12 

 

93 

Table 4.5 Mean Velocities and Peak pressures calculated for Musket 

trials using 18 grams of G12 with different barrel diameters 

 

94 

Table 4.6 Percentage increase in velocity and pressure, when 

comparing the largest internal diameter barrel with the 

smallest  

 

 

94 

Table 4.7 Results showing effect of barrel diameter on pressure and 

velocity of musket ball with 14 grams G12 

 

95 

Table 4.8 Average weight loss of musket balls after firing with 18 

grams of G12 

 

99 

Table 5.1 Results for a 12 bore Musket Ball fired at different muzzle 

velocities at a height of 1.39m with a horizontal trajectory 

parallel to the ground 

 

 

107 

 



D Miller – Ballistics of 17th Century Muskets 

 

 11 

Table 5.2 The predicted distance a musket ball would travel before it 

would pass over the head of a six foot tall (1.83m) person 

when fired at 400 m/s at shoulder height at varied elevations 

 

 

109 

Table 5.3 The predicted distance of impact and the impact velocity 

when firing a 12 bore musket at a muzzle velocity of 400 m/s 

at a height of 1.39m above the ground for different negative 

angles of elevation for negative elevation 

 

 

 

111 

Table 5.4 The predicted effect of firing a 12 bore musket ball at a 

velocity of 400 m/s parallel to the ground and at heights of 

0.9m (a kneeling man) to 1.7m (a tall standing man) on the 

distance to impact with the ground and the impact velocity 

 

 

 

113 

Table 6.1 Experimental data for using prediction model 122 

Table 6.2 Impact and exit angles with skid length for the shots with 

usable data 

 

122 

Table 7.1 The muzzle velocities of each firing (Long Range) 127 

Table 7.2 Muzzle velocity, distance to ground impact and final resting 

position for shots 1, 3 and 4 

 

128 

Table 7.3 Muzzle velocity, impact velocity, ground impact distance, 

number of bounces and the maximum distance travelled for 

shots A1 to A5 

 

 

135 

Table 7.4 Muzzle velocity, first ground impact velocity, distance to 

first impact and the number of bounces by the musket ball 

 

139 

Table 7.5 Final resting positions of those musket balls that were 

recovered  

 

146 

 



D Miller – Ballistics of 17th Century Muskets 

 

 12 

Table 7.6 Recorded skid lengths and velocities before and after impact 

with the ground for those shots where the data was recorded 

 

148 

Table 7.7 Results from witness sheet set at 100m from the muzzle 150 

Table 7.8 Distance travelled to the final resting place and the distance 

from the centre line of the range 

 

151 

Table 7.9 Final resting positions of the recovered musket balls in 

ascending order of distance travelled 

 

154 

Table 7.10 Average distance of the musket balls final resting place from 

each of the three long range firings and the ground hardness 

 

155 

Table 12.1 Comparison of powder types with wadding showing pressure 

and velocity 

 

174 

Table 12.2 Comparison of powder types with wadding 175 

Table 13.1 Velocity and pressure from 3A and G12 Powder 176 

Table 13.2 Results from No Wad firings using a 48 inch Barrel 176 

Table 13.3 39 inch Barrel 19.9 mm diameter showing velocity and 

pressure 

 

177 

Table 14.1 Results from high speed video firings 177 

Table 15.1 Shots A1 to A5 10 bore barrel id 19.49 mm 180 

Table 15.2 Shots A6 and A7 barrel id 18.7 mm Shots A8 and A9 barrel 

id 20.4mm 

181 

Table 15.3 Summary of Results Shots A1 to A5 182 

Table 15.4 Musket ball data from second long range firing 182 

Table 15.5 Results from third long range firing 100m range 183 

Table 16.1 Weights and dimensions of musket balls 184 



D Miller – Ballistics of 17th Century Muskets 

 

 13 

LIST OF FIGURES PAGE 

Figure.2.1 Projectile propulsion, (Allsop, 2009) 32 

Figure 2.2 Specific surface areas of grain in powder 33 

Figure 2.3 Effect of Propellant Form 33 

Figure 2.4 Internal Ballistic Cycle, (Allsop, 2009) 36 

Figure 2.5 Graph to show burning rate against pressure, (Allsop, 2005) 37 

Figure 2.6 A graph to show range against projectile drop, (Eyers, 2006) 47 

Figure 2.7 A Graph to show the relationship between Drag Coefficient 

and Mach number for a sphere 

 

49 

Figure 2.8 A Graph showing the predicted trajectory fro a 12 bore lead 

ball at 0.5m elevation at 400m/s 

 

50 

Figure 2.9 A Musket Ball showing banding, (Foard, 2009) 54 

Figure 2.10 A Musket Ball showing severe banding 55 

Figure 3.1 Split mould with lead musket ball 58 

Figure 3.2 Cast reproduction 12 bore musket ball showing ‘sprue’ and 

flash mark. 

59 

Figure 3.3 The experimental breech block and threaded end of barrel 60 

Figure 3.4 A Drawing of Breech block and musket barrel from (Eyers, 

2006). 

61 

Figure 3.5 Number 3 proof housing mounted on stand with barrel 

attached 

 

61 

Figure 3.6 Pouring the black powder 62 

Figure 3.7 Electrical match positioned over black powder touch hole prior 

to taping 

 

63 



D Miller – Ballistics of 17th Century Muskets 

 

 14 

Figure 3.8 Firing experimental musket barrel 64 

Figure 3.9 Steel box filled with shredded rubber 65 

Figure 3.10 Shredded Rubber acting as a soft capture method 66 

Figure 3.11 Damaged musket ball stopped in rubber shavings 67 

Figure 3.12 Damaged musket ball recovered after soft capture in foam and 

rags 

 

68 

Figure 3.13 Barrel angled into water tank 69 

Figure 3.14 Water tank 69 

Figure 3.15 Musket ball retrieved from water tank 70 

Figure 3.16 Winchester solid slug shot gun cartridge 71 

Figure 3.17 Solid slug positioned in shot gun barrel held in number 3 proof 

housing 

 

72 

Figure 3.18 Solid slug in shot gun barrel number 3 proof housing 72 

Figure 3.19 Captured solid slug in Kevlar 73 

Figure 3.20 Front face of solid slug retrieved from Kevlar 74 

Figure 3.21 Plastozote and foam/linotex combination 75 

Figure 3.22 Solid slug retrieved from Plastoztoe and foam/Linotex 75 

Figure 3.23 Solid slug before and after firing 76 

Figure 3.24 Musket ball fired from shot gun cartridge retrieved from soft 

capture 

 

77 

Figure 3.25 A typical retrieved musket ball 77 

Figure 3.26 A graph showing the depth of penetration into Plastozote 78 

Figure 4.1 Kistler pressure transducer, breech block and barrel 81 

Figure 4.2 Charge amplifier 81 

Figure 4.3 The three selected black powders 82 



D Miller – Ballistics of 17th Century Muskets 

 

 15 

Figure 4.4 Pressure/Time plot for 3A powder type 84 

Figure 4.5 Pressure/Time plot for G12 powder type 84 

Figure 4.6 Pressure/Time plot for Swiss No.1 powder type 85 

Figure 4.7 Retrieved Musket Ball from 12.5 grams of 3A with wadding 86 

Figure 4.8 Retrieved Musket Ball from 12.5grams of Swiss No.1 (wad) 87 

Figure 4.9 Retrieved Musket Ball from 12.5 grams G12 with wadding 88 

Figure 4.10 Pressure/Time plot for 3A powder 12.5g charge no wad 89 

Figure 4.11 Pressure/Time plot for G12 powder type, with 12.5g no wad 89 

Figure 4.12 A retrieved musket ball from 12.5 grams, 3A no wadding 90 

Figure 4.13 A retrieved musket ball from 12.5 grams G12 No Wadding 90 

Figure 4.14 A picture of a musket ball retrieved from the battle site at 

Edgehill (Photo from Foard, (2009) 

 

91 

Figure 4.15 The recovered musket ball fired without wads with 18 grams 

of G12 powder from the 18.7 mm (small diameter) barrel 

 

96 

Figure 4.16 The recovered musket ball fired without wads with 18 grams 

of G12 powder from the 20.4 mm (large diameter) barrel 

 

96 

Figure 4.17 The recovered musket ball fired with 14 grams of G12 no wad 97 

Figure 4.18 The recovered musket ball fired with 37 grams of G12 no wad 98 

Figure 4.19 High speed video photography of debris leaving the muzzle 101 

Figure.4.20 An image taken from the electron microscope of the firing 

without wadding 

 

102 

Figure 4.21 Shows the image taken from the electron microscope of the 

firing with the wadding. The lead particles are shown in white 

 

102 

Figure 4.22 Arrangement for preventing musket ball movement  104 

Figure 4.23 The musket ball before and after ramrod firing 104 



D Miller – Ballistics of 17th Century Muskets 

 

 16 

Figure 5.1 The predicted distances the musket ball would travel before 

impacting the ground against velocity 

 

108 

Figure 5.2 The predicted distance a musket ball would travel when fired 

from shoulder height  

 

110 

Figure 5.3 The predicted distance of impact when firing a 12 bore musket 

ball at a muzzle velocity of 400 m/s at a height of 1.39m above 

the ground for different angles of elevation 

 

 

112 

Figure 5.4 The predicted effect of firing a 12 bore musket ball at a muzzle 

velocity of 400 m/s parallel to the ground and at different 

heights on the distance to impact 

 

 

113 

Figure 5.5 Trajectory diagram for a 12 bore musket ball with a muzzle 

velocity of 400 m/s fired at 1.39m above the ground and at an 

angle of 5 degrees 

 

 

114 

Figure 5.6 Proof mount with target showing elevation of the barrel 117 

Figure 5.7 Photographs showing levels of barrel elevation 118 

Figure 5.8 Impact positions from varying degrees of elevation upon a 

figure 11 target placed five m away from the muzzle 

 

119 

Figure 7.1 The view along Ashdown main ride 126 

Figure 7.2 Recorded trajectory for shots 1 and 4 and for the predicted 

trajectory 

 

129 

Figure 7.3 A plan view of the trajectory path of shot 1 130 

Figure 7.4 The path of all the shots 1 to 6 in the vertical plane 130 

Figure 7.5 The trajectory plan view of shots 1to 6 in the vertical plane 131 

 

 

 



D Miller – Ballistics of 17th Century Muskets 

 

 17 

Figure 7.6 The horizontal trajectory (plan view) and showing the impact 

and final position (maximum distance travelled) for shots 

number 1, 3 and 4 

 

 

132 

Figure 7.7 The Gun Barrel and No.3 housing clamped to the scissor lift 

table 

 

134 

Figure 7.8 A Photograph of witness screen positioned 110m from firing 

point after shots A1 to A5 were fired 

 

135 

Figure 7.9 Vertical trajectories of shots A1 to A5 to ground impact. 137 

Figure 7.10 Horizontal trajectories of shots A1 to A5 (plan view) 137 

Figure 7.11 Horizontal trajectory (plan view) of shots A1 to A5 before and 

after ground impact 

 

138 

Figure 7.12 Vertical trajectories of shots A6 to A9 to the point they first hit 

the ground (or were lost) 

 

139 

Figure 7.13 Horizontal (plan view) of shots A6 to A9 to the point they first 

hit the ground (or were lost) 

 

140 

Figure 7.14 Horizontal trajectories (plan view) of shots A6 to A9 before 

and after ground impact 

 

141 

Figure 7.15 Vertical trajectory and subsequent bounce and roll for shots 

A2, A3, and A4 

 

142 

Figure 7.16 Vertical trajectory plus bounce and roll for shot number 6 142 

Figure 7.17 Final position of all recovered musket balls and their first 

impact point 

 

143 

Figure 7.18 First ground impact positions for all shots fired and their 

horizontal position (plan view) 

 

145 

 



D Miller – Ballistics of 17th Century Muskets 

 

 18 

Figure 7.19 Doppler radar trace for shot number 6 showing the reduction in 

musket ball velocity when it impacted with the ground 

 

147 

Figure 7.20 Screen shot of results of firing trial entered into the shot 

position computer program 

 

150 

Figure 7.21 The distance travelled to their final resting place for shots 3.1 

to 3.6 

 

152 

Figure 7.22 Plot of all the musket balls fired during the 1st, 2nd and 3rd long 

range firing trials showing their final resting positions 

 

153 

Figure 8.1 Horizontal (plan view) of shot number 1 trajectory 158 

Figure 8.2 Shot number 1 from first long range firing 159 

Figure 8.3 Shot number 3 from first long range firing 159 

Figure 8.4 Diagram showing the effect of elevation on the initial impact 

and final resting place of the musket ball 

 

162 

Figure 8.5 Skid marks of musket balls on the grass firing range 163 

 

 

           

   



D Miller – Ballistics of 17th Century Muskets 

 

 19 

ABBREVIATIONS 

 

CBR California Bearing Ratio 

 

 

Cd Drag Coefficient 

 

 

CI Cone Index 

 

 

M Mach number 

 

RFG  Rifle Grained Fine- diameters of about 1 mm and 2 mm, 

and RFL (rifle grained large) 
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GLOSSARY 

 

Adiabatically A thermodynamic process in which no heat is transferred to 

or from the working fluid 

 

Banding Visible markings around the circumference of musket balls 

 

Bandoliers A belt for holding powder in boxes and bullet bag 

 

Countersink A conical hole cut into a manufactured object, or the cutter 

used to cut such a hole 

 

Dowel A cylindrical rod usually made of metal, plastic or metal 

 

Primer powder Powder used to prime the weapon 

 

Pyrodex First widely available substitute for Black powder. It is less 

sensitive than Black powder, but more powerful per unit of 

mass 

 

Setting Up Expansion of  projectile caused by propellant pressure 

 

Solenoid A loop of wire often wrapped around a metal core, which 

produces a magnetic field when an electric current is passed 

through it 

 

Vickers Test A method to measure the hardness of a material 
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Chapter 1: GENERAL INTRODUCTION 

 

1.1  Introduction 
 

 

17th Century battlefields (English Civil War) have been analysed by archaeologists by 

studying written records of the time, excavating the sites to gain information on the 

deployment of troops and the type of weapons used and how they were used. 

However, there are few written records of the time and there is concern over their 

reliability. The artefacts recovered from battlefields give useful, but limited, 

information. The main artefacts recovered consist of large quantities of lead balls but 

these are recovered from where they landed or were dropped. To be of greater use it is 

essential to know where they were fired from. This study aims to improve on previous 

research by conducting research into the ballistics of the muskets used at the time to 

predict the probable position of their launch point. 

 

Previous research Eyers, (2006) has shown that there are large variations in the 

diameter of the bore of the muskets and the diameter of the musket balls used. 

Additionally, the black powder produced considerable fouling of the bore. All of these 

factors resulted in large and variable clearance between the musket ball and the wall 

of the barrel. A significant part of the research programme was to investigate the 

effect of these large and variable clearances on the internal and external ballistics of 

the weapon. The musket balls of the period were almost pure lead and therefore very 

soft. Previous trials Eyers, (2006) have shown that this can result in the musket ball 

“setting up” in the barrel, i.e. the high pressure during firing expanded the musket ball 

to fit the bore of the weapon. Thus the musket balls will be distorted from their 

original spherical shape. This will affect their drag coefficient and thus their impact 
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distance. An important part of this research was to measure the velocity loss with 

range and thus the true drag coefficient of the musket balls. 

 

Musket balls found on the battlefield are not necessarily found at their point of impact 

with the ground as it is known that when they impact they may bounce and roll. This 

programme of work investigated this phenomena associated with musket balls for the 

battlefield analysis. 

 

For accurate experimentation it was necessary to research the powders, weapons and 

ammunition used in the 17
th

 Century English Civil War period (1642 - 51). This 

project concentrated on the 19.685mm internal diameter matchlock musket. “The most 

common calibre infantry weapon in use” (Foard, 2009) 

 

1.2 Project Outline 

• To retrieve a musket ball after firing without damaging it for later analysis.  

• To establish the most suitable modern black powder to replicate 17
th

 Century 

black powder. 

• To recreate the same markings (setting up) seen on a 17
th

 Century musket ball 

caused by firing. 

• To evaluate the effects of wadding on the internal and external ballistics of the 

matchlock musket. 

• To study the effects of different internal barrel diameters on the internal and 

external ballistics of the matchlock musket.  

• To gain a greater understanding of the bounce and roll of the 17
th

 Century 

musket ball after the initial impact with the ground. 
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The most suitable black powder must generate the correct pressures in the musket 

barrel to re-create the same effects (banding) on a fired musket ball as those found on 

the battlefield of a genuine fired 17
th

 Century musket ball at the correct velocity. 

The test firings were conducted at the Small Arms Experimental Range run by 

Cranfield University sited at the Defence Academy, Shrivenham, and at Ashdown 

House, a National Trust property close by. 
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Chapter 2: LITERATURE SURVEY 

 

This chapter examines previous reports and research into the propellants, muskets, 

musket balls and ballistics to establish accurate information relevant to the period of 

the English Civil War that can be used for experimental trials 

 

2.1. Black Powder 

The propellant used for firearms from the time they were first used to the end of the 

19
th

 Century was black powder (or gunpowder) that consisted of a mixture of 

Saltpetre (Potassium Nitrate), Sulphur and Charcoal. 

 

It would be most useful to compare modern black powders with those used in the 

Civil War in order to replicate the internal ballistics of the weapon, as they will affect 

the pressure/time exerted on the musket ball and ultimately the external ballistic 

properties.  

 

A modern black powder consists of 15% wood charcoal (carbon), 10% sulphur and 

75% potassium nitrate (nitre or saltpetre) – earlier mixtures contained much smaller 

amounts of saltpetre. The three components must be well mixed and finely powdered. 

As the black powder is ignited, the oxygen from the nitrate allows the sulphur and the 

carbon to burn rapidly producing a mixture of hot gases including sulphur dioxide and 

carbon dioxide, this in turn causes a rapid increase in volume. If the black powder is 

lit in a confined space this rapid increase in gas volume will lead to an increase in 

pressure and an explosion will occur. As the build up in pressure is relatively un-
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dramatic in comparison to a high explosive such as dynamite, black powder is 

classified as a low explosive (Brown, 2005).  

 

Low explosive, black powder produces a lot of smoke and fumes and fails to explode 

when damp. However, black powder does produce high levels of energy to push 

projectiles out of gun barrels at high velocity. Black powder is also very quick and 

easy to set-off; only requiring a temperature above 300° C.  

 

Little archaeological evidence is available regarding gunpowder manufactured during 

the Civil War. This is due to post-depositional chemical reactions on any powders that 

can be found. It is known that powder mills were made from local converted water 

mills. These mills helped supply powder to besieged towns and take powder 

production away from London, which was dominated by Parliamentary forces. 

Saltpetre and charcoal were readily available in most areas and in many towns 

saltpetre works may well have existed. 

 

The stamp mills used in powder manufacture were mainly unspecialised. Although 

the existence of many mills is known, due to archaeological findings, it was not until 

1649 that a number of important powder mills were documented (Wayne, 2000). 

With the limited amount of historical data available and small amounts of research 

previously conducted, it is difficult to accurately establish how the 17
th

 Century 

powders would compare to those of today. However, as mentioned previously it is 

likely that they contained less saltpetre. Testing of black powder in the 17
th

 Century 

for quality and consistency was carried out by devices known by the French term 

‘eprovettes’, vertical ratchet testers and pistol eprovettes. Other early methods also 
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included measurements of penetration into clay or stacks of wooden board and the 

range of cannonballs fired from a small mortar. A breakthrough came in 1742 with an 

invention by Benjamin Robins who produced the ballistic pendulum enabling muzzle 

velocities to be measured with considerable accuracy (Crocker, 2002). 

 

2.1.2. Early Powder Manufactures 

Until the mid-16th Century Britain relied on imported powder. As the Civil War 

became more imminent private companies began producing powder and the 

government took active steps to encourage Britons to manufacture their own black 

powder at home. However, Britain could still not manufacture sufficient black powder 

and still needed to import. The situation improved towards the end of the sixteenth 

Century when the East India Company began to import saltpetre from India and set up 

its own powder mills in England (Brown, 2005, Hogg, 1970). 

 

A good way to evaluate the ballistics of the era and the effectiveness of 17
th

 Century 

powders compared to modern powders would be to look into ballistic data from the 

Civil War period and battle statistics. Further post Civil War tests exist which also 

provide useful data.  

 

“Benjamin Robins obtained muzzle velocities between 1425 fps (434 m/s) and 1700 

fps (518 m/s) in 1742 with a ¾ inch (19.05mm) diameter ball and 45 inch (1.143 m) 

long barrel. A century later Captain Alfred Mordecai studied gunpowder used for an 

English musket and  recorded an average muzzle velocity of 1561 fps (476 m/s) and 

that 1477 fps (450 m/s) was adopted as the minimum velocity for proof of powder 

when using 10 grams of powder, whilst 7.5g of powder achieved a velocity of 1550 fps 
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(472 m/s” (Roberts, 2008).  After much research, it was concluded that data indicates 

that the musket ball would have probably averaged, at the muzzle, about 1500 

fps.(457 m/s). 

 

This information is supported by Eyers (2006), in her Master’s research on the 

‘Ballistics of matchlock muskets’. Eyers states that tests carried out in the 1980’s in 

Austria by Krenn (1989), ((cited in Harding 1997), using small arms of the 16th, 17th 

and the 18th centuries produced muzzle velocities between 450 and 500 metres per 

second. This was obtained using flintlock muskets of 17 mm calibre with a powder 

charge of 15 grams. Eyers concluded that 17
th

 Century muskets, had velocities of 

approximately 400-430 m/s and ranges of approximately 170-180 m when fired 

horizontally. 

 

Post Civil War data gives a good indication of what muzzle velocities probably were. 

It is know the powder was “corned” in Civil War times and therefore likely to have 

been of similar performance to the later make up. Corning or sieving the powder is a 

method used to retain the powders strength for longer and to regulate the size of the 

grains to adjust the speed of combustion, optimising it for different weapon types 

(Harding, 1997). 

 

Crocker (2002), states that gunpowder was originally incorporated and dried, but in 

this form the powder would not explode consistently and the ingredients tended to 

separate out again. The practice of corning therefore began in the 16th Century forcing 

the powder through punched parchment sieves to form the higher grade ‘corn 

powder’.  Most early powder was finely but not evenly powdered and was known as 
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serpentine. The powder contained insufficient proportions of saltpetre and what it did 

contain is not thought to have been very pure. The powder was ground so fine that it 

was very easy to ram it into a barrel too tightly, thus causing the powder to burn far 

too slowly to be effective (Brown, 2005). 

 

Nathaniel Nye (1647) a master gunner from Worcester gave a detailed description on 

black powder production during the Civil War period 1647. Nye describes the ratio of 

powder to be, “four parts petre, one part Brimstone and one part Cole.” If producing 

musket powder 5-1-1, the powder would be five parts saltpetre, one part sulphur and 

one charcoal. 

 

 It is hard to establish the exact purity of the saltpetre or the grain size of powder used 

in the musket and it is not until much later in history that grain sizes are mentioned.  

British service gunpowder’s were classified as RFG- rifle grained fine, (diameters of 

approximately 1 mm and 2 mm), and RFL - rifle grained large, (diameters between 

approximately 2 mm and 6 mm). These service powders could be categorised by an 

American scale, which was also used in Britain, the grain sizes were designated 2F for 

a 2 mm diameter powder (Brown, 2005). Modern military black powders are 

classified according to British INT DEF STAN 13-166/1 and INT DEF STAN 13-

167/1. An example of this specification is G12, dark glazed, uniform granulation and 

free from foreign matter. Granulation 1 - 2 mm. Other classifications can carry a U.N. 

number and a designation for example type 3A (Fine) U.N. number 0027 grain size 

0.25-0.50 mm. Otherwise it is simply classed as fine or course grain. 
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The percentage of saltpetre was steadily increased to 75%, which became the 

common figure around 1700 and has remained so ever since. The methods of 

purifying the components, particularly the saltpetre, were greatly improved and the 

replacement of stamp mills took place by incorporating (or rolling) mills around 1740. 

The important process of corning or granulating from the middle of the 16
th

 Century 

enabled the blending to be carried out much more effectively. 

 

Some powder used during the Civil War times may have been manufactured by 

simply powdering the three components separately and then grinding them together in 

a mortar with a hand operated pestle. Larger scale powder production would be 

carried out by the use of stamp mills. At the mills the powder mixture was pounded in 

wooden mortars by wooden-headed stamps which were moved up and down, by using 

horse or water power. It is unclear if stamp mills produced an inferior quality of 

powder to incorporating mills or whether they were just more dangerous or time 

consuming. There were frequent fires or explosions at stamp mills and as a result they 

were banned and replaced by incorporating mills in 1772 (Brown, 2005).  

 

An incorporating mill consisted of two edge runners (two heavy, wide wheels) that 

are parallel to each other and are situated above a flat circular bed with a raised edge 

containing the powder mixture which had been moistened with distilled water. The 

edge runners, which were 2.5 m in diameter and 0.5 m wide, were controlled through 

a system of gears and run over the bed of moistened powder. Initially the wheels were 

made of stone, as in the old flour mills and then of cast iron but steel was eventually 

used, with wheels weighing up to 7 tonnes. The pressure of the runners slowly 

crushed the mixture and ground it together. This process was carried out for up to 
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eight hours resulting in a hard mass, called mill-cake which could be made to 

different densities by altering the intensity and duration of the milling. In the corning 

process, the mill-cake was passed through a series of rollers which broke it down into 

smaller and smaller grains, the different sizes being separated by sieves. The sieved 

grains were then polished by rotating them for up to six hours in a drum and were 

generally glazed by adding a little graphite. 1 kg of corned powder was as effective as 

1.5 kg of serpentine powder (Brown, 2005). 

 

This research will study the internal and external ballistic properties of the 17th 

Century musket to gain an accurate assessment of its performance with varied 

parameters. 

2.2. Internal Ballistics 

 Internal ballistics can be defined as the scientific study of the operating processes 

within the gun from the moment that the burning of propellant is initiated, (Farrar et 

al, 1999). It may also be defined as “A term signifying the effects of the combustion of 

the explosive so far as they relate to the gun and to the projectile as long as it is 

within the gun” (Greener, 1910). Greener continues “The object of exploding a charge 

of gunpowder within a gun-barrel is to move a load from a condition of rest and 

impart to it a certain velocity. Time for the translation of the energy is all- important. 

As it is impossible to overcome the inertia of mass save by the application of a force 

for a period of time proportional to the weight, the ballistic value of an explosive 

depends upon the time required for the combustion, which with black powder, may be 

to some extent regulated by the shape, size and density of the grains. By a proper 

adjustment of the powder-charge to the weight of the bullet and capacity of the barrel, 

such a pressure is maintained upon the base of the projectile as to increase its 
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velocity as long as it remains in the barrel. A theoretically perfect result would be 

obtained if the last atom of powder were converted into a gas at the moment the bullet 

leaves the muzzle. Too rapid combustion produces an increase of heat and pressure, 

but the pressure being local-that is, confined to the chamber it does not act upon the 

base of the projectile for the same distance; consequently the ballistic value is less, 

whilst the excess pressure may prove dangerous, and is always detrimental”. This 

means it is important to match the correct propellant to the weapon being fired, for 

example, a heavy projectile needs to be gradually accelerated along a long barrel 

using a slow burning propellant. A fast burning propellant would build up pressure 

too quickly before the inertia of the projectile is overcome resulting in possible 

damage and an “all burnt” situation before the projectile has left the barrel. Light 

projectiles can be given a fast burning propellant and use much shorter barrels. It is 

important to study various powders to determine the most appropriate for the 17
th

 

Century musket. 

 

Figure 2.1 shows a simplified diagram illustrating that ignited propellant deflagrates 

to hot gas generating high pressure, which drives the projectile converting the 

chemical energy of the propellant to work done on the projectile and finally to the 

projectile kinetic energy. 
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Figure 2.1: Projectile propulsion (Allsop, 2009) 

 

2.3 Choice of Powder 

The rate at which the powder burns is dependent on its composition, density, grain 

shape, grain size and surface treatment. The total surface area of the powder is also a 

factor to consider (see Figure 2.2) as the powder can only burn inwards on its surface, 

therefore, for equal weights, a low density, fine grained, unglazed porous powder 

would burn more rapidly than a dense, large grained, glazed powder (Brown, 2005).
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Figure 2.2: Specific surface areas of grain in powder.(Allsop 2009) 

 

 

 

Figure 2.3: Effect of Propellant Form. (Allsop 2009) 
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The shape of the propellant has a large effect on the way it burns as can be seen in 

Figure 2.3. Black powder although not a perfect sphere, is sphere shaped and 

therefore, will burn regressively, as it is reduced in size by burning, its surface area 

also reduces thus it produces less gas. However, black powder can be porous allowing 

burning to its inner surfaces meaning in extreme cases it could become progressive. 

Research carried out by Tudge, (2002) in his MSc thesis on “Black Powder 

Substitutes” compared different black powders with various “pyrodex” powder 

substitutes in shot guns and concluded that the peak pressure remains unaltered with 

varying grain size, with the largest variance being approximately 100bar. However, 

analysis of the pressures did suggest that finer grained powder give a more consistent  

pressure than coarser grained powders. Tudge also examined the effects of different 

black powders with double the charge weight. He found that the maximum pressure 

increase with black powder was 40% and the minimum 20%; far less than would be 

the case with nitro powders.  This suggests that black powder is far less likely to give 

overpressure than nitro powders. There is a large variation in mean peak pressure 

produced from different manufactures using the same charge weight as can be seen 

from Table 2.1. A Charge weight of 13 grams of black powder was used and 35.4 

grams of number six shot fired from a 12 bore barrel. 

Table 2.1: Black powder comparison. (Tudge, 2002) 

Powder Sample Mean Peak Pressure (Bar) Standard Deviation 

Swiss No.2 1272.67 1.87 

Swiss No. 1 1141.41 95.4 

TPPH 866.03 47.25 

Henry Cranks Medium 721.12 48.8 

Henry Cranks Fine 640.51 18.8 



D Miller – Ballistics of 17th Century Muskets 

 

 35 

 

It is known that black powder was used in the 17
th

 Century musket as nitro powders 

were yet to be developed. However, it is important to find a black powder that will 

replicate the internal ballistics of the muskets used during the Civil War. As 

mentioned previously modern powder is “75% saltpetre, 15% charcoal and 10% 

Sulphur”. It comes in a variety of grain sizes, which as discussed, will affect the 

burning rate and peak pressure. In selecting an appropriate powder the internal 

ballistic cycle needs to be studied.  

 

2.4 The Internal Ballistic Cycle 

The internal ballistics cycle of the musket can be described as follows (as seen in 

Figure 2.4): Once the primer powder is lit, hot gases are forced into the chamber 

causing a rapid increase in pressure. As the heat is absorbed by the propellant, the 

pressure drops and the propellant surface is able to ignite, in turn releasing more hot 

gases. This again increases the pressure within the chamber until the projectile starts 

to move, this is known as the ‘shot start pressure’. The volume then increases, to a 

point where the volumetric rate of gas production equals the increase in volume 

caused by projectile movement. This occurs at the peak pressure. The projectile then 

outstrips the gas production and the pressure decays. Once all the propellant is 

consumed (“all burnt”), the gas expands adiabatically (Eyers, 2006). 
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Figure 2.4: Internal Ballistic Cycle (Allsop, 2009). 

*Curve obtained by measurement or calculation. 

 

It was important to measure the Pressure/Time curves generated by modern black 

powders in order to deduce the best match for the 17
th

 Century musket. Too high a 

peak pressure from faster burning powders would cause damage to the weapon; too 

slow burning powders would not build up enough pressure in time to launch the 

projectile at a high enough velocity before leaving the barrel. 
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2.5 Burning Rate 

The burning rate of the powder is governed by the rate of heat conduction into the 

propellant grain. The rate can be calculated as follows: 

 

Burning Rate = β.P
α
mm/s,    (2.1) 

 

Where, P = Pressure 

 β = Burning Rate Coefficient, mm/s/MPa 

 α = Burning Rate Index. 

 

Propellant β α 

Smokeless 1.5-2.5 0.9-1.1 

Gunpowder 15-30 0.2-0.7 

 

 

( 

Figure 2.5: Graph to show burning rate against pressure. (Allsop, 2005) 
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From Figure 2.5 it can be seen that smokeless (Nitro powders) have a burning rate 

index of approximately one, which produces a directly proportional relationship 

between the pressure and burning rate. Gunpowder (black powder) has a much lower 

burning rate index, the burning rate increases with pressure but this increase reduces 

as the pressure increases, until it levels out completely, resulting in a constant burning 

rate with pressure. It is therefore impossible to exceed a set maximum pressure and it 

is less likely to cause damage to the barrel. Black powder has a burning rate co-

efficient of up to twenty times that of nitro powders. This means it has a very high 

burning rate at low pressures, it is capable of generating a high volume of gas with 

less need for high pressures so it will not be effected by the tightness of seal in the 

barrel as much as nitro powders and therefore the use of “wads” and amount of 

“windage” will have less effect on the velocity of the musket ball than modern nitro 

powders would. 

 

Greener (1910) compares Black Powders to modern Nitro-Compounds. Greener states 

that the main advantages of nitro powders over black powders is that they do not 

produce smoke after the discharge and that it produces a small amount of residue in 

the barrel. The differences between the powders arise due to the percentage of 

available gases contained in the nitro-compound. Black powders give 65% solid 

residue and 35% available gas, whereas the best nitro-compounds give 30% solid 

residue and 70% available gas. Black powder of course has to drive out the solid 

residue out of the barrel in addition to the charge of shot and wads in front of it, the 

major portion of the solids being in a state of fine division or smoke. Whereas, one 

half the charge of nitro-powder, by weight, is equivalent in force to a full charge of 

black powder. This leaves therefore, only about 15 per cent solid residue to be 
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expelled from the barrel against nearly 65 parts solid from black powder. The 

Textbook of Ballistics and Gunnery (1987), contradicts Greener’s view for nitro 

powders stating, “When the propellant is ignited and burns, as in the gun, it is 

converted into gaseous products according to the general equation:” 

 

CaHbNcOd(s)→eCO(g) + fCO2(g) + gH2(g) + hH2O(g) +iN2(g)  (2.2) 

 

This would imply that all the propellant is actually converted into a gas. 

 

2.6 Propellant Charge 

The quantity and the burning rate of a powder are critical to the ballistics of the 

weapon.  

 

Rogers (1968) refers to proof charges from Henry Roland Gun Makers in 1631. “The 

proof was to be with good and sufficient Gunpowder the weight of the Bullet of Lead” 

(the proof is double the normal size of the charge). It was also stated that a crown over 

the letter v would be stamped on the barrel in its rough state and then a second test 

carried out in finished state where a crown over the letters GP for (Gun makers Proof) 

would be issued. 

 

Using this information we can deduce the weight of powder used would be half the 

weight of a 12 bore musket ball = half 37.3 grams (nominal) = 18.65 grams. Eyers 

(2006) quotes from Turner (1683) “A musket requires the half weight of her ball in 

fine powder and two thirds of common powder” and “...the weight of powder for 

small arms as half the weight of the ball...” In slight contradiction to this Pollard 
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(1983) states, “In 1639 the English Ordinance Officers suggested that the musket-

barrel be reduced to three and a half feet and the charge, to lessen recoil to only half 

the weight of the bullet instead of two-thirds.” 

 

Another indication to the quantity of powder charge is the Bandoliers used at the time. 

Bandoliers usually contained a single charge and were carried by the majority of 

soldiers. However, examples of surviving bandolier flasks are capable of holding a 

charge larger than half the weight of the ball (Eyers, 2006) this would vary depending 

on the density and grain size of the powder. 

 

If there are any significant changes in the black powder performance of today to that 

of the 17
th

 Century it appears to have occurred in 1787 (Rogers, 1968). Rogers 

describes how in the latter parts of the 18
th

 Century French Gunpowder was thought 

of as far superior to the English Gunpowder. This was so apparent during the 

American Civil War that after its conclusion an inquiry was instituted by Major 

Congreve and Captain Bloomfield of the board of ordinance. The investigation found 

many frauds and defects in the supply of the ammunition and the arms. One result of 

this investigation was that the Royal Gunpowder Factory was established at Waltham 

Abbey, Essex. The powder which the Royal Factory turned out soon became the best 

in the world. It consisted of 75% of saltpetre, 15% of charcoal and 10% of sulphur 

and the ingredients were better mixed. 

  

The new powder being so much more powerful than the old powder resulted in the 

discovery of many doctored and faulty barrels, when they were submitted to proof. 
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The ultimate result was that at the time of the Napoleonic Wars British service 

firearms and ammunition were the best of the contending armies. 

It has to be understood that simply stating more powerful is somewhat open to 

interpretation. It could simply mean that the burning rate is quicker resulting in higher 

peak pressures. This would certainly explain the reason for the breaking of weapons 

and also explain why weapons could be made with shorter barrels with less powder 

charge e.g. the Bakers rifle in 1800 used one third the weight of the ball for the charge 

(Rogers, 1968).  

 

2.7 The ballistic performance of the musket 

Greener (1910) wrote “120 yards is the average distance at which the ball strikes the 

ground when fired horizontally at five feet above the level.” He explains that low 

levels of accuracy and range was considered satisfactory. This is supposedly due to 

the nature of battle at the time when soldiers simply fired into the line of opposing 

troops. He also produced a table of muzzle loading weapons of the British Army. The 

table states that for 12 bore, 0.729 inch diameter (18.5mm) matchlock Muskets of the 

17th Century with a 48 inch barrel, a powder charge of 165 grains (10.714 grams) 

would be needed but he fails to give a range. However, Greener does give a range of 

an Old Army Musket dated 1750 at 200 yards using 124 grains (8.052 grams) of 

powder. This musket was 11 bore and had a 42 inch barrel. He also quotes the Brown 

Bess dated 1800 of having a 200 yard range. 

 

Colonel Hanger (1841), as quoted in Smith and Smith (1963) states “A soldier’s 

musket if not exceedingly ill-bored (as many are), will strike the figure of a man at 80 

yards, perhaps even 100: but a soldier must be very unfortunate indeed who shall be 



D Miller – Ballistics of 17th Century Muskets 

 

 42 

wounded by a common musket at 150 yards.” The same book refers to trials 

conducted by the Royal Engineers in 1841 on the “Brown Bess.” The trials showed 

that the carrying distance of muskets would vary depending on elevation from 

anywhere between 100 - 700 yards. However, it was also noted that there was also a 

difference of carrying distance between muskets fired from the same level of 

elevation of as much as 300 yards. The level of accuracy was explained as follows: 

“At 150 yards they could by very careful shooting hit a target twice as high and twice 

as broad as a man, three times out of four shots.” Further than 150 yards (even with 

the muskets vised into rests) could not hit the same target twice. The mark was then 

increased in size to be twice as wide as previously and of 10 shots at 250 yards not 

one struck. 

 

Holmes (2003) confirms these findings when discussing the battle of Naseby in 1645. 

He found that a musket that fired a bullet weighing 12 to the pound was lethal up to 

400 yards (365m) but was only effective up to 150 yards (137m). Bonsall (from 

Pollard, et al, 2008) states the range of a Civil War musket of between 183 - 380 

metres. However, he does not mention what elevation the weapon is fired at. 

 

Hughes (1997) supports Holmes by stating that the effective range of the musket was 

between 100 - 200 yards. When referring to the muskets of the 18
th

 and 19
th

 

Centuries, Hughes identified the accuracy issue. He determined that with its heavy 

bullets, large windage and its low muzzle velocity, the musket had a poor ballistic 

performance and that the bullet followed a trajectory that became excessively curved 

and erratic at all but very short ranges. 
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2.8 External Ballistics 

“Once the projectile has left the gun and the influence of emerging gases, the part of 

flight known as external ballistics begins”.   (Farrar, Leeming, 1999).  

 

From their introduction, musket balls found on the battlefield often have distinctive 

banding marks around their circumference which may affect their external ballistic 

properties. This research has compared experimental firings with calculated distance 

tables of a perfect sphere to establish any changes to the drag co-efficient of the 

musket ball due to its change in shape.  An understanding of external ballistics is 

necessary in calculating the theoretical distances that a musket ball would travel.  

 

Several factors affect the motion of a projectile as it travels through the air. These 

factors can be associated with either the projectile itself, .i.e. the mass/shape of the 

sphere; or the atmosphere the sphere is travelling through, i.e. the density, pressure, 

temperature and viscosity (Farrar, Leeming, 1999) 

 

Newton’s law of inertia states that a body persists its state of rest or of uniform 

motion unless acted upon by an external unbalanced force. This would therefore 

suggest that unless an external force such as gravity acted upon the projectile, then the 

projectile would continue its initial direction and maintain its muzzle velocity. 

However, in the instance of a projectile leaving a weapon, there is an external force of 

gravity which has the effect of pulling the projectile back towards the centre of the 

earth with an acceleration of g m/s
2
. The value of ‘g’ varies with the distance from the 

earth but for short range weapons, such as small arms, it can be assumed that the 

gravitational field is uniform, and take a constant value of 9.81 m/s
2
.  
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Gravity is not the only external factor to affect the projectile. As the sphere travels 

through the atmosphere, the air surrounding it becomes displaced by kinetic energy of 

the projectile. This loss of energy from the projectile is known as drag and causes the 

continual loss of projectile velocity. The amount of drag on a projectile is affected by 

its shape, this determines its drag coefficient (Cd).The Cd can be divided up into the 

following components. 

 

2.8.1 Forbody Drag. 

The compression of air, which occurs immediately in front of the projectile, is 

transmitted to the surrounding air as a pressure wave. This causes a disturbance which 

travels through the air at the same speed as sound waves. At ambient pressure and 

temperature the speed of sound in air is taken as 340 m/s. When the projectile is 

travelling at a speed below the speed of sound, which is below 340 m/s, the 

disturbances move faster than the projectile and so spread out away from it. Forbody 

drag is of the greatest significance in the supersonic region. When the projectile is 

travelling faster than sound no part of the disturbance can escape directly in front of 

the projectile. The result is that the compression waves “bunch up”, and a shock wave 

is created at the nose of the projectile. In general a conical shock wave is produced 

which has an angle θ where sin θ = 1/M. M is the Mach number and is defined as the 

velocity of the projectile divided by the local speed of sound in air, M= V/a. Forbody 

drag increases steadily as velocity increases, and a steep rise is noticed as the velocity 

of sound is approached. The increase is maintained for a time, at this rate in the 

supersonic zone but gradually reduces. 
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2.8.2 Base Drag. 

There is considerable turbulence behind a projectile. This turbulence is called the 

wake and causes a further resistance known as ‘base drag’. Base drag occurs due to a 

region of low pressure immediately behind the projectile which occurs when the air 

flow cannot return quickly enough to fill the space behind the projectile. The 

consequence is a vacuum or suction effect which shows itself in the form of a 

resistance to motion. Base drag increases with velocity until the velocity of sound is 

reached but then remains fairly constant. This is because as the velocity of the 

projectile approaches the speed of sound, the air pressure behind the base tends to 

zero. 

2.8.3 Skin Friction. 

Additional resistance to motion is caused by air adhering to the surface of the 

projectile. The mechanism is that the air at the surface of the projectile is moving at 

the same speed as projectile; the next layer of air is moving a little more slowly and so 

on outwards. Frictional drag is generally relatively small for most projectiles and is 

normally of the least consequence.  

2.8.4 Transonic Zone. 

Around the velocity of sound there is a zone in which the projectile’s behaviour is 

unpredictable due to the rapid change in air resistance between subsonic and 

supersonic. There is an increase in the drag coefficient due to the formation of shock 

waves. 

 

Newton’s Laws of Motion are also used to predict the direction of the path of a 

projectile, i.e. its trajectory. 
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2.9 Projectile Trajectory 

As explained previously in section 2.8, projectiles are pulled towards the centre of the 

earth by gravity denoted as g (9.81 m/s2). This generates a force on the projectile of  

 

Fg = mg ,  where m is the mass of the projectile in kg.   (2.3) 

 

If a projectile were fired in a vacuum there would not be any drag forces acting upon 

it, therefore  

d(x) = vt , where d(x) is the distance moved in the x direction,  (2.4) 

v is the velocity (m/s) and t is the time (sec). 

 

The distance moved in the y direction (downwards) would be equal to 

d(y) = ½ at
2 

 , where d(y) is the distance moved in the y direction,  (2.5)  

a is the acceleration due to gravity (9.81 m/s). 

 

Using an example for a muzzle velocity of 400 m/s. x and y values can be calculated 

using 0.1 second time steps as shown in the table and chart below Figures. 2.6 and 

Table 2.2. Range against projectile drop. 

Table 2.2: X and Y co-ordinates from a velocity of 400 m/s. (Eyers, 2006) 

Time Elapsed 
(S) 

X Distance 
(M) 

Y Drop 
(m) 

0.1 40 -0.04905 

0.2 80 -0.1962 
0.3 120 -0.44145 

0.4 160 -0.7848 

0.5 200 -1.22625 
0.6 240 -1.7658 
0.7 280 -2.40345 

0.8 320 -3.1392 
0.9 360 -3.97305 

1.0 400 -4.905 
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Figure 2.6: A graph to show range against projectile drop. (Eyers, 2006)  

 

When a projectile is fired on earth, in the presence of an atmosphere, it will slow 

down due to the effects of drag. The velocity loss with range can be calculated from 

the following:  

Velocity Loss with Range = 
m

AVC

S

V d

2

..ρ
=

∆

∆
   (2.6) 

   

   Where Cd = drag coefficient (dimensionless) 

    ρ = density of the air, (1.25kg/m
3
 @ 21

o
C) 

    V = projectile velocity, m/s 

A = cross-sectional area of the projectile, m2 

m = mass of the projectile, kg 

S = projectile displacement, m 
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A can be calculated by using the diameter on the 12 bore musket ball to be a nominal 

18.51 mm,  and the formula for a cross sectional area A = π.r2  (2.7) 

∴ A = π 0.009255
2
   = 2.691×10

-4 
m

2
             (2.8) 

  

                               

 

    

We know that mass of the musket ball to be = 3.79x10-2 kg 

Using 1 m increments for ∆S. 

∆V=  Cd × V × 2.691×10
-4

 ×1.25  =  Cd × V × 4.43 × 10
-3 

 (2.9) 

                     ∆S             2 × 3.79 × 10
-2

  

 

 

The drag coefficient varies with the velocity of the projectile.  It is found 

experimentally and is dependent on the shape of the projectile.  Typically the drag 

coefficient is expressed not in terms of its velocity but in terms of its Mach number 

which is the ratio of the velocity of the projectile to that of the speed of sound through 

the air through which it is travelling.  For air at sea level at 21
o
C the speed of sound is 

340m/s, thus a projectile travelling at this velocity is said to be travelling at Mach 1.   

A curve of the drag coefficient against Mach No. is characterised by three different 

sections with a gradual transition between the sections.  At low subsonic velocities the 

drag coefficient is low and constant with Mach number. This is followed by a steep 

increase in drag coefficient as the projectile passes through the transition from 

subsonic to supersonic velocities.  A peak value is reached followed by a gradual 

reduction in drag coefficient. 

 

There is good experimental data on the drag coefficient for spheres from Braun 

(1973), this can be simplified without undue reduction in accuracy to the diagram 

shown in Figure 2.7. 
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Figure 2.7: A Graph to show the relationship between Drag Coefficient and Mach 

number for a sphere. 

 

 

From the chart it can seen that a Mach number of 0.54 is equivalent to 184m/s (340 × 

0.54) therefore, from 0 to 184 m/s the drag coefficient is constant at 0.485. For 

velocities from 185 m/s to 450 m/s (Mach 1.32) there is a straight line as drag 

coefficient is proportional to velocity thus the formula y = mx + c can be used, where 

‘m’ is the gradient ‘x’ is the Mach number and c is the y intercept point where the line 

crosses the ‘y’ axis if it were continued on. The slope of the line (m) is 2.08 x 10
-3

 

 

∴∴∴∴Y = 2.08 x 10-3 × Mach number + 0.107  (2.10) 

From this the following expression can be used: 

 

Cd = 0.107 + 2.08 x 10
-3 

x V          (2.11) 

 

After Mach 1.32 (450 m/s) it can be seen that the drag coefficient begins to decline. 

 

The range (distance travelled) can be divided into small steps and for each step the 

velocity loss over that step can be calculated, this can then be used to calculate the 

new average velocity over that step and so on giving a new curve. Using this method 

a simple point mass trajectory model was developed to predict the impact distance of 

a musket ball for a given muzzle velocity, launch height above the ground and launch 
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angle.  This trajectory model was originally developed by Cranfield University to 

estimate the maximum range of spherical pellets fired from shotguns.  The model has 

been validated by actual measurements of range achieved from weapon firings. 

Agreement with the predicted values was better than 1.0%. 

 

Figure 2.8 shows the predicted trajectory for a 18.51mm diameter (12 bore) lead ball 

launched at 400m/s parallel to the ground and at a launch height of 0.5 m.  It can be 

seen that the maximum predicted range of the weapon is 109 m, which compares with 

128 m if there was no aerodynamic drag. 
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Figure 2.8: A Graph showing the predicted trajectory from a 12 bore lead ball at 0.5 m 

elevation at 400 m/s. 

 

Braun’s experimental data has also been used by Compton (1996) in “An 

Experimental and Theoretical Investigation of Shot Cloud Ballistics.” He states “It 

can be seen that at subsonic velocities below Mac 0.5 , the drag coefficient is 

constant. At transonic velocities between Mach 0.5 and Mach 1.4 the drag coefficient 

is approximately proportional to the velocity. At higher supersonic velocities (greater 

than 1.4) the drag coefficient becomes approximately constant again. There is a slight 

difference in values owing to the interpretation of “best fit” lines of the graph.” He 

also compared Braun’s experiments with data from Charters and Thomas (1945) to 

validate the results and concluded. “Comparing the two sets of results it can be seen 
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that they show good agreement even though the experiments were carried out 30 

years apart”. 

 

2.10 Armour Penetration 

Armour used during the Civil War were usually claimed to be caliver or pistol proof 

with few withstanding musket fire. The armour often showed a dent in the breastplate 

that was a type of proofing to identify that the armour plate had resisted a firearm 

(Bull, 1991).  

 

Recent research carried out at the Small Arms Experimental Range Shrivenham by 

Williams on reproduction armour panels with a 12 bore lead musket ball perforated  

the armour at 335 m/s but stopped at 278 m/s at 325 m/s there was a partial 

perforation. These results indicate the velocity of the 17
th

 Century musket to be at 

least 325 m/s because as stated earlier it was capable of perforating armour. 

 

2.11 The Civil War Musket 

It is important to be able to replicate the 17
th

 Century musket. The barrel length and 

the calibre used in the Civil War are necessary requirements to reproduce authentic 

results in experimentation.   

 

Previous work conducted by Eyers (2006) has established that the main weapon used 

was a 19.685mm internal diameter matchlock musket with a 48 inch (1.219 m) long 

barrel. The information was gained by both literature searches and by inspecting 52 

weapons from the “Littlecote collection” at the Royal Armouries, Leeds. These 

weapons are all believed to be from the Civil War period. The Barrel internal 
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diameters were measured and varied in diameter from a maximum of 22.35 mm to a 

minimum of 18.87 mm with the mean diameter being 19.87 mm. 

 

The true calibre of 10 bore equates to 19.685 mm (that is the diameter from a sphere 

of lead weighing one 10
th

 of a pound). There were also many other calibre weapons in 

use at this time many obtained from private sources (Eyers, (2006) quoting from 

Young and Holmes, 2000). 

 

There are many references to the calibre of the 17th Century musket for example, 

“The bore of the barrel was standardised at 10, and this was designed to provide an 

easy fit for a 12-bore bullet” (Rogers, 1968). With regards to the barrel length, again 

there are many references to be found, for example Bull (1991) quotes “c.1640 

commonest of all infantry arms in the seventeenth Century was the matchlock musket. 

The regulation 48 inches long”. As well as variations in individual musket calibre it is 

likely that most barrels would not have been perfectly straight. According to Greener 

(1910) “Previous to 1795 there was no reliable method of ascertaining when a barrel 

was or was not perfectly straight. The barrels of the finest ancient guns were usually 

far from straight”.  

 

The 17
th

 Century musket would not have been capable of withstanding the pressures 

that a modern weapon could, as modern steels and manufacturing processes would not 

have been available. Greener (1910), states “The method of making barrels prior to 

the introduction of Damascus iron (1820) from the east was to forge them from plates 

or strips of iron-this iron manufactured from old horse shoe nails”. This could be one 

of the limiting factors affecting the maximum velocity of the 17
th

 Century musket. 
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2.12 The Civil War Musket Ball 

A detailed study of the 17th Century musket ball was carried out by Harkins (2006) in 

his MSc work on forensic techniques in battlefield archaeology. He used a recovered 

a bullet from the Battle of Marston Moor in July 1664 which he analysed for the 

purpose of comparison with modern replicas. The 17
th

 Century bullet had an average 

hardness of 6.32 Vickers and was determined to be 99.7% lead. Further musket 

bullets from the battle of Edgehill on the 23
rd

 October 1642 were analysed. These 

were 12 bore with a theoretical diameter of 18.51 mm, 0.730 inch and were equivalent 

to 12 lead balls to the pound 37.9 grams, 1.313 oz each. 

 

Foard (2009) also conducted postgraduate research into musket balls discovered at 

Edgehill and states that 12 bore was by far the most common calibre represented. The 

musket ball would be cast from a split mould of two halves with the mould line 

representing the junction of the two halves. In reference to the sprue, Foard states that 

“single bullet moulds will have typically left a single sprue, occasionally seen in 

surviving bullets. However, the sprue was normally removed to complete the 

manufacturing process”. A replica 12 bore musket ball made to the same 

specifications was used in the musket trials. 
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2.13 Banding 

Banding can be described as a distinctive firing mark where the bullet is flattened in a 

band around the circumference of the bullet. There is a continuum in the degree of 

banding from slight flattening around part of the circumference, to intense wide 

banding around the whole circumference Foard, (2009). Foard mentions that there is a 

close association between banded bullets and the presence of pitting on the lower 

hemisphere of the bullet. He also states that in some bullets, the degree of melting is 

such that radiating striations are also present on the lower hemisphere of banded 

bullets, which faced towards the powder charge, the upper hemisphere typically 

remains as an unaltered bullet. It was necessary to soft capture and analyse fired 

musket balls from the reproduction musket to inspect for banding, as this gave an 

indication that firing conditions were accurately being recreated. Foard (2009) 

suggests that banding could be the result of an increase in pressure in the barrel 

caused by a tight fitting ball. Figures 2.9 and 2.10 show examples of banded bullets. 

 

 

Figure 2.9: Musket Ball showing banding (Foard, 2009) 
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From Figure 2.9 it can seen that the musket ball is slightly elongated, with a wide 

irregular band width thus reducing the calibre of the bullet. A distinct pitting can also 

be seen. 

 

 

Figure 2.10: A Musket Ball showing severe banding. (Foard, 2009) 

 

From Figure 2.10 it can seen that the musket ball shows severe banding with extreme 

markings. Again, as in Figure 2.9, pitting can be seen and an impacted hemisphere 

can also be seen to the right of the musket ball.  

 

2.14 Windage 

Windage can be described as the difference between the ball and the barrel of a 

musket. A 17
th

 Century musket that was 10 bore (19.68 mm) internal diameter and 

fired a 12 bore (18.51 mm) ball would be said to have a large amount a “windage”. 

Foard (2009), mentions in his research that the average amount of windage was 1.5 

mm. This large amount was probably to ensure the musket ball would easily slide to 

the bottom of the musket barrel even when the barrel had become fouled from the 

black powder residue after several firings. It is thought that such a large amount of 

windage was required to ensure the firing of up to a dozen bullets without having to 
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clean the barrel. The disadvantage of such a large amount of windage is that it would 

reduce the muzzle velocity due to gases escaping past the musket ball and quite 

possibly a reduced accuracy. Both of these were worthy trade offs since the musket 

was used mainly against a large target, i.e. a block of opposing soldiers at short 

ranges. This research project investigated the different effects of windage. 

 

2.14.1 Fouling 

Deposits left inside the barrel of the musket after firing will alter the amount of 

windage, especially if there is a cumulative effect. As discussed by Greener (1910), 

over 50% of constituents produced by black powders are non-gaseous. This material 

either takes the state of a liquid during the combustion cycle, or as a powder found 

either escaping as smoke at the end of the barrel, or as particles left inside the barrel. 

In large cannons this residue can build up to 0.75 inch thick at the breech end of the 

barrel. If very foul, the resistance to the projectile may be so great that a dangerous 

local pressure is set up in the barrel but usually the result is a loss of velocity only in 

the projectile. However, as mentioned in Hughes (1997), the requirement for the 

barrel to be cleaned would have rendered the musketeer defenceless for several 

minutes. 

 

2.15 Wads 

The use of a wad can have a marked effect on the ballistics of weapons. A wad 

primarily acts as a seal between the powder charge and the projectile while keeping 

the powder tightly in place. The wad can also be used to keep the projectile in the 

barrel, particularly with large amounts of Windage (see Section 2.14). 
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It has been suggested by Roger Boyle the first Earl of Orrery from Grose 1801 

(quoted in Eyers, 2006) among others that wadding was used during the Civil War. 

He states that “(musketeers) seldom put any paper, tow or grass to ram the bullet in” 

as was to be expected, due to the shortness of time between firings. This suspicion is 

also confirmed by Grose (1801) stating “... such softe haire as they stuff saddles 

with... this soldier must use when time permits” – implying that a wad would be used 

if there were time to do so. 

  

However, research conducted by Foard (2009), found that the musketeer would 

usually load his musket without wadding. This would make loading and firing quicker 

but also increase the chances of the ball rolling out of the barrel. To avoid this 

problem Munro recommended the use of cartridges, enabling rapid reloading and with 

the paper providing the wadding. However, manuals and supply records demonstrate 

that throughout the war this remained the exception, the vast majority of troops being 

equipped with a bandolier of powder boxes, each holding a single charge of 

gunpowder. Foard also states “Despite the potential to load without ramming, musket 

drill typically required the ramming home of the bullet with a scouring stick or 

ramrod”. Foard’’s findings are supported by Rogers (1968) who found that various 

unusual and unauthorised methods of loading were used by soldiers to speed up the 

time between firings since the time of Charles I. Powder was poured into the end of 

the barrel, the musket ball dropped on top without wadding. The charge was then 

rammed home by banging the butt of the musket on the ground. This led to the range 

and penetration ability of the musket ball to suffer.  
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Chapter 3: PROJECTILE SOFT CAPTURE METHODS 

 

3.0 Introduction 

As discussed in the Literature Survey the shape of the musket ball is modified by 

‘setting up’ in the barrel. To study this effect, experiments were carried out to produce 

a soft capture system capable of capturing the musket ball without causing it any 

subsequent damage so that the change in shape to the musket ball caused by the firing 

process could be studied. Recreating the ‘setting up’ of the musket ball when fired 

was an important part of the project as it is an indication whether similar conditions 

were present in the original 17
th

 Century musket. It was also important to generate the 

deformity in shape to establish whether it had a notable effect on its ballistic 

properties. 

3.1 Manufacture of Musket Balls 

To cast the reproduction musket balls for the experiment, lead was heated in a melting 

pot with a Bunsen burner. The top layer of residue was then removed and the molten 

lead poured into a split mould as seen in Figure 3.1.  

 

Figure 3.1: Split mould with lead musket ball 
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The lead was then allowed to cool and the mould was opened to extract the musket 

ball. A ‘sprue’ remained on the ball from where the lead was poured as seen in Figure 

3.2. Most of it was removed using hand cutters. A small flash was also visible where 

the two halves of the mould joined and these marks would be found on a genuine 17
th

 

Century musket ball (see section 2.12). A lead musket ball from the Marston Moor 

conflict has been analysed (Harkins, 2006) and was found to be very soft and made of 

almost pure lead. Soft lead of this type was used throughout all of this research. The 

lead used was checked for composition with a Scanning Electron Microscope and 

tested for hardness with a Vickers test machine to ensure its match with an original 

17
th

 Century musket ball. 

 

 

Figure 3.2: Cast reproduction 18.51 mm diameter (12 bore) musket ball showing 

‘sprue’ and flash mark 

Sprue 

Flash 
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3.2 Experimental Set up 

A muzzle loading 19.49 mm internal diameter (10 bore) barrel with a length of 39 

inches (990mm,) was used. This was shorter than the 17th Century musket but still 

suitable for testing soft capture methods prior to a 48 inch long barrel becoming 

available. The barrel had a screw thread on one end to attach it to a specially 

manufactured breech block with a touch hole in the side, counter-sunk to allow 

priming gunpowder to be positioned on top of the touch hole, see Figure 3.3 and 

Figure 3.4. A tapping for a pressure transducer was also fitted into the end of the 

breech. 

 

 

Figure 3.3:  The experimental breech block and threaded end of barrel 

 

 

 

 

 

 

 

Breech 

Attachment 

Countersunk 

touch hole 
Threaded end 

of barrel 

Pressure 

transducer 



D Miller – Ballistics of 17th Century Muskets 

 

 61 

 

 

Figure 3.4: A Drawing of Breech block and musket barrel from Eyers, (2006). Note 

barrel length shown is for 48 inch barrel length 

 

The test barrel was screwed into the breech block, which in turn was inserted into a 

Number 3 proof housing, shown in Figure 3.5 and secured with a back nut. The proof 

housing was bolted to a stand which allowed movement of the gun horizontally and 

vertically. A laser pointer was attached to the rear of the proof housing for accurate 

aiming. A Weibel Doppler radar type W700 was also used to record the velocities of 

the musket balls. 

 

Figure 3.5:  Number 3 proof housing mounted on stand with barrel attached 

Laser sight 

No.3 Proof 

housing 

Doppler 
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head 
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3.3 Firing procedure 

3.3.1 Loading 

For each firing, the barrel and the number 3 proof housing were unbolted from the 

stand to enable loading in a vertical position. A small wooden dowel was inserted into 

the touch hole to ensure that the powder did not leak out when it was being poured 

into the barrel. The black powder was weighed out and poured into the mouth of the 

barrel via a funnel as seen in Figure 3.6. 

 

Figure 3.6: Pouring the black powder 

 

For wadding, nine sheets of rolled tissue made a good tight fit in the barrel; these 

were lightly rammed in with a ram rod. The musket ball was then inserted into the 

barrel and very gently rammed in to ensure it had gone all the way to the bottom. Two 

sheets of tissue were inserted into the barrel and gently rammed in on top of the 

musket ball. The barrel and the proof housing were then lifted onto the stand and 

secured with two bolts. The dowel was removed and a small amount of priming 

powder (Swiss no.1) poured into the touch hole and allowed to spread around the 

counter-sink. 
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 An electrical igniter consisting of two wires joined by a match head was taped over 

the priming powder as seen in Figure 3.7.  

 

 

Figure 3.7: Electrical match positioned over black powder touch hole prior to taping 

 

The igniter wires were then run to a remote firing position in the observation room for 

safety. The match was initiated with a 20v electrical supply completing the circuit to 

the match head. Figure 3.8 shows the musket barrel as it is fired. 

 



D Miller – Ballistics of 17th Century Muskets 

 

 64 

 

Figure 3.8: Firing experimental musket barrel 

 

Various charge weights were used to gain a variety of velocities from the musket 

balls. Black Powder type G12 was selected from available powders for the initial soft 

capture testing. The velocities recorded from the various charge weights are shown in 

Table 3.1. 

Table 3.1: Velocities from varied charge weights 

G12 Black Powder (g) Velocity (m/s) 

8 227 

10 290 

17 417 

20 455 
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3.3.2 Soft Capture Method – Shredded Rubber 

Shredded rubber is commonly used as a bullet stopping medium on ballistic ranges. It 

was therefore selected as the first method for capturing the musket ball. 

 

A steel box size measuring 300mm square was filled with rubber, as seen in Figure 

3.9 and 3.10. The box was then mounted on a stand 10 metres from the muzzle of the 

experimental musket. A piece of card was taped over the front to prevent the rubber 

falling out. A charge of 15 grams G12 powder was loaded into the barrel with 

wadding. A muzzle velocity of 367 m/s was recorded and the depth of shredded 

rubber proved to be insufficient to slow the musket ball down before hitting the rear 

of the box as significant damage to the musket ball was noted. 

 

Figure 3.9: Steel box filled with shredded rubber. (Front cover partially removed to 

show shredded rubber) 
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Figure 3.10: Shredded Rubber acting as a soft capture method 

 

A polythene bag was filled with more shredded rubber to increase the depth by a 

further 400mm and positioned in front of the steel box. The experiment was repeated 

with the same quantity of black powder.  

 

3.3.2.1 Results 

A muzzle velocity of 379 m/s was noted. Examination of the musket ball revealed that 

it had been stopped by the rubber shavings, but damage was sustained to the soft lead 

as shown in Figure 3.11.  
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Figure 3.11: Damaged musket ball stopped in rubber shavings 

 

Rubber shavings were ruled out as a form of soft capture at this velocity because the 

musket ball was too badly damaged. Upon examination the condition of the musket 

ball, although damaged, indicated that “setting up” was not evident. 

 

3.3.3 Soft Capture Method - Foam and Rags 

Previous tests carried out by Harkins (2006), used multiple layers of foam rubber such 

as from boat buoyancy aids. 600mm of this rubber was found to stop a musket ball at 

a reduced velocity of 200 m/s. A small amount of foam was available however, 

600mm of foam was placed 10 metres from the muzzle of the musket and a 530 × 400 

mm box containing rags positioned behind it. The black powder charge was raised to 

20 grams to increase barrel pressure and try to create ‘setting up’ of the musket ball. 

 

mm 
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3.3.3.1 Results 

With the velocity increased to 423 m/s, the musket ball perforated the soft capture 

system. It was retrieved from the sand butts 20 metres from the muzzle. The musket 

ball was damaged but there was some indication of ‘setting up’ as seen in Figure 3.12. 

This system was a possible solution but would require a very large amount of foam 

and rags. 

 

Figure 3.12: Damaged musket ball recovered after soft capture in foam and rags 

 

3.3.4 Soft Capture Method - Water Tank 

A steel tank measuring 2000 mm long, 200 mm wide and 400mm in depth was filled 

with water as another soft capture system. The black powder charge was reduced to 8 

grams as a safety precaution and to protect the tank. The barrel was raised above the 

tank and angled at the far corner into the water as can be seen in Figures 3.13 and 

3.14.  

 

mm 
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Figure 3.13: Barrel angled into water tank  

 

 

Figure 3.14: Water tank 
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3.3.4.1 Result. 

The velocity was estimated at 227 m/s and obtained from previous data as no velocity 

reading could be taken as the barrel was firing directly into a water tank. 

 

After firing, the musket ball was retrieved and inspected. A large proportion of the 

musket ball remained intact; however it hit the base of the tank leaving a large 

indentation on the musket ball as shown in Figure 3.15. 

 

Fig. 3.15- Musket ball retrieved from water tank 

 

Water could be used as a capture system, however a much larger tank would have to 

be manufactured. It would take considerable time to fill the tank and the retrieval of 

the musket ball would be difficult, therefore it was decided to try other methods. 

3.3.5 Soft Capture Method - Kevlar 

The rear portion of a body armour jacket containing 18 layers of Kevlar was 

supported on a target stand 10 metres from the muzzle of the experimental musket. 

mm 
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The Kevlar was loosely supported so that it would be released from the stand on 

impact to catch the lead musket ball and then continue down the range to slowly 

dissipate the energy. This firing was conducted using a 300 mm long 12 bore shot gun 

barrel attached to the number 3 proof housing in the same manner as the musket 

barrel. A Winchester one ounce solid slug was used rather than the musket ball as 

shown in Figure 3.16.  

 

Figure 3.16: Winchester solid slug shot gun cartridge 

 

This method greatly reduced firing times and wastage of musket balls because the 

shot gun barrel could be breech loaded. A block containing a firing pin was screwed 

in behind the cartridge and fired remotely by means of a solenoid. Figure 2.17 and 

2.18 show the solid slug loaded in the number 3 proof housing prior to firing.  
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Figure 3.17: Solid slug positioned in shot gun barrel held in number 3 proof housing 

 

 

Figure 3.18: Solid slug in shot gun barrel held in number 3 proof housing 

 

The solid slug is known to be harder than a pure lead musket ball as it is a lead 

antimony alloy. It was assumed if it was damaged by the capture system then a 

musket ball would also be damaged at an increased level. 
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3.3.5.1 Results 

A velocity for the solid slug was recorded at 400 m/s. The Kevlar travelled four 

metres backwards from the target stand and the solid slug completely perforated it and 

was lost in the sand butt at the far end of the range.  

 

The Kevlar was then cut into smaller squares of 250mm × 250mm to try and minimise 

its weight while increasing its thickness to 24 layers in a bid to prevent perforation. A 

shorter shot gun barrel of 250mm was also used to reduce velocity. 

 

The velocity was then recorded at 388m/s with the shorter barrel. The Kevlar travelled 

completely to the 20 metre end of the range and captured the solid slug. It was badly 

damaged. Figure 3.19 shows the solid slug in the Kevlar and Figure 3.20 shows the 

front face of the solid slug. The marks from the Kevlar are clearly visible on the 

surface. The Doppler Radar also registered a velocity of 38 m/s which could have 

been the velocity of the Kevlar and captured solid slug moving after initial impact. 

 

 

Figure 3.19: Captured solid slug in Kevlar 



D Miller – Ballistics of 17th Century Muskets 

 

 74 

 

Figure 3.20: Front face of solid slug retrieved from Kevlar 

 

The results showed that Kevlar soft capture system would not be satisfactory as it 

caused a large amount of damage to the lead alloy slug. 

 

3.3.6 Soft Capture Method - Plastozote (R) Lure foam 

84 pieces of Plastozote foam 330×200×30 mm thick followed by 600 mm of boat 

buoyancy foam and linotex laminate combination were positioned 10 m from the 

muzzle of the shot gun barrel (Figure 3.21) and a Winchester solid slug was fired into 

it.  

mm 
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Figure 3.21: Plastozote and foam/linotex combination 

 

3.3.6.1 Results 

The velocity was recorded for this firing on the Doppler radar at 429 m/s. The solid 

slug was retrieved 150mm into the boat buoyancy foam/linotex combination. The 

solid slug was undamaged by the capture system and very visible banding due to 

setting up was evident as seen in Figure 3.22 and Figure 3.23. 

 

 

Figure 3.22: Solid slug retrieved from Plastozote and foam/Linotex 

Plastozote 

foam 

Foam/Linotex 

combination 

mm 
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Figure 3.23 Solid slug before and after firing 

 

The solid slug was replaced in the shot gun cartridge with a lead musket ball and the 

musket ball was fired into the same soft capture system. 

 

The velocity of the musket ball was recorded at 417 m/s and the musket ball was 

found on the floor of the range, undamaged by the soft capture system. It had fallen 

out of the buoyancy foam/linotex when it all fell onto the floor on impact. It was 

estimated to have travelled 450 mm into the buoyancy/linotex laminate. 

 

Setting up was clearly evident (Figure 3.24) and it was far greater than would be 

expected for a musket ball fired with black powder due to the increased pressures and 

pressure rise time generated by modern propellants. The rear of the musket ball had 

been pressed flat from the pressure behind the wad and the sides formed parallel to 

the barrel. However it demonstrated that this soft capture system worked. 

mm 
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Fig.3.24 Musket ball fired from shot gun cartridge retrieved from soft capture 

 

By introducing more sheets of Plastozote the buoyancy foam was eliminated from the 

soft capture system. Sheets of paper were introduced at regular distances between the 

plastazote panels to aid in the recovery of the musket ball which can be seen in Figure 

3.25. 

 

Figure 3.25: A typical retrieved musket ball that has successfully been captured by the 

soft capture system at 417 m/s using black powder 

mm 

mm 
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3.3.6.2 Depth of Penetration into Plastozote 

The distance the musket ball travelled into the Plastazote was recorded to gather 

information about its rate of deceleration. The results are shown in Table 3.2. 

Table 3.2: Velocity, distance travelled by musket ball into Plastozote and deceleration 

of the musket ball. 

Velocity on impact  

(m/s) 

Distance travelled into 

Plastazote (m) 

Deceleration (m/s)/m 

472 6 78.6 

465 5.8 80.2 

410 5.1 80.4 

403 4.97 81.1 

351 3.53 99.4 

410 5.4 75.9 

The results of Velocity and depth of penetration into the Plastozote were then plotted 

into the chart below-Figure 3.25. It showed a linear correlation  

 

Figure 3.25: A graph showing the depth of penetration into Plastozote 
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The average musket ball deceleration was 82.6 m/s per metre, enough to avoid 

damage owing to its extreme softness. 
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Chapter 4: MUSKET TEST FIRINGS 

 

4.1 Introduction 

Having determined the most suitable soft capture method it was possible to conduct 

further trials to determine the effect of black powder composition, velocity, wadding 

and barrel diameter on the banding pattern of the musket ball. Details of the 

experimental setup, loading and soft capture methods can be seen in section 3.  

 

4.2 Instrumentation 

The following equipment was used in the trials: 

Weibel W700 Doplar Radar  

Kistler pressure measurement transducer type 6203 

Charge amplifier type 5007  

National Instruments data capture for computer 

Plastozote (R) Lure foam, (See section 3. Soft Capture)  

 

The test firings were carried out using a 48” long 10 bore musket barrel with an 

internal diameter 19.685 mm. The barrel was previously manufactured for 

experimentation by Eyes, (2006) and would therefore be beneficial in drawing 

comparisons between results. The barrel was chosen because its specifications 

matched those of the most commonly used muskets from the civil war period. 12 bore 

musket balls were manufactured for the tests with a diameter of 18.51mm nominal as 

they were the most commonly used calibre in the civil war. 

 



D Miller – Ballistics of 17th Century Muskets 

 

 81 

The above instrumentation was used to record velocity and pressures for the following 

tests. A pressure transducer was screwed into the back of a specially manufactured 

breech block (Figure 4.1) and connected to a charge amplifier (Figure 4.2). The signal 

was then transferred to a pc via a data capture card. 

 

 

Figure 4.1- Showing the Kistler pressure transducer, breech block and barrel 

 

 

Figure 4.2 Charge amplifier 
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4.3 Black powder Selection 

Tests were carried out to establish a comparison between three selected black powders 

to determine the best match of the 17th Century musket. As it is possible that wadding 

may have been used during the Civil War, tests were made both with and without a 

wad. The criteria for establishing the most appropriate powder was determined by the 

quantity required to obtain correct velocities without overpressure, but be able to 

generate enough pressure to produce the ‘banding effects’ seen on musket balls 

retrieved from the battle field. Based on the firings of soft capture tests an initial 

charge weight of 12.5 grams was used. A full set of results are listed in Appendix A.  

 

Three available black powders with distinct differences were selected to establish the 

most suitable type. They were: Swiss No.1 a fast burning black powder, 3A a fine 

grained powder and G12 a course grained powder. Figure 4.3 shows the different 

available powders tested and Table 4.1 also shows the grain size of the powder type. 

 

Figure 4.3: The three selected black powders 

Swiss No.1 3 A G12 
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Table 4.1: Powder grain size 

Powder Grain Size (mm) 

Swiss No. 1 0.226-0.508 

3 A 0.25-0.5 

G 12 1 - 2 

 

Having determined that a charge weight of 12.5 grams would be suitable, it was  

necessary to determine the difference between the black powders at a given charge 

and then to determine whether there was any difference in the results when the 

wadding was removed. This was carried out using pressure time/plots. 

 

4.4 Pressure Time Plots 

The Charts below show the pressure/time plots recorded from the data capture 

computer obtained from the first set of results. The X axis reads the time in 

milliseconds and the Y axis the voltage produced from the charge amplifier. A 

Conversion factor Volts × 100 = the pressure in bar is used which is determined by 

the settings on the charge amplifier. 

 

The peak pressure seen at the top of the curve is most useful for comparing the 

powder types. The rise time and fall times are signified by the slope of the curve and 

are also useful for determining the most suitable powder. The trigger value remained 

constant for all the firings. 
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4.5 Experimental Musket Trials with wadding 

4.5.1 Powder type: 3A, Charge 12.5 grams, wadded 

It can be seen from Figure 4.4 that the peak pressure was recorded at 2.278 Volts 

which can be converted to 228 Bar and that the peak pressure was recorded at 2.65 

milliseconds from the trigger point. 

 

Figure 4.4: Pressure/Time plot for 3A powder type, with a 12.5grams charge and 

wadding 

4.5.2 Powder type: G12, Charge 12.5 grams, wadded 

It can be seen from Figure 4.5 that the peak pressure was recorded at 1.763 volts 

(176.3 Bar) and at 2.324 milliseconds from the trigger point. 

 

Figure 4.5: Pressure/Time plot for G12 powder type, with 12.5grams charge and 

wadding 
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4.5.3 Powder type: Swiss No.1, Charge 12.5 grams, wadded 

It can be seen from Figure 4.6 that the peak pressure was recorded at 7.791 volts 

(779.1 Bar) and that the peak pressure was recorded at 7.62 µs from the trigger point. 

 

 

 

Figure 4.6: Pressure/Time plot for Swiss No.1 powder type, with 12.5grams charge 

and wadding 

 

4.5.4 Comparative results of the three black powders 

 Table 4.2 compares three black powder types using 12.5 grams charge weight with  

wadding. 

Table 4.2: Comparison of three types of black powder with wadding 

Powder Velocity (m/s) Peak Pressure (Bar) 

3A 417 227.8 

G12 341 176.3 

Swiss No.1 453 779.1 
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Figure 4.7: Retrieved Musket Ball from 12.5 grams of 3A with wadding 

 

 

Figure 4.8: Retrieved Musket Ball from 12.5 grams of Swiss No.1 with wadding 

mm 

mm 
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Figure 4.9: Retrieved Musket Ball from 12.5 grams G12 with wadding 

  

4.5.5 Discussion of Results for wadded trials 

By examining the pressure / time graphs the Swiss Number 1 produced a very high 

pressure with a very fast rise time from the trigger point, which would be unsuitable 

for the musket as explained in Chapter 2; it could therefore be eliminated as a suitable 

powder. Swiss Number 1 also had too fast a burning rate. All retrieved musket balls 

showed visible banding. The Swiss No.1 also produced signs of melting around the 

banding circumference.  

 

Comparative examination of the musket balls fired with G12 and 3A powders showed 

it was difficult to differentiate them by their physical appearance. 

 

 

mm 
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4.6 Experimental Musket Trials without wadding 

The following Results are from firings using a charge of 12.5 grams without wadding. 

 

4.6.1 Powder type: 3A, Charge 12.5 grams, no wadding 

It can be seen from Figure 4.10 that the peak pressure was recorded at 2.684 volts 

(268.4) Bar and that the peak pressure was recorded at 1.86 milliseconds from the 

trigger point. 

 

 

Figure 4.10: Pressure/Time plot for 3A powder type, with 12.5 grams charge with no 

wadding 

 

 

4.6.2 Powder type: G12, Charge 12.5 grams, no wadding 

It can be seen from Figure 4.11 that the peak pressure was recorded at 1.74 volts (174) 

Bar and that the peak pressure was recorded at 1.7 milliseconds from the trigger point. 
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Figure 4.11: Pressure/Time plot for G12 powder type, with 12.5 grams charge with no 

wadding 

 

4.6.3 Discussion of results for Unwadded trials 

Table 4.3, shows the results from firings without wadding with 12.5 grams of black 

powder. 

Table 4.3: Comparison of three types of black powder without wadding 

Powder Velocity (m/s) Peak Pressure (Bar) 

3A 388 268.46 

G12 334 174 

Swiss No.1 N/A N/A 
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Figure 4.12: A retrieved musket ball from 12.5 grams, 3A No wadding 

 

 

 

Figure 4.13: A retrieved musket ball from 12.5 grams, G12 No wadding 

 

mm 

mm 
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4.7 Discussion of Powder with and without wadding 

 

Figure 4.14: A picture of a musket ball retrieved from the battle site at Edgehill 

(Photo from Foard, 2009) which is typical of the large number of musket balls 

recovered 

 

The musket balls fired without a wad showed similar characteristics to those found on 

the Edgehill musket ball recovered from the Edgehill battlefield. For example, the pit 

marks produced from the burning propellant on the base of the projectile where as the 

wadded musket balls showed no sign of powder pitting. This would indicate from the 

test results that the Edgehill ball was fired without a wad. 

 

Similar tests were carried out with varied charge weights. These results can be found 

in Appendix B. 

 

From the Literature Survey the musket ball velocity for 17
th

 Century muskets was in 

the region of 400 m/s and the weight of propellant would have been approximately 

18.6 grams. 18.6 grams of G12 powder produced 430 m/s (No Wad) where 14 grams 
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of 3A produced 423 m/s (no wad). See appendix B. Either G12 or 3A would be 

suitable to simulate black powder from the 17
th

 Century as they both produced the 

correct banding on the musket ball. However the G12 velocity gave a closer match to 

the 17
th

 Century musket with 18 grams of powder and no wad. The pressure / time 

curve also showed a longer fall off for the G12. (20 milliseconds to return to zero 

pressure opposed to 8 milliseconds for the 3A). This means it is slower burning than 

3A. The 17th Century propellant is likely to be slower burning as it would most 

probably have been less refined than a modern powder. 

 

4.8 Effect of Barrel Diameter 

The following tests were carried out using 18 grams of G12 Powder as it was thought 

to be the best match to replicate the ballistics of  a 17
th

 Century Musket.  The nominal 

diameter for a 10 Bore is 19.685 mm however, this diameter was known to vary due 

to the manufacturing processes of the time. (see Literature survey). 

 

To study the effects of different barrel diameter, two additional barrels were 

manufactured that were 48 inches long. One barrel had a bore diameter of 18.7 mm to 

recreate a very tight fitting musket ball while the other barrel had a bore diameter of 

20.4 mm for a loose fitting musket ball. Trials were carried out firing a 12 bore ball of 

18.51 mm diameter to investigate the effect of barrel bore diameter on musket 

ballistics.  The results are shown in Tables 4.4 and 4.5 and 4.6. 
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Table 4.4: Results showing effect of barrel diameter on pressure and velocity of a 12 

bore musket ball with 18grams of G12 black powder 

 

Barrel  

Diameter (mm) 

Wad Velocity  

(m/s) 

Peak Pressure 

(bar) 

Test Number 

 

19.49 No 410 269.5 Test 48 

19.49 No 420 313.5 Test 49 

19.49 No 410 240.2 Test 60 

19.49 Yes 427 308 Test 50 

19.49 Yes 431 330.7 Test 51 

20.4 No 346 182 Test 52 

20.4 No 351 203.4 Test 53 

20.4 Yes 410 284 Test 54 

20.4 Yes 403 283.4 Test 55 

18.7 No 452 319 Test 56 

18.7 No 465 403 Test 57 

18.7 Yes 472 419 Test 58 

18.7 Yes 459 393 Test 59 
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Table 4.5: Mean Velocities and Peak pressures calculated for Musket trials using 18 

grams of G12 Black powder with different barrel diameters 

Barrel 

Diameter 

(mm) 

Mean 

Velocity No 

Wad. (m/s) 

Mean 

Velocity 

Wad (m/s) 

Velocity 

increase due 

to wad (%) 

Peak 

Pressure 

No Wad 

(Bar) 

Peak 

Pressure 

Wadded. 

(Bar) 

Peak 

pressure 

increase due 

to wad (%) 

19.49 413.3 429 3.87 273 327 19.78 

20.4 349 407 16.62 205 283 38.29 

18.7 459 466 1.53 361.5 406.15 12.35 

• The mean percentage increase in velocity from all the three barrel sizes due to 

the use of a wad was 7.34%. 

• The mean percentage increase in peak pressure from the three barrels due to 

the use of a wad was 23.4 % 

Table 4.6: Percentage increase in velocity and pressure, when comparing the largest 

internal diameter barrel with the smallest 

 20.4 mm Internal ∅ 

Barrel 

 

18.7 mm 

Internal ∅ 

Barrel 

Increase in v due 

to barrel size. (%) 

Increase in P due 

to barrel size (%) 

Velocity m/s (No 

Wad) 

349 459 31.5  

Velocity Wadded 

(m/s) 

407 466 14.49  

Peak Pressure 

No Wad. 

205 361  76 

Peak Pressure 

Wadded 

283.5 406.15  43 
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4.8.1 Discussion of Results, (Barrel Diameter) 

The use of a wad showed less effect on the velocity and peak pressure of the musket 

ball than the extremes of internal diameter on the barrel. Further data obtained from 

different barrel diameters with a charge of 14 grams of G12 are shown in the Table 

4.7. 

Table 4.7: Results showing effect of barrel diameter on pressure and velocity of a 12 

bore musket ball with 14 grams G12 

Barrel Diameter 

mm 

Charge G12 

grams 

Wad/No Wad Velocity m/s Ref. 

18.7 14 No Wad 406 T42 

18.7 14 Wad 417 T43 

20.4 14 No Wad 296 T44 

20.4 14 Wad 367 T45 

 

4.8.2 Summary of Results, (Barrel Diameter) 

• For a constant charge weight of 14 grams G12 black powder it was found that 

there was a difference of 110 m/s without a wad between the smallest and 

largest bore diameter barrels. 

• For a constant charge weight 14 grams of G12 black powder there was a 

difference of 50 m/s with a wad between the smallest and largest bore 

diameter barrels. 

• The use of wadding showed a far greater effect when used with the large bore 

diameter barrel, increasing the velocity by 71 m/s. 

• When using the small bore diameter barrel with a 14 gram G12 black powder 

charge, the wad increased the velocity by only 11 m/s. 

 



D Miller – Ballistics of 17th Century Muskets 

 

 96 

4.8.3 Comparison of recovered musket balls 

4.8.3.1 Physical appearance 

The recovered musket balls were subjected to visual examination to establish whether 

any correlation could be found between the markings on the musket ball and the way 

in which it had been fired. The first comparison was made between the small and 

large diameter barrels as shown in Figures 4.15 and 4.16. 

 

Figure 4.15: The recovered musket ball fired without a wad with 18 grams of G12 

black powder from the 18.7 mm (small bore diameter) barrel 

 

 

Figure 4.16: The recovered musket ball fired without a wad with 18 grams of G12 

black powder from the 20.4 mm (large bore diameter) barrel 

mm 

mm 



D Miller – Ballistics of 17th Century Muskets 

 

 97 

 

More visible banding was evident on the musket ball fired from the small bore 

diameter barrel (Figure 4.15). The musket ball fired from the large bore diameter 

barrel was visibly less deformed remaining fairly spherical (Figure 4.16). 

The second comparison study was made between musket balls fired from the same 

barrel 19.49 mm bore diameter (standard size) with a small quantity of powder charge 

and large powder charge, seen in Figures 4.17 and 4.18. 

 

 

Figure 4.17: The recovered musket ball fired without a wad with a charge of 14 grams 

of G12 black powder 

 

mm 
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Figure 4.18: The recovered musket ball fired without a wad with a charge of 37 grams 

of G12 black powder 

 

More visible banding could be identified on the musket ball fired with 37 grams of 

G12 black powder (Figure 4.17) compared to the musket ball with 14 grams of G12 

black powder (figure 4.16).  

 

4.8.3.2 Weight loss of balls 

All retrieved musket balls had a reduction in mass after firing and a small quantity of 

lead appeared to remain in the barrel after firing. Table 4.8 shows the average weight 

loss from the recovered musket balls after firing with 18 grams of G12 black powder 

both with and without wadding and with different internal barrel diameters. 

 

 

 

mm 
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Table 4.8: Average weight loss from musket balls after firing with a charge of 18 

grams of G12 black powder 

Powder Charge. 

(grams) 

Weight loss with 

wadding (grams) 

Weight loss without 

wadding (grams) 

Barrel size 

 

18 0.415 1.729 Large bore 

diameter.(20.4mm) 

18 0.538 1.519 Standard 10 bore 

(19.49mm) 

18 0.941 1.505 Small bore diameter 

(18.7mm) 

 

Less weight was lost from the musket balls fired when using wadding, this was 

possibly due to less gas being able to escape past the musket ball. More weight was 

lost from the musket balls as the barrel diameter decreased when using a wad but the 

opposite occurred when no wadding was used.  

 

4.8.3.3 Diameter Across Banding 

The diameter across the banding of the fired musket balls was measured with vernier 

callipers, the diameter around the circumference varied so readings were taken at the 

largest and smallest diameter points and the mean value recorded. This value was 

subtracted from the original musket ball diameter to determine the change in size. 

 

All the readings recorded a reduction in diameter across the banding. From the 18 

grams of G12 black powder firings, the maximum reduction from the original musket 

ball diameter was 0.85 mm and the minimum reduction was 0.18 mm. The diameter 
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reduction from the firings for the 14 grams G12 black powder charge weight  showed 

a maximum of 0.39 mm and a minimum of 0.13 mm.  

 

4.8.3.4 Barrel Fouling 

Any large build up of debris left on the internal walls of the musket barrel after firing 

known as barrel fouling may have an effect on the ballistic properties of the musket 

ball as the internal diameter would be reduced. It could also cause loading problems if 

the clearance between the barrel and musket ball is too tight. Tests were carried out to 

observe the effects of barrel fouling.  

 

The maximum number of consecutive shots without cleaning the barrel during 

experimentation was 10. The barrel internal diameter was 19.49 mm (10 bore) and the 

musket ball diameter was a nominal 18.51 mm (12 bore). The clearance was 0.95 mm. 

 

With such a large clearance, the effect of barrel fouling was insignificant. The musket 

ball could always be slid into the barrel with ease for all ten shots fired. No substantial 

build up of residue was noted in the barrel. However, it is known that barrel fouling 

was a problem with 17
th

 Century weapons (see Chapter 2), which is why they had 

such a large amount of clearance. It is highly likely that the 17
th

 Century powder was 

not as refined as the powder used in this research and had greater amounts of 

contaminants compared to modern powders. A high speed Phantom camera was used 

at 40,000 frames per second to record large amounts of debris exiting the barrel as 

shown in Figure 4.19. It is not clear if this was debris from the previous shot being 

expelled or burning propellant grains, or a combination of both. 
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Figure 4.19: High speed video photography of debris leaving the muzzle from a 18.51 

mm diameter (12 bore musket ball) fired with black powder from a 19.49 mm internal 

diameter (10 bore) musket barrel 

 

A cloth was positioned a short distance from the musket barrel and used to capture the 

debris from a wadded musket ball firing. Another cloth was positioned similarly to 

capture the debris from a musket ball firing without wadding. The cloths were later 

analyzed under an electron microscope to try and establish what the debris contained. 

Both firings used 18 grams of G12 powder. 

 

Lead particles were found, most being sub-micron with some a few microns in 

diameter. There were substantially more lead particles in the cloth from the firing 

without wadding most probably due to the wad acting as a barrier between the musket 

ball and the gases and the powder. It was not possible to establish whether the lead 

residue had melted before being deposited on the cloth or whether it had been 

mechanically removed from the musket ball. Also found were large amounts of total 

residue from both firings. 
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Figure 4.20: An image taken from the electron microscope of the firing without 

wadding. The lighter areas show the lead particles. 

 

 

Figure 4.21: An image taken from the electron microscope of the firing with the 

wadding. The lighter areas show the lead particles. 
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4.9 The cause of the banding 

The significance of ‘banding’ on the musket ball was an important factor for this 

research as its presence questions whether or not the ballistic properties were changed 

by its occurrence. Banding was also a characteristic that could be replicated with that 

of recovered 17
th

 Century musket balls. For many years prior to electrical pressure 

transducers lead/copper crushers were used to measure pressures in firearms, as the 

soft malleable properties would deform proportionally to the pressure exerted upon 

them. Tests were carried out to try and establish what causes the banding. 

 

Possible causes of banding are thought to be: 

1. The pressure behind the musket ball pressing it against the internal wall of the 

barrel. 

2. The passing of gases between the musket ball and the inner wall of the barrel. 

3. Rubbing against the inner wall of the musket barrel as it is accelerated along 

the barrel. 

4. A combination of all or some of the above. 

  

The following experiment was carried out to determine whether escaping gases alone 

could cause banding, by preventing the musket ball from moving. The powder charge 

(5 grams of G12 black powder) and musket ball were loaded into the barrel without 

wadding, then a ram rod was inserted into the barrel until it came into contact with the 

musket ball. The other end of the ramrod was butted up against an 8mm plate of steel 

attached to a target frame which would prevent any forward motion of the musket ball 

when fired. Pressure was recorded at 383 Bar. The setup is shown in Figure 4.22. 
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Figure 4.22: Arrangement used for investigating the effect of gas flow past the 

projectile by preventing movement of the musket ball by the use of a ram rod abutting 

against a fixed surface 

4.91 Results of banding testing 

After firing, the musket ball was removed from the barrel and examined. The result of 

the firing is shown in Figure 4.23. 

 

Figure 4.23: The musket ball before and after firing with 5 grams of G12 black 

powder and the movement of the musket ball prevented by a fixed ramrod. 

mm 
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Banding was clearly visible after firing. There were also pit marks from the powder 

and blackening. This would indicate that one cause of banding was due to the gases 

escaping past the musket ball. The peak pressure was 283 Bar which is similar to the 

pressure of an unrestricted musket ball exiting at 415 m/s with 18 grams of G12 black 

powder. There was a large weight loss from the musket ball (2.464 grams) and a small 

quantity of lead was left in the barrel. 

 

Banding was also present from musket balls fired with wadding. This would have 

reduced the amount of gases escaping past the musket ball therefore it would seem 

likely that banding was also caused by the musket ball rubbing against the sides of the 

inner walls of the barrel. Increased pressures produced more banding, an extreme 

example of this is shown in chapter 3. It is most probable that a combination of these 

factors produce the banding marks seen on the musket ball.  
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Chapter 5: TRAJECTORY PREDICTIONS 

 

5.1 Introduction 

It is unknown whether the distorted shape of the musket ball will have an effect on its 

ballistic properties. The following predictions were calculated to compare against 

actual results from test firings carried out at Ashdown House. They were also used to 

determine the most influential variables that can affect the distance the musket ball 

travels such as velocity, height and angle of elevation. The predictions were 

calculated using a Trajectory Model generated in Excel as discussed in Chapter 2. The 

drag co-efficient used was that for a perfect sphere. 

 

5.2 Methodology 

The predictions shown in Table 5.1 are for a 18.51 mm diameter (12 bore) Musket 

Ball fired at a height of 1.39 metres with a horizontal trajectory parallel to the ground. 

This represents the same conditions as the actual experimental firings carried out at 

Ashdown Park. (The height of 1.39 metres was the mean height from ground to 

shoulder measured from a number of volunteers). The muzzle velocity was varied 

between 330 m/s and 490 m/s in 20 m/s increments (a spread of 160 m/s). The model 

was used to establish the predicted distance the musket ball would travel before 

impacting the ground and the velocity it would be travelling at upon impact. Figure 

5.1 shows the results of muzzle velocity against impact distance plotted as a graph. 
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5.3 Results 

Table 5.1: The predicted data for a 12 bore Musket Ball fired at different muzzle 

velocities at a height of 1.39 metres with a horizontal trajectory parallel to the ground 

Velocity m/s Ground Impact 

Velocity m/s 

Distance to Ground 

Impact. m 

330 214 146 

350 219 154 

370 224 160 

390 228 166 

410 232 171 

430 236 177 

450 239 182 

470 241 187 

490 244 191 

 

Velocity Range =  330 to 490 = 160 m/s  

Ground impact velocity spread = 214 m/s to 244 m/s = 30 m/s 

Spread of Range (distance) = 146 m to 191 m = 45 m. 

This equates to a 3.5 metre change in range per m/s. 
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Figure 5.1: The predicted distances the musket ball would travel before impacting the 

ground against velocity 

 

A musket ball is only effective when it can hit a man sized target. Table 5.2 illustrates 

the predicted distance a musket ball would travel before it would pass over the head 

of a six feet tall (1.83m) person when fired at 400 m/s at shoulder height at varying 

elevations. It also shows the musket ball velocity at ground impact and the distance it 

would travel before impacting the ground. 
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Table 5.2: The predicted distance a musket ball would travel before it would pass over 

the head of a six feet tall (1.83m) person when fired at 400 m/s at shoulder height at 

varying elevations 

Elevation (Degrees) Distance travelled 

to height  of 1.83 m 

(6 feet person) (m) 

Velocity at Ground 

Impact (m/s) 

Distance to Ground 

Impact (m) 

0  230 169 

1 27 163.7 315.95 

2 12.9 128.12 427.78 

3 8.99 107.28 509.4 

4 5.99 92.91 576.7 

5 4.98 83.5 628.7 

10 1.96 61 799 

15 N/A 55.46 890.44 

20 N/A 54.85 943.79 

25 N/A 56 970.49 

30 N/A 57.69 977.33 

35 N/A 59.31 966.78 

 

1° of elevation would miss a 6 foot person standing 27 metres away. 

Increase in distance for 1 degree of elevation = 146 metres. 

Increase in distance for 2 degrees of elevation =258.78 metres. 

Increase in distance for 5 degrees of elevation =459.7 metres. 

Maximum distance 977 metres with 30 degrees of elevation. 
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Figure 5.2 shows the distance travelled by a 12 bore musket ball when fired at a 

muzzle velocity of 400 m/s at a height of 1.39 m above the ground for different 

launch angles to the ground 
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Figure 5.2: The predicted distance a musket ball would travel when fired from 

shoulder height (1.39 m) at 400 m/s with change in elevation. 

 

It can be seen that the maximum distance travelled is 977 metres at an angle of 30° 

and that greater angles than this would result in a reduction in range.  

 

Formatted: Left
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Table 5.3 shows the predicted distance of impact and the impact velocity when firing 

a 18.51 mm diameter (12 bore) musket ball at a muzzle velocity of 400 m/s at a height 

of 1.39 m above the ground for different negative angles of elevation.  

 

Table 5.3: Predicted distance of impact and the impact velocity when firing a 18.51 

mm diameter (12 bore) musket ball at a muzzle velocity of 400 m/s at a height of 1.39 

m above the ground for different negative angles of elevation. 

Elevation (Degrees) Velocity at Ground 

Impact (m/s) 

Distance to Ground 

Impact (m) 

-1 309 68.99 

-2 345 37.98 

-3 361 25.96 

-4 370 18.95 

-5 376 14.94 

-6 379 12.93 

-7 382 10.92 

-8 385 8.91 

-9 387 7.9 

-10 389 6.89 

 

 

Figure 5.3 shows the predicted distance to ground impact when firing a 18.51 mm 

diameter (12 bore) musket ball at a muzzle velocity of 400 m/s at a height of 1.39 m 

above the ground for different negative angles of elevation. 
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Predicted Distance with Negative Elevation
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Figure 5.3: Predicted distance to ground impact when firing a 18.51mm diameter (12 

bore) musket ball at a muzzle velocity of 400 m/s at a height of 1.39 m above the 

ground for different negative angles of elevation. 

 

The distance travelled by a musket ball when fired parallel to the ground will vary 

depending on the height above the ground at which the musket was fired. The 

maximum height will depend upon the height to the shoulder when firer is standing 

and the minimum practical height will be for when the firer is kneeling. Table 5.4 

shows the predicted effect of firing a 18.51 mm diameter (12 bore) musket ball at a 

muzzle velocity of 400 m/s parallel to the ground and at different heights on the 

distance to impact with the ground and the impact velocity. Figure 5.4 shows a graph 

of the predicted effect of firing a 18.51mm diameter (12 bore) musket ball at a muzzle 

velocity of 400 m/s parallel to the ground and at different heights on the distance to 

impact. 
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Table 5.4: Predicted effect of firing a 18.51 mm diameter (12 bore) musket ball at a 

muzzle velocity of 400 m/s parallel to the ground and at heights of 0.9 m (a kneeling 

man) to 1.7m (a tall standing man) on the distance to impact with the ground and the 

impact velocity. 

Height (m) Velocity at Ground Impact (m/s) Distance (m) 

1.7 222 182.99 

1.5 227.8 173.99 

1.3 233.2 163.99 

1.1 240.17 152.97 

0.9 248 139.99 
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 Figure 5.4: Predicted effect of firing a 18.51mm diameter (12 bore) musket ball at a 

muzzle velocity of 400 m/s parallel to the ground and at different heights on the 

distance to impact. 
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It can be seen that extremes in height 1.7 m to 0.9 m (kneeling) produce a spread of 

43 m from182.99 m to 139.99 m. 

 

If a musket was fired at a positive angle of elevation relative to the ground the musket 

ball would rise until it reached its maximum height and then fall until it impacted the 

ground.  This is shown in Figure 5.5 which is the trajectory diagram for a 18.51 mm 

diameter (12 bore) musket ball with a muzzle velocity of 400 m/s fired at 1.39 m 

above the ground and at an angle of 5 degrees. 
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Figure 5.5: Trajectory diagram for a 18.51 mm (12 bore) musket ball with a muzzle 

velocity of 400 m/s fired at 1.39 m above the ground and at an angle of 5 degrees. 

 

From Figure 5.5 it can be seen that if the musket was fired at a 5 degree angle it 

would pass over the head of a 6 feet (1.83 m ) person at a distance of 5 m and would 

only become effective again after 620 m (1.9 m high) shortly  before ground impact at 

629 m. 
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5.4 Discussion 

Small changes in elevation have far more influence on the distance a musket ball 

travels before impacting the ground than changes in height or velocity due to firing. A 

number of factors affect velocity loss with range and therefore range to ground 

impact. 

 

Maximum range if fired in a vacuum is given by: 

)2sin(
2

θ
g

V
R =      (5.1) 

For 45° Sin θ2  = 1 ∴ m
gg

v
R 16300

40022

===    (5.2)   

 

It can be seen that aerodynamic drag therefore has a considerable effect on the 

maximum range due to the velocity loss with range. 

 

Velocity loss with range is given by: 

AV

mCd

S

V

.

.2. ρ
=

∆

∆
               (5.3) 

Where V= Velocity 

 m= Mass 

 =ρ Density of air 

 A= Cross sectional area of the projectile. 

 Cd= Drag coefficient. 
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S

V

∆

∆
 is directly proportional to mass. The mass loss of the musket ball is small, 

approximately 1.5 grams.  If the mass of a projectile is reduced by 1 gram the range to 

ground impact is reduced by 1m. 

 

The Drag Coefficient (Cd) is dependant on the shape of the projectile and although 

distortion in the barrel during firing occurs the change in shape is negligible. A 10% 

increase in drag coefficient will only reduce the range by 3 metres. Distortion of the 

musket ball will also increase the cross sectional area but again this effect will be 

small. A 10% increase in cross sectional area will reduce the range by 3 m/s. Thus it 

can be seen that changes in the musket ball due to the firing process will have a small 

effect on the range of the musket ball fired from the shoulder parallel to the ground. 

5.4.1 Angle of Elevation 

A simple experiment was undertaken to observe angles of elevation on a musket 

barrel. This would be useful in determining the likelihood of what angles of deviation 

from the horizontal might occur when the musket was fired. The barrel was placed in 

the proof housing and a target positioned 5 metres away. This is shown in Figure 5.6 

below. 
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Figure 5.6: Proof mount with target showing elevation of the barrel 

 

 The barrel was first positioned horizontally using a spirit level and a laser sight was 

used to spot a position on the target. Trigonometry was then used to calculate the 

distance from this mark to measure 1 degree steps on the target. A levelled camera 

mounted on a tripod recorded the image of the barrel at the elevations. A horizontal 

line of tape was positioned on the rear wall to act as a reference. The results are 

shown in Figure 5.7. 
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Figure 5.7: Photographs showing levels of barrel elevation 

 

0° Elevation 1° Elevation 

2° Elevation 3° Elevation 

4° Elevation 5° Elevation 

6° Elevation 7° Elevation 
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It can be seen from the above pictures that an angle as small as one degree is quite 

apparent to the human eye and that an elevation greater than 7°, even in the most 

inexperienced hands, would be unlikely.  

 

Figure 5.8: Impact positions from varying degrees of elevation upon a Figure 11 

target placed five metres away from the muzzle 

5.5 Conclusions 

The predictions show that the most influential factor in determining the distance a 

musket ball will travel to the point of ground impact is the angle of elevation. If it 
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varies from between 0° to 5° then the range varies from 169 m to 629 m, a variation 

of 460 m. The velocity of the musket ball impacting the ground at 0° elevation was 

predicted to be 230 m/s. The velocity of the musket ball impacting the ground at 5° 

was 83.5 m/s. The slower velocity at impact combined with a steeper angle of descent 

will greatly reduce the distance of bounce and roll after impact with the ground. Thus 

variations in elevation will have a smaller effect on the total distance travelled by the 

musket ball than would be implied if only the distance to the impact point with the 

ground was considered. 
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Chapter 6: PREDICTIONS FOR BOUNCE AND ROLL. 

 

6.1 Introduction 

On impacting the ground the musket ball will still be travelling at a considerable 

velocity. Depending on the ground conditions it will then skid, bounce and roll a 

number of times until all of its energy is used up at which point it will come to a final 

resting position. It is this final resting position at which fired musket balls are 

normally found on the battle field.  The distance that musket balls bounce and roll, as 

well as the distance that a musket ball travels from muzzle to ground impact, is 

therefore of high importance to any work interpreting where musket balls may have 

been fired from on the battle field.  

 

6.2 Results 

Work on the bounce and roll of masonry debris was carried out by Knock (2004). The 

aim was to develop a modelling programme to study what happens at the first impact 

of the debris with the ground. Three levels of ground hardness were created using 

clay. Both spherical and angular projectiles were used. It was concluded that a rigid 

body model could not be applied to the collected experimental data as there was no 

consistency in the values of the coefficients of restitution and the friction obtained 

from the data. Instead it was found that the impact could be successfully modelled 

using simple empirical equations relating the ratio of the reflected velocity to the 

impact velocity to the impact angle and the change in angle of flight to the impact 

angle. Cubes and spheres gave very similar results; the cubes losing slightly more 

velocity on impact than the spheres. An analysis of the rotational data showed that the 
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post impact rotation rate was difficult to predict. The results also suggest that after 

impact, the spin rate will be high enough for the Magnus effect to be significant. 

 

The programme model required the following data: 

The velocity immediately before and after ground impact and the entry and exit 

angles before and after ground impact.  From a series of bounce and roll trials carried 

out using 18.51 mm diameter (12 bore) musket balls (Section 7.2.5), only shots A3 

and A6 had all data for the modelling programme. The velocities before and after 

impact were obtained from the Doppler radar trace. They are tabulated in Table 6.1. 

Table 6.1: Experimental data for using prediction model 

Shot number. V1 V2 

A3 239 152 

A6 289 217 

Paper witness screens were used at intervals down range to record the trajectories of 

musket balls before and after their impact with the ground. By using the coordinates 

from the witness screens directly before and after the first ground impact, the angle 

that the musket ball impacted the ground at and the angle it exited the ground after 

skidding was calculated using trigonometry.  The pre and post impact velocities and 

the length of the skid on the ground are given in Table 6.2. 

Table 6.2: Impact and exit angles with skid length for the shots with usable data.  

Shot Number Entry angle (degrees) Exit Angle (degrees) Skid length (m) 

A3 2.29 1.80 3 

A6 1.03 1.96 4 
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The trajectory prediction model calculated the angle at impact to be 1.10° for a 

musket ball fired at 420 m/s on a flat trajectory at a height of 1.39 m. The required 

data was entered into the bounce and roll prediction model but unfortunately, the 

results were totally different to the recorded results. A possible explanation for this 

was that the model was designed for large objects travelling at slow velocities. Further 

work to the modelling programme using new data would be required to use the model 

successfully.  

 

Although the data used did not give meaningful results for the modelling programme 

it is useful for observing energy values from the firings. Results from long range trials 

established the velocity loss of the musket ball impacting the ground at 239 m/s 

skidded for 3 m and exited at 152 m/s, a loss of 87 m/s and a decrease in velocity of 

36%. This equates to an energy loss of 630 joules which is 59.6% of the impact 

energy. The impact angle was 2.29 degrees.  
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Chapter 7: LONG DISTANCE FIRINGS-ASHDOWN 

HOUSE 

 

7.1: First Long Range Firing Trials (0ctober 2007) 

In Chapter 6, the trajectory of a projectile, (external ballistics) were studied. The 

distance from the fired weapon to the point at which it first impacted the ground was 

considered. A simple trajectory model was used but this was dependent on the use of 

a drag coefficient (Cd) for a perfect sphere. However, it is known that the soft musket 

ball is modified in shape in the barrel which may affect the trajectory. Trials were 

carried out to examine the distance travelled by a musket ball from the muzzle to the 

point that it impacts the ground and to compare this with the predicted values. Two 

shots using steel ball bearings were also fired to compare results with those of a 

projectile that would not be modified in shape. 

 

The musket balls found on a battlefield are not at the position where they impacted 

the ground because upon impact they bounce and roll. These tests were also designed 

to capture data on the distance that the musket balls bounced and rolled and also the 

variation in these values on a shot to shot basis. 

 

All the trials were fired along the main grass ride at Ashdown wood. This ride was 18 

m wide and 1500 m long. The ride is almost flat for the first 300 m and is almost 

completely free of metallic debris, a requirement for finding the musket balls post 

firing using a metal detector. 
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7.1.1 Setup 

The musket barrel was mounted in a number 3 housing as described in Chapter 3, Soft 

Capture of musket balls. The number 3 housing was attached to a modified light 

weight car trailer. All firings were conducted with the barrel set using a spirit level to 

zero elevation. The angle of elevation of the barrel was adjusted by means of an 

adjustable jockey wheel fitted to the trailer tow bar. The height of the barrel was 1.39 

m above the ground. The height of 1.39 m was the mean figure taken by measuring 

from ground to shoulder for a number of volunteers (this being pre-determined by the 

firing rig manufactured for experimental research in collaboration with the 

Battlefields Trust (Pollard, 2008). The horizontal position was sighted to the 20 m 

target by looking along the barrel. The ground surface was near level. The grass 

length was approximately 30mm and the soil was damp. There was virtually no wind 

present (calm). To measure impact positions cartridge paper witness screens were 

used, these witness screens were placed at 20 m intervals from the gun to a total of 

200 m. An optical level as shown in Figure 7.7 was used to mark the witness screens 

with a 0,0 coordinate at 1.39 m high and centred to enable drop and sideways 

movement to be measured. A Weibel Doppler radar model W700 was used to record 

the velocities and was powered by a portable generator. A metal detector was used to 

find the musket balls after firing. The musket balls were marked for later 

identification with a letter stamp. 

 

Ground hardness was measured with a Cone Penetrometer. This is an instrument 

suitable for use in soft soils such as clay loam and silt. Its primary use is for 

ascertaining the ground hardness suitability for military vehicles and aircraft. It was 

used in accordance with the user hand book. The higher values relate to higher ground 
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hardness, for example a cone index (C I) range of 80 to 99 is suitable for rear wheel 

drive vehicles intended primarily for highway use. 

 

Musket ball recovery was by metal detecting as the musket balls could not be found 

by visual searching due to the length of the grass. Searching beyond the 18 m width 

was not possible due to shrub and tree cover. Figure 7.1 shows the view along 

Ashdown main ride showing the witness sheets at 20 m intervals to a distance of 200 

m and with the number 3 housing mounted on the light weight trailer and Doppler 

radar antenna for measuring projectile velocity. 

 

 

Figure 7.1: The view along Ashdown main ride showing the witness sheets at 20 m 

intervals to a distance of 200 m and with the number 3 housing and Doppler radar 

antenna for measuring projectile velocity 
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7.1.2 Results 

The muzzle velocities of each firing, the position of the musket ball travelling through 

the witness screens, the impact distance and the final resting position are given in 

Table 7.1 

Table 7.1: The muzzle velocities of each firing, the position of the musket ball 

travelling through the witness screens, the impact distance and the final resting 

position for the six shots fired.  

 

X and Y coordinates of impact on witness sheet, mm 
Distance 

From  

Muzzle, 

m 

Shot 1 

410 m/s 

muzzle 

velocity 

Shot 2 

361 m/s 

muzzle 

velocity 

Shot 3 

298 m/s muzzle 

velocity 

Shot 4 

438 m/s 

muzzle 

velocity 

Shot 5* 

326 m/s 

muzzle 

velocity 

Shot 6* 

486 m/s 

muzzle 

velocity 

20 X 64, Y -135 X 100, Y -65 X 35, Y -45 X 160, Y -76 X 113, Y -65 X 2, Y -67 

40 X -27, Y -200 X 8, Y -82 X -34, Y -71 X 184, Y-110 
X 127, Y -

144 
X -172,Y -62 

60 
X -145, Y -

292 

X -107, Y -

153 
X -87, Y -192 X 212, Y -220 X 190, Y 46 

X -400 

Y -96 

80 
X -280, Y -

390 

X -273, Y -

295 
X -140, Y -460 X 245, Y -370 X 323, Y 219 

Missed 

witness sheet 

100 
X -411, Y -

460 

X -412, Y -

465 
X -215, Y -864 X 230, Y -581 

Missed 

witness sheet 

Missed 

witness sheet 

120 
X -437, Y -

550 

Missed 

witness sheet 

Ground impact 

115 m 
X 215, Y -855 

Missed 

witness sheet 

Missed 

witness sheet 

140 
X -388, Y -

625 

Missed 

witness sheet 
 

X 162, Y 1198 

Ground impact 

146m 

Missed 

witness sheet 

Missed 

witness sheet 

160 
X -261, Y -

740 

Missed 

witness sheet 

Missed witness 

sheet after 

impact 

Reading taken 

After impact 

@146m 

X 110, Y 1000 

 

Missed 

witness sheet 

Missed 

witness sheet 

180 X -8, Y -937 
Missed 

witness sheet 

Missed witness 

sheet 

Missed 

witness sheet 

Missed 

witness sheet 

Missed 

witness sheet 

200 
X 313, Y -

1240 

Missed 

witness sheet 

Missed witness 

sheet 

Missed 

witness sheet 

Missed 

witness sheet 

Missed 

witness sheet 

 
Ground impact 

213 m 
     

Final 

Position 

288m 

2.3m right 
Not found 

323m 

5.7m left 

310m 

2.5m right 
Not found Not found 

 

* = 19mm steel ball bearings
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7.1.3 Comparison of valid shots 

The results in Table 7.1 are incomplete because the width of the paper witness sheets 

were 1.2 m and this was not always sufficient due to the large deviations in the 

directions of the musket ball in flight and after impact.  Their height was also limited 

to 2m and some musket balls passed over the top. Also, the working width of the 

firing range was only 18 m and at the longer ranges the deviation of some of the 

musket balls were such that they could not be contained within this width. 

Additionally, the witness sheet screens were made of steel tubing and some of the 

musket balls struck them, especially the base cross members. 

 

Table 7.2 shows the muzzle velocity distance to impact and the maximum distance 

travelled by the musket ball for shots 1, 3 and 4 (the shots for which the data was 

recorded) 

Table 7.2: Muzzle velocity, distance to ground impact and final resting position for 

shots 1, 3 and 4 

Shot No. Muzzle 

Velocity (m/s) 

Distance to ground impact (m) Distance to final resting 

point (m) 

1 410 213 288 

3 298 115 323 

4 438 146 310 

 

Shots 1 and 4 had muzzle velocities of 410 m/s and 438 m/s, a velocity spread of 28 

m/s, the distance travelled before ground impact varied from 213 m (shot 1) to 146 m 

(shot 4) the reason for such a large variation was due to the way in which the two 

shots differed in their trajectories. This can be seen from Figure 7.2 which shows the 
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predicted trajectory of the musket ball and the actual trajectory as recorded by the 

paper witness sheets for shots 1 and 4.  

Shot1 410 m/s
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Figure 7.2: Recorded trajectory for shots 1 and 4 and for the predicted trajectory 

. 

It can be seen that shot 4 has a similar trajectory characteristic as the theoretical curve.  

However, the trajectory for shot 1 has a very different characteristic to the predicted 

curve.  There should be very little deviation of the path of the musket ball from that of 

a straight line in the horizontal plane (plan view) but Figure 7.3 shows that this is not 

the case for shot number 1. It can be seen that in the horizontal plane the musket ball 

moves to the left during the first 100 m of its flight.  It then starts to move back 

towards the centre and crosses the centre line at about 180 m.  If the movements of the 

musket ball from shot number 1 in the vertical and horizontal planes are combined it 

can be seen that the musket ball from shot no 1 is cork screwing as it is passing down 

range. 
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Shot 1 X axis (Plan View)
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Figure 7.3: A plan view of the trajectory path of shot 1 

 

The trajectories for all six shots are plotted in Figure 7.4 (vertical plane) and Figure 

7.5 (horizontal plane). 

Vertical distribution. S1 410m/s, S2 361m/s, S3 298m/s, S4 438m/s, S5 326m/s, S6486m/s.
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Figure 7.4: The path of all the shots from 1 to 6 in the vertical plane 
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Shot Trajectory Plan View  Shots 1 to 6
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Figure 7.5: The trajectory plan view of shots from 1to 6 in the vertical plane 

It can be seen from Figures 7.4 and 7.5 that all of the musket balls showed 

characteristics similar to those of shot number 1 as they did not travel in a perfectly 

straight line. It can also be seen that the two steel ball bearings (shots 5 and 6) had the 

greatest deviation from that of a straight line.  

 

7.1.4 Musket Ball final Resting Positions 

Figure 7.6 is the horizontal trajectory (plan view) and shows the first impact position 

and final position (maximum distance travelled) for shots number 1, 3 and 4 (the only 

shots for which the musket ball was found). 

 

D
is

p
er

si
o

n
 m

m
 



D Miller – Ballistics of 17
th

 Century Muskets 

 

 132 

Shots 1,3,4 w ith final resting positions
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Figure 7.6: The horizontal trajectory (plan view) and showing the impact position and 

final position (maximum distance travelled) for shots number 1, 3 and 4 

 

7.2 Second Long Range Firing Trials (May 2008) 

For this trial the propellant charge weight used for all firings was 18 grams of G12 

black powder. Three different barrel bore diameters were used to investigate the effect 

of barrel bore diameter on the trajectory and maximum distance travelled by the 

musket ball. 

 

Shots A1 to A5 used a 48 inch barrel internal diameter 19.49 mm (10 bore). 

Shots A6 and A7 used a 48 inch barrel reduced internal diameter 18.7 mm.  

Shots A8 and A9 used a 48 inch barrel enlarged internal diameter 20.4 mm.  

 

All musket balls were identification marked with a number stamped into their surface.  

A thin coating of white paint applied to them to increase their visibility on the field 
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after firing. They were also weighed and measured. The data is tabulated in Appendix 

D. 

7.2.1 Experimental Setup 

The musket barrel and fixed number 3 housing were mounted to a scissor jack table. 

The firings were on a flat trajectory checked with a spirit level and the barrel height 

was 1.39 m. The horizontal position was sighted to an aiming cross on the first 

witness screen using a telescopic sight attached to the barrel. The first witness screen 

was placed 50 m from the muzzle. Seven further witness screens were placed at 

intervals of 30 m to a total of 260 m then a further two sets of screens set at 20 m 

intervals to a total of 300 m. The screens were made wider as the distance increased to 

help capture the results from the musket ball. An optical level set at the same height 

as the gun barrel was used to give the zero point on each witness sheet and the witness 

screens were marked with a 0,0 coordinate to enable drop and sideways movement to 

be measured. Average ground hardness was measured at 195 CI. (California Bearing 

Ratio CBR 9). The wind was calm. A Doppler radar was used to record the musket 

ball velocities and a metal detector used to find the musket balls after firing. A 

photograph of the setup can be seen in Figure 7.7. The weapon was re-zeroed onto the 

0,0 coordinates on the first witness sheet at 50 m before each shot was fired. 
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Figure 7.7: The Gun Barrel and No.3 housing clamped to the scissor lift table. Behind 

it is the optical level mounted on a tripod. The Doppler Radar Head can also be seen 

behind the table 

7.2.2 Results A1-A5 (19.49 mm bore Barrel) 

The X and Y coordinates from the witness screens were measured both before and 

after ground impact after each shot was fired. Data on the number of bounces and 

height of the bounces of the musket balls could then be recorded for analysis as well 

as the trajectories. 

 

Figure 7.8 shows the witness sheet at 110 m from the muzzle and the impacts of the 

musket balls from shots A1 to A5 

Optical 

Level 

Doppler 

Radar Head 
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Figure 7.8: A photograph of the witness screen positioned at 110 m from the firing 

point after shots A1 to A5 were fired 

 

All of the measured coordinates measured from the witness sheets for all firings are 

given in Appendix D.  Table 7.3 gives the muzzle velocity, impact velocity, ground 

impact distance, number of bounces and the maximum distance travelled for shots A1 

to A5. It should be noted that the bounce mark was identified by the skid mark on the 

grass.  At the longer ranges the impact velocity of the musket ball with the ground 

would have decreased to a low value and the impact mark was increasingly difficult to 

see so there may have been more bounces than could be identified. 

Table 7.3: Muzzle velocity, impact velocity, ground impact distance, number of 

bounces and the maximum distance travelled for shots A1 to A5 

Shot No. Velocity m/s Velocity at 

ground impact 

m/s Doppler 

Distance to 

Ground Impact. 

m 

Number of 

Bounces. 

Total Distance to 

final resting 

position m 

A1 429 259 170 Hit Frame 0  

A2 423 266 166 4 (3 definite) 402 

A3 423 239 203 3 definite 330 + unfound 

after this point 

A4 412 264 153 4 296 

A5 412 250 170 Hit Frame 0  

1.0 m  
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7.2.3 Analysis of Results shots A1 to A5 (19.49 mm bore barrel) 

Shots A1, A2, and A5 all had similar trajectories, A1 and A5 both hitting the base of 

the frame at 170 m. Shot A2 impacted the ground at 166 m. The velocity of A1 was 

429 m/s (the highest of the serial) and shot A5 was 412 m/s (lowest of the serial) 

giving a difference between maximum and minimum muzzle velocities of only 17 

m/s. 

 

The furthest distance to ground impact was shot A3, which was 203 m and the least 

distance was shot A4, which was 153 m. The velocity of shot A3 was 423 m/s and the 

velocity of shot A4 was 412 m/s. It should be noted that the trajectory of shot A3 was 

slightly higher than the others and shot A4 slightly lower. This small change in 

trajectory produced a change in range from 153 m to 203 m, a difference of 50 m. The 

average distance to ground impact was 172.4 m 

 

Only two musket balls were found, shot A2 which travelled 402m and shot A4 which 

travelled 296 m.  Thus the average distance travelled was 349 m with a difference of 

106 m between maximum and minimum distances. 

 

Figure 7.9 shows the trajectories of shots A1 to A5 in the vertical plane and Figure 

7.10 shows the trajectories of shots A1 to in the horizontal plane. 
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Figure 7.9:  Vertical trajectories of shots A1 to A5 to ground impact 
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Figure 7.10:  Horizontal trajectories of shots A1 to A5. (Plan View) 

Figure 7.11: shows the horizontal trajectories (plan view) combining the results of 

shots A1 to A5 both before and after ground impact (the broken lines signify the path 

of the musket balls after the first ground impact). 
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 Trajectory (Plan View) A1 to A5 before and after ground impact
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Figure 7.11: Horizontal trajectory (Plan View) of shots A1 to A5 before and after ground impact 

 

 



D Miller – Ballistics of 17
th

 Century Muskets 

 

 139 

7.2.4. Results A6 to A7 (18.7 mm bore Barrel) and A8 to A9 (20.4 mm bore Barrel) 

 

Table 7.4 shows the muzzle velocity, first ground impact velocity, distance to first 

impact and the number of bounces by the musket ball (where known) obtained for 

shots A6 to A9.  None of the musket balls were found so there are no values for the 

total distance that the musket ball travelled. 

Table 7.4: Muzzle velocity, first ground impact velocity, distance to first impact and 

the number of bounces by the musket ball 

 
Shot No. Velocity (m/s) Velocity at 

ground 

impact (m/s) 

Distance to 

ground 

impact (m) 

Number of 

Bounces 

Total 

distance to 

final resting 

position (m) 

A6 467 289 140 2 then lost Lost after 303 

A7 484 266 182 Unknown Lost after 302 

A8 339 208 Lost after 

110m over 

screens 

Unknown unknown 

A9 351 217 234 2 then lost Lost after 300 

 

 

 

Figure 7.12 shows the vertical trajectories of shots A6 to A9 to the point they first hit 

the ground (or were lost) and Figure 7.13 shows the horizontal (plan view) of shots of 

shots A6 to A9 to the point they first hit the ground (or were lost).  
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Figure 7.12: Vertical trajectories of shots A6 to A9 to the point they first hit the 

ground (or were lost).  
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Figure 7.13: Horizontal (plan view) of shots A6 to A9 to the point they first hit the 

ground (or were lost). 

 

 

Figure 7.14 shows the horizontal trajectories (plan view) of shots A6 to A9 before and 

after ground impact. 
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A6 to A9 Plan View with ground impact
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Figure 7.14:  Horizontal trajectories (plan view) of shots A6 to A9 before and after 

ground impact 

7.2.5 Bounce and Roll 

After impacting the ground the musket balls skidded and then bounced. The 

coordinates of their positions were measured from the paper witness screens. 

Figure 7.15 shows the vertical trajectory and subsequent bounce of shots A2, A3 and 

A4 (The original barrel with a 19.49 mm bore). (Note some smoothing was required 

in producing the chart to take into account the missed data between the witness 

screens). 
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 The vertical trajectory plus bounce and roll for Shot A6 (The only shot from A6 to 

A9 with usable Data) is shown in Figure 7.16. The bounce has had a smoothing 

interpolated line added because it is probable that the bounce went higher between the 

screens. 
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Figure 7.16:  Vertical trajectory plus bounce and roll for Shot Number A6 
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Figure 7.15: Vertical trajectory and subsequent bounce and roll for shots A2, 

A3 and A4 
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7.2.6 Analysis of results for impact and bounce from shots A1-A5 and from 

shotsA6–A9 

Shot A6 produced the maximum height of bounce (first bounce) predicted to be 2.38 

m, well above the witness screens at a distance of 240 m from the firing point and 

shot A4 produced the lowest first bounce of 0.260 m at 180 m from the muzzle. 

Shot A4 recorded the most bounces, four in total.  Shot A2 recorded 3 bounces but 

Figure.7.15 indicates that it is possible that a fourth bounce at approximately 360 m 

occurred but was not visible.  Shots A2 and A4 showed an increase in bounce height 

with distance. No bounces were recorded after the last witness screen at 300 m but it 

is probable that the musket ball would continue to bounce at decreasing increments 

before coming to a halt. Figure 7.17 shows the Final position of all the recovered 

musket balls and the first impact point. (The chart excludes intermediate impacts). 
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Figure 7.17:  Final position of all recovered musket balls and their first impact point 
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7.2.7 Distance To Musket Ball Final Position 

The minimum distance to final resting position was Shot Number 1 and was 288 m 

with the first ground impact point occurring at 200 m. The muzzle velocity was 410 

m/s and the musket ball hit 135mm low at the 20 m marker. 

. 

The maximum distance to final resting position was Shot Number A2 and was 402 m 

with the first ground impact point occurring at 170 m. The muzzle velocity was 423 

m/s and the musket ball hit 40 m high at the 50 m marker.  This gives a difference of 

114 m between the minimum and maximum final position. 

 

The average distance to the final resting position from all recovered musket balls was 

323.8 m. It should be noted that a number of musket balls were not recovered because 

their final resting place was in the undergrowth where they had deviated by more than 

9 m from the centre line of the firing range.  If the angular deviation was similar it 

would be expected that it would be the musket balls that travelled the furthest that 

would be lost thus skewing the results. 

 

Figure 7.18 shows all the first ground impact positions for all shots fired and their 

horizontal position. (Plan View) Note: this does not include the impact points for the 

19 mm steel ball bearings which were outside the width of the witness sheets. 



D Miller – Ballistics of 17
th

 Century Muskets 

 

 145 
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Figure 7.18:  First ground impact positions for all shots fired and their horizontal 

position (Plan View). 

 

7.2.8 Distance to Ground Impacts 

The minimum distance to ground impact was for Shot Number 3 and was 115 m. The 

muzzle velocity was 298 m/s which was the lowest velocity recorded. The musket ball 

impacted 45 mm low at the 20 m target. The maximum distance to ground impact was 

for Shot number A9 and was 234 m. The muzzle velocity was 351 m/s and the musket 

ball impacted 70 mm low at the 20 m Witness screen. The average distance to ground 

impact for all shots fired was 159.1 m with a variation of 85 m from minimum to 

maximum. The average velocity was 419.6 m/s. 
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7.2.9 Maximum Variation of recorded ground impacts (left to right ) 

The greatest distance a musket ball impacted to the left of the centre line occurred 

with shot number A2 with a ground impact distance of 760 mm to the left.  The 

greatest distance a musket ball impacted to the right of the centre line occurred with 

shot number A7 with a ground impact distance of 1125 mm to the right.  It should be 

noted that the 19 mm diameter steel ball bearings impacted the ground outside of the 

width of the witness sheets. 

7.2.10 Maximum Variation of recorded final recovery position (left to right ) 

The maximum recorded distance from the left of the centre line was for Shot Number 

3 which was 5.7 m to the left.  The maximum recorded distance from the right of the 

centre line was for shot number 4 which was 2.5 m to the right.  It should be noted 

that the results will be clipped to a maximum distance of 9 m each side of the centre 

line because that was the width of the firing range. 

Table 7.5 shows the musket ball’s final resting positions for all of those that were 

recovered.  Those musket balls that were not recovered will skew the results because 

of the range being a maximum width of 9 m each side of the centre line. 

Table 7.5:  Final resting positions for all of those musket balls that were recovered 

Shot number Distance travelled (m) Spread (m) 

1 288 2.3 Right 

3 323 5.7 Left 

4 310 2.5 Right 

A2 402 3.3 Left 

A4 296 2.0 Left 
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7.2.11 Musket Ball Skids 

When the musket ball impacted the ground it produced a skid mark several metres 

long. This impact absorbed some of the kinetic energy of the musket ball resulting in 

a reduction in its velocity. Figure 7.19 shows a Doppler trace from shot A6. The split 

in the line indicates where the musket ball hits the ground. Using these traces it is 

possible to establish velocities before and after ground impact.  

 

 

 

 

 

 

 

 

 

Figure 7.19: Doppler radar trace for shot number 6 showing the reduction in musket 

ball velocity when it impacted with the ground. 

 Table 7.6 shows recorded skid lengths and velocities before and after impact with the 

ground for those shots where the data was recorded. 
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Table 7.6:  Recorded skid lengths and velocities before and after impact with the 

ground for those shots where the data was recorded. 

Shot number Skid length m Velocity before 

skid m/s 

Velocity after 

skid 

m/s 

Velocity 

Loss m/s 

1 2    

2 4    

A2 3.5    

A3 2.6 (second 

skid 2) 

239 152 87 

A4 5.5 (second 

skid 7) (third 

skid 5) (fourth 

skid 1) 

   

A5     

A6 4 (second skid 

2) 

289 216 73 

A7  266 178 88 

A9 7    
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7.3 Third Long Range Firing Trials (July 09) 

This trial was undertaken to increase the amount of available data on final resting 

positions of the musket balls. 

7.3.1 Setup 

The musket barrel and proof housing were mounted on the modified car trailer as in 

the first long range firings. This was for convenience because the firings were carried 

out in conjunction with a cannon firing trial which also used the trailer as a mount. All 

the firings were conducted at the same position as previous firings with Zero 

elevation. Ten musket balls were fired using 18 grams of G12 black powder (no wads 

were used).  The musket balls were coloured bright orange with spray paint to help 

recovery. A witness sheet of paper was positioned 100 m from the barrel and a cross 

marked on it as a point of aim by bore sighting. A telescopic sight was then positioned 

on the barrel and adjusted to the cross so each shot would have the same aiming mark. 

The firings were carried out in accordance to those previously done. Ground hardness 

was measured at 2.5 CBR (85 CI). This was much softer than the previous firings. 

The ground was damp and the grass was approximately 30mm high. The wind 

conditions were a light breeze. There was only a limited amount of time to carry out 

the firings so to reduce set up time and reduce the time between firings no 

instrumentation was used and only one witness sheet was set up. Velocity was 

predicted to be 413 m/s taken from previous firings. 

7.3.2 Results 

The coordinates from the paper witness screen were plotted (Table found in Appendix 

D). They were entered into a computer programme (663A) by M.S.Instruments PLC. 

The programme was used to calculate the following statistics: shown in Table 7.7 
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Table 7.7: Results from witness sheet set at 100 m from the muzzle. 

 X  Y 

Mean point of Impact 

(mm) 

-569 -518 

Group Rectangle (mm) 1210 923 

Standard Deviation (mm) 317.61 252.03 

 

Extreme Spread (mm) 1223.32 

Group Circle (mm) 1223.32 

All the firings hit the target low and left (as shown from the mean point of impact). 

This was due to errors in the initial aiming. The aim was not re-adjusted to ensure all 

the firings were subjected to the same offset. (The sight was always positioned on the 

cross prior to each firing). 

A screen shot of the plotted coordinates is shown in Figure 7.20 (Note the shot 

positions have been brought to the centre by offsetting the mean point of impact). 

 

 

Figure 7.20:  Screen shot of results of firing trial entered into the shot position 

computer program. 
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The ground was searched with metal detectors. Six of the musket balls were 

recovered. The remaining four unrecovered musket balls are thought to have been lost 

in the undergrowth on either side of the firing range. 

 

Table 7.8 shows the distances travelled to the final resting place where the balls were 

recovered and the deviation from the central firing position. (The ball ref. is defined 

by the order in which they were found the 3 refers to the third long distance firing at 

Ashdown). 

Table 7.8:  Distance travelled to the final resting place and the distance from the 

centre line of the range. 

Ball Ref. Distance to final 

resting position. 

(m) 

Deviation from 

centre.(m) 

Direction from 

centre. 

3.5 227.89 1.2 Left 

3.6 265.39 2.2 Right 

3.4 266.39 3.4 Left 

3.3 270.29 0.6 Left 

3.2 312.49 4.6 Left 

3.1 329.99 1.35 Left 
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The results from Table 7.8 are shown plotted in Fig. 7.21 
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Figure 7.21: The distance travelled to their final resting place for shots 3.1 to 3.6 

 

The distance travelled by the musket balls from these firings were less than previous 

ones and may have been due to the much softer ground conditions. The average 

distance was 290.175 m compared to 307 m for the first firing and 349 m for the 

second firing. 

Figure 7.22 combines these final resting positions with previous ones to view all the 

musket ball final resting positions from all the long range firings. 
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All Final Resting Positions
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Figure 7.22:  Plot of all of the musket balls fired during the 1
st
, 2

nd
 and 3

rd
 long range 

firing trials showing their final resting positions. 
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The final resting positions of the recovered musket balls are tabulated in ascending 

order of the distance travelled in Table 7.9 

Table 7.9:  Final resting positions of the recovered musket balls in ascending order of 

the distance travelled. 

Distance to final resting 

position (m) 

Radial displacement (m) Shot Number 

227.89 1.2 Left 3.5 

265.39 2.2 Right 3.6 

266.39 3.4 Left 3.4 

270.29 0.6 Left 3.3 

288 2.3 Right 1 

296 2.0 Left A4 

310 2.5 Right 4 

312.49 4.6 Left 3.2 

323 5.7 Left 3 

329.99 1.35 Left 3.1 

402 3.3 Left A2 
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7.4 Effects of Ground Hardness 

The ground hardness was measured for each of the three long range firings. Table 

7.10  shows the average distance of the musket balls final resting position from each 

of the 3 firings and the ground hardness (the higher number indicates harder ground). 

Table 7.10: Average distance of the musket balls final resting position from each of 

the 3 firings at Ashdown House and the ground hardness (the higher number indicates 

harder ground) 

Ground Hardness  Long Range Firing No. Average Distance to final 

resting position Cone index 

(CI) 

California 

Bearing 

Ratio 

(CBR) 

1 307 110 3.75 

2 349 195 9 

3 290 85 2.5 

 

Although there is limited data from three firings it would appear that the ground 

hardness has a significant effect on the distance travelled to the musket balls final 

resting position. The average distance musket balls travelled increased by 59 m when 

fired on harder ground compared to the soft. 
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Chapter 8: DISCUSSION 

The main aim of this research was investigate the ballistics of 17
th

 Century muskets so 

as to assist battlefield archaeologists in the analysis of battle fields of that period.  

After more than 300 years there are few artefacts left on the battlefield to aid 

researchers in their studies but one of the most prolific are spent musket balls. These 

are found where they have landed having been fired during the battle.  To be able to 

answer the question of where they were fired from would be of considerable benefit 

and it is to help answer this question that is the purpose of this work.  

 

A definitive muzzle velocity for the musket of the 17
th

 Century could not be obtained 

so estimations from previously published research were used. There will have been 

considerable variations in muzzle velocity due to variations in bore diameter, the use 

or otherwise of wads and variations in the propellant charge weight used and all of 

these have been investigated on the indoor firing range. Data collected from long 

range firings on the effects of variations in muzzle velocity and the subsequent effects 

on the external ballistics and bounce and roll is more limited because of the much 

greater scale of the effort required to generate and collect the data.  

 

A large amount of experimental research was conducted to successfully identify a soft 

capture system that would enable the examination of fired reproduction musket balls 

under a wide range of conditions. This made it possible to produce a good match of 

the distortion that occurs in the barrel of the musket when it is fired to 17
th

 Century 

musket balls found on the battlefield. This included the pitting of the base of the 

musket ball by the black powder when a wad is not used. Results proved that, on 

average, the distance to the first ground impact was in good agreement with the 
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predictions for spherical undistorted musket balls suggesting that distortion due to 

firing has little effect on the “distance to ground impact” of the musket ball. This was 

confirmed by investigating the theoretical effect of changes in drag coefficient, mass 

loss and changes in cross sectional area of the musket ball. 

 

During the first long distance firing at Ashdown House, two shots were fired using 

steel ball bearings, (shots 5 and 6). The hard steel ball bearings would have remained 

spherical during firing and being 19 mm in diameter compared to 18.51 mm for the 

lead musket balls were a better fit in the barrel. Therefore, it was thought that they 

would be the most accurate however they were both lost from the witness screens 

before they hit the ground and thus proved to have the greatest dispersion of all of the 

long range shots fired. The reason for this is not known, but could be related to the 

elastic interaction between the hard steel ball with the steel barrel compared to the 

plastic interaction of the soft lead ball and the steel barrel.  

 

During trials the average distance of the musket ball to ground impact agreed well 

with theoretical predictions. However there were some significant differences. For 

example Shot Number 1 from the first long distance firing at Ashdown House 

travelled 43 m further to ground impact than was predicted. The trajectory of Shot 

Number 1 was also unusual when viewed from above as it initially veered to the left 

by approximately 0.5 m over a distance of 125 m, before changing direction and 

moving 0.75 m over 75 m to the right before ground impact, as shown in Figure. 8.1.  
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Figure 8.1: Horizontal (plan) view of Shot Number 1 Trajectory. (The amount of 

variation is emphasized by the scaling of the chart). 

 

The musket ball is clearly cork screwing as it moves down range.  It is unclear exactly 

what may have caused this effect. A possible explanation is that some musket balls 

were slightly more distorted (or had slightly larger “sprues” left on them) therefore, 

producing a turbulence that would affect the trajectory. Another explanation may be 

that spin may be imparted to the musket ball due to the large clearance between the 

ball and bore resulting from one side of the ball being in contact with the barrel and 

the other with clearance through which the high velocity gases could flow.  A high 

speed video was used to check for spin (see Appendix C, High Speed Video Tests). 

No spin was observed but the musket ball could only be observed over a short 

distance so if the spin rate was low it may not have been seen but could still influence 

its trajectory over a long distance. Visual comparisons between retrieved musket balls 

from the Long range firings were made. Figure 8.2 shows shot number 1 and figure 

8.3 shows shot number 3. 
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Figure 8.2: Shot number 1 from first long range firing 

 

 

Figure 8.3: Shot number 3 from first long distance firing 

 

A comparison between these two musket balls was chosen as shot number 1 travelled 

the greatest distance to ground impact from the first set of long range firings and 

produced the most significant deviation from the predicted trajectory of all three 

mm 

mm 
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firings. Shot number 3 travelled the least distance from the first long range firings and 

its trajectory was similar to predictions. Shot number 1 showed significantly more 

banding than shot number 3 but had a smaller sprue. Shot number 1 also had the 

largest amount of banding compared to all other retrieved musket balls from the long 

range firings which would indicate the reason for its erratic trajectory in flight.   

It was found that musket balls initially impacting the ground closer to the firing 

position (i.e. before the expected 170 m) could, in some cases, exceed the distance to 

their final resting position to those impacting the ground at greater distances (170 m 

plus). Additionally, it was noted that musket balls with higher than average muzzle 

velocities in some cases travelled shorter distances to their final resting places than 

musket balls with lower than average velocities. Clearly the differences will be 

affected by the unevenness of the ground, whether stones or other objects were struck 

and by the surface covering, which in this case was grass.  The cork screwing of the 

musket ball will also affect the impact distance and the impact angle and will have a 

significant effect on the maximum distance that the musket ball will travel. The nature 

of the ground at the point of initial and subsequent impacts will significantly affect the 

velocity loss of the musket ball during its impact with the ground. 

 

It can be seen that variables such as velocity variations (due to variations in internal 

barrel diameter, powder charge weights and the use or otherwise of a wad), that were 

initially thought to be critical to establishing firing positions, are potentially less 

influential than other variables such as the cork screwing of the musket ball and the 

nature of the ground during bounce and roll. 
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All of the firings were carried out using an adjustable fixed mount set to give a flat 

trajectory of 0° and with the barrel 1.39 m above the ground.  In reality the elevation 

would vary depending on the firer. It was established by calculation that an elevation 

of 2 degrees increased the first impact point of the musket ball from 170 m to 428 m 

giving an increase of 258 m. It was calculated that the maximum distance to ground 

impact was 967 m for an angle of 30° elevation (angles greater than this resulted in a 

shorter distance to impact with the ground). Also, the distance travelled by a musket 

ball after initial impact will be reduced at increased angles of elevation due to the 

sharper angle at which it impacts the ground. An additional consideration is that the 

energy at impact of a projectile fired at high angles of elevation will have less energy 

at impact than a projectile fired at low elevation.  This is illustrated by Shot Number 

A3 (fired at 0°) which impacted the ground at 239 m/s (impact energy1056.7 joules) 

whereas the predicted impact velocity of a musket ball fired at a 2° angle of elevation 

would be 128 m/s (impact energy 303 joules) so that the subsequent bounce and roll 

would be less for the musket ball fired at the lower angle. Figure 8.4 is a simple 

illustration to show this. 



D Miller – Ballistics of 17
th

 Century Muskets 

 

 162 

 

 

Figure 8.4: Diagram showing the effect of elevation on the initial impact & final 

resting place of the musket ball. 

 

The skid lengths of the impacted musket balls were shown to be up to 7 m long and 

the maximum height for the bounce of the musket ball was estimated to be 2 m. Skids 

on the grass surface, marked with flags, are shown in Figure 8.5. 

Angled 

barrel 

Horizontal 

barrel 

Horizontal barrel showing 

bounce 

Steeply angled barrel 

showing bounce 
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Figure 8.5: Skid marks of musket balls on the grass firing range. 

The majority of the initial recorded bounces were between 0.2 m and 0.8 m high and 

would strike personnel at longer ranges than the initial impact. The musket ball of 

Shot NumberA3 retained 427 joules of energy after initial ground impact and was 

travelling at over 152 m/s. It was traditionally claimed that 80 joules would 

incapacitate an unprotected man but recent research (Champion, et el, 2009) suggest 

that this figure is too simplistic and that the ability of a projectile to incapacitate is 

dependant upon where it impacts the body and how much energy is absorbed during 

the impact. A higher figure of 200 joules would be necessary to incapacitate when 

struck in the thorax. 427 joules of energy is well above the newly recognised figure 

and the fact that a musket ball is made of soft lead which is known to spread on 

impact, suggests that a great deal of that energy would be transferred to the body.  

Barrel fouling is a product of the combustion of black powder (mainly potassium 

carbonate) which can reduce the internal diameter of the barrel making it difficult to 

load a musket ball and was thought to be a common problem in the 17
th

 Century. 

However, no noticeable effects were found from barrel fouling during the trials as 
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there was no significant reduction in barrel diameter and it was always easy to load 

the musket ball. This may have been due to the use of higher quality black powder 

during these trials as opposed to the black powder used in the 17
th

 Century.  

 

It was found that variations in bore diameter of the musket produced an average 

velocity variation of 110 m/s between the largest bore diameter and smallest bore 

diameter (no wadding). This showed a significant variation in velocity but produced a 

fairly insignificant outcome to the final resting position of the musket ball. The 

average velocity variation when using wadding was greatly reduced to 60 m/s 

therefore, the effect of wadding is more beneficial with increased windage. One 

variable that was not tested is that of variations in the diameter of musket balls.  This 

would have given greater variation in muzzle velocities and pressures produced 

because a larger musket ball will give less windage and will be heavier so that the 

burning rate of the black powder would be greater producing high pressures and 

muzzle velocities. 

 

It should be noted that a significant number of the musket balls were not recovered 

during the long range firings at Ashdown House. They were lost in the undergrowth 

along the edges of the firing range because the firing range was only 18 m wide.  Thus 

the results of the distance of the horizontal dispersion from the centre line of the range 

have been chopped to 9 m to left and right.  This will also have resulted in skewing 

the results of the maximum range of the musket balls because it is the longer range 

results that are likely to have been lost in the undergrowth. 
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Chapter 9: CONCLUSIONS 

There has been little previous research into the ballistics of 17
th

 Century muskets, 

especially the bounce and roll of musket balls which is crucial in establishing possible 

positions that a musket ball may have been fired from on the battlefield. This research 

has reproduced the firing of 17
th

 Century muskets and the firing marks found on 

musket balls recovered from battlefields of the 17
th

 Century and has investigated a 

number of important variables affecting ballistics of weapons from that period. 

 

 Musket balls found on the battlefield are known to have been distorted by the firing 

process which changes the shape of the musket ball. These changes were replicated 

and used to investigate the subsequent effects.  

 

It was found that the average distance travelled by the musket ball before it impacted 

the ground was in good agreement with predictions using a simple single point model 

and that the drag co-efficient of the musket ball was little affected by its 

distortion/alteration in shape during firing.  

 

The average distance to the musket balls final resting position (after bounce and roll) 

was approximately 315 m – almost doubling its distance from its initial landing point.  

This value is likely to be greater because of the limitation of the width of the range 

which almost certainly resulted in the musket balls travelling the furthest being lost in 

the undergrowth so not being included in the results. 

 

Wadding was originally thought to have been used by 17
th

 Century musketeers. 

However, it was shown that the musket balls fired without wadding showed a closer 
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resemblance to some of the original 17
th

 Century musket ball than those fired with the 

wadding. It was thought that wadding would have increased the muzzle velocity of 

the musket by preventing gas leakage past the musket ball in the barrel. This was 

found to be the case but the effect was surprisingly low. Variations in bore diameter 

showed a significant variation in velocity, especially when fired without a wad 

because of the change in gas leakage past the ball but produced little change on the 

outcome of the final resting position of the musket ball. After ground impact the 

musket balls were capable of skidding up to 7 m and bouncing to a height in excess of 

2 m. 
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Chapter 10: RECOMMENDATIONS FOR FURTHER 

WORK 

This work has made a considerable contribution towards understanding the effect of a 

number of different and important variables on the ballistics of 17
th

 Century muskets 

and the total distance that a musket ball will travel when fired on the battlefield. There 

are however, a number of important areas that would benefit from investigation. The 

possible variations in musket ball diameter should be investigated because this, 

combined with the full range of barrel bore variations, will have a significant effect on 

muzzle velocities and peak pressures developed in the barrel during firing. This in 

turn may have a significant effect of the maximum range a musket ball travels. It is 

important that future firings should be carried out on a significantly wide firing range 

to ensure all the musket balls are located and that the data is not skewed by not 

recording all of the data.   

 

It has been shown that small increases in the elevation of the musket gives a large 

increase in the distance travelled by the musket ball before it first impacts the ground. 

However, trials need to be carried out to show the effect of this on the maximum 

distance that the musket ball will subsequently travel.  

 

The results on the effect of the ground hardness indicate the maximum distance a 

musket travels increases as the ground hardness increases. A greater number of 

different ground conditions need to be tested to identify the full effect that they have 

on maximum musket ball range. It would also be beneficial to increase the number of 

witness screens and reduce the distance between them to increase the resolution of the 

data collected. 
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An important variable affecting horizontal and vertical dispersion is that introduced 

by the firer.  Actual hand firings of reproduction muskets by a number of firers under 

identical conditions would identify the effect on horizontal and vertical dispersion and 

the subsequent effect on the maximum distance travelled by the musket ball.  
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12: Appendix A  -Trials with wadding 

 

The Tables below show the data from the experiments conducted comparing different 

powder types with wadding. 

Table 12.1: Comparison of powder types with wadding showing pressure and velocity 

Powder Charge 

(grams) 

Weight 

(grams) 

Velocity (m/s) Pressure 

(Bar) 

Comments. 

Swiss No.1 12.5 37.277 453 779.1  

Swiss No.1 10.2 37.478 393 453.5  

Swiss No.1 7.0 37.129 310 241.6  

3A 14.5 37.275 489 366.7 Bullet not found. 

3 A 14.5 37.414 462 256.8 Ball oval. 

3A 12.5 37.291 417 227.8  

3A 6.75 38.240 246 105.8  

G 12 12.5 37.261 341 176.3 Ball not found. 

 

G 12 17 37.179 410 276  
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Table 12.2: Comparison of powder types with wadding showing pressure, weight loss 

and musket ball diameter across banding. 

 

 

 Powder Charge 

(grams) 

Pressure 

(bar) 

Weight 

loss of 

Ball 

(grams) 

Diameter 

of  pre-

fired 

(mm) 

Diameter 

across 

banding 

(mm) 

(Max) 

Diameter 

across 

banding 

(mm) 

(Min) 

Diameter 

across 

banding 

(mm) 

(Average) 

Swiss 

No.1 

12.5 779.1 1.683 18.53 18.13 17.61 17.87 

Swiss 

No.1 

10.2 453.5 2.473 18.55 17.88 17.56 17.87 

Swiss 

No.1 

7.0 241.6 0.693 18.51 18.32 17.94 18.13 

3A 14.5 256.8 0.061 18.55 19.36 19.21 19.285 

3A 12.5 227.8 0.318 18.54 18.48 18.29 18.385 

G 12 17 276 0.556 18.57 18.4 17.93 18.165 

G12 12.5 176 Not 

recovered 

18.5    
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13: Appendix B -Trials without Wadding 

 

Data from Tests with 14 gram charge with no wadding. 

 

Table 13.1: Velocity and pressure from 3A and G12 Powder 

Powder Velocity (m/s) Peak Pressure (bar) 

3A 423 276 

G12 369 191 

 

 

 Table 13.2: Results from No Wad firings using a 48 inch Barrel  

19.49 mm internal diameter showing pressure and velocity  

Powder  (no Wad) Charge (grams) Velocity (m/s) Peak Pressure 

(Bar) 

G12 18.824 Half ball mass 430 No reading 

G12 18 410 269.5 

G12 18 420  

G12 18 410 240.2 

G12 14 396 168 

3A 14 423 276 

G12 37.49 (Proof Charge) 623 549 

3A 37.521 (Proof Charge) 655 645 

G12 12 334 174 
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Table 13.3: 39 inch Barrel 19.9 mm diameter showing velocity and pressure 

 

Powder (no Wad) 

Charge (grams) Velocity (m/s) Pressure (Bar) 

G12 lead bullet 14 289  170 
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14: Appendix C - High Speed Video Tests 

 

The long range firings produced several results where the musket ball behaved 

differently to predicted trajectories. One possible reason for this would be if the 

musket ball was spinning. High speed video using a Phantom 7 camera was used to 

establish whether any spin was apparent. The musket balls were marked with a white 

line to aid analysis. The 10 bore musket barrel was used with 12 bore musket balls. 

 Table 14.1: shows the charge of powder, the velocity of the musket ball and whether 

a wad was used or not. 

 

Table 14.1: Results from high speed video firings 

 

Charge G12 Velocity (m/s) Wad / No Wad Comments 

12.5 329 Wad No video 

14 365 Wad No Video 

14 368 Wad No video 

14 367 Wad No usable Video 

14 366 Wad Video 

14 370 Wad Good Video 

14 368 No Wad Video 

14 361 No Wad Video 

14 372 Wad Good Video 

14 360 No Wad Good Video 

18 417 No Wad No Video 

14 367 No Wad No Video 

14 367 No Wad Good Video 

14 379 Wad No Video 

14 379 Wad Good Video 

14 No Wad 378 Good Video 

 

Test 1 Settings 

Frame rate. 40000 frames per second. Resolution 224 × 112. Velocity 372 m/s G12 

Wadded. 
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The white line has not moved indicating no spin is apparent. 

Test 2 Settings 

Frame rate. 40000 frames per second. Resolution 224 × 112. Velocity 360 m/s G12 

No Wad. 
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No visible spin was apparent. 
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15: Appendix D-Tables from Long Range Trials. 
 

Table 15.1: Shots A1 to A5 10 bore barrel id 19.49 mm 

Distance 

(m) 

Shot A1 

429 m/s 

Shot  A2 

423 m/s 

Shot A3 

423 m/s 

Shot A4 

412 m/s 

Shot A5 

412 m/s 

50 X -17,Y 35 X -148, Y 40 X -40,Y 70 X -40, Y -80 X -45, Y -17 

80 X 16,Y -100 X -290, Y -97 X -121, Y 60 X -80,Y -240 X -50, Y -17 

110 X 99, Y -354 X -450,Y -375 X -266, Y -30 X -166,Y -350 X -29, Y -115 

140 X 243, Y -712 X -615,Y -750 

First Impact 

166.5 m 

X -398, Y -190 X -293,Y -986 

First impact 

153 m 

X -95, Y -692 

170 X 510, Y -

1380 

Impact bottom 

of frame. 

X -760, 

Y -1380 

X -524, Y -580 X -310, 

Y -1210 

X -230, 

Y -1380 

Impact bottom 

of frame. 

200  x -1100, 

y -820 

(first Impact) 

X -1364,Y -1320 

(first impact 203m) 

X -410 

Y -1350 

 

230  X -1620,Y -

800 

X -1855, Y -685 X -930, 

Y -1200 

 

260  X -2115 

Y -1119 

(second 

impact) 

X -1570, Y -980 X -1500 

Y -1114 

Third bounce 

 

280  X -2510 

Y -600 

X -940 

Y -960 

X -1780 

Y -1115 

 

300  X -4400? 

Y -1075 

X -1800? 

Y -855 
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Table 15.2: Shots A6 and A7 barrel id 18.7 mm Shots A8 and A9 barrel id 20.4mm 

Distance (m) Shot A6 

467 m/s 

Shot  A7 

484 m/s 

Shot A8 

339 m/s 

Shot A9 

335 m/s 

50 X -20 

Y -256 

X -25 

Y -4 

X -10 

Y 190 

X -50 

Y -70 

80 X 78 

Y -485 

X 115 

Y -134 

X 30 

Y 265 

X 36 

Y -195 

110 X 157 

Y -875 

X 295 

Y -354 

X 126 

Y 444 

X 100 

Y 383 

140 X 207 

Y -1258 

1st Impact 

X 603 

Y -680 

Lost over 

screen. 

X 326 

Y -506 

170 X 330 

Y -510 

X 1125 

Y -1150 

 X 1370 

Y -807 

200 X 340 

Y 220 

Off Screen 

RHS 182m 

 X 1370 

Y -1070 

230 Over top of 

screen 

  1
st
  impact 

234m 

260 Over top of 

screen 

   

280 X 455 

Y -110 

  2
nd

 impact 

293m 

 

300  Probable 2nd 

impact at 302 

m 

 Lost RHS 8m 

skid 
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Table 15.3: Summary of Results Shots A1 to A5 

Shot No. Velocity m/s Velocity at 

ground 

impact m/s 

Doppler 

Distance to 

Ground 

Impact. m 

Number of 

Bounces. 

Total Distance 

to final resting 

position m 

A1 429 259 170 Hit Frame 0  

A2 423 266 166 4 (3 definite) 402 

A3 423 239 203 3 definite 330 + unfound 

after this point 

A4 412 264 153 4 296 

A5 412 250 170 Hit Frame 0  

 

 

Table 15.4: Musket ball data from second long range firings  

 
Identification No. Weight (grams) Diameter (mm) 

1 37.48 18.55 

2 37.432 18.49 

3 37.487 18.56 

4 36.854 1857 

5 37.213 18.5 

6 37.213 18.51 

7 37.701 18.62 

8 37.819 18.57 

9 37.759 18.63 
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Table 15.5:  Results from third long range firing 100 Metre range 

 
Shot Number X Coordinates (mm) Y Coordinates (mm) 

1 -300 -80 

2 -680 -700 

3 -660 -300 

4 -550 -650 

5 -60 -630 

6 -400 -360 

7 -740 -550 

8 -1270 -450 

9 -500 -460 

10 -530 -1003 
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16: Appendix E- Weights and dimensions of musket balls pre 

and post firing 

Table 16.1: Weights and dimensions of musket balls using 19.49 mm internal 

diameter barrel. 

Powder Charge 

(grams) 

Weight pre-

firing 

(grams) 

Weight post 

firing 

(grams 

Diameter 

pre-firing 

(mm) 

Diameter 

across 

bands post 

firing (mm) 

3A (wad) 12.5 37.291 36.973 18.55 18.38 

G12 (wad) 17 37.179 36.623 18.53 18.16 

Swiss No.1 

(wad) 

12.5 37.277 35.594 18.51 17.16 

Swiss No.1 

(wad) 

10.2 37.478 35.005 18.56 17.87 

Swiss No.1 

(wad) 

7.0 37.129 36.436 18.52 18.13 

3A (wad) 14.5 37.414 37.353 18.54 18.17 

3A 12.5 37.275 35.936 18.54 17.90 

G12 17 37.292 35.448 18.49 18.07 

G12 18 37.648 36.565 18.54 18.36 

G12 (wad) 12.5 37.40 37.260 18.5 18.4 

G12 (wad) 14 37.390 37.130 18.54 18.4 

G12 (wad) 14 37.160 37.060 18.49 18.36 

G12  14 37.391 36.250 18.51 18.38 
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G12 14 37.568 35.91 18.47 18.32 

G12 14 37.850 36.790 18.5 18.18 

G12 14 37.467 36.451 18.55 18.18 

G12 14 37.457 35.910 18.58 17.65 

G12 (wad) 14 37.700 37.126 18.64 18.02 

G12  18 37.450 36.070 18.60 18.30 

G12 18 37.67 36.012 18.62 18.40 

G12 (wad) 18 37.435 36.989 18.59 17.95 

G12 18 37.57 36.941 18.58 17.73 

G12 18 37.336 36.425 18.50 18.20 

 


