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ABSTRACT 

Endocrine disrupting chemicals such as steroid estrogens and alkylphenol 

polyethoxylates entering the environment via regular domestic or industrial discharges 

have been demonstrated to cause feminization of aquatic organisms at trace levels. 

Despite these discharges, the solid-end product of wastewater treatment i.e. digested 

sludge, poses a potential source of these compounds in the environment when sewage 

sludge is recycled onto land. Greater concentrations of alkylphenolic metabolites such 

as alkylphenols and short-chained one to three ethoxy units, ethoxylates have been 

reported to occur in digested sludge than the parent compounds. 

This study investigates the fate and behaviour of these chemicals in mesophilic and 

thermophilic anaerobic digestion by using primary sludge and a mixture of primary and 

secondary sewage sludges. The analytical methodologies used for the determination of 

these endocrine disrupting compounds allowed accurate quantification at microgram per 

kilo of dry-sludge weight concentrations in the complex sludge matrices. Four 

mesophilic and two thermophilic semi-continuous lab-scale anaerobic digesters were 

examined. In addition, acclimated sludges were dosed with high nonylphenolic 

concentrations to observe the capacity of biomass to remove these compounds. 

Sewage sludge type has significant impact on the removal of estrogens which is 

favoured at mesophilic temperatures. Removal efficiencies for these compounds were 

>53% in primary sludge and >39% in mixed sludge during mesophilic digestion. 

Removal of nonylphenolics was favoured during thermophilic digestion. The 

biochemical activity of the primary sludge biomass was found to be more efficient, 

irrespective of digestion temperature for both steroid estrogens and nonylphenolics. 

It was found that the maximum nonylphenolic sludge content of 50 mg kg-1 dw 

proposed in the European Commission for the use of sludge as land conditioner was not 

exceeded by neither mesophilic nor thermophilic anaerobic digestion of primary or 

mixed sludge. 
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1. INTRODUCTION 

1.1. Endocrine Disrupting Chemicals (EDCs) ­ Problem 

Environmental pollution has been receiving increased attention in both scientific and 

public sectors (Renner, 1997). Endocrine disrupting chemicals (EDCs) comprise a wide 

spectrum of substances with diverse physicochemical characteristics which have 

recently caused concerns to fish (Cargouët et al., 2004; Routledge et al., 1998; Desbrow 

et al., 1998; Johnson & Sumpter, 2001a; Purdom et al., 1994a; Cargouet et al., 2004; 

Kramer et al., 1998).   

Although environmental pollutants such as pesticides (DDT, DDE, lindane, atrazine), 

polycyclic aromatic hydrocarbons (PAHs), dioxins (PCDDs, PCDFs) and 

polychlorinated compounds i.e. polychlorinated biphenyls (PCBs) have received great 

research emphasis in the last three decades  (Birkett, 2003), in recent years, research has 

focused on the hazard posed by EDCs. The rationale behind this shift in research lies to 

the estrogenic potency of EDCs and in particular the steroid estrogens (ESTs) and 

alkylphenol polyethoxylates (APEOs). These classes of EDCs enter the aquatic and 

terrestrial environment via regular domestic or industrial discharges and by sludge 

recycling applications  (Gibson et al., 2005; Koh et al., 2005) (Figure 1-1). Critical 

exposure to these chemicals can alter the development of many tissues of the organism 

(humans and wildlife) which ultimately could result in permanent character changes in 

the mature organism (Colborn et al., 1993). It has been shown that these effects can 

occur at trace concentrations and it has been suggested that EDCs may work 

synergistically (Environment Agency, 2000). 
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Figure 1-1 Components of anthropogenic EDCs inputs into the environment. 

 

1.2. Phenomena of EDCs 

The feminization of male fish has been detected in several European countries (Jobling 

et al., 1998; Larsson et al., 1999; Flammarion et al., 2000; Versonnen et al., 2004), USA 

(Folmar et al., 2001; Folmar et al., 1996; Solé et al., 2000) and in the Asia Pacific 

region (Batty & Lim, 1999; Chapman, 2003; Gong et al., 2003). Research has clearly 

implicated that certain sewage treatment works (STWs) (Petrović & Barceló, 2004; Kirk 

et al., 2002; Rodgers-Gray et al., 2000) and pulp mill effluents (Durhan et al., 2002) are 

sources of EDCs in sewage sludge and in the aquatic environment. It is believed that the 

majority of EDCs reach the aquatic environment by sewage effluent as it has been 

observed in the UK (Jobling et al., 1998), Germany (Spengler et al., 2001), France 

(Cargouët et al., 2004), Italy (Baronti et al., 2000), Sweden (Svenson et al., 2003), Spain 

(Solé et al., 2000), Portugal (Diniz et al., 2005), Norway (Knudsen et al., 1997), 

Switzerland (Espejo et al., 2002) and The Netherlands (Belfroid et al., 1999). By 

contrast to the aqueous sewage effluents, sewage sludge is a potential source of EDCs 

(Birkett, 2003) since it contains major anthropogenic organic contaminants (Lee et al., 

2004; Petrović & Barceló, 2000; Brunner et al., 1988; Birkett, 2003). Potential risks 

may therefore result for ecosystems (Harrison et al., 2006; Maguire, 1999) through the 

recycling applications of sewage sludge to agricultural land. Besides the uptake of 
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EDCs by indigenous organisms including plants (Günther & Pestemer, 1990), leachate 

and run-off can be potential sources to aquatic environments and groundwater 

(Kouloumbos et al., 2008b; Birkett, 2003). 

One of the most comprehensive studies of endocrine disruption in wildlife is that on the 

impact of steroid estrogens and non-ionic surfactants on British fish (Vos et al., 2000). 

It has clearly been established that the STWs effluent (Purdom et al., 1994b; Sumpter & 

Jobling, 1995) and several receiving surface waters in U.K. are estrogenic to fish 

(Harries et al., 1996). These surveys demonstrated an increased plasma level of 

vitellogenin (egg yolk protein precursor that is normally produced by mature females) in 

male roach (Rutilus rutilus) in rivers near sewage effluent discharges. A high prevalence 

(locally up to 100%) of intersex (ovotestis) observed in these fish (Jobling et al., 1998). 

At present, most studies on endocrine disrupting phenomena have been focused on male 

fish as opposed to the female fish. Even though the precise mechanisms of action are 

poorly understood and the contributing chemicals are not always known, extensive 

evidence is available that sewage effluents can disturb endocrine function in fish 

(Harries et al., 1999). 

Regardless of the early evidence of endocrine disruption in wildlife (Dodds et al., 1938), 

emphasis on the EDCs phenomena was only attributed in 1990s where reduction of 

human semen quality had occurred in countries such as U.K., France, Belgium and 

Denmark (Carlsen et al., 1992; Handelsman, 2001; Swan et al., 2000). During the same 

period of research, testicular cancer increased (Sharpe & Skakkebaek, 1993; Toppari et 

al., 1996). Other anthropogenic pollutants such as organochlorines (PCBs and DDE) are 

constantly receiving attention since certain species of wildlife exposed to the particular 

EDCs experiencing endocrine disruption to their reproductive functions (Pickford et al., 

2000). At present, human exposure to these chemicals are only postulated to induce 

endocrine disrupting effects since no strong evidence exists to link them to a risk to 

human (Damstra et al., 2002). 
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1.3. Rationale for Research 

As a result of endocrine disrupting phenomena in the aquatic environment and the EU 

Legislation in force, a £40 million National Demonstration Program (NDP) is being 

undertaken by the water industry of the U.K., as part of the asset management plan 4, 

which was initiated by the Environment Agency (EA) of England and Wales, to 

investigate the potential removal of these EDCs from the final effluents (Burke, 2004).  

One of the objectives of the EA NDP involves collecting baseline data across 17 STWs 

in the U.K. that will be used to evaluate the ability of treatment options (conventional 

and enhanced sewage treatment processes) to remove EDC (namely ESTs and APEOs) 

and reduce estrogenic activity of final effluents.    

Since the presence of EDCs in surface waters and in sludge has been primarily 

attributed to their incomplete removal in the STWs (Gong et al., 2003; Purdom et al., 

1994b) due to deconjugation of estrogens or persistent metabolic products from  APEOs 

such as alkylphenols (AP) and short-chain APEOs (Ahel et al., 1994a; Langford et al., 

2005), it is valuable to investigate the EDCs in both solid (sludge) and aqueous phases 

in order to obtain a holistic view of the EDC levels arising from STWs. By investigating 

the fate and removal of EDCs under anaerobic conditions it will potentially provide 

extensive information to the industry with emphasis the configuration and operation of 

anaerobic digesters which in turn will aid the national decision makers and EA to tackle 

effectively and consistently the EDCs in anaerobically treated sludge.   

It is therefore necessary to determine whether the EDCs are brought into the aquatic 

environment via wastewater at levels that could be harmful to aquatic life, and to assess 

STW efficiency at removing EDCs from wastewater effluent. 

Urban Waste Water Treatment Directive 91/271/EC requires that all EU wastewater 

will have to be collected and subjected to secondary treatment (biological, with 

secondary settlement) before being discharged into the environment, to eliminate the 

input of potentially active estrogenic compounds (European Commission, 1999). With 

the impending deadline within the European Community Water Framework Directive 
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(WFD) to phase out or reduce all discharges of priority hazardous substances by 2015 to 

achieve “good chemical surface water status”, many wastewater operators will have to 

make informed decisions on the effectiveness, cost benefits, and sustainability of 

existing or enhanced wastewater treatment processes in dealing with the present 

estrogenic activity of sewage effluent discharged from their works (European 

Commission, 2000c).  

In addition the OSPAR Convention (OSPAR Commission, 2006) for the protection of 

the marine environment of the North-East Atlantic has agreed between all fifteen 

Governments the monitoring of a list of chemicals for priority action, including 

alkylphenol ethoxylates. 

In the past sewage sludge disposal routes such as sea or landfill have been banned; the 

Sewage Sludge Directive 86/278/EEC (CEC, 1986a) encourages the use of sewage 

sludge in agriculture in such a way as to prevent harmful effects on soil, vegetation, 

animals and man. Parallel to the Urban Waste Water Treatment Directive 91/271/EC the 

Working Document on Sludge, 3rd Draft of Directive (86/278/EEC) presented to the 

European Commission proposes cut-off limits for sludge contaminants including 

alkylphenol ethoxylates but currently these compounds are not regulated in the sludge.   

The primary scope of this study is to evaluate the removal efficiencies of EDCs during 

anaerobic digestion of domestic sewage sludge. Two different sludge types were 

sampled on two occasions (April 2007 and April 2008) from a large scale STWs to 

implement the objective. They were subjected to lab scale mesophilic (35oC) and 

thermophilic (53oC) anaerobic digestion. The sampled sludges comprised of a primary 

sludge collected from the primary clarifier and a mixed sludge collected from the 

balancing tank which was comprised of primary and secondary sludge (60:40 w/w 

respectively). The mesophilic inoculum was sampled from the outlet of the large-scale 

anaerobic digester of the STWs. The thermophilic inoculum was cultured in the 

laboratory from the mesophilic digester inoculum by a gradual increase in temperature. 

Anaerobic digestion studies were carried at semi-continuous manual feed mode. 

Nominal sludge retention time for the mesophilic digesters was 30 days and 15 days for 
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the thermophilic digesters and the digestion period lasted for six retention times, 

respectively. Under mesophilic conditions, different APEO receiving concentrations 

were considered in order to evaluate the behaviour and fate of the relevant metabolites. 

The anaerobic digestion research was funded by Yorkshire Water (Kelda Group Plc) 

and Thames Water. Anglian Water Plc, Severn Trent Plc and United Utilities Plc were 

also the co-sponsors for the EDC project. The research was carried in Cranfield 

University, U.K.  

1. The first (H1E) and second research hypotheses (H2E) regarding the steroid 

estrogens are outlined in chapter 5, section 5.2  

2. The first (H1N) and second research hypotheses (H2N) regarding the 
nonylphenol ethoxylates are outlined in chapter 6, section 6.2. 

3. The research hypothesis (H1ND0) of the shock loading experiment with 
nonylphenol ethoxylates are outlined in chapter 7, section 7.  
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2. LITERATURE REVIEW 

2.1. Endocrine disrupting chemicals of environmental interest 

Steroid estrogens and metabolites of the non-ionic alkylphenolic surfactants are two 

important classes of compounds, which are endocrine disrupting chemicals (EDCs) 

(Table 2-1). Male fish exposed to trace concentrations of steroid estrogens and non-

ionic surfactant metabolites downstream of STWs have shown increased levels of 

oocytes in their testes (Jobling et al., 1998; Jobling et al., 1996; Purdom et al., 1994b; 

Villeneuve et al., 2002; White et al., 1994).  

 

The order of relative potency relative to E2 equivalent is: EE2 > E2 > E1 > NP&OP > 

E3 > APEOs metabolites. The Environment Agency (EA) derived the following 

predicted no effect concentrations (PNECs) for individual steroid estrogens: 0.1 ng l-1 

for EE2, 1 ng l-1 for E2, and 3 ng l-1 for E1 (Environment Agency, 2002) and a 

combined PNEC value for total steroid estrogens of 1 ng l-1 EEq (E2 equivalents) was 

also derived for aquatic organisms. The combined PNEC value takes into account the 

relative potency of each steroid and their additive effects since estrogens work 

synergistically (Environment Agency, 2002; Thorpe et al., 2003). Modelling studies that 

were carried out as part of the EA risk assessment of STWs effluents indicated predicted 

concentrations higher than these PNECs values in the downstream receiving 

environment, thus leading to unacceptable exposure of aquatic life that inhabit certain 

river reaches below the STWs (Environment Agency, 2002). The calculated PNEC 

values (for river) for NPnEO, NP2EC, NP1EC, NP2EO, NP1EO, NP and OP are 0.9 μg l-

1, 0.99 μg l-1, 2 μg l-1, 0.11 μg l-1, 0.11 μg l-1, 0.021 μg l-1 (Fenner et al., 2002) and 0.12 

μg l-1 (Brooke et al., 2003) respectively. The PNECwater of NP for aquatic organisms 

(algae) of 0.33 μg l-1 was derived for three species representing three trophic levels 

whereas the PNEC for soil representative of the most sensitive species of three trophic 

levels is 0.3 mg Kg-1 wet weight (calculated from the no observed effect concentration 

(NOEC) for earthworms (Apporec-todea calignosa) (European Commission, 2002). The 
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estrogenic potency of NP for aquatic organisms suggests that, in isolation, it is unlikely 

to educe an estrogenic response in fish downstream of STWs effluents once dilution is 

taken into consideration. This is because estrogenic responses are dose-dependent for 

NP, which can cause intersexuality at “high” concentrations (Gray & Metcalfe, 1997), 

but not at lower concentrations (Nimrod & Benson, 1998). Nonetheless, the long-term 

effects of low concentrations of NP on vitellogenin induction and gonadal disruption in 

fish are still uncertain (Gross-Sorokin et al., 2006). 

Table 2-1 Endocrine disrupter concentrations in sewage effluent and potential impacts 

on wildlife.  

Estrogen 
In vitro 

E2 
equivalent 

Typical 
effluent 

concentration 
(ng l-1) 

Typical 
predicted E2 

equiv (in 
vitro) 

In vivo VTG 
response in trout 

E2 equiv 

Typical 
predicted E2 

equiv (in 
vivo) 

Judgement 

E1 0.5 5 2.5 0.5 2.5 Concern 
E2 1 1.5 1.5 1 1.5 Concern 

E3 0.005, 
0.04 20 0.1 0.001 0.02 Little 

concern 

EE2 1 – 2 0.5 0.5 – 1 25 12 Greatest 
concern 

4t-NP or 
4t-OP 0.0001 2 000 0.2 0.001, 0.0006 2 – 20? concern 

NPEOs, 
NPECs, 

& 
CNPEC 

0.00001 20 000 0.2 

no significant 
NPEOs mixture 

effect at           
100 µg l-1 

? less 
concern 

Total   5 – 5.5  18.1 – 36  

Adapted from (Johnson & Sumpter, 2001b)  
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2.1.1. Steroid estrogens 

A large extent of the estrogenicity in STWs effluents is a result of the presence of 

natural and synthetic estrogens: estrone (E1); 17β-estradiol (E2); and 17α- 

ethinylestradiol (EE2) (Belfroid et al., 1999; Jobling et al., 1998; Larsson et al., 1999; 

Rodgers-Gray et al., 2000; Ternes et al., 1999b) that exhibit the strongest estrogenic 

effects (Environment Agency, 2000). Although the natural steroid Estriol (E3) is less 

estrogenic than E1, E2 and EE2 is still worthy of consideration since it has higher 

estrogenic activity compared to EDCs of industrial origin i.e. NPEOs. Estrogens are 

excreted by humans and animals through their urine as inactive polar conjugates such as 

glucuronides(E1-3G)  and sulphates (Ternes et al., 1999a) with the sulphate conjugate 

of estrone (E1-3S) being the main urinary excretion product (Tang & Crone, 1989; 

Ternes et al., 1999a; Shi et al., 2004). Although many of the glucuronide conjugates are 

cleaved due to the activity of β-glucuronidase before they reach STWs, concentrations 

of the conjugated steroid E1-3S may be important when considering total estrogen loads 

reaching sewage treatment works (STWs) (Gomes et al., 2005), since arylsulfatase  is 

less common in STWs (Baronti et al., 2000). The physiochemical properties of the 

steroid estrogens researched in this study (Table 2-2) and further information of these 

EDCs are shown in (Table 2-3). A survey of various estrogen concentrations in the 

influent of STWs can be found in Table 2-4. The synthetic steroid, EE2 has the highest 

octanol-water partitioning coefficient (Log Kow) whilst the natural free estrogens range 

from 2.81 to 3.94, whereas the sulphate conjugate estrogen exhibits the lowest value 

0.95 (Koh, 2008). The sulphate conjugated estrogen has also the highest water solubility 

compared to the unconjugated steroid estrogens which their solubilities range from 4.8 

to circa 13 mg l-1.  All of the steroids have very low vapour pressures and relatively high 

pKα values (above 10), therefore they are weakly acidic (Koh, 2008). Hence, the steroid 

estrogens under investigation are non-volatile, highly lipophilic chemicals that can be 

expected to adsorb to solids in environmental matrices (Lai et al., 2000). Studies on 

river water have demonstrated that due to high Log Kow, steroid estrogens will readily 

sorb onto particulates, which consist largely of decaying natural organic matters (NOM) 

(Xiao & McCalley, 2000).  



Chapter 2 Literature review: 

29 

 

Table 2-2 Physicochemical properties of the investigated steroid estrogens. 

Steroid 
compound 

Vapour 
pressure (Pa) 

Aqueous 
Solubility 
(mg l-1) 

Henry’s 
constant (atm 

m3 mol-1) 
Koc (l kg-1) Log Kow pKa 

E1 3 x 10-8 13 6.2 x 10-7 4882d 3.43 10.4g 
E2 3 x 10-8 13 6.3 x 10-7 3300d 3.94 10.4g 
E3 9 x 10-13 13 2 x 10-11 1944d 2.81 10.4g 

EE2 6 x 10-9 4.8 3.8 x 10-7 4770d 4.15 10.4g 
E1-3S 1.08 x 10-14a 9.6 x 102b 6.9 x 10-16c 29660e 0.95f  

After (Lai et al., 2000; Koh et al., 2008b), a Modified grain method (MPBPWIN v1.42), b Water solubility 
estimate from Log Kow (WSKOW v1.41). c Henry’s law constant (25°C) (HENRYWIN v3.10), d (Ying et 
al., 2002a), e Estimated Koc (PCKOCWIN v1.66), f Estimated Log Kow (KOWWIN v1.67 estimate), g 

(Huber et al., 2003).  

Table 2-3 Molecular properties of the investigated steroid estrogens. 

Steroid 
estrogen 

Type of 
steroid 

Molecular 
formula 

Molecular 
weight 
(g/mol) 

CAS no. Structure 

Estrone (E1) Natural C18H22O2 270.37 53-16-7 

CH3

H

HH

O

OH

17β-Estradiol 
(E2) Natural C18H24O2 272.38 50-28-2 

CH3

H

HH

OH

OH

Estriol (E3) Natural C18H24O3 288.39 50-27-1 

CH3

H

HH

OH

OH

OH

17α-
Ethinylestradiol 

(EE2) 
Synthetic C20H24O2 296.40 57-63-6 

CH3

H

HH

OH

OH
CH

Estrone 3-
sulfate (E1-3S) Natural C18H22O5S 350.50 481-97-0 

CH3

H

HH

O

OSOH

O

O

      
Data taken from (QMX Laboratories, 2008) 
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Table 2-4 Steroid estrogen concentrations (ng l-1) in STWs influents.  

 E1 E2 E3 EE2 E1-3S Reference 
United 

kingdom   2-4 <0.3 - <LODa - (Fawell et 
al., 2001) 

United 
kingdom   57-59 132-224 - - - (Jiang et al., 

2005) 

United 
kingdom 78-81 185-189 - - - (Jiang et al., 

2005) 

United 
kingdom 21 40 70 n.d 10 (Gomes et 

al., 2005) 

France 9.6-17.6 11-17 11-15 5-7 - (Cargouet et 
al., 2004) 

Netherlands 11-140 9-48 <LODb 0.5-9 - (Johnson et 
al., 2000) 

Netherlands 20-130 17-150 - <0.3-6 - (Vethaak et 
al., 2005) 

Italy 0.5-75 0.5-20 2-120 0.5-10 - (Johnson et 
al., 2000) 

Italy 25-132 4-25 24-188 0.4-13 - (Baronti et 
al., 2000) 

Italy 44 11 72 - - 
(D'Ascenzo 

et al., 
2003b) 

Italy 15-60 10-31 23-48 <LODc - (Lagana et 
al., 2004) 

Italy 100 2 100 20 8 (Gentili et 
al., 2002) 

Spain <2.5-12 <5-30 <0.25-71 <5 - (Petrovic et 
al., 2002) 

Spain 2 3 - <LOQd - (Carballa et 
al., 2004b) 

Brazil 40 21 - 6 - (Ternes et 
al., 1999b) 

Canada 19-78 2-26 - - - (Servos et 
al., 2005a) 

Japan - 5 - - - (Behnisch et 
al., 2001) 

Japan 32-197 13-29 83-255 - - (Nakada et 
al., 2006a) 

Japan 15-18 4-23 - <LODe - (Nakada et 
al., 2006b) 

Japan 31-70 19-31 174-731 - - (Onda et al., 
2003) 

Japan 10-57 n.d-21 27-410 - 12-170 (Komori et 
al., 2004) 

Austria 29-670 14-125 23-660 3-70 - (Clara et al., 
2005a) 

Switzerland 7.3-75 5-11 - 1-5 - (Joss et al., 
2004a) 

Germany 27 15 - - - (Ternes et 
al., 1999b) 



Chapter 2 Literature review: 

31 

 

 E1 E2 E3 EE2 E1-3S Reference 

Germany 27-100 10-24 41-580 - <4-26 
(Schlusener 
& Bester, 

2005) 

Singapore 27.81 n.d n.d n.d 23.06 (Hu et al., 
2007) 

USA 24-24 7.5-8 - - 29-39 (Reddy et 
al., 2005) 

a0.3 ng l-1, b0.1 to 1.8 ng l-1; c1.6 ng l-1, d1ng l-1, e2 ng l-1, LOD: Limit of detection; n.d.: Not detected. 

 

 



Chapter 2 Literature review: 

32 

 

2.1.2. Alkylphenol polyethoxylates 

Alkylphenol polyethoxylates (APEOs) are both commercially and industrially important 

non-ionic surfactants which are incorporated as additives in detergents, pesticide 

formulations, dispersing agents for wool scouring, hydrogen peroxide bleaching and 

dyeing processes (Ferguson et al., 2001). The worldwide production of APEOs was 

estimated at 500,000 tons in 1997 (Renner, 1997). Production of APEOs in Western 

Europe has declined between 2000 to 2002 from 116,000 to 83,000 tons respectively 

(Cefic, 2002). The usage of NPEO in the U.S. was approximately 130,600 tons in 2006 

(ICIS & Chemical Business Americas, 2007) whilst the consumption of these 

compounds in the growing Asian economies is expected to rise including an increased 

demand for nonylphenol (NP) (Dutta, 2008). 

Eighty percent of commercial APEOs are comprised of nonylphenol ethoxylates 

(NPEOs) whereas 20% are octylphenol ethoxylates (OPEOs) isomers (Staples et al., 

1999). As a result, complex mixtures of ethoxy homologues and alkyl isomers 

(European Commission, 2002, 2003; Petrović et al., 2002; Knepper et al., 2003) are 

discharged to sewage treatment works (STWs) or released directly into the aquatic 

environment (Gibson et al., 2005; Koh et al., 2005; Langford et al., 2004; Bennie et al., 

1997; Blackburn et al., 1999; Ferguson et al., 2001; Naylor et al., 1992b; Tabata et al., 

2001).  

Some of the reported data on the levels of APs, APECs and APEOs in STWs influents 

around the world are shown in . The mean concentrations of the nonyl-group 

metabolites in sewage influents varied widely among various STWs from <LOD to 

3285 ng l-1 whereas for the octyl-group the varied mean concentration ranged from 

<LOD to 243 ng l-1. However, after secondary wastewater treatment usually more than 

95% of the complex mixtures are degraded to various stable and more persistent 

metabolites such as short-chained APEOs: mono- to tri-ethoxylates (NP1EO, NP2EO 

and NP3EO), alkylphenols (APs), carboxylated alkylphenols i.e. carboxyalkylphenol 

polyethoxycarboxylates (CAPECs) and alkylphenol ethoxycarboxylates (APECs) 

(Giger et al., 1984). Numerous studies have shown that APEOs metabolites (APs, short-
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chained APEOs and APECs) are more toxic than their parent substances and possess the 

ability to mimic natural hormones by interacting with estrogen receptor (ER) (Field & 

Reed, 1999; Jobling et al., 1996; Jobling & Sumpter, 1993; Renner, 1997; Routledge & 

Sumpter, 1996; Soto et al., 1991).  

Furthermore, during wastewater chlorination, carboxylated alkylphenoxy ethoxylates 

(CAPEC) can act potentially as sources of AP, short-chained APEOs and halogenated 

APECs (such as Br-APECs, or Cl-APECs) which are estrogenic to fish and other 

aquatic organisms (Kinae et al., 1981b, a; Reinhard, 1982; Ball et al., 1989b). The 

formation of halogenated derivatives of the alkylphenols and acidic alkylphenols, 

mostly brominated compounds, were reported at μg l–1 levels in wastewater effluent and 

receiving river water after disinfection with chlorine in the presence of bromide ions in 

the wastewater treatment plant (Kinae et al., 1981b; Reinhard, 1982; Fujita et al., 2000b; 

Ventura et al., 1989). The toxicity and estrogenicity of halogenated APECs were found 

to retain a significant affinity for the estrogen receptors in in-vitro tests and their acute 

toxicity to Daphnia magna was higher than their non-brominated precursors APEOs and 

APECs (Maki et al., 1998; García-Reyero et al., 2004). However, the scientific and 

regulatory concerns have been raised over APEO metabolites (NP, OP, NP1-2EO) 

present in the environment above the threshold necessary to disrupt endocrine function 

in wildlife and humans. The physiochemical properties of APEOs researched in this 

study are shown in (Table 2-5) whereas (Table 2-6) includes the molecular properties of 

APEOs.  

The solubility of APEOs depends on the number of polar groups forming the 

hydrophilic part of the molecule. Lower APEO oligomers (EO<5) usually display 

lipophilic properties in contrast to the higher oligomers which are hydrophilic (Ahel & 

Giger, 1993a). The solubilities of OP1-4EO ranged from 8 to 24.5 mg l-1 in water, while 

the solubility of OP is 12.6 mg l-1. NP has a water solubility of 5.43 mg l-1, while NP1-

4EO have solubilities ranging between 3.02 and 9.48 mg l-1 at 20.5 °C (Ahel & Giger, 

1993a). The solubilities of OP1-4EO and OP were significantly greater than those of 

NP1-4EO and NP, indicating the predominant influence of the hydrophobic chain length 

on APEOs solubility. 
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Table 2-5 Physicochemical properties of the investigated alkylphenolics. 

Alkylphenolic 
compound 

Vapour 
pressure 

(Pa) 

Aqueous 
solubility 
(mg l-1 at 

20°C) 

Henry’s 
constant  

(atm m3 mol-1) 
Koc (l kg-1)j Log Kow

k pKa 

 NP 1.73 x 10-5i 5.43b 1.23 x 10-5a 245,470c 4.48e 10.7g 
NP1EO 1.34 x 10-9a 3.02b 1.25 x 10-6a 288,403c 4.17e  
NP2EO 6.86 x 10-11a 3.38b 2.68 x 10-9a 151,356c 4.21e  
NP3EO  5.88b  74,131c 4.20e  
NP4EO  7.65b   4.30a  
NP1EC 7.37 x 10-8a 0.45a 1.41 x 10-6a 2496a 5.80i  
NP2EC 3.57 x 10-10a 0.43a 3.01 x 10-9a 852a 5.53i  

       

OP 3.89 x 10-6a 12.6b 6.89 x 10-6a 
151,356c; 

3500 – 
18,000d 

4.12e ~9.9 – 
10.9h 

OP1EO 8.18 x 10-9a 8.0b 5.87 x 10-7a 1078a 4.10f  
OP2EO  13.2b   4.00f  
OP3EO  18.4b   3.90f  
OP4EO  24.5b   3.90f  

a(Koh, 2008), b(Ahel & Giger, 1993a), c(Ferguson et al., 2001), d(Johnson et al., 1998), e(Ahel & Giger, 
1993b), fCalculated values using the solubility (Ying et al., 2002b), g(Deborde et al., 2004), h(Shiu et al., 
1994),  i(Nielsen et al., 2000), jOrganic carbon sorption constant Koc, 

kOctanol-water partition coefficient 
Kow 

 

The logarithmic values (Log Kow) for OP, NP and NP1-3EO are lying between 3.90 and 

4.48 suggesting that these substances may become associated with organic matter in 

sediments. However, NPECs are more likely to sorb onto organic matter as presented in 

(Table 2-5). Calculated vapour pressure for NP and OP (0.0023 mm Hg) are higher 

compared to the rest of APEOs metabolites (Nielsen et al., 2000). From the 

physicochemical data, solubility and Log Kow values indicate that OP, NP and AP1-4EOs 

could easily adsorb onto sediments in aquatic environments. 

 



Chapter 2 Literature review: 

35 

 

Table 2-6 Molecular properties of the investigated alkylphenolics. 

Alkylphenolic 
compound 

Type of 
non-ionic 
surfactant 

Molecular 
formula 

Molecular 
weight 
(g/mol) 

CAS no. Structure 

4-Nonylphenol 
monoethoxylate 

(NP1EO) 

Short-chain 
APEO C17H28O2 264.41 104-35-8 

OH
O

C9H19

4-Nonylphenol 
diethoxylate 

(NP2EO) 

Short-chain 
APEO C19H32O3 308.46 20427-84-

3 C9H19

O
O OH

4-
Nonylphenoxy 

acetic acid 
(NP1EC) 

Short-chain 
carboxylic 

acid 
C17H26O3 278.39 3115-49-9 

C9H19

O

OH
O

Nonylphenoxy 
monoethoxy 
acetic acid 
(NP2EC) 

Short-chain 
carboxylic 

acid 
C19H30O4 322.44 106807-

78-7 C9H19

O

OH
O

O

 

Nonylphenol 
diethoxy acetic 
acid (NP3EC) 

Short-chain 
carboxylic 

acid 
C21H34O5 366.50 NA 

C9H19

2
O

OH
O

O

Nonylphenol 
polyethoxylates 

(3–12)(NP3–

12EO) 

Long chain 
APEO 

(C2H4O)n 
C15H24O 

n=~1.5 – 12 
- 68412-54-

4 m

OH
O

O

C9H19  
NPnEO, n = m+1 

4-Octylphenol 
monoethoxylate 

(OP1EO) 

Short-chain 
APEO C16H26O2 250.38 2315-67-5 

OH
O

C8H17

4-Octylphenol 
diethoxylate 

(OP2EO) 

Short-chain 
APEO C18H30O3 294.44 2315-61-9 

O
O OH

C8H17

4-Octylphenoxy 
acetic acid 
(OP1EC) 

Short-chain 
carboxylic 

acid 
C16H24O3 264.37 NA 

OH
O

O

C8H17

Octylphenol 
monoethoxy 
acetic acid 
(OP2EC) 

Short-chain 
carboxylic 

acid 
C18H28O4 308.42 NA 

OH
O

O

O

C8H17  

Octylphenol 
diethoxy acetic 
acid (OP3EC) 

Short-chain 
carboxylic 

acid 
C20H32O5 352.47 NA 

2

OH
O

O

O

C8H17

Octylphenol 
polyethoxylates 

(3–12)(OP3–

12EO) 

Long chain 
APEO 

(C2H4O)n 
C14H22O 
n=~1.5 – 

12.5 
- 68987-90-

6 m

OH
O

O

C8H17  
OPnEO, n = m+1 

4-nonylphenol 
(NP) Alkylphenol C15H24O 220.35 104-40-5 

CH3

OH

CH3

CH3

CH3  
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Alkylphenolic 
compound 

Type of 
non-ionic 
surfactant 

Molecular 
formula 

Molecular 
weight 
(g/mol) 

CAS no. Structure 

4-tert-
octylphenol 

(OP) 
Alkylphenol C14H22O 206.32 140-66-9 

CH3

CH3

CH3

CH3
CH3

OH

Data taken from (QMX Laboratories, 2008), NA: Not applicable 
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Table 2-7 Alkylphenol ethoxylate concentrations (ng l-1) in STWs influents.  

Sampling 
location 

AP Short-chained 
APnEOs 

Long-chained 
APnEOs APnECs  

OP NP OPEOs NPEOs OPEOs NPEOs OPECs NPECs Reference 

Austriaa 0.12-
0.7 

1.3-
4.0 

(n=1-2) 
n.d-0.7 

(n=1-2) 
0.6-7.3 - - - 

(n=1-
2) 0.1-

4 

(Clara et al., 
2005b) 

China - 9.3 - (n=1-2) 
3-28 - (n=3-23) 

0.002-3.1 - - (Shao et al., 
2003) 

Canada n.d-2 2-23 - (n=1-2) 
3-37 - (n=3-17) 

99-403 

(n=1-
2) n.d-

8 

(n=1-
2) 2-17 

(Lee & 
Peart, 1998) 

Japanb - - - (n=1-3) 
n.d-938 - (n=4-18) 

5.1-1035 - 
(n=1-
3) n.d-

26 

(Fujita et al., 
2000a) 

Japan n.d-5 1.3-75 - (n=1-4) 
6-92 - (n=5) 

9.5-810 - - (Nasu et al., 
2001) 

Japanc 0.04-
0.09 1 - (n=1) 

11 - - - 
(n=1-
2) 0.1-

0.1 

(Isobe & 
Takada, 
2004) 

Italy - 2-40 - - - (n=1-18) 
50-360 - - (Di Corcia et 

al., 1994) 

Italyd - - - - - (n=3-20) 
29-145 - - (Di Corcia et 

al., 2000) 

Italye - - 
(n=2) 

<0.002-
0.08 

(n=1-2) 
<0.002-

4 
- (n=9)  

1.5-6 - 

(n=1-
3) 

0.12-
15 

(Loos et al., 
2003) 

Spainf - 40-
343 - - - (n=4-6) 

n.d-938 - (total) 
n.d-80 

(Sole et al., 
2000) 

Spain - 17-58 - (n=1-2) 
10-150 - (n=3-15) 

244-465 - 
(n=1-
2) ~3-

90 

(Gonzalez et 
al., 2007) 

Spain 4 82 - - (n=~9) 
78 

(n=~10) 
1850 

(n=1-
2) 2-9 

(n=1-
2) 7-13 

(Petrovic et 
al., 2001) 

Spaing <0.1-
5 1-80 - - 

(n=2-
15) 
8-84 

(n=2-15) 
<0.05-2 

(n=1) 
<0.05 

(n=1) 
1-65 

(Petrovic et 
al., 2002) 

Greecej - <0.03-
1.04 - (n=1-2) 

0.2-21 - - - - (Stasinakis et 
al., 2008) 

Belgium - - - - - 25 - - (Cohen et 
al., 2001) 

Denmark - 4.5-
9.6 - (n=2) 

55-181 - - - - (Fauser et 
al., 2003) 

Switzerlandh - - - -  (n=1-18) 
840-2250 - - (Ahel & 

Giger, 1985) 

Switzerlandi - 110-
430 - 

(n=1-2) 
310-
840 

- 
(n=3-20) 

1310-
3220 

- 

(n=1-
2) 80-
270 

- 

(Ahel et al., 
1994c) 

USA - - - - - (n=1-18) 
2400 - - (Naylor et 

al., 1992a) 

USA 0.4 4 
(n=1-
2) 0.3-

0.4 

(n=1-2) 
8-9 

(n=3-5) 
1 

(n=3-
16) 4-

46 

(n=1) 
<1 

(n=1-
2) <1-1 

(Loyo-
Rosales et 
al., 2007) 

a3 STWs; b40 STWs; c2 STW; d2 STWs (textile and municipal sewage); e3 STWs; f4 STWs; g4 STWs; h5 
STWs; i11 STWs; j6 STWs; n.d: Not detected. 
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2.2. Legislation 

Extensive scientific research has evidently indicated that the majority of EU sewage 

treatment works (STWs) pose significant sources of alkylphenol ethoxylate (APEOs) 

metabolites (AP1-2EO, APECs, APs) and steroid estrogens (ESTs) for the aquatic and 

terrestrial environments (European Commission, 1999; Kirk et al., 2002; Rodgers-Gray 

et al., 2000; Svenson et al., 2003; Espejo et al., 2002; Snyder et al., 1999; Knudsen et 

al., 1997; Solé et al., 2000). These sources arise from effluent discharges and 

agricultural sewage sludge recycling applications Figure 1.1 (Laturnus et al., 2007; 

Cefic, 2002; Diniz et al., 2005; Jobling et al., 1998; Petrović & Barceló, 2004; Spengler 

et al., 2001). As a result of the widespread phenomena of EDCs in particular, E1, E2, 

EE2 and NP (Cargouët et al., 2004; Johnson & Darton, 2003; Routledge & Sumpter, 

1996; White et al., 1994), a number of voluntary, PARCOM Recommendation 

(92/8/2000) (OSPAR Convention, 2006) and legal European actions were established as 

prevention actions against EDCs phenomena. These actions include: the Water 

Framework Directive of the European Community (European Commission, 2000b), the 

Urban Waste Water Treatment Directive 91/271/EC (European Commission, 2000c), 

the OSPAR Convention for the protection of North-East Atlantic (OSPAR Commission, 

2006), the Council Directive (2003/53/EC) that regulates the uses of APEOs (European 

Commission, 2000a) and the (3rd Draft) of the Council Directive (86/278/EEC) which 

has proposed the concentration limits of 50mg NPEOs kg dw-1 (NP, NP1+2EO) in sludge 

(European Commission, 1986). The legislation in force i.e. Council Directive 

(2003/53/EC), will most likely cause alteration of APEO loadings in STWs and possible 

changes concerning the removal efficiencies of these EDCs.    
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2.3. Overview of STWs 

Sewage treatment works incorporate physical, chemical and biological processes to treat 

and remove a wide spectrum of contaminants from wastewater following domestic and 

industrial use. The primary objective of STWs is to produce treated effluent suitable for 

discharge and reuse into the environment, whilst sludge is rendered suitable for 

appropriate disposal or reuse (Birkett, 2003). During the STWs treatment train different 

processes provide various levels of treatments known as preliminary (gross solids such 

as large objects and grit are removed), primary (solids sedimentation), secondary 

(biological processes to remove organic matter) and tertiary treatment (removal of 

residual suspended solids and nutrient removal) (Lester, 1996). Despite the fact that 

conventional sewage treatment was developed to remove carbon, nitrogen and to a 

lesser extent phosphorous (Birkett, 2003), EDCs removal does occur, by either 

adsorption to solids or by microbial degradation (Langford, 2005; Ahel et al., 1994a). 

Biodegradation is considered the most important removal mechanism of EDCs within 

STWs (Andersen et al., 2003), typically ranging from 60-95% for total steroid estrogens 

(Johnson et al., 2000; Baronti et al., 2000) and >95% for the parent nonylphenol 

ethoxylates (Giger et al., 1984). Although biodegradation of nonylphenol ethoxylates 

occurs, more recalcitrant and estrogenic metabolic products such as nonylphenol (Giger 

et al., 1984) and NP1EC who is toxic to both marine and freshwater species (Jobling & 

Sumpter, 1993; Purdom et al., 1994b; Comber et al., 1993; McLeese et al., 1981) are 

formed. Research was focused on the secondary treatment (activated sludge) due to the 

complex biodegradation patterns observed and because it was formerly believed that 

aerobic treatment comprised the dominant removal mechanism of non-ionic 

nonylphenol ethoxylate surfactants (Stephanou & Giger, 1982; Reinhard, 1982; Giger et 

al., 1981). However, anaerobic treatment for the removal of nonylphenol ethoxylates 

received particular attention after the finding that anaerobically digested sewage sludges 

contained extraordinary high concentrations of nonylphenol (Giger et al., 1984) and 

carboxylated nonylphenolic metabolites (Ball et al., 1989a) which once was believed to 

be exclusively formed in the aerobic environments. Scientific research was since 

received interest to see whether anaerobic and aerobic degradation pathways were 
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different since sludge recycling practices onto land could prove to be potential sources 

of EDCs contamination. Ecotoxicological and regulatory issues were aided the research 

towards the fate of EDCs in anaerobic conditions. 

2.3.1. Primary sedimentation  

2.3.1.1. Steroid estrogens 

The mean concentrations of steroid estrogens in sewage influents vary and mean 

concentrations range from <LOD to 528 ng l-1 Table 2-4. Nevertheless, despite the 

small amount of organic solid removal during preliminary treatment, no removal of 

EDCs (steroid estrogens and nonylphenol ethoxylates) has been observed during this 

process (Ternes et al., 1999b). Deconjugation of the steroid estrogens occurred in the 

sewers and this was apparent from the detection of the unconjugated steroidal estrogens 

E1, E2, EE2 and E3 in the settled sewage. During primary sedimentation, estrogen 

removal is achieved primarily by adsorption onto fats, oils and greases. The degree of 

EDCs removal is influenced by the lipophilicity of the compound, the suspended solids 

concentration and their settling rate, the retention time and loading rate (Langford & 

Lester, 2003). Insignificant removal of E1 and E2 was observed at STWs in Canada 

where only primary sedimentation was employed (Servos et al., 2005b). Increase of E1 

was reported at a Norwegian STWs where primary sedimentation and phosphate 

removal was employed (Johnson et al., 2005). These results were in line with a UK 

where during primary sedimentation no significant removal occurred for E1 and E2, 

however removal did occur during biological secondary treatment i.e. biological 

treatment process (Jiang et al., 2005). Although E1-3S is not an endocrine disrupter it 

has been suggested that during primary sedimentation the release of sulphate which is 

used as terminal electron acceptor (D'Ascenzo et al., 2003a; Van Eldere et al., 1988) 

yields E1. Due to the relatively polar and hydrophilic nature of steroid estrogens, 

suggestive of low adsorption potential, concentrations in the solid phase of primary 

sludge i.e. (μg kg-1 dw) are not available. 
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2.3.1.2. Alkylphenolic compounds 

Some of the reported concentrations of APs, APECs and APEOs in primary sludge 

around the world are shown in Table 2-8. Concentrations vary widely among various 

STWs. Nonylphenol (NP) in primary sludge ranges from 0.04-470 mg kg-1 dw  whilst 

NP1-2EOs are less varied (0.42-100 mg kg-1 dw ) in the same sludge matrix. Less 

variation in primary sludge is observed for NPECs (0.04-69 mg kg-1 dw ). The range of 

the nonyl-group metabolites in primary sludge is 0.42-470 mg kg-1 dw. The reported 

range for the octyl-group in primary sludge is less than that of the nonylphenolics group 

as is shown in Table 2-8.  

Partial biodegradation (aerobic/anaerobic transformation) has been observed for 

alkylphenol ethoxylates in crude (Ahel et al., 1994a; Lee et al., 1998) and settled 

sewage (Koh, 2008). Three to 9.6% of dissolved carbon was attributed to nonylphenol 

ethoxylates (Ahel et al., 1994a). These observations were attributed to the septicity of 

the sewerage system (Ahel et al., 1994a; Koh, 2008). Short-chained AP1-3EOs, AP1-

3ECs and alkylphenols (NP and OP) were present in crude sewage which confirms that 

biodegradation/biotransformation may occur in sewerage as these metabolites are not 

present in commercial formulations (Ahel et al., 1994a; Lee et al., 1998). While long-

chained nonylphenol ethoxylates (NPnEOs, n>4) remained constant in the influent, 

reduction of the lipophilic nonylphenolic metabolites (NP and NP1-2EO) and increase 

(3%) of NPECs was observed during primary sedimentation (Giger et al., 1987) which 

suggested that lipophilic nonylphenol ethoxylates were removed by adsorption during 

this treatment stage. The presence of long-chained NP4-8EOs, short-chained NP1-3EOs 

and small amounts of short-chained NPECs (<5% of total NPEOs) in primary effluents 

was observed by (Fujita et al., 2000b) in 40 full-scale STWs; however, no NP was 

detected possibly due to adsorption. According to (Bennie et al., 1998), short hydraulic 

retention time (HRT) of primary sedimentation inadequately removes NP3-20EOs (82%), 

NP1-2EOs (12%), NP1-2ECs (3%) and NP (3%). 
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Table 2-8 Concentrations of alkylphenol ethoxylate metabolites in raw (primary), 

activated sludge (secondary) and anaerobically digested sludges 

Sampling 
location 

Compound Sludge 
matrix 

Concentration  
(mg kg-1 dw) 

Reference 

Germany  NP Primary 3.7 (Bolz et al., 2001) 
Canada NP Primary  137–470 (Lee & Peart, 1995) 

Germany  NP Primary  4.6 (Jobst, 1998) 
Greece NP Primary 0.04-0.45 (Stasinakis et al., 2008) 
Greece NP1EO  Primary  1-41 (Stasinakis et al., 2008) 
Greece NP2EO  Primary  1-25 (Stasinakis et al., 2008) 

- NP Primary  0.2-0.3 Current studya 
- NP1-2EOs  Primary 2-15 Current studya 
- NP3-12EOs Primary  1.3-1.5 Current studya 
- NP1-3ECs  Primary  0.04-26.5 Current studya 

Italy OP Primary 14 (Bruno et al., 2002) 
Italy  NP Primary  242 (Bruno et al., 2002) 
Italy NP1EC  Primary 6.8 (Bruno et al., 2002) 
Italy NP2EC  Primary 69 (Bruno et al., 2002) 
Italy NP3EC  Primary 11 (Bruno et al., 2002) 
Italy NP4EC  Primary 3 (Bruno et al., 2002) 
Italy NP2EO  Primary  100 (Bruno et al., 2002)
Italy NP3-6EOs  Primary  7.5 (Bruno et al., 2002) 

Denmark NP Primary  12 (Fauser et al., 2003) 
Denmark NP2EO  Primary  39 (Fauser et al., 2003) 
Belgium NPEOs  Primary  44 (Cohen et al., 2001) 

Spain NP Primary  4.3-49 (Aparicio et al., 2009) 
Spain NP1EO  Primary  <LOD+-72 (Aparicio et al., 2009) 
Spain  NP2EO  Primary  <LOD++-47 (Aparicio et al., 2009) 
Spain NP Secondary  4.5-1.8 (Aparicio et al., 2009) 
Spain NP1EO  Secondary <LOD+-26 (Aparicio et al., 2009) 
Spain  NP2EO  Secondary <LOD++ (Aparicio et al., 2009) 

- NP Mixedb 0.1-0.2 Current studya 
- NP1-2EOs  Mixedb 1.7-90 Current studya 
- NP3-12EOs Mixedb 0.7 Current studya 
- NP1-3ECs  Mixedb 0.08-241.5 Current studya 

Belgium  NPEOs  Digested  <LOD* (Cohen et al., 2001) 
- OP Digested 17 (Bruno et al., 2002)a 
- NP Digested 308 (Bruno et al., 2002)a 
- NP1EC  Digested 1.9 (Bruno et al., 2002)a 
- NP2EC  Digested 18 (Bruno et al., 2002)a 
- NP3EC  Digested 4.2 (Bruno et al., 2002)a 
- NP4EC  Digested 1.1 (Bruno et al., 2002)a 
- NP2EO  Digested 40 (Bruno et al., 2002)a 
- NP3-6EOs  Digested 3.9 (Bruno et al., 2002)a 

Taiwan NP Digested 250 (Lin et al., 1999) 



Chapter 2 Literature review: 

43 

 

Sampling 
location 

Compound Sludge 
matrix 

Concentration  
(mg kg-1 dw) 

Reference 

USA NP Digested 13 and 24 (Keller et al., 2003) 
Spain OP Digested 7.5 (Petrović et al., 2001) 
Spain OPEOs Digested 12 (Petrović et al., 2001) 

Switzerland  NP Digested  78 (Brunner et al., 1988) 
Switzerland NP Digested 450–2530 (Giger et al., 1984) 

UK NP Digested 326 and 638 (Sweetman, 1994) 
Spain NP Digested 172 (Petrović et al., 2001) 

Germany NP Digested 80–120 (Schnaak et al., 1997) 
Canada NP1EO Digested 51–304 (Lee et al., 1997) 
Canada NP2EO Digested 4–118 (Lee et al., 1997) 
Spain NPnEOs Digested 133 (Petrović et al., 2001) 

Canada NPnEOs Digested 9–169 (Lee et al., 1997) 
Canada NP1EC  Digested <0.5–25 (Lee et al., 1997) 
Canada NP2EC  Digested <0.5–38 (Lee et al., 1997) 
Canada NP1ECs  Digested 19 (Field & Reed, 1999) 
Canada NP2ECs  Digested 83 (Field & Reed, 1999) 
Canada NP3ECs  Digested 11 (Field & Reed, 1999) 

- NP>5EC  Digested  n.r. (Schröder, 2001)a 
Spain NP Digested 6.5-323 (Aparicio et al., 2009) 
Spain NP1EO  Digested 1.3-78 (Aparicio et al., 2009) 
Spain  NP2EO  Digested  <LOD++-12 (Aparicio et al., 2009) 

alab-scale study; bmixed (60:40 v/v primary: SAS); *LOD (0.1 mg Kg-1); +LOD (0.75 mg kg-1 dw); ++LOD 
(0.42 mg kg-1 dw);  n.r. detected but concentrations were not reported 
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2.3.2. Secondary biological treatment 

It thought that secondary biological treatment (activated sludge) is the principal process 

to most if not all estrogenic activity (Pickering & Sumpter, 2003; Carballa et al., 2004a; 

Andersen et al., 2003). Biodegradation and biotransformation are believed to have 

significant roles in the removal of micropollutants, as some microorganisms can utilise 

such compounds as sole carbon sources for metabolism (Corvini et al., 2006). It has 

been reported that STWs employed Biological nutrient removal (BNR) exhibit the most 

significant overall estrogen removals (Tan et al., 2007; Dorabawila & Gupta, 2005).   

2.3.2.1. Steroid estrogens 

Conventional activated sludge is commonly used to treat domestic sewage however; 

estrogens are still detected in activated sludge effluents. Lab-scale batch experiments 

indicated partial E1 and EE2 removal (Johnson & Sumpter, 2001b). Degradation of 

steroid estrogens requires consortia of microorganisms (Vader et al., 2000) and 

therefore the reported removals vary from one STWs to another since the process 

parameters within STWs vary considerably. Reported removals for E2, E3 and EE2 

from real-scale STWs were greater than 85%, whereas E1 removal was more variable 

(Johnson & Sumpter, 2001b). Removals from 6 STWs in Rome for E1, E2, E3 and EE2 

were 61%, 85%, 95% and 85%, respectively (Komori et al., 2004). The significant 

removal of EE2 has only been observed under aerobic conditions (Joss et al., 2004b; 

Andersen et al., 2003; Koh et al., 2008a) and to a lesser extent in trickling filters (Koh, 

2008). Recently, a pathway for the degradation of EE2 by using ozonation in aqueous 

solution was proposed by (Zhang et al., 2006). However, further studies would be 

required to identify the complete mineralization of these recalcitrant estrogenic 

compounds in the environment. A study by (Andersen et al., 2003) indicated that BNR 

with sludge recirculation and alternating redox conditions could appreciably eliminate 

natural and synthetic estrogens. It was observed that natural estrogens were degraded to 

a large extent biologically in the denitrifying and aerated nitrifying tanks of the BNR 

system, whereas EE2 was only degraded in the nitrifying tank (Andersen et al., 2003). 

This is in agreement with (Vader et al., 2000) who indicated a correlation between the 
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nitrifying activity and EE2 degradation capability. The significance of alternating redox 

conditions within BNR systems was investigated by (Joss et al., 2004b) in which it was 

shown that the maximum removal rate occurred under anaerobic conditions without 

nitrate when E1 was reduced to E2. E1 degraded under all redox conditions and 

increased by factors of five and three in the transition between anoxic to aerobic and 

anaerobic to anoxic respectively, whereas the oxidation of E2 was higher at lower redox 

conditions (Joss et al., 2004b). However, the removal of EE2 occurred at a significant 

rate only under aerobic conditions (Joss et al., 2004b).  

The conversion of E2 to E1 has been reported in aerobic lab-scale studies where 

approximately two-thirds of spiked E2 were quantiitatively oxidised to E1 (Lee & Liu, 

2002). Co-metabolic reactions using enzyme(s) already present in the organisms 

obtained from activated sludge have been shown to have the ability to convert E2 to E1 

in a rapid and stoichiometric manner (Yu et al., 2007). The authors proposed 3 possible 

degradation pathways, with varying degradation conversion rates.  

In a study which involved a BNR system estrogenic activity was removed >95% at the 

effluent whereas the estrogenicity was below the detection limits at the STWs effluent 

(Leusch et al., 2005). In two Swedish STWs that incorporate nitrogen removal with 

activated sludge, the removal of steroid estrogens (based on EEq ng l-1) from the 

effluent was >97% (Svenson et al., 2003). Removal of up to 19.5 ng l-1 was achieved in 

an activated sludge with subsequent anoxic stages for nitrification due to the prolonged 

duration of the biological treatment. However, in a survey carried out on the distribution 

of E2 and E1 in 18 selected municipal STWs effluents across Canada, no statistical 

correlation observed between the HRT or (solid retention time) SRT and the apparent 

steroid removals, even though plants or lagoons with high SRT exhibited high steroid 

hormone removal efficiencies. Furthermore, it was observed that nitrifying plants 

exhibited greater removals than those without nitrifying systems (Servos et al., 2005b). 

The presence of alternating redox conditions within a BNR system allows for most of 

the removal processes i.e. anaerobic/anoxic/aerobic biodegradation and adsorption to 

occur. A high sludge age is usually required to achieve nitrification and nutrient 

removal because the autotrophic bacteria involved grow very slowly (Metcalf and Eddy, 
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2003). Increased removal of steroid estrogens with increased SRT has been observed by 

(Andersen et al., 2003; Ternes et al., 1999b; Holbrook et al., 2002).  

Little research on E3 degradation is currently available in the literature but it was 

postulated that E3 and E1 metabolism could have similar degradation pathways  (Koh, 

2008).  

A retention time of at least 10 to 12.5 days has been suggested as the minimum period 

required for the growth of organisms that decompose E2 and E1  (Saino et al., 2004). 

The influence of increased SRT is illustrated by a German STWs which has been 

upgraded from a BOD removal plant to a BNR plant, with substantial higher SRT, 

increasing from <4 days to 11 – 13 days. Batch experiments with sludge from the old 

plant did not show any reduction of EE2 (Ternes et al., 1999a) while at the increased 

SRT a reduction of around 90% was established in the full scale plant, which indicates 

the growth of microorganisms capable of degrading EE2 (Andersen et al., 2003). 

Further evidence of the effects of SRT on natural estrogens elimination from the 

wastewater is reported by (Ternes et al., 1999b; Holbrook et al., 2002). At SRT10°C >10 

days, almost complete estrogen (E1, E2 and E3) removals were achieved with critical 

SRT10°C between 5 and 10 days, however, no critical SRT10°C could be established for 

EE2. Solids retention time affects the microbial population and its growth rates 

influencing in that way the structural and physical nature of the flocs, which in turn 

affects their hydrophilic or hydrophobic properties (Metcalf and Eddy, 2003). Since 

flocs are largely comprised of polysaccharide and protein coatings (Metcalf and Eddy, 

2003) their sorptive affinities could be significant for certain steroid estrogens which in 

turn will accumulate in the resulting sludges. The nutrient status of the flocs, could also 

influence their hydrophilic-hydrophobic balance  (Jorand et al., 1998). From the 

literature studies appears that SRT who dictates the contact time between pollutants and 

microorganisms, when is adequate allows the establishment of appropriate bacteria, 

presumably the slow growing bacteria who result in a diversified and acclimated 

microbial consortium that is capable for steroid metabolism. 

A general pathway of steroid degradation has been demonstrated by (Sih & Wang, 

1963) in which various environmental microorganisms of the genera Nocardia, 
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Pseudomonas, Mycobacterium and Arthrobacter were capable to cleave and utilize the 

steroid nucleus as a sole carbon source (Talalay, 1957). A novel mode of degradation of 

steroids was proposed which involved the cleavage of the A-ring prior to the B-ring 

(Coombre et al., 1966)  (Figure 2-1). Recently a study by (Yi & Harper Jr, 2007) has 

also demonstrated the cleavage of A-ring prior to B/C-ring modification required for the 

biotransformation of EE2. There are also reports of other genera of wastewater or 

environmental microorganisms able to degrade these compounds (Yoshimoto et al., 

2004; Shi et al., 2002).  
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Figure 2-1 Scheme for the aerobic metabolism of estrone. Adapted from (Koh, 2008). 
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2.3.2.2. Alkylphenolic compounds 

Despite the fact that APEO degradation has been studied for 45 years and their 

mineralization pathway has been extensively reviewed (Montgomery-Brown & 

Reinhard, 2003), mechanisms for certain APEO metabolites remain unknown and 

inconsistent (Chiu et al., 2010). Under aerobic conditions such as the activated sludge 

process the ethoxylate chain of higher ethoxylate APEOs is shortened until persistent 

short-chained AP1-2EOs are formed (Di Corcia et al., 1998). This breakdown proceeds 

by the stepwise removal mechanism of one ethylene glycol unit (Figure 2-2) 

(Montgomery-Brown & Reinhard, 2003; White et al., 1994). It was reported that the 

stepwise shortening of ethylene glycols of nonylphenol ethoxylates (NPEOs) was 

carried out by Pseudomonas and Sphingomonas spp (Takeo et al., 2006; Tanghe et al., 

2000; Fujii et al., 2000; Fujii et al., 2001; Maki et al., 1994; John & White, 1998). 

Further degradation of these metabolites during activated sludge treatment occurs via 

the oxidative shortening of polyethoxylate chain (i.e. APECs) (Di Corcia et al., 1998; Di 

Corcia et al., 1994) thus suggesting oxidative mechanisms (Chiu et al., 2010; Ahel et al., 

1994b). Complete de-ethoxylation with formation of APs has only been observed under 

anaerobic conditions (Giger et al., 1984). The abundance of lipophilic alkylphenolic 

isomers and the presence of the highly branched alkyl group on the phenolic ring restrict 

the ultimate biodegradation. Nonetheless the existence of rich consortium of 

microorganisms under variable redox conditions within activated sludge could enhance 

their degradability. However, the formation of dicarboxylated metabolites has only been 

reported during biological activated sludge treatment and in the final effluents (Di 

Corcia et al., 1998). Reports on fate of APEOs and their metabolites during BNR 

systems are scarce. A study by (Johnson et al., 2005) that investigated 14 municipal 

STWs indicated the existence of a correlation between the BNR configuration of some 

of these plants and NP removals, however NP was only considered at the effluents. 

These findings were consistent with those obtained by (Drewes et al., 2005) which also 

showed declining trends of NP with increasing SRT with BNR systems. High SRT, 

circa 10 days, increases the removal of APEO and their metabolites (Clara et al., 2005a; 

Kreuzinger et al., 2004). These authors investigated the effect of SRT on APEO 
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removal efficiencies in various bench scale and real scale STWs utilising different 

treatment processes and variable SRTs (Kreuzinger et al., 2004; Clara et al., 2005a). 

Their studies showed the correlation of SRT on the removal of total nonylphenolic 

compounds (molar sum of NP, NP1-3EO, and NP1-3EC). However, due to the lack or raw 

influent data it was not possible to assess the effect of SRT with respect to specific NP 

or NPEO loadings. 

 

Figure 2-2 Aerobic degradation pathways of APEOs. Adapted with modifications from 

(Renner, 1997). 
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2.4. Anaerobic digestion processes 

The major anthropogenic organic contaminants including EDCs are contained within 

the anaerobically digested sludge (Kouloumbos et al., 2008a, b; Lee et al., 2004; 

Birkett, 2003; Petrović & Barceló, 2000; Brunner et al., 1988). Post anaerobic 

treatment, the most beneficial usage of sewage sludge is its application as agricultural 

fertilizer (Smith, 1996 ) in comparison to landfill or incineration disposal practices, 

since plant nutrients and organic matter are recycled in that way into soil (Laturnus et 

al., 2007). Sewage sludge use in agriculture is encouraged through the Directive 

91/271/EEC, (European Commission, 1999) as the most beneficial and sustainable rout, 

therefore potential risks may result for ecosystems through the use of sludge 

contaminated with EDCs (Harrison et al., 2006; Maguire, 1999). Besides, the uptake of 

EDCs by indigenous organisms and plants (Günther & Pestemer, 1990), leachate on the 

other hand and run-off can also be potential sources to aquatic environments, including 

groundwater (Kouloumbos et al., 2008b; Birkett, 2003). Stricter regulations of 

wastewater industry (CEC, 1991), for example increased level of treatment and the use 

of newer technologies will most likely increase the quantity of sludge production 

(European Commission, 1999) and possibly the sludge-associated EDCs i.e. lipophilic 

species.  

Although, anaerobic digestion (AD) is the most sustainable and preferred process of 

sewage sludge stabilisation (compared to lime stabilisation or composting), studies on 

ESTs and APEOs in sludge under anaerobic conditions are limited and somehow 

inconsistent. These inconsistencies are attributed to number of factors: The mode of 

anaerobic digestion (AD) (i.e. batch, continuous) and the scale of the process (i.e. full or 

lab scale), since lab scale studies do not necessarily reflect the realistic environmental 

conditions hence, result in overestimation of the biodegradability potencies of 

organisms. Full scale AD periodically exposed to diverge influent flows and various 

engineering failures, resulting in variations of operating parameters, which ultimately 

affect their performance. In addition, steady state conditions are therefore difficult to be 

achieved (de La Rubia et al., 2006) as opposed to controlled lab scale systems. The 

matrix subjected to digestion is also important since sludges from primary 
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sedimentation tanks, secondary treatments (activated sludge, BNR), or combinations of 

those two, all have different physicochemical characteristics (Metcalf and Eddy, 2003) 

compared to i.e. synthetic sewage and therefore may differ significantly in 

biodegradability. The type of sludge treatment prior to digestion, typically referred as 

sludge disintegration treatments including physical, chemical, thermal, enzyme 

treatments or freezing and thawing (Chu et al., 1999) that aim to increase sludge 

biodegradability (Kampas et al., 2007b, a; Muller, 2000) would also have significant 

impacts to EDC digestibility and their biotransformation. EDC loadings, digestion’s 

operating conditions (i.e. temperature, pH, SRT, alkalinity), type of anaerobic 

inoculants and extent of acclimated inoculums used would also significantly account 

towards the fate of EDCs under anaerobic conditions. 
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2.4.1. Steroid estrogens 

Reports on the fate of estrogens under strict anaerobic conditions are limited. The 

reduction of E1 to E2 has been reported to occur in anaerobic conditions, without nitrate 

(Joss et al., 2004b). The authors hypothesised that electron acceptors other than nitrates 

i.e. Fe3+ and organic compounds present in sludge may have accounted as possible 

electron acceptors for E2 oxidation under anaerobic conditions (Joss et al., 2004b). In 

their study, transitional redox conditions, anaerobic/anoxic as well as anoxic/aerobic, 

increased E1 degradation by a factor between three and five respectively intensifying 

the strong influence of redox in E1 elimination (Joss et al., 2004b). It was reported that 

the extent of the biological reduction of E1 to E2 under anaerobic conditions depends on 

the type of inoculum (de Mes et al., 2008). This finding has serious implications since 

E2 is an estrogen with great concern. However, (Andersen et al., 2003) measured 

similar inlet (primary tanks) and outlet loads (anaerobic digestate) from a real scale 

STWs of E1 and E2 and concluded that under methanogenic conditions (33oC , 20 days 

retention time, 30-40% TS reduction) estrogens are not degraded considerably. In 

contrary to the findings of (Joss et al., 2004b; de Mes et al., 2007, 2008), in a study 

involved river sediment it was reported that inter-conversion of E2 to E1 occurs under 

anaerobic conditions (Czajka & Londry, 2006). However, (Matsui et al., 2000) observed 

that the aqueous phase of anaerobically digested sludge contained higher levels of E2 

than those entering the plant, suggesting the reduction of E1 to E2.  

During a lab scale batch study, (Pholchan et al., 2008) reported that alternating 

microbial populations under anaerobic/aerobic/anoxic conditions do not necessarily 

affect E2 removal. The authors observed that sorter than 5.7 days SRT in batch reactors 

E2 removal was adversely affected. Nevertheless, removals of E1, E2 and EE2 

accounted circa 60%, 90% and 36% respectively and the removal of EE2 was attributed 

to sorption considering its high Koc value (Table 2-2). Similar EE2 removals 38.5% 

were reported by (Esperanza et al., 2007) but the exact anaerobic conditions were not 

specified in their report. In contrast, no EE2 reduction was observed under anaerobic 

batch experiments (28oC) by using sludge or river sediment inoculated with seed from a 

real scale STWs during 3 years of anaerobic digestion (Czajka & Londry, 2006). During 
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a continuous mixed sludge (70:30v/v primary and secondary sludge) digestion study 

and after sludge adaptation, similar removals circa 85%, for both, E1+E2 combined and 

EE2 under mesophilic and thermophilic anaerobic conditions were reported by 

(Carballa et al., 2006; Carballa et al., 2007). The authors reported that chemically (lime) 

or thermally (60 min. at 130oC) pre-treated sludges, SRT and digestion temperature had 

no significant influence on estrogen removals.  

Strictly anaerobic desulphating strains isolated from human excreta have shown their 

ability of cleaving sulphate conjugates of E1 (E1-3S) (Johnson & Williams, 2004) as 

well as the sulphate conjugate of E2. This ability is believed to be associated with the 

use of sulphate as a terminal electron acceptor (Van Eldere et al., 1988). However, little 

research has been performed for the more persistent sulphate conjugates (D'Ascenzo et 

al., 2003a) in contrast to the glucuronide conjugates under anaerobic conditions. 

Desulphating activity of the sulphate conjugates is due to the fact that the principal 

organisms responsible are obligate anaerobes (Van Eldere et al., 1988). Despite the 

relative hydrophobicity that is associated with some steroid estrogens indicating the 

potential for accumulation in sludge matrices (primary and secondary) researchers do 

not report the quantities in the solid phase (μg kg-1 dw).    

2.4.2. Alkylphenolic compounds 

Concentration ranges for NP in digested sludges varies from 6.5-2530 mg kg-1 dw 

whilst the range for NP1-2EOs is 0.75-304 mg kg-1 dw which is similar to that of NPECs 

i.e. 0.08-242 mg kg-1 dw. In anaerobic as well as aerobic conditions, the ethoxylate 

chain of higher ethoxylate APEOs is shortened until persistent short-chained AP1-2EOs 

are formed Figure 2-4. This breakdown proceeds by the stepwise removal mechanism of 

one ethylene glycol unit (Figure 2-4) (Chiu et al., 2010; Montgomery-Brown & 

Reinhard, 2003), in the similar way as the anaerobic biodegradation of alcohol 

polyethoxylates, proposed by (Wagener & Schink, 1988). It was reported that under 

anaerobic as well as aerobic conditions, the stepwise shortening of ethylene glycols of 

nonylphenol ethoxylates (NPEOs) was carried out by Pseudomonas putida (John & 

White, 1998). Recently, (Zhang et al., 2008) studied the biodegradation of NPEOs in a 
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lab-scale upflow anaerobic sludge blanket (UASB) and reported that the predominant 

species during the 90 days of anaerobic digestion were NP1-3EO>NP which were 

formed immediately after the commencement of the experiment. Nucleotide sequence 

analysis identified that Clostridium sp., gram-positive bacteria, (oxygen-independent 

prokaryotes) were the dominant species in the UASB system but NPEO degrading 

bacteria were the dominant indigenous species in sewage.  

Although carboxylated APEOs (APECs) believed to be exclusive aerobic intermediates 

(Stephanou & Giger, 1982; Di Corcia et al., 1994), the formation of short chained 

OPECs and their persistence over 190 days during the mesophilic anaerobic digestion of 

mixed sludge, (a mixture of primary and waste activated sludge from a municipal 

STWs), was firstly reported by (Ball et al., 1989b). Substantial oxidation of APEOs 

resulted in the formation of APECs in mesophilic anaerobically digested sludges 

obtained from real scale STWs was also observed by (Field & Reed, 1999). Reported 

concentrations of NP1–4EC in anaerobically digested sludges from real scale STWs were 

in the range 27–113 mg kg–1. Nonylphenoxy ethoxy carboxylate (NP2ECs) was the most 

abundant oligomer, and with ortho-to-para isomer ratios ≥ 1, which indicated the 

depletion of para NPEC isomers relative to ortho isomers during anaerobic sludge 

treatment. By contrast, sludge that had not undergone anaerobic treatment contained 

only para isomers, which implied specific isomeric degradation (Chiu et al., 2010). The 

presence of NPECs in lab-scale anaerobic reactors was observed on the 9th day of the 

commencement of the experiment (Schröder, 2001) indicating that even under 

anaerobic conditions NPEC formation could be prompt. During anoxic batch lab-scale 

studies of sediment slurry (Ferguson & Brownawell, 2003) reported the presence of 

carboxylated APEOs.  In another study, (Minamiyama et al., 2006) investigated NPEO 

degradation in lab-scale mesophilic anaerobic digesters (28days SRT) in which NP2EC 

showed the highest resistance (20 days) in degradation. It has been suggested that 

concentrations of NP1-3EO>NPEC indicate that the predominant degradation route has 

been under anaerobic conditions, while if NP1-3EO<NPEC then this would indicate that 

aerobic degradation is predominant (Tarrant et al., 2005; Petrović et al., 2001; Petrović 

& Barceló, 2001; Barber et al., 2000). According to the current literature, long-chained 

carboxylated nonylphenol ethoxylates i.e. NP>4EC (i.e. in (Bruno et al., 2002), alkyl 
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chain carboxylated APEOs i.e. CAPEs or dicarboxylic APEO metabolites i.e. CAPECs 

have not been reported under anaerobic conditions. This is presumably attributed to the 

lack of available analytical methods for anaerobically digested sludges and to a lesser 

extent of the absence of these species under anaerobic conditions.     

According to the current reports, it appears that formation of APECs is not exclusively 

oxygen dependant but it also depends on the predominating microbial consortia and 

substrate and it seems of being irrespective of aerobic or anaerobic conditions. Since 

under anaerobic conditions a food chain (hydrolysis, acidogenesis, acetogenesis, 

methanogenesis) is required to degrade aromatic macromolecules (i.e. APEOs) to 

oligomers, formation of NPECs could occur  co-metabolically as it has been suggested 

by (Hayashi et al., 2005) for aerobic environments.   

Under relatively high redox potential (-100 – -50 mV), sulphate reduction is favoured 

over methanogenic bacteria (Gerardi, 2003) because sulphate reducers have higher 

affinity for hydrogen or other reducing equivalents (Omil et al., 1998). Although the 

reduced equivalents of APEOs would require electron acceptors such as SO4
-2, Fe3+, 

Mn4+, CO2 for microbial metabolism, mixed anaerobic cultures would be required for 

ultimate APEOs reduction since methanogens can only utilise simple low molecular 

organic molecules such as acetate or methylamines (Whitman et al, 1992 and Winter, 

1984) the products of hydrolysis and fermentation.  

It is well documented that under anaerobic conditions, alkylphenols APs (NP and OP) 

the degradation products of APEOs, are major metabolites (Soares et al., 2005; 

Montgomery-Brown & Reinhard, 2003; Schröder, 2001; Ejlertsson et al., 1999; Brunner 

et al., 1988; Stephanou & Giger, 1982). This is attributed to the presence of highly 

branched alkyl group on the phenolic ring, the high hydrophobicity of APs and due to 

the large number of isomers present in commercial products that defer from one 

manufacturer to another, including the reference materials used for quantitative 

analytical studies. Theoretically, 211 constitutional NP isomers exist in which many of 

these isomers posse three chiral C-atoms, so that in total 550 NP compounds are 

possible of which 50-80 are estimated to be present at the same time in biological 
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matrices (Guenther et al., 2006; Montgomery-Brown et al., 2008). A spectra analysis of 

a reference material revealed the presence of 22 p-NP isomers (five distinct p-NP 

isomeric groups were identified which were differed by the substitution of the alpha-

carbon on the alkyl chain (Wheeler et al., 1997). As a result, bioavailability of APs is 

reduced (Ejlertsson et al., 1999; Schröder, 2001) and this is primarily attributed to the 

luck of a large number of hydrolysing exoenzymes which are required for the 

conversion (hydrolysis) of NP isomers to CH4, CO2, (in the absence of sulphate) or H2S 

and CO2, (in the presence of sulphate). Since sources of APEOs in STWs and ultimately 

within ADs are highly diversified, short SRT does not allow stabilization, adaptation 

and proliferation of mixed anaerobic cultures for adequate production of selected 

exoenzymes required for APs degradation (oxidation) as it is the case for the reductive 

dechlorination requirements (Kafkewitz et al., 1996). Besides, irregular APEOs 

loadings, in terms of both mass and speciation, abate degradation potential that 

otherwise i.e. during permanent APEOs loadings it would be risen. Because of the 

aforementioned issues, an approximate mass balance has never been reported as yet. 

Nonetheless, (Ferguson & Brownawell, 2003) in their study on the fate of NP under 

anoxic mesophilic batch lab-scale of sediment slurry they did not observe NP 

production. Recently, the degradation of spiked NP within 84 days of incubation, during 

batch mesophilic anaerobic digestion by using different electron acceptors on river 

sediment and sewage sludge was reported by (Chang et al., 2005; Chang et al., 2004). 

Nonylphenol degradation rates in their lab scale studies were sulphate-reducing 

conditions > methanogenic conditions > nitrate reducing conditions at pH 7.0. 

Nonylphenol monoethoxylate was also degraded, however the presence of NPECs was 

not reported. Bacteria that showed the highest NP degradation rates were identified as 

being Bacillus cereus (strain TN1), rod-shaped gram positive and Acinetobacter 

baumannii (strain TN6), coccus-shaped gram-negative (Chang et al., 2005). In another 

study, during continuous mesophilic (20 d HRT) anaerobic digestion of mixed sludge 

(50:50v/v primary and secondary sludge), (Patureau et al., 2008) and co-workers 

observed that the complete degradation of NP2EO and the partial degradation of NP1EO 

(80%) did not contribute to NP accumulation. This observation and the absence of 

NPECs in their samples led them to conclude that NP degraded by circa 25%. Authors 
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attributed the low NP degradation to the high content of organic matter in sludge (75% 

of TS) compared to that in river sediment or sludge reported by (Chang et al., 2005; 

Chang et al., 2004) in which NP degraded within 84 days. Patureau et al (2008) 

observed increased NPEOs removals during continuous thermophilic anaerobic (20 d 

HRT) digestion of mixed sludge (50:50v/v primary and secondary sludge) compared to 

their mesophilic anaerobic digestion study. A 60% degradation of spiked NPEOs within 

3 days under Fe3+ reducing conditions was reported by (Lu et al., 2007). Although 

degradation of NP or presence of NPECs was not observed during the batch anaerobic 

(300C) experiment by using river sediment and synthetic sewage, NPEOs degradation 

was coupled to Fe3+ reduction. 

2.5. Literature review summary 

The limited studies indicate that under anaerobic conditions steroid estrogens are 

difficult to digest. It has been shown that reduction of E1 to E2 may occur under 

anaerobic conditions (de Mes et al., 2008; Carballa et al., 2007; Carballa et al., 2006; 

Joss et al., 2004b) whereas the extent of this reaction depends on the inoculum. 

However, the reverse reaction i.e. E2 to E1 under anaerobic conditions is unlikely to 

provide energy to the cells involved and probably this reaction represents the use of E2 

as an alternative electron acceptor to regenerate co-factors (NAD) (Czajka & Londry, 

2006). It was hypothesised that electron accepting conditions i.e. redox potential or the 

amount of thermodynamically available free energy would determine the rate and the 

extent of this reaction which is independent of the total amount of steroid estrogens 

added (Czajka & Londry, 2006). In addition, inter-conversion of E2 to E1 and back to 

E2 was observed under methanogenic, sulphate-reducing and iron-reducing conditions 

(Czajka & Londry, 2006) (Figure 2-3). Similarly, limited studies indicate that EE2 is 

recalcitrant in anaerobic conditions whereas there are no published data on the fate of 

E3 and E1-3S in relation to anaerobic digestion. 
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Figure 2-3 Relationship between E1 and E2 in anaerobic and aerobic conditions.   

At present, the reported breakdown mechanisms of APEOs and their associated 

metabolites under anaerobic conditions are inconsistent. The shortening of long-chained 

ethoxylates proceeds rapidly both aerobically and anaerobically (Figure 2-4), (Chiu et 

al., 2010). However, the presence of carboxylated nonylphenol ethoxylates during 

anaerobic digestion has been reported but due to the limited studies these metabolites 

have been overlooked in anaerobic conditions. Despite the fact that the regulated NP is 

a typical recalcitrant by-product of the anaerobic degradation of nonylphenol 

ethoxylates, recent studies were carried in anaerobic environments have shown its 

disappearance.
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Figure 2-4 Anaerobic degradation pathways of APEOs. Adapted with modifications 

from (Renner, 1997).  
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3. MATERIALS AND METHODS  

3.1. Feed sludge sampling  

Sludge samples for both mesophilic and thermophilic experiments were collected from 

Sheffield STWs, (Woodhouse Mill) U.K. during dry weather conditions on two 

occasions, April 2007 and April 2008, respectively. One sampling event per trial 

ensured constant feed and background EDCs levels during mesophilic or thermophilic 

digestion. The specific STW was an activated sludge plant with a population equivalent 

(PE) of 155,000, trade ~10%. Sludge stabilisation on site was carried out by two 

continuous mesophilic (32ºC) anaerobic digesters (450 m3 d-1) with 28 days nominal 

retention time (Figure 3-1). Digesters were fed every hour for 20 minutes continuously 

with mixed sludge (primary / surplus activated sludge (SAS) 60/40 v/v) from the 

balancing tank.     

 

 

Figure 3-1 Woodhouse Mill, STW sampling site. 
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Primary sludge was collected directly from the pump room from the first primary 

sedimentation tank; after withdrawing several 25L containers ensuring sampling of 

fresh sludge whereas mixed sludge (primary/SAS) was sampled directly from the 

balancing tank. For the mesophilic trial, approximately 50L of primary and 40L of 

mixed sludge were collected respectively to ensure the continue operation for 360 days. 

For the thermophilic trial, approximately 30L of primary and 20L of mixed sludge were 

collected respectively to ensure the continue operation for 180 days. Mesophilic 

digestate (seed) (see section 3.2.1) was sampled directly from the outlet of digester 1. 

Feed sludges were collected in 25L plastic containers whereas the seed sludge was 

stored in 10L plastic containers that had been completely filled up to minimise air 

entrance into the container. All sludges were then transported immediately to the 

Cranfield laboratories where sludge processing commenced within 6hrs according to 

sections 3.1.1 and 3.2.4.  
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3.1.1. Sludge handling and processing  

After transportation to the laboratories, all the sludge types were manually homogenised 

in 75L PTFE containers (Fisher Scientific, UK) and packed to pre-labelled 

polypropylene containers (Fisher Scientific, UK) for storage in the freezers at -25ºC. All 

containers used, had been previously washed as it is described in section 3.2.1.    

Primary sludge was sieved through a 2mm fish net (Alana Ecology Ltd, UK) prior to 

homogenization in order to remove debris and the fibrous materials so as to prevent 

blockage of the feeding and wasting lines in the laboratory reactors.   

3.1.2. Experiments and investigated variables  

For the fulfilment of the research hypotheses a series of experiments were carried out as 

shown on Table 3-1. The investigated variables for all experiments were: sludge type 

i.e. primary and mixed sludge, digestion temperature, sludge retention time, pH, total 

solids, volatile fatty acids, alkalinity and redox potential.  

Table 3-1 Conducted experiments  

Digestion 
temperature 

Sludge type  Number of 
digesters 

Retention time (days)  

Six retention time experiments 

Mesophilic 35oC Primary (PSM) Two 30 
Mesophilic 35oC Mixed (MSM) Two 30 

Thermophilic 53oC Primary (PST) One  15 
Thermophilic 53oC Mixed (MST) One 15 

Shock loading experiment 

Mesophilic 35oC Primary (PSM) One 30 
Mesophilic 35oC Mixed (MSM) One 30 

Key: PSM (primary sludge mesophilic), PST (primary sludge thermophilic), MSM 
(mixed sludge mesophilic), MST (mixed sludge thermophilic) 
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3.2. Anaerobic digesters (set up)  

The set up used for both mesophilic and thermophilic anaerobic digesters was similar. 

Four, 2L borosilicate lab scale digesters with an effective capacity of 1.5L each and 100 

mm flange bore flask lids (QUICKFIT-19/26, Fisher Scientific, UK) were used for the 

mesophilic anaerobic digestion whereas two identical digesters were used for the 

thermophilic anaerobic digestion. Although the utilisation of more thermophilic 

digesters was initially considered for this study, it was later proven impractical due to 

space constraints of the available set up (rig).   

Anaerobic conditions within the digesters were ensured by using vaseline and PTFE o-

rings between the vessels and the five socket flask lids which were secured with 

appropriate size flask clips, QUICKFIT stirring glands (with 5ml glycerol in the gland, 

the air trap), QUICKFIT cone/screwthreads and QUICKFIT joint clips (Fisher 

Scientific, UK), as shown in (Figure 3-2). 

 

 

Figure 3-2 Setup of anaerobic digesters/bioreactors. 
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QUICKFIT feed and waste lines were custom prepared by (Soham Scientific, 

Cambridge, UK) equipped with straight bore PTFE BiBi valves (I.D. 8mm) having an 

upper I.D. 10mm and a total length of 200mm. Feed lines were secured on the 5º socket 

on the flask lid, whereas waste lines on the 10º socket ensuring the waste line was 

located above the feed line (Figure 3-6).  

To ensure complete mixing conditions for effective digestion conditions i.e. to 

overcome problems such as poor mixing and solids’ precipitation, overhead stirrers 

(Heidolph Instruments, Schwabach, Germany) with stainless steel stirring paddles of 

450mm total length (O.D.8mm) equipped with 4-blade propellers (Fisher Scientific, 

UK) were safely secured on the central QUICKFIT gland socket (0º) of each reactor. 

Digestion was carried under continuous stirring conditions at 90-100rpm for the whole 

digestion period.  

Digesters were immersed in a thermostatically controlled water bath (170L capacity) by 

using a VFP Thermostatic Circulator (Grant Instruments Ltd, Shepreth, UK). Floating 

polypropylene spheres were added to the water’s surface to minimize water evaporation 

and a black die was added in the water bath to prevent light entering the digesters 

through the transparent water tank.  

Biogas was conveyed from each bioreactor to its dedicated gas collection cylinder 

(Figure 3-3) via Nalgene® 380 tubing (11.1mm Fisher Scientific, UK) through the 

fourth flange socket (0º) equipped with the appropriate hollow QUICKFIT borosilicate 

glass. 
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Figure 3-3 Gas measuring apparatus of the lab scale anaerobic digesters. 

 

The fifth socket on the flange lid was constantly blocked with a hollow blown Pyrex 

stopper secured with QUICKFIT joint clips (Fisher Scientific, UK) appropriately. The 

setup of the lab scale anaerobic rig is shown in (Figure 3-4) and a schematic diagram in 

Figure 3-5. 
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Figure 3-4 Lab scale anaerobic set up used for the evaluation of EDCs. 
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Figure 3-5 Schematic diagram of anaerobic digesters used in the EDC project. 
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3.2.1. Mesophilic digesters start-up  

Mesophilic digestion (35º ± 0.2ºC) of primary and mixed sludges commenced on the 

sampling day by utilising four digesters. Two digesters (duplicate) were running with 

primary sludge (PSM) and two digesters (duplicate) with mixed sludge (MSM). All four 

digesters were run at semi-continuous feed mode i.e. once daily manual feeding.  

To commence digestion, each digester was seeded with 1.5L mesophilic seed (see 

section 3.1). After seeding, N2 gas (99.99%) (BOC Gases, Manchester, UK) was flashed 

into each digester for 10 minutes at a flow rate of ~80ml min-1 ensuring the absence of 

atmospheric air in each reactor. On the same day, 50ml of each digester were wasted 

(removed) and the same volume was replaced with either primary or mixed sludge 

according to the type of digester. Feed was at (35º ± 0.2ºC) prior to addition to each 

digester. The nominal retention time for the mesophilic digesters was 30 days. No 

supernatant was removed from the digesters and there was no grit accumulation due to 

the effective constant stirring conditions. In order to avoid gas-outlet blockages from 

possible scum and foaming effects, each digester’s total sludge volume did not exceed 

the digesters effective volume e.g. 1.5L. 

All digesters’ parts e.g. all QUICKFIT components (flasks, lids, feed and waste lines), 

syringes, pipettes and stirring rods were appropriately washed before use. The washing 

procedure involved: initial acid wash in the dishwasher (without detergent), then 

immersion in 5% v/v sodium hypochlorite for 24hrs followed by deionised water and 

then further immersion in 5% v/v hydrochloric acid solution for further 4hrs and then 

final wash with deionised water.  

For the whole period of digestion, each digester was allocated its own dedicated 

syringes (for feeding and wasting), pipettes and any other materials required for 

maintenance and /or cleaning avoiding cross contamination between the digesters.  
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3.2.1.1. Temperature conversion (mesophilic to thermophilic)  

Due to unavailable thermophilic seed, mesophilic seed was used after it was converted 

to thermophilic seed (53ºC ± 0.2ºC). After the successful temperature conversion, the 

thermophilic trial commenced by removing (waste) 100ml of sludge of each digester 

and by replacing the same volume with either primary or mixed sludge according to the 

type of digester. Thermophilic nominal retention time was 15 days. 

Two different strategies were utilised for the change of the mesophilic to  thermophilic 

culture which involved slow and gradual temperature increase with intermittent feeding, 

in order to ovoid digesters’ overloading. The first trial involved a temperature increase 

rate of 0.71ºC d-1 but this rate proved unsuccessful. A second and successful attempt 

involved a much lower temperature increase rate of 0.29ºC d-1 (Appendix I).   

3.2.2. Thermophilic digesters (start-up)  

Thermophilic digestion (53ºC ± 0.2ºC) of primary and mixed sludges commenced after 

the successful temperature conversion by utilising two 5L digesters with 1.5L sludge 

volume content. One digester was running with primary sludge (PST) and the other 

digester with mixed sludge (MST). Both digesters were run at semi-continuous feed 

mode i.e. once daily manual feeding.  

Thermophilic digesters’ start up was similar to the start up of the mesophilic digesters. 

After seeding (see section 3.2.1.1), N2 gas (99.99%) (BOC Gases, Manchester, UK) was 

flashed into each digester for 20 minutes at a flow rate of ~80ml min-1 ensuring the 

absence of atmospheric air in each reactor. Nominal retention time for the sludge in 

each thermophilic digester was 15 days. No supernatant was removed from the digesters 

and there was no grit accumulation due to the effective constant stirring conditions. In 

order to avoid gas-outlet blockages from possible scum and foaming effects, each 

digester’s total sludge volume did not exceed the digesters effective volume e.g. 4L. 

Digesters’ size and their sludge volume was primarily dependant on the available rig 

space and the freezers’ storage capacity for storing two different sludge types for 

approximately 180 days (for two digesters).  
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3.2.3. Anaerobic digesters’ operating schedule 

Sampling and feeding for the whole digestion period for all types of digesters was 

carried out by following the sequential steps as shown in Table 3-2. All digesters were 

sampled and fed manually once on a daily basis between 11:00 – 12:00 hours for the 

whole period of digestion. Feeding the digesters at more frequent intervals by using 

peristaltic pumps was considered impractical since all feed types were kept frozen for 

the whole digestion period. 

 

Table 3-2 Anaerobic digester’s operation mode 

Steps Activity Section 
1 Biogas measurement 3.2.3.1 
2 Biogas composition 

analysis  
3.2.3.2 

3 Sludge sampling (wasting) 3.2.3.3 
4 Sludge feeding (feeding) 3.2.3.4 
5 Acid levelling 3.2.3.1 
6 Rig maintenance 3.2.3.1 

 

3.2.3.1. Biogas measurement 

Separate biogas collection units were dedicated for each digester. The collection and 

measurement of biogas was achieved by using ‘the manual liquid displacement 

principle’ ISO/DIS 14853 (1999) by utilising an Eudiometer. Eudiometers are used as 

anaerobic biodegradability techniques in aqueous or sludge systems (Guwy 2004, Valke 

and Verstraete 1983, Kirk et al, 1982) by measuring gas at atmospheric pressure. 

Although this method is labour intensive and requires careful adjustment of the 

displacement liquid for accurate measurement of biogas the particular apparatus was 

chosen as the most appropriate method for the specific set up.  

Other types of gas measurement during the initial anaerobic trials were also utilised e.g. 

gas displacement method by using inverted cylinder immersed in an acid bath (HCl, 1.0 
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mol, pH 4), and the use of biogas bags (8L). Both methods resulted to identical and 

comparable results in terms of biogas volume and composition to that of the 

Eudiometer.  

The biogas measurement apparatus utilised, consisted of a sealed graduated glass 

cylinder I.D. 100mm (5L effective volume) filled with acidified water (HCl, 1.0 mol, 

pH 4) connected to a balancing reservoir (open to the atmosphere) (Figure 3-6).  Biogas 

from the headspace of the digester was transferred to the headspace of the graduated 

glass cylinder by displacing the acidified barrier solution in the balancing reservoir tank. 

The excess acidified water in the balancing reservoir was over flown into the acid 

collection tank. Biogas was measured by graduation from the acid height difference at 

atmospheric pressure by converting the height loss of the acidified solution in the 

graduated cylinder into volume of gas produced according to Equation 1.   

ሺ݈݉ሻ ݁݉ݑ݈݋ݒ ݏܽܩ ൌ 77.8 ൈ ݄ ൈ
ሺ1019.7 െ 62 ൅ ݄ሻ

1019.7  

Equation 1 

 

Where, 77.8 ml was the glass cylinder calibration for 1 cm, h was the height loss of acid 

(cm), 62cm was the working length of the gas-measuring cylinder and 1019.7 stands for 

the standard atmospheric pressure in cm water gauge. The vent valve (V3) on each 

graduated cylinder was permanently connected to the fume cupboard for the whole 

period of digestion to avoid suffocation and/or explosion. For the detailed description of 

the Eudiometer operation see Appendix II.   

3.2.3.2. Biogas composition  

After biogas measurement, an aliquot of biogas was sampled from the Suba seal on the 

top of the graduated cylinder by using a concentric Luer Lock gas tight amber syringe 

(VWR International, Dorset, UK) with a bevel tipped needle (Fisher Scientific Ltd, 

UK). Ten millilitres of biogas were injected into the gas analyser Servomex 1440 D 
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infra–red (Servomex Group Ltd, Crowborough, UK) modified for CH4 analysis. One  

biogas sample of each reactor was analysed for methane content. Between injections a 

stream of N2 gas (99.99%) (BOC Gases, Manchester, UK) was passed through the infra-

red cell of the gas analyser to remove residual methane molecules and to prevent carry 

over effects. The Servomex gas analyser was calibrated weekly by using N2 gas 

(99.99%) (BOC Gases, Manchester, UK) to set the zero point for calibration and CH4 

gas (99.999%) canister (Sigma-Aldrich Co Ltd) to set the 100% span. The septum 

(Servomex Group Ltd, Crowborough, UK) on the sample delivery port on the gas 

analyser was replaced regularly according to Servomex Group Ltd® specifications.    

 

 

Figure 3-6 Schematic diagram of the Eudiometer apparatus used in the EDC project. 
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3.2.3.3. Sampling regime (digestate) 

Following biogas measurement and composition analysis, each digester was sampled 

(wasted) before feeding to avoid removing the freshly added feed. Sampling/feeding 

regime was semi-continuous. Sampling occurred daily on one occasion between 11:00 – 

12:00 hours. Table 3-3 summarises the sampling protocol by using the difference in 

hydrostatic pressure between the acid level in the acid reservoir to that level in the 

graduated cylinder. The sampling regime for the determination of EDCs is described in 

section 3.5. 

Table 3-3 Sampling protocol by using the hydrostatic pressure difference  

Step Valve Balancing 
reservoir port Activity 

1 - - Connect syringe to waste line 
2 - x Close BR’s lower port 
3 V1 - Open 

4 - - Wait for 2cm acid raise in 
graduated cylinder 

5 Waste line - Open to obtain sample and then 
Close 

6 V1 - Close 
7 - x Open BR’s lower port 
8  - - Observe and record acid level drop 

BR: Balancing reservoir 

3.2.3.4. Feeding regime 

After the completion of sampling, immediately the same sludge volume (50 ml for the 

mesophilic and 100 ml for the thermophilic digesters) was replaced with primary or 

mixed sludges respectively. The frozen sludges were left to thaw adequately in the 

laboratory. To minimize temperature variability within each digester, each feed bottle 

container was semi-immersed in the rig’s water bath (35º ± 0.2ºC or 53º ± 0.2ºC) for 

adequate time before feeding. Each sludge type was vigorously shaken up by hand 

before feeding. The complete sampling / feeding protocol is shown in Table 3-4. For the 

detailed description of sampling/feeding see Appendix III.   
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Table 3-4 Protocol for sampling and feeding. 

Step Valve 
V1 

Valve 
V2 

Valve 
V3 

BR 
lower  
port 

Waste line Feed line Activity Observation 

1 Closed Open Closed Open Closed Closed Biogas measurement & biogas analysis Record acid height 

2 Closed Open Closed Open Closed Closed Connect syringe to WASTE line - 

3 Closed Open Closed Closed Closed Closed BALANCING RESERVOIR - lower port - 

4 Open Open Closed Closed Closed Closed V1 2cm acid raise in graduated cylinder 

5 Open Open Closed Closed Open Closed WASTE LINE – obtain sample - 

6 Open Open Closed Closed Closed Closed WASTE LINE - 

7 Closed Open Closed Closed Closed Closed V1 - 

8 Open Open Closed Open Closed Closed BALANCING RESERVOIR - lower port Acid level drop 

9 Open Open Closed Open Closed Closed Connect syringe to FEED line and introduce 
feed sludge - 

10 Open Open Closed Open Closed Open FEED LINE – feed sample - 

11 Open Open Closed Open Closed Closed FEED LINE - 

12 Open Close Open Open Closed Closed V2 & V3 Acid raise in graduated cylinder 
above BR level 
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13 Closed Close Open Open Closed Closed V1 Wait for acid to level between BR 
and graduated cylinder  

14 Closed Open Close Open Closed Closed V3 & V2 Record acid height 

BR: Balancing Reservoir 
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3.2.4. Monitoring digesters’ performance  

The digesters were monitored on a weekly basis from the commencement of the 

experiment by measuring total and volatile solids destruction, gas production and 

methane content, pH, alkalinity, redox (ORP), volatile fatty acids (VFAs) and 

temperature (Table 3-5). Chemical Oxygen Demand (COD) and soluble COD (SCOD) 

was also measured intermittently.            

Table 3-5 Routine analysis for feed and digestates (sampled sludges) in all digesters. 

Parameters measured Frequency Sludge type 
Biogas  Daily  All digesters 

Methane Daily All digesters 
pH Daily All digesters 

Temperature Daily Feed and Waste 
Total solids Weekly  Feed and Waste  

Volatile solids Weekly  Feed and Waste  
VFAs Weekly Waste 

Alkalinity Weekly Waste 
Redox Weekly Waste 

 

3.2.4.1. pH and temperature 

Sampled sludges were measured daily for pH and temperature as part of the digesters 

monitoring regime by using a VWR pH meter-100 (VWR International Limited, UK) 

calibrated weekly to ensure its reliability and accuracy, by using pH buffers pH=4 - 10 

(VWR International Ltd).  

3.2.4.2. Redox 

Sampled sludges were measured weekly for their redox potential as part of the digesters 

monitoring regime by using an Ion Meter 3340 (Jenway Ltd, Essex, UK) coupled to a 

platinum (924003) probe, calibrated weekly to ensure its reliability and accuracy, by 

using redox standard (465mV) (Jenway Ltd, Essex, UK).  
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3.2.4.3. Total solids 

Total Solids (TS) content was determined by the Standard Method 2540B (APHA, 

1998). A clean pre ignited (550°C for 4 hours required for the consecutive volatile 

solids analysis) weighted porcelain crucible (Fisher Scientific UK Ltd) that had been 

previously cooled in a desiccator was used to accommodate a well mixed homogenised 

sludge sample (10ml). The loaded crucible with sample was reweighed and evaporated 

overnight at 105°C in a drying oven. After drying, crucible contained the sample were 

put in a desiccator for adequate time (~20 minutes) and then reweighed.  

Total solids analysis of both feed and digestates in all digesters was carried out in 

duplicate. However, the available sludge volume for the solids analysis, particularly in 

sampled sludges was only 10 ml (x2) as the remaining portion of the sample was 

subjected for further analysis. However, when it was possible larger sludge volumes 

were analysed for solids.  

Total solids (TS) content was determined according to Equation 2, where A value is the 

weight after drying at 1050C (g), B is the weight of the pre ignited crucible (g) and C is 

the samples volume (ml).    

                                       1000x )(      )L (g TS              1-

C
BA −

=  

Equation 2 

 

3.2.4.4. Volatile solids 

Volatile Solids (VS) content was determined by Standard Method 2540E (APHA, 

1998). The residue obtained from the total solids analysis was ignited in a furnace (550° 

C for 4 hours), then cooled in a desiccator and re weighed.  

Volatile solids (VS) content was determined according to Equation 3, where A is the 

weight of the dry crucible (1050C) from total solids determination (g), B is the weight of 
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the crucible after ignition at (5500C) (g) and C is the sample volume (ml) (see 3.2.4.3 

section).    

                                                         1000x )(      )L (g VS              1-

C
BA−

=  

Equation 3 

 

3.2.4.5. Preparation of solid free sludge fraction  

Preparation of the solid fraction was required for the determination of soluble VFAs and 

alkalinity. The solid free fractions were prepared by centrifugation (~30 ml) of sampled 

sludges for 10 minutes at 4193 g in a Rotanta 96 R centrifuge (Hettich Zentrifugen, 

Tuttlingen, Germany) and then filtering the supernatant through a 70 mm Schleicher & 

Schuell Grade GF 52 glass fibre filter paper (Patterson Scientific, Bedfordshire, UK) to 

remove any residual suspended matter.  

3.2.4.6. Volatile fatty acids (VFAs) 

Total VFAs were analysed according to the HACH method 8196 (HACH, 1992) for 

digested sludges (0 – 2800 mg L-1 acetic acid). All reagents for the total VFAs test were 

supplied by Camlab Ltd, Cambridge, UK.  

Sludge samples for total VFAs analyses were prepared according to section 3.2.4.5. An 

aliquot of 500μl (suspended solid-free prepared sample) was added to a 25 ml HACH 

sample cell followed by the addition of 1.5 ml ethylene glycol and 200μl sulphuric acid 

(19.2 N). After esterification, the sample was digested at 100°C in a water bath for 3 

minutes. The sample was cooled under running tap water and 500μl of hydroxylamine 

hydrochloride was added and the cell was swirled. Two hundred microliters (200μl) of 

sodium hydroxide (4.5 N) were added to the sample cell followed by swirling. Ten 

millilitres (10 ml) of ferric chloride were added followed by swirling and finally, 10 ml 

of deionised water were added. The sample was swirled and simultaneously a 3 minute 

reaction time was started. The HACH DR/2010 portable data logging 
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spectrophotometer was then calibrated with a zero VFAs sample (blank) and respective 

samples were subjected for total VFAs analysis. Results obtained in mg L-1 as acetic 

acid. All samples were analysed in duplicates.   

3.2.4.7. Total alkalinity 

Sludge samples for total alkalinity determination were prepared according to section 

3.2.4.5. Alkalinity was determined by titrating 10ml of prepared sample (suspended 

solid-free) against freshly prepared 0.02 M hydrochloric acid to pH (4.5) end point 

according to Standard Method 2320B.4c (APHA, 1998). The pH in solution was 

measured by immersing the pH probe (Hanna HI 8424, pH meter) and titration with 

HCl carried out until the end point was reached. Total alkalinity was measured as mg 

CaCO3 L-1. All samples were analysed in duplicates.   

Where A refers to the acid volume used (ml) and N is the Normality of the acid used. 

HCl is a monoptotic acid so its normality is 1.0.  

(ml)  volumesample
000,50      )L CaCO (mg  Alkalinity Total 1-

 3
××

=
NA  

Equation 4 

3.2.4.8. Calculation for first order kinetics 

First order kinetic calculations (k) assumed the mass balanced cumulative input versus 

cumulative output for each compound of interest and the changing biomass in order to 

account for the continuous addition of EDCs. First order kinetics were considered for 

the 6th retention time digestion period and follows equation 5. Where, S0 = volumetric 

cumulative influent substrate concentration (μg m-3 d-1), Se = volumetric cumulative 

effluent substrate concentration (μg m-3 d-1), V = reactor volume (m3), R = solid 

retention time (days).  

mass flux ൌ ሺS଴ െ  Sୣሻ ൈ ሺ V
R

 ሻ  
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Equation 5 

In practice the first order kinetic constant, k (d-1), is derived according to equation 6. 

 ݇ ൌ ቀ ୫ୟୱୱ f୪୳୶
V ൈ S౛

 ቁ 

Equation 6 
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3.3. Shock loading experiment  

After the completion of the six-retention time experiment, mesophilic digesters received 

higher NPEOs loadings to investigate the effects of higher NPEOs receiving 

concentrations on the biomass as well to see whether higher concentrations had an 

effect on the anaerobic digestion and/or the biodegradation process (Chapter 7). Feed 

sludges were dosed on a daily basis for one retention time (30 days) in order to observe 

the ability of biomass to constant shock NPEOs loadings. During one retention time, the 

initial biomass is wasted and replaced by new bacteria therefore the constant exposure 

to high NPEOs levels would enable the evaluation of the performance of the 30 days old 

biomass. Shorter than one retention time exposure periods would rather reflect the 

intermittent effects of shock loading onto biomass.  

Dosing occurred after each digester had been wasted. After thawing, homogenization 

(hand shaken) and temperature adaptation of the different feed sludges, 50 ml of each 

sludge type were transferred to clean pre-labelled glass beakers. The exact transfer of 

sludge volume was ensured by using volumetric cylinders (100 ml). The dosing solution 

(1 ml) was transferred directly onto the sludge surface by using pipettes. After hand 

mixing (swirling) for 10 seconds, the dosed feed was immediately introduced into each 

respective digester. However, at the commencement of the experiment (day 1), each 

digester was received an additional concentration of NPEOs in order to replace the lost 

mass of nonylphenolics that was present in the wasted sludge of day 1 and to reach the 

target concentration immediately. The replenishment concentrations for each digester 

were calculated according to the total solids content for each respective waste at a level 

equal to the concentrations obtained during the sixth retention time trials for each 

respective digester.  

All dosing solutions were prepared in distilled water. The use of solvents for the 

preparation of the dosing solutions was considered inappropriate since their presence 

could exhibit adverse effects on the digesters’ performance and/or unforeseen matrix 

effects. Dosing solutions were freshly prepared every day for the first five days and then 

every two days for the remaining period of the dosing experiment due to time 
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constraints. Dosing solutions were always kept in the fridge during the non-dosing 

periods.  

The feed sludges were dosed with the commercial surfactant mixture (Igepal CA210, 

CA520, and CA720) from Sigma-Aldrich (Gillingham, Dorset, U.K) containing only 

non-ionic nonylphenolics NP1-12EOs. It should be pointed out that dosing with the 

mixture of (Igepal CA210, CA520, and CA720) contributed only to non-ionic species 

(NP1-12EOs) and not to NP or NPECs. Dosing concentrations were according to the 

respective total solids content of the respective primary or mixed sludge mesophilic 

digesters. The dosing concentrations of NP1-12EOs for each different feed type are 

shown in Table 3-6. The dosing solution aimed to increase the concentration of the 

‘parent’ NP1-12EOs in each feed sludge to a significant higher level of 10 times higher 

the feed concentration that digester was receiving before spiking. However, due to 

inconsistencies of the stock solutions the dosed concentrations varied between the 

primary and mixed feed sludges. Dosing onto primary feed sludge resulted to 7.8x 

higher (28.7 mg kg-1 dw) the background concentration of NP1-12EOs (3.7 mg kg-1 dw) 

whereas in mixed sludge the increase was 9.0x higher (21.8 mg kg-1 dw) the background 

NP1-12EOs concentration (2.7 mg kg-1 dw). 
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Table 3-6 Dosing concentrations for nonylphenol ethoxylates in primary and mixed feed 

sludges with standard errors. 

Digester 

Background  

NP1-2EOs       

 mg kg-1 dw 

Background 

NP3-12EOs   

 mg kg-1 dw 

10x 
background 

 NP1-12EOs     

mg kg-1 dw 

Total solids in 
digester 

kg 

Received dose 
in feed sludge 

mg 

Primary 
sludge    2.15±0.34 1.54±0.20 36.9±0.0 0.07665±5.55 2.826 

Mixed 
sludge    1.68 ± 0.27 0.75±0.16 24.2±0.0 0.08565±6.45 2.076 
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3.4. Steroid estrogens and alkylphenolic ethoxylate analysis 

3.4.1. Surfactants (Alkylphenolic compounds) 

 

The technical 4-nonylphenol mixture of various chain isomers and 4-tert-octylphenol 

were obtained from Sigma-Aldrich (Gillingham, Dorset, U.K). The long-chain APEO, 

OPEO (Igepal CO210, CO520, CO720) and NPEO (Igepal CA210, CA520, CA720) 

were available in a commercial surfactant mixture containing different oligomers also 

purchased from Sigma-Aldrich (Gillingham, Dorset, U.K). Nonyl- and octyl - phenoxy 

acetic acids (NP1EC, OP1EC), 4-nonyl- and octyl-phenol-mono- and diethoxylates 

(NP1EO, NP2EO-OP1EO, OP2EO) were available as individual reference materials 

obtained from QMX Laboratories (Thaxted, Essex, U.K).   

Single standard stock solutions of the analytes were prepared by weighing out milligram 

amounts of the reference materials and then dissolving them in acetonitrile (ACN). 

Reagent grade MilliQ water (18.2 mΩ) (Millipore, Watford, UK) was used in the 

preparation of the working standard solutions. The working standard solutions and 

spiking solutions were prepared from the standard stock solutions by further dilution 

with acetonitrile/MilliQ water (50:50 v/v). HPLC-grade organic solvents that were used 

for extracting alkylphenolic compounds from sewage and sludge matrices were 

methanol (MeOH), acetone, hexane, acetonitrile (ACN), purchased from Rathburn 

Chemicals (Walkerburn, UK) whereas acetic acid was purchased from Sigma-Aldrich 

(Gillingham, Dorset, U.K). Silica, solid phase extraction cartridges (Sep-Pak 500 mg 

3cc) purchased from (Waters Ltd, Hertfordshire, UK).   

There are no pure polyethoxylates compounds commercially available, therefore 

compounds with an average number of ethoxylate groups were used. The values derived 

for the average number of ethoxylate groups are numerical averages based on the 

surfactant molar distribution. Conversions from molar distributions to mass 

distributions were achieved by scaling the molar concentration of each oligomer by its 

molecular mass and then normalising the results so their sum was equal to one. Working 
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standard solutions prepared from standard stock solutions used to calibrate the response 

of the instrument.  

A standard stock solution containing 1 mg of each compound was transferred into a 10 

ml volumetric flask containing HPLC grade (ACN) and then made up to the mark by 

using (ACN) HPLC grade. Alkylphenolic working standard solutions of concentration 1 

µg ml-1 were prepared (10 µl of each stock solution to 10 ml volumetric flask containing 

acetonitrile/MilliQ water (50:50 v/v). Available individual standards of NP, NP1-2EO, 

NP1EC, OP, OP1-2EO and OP1EC, were combined to give 5 mg l-1. Calibration was 

performed using an eight point calibration curve at 0.01 – 25 mg l-1 for long chain 

alkylphenol polyethoxylates oligomers (NPEO and OPEO). Calibration was performed 

using a eight point calibration curve at 0.01 – 5 mg l-1 for APs (NP and OP), APECs 

(NP1EC and OP1EC) and lower chain APEOs (NP1–2EO and OP1–2EO). 

3.4.2. Steroid estrogens  

All estrogen standards (>98% chemical purity) were purchased from Sigma Aldrich 

(Dorset, UK). Deuterated (d3/4/5) labelled internal standards of estrone-2,4,16,16-d4 (E1-

d4), 17β-estradiol-2,4,16,16,17-d5 (E2-d5), estriol-2,4,17-d3 (E3-d3), 17α-

ethynylestradiol-2,4,16,16-d4 (EE2-d4) and sodium estrone-2,4,16,16-d4 sulphate (E1-

3S-d4) were obtained from C/D/N Isotopes (QMX Laboratories, Essex, UK) with >98% 

chemical purity. HPLC-grade organic solvents, ethyl acetate (EtOAc), hexane, methanol 

(MeOH), dichloromethane (DCM) were purchased from Rathburn Chemicals 

(Walkerburn, UK) and ammonium hydroxide from Sigma-Aldrich (Gillingham, Dorset, 

U.K).   Silica, solid phase extraction cartridges (Sep-Pak 500 mg/3cm3) purchased from 

(Waters Ltd, Hertfordshire, UK) and Varian aminopropyl (NH2) anion-exchange (500 

mg/3cm3) from (Varian Inc, Oxford, UK).   

Standard stock solutions were prepared in MeOH. Working standard solutions prepared 

from standard stock solutions were used to calibrate the response of the instrument. 

Standard stock solutions of 1 mg of each compound (deuterated or non-deuterated) were 

dissolved into a 10 ml volumetric flask containing methanol HPLC grade respectively 

and then made up to the mark. Secondary standard steroid solutions of concentration 1 
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µg ml-1 were prepared (10 µl of each stock solution to a 10 ml volumetric flask 

containing MeOH/MilliQ water (10:90 v/v). Calibration standards containing all five 

analytes in MeOH/MilliQ water (10:90) were used to produce an eight-point calibration 

at 1 – 100 ng ml-1 and the concentration of the deuterated internal standards was 75 ng 

ml-1. 
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3.5. Extractions of analytes from sewage sludges 

The methods employed to extract surfactants and estrogens from sludge and in the 

dissolved phase were based on (Koh et al, 2008; Koh et al, 2007) (see sections 3.5.1 and 

3.5.2), respectively.  

Homogenous, weekly composite digested sludge samples (digestates) collected from 

each digester at the end of each respective retention time were stored in the freezer at -

26º ± 1.5ºC prior to EDC analysis. Frozen digestates were lyophilised, extracted and 

then analysed for their steroid estrogens and alkylphenolic concentrations. Two 

individual samples from each respective digestate obtained out of each digester were 

separately extracted (n=2) and were analysed for steroid estrogens or alkylphenolics 

according to method developed by (Koh, 2008) (see section 3.6). 

3.5.1. Surfactants (Alkylphenolic compounds) 

Alkylphenolic compounds were eluted from solid phase extraction (SPE) cartridges by 

using a sequence of polar, non-polar and acidified solvents to elute all analytes of 

interest without the need for an additional clean-up procedure. The steps followed 

resulted to rapid processing time and facilitated quantitative analysis.      

Combined aqueous and solid phases of either untreated or anaerobically digested 

sewage sludges (digestates) were lyophilized in a ModulyoD-115® freeze-drier (Thermo 

Fisher Scientific Inc. UK) to minimize biodegradation of polyethoxylates, then stored in 

acetone-cleaned Amber glass vials (25ml) (Fisher Scientific, UK) and kept in a 

desiccator until analysis. Weighted 0.2 g (±0.002 g) of lyophilized sludge was extracted 

using 10ml MeOH/Acetone (1:1) (Figure 3-7). The suspensions were then mechanically 

shaken at 447g (Heidolph UK, Germany) for 30 minutes in acetone-cleaned centrifuge 

Teflon tubes (25 ml) followed by centrifugation at 4192.5g for 10 min. This procedure 

(mechanical shaking and centrifugation) was repeated twice. The supernatants obtained 

(20ml) were decanted in acetone-cleaned pear–shape glassware (25ml) and subjected to 

a rotary evaporator (Heidolph Instruments, Kelheim, Germany) to concentrate the 

extracts to approximately 0.2 ml. Hexane, 1.8 ml was then added to the extract and the 
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total 2 ml aliquot was passed through a pre-conditioned (Sep-Pak) silica cartridge 

(500mg, 3cc) (Waters Ltd, Hertfordshire, UK) to remove the matrix’s impurities (Koh 

et al, 2008).  
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Figure 3-7 Analytical procure used for the determination of the alkylphenolic 

compounds in sludge. (modified from Koh 2008).  
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Solid phase extraction (SPE) was carried out using a Waters Sep-Pak Vacuum Manifold 

and a vacuum pump (Waters, Watford, UK) at constant pressure and flow rate (5mb, 

5ml min-1). SPE elution with 10ml of 10% acetic acid in MeOH was followed and the 

eluate was subjected to rotary evaporator followed by N2 gas until complete dryness. 

Reconstitution with 250 μl of ACN:Water (1:1 v/v)  was followed and subsequently the 

sample was subjected to LC/MS/MS for quantification by employing (Koh et al, 2008) 

method. Quality control of individual samples was performed by spiking two different 

samples with high spike (HS) (250 μg l-1) and low spike (LS) (25 μg l-1) concentrations, 

equivalent to 1.25 and 0.125 μg g-1 respectively.   

3.5.2. Steroidal oestrogens 

Steroid oestrogens were extracted from sewage sludges by using SPE, two clean up 

stages and deuterated internal estrogen standards. All lyophilised sludge samples were 

spiked with 15 ng l-1 deuterated oestrogens as internal standard.  

Combined aqueous and solid phases of either untreated or anaerobically digested 

sewage sludges (digestates) were lyophilized in a ModulyoD-115® freeze-drier (Thermo 

Fisher Scientific Inc. UK), then stored in acetone-cleaned Amber glass vials (Fisher 

Scientific, UK) and kept in a desiccator until analysis. Weighted 0.1 g (±0.002 g) of 

lyophilized sludge was spiked with (15 ng l-1) deuterated estrogens as internal standard 

and were extracted with ethyl acetate (10 ml) (Figure 3-8). The suspensions were then 

mechanically shaken at 447g (Heidolph UK, Germany) for 60 minutes in acetone-

cleaned centrifuge Teflon tubes (25 ml) followed by centrifugation at 4192.5g for 10 

min. This procedure (mechanical shaking and centrifugation) was repeated twice. The 

supernatants (20ml) were decanted in acetone-cleaned pear–shape glassware (25ml) and 

subjected to a rotary evaporator (Heidolph Instruments, Kelheim, Germany) in order to 

concentrate the extracts to approximately 0.2 ml. Hexane, 1.8 ml was then added to the 

extract and the total 2 ml aliquot was passed through a pre-conditioned with 2 ml 

hexane (Sep-Pak) silica cartridge (500mg, 3cc) (Waters Ltd, Hertfordshire, UK) to 

remove the matrix’s impurities without letting the cartridge to dry. 
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Figure 3-8 Analytical procure used for the determination of the steroidal estrogens in 

sludge. (modified from, Koh 2008). 

 

Solid phase extraction (SPE) was carried out using a Waters Sep-Pak Vacuum Manifold 

and a vacuum pump (Waters, Watford, UK) at constant pressure and flow rate (5mb, 
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5ml min-1). The semi dry Sep-Pak cartridges were then eluted sequentially with 3ml 

EtOAc followed by 2ml MeOH without letting the cartridge dry between the different 

elutions. The collected eluates were subjected to the rotary evaporator until complete 

dryness followed by reconstitution with 200 μl of DCM:MeOH (9:1) v/v). Samples 

were then subjected to a further clean up step by using gel permeation size exclusion 

chromatography (GPC) clean up step utilising an HPLC LC-9A-System (Shimadzu UK 

Ltd) coupled to a SPD-10ADvp UV-detector (Shimadzu UK Ltd). Instrument control, 

data acquisition and evaluation were performed with a CLASS-VPTM software 7.1. A 

PLgel column, 5µm 50Å, 300 x 7.5 mm (Polymer Laboratories, Shropshire, UK) was 

used to elute the conjugated and unconjugated steroids which were detected at 280nm. 

A 6ml fraction was collected from the column using an isocratic elution of DCM/MeOH 

(90:10 v/v) at a flow rate of 1 ml min-1. All steroids were eluted between 5.5 to 11.5 

min, and a single fraction corresponding to this time window was collected. This 

fraction was dried by rotary evaporation to a final volume of approximately 0.2 ml. This 

was then reconstituted to 2 ml with hexane and loaded onto a conditioned with 2 ml 

hexane NH2 SPE cartridge (Varian Inc, Oxford, UK) at a flow rate (5 ml min-1). The 

NH2 SPE cartridge was then washed with 4 ml (10% v/v EtOAc/Hexane) at a flow rate 

(5 ml min-1). The non-polar steroids E1, E2 and EE2 were then eluted using 6ml EtOAc. 

The more polar conjugate (E1-3S) and E3 were subsequently eluted in a second fraction 

using 3% NH4OH in MeOH. The separate eluates were blown to dryness under a gentle 

stream of nitrogen, reconstituted with 0.2 ml MeOH/H2O (10:90 v/v) and transferred to 

vials prior to their quantification by using LC-MS/MS. Quality control of individual 

samples was performed by spiking all samples with 15 ng l-1 of deuterated oestrogens 

(internal standard). In addition to the internal standard samples, individual samples were 

spiked either with high spike solution (HS) (15 ng l-1) or with low spike solution (LS) (2 

ng l-1) of free estrogens. 
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3.6. Instrumentation  

All analytes (alkylphenolic compounds and estrogens) were determined using 

LC/ESI/MS/MS consisting of an HPLC (Waters Alliance HPLC system 2695) coupled 

to a Waters Quattro  Premier XE mass spectrometer with a Z-Spray ESI source 

(Micromass, Manchester, U.K.).  

3.6.1. Surfactants (Alkylphenolic compounds) 

Alkylphenolic compounds, (APs, APEOs and APEC) were separated on a Gemini C18 

column (3µm particle size, 100mm x 2mm i.d., Phenomenex, Macclesfield, U.K.). The 

mass spectrometer was operated in the positive electrospray mode (ESI+) for APEOs or 

negative electrospray ionisation (ESI–) mode for APs and APECs. The mass 

spectrometer was operated using multiple reaction monitoring (MRM). Instrument 

control, data acquisition and evaluation were performed with MassLynx software 4.1 

(Waters Ltd, Hertfordshire, U.K.). Nitrogen was used as the nebuliser gas and argon as 

the collision gas. The conditions for detection by the mass spectrometer were as 

follows, capillary voltage, 3.2kV in the positive mode and -2.3kV in the negative mode, 

RF lens at 0.5 V in the positive mode and 1.0V in the negative mode, extractor lens at 

3.0V, multiplier voltage, 650V, desolvation gas flow 1000 l h-1, cone at 50V, cone gas 

flow at 50 l h-1, desolvation temperature at 350°C and source temperature at 120°C. The 

applied analyser parameters for MRM analysis were LM 1 and HM 1 resolution 11.0, 

ion energy 1 1.0, entrance 1 (negative mode), entrance 2 (positive mode), exit 0, LM2 

and HM 2 resolution 10.0, ion energy 2 1.0. The MRM inter-channel delay was 0.05 

and the inter-scan delay 0.02 (Koh, 2008). 

3.6.2. Steroid oestrogens 

The steroid estrogens were separated on a Gemini C18 column (3µm particle size, 

100mm x 2mm i.d., Phenomenex, Cheshire, UK). The mass spectrometer was operated 

in the negative electrospray ionisation (ESI–) mode using multiple reaction monitoring 

(MRM). Instrument control, data acquisition and evaluation were performed with 

MassLynx software 4.1 (Waters Ltd, Hertfordshire, U.K.). Nitrogen was used as the 
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nebuliser gas and argon as the collision gas. The conditions for detection by the mass 

spectrometer were as follows: capillary voltage, 3.2kV, RF lens at 0.2V, multiplier 

voltage 650V, desolvation gas flow 1000 l h-1, cone at -55V, cone gas flow at 49 l h-1, 

desolvation temperature at 350°C and source temperature at 120°C (Koh 2008).  
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4. RESULTS: ANAEROBIC DIGESTION TRIALS (SIX 

RETENTION TIMES) 

This chapter reports the results from the mesophilic and thermophilic anaerobic 

digestions which were carried out over 180 and 90 days, respectively. The performance 

and stability of each type of digester under mesophilic and thermophilic conditions is 

presented in this chapter.   

4.1. Anaerobic digesters performance 

Four (1.5L) mesophilic (35oC ± 0.2oC) and two (1.5L) thermophilic (53oC ± 0.2oC) 

anaerobic digesters were utilised in this study to observe the fate of steroid estrogens 

and alkylphenol ethoxylates compounds during anaerobic digestion of sewage sludge. 

Two different sewage sludge types were used in this study to determine their possible 

differences in relation to alkylphenolic surfactants and estrogen degradation. The sludge 

types used were primary sludge collected from the primary sedimentation tank and 

mixed sludge collected from mixed tank of Sheffield sewage treatment works (STWs). 

Mixed sludge comprised of 60% (v/v) primary sludge and 40% (v/v) surplus activated 

sludge (SAS). Nominal digesters retention times in this study were 30 days for the 

mesophilic and 15 days for the thermophilic digesters. Both mesophilic and 

thermophilic trials lasted for six retention times respectively (i.e. 180 days under 

mesophilic temperatures and 90 days under thermophilic temperatures). A stabilization 

period of 90 days (3 retention times) preceded prior the commencement of the 

mesophilic anaerobic trials whereas the stabilization period for the thermophilic trials 

was 60 days (4 retention times). The results presented below are referred to the 

respective six retention time periods i.e. post the stabilisation periods for each type of 

digestion, mesophilic or thermophilic.   

4.1.1. Anaerobic digesters stability 

The data from the anaerobic digestion trials are shown in Table 4-1. Mean pH values of 

each type of digester were within the accepted ranges (Gerardi, 2003) and their values 
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reflected their respective alkalinities. During mesophilic digestion, mean pH value in 

the primary sludge digesters (7.1 ± 0.05) was lower than the mean value in mixed 

digesters (7.5 ± 0.03). Under thermophilic conditions, mean pH values were (7.2 ± 0.01) 

and (7.6 ± 0.02) for primary and mixed digesters respectively. Primary sludges for both 

mesophilic and thermophilic trials were always within the optimum pH range (6.8 – 7.2) 

whereas mixed sludges were lying between the marginal pH ranges (7.2 – 7.7) 

according to (Gerardi, 2003; Metcalf and Eddy, 2003).  

Volatile fatty acid (VFAs) content remained at low levels during both mesophilic and 

thermophilic digestion indicative of the establishment of methanogenic bacteria 

(Gerardi, 2003). 

Volatile fatty acid contents during mesophilic digestion were within the optimum levels 

(50-500 mg acetic acid l-1) whereas during thermophilic digestion VFAs were well 

within the marginal levels (500-2000 mg acetic acid l-1) (Table 4-1) according to 

(Gerardi, 2003; Metcalf and Eddy, 2003).  

Measured total alkalinities (CaCO3) in all digesters under both mesophilic and 

thermophilic conditions were above 2000 mg l-1 without any buffer additions. 

Alkalinities were stable in primary and mixed thermophilic digesters during the entire 

digestion period, however during mesophilic digestion alkalinities reached a plateau 

after the 3rd retention time (RT). The relatively high levels of alkalinities in all digesters 

were indicative of their respective good buffering capacities and the establishment of 

anaerobic fermentation (Gerardi, 2003). Mixed digesters during both mesophilic and 

thermophilic digestion exhibited higher alkalinities (5130 mg l-1 and 4763 mg l-1 

respectively) than primary digesters (2720 mg l-1 and 3700 mg l-1 respectively) 

throughout the entire period of digestion. Total alkalinity values for both mesophilic and 

thermophilic trials were within the optimum (1500-3000 mg l-1) or accepted values for 

methane-forming bacteria (Gerardi, 2003; Metcalf and Eddy, 2003).  

Redox potential (ORP) at the start of the experiment (after the stabilization period) was 

circa -300 mV. Redox decreased in all types of digesters with increasing digestion 

period. Redox was within the optimum range (-200 to -400 mV) for both survival and 
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substrate degradation  and the proper activity of methane-forming bacteria (Gerardi, 

2003) during the entire digestion periods. Mesophilic digestion exhibited slightly higher 

(less negative) redox potential than thermophilic digestion. Good correlations obtained 

between the 2 primary mesophilic digesters (0.914, p=0.011) and the 2 mixed 

mesophilic (0.998, p=0.000) digesters.  

 

4.1.2. Anaerobic digesters efficiency 

Overall, organic loading rates (OLR) were lower during mesophilic digestion trials than 

during the thermophilic trials. Primary mesophilic digesters (1.3 ± 0.1 kg VS m-3 d-1) 

were receiving circa 1.5 times lower volatile solids than the respective primary sludge 

for the thermophilic trial (1.9  kg VS m-3 d-1) (Table 4-1). Mixed mesophilic digester 

OLR (1.5 ± 0.1 kg VS m-3 d-1) was circa 1.6 times lower than it were during 

thermophilic digestion (2.5 kg VS m-3 d-1). The organic loading rates for both sludge 

type mesophilic digesters (0.8-1.6 kg VS m-3 d-1) were within the typical values 

(Metcalf and Eddy, 2003; CIWEM, 1996) as it was the case for the respective 

thermophilic (1.9 -3.0 kg VS m-3 d-1) digesters. 

With regards the volatile solids (VS) content between the primary (36.5 g l-1) and the 

mixed (44.0 g l-1) feed sludges for the mesophilic digesters were statistically different 

(p<0.05) according to the two-sample t-test (Appendix III). Statistically significant 

differences of the volatile solids content between primary (29.2 g l-1) and the mixed 

(38.1 g l-1) feed sludges for the thermophilic digesters were also observed at the 

(p<0.05) level of significance (Appendix III), according to the two-sample t-test.  

The highest VS removals (%) were achieved during the mesophilic digestion. Primary 

digesters yielded the highest VS removals compared to the mixed digesters (Table 4-1). 

Primary mesophilic digesters achieved the highest VS removals (50.2% ± 0.6%), after 

the 3rd RT, followed by the respective mixed digesters (40.8% ± 0.6%) which were in 

accordance with typical or better VS removals under mesophilic conditions (40-50%) 

(Metcalf and Eddy, 2003; CIWEM, 1996).  
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A slight increase in VS removals after the 3rd RT, was achieved within the primary 

mesophilic digesters. A paired t-test (Appendix III) confirmed that VS removal 

differences between primary mesophilic digesters were insignificant at (p>0.05). 

Thermophilic digestion of primary sludge showed a slight increase of VS removal post 

the 5th RT. Volatile solids removals in the mixed sludge mesophilic digesters 

demonstrated similar VS removals after the 2nd RT for the entire digestion period with 

an exemption of an increase during the 5th RT. A paired t-test (Appendix III) confirmed 

that VS removal differences between mixed mesophilic digesters were insignificant at 

(p>0.05). Correlations obtained within the primary mesophilic digesters regarding the 

VS removals were strong (0.968, p=0.002) (Appendix III). Digestion of primary sludge 

under thermophilic conditions achieved higher VS removals (39.2% ± 1.3%) than the 

respective digestion of mixed sludge (32.7% ± 1.2%). Volatile solids removals were 

inversely proportional to the VS loadings in each digester (Table 4-1).    

Total solids contents between the two respective feed primary sludges of the mesophilic 

and thermophilic digesters were observed to differ significantly (p<0.05) (Appendix 

III). Likewise, their respective volatile solids contents (Appendix III) were also 

statistically different (p<0.05). Differences between the mixed feed sludges of the 

mesophilic and thermophilic digesters in terms of their total solids and volatile solids, 

were similarly significant (p<0.05) according to the respective two-sample t-tests 

(Appendix III).  

Total solids (TS) content of the feed primary (PS) sludge for the mesophilic digesters 

(51.1 g l-1) were statistically different (p<0.05) to the TS content of the feed mixed (MS) 

sludge (57.1 g l-1) according to the two-sample t-test (Appendix III). Similarly, the 

respective TS contents in primary (39.5 g l-1) and mixed (49.7 g l-1) feed sludges for the 

thermophilic digesters (Appendix III) were found to be significantly (p<0.05) different. 

The highest TS removals were achieved through the digestion of primary sludges.  

Mesophilic digesters yielded the highest TS removals (47.3% ± 8.5), after the 3rd RT, 

followed by the thermophilic digesters (37.04% ± 4.4), (Table 4-1). Mixed mesophilic 

digesters, after the 3rd RT, also yielded higher TS removals (33.7% ± 4.6) followed by 

the respective thermophilic digesters (29.85% ± 2.6). In general, TS removals were 
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according to typical values or better (30-35%) (CIWEM, 1996) with the exception of 

mixed sludge digestion under thermophilic conditions. Good correlations obtained 

between TS removals within the primary mesophilic digesters (0.946, p=0.004) 

(Appendix III).  

Total solids removals in all digesters increased with increasing digestion period. 

Primary mesophilic digesters yielded to steep TS removals up to the 3rd RT, followed by 

a smoother TS removal increase. After the 3rd RT, a slight (4%) decrease in TS 

removals observed until the 5th RT, followed by an increase at the end of the digestion 

period. A paired t-test (Appendix III) confirmed that TS removal differences between 

primary mesophilic digesters were insignificant at (p>0.05). Thermophilic digestion of 

primary sludge showed a constant increase of TS removal, after the 2nd RT, for the 

entire digestion period. However, TS removals in the mixed sludge mesophilic digesters 

demonstrated similar TS removals after the 2nd RT for the entire digestion period. A 

paired t-test (Appendix III) confirmed that TS removal differences between mixed 

mesophilic digesters were insignificant at (p>0.05). Total solids removals of the mixed 

sludge thermophilic digestion remained similar after the 3rd RT, throughout the end of 

the digestion period. Good correlations were obtained between TS removals of the 

mixed mesophilic digesters (0.945, p=0.004) (Appendix III). According to the volatile 

solids (VS) content of each type of digester, biogas production was higher during 

thermophilic digestion due to the faster rate of digestion. Mixed sludge thermophilic 

digesters produced more biogas (1.62 l d-1) than primary digesters (1.01 l d-1). However, 

under mesophilic conditions the differences in biogas production between mixed and 

primary sludges were negligible (0.78 l d-1 against 0.76 l d-1), respectively.  

Primary mesophilic digesters produced higher methane values than the respective mixed 

digesters; however, that was not the case for the respective thermophilic digesters. The 

methane yield from the VS destruction was higher in mixed thermophilic digesters (0.74 

m3 ± 0.06 CH4 kgVSdestroyed
-1) which was in accordance with VS loadings (2.5 kg ± 

0.1kg m-3 d-1) (Table 4-1), whereas the lowest value was observed for the primary 

thermophilic digesters (0.44 m3 ± 0.07m3 CH4 kgVSdestroyed
-1). Primary mesophilic 
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digesters yielded higher methane (0.70 m3 ± 0.09m3 CH4 kgVSdestroyed
-1) than the 

respective mixed digesters (0.60 m3 ± 0.06m3 CH4 kgVSdestroyed
-1).  

Primary mesophilic and mixed thermophilic digesters produced closer methane values 

to the typical values (~1m3 kgVSdestroyed
-1) (Metcalf and Eddy, 2003) than the rest of the 

digesters. Since temperature is important in determining the rate of digestion, 

particularly the rates of hydrolysis and methane formation, the latter depends on the 

ratio of proteins, carbohydrates and lipids within the substrate (Stronach et al., 1986; 

Gerardi, 2003). Variations therefore in this ratio between primary and mixed sludges as 

well as the temperature of digestion could explain the observed differences and 

similarities regarding the methane production. However, the mean methane during the 

entire mesophilic digestion trials was greater than 75.0% ± 1.1% whereas for the 

thermophilic trials mean value for both sludge types was greater than 73.0% ± 0.6%. 

Methane content levels during mesophilic digestion were higher than typical methane 

values (Gerardi, 2003; CIWEM, 1996; Metcalf and Eddy, 2003) indicative of good 

methanogenic digestion. 
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Table 4-1 Feed sludge characteristics, anaerobic digestion performance at the sixth retention time and digestate quality.  

 Mesophilic  Thermophilic 
Feed sludges Primary sludge  Mixed sludge  Primary sludge  Mixed sludge 
TS (g l-1) 51.1±3.7  57.1±4.3  39.5±0.1  49.7±0.1 
VS (g l-1) 36.5±2.6  44.0±3.0  29.2±0.1  38.1±0.1 
VFA (mg acetic acid l-1) 1314±68  1592±44  1168±98  1470±52 
Operational conditions        
T (oC)  35±0.2  35±0.2  53±0.2  53±0.2 
SRT (d) 30  30  15  15 
OLR (kg VS m-3 d-1) 1.3±0.1  1.5±0.1  1.9±0.0  2.5±0.0 
TS (g l-1) 26.7±2.3  38.5±1.3  22.7±1.8  33.9±1.3 
VS (g l-1) 19.5±1.6  23.9±2.0  11.5±4.5  22.0±2.2 
pH 7.1±0.1  7.5±0.1  7.2±0.0  7.6±0.1 
ORP (mV) -320.8±12.8  -380.6±29.8  -411.6±36.9  -419.0±34.9 
VFA (mg acetic acid l-1) 76.4±7.3  132.9±17.3  1098.5±189.6  829.3±145.9 
Total alkalinity (mg l-1) 2399±37  5362±63  4000±453  4770±85 
Biogas        
Daily production (l d-1) 0.8±0.0  0.8±0.1  1.0±0.1  1.6±0.1 
GRP (m3 m-3 d-1) 0.51±0.0  0.52±0.0  0.67±0.0  1.08±0.0 
SGP (m3 CH4 kg VS-1

removed) 0.7±0.1  0.6±0.1  0.4±0.1  0.7±0.1 
Biogas yield (m3 kg VS-1

removed) 
Removal efficiencies (%) 

0.95±0.2  0.80±0.1  0.60±0.1  1.02±0.1 

VS  53.5±6.9  40.1±2.1  43.2±3.0  32.4±1.0 
TS  47.3±8.5  33.7±4.6  37.0±4.4  29.8±2.6 
g VS removal d-1 1.07±0.1  0.98±0.1  2.24±0.2  1.84±0.1 
 
Mean values (n=4) and standard error (±); TS: total solids; VS: volatile solids; VFA: volatile fatty acids; T: temperature; SRT: solids retention time; 
OLR: organic loading rate; ORP: oxidation-reduction potential; GPR: gas production rate; SGP: specific gas production. 
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5. RESULTS: FATE OF STEROID ESTROGENS DURING 

ANAEROBIC DIGESTION (SIX RETENTION TIMES) 

5.1. Feed characterization for the primary and mixed sludges for 

mesophilic and thermophilic anaerobic digesters  

Steroid estrogens were obtained from the combined (aqueous and solid phases) freeze-

dried feed sludge samples; hence, the concentrations refer to the total amount of each 

analyte present in each feed sample. Three individual samples (n=3) from each sludge 

type (primary or mixed) were extracted and analysed for steroid estrogens. The 

respective concentrations obtained were then combined to produce an average value 

(arithmetic mean) representative for each type of feed i.e. primary or mixed feed. The 

feed concentrations represent the start concentrations or the influent. The individual 

concentrations from each digester are presented in Appendix IV.  
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5.1.1. Primary sludge  

The observed background mean concentration of E1 in primary sludge over the two 

sampling periods was 111 ± 62-184 μg kg-1 dw. The mean background E3 concentration 

in primary sludge was 7 ± 5-9 μg kg-1 dw whereas the mean background concentration 

of E2 was 8 ± 5-10 μg kg-1 dw. Mean background EE2 concentration in primary sludge 

was 14 ± 8-23 μg kg-1 dw whereas, mean background concentration of E1-3S in primary 

sludge was 6 ± 3.5-8 μg kg-1 dw.  

The sum of all steroid estrogen concentrations (ΣEST) in primary sludge for the first 

sampling period (mesophilic digestion) was 202 ± 8-158 μg kg-1 dw whereas the sum 

for the second sampling period (thermophilic digestion) was 89 ± 4-64 μg kg-1 dw.  

Overall, mean E1 background concentration for the mesophilic trials (first sampling 

period) was 2.5 times higher than the feed for the thermophilic trials (second sampling 

period). The respective feed contributions of E1 to the sum of steroid estrogens (ΣEST) 

were 78% and 77% in primary sludge for the mesophilic and thermophilic trials, 

respectively (Figure 5-1). E1 was the dominant steroid estrogen in both primary sludges.  

Mean background concentrations of E3 and E2 were higher in the mesophilic feed by a 

factor of 1.5 compared to the thermophilic feed. E3 contribution was 4% for the 

mesophilic feed and 3% for the thermophilic feed whereas the contribution of E2 was 

5% and 7%, respectively. Mean concentrations of EE2 and E1-3S in the feed for the 

mesophilic trials were higher by a factor of 2 compared to the thermophilic feed. The 

contribution of EE2 was 9% and 11% whereas the contribution of E1-3S was 4% and 

2% for the mesophilic and thermophilic feeds, respectively.  
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5.1.2. Mixed sludge  

Mean concentration of E1 in mixed sludge over the two sampling periods was 60.8 ± 

30-97 μg kg-1 dw. The mean background E3 concentration in mixed sludge was 6.5 ± 2-

6 μg kg-1 dw, whereas mean E2 background concentration in mixed sludge was 4.7 ± 3-

7 μg kg-1 dw. Mean background EE2 concentration in mixed sludge was 10 ± 10-11 μg 

kg-1 dw whereas mean background concentration of E1-3S was 5.4 ± 4-8 μg kg-1 dw. 

The sum of all steroid estrogen concentrations (ΣEST) in mixed sludge for the first 

sampling period (mesophilic digestion) was 120 ± 6-89 μg kg-1 dw whereas the sum for 

the second sampling period (thermophilic digestion) was 55 ± 3-32 μg kg-1 dw. 

Mean E1 background concentration for the mesophilic trials was 3 times higher than the 

feed for the thermophilic trials. The feed contributions of E1 to the sum of steroid 

estrogens (ΣEST) were 74% and 69% (Figure 5-1). E1 was the dominant steroid 

estrogen in mixed sludges as it was the case in the primary sludges. 

Regarding the mean background E3 concentration in the feed for the mesophilic trials, it 

was higher by a factor of 1.5 compared to the mixed sludge feed for the thermophilic 

trials. The contribution of E3 to the respective feeds was 6% and 4%. With respect to 

E2, the mean concentration was higher by a factor of 2 in the feed for the mesophilic 

trials than it was in the feed for the thermophilic trials. The contribution of E2 in the 

respective feed sludges was 5% and 6%, respectively. With regards the mean EE2 

concentration, it was higher by a factor of 1 in the mesophilic feed than it was in the 

thermophilic feed. Contribution of EE2 in the mesophilic feed was 8% whereas its 

contribution to the thermophilic feed was higher (19%). The mean E1-3S concentration 

was higher by a factor of 1.6 in the mesophilic feed than it was in the thermophilic feed 

and its contribution was 6% and 2%, respectively.  

Higher concentrations of natural and synthetic steroid estrogens were observed in the 

first sampling period (April 2007) than in the second sampling period (April 2008) 

presumably due to the different sampling periods.  
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Overall, steroid estrogen levels in the primary feed sludge were found in greater 

amounts than in the mixed feed sludge by a folder of 1.7. This observation is typical 

since mixed sludge had undergone some degree of biotransformation/biodegradation 

compared to primary sludge. Mixed sludge contained the aerobically treated sludge i.e. 

surplus activated sludge (40% by volume) and hence explains the greatest E1 

concentration. Concentrations of steroid estrogens in the mixed feed sludge were in the 

order of (E1>EE2>E3>E1-3S≈E2) whilst primary feed sludge demonstrated similar 

trend (E1>EE2>E2≈E3>E1-3S) which is indicative of biodegradation/ 

biotransformation. There are two possible explanations for this phenomenon, namely 

the consequence of the biologically active returned liquors or sludge to the head of the 

works and/or biodegradation/biotransformation in the sewerage system. 

 

Figure 5-1 Mean (n=3) composition of steroid estrogens for the mesophilic trials in the 

primary (PSM) and mixed feed sludges (MSM) and the thermophilic trials (n=3) in 

primary (PST) and mixed feed sludges (MST), respectively. 
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5.2. Trends for steroid estrogens during anaerobic digestion of 

primary and mixed sludges under mesophilic and thermophilic 

conditions  

This chapter reports the results from the mesophilic and thermophilic trials for steroid 

estrogens over 180 and 90 days, respectively. The aim was to understand if there were 

any differences in terms of removals in relation to different sludge types i.e. primary or 

mixed (60:40 v/v, primary sludge: SAS) sludge during mesophilic and thermophilic 

digestion temperatures. The first (H1E) and second research hypotheses (H2E) were: 

H1E0: Anaerobic digestion of steroid estrogens by using mixed or primary sludge will 

not result to significantly different mass removal.  

H1Eα: Anaerobic digestion of steroid estrogens by using mixed or primary sludge will 

result to significantly different mass removal.  

H2E0: Digestion temperature will not result to significant effect on steroid estrogen 

removals.  

H2Eα: Digestion temperature will result to significant effect on steroid estrogen 

removals.  

The objectives were to: 

1. Examine the effect of primary and mixed sludge (60:40 v/v, primary sludge: 

SAS) on steroid estrogen removals during anaerobic digestion. 

2. Investigate the effects of mesophilic (35oC ± 0.2oC) and thermophilic (53oC ± 

0.2oC) digestion on steroid estrogen removals.    

At the end of each retention time i.e. 30 days for the mesophilic and 15 days for 

thermophilic digestion, a composite sample from each individual digester was used for 

the quantification of steroid estrogens. The composite sample was comprised of all 

digestates collected from each individual digester over a period of the last week of each 
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retention time, respectively and were kept frozen (-26º ± 1.5ºC) until analysis. Each 

digestate (50 ml) was extracted and analysed twice for steroid estrogen concentrations 

to produce an average value (n=4), for mesophilic digesters and (n=2) for the 

thermophilic digesters representative for each type of digester i.e. primary or mixed 

sludge digester. All values reported represent the mean values of steroid estrogens from 

the primary or the mixed digesters, respectively. The individual concentrations from 

each separate digester are presented in Appendix IV. Effluent refers to digestate i.e. 

total solids and aqueous phase combined and similarly, influent refers to the feed i.e. 

total solids and aqueous phase combined. 
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5.2.1. Primary sludge (mesophilic digestion)  

Primary sludge mesophilic (30 days) digestates, for each retention time, are shown in 

(Error! Reference source not found.). The sum of the concentration of all steroid 

estrogens (ΣEST) at the end of the 1st retention time (RT) was 167 μg kg-1 dw. A 

reduction of 35 μg kg-1 dw from the feed concentration. Concentrations of ΣEST at the 

2nd RT, 3rd RT, 4th RT, 5th RT and 6th RT were 132 μg kg-1 dw, 112 μg kg-1 dw, 104 μg 

kg-1 dw, 105 μg kg-1 dw and 101 μg kg-1 dw, respectively.  

 
Figure 5-2 Mean (n=4) trends of steroid estrogen concentrations (μg kg-1 dw ± SE) per 

retention time (30 days) during mesophilic digestion (35oC ± 0.2oC) of primary sludge 

(PSM). The start concentration is displayed as follows: . 

At the 1st RT, E1 was reduced by 28 μg kg-1 dw from the feed concentration (158 μg kg-

1 dw) and reached 130 μg kg-1 dw. Concentration of E1 at the 2nd RT, 3rd RT, 4th RT, 5th 

RT and 6th RT was 93 μg kg-1 dw, 65 μg kg-1 dw, 54 μg kg-1 dw, 43 μg kg-1 dw and 36 

μg kg-1 dw, respectively. Overall, E1 indicated a progressive and steady reduction in 

concentration during the entire period of mesophilic digestion. The change in 

concentration of -123 μg E1 kg-1 dw, which resulted from the difference between the 
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effluent obtained from the 6th retention time and the influent levels, is indicative of the 

significant reduction potential of E1 in primary sludge.  

The mass reduction of E1 at the 6th retention time during mesophilic digestion of 

primary sludge was 3.6 μg d-1. Interestingly, during the entire mesophilic digestion 

period, a significant mass of E1 was biodegraded (14.4 μg d-1) whilst less (2.4 μg d-1) 

was biotransformed to E2. It should be noted that biodegradation refers to E1 removed – 

E2 formed. This finding implies that more E1 was biodegraded than it was converted to 

E2. The conversion of E1 to E2 occurred progressively during the entire mesophilic 

digestion and the respective masses were equilibrated during the 6th retention time. The 

reduction of E1 to E2 has also been manifested under various anaerobic lab scale set ups 

at pH 6.8-7.8 i.e. batch, continuous, psychrophilic, mesophilic and thermophilic 

experiments, according to (de Mes et al., 2008; Carballa et al., 2007; Carballa et al., 

2006; Joss et al., 2004b). However, in terms of flux removal, E1 indicated 79% 

removal.  

In contrast to E1, at the 1st RT, E2 concentration increased by 3 μg kg-1 dw from the 

feed concentration (9 μg kg-1 dw) and reached 12 μg kg-1 dw. Concentration of E2 at the 

2nd RT, 3rd RT, 4th RT, 5th RT and 6th RT was 16 μg kg-1 dw, 25 μg kg-1 dw, 25 μg kg-1 

dw, 37 μg kg-1 dw and 42 μg kg-1 dw, respectively.  

Overall, E2 indicated a progressive increase in concentration during the entire period of 

mesophilic digestion (Error! Reference source not found.) and it was the dominant 

estrogen at the 6th retention time. The accumulation potential of E2 during the 

mesophilic digestion of primary sludge was significant as it was indicated from the 

difference of 32 μg E2 kg-1 dw i.e. between the effluent obtained from the 6th retention 

time and the influent levels. It should be noted that the increase of 32 μg E2 kg-1 dw, 

was attributed to the biotransformation of E1 to E2 since the feed E2 concentration 

remained constant i.e.9 μg kg-1 dw.  

However, the mass of the accumulated E2 at the end of the mesophilic digestion period 

(6th retention time) of primary sludge was 0.9 μg d-1 and E2 indicated a negative flux 

removal (accumulation) of -324%. The contribution to the mass of E2 (2.4 μg d-1) 
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during the entire period of mesophilic digestion was congregated from the 

biotransformation of E1. Interestingly, the sum of E1 and E2 (ΣE1+E2) decreased with 

increasing digestion period. This finding implies that both E1 and E2 were biodegraded 

in primary sludge. Furthermore, it demonstrates a) the presence of suitable substrates 

and nutrients to promote the growth of certain bacteria to degrade E1 and E2 b) a 

substantial diversified anaerobic consortia in primary sludge and c) delayed acclimation 

to E1 and E2. Sludge adaptation for the increasing removal of ΣE1+E2 has also been 

reported by (Carballa, 2006) during continuous mesophilic (37.5oC ± 0.5oC, 20 days 

retention time, pH=7.8) anaerobic digestion of mixed sludge (70:30 v/v primary:SAS). 

In contrary, (de Mes et al., 2008; Czajka & Londry, 2006) did not observe a reduction of 

ΣE1+E2 under anaerobic conditions. 

Regarding E3, its concentration at the 1st RT (6 μg kg-1 dw) reduced by 3 μg kg-1 dw 

from the feed concentration (9 μg kg-1 dw). For the remaining digestion period, the 

concentration of E3 indicated recalcitrance and remained unchanged (6 μg kg-1 dw) as 

opposed to E1 and E2. Overall, the mass reduction of E3 at the end of the mesophilic 

digestion period of primary sludge was 0.1 μg d-1 or 45% flux removal.  

The concentration of E1-3S at the 1st RT (5.5 μg kg-1 dw) was reduced by 2 μg kg-1 dw 

from the feed concentration (7.6 μg kg-1 dw). For the remaining digestion period, E1-3S 

remained unchanged and recalcitrant as it was the case for E3. At the end of the 

mesophilic digestion period of primary sludge the mass reduction of E1-3S was 0.1 μg 

d-1. In terms of flux removal, E1-3S removed by 36%. 

At the 1st RT, EE2 concentration (13 μg kg-1 dw) was reduced by 5 μg kg-1 dw from the 

feed concentration (18 μg kg-1 dw) whilst for the remaining digestion period, i.e. 2nd RT, 

3rd RT, 4th RT, 5th RT and 6th RT its concentration remained unchanged as it was the 

case for E3 and E1-3S. The change of -5 μg EE2 kg-1 dw which resulted from the 

difference between the 6th retention time effluent and the influent levels indicated the 

recalcitrant character of EE2 in these conditions. These results are in agreement with (de 

Mes et al., 2008) that EE2 is persistent under anaerobic conditions but in contrary with 

(Carballa et al., 2006) which observed EE2 removal with sludge adaptation. However, 
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at the end of the mesophilic digestion, the mass of EE2 was reduced by 0.2 μg d-1 and 

indicated 33% flux removal. 
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5.2.2. Primary sludge (thermophilic digestion)   

Primary sludge thermophilic (15 days) digestates, for each retention time, are shown in 

(Figure 5-3). The sum of the concentration of all steroid estrogens (ΣEST) at the end of 

the 1st retention time (RT) was 60 μg kg-1 dw. A reduction of 29 μg kg-1 dw from the 

feed concentration. Concentrations of ΣEST at the 2nd RT, 3rd RT, 4th RT, 5th RT and 6th 

RT were 58 μg kg-1 dw, 39 μg kg-1 dw, 38 μg kg-1 dw, 41 μg kg-1 dw and 46 μg kg-1 dw, 

respectively. 

 
Figure 5-3 Mean (n=2) trends of steroid estrogen concentrations (μg kg-1 dw ± SE) per 

retention time (15 days) during thermophilic digestion (53oC ± 0.2oC) of primary sludge 

(PST). The start concentration is displayed . 

During thermophilic digestion of primary sludge, concentration of E1 (39 μg kg-1 dw) at 

the 1st RT reduced from the feed concentration (64 μg kg-1 dw). Concentration of E1 for 

the remaining digestion period was 30 μg kg-1 dw, 14 μg kg-1 dw, 6 μg kg-1 dw, 4 μg kg-

1 dw and 3 μg kg-1 dw at the 2nd RT, 3rd RT, 4th RT, 5th RT and 6th RT, respectively. 

Although E1 indicated a progressive reduction during the entire thermophilic digestion 

period, its reduction was more pronounced during the first three retention times 

presumably due to higher bacterial activity at the initial digestion period. In contrast, 
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during mesophilic digestion, E1 reduction was steady throughout the entire digestion 

period implying a more balanced bacterial community in these digesters.  

The concentration of E1was significantly reduced at the end of the thermophilic 

digestion period of primary sludge.   

The reduction of E1 in primary sludge under thermophilic conditions is in agreement 

with its reduction under mesophilic conditions. Overall, during the entire 90 days of 

thermophilic digestion, E1 was partially biodegraded by 12.5 μg d-1 whereas a smaller 

amount of mass (3.5 μg d-1) was converted to E2. This finding is in agreement with the 

mesophilic trial that more E1 was biodegraded than it was biotransformed to E2 under 

thermophilic conditions. In addition, the reduction of E1 to E2 is consistent with (de 

Mes et al., 2008; Carballa et al., 2007; Carballa et al., 2006; Joss et al., 2004b) but 

contradictory to (Czajka & Londry, 2006) where they observed production of E1 from 

the spiked E2, under anaerobic conditions. Interestingly, at the last three retention times, 

the concentration of E1 hardly changed whereas the concentration of E2 was increasing 

with time. One possible explanation is the intrinsic high endogenous death rates that are 

usually associated with the thermophilic anaerobes that lead to the lack of bacterial 

diversity. In terms of flux removal, E1 was removed by 96%. 

Concentration of E2 at the 1st RT, was increased by 2 μg kg-1 dw from the feed 

concentration (6 μg kg-1 dw) and reached 8 μg kg-1 dw. Concentration of E2 at the 2nd 

RT, 3rd RT, 4th RT, 5th RT and 6th RT was 15 μg kg-1 dw, 12 μg kg-1 dw, 19 μg kg-1 dw, 

24 μg kg-1 dw and 30 μg kg-1 dw, respectively. As was seen in the mesophilic digesters, 

E2 concentration was increased during the entire thermophilic digestion period (Figure 

5-3) and E2 was the dominant estrogen at the 6th retention time. The biotransformation 

potential of E1 to E2 at thermophilic digestion temperature was apparent during 

digestion of primary sludge. Interestingly, this conversion was manifested faster than 

the mesophilic digestion possibly because of the considerable faster rate of thermophilic 

digestion, the higher bacterial activity and the faster acclimation period.  

Overall, the accumulated mass of E2 at the end of the thermophilic digestion period of 

primary sludge was 1.2 μg d-1 and indicated a negative flux removal (accumulation) of -
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367% . The contribution of E1 to E2 accounted for 0.8 μg d-1 for the entire thermophilic 

digestion of primary sludge. 

Under thermophilic conditions, ΣE1+E2 indicated similar trend as it was during 

mesophilic conditions. The decreasing mass of ΣE1+E2 with increasing digestion 

period implied sludge adaptation and abundance of E1 and E2 eliminating bacteria at 

thermophilic temperatures and conditions. This observation is in agreement with the 

mesophilic digestion of primary sludge and with (Carballa et al., 2006) but in dispute 

with (de Mes et al., 2008; Czajka & Londry, 2006) that did not observe a reduction of 

ΣE1+E2 under anaerobic conditions. 

However, E3 concentration at the 1st RT was reduced by 2 μg kg-1 dw from the feed 

concentration (6 μg kg-1 dw) and reached 5 μg kg-1 dw and remained unchanged until 

the end of the digestion period.s it was seen in the mesophilic digesters, E3 indicated 

recalcitrance under thermophilic conditions. The mass reduction of E3 at the end of the 

thermophilic digestion period of primary sludge was 0.05 μg d-1 and its flux removal 

was 17%. 

The concentration of E1-3S at the 1st RT (3 μg kg-1 dw) was reduced by 1 μg kg-1 dw 

from the feed concentration (4 μg kg-1 dw). For the remaining of the digestion period, 

i.e. 2nd RT, 3rd RT, 4th RT, 5th RT and 6th RT, E1-3S concentration remained unchanged 

and at low levels (3 μg kg-1 dw). Low flux removal (30%) was demonstrated by E1-3S. 

The concentration of EE2 at the 1st RT (5 μg kg-1 dw) was reduced from that of the feed 

concentration (9 μg kg-1 dw) and remained unchanged for the entire digestion period. In 

general EE2 indicated recalcitrance under thermophilic conditions as it was the case 

under mesophilic conditions. Overall, the mass reduction of EE2 at the end of the 

thermophilic digestion period of primary sludge was 0.2 μg d-1 and indicated 44% flux 

removal. 
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5.2.3. Mixed sludge (mesophilic digestion)  

Mixed sludge mesophilic (30 days) digestates, for each retention time, are shown in 

(Figure 5-4). The sum of the concentration of all steroid estrogens (ΣEST) at the 1st 

retention time (RT) was 85 μg kg-1 dw. A reduction of 35 μg kg-1 dw from the feed 

concentration. Concentrations of ΣEST at the 2nd RT, 3rd RT, 4th RT, 5th RT and 6th RT 

were 64 μg kg-1 dw, 67 μg kg-1 dw, 66 μg kg-1 dw, 73 μg kg-1 dw and 72 μg kg-1 dw, 

respectively.  

 
Figure 5-4 Mean (n=4) trends of steroid estrogen concentrations (μg kg-1 dw ± SE) per 

retention time (30 days) during mesophilic digestion (35oC ± 0.2oC) of mixed sludge 

(MSM). The start concentration is displayed .  

During mesophilic digestion of mixed sludge, at the 1st RT, E1 was reduced (53 μg kg-1 

dw) from the feed concentration (90 μg kg-1 dw). Concentration of E1 at the 2nd RT, 3rd 

RT, 4th RT, 5th RT and 6th RT was 34 μg kg-1 dw, 28 μg kg-1 dw, 26 μg kg-1 dw, 32 μg 

kg-1 dw and  μg kg-1 dw, respectively. Overall, E1 indicated a significant reduction in 

concentration only at the 1st RT and it was not mirrored in the subsequent retention 

times during the mesophilic digestion of mixed as it was observed in primary sludge. It 
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should be noted that the concentration of the 2nd retention time digestate was associated 

with a large standard error. However, at the 6th retention time E1 was the dominant 

steroid estrogen as it was the case for E2.  

The change in concentration of -63 μg E1 kg-1 dw between the 6th retention time and the 

feed indicated the overall reduction of E1 during the mesophilic digestion of mixed 

sludge.  

The reduced mass of E1 at the 6th retention time was 1.6 μg d-1. However, the overall 

biodegradation of E1 in mixed sludge was 7 μg d-1 whereas 2 μg d-1 were 

biotransformed to E2. More E1 was biodegraded in mixed sludge than it was 

biotransformed to E2. The biotransformation of E1 to E2 occurred faster in mixed 

sludge than it was in primary sludge possibly  due to the shorter acclimation period of 

the mixed sludge bacteria to E1 and E2. However, the reduction of E1 to E2 is in 

agreement with (de Mes et al., 2008; Carballa et al., 2007; Carballa et al., 2006; Joss et 

al., 2004b). Flux removal of E1 was 70%. 

However, E2 concentration at the 1st RT increased from the feed concentration (6 μg kg-

1 dw) and reached 14 μg kg-1 dw. The concentration of E2 at the 2nd RT, 3rd RT, 4th RT, 

5th RT and 6th RT was 14 μg kg-1 dw, 22 μg kg-1 dw, 22 μg kg-1 dw, 22 μg kg-1 dw and 

27 μg kg-1 dw, respectively. Overall, E2 indicated a significant increase in concentration 

after the 2nd retention time of mesophilic digestion and it was the dominant steroid 

estrogen at the 6th retention time as it was the case for E1. The accumulated mass of E2 

at the end of the digestion period (6th retention time) was 0.5 μg d-1 and this reflected 

the negative flux removal (accumulation) of -325%. Interestingly, during the 3rd and 4th 

retention times, the respective concentrations of E1 and E2 remained constant. This 

suggested possible biological inter-conversion between E1 and E2. The inter-conversion 

between E1 and E2 under anaerobic conditions, has been suggested by (Czajka and 

Londry, 2006). The ΣE1+E2 remained constant after the 2nd retention time which is in 

argument with primary sludge and suggests that no biodegradation occurred in mixed 

sludge under mesophilic conditions. One possible explanation for this phenomenon is 

that mixed sludge lacks the suitable substrates and nutrients to promote the growth of 
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certain bacteria to degrade E1 and E2. The lack of E1 and E2 biodegradation in mixed 

sludge is in agreement with (de Mes et al., 2008; Czajka & Londry, 2006) but contrary 

to other workers (Carballa et al., 2006) who observed the removal of ΣE1+E2 with 

sludge adaptation, under mesophilic anaerobic conditions. 

E3 reduced to 6.5 μg kg-1 dw from the feed concentration (8 μg kg-1 dw) at the 1st RT. 

For the remaining of the digestion period, the concentration of E3 indicated 

recalcitrance and remained at low levels (5 μg kg-1 dw). In terms of mass, E3 indicated 

an insignificant reduction at the end of the mesophilic digestion period and indicated 

43% flux removal which was in agreement with primary sludge during the mesophilic 

digestion.  

Regarding E1-3S, its concentration at the 1st RT was reduced (5 μg kg-1 dw) from the 

feed concentration (7 μg kg-1 dw) whilst for the remaining period of digestion its 

concentration remained unchanged. The change in concentration of -1.5 μg E1-3S kg-1 

dw, which resulted from the difference between the effluent obtained from the 6th 

retention time and the influent levels lied within the associated standard error. The mass 

reduction of E1-3S at the end of the digestion period was negligible and was in 

agreement with primary sludge. Flux removal was 21%. 

The concentration of EE2 at the 1st RT (6 μg kg-1 dw) was reduced from the feed 

concentration (10 μg kg-1 dw1) whereas for the remaining of the digestion period and 

towards the last retention times, its concentration indicated an increase. However, this 

obscure increase was associated with large standard errors. The persistence of EE2 in 

mixed sludge was in agreement with its persistence during primary sludge digestion as 

well as with (de Mes et al., 2008) but in argument with (Carballa et al., 2006). However, 

in terms of flux removal, EE2 was removed only by 4%. 
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5.2.4. Mixed sludge (thermophilic digestion)  

Mixed sludge thermophilic (15 days) digestates, for each retention time, are shown in 

(Figure 5-5). The sum of the concentration of all steroid estrogens (ΣEST) at the 1st 

retention time (RT) was 47 μg kg-1 dw. A reduction of 8 μg kg-1 dw from the feed 

concentration. Concentrations of ΣEST at the 2nd RT, 3rd RT, 4th RT, 5th RT and 6th RT 

were 40 μg kg-1 dw, 45 μg kg-1 dw, 44 μg kg-1 dw, 45 μg kg-1 dw and 46 μg kg-1 dw, 

respectively.  

 

Figure 5-5 Mean (n=2) trends of steroid estrogen concentrations (μg kg-1 dw ± SE) per 

retention time (15 days) during thermophilic digestion (53oC ± 0.2oC) of mixed sludge 

(MST). The start concentration is displayed . 

During thermophilic digestion of mixed sludge, concentration of E1 (19.5 μg kg-1 dw) at 

the 1st RT, indicated a reduction from the feed concentration (32.3 μg kg-1 dw). 

Concentration of E1 at the 2nd RT, 3rd RT, 4th RT, 5th RT and 6th RT was 14 μg kg-1 dw, 

13 μg kg-1 dw, 9 μg kg-1 dw, 11 μg kg-1 dw and 01 μg kg-1 dw, respectively. Overall, E1 

indicated a progressive reduction in concentration during the entire period of 
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thermophilic digestion (Figure 5-5). At the 6th retention time E1 was not the dominant 

steroid estrogen as it was the case in mixed sludge under mesophilic conditions.  

The change in concentration of -23 μg E1 kg-1 dw between the effluent obtained from 

the 6th retention time and the influent levels is indicative of the significant reduction 

potential of E1 in mixed sludge. Flux removal of E1 was 68%. 

The overall biodegraded mass of E1 was 1.4 μg d-1 whereas 4.5 μg d-1 were converted to 

E2. This observation is not consistent with the mesophilic digestion of mixed sludge 

where more E1 was degraded than it was biotransformed to E2. However, the partial 

biodegradation of E1 was observed from the early stages of thermophilic digestion 

indicative of the presence of E1 degrading bacteria/enzymes.  

The overall reduction of E1 to E2 in mixed sludge is in agreement with the literature (de 

Mes et al., 2008; Carballa et al., 2007; Carballa et al., 2006; Joss et al., 2004b) where 

these workers utilised activated sludge. 

However, the concentration of E2 was increased at the 1st RT (14 μg kg-1 dw) from the 

feed concentration (3 μg kg-1 dw) as it was seen in the mesophilic  digestion of mixed 

sludge. Overall, E2 indicated an increase in concentration, however, this increase was 

emphasised after the 2nd RT. At the 6th RT, E2 was the dominant steroid estrogen during 

the thermophilic digestion of mixed sludge. The accumulated mass of E2 at the end of 

the digestion period was 0.9 μg d-1 and this resulted to the negative flux removal 

(accumulation) of -621% as it was seen during the mesophilic digestion of mixed 

sludge.  

During thermophilic digestion of mixed sludge, the ΣE1+E2 remained constant for the 

entire digestion period which is in close agreement with the mixed sludge mesophilic 

digestion but in contrary with the primary sludge digestion trials (mesophilic and 

thermophilic). This observation suggests that no biodegradation occurred in mixed 

sludge under thermophilic conditions. Since a similar trend of ΣE1+E2 was observed in 

the same sludge type during mesophilic digestion it could be assumed that mixed sludge 

lacks of the suitable substrates and nutrients to promote the growth of certain bacteria to 
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degrade both E1 and E2. In addition, certain chemical species originated from activated 

sludge, could have served as supplementary electron acceptors to promote the 

conversion of E2 to E1, which eventually equilibrated the biotransformation of E1 to 

E2. A variety of organic compounds, or the greater amount of carbonate CO3
2- in mixed 

sludge due the higher total alkalinity compared to primary sludge, could have sustained 

the microbial conversion of E2 to E1.   

However, the above observations are in agreement with (de Mes et al., 2008; Czajka & 

Londry, 2006) but contrary to other workers who (Carballa et al., 2006) observed the 

removal of ΣE1+E2 with sludge adaptation, under thermophilic anaerobic conditions. 

The mass reduction of E3 in mixed sludge was negligible (0.01 μg d-1) and accounted 

for 4% flux removal. 

The concentration of E1-3S at the 1st RT (3 μg kg-1 dw) was reduced insignificantly 

from the feed concentration (4 μg kg-1 dw) and remained at low levels for the entire 

digestion period as it was seen in the mesophilic digestion. The reduction in 

concentration between the effluent obtained from the 6th retention time and the influent 

levels was within the associated standard error. The mass reduction of E1-3S at the end 

of the thermophilic digestion period was negligible (0.06 μg d-1) which was in 

agreement with the mixed sludge mesophilic digestion and indicated 28% flux removal. 

At the 1st RT, EE2 concentration (6 μg kg-1 dw) was reduced by 4 μg kg-1 dw from the 

feed concentration (10 μg kg-1 dw). For the remaining of the digestion period EE2 

concentration indicated increase as it was the case with the mesophilic digestion of 

mixed sludge and similarly both the feed and the digestate concentrations were 

associated with large standard errors. The persistence of EE2 during the thermophilic 

digestion of mixed sludge was in agreement with the mesophilic digestion of the same 

sludge type as well as with its persistence during primary sludge digestion and other 

workers (de Mes et al., 2008). However, the persistence of EE2 during thermophilic 

digestion of mixed sludge is in contrary with (Carballa et al., 2006). Overall, the mass 

reduction of EE2 at the end of the thermophilic digestion period of mixed sludge was 

negligible (0.07 μg d-1) and its flux removal was 15%. 
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5.2.5. Effect of digestion temperature on steroid estrogens 

5.2.5.1. Primary sludge (mesophilic vs. thermophilic) 

The efficiency between mesophilic and thermophilic digestion of primary sludge in 

terms of overall steroid estrogen removal (ΣEST) indicated that the mesophilic digesters 

demonstrated higher overall EST removal (ΣEST = 53%) compared to thermophilic 

digesters (ΣEST = 51%) despite their considerable faster rate of digestion (Figure 5-7). 

The highest first order kinetic constants (k) for E1 in primary sludge digestion were 

observed during mesophilic digestion (k = 0.1161 d-1 at 35oC) compared to thermophilic 

digestion (k = 0.0415 d-1 at 53oC) (Table 5-2). 

Both mesophilic and thermophilic bacteria indicated capability of E1 biodegradation as 

well as E1 biotransformation to E2 in the presence of primary sludge. Biodegradation of 

E1 (E1 removed – E2 formed), occurred with increasing digestion period under both 

digestion temperatures with different retention times. Moreover, biodegradation of E1 

was more pronounced at thermophilic temperatures with 15 days retention time. 

Overall, the biodegradation trend of E1 indicated progressive sludge acclimation with 

time, particularly at the mesophilic temperature. 

The highest flux rate of E1 biodegradation occurred by the mesophilic bacteria (-0.2402 

μg d-1 RT-1) regardless of the higher bacterial activity and the faster rate of digestion 

associated with thermophilic cultures (Gerardi, 2003; Metcalf and Eddy, 2003). 

Biodegradation flux rate of E1 in thermophilic digestion was lower by a factor of 3 

compared to the mesophilic digestion. This phenomenon proposed that mesophilic E1 

degrading bacteria in primary sludge were in plethora as opposed to thermophilic E1 

degrading bacteria. There are two possible explanations for this phenomenon namely, 

the lack of the thermophilic bacterial diversity (limited E1 enzymes) due to their low 

growth rates and high endogenous death rates (Gerardi, 2003; Metcalf and Eddy, 2003) 

and in contrast the higher sludge retention time of the mesophilic cultures that promoted 

the establishment of E1 degrading bacteria.  
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Interestingly, the relationship between E2 formation and E1 removal rate (E2formed μg 

E1removed d-1) indicated that this rate was faster (0.4463 μg E2formed μg E1removed d-1) 

during thermophilic digestion despite the shorter sludge retention time, (please note, E1 

removal does not refer to E1 (partial) biodegradation). However, this observation does 

not imply that more E2 was formed than it was degraded by thermophiles but rather 

emphasises the lack of thermophilic bacterial diversification and also their higher 

bacterial activity. This statement is based on the fact that the thermophiles were 

removing less E1 (flux removal) than the mesophiles (Figure 5-7).  

Overall, more E1 was biodegraded than it was biotransformed to E2 during both 

temperature digestions.   

Biotransformation of E1 to E2 is probably due to co-metabolite activity (non-growth 

linked reactions) as opposed to growth-linked reactions (metabolic reactions that 

commonly involved in energy or carbon sources for microbial growth), because steroid 

estrogens (like other micropollutants) are not present in high enough concentration to 

support substantial biomass growth (Yi & Harper, 2007; Yu et al., 2007). As co-

metabolism requires a catalyst, then the higher rate of E2 formation per μg E1 removal 

d-1 in the thermophilic digesters could be possibly attributed to the higher digestion 

temperature.  

Interestingly, the rate of formation of E2 (μg d-1 RT-1) under thermophilic conditions 

was higher than it was under mesophilic conditions Table 5-1. Despite the growth and 

the non-growth linked reactions, this phenomenon could be explained by two possible 

explanations, namely the consequence of acclimation (more biodiversity) and the higher 

digestion temperature of the thermophiles, which could have resulted to the abundance 

of E1 enzymes required for its microbial conversion to E2. Similarly, the highest 

negative first order kinetic constants (k) for E2 were observed during mesophilic 

digestion (k = -0.0259 d-1 at 35oC) compared to the thermophilic digestion of primary 

sludge (k = -0.0145 d-1 at 53oC). 

However, it has been demonstrated that ΣE1+E2 was decreasing over time in both 

temperature digestion trials by using primary sludge. Overall, the observed reduction of 
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E1 to E2 in primary sludge is consistent with the works of (de Mes et al., 2008; Carballa 

et al., 2006; Carballa et al., 2007). In addition, the persistence of E2 during both 

digestion temperatures is consistent with the general observations under anaerobic 

conditions (Ying et al., 2003; Lee & Liu, 2002) since it has been reported that E2 is 

degraded aerobically (D'Ascenzo et al., 2003a; Johnson & Sumpter, 2001b). 

Whereas similar E2 flux removals were observed during mesophilic and thermophilic 

digestion of primary sludge, that was not the case for E1. This is in contrary to (Carballa 

et al., 2006) who observed similar ΣE1+E2 removal efficiencies of 85% ± 10% during 

mesophilic and thermophilic sludge digestion. 

Higher E3 flux removals (45%) were obtained during mesophilic than the thermophilic 

digestion (17%) with kinetic constants (k) 0.0243 d-1 at 35oC and 0.0205 d-1 at 53oC, 

respectively. The persistence of E3 in primary sludge is consistent with the observations 

of (Czajka & Londry, 2006). These researchers observed the persistence of E3 during 

long batch incubation periods (over three years) (28ºC) of sludge (or lake sediment) 

under methanogenic conditions and by using different electron acceptors (nitrate, iron or 

sulphate) (Czajka & Londry, 2006). 

E1-3S flux removals were slightly higher under mesophilic conditions (36%) than it was 

under thermophilic conditions (30%). First order kinetic constants (k) were similar in 

primary sludge i.e. 0.0161 d-1 at 35oC and 0.0205 d-1 at 53oC, respectively. However, no 

significant deconjugation of E1-3S was observed during anaerobic digestion of primary 

sludge and this suggests the limited abundance of arylsulphatase which is the enzyme 

involved in the hydrolysis of arylsulphate esters that has demonstrated some, 

deconjugation of E1-3S (Bandick & Dick, 1999). In fact, it is believed that E1-3S is 

aerobically degradable in the presence of activated sludge (Joss et al., 2004b). The 

deconjugation of E1-3S in mesophilic digestion accounted for 0.5 μg d-1 whereas in 

thermophilic digestion was 0.8 μg d-1. Thermophilic anaerobic digestion achieved 

greater EE2 removals (44%) than mesophilic digestion (33%). The persistence of EE2 

in primary sludge during mesophilic and thermophilic digestion is in agreement with (de 

Mes et al., 2008) but contrary to (Carballa et al., 2006). First order kinetic constants (k) 
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for EE2 in primary sludge during thermophilic digestion (k = 0.0519 d-1 53oC) were 

lower by a factor of 0.7 compared to the mesophilic digestion (k = 0.0701 days at 35oC) 

(Table 5-2). 

Generally, retention time had limited effect on E3, E1-3S and EE2 as it was 

demonstrated by their percentage distribution during the respective digestion periods.  

Mesophilic digestion indicated higher rate on ΣEST removal per volatile solids (VS) 

removal (2.9 μg ΣESTremoval g VS removed d-1) than the thermophilic digesters (1.1 μg 

ΣESTremoval g VS removed d-1). However, the rate of VS removal under thermophilic 

conditions was 2.1 fold higher than mesophilic conditions and therefore this finding 

indicated that the mesophilic consortium was slightly better in terms of ΣEST removal 

per VS removal than the thermophiles. 

Although mesophilic digesters removed 1.2 times more ΣESTs (μg d-1) than the 

thermophilic digesters, this removal reflected the higher ΣEST loadings (μg d-1) (Figure 

5-7). Overall, the performance of the mesophilic digesters in terms of ΣEST removal 

was better compared to the thermophilic digestion of primary sludge. 
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5.2.5.2. Mixed sludge (mesophilic vs. thermophilic) 

As it was seen in primary sludge, mesophilic digestion of mixed was more efficient for 

the overall steroid estrogen removal (ΣEST = 39%) than thermophilic digesters (ΣEST 

= 12%), despite their considerable faster rate of digestion (Figure 5-7).  

The highest first order kinetic constants (k) for E1 in mixed sludge were observed 

during mesophilic digestion (k = 0.0811 d-1 at 35oC) as opposed to the thermophilic 

digestion (k = 0.0459 d-1 53oC) (Table 5-2). Analogously, the same order from high to 

low was also observed in primary sludge.  

The biodegradation rate of E1 in mixed sludge remained constant throughout the 

respective digestion periods and did not increase with time, as it was seen in primary 

sludge. The constant rates of E1 biodegradation throughout the digestion periods 

indicated restricted ability for E1 biodegradation i.e. partial biodegradation, when data 

are compared to primary sludge.  

The constant trend of E1 biodegradation rate observed during mixed sludge digestion 

(particularly during the 15 days retention time), as opposed to an increasing trend, was 

probably attributed to the microbial conversion of E2 to E1.  

It seemed that during mixed sludge digestion (regardless of temperature) the presence of 

electron acceptors other than those present in primary sludge promoted this conversion. 

On the other hand, another possible explanation to the constant E1 trend could be the 

lack of suitable substrates/nutrients to promote the growth of abundant bacteria/enzymes 

required to carry out specifically the biodegradation of E1. Interestingly, the removal of 

both E1 and E2 in mixed sludge seemed to plateau after the 2nd retention time which 

indicated faster acclimation of E1 and E2 by the mixed sludge consortium compared to 

the mesophiles.  

Whilst the biodegradation rate of E1 during mesophilic digestion of mixed sludge was -

0.0203 μg d-1 RT-1, the same rate during thermophilic digestion indicated formation of 
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E1 (Table 5-1). This phenomenon could be attributed to the biological inter-conversion 

between E1 and E2 as has also been suggested by (Czajka & Londry, 2006).   

The rate of E2 formation in relation to the rate of E1 removal by the mesophilic cultures 

was much greater than the rate in the thermophilic conditions i.e. 1.1842 μg E2formed μg 

E1removed d-1, irrespective of the higher temperature. The higher rate by the mesophiles 

did not reflect the higher E1 influx in these digesters suggesting that the microbial 

conversion of E1 to E2 in thermophilic conditions was limited. The disappearance of E1 

in the thermophilic trial was not contributed to the same degree to the formation of E2, 

as it did during mesophilic digestion, suggesting higher biodegradation potential of E1 

under mesophilic conditions.   

As it was seen in primary sludge, biotransformation of E1 to E2 was also manifested in 

the mixed sludge under mesophilic conditions. Similarly, biotransformation of E1 to E2 

or the inter-conversion of E1 and E2 was probably due to co-metabolic activity as has 

been suggested by (Yi & Harper, 2007; Yu et al., 2007).  

Overall, the opposing E1 and E2 trends observed during the mesophilic and 

thermophilic digestions could be probably explained by the different digestion 

temperatures and the associated retention times since both the substrate as well as all the 

measured physicochemical parameters, remained constant and at optimum levels 

throughout the respective digestion periods.  

Interestingly, the rate of E2 formation (μg d-1 RT-1) during thermophilic digestion was 

marginally higher than it was during mesophilic digestion (Table 5-1) indicative of the 

limitation of the conversion of E1 to E2 regardless of the digestion temperature and the 

retention time. Analogous negative first order kinetic constants (k) i.e. formation 

constants for E2 were observed i.e. k = -0.0511 d-1 at 53oC compared to k = -0.0255 d-1 

at 35oC, respectively. 

Since the sum of E1 and E2 during the different temperature digestions of mixed sludge 

indicated stability throughout the trials, this suggests that limited partial biodegradation 

occurred over time as opposed to the degree of the partial biodegradation observed in 
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primary sludge. This phenomenon further implied that irrespective of the retention time, 

mixed sludge lacks the suitable substrates and nutrients to promote the growth of certain 

bacteria capable to degrade E1 and E2 together. In addition, various electron acceptors 

and donors in mixed sludge could have promoted the inter-conversion of E1↔E2 and 

therefore restricted the overall removal. The lack of the partial biodegradation of E1 and 

E2 in mixed sludge is in agreement with (de Mes et al., 2008; Czajka & Londry, 2006) 

but contrary to other workers (Carballa et al., 2006) who observed the removal of 

ΣE1+E2 with sludge adaptation, under both mesophilic and thermophilic anaerobic 

conditions. 

Whereas similar E1 flux removals were observed during the mesophilic and 

thermophilic digestion of mixed sludge, E2 flux removals were different which is in 

argument with (Carballa et al., 2006) who observed similar ΣE1+E2 removal 

efficiencies of 85% ± 10% during mesophilic and thermophilic mixed sludge digestion. 

Much higher E3 flux removals (44%) were achieved by the mesophilic digesters than 

the thermophilic digesters (4%) and this was reflected on the first order kinetic 

constants (k) for mesophilic, k = 0.0226 d-1 at 35oC and 0.0201 d-1 at 53oC for the 

thermophilic digesters, respectively. Whereas the flux removals observed in mixed 

sludge are different to the primary sludge, higher E3 flux were achieved during 

mesophilic than thermophilic conditions in both sludge types. However, the persistence 

of E3 in mixed sludge is consistent with the long batch incubation experiments (over 

three years) (28ºC) by (Czajka & Londry, 2006). 

Similarly, low E1-3S flux removals were observed during the different temperature 

digestion experiments of mixed sludge. Flux removals during mesophilic digestion were 

21% whereas thermophilic digesters demonstrated 28% removals, possibly due to 

higher temperature. Irrespective of the flux removals, the deconjugation of E1-3S in 

mixed mesophilic sludge was 0.3 μg d-1 whereas 0.8 μg d-1 during thermophilic 

conditions. Interestingly the deconjugation of E1-3S was higher under thermophilic 

conditions than mesophilic conditions as it were the respective degradation constants 

(Table 5-2). This finding indicates the importance of temperature and it may further 
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imply that the arylsulphatase enzyme was present in both sludge types. Whereas it is 

believed that E1-3S is aerobically degradable (Joss et al., 2004b), there is supporting 

evidence that strictly anaerobic disulphate strains are capable of cleaving E1-3S 

(Johnson & Williams, 2004) and that this ability is believed to be associated with the 

use of sulphate as a terminal electron acceptor (Van Eldere et al., 1988). Thermophilic 

anaerobic digestion of mixed sludge demonstrated some low flux removals which is in 

agreement with (Johnson & Williams, 2004; Van Eldere et al., 1988).  

Regarding EE2, only 5% was removed in mixed sludge during mesophilic digestion as 

opposed to 15% during thermophilic digestion. First order kinetic constants (k) were 

0.0753 d-1 at 53oC and 0.0021 d-1 at 35oC. Overall, the persistence of EE2 in mixed 

sludge is in agreement with (de Mes et al., 2008) and consistent with the persistence in 

primary sludge, however, in contrary with the reported removals of (Carballa et al., 

2006).  

As it was observed in primary sludge, the retention time had little effect on the removal 

of E3, E1-3S and EE2 during mixed sludge digestion as it is demonstrated on their 

percentage distribution throughout the respective digestion periods.  

Under mesophilic conditions, higher rate on ΣEST removal per volatile solids (VS) 

removal (1.2 μg ΣESTremoval g VS removed d-1) was observed than it was observed during 

thermophilic digestion (Table 5-1) of mixed sludge. Despite the fact that VS removal 

rate (gVS removed d-1) in thermophilic digesters was 1.9 fold higher than it was in the 

mesophilic digesters, this finding indicated that mesophiles performed better in terms of 

ΣEST removal per VS removal than the thermophiles.  

Mixed sludge mesophilic digesters were receiving 1 time more ΣEST (μg d-1) than the 

thermophilic digesters, however the former digesters removed more ΣEST mass by a 

factor of 3.8 indicative of the much better performance of mesophilic over to 

thermophilic mixed sludge digesters in relation to ΣEST removals.  
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Table 5-1 Relationships between E1and E2 mass fluxes and biological rates.  

 Mesophilic Thermophilic 

 Primary 
sludge 

 Mixed 
sludge 

 Primary 
sludge 

 Mixed 
sludge 

E1 removal rate μg d-

1 RT-1 -0.4111  -0.0870  -0.3826  -0.0713 

r2 0.88  0.52  0.90  0.76 
E1 biodegradation 
rate μg d-1 RT-1 0.2402  0.0203  0.1798  -0.0252 

r2 0.66  0.60  0.52  0.34 
E2 formation rate μg 
d-1 RT-1 0.1708  0.0667  0.2028  0.0965 

r2 0.96  0.84  0.93  0.84 
μg E2formed μg 
E1removed d-1 0.3517  0.4295  0.4463  1.1812 

r2 0.78  0.37  0.79  0.58 
μg E2formed μg 
E1degraded d-1 

0.4276  0.1286  0.4615  -1.6571 

r2 0.53  0.59  0.51  0.82 
μg ΣESTremoved g VS 

removed d-1 
2.9  1.2  0.6 1.1  0.2 

μg ΣESTremoved g VS 

content
-1 

0.056  0.018  0.056  0.006 

Note: Biodegradation refers to partial biodegradation i.e. microbial removal and not to 
mineralization. 
 
 

Table 5-2 First order kinetic constants (k) for steroid estrogens in primary and mixed 

sludge during mesophilic and thermophilic anaerobic digestion trials. 

Mesophilic Thermophilic 
Primary sludge  Mixed sludge  Primary sludge  Mixed sludge  

 

 

k  

 (per day) 

k  

 (per day) 

k  

 (per day) 

k  

 (per day) 

E1 0.1161 0.0811 0.0415 0.0459 
  E2 -0.0259 -0.0255 -0.0145 -0.0511 
  E3 0.0243 0.0226 0.0205 0.0201 

  E1-3S 0.0161 0.0110 0.0205 0.0240 
   EE2 0.0701 0.0021 0.0519 0.0753 
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5.2.6. Effect of sludge type on steroid estrogens 

5.2.6.1. Mesophilic digestion (primary sludge vs. mixed sludge) 

Significantly, lower overall estrogen flux removal (ΣEST) was observed with the mixed 

sludge when compared to the primary sludge i.e. 39% and 53% during mesophilic 

digestion (Figure 5-7).  

Overall, more E1 was biodegraded (partial biodegradation) (E1 removed – E2 formed) 

than it was biotransformed to E2, in the primary and mixed sludge mesophilic digestion 

trials, respectively. This finding indicated that both sludge types having 30 days 

retention time each were capable to carry out the biodegradation of E1. However, the 

biodegradation rate of E1 in primary sludge was 12 fold greater that of the mixed sludge 

(Table 5-1).  

Deconjugation of E1-3S in mixed sludge was insignificant contributor to E1 and 

accounted only for 0.3 μg d-1 to the total E1. The partial biodegradation of E1 in 

primary sludge accounted for 14 μg d-1 whereas in mixed sludge it was 7 μg d-1. When 

considering the influx of E1 in both sludge types, greater microbial conversion of E1 

was achieved by the primary sludge as opposed to mixed sludge. Batch studies have 

indicated that E1 will not be completely removed in activated sludge (Johnson & 

Sumpter, 2001b) possibly because of the inter-conversion mechanism of E1↔E2. It 

therefore appears that the presence of SAS in the mixed sludge could explain the lower 

E1 removal. 

As it was the case with the microbial removal of E1, by comparing the ratio of E1 

biodegradation and E2 formation, the activity of each sludge type could be determined 

by inference. Primary sludge indicated greater biotransformation potential than mixed 

sludge (Table 5-3). The biotransformation in primary sludge accounted for 12 μg d-1 

whereas in mixed sludge for 5 μg d-1.  

However, mixed sludge mesophilic consortium indicated a tendency to achieve a 

plateau between E1 and E2 faster than primary sludge. This phenomenon signifies that 
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the overall acclimation of mixed sludge for the whole E1↔E2 conversion was better 

than the primary sludge. This observation is based on the overall ability of mixed sludge 

to interconvert E1↔E2. A possible explanation for that phenomenon could be attributed 

to the presence of activated sludge (40% v/v) in mixed sludge. The aerobically treated 

activated sludge (oxidative process) could have promoted the conversion of E2 to E1. It 

is postulated that intrinsic bacteria/enzymes and/or electron acceptors in mixed sludge 

responsible for the conversion of E2 to E1 were over competed those bacteria/enzymes 

responsible for the reductive conversion of E1 to E2 and therefore a faster plateau was 

achieved in the mixed sludge compared to primary sludge.  

Similar E3 flux removals were observed in primary (45%) and mixed sludges (44%). It 

should be noted that the concentration of E3 during the entire mesophilic trials was near 

or below the MDL for both sludge types. The ratio of the sum of E1+E2 and E3, which 

is the metabolic by-product, was higher at the 1st retention time compared to that at the 

6th retention time in primary sludge. This demonstrated that E1 and E2 were removed 

and did not contribute to E3. In contrast, during mixed sludge digestion this ratio 

remained the same for the respective retention times which emphasised the inter-

conversion of E1↔E2 and that these steroid estrogens were not contributed to E3 

(Table 5-3).   

On the other hand, the deconjugation of E1-3S to E1 was limited and similar for both 

sludge types and contributed by 0.5 μg d-1 and 0.3 μg d-1 in primary and mixed sludge, 

respectively. Overall, slightly higher flux removals were achieved in primary sludge 

(36%) than in the mixed sludge (21%).  

Similarly, higher EE2 flux removals were observed in primary sludge (33%) than in 

mixed sludge (5%) that emphasised the importance of the substrate differences. 

Significantly higher EE2 removals (85%) were reported by (Carballa et al., 2006) 

during mesophilic (37oC) mixed sludge (70% primary and 30% SAS) digestion. 

However, the reported removals accounted for the spiked EE2 concentrations plus the 

background feed concentrations. Regardless of the long retention time (30 days), the 

growth of appropriate bacteria capable of degrading EE2 in both sludge types was 
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limited. The results obtained from both sludge types are in agreement with (Koh, 2008) 

that the significant removal of EE2 occurs only under aerobic conditions and with 

(Vader et al., 2000) which have showed that the EE2 degradation capability of sludge 

was correlated with the nitrifying activity.    

The rate of ΣEST removal per VS removal in primary sludge was higher (2.9 μg 

ΣESTremoval g VS removed d-1) compared to mixed sludge (1.2 μg ΣESTremoval g VS removed 

d-1), despite the fact that VS removal rates were similar between primary (1.07 g VS 

removal d-1) and mixed sludge (0.98 g VS removal d-1) digestions. This finding demonstrated 

the greater potency of the primary sludge substrate over the mixed sludge substrate.   

A rough estimation of the removal efficiency of the biomass (the amount of organic 

matter present in VS) of the primary and mixed sludge during mesophilic digestion was 

evaluated by activity i.e. μg estrogen removed per gram of VS content per digester. The 

calculation was determined by taking the mass difference (Mdiff) of the feed and the 6th 

retention time digestate and dividing it by the VS content in grams of the digesters. The 

calculation was performed for each sludge type. It should be noted that since volatile 

suspended solids were not measured, VS would represent in this case the closest 

approximation to biomass. 

The biomass activity per microgram of total steroid estrogens, demonstrated that greater 

removals were obtained for ΣEST in primary sludge (0.056 μg g VS-1) compared to 

mixed sludge (0.018 μg g VS-1).  

Although primary sludge digesters were receiving 1.9 times more steroid estrogens than 

mixed sludge digesters, flux removals of ΣEST during primary sludge digestion were 

2.5 fold greater than the mixed sludge digestion which indicated the importance of the 

substrate.  

However, in terms of concentration (μg kg-1 dw), primary sludge digesters demonstrated 

greater reduction of the concentration of total steroid estrogens (ΣEST = 102 μg kg-1 

dw) compared to the mixed sludge digesters (ΣEST = 48 μg kg-1 dw) (Figure 5-6). 
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Figure 5-6 Concentrations (μg kg-1 dw) of steroid estrogens at the start and at the end of 

the anaerobic mesophilic and thermophilic digestion trials for both sludge types.  

The efficiency of primary sludge in terms of ΣEST flux removal was better (53%) 

compared to mixed sludge (39%) (Figure 5-7). Although mixed sludge indicated the 

ability to interconvert E1↔E2, it demonstrated lower activity for the overall ΣEST 

removals and the lack of adequate suitable substrates/nutrients to promote the growth of 

certain microbes that biodegrade steroid estrogen. Moreover, this phenomenon could be 

attributed to the presence of dyspeptic substances in SAS (40% w/w in the mixed 

sludge) i.e. the extracellular polymeric substances (EPS) that pose physical barriers for 

organic compounds to be easily biodegraded (Baier & Schmidheiny, 1997; Bura et al., 

1998), hence may have restricted the further degradation of E1.  

It was demonstrated that the main route for E1 in primary sludge was partial 

biodegradation whilst biotransformation was the significant route in mixed sludge under 

mesophilic conditions. No complete biodegradation (mineralization) was observed for 
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the natural of synthetic steroid estrogens in the primary or mixed sludges during the 

mesophilic anaerobic digestion trials. 

 

Figure 5-7 Mass flux (μg d-1) for steroid estrogens at the start and at the end of the 

anaerobic mesophilic and thermophilic digestion trials for both sludge types. 
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Table 5-3 Ratio of steroid estrogens that demonstrates biodegradation and biotransformation. 

 Mesophilic Thermophilic Phenomenon 

 Primary sludge Mixed sludge Primary sludge Mixed sludge  

 Start 6RT Start 6RT Start 6RT Start 6RT  
E1degraded/E2formed 61 6 5 4 16 4 1 0.3 Biotransformation from E1 →E2 

(E1+E2)/E3 19 15 12 12 13 7 7 6 Biodegradation from E1+E2 →E3 

E1/E1-3Sdegraded 37 21 25 18 15 6 6 5 Deconjugation E1-3S →E1 

      
Note: Ratios were derived for each sludge type by obtaining the sum of each estrogen (μg d-1) from each entire digestion period (6RT) 
divided by the respectively estrogens/combination of estrogens (μg d-1). Values represent the total solids and aqueous phase combined. 
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5.2.6.2. Thermophilic digestion (primary sludge vs. mixed sludge)   

As it was seen with the mesophilic digestion, significantly lower ΣEST flux removals 

were obtained during thermophilic digestion in mixed sludge compared to primary 

sludge i.e. 12% and 51%, respectively.  

In thermophilic conditions, only the primary sludge demonstrated greater microbial 

removal (partial biodegradation) of E1 (E1 removed – E2 formed) than 

biotransformation to E2. In mixed sludge biotransformation was greater than E1 partial 

biodegradation. Nonetheless, both sludge types with 15 days retention time 

demonstrated the partial biodegradation of E1. In primary sludge, the microbial removal 

accounted for 13 μg d-1 whereas in mixed sludge the removal was much lower (1.4 μg d-

1). The amount of the removed E1 in each sludge type during the thermophilic trials was 

in accordance with the respective mesophilic trials i.e. primary sludge removed more E1 

than the mixed sludge (regardless of digestion temperature). Besides the limited partial 

biodegradation of E1 in mixed sludge, the rate of removal was much lower than it was 

in primary sludge and in fact, it was the lowest rate among all digesters in both 

mesophilic and thermophilic trials. Generally, the removal rate of E1 in mixed sludge 

(regardless the digestion temperature) was lower than that in the primary sludges. 

Interestingly, the biodegradation rate of E1 demonstrated accumulation over time (Table 

5-1) during the thermophilic digestion, suggestive of the formation of E1 in mixed 

sludge. Notably, the contribution of the deconjugated E1-3S to E1 in the mixed sludge 

was 0.8 μg d-1, which considered significant when taking into account the overall 

microbial removal of E1 in the mixed sludge. 

The biotransformation potential of E1 to E2 in primary sludge was much greater than 

that in the mixed sludge when considering the ratio of E1 biodegradation and E2 

formation. On the other hand, the same ratio in the mixed sludge indicated that E2 was 

converted to E1 (Table 5-1). Whereas the biotransformation of E1 to E2 in primary 

sludge accounted for 9 μg d-1, in mixed sludge the negative rate (-3.1 μg d-1) indicated 

the reversed reaction. 
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The apparent microbial conversion of E2 to E1 in mixed sludge was consistent with the 

observed inter-conversion of E1↔E2 during the mesophilic trials in the mixed sludge. 

However, it appears that thermophilic conditions had favoured the inter-conversion 

mechanism of E1↔E2 and ultimately had adversely affected the activity of the removal 

of E1 in mixed sludge. The inter-conversion phenomenon of E1↔E2 in mixed sludge 

(regardless of the digestion temperature) has emphasised the previous hypothesis that 

the presence of activated sludge (40% w/w) in mixed sludge could be an accountable 

factor, despite the retention time.  

As it was the case during the mesophilic trials, the ratio of the sum of E1+E2 and E3 in 

primary sludge demonstrated that the removal of E1 and E2 did not contribute to E3. 

During the thermophilic mixed sludge digestion, this ratio emphasised the inter-

conversion of E1↔E2 hence, no contribution to E3 was observed (Table 5-3). The E3 

flux removals were different between primary (17%) and mixed sludge (4%). E3 

remained unchanged for the entire thermophilic digestion of mixed sludge. 

Interestingly, the deconjugation of E1-3S was similar for both primary and mixed 

sludges in the thermophilic trials and its contribution to E1 accounted for 0.8 μg d-1 and 

0.8 μg d-1, respectively. The deconjugation in thermophilic trials was higher compared 

to the mesophilic trials. However, E1-3S flux removals were in accordance with the 

mesophilic trials i.e. greater flux removals in primary sludge (30%) than in the mixed 

sludge (28%), (36% and 21% in mesophilic conditions, respectively). Anaerobic 

disulphate strains are capable of cleaving E1-3S (Johnson & Williams, 2004) and this 

ability is believed to be associated with the use of sulphate as a terminal electron 

acceptor (Van Eldere et al., 1988). In addition, arylsulphatase enzyme has demonstrated 

some deconjugation of E1-3S (Bandick & Dick, 1999). Considering the findings of 

primary and mixed sludges and in conjunction with the literature, it can be hypothesized 

that the greater potential of primary sludge to deconjugate E1-3S was attributed to the 

greater abundance of the arylsulphatase enzyme compared to mixed sludge, which in 

turn indicated greater activity at the thermophilic temperature. If the above hypothesis is 

accountable, then a possible explanation for the limited arylsulphatase enzyme in mixed 

sludge is the fact that mixed sludge was partially treated (40% w/w of activated sludge 
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in mixed sludge) hence, the aerobic treatment could have resulted to the partial 

depletion of the E1-3S desulphating enzyme. It should be noted that the use of sulphate 

(SO4
-2) as a terminal electron acceptor for the E1-3S deconjugation should not be 

considered appropriate since in all six digesters ORP ranged from -320 mV to -419 mV 

which indicates fermentation (methane production) rather than sulphate reduction 

(Bouwer & Zehnder, 1993; Gerardi, 2003). In addition, the activity of the biomass for 

the deconjugation of E1-3S (μg E1-3S removed per gram of VS content-1) as described 

in section (5.2.6.1) was investigated.  It was demonstrated that primary sludge exhibited 

greater potential in mesophilic conditions (0.0014 μg g VS-1) compared to mixed sludge 

(0.0005 μg g VS-1) and similarly greater activity was observed during thermophilic 

conditions in primary (0.0014 μg g VS-1) and mixed sludge (0.0010 μg g VS-1), 

respectively.   

However, as it was seen in the mesophilic digestion, higher EE2 flux removals were 

observed in primary sludge (44%) compared to mixed sludge (15%). Higher removals 

were obtained in thermophilic digesters with 15 days retention time and this was also 

demonstrated by the activity (μg EE2 removed per gram of VS content-1). The biomass 

activity in primary sludge during thermophilic digestion was greater (0.005 μg g VS-1) 

than it was in mixed sludge (0.001 μg g VS-1). Similarly, the activity of primary sludge 

for EE2 removal under mesophilic conditions was greater in primary sludge (0.003 μg g 

VS-1) compared to the mixed sludge (0.0002 μg g VS-1). 

The rate of ΣEST removal per VS removal in primary sludge in thermophilic conditions 

was higher (1.1 μg ΣESTremoval g VS removed d-1) compared to mixed sludge (0.2 μg 

ΣESTremoval g VS removed d-1). despite the fact that VS removal rates were lower in mixed 

sludge (1.84 g VS removal d-1) compared to primary sludge (2.24 g VS removal d-1). This 

observation emphasised the greater potency of the primary sludge substrate to remove 

ΣEST compared to mixed sludge as it was seen in the mesophilic trials.   

The activity of the biomass for the removal of ΣEST (μg ΣEST removed per gram of 

VS content-1) demonstrated that primary sludge exhibited the greatest removal (0.056 

μg g VS-1) compared to mixed sludge (0.006 μg g VS-1). Although the biomass removal 
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activity in primary sludge remained constant under both mesophilic and thermophilic 

conditions, the activity in mixed sludge was reduced in thermophilic conditions.  

Primary sludge thermophilic digesters were receiving 1.8 times more steroid estrogens 

than the mixed sludge digesters, however at the end of the respective digestion trials 

flux removals of ΣEST in primary sludge were 7.8 fold greater compared to mixed 

sludge as it was demonstrated by the greater biomass activity of the primary sludge 

compared to mixed sludge. The low flux removals in mixed sludge reflected the 

reduction in concentration (ΣEST = 9 μg kg-1 dw) whereas the reduction in primary 

sludge account for 49% of the feed concentration i.e. ΣEST = 44 μg kg-1 dw). 

Statistical analyses based on fluxes were performed to estimate the statistical inferences 

before and after mesophilic and thermophilic digestion. Anderson-Darling normality 

tests hypotheses were not violated (p>0.1) (Appendix III) and therefore Bartlett's and 

Levene's tests were performed to test the variances between the different temperature 

digestions. Statistical analysis demonstrated that the steroid estrogen mass entering the 

primary and mixed mesophilic digesters had similar variances that did not differ 

significantly (p>0.05) and the same hypothesis was true for the thermophilic trials 

(p>0.05). Further 2-sample t-tests (t=3.78, Degrees of Freedom (DF) = 2, p>0.05) 

indicated that the mean differences between the influxes for the primary and mixed 

sludge mesophilic digesters and equally among the respective thermophilic digesters 

(t=7.94, DF=2, p>0.01) were not differed significantly. Presumably, the observed 

similarities between the different sludge types within the respective digestion 

temperatures were due to the similar feed rates among the different digestion 

temperatures and were due to the large standard deviations (Appendix III). Because 

temperature and retention time between primary and mixed sludge mesophilic 

digestions were similar as it was the case for the respective thermophilic digestion trials, 

these results showed that differences could be narrowed down to the microbiology and 

may be independent of the overall estrogenic loadings. 

The efficiency in terms of ΣEST removal in primary sludge was better (51%) compared 

to mixed sludge (12%) (Figure 5-7) which is consistent with the results obtained during 
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the mesophilic trials. Thermophilic digestion of mixed sludge indicated the conversion 

of E2 to E1 and demonstrated the lower biomass activity for the overall ΣEST removals 

compared to primary sludge. In addition, mixed thermophilic digestion demonstrated 

the lowest potential to remove ΣEST. As it was seen in mesophilic conditions, these 

phenomena were enhanced in the thermophilic trials. It therefore appears that 

temperature had affected the syntrophic microbial combinations that are common in 

methanogenic degradative processes (Schink, 1997) and resulted to different degree and 

extend of steroid estrogen conversion if each sludge type.  

It was demonstrated that the main route for E1 in primary sludge was partial 

biodegradation whilst in mixed sludge the conversion of E2 to E1 predominated. These 

observations are in close argument with the mesophilic digestion trials. Similarly, no 

complete biodegradation (mineralization) was observed for the natural of synthetic 

steroid estrogens in the primary or mixed sludges during the mesophilic and 

thermophilic anaerobic digestion trials.  
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6. RESULTS: FATE OF NONYLPHENOL ETHOXYLATES 

DURING ANAEROBIC DIGESTION (SIX RETENTION TIMES) 

6.1. Feed characterization for the primary and mixed sludges for 

mesophilic and thermophilic anaerobic digesters  

Nonylphenol ethoxylates (nonylphenolics) were obtained from the combined (aqueous 

and solid phases) freeze-dried feed sludge samples; hence, the concentrations refer to 

the total amount of nonylphenolics present in each feed sample. Five individual samples 

(n=5) from each sludge type (primary or mixed) were extracted and analysed for 

nonylphenolics to determine the respective feed concentrations. The respective feed 

concentrations from each sludge type were then combined to produce an average value 

(arithmetic mean) representative for each type of feed i.e. primary or mixed feed. The 

feed concentrations represent the start concentrations or the influent. The individual 

concentrations from each digester are presented in Appendix IV. 

6.1.1. Primary sludge  

The background mean concentrations of nonylphenolics in the primary feed sludges 

over the two sampling periods are shown in Figure 6-1. The mean value of the summed 

carboxylated nonylphenolics (NPECs) dominated in primary sludge (13.3±26.5-0.04 mg 

kg-1 dw) of which the major carboxylated nonylphenolic analyte was NP2EC (26.5 mg 

kg-1 dw). Short-chained nonylphenolics (NP1-2EOs) mean concentration (8.6±2.1-15 mg 

kg-1 dw) was the second dominant species followed by the long-chained nonylphenolics 

(NP3-12EOs) with a mean concentration (1.4±1.5-1.3 mg kg-1 dw). Nonylphenol mean 

concentration in primary sludge was (0.3±0.3-0.2 mg kg-1 dw).  

The mean background concentration of ΣNPEOs for the mesophilic trials (first 

sampling period) was 1.8 times higher than the feed for the thermophilic trials. Mean 

concentration of ΣNPEOs for the mesophilic digestion (first sampling period) was 
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30.5±0.01-26.5 mg kg-1 dw whilst the mean concentration for the thermophilic digestion 

(second sampling period) was 16.7±0.01-15 mg kg-1 dw.  

 
Figure 6-1 Mean (n=5) background nonylphenolic concentrations (mg kg-1 dw ) for the 

mesophilic trials in the primary (PSM) and mixed feed sludges (MSM) and the 

thermophilic trials in primary (PST) and mixed feed sludges (MST), respectively.   

The contribution of the dominant specie (NP2EC) in primary feed sludge entering the 

mesophilic digesters was 87% of the sum of nonylphenolics (ΣNPEOs) whilst that in 

thermophilic feed was NP1EO and contributed to 90% of the sum of nonylphenolics 

entering the thermophilic digesters (Figure 6-2). 

The contribution of NP3-12EOs in the thermophilic feed was slightly higher (8%) than 

the contribution in the mesophilic feed (5%).  

Nonylphenol mean concentrations were similar for the mesophilic (0.3 mg kg-1 dw ) and 

thermophilic feeds (0.2 mg kg-1 dw ) and its contribution was 0.01% for each type of 

feed, respectively (Figure 6-2).  
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Aerobic and anaerobic partial biodegradation and biotransformation of the 

alkylphenolic compounds was apparent in the primary sludge feeds for both mesophilic 

and thermophilic trials. As it was seen for the steroid estrogen trends, the two possible 

explanations for this phenomenon are the consequence of the biologically active of 

returned liquors or sludge returned to the head of the works and 

biodegradation/biotransformation in the sewerage system. The percentage distribution 

of alkylphenolics in primary sludge entering the mesophilic digesters was as follows: 

NPECs (87%)> NP1-2EOs (7%)> NP3-12EOs (5%)>NP (1%). For the thermophilic trials, 

the percentage distribution was as follows: NP1-2EOs (90.3%)> NP3-12EOs (8.1%)>NP 

(1.4%)> NPECs (0.2%). 

6.1.2. Mixed Sludge  

The background mean concentrations of nonylphenolics in the mixed feed sludges over 

the two sampling periods are shown in Figure 6-1. The dominant species in mixed 

sludge was NPECs with a mean concentration 120.8±241.5-0.08 mg kg-1 dw  of which 

NP2EC was the dominant carboxylated specie (241.5 mg kg-1 dw). The mean 

background concentration of NP1-2EOs in the mixed feed over the two sampling periods 

was 45.6±1.7-90 mg kg-1 dw whilst the mean for NP3-12EOs was 0.7±0.7-0.7 mg kg-1 

dw over the two sampling periods. Mean concentration of NP was 0.1±0.2-0.1 mg kg-1 

dw. The mean of ΣNPEOs in the feed mixed sludge for the first sampling period 

(mesophilic digestion) was 244±0.02-241.4 whilst for the second sampling period 

(thermophilic digestion) the mean concentration was 90.5±0.02-89.5 mg kg-1 dw. 

Overall, the mean background concentration of ΣNPEOs in the mixed sludge for the 

mesophilic trials was 2.7 times higher than the feed for the thermophilic trials.  

The contribution of NP2EC in the feed for the mesophilic trial was 99% whilst for NP1-

2EOs was 1%. The respective contributions of NP3-12EOs and NP in the feed sludge 

were less than 0.1% respectively (Figure 6-2). The contribution of NP1-2EOs in the feed 

for the thermophilic trials was 99% and circa 1% for the long-chained nonylphenolics 

whereas the contribution of NPECs and NP was below 0.1%, respectively.   
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Figure 6-2 Mean (n=5) composition of nonylphenolics in the primary and mixed feeds 

for the mesophilic and thermophilic trials. 

The percentage distribution of alkylphenolics in mixed sludge that was entering the 

mesophilic digesters was as follows: NPECs (99%)> NP1-2EOs (1%)> NP3-12EOs 

(0%)≈NP (0%). The distribution for the respective thermophilic trials was: NP1-2EOs 

(99%)> NP3-12EOs (1%)>NPECs (0%)≈NP (0%).  

As it was seen in primary sludge, aerobic and anaerobic partial biodegradation and 

biotransformation of the alkylphenolic compounds was apparent in the mixed sludge for 

both temperature digestions. However, this is a typical trend for alkylphenolic 

compounds that have undergone some degree of biotransformation and biodegradation 

in mixed sludge. The biotransformation/biodegradation products of ΣNPEOs i.e. 

NPECs and NP1-2EOs were found in greater concentrations in mixed sludge than in 

primary sludge whilst higher levels of parent alkylphenolics i.e. NP3-12EOs were present 

in primary sludge. Mixed sludge contained 7 fold higher ΣNPEOs compared to primary 

sludge due to the higher concentration of metabolites in this sludge.
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6.2. Trends for nonylphenol ethoxylates during anaerobic 

digestion of primary and mixed sludges under mesophilic and 

thermophilic conditions  

This chapter reports the results from the mesophilic and thermophilic trials for 

nonylphenol ethoxylates over 180 and 90 days, respectively. The aim was to understand 

if there were any differences in terms of removals in relation to different sludge types 

i.e. primary or mixed (60:40 v/v, primary sludge: SAS) sludge during mesophilic and 

thermophilic digestion temperatures. The first (H1N) and second research hypotheses 

(H2N) were: 

H1N0: Mesophilic anaerobic digestion of nonylphenol ethoxylates by using mixed or 

primary sludge will not result to significantly different mass removal.  

H1Nα: Mesophilic anaerobic digestion of nonylphenol ethoxylates by using mixed or 

primary sludge will result to significantly different mass removal.  

H2N0: Digestion temperature will not result to significant effect on nonylphenol 

ethoxylate removals.  

H2Nα: Digestion temperature will result to significant effect on nonylphenol ethoxylate 

removals. 

The objectives were to: 

1. Examine the effect of primary and mixed sludge (60:40 v/v, primary sludge: 

SAS) on nonylphenol ethoxylate removals during anaerobic digestion. 

2. Investigate the effects of mesophilic (35oC ± 0.2oC) and thermophilic (53oC ± 

0.2oC) digestion on nonylphenol ethoxylate removals.    

At the end of each retention time i.e. 30 days for the mesophilic and 15 days for 

thermophilic digestion, a composite sample from each individual digester was used for 

the quantification of alkylphenolics. The composite sample was comprised of all 
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digestates collected from each individual digester over a period of the last week of each 

retention time, respectively and were kept frozen (-26º ± 1.5ºC) until analysis. Each 

digestate (50 ml) was extracted and analysed twice for alkylphenolic concentrations to 

produce an average value (n=4), for mesophilic digesters and (n=2) for the thermophilic 

digesters representative for each type of digester i.e. primary or mixed sludge digester. 

All values reported represent the mean values of alkylphenolics from the primary or the 

mixed digesters, respectively. The individual concentrations from each separate digester 

are presented in Appendix IV. Effluent refers to digestate i.e. total solids and aqueous 

phase combined and similarly, influent refers to the feed i.e. total solids and aqueous 

phase combined.  
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6.2.1. Primary sludge (mesophilic digestion)   

The concentrations of nonylphenolics obtained for each retention time from the 

mesophilic (30 days retention time) primary sludge digesters are shown in (Figure 6-3). 

The sum of the concentration in primary sludge of all nonylphenolics i.e. NP1-12EO, NP 

and NPEC (NPECs) at the end of the 1st retention time (RT) was 163 mg kg-1 dw which 

was increased from the feed concentration (30.5 mg kg-1 dw). The increase in 

concentration was mainly attributed to the carboxylated nonylphenolic species, in 

particular to NP2EC and NP3EC.  

 
Figure 6-3 Mean (n=4) trends of nonylphenol ethoxylate concentrations (mg kg-1 dw ± 

SE) per retention time (30 days) during mesophilic digestion (35oC ± 0.2oC) of primary 

sludge. The start concentration is displayed as follows: . 

The concentration of ΣNPEOs at the 2nd RT, 3rd RT, 4th RT, 5th RT and 6th RT was 147 

mg kg-1 dw, 143 mg kg-1 dw, 90 mg kg-1 dw, 76 mg kg-1 dw and 87 mg kg-1 dw, 

respectively. 
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However, the concentration of the long- chained nonylphenolics (NP3-12EOs) at the 1st 

RT was 1.1 mg kg-1 dw whereas at the 2nd RT, 3rd RT, 4th RT, 5th RT and 6th RT was 0.9 

mg kg-1 dw, 0.5 mg kg-1 dw, 0.4 mg kg-1 dw, 0.3 mg kg-1 dw and 0.4 ± 0.3 -1, 

respectively. Although at the 6th retention time, NP3-12EOs concentration indicated an 

1.5 fold increase from the concentration observed at the 5th retention time, this value 

was associated with a large standard error. Overall, NP3-12EOs indicated a progressive 

reduction in concentration during the entire period of mesophilic digestion.  

Overall, the mass reduction of NP3-12EOs at the end (6th retention time) of the (Massout – 

Massin) was Mdiff=-0.05 mg d-1 indicated the partial biodegradation/biotransformation of 

NP3-12EOs during mesophilic anaerobic digestion of primary sludge 

During the entire digestion period, the removed NP3-12EOs (Massin – Massout) accounted 

for 0.23 mg d-1. No contribution to NP1EO or NP2EO was observed from the breakdown 

of NP3-12EOs during the digestion period. If NP3-12EOs had been broken down to either 

of these metabolites then it would be expected an increase in their respective out fluxes 

unless these species were further biotransformed. In fact, NP1EO, NP2EO and NP 

decreased from the commencement of the mesophilic trial and were always decreasing 

during the digestion period. In contrast, the carboxylated nonylphenolics, in particular 

NP2EC and NP3EC increased at the 1st retention time from their respective influxes and 

then decreased over the entire mesophilic trial. 

The mass difference (Mdiff) of the sum of NP2EC and NP3EC for the entire digestion 

period (Massin – Massout) was -21.3 mg NP1-2EC d-1. The disappeared mass of NP3-

12EOs was partially biotransformed to NP2EC and NP3EC onset the mesophilic 

digestion of primary sludge. There was no evidence for the direct contribution of NP3-

12EOs to the short-chained metabolites (NP1-2EOs) or to NP. Therefore, considering the 

biodegradation/biotransformation mechanism of the long chained nonylphenolics i.e. 

long chained NPEOs → short-chained NPEOs ↔ NPECs → NP (Renner, 1997; 

Montgomery-Brown & Reinhard, 2003; Schröder, 2001), the difference between the 

removed NP3-12EOs and the formed NP1-2ECs suggested that 21.03 mg d-1 of NP3-12EOs 

were possibly biotransformed to unmeasured metabolite species and/or biodegraded. 
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This peculiar observation implied that the formation of short-chained carboxylates 

occurred from the commencement of the experiment whilst de-carboxylation occurred 

with time and at non-constant rate.    

Overall, NP3-12EOs indicated 72% flux removal. The reduction in concentration of NP3-

12EOs during the anaerobic trials is consistent with the accepted theory that the 

breakdown of long-chained nonylphenolics proceeds fast by the stepwise removal 

mechanism of one ethylene glycol unit (Montgomery-Brown & Reinhard, 2003; Chiu et 

al., 2010). The high removal of NP3-12EOs is consistent with high removals obtained by 

(Zhang et al., 2008) from the spiked NPEO mixture in the continuous lab-scale UASB 

trials (pH= 7.1, ORP= −350mV).   

Overall, NP1-2EOs indicated a progressive reduction in concentration during the entire 

period of mesophilic digestion (Figure 6-3) but their levels were not eliminated. The 

mass reduction of NP1-2EOs between the 6th RT digestate and the influx (Massout – 

Massin) was Mdiff=−0.1 mg d-1 which accounted for 90.4% mean flux removal in the 

primary sludge which was the highest flux removal among the nonylphenolics in 

primary sludge. The NP2EO indicated the highest flux removal among the short-chained 

nonylphenolics.  

It appeared that the breakdown of NP1-2EOs did not contribute to a significant degree to 

the NP because NP levels were always decreasing from the commencement of the 

digestion trial. The gradual disappearance of NP1-2EOs could be possibly explained by 

their biotransformation to NPECs and/or to NP. If all the NP1-2EOs had been 

biotransformed to NP1-2ECs then the maximum contribution from NP1-2EOs to NP1-

2ECs would be the Mdiff = 0.4 mg d-1.       

The results were not in close agreement with (Montgomery-Brown & Reinhard, 2003) 

that short-chained nonylphenolics persist under anaerobic conditions.  

The concentration of the sum of the measured carboxylated nonylphenol ethoxylates 

(NPECs) at the 1st RT (161 mg kg-1 dw) was significantly increased from the feed 

concentration (26.5 mg kg-1 dw). After the 1st retention time, the concentration of 
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NPECs decreased with the digestion period and at the 2nd RT, 3rd RT, 4th RT, 5th RT and 

6th RT the mean concentration was 145 mg kg-1 dw, 142 mg kg-1 dw, 89 mg kg-1 dw, 75 

mg kg-1 dw and 86 mg kg-1 dw, respectively (Figure 6-3). The difference in 

concentration between the 6th retention time digestate and the start concentration 

indicated the. At the end of the mesophilic digestion period (6th retention time) a 

significant accumulated mass (Massout – Massin) accounted for Mdiff= 2.4 mg d-1 which 

reflected the negative flux removal (accumulation) of -215%. The greatest accumulation 

was observed for NP3EC (-7692%) and NP2EC (-211%) whereas NP1EC indicated 

removal (54.2%). It appeared that the breakdown of NP3-12EOs contributed to the 

formation of NP2-3EC. The estimated total contribution of NP1-12EOs to NP2-3EC for the 

entire digestion period was 22 mg d-1. The estimation of the contribution was calculated 

from the mass difference between the removed NP1-12EOs and the partially biodegraded 

NP1-12EOs (NP1-12EOs removed – NP1-12EOs ‘partial biodegradation’) since no evidence 

was observed for their contribution to NP.  

However, the concentration of nonylphenol (NP) at the 1st RT remained at similar levels 

to the start levels i.e. 0.3 mg kg-1 dw. Concentration of NP at the 2nd RT, 3rd RT, 4th RT, 

5th RT and 6th RT was 0.2 mg kg-1 dw, 0.2 mg kg-1 dw, 0.2 mg kg-1 dw, 0.2 mg kg-1  dw 

and 0.2 mg kg-1 dw, respectively. In general, NP decreased with time. Overall, NP 

indicated a reduction in concentration during the 2nd, 3rd and 4th retention times and then 

its concentration reached a plateau for the remaining period of the mesophilic digestion 

(Figure 6-3). No evidence was observed that the breakdown of the non-ionic 

nonylphenolics as well as the NPECs were contributed to NP. The change in 

concentration between the difference of the 6th retention time digestate and the start 

concentration was -0.14 mg NP kg dw-1. The partial biodegradation of NP in terms of 

concentration is consistent with the results obtained by (Patureau et al., 2008) during 

continuous mesophilic anaerobic digestion but contrary to (Chang et al., 2005; Chang et 

al., 2004) who observed NP biodegradation (mineralization) in batch mesophilic 

anaerobic trials by using petrochemical sludge and river sediment with additional 

electron acceptors at pH =7. However, the mass reduction of NP at the end (6th retention 

time) of the mesophilic digestion period of primary sludge (Massout – Massin) was 

Mdiff=−0.01 mg d-1. The lowest flux removal of all the measured nonylphenolics was the 
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removal of NP (45%). The overall partial biodegradation of NP during the entire 

digestion period (Massin – Massout) accounted for 0.02 mg d-1.  
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6.2.2. Primary sludge (thermophilic digestion)  

The concentrations of nonylphenolics from the thermophilic digestion (15 days 

retention time) of primary sludge are shown in Figure 6-4. The sum of the concentration 

of all nonylphenolics (ΣNPEOs) measured at the 1st retention time (RT) was 16 mg kg-1 

dw whereas the start concentration was 17 mg kg-1 dw. For the remaining of the 

retention times, the concentration of ΣNPEOs did not change significantly. For the 2nd 

RT, 3rd RT, 4th RT, 5th RT and 6th retention times the concentration of ΣNPEOs was 18 

mg kg-1 dw, 19 mg kg-1 dw, 17 mg kg-1 dw, 17 mg kg-1  dw and 17 mg kg-1 dw, 

respectively.  

 
Figure 6-4 Mean (n=2) trends of nonylphenol ethoxylate concentrations (mg kg-1 dw± 

SE) per retention time (15 days) during thermophilic digestion (53oC ± 0.2oC) of 

primary sludge. The start concentration is displayed as follows: . 

Long chained nonylphenolics (NP3-12EOs) were slightly reduced at the 1st RT (0.9 mg 

kg-1 dw) from the start concentration (1.3 mg kg-1 dw). During the entire thermophilic 

digestion of primary sludge (90 days), the concentration of NP1-2EOs did not reduce 

significantly. For example, the concentration at the 2nd RT, 3rd RT, 4th RT, 5th RT and 
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6th RT was 0.6 mg kg-1 dw, 0.7 mg kg-1 dw, 0.7 mg kg-1 dw, 0.4 mg kg-1  dw and 0.4 mg 

kg-1 dw, respectively. Interestingly, similar reduction in concentration i.e. 1.0 mg kg-1  

dw was also observed during the mesophilic trial of primary sludge with similar start 

concentrations.  

Overall, the mass reduction of NP3-12EOs at the end of the thermophilic digestion period 

(6th retention time) of primary sludge (Massout – Massin) was Mdiff=-0.08 mg d-1 which 

resulted to 71% flux removal and it was similar to the mesophilic trial. Moreover, the 

NP3-12EOs removal is in agreement with the literature (Montgomery-Brown & 

Reinhard, 2003; Chiu et al., 2010; Zhang et al., 2008). Overall, the removal of NP3-

12EOs during the entire thermophilic digestion was 0.36 mg d-1. In contrary to the 

mesophilic digestion of primary sludge, the breakdown of NP3-12EOs contributed to the 

short-chained nonylphenolics and in particular to NP1EO.   

However, the concentration of short-chained nonylphenolics (NP1-2EOs) at the 1st RT 

was slightly reduced (14.6 mg kg-1 dw) from the start concentration (15 mg kg-1 dw). 

The concentration for the consecutive retention times was also reduced (Figure 6-4) and 

at the 2nd RT, 3rd RT, 4th RT, 5th RT and 6th RT retention times the concentration levels 

were 14 mg kg-1 dw, 11 mg kg-1 dw, 6 mg kg-1 dw, 3 mg kg-1 dw and 1.3 mg kg-1 dw, 

respectively. However, the concentration of NP1EO at the end of the digestion period 

was reduced by 14 mg kg-1 dw from the start concentration whereas NP2EO 

concentration had increased by 1 mg kg-1 dw. In terms of flux, the overall mass 

difference between the 6th retention time and the influx (Massout – Massin) was Mdiff=-

0.1 mg NP1-2EOs d-1. The highest flux removal among the short-chain nonylphenolics 

demonstrated by NP2EO (80%) whereas significantly lower removal occurred for 

NP1EO (2%). Overall, the mass difference of NP1EO for the entire digestion period 

(Massin – Massout) was 3.4 mg d-1. The removal of the short-chained nonylphenolics 

under thermophilic conditions was lower than it was during the mesophilic digestion. 

The persistence of NP1EO during the thermophilic digestion of primary sludge is in 

accordance with (Montgomery-Brown & Reinhard, 2003) that short-chained 

nonylphenolics persist under anaerobic conditions.    
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The concentration of the sum of carboxylated nonylphenolics (NPECs) increased during 

the thermophilic digestion of primary sludge.  Although the start concentration was 0.1 

mg kg-1 dw the concentrations at the 1st RT, 2nd RT, 3rd RT, 4th RT, 5th RT and 6th RT 

were 0.4 mg kg-1 dw, 3 mg kg-1 dw, 8 mg kg-1 dw, 9 mg kg-1 dw, 13 mg kg-1 dw and 15 

mg kg-1 dw, respectively (Figure 6-4). The change in concentration between the 6th 

retention time digestate and the start concentration accounted for 15 mg kg-1 dw and it 

was mainly attributed to NP2EC. However, the mass difference between the 6th retention 

time digestate and the influx accounted for 0.11 mg NP1-2ECs d-1. Nonylphenoxy 

carboxylate (NP1EC) was formed directly after the commencement of the experiment 

and it was gradually removed at constant rate. However, the residual levels at the 6th 

retention time indicated its accumulation (-4684%). On the other hand, NP2EC 

increased (-6078%) whilst NP3EC resulted to an insignificant flux removal (0.3%). As it 

was the case during mesophilic digestion the results from the thermophilic digestion 

regarding NPECs are in argument consistent with (Schröder, 2001; Field & Reed, 1999; 

Lee et al., 1997). 

Regarding nonylphenol (NP), its concentration at the 1st RT (0.2 mg kg-1 dw) reduced 

from the feed concentration (0.23 mg kg-1 dw) and continued to decrease with the 

digestion period. At each retention time i.e. 2nd RT, 3rd RT, 4th RT, 5th RT and 6th RT its 

concentration was 0.2 mg kg-1 dw, 0.1 mg kg-1 dw, 0.1 mg kg-1 dw, 0.1 mg kg-1 dw and 

0.1 mg kg-1 dw, respectively. NP did not accumulate during the thermophilic digestion 

of primary sludge (Figure 6-4) which is in agreement with its reduction during 

mesophilic conditions. The concentration was reduced at the end of the digestion period 

(6th retention time) by -0.1 mg NP kg-1 dw from the start concentration . The reduced 

NP at the end of the thermophilic digestion period (6th retention time) (Massout – Massin) 

was Mdiff=-0.01 mg d-1  and its flux removal (57%)  was slightly greater compared to 

mesophilic conditions (45%). The overall partial biodegradation of NP during the entire 

digestion period (Massin – Massout) accounted for 0.05 mg d-1 and occurred over the 

entire digestion period as it was observed in the mesophilic trial. The reduction of the 

NP mass during the thermophilic digestion is consistent with (Patureau et al., 2008).   
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6.2.3. Mixed sludge (mesophilic digestion)   

The concentration of nonylphenolics for each retention time during mixed sludge 

mesophilic (30 days retention time) digestion are shown in (Figure 6-5). The sum of the 

concentration of all nonylphenolics (ΣNPEOs) at the 1st retention time (RT) (118 mg 

kg-1 dw) decreased from the start concentration (244 mg kg-1 dw) which was mainly 

attributed to decrease in concentration of NPECs in particular that of NP2EC. Overall, 

the concentrations of ΣNPEOs during the entire digestion period decreased from the 

initial concentration. At the 2nd RT, 3rd RT, 4th RT, 5th RT and 6th RT, ΣNPEOs 

concentrations were 71 mg kg-1 dw, 44 mg kg-1 dw, 61 mg kg-1 dw, 63 mg kg-1 dw and 

104 mg kg-1 dw, respectively.  

 
Figure 6-5 Mean (n=4) trends of nonylphenol ethoxylate concentrations (mg kg-1 dw ± 

SE) per retention time (30 days) during mesophilic digestion (35oC ± 0.2oC) of mixed 

sludge. The start concentration is displayed as follows: . 

However, the concentration of the long-chained nonylphenolics (NP3-12EOs) in the 

digestates of the 1st RT (0.7 mg kg-1 dw) remained the same with the start concentration 

of NP3-12EOs (0.7 mg kg-1 dw). Nevertheless, post the 1st retention time the 
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concentration of NP3-12EOs decreased with time. At the 2nd RT, 3rd RT, 4th RT, 5th RT 

and 6th RT, concentrations were 0.4 mg kg-1 dw, 0.3 mg kg-1 dw, 0.2 mg kg-1 dw, 0.2 

mg kg-1 dw and 0.3 mg kg-1 dw, respectively. Overall, NP3-12EOs indicated reduction in 

concentration during the first five retention times and then an insignificant increase in 

concentration occurred at the 6th retention time. The increased concentration between 

the 5th retention time and the 6th retention time was 0.1 mg kg-1 dw (Figure 6-5).  This 

increase in concentration could be a result of the breakdown of NPEOs having longer 

than 12 ethoxylate units that were presumably present in the primary sludge portion of 

the mixed sludge. Overall, the mass reduction at the 6th retention time (Massout – Massin) 

was Mdiff=-0.02 mg d-1 and NP3-12EOs exhibited 57% flux removal. The reduction of 

NP3-12EOs during the mesophilic digestion of mixed sludge is in agreement with the 

removals obtained during primary sludge mesophilic digestion. 

In addition, the results are consistent with the literature (Montgomery-Brown & 

Reinhard, 2003) and other studies (Zhang et al., 2008; Patureau et al., 2008). During the 

entire digestion period, the removed NP3-12EOs (Massin – Massout) accounted for 0.09 

mg d-1. There was no direct evidence that the breakdown of NP3-12EOs contributed to 

the short-chained nonylphenolics i.e. NP1EO or NP2EO, however, the concentration 

NP2EC increased. The difference between the removed NP3-12EOs did not equilibrate 

with the metabolites which suggested that NP3-12EOs were degraded or that were 

biotransformed to unmeasured metabolite species.        

An overall reduction in concentration was observed for NP1-2EOs with time during the 

mesophilic mixed sludge digestion. The concentrations reduced from the 1st RT (0.6 mg 

kg-1 dw) compared to the start concentrations 1.7 mg kg-1 dw. At the 2nd RT, 3rd RT, 4th 

RT, 5th RT and 6th RT the concentrations were 0.5 mg kg-1 dw, 0.4 mg kg-1 dw, 0.2 mg 

kg-1 dw, 0.2 mg kg-1 dw and 0.2 mg kg-1 dw, respectively (Figure 6-5). A small 

difference between the concentration in the feed and that at the 6th retention time 

digestate was observed and accounted for 1.5 mg NP1-2EOs kg-1 dw. Overall, the mass 

reduction of NP1-2EOs at the end of the mesophilic digestion period of mixed sludge 

(Massout – Massin) was Mdiff=-0.06 mg d-1  and NP1-2EOs removed by 88.7%. The 

greatest flux removal among the short-chained nonylphenolics demonstrated by NP1EO 
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(90%) whilst NP2EO removed by 73%. During the entire digestion period, the sum of 

the removed short-chained nonylphenolics was 0.31 mg d-1. There was no clear 

evidence for the stoichiometric contribution of NP1EO to NP1EC or NP. As it was seen 

in primary sludge, the persistence of NP1-2EOs was equally occurred in the mixed 

sludge during 30 days anaerobic digestion. In addition, the results from the mixed 

sludge are in agreement with (Montgomery-Brown & Reinhard, 2003; Zhang et al., 

2008). 

Nevertheless, the concentration of NPECs decreased from the start concentration of 

241.5 mg kg-1 dw to 118 mg kg-1 dw at the 1st RT. At the 2nd RT and 3rd RT the 

concentration decreased i.e.72 mg kg-1 dw and 44 mg kg-1 dw, respectively. For the 

remaining digestion period, the concentration of NPECs increased. At the 4th RT, 5th RT 

and 6th RT, NPECs concentration was 61 mg kg-1 dw, 64 mg kg-1 dw and 104 mg kg-1 

dw, respectively (Figure 6-5). The change in concentration between the 6th RT digestate 

and the start concentration indicated a significant reduction in concentration of -138 mg 

kg-1 dw. The mass reduction of NPECs between the 6th RT and the influx (Massout – 

Massin) was Mdiff= -5.6 mg d-1. However, the accumulation was mainly attributed to 

NP2EC (Mdiff=-5.6 mg d-1). Overall flux removal for NPECs was 57.6% of which 

NP1ECand NP2EC removals accounted for 90% and 58%, respectively. The 

accumulation of NP3EC resulted to a negative flux removal of -10312%. It is worth 

mentioning that the removed NP3EO (5.5mg d-1) was greater than the formed NP3EC 

(2.4 mg d-1) which implied the possible biotransformation of NP3EO to NP3EC. 

However, since the quantification of NP3EC was based on the instrument’s response for 

NP1EC it is not possible to conclude for the accounted contribution of NP3EO to 

NP3EC. Nevertheless, the increase of NP2EC and NP3EC after the 4th retention time 

suggested the biotransformation of NPEOs to NPECs.        

However, NP concentration at the 1st RT (0.09 mg kg-1 dw) reduced from the start 

concentration (0.23 mg kg-1 dw). The concentration of NP decreased until the fourth 

retention time i.e. 2nd RT (0.08 mg kg-1 dw), 3rd RT (0.06 mg kg-1 dw), 4th RT (0.05 mg 

kg-1 dw) and then increased at the 5th RT and 6th RT  (0.07 mg kg-1 dw and 0.08 mg kg-1 

dw, respectively), (Figure 6-5). Although NP concentration reduced from the start 
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concentration, this reduction was insignificant and accounted for 0.08 mg kg-1 dw 

between the start and the 6th retention time digestate. The overall biodegradation of NP 

during the entire digestion period of mixed sludge (Massout – Massin) was Mdiff=-0.02 

mg d-1). Flux removal of NP was 51%. There was no clear evidence for the 

stoichiometric contribution of the short-chained or carboxylated nonylphenolics to NP. 

However, the observed increased patterns of NP2EC and NP3EC after the 3rd retention 

time were analogous with the increased NP after the 3rd retention time. The reduction of 

NP during mesophilic anaerobic digestion of mixed sludge is consistent with the 

observations of primary sludge as well as with the literature (Patureau et al., 2008; 

Chang et al., 2005; Chang et al., 2004).  
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6.2.4. Mixed sludge (thermophilic digestion)  

Mixed sludge thermophilic (15 days retention time) digestates, from each retention 

time, are shown in (Figure 6-6). Overall, the sum of the concentration of ΣNPEOs at the 

1st retention time (16 mg kg-1 dw) reduced from the start concentration 90.5 mg kg-1 dw. 

The concentration of ΣNPEOs at the 2nd RT, 3rd RT, 4th RT, 5th RT and 6th RT were 12 

mg kg-1 dw, 11 mg kg-1 dw, 10 mg kg-1 dw, 9 mg kg-1 dw and 7 mg kg-1 dw, 

respectively.  

 
Figure 6-6 Mean (n=2) trends of nonylphenol ethoxylate concentrations (mg kg-1 dw ± 

SE) per retention time (15 days) during thermophilic digestion (53oC ± 0.2oC) of mixed 

sludge. The start concentration is displayed as follows: . 

Regarding the NP3-12EOs concentration, it slightly decreased at the 1st RT (0.6 mg kg-1 

dw) compared to the start concentration (0.7 mg kg-1 dw).  For the remaining of the 

digestion period i.e. at the 2nd RT, 3rd RT, 4th RT, 5th RT and 6th RT, NP3-12EOs 

concentration was 0.4 mg kg-1 dw, 0.4 mg kg-1 dw, 0.3 mg kg-1 dw, 0.2 mg kg-1 dw and 

0.2 mg kg-1 dw, respectively. Overall, NP3-12EOs indicated reduction in concentration 

during the entire period of thermophilic digestion (Figure 6-6). The mass reduction of 

NP3-12EOs between the 6th retention time and the influx (Massout – Massin) was Mdiff=-
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0.05 mg d-1 indicated an overall 79% flux removal which was higher to what was seen 

(57%) during mesophilic digestion of  mixed sludge. During the entire digestion period, 

the removed NP3-12EOs (Massin – Massout) accounted for 0.19 mg d-1 and as it was the 

case with the mesophilic digestion of mixed sludge there was no direct evidence for the 

contribution of NP3-12EOs to NP1-2EOs since the start levels on NP1-2EOs were too high. 

However, NP, NP1EC and NP2EC indicated overall accumulation in terms of flux. The 

reduction in concentration of NP3-12EOs during thermophilic digestion was consistent 

with mesophilic digestion of mixed sludge.    

Short-chained nonylphenolics reduced during the entire digestion period from the 1st 

retention time. The start concentration was 90 mg kg-1 dw whereas the concentration at 

the 1st RT, 2nd RT, 3rd RT, 4th RT, 5th RT and 6th RT was 16 mg kg-1 dw, 12 mg kg-1 dw, 

11 mg kg-1 dw, 10 mg kg-1 dw, 9 mg kg-1 dw and 7 mg kg-1 dw, respectively. The 

change in concentration between the 6th retention time digestate and the start levels was 

-74 mg NP1-2EOs kg-1 dw. Overall, the mass reduction of NP1-2EOs at the 6th retention 

time (Massout – Massin) was Mdiff=-42.2 mg d-1  which resulted to 99.7% flux removal. 

Nonylphenol monoethoxylate was removed by 99.9% whereas NP2EO was removed by 

76%. During the entire digestion period, the sum of the removed short-chained 

nonylphenolics was 45.3 mg d-1.  

The residual NP1-2EOs concentrations after 90 days of anaerobic digestion are in close 

agreement with (Montgomery-Brown & Reinhard, 2003) that short-chained 

nonylphenolics persist under anaerobic conditions. Additionally, (Zhang et al., 2008) 

observed accumulation of NP1-2EOs in UASB effluents after the period of five months. 

However, NPECs did not change significantly in concentration at the 1st retention time 

(0.06 mg kg-1 dw) compared to the start concentration (0.08 mg kg-1 dw). At the 2nd RT, 

3rd RT, 4th RT, 5th RT and 6th RT the concentration of NPECs was 0.06 mg kg-1 dw,0.06 

mg kg-1 dw, 0.06 mg kg-1 dw, 0.06 mg kg-1 dw and 0.05 mg kg-1 dw, respectively. An 

insignificant difference (-0.03 mg NPECs kg-1 dw) was obtained between the 6th 

retention time digestate and the start concentration. Overall, the mass accumulation of 

NPECs at the end of the thermophilic digestion period of mixed sludge (Massout – 
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Massin) was Mdiff= -0.6 mg d-1  which resulted to a negative overall flux removal of -

8922%. Only NP3EC indicated removal (3%) whereas NP2EC (-849%) and NP1EC (-

23389%) exhibited the highest accumulation. Although the accumulation of NP1EC 

could not be balanced with the NP1EO removal there was evidence that NP1EO was 

contributed to NP1EC.   

However, regarding nonylphenol, its concentration at the 1st RT (0.2 mg kg-1 dw) 

increased from that at the start concentration (0.1 mg kg-1 dw). At the 2nd RT, 3rd RT, 4th 

RT, 5th RT and 6th RT the concentration was 0.3 mg kg-1 dw, 0.3 mg kg-1 dw, 0.1 mg kg-

1 dw, 0.1 mg kg-1 dw and 0.03 mg kg-1 dw, respectively. Overall, NP indicated a 

progressive increase in concentration during the first three retention times and then 

decreased over the digestion period (Figure 6-6). The change in concentration of -0.1 

mg kg-1 dw, which resulted from the difference between the 6th retention time digestate 

and the start concentration indicated its overall reduction irrespectively of the increasing 

trends during the first three retention times. The mass reduction of NP between the 6th 

RT and the influx (Massout – Massin) was Mdiff=-0.01 mg d-1. In terms of flux removal, 

NP removed by 80.2%. The overall biodegradation of NP during the entire digestion 

period of mixed sludge (Massout – Massin) was Mdiff=-0.01 mg d-1). Although the loss of 

NP1EC could not be balanced for the increased NP, both compounds exhibited opposing 

trends during the first three retention times. However, the reduction of NP in 

thermophilic conditions was consistent with the mesophilic digestion of mixed sludge. 

In addition, the NP results were in contrary with (Patureau et al., 2008) and (Chang et 

al., 2005; Chang et al., 2004) during their batch thermophilic anaerobic trials by using 

different electron acceptors at pH 7.0. 
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6.2.5. Effect of digestion temperature on alkylphenol ethoxylates 

6.2.5.1. Primary sludge (mesophilic vs. thermophilic) 

The efficiency between mesophilic and thermophilic digestion of primary sludge in 

terms of the overall nonylphenolic (ΣNPEOs) removal was low. Thermophilic digestion 

indicated 0.8% flux removal for the total nonylphenolics i.e. ΣNPEOs whilst during 

mesophilic digestion the removal was negative i.e. formation of nonylphenolics 

occurred (-177%) despite their longer retention time (Figure 6-8).  

High and similar flux removals of NP3-12EOs were achieved during both mesophilic 

(72%) and thermophilic digestion (71%). The rate of NP3-12EOs removal during 

thermophilic digestion was slightly higher (-0.007 mg d-1 RT-1) than it was during 

mesophilic digestion (-0.006 mg d-1 RT-1) which may indicate higher bacterial activity 

in these digesters (Table 6-1). However, thermophilic digesters were receiving 1.7 times 

higher NP3-12EOs loads. The high NP3-12EOs removals during both temperature 

digestions implied the existence of appropriate bacteria/enzymes for the attack of NP3-

12EOs. Furthermore, the results are consistent with the literature (Montgomery-Brown & 

Reinhard, 2003; Patureau et al., 2008). 

Short-chained nonylphenolics in primary sludge did not accumulate under mesophilic 

conditions, however the persistence of NP1EO was observed in the thermophilic 

digesters. The NP1EO persistence could be partially explained by the higher NP3-12EOs 

loadings in these digesters, which resulted to NP1-2EOs that are typical metabolic 

products in anaerobic conditions (Brunner et al., 1988; Ejlertsson et al., 1999). 

Lipophilic compounds in the raw primary sludge such as fats, oils and greases could 

have served as significant adsorbent sites for the hydrophobic NP1EO with a high 

octanol-water partitioning index (Log Kow = 4.17) (Ahel & Giger, 1993a). Despite these 

reasons, shorter retention time could have restricted the bacterial growth and ultimately 

the biodiversity of the thermophiles as well as the development of specific enzymes 

who required for the initial attack of the lipophilic NP1EO. Exoenzymes are responsible 

for the attack of lipophilic/insoluble substrates under anaerobic conditions (Dalton & 
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Stirling, 1982). It is therefore postulated that the appropriate exoenzymes required for 

the hydrolysis of the lipophilic NP1EO were limited. If appropriate enzymes were 

present for the NP1EO attack then the higher temperature during thermophilic 

conditions would have accelerated the rate of the specific biochemical reaction/ 

biotransformation. The synergy of the above parameters could have accounted for the 

persistence of NP1EO in the thermophilic digestion of primary sludge. However, the 

combined removal for short-chained nonylphenolics during the thermophilic 

methanogenic conditions was limited (2.3%) due to the persistence of NP1EO. In the 

same temperature digestion, NP2EO exhibited higher flux removal (80%). The 

mesophilic digestion of primary sludge indicated the highest flux removals of NP1EO 

and NP2EO (>90%). The observed removals for NP1EO and NP2EO during both 

mesophilic and thermophilic digestions were higher than those presented by 

(Benabdallah El-Hadj, 2006) (48% and 71%, respectively) by using 100% SAS with 18 

days SRT. First order degradation rates for NP2EO were greater at mesophilic 

temperature compared to thermophilic digestion temperature. During thermophilic 

digestion these rates were negative, irrespective of sludge type, indicative for the 

formation of NP2EO from the degradation of the longer nonylphenolic ethoxylates 

(Table 6-2). Regarding NP1EO, degradation rates were greater during thermophilic 

digestion than they were during mesophilic digestion, presumably due to the higher 

digestion temperature.  

The presence of the short-chained carboxylated nonylphenolics was observed in both 

temperature digestion trials. During mesophilic digestion, significantly high 

concentrations of NPECs, higher than the concentration in the feed sludge appeared in 

the digestates obtained from the 1st retention time (161 mg kg-1 dw) and then the 

concentrations gradually decreased with time. In contrary, during thermophilic digestion 

NPECs appeared from the 2nd retention time and gradually increased with time. Despite 

the higher NPECs loadings in mesophilic compared to thermophilic digesters, NPECs in 

the former digesters degraded over time. In addition, the fast biotransformation of NP1-

12EOs to NPECs implied the occurrence of diversified mesophilic consortia in primary 

sludge capable for converting NPEOs to NPECs and in parallel the contaminant 

assimilation of NPECs. The abundance of electron acceptors/donors and the presence of 
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the appropriate enzymes to carry out the biotransformation of NP1-12EOs and in addition 

the successive assimilation of the carboxylated by-products could possibly lie in the 

long retention time and the dynamic mesophilic bacteria. The phenomenon of 

diversification of the mesophilic primary sludge was seen during the digestion of steroid 

estrogens in which higher removals were achieved by the mesophiles (53%) compared 

to the thermophiles (51%). However, the ability of the thermophiles to biotransform 

NP1-12EOs to NPECs implied acclimation of bacteria/enzymes to the specific species. 

The high influx of electron acceptors and donors in thermophilic digesters due to higher 

feed loadings could have contributed to the biotransformation. Despite the short 

retention time, and the various bacteriological concerns with thermophilic bacteria, the 

specific substrate demonstrated the ability to hydrolyse the non-ionic nonylphenolics, 

specifically the lypophilic species to more soluble substrates like NPECs. The apparent 

biotransformation of NP1-12EOs to NPECs by the methanogenic mesophilic and 

thermophilic bacteria in primary sludge could be a major co-metabolic mechanism of 

nonylphenolics because of the inherent bacteriology in this sludge type.   

With respect to flux removals, mesophilic digesters demonstrated accumulation of the 

combined NPECs (-215%). Only NP1EC indicated 54% removal with positive 

degradation rates (k) whilst both NP2EC (-211%) and NP3EC (-7692%) were 

accumulated under mesophilic conditions i.e. with negative (k) (Table 6-2). Significant 

mass difference between the digestate obtained at the 6th retention time and the feed (1.1 

mg d-1) occurred for NP2EC (Mdiff=2.3 mg d-1) and that increase in mass accounted circa 

3 fold. Overall, carboxylated species predominated in terms of concentration during the 

entire mesophilic digestion period as it is demonstrated on the percent distribution of 

each respective digestate. However, during thermophilic digestion, NPECs influx was 

less than 0.005 mg d-1, lesser than the influx during mesophilic digestion. In contrast to 

the mesophilic digestion, only NP3EC was removed (0.32%) during the thermophilic 

trial whereas both NP1EC (-4685%) and NP2EC (-6078%) were accumulated. Under 

thermophilic conditions, the evolution i.e. accumulation of NPECs occurred 

progressively for each retention time as it is demonstrated on the percent distribution of 

each respective digestate.  
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Based on the mass difference (Mdiff) between the start (feed) and the 6th retention time 

digestate, NP was removed by 45% during mesophilic digestion and by 57% during 

thermophilic digestion of primary sludge. The associated standard errors (SE) of those 

removals were below 1%, respectively. The mean value (n=4) for NP flux removal (mg 

d-1) over the entire  mesophilic digestion was 33% whereas the mean value for the 

thermophilic digestion was 41%.  

Besides the carboxylated nonylphenolics, NP exhibited the lowest removal during both 

digestion temperature experiments. Besides the physicochemical-structural relationships 

that characterise NP, the accumulation of this compound occurs inevitably from the 

build up of NPEOs metabolites as it has been demonstrated in many studies  (Renner, 

1997; Schröder, 2001; Ejlertsson et al., 1999; Brunner et al., 1988). However, the results 

obtained from both temperature digestions indicated that the partial biodegradation/ 

biotransformation of NP3-12EOs resulted predominantly to NPECs, with an exception of 

NP1EO under thermophilic conditions and as a result, there was no contribution to NP. 

The results from the primary sludge digestions, irrespective of temperature, are in line 

with (Patureau et al., 2008; Ferguson & Brownawell, 2003; Chang et al., 2005; Chang et 

al., 2004; Chang et al., 2009). 
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First order degradation rates for NP in primary sludge were higher during thermophilic 

digestion (k = 0.0912 d-1 at 53oC) compared to mesophilic digestion (k = 0.0248 d-1 at 

35oC)  (Table 6-2). In general, NP removal was associated with the retention time for 

both temperature digestion trials which suggested bacterial adaptation and/or limited 

contribution from short-chained nonylphenolic metabolites. However, in terms of 

concentration, retention time seemed to have limited effect on NP.  

Overall, mesophilic digesters indicated slightly higher rate on ΣNPEOs removal per 

volatile solids (VS) removal (28.4 mg ΣNPEOs removal g VS removed d-1) than the 

thermophilic digesters (26.1 mg ΣNPEOs removal g VS removed d-1). However, the rate of 

VS removal under thermophilic conditions was 2.1 fold higher than it was under 

mesophilic conditions, which implied that the mesophilic consortium was more efficient 

in terms of ΣNPEOs removal per VS removal than the thermophilic consortium.  

Thermophilic digestion of primary sludge removed more ΣNPEOs than the primary 

sludge during the mesophilic digestion despite the similar ΣNPEOs loadings (1.27 and 

1.35 mg d-1, respectively) (Figure 6-8). 

The concentration of ΣNPEOs in the mesophilic trial was increasing with digestion 

period due to the formation and the persistence of NPECs which were present at high 

concentrations in the feed. On the other hand, during thermophilic digestion of primary 

sludge the concentration of ΣNPEOs remained unchanged throughout the digestion 

period. It was evident that the low removals of ΣNPEOs in primary sludge irrespective 

of digestion period were mainly attributed to the carboxylated metabolites of 

nonylphenolics. The mesophilic digesters indicated formation of nonylphenolics (-

177%) despite the longer retention time (30 days) compared to the thermophilic 

digestion (15 days) which indicated a slight removal (~1%). Longer retention times 

promote the growth of slow-growing methane-forming bacteria compared to shorter 

retention times. Although thermophilic methane-forming bacteria are limited in 

numbers, temperature seems to have a positive impact when considering the removal of 

nonylphenolics since biochemical reactions accelerate temperature. This finding implied 
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that the performance of the thermophilic digesters in terms of ΣNPEOs removal was 

better compared to mesophilic digestion. Nevertheless, the removals in primary sludge, 

irrespective of temperature digestion were insignificant. 

6.2.5.2. Mixed sludge (mesophilic vs. thermophilic) 

Mixed sludge mesophilic digesters were receiving 1.3 times more ΣNPEOs than the 

thermophilic digesters but they were removing 0.8 times less ΣNPEOs than the 

thermophilic digesters.  

The NP3-12EOs flux removals were higher for the thermophilic (99.9%) digesters than it 

was for the mesophilic (88.7%) digestion of mixed sludge.  Similarly, thermophilic 

digestion achieved higher removal rates -0.006 NP3-12EOs mg d-1 RT-1 than mesophilic 

digestion (-0.003 NP3-12EOs mg d-1 RT-1) (Table 6-1). As it was seen in primary sludge 

digestion, during mixed sludge digestion the high NP3-12EOs removals were in line with 

the literature (Montgomery-Brown & Reinhard, 2003; Patureau et al., 2008) and 

suggested the degradability/biotransformation in the mixed sludge substrate at both 

mesophilic and thermophilic temperature.    

No accumulation of NP1-2EOs was observed during mixed sludge digestion, irrespective 

of temperature. The concentrations of NP1EO and NP2EO decreased with time in both 

temperature digestions, which indicated acclimation to nonylphenolics in the presence 

of the mixed sludge consortium and implied the presence of appropriate 

bacteria/enzymes for their attack. Despite the higher NP3-12EOs loadings of the 

mesophilic digesters, no accumulation of NP1-2EOs was observed in these digesters. 

However, during both temperature digestions NP2EO indicated lower flux removals 

than NP1EO, which could be explained by the contribution of the longer-chained 

nonylphenolics. Nonylphenol mono ethoxylate (NP1EO) was removed by 100% by the 

thermophiles whereas the removal by the mesophiles was lower (90%). Overall, 

thermophilic digestion achieved 100% removal of NP1-2EOs whereas lower removals 

were observed by the mesophilic digestion (89%) presumably to the higher NP3-12EOs 

loadings during mesophilic digestion. The faster biochemical reactions by the 
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thermophiles could have contributed to the rapid biotransformation and removal of NP1-

2EOs. Under thermophilic conditions, short-chained nonylphenolics, specifically NP1EO 

was the predominant specie thorough the entire digestion period. The removals of NP1-

2EOs during mixed sludge mesophilic digestion were much higher than those presented 

by (Benabdallah El-Hadj, 2006) (48% and 71%, respectively) by using 100% SAS with 

18 days SRT possibly due to the different sludge types used. 

Carboxylated nonylphenolics (NPECs) were present in the digested mixed sludge 

during both temperature digestions. Overall, during mesophilic digestion, NPECs 

indicated 58% flux removal. Nevertheless, post the 4th retention time NP3EC increased 

and indicated an insignificant accumulation of 0.05 mg d-1, which resulted to a large 

value of a negative flux removal (-10312%) and similar, NP2EC increased post the 3rd 

retention time.  

The above observations implied that although mixed sludge contained appropriate 

bacteria and enzymes to carry out the biotransformation of NPECs, their removal was 

restricted throughout the digestion period. This phenomenon could have occurred by the 

excessive contribution of NPEOs to NP2-3ECs after the 3rd or 4th retention times and/or 

by the delayed biotransformation/degradation of NP2-3ECs. It is postulated that trapped 

enzymes in the dyspeptic extracellular polymeric substances (EPS), acclimated to this 

biotransformation during the activated sludge process, could have been released because 

of digestion and subsequently promoted the ‘delayed’ biotransformation of NPEOs to 

NP2-3ECs. If this hypothesis is true, then the rate of NPEOs biotransformation to NPECs 

would have exceeded the rate of NP2-3ECs degradation. Due to their high 

concentrations, NPECs predominated in each respective digestate as it is demonstrated 

on the percent distribution. 

However, despite the constant concentration of NPECs throughout the thermophilic 

digestion which remained at similar levels to those concentrations in the feed sludge 

(0.08 mg kg-1 dw), NPECs were indicated a negative flux removal (-8922%). 

Accumulation was observed for NP1EC (-23389%) and NP2EC (-849%) whilst NP3EC 

was removed (2.3%). The overall NPECs accumulation during the thermophilic 
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digestion could be attributed to the high NPEOs loadings in these digesters. However, 

the presence of NPECs suggested that the appropriate bacteria/enzymes responsible for 

NPEOs biotransformation to NPECs were present in mixed sludge as it was seen in the 

same sludge type during the mesophilic digestion. Regardless of the high loadings, the 

persistence of NPECs during the 15 days retention time may point out that the 

thermophiles responsible for NPECs degradation/biotransformation could be slow-

growing bacteria. However, since thermophilic bacteria are less abundant than 

mesophilic bacteria (Gerardi, 2003), NPECs persistence could equally be attributed to 

the limited biodiversity of the thermophiles.    

Based on the mass difference (Mdiff) between the start (feed) and the 6th retention time 

digestate, NP was removed by 51% during mesophilic digestion and by 80% during 

thermophilic digestion of mixed sludge. The associated standard errors (SE) of those 

removals were below 1%, respectively. However, the mean value (n=4) for NP flux 

removal (mg d-1) obtained from each retention time during mesophilic digestion was 

55% whereas the mean value for the thermophilic digestion indicated accumulation of 

NP (-11%). Nevertheless, since the six-retention time digestion period was evaluated 

and for comparison purposes, the Mdiff values were used.    

The higher NP3-12EOs loadings during mesophilic digestion may have accounted for the 

large differences of NP removal between the different temperature digestions. In 

addition, the higher temperature could have also initiated the enzymatic activity in these 

digesters. First order degradation rates for NP in mixed thermophilic sludge were the 

highest among the examined sludges i.e. (k = 0.3495 d-1 at 53oC) compared to 

mesophilic digestion of mixed sludge (k = 0.0304 d-1 at 35oC)  (Table 6-2). There was 

no significant contribution from long-chained nonylphenolics and/or possibly from 

NPECs to NP and this phenomenon could have possibly accounted for the removal of 

NP in the mixed sludge in the different temperature digestion trials.  During 

thermophilic digestion, NP accumulated during the first three retention times and then it 

was removed. This observation implied either the evolution of appropriate bacteria 

and/or bacterial acclimation i.e. lag period or the insignificant metabolic contribution of 

short-chained nonylphenolics or NPECs. The results from both temperature digestion 
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trials with mixed sludge are in line with (Patureau et al., 2008; Ferguson & Brownawell, 

2003; Chang et al., 2005; Chang et al., 2004) that NP may undergo anaerobic 

degradation under certain conditions. There was no apparent association between NP 

removal and digestion period implied that bioavailability could be a limiting factor in 

this sludge.   

Overall, the concentration of ΣNPEOs during thermophilic digestion decreased with 

digestion period, which indicated the possible effect of high temperature on the 

enzymatic activity. However, during mesophilic digestion the concentration of ΣNPEOs 

indicated an increasing trend with time. This observation implied that temperature may 

be more significant for ΣNPEOs degradation/biotransformation than longer retention 

time or higher biodiversity who is usually associated with the mesophilic bacteria 

(Metcalf and Eddy, 2003; Gerardi, 2003). Mesophiles demonstrated their capability for 

biotransformation whilst thermophilic bacteria indicated greater degradation potential of 

ΣNPEOs.  

The efficiency in terms of ΣNPEOs flux removal between the different temperature 

digestions utilising mixed sludge indicated that thermophilic digestion was more 

efficient in removing alkylphenolics (92%) than mesophilic digestion (56%). 
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Table 6-1 Relationships of nonylphenol ethoxylate mass fluxes and biological rates. 

 Mesophilic            Thermophilic 

 Primary 
sludge 

 Mixed 
sludge 

 Primary 
sludge 

 Mixed 
sludge 

NP3-12EOs removal rate 
mg d-1 RT-1 -0.006  -0.003  -0.007  -0.006 

R2 0.79  0.53  0.76  0.90 
NP1-2EOs removal rate 
mg d-1 RT-1 -0.003  -0.004  0.244  -0.009 

R2 0.88  0.92  0.98  0.18 
NP removal rate mg d-1 
RT-1 -0.001  0.009  -0.002  -0.004 

R2 0.86  0.16  0.91  0.54 
ΣNPEOs net removal 
rate mg d-1 RT-1 -0.742  -0.097  -0.006  -0.123 

R2 0.85  0.02  0.02  0.93 
mg ΣNPEOs removed g VS 

removed d-1 
2.1  -5.8  -0.005  -3.8 

mg ΣNPEOs removed g VS 

content
-1 

0.041  -0.086  -0.000  -0.123 

Note: Biodegradation refers to partial biodegradation i.e. microbial removal and not to 
mineralization. 

Table 6-2 First order kinetic constants (k) for nonylphenol ethoxylates in primary and 

mixed sludge during mesophilic and thermophilic anaerobic digestion trials. 

 Mesophilic Thermophilic 
 Primary sludge  Mixed sludge  Primary sludge  Mixed sludge 

 k  (per day) k  (per day) k  (per day) k  (per day) 

NP 0.0248 0.0304 0.0912 0.3495 
NP1EC  0.0035 0.1392 0.0007 0.0910 
NP2EC  -0.0274 0.0320 -0.0738 0.0030 
NP3EC  -0.0129 -0.0439 -0.0016 0.0000 
NP1EO  0.2969 0.2992 1.7958 0.8152 
NP2EO   0.4316 0.0917 -0.0352 -0.0417 
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6.2.6. Effect of sludge type on alkylphenol ethoxylates 

6.2.6.1. Mesophilic digestion (primary sludge vs. mixed sludge) 

Long-chained nonylphenolic flux removals were 72% for primary sludge and 57% for 

mixed sludge during 180 days of mesophilic anaerobic digestion (30 days retention 

time). A possible explanation for the differences is that primary sludge bacteria that 

receive the untreated stream of EDCs have developed the appropriate mechanisms for 

attacking the parent nonylphenolics. On the hand, the activated sludge content in mixed 

sludge is more adapted to ‘treated’ EDCs hence the slower assimilation of the parent 

nonylphenolics. The high NP3-12EOs removals of primary sludge are consistent with the 

literature (Zhang et al., 2008; Montgomery-Brown & Reinhard, 2003). 

Short-chained nonylphenolics indicated similar flux removal for the primary (90%) and 

the mixed sludge (89%). Although NP1-2EOs regarded persistent metabolites due to 

their lipophilic properties (Ahel & Giger, 1993a), no accumulation of these species was 

observed in the different sludge digestions. In addition, their removal occurred with 

digestion time, which suggested acclimation. This phenomenon could be attributed to 

the long retention time in these digesters who promoted the growth of the slow growing 

bacteria which explains the increased biodiversity. Despite the higher NP3-12EOs 

loadings in primary sludge, NP1-2EOs removal rates were similar in both sludges which 

indicated the prevalence of appropriate conditions for the sustainability of vital 

bacteria/enzymes to attack NP1-2EOs. The observed trends for the short-chained 

nonylphenolics during mesophilic digestion are in agreement with (Montgomery-Brown 

& Reinhard, 2003; Chiu et al., 2010; Zhang et al., 2008). 

Mesophilic anaerobic digestion of primary and mixed sludge resulted to the formation 

of NPECs, which is consistent with (Schröder, 2001) and the observations of (Field & Reed, 

1999) from real scale mesophilic anaerobic digesters. Because of the low concentrations 

of short-chained nonylphenolics throughout the respective digestion periods, microbial 

growth from these species could be difficult to be achieved and therefore a possible 

explanation for the presence of NPECs could be that of a co-metabolic activity. In 
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primary sludge, NPECs accumulated whilst in mixed sludge these species were reduced. 

In general, the maximum concentration of all nonylphenolics (ΣNPEOs) in primary and 

mixed sludge was centred at the carboxylated nonylphenolics (specifically NP2EC) 

during the mesophilic digestion.  

Nonylphenol exhibited greater reduction (partial biodegradation) in terms of flux 

removal in the mixed sludge (51%) compared to the primary sludge (45%) during 

mesophilic digestion. The lower NP removal in primary sludge could be due to the 

higher content of the lipophilic substances compared to the mixed sludge. The 

degradation/biotransformation of NP1-12EOs resulted to NPECs species and not to NP 

and this mechanism presumably restricted the build up of NP from NPEOs metabolites, 

as explained in section 6.2.5.1. 

A rough estimation of the removal efficiency of the biomass (the amount of organic 

matter present in VS) of the primary and mixed sludge during mesophilic digestion was 

evaluated by activity i.e. mg nonylphenolics removed per gram of VS content in the 

digester. The calculation was determined by taking the mass difference (Mdiff) of the 

feed and the 6th retention time digestate and dividing it by the VS content in grams of 

the digesters. The calculation was performed for each sludge type. Since volatile 

suspended solids were not measured, the VS should represent in this case the closest 

approximation to biomass. 

The biomass activity per milligram of nonylphenolics indicated greater activity of 

mixed sludge biomass (0.086 mg ΣNPEOs g VS-1) compared to that of the primary 

sludge (0.041 mg ΣNPEOs g VS-1) (Table 6-3). However, higher (7.7x) ΣNPEOs 

loadings in mixed sludge may explain the ΣNPEOs (mg d-1) removals as opposed to the 

formation observed in primary sludge. The observed elimination or removal of 

ΣNPEOs in mixed sludge cannot be interpreted in terms of ultimate biodegradation but 

rather as biotransformation into more persistent metabolites under the specific 

conditions. 
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In terms of concentration, mixed sludge digesters demonstrated reduction between the 

start concentration and the 6th retention time digestate. The concentration of ΣNPEOs at 

the 6th retention time was higher compared to the feed concentration in primary sludge 

(30.5 mg kg-1 dw) (Figure 6-7) due to formation of NPECs.  

 

Figure 6-7 Concentrations (mg kg-1 dw) of nonylphenol ethoxylates at the start and at 

the end of the anaerobic mesophilic and thermophilic digestion trials for both sludge 

types. 

Based on the concentrations observed at the end of the mesophilic digestion, the 

biomass of primary sludge indicated the potential to biotransform nonylphenolics to 

NPECs, whilst the activity of the mixed sludge biomass indicated greater potential for 

reducing NPEOs but less biotransformation potential. The indigenous acclimated 

enzymes to NPECs could possibly account for the observed degradation potential in 

mixed sludge whilst the lack of NPECs degrading enzymes in primary sludge favoured 

the co-enzymatic metabolism of NPECs.  
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Mixed sludge indicated 58% flux removal of ΣNPEOs whereas primary sludge 

indicated formation of nonylphenolics with emphasis the carboxylated species (Figure 

6-8). The presence of activated sludge in mixed sludge could have accounted for the 

removals since activated sludge is more acclimated to EDCs through the returned 

liquors than primary sludge. The individual removal efficiencies for each alkylphenolic 

compound are presented in Appendix V.  

 

Figure 6-8 Mass flux (mg d-1) for alkylphenol ethoxylates at the start and at the end of 

the anaerobic mesophilic and thermophilic digestion trials for both sludge types. 
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6.2.6.2. Thermophilic digestion (primary sludge vs. mixed sludge)   

Removals of long-chained nonylphenolics during thermophilic digestion were higher 

than those obtained at mesophilic conditions despite the similar NP3-12EOs loadings. In 

particular, mixed sludge demonstrated 79% whilst primary sludge 71%  NP3-12EOs 

removals which they achieved with increasing digestion period.  

Mixed sludge demonstrated 99.9% NP1-2EOs flux removals whereas primary sludge 

indicated circa 2% removal because of the limited removal of NP1EO due to the high 

content in feed sludge. Nevertheless, similar NP1-2EOs reducing trends were observed 

with increasing digestion period in thermophilic conditions suggesting acclimation. In 

contrary, during mesophilic digestion NP1-2EOs removals were greater in both sludge 

types, which indicated the importance of adequate sludge retention time. The least 

removed NP1EO is in agreement with the literature (Ahel & Giger, 1993a) that the 

lipophilic properties of this specie makes it persistent in anaerobic environments.   

Thermophilic digestion of primary sludge resulted to NPECs and specifically NP2EC as 

it was also seen during the mesophilic digestion of primary sludge. The presence of 

NPECs during anaerobic digestion of primary sludge is also in agreement with 

(Schröder, 2001). In contrary, the absence of NPECs in mixed sludge digestion 

indicated that the formation of NPECs in this sludge under thermophilic conditions was 

not favoured. This finding supports the previous hypothesis that the biomass activity of 

mixed sludge has limited biotransformation potential compared to primary sludge. The 

presence of NPECs during thermophilic digestion of mixed sludge are not in agreement 

with (Benabdallah El-Hadj, 2006) who did not observe these species during the 

thermophilic anaerobic digestion of mixed sludge.        

The flux removal of NP in mixed sludge (80%) was much higher compared to primary 

sludge (57%) during the thermophilic digestion. During the first three retention times, 

the increased trend of nonylphenol was occurred in parallel with the decreasing trend of 

NP1-2EOs whilst for the same digestion period, NPECs remained at low levels. 

Therefore, accumulation of NP could have resulted because of the metabolic 

biotransformation of NP1EO and/or NP1EC as explained in section 6.2.5.1. Post the 3rd 
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retention time, diffusion and bioavailability phenomena could have tentatively resulted 

to the reduction of NP. Interestingly, during the reduction period of NP, VFAs were 

increased suggesting a change in the microbial community, nevertheless no significant 

correlation was observed. The nonylphenol trends observed during primary and mixed 

thermophilic digestion are in argument with the results obtained during mesophilic 

digestion and equally are consistent with (Patureau et al., 2008; Chang et al., 2005; 

Chang et al., 2004).  

The biomass activity per milligram of nonylphenolics in mixed sludge was significant 

(0.123 mg ΣNPEOs g VS-1) as opposed to primary sludge (0.0002 mg ΣNPEOs g VS-1) 

(Table 6-3). The biomass activity (based on VS) of mixed sludge was the highest of all 

sludges examined at mesophilic and thermophilic temperatures. However, mixed sludge 

was receiving 5.6 times higher ΣNPEOs loadings compared to primary sludge at 

thermophilic conditions (Figure 6-8).  

As it was the case with steroid estrogens, statistical analyses were performed to estimate 

the statistical inferences before and after mesophilic and thermophilic digestion. 

Normality tests (Anderson-Darling) hypotheses were not violated (p>0.1) (Appendix 

III) and the variances between the different temperature digestions by using Bartlett's 

and Levene's tests were investigated. Statistical analysis confirmed that the 

nonylphenolic mass entering the primary and mixed thermophilic digesters had similar 

variances that did not differ significantly (p>0.05) and the same hypothesis was true for 

the mesophilic trials (p>0.05) as it was seen with steroid estrogens. Two-sample t-tests 

(t=1.19, DF=7, p>0.05) indicated that the mean differences between the influxes (mg d-

1) for the primary and mixed sludge in mesophilic digesters did not differ significantly. 

Similarly, primary and mixed sludge influxes were not significantly different (t=2.65, 

DF=5, p>0.01) during thermophilic digestion (Appendix III). Presumably, the observed 

similarities between the different sludge types within the respective digestion 

temperatures were due to the similar feed rates among the different digestion 

temperatures and due to the large standard deviations (Appendix III). Because 

temperature and retention time between primary and mixed sludge mesophilic 

digestions were similar as it was the case for the respective thermophilic digestion trials, 
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these results showed that differences could be narrowed down to the microbiology and 

may be independent of the overall nonylphenolic loadings as it was seen with steroid 

estrogens. 

At the end of the thermophilic digestion of primary sludge, ΣNPEOs concentration 

remained the same as the feed concentration, whereas during mixed sludge digestion, 

the reduction in concentration at the 6th retention time from the feed concentration was 

83 mg kg-1 dw. Similar observations were observed during mesophilic digestion 

implying that mixed sludge has greater potential for reducing NPEOs than primary 

sludge bacteria. Irrespective of digestion temperature, the acclimated portion of mixed 

sludge during the activated sludge process could have accounted for this difference. The 

efficiencies in terms of ΣNPEOs removals between primary (1%) and mixed sludge 

(92%) during thermophilic digestion indicate that mixed sludge demonstrates greater 

potency for the digestion and the significant reduction of the measured ΣNPEOs 

metabolites. The individual removal efficiencies for each individual alkylphenolic 

compound are presented in Appendix V.  

As it was the case during mesophilic digestion, the observed elimination of ΣNPEOs 

during thermophilic digestion cannot be interpreted in terms of ultimate nonylphenolic 

biodegradation but as biotransformation into more persistent metabolites such as 

NPECs and the non-measured species as described in the literature review.  
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Table 6-3 Ratio of nonylphenolics that demonstrates biodegradation and biotransformation. 

 Mesophilic Thermophilic Phenomenon 

 Primary sludge Mixed sludge Primary sludge Mixed sludge  

 Start 6RT Start 6RT Start 6RT Start 6RT  

NP3-12EOs/NP1-2EOs  1.8 2.1 1.1 1.7 2.5 0.0 12.5 4.5 Biotransformation 

NP3-12EOs/NP1-2EOs+NP 1.2 1.2 1.0 1.2 1.6 0.0 2.6 2.5 Biotransformation 

NP3-12EOs/NPECs  0.07 0.05 0.01 0.00 0.06 0.30 0.04 0.02 Biotransformation 

NP3-12EOs/NP1-2EC+NP  0.007 0.005 0.01 0.00 0.06 0.30 0.04 0.02 Biotransformation 

NP1-2EOs/NP1-2EC 0.004 0.002 0.01 0.00 0.02 11.12 0.003 0.005 Biotransformation 

NP1EO/NP 1.7 1.2 6.5 2.1 1.7 147.0 0.2 0.8 Biotransformation 

NP1-12EOs+NPECs/NP 563 515 1333 1343 80 164 94 269 Biodegradation to NP 

      
Note: Ratios were derived for each sludge type by obtaining the sum of each nonylphenolic (mg d-1) from each entire digestion period 
(6RT) divided by the respectively nonylphenolic/combination of nonylphenolic (mg d-1). Values represent the total solids and aqueous 
phase combined. 
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7. RESULTS: FATE OF NONYLPHENOL ETHOXYLATES 

UNDER HIGH RECEIVING CONCENTRATIONS 

After the completion of the mesophilic anaerobic digestion trials (six retention times i.e. 

180 days) (chapter 6), a second experiment was carried out which involved higher feed 

concentrations (shock loading) of non-ionic alkylphenolics (NP1-12EOs). The rational of 

this experiment was to understand whether the biomass would be able to biodegrade the 

additional NPEOs and whether the spiked NPEOs would have an effect on the 

biodegradation process or the anaerobic digestion process. Real scale anaerobic 

digesters may receive different NPEOs loadings due to the variability of EDCs in the 

influent of STWs as it was observed through the EDC-research group (Koh, 2008; Koh 

et al., 2009). The shock loading experiment was therefore carried out to investigate the 

overall capacity of anaerobic digestion to manage higher NPEOs loadings. The research 

hypothesis (H1ND0) was: 

H1ND0: Primary or mixed sludge biomass would not be able to degrade the additional 

NPEOs loadings within one retention time. 

H1NDα: Primary or mixed sludge biomass would be able to degrade the additional 

NPEOs loadings within one retention time.  

The objective of the ‘shock’ loading experiment was: 

1. Examine the effect of higher NPEOs loadings. 

2. Identify whether mesophilic anaerobic digestion of mixed sludge (60:40 v/v, 

primary sludge: SAS) could demonstrate greater capacity for alkylphenolic removals 

than primary sludge digestion, when digesters receive higher concentrations of non-

ionic nonylphenolics than the concentrations they were receiving continuously for 180 

days of digestion (chapter 6). 

Both type of feed sludges i.e. primary and mixed sludge were dosed with non-ionic 

alkylphenolics NP1-12EOs at a level circa 7 – 9 times higher their respective background 
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concentrations prior to feeding. The experiment was carried out at mesophilic 

temperatures as described in chapter 6. 

This chapter examines the experimental description (section 7.1), performance of the 

anaerobic digesters during the shock loading experiment (section 7.2), feed 

characterization in terms of the respective dosed concentrations (section 7.3) and the 

trends observed in the primary and mixed sludge mesophilic digesters (section 7.4).  

7.1.  Experimental description  

The description of the shock loading experiment was presented in section 3.3. Dosing 

concentrations were according to the respective total solids contents of the respective 

primary or mixed sludge mesophilic digesters. The dosing solution aimed to increase 

the concentration of the ‘parent’ NP1-12EOs in each feed sludge by 10 times. However, 

due to inconsistencies of the stock solutions and losses such as adsorption, digesters 

received lower concentrations. Dosing onto primary feed sludge resulted to 7.8x higher 

(28.7 mg kg-1 dw) the background concentration of NP1-12EOs and 9.0x higher (21.8 mg 

kg-1 dw) the background NP1-12EOs concentration in mixed sludge. However in terms of 

mass, primary sludge received 4.1x higher NP1-12EOs and mixed sludge 5.1x higher 

NP1-12EOs than what the digesters were receiving prior to spiking.  

7.2. Anaerobic digesters performance during high receiving 

concentrations of nonylphenolics  

The same type and number of digesters used during the six retention time trials were 

also used for the high loading experiment, hence four (1.5L) mesophilic (35oC ± 0.2oC) 

anaerobic digesters were utilised in this study of which two digesters were fed with 

dosed primary sludge (n=2) and two digesters were fed with dosed mixed sludge (n=2). 

The feed sludges used in this experiment were identical to those sludges used during the 

six retention time experiments. The nominal mesophilic digesters retention times were 

30 days for both mesophilic trials.  
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As it is shown on Table 7-1 the digesters did not appear to be adversely affected in 

terms of performance under 7.8x and 9.0x higher NPEOs loadings of the background 

concentrations. The measured physicochemical parameters remained at similar levels to 

those levels measured at the 6th retention time (6RT) during the 180 days of digestion 

(chapter 4). 
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Table 7-1 Feed sludge characteristics, anaerobic digestion performance and digestate quality during the 30 days NPEOs loading trial. 
NPEOs concentrations at 7.8x and 9.0x higher the background levels of primary and mixed sludges, respectively.   

 
Mean values and standard error (n=4); TS: total solids; VS: volatile solids; VFA: volatile fatty acids; T: temperature; SRT: solids retention time; OLR: 
organic loading rate; ORP: oxidation-reduction potential; GPR: gas production rate; SGP: specific gas production. 

 Mesophilic 
Feed sludges Primary sludge  Mixed sludge 
TS (g l-1) 51.1±3.7  57.1±4.3 
VS (g l-1) 36.5±2.6  44.0±3.0 
VFA (mg acetic acid l-1) 1314±68  1592±44 
Operational conditions    
T (oC)  35±0.2  35±0.2 
SRT (d) 30  30 
OLR (kg VS m-3 d-1) 1.3±0.1  1.5±0.1 
TS (g l-1) 24.8±2.6  37.1±1.9 
VS (g l-1) 17.2±1.9  26.3±3.2 
pH 7.3±0.1  7.5±0.1 
ORP (mV) -345.1±21.8  -374.9±15.2 
VFA (mg acetic acid l-1) 71.3±5.1  122.7±12.9 
Total alkalinity (mg l-1) 2437±42  5364±68 
Biogas    
Daily production (l d-1) 0.8±0.1  0.8±0.1 
GRP (m3 m-3 d-1) 0.51±0.0  0.51±0.0 
SGP (m3 CH4 kg VS-1

removed) 0.6±0.1  0.7±0.1 
Removal efficiencies (%)    
VS  52.9±6.9  40.2±2.0 
TS  51.7±7.2  35.0±4.8 
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7.2.1. Anaerobic digesters stability 

Before the commencement of the experiment, both types of digesters were running 

continuously for 270 days (nine retention times) of which 90 days were the initial 

stabilization period (three retention times).  

Overall, mean pH values for primary and mixed sludge digesters were within the 

marginal pH range (i.e. pH= 7.2 – 7.7) (Gerardi, 2003). Primary sludge pH (7.3 ± 0.02) 

was slightly lower than in the mixed sludge digesters (7.5 ± 0.02). During digestion of 

both spiked primary and mixed sludges, pH values indicated a peculiar increasing 

tendency from the commencement of the experiment (specifically at day 2).The 

increased pH trend during the dosed sludge digestions is inconsistent with the high and 

stable alkalinities measured in both types of digesters. However, the pH values obtained 

were associated with the same magnitude of error (standard error) as it was the case 

during the six retention time experiment. The highest pH value measured during 

primary sludge digestion was 7.5 ± 0.03 at day 14 whereas the highest pH value during 

the mixed sludge digestion was 7.7 ± 0.07 at days eight and nine, respectively.  

Volatile fatty acid (VFAs) content remained at 71 mg acetic acid l-1 and 123 mg acetic 

acid l-1 i.e. at similar levels to those levels before spiking for primary and mixed sludge 

digestion, respectively. Volatile fatty acid contents during both primary and mixed 

sludge digestion were within the optimum levels (50-500 mg acetic acid l-1) according 

to (Gerardi, 2003; Metcalf and Eddy, 2003) and similar to levels observed during the six 

retention time experiment  Table 4-1.  

Measured total alkalinities (CaCO3) in all digesters were above 2000 mg l-1 and 

remained at similar levels without any buffer additions. Alkalinities were stable 

throughout the experiment in both, primary and mixed sludge digesters and their 

stability is inconsistent with the pH alterations observed. However, the relatively high 

levels of alkalinities in all digesters were indicative of their respective good buffering 

capacities and the establishment of anaerobic fermentation (Gerardi, 2003) as it was the 

case during the six retention time trials. Mixed sludge digestion exhibited higher 
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alkalinities (5364 mg l-1) than primary sludge digestion (2437 mg l-1) throughout the 

entire period of digestion. Total alkalinity values for both types of dosed sludges were 

within the optimum (1500-3000 mg l-1) or accepted values for methane-forming bacteria 

(Gerardi, 2003; Metcalf and Eddy, 2003). 

Redox potential was stable during the entire experimental period for both types of 

digesters and it was always less than -300 mV, which is required for the proper activity 

of methane-forming bacteria (Gerardi, 2003). Redox values for the dosed primary and 

mixed sludges were within the optimum range (-200 to -400 mV) for both survival and 

substrate degradation (Gerardi, 2003)).   

7.2.2. Anaerobic digesters efficiency 

Organic loading rates remained at the same levels as they were during the six-retention 

time experiment (1.3 ± 0.1 kg VS m-3 d-1) for primary sludge and (1.5 ± 0.1 kg VS m-3 

d-1) for mixed sludge.  

Volatile solids removals were greater during primary sludge digestion (circa 53 % ± 

0.9%) than during mixed sludge digestion (circa 40% ± 0.5%). As it was the case during 

the six retention time experiment i.e. 53.5% and 40% for the primary and mixed sludge 

digesters, in that experiment volatile solids removals were in  accordance with typical or 

better VS removals under mesophilic conditions (40-50%) (Metcalf and Eddy, 2003; 

CIWEM, 1996).    

Total solid removals were higher during the dosed primary sludge digestion (51.7% ± 

0.6) than it was the non-dosed primary sludge (47%). Similarly, higher TS removals 

during dosing were observed (35.4% ± 0.8) compared to non-dosed mixed sludge 

digestion. Total solids removals were according to typical values or better (30-35%) 

(CIWEM, 1996) and the removals were consistent during the entire period of high 

receiving nonylphenolic concentrations.  

Methane content during the dosed primary (79%) and mixed sludge (80%) digestions 

respectively remained at similar levels to those levels measured at the 6th retention time 

in primary (78%) and mixed sludge (79%), respectively. Dosing did not affect the 
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anaerobic digestion efficiency and the slightly higher methane levels were attributed to 

the variability of the measurements. In general, methane content was higher than the 

typical methane values (65-70%) (Gerardi, 2003; CIWEM, 1996; Metcalf and Eddy, 

2003) indicative that of good methanogenic activity. In particular, methane content 

during the dosed primary sludge anaerobic digestion was 78% ± 0.6 whereas in dosed 

mixed sludge anaerobic digestion methane was 79% ± 0.5. Specific gas production of 

methane (m3 CH4 kg VS-1
removed) was similar for the dosed primary (0.6 m3 CH4 kg VS-

1
removed) and the dosed mixed sludge (0.7 m3 CH4 kg VS-1

removed) digestions, respectively 

Table 7-1. 

Biogas remained at similar levels to those levels observed during the six retention time 

experiment i.e. circa 0.9 L day-1 for primary digesters and 0.8 L day-1 for mixed sludge 

digesters. Gas production rates during the dose primary and mixed sludge digestions 

were similar at 0.51 m3 m-3 d-1.    

7.3. Feed characterization of primary and mixed sludges dosed 

with nonylphenolics  

Quantification of the background dosed concentrations in primary and mixed feeds was 

completed once, at the start of the experiment by a triplicate extraction (n=3) for each 

feed type. The individual concentrations from each feed type are presented in Appendix 

IV. 

7.3.1. Dosed primary sludge  

Mean background concentration of NP3-12EOs in dosed primary sludge was 24.9 ± 24.7-

25.3 mg kg-1 dw whereas the mean concentration of NP1-2EOs was 3.8 ± 3.2-4.5 mg kg-1 

dw (Figure 7-1). Mean concentration of NPECs was 10.5 ± 9.9-10.9 mg kg-1 dw of 

which NP2EC predominated (99.8%) whereas NP mean concentration was 0.26 ± 0.3-

0.2 mg kg-1 dw. Overall, mean ΣNPEOs concentration in the dosed primary feed sludge 

was 39.4 ± 38.1-40.2 mg kg-1 dw. The concentration (mg kg-1 dw) of non-ionic 

nonylphenolics NP1-12EOs in the dosed primary feed sludge was 7.8x higher the 

concentration of NP1-12EOs in the non-dosed primary feed (section 6.1.1). 
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7.3.2. Dosed mixed sludge   

The mean background concentration of NP3-12EOs in the mixed sludge after dosing was 

18.3 ± 17.9-18.8 mg kg-1 dw. Short-chained nonylphenolic mean concentration was 3.5 

± 2.7-4.5 mg kg-1 dw (Figure 7-1). The mean concentrations of NPECs was 254.3 ± 

208-297.8 mg kg-1 dw and NP2EC predominated (99.9%). Mean concentration of 

nonylphenol in the dosed mixed sludge was 0.24 ± 0.1-0.4 mg kg-1 dw. Overall, mean 

ΣNPEOs concentration in the dosed mixed feed sludge was 276.3 ± 231.6-318.8 mg kg-

1 dw. The concentration of non-ionic nonylphenolics NP1-12EOs in the dosed primary 

feed sludge was 9.0x higher the concentration (mg kg-1 dw) of NP1-12EOs in the non-

dosed mixed feed (Figure 7-1). 

 

Figure 7-1 Effect of dosing on non-ionic nonylphenolics (n=3). 
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Figure 7-2 Mean values of dosed (n=3) and non-dosed (n=5) nonylphenolic 

concentrations in the primary (PSM) and mixed sludge (PSM) feeds, respectively. 
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7.4. Tends for nonylphenolics during high receiving 

concentrations in primary and mixed sludges for mesophilic 

anaerobic digesters   

One digestate was collected from each digester on days (1, 3, 5, 7, 10, 20 and 30), 

extracted and analysed for nonylphenolic concentrations to produce an average value 

(n=2) representative for the primary (n=2) and mixed sludge (n=2) digesters at each 

time period. The individual concentrations from each digester are presented in 

Appendix IV. 

7.4.1. Primary sludge (mesophilic digestion)  

The NPEOs concentrations obtained on days 1,3,5,7,10,20 and 30 during primary 

sludge digestion are shown in Figure 7-3. 

The sum of the concentration of ΣNPEOs at day 1 was 20.4 mg kg-1 dw, which was 

decreased from the start (dosed feed) concentration (39.4 mg kg-1 dw). The 

concentration of ΣNPEOs at days 3, 5, 7 and 10 was 14.3 mg kg-1 dw, 4.4 mg kg-1 dw, 

2.2 mg kg-1 dw, 3 mg kg-1 dw, whereas the concentration of ΣNPEOs at days 20 and 30 

was below 0.01 mg kg-1 dw, respectively. Similarly high removals of spiked long-

chained nonylphenolics (>92%) reported by (Zhang et al., 2008) during their UASB 

study involved activated sludge.    

Long chained nonylphenolics (NP3-12EOs) were immediately reduced after dosing to 1 

mg kg-1 dw and after 7 days were further reduced to concentrations close or below the 

method detection limit (MDL). This phenomenon indicated a lag phase of 7 days. The 

overall reduction in concentration between the digestate obtained at day 30 and the feed 

concentration (24.9 mg kg-1 dw) was equal to the feed concentration. The same 

observation was seen for the mass flux difference (Mdiff=-1.01 mg d-1), which indicated 

that all the mass of NP3-12EOs entered the digesters was degraded within one retention 

time Figure 6-3. No inhibitory effect was observed to the primary sludge acclimated 

bacteria, as it was shown from the methane content of biogas. The complete removal of 
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NP3-12EOs is not consisted with the six retention time experiment where the digesters 

receiving 7.7x less NP1-12EOs (mg d-1). 

Despite the large standard errors associated with NP1-2EOs on days 3 and 5, NP1-2EOs 

where reduced from the start concentration (4 mg kg-1 dw) within 7 days and no 

accumulation was observed. This result is consistent with (Minamiyama et al., 2006) 

who observed the same lag phase for the spiked NP1EO during their continuous 

mesophilic anaerobic digestion of mixed sludge. The concentration increase at day 10 

(0.03 mg kg-1 dw) could be attributed to the disappearance of NP3-12EOs post day 7. 

However, the depletion of NP1-2EOs concentration observed in the digestates obtained 

post day 10 were not in contrary with the persistence of NP1-2EOs when primary 

digesters were receiving 7.8x less (in terms of concentration) NP1-12EOs. As it was seen 

with NP3-12EOs the lag phase of 7 days was also observed for NP1-2EOs.   

 

Figure 7-3 Mean (n=2) trends of nonylphenol ethoxylate concentrations (mg kg-1 dw ± 

SE) during mesophilic digestion (35oC ± 0.2oC) of primary sludge (PSM) where the 

NP1-12EOs feed concentration (spiked, where applicable)  has been 7.8x higher from 

the non-dosed background concentration of NP1-12EOs (4 mg kg-1 dw) in the primary 

sludge feed. 
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The NPECs, particularly NP2EC, in the digestates obtained on days 1 and 3 increased in 

concentration compared to the receiving concentrations due to 

biodegradation/biotransformation of NP1-12EOs. Overall, post day 3, NPECs indicated a 

gradual reduction in concentration over time. The digestates obtained on days 7 and 10 

were associated with a large standard error (±0.2 mg kg-1 dw). Carboxylated 

nonylphenolics were absent from the digestates obtained on days 20 and 30 suggesting 

similar lag phase to that observed for NP1-12EOs.  

Although under lower receiving concentrations NPECs indicated persistence during 180 

days of digestion, these analytes were completely depleted at higher NP1-12EOs 

loadings.  

Despite the higher loadings, NP concentration remained at similar levels to those levels 

observed during the 180 days digestion with 7.8x less NP1-12EOs loadings. Nonylphenol 

was not detected in the digestates obtained at days 20 and 30 whereas the concentration 

at days 7 and 10 were close to the MDL (0.011 mg kg-1 dw). Similar lag phase to 

NPECs was observed for NP. Interestingly, the trends for both classes of lipophilic 

analytes, NP and NP1-2EOs were similar. The overall reduction of NP in terms of 

concentration during the dosed primary sludge digestion was consistent with the trend 

observed under lower NP3-12EOs loadings during the 180 days digestion trial. This 

finding validates the previous results obtained with regards the non-accumulation of NP 

during the mesophilic anaerobic digestion of primary sludge. It is therefore plausible to 

assume that appropriate enzymes, were in abundance in the primary sludge bacterial 

community since even under high NP3-12EOs loadings (17. times higher than the six 

retention times experiment), NP was depleted. Finally, the decreasing NP trend is 

consistent with the results obtained by (Patureau et al., 2008). Interestingly, the 

disappearance of NP in the digestates obtained on days 20 and 30 occurred at pH 7.0, 

and this result is consistent with (Chang et al., 2005; Chang et al., 2004). Hence, this 

observation could be associated with the pH changes during the dosed digestion trial.  
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7.4.2. Mixed sludge (mesophilic digestion)  

The ΣNPEOs concentrations obtained on days 1,3,5,7,10,20 and 30 during mixed 

sludge digestion are shown in Figure 7-4. 

The sum of the concentration of ΣNPEOs at day 1 was 30.7 mg kg-1 dw, which was 

decreased from the dosed feed concentration (276.3 mg kg-1 dw). The concentration of 

ΣNPEOs at days 3, 5, 7 and 10 was 33 mg kg-1 dw, 4.1 mg kg-1 dw, 4.3 mg kg-1 dw, 4.2 

mg kg-1 dw, whereas the concentration of ΣNPEOs at day 10 and 20 was below 0.02 mg 

kg-1 dw, respectively. The high removals were in line with those observed in the spiked 

primary sludge as well as those reported by (Zhang et al., 2008).   

Long chained nonylphenolics (NP3-12EOs) were reduced after the commencement of the 

experiment (i.e. day 1) to 1 mg kg-1 dw whereas their maximum removal was observed 

at day 10. The concentration of NP3-12EOs at days 10, 20 and 30 was below 0.02 mg kg-

1 dw whilst a large standard error (0.01 mg kg-1 dw) was associated with the results 

from day 30. Despite the low concentrations, the results from mixed sludge did not 

clearly indicate a 7-day lag phase when data are compared to primary sludge. This 

finding suggested a competitive inhibition effect with other compounds being more 

accessible to be used as carbon sources. Overall, the mass of NP3-12EOs removed at the 

end of the dosing experiment (30 days) was 0.75 mg d-1. Despite the fact that NP3-12EOs 

loadings (mg d-1) were 25x higher than the 180 days digestion trial, higher NP3-12EOs 

removals occurred within one retention time during higher loadings.  

From day 1, short-chained nonylphenolics were reduced from the start concentrations 

(3.5 mg kg-1 dw) and the levels remained low until day 10. Furthermore, the samplers 

obtained on days 20 and 30 were below the MDL. No accumulation of NP1-2EOs was 

observed during the high receiving concentrations in mixed sludge. The maximum 

removal was observed after 10 days of digestion and this finding suggested the 

degradation/transformation of NP1-2EOs and possibly a lag phase of 10 days which is 

consistent with the results obtained from primary sludge and those from (Minamiyama 

et al., 2006). The removed mass of NP1-2EOs at the end of the dosing experiment (30 
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days) was 0.14 mg d-1, which was in balance with the NP1-2EOs loadings. The depletion 

of NP1-2EOs post day 10 of anaerobic digestion of mixed sludge was in close agreement 

with the results obtained from primary sludge under high receiving NP1-12EOs 

concentrations. However, the results are inconsistent with the non-dosed mixed sludge 

digestion.  

 

Figure 7-4 Mean (n=2) trends of nonylphenol ethoxylate concentrations (mg kg-1 dw ± 

SE) during mesophilic digestion (35oC ± 0.2oC) of mixed sludge (MSM) where the NP1-

12EOs feed concentration (spiked, where applicable)  has been 9.0x higher from the 

non-dosed background concentration of NP1-12EOs (2.4 mg kg-1 dw) in the mixed 

sludge feed. . 

Carboxylated nonylphenolics indicated a significant decrease in concentration after 

dosing irrespective of the high start (feed) concentrations of 254 mg NPECs kg-1 dw. 

Post day 3 concentrations were further reduced and NPECs were absent (below MDL) 

at days 20 and 30 as it was the case with NP1-2EOs. In addition, similar trend was 

observed during the dosed primary sludge digestion. The maximum removal was 

observed after 10 days of digestion which indicated a lag phase of 10 days as it was 

seen with NP1-2EOs. The overall decrease in concentration was in accordance with the 
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non-dosed mixed sludge digestion trials indicative of the presence of NPEC-degrading 

bacteria and enzymes in mixed sludge. The Mdiff between the start and the 30 day 

digestate was 10.4 mg d-1 which was equilibrated with the influx on NPECs, in 

particular NP2EC which suggested complete removal.   

Nonylphenol did not accumulate during the dosed mixed sludge digestion. The 

concentrations at days 1 and 3 were below 0.06 mg kg-1 dw whereas at days 5, 7 and 10, 

NP concentration was very close to MDL (0.011 mg kg-1 dw). Nonylphenol was not 

detected above the MDL in the digestates obtained at days 20 and 30 (Figure 7-4) which 

suggested a lag phase of 10 days as it was observe for NPECs. In addition, the absence 

of NP at days 20 and 30 was in line with the result obtained during the dosed primary 

sludge. Despite the dissimilar physicochemical properties between NP and NPECs, the 

disappearance of NP followed the disappearing trends of NP1-2EOs and NPECs 

suggesting that both non-ionic and carboxylated species were bioavailable. The overall 

reduction of NP was consistent with the reduced NP concentrations observed during the 

non-dosed mixed sludge digestion trial. The low levels and the absence of NP in 

samples taken on days 20 and 30 validates the results obtained during the non-dosed 

mixed sludge trial and indicates that NP was not accumulated during the anaerobic 

digestion of mixed sludge. This result indicated abundant bacterial community and the 

absence of enzymatic inhibition in mixed sludge even under high NP3-12EOs loadings 

(9.0 times higher than the six retention times experiment). The results were in 

agreement with primary sludge and the recent reports that NP can be partially degraded 

anaerobically (Patureau et al., 2008). However, the depletion of NP during the dosed 

mixed sludge trial was observed at elevated pH=7.4 compared to the value of pH=7.0 

reported by (Chang et al., 2005; Chang et al., 2004).  

7.5. Effect of sludge type on alkylphenol ethoxylates 

7.5.1. Primary sludge (dosed vs. non-dosed) 

Although in terms of concentration, primary sludge digesters were receiving 7.8x higher 

ΣNPEOs, in terms of mass (mg d-1), dosed primary sludge digesters, were receiving 
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1.3x more ΣNPEOs than the non-dosed primary sludge and removed 1.4x times more 

ΣNPEOs mass than the non-dosed digesters (180 days) (Figure 6-3).  

Long-chained nonylphenolic loadings during the dosed trial were 17 times higher than 

the non-dosed trial and NP3-12EOs removals were 100% and 72%, respectively. This 

finding suggests that both bacteria and enzymes required for the 

biodegradation/biotransformation of long-chained nonylphenolics were in abundance in 

primary sludge and at high NP1-12EOs receiving concentrations primary sludge achieved 

100% removal of NP3-12EOs. In addition, the high receiving nonylphenolic 

concentrations did not affect the degrading ability of the primary sludge during 

mesophilic digestion. Similarly, greater than 92% removals were observed in a UASB 

study by (Zhang et al., 2008) who reported that degradation of NPEOs do not require 

sludge acclimation during anaerobic or aerobic systems.   

The mass of NP1-2EOs entering the dosed primary mesophilic digesters (0.15 mg d-1) 

was removed by 99.9% at the end of the digestion period however; NP2EO indicated 

100% flux removal. Although NP1-2EOs indicated persistence under lower receiving 

concentrations (90.4%), during high receiving concentrations NP1-2EOs flux removals 

were 99.9%. Since the samples analysed represented both the aqueous and the solid 

phases of a sample it is not possible to conclude whether NP1-2EOs were partitioned and 

to what extent to the solids after dosing. Nevertheless, the depleted pool of the 

lipophilic species in the whole digested sludge sample revealed their absence. 

Furthermore, the depletion of the lipophilic species suggested that the activity of the 

biomass to assimilate and/or biotransform these species was not hampered due the high 

NPEOs loadings nor due the presence of other similar to NPEOs molecules i.e. 

octylphenol ethoxylates (OPEOs).  

Therefore, there was no competitive inhibition effect because of competitive sorption 

for the short-chained nonylphenolics as it was observed in lab-scale activated sludge 

trials between NPEOs and polybrominated diphenyl ether (PBDE) (Langford et al., 

2007).    
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Regarding the carboxylated nonylphenolics, in particular NP2EC was removed by 100% 

in dosed primary sludge. However, influxes for NP1EC and NP3EC were below the 

MDL (0.012 mg kg-1dw), respectively. With regards the non-dosed primary digesters, 

which were receiving circa 2.6 times more NPECs, they indicated negative removals 

(accumulation) after 180 days of digestion. However, only NP1EC exhibited flux 

removal (54%). 

Nonylphenol influx was 0.01 mg d-1 and it was removed by 100% under high receiving 

NP1-12EOs concentrations. However, during the non-dosed primary sludge trial and with 

similar NP influx (0.01 mg d-1), nonylphenol indicated circa 45% flux removal while 

these digesters were receiving circa 4.2 times lower NP1-12EOs influx, than the dosed 

primary digesters. Despite the higher NPEOs loadings, the degradation of 

nonylphenolics did not result to NP1-2EOs or to NP as it was seen during 180 days of 

digestion of non-dosed primary sludge. Because of this phenomenon, nonylphenol was 

depleted and disappeared from the samples taken on days 20 and 30. The disappearance 

of NP indicated that the acclimated biomass of primary sludge to NP in synergy with 

the plethora of appropriate enzymes resulted to its depletion. However, other phenolic 

NP-like compounds could have inhibited the sorption of NP due to competitive bio-

sorption and this phenomenon ultimately resulted to NP bioavailability.          

In terms of ΣNPEOs removal per VS removal, the dosed primary sludge digesters 

removed -1.5 mg ΣNPEOs removal g VS removed d-1 as opposed to the non-dosed primary 

sludge digesters that indicated formation (2.1 mg ΣNPEOs removal g VS removed d-1) (Table 

6-1). It should be noted that VS removal rates during both trials (primary sludge) were 

similar. Dosed digesters were more efficient in removing alkylphenolics (ΣNPEOs = 

100%) than the non-dosed mesophilic digesters who indicated formation i.e. -177% 

(Figure 6-8). The biomass activity (based on VS) per milligram of nonylphenolics 

during high receiving concentrations indicated removal (-0.029 mg ΣNPEOs g VS-1) as 

opposed to the non-dosed digesters (0.041 mg ΣNPEOs g VS-1). This difference 

reflected the higher loadings of the dosed trial and suggested the ability of the primary 

sludge biomass to manage higher receiving concentrations of NP1-12EOs. This 
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phenomenon could be explained because of the adequate acclimation period that 

resulted to the adaptation of the biomass to nonylphenolics and their complete 

disappearance within one retention time. In terms of concentration, ΣNPEOs levels at 

day 30 were less than 0.015 mg kg-1 dw compared to 87 mg kg-1 dw during non-dosed 

primary sludge digestion. Although, during the 180 days digestion of primary sludge the 

biomass indicated great potential for biotransformation of nonylphenolics to NPECs, the 

same biomass under shock loading conditions degraded the acidic metabolites 

presumably due to adaptation and utilization of the carbon source.      

7.5.2. Mixed sludge (dosed vs. non-dosed)   

In terms of mass, dosed mixed sludge digesters, were receiving 11.3 mg d-1 

corresponding to 1.2 fold greater influx compared to non-dosed mixed mesophilic trial. 

Similarly the dosed mixed sludge removed 1.9x more ΣNPEOs than the non-dosed 

mixed sludge during the same temperature digestion (Figure 7-5). Overall NP3-12EOs 

mass removals at the end of the dosing experiment (30 days) were 0.45 mg d-1 and 

accounted for 100% flux removal which are in accordance with the reported value 

obtained from a study involved a UASB (Zhang et al., 2008).   

The mass of NP1-2EOs entering the dosed mixed sludge mesophilic digesters (0.14 mg 

d-1) was removed by 100% at the end of the digestion period however; NP1EO indicated 

99.9% flux removal. However, the non-dosed mixed sludge indicated 88.7% flux 

removal for NP1-2EOs whilst NP1EO exhibited the greatest flux removal (89.8%). As it 

was seen in the dosed primary sludge, no accumulation of the short-chained 

nonylphenolics occurred in the acclimated mixed sludge suggesting the abundance of 

appropriate enzymes and bacteria that were possibly biotransformed/biodegraded the 

high influx of carbon arose from the nonylphenolics. As it was the case with the dosed 

primary sludge the activity of the biomass to assimilate and/or biotransform NP1-2EOs 

was not hindered because of either the high NPEOs loadings and/or the presence of 

similar hydrophobic compounds nor presumably due to the presence EPS in mixed 

sludge. Because of the absence of NP1-2EOs it was concluded that competitive bio-

sorption was not observed in mixed sludge as it was the case for primary sludge which 
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in contrary with (Langford et al., 2007) who reported during the effect of competitive 

bio-sorption between NPEOs and PBDE during their aerobic lab-scale activated sludge 

trials.            

Regarding the carboxylated nonylphenolics, only NP2EC indicated an influx of 10.4 mg 

d-1 and it was removed by 100%, however, NP1EC and NP3EC influxes were below the 

MDL (0.012 mg kg-1 dw), respectively. The absence of NP1+3ECs and their presence 

during the dosed and the non-dosed fed sludges was attributed to the large standard 

errors associated with their quantification. Non-dosed mixed digesters were receiving 

circa 1.1 times less NPECs than the dosed mixed sludge trial; however, the overall 

NPECs flux removal was 58% after 180 days of digestion and in addition, only NP1EC 

and NP3EC exhibited removals whilst NP2EC accumulated.   

Nonylphenol influx was 0.01 mg d-1 and it was removed by 100% in the dosed mixed 

sludge. However, during the non-dosed mixed sludge, NP influx was circa 1.6 times 

less than the dosed mixed digesters and indicated 51% flux removal. During the dosed 

mixed sludge digestion, degradation of nonylphenolics did not result to the measured 

metabolites i.e. NP1-2EOs or NP as it was seen with the non-dosed mixed sludge. This 

phenomenon in conjunction with the abundance of adapted bacteria and enzymes as it 

was seen during the non-spiked (6 retention time trials) aided the depletion of NP from 

the samples taken on days 20 and 30. The disappearance of NP from the solid and the 

aqueous phases of the samples indicated that the adapted biomass of mixed sludge to 

NP resulted to its assimilation. The description was given for the dosed primary sludge 

could also applied for the mixed sludge that the presence of similar compounds to NP 

could have inhibited the bio-sorption of NP and ultimately increased NP bioavailability.  

Statistical analysis was performed to investigate differences between the dosed and non-

dosed sludges. Normality tests (Anderson-Darling) hypotheses were not violated 

(p>0.1) (Appendix III) and directional paired t-tests were used to estimate whether the 

mesophilic dosed primary sludge digesters were removing greater mass of NPEOs than 

the removed NPEOs mass (tested mean = 2.240 mg d-1) from the non-dosed primary 

sludge biomass. The same test was carried for the mixed sludge (tested mean = 5.658 
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mg d-1). The directional paired t-tests’ respective hypotheses were accepted for primary 

sludge (t= −1147.52, p>0.05) and for mixed sludge (t= − 168.20, p>0.05), that the dosed 

digesters removed greater mass of NPEOs than the non-dosed digesters which is 

interpreted that additional mass of NPEOs was removed by the dosed digesters.  

However, in terms of ΣNPEOs removal per VS removal, the dosed mixed sludge 

digesters removed -11.5 mg ΣNPEOs removal g VS removed d-1 as opposed to -5.8 mg 

ΣNPEOs removal g VS removed d-1 demonstrated by the non-dosed mixed sludge with 

similar VS removals. Dosed mixed sludge was more efficient in removing 

alkylphenolics (ΣNPEOs = 100%) than the non-dosed mixed sludge (ΣNPEOs = 58%) 

(Figure 6-8). The biomass activity (based on VS) per milligram of nonylphenolics under 

high receiving concentrations was much higher (-0.1713 mg ΣNPEOs g VS-1) compared 

to the activity of the non-dosed mixed sludge digesters (-0.086 mg ΣNPEOs g VS-1). 

This difference reflected the higher loadings of the dosed trial and suggested the ability 

of the mixed sludge biomass to manage higher receiving concentrations of NP1-12EOs. 

The greater removals achieved during the shock loading trial suggested that the 

acclimated biomass of mixed sludge indicated increased activity with increasing NPEOs 

concentrations. Finally, in terms of concentration, ΣNPEOs levels at day 30 were less 

than 0.020 mg kg-1 dw compared to 104 mg kg-1 dw during the non-dosed mixed sludge 

digestion. The ability of the mixed sludge biomass to degrade NPEOs, as it was seen 

during the non-dosed trial, increased with increasing NPEOs concentrations.  
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Figure 7-5 Mass flux for nonylphenolics during dosed (shock loading) and non-dosed 

primary and mixed sludge anaerobic digestion at mesophilic (35oC ± 0.2oC) conditions. 
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8. DISCUSSION 

In this lab-scale study, semi-continuous anaerobic digestion of steroid estrogens and 

nonylphenol ethoxylates has been examined. Primary and mixed sludge (60:40 v/v, 

primary sludge: SAS) has been used to investigate the removal of selected EDCs in 

mesophilic (35oC ± 0.2oC) and thermophilic (53oC ± 0.2oC) temperatures. 

Statistical confidence of data 

Feed sludges were obtained from one STWs at two different occasions, firstly (April 

2007) for the mesophilic and secondly (April 2008) for the thermophilic digestion trials, 

respectively. The mesophilic trials involved duplicate digesters of primary (n=2) and 

mixed sludge (n=2) whilst the thermophilic digestion involved one primary (n=1) and 

one mixed sludge (n=1) digester, respectively. Three individual feed sludge samples 

(n=3) were extracted for the quantification of steroid estrogens from each respective 

sludge type and five (n=5) individual feed samples were extracted for the quantification 

of nonylphenol ethoxylates. Two samples were extracted from each individual digester 

(n=2) to determine the concentration of the selected EDCs in the digested sludges. The 

mass of the selected EDCs was quantified from the whole sludge sample comprised of 

both the solid and the aqueous phase. Quality control involved deuterated steroid 

estrogens and low or high spikes for both steroid estrogens and nonylphenol 

ethoxylates. 

8.1. Start­up and operation of anaerobic digesters  

8.1.1. Mesophilic vs. thermophilic digestion  

Results from the different temperature digestion trials using primary or mixed sludge 

showed the stability of each digestion process during the entire digestion periods. The 

pH remained within the optimum range (6.8 – 7.2) in primary sludge irrespective of the 

temperature digestion whilst in mixed sludge the pH was within the marginal range (7.2 

– 7.6), (Metcalf and Eddy, 2003). In addition, oxidation-reduction potential in all 

digesters was always lower than -320 mV, which favoured the survival of anaerobes 
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and the enzymatic activity in all anaerobic digesters at this pH ranges irrespective of 

temperature (Gerardi, 2003; Perry, 1979). Higher organic loading rates in thermophilic 

digesters resulted to higher gas production rates compared to mesophilic digesters 

however, the latter showed better or equal specific gas production rates indicative of 

high bacterial activity in these digesters.  

8.2. Occurrence of steroid estrogens in primary and mixed 

sludges  

Irrespective of the sampling period, mixed sludge contained lower ΣEST concentrations 

compared to primary sludge and this is because 40% of the mixed sludge had undergone 

aerobic treatment and some degree of biotransformation/biodegradation. It has been 

shown that activated sludge (secondary biological treatment) is the key process behind 

the ability of some STWs to remove most if not all estrogenic activity (Pickering & 

Sumpter, 2003). In addition, studies have showed that although some biological activity 

exists during primary sedimentation (Koh, 2008), ΣEST removals in primary sludge are 

mostly negative (Servos et al., 2005b; Johnson et al., 2005) and estrogen activity based 

on in vitro assays had actually increased after primary sedimentation (Kirk et al., 2002; 

Matsui et al., 2000). Similar trends for natural and synthetic steroid estrogens observed 

in both primary and mixed feed sludges possibly due to the recycled biological sludge 

to the head of the works and/or biodegradation/biotransformation in the sewerage 

system. E1-3S was the least dominant steroid estrogen in primary sludge that could 

explain the domination of E1 in this sludge via E1-3S deconjugation and/or from other 

conjugated species i.e. glucuronides which were not measured. Similarly, E1 dominated 

in the mixed sludge, presumably due to the partial oxidation of E2 within the activated 

sludge process, as has also been observed by (Carballa et al., 2004a).    

8.3.   Occurrence of nonylphenol ethoxylates in primary and 

mixed sludges  

Feed sludges obtained from the different sampling occasions showed that primary 

sludge contained lower ΣNPEOs than mixed sludge. The partial biotransformation of 
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abundant complex mixtures of ethoxy homologues and alkyl isomers of nonylphenolic 

species within the activated sludge could have possibly accounted for the higher 

concentration of ΣNPEOs in mixed sludge since these mixtures enter STWs (European 

Commission, 2003, 2002; Knepper et al., 2003; Petrović et al., 2002). Higher 

concentration of metabolic products (NPECs and NP1-2EOs) was observed in the mixed 

sludge compared to primary sludge whilst higher levels of parent alkylphenolic 

compounds were observed within the primary sludge. Such a phenomenon is typical 

because mixed sludge has undergone partial biodegradation/biotransformation during 

the activated sludge treatment. The similar ΣNPEOs trends observed within the primary 

and the mixed feed sludges, irrespective of the sampling occasion, suggested that partial 

biodegradation/ biotransformation occurred in both sludge types. Similarly to the 

explanation given for steroid estrogens, this phenomenon could be attributed to returned 

biological sludge entering the head of the works and/or biodegradation/ 

biotransformation in the sewerage system. This explanation is consistent with the 

literature where partial biodegradation (aerobic/anaerobic transformation) has been 

observed for nonylphenolics before the influent reached the STWs  as well as the 

presence of short-chained nonylphenolics despite not been found in commercial 

formulations (Ahel et al., 1994a). The presence of short-chained nonylphenolics in the 

primary effluents examined from the 40 full-scale STWs, has also been reported by 

(Fujita et al., 2000b) that further justifies the biodegradation/biotransformation within 

the sewerage system.   

8.4.   Effect of sludge type on EDCs removal during mesophilic and 

thermophilic anaerobic digestion  

8.4.1. Steroid estrogens  

Removal (or deconjugation) of E1-3S during the anaerobic digestion experiments was 

limited, however E1-3S contributed to E1 (which is estrogenic) in all digesters and this 

finding is consistent with aerobic studies which demonstrate that E1-3S is aerobically 

degradable during activated sludge (Joss et al., 2004b; D'Ascenzo et al., 2003a). The 

overall removal of E1-3S from this study averaged 29% for all digesters, which is 
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lowered by a factor of circa 2 when compared to the reported removals from six 

activated sludge plants (64%) in Rome (D'Ascenzo et al., 2003a). Removals based at the 

6th retention time (μg d-1 in the feed - μg d-1 in the digestate obtained at the 6th retention 

time) were in the order (from high to low): mesophilic (primary sludge) > thermophilic 

(primary sludge) > thermophilic (mixed sludge) > mesophilic (mixed sludge) i.e. 36% > 

30% > 28% > 21%, respectively (Table 8-1). Currently there are no reports for the fate 

of E1-3S during anaerobic digestion. First order kinetic constants (k) for E1-3S  

obtained from this study were similar during the different anaerobic trials. In particular, 

mixed thermophilic sludge indicated the greatest degradation constant for E1-3S 

(0.0240 d-1 at 53oC whereas in primary sludge the rate was 0.0205 d-1 at 53oC). 

Mesophilic digestion demonstrated lower degradation constants compared to 

thermophilic digestion i.e. 0.0161 d-1 at 35oC and 0.0110 d-1 at 35oC for the primary and 

mixed sludge digestion, respectively (Table 5-2). The ability of disulphate strains to 

cleave E1-3S (Johnson & Williams, 2004) is associated with the use of sulphate as 

electron acceptor (Van Eldere et al., 1988). However, the use of sulphate (SO4
2-) as a 

terminal electron acceptor may be considered inappropriate in the current study because 

redox ranged from -320 mV to -419 mV which is indicative of fermentation 

(methanogenesis) rather than sulphate reduction (Bouwer & Zehnder, 1993; Gerardi, 

2003). A more appropriate explanation for the degradation of E1-3S in this study could 

lie in the presence of the arylsulphatase enzyme in all sludges studied which has 

demonstrated deconjugation of E1-3S and resulted to E1 as the by-product (Bandick & 

Dick, 1999). Since lower removals (based on the 6th retention time) were achieved in 

mixed sludge, it is possible to say that the activity of the arylsulphatase enzyme was 

reduced in mixed sludge possibly because this sludge had been partially treated (40% 

w/w of activated sludge in mixed sludge) prior to anaerobic digestion. Deconjugation 

(or removal) of E1-3S during the entire anaerobic digestion study (all six retention time 

times) contributed to E1 (Figure 8-1) and varied (from high to low): mesophilic 

(primary sludge) 0.5 μg d-1 ≈ mesophilic (mixed sludge) 0.5 μg d-1 > thermophilic 

(mixed sludge)  0.4 μg d-1 > thermophilic (primary sludge) 0.2 μg d-1, irrespective of the 

similar E1-3S influx for all digesters (0.2 μg d-1). When considering deconjugation of 

E1-3S and its total contribution to E1 the mesophilic conditions seem to favour this 
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activity. Considering that the enzymatic activity of arylsulphatase enzyme should 

increase with increase in temperature (Gerardi, 2003) a possible reason for the slower 

activity of arylsulphatase in thermophilic digestion could be due to the shorter retention 

time of these digesters compared to the mesophilic digesters.  

During this study a fraction of the removed E1 Figure 8-1 was reduced to E2 and 

another fraction was degraded in both primary and mixed sludges irrespective of 

digestion temperature according to the mass balance. The degraded fraction of E1 

predominated over the reduction of E1 to E2 (see below) for the majority of the 

anaerobic trials. Overall, degradation during the entire anaerobic digestion study (all six 

retention time times) occurred with the order of efficiency (from high to low) being: 

mesophilic (primary sludge) > thermophilic (primary sludge) > mesophilic (mixed 

sludge) > thermophilic (mixed sludge) for 14.4 μg d-1, 12.5 μg d-1, 6.9 μg d-1 and 1.3 μg 

d-1, respectively (Figure 8-1). The degraded fraction of the removed E1 who represents 

100% accounted for 86%, 78%, 78% and 22%, respectively. Based on first order kinetic 

calculation under continuous addition, first order kinetic or degradation constants (k) for 

E1 ranged from 0.1161 d-1 at 35oC to 0.0415 d-1 at 53oC in primary sludge (Table 5-2). 

Irrespective of sludge type and start concentration, degradation constants (k) were 

higher during mesophilic digestion (35oC) with longer retention times. In general, 

degradation constants for E1 were the greatest among the examined steroid estrogens 

during mesophilic digestion. It has been reported that degradation of E1 takes place 

under all redox conditions but at significantly different rates (Joss et al., 2004b). 

Biodegradation rates (k) for E1 in batch experiments with 12 days retention time ranged 

from 162 l/gSS d-1, 30 l/gSS d-1 and 10 l/gSS d-1 for aerobic, anoxic and anaerobic 

conditions, respectively. Biodegradation rates indicate an increase by a factor of 

between 3 and 5 in the transition from anaerobic to anoxic (nitrate available) as well as 

between anoxic and aerobic (Joss et al., 2004b) suggesting that aerobic biodegradation 

of E1 is faster compared to anaerobic degradation. In another study, first order 

degradation rates of E1 during aerobic batch experiments (20oC) containing diluted 

slurry of activated sludge obtained from real sewage treatment works ranged from 

1.0080 d-1 to 11.5200 d-1 (calculated) with E1 starting concentration of 1000 μg l-1 and 1 

μg l-1, respectively (Ternes et al., 1999a). In the current study, E1 degradation constants 
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(k) ranged from 0.0415 d-1 to 0.1161 d-1 for primary sludge at 53oC and 35oC, 

respectively (Table 5-2) with 35 μg l-1 and 91 μg l-1 E1 feed concentrations, 

respectively. Considering the high E1 start concentration in (Ternes et al., 1999a) study 

i.e. 1000 μg l-1, degradation rates in this study were significantly lower compared to 

aerobic studies suggesting that initial concentration of steroid estrogens may be more 

significant than digestion temperature. Furthermore,  the lower degradation constants in 

this study compared to aerobic studies are in line with (Joss et al., 2004b; de Mes et al., 

2005).  

In general, overall degradation of E1 i.e. during the entire digestion periods, reflected 

the amount of the removed E1 for each digester. Therefore, irrespective of digestion 

temperature and sludge type, primary sludge (mesophilic) that was receiving higher 

loads of E1 (4.5 μg d-1) resulted in higher E1 degradation i.e. 14.4 μg d-1 than the 

thermophilic mixed sludge (1.3 μg d-1) which was receiving the lowest E1 (1.6 μg d-1) 

(Figure 8-1). In addition these digesters were also subjected to similar E1 contributions 

from the deconjugated E1-3S. Whether specific bacteria or enzymes present in sludge or 

whether temperature digestion is the key for the significant degradation of E1 during 

anaerobic digestion it is yet not certain.  

E1 was reduced to E2 which has a 5-10 folder higher estrogenic activity than E1 

(Johnson & Sumpter, 2001b). The conversion of E1 to E2 i.e. contribution of E1 to E2 

during the entire anaerobic digestion study (all six retention times) occurred in all 

digesters in the order (from high to low) being: thermophilic (mixed sludge) 4.5 μg d-1 > 

thermophilic (primary sludge) 3.5 μg d-1 > mesophilic (primary sludge) 2.4 μg d-1 > 

mesophilic (mixed sludge) 2.0 μg d-1 (Figure 8-1). The fraction of the formed E2 from 

the removed E1 who represented 100% was in the order (from high to low) being: 

thermophilic (mixed sludge) 78% > thermophilic (primary sludge) 22% ≈ mesophilic 

(mixed sludge) 22% > mesophilic (primary sludge) 14%. The differences in the 

conversion of E1 to E2 for each digester reflected the different E1 influx as well as the 

removed E1. Therefore despite the different sludge types and digestion temperatures it 

was evident that all sewage sludge had developed E1 reducing properties. This finding 

is important and confirms the reported results that E1 is converted to E2 during 
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anaerobic digestion. Therefore, based on first order calculation under continuous 

addition, first order kinetic constants (k) for E2 were negative and ranged from -0.0145 

d-1 to -0.0511 d-1 for primary and mixed sludge at 53oC (i.e. thermophilic) and -0.0259 

d-1 to -0.0255 d-1 for primary and mixed sludge at 35oC (i.e. mesophilic) trials, 

respectively (Table 5-2). Biodegradation rates (k) for E2 in batch experiments with 12 

days retention time ranged from 350 l/gSS d-1, 460 l/gSS d-1 and 175 l/gSS d-1 for 

aerobic, anoxic and anaerobic conditions, respectively (Joss et al., 2004b). 

Biodegradation rates indicate an increase by a factor of 2 in the transition from aerobic 

to anaerobic. This observation  suggests that aerobic biodegradation of E2 is faster 

compared to anaerobic ‘degradation’ since under anaerobic conditions E2 is formed 

from E1. 

The overall conversion of E1 to E2 has been reported to occur under anaerobic 

conditions in lab scale studies (batch and/or continuous) (de Mes et al., 2008; Carballa 

et al., 2007; Carballa et al., 2006; Joss et al., 2004b) (see Figure 2-3) and our results are 

consistent with these authors. It has been reported that the extent of this conversion 

depends on the inoculum (de Mes et al., 2008). The results from this study showed that 

the conversion of E1 to E2 was greater compared to digested pig manure and granular 

UASB sludge (industrial origin) (de Mes et al., 2008). This difference could therefore 

lie to the different sludge types, the different inoculums used and the diverse digestion 

temperatures.  

Nevertheless, (Czajka & Londry, 2006) consistently observed the reverse conversion 

i.e. the production of E1 in E2 spiked sediments in nitrate-iron-sulphate and 

methanogenic reducing conditions in batch lab scale anaerobic reactors but no details 

were provided regarding pH or redox potential. Despite this observation, the authors 

reported that the reverse conversion i.e. E2 to E1 under anaerobic conditions is unlikely 

to provide energy to the cells involved and that E2 is possibly used as an electron donor 

(Czajka & Londry, 2006).  

Although the conversion of E2 to E1 is unlikely to provide energy to cells during 

anaerobic digestion (Czajka & Londry, 2006), the reduction of E1 to E2 could be 
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mediated by hydrogen or other organic electron donors as it the case for instance with 

some aromatic and chlorinated organic compounds (Gerritse et al., 1999; Holliger & 

Schraa, 1994; Lovley & Lonergan, 1990). The conversion of E1 to E2 is possibly a co-

metabolic activity because steroid estrogens (like other micropollutants) are not present 

in high enough concentration in the anaerobic sludge to support substantial biomass 

growth (Yi & Harper, 2007; Yu et al., 2007).  

Flux removals for ΣE1+E2 during mesophilic digestion for primary (57%) and mixed 

sludge (44%) were higher to those obtained during thermophilic digestion i.e. 56% and 

10 %, respectively. In general these removals were much lower compared to those 

reported by (Carballa et al., 2006) i.e. 85% at mesophilic (37°C) and 95% at 

thermophilic (55°C) conditions in mixed sludge (70:30 v/v, primary sludge: activated 

sludge), respectively. The lower removals observed in our study and (Carballa et al., 

2006) study could be explained through the different substrates used. However, it 

should be noted that the calculation used to produce the high ΣE1+E2 removals in their 

study involved spiked concentrations of steroid estrogens (4-400 μg l-1) (Carballa et al., 

2006) which may be responsible for the high reported removals in mixed sludge.  

Mesophilic digestion was more efficient for E3 removal (primary 45%, mixed 44%) 

than the thermophilic digestion (primary 17%, mixed 4%). The similar E3 removals 

between the primary and mixed sludge subjected to mesophilic digestion indicated that 

both sludge types accommodate E3 degrading bacteria/enzymes and that their 

performance is favoured during mesophilic digestion when compared to thermophilic 

digestion. Flux removals reflected E3 kinetic constants in the order (from high to low) 

being: mesophilic (35oC) (primary sludge) 0.0243 d-1 > mesophilic (35oC) (mixed 

sludge) 0.0226 d-1 > thermophilic (53oC) (primary sludge) 0.0205 d-1 > thermophilic 

(53oC) (mixed sludge) 0.0201 d-1, respectively (Table 5-2). Thermophilic digestion 

demonstrated the lowest E3 degradation rates possibly due to the shortest retention time. 

Currently there are no published E3 degradation constants from aerobic or anaerobic 

studies for comparison purposes. However, field data from aerobic studies have 

reported 95% removal during activated sludge treatment (Baronti et al., 2000) 

suggesting a) that E3 degradation constants are expected to be much greater than those 



Chapter8 Discussion: 

210 

 

reported herein and b) that strict anaerobic (methanogenic) conditions do not favour the 

elimination of E3 despite the fact that E3 is less estrogenic than EE2, E2 and E1. The 

activity of the biomass which was calculated as the amount of organic matter present in 

VS of primary sludge was more efficient for E3 removal than the activity of the mixed 

sludge. Despite the similarities of E3 influx among the primary and the mixed sludges at 

both digestion temperatures, thermophilic digesters obstructed the removal of E3. 

Concentration of E3 in the respective sludges at both mesophilic and thermophilic trials 

were near or below the MDL (4.5 μg kg-1 dw). In addition, no contribution of ΣE1+E2 

to E3 was observed during the different digestion temperatures as shown in Table 5-3. 

No investigation for E3 by-products were examined in this research and currently there 

are no published studies for the degradation of E3 in strict anaerobic (methanogenic) 

conditions. It has been postulated however, that E3 would have similar pathway to E1 

(Koh, 2008). Based on this information, degradation of E3 could have been initiated via 

hydroxylation or ring cleavage possibly during a co-metabolic process.  

In general, higher EE2 removals were achieved in primary sludge compared to mixed 

sludge at both digestion temperatures which emphasised the importance of the primary 

sludge substrate for EE2 removal. In particular, removals for EE2 in primary sludge at 

53oC were 44% and at 35oC were 33% as opposed to mixed sludge with 15% and 5%, 

removals respectively. Researchers did not observe any EE2 degradation in spiked 

sewage sludge obtained from a real scale STWs or lake sediment over the period of 

three years during a lab scale batch anaerobic experiment (Czajka & Londry, 2006). On 

the other hand, significantly higher removal was observed in spiked mixed sludge (70% 

primary and 30% SAS) and UASB sludge during mesophilic (85%) and thermophilic 

(75%) anaerobic digestion trials (Carballa et al., 2006). The contradictory reported 

removals in lab scale anaerobic conditions are consistent with the large differences 

reported from real scale STWs (Koh, 2008; Johnson & Sumpter, 2001b; Andersen et al., 

2005) implying that the breakdown of one of the most potent steroid estrogen 

compounds investigated in this study is possibly highly dependant on the substrate 

besides redox conditions as the results suggest. Although EE2 metabolites were not 

investigated in this research it was proposed that EE2 is initially oxidised to E1 



Chapter8 Discussion: 

211 

 

following ring opening oxidation reactions on ring B (Haiyan et al., 2007). First order 

kinetic constants (k) for EE2 ranged from 0.0519 d-1 to 0.0753 d-1 for primary and 

mixed sludge during thermophilic digestion (53oC), respectively whereas mesophilic 

digestion (35oC) resulted to lower degradation constants during primary sludge (0.0701 

d-1) and even lower during mixed sludge digestion (0.0021 d-1) compared to the 

thermophilic mixed sludge digestion (Table 5-2). Biodegradation rates (k) for EE2 in 

batch membrane bioreactors with 30 days retention time ranged from 6 l/gSS d-1, 3 

l/gSS d-1 and 1.5 l/gSS d-1 for aerobic, anoxic and anaerobic conditions, respectively. It 

was reported that EE2 removal efficiency depends on the redox conditions with 

maximum removal rate occurring under aerobic conditions (Joss et al., 2004b) as it was 

the case with E1. Degradation rate for the anaerobic batch reactor did not deviate 

significantly from the abiotic control values. i.e. k =1 l/gSS d-1 according to (Joss et al., 

2004b). 

Based on their mass fluxes in micrograms per day during mesophilic digestion primary 

sludge achieved higher degradation and removal of steroid estrogens (53%) than the 

mixed sludge (39%). Analogously,  higher removals in primary sludge (51%) than in 

the mixed sludge (12%) occurred during thermophilic digestion. A rough estimation of 

the removal efficiency of the biomass (the amount of organic matter present in VS) of 

the primary and mixed sludge was evaluated by activity i.e. μg estrogen removed per 

gram of VS content per digester. Given that the activity of the biomass of the primary 

and mixed sludge digestions was significantly (p<0.05) different for the mesophilic 

trials and similarly as it was the activity of the biomass for the respective sludges at 

thermophilic conditions (p<0.05) (Appendix III), it was evident that the biomass activity 

of primary sludge had a higher efficiency for biodegrading steroid estrogens than the 

mixed sludge, irrespective of digestion temperature (Table 5.1).  

The initial research hypothesis (H1E0) ) (see section 5.2) was therefore violated (for 

mesophilic, t=33.23, DF=2, p<0.05, and thermophilic, t=42.16, DF=1, p<0.05) in favour 

of the alternative hypothesis (H1Eα) which states; primary and mixed sludge digestion, 

irrespective of temperature, resulted in significantly different steroid estrogen removal 
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(based at the 6th retention time (μg d-1 in the feed - μg d-1 in the digestate obtained at the 

6th retention time). 
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Table 8-1 Mass balance for steroid estrogens during mesophilic (35oC) and thermophilic (53oC) digestion of primary and mixed sludges. 

 

Flux (μg d-1)
 Mesophilic digestion Thermophilic digestion

                                      Primary sludge Mixed sludge Primary sludge Mixed sludge 
Steroid  
estrogens  

In-flux Out-flux 
6th RT 

Removal % In-flux Out-flux 
6th RT 

Removal % In-flux Out-flux 
6th RT 

Removal % In-flux Out-flux 
6th RT 

Removal % 

E1 4.53 0.96 78.80 2.28 0.68 70.32 3.49 0.16 95.51 1.61 0.51 68.22 
E2 0.26 1.12 -323.56 0.16 0.69 -325.08 0.32 1.51 -367.38 0.15 1.07 -621.33 
E3 0.25 0.14 45.40 0.20 0.11 43.55 0.30 0.25 16.64 0.26 0.25 4.08 
E1-3S 0.22 0.14 36.36 0.17 0.13 21.06 0.20 0.14 30.31 0.20 0.15 27.88 
EE2 0.53 0.35 32.71 0.26 0.25 4.55 0.49 0.28 43.56 0.50 0.43 14.82 
Natural 5.26 2.36 55.26 2.81 1.61 42.61 4.32 2.06 52.25 2.22 1.97 10.99 
ΣE1+E2 4.79 2.08 56.58 2.44 1.37 43.85 3.81 1.67 56.16 1.76 1.58 10.23 
ΣESTs  5.79 2.71 53.21 3.07 1.86 39.40 4.81 2.34 51.36 2.72 2.40 11.70 
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Figure 8-1 Mass balance for steroid estrogens during mesophilic and thermophilic 

anaerobic digestion of primary and mixed sludge. Values in (μg d-1) represent the total 

mass loss or transfer. Percentages represent the mass loss or transfer fraction of the 

removed E1 mass who represents 100%. 
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8.4.2. Nonylphenol ethoxylates  

Digestion of nonylphenolics (ΣNPEOs) resulted in high and similar long-chained 

nonylphenolic (NP3-12EOs) removals (mg d-1) in the presence of primary sludge during 

mesophilic (72%) and thermophilic (71%) digestion at the end of the digestion period 

i.e. at the sixth retention time. Thermophilic digestion of mixed sludge on the other 

hand achieved the highest NP3-12EOs removals (79%) among all examined sludges 

whilst the same sludge, during mesophilic digestion achieved the lowest NP3-12EOs 

removals (57%). Considering the results obtained from the mesophilic and thermophilic 

trials, retention time and temperature did not demonstrate a significant effect on the 

removal of the parent compounds with an exception of mixed sludge at mesophilic 

temperatures. Nevertheless, at higher NP3-12EOs loadings, a lag phase of 7 days was 

observed in primary and mixed sludge during mesophilic digestion with higher 

removals (100% for both sludges respectively) than those obtained during the non-

spiked (non-dosed) mesophilic trials. These results indicated that both sludge types 

irrespective of digestion temperature were equally acclimated during the digestion 

period since biodegradation and/or biotransformation of NP3-12EOs occurred with time. 

The high NP3-12EOs removals obtained from this study are consistent with (Zhang et al., 

2008).    

The results indicated that long retention time (30 days) promoted the growth of 

appropriate bacteria for the biotransformation of the lipophilic short-chained 

nonylphenolics (NP1-2EOs) in both primary and mixed sludge. Removal of NP1-2EOs 

occurred with digestion time and suggested acclimation. Higher kinetic constants (k) for 

NP1EO were observed during thermophilic digestion i.e. 1.7958 d-1 and 0.8152 d-1 for 

primary and mixed sludge, respectively due to higher digestion temperature compared 

to mesophilic digestion (Table 6-2) and the current results are consistent with (Chang et 

al., 2004) who also observed higher k values for NP1EO at 50oC compared to 30oC 

digestion temperatures. The current results are in line with the (Benabdallah El-Hadj, 

2006) study who also observed sludge acclimation with 100% SAS digestion during 

mesophilic (35°C) and thermophilic (55°C) anaerobic digestion but not in agreement 
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with (Zhang et al., 2008) who observed the accumulation of NP1-2EOs in the UASB 

effluents (aqueous phase) after the period of five months.  

Nevertheless, at higher receiving concentrations, similar lag phase of circa 7 days was 

observed for NP1-2EOs as it was the case for the long-chained nonylphenolics at higher 

loading conditions. The results from the dosed (spiked) experiment were in line with 

other studies who reported similar lag phase for the spiked NP1EO (5 mg l-1) during 

mesophilic anaerobic digestion (28 days retention time) of mixed sludge (thickened 

primary and SAS) (Minamiyama et al., 2006). On the other hand, (Zhang et al., 2008) 

by using the same reference material as (Minamiyama et al., 2006), observed the 

persistence of NP1-2EOs in the UASB effluents after spiking (23 μmol l-1) activated 

sludge with (NPnEOs, average EO=9). Interestingly, (Zhang et al., 2008) investigated 

the effect of bacterial number change with spiking during their anaerobic trial by using 

denaturing gradient gel electrophoresis (DGGE) and reported that spiking resulted to 

significant decrease in bacterial species; however adaptation to high concentrations 

occurred with time. Although in the current study bacterial changes were not examined, 

the observed 7-days lag phase suggests besides possible sludge structural changes, that 

biomass composition/activity or speciation changes could have occurred. However, no 

inhibitory effect was observed as a result of spiking for both sludge types since no 

changes occurred in methane, biogas production rate and VFAs concentration, therefore 

it is plausible to suggest that changes related to enzymatic activity as opposed to 

microcosm. NP1-2EOs flux removals were 99.9% for the dosed primary sludge and 

100% for the dosed mixed type, respectively.            

Nevertheless, during the six retention time trials, at thermophilic conditions with shorter 

retention time the lipophilic NP1EO persisted in primary sludge but not in the mixed 

sludge. It was speculated that specific exoenzymes responsible for attacking lipophilic 

compounds (Dalton & Stirling, 1982) such as NP1EO were not produced in adequate 

numbers by appropriate bacteria in primary sludge possibly due to the short digestion 

cycle. In addition to the limited numbers of enzymes the untreated primary sludge 

substrate (fats, grease) could have also served as significant adsorbent sites for NP1EO 

with a high octanol-water partitioning index (Log Kow = 4.17) (Ahel & Giger, 1993a). 



Chapter8 Discussion: 

217 

 

The persistence of the lipophilic NP1EO is in agreement with (Montgomery-Brown & 

Reinhard, 2003) that parent nonylphenolics persist under anaerobic conditions. 

Although under thermophilic conditions, NP1-2EOs flux removal in primary sludge was 

2.3%, in the mixed sludge the removal was higher 99.9%. The observed removals for 

NP1EO and NP2EO during both mesophilic and thermophilic digestions were higher 

than those presented by (Benabdallah El-Hadj, 2006) (48% and 71%, respectively) by 

using 100% SAS with 18 days SRT, which indicated the importance of substrate. 

Overall, the disappearance of NP1-2EOs could have contributed to the formation of 

NPECs and/or to NP.  

Although NP1-2EOs did not accumulate during the mesophilic trials, formation and 

persistence of carboxylated nonylphenolics (NPECs) occurred in primary sludge 

irrespective of a) digestion temperature b) retention time c) overall nonylphenolic influx 

and d) organic loading rate, directly after the commencement of the anaerobic trials. 

This important finding indicated the occurrence of carboxylated nonylphenolics in 

methanogenic conditions. The presence of carboxylated nonylphenolics could be due to 

co-metabolic transformation reactions since anaerobic metabolism requires a sequence 

of oxidation-reduction reactions for the energy yields (Gerardi, 2003; Dalton & Stirling, 

1982). A variety of organic molecules, CO2 or metals could have been used as the 

carrier electron acceptors to produce co-metabolically carboxylated homologues. This 

hypothesis is in agreement with (Hayashi et al., 2005) that NPECs may be generated co-

metabolically with NPEOs in the presence of organic matter in aerobic biodegradation 

tests. In addition, irrespective of digestion temperature of the primary sludge, NP1EC 

and NP2EC indicated negative degradation rates (k) (Table 6-2) i.e. formation.    

The formation of NPECs was the principal co-metabolic biotransformation/ 

biodegradation mechanism of NP1-12EOs in primary sludge possibly due to the rich 

intrinsic bacteria/enzymes as it was evident during the steroid estrogen digestion. Flux 

removals were therefore negative during mesophilic (-215%) and thermophilic (-

3591%) digestion of primary sludge. The presence of short-chained NPECs and the 

concomitant disappearance of NP3-12EOs are in line with (Schröder, 2001) that used 

different STWs biocoenosis at 20oC and -380mV in lab scale anaerobic trials. Similarly, 
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(Field & Reed, 1999) reported the presence of NPECs at circa 123 mg kg-1 dw by 

analysing real scale anaerobically digested sewage sludge (mesophilic). In addition, 

they reported that mesophilic anaerobic sludge digestion (real scale) results in the more 

rapid degradation of the para isomers relative to ortho isomers (Field & Reed, 1999). 

On the other hand, (Lee et al., 1997) reported considerably lower (up to 38 mg kg-1 dw) 

NPECs concentrations from real scale mesophilic anaerobic digesters. Although NPEOs 

loadings in the (Field & Reed, 1999; Lee et al., 1997) studies were not available for 

direct comparison, an implication of the (Field & Reed, 1999) study is that different 

anaerobic substrates may result to different isomeric NPECs distributions which in turn 

may direct their formation or bioavailability. The implication of the (Field & Reed, 

1999) study could further explain the dissimilar NPECs trends observed between the 

mesophilic and thermophilic anaerobic trials. In contrary, (Lu et al., 2008; Lu et al., 

2007) did not report any NPECs above 0.4 μg l-1 in the effluents obtained from 

biodegradation assays by using STWs inocula or river sediment under sulphate, nitrate 

or iron reducing conditions. Furthermore, (Ball et al., 1989a) reported the presence and 

persistence over 190 days of anaerobic digestion of long-chained carboxylated 

octylphenol ethoxylates (OPECs) in lab scale anaerobic trials. Although NPECs were 

observed in the mixed sludge during mesophilic digestion, the acidic species were 

reduced and removed by 58% (based on flux) over time and proposed that bacteria were 

acclimated to these species. In addition, there was an insignificant formation of NPECs 

in the mixed sludge during thermophilic digestion which resulted to high negative flux 

removal (-8921%) due to the low influx of NPECs. The observed trends of NPECs in 

mixed sludge irrespective of temperature digestion were explained by of the presence of 

acclimated enzymes and facultative bacteria that were able to utilise NPECs as co-

substrate during a co-metabolic activity. Albeit the shorter sludge retention time of the 

thermophilic digestion, temperature could have also initiated this process. The 

differences between primary and mixed sludge could have been attributed to the 

presence of lipophilic compounds in the untreated primary sludge. The lipophilic 

compounds could have served as significant adsorbent sites for NPECs which are 

associated with high octanol-water partitioning index (Log Kow >5.53) (Nielsen et al., 

2000). The ability of the methanogenic consortia to have hydrolysed the non-ionic 
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nonylphenolics (presumably the lypophilic species) to more soluble substrates like 

NPECs for further assimilation is plausible since carboxylation increases both the 

solubility and persistence of alkylphenol ethoxylates (Ahel et al., 1994d).   

Interestingly, acidic nonylphenolic species indicated a lag phase of 10 days in both 

primary and mixed mesophilic sludges at high NP3-12EOs loadings i.e. 1.01 mg d-1 and 

0.75 mg d-1, respectively. Their depletion occurred after the 7-days lag phase of NP3-

12EOs and this observation is consistent with the non-dosed trials that NPECs were 

more persistent than NP1-2EOs in primary sludge.. The persistence of NPECs within the 

10 days lag phase could be explained because of the higher Log Kow ≥5.53 as opposed 

to lower Log Kow ≤4.21 of NP1-2EOs. Under lower receiving concentrations, formation 

of NPECs was the principal co-metabolic biotransformation/biodegradation mechanism 

of NP1-12EOs in primary sludge. Nevertheless, NPECs were absent from the samples 

after 10 days of digestion during the dosing experiment but they were still present at 

appreciable levels at lower NP3-12EOs loadings. This observation suggested a) that the 

high non-ionic surfactant concentrations had a significant effect on sludge structural 

characteristics which lead to desorption of NPECs hence, increased their bioavailability, 

b) acceleration of enzymatic activity for NPECs attack as a result of co-metabolism, due 

to more available carbon, which resulted to their depletion within one digestion cycle 

i.e. retention time.   

Nonylphenol (NP) did not accumulate in primary or mixed sludge during mesophilic or 

thermophilic anaerobic digestion (six retention times experiments). Therefore, lower 

flux removals were achieved during mesophilic digestion in the primary (45%±1%) and 

mixed sludge (51%±1%) compared to thermophilic digestion (57%±1%  and 80%±1%, 

respectively). This finding suggested that temperature was more significant than 

retention time, which is consistent with the observations of (Tanghe et al., 1998) that 

NP removal rates were varied as a function of temperature during their lab scale aerobic 

studies by using activated sludge. Based on first order calculation under continuous 

addition, kinetic constants (k) for NP ranged from 0.3495 d-1 to 0.0304 d-1 in mixed 

sludge during thermophilic (53oC) and mesophilic (35oC) anaerobic digestion (Table 

6-2). The kinetics (k) in primary sludge ranged from 0.0912 d-1 to 0.0248 d-1 during 
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thermophilic (53oC) and mesophilic (35oC) anaerobic digestion. Lower NP removal and 

associated kinetic constants at 35oC have also been reported by (Chang et al., 2005) 

(currently the only study) when mesophilic digestion was compared to thermophilic 

digestion in primary and petrochemical sludge.  

The low NP removals observed in this study are in agreement with (Benabdallah El-

Hadj, 2006) who explained that NP is more recalcitrant than other nonylphenolics 

because of the hydrophobic characteristics (Log Kow = 4.48) (Ahel & Giger, 1993a) 

which complicates the bioavailability to anaerobes and thus their bioassimilation 

(Angelidaki et al., 2000; Ejlertsson et al., 1999; Ahel et al., 1994a). The differences 

between primary and mixed sludge could be therefore attributed to the higher content of 

lipophilic compounds in primary sludge that hampered NP degradation due to 

adsorption. The partial biodegradation of NP was attributed to the fact that there was no 

contribution of NPEOs metabolites to NP since biotransformation of the parent species 

resulted to NPECs with an exception of NP1EO in thermophilic primary sludge and not 

to NP. This phenomenon had possibly served as a barrier to the build up or 

accumulation of NP from the supplementary metabolic influxes, which resulted to a 

limited degradation (partial biodegradation) of NP but not to its mineralization.   

Nonetheless, when mesophilic digesters were receiving higher NP1-12EOs loadings, 

nonylphenol indicated a lag phase of 10 days, as it was the case with NPECs and then it 

was depleted from both aqueous and solids phases in each respective digestate. There 

was no significant contribution from NPECs or from the short-chained non-ionic 

nonylphenolics i.e. NP1-2EOs to NP during the 10 days digestion period neither in the 

primary nor in the mixed sludge. Because of the absence of nonylphenol and the 

material balance between the parent (NP3-12EOs) and the short-chained non-ionic and 

carboxylated (NPECs) metabolites, flux removal on NP was 100% in both primary and 

mixed sludge digesters (see Figure 7-5).  

The results from the current study (six retention times and the spiked experiments) are 

in support with the growing but small evidences that NP are able to undergo partial 

degradation under various anaerobic conditions (Patureau et al., 2008; Ferguson & 
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Brownawell, 2003; Chang et al., 2005; Chang et al., 2004; Chang et al., 2009) (see 

Figure 2-4). Although, under aerobic conditions, many studies have unequivocally 

demonstrated that certain bacteria are capable for NP biodegradation (Tanghe et al., 

1999; Soares et al., 2003a; Soares et al., 2003b; Corvini et al., 2004; Gabriel et al., 

2005a; Gabriel et al., 2005b), under anaerobic conditions degradation of NP has 

recently been proposed by (Chang et al., 2005; Chang et al., 2004). The batch studies by 

using petrochemical or sewage sludge and river sediment have indicated degradation of 

NP in the order of (from high to low) sulphate reducing conditions > methanogenic 

conditions > nitrate reducing conditions at pH = 7, and ca. -400mV. The authors 

proposed that sulphate reducing bacteria would constitute a major microbial component 

for the anaerobic degradation of NP (NP was virtually the sole carbon source) but the 

methanogens and eubacteria microbial populations would also be involved. The 

digestion of nonylphenolics in the current study occurred in methanogenic conditions 

with similar physicochemical parameters (pH and redox ranged between 7.1-7.6 and -

320 to -419 mV respectively). Since no microbiological investigations were carried out 

in the current research the presence of eubacteria cannot be confirmed or excluded. 

Nevertheless, there are some uncertainties regarding the reported biodegradation of NP 

in (Chang et al., 2005; Chang et al., 2004) study. These uncertainties are a) the samples 

were obtained from the aqueous phase rather than the solid phase, b) no explanations 

were given for the accumulated NP in the petrochemical sludge which accounted circa 

15% and c) the studies were carried out by using either spiked NP or NP1EO, therefore 

the contribution of NPEOs metabolites to NP was virtually zero. In the current study, all 

analytes were quantified from the whole sludge sample including both the aqueous and 

the solid phase of digested sludge. In addition, NPEOs influxes were much higher 

compared to the spiked NP or NP1EO influx of (Chang et al., 2005; Chang et al., 2004). 

Although during the six retention time study, biodegradation (mineralisation) was not 

observed, partial biodegradation of NP was evident. At high receiving concentrations, 

NP was eliminated. The high organic matter content in primary sludge (72% of the TS) 

could possibly explain the lower NP removals compared to the higher removals 

observed by (Chang et al., 2005; Chang et al., 2004). However, the important outcome 

when comparing both lab scale studies is that accumulation of NP in strict anaerobic 
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conditions does not necessarily occur if the contribution of nonylphenolic metabolites is 

insignificant or minimum. This observation suggests that metabolic influx as well as 

biodegradation pathway of nonylphenolics may be significant factors when considering 

degradation of NP. This statement is further supported from the current knowledge of 

the large number of aerobic studies i.e. activated sludge where 

biodegradation/biotransformation of NPEOs leads to NP1-2EOs and NPECs whilst 

accumulation of NP is insignificant (Montgomery-Brown & Reinhard, 2003; Ahel et al., 

1994a; Renner, 1997; Koh, 2008). However, more recently, (Patureau et al., 2008) 

reported that the removed NP1-2EOs did not equilibrate stoichiometrically with the 

accumulation of NP during lab scale mesophilic anaerobic digestion (20 days retention 

time) of mixed sludge (50:50, v/v, primary sludge: SAS) which was treated with ozone 

prior to digestion. Because of this phenomenon, the authors concluded that NP had been 

degraded during their anaerobic studies in both aqueous and solid fractions of digested 

sludge whilst NPECs were absent. Despite the similar OLR between  study and the 

current study, no further data were available for direct comparison. From the literature 

and the current research it seems that substrate play an important role for the fate and 

biodegradation pathway of NPEOs in strict anaerobic conditions.       

In the current study, adequate stabilization, sludge acclimation, digestion stability in 

synergy with the microbial biodiversity and the fact the metabolites did not contribute to 

NP have accounted for the observed nonylphenolic removals. The stability of the 

anaerobic digesters as well as the accepted range of physicochemical parameters 

required for efficient anaerobic digestion implied that the acid-forming and methane-

forming bacteria were in balance. For example, it has been reported that NP solubility 

(in water) increases at alkaline pH (pKa estimated between 10 and 12) due to its 

deprotonation, which then becomes desorbed, and more bioavailable (Ivashechkin et al., 

2004; Höllrigl-Rosta et al., 2003). In addition, limitations for NP degradation include its 

adsorption to humic acid in the solvated organic matter through nonspecific lipophilic 

interactions (Höllrigl-Rosta et al., 2003) that are regulated by diffusion and are not 

completely reversible (Düring et al., 2002). The pH during the six retention time 

experiments lied between the optimum ranges for anaerobic digestion which may 

further increase its bioavailability. During shock loading, pH increased from day 2 in 
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the different sludge treatments. The increased pH during the shock loading experiment 

could have accounted for most of NP degradation in synergy with the factors mentioned 

earlier.  

Based on their mass balance (mg d-1), mixed sludge as opposed to primary sludge, 

indicated the highest removals of the parent nonylphenol ethoxylates. In particular, 

mesophilic digestion of mixed sludge did promote the removal of the by-products 

including the carboxylated species as well as the parent compounds. According to the 

mass balance, 58% removal or degradation was achieved in these digesters (see Figure 

6-8). The thermophilic digestion of mixed sludge achieved the highest removal of the 

parent nonylphenolics (92%), however, the formation of carboxylated nonylphenolics 

did occur in these digesters. Primary sludge, irrespective of the temperature digestion 

did not demonstrate any significant removal of nonylphenolics. During the thermophilic 

digestion their removal in primary sludge was 0.8% whilst during mesophilic digestion 

their removal was negative (-177%), meaning that primary sludge promoted the 

formation of the nonylphenolic by-products.  

At higher nonylphenolic loadings the mass balance (mg d-1) indicated degradation of 

parent and the by-products of nonylphenolics in both sludges. In particular, degradation 

of nonylphenolics in primary sludge was 99.8% whilst in mixed sludge degradation was 

100% (see Figure 7-5).  

A rough estimation of the removal efficiency of the biomass (the amount of organic 

matter present in VS) of primary and mixed sludges was evaluated by activity i.e. mg of 

nonylphenolics removed per gram of VS content per digester. Given that the activity of 

the biomass of the primary and mixed sludge digestions (six retention time experiments) 

was significantly (p<0.05) different for the mesophilic trials as it was the activity of the 

biomass for the respective sludges during thermophilic digestion (p<0.05) (Appendix 

III), it was evident that the biomass activity of mixed sludge was more efficient for 

biodegrading nonylphenolics than primary sludge, irrespective of digestion temperature 

Table 6-1. 
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The initial research hypothesis (H1N0) (see section 6.2) was therefore violated (t=44.39, 

DF=1, p<0.05 for the mesophilic and t=97.90, DF=1, p<0.05 for the thermophilic) in 

favour of the alternative hypothesis (H1Nα) that primary and mixed sludge digestion 

irrespective of temperature, result in significantly different nonylphenolic removals 

(based at the 6th retention time (mg d-1 in the feed - mg d-1 in the digestate obtained at 

the 6th retention time). Removals refer to the parent nonylphenolics and not to their by-

products. 

At higher receiving concentrations i.e. 29 mg kg-1 dw of NP1-12EOs for primary sludge 

and 22 mg d-1 of NP1-12EOs in mixed sludge, both sludge types were equally efficient in 

removing nonylphenolics since there was more available carbon in the systems. 

Therefore, the initial research hypothesis (H1ND0) (see section 7) is not valid and 

instead the alternative hypothesis (H1NDα) was found to be feasible since the 30 days 

old biomass of the dosed digesters removed the additional NPEOs mass.     

PNEC values for both steroid estrogens and nonylphenolics refereeing to the aquatic 

organisms with units mass per volume i.e. ng l-1 (Environment Agency, 2000). Despite 

PNEC of NP for aquatic organisms being 330 ng l-1 (European Commission, 2002), the 

PNEC for soil which has been calculated from the no observed effect concentration 

(NOEC) for the most sensitive species of three trophic levels i.e. earthworms (Apporec-

todea calignosa) is 0.3 mg kg wet weight-1. The summed concentrations of NP+NP1-

2EOs after the mesophilic and thermophilic treatments of primary sludge ranged 

between 0.4 - 0.3 mg kg-1 dw and 2.1 - 0.8 mg kg-1 dw whilst for mixed sludge 

concentrations were 0.2 mg kg-1 dw and between 7.2 – 7.3 mg kg-1 dw, respectively. 

The values obtained from the current study were much lower than those presented by 

(Benabdallah El-Hadj, 2006) during mesophilic (1343 mg kg-1 dw) and thermophilic 

(1104 mg kg-1 dw) lab scale studies by using mixed sludge. Therefore, the maximum 

NPEOs sludge content (NP+NP1-2EOs) proposed in the 3rd draft presented to the 

European Commission (European Commission, 1986) for its use as land conditioner (50 

mg NP+NP1-2EOs kg-1 dw) was not exceeded by the mesophilic or thermophilic 

anaerobic digestion of primary or mixed sludge. According to (Harrison et al., 2006) a 

single application of sludge into the soil would be diluted approximately 100-fold, 
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however higher concentrations are expected on the soils surface if the treated sludge is 

not incorporated into the soil. Although it has been reported than microbial degradation 

by indigenous soil organisms can significantly reduce the risk of environmental 

contamination by alkylphenols (nonylphenolics and octylphenolics) (Hawrelak et al., 

1999), concentration of metabolites could increase if sludge recycling rate exceeds that 

of biodegradation/biotransformation rate. Results from a sewage sludge amended soil 

containing significant concentrations of alkylphenols indicated that over the period of 

121 days concentration of the metabolite nonylphenol diminished to <0.19 mg kg-1 dw 

from day 90 (WTI, 1998). Digested sludge application rate or sludge recycling and 

rainfall would therefore most likely determine the concentration of the specific EDCs in 

soil and their degree of leachate. Since nonylphenolics are associated with higher Log 

Kow values than steroid estrogens it is expected that nonylphenolics would be more 

persistent to the terrestrial compartments and less prawn to leach.  

8.4.3. Possible solutions from future work 

Source separation for steroid estrogens 

A significant finding during this research was that E1 was reduced to E2 which has 

twice the estrogenic potency of E1 (Table 2-1). A certain fraction (33%) of E1-3S could 

potentially become deconjugated in primary sludge and contribute to E1 which could be 

potentially reduced to E2. Although biodegradation of E1 was more pronounced than 

reduction of E1 to E2, primary sludge exhibited greater potential for the degradation of 

both E1 and E2.  

Since the major pathway for the presence of these steroid estrogens in STWs and sludge 

is human urinary excretion, the reduction of the concentration of steroid estrogens in 

sewage by urine separation directly at the lavatory may be one of the solutions (Ternes 

& Joss, 2007) that is potentially useful for concentrating micropollutants before they 

arrive at the STWs. There remain many challenges and questions with the 

implementation of source separation of urine for the removal of steroid estrogens 

(Ternes & Joss, 2007). One of the most important aspects to take into consideration is 

the removal of estrogens from the concentrated stream before discharging. 
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Regulation on NPEOs use 

Parent and metabolic products of nonylphenolic surfactants enter large scale anaerobic 

digesters due to their presence in the influents of STWs because of the widespread 

usage of commercial and industrial applications. With the implementation of the new 

European Community Regulation on chemicals and their safe use (EC 1907/2006), 

Registration, Evaluation, Authorization and Restriction of Chemical Substances 

(REACH) in June 2007, a decline in the use of NPEO in the UK is expected, hence less 

in the aquatic and terrestrial environment, since most will be replaced by alcohol 

ethoxylates.  

Advance Technology 

Although advanced process treatments such as ozone treatment, electron beam 

irradiation, advanced oxidation processes have been suggested to remove EDCs, these 

processes will result in large financial costs and increased energy consumption and 

carbon dioxide emissions (Jones et al., 2007). Membranes on the other hand, besides 

their drawbacks serve a physical separation and do not destroy or transform EDCs to 

harmless products. They will improve the quality of effluent but they will increase the 

sludge product and inevitably the EDC loadings to anaerobic digesters since they will 

contribute to EDC-concentrated sludge. An environmentally sustainable solution would 

therefore be to consider optimizing current STWs i.e. increased SRT/HRT and 

anaerobic digesters operating parameters i.e. acclimation, inoculation with appropriate 

bacteria, stable digestion temperature, constant feed substrate by utilising large 

buffering tanks, increased retention times and process stability.     
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9. CONCLUSIONS 

• Mixed feed sludges contained lower steroid estrogens than primary feed sludges, 

irrespective of the sampling periods. It is postulated that this could related to the aerobic 

treatment of activated sludge present in mixed sludge. Primary feed sludges contained 

lower NPEOs than mixed feed sludges, irrespective of the sampling periods because of 

the presence of metabolites which were related to the aerobic treatment of activated 

sludge present in mixed sludge.      

• Primary and mixed sludge had developed E1 reducing properties irrespective of 

digestion temperature.    

• Degradation of E1 predominates over the reduction of E1 to E2 for the majority 

of sludge types irrespective of digestion temperature. It is postulated that the observed 

reduction of E1 to E2 could be related to hydrogen or other organic electron donors and 

that this biotransformation is mediated co-metabolically. 

• Mesophilic anaerobic digestion promotes the removal of E3 irrespective of 

sludge type compared to thermophilic digestion. No significant contribution of ΣE1+E2 

to E3 observed in the different sludges irrespective of temperature digestion. It seems 

that strict anaerobic bacteria do not favour E3 elimination.  

• E1-3S deconjugation is limited during both mesophilic and thermophilic 

anaerobic digestion in the presence of primary and mixed sludge. However, 

deconjugation of E1-3S was greater in primary sludge and this process is presumably 

associated with the presence of arylsulphatase enzyme. 

• Higher EE2 flux removals were achieved in primary sludge compared to mixed 

sludge irrespective of digestion temperature. The removal of EE2 proposed that 

substrate, redox and temperature appear to play important role for the synthetic 

estrogen. However, strict anaerobic digestion do not favour significant removal of EE2. 
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• Flux removal of NP3-12EOs in mixed sludge ranges from 57% to 79% during 

mesophilic and thermophilic digestion whereas in primary sludge removal ranges from 

72% to 71%, respectively. Higher loadings of parent NPEOs resulted to a lag phase of 7 

days before the complete disappearance of NP3-12EOs (100% flux removal, 

respectively)  

• No accumulation of NP1-2EOs was observed in mixed sludge irrespective of 

temperature digestion during the six retention time trials. It appeared that the long 

retention time promoted the growth of appropriate bacteria for NP1-2EOs 

assimilation/biotransformation. At higher loadings, a lag phase of 7 days occurred 

before the complete disappearance of NP1-2EOs in both sludge types as it was observed 

for NP3-12EOs.       

• Accumulation of NP1EOs was observed in primary sludge with shorter retention 

time at thermophilic temperature but not in mixed sludge. It was concluded that due to 

the shorter retention time, bacteria responsible for attacking NP1EOs did not produce 

the appropriate specific exoenzymes which are required for the attack of lipophilic 

compounds (Dalton & Stirling, 1982) such as NP1EO. In addition, fats and grease in the 

untreated primary sludge may have contributed to the adsorption of the lipophilic 

NP1EO. 

• Formation of NPECs was the principal biotransformation/biodegradation 

mechanism of NP1-12EOs in primary sludge, irrespective of digestion temperature. It 

was hypothesised that this process was a result of co-metabolism with NP1-12EOs in the 

presence of appropriate bacteria/enzymes because NPECs occurred from the first 

retention time after the commencement of the trials. When primary sludge is compared 

to mixed sludge, lipophilic compounds in the former sludge could have possibly 

accounted for the persistence of NPECs. Hydrolysis of the lypophilic nonylphenolics to 

more soluble substrates is considered a plausible biotransformation pathway since 

carboxylation increases solubility and persistence (Ahel et al., 1994d).      

• Irrespective of digestion temperature NPECs in mixed sludge reduced 

presumably because of the presence of acclimated bacteria/enzymes that were able to 
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utilise NPECs as co-substrate during a co-metabolic activity. Higher digestion 

temperature could have also initiated this process irrespective of the lower retention 

time. No evidence was provided for the effect of retention time. 

• At higher loadings of parent NPEOs, NPECs exhibited greater persistence (lag 

phase of 10 days) than the lipophilic NP1-2EOs. The explanation for this phenomenon 

could be attributed to the higher affinity of NPECs for organic material than that for 

NP1-2EOs i.e. Log Kow.  

• NPECs were completely degraded (100% flux removal, respectively) after the 

10 day lag phase during the higher loadings of parent NPEOs. It was hypothesised that 

a) high non-ionic surfactant concentrations significantly affected the sludge structural 

characteristics that lead to the desorption of NPECs and their consecutive assimilation 

and b) increased rate of co-metabolism occurred (NP1-12EOs→NPECs) due to the 

increased loading rate of NP3-12EOs. 

• Nonylphenol was partially degraded in both sludge types. Thermophilic 

digestion resulted to higher NP flux removals for primary (57%±1%) and mixed sludge 

(80%±1%) than mesophilic digestion (45%±1%, 51%±1%, respectively). Digestion 

temperature and possibly pH were more significant than retention time for the removal 

of NP. However, higher loadings of parent NPEOs resulted to the complete removal of 

NP in both sludge types (100% flux removal, respectively).  

• There was no significant contribution of NP1-2EOs or NPECs to NP during the 

six retention time trials and this phenomenon resulted to the partial degradation of NP 

under strict anaerobic conditions. However, at higher receiving loadings of parent 

NPEOs, NP was biodegraded (mineralization) and that was evident from the mass 

balance between the influx and the out flux. The pH could have possibly accounted for 

this result.  

• It appeared that accumulation of NP during strict anaerobic digestion of primary 

and mixed sludge depends whether nonylphenolic metabolites contribute to NP or not.    
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• Mixed sludge enhanced the microbial degradation and removal of nonylphenol 

ethoxylates including most of the quantified metabolites (Figure 6-8) over mixed sludge 

irrespective of temperature digestion due to the higher biomass activity (based on VS) 

which may be independent of the overall estrogenic loadings. Mesophilic digestion 

irrespective of sludge type, favoured degradation and removal of steroid estrogens 

(Figure 5-7) compared to thermophilic digestion due to the higher biomass activity 

(based on VS).  

• Anaerobic digestion of primary or mixed sludge at mesophilic and thermophilic 

temperatures resulted to lower (NP+NP1-2EOs) concentrations than the proposed 

concentration in the 3rd draft of 50 mg NP+NP1-2EOs kg dw-1 presented to the European 

Commission (European Commission, 1986) for its use as land conditioner.  

• Considering the results from the current study and the available literature it 

appears that degradation of NPEOs in strict anaerobic and aerobic environments, do not 

differ significantly.   
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10. APPENDICES 

10.1 Appendix I 

10.1.1 Temperature conversion (mesophilic to thermophilic) 

The initial strategy followed for the preparation of the thermophilic seed involved 50 ± 

0.2ºC temperature increase every 7 days. After an elapsed period of approximately one 

retention time the temperature remained constant at (450 ± 0.2ºC) for approximately 2 

retention times for the pH stabilisation and the recovery and establishment of the 

methanogenic bacteria. After this period had elapsed, the change in temperature was 

gradually raised by 20 ± 0.2ºC for every 7 days of digestion. These increments were 

proven to be successful as it is shown in (Figure 10-1, Figure 10-2 and Figure 10-3). 

The total period required for the preparation of the successful thermophilic seed from a 

mesophilic seed lasted approximately 4 months.   

 

 

Figure 10-1 Methane content and the change in temperature during the preparation of 
the thermophilic seed.  
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Figure 10-2 pH levels and the change in temperature during the preparation of the 
thermophilic seed. 

 

 

Figure 10-3 Biogas production and the change in temperature during the preparation of 
the thermophilic seed. 
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10.2 Appendix II 

10.2.1 Eudiometer operation 

During non sampling/feeding conditions, the acid reservoir line to the graduated 

cylinder (V1) and the vent valve (V3) were remained closed whereas the biogas line 

from the digester to the graduated cylinder (V2) was open. After biogas 

collection/analysis, sampling and feeding, the biogas collection apparatus was prepared 

and set up for the next day accordingly. This was achieved by raising the acid level in 

the graduated cylinder so as to release the biogas to the fume cupboard. This step was 

necessary in order to obtain accurate biogas measurements the following day and avoid 

biogas cross contamination from one day to another. The acid level in the graduated 

cylinder was raised by closing the biogas line (V2) followed by the opening of the line 

from the acid reservoir to the graduated cylinder (V1) followed by the opening of the 

vent valve (V3) in that order. By closing the valve (V2) the biogas was not returned to 

the digester but it was rather released to the fume cupboard. When the acid level in the 

graduated cylinder was higher than that in the balancing reservoir, the line from the acid 

reservoir to the graduated cylinder (V2) was closed. After the acid level in both 

graduated cylinder and balancing reservoir were the same i.e. the overflow port was dry, 

the vent (V3) was closed and the biogas line (V2) was opened, subjecting in that way 

the digesters’ gaseous environment to the atmospheric pressure. The new acid level in 

the graduated cylinder was then recorded and it was subsequently subtracted from the 

next day’s level allowing in that way to calculate the level of acid drop. This method of 

measurement compared to that of the weighing of the acid displacement has advantages 

such as no individual tanks are required neither analytical balance. 
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Figure 10-4 Eudiometer apparatus 
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10.3 Appendix III 

10.3.1 Sampling/feeding 

Pilot sampling and feeding procedures were developed in order to meet the student’s 

physical impairment and project’s requirements. This involved the development of a 

manual method to sample and feed each digester without using the piston motion of the 

syringes. This condition became a requirement after the permanent damage of two 

waste lines, because of the use of a piston during the trial experiments.  

The developed method was based on the principle of the difference in hydrostatic 

pressure between the acid level in the acid reservoir and that in the graduated cylinder 

(Figure 10-4). After laborious experiments it was observed that 670mm of hydrostatic 

difference between the two liquid levels was adequate to raise the acid level in the 

graduated cylinder by 20mm. This increase in acid height was achieved by closing the 

lower port of the balancing reservoir in such a way to break its connection with the 

graduated cylinder so no acid replacement could further occur. Then the connection 

between the acid reservoir and the graduated cylinder was established, in that order. The 

20mm raise of acid level within the graduated cylinder exerted a hydrostatic pressure to 

the graduated cylinder’s head space which in turn, this pressure was transferred in the 

head space of the digester’s sludge surface that led to increased pressure within the 

digester. By opening the sampling line valve, after connecting a syringe barrel to that 

line, sludge was withdrawn out of the digester (as much as 155ml) and was collected 

into the syringe; as the internal pressure equilibrated with the atmospheric pressure 

(provided that the sampling line was immersed in the sludge). After the collection of 

appropriate sludge volume (50ml for the mesophilic and 100 ml for the thermophilic 

digesters) the waste line valve was closed and the digester’s pressure was dropped 

(vacuum). After sampling, the V1 valve was closed and the balancing reservoir was 

exposed back to the atmospheric pressure. A syringe barrel on the feed line was then 

loaded with the appropriate volume of sludge and the valve of the feed line was then 

opened. Sludge was then introduced into the digester as the internal negative pressure 

(vacuum) equilibrated with the atmospheric pressure. 
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10.4 Appendix IV 

10.4.1 Statistical analysis for the mesophilic and thermophilic anaerobic 

digesters 

Table 10-1 Two-Sample T-Test and CI: VS g  l-1 MS, VS g l-1 PS 

Two-sample T for VS g/l MS vs VS g/l PS - Mesophilic 
 
                 N   Mean  StDev  SE Mean 
MSM VS feed g/L  6  44.04   3.20      1.3 
PSM VS feed g/L  6  36.52   2.81      1.1 
Difference = mu (MSM VS feed g/L) - mu (PSM VS feed g/L) 
Estimate for difference:  7.52167 
95% CI for difference:  (3.58630, 11.45704) 
T-Test of difference = 0 (vs not =): T-Value = 4.32 P-Value = 0.002  DF = 9 
Two-sample T for VS g/l MS vs VS g/l PS - Thermophilic 
 
                 N   Mean    StDev  SE Mean 
MST VS feed g/L  6  38.12  0.00408   0.0017 
PST VS feed g/L  6  29.22  0.00408   0.0017 
Difference = mu (MST VS feed g/L) - mu (PSM VS feed g/L) 
Estimate for difference:  8.89000 
95% CI for difference:  (8.88475, 8.89525) 
T-Test of difference = 0(vs not =):T-Value = 3771.71 P-Value = 0.000  DF = 10 

Key: Testing differences between VS in primary and mixed sludge feeds.  

 

Table 10-2 Paired T-Test and CI: PSM1 VS, PSM2 VS (% Removals) 

Paired T for PS1M VS% - PS2M VS% - MESOPHILIC 
 
            N     Mean    StDev  SE Mean 
PS1M VS%    6  46.3200   7.5378   3.0773 
PS2M VS%    6  45.2483   6.3134   2.5774 
Difference  6  1.07167  2.16981  0.88582 
95% CI for mean difference: (-1.20541, 3.34875) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 1.21  P-Value = 0.280 

Key: Testing differences between VS % removals within primary digesters.  

 

Table 10-3 Paired T-Test and CI: MSM1 VS, MSM2 VS (% Removals) 

Paired T for MS1M VS% - MS2M VS% - MESOPHILIC  
 
            N      Mean     StDev   SE Mean 
MS1M VS%    6   39.7067    2.6351    1.0758 
MS2M VS%    6   39.3350    1.5021    0.6132 
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Difference  6  0.371667  1.206373  0.492500 
95% CI for mean difference: (-0.894345, 1.637678) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 0.75  P-Value = 0.484 

Key: Testing differences between VS % removals within mixed digesters.  

 

Table 10-4 Testing correlations among the PSM digesters variables at the 0.05 

significance level - Mesophilic 

Results for: PSM TOTAL 
 

Correlations: pH PSM 1, pH PSM 2  
 
Pearson correlation of pH PS 1 and pH PS 2 = 0.636 
P-Value = 0.174 Rejected at 5% 
 

Correlations: PSM 1 CH4%, PSM 2 CH4%  
 
Pearson correlation of PS1 CH4 and PS 2 CH4 = 0.849 
P-Value = 0.033 
 

Correlations: PSM 1 BIO (L/d), PSM 2 BIO (L/d), 
 
Pearson correlation of PS 1 BIO and PS 2 BIO = 0.465 
P-Value = 0.352 Rejected at 5%  

 
Correlations: PSM 1 VFAs (mg/L), PSM 2 VFAs (mg/L)  
 
Pearson correlation of PS 1 VFAs and PS 2 VFAs = -0.560 
P-Value = 0.248 Rejected at 5%  

 
Correlations: PSM 1 ORP, PSM 2 ORP  
 
Pearson correlation of PS 1 REDOX and PS 2 REDOX = 0.914 
P-Value = 0.011 

 
Correlations: PSM 1 TS % REM, PSM 2 TS % REM 
 
Pearson correlation of PS 1 TS and PS 2 TS = 0.946 
P-Value = 0.004 
 

Correlations: PSM 1 VS % REM, PSM 2 VS % REM  
 
Pearson correlation of PS 1 VS and PS 2 VS = 0.968 
P-Value = 0.002 

 

Table 10-5 Two-Sample T-Test and CI: TS g l-1 PSM, TS g l-1 MSM 

Two-sample T for MSM TS feed g/L vs PSM TS feed g/L - Mesophilic 
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                 N   Mean  StDev  SE Mean 
MSM TS feed g/L  6  57.07   4.34      1.8 
PSM TS feed g/L  6  51.15   3.69      1.5 
Difference = mu (MSM TS feed g/L) - mu (PSM TS feed g/L) 
Estimate for difference:  5.92500 
95% CI for difference:  (0.65874, 11.19126) 
T-Test of difference = 0 (vs not =): T-Value = 2.55  P-Value = 0.031  DF = 9 
 
Two-sample T for TS g/l MS vs TS g/l PS - Thermophilic 
 
                 N   Mean    StDev  SE Mean 
MST TS feed g/L  6  49.68  0.00408   0.0017 
PST TS feed g/L  6  39.49  0.00408   0.0017 
Difference = mu (MST TS feed g/L) - mu (PST TS feed g/L) 
Estimate for difference:  10.1900 
95% CI for difference:  (10.1847, 10.1953) 
T-Test of difference = 0(vs not =): T-Value = 4323.25 P-Value = 0.000  DF = 10 

Key: Testing differences between TS in primary and mixed sludge feeds.  

 

Table 10-6 Two-Sample T-Test and CI: TS g l-1 PST, TS g l-1 PSM 

Two-sample T for PST TS feed g/L vs PSM TS feed g/L 
 
                 N   Mean  StDev    SE Mean 
PST TS feed g/L  6  39.50  0.004    0.002 
PSM TS feed g/L  6  51.15  3.69     1.5 
Difference = mu (PST TS feed g/L) - mu (PSM TS feed g/L) 
Estimate for difference:  -11.6550 
95% CI for difference:  (-15.5310, -7.7790) 
T-Test of difference = 0 (vs not =): T-Value = -7.73  P-Value = 0.001  DF = 5 

Key: Testing differences between TS in the primary feed sludges of mesophilic and 
thermophilic digesters.   

 

Table 10-7 Two-Sample T-Test and CI: VS g l-1 PST, VS g l-1 PSM 

Two-sample T for PST VS feed g/L vs PSM VS feed g/L 
 
                 N   Mean  StDev   SE Mean 
PST VS feed g/L  6  29.22  0.004   0.002 
PSM VS feed g/L  6  36.52  2.81    1.1 
Difference = mu (PST VS feed g/L) - mu (PSM VS feed g/L) 
Estimate for difference:  -7.29333 
95% CI for difference:  (-10.24513, -4.34154) 
T-Test of difference = 0 (vs not =): T-Value = -6.35  P-Value = 0.001  DF = 5 

Key: Testing differences between VS in the primary feed sludges of mesophilic and 
thermophilic digesters.   
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Table 10-8 Two-Sample T-Test and CI: TS g l-1 MST, TS g l-1 MSM 

Two-sample T for CST TS feed g/L vs CSM TS feed g/L 
 
                 N      Mean    StDev  SE Mean 
MST TS feed g/L  6     49.69  0.00408   0.0017 
MSM TS feed g/L  6     57.07     4.34      1.8 
Difference = mu (CST TS feed g/L) - mu (CSM TS feed g/L) 
Estimate for difference:  -7.39000 
95% CI for difference:  (-11.94942, -2.83058) 
T-Test of difference = 0 (vs not =): T-Value = -4.17  P-Value = 0.009  DF = 5 

Key: Testing differences between TS in the mixed feed sludges of mesophilic and 
thermophilic digesters.   

 

Table 10-9 Two-Sample T-Test and CI: VS g l-1 MST, VS g l-1  MSM 

Two-sample T for CST VS feed g/L vs CSM VS feed g/L 
 
                 N      Mean    StDev  SE Mean 
MST VS feed g/L  6  38.11167  0.00408   0.0017 
MSM VS feed g/L  6     44.04     3.20      1.3 
Difference = mu (CST VS feed g/L) - mu (CSM VS feed g/L) 
Estimate for difference:  -5.92500 
95% CI for difference:  (-9.28432, -2.56568) 
T-Test of difference = 0 (vs not =): T-Value = -4.53  P-Value = 0.006  DF = 5 

Key: Testing differences between VS in the mixed feed sludges of mesophilic and 
thermophilic digesters.   

Table 10-10 Paired T-Test and CI: PSM1 TS, PSM2 TS (% Removals) 

Paired T for PS1M TS% - PS2M TS% - MESOPHILIC    
 
            N    Mean     StDev   SE Mean 
PS1M TS%    6   42.5933    8.9406    3.6500 
PS2M TS%    6   42.2200    8.2901    3.3844 
Difference  6  0.373333  2.913133  1.189282 
95% CI for mean difference: (-2.683813, 3.430479) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 0.31  P-Value = 0.766 

Key: Testing differences between TS % removals within primary digesters.  

 

Table 10-11 Paired T-Test and CI: MST1 TS, MST2 TS (% Removals) 

Paired T for MS1M TS% - MS2M TS% - THERMOPHILIC 
 
            N      Mean     StDev   SE Mean 
MST1 TS%    6   33.7500    4.8938    1.9979 
MST2 TS%    6   33.6633    4.4450    1.8147 
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Difference  6  0.086667  1.608399  0.656626 
95% CI for mean difference: (-1.601244, 1.774578) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 0.13  P-Value = 0.900 

Key: Testing differences between TS % removals within mixed digesters.  

 

Table 10-12 Testing correlations among the MSM digester’s variables at the 0.05 

significance level - Mesophilic 

Results for: MSM TOTAL  
 

Correlations: MS 1 pH, MS 2 pH  
 
Pearson correlation of MS 1 pH and MS 2 pH = 0.994 
P-Value = 0.000 
  

Correlations: MS 1  CH4 %, MS 2  CH4 % 
 
Pearson correlation of MS 1 CH4 and MS 2  CH4 = 0.979 
P-Value = 0.001 
 

Correlations: MS 1 BIO (L/d), MS 2 BIO (L/d)  
 
Pearson correlation of MS 1 BIO and MS 2 BIO = 0.900 
P-Value = 0.014 
 

Correlations: MS 1 VFAs (mg/L), MS 2 VFAs (mg/L)  
 
Pearson correlation of MS 1 VFAs and MS 2 VFAs = 0.818 
P-Value = 0.046 
 

Correlations: PS 1 REDOX, PS 2 REDOX  
 
Pearson correlation of PS 1 REDOX and PS 2 REDOX = 0.998 
P-Value = 0.000 
 

Correlations: MS 1 VS % REM, MS 2 VS % REM  
 
Pearson correlation of MS 1 VS and MS 2 VS = 0.878 
P-Value = 0.022 
 

Correlations: MS 1 TS % REM, MS 2 TS % REM  
 
Pearson correlation of MS 1 TS and MS 2 TS = 0.945 
P-Value = 0.004 
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10.4.2 Statistical analysis for steroid estrogens 

Table 10-13 Descriptive Statistics: ΣEST PSM, ΣEST MSM, ΣEST PST, ΣEST MST  

Variable  N    N*   Mean  SE Mean  StDev  Variance  CoefVar  Minimum     Q1 
Σ EST PSM  6   0  120.1     10.5   25.7     657.9    21.35    100.8  102.9 
Σ EST MSM  6   0  70.78     3.01   7.38     54.49    10.43    61.20  66.45 
Σ EST PST  6   0  45.80     4.03   9.88     97.64    21.57    36.90  37.50 
Σ EST MST  6   0  70.78     3.01   7.38     54.49    10.43    61.20  66.45 
 
Variable  Median     Q3  Maximum  Range 
Σ EST PSM   108.6  140.9    167.1   66.3 
Σ EST MSM   69.60  75.28    83.60  22.40 
Σ EST PST   42.05  57.43    59.30  22.40 
Σ EST MST   69.60  75.28    83.60  22.40 

 

Table 10-14 Normality tests (α=0.10) 
Total EST Influx μg d-1 P-Value 

PSM 0.606 
MSM 0.352 
PST 0.609 
PST 0.125 

 

Table 10-15 Test for Equal Variances: PSM influx, MSM influx  
Test for Equal Variances: PSM μg/d, MSM μg/d  
 
95% Bonferroni confidence intervals for standard deviations 
 
          N     Lower    StDev    Upper 
PSM FL_1  3  0.581791  1.21788  10.8589 
MSM FL_1  3  0.123928  0.25942   2.3131 
F-Test (normal distribution) 
Test statistic = 22.04, p-value = 0.087  
 
Levene's Test (any continuous distribution) 
Test statistic = 2.26, p-value = 0.207 

Key: Testing differences between PSM and MSM influxes. 

 

 Table 10-16 Test for Equal Variances: PST influx, MST influx 
Test for Equal Variances: PST FL_1, MST FL_1  
 
95% Bonferroni confidence intervals for standard deviations 
 
          N     Lower     StDev    Upper 
PST FL_1  3  0.043082  0.090185  0.80411 
MST FL_1  3  0.102494  0.214554  1.91301 
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F-Test (normal distribution) 
Test statistic = 0.18, p-value = 0.300  
 
Levene's Test (any continuous distribution) 
Test statistic = 0.40, p-value = 0.560 

Key: Testing differences between PST and MST influxes. 

 

Table 10-17 Two-Sample T-Test and CI: PSM μg d-1, MSM, μg d-1 
Two-sample T for PSM FL_1 vs MSM FL_1 
 
          N   Mean  StDev  SE Mean 
PSM FL_1  3   5.79   1.22     0.70 
MSM FL_1  3  3.070  0.259     0.15 
Difference = mu (PSM FL_1) - mu (MSM FL_1) 
Estimate for difference:  2.71667 
95% CI for difference:  (-0.37659, 5.80993) 
T-Test of difference = 0 (vs not =): T-Value = 3.78  P-Value = 0.063  DF = 2 

Key: Testing differences between PSM and MSM influxes. 

 

Table 10-18 Two-Sample T-Test and CI: PST μg d-1, MST, μg d-1 
Two-sample T for PST FL_1 vs MST FL_1 
 
          N   Mean  StDev  SE Mean 
PST FL_1  3  4.810  0.171    0.099 
MST FL_1  3  2.717  0.423     0.24 
Difference = mu (PST FL_1) - mu (MST FL_1) 
Estimate for difference:  2.09333 
99% CI for difference:  (-0.52272, 4.70939) 
T-Test of difference = 0 (vs not =): T-Value = 7.94  P-Value = 0.015  DF = 2 

Key: Testing differences between PST and MST influxes. 

 

Table 10-19 Test for Equal Variances: PSM influx, PST influx  
Test for Equal Variances: PSM FL_1, PST FL_1  
 
95% Bonferroni confidence intervals for standard deviations 
 
          N     Lower    StDev    Upper 
PSM FL_1  3  0.581791  1.21788  10.8589 
PST FL_1  3  0.081631  0.17088   1.5236 
 
F-Test (normal distribution) 
Test statistic = 50.80, p-value = 0.039 
 
Levene's Test (any continuous distribution) 
Test statistic = 2.78, p-value = 0.171 
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Key: Testing differences between PSM and PST influxes. 

 

Table 10-20 Test for Equal Variances: MSM influx, MST influx  
Test for Equal Variances: MSM FL_1, MST FL_1  
 
95% Bonferroni confidence intervals for standard deviations 
 
          N     Lower     StDev    Upper 
MSM FL_1  3  0.123928  0.259422  2.31307 
MST FL_1  3  0.202242  0.423360  3.77477 
 
F-Test (normal distribution) 
Test statistic = 0.38, p-value = 0.546 
 
Levene's Test (any continuous distribution) 
Test statistic = 0.14, p-value = 0.730 

Key: Testing differences between MSM and MST influxes. 

 

Table 10-21 Two-Sample T-Test and CI: PSM μg d-1, PST, μg d-1 
Two-sample T for PSM FL_1 vs PST FL_1 
 
          N   Mean  StDev  SE Mean 
PSM FL_1  3   5.79   1.22     0.70 
PST FL_1  3  4.810  0.171    0.099 
Difference = mu (PSM FL_1) - mu (PST FL_1) 
Estimate for difference:  0.976667 
95% CI for difference:  (-2.078351, 4.031685) 
T-Test of difference = 0 (vs not =): T-Value = 1.38  P-Value = 0.303  DF = 2 

Key: Testing differences between PSM and PST influxes. 

 

Table 10-22 Two-Sample T-Test and CI: MSM μg d-1, MST, μg d-1 
Two-sample T for MSM FL_1 vs MST FL_1 
 
          N   Mean  StDev  SE Mean 
MSM FL_1  3  3.070  0.259     0.15 
MST FL_1  3  2.717  0.423     0.24 
Difference = mu (MSM FL_1) - mu (MST FL_1) 
Estimate for difference:  0.353333 
95% CI for difference:  (-0.558968, 1.265635) 
T-Test of difference = 0 (vs not =): T-Value = 1.23  P-Value = 0.306  DF = 3 

Key: Testing differences between MSM and MST influxes. 

 

Table 10-23 Two-Sample T-Test and CI: PSM μg d-1, MSM, μg d-1 



Chapter10 Appendices:  

271 

 

Two-sample T for PSM biomass vs MSM μg/d removed 
 
                  N    Mean   StDev  SE Mean 
PSM μg/d removed  2  3.0800  0.0566    0.040 
MSM μg/d removed  2  1.2000  0.0566    0.040 
Difference = mu (PSM biomass) - mu (MSM μg/d removed) 
Estimate for difference:  1.88000 
95% CI for difference:  (1.63661, 2.12339) 
T-Test of difference = 0 (vs not =): T-Value = 33.23  P-Value = 0.001  DF = 2 

Key: Testing differences between PSM and MSM μg d-1 removals. 

 

Table 10-24 Two-Sample T-Test and CI: PST μg d-1, MST, μg d-1 
Two-sample T for PST μg/d removed vs MST μg/d removed 
 
                  N    Mean   StDev  SE Mean 
PST μg/d removed  2  2.4700  0.0141    0.010 
MST μg/d removed  2  0.3200  0.0707    0.050 
Difference = mu (PST μg/d removed) - mu (MST μg/d removed) 
Estimate for difference:  2.15000 
95% CI for difference:  (1.50211, 2.79789) 
T-Test of difference = 0 (vs not =): T-Value = 42.16  P-Value = 0.015  DF = 1 

Key: Testing differences between PST and MST μg d-1 removals. 

 

Table 10-25 Two-Sample T-Test and CI: PSM μg d-1, PST, μg d-1 
Two-sample T for PSM μg/d removed vs PST μg/d removed 
 
                  N    Mean   StDev  SE Mean 
PSM μg/d removed  2  3.0800  0.0566    0.040 
PST μg/d removed  2  2.4700  0.0141    0.010 
Difference = mu (PSM μg/d removed) - mu (PST μg/d removed) 
Estimate for difference:  0.610000 
95% CI for difference:  (0.086110, 1.133890) 
T-Test of difference = 0 (vs not =): T-Value = 14.79  P-Value = 0.043  DF = 1 

Key: Testing differences between PSM and PST μg d-1 removals. 

 

Table 10-26 Two-Sample T-Test and CI: MSM μg d-1, MST, μg d-1 
Two-sample T for MSM μg/d removed vs MST μg/d removed 
 
                  N    Mean   StDev  SE Mean 
MSM μg/d removed  2  1.2000  0.0566    0.040 
MST μg/d removed  2  0.3200  0.0707    0.050 
Difference = mu (MSM μg/d removed) - mu (MST μg/d removed) 
Estimate for difference:  0.880000 
95% CI for difference:  (0.066406, 1.693594) 
T-Test of difference = 0 (vs not =): T-Value = 13.74  P-Value = 0.046  DF = 1 
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Key: Testing differences between MSM and MST μg d-1 removals. 

 

10.4.3 Statistical analysis for nonylphenol ethoxylates 

Table 10-27 Normality tests (α=0.10) 
Total NPEOs Influx mg d-1 P-Value 

PSM 0.483 
MSM 0.496 
PST 0.893 
PST 0.247 

 

Table 10-28 Test for Equal Variances: PSM influx, MSM influx  
Test for Equal Variances: PSM NPE mg/d, MSM NPE mg/d  
 
95% Bonferroni confidence intervals for standard deviations 
 
            N    Lower    StDev    Upper 
PSM NPE FL  5  4.29038  7.66342  26.5120 
MSM NPE FL  5  2.98316  5.32848  18.4341 
F-Test (normal distribution) 
Test statistic = 2.07, p-value = 0.499 
 
Levene's Test (any continuous distribution) 
Test statistic = 0.29, p-value = 0.603 

Key: Testing differences between PSM and MSM influxes. 

 

 Table 10-29 Test for Equal Variances: PST influx, MST influx 
Test for Equal Variances: PST NPE mg/d, MST NPE mg/d  
 
95% Bonferroni confidence intervals for standard deviations 
 
            N    Lower    StDev    Upper 
PST NPE FL  5  2.82552  5.04691  17.4600 
MST NPE FL  4  3.81220  7.25364  34.3531 
F-Test (normal distribution) 
Test statistic = 0.48, p-value = 0.495 
 
Levene's Test (any continuous distribution) 
Test statistic = 1.04, p-value = 0.341 

Key: Testing differences between PST and MST influxes. 
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Table 10-30 Two-Sample T-Test and CI: PSM mg d-1, MSM, mg d-1 
Two-sample T for PSM NPE FL vs MSM NPE FL 
 
            N   Mean  StDev  SE Mean 
PSM NPE FL  5  33.91   7.66      3.4 
MSM NPE FL  5  29.12   5.33      2.4 
Difference = mu (PSM NPE FL) - mu (MSM NPE FL) 
Estimate for difference:  4.78400 
95% CI for difference:  (-5.08647, 14.65447) 
T-Test of difference = 0 (vs not =): T-Value = 1.15  P-Value = 0.289  DF = 7 

Key: Testing differences between PSM and MSM influxes. 

Table 10-31 Two-Sample T-Test and CI: PST mg d-1, MST, mg d-1 
Two-sample T for PST NPE FL vs MST NPE FL 
 
            N   Mean  StDev  SE Mean 
PST NPE FL  5  59.82   5.05      2.3 
MST NPE FL  4  46.26   7.25      3.6 
Difference = mu (PST NPE FL) - mu (MST NPE FL) 
Estimate for difference:  13.5615 
99% CI for difference:  (-3.6629, 30.7859) 
T-Test of difference = 0 (vs not =): T-Value = 3.17  P-Value = 0.025  DF = 5 

Key: Testing differences between PST and MST influxes. 

Table 10-32 Test for Equal Variances: PSM influx, PST influx  
Test for Equal Variances: PSM NPE FL, PST NPE FL  
 
99% Bonferroni confidence intervals for standard deviations 
 
            N    Lower    StDev    Upper 
PSM NPE FL  5  3.78193  7.66342  40.2687 
PST NPE FL  5  2.49067  5.04691  26.5198 
F-Test (normal distribution) 
Test statistic = 2.31, p-value = 0.438 
Levene's Test (any continuous distribution) 
Test statistic = 0.30, p-value = 0.597 

Key: Testing differences between PSM and PST influxes. 

 

 Table 10-33 Test for Equal Variances: MSM influx, MST influx 
Test for Equal Variances: MSM NPE FL, MST NPE FL  
 
95% Bonferroni confidence intervals for standard deviations 
 
            N    Lower    StDev    Upper 
MSM NPE FL  5  2.98316  5.32848  18.4341 
MST NPE FL  4  3.81220  7.25364  34.3531 
F-Test (normal distribution) 
Test statistic = 0.54, p-value = 0.556 
Levene's Test (any continuous distribution) 
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Test statistic = 0.78, p-value = 0.406 

Key: Testing differences between MSM and MST influxes. 

Table 10-34 Two-Sample T-Test and CI: PSM mg d-1, PST, mg d-1 
Two-sample T for PSM NPE FL vs PST NPE FL 
 
            N   Mean  StDev  SE Mean 
PSM NPE FL  5  33.91   7.66      3.4 
PST NPE FL  5  59.82   5.05      2.3 
Difference = mu (PSM NPE FL) - mu (PST NPE FL) 
Estimate for difference:  -25.9160 
95% CI for difference:  (-35.9572, -15.8748) 
T-Test of difference = 0 (vs not =): T-Value = -6.32  P-Value = 0.001  DF = 6 

Key: Testing differences between PSM and PST influxes. 

 

Table 10-35 Two-Sample T-Test and CI: MSM mg d-1, MST, mg d-1 
Two-sample T for MSM NPE FL vs MST NPE FL 
 
            N   Mean  StDev  SE Mean 
MSM NPE FL  5  29.12   5.33      2.4 
MST NPE FL  4  46.26   7.25      3.6 
Difference = mu (MSM NPE FL) - mu (MST NPE FL) 
Estimate for difference:  -17.1385 
95% CI for difference:  (-28.2939, -5.9831) 
T-Test of difference = 0 (vs not =): T-Value = -3.95  P-Value = 0.011  DF = 5 

Key: Testing differences between MSM and MST influxes. 

 

Table 10-36 Two-Sample T-Test and CI: PSM mg d-1, MSM, mg d-1 
Two-sample T for PSM NPE mg/d removed vs MSM NPE mg/d removed 
 
                  N     Mean   StDev  SE Mean 
PSM NPE mg/d rem  2  30.4000  0.0566    0.040 
MSM NPE mg/d rem  2   24.995   0.163     0.11 
Difference = mu (PSM NPE mg/d removed) - mu (MSM NPE mg/d removed) 
Estimate for difference:  5.40500 
95% CI for difference:  (3.85792, 6.95208) 
T-Test of difference = 0 (vs not =): T-Value = 44.39  P-Value = 0.014  DF = 1 

Key: Testing differences between PSM and MSM mg d-1 removals. 

 

Table 10-37 Two-Sample T-Test and CI: PST mg d-1, MST, mg d-1 
Two-sample T for PST NPE mg/d removed vs MST NPE mg/d removed 
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                  N     Mean   StDev  SE Mean 
PST NPE mg/d rem  2   57.135   0.163     0.12 
MST NPE mg/d rem  2  45.0450  0.0636    0.045 
Difference = mu (PST NPE mg/d removed) - mu (MST NPE mg/d removed) 
Estimate for difference:  12.0900 
95% CI for difference:  (10.5209, 13.6591) 
T-Test of difference = 0 (vs not =): T-Value = 97.90  P-Value = 0.007  DF = 1 

Key: Testing differences between PST and MST mg d-1 removals. 

 

Table 10-38 Two-Sample T-Test and CI: PSM mg d-1, PST, mg d-1 
Two-sample T for PSM NPE mg/d removed vs PST NPE mg/d removed 
 
                  N     Mean   StDev  SE Mean 
PSM NPE mg/d rem  2  30.4000  0.0566    0.040 
PST NPE mg/d rem  2   57.135   0.163     0.12 
Difference = mu (PSM NPE mg/d removed) - mu (PST NPE mg/d removed) 
Estimate for difference:  -26.7350 
95% CI for difference:  (-28.2821, -25.1879) 
T-Test of difference = 0 (vs not =): T-Value = -219.57 P-Value = 0.003 DF = 1 

Key: Testing differences between PSM and PST mg d-1 removals. 

 

Table 10-39 Two-Sample T-Test and CI: MSM mg d-1, MST, mg d-1 
Two-sample T for MSM NPE mg/d removed vs MST NPE mg/d removed 
 
                  N     Mean   StDev  SE Mean 
MSM NPE mg/d rem  2   24.995   0.163     0.11 
MST NPE mg/d rem  2  45.0450  0.0636    0.045 
Difference = mu (MSM NPE mg/d removed) - mu (MST NPE mg/d removed) 
Estimate for difference:  -20.0500 
95% CI for difference:  (-21.6191, -18.4809) 
T-Test of difference = 0 (vs not =): T-Value = -162.36 P-Value = 0.004 DF = 1 

Key: Testing differences between MSM and MST mg d-1 removals. 

 

10.4.4 Statistical analysis for nonylphenol ethoxylates (dosed feed) 

Table 10-40 Normality tests (α=0.10) 
Total NPEOs Influx mg d-1 P-Value 

PSM dosed  0.618 
MSM dosed 0.348 
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10.5 Appendix V 

 

10-41 Method detection limits for steroid estrogens in sludge. 

Steroid estrogens MDL ng g-1 Sludge (μg kg-1 dw) n=3 
E1 2.1 
E2 4.9 
E3 4.5 

EE2 5.3 
E1-3S 2.6 

 

10-42 Method detection limits for nonylphenolics in sludge. 

Nonylphenolics MDL ng g-1 Sludge (μg Kg-1) n=3 
Based on spike at 0.125LS and 1.25HS μg g-1 on sludge 

NP1EO 6 
NP2EO 12 
NP3EO 0.5 
NP4EO 7.5 
NP5EO 10 
NP6EO 13 
NP7EO 4 
NP8EO 4 
NP9EO 11 
NP10EO 10 
NP11EO 4.5 
NP12EO 5.5 
NP1EC 12 
NP2EC NA 
NP3EC NA 

NP 11 

 

Table 10-43 Background (feed) concentrations  for steroid estrogens (μg kg-1 dw). 

PSM EE2 E2 E3 E1 E1-3S 
a 18.4 9.2 8.9 158.3 7.6 
b 14.1 8.3 9.0 132.6 7.5 
c 22.6 10.2 8.9 183.9 7.7 

mean 18.36 9.25 8.91 158.28 7.63 
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SD 4.25 0.96 0.04 25.66 0.10 
RSD% 23.17 10.33 0.48 16.21 1.26 

SE 2.46 0.55 0.02 14.82 0.06 
MSM EE2 E2 E3 E1 E1-3S 

a 10.04 6.25 7.89 89.01 6.82 
b 9.38 5.91 13.55 81.13 5.69 
c 10.99 6.89 1.63 97.39 7.35 

mean 10.14 6.35 7.69 89.17 6.62 
SD 0.81 0.50 5.96 8.13 0.85 

RSD% 7.98 7.84 77.58 9.12 12.85 
SE 0.47 0.29 3.44 4.70 0.49 

PST EE2 E2 E3 E1 E1-3S 
a 9.80 5.98 6.60 64.33 3.70 
b 7.91 4.94 4.84 61.92 3.94 
c 9.76 7.02 5.47 66.75 3.51 

mean 9.15 5.98 5.64 64.33 3.72 
SD 1.08 1.04 0.89 2.42 0.22 

RSD% 11.82 17.41 15.80 3.76 5.80 
SE 0.62 0.60 0.51 1.40 0.12 

MST EE2 E2 E3 E1 E1-3S 
a 10.85 2.98 5.99 32.33 3.85 
b 9.80 2.56 5.22 30.19 4.20 
c 9.75 3.41 4.56 34.47 4.22 

mean 10.13 2.98 5.26 32.33 4.09 
SD 0.62 0.43 0.71 2.14 0.21 

RSD% 6.11 14.33 13.57 6.61 5.14 
SE 0.36 0.25 0.41 1.23 0.12 

 

Table 10-44 Steroid estrogen concentrations (μg kg-1 dw) from individual samples of 

the primary sludge mesophilic (six retention times) digesters (PSM). 

 PSM EE2 E2 E3 E1 E1-3S 
PSM 1 a 12.8 18.0 6.3 139.6 5.7 

 b 17.1 15.9 6.8 139.5 4.7 
PSM 2 c 14.82 8.45 4.67 127.2 5.72 

 d 7.92 5.29 6.49 115.42 5.98 
1RT mean 13.16 11.90 6.08 130.44 5.52 

 SD 3.89 6.01 0.96 11.59 0.54 
 RSD% 29.60 50.54 15.75 8.88 9.77 
 SE 1.95 3.01 0.48 5.79 0.27 

PSM 1 a 10.8 21.9 5.6 67.1 5.1 
 b 12.2 19.5 5.2 87.0 5.2 

PSM 2 c 14.24 12.5 5.46 108.89 4.26 
 d 13.83 9.1 6.12 107.57 6.67 

2RT mean 12.77 15.76 5.61 92.64 5.31 
 SD 1.58 5.98 0.37 19.74 1.00 
 RSD% 12.38 37.92 6.65 21.31 18.80 
 SE 0.79 2.99 0.19 9.87 0.50 

PSM 1 a 15.4 27.4 4.9 59.2 3.2 
 b 9.8 28.9 4.9 62.3 6.4 

PSM 2 c 14.87 22.45 5.38 65.78 4.89 
 d 10.74 19.65 5.45 72.56 5.12 

3RT  mean 12.69 24.60 5.16 64.97 4.89 
 SD 2.85 4.30 0.29 5.72 1.30 
 RSD% 22.43 17.48 5.70 8.81 26.52 
 SE 1.42 2.15 0.15 2.86 0.65 

PSM 1 a 14.2 23.6 5.5 61.4 4.4 
 b 11.3 30.7 6.0 61.7 5.1 

PSM 2 c 14.52 24.65 4.89 52.14 5.28 
 d 12.94 22.44 5.89 41.6 5.98 

4RT mean 13.24 25.35 5.58 54.21 5.19 
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 PSM EE2 E2 E3 E1 E1-3S 
 SD 1.48 3.68 0.50 9.50 0.65 
 RSD% 11.17 14.52 9.01 17.53 12.60 
 SE 0.74 1.84 0.25 4.75 0.33 

PSM 1 a 12.7 28.7 4.7 26.7 5.2 
 b 12.7 28.7 4.7 26.7 5.2 

PSM 2 c 11.14 38.75 5.69 47.46 6.14 
 d 15.86 38.76 6.15 44.86 6.45 

5RT mean 13.09 33.73 5.30 36.41 5.75 
 SD 1.99 5.81 0.74 11.31 0.64 
 RSD% 15.17 17.21 14.05 31.07 11.22 
 SE 0.99 2.90 0.37 5.66 0.32 

PSM 1 a 14.5 31.4 4.5 22.1 5.0 
 b 10.8 46.9 5.5 58.9 5.0 

PSM 2 c 14.56 42.15 5.12 32.77 4.78 
 d 12.89 46.04 5.48 29.14 5.78 

6RT mean 13.19 41.62 5.15 35.74 5.14 
 SD 1.77 7.12 0.47 16.06 0.44 
 RSD% 13.42 17.11 9.07 44.94 8.54 
 SE 0.88 3.56 0.23 8.03 0.22 

Table 10-45 Steroid estrogen concentrations (μg kg-1 dw) from individual samples of 

the primary sludge thermophilic (six retention times) digesters (PST). 

 PST EE2 E2 E3 E1 E1-3S 
 a 5.5 7.7 5.1 39.7 2.8 
 b 5.4 8.5 4.8 38.5 2.8 

1RT mean 5.45 8.08 4.93 39.07 2.80 
 SD 0.09 0.61 0.18 0.83 0.04 
 RSD% 1.62 7.53 3.59 2.14 1.52 
 SE 0.06 0.43 0.13 0.59 0.03 
 a 5.5 14.8 5.1 28.8 2.7 
 b 5.5 15.2 4.8 30.5 2.8 

2RT mean 5.48 14.99 4.95 29.63 2.74 
 SD 0.03 0.23 0.26 1.20 0.04 
 RSD% 0.52 1.56 5.29 4.03 1.42 
 SE 0.02 0.16 0.18 0.84 0.03 
 a 5.4 11.2 5.0 13.5 2.7 
 b 5.4 12.0 4.8 15.1 2.8 

3RT  mean 5.36 11.55 4.90 14.28 2.74 
 SD 0.01 0.57 0.11 1.11 0.09 
 RSD% 0.13 4.93 2.17 7.78 3.23 
 SE 0.00 0.40 0.08 0.78 0.06 
 a 5.3 18.8 4.6 5.3 2.8 
 b 5.4 20.1 4.6 6.1 2.8 

4RT mean 5.38 19.45 4.64 5.67 2.79 
 SD 0.06 0.92 0.00 0.57 0.05 
 RSD% 1.12 4.73 0.00 9.98 1.78 
 SE 0.04 0.65 0.00 0.40 0.04 
 a 5.3 26.5 4.8 4.2 2.8 
 b 5.6 20.6 4.8 4.7 2.7 

5RT mean 5.45 23.53 4.78 4.44 2.74 
 SD 0.15 4.20 0.00 0.35 0.02 
 RSD% 2.79 17.83 0.00 7.88 0.64 
 SE 0.11 2.97 0.00 0.25 0.01 
 a 5.4 29.5 5.1 2.8 2.7 
 b 5.5 29.6 4.8 3.3 2.8 

6RT mean 5.46 29.53 4.95 3.06 2.75 
 SD 0.06 0.07 0.23 0.31 0.01 
 RSD% 1.04 0.25 4.64 10.06 0.39 
 SE 0.04 0.05 0.16 0.22 0.01 
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Table 10-46 Steroid estrogen concentrations (μg kg-1 dw) from individual samples of 

the mixed sludge mesophilic (six retention times) digesters (MSM). 

 MSM EE2 E2 E3 E1 E1-3S 
MSM 1 a 6.9 14.5 6.2 58.7 4.8 

 b 8.9 18.3 7.5 50.6 6.2 
MSM 2 c 4.45 11.23 5.68 49.45 3.68 

 d 4.78 12.69 6.61 52.65 5.98 
1RT mean 6.25 14.18 6.51 52.86 5.17 

 SD 2.06 3.06 0.78 4.14 1.18 
 RSD% 33.02 21.59 11.96 7.83 22.80 
 SE 1.03 1.53 0.39 2.07 0.59 

MSM 1 a 7.2 14.5 6.1 36.3 5.1 
 b 8.8 14.7 4.8 34.3 5.4 

MSM 2 c 4.68 12.68 5.11 31.25 4.56 
 d 4.12 12.65 6.14 32.68 6.48 

2RT mean 6.22 13.62 5.53 33.63 5.40 
 SD 2.21 1.11 0.70 2.17 0.80 
 RSD% 35.59 8.15 12.68 6.46 14.89 
 SE 1.11 0.56 0.35 1.09 0.40 

MSM 1 a 9.3 14.7 3.9 28.2 4.3 
 b 6.8 22.2 5.6 33.0 5.5 

MSM 2 c 5.98 21.28 4.69 24.14 5.48 
 d 5.45 29.68 6.22 26.45 6.12 

3RT  mean 6.86 21.96 5.10 27.94 5.35 
 SD 1.68 6.15 1.01 3.76 0.74 
 RSD% 24.52 27.99 19.82 13.44 13.84 
 SE 0.84 3.07 0.51 1.88 0.37 

MSM 1 a 7.4 18.3 5.6 29.0 4.9 
 b 10.3 19.5 5.8 31.6 4.9 

MSM 2 c 6.15 20.56 5.15 21.35 5.42 
 d 6.78 28.75 5.89 22.91 4.68 

4RT mean 7.64 21.78 5.62 26.22 4.96 
 SD 1.82 4.74 0.33 4.88 0.32 
 RSD% 23.85 21.75 5.92 18.62 6.43 
 SE 0.91 2.37 0.17 2.44 0.16 

MSM 1 a 10.3 18.9 4.2 33.6 5.1 
 b 11.3 23.8 4.3 32.7 4.9 

MSM 2 c 7.15 22.11 4.57 26.68 5.12 
 d 7.42 23.78 5.21 36.56 5.08 

5RT mean 9.04 22.14 4.57 32.37 5.05 
 SD 2.07 2.31 0.45 4.14 0.12 
 RSD% 22.88 10.45 9.92 12.79 2.29 
 SE 1.03 1.16 0.23 2.07 0.06 

MSM 1 a 10.5 25.9 4.9 28.2 5.5 
 b 10.2 26.6 4.7 25.7 4.8 

MSM 2 c 8.19 25.68 4.5324 25.42 4.97 
 d 9.16 27.86 4.6748 24.69 5.24 

6RT mean 9.51 26.51 4.71 25.99 5.13 
 SD 1.05 0.99 0.15 1.52 0.31 
 RSD% 11.00 3.74 3.21 5.83 6.00 
 SE 0.52 0.50 0.08 0.76 0.15 
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Table 10-47 Steroid estrogen concentrations (μg kg-1 dw) from individual samples of 

the mixed sludge thermophilic (six retention times) digesters (MST). 

 MST EE2 E2 E3 E1 E1-3S 
 a 5.1 12.8 4.6 19.1 2.8 
 b 6.5 14.7 4.8 20.0 2.8 

1RT mean 5.79 13.75 4.70 19.55 2.81 
 SD 0.98 1.34 0.14 0.57 0.03 
 RSD% 16.92 9.72 3.01 2.93 1.13 
 SE 0.69 0.94 0.10 0.40 0.02 
 a 7.3 14.3 4.6 13.8 2.7 
 b 4.7 12.1 4.6 13.8 2.7 

2RT mean 6.01 13.21 4.59 13.79 2.71 
 SD 1.82 1.55 0.01 0.05 0.00 
 RSD% 30.31 11.75 0.31 0.33 0.13 
 SE 1.29 1.10 0.01 0.03 0.00 
 a 7.7 19.8 4.6 12.1 2.7 
 b 5.7 16.0 4.5 13.6 2.7 

3RT  mean 6.70 17.88 4.53 12.84 2.74 
 SD 1.39 2.65 0.04 1.07 0.00 
 RSD% 20.70 14.81 0.94 8.37 0.13 
 SE 0.98 1.87 0.03 0.76 0.00 
 a 7.2 21.5 4.6 9.7 2.8 
 b 6.5 19.3 4.6 8.3 2.8 

4RT mean 6.82 20.40 4.62 9.01 2.81 
 SD 0.50 1.54 0.03 0.97 0.05 
 RSD% 7.36 7.56 0.61 10.75 1.76 
 SE 0.35 1.09 0.02 0.69 0.03 
 a 7.6 21.2 4.6 11.1 2.7 
 b 7.3 18.2 4.5 10.7 2.7 

5RT mean 7.44 19.69 4.53 10.93 2.69 
 SD 0.22 2.07 0.04 0.30 0.01 
 RSD% 2.95 10.51 0.94 2.72 0.39 
 SE 0.16 1.46 0.03 0.21 0.01 
 a 8.4 21.1 4.6 9.8 2.8 
 b 7.9 19.7 4.8 9.7 2.8 

6RT mean 8.14 20.38 4.70 9.74 2.82 
 SD 0.37 1.02 0.13 0.04 0.02 
 RSD% 4.56 5.00 2.86 0.40 0.88 
 SE 0.26 0.72 0.09 0.03 0.02 
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Table 10-48 Background (feed) concentrations of nonylphenol ethoxylates (μg kg-1 dw), (six retention times). 

  PSM NP NP1EC NP2EC NP3EC NP1EO NP2EO NP3EO NP4EO NP5EO NP6EO NP7EO NP8EO NP9EO NP10EO NP11EO NP12EO 
a 337.22 14.11 10364.37 12.20 2168.27 269.31 119.01 219.35 261.16 269.15 198.58 119.47 55.19 64.53 34.35 26.32 
b 384.25 12.59 12469.27 12.00 1138.35 174.43 97.35 492.32 397.64 238.47 134.60 97.61 64.12 62.16 31.35 23.16 
c 227.60 14.01 10568.24 12.40 1935.52 202.34 84.27 468.66 275.45 264.49 142.70 107.13 82.18 53.16 42.65 22.15 
d 363.71 12.00 89527.51 12.00 2974.81 224.36 141.22 657.97 428.33 283.30 206.23 159.21 57.36 77.15 29.35 24.35 
e 209.51 12.00 9643.90 12.00 1530.62 112.26 55.50 157.21 232.26 244.54 144.30 71.92 70.26 51.68 46.48 17.47 
mean 304.46 12.94 26514.66 12.12 1949.51 196.54 99.47 399.10 318.97 259.99 165.28 111.07 65.82 61.74 36.83 22.69 
SD  80.43 1.05 35240.73 0.18 695.12 58.52 32.76 206.98 87.90 18.36 34.20 32.09 10.89 10.25 7.40 3.31 
RSD% 26.42 8.11 132.91 1.47 35.66 29.77 32.94 51.86 27.56 7.06 20.69 28.89 16.55 16.60 20.10 14.57 
SE 35.97 0.47 15760.13 0.08 310.87 26.17 14.65 92.56 39.31 8.21 15.29 14.35 4.87 4.58 3.31 1.48 
MSM NP NP1EC NP2EC NP3EC NP1EO NP2EO NP3EO NP4EO NP5EO NP6EO NP7EO NP8EO NP9EO NP10EO NP11EO NP12EO 
a 385.49 107.40 201264.64 12.00 2259.20 114.79 49.23 22.16 77.16 95.39 52.65 36.61 53.48 42.35 22.42 54.18 
b 202.35 39.32 289544.28 12.16 987.14 127.61 87.49 422.15 212.66 110.72 76.65 94.68 43.66 49.39 19.37 52.18 
c 24.49 75.64 243165.42 12.12 1956.35 72.50 29.35 175.41 47.42 64.17 114.68 56.17 36.49 36.48 34.27 47.19 
d 125.71 62.17 250327.51 12.27 1614.81 174.64 63.49 249.32 167.99 94.18 111.62 46.53 47.15 47.36 27.61 51.62 
e 47.51 25.97 222943.90 12.00 1009.62 58.43 28.35 65.68 59.35 76.90 68.69 83.19 31.49 32.32 16.16 56.16 
mean 157.11 62.10 241449.15 12.11 1565.43 109.59 51.58 186.94 112.91 88.27 84.86 63.43 42.45 41.58 23.97 52.27 
SD 145.59 31.86 32985.42 0.12 565.66 46.31 24.85 159.06 73.18 18.03 27.26 24.62 8.67 7.19 7.14 3.35 
RSD% 92.67 51.30 13.66 0.95 36.13 42.25 48.18 85.09 64.81 20.42 32.12 38.81 20.43 17.29 29.80 6.42 
SE 65.11 14.25 14751.53 0.05 252.97 20.71 11.11 71.13 32.73 8.06 12.19 11.01 3.88 3.22 3.19 1.50 
 PST NP NP1EC NP2EC NP3EC NP1EO NP2EO NP3EO NP4EO NP5EO NP6EO NP7EO NP8EO NP9EO NP10EO NP11EO NP12EO 
a 198.89 12.00 12.00 12.00 15889.40 32.31 20.36 404.64 398.18 232.76 190.39 137.98 79.35 21.19 25.20 10.16 
b 145.18 12.00 12.00 12.00 14236.62 117.16 86.37 189.16 306.18 229.66 162.78 157.58 84.72 22.16 20.35 9.19 
c 368.35 12.40 12.00 12.00 14987.16 30.36 78.69 348.19 187.69 239.66 157.20 124.53 102.48 34.17 37.15 12.35 
d 306.27 12.00 12.00 12.00 14522.16 28.57 38.67 435.64 282.17 246.17 188.84 160.20 82.99 29.31 25.17 14.56 
e 142.65 12.27 12.00 12.00 15270.56 96.64 54.73 120.65 285.85 226.17 147.69 118.77 95.69 20.82 34.16 12.16 
mean 232.27 12.13 12.00 12.00 14981.18 61.01 55.77 299.66 292.01 234.88 169.38 139.81 89.05 25.53 28.41 11.68 
SD 100.90 0.19 0.00 0.00 646.86 42.54 27.43 137.95 74.99 8.03 19.25 18.78 9.67 5.94 6.99 2.09 
RSD% 43.44 1.55 0.00 0.00 4.32 69.72 49.18 46.04 25.68 3.42 11.37 13.43 10.86 23.29 24.60 17.92 
SE 45.12 0.08 0.00 0.00 289.28 19.02 12.27 61.69 33.54 3.59 8.61 8.40 4.33 2.66 3.12 0.94 
MST NP NP1EC NP2EC NP3EC NP1EO NP2EO NP3EO NP4EO NP5EO NP6EO NP7EO NP8EO NP9EO NP10EO NP11EO NP12EO 
a 50.20 27.12 42.41 12.00 99412.90 34.51 49.64 127.84 102.18 91.50 145.62 52.16 50.17 11.61 5.14 3.18 
b 194.20 32.12 45.20 12.00 87469.47 67.16 32.43 168.42 207.16 148.68 96.26 93.22 56.87 14.55 8.17 6.50 

c 209.20 14.15 38.35 12.00 
102689.4

7 57.15 48.42 196.15 194.84 126.19 107.19 74.32 52.30 17.20 9.53 4.17 
d 77.88 40.10 23.16 12.00 68558.35 30.29 25.78 94.35 96.65 104.67 80.50 47.14 41.20 9.65 5.43 2.68 
mean 132.87 28.37 37.28 12.00 89532.55 47.28 39.07 146.69 150.21 117.76 107.39 66.71 50.13 13.25 7.07 4.13 
SD 80.51 10.89 9.83 0.00 15436.96 17.75 11.83 44.77 58.91 25.09 27.74 21.25 6.58 3.31 2.13 1.69 
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RSD% 60.60 38.37 26.36 0.00 17.24 37.53 30.28 30.52 39.22 21.30 25.83 31.86 13.13 25.00 30.19 40.99 
SE 40.26 5.44 4.91 0.00 7718.48 8.87 5.91 22.39 29.45 12.54 13.87 10.63 3.29 1.66 1.07 0.85 

Table 10-49 Nonylphenol ethoxylate concentrations (μg kg-1 dw) from individual samples of the primary sludge mesophilic (six retention 

times) digester 1 (PSM-1). 

 PSM 1 NP NP1EC NP2EC NP3EC NP1EO NP2EO NP3EO NP4EO NP5EO NP6EO NP7EO NP8EO NP9EO NP10EO NP11EO NP12EO 
 a 336.86 24.06 179222.81 27466.31 842.16 132.34 50.43 169.89 171.86 189.94 141.73 88.37 50.66 27.38 12.36 17.81 
 b 147.35 12.28 75196.46 3732.81 306.97 24.56 50.94 173.06 136.16 154.75 120.58 86.91 46.43 22.25 23.63 21.36 
1RT mean 242.11 18.17 127209.64 15599.56 574.57 78.45 50.68 171.48 154.01 172.35 131.15 87.64 48.54 24.81 17.99 19.59 
 SD 134.01 8.33 73557.74 16782.12 378.43 76.21 0.36 2.24 25.25 24.88 14.95 1.03 2.99 3.63 7.97 2.51 
 RSD% 55.35 45.85 57.82 107.58 65.86 97.15 0.72 1.31 16.39 14.44 11.40 1.18 6.15 14.63 44.29 12.81 
 SE 94.76 5.89 52013.17 11866.75 267.59 53.89 0.26 1.58 17.85 17.59 10.57 0.73 2.11 2.57 5.63 1.77 
 a 122.91 12.29 84906.59 786.63 454.77 24.58 54.69 228.14 205.79 214.00 144.79 95.11 46.90 24.63 11.94 12.38 
 b 274.31 12.47 159276.81 498.75 274.31 24.94 43.39 161.64 189.51 203.96 160.50 107.78 60.88 31.95 15.18 15.72 
2RT mean 198.61 12.38 122091.70 642.69 364.54 24.76 49.04 194.89 197.65 208.98 152.65 101.45 53.89 28.29 13.56 14.05 
 SD 107.06 0.13 52587.69 203.56 127.60 0.25 7.98 47.02 11.51 7.10 11.10 8.96 9.88 5.17 2.29 2.36 
 RSD% 53.90 1.02 43.07 31.67 35.00 1.02 16.28 24.13 5.82 3.40 7.27 8.84 18.33 18.29 16.89 16.83 
 SE 75.70 0.09 37185.11 143.94 90.23 0.18 5.65 33.25 8.14 5.02 7.85 6.34 6.99 3.66 1.62 1.67 
 a 185.83 12.39 121258.67 1288.40 507.93 24.78 34.41 132.33 119.30 103.44 71.98 45.85 25.02 15.30 9.37 9.39 
 b 305.92 12.24 142241.80 281.45 256.98 36.71 39.49 104.82 110.17 84.18 55.34 36.43 17.07 10.85 6.69 2.50 
3RT mean 245.88 12.31 131750.24 784.93 382.45 30.74 36.95 118.58 114.73 93.81 63.66 41.14 21.04 13.08 8.03 5.94 
 SD 84.92 0.11 14837.31 712.03 177.45 8.44 3.59 19.46 6.46 13.62 11.77 6.66 5.62 3.15 1.90 4.87 
 RSD% 34.54 0.87 11.26 90.71 46.40 27.45 9.72 16.41 5.63 14.52 18.48 16.19 26.72 24.06 23.62 81.94 
 SE 60.05 0.08 10491.56 503.48 125.48 5.97 2.54 13.76 4.57 9.63 8.32 4.71 3.98 2.22 1.34 3.44 
 a 184.28 12.00 92469.29 12.00 208.85 12.29 17.93 82.53 90.87 71.31 54.31 36.90 18.32 10.36 4.40 2.50 
 b 160.02 12.00 81006.89 307.73 73.86 12.31 25.47 101.84 117.17 108.29 84.50 51.64 26.25 16.76 7.58 3.59 
4RT mean 172.15 12.00 86738.09 159.87 141.35 12.30 21.70 92.18 104.02 89.80 69.40 44.27 22.28 13.56 5.99 3.05 
 SD 17.15 0.00 8105.14 209.11 95.45 0.02 5.33 13.65 18.60 26.15 21.35 10.42 5.61 4.53 2.25 0.77 
 RSD% 9.96 0.00 9.34 130.81 67.53 0.14 24.58 14.81 17.88 29.12 30.76 23.55 25.17 33.41 37.52 25.36 
 SE 12.13 0.00 5731.20 147.87 67.49 0.01 3.77 9.65 13.15 18.49 15.10 7.37 3.96 3.20 1.59 0.55 
 a 160.09 12.00 79068.84 12.00 160.09 13.34 15.46 69.23 96.57 85.68 65.83 45.44 21.63 14.14 6.13 3.00 
 b 189.49 12.00 85560.89 896.92 151.59 12.63 14.23 57.47 65.22 54.68 39.83 25.40 14.24 7.62 3.71 2.50 
5RT mean 174.79 12.00 82314.86 454.46 155.84 12.99 14.85 63.35 80.90 70.18 52.83 35.42 17.94 10.88 4.92 2.75 
 SD 20.79 0.00 4590.57 625.73 6.01 0.50 0.87 8.31 22.17 21.92 18.39 14.17 5.22 4.62 1.70 0.35 
 RSD% 11.90 0.00 5.58 137.69 3.85 3.85 5.88 13.12 27.40 31.23 34.80 40.00 29.11 42.42 34.64 12.76 
 SE 14.70 0.00 3246.03 442.46 4.25 0.35 0.62 5.88 15.67 15.50 13.00 10.02 3.69 3.26 1.21 0.25 
 a 148.29 12.00 85059.32 877.41 234.80 12.36 14.70 73.80 94.47 82.17 61.78 42.72 19.38 12.11 4.28 2.74 
 b 164.31 12.00 88056.12 1036.40 252.78 12.64 17.48 127.79 218.45 215.32 185.50 131.25 64.94 34.96 15.04 23.70 
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6RT mean 156.30 12.00 86557.72 956.91 243.79 12.50 16.09 100.79 156.46 148.75 123.64 86.98 42.16 23.53 9.66 13.22 
 SD 11.32 0.00 2119.06 112.42 12.71 0.20 1.96 38.18 87.67 94.15 87.49 62.60 32.21 16.16 7.61 14.82 
 RSD% 7.24 0.00 2.45 11.75 5.22 1.59 12.18 37.88 56.03 63.29 70.76 71.97 76.41 68.67 78.79 112.12 
 SE 8.01 0.00 1498.40 79.50 8.99 0.14 1.39 27.00 61.99 66.57 61.86 44.27 22.78 11.43 5.38 10.48 

Table 10-50 Nonylphenol ethoxylate concentrations (μg kg-1 dw) from individual samples of the primary sludge mesophilic (six retention 

times) digester 2 (PSM-2). 

 PSM 2 NP NP1EC NP2EC NP3EC NP1EO NP2EO NP3EO NP4EO NP5EO NP6EO NP7EO NP8EO NP9EO NP10EO NP11EO NP12EO 
 a 562.58 44.50 145321.47 10251.44 520.12 107.43 84.20 207.45 233.51 207.89 185.67 107.59 101.02 35.17 21.72 24.11 
 b 97.12 62.84 195761.01 7434.51 246.88 216.78 107.89 106.78 285.20 243.78 248.79 158.92 89.23 10.14 12.44 18.64 
1RT mean 329.85 53.67 170541.24 8842.98 383.50 162.11 96.05 157.12 259.36 225.84 217.23 133.26 95.13 22.66 17.08 21.38 
 SD 329.13 12.97 35666.14 1991.87 193.21 77.32 16.75 71.18 36.55 25.38 44.63 36.30 8.34 17.70 6.56 3.87 
 RSD% 99.78 24.16 20.91 22.52 50.38 47.70 17.44 45.31 14.09 11.24 20.55 27.24 8.76 78.12 38.42 18.10 
 SE 232.73 9.17 25219.77 1408.47 136.62 54.67 11.85 50.33 25.84 17.95 31.56 25.67 5.90 12.52 4.64 2.74 
 a 348.44 33.04 153847.56 9598.27 517.85 84.66 80.54 142.27 145.32 178.45 104.58 82.45 87.25 21.14 15.45 16.76 
 b 212.66 48.76 165289.56 6582.14 128.75 141.34 68.78 87.52 124.89 121.41 107.41 119.40 71.44 10.11 12.08 7.47 
2RT mean 280.55 40.90 159568.56 8090.21 323.30 113.00 74.66 114.90 135.11 149.93 106.00 100.93 79.35 15.63 13.77 12.12 
 SD 96.01 11.12 8090.72 2132.73 275.14 40.08 8.32 38.71 14.45 40.33 2.00 26.13 11.18 7.80 2.38 6.57 
 RSD% 34.22 27.18 5.07 26.36 85.10 35.47 11.14 33.70 10.69 26.90 1.89 25.89 14.09 49.92 17.31 54.22 
 SE 67.89 7.86 5721.00 1508.07 194.55 28.34 5.88 27.38 10.22 28.52 1.41 18.48 7.90 5.52 1.68 4.65 
 a 265.35 28.53 156324.56 6543.23 458.45 68.75 51.36 112.68 109.54 152.04 84.21 54.78 64.49 12.24 10.60 2.50 
 b 168.25 29.41 133568.74 5423.28 321.87 107.45 23.16 54.78 89.55 112.53 61.08 86.11 54.96 6.21 2.10 5.42 
3RT mean 216.80 28.97 144946.65 5983.26 390.16 88.10 37.26 83.73 99.55 132.29 72.65 70.45 59.73 9.23 6.35 3.96 
 SD 68.66 0.62 16090.79 791.92 96.58 27.37 19.94 40.94 14.14 27.94 16.36 22.15 6.74 4.26 6.01 2.06 
 RSD% 31.67 2.15 11.10 13.24 24.75 31.06 53.52 48.90 14.20 21.12 22.51 31.45 11.28 46.22 94.65 52.14 
 SE 48.55 0.44 11377.91 559.98 68.29 19.35 14.10 28.95 10.00 19.76 11.57 15.67 4.77 3.02 4.25 1.46 
 a 207.81 15.62 108456.56 5485.12 397.24 42.15 23.88 62.34 68.75 69.41 63.44 42.12 22.40 7.06 2.50 2.50 
 b 131.25 14.38 65314.61 3597.89 268.45 65.48 12.35 48.56 36.81 94.68 44.72 64.23 32.12 4.00 0.50 2.50 
4RT mean 169.53 15.00 86885.59 4541.51 332.85 53.82 18.12 55.45 52.78 82.05 54.08 53.18 27.26 5.53 1.50 2.50 
 SD 54.14 0.88 30505.97 1334.47 91.07 16.50 8.15 9.74 22.58 17.87 13.24 15.63 6.87 2.16 1.41 0.00 
 RSD% 31.93 5.85 35.11 29.38 27.36 30.65 45.01 17.57 42.79 21.78 24.48 29.40 25.21 39.13 94.28 0.00 
 SE 38.28 0.62 21570.98 943.62 64.39 11.67 5.77 6.89 15.97 12.64 9.36 11.06 4.86 1.53 1.00 0.00 
 a 172.35 12.60 84562.36 3265.48 229.65 18.24 17.32 28.12 52.14 89.53 34.53 37.14 12.07 4.00 0.50 2.50 
 b 114.35 12.68 46471.26 1989.56 178.24 44.68 9.36 34.80 22.70 67.12 16.30 19.45 10.22 4.00 0.50 2.50 
5RT mean 143.35 12.64 65516.81 2627.52 203.95 31.46 13.34 31.46 37.42 78.33 25.42 28.30 11.15 4.00 0.50 2.50 
 SD 41.01 0.06 26934.47 902.21 36.35 18.70 5.63 4.72 20.82 15.85 12.89 12.51 1.31 0.00 0.00 0.00 
 RSD% 28.61 0.45 41.11 34.34 17.82 59.43 42.19 15.01 55.63 20.23 50.72 44.21 11.74 0.00 0.00 0.00 
 SE 29.00 0.04 19045.55 637.96 25.71 13.22 3.98 3.34 14.72 11.21 9.12 8.84 0.93 0.00 0.00 0.00 
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 a 164.52 12.00 63524.19 1062.53 124.53 12.00 12.19 12.45 38.47 63.28 30.16 16.45 10.00 6.24 0.50 2.50 
 b 198.53 12.00 104345.71 875.66 168.74 21.54 6.52 22.04 10.62 28.75 5.21 11.19 32.30 4.00 0.50 2.50 
6RT mean 181.53 12.00 83934.95 969.10 146.64 16.77 9.36 17.25 24.55 46.02 17.69 13.82 21.15 5.12 0.50 2.50 
 SD 24.05 0.00 28865.17 132.14 31.26 6.75 4.01 6.78 19.69 24.42 17.64 3.72 15.77 1.58 0.00 0.00 
 RSD% 13.25 0.00 34.39 13.64 21.32 40.23 42.86 39.32 80.23 53.06 99.76 26.91 74.56 30.94 0.00 0.00 
 SE 17.01 0.00 20410.76 93.43 22.11 4.77 2.84 4.80 13.93 17.27 12.48 2.63 11.15 1.12 0.00 0.00 

Table 10-51 Mean nonylphenol ethoxylate concentrations (μg kg-1 dw) in primary sludge mesophilic (six retention times) digesters (PSM). 

 PSM NP NP1EC NP2EC NP3EC NP1EO NP2EO NP3EO NP4EO NP5EO NP6EO NP7EO NP8EO NP9EO NP10EO NP11EO NP12EO 
1RT mean 285.98 35.92 148875.44 12221.27 479.03 120.28 73.36 164.30 206.68 199.09 174.19 110.45 71.83 23.73 17.54 20.48 
  SD 62.05 25.10 30640.07 4777.63 135.10 59.15 32.08 10.15 74.49 37.82 60.87 32.26 32.94 1.53 0.64 1.26 
  RSD% 21.70 69.88 20.58 39.09 28.20 49.18 43.72 6.18 36.04 19.00 34.94 29.21 45.85 6.43 3.67 6.17 
  SE 43.87 17.75 21665.80 3378.29 95.53 41.83 22.68 7.18 52.67 26.74 43.04 22.81 23.29 1.08 0.46 0.89 
2RT mean 239.58 26.64 140830.13 4366.45 343.92 68.88 61.85 154.89 166.38 179.46 129.32 101.19 66.62 21.96 13.66 13.08 
  SD 57.94 20.17 26500.14 5266.19 29.16 62.40 18.12 56.56 44.23 41.76 32.99 0.37 18.00 8.96 0.15 1.37 
  RSD% 24.18 75.70 18.82 120.61 8.48 90.59 29.29 36.52 26.58 23.27 25.51 0.36 27.02 40.79 1.06 10.45 
  SE 40.97 14.26 18738.43 3723.76 20.62 44.12 12.81 40.00 31.27 29.53 23.33 0.26 12.73 6.33 0.10 0.97 
3RT mean 231.34 20.64 138348.44 3384.09 386.31 59.42 37.10 101.15 107.14 113.05 68.15 55.79 40.38 11.15 7.19 4.95 
  SD 20.56 11.78 9331.27 3675.77 5.45 40.56 0.22 24.64 10.74 27.21 6.36 20.72 27.35 2.72 1.19 1.40 
  RSD% 8.89 57.06 6.74 108.62 1.41 68.25 0.60 24.36 10.02 24.07 9.33 37.14 67.73 24.42 16.49 28.33 
  SE 14.54 8.33 6598.21 2599.16 3.85 28.68 0.16 17.42 7.59 19.24 4.49 14.65 19.34 1.93 0.84 0.99 
4RT mean 170.84 13.50 86811.84 2350.69 237.10 33.06 19.91 73.82 78.40 85.92 61.74 48.72 24.77 9.55 3.74 2.77 
  SD 1.85 2.12 104.29 3098.29 135.41 29.36 2.53 25.97 36.23 5.48 10.83 6.30 3.52 5.68 3.17 0.39 
  RSD% 1.08 15.71 0.12 131.80 57.11 88.81 12.73 35.19 46.22 6.38 17.55 12.93 14.21 59.49 84.76 13.93 
  SE 1.31 1.50 73.75 2190.82 95.75 20.76 1.79 18.37 25.62 3.88 7.66 4.45 2.49 4.02 2.24 0.27 
5RT mean 159.07 12.32 73915.84 1540.99 179.89 22.22 14.09 47.41 59.16 74.25 39.12 31.86 14.54 7.44 2.71 2.62 
  SD 22.23 0.45 11878.02 1536.59 34.02 13.06 1.07 22.55 30.74 5.76 19.39 5.04 4.80 4.86 3.13 0.18 
  RSD% 13.97 3.67 16.07 99.71 18.91 58.78 7.56 47.57 51.97 7.75 49.55 15.81 33.03 65.39 115.33 6.68 
  SE 15.72 0.32 8399.03 1086.53 24.05 9.24 0.75 15.95 21.74 4.07 13.71 3.56 3.40 3.44 2.21 0.12 
6RT mean 168.91 12.00 85246.33 963.00 195.21 14.63 12.72 59.02 90.50 97.38 70.66 50.40 31.65 14.33 5.08 7.86 
  SD 17.84 0.00 1854.58 8.62 68.70 3.02 4.76 59.08 93.28 72.64 74.92 51.73 14.86 13.02 6.47 7.58 
  RSD% 10.56 0.00 2.18 0.90 35.19 20.64 37.43 100.10 103.07 74.60 106.03 102.64 46.93 90.88 127.50 96.44 
  SE 12.61 0.00 1311.38 6.09 48.58 2.14 3.37 41.77 65.96 51.37 52.98 36.58 10.50 9.21 4.58 5.36 
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Table 10-52 Nonylphenol ethoxylate concentrations (μg kg-1 dw) from individual samples of the mixed sludge mesophilic (six retention 

times) digester 1 (MSM-1). 

 MSM1 NP NP1EC NP2EC NP3EC NP1EO NP2EO NP3EO NP4EO NP5EO NP6EO NP7EO NP8EO NP9EO NP10EO NP11EO NP12EO 
 a 86.81 12.40 86483.13 1302.08 235.62 24.80 44.03 189.69 185.16 214.89 154.14 95.15 53.74 26.64 11.27 15.05 
 b 123.64 12.36 172910.48 6058.36 247.28 24.73 32.41 117.19 99.59 112.70 138.18 52.60 32.23 15.99 9.38 6.55 
1RT mean 105.22 12.38 129696.81 3680.22 241.45 24.76 38.22 153.44 142.37 163.80 146.16 73.87 42.99 21.32 10.33 10.80 
 SD 26.05 0.03 61113.37 3363.19 8.25 0.05 8.22 51.26 60.51 72.26 11.29 30.09 15.21 7.53 1.33 6.02 
 RSD% 24.75 0.21 47.12 91.39 3.42 0.21 21.50 33.41 42.50 44.11 7.72 40.73 35.37 35.32 12.91 55.71 
 SE 18.42 0.02 43213.67 2378.14 5.83 0.04 5.81 36.25 42.79 51.09 7.98 21.28 10.75 5.32 0.94 4.25 
 a 49.50 12.00 51930.69 569.31 173.27 12.38 22.45 66.88 43.83 56.29 37.38 26.55 16.05 10.00 4.50 5.50 
 b 111.33 12.37 137085.60 3067.79 185.55 24.74 25.04 76.73 66.33 75.24 48.82 36.56 19.78 10.95 5.79 5.50 
2RT mean 80.42 12.19 94508.15 1818.55 179.41 18.56 23.75 71.81 55.08 65.76 43.10 31.55 17.91 10.47 5.15 5.50 
 SD 43.72 0.26 60213.61 1766.69 8.69 8.74 1.83 6.96 15.91 13.40 8.10 7.08 2.64 0.67 0.92 0.00 
 RSD% 54.36 2.15 63.71 97.15 4.84 47.11 7.70 9.70 28.89 20.37 18.78 22.43 14.73 6.40 17.78 0.00 
 SE 30.91 0.19 42577.45 1249.24 6.14 6.18 1.29 4.92 11.25 9.47 5.72 5.00 1.87 0.47 0.65 0.00 
 a 48.31 12.00 19951.69 1280.19 157.00 12.08 15.51 38.58 23.54 30.60 3.82 12.29 7.36 10.00 4.50 5.50 
 b 60.98 12.00 32060.98 1353.66 170.73 24.39 21.53 58.36 39.02 45.68 21.18 22.04 11.75 10.00 4.50 5.50 
3RT mean 54.64 12.00 26006.33 1316.93 163.87 18.23 18.52 48.47 31.28 38.14 12.50 17.17 9.56 10.00 4.50 5.50 
 SD 8.96 0.00 8562.56 51.95 9.71 8.71 4.26 13.99 10.95 10.66 12.28 6.89 3.10 0.00 0.00 0.00 
 RSD% 16.39 0.00 32.92 3.94 5.92 47.75 22.98 28.86 35.00 27.95 98.22 40.15 32.47 0.00 0.00 0.00 
 SE 6.33 0.00 6054.64 36.73 6.86 6.16 3.01 9.89 7.74 7.54 8.68 4.87 2.19 0.00 0.00 0.00 
 a 37.07 12.00 26124.57 679.68 135.94 12.36 9.58 36.87 31.64 36.98 29.21 18.43 11.59 10.00 4.50 5.50 
 b 60.86 12.00 43147.52 2823.76 109.54 24.34 24.36 72.98 65.75 57.31 42.70 25.46 14.60 10.00 4.50 5.50 
4RT mean 48.97 12.00 34636.04 1751.72 122.74 18.35 16.97 54.92 48.70 47.14 35.96 21.94 13.09 10.00 4.50 5.50 
 SD 16.82 0.00 12037.04 1516.09 18.66 8.47 10.45 25.54 24.12 14.38 9.53 4.97 2.13 0.00 0.00 0.00 
 RSD% 34.35 0.00 34.75 86.55 15.21 46.18 61.57 46.50 49.53 30.49 26.51 22.67 16.25 0.00 0.00 0.00 
 SE 11.89 0.00 8511.47 1072.04 13.20 5.99 7.39 18.06 17.05 10.16 6.74 3.52 1.50 0.00 0.00 0.00 
 a 90.77 12.00 65300.83 2321.06 168.57 25.93 24.76 62.45 42.86 42.27 30.63 21.87 12.12 10.00 4.50 5.50 
 b 60.68 12.00 54308.25 279.13 109.22 12.14 17.39 41.08 33.53 25.71 16.08 11.75 11.00 10.00 4.50 5.50 
5RT mean 75.72 12.00 59804.54 1300.09 138.90 19.03 21.08 51.76 38.19 33.99 23.36 16.81 11.56 10.00 4.50 5.50 
 SD 21.28 0.00 7772.93 1443.86 41.96 9.76 5.21 15.11 6.59 11.71 10.28 7.15 0.79 0.00 0.00 0.00 
 RSD% 28.10 0.00 13.00 111.06 30.21 51.26 24.73 29.19 17.26 34.45 44.03 42.55 6.84 0.00 0.00 0.00 
 SE 15.04 0.00 5496.29 1020.97 29.67 6.90 3.69 10.69 4.66 8.28 7.27 5.06 0.56 0.00 0.00 0.00 
 a 89.97 12.00 132107.97 2802.06 167.10 25.71 27.07 61.81 44.88 37.73 25.26 18.80 10.00 10.00 4.50 5.50 
 b 75.45 12.00 66788.23 1559.36 88.03 25.15 28.56 117.36 170.24 151.56 119.56 75.42 37.04 14.85 7.19 6.44 
6RT mean 82.71 12.00 99448.10 2180.71 127.56 25.43 27.81 89.58 107.56 94.65 72.41 47.11 23.52 12.43 5.85 5.97 
 SD 10.27 0.00 46188.03 878.72 55.91 0.39 1.05 39.28 88.64 80.49 66.68 40.03 19.12 3.43 1.90 0.67 
 RSD% 12.41 0.00 46.44 40.30 43.83 1.55 3.78 43.84 82.41 85.05 92.08 84.99 81.28 27.62 32.55 11.17 
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 SE 7.26 0.00 32659.87 621.35 39.53 0.28 0.74 27.77 62.68 56.92 47.15 28.31 13.52 2.43 1.35 0.47 

Table 10-53 Nonylphenol ethoxylate concentrations (μg kg-1 dw) from individual samples of the mixed sludge mesophilic (six retention 

times) digester 2 (MSM-2). 

 MSM2 NP NP1EC NP2EC NP3EC NP1EO NP2EO NP3EO NP4EO NP5EO NP6EO NP7EO NP8EO NP9EO NP10EO NP11EO NP12EO 
 a 64.68 32.62 65229.95 1182.17 1052.48 69.16 35.11 168.50 98.17 66.18 64.95 52.37 26.98 34.94 11.68 42.20 
 b 75.35 18.20 129341.62 2214.42 719.50 107.94 46.39 142.39 76.32 78.16 51.38 62.19 37.17 21.28 15.32 59.13 
1RT mean 70.02 25.41 97285.78 1698.29 885.99 88.55 40.75 155.44 87.24 72.17 58.17 57.28 32.08 28.11 13.50 50.66 
 SD 7.54 10.20 45333.80 729.91 235.46 27.42 7.97 18.46 15.45 8.47 9.59 6.94 7.20 9.66 2.57 11.97 
 RSD% 10.77 40.13 46.60 42.98 26.58 30.96 19.56 11.88 17.71 11.74 16.50 12.12 22.46 34.37 19.05 23.63 
 SE 5.33 7.21 32055.83 516.13 166.49 19.39 5.64 13.06 10.93 5.99 6.78 4.91 5.09 6.83 1.82 8.47 
 a 57.32 17.62 62127.18 943.18 875.20 79.16 22.69 142.17 57.17 41.12 49.17 46.05 20.39 20.65 9.17 23.87 
 b 93.20 12.99 26189.32 1185.61 529.19 67.62 31.06 138.15 42.29 51.62 36.22 51.20 22.17 16.38 11.22 42.78 
2RT mean 75.26 15.30 44158.25 1064.40 702.19 73.39 26.88 140.16 49.73 46.37 42.69 48.63 21.28 18.51 10.19 33.33 
 SD 25.37 3.28 25411.91 171.42 244.67 8.17 5.92 2.84 10.52 7.42 9.16 3.64 1.26 3.02 1.45 13.37 
 RSD% 33.71 21.40 57.55 16.11 34.84 11.13 22.03 2.02 21.16 16.01 21.45 7.49 5.90 16.31 14.21 40.12 
 SE 17.94 2.32 17968.93 121.22 173.01 5.77 4.19 2.01 7.44 5.25 6.48 2.57 0.89 2.14 1.02 9.45 
 a 53.35 12.00 34094.17 567.18 548.61 35.33 14.68 120.13 71.28 26.93 31.68 31.06 16.68 14.17 5.19 17.25 
 b 76.16 12.00 84159.67 789.17 389.16 47.62 26.18 79.17 34.16 22.15 21.02 42.17 19.16 12.34 7.32 24.17 
3RT mean 64.75 12.00 59126.92 678.18 468.89 41.47 20.43 99.65 52.72 24.54 26.35 36.61 17.92 13.25 6.25 20.71 
 SD 16.13 0.00 35401.66 156.97 112.75 8.69 8.13 28.97 26.25 3.38 7.54 7.86 1.75 1.29 1.51 4.90 
 RSD% 24.91 0.00 59.87 23.15 24.05 20.96 39.79 29.07 49.79 13.76 28.62 21.46 9.78 9.75 24.09 23.64 
 SE 11.40 0.00 25032.75 110.99 79.73 6.15 5.75 20.48 18.56 2.39 5.33 5.56 1.24 0.91 1.06 3.46 
 a 51.95 12.00 42189.36 414.17 307.19 42.17 12.10 79.16 45.32 18.35 20.17 20.62 11.68 9.65 2.19 6.19 
 b 46.87 12.00 127492.74 527.20 307.65 34.17 22.79 42.61 20.17 19.25 17.15 36.19 16.14 10.61 4.12 11.02 
4RT mean 49.41 12.00 84841.05 470.68 307.42 38.17 17.45 60.89 32.74 18.80 18.66 28.40 13.91 10.13 3.16 8.61 
 SD 3.59 0.00 60318.60 79.92 0.33 5.65 7.56 25.84 17.78 0.64 2.14 11.01 3.15 0.68 1.37 3.41 
 RSD% 7.27 0.00 71.10 16.98 0.11 14.81 43.35 42.44 54.31 3.39 11.44 38.76 22.64 6.70 43.30 39.63 
 SE 2.54 0.00 42651.69 56.52 0.23 4.00 5.35 18.27 12.57 0.45 1.51 7.79 2.23 0.48 0.97 2.41 
 a 62.50 12.00 52614.68 378.20 243.69 45.20 10.98 52.64 39.35 16.43 12.92 28.94 11.23 6.16 1.75 5.24 
 b 62.16 12.00 76497.69 489.98 258.16 39.19 20.19 31.62 14.29 24.62 26.15 26.20 12.15 7.62 3.80 5.32 
5RT mean 62.33 12.00 64556.19 434.09 250.92 42.19 15.59 42.13 26.82 20.52 19.53 27.57 11.69 6.89 2.77 5.28 
 SD 0.24 0.00 16887.84 79.05 10.24 4.25 6.51 14.87 17.72 5.79 9.36 1.94 0.66 1.03 1.44 0.06 
 RSD% 0.38 0.00 26.16 18.21 4.08 10.08 41.76 35.28 66.08 28.23 47.91 7.03 5.62 14.94 52.10 1.10 
 SE 0.17 0.00 11941.51 55.89 7.24 3.01 4.60 10.51 12.53 4.10 6.62 1.37 0.46 0.73 1.02 0.04 
 a 60.89 12.00 66183.74 289.36 207.20 35.20 12.68 38.17 27.17 19.38 14.12 31.09 11.69 5.17 2.68 3.94 
 b 84.19 12.00 145178.20 504.38 179.24 31.97 17.35 24.36 12.04 38.16 39.65 20.98 12.70 6.19 1.75 4.12 
6RT mean 72.54 12.00 105680.97 396.87 193.22 33.58 15.02 31.26 19.61 28.77 26.89 26.04 12.19 5.68 2.22 4.03 
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 SD 16.48 0.00 55857.52 152.04 19.77 2.28 3.30 9.76 10.70 13.28 18.05 7.14 0.71 0.72 0.66 0.13 
 RSD% 22.71 0.00 52.85 38.31 10.23 6.79 21.96 31.23 54.56 46.16 67.13 27.44 5.85 12.71 29.74 3.11 
 SE 11.65 0.00 39497.23 107.51 13.98 1.61 2.33 6.90 7.56 9.39 12.76 5.05 0.50 0.51 0.47 0.09 

Table 10-54 Mean nonylphenol ethoxylate concentrations (μg kg-1 dw) from the mixed sludge mesophilic (six retention times) digesters 

(MSM). 

 MSM NP NP1EC NP2EC NP3EC NP1EO NP2EO NP3EO NP4EO NP5EO NP6EO NP7EO NP8EO NP9EO NP10EO NP11EO NP12EO 
1RT mean 87.62 18.90 113491.30 2689.26 563.72 56.66 39.49 154.44 114.81 117.99 102.16 65.58 37.53 24.71 11.91 30.73 
  SD 24.90 9.21 22918.06 1401.43 455.76 45.11 1.79 1.42 38.98 64.79 62.22 11.73 7.72 4.80 2.24 28.19 
  RSD% 28.41 48.74 20.19 52.11 80.85 79.61 4.52 0.92 33.96 54.91 60.90 17.89 20.56 19.43 18.83 91.72 
  SE 17.60 6.51 16205.51 990.96 322.27 31.89 1.26 1.00 27.57 45.81 44.00 8.30 5.46 3.40 1.59 19.93 
2RT mean 77.84 13.74 69333.20 1441.47 440.80 45.97 25.31 105.98 52.40 56.07 42.90 40.09 19.60 14.49 7.67 19.41 
  SD 3.65 2.21 35602.75 533.26 369.66 38.77 2.21 48.33 3.78 13.72 0.29 12.07 2.38 5.68 3.57 19.68 
  RSD% 4.69 16.04 51.35 36.99 83.86 84.33 8.74 45.61 7.22 24.46 0.67 30.11 12.15 39.22 46.51 101.36 
  SE 2.58 1.56 25174.95 377.07 261.39 27.42 1.56 34.18 2.68 9.70 0.20 8.54 1.68 4.02 2.52 13.91 
3RT mean 59.70 12.00 42566.63 997.55 316.38 29.85 19.48 74.06 42.00 31.34 19.43 26.89 13.74 11.63 5.38 13.10 
  SD 7.15 0.00 23419.79 451.66 215.68 16.43 1.35 36.19 15.16 9.62 9.79 13.75 5.92 2.30 1.24 10.75 
  RSD% 11.98 0.00 55.02 45.28 68.17 55.04 6.95 48.87 36.11 30.68 50.40 51.13 43.07 19.79 23.04 82.06 
  SE 5.06 0.00 16560.29 319.37 152.51 11.62 0.96 25.59 10.72 6.80 6.92 9.72 4.18 1.63 0.88 7.60 
4RT mean 49.19 12.00 59738.54 1111.20 215.08 28.26 17.21 57.91 40.72 32.97 27.31 25.17 13.50 10.07 3.83 7.05 
  SD 0.31 0.00 35500.30 905.83 130.59 14.02 0.34 4.22 11.28 20.04 12.23 4.57 0.58 0.10 0.95 2.20 
  RSD% 0.64 0.00 59.43 81.52 60.72 49.59 1.96 7.28 27.71 60.80 44.79 18.15 4.29 0.94 24.83 31.14 
  SE 0.22 0.00 25102.50 640.52 92.34 9.91 0.24 2.98 7.98 14.17 8.65 3.23 0.41 0.07 0.67 1.55 
5RT mean 69.03 12.00 62180.37 867.09 194.91 30.61 18.33 46.95 32.51 27.26 21.44 22.19 11.62 8.44 3.64 5.39 
  SD 9.47 0.00 3359.92 612.36 79.22 16.38 3.88 6.81 8.04 9.52 2.70 7.61 0.09 2.20 1.22 0.16 
  RSD% 13.72 0.00 5.40 70.62 40.64 53.49 21.18 14.50 24.75 34.94 12.61 34.28 0.80 26.06 33.56 2.91 
  SE 6.70 0.00 2375.82 433.00 56.01 11.58 2.75 4.82 5.69 6.73 1.91 5.38 0.07 1.56 0.86 0.11 
6RT mean 77.63 12.00 102564.53 1288.79 160.39 29.51 21.42 60.42 63.58 61.71 49.65 36.57 17.86 9.05 4.03 5.00 
  SD 7.19 0.00 4407.30 1261.36 46.43 5.77 9.05 41.24 62.19 46.58 32.19 14.90 8.01 4.77 2.57 1.37 
  RSD% 9.26 0.00 4.30 97.87 28.95 19.54 42.26 68.25 97.82 75.48 64.84 40.74 44.85 52.71 63.62 27.43 
  SE 5.09 0.00 3116.44 891.92 32.83 4.08 6.40 29.16 43.98 32.94 22.76 10.54 5.66 3.37 1.81 0.97 
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Table 10-55 Mean nonylphenol ethoxylate concentrations (μg kg-1 dw) from the primary sludge thermophilic (six retention times) digester 

(PST). 

 PST NP NP1EC NP2EC NP3EC NP1EO NP2EO NP3EO NP4EO NP5EO NP6EO NP7EO NP8EO NP9EO NP10EO NP11EO NP12EO 
 a 202.6 12.0 92.4 12.0 13669.6 142.4 50.4 163.5 161.3 178.4 104.4 50.9 27.3 11.0 16.5 11.1 
 b 193.2 13.6 600.6 13.4 15291.8 110.7 33.3 267.6 197.2 198.4 120.2 105.6 60.7 19.3 16.3 10.5 
1RT mean 197.88 12.78 346.50 12.68 14480.67 126.52 41.84 215.52 179.24 188.42 112.29 78.24 43.98 15.16 16.38 10.82 
 SD 6.63 1.10 359.37 0.96 1147.08 22.42 12.12 73.60 25.35 14.12 11.18 38.72 23.59 5.85 0.12 0.46 
 RSD% 3.35 8.61 103.71 7.57 7.92 17.72 28.97 34.15 14.14 7.49 9.96 49.49 53.64 38.56 0.73 4.24 
 SE 4.69 0.78 254.11 0.68 811.11 15.85 8.57 52.04 17.93 9.99 7.91 27.38 16.68 4.13 0.08 0.32 
 a 181.3 12.0 4329.7 12.0 12396.3 110.6 4.7 97.1 20.2 98.1 26.6 19.0 18.4 33.2 34.5 10.8 
 b 160.6 15.7 919.8 12.2 15515.8 244.9 34.4 224.7 144.8 157.6 96.4 102.2 48.7 14.3 15.6 6.7 
2RT mean 170.94 13.83 2624.75 12.10 13956.02 177.78 19.59 160.90 82.51 127.83 61.52 60.57 33.55 23.74 25.06 8.74 
 SD 14.59 2.58 2411.21 0.14 2205.84 94.99 20.99 90.23 88.13 42.11 49.33 58.81 21.39 13.41 13.42 2.95 
 RSD% 8.53 18.69 91.86 1.12 15.81 53.43 107.14 56.08 106.81 32.94 80.19 97.10 63.75 56.47 53.55 33.73 
 SE 10.32 1.83 1704.98 0.10 1559.76 67.17 14.84 63.80 62.32 29.78 34.88 41.59 15.12 9.48 9.49 2.09 
 a 132.9 12.0 5008.1 12.0 10281.4 245.6 13.0 354.0 54.1 218.1 64.9 28.4 35.2 34.4 23.6 10.0 
 b 126.2 12.5 10519.0 12.0 10480.9 599.2 40.1 181.6 90.1 109.9 66.8 54.9 37.4 9.2 13.3 5.5 
3RT mean 129.56 12.24 7763.55 12.00 10381.15 422.39 26.53 267.79 72.11 164.01 65.81 41.64 36.31 21.79 18.44 7.79 
 SD 4.71 0.34 3896.77 0.00 141.09 250.00 19.14 121.87 25.48 76.53 1.36 18.73 1.57 17.87 7.28 3.19 
 RSD% 3.64 2.74 50.19 0.00 1.36 59.19 72.13 45.51 35.34 46.66 2.06 44.97 4.32 82.02 39.46 40.88 
 SE 3.33 0.24 2755.43 0.00 99.77 176.78 13.53 86.17 18.02 54.11 0.96 13.24 1.11 12.63 5.14 2.25 
 a 121.0 12.0 7663.1 12.0 6244.3 606.3 37.2 434.9 50.0 191.4 79.5 37.5 37.0 18.0 7.7 6.4 
 b 122.0 12.0 10764.4 12.0 4958.8 1159.4 41.5 141.4 62.5 67.8 58.6 32.0 32.4 12.7 9.3 3.7 
4RT mean 121.51 12.00 9213.76 12.00 5601.55 882.86 39.38 288.16 56.25 129.59 69.05 34.72 34.68 15.31 8.49 5.00 
 SD 0.77 0.00 2192.94 0.00 908.92 391.10 3.07 207.56 8.89 87.40 14.73 3.91 3.23 3.74 1.09 1.91 
 RSD% 0.63 0.00 23.80 0.00 16.23 44.30 7.79 72.03 15.80 67.44 21.32 11.26 9.33 24.43 12.89 38.15 
 SE 0.54 0.00 1550.65 0.00 642.70 276.55 2.17 146.77 6.29 61.80 10.41 2.76 2.29 2.64 0.77 1.35 
 a 113.6 12.0 11398.3 12.0 2107.3 859.6 51.3 116.1 35.9 114.4 15.4 20.3 31.2 16.9 13.0 4.2 
 b 98.5 12.0 14894.6 12.0 1584.4 1218.0 42.3 167.3 35.7 50.9 36.6 22.0 22.6 8.3 6.2 2.8 
5RT mean 106.05 12.00 13146.43 12.00 1845.84 1038.77 46.76 141.74 35.81 82.64 26.00 21.14 26.88 12.61 9.64 3.52 
 SD 10.61 0.00 2472.22 0.00 369.79 253.44 6.36 36.20 0.09 44.90 14.93 1.24 6.11 6.11 4.81 0.96 
 RSD% 10.00 0.00 18.81 0.00 20.03 24.40 13.61 25.54 0.26 54.33 57.41 5.84 22.72 48.47 49.89 27.35 
 SE 7.50 0.00 1748.12 0.00 261.48 179.21 4.50 25.60 0.07 31.75 10.56 0.87 4.32 4.32 3.40 0.68 
 a 98.8 12.0 14557.4 12.0 490.9 198.5 36.4 162.5 29.0 90.9 30.0 25.5 35.4 18.2 21.2 2.5 
 b 102.1 12.0 14913.9 12.3 672.1 1296.3 38.2 164.1 20.5 40.4 29.8 15.6 16.7 6.0 3.8 2.5 
6RT mean 100.45 12.00 14735.65 12.14 581.51 747.38 37.29 163.32 24.78 65.62 29.91 20.51 26.03 12.09 12.48 2.48 
 SD 2.39 0.00 252.06 0.20 128.10 776.31 1.24 1.14 6.01 35.71 0.18 6.99 13.26 8.62 12.31 0.04 
 RSD% 2.38 0.00 1.71 1.65 22.03 103.87 3.33 0.70 24.25 54.42 0.60 34.10 50.94 71.30 98.63 1.43 
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 SE 1.69 0.00 178.23 0.14 90.58 548.93 0.88 0.81 4.25 25.25 0.13 4.95 9.38 6.09 8.70 0.02 

Table 10-56 Nonylphenol ethoxylate concentrations (μg kg-1 dw) from individual samples of the mixed sludge thermophilic (six retention 

times) digester (MST).  

 MST NP NP1EC NP2EC NP3EC NP1EO NP2EO NP3EO NP4EO NP5EO NP6EO NP7EO NP8EO NP9EO NP10EO NP11EO NP12EO 
 a 181.6 12.0 26.8 12.0 13979.1 63.6 13.7 67.3 114.2 110.6 82.1 48.9 62.6 14.6 10.4 2.5 
 b 157.1 12.0 39.2 12.0 16446.4 64.6 27.2 161.7 113.5 99.3 75.2 61.7 40.6 12.3 5.8 2.5 
1RT mean 169.34 12.00 32.99 12.00 15212.76 64.11 20.44 114.52 113.89 104.91 78.64 55.27 51.61 13.44 8.12 2.50 
 SD 17.29 0.00 8.74 0.00 1744.68 0.65 9.51 66.71 0.48 7.99 4.92 9.04 15.52 1.64 3.22 0.00 
 RSD% 10.21 0.00 26.50 0.00 11.47 1.02 46.52 58.25 0.42 7.62 6.26 16.36 30.08 12.18 39.68 0.16 
 SE 12.23 0.00 6.18 0.00 1233.68 0.46 6.72 47.17 0.34 5.65 3.48 6.39 10.98 1.16 2.28 0.00 
 a 253.8 12.0 23.6 12.0 11775.6 132.3 8.2 76.8 10.0 46.5 22.4 8.9 11.0 14.6 0.5 2.5 
 b 271.0 12.0 40.6 12.0 11043.2 107.2 23.0 202.0 88.7 86.5 55.7 47.3 22.1 10.6 5.7 3.1 
2RT mean 262.44 12.00 32.13 12.00 11409.42 119.76 15.61 139.37 49.34 66.54 39.02 28.09 16.55 12.60 3.11 2.78 
 SD 12.15 0.00 12.01 0.00 517.84 17.70 10.46 88.52 55.63 28.28 23.54 27.16 7.85 2.78 3.70 0.39 
 RSD% 4.63 0.00 37.36 0.00 4.54 14.78 67.01 63.52 112.76 42.50 60.32 96.66 47.44 22.06 118.71 14.15 
 SE 8.59 0.00 8.49 0.00 366.17 12.51 7.40 62.60 39.34 20.00 16.64 19.20 5.55 1.97 2.61 0.28 
 a 257.6 12.0 30.1 12.0 10138.4 621.3 2.7 153.2 25.1 76.5 28.0 13.2 14.3 14.1 0.5 2.5 
 b 328.9 12.0 42.1 12.0 10092.3 357.1 18.4 182.1 62.1 71.8 38.3 23.2 14.4 8.4 4.8 2.9 
3RT mean 293.24 12.00 36.06 12.00 10115.36 489.17 10.55 167.65 43.65 74.11 33.12 18.21 14.37 11.27 2.63 2.71 
 SD 50.43 0.00 8.50 0.00 32.63 186.84 11.17 20.38 26.16 3.31 7.28 7.11 0.03 4.02 3.01 0.30 
 RSD% 17.20 0.00 23.57 0.00 0.32 38.19 105.83 12.16 59.95 4.47 21.97 39.05 0.24 35.70 114.55 11.00 
 SE 35.66 0.00 6.01 0.00 23.08 132.11 7.90 14.41 18.50 2.34 5.15 5.03 0.02 2.84 2.13 0.21 
 a 81.1 12.0 40.8 12.0 7696.2 731.1 8.1 135.9 11.9 47.2 11.7 9.0 12.6 14.3 0.5 2.5 
 b 124.7 12.0 35.3 12.0 8881.2 874.7 15.5 147.2 43.4 66.8 30.9 16.3 10.3 11.2 5.6 2.5 
4RT mean 102.89 12.00 38.04 12.00 8288.67 802.89 11.80 141.53 27.65 56.99 21.33 12.64 11.46 12.71 3.03 2.50 
 SD 30.88 0.00 3.90 0.00 837.92 101.49 5.22 8.00 22.26 13.82 13.59 5.15 1.58 2.19 3.58 0.00 
 RSD% 30.01 0.00 10.26 0.00 10.11 12.64 44.25 5.65 80.52 24.24 63.73 40.75 13.76 17.20 118.10 0.00 
 SE 21.84 0.00 2.76 0.00 592.50 71.76 3.69 5.66 15.74 9.77 9.61 3.64 1.12 1.55 2.53 0.00 
 a 44.1 12.0 29.7 12.0 7991.0 542.2 8.4 69.6 10.0 60.8 31.0 13.0 12.9 9.0 0.5 2.5 
 b 90.8 12.0 36.4 12.0 8195.9 364.3 11.6 111.7 18.6 20.5 21.8 14.3 10.0 9.8 4.6 3.1 
5RT mean 67.42 12.00 33.06 12.00 8093.44 453.23 9.96 90.62 14.32 40.65 26.41 13.66 11.43 9.39 2.53 2.80 
 SD 33.03 0.00 4.71 0.00 144.86 125.77 2.28 29.77 6.11 28.55 6.46 0.90 2.03 0.52 2.87 0.42 
 RSD% 48.99 0.00 14.25 0.00 1.79 27.75 22.88 32.85 42.67 70.23 24.44 6.62 17.73 5.51 113.50 14.94 
 SE 23.36 0.00 3.33 0.00 102.43 88.93 1.61 21.05 4.32 20.19 4.57 0.64 1.43 0.37 2.03 0.30 
 a 25.0 12.0 19.5 12.0 6864.9 449.0 7.1 47.1 10.0 34.5 26.4 7.1 11.1 10.0 4.7 2.5 
 b 30.3 12.0 26.4 12.0 6858.4 279.1 9.7 51.2 11.6 30.9 16.1 10.7 10.0 7.6 3.6 2.5 
6RT mean 27.65 12.00 22.95 12.00 6861.66 364.04 8.36 49.13 10.79 32.72 21.29 8.90 10.55 8.78 4.15 2.50 
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 SD 3.75 0.00 4.88 0.00 4.61 120.11 1.85 2.89 1.12 2.50 7.28 2.60 0.78 1.72 0.73 0.00 
 RSD% 13.55 0.00 21.25 0.00 0.07 32.99 22.14 5.88 10.38 7.65 34.19 29.18 7.41 19.58 17.63 0.00 
 SE 2.65 0.00 3.45 0.00 3.26 84.93 1.31 2.04 0.79 1.77 5.15 1.84 0.55 1.22 0.52 0.00 

 

Table 10-57 Dosed background (feed) concentrations of nonylphenol ethoxylates (μg kg-1 dw). 

PSM NP NP1EC NP2EC NP3EC NP1EO NP2EO NP3EO NP4EO NP5EO NP6EO NP7EO NP8EO NP9EO NP10EO NP11EO NP12EO 
a 338.35 12.00 10622.82 12.68 2264.73 2198.56 4266.90 4542.39 2507.72 2244.09 2701.52 2566.57 2050.44 1955.71 1097.97 792.95 
b 228.64 12.00 10848.29 12.78 2042.14 1595.97 3704.14 4570.85 2920.55 3074.59 2404.49 2417.16 2597.82 1949.41 857.50 801.46 
c 210.65 12.00 9902.36 12.48 1657.55 1556.65 3685.53 4282.25 2900.21 3085.10 2428.94 2371.78 2497.06 1937.77 833.41 753.63 
mean 259.21 12.00 10457.83 12.64 1988.14 1783.73 3885.53 4465.16 2776.16 2801.26 2511.65 2451.84 2381.77 1947.63 929.63 782.68 
SD  69.12 0.00 494.08 0.15 307.17 359.79 330.41 159.05 232.70 482.55 164.89 101.92 291.33 9.10 146.29 25.52 
RSD% 26.67 0.00 4.72 1.21 15.45 20.17 8.50 3.56 8.38 17.23 6.57 4.16 12.23 0.47 15.74 3.26 
SE 39.91 0.00 285.26 0.09 177.35 207.73 190.76 91.83 134.35 278.60 95.20 58.84 168.20 5.25 84.46 14.73 
MSM NP NP1EC NP2EC NP3EC NP1EO NP2EO NP3EO NP4EO NP5EO NP6EO NP7EO NP8EO NP9EO NP10EO NP11EO NP12EO 
a 386.07 12.00 207973.42 12.32 2331.46 2132.61 2330.17 3170.25 1711.42 2459.71 1881.47 1815.40 1495.04 1415.35 1350.96 1167.78 
b 203.38 12.00 297796.29 12.51 1081.64 1591.41 3124.41 3596.18 1883.98 1580.07 1935.12 1866.06 1422.22 1418.69 769.80 543.20 
c 126.29 12.00 257036.29 12.59 1700.05 1619.91 3098.55 3421.50 1824.49 1557.97 1955.26 1825.32 1438.68 1420.37 783.60 579.70 
mean 238.58 12.00 254268.67 12.47 1704.38 1781.31 2851.04 3395.97 1806.63 1865.92 1923.95 1835.59 1451.98 1418.14 968.12 763.56 
SD 133.42 0.00 44975.35 0.14 624.92 304.57 451.28 214.11 87.65 514.35 38.14 26.84 38.19 2.55 331.62 350.54 
RSD% 55.92 0.00 17.69 1.12 36.67 17.10 15.83 6.30 4.85 27.57 1.98 1.46 2.63 0.18 34.25 45.91 
SE 77.03 0.00 25966.53 0.08 360.80 175.84 260.55 123.62 50.61 296.96 22.02 15.50 22.05 1.47 191.46 202.38 

Table 10-58 Mean nonylphenol ethoxylate concentrations (μg kg-1 dw) from the primary sludge mesophilic (dosed experiment) digester 

(PSM). 

 PSM NP NP1EC NP2EC NP3EC NP1EO NP2EO NP3EO NP4EO NP5EO NP6EO NP7EO NP8EO NP9EO NP10EO NP11EO NP12EO 
 a 209.16 2.55 16730.13 1860.04 83.42 3.82 6.11 32.72 54.36 40.78 34.50 23.49 7.31 4.87 8.91 7.71 
 b 152.27 2.51 19401.24 1884.04 66.44 2.51 3.73 22.35 39.31 30.41 22.08 17.37 5.92 2.72 1.96 8.76 
day1 mean 180.72 2.53 18065.69 1872.04 74.93 3.16 4.92 27.53 46.84 35.60 28.29 20.43 6.61 3.80 5.43 8.23 
 SD 40.23 0.03 1888.76 16.97 12.00 0.93 1.68 7.33 10.64 7.34 8.79 4.33 0.99 1.52 4.92 0.74 
 RSD

%
22.26 1.14 10.45 0.91 16.02 29.37 34.25 26.63 22.71 20.61 31.06 21.19 14.91 39.95 90.53 9.04 

 SE 28.45 0.02 1335.55 12.00 8.49 0.66 1.19 5.18 7.52 5.19 6.21 3.06 0.70 1.07 3.48 0.53 
 a 56.79 1.28 11697.03 73.51 32.55 1.92 23.07 89.30 140.99 122.30 107.06 72.33 33.07 21.27 5.15 19.01 
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 PSM NP NP1EC NP2EC NP3EC NP1EO NP2EO NP3EO NP4EO NP5EO NP6EO NP7EO NP8EO NP9EO NP10EO NP11EO NP12EO 
 b 74.39 1.32 14681.47 159.02 41.44 2.63 30.76 218.60 438.03 391.22 352.82 242.95 109.33 54.62 23.17 0.00 
Day3 mean 25.35 0.58 673.00 6.45 12.25 15.02 17.72 15.91 15.12 12.90 18.63 12.13 7.80 20.51 47.00 4.78 

 SD 4.37 0.79 936.99 7.84 5.33 20.31 23.38 15.16 10.74 10.91 17.57 12.82 10.05 27.49 61.55 6.02 
 RSD

%
17.25 136.46 139.22 121.56 43.46 135.23 131.92 95.33 71.05 84.55 94.27 105.72 128.79 134.03 130.96 125.86 

 SE 3.09 0.56 662.55 5.55 3.77 14.36 16.53 10.72 7.60 7.71 12.42 9.07 7.10 19.44 43.53 4.25 
 a 162.92 3.02 3957.70 145.67 156.82 7.17 16.56 87.80 124.82 107.93 80.53 62.45 29.68 17.97 7.67 19.84 
 b 68.84 1.81 2969.31 109.06 80.68 4.20 18.33 81.24 96.21 82.34 62.61 45.70 18.97 13.01 4.20 11.10 
Day5 mean 10.17 68.51 400.89 63.55 23.61 74.80 74.22 53.03 39.32 46.13 53.35 57.39 67.95 76.73 87.24 65.06 
 SD 10.01 96.09 370.05 82.03 28.07 85.47 81.59 59.83 44.87 54.33 57.88 68.34 86.04 81.03 61.82 85.99 
 RSD

%
98.42 140.27 92.31 129.08 118.87 114.27 109.93 112.82 114.11 117.78 108.49 119.08 126.63 105.60 70.86 132.17 

 SE 7.08 67.95 261.66 58.00 19.85 60.44 57.69 42.30 31.73 38.42 40.92 48.33 60.84 57.29 43.72 60.80 
 a 14.46 1.26 1543.27 10.04 25.78 1.26 11.53 69.51 101.98 95.75 79.84 55.53 27.84 15.61 4.33 15.93 
 b 13.90 1.21 1574.70 7.86 25.39 1.21 22.83 144.21 209.88 209.17 174.56 116.66 65.75 36.34 15.10 35.41 
4RT mean 52.75 104.11 176.98 93.54 69.36 87.35 83.81 77.56 72.92 78.10 74.71 83.70 93.74 81.44 57.29 96.49 
Day7 SD 64.59 51.14 119.75 50.26 70.02 38.07 36.93 49.87 58.25 56.12 47.78 50.03 46.52 34.15 19.20 50.47 
 RSD

%
122.44 49.12 67.66 53.73 100.95 43.58 44.07 64.29 79.88 71.85 63.95 59.77 49.63 41.94 33.51 52.30 

 SE 45.67 36.16 84.68 35.54 49.51 26.92 26.12 35.26 41.19 39.68 33.78 35.38 32.90 24.15 13.57 35.69 
 a 18.59 1.28 3101.17 13.49 31.38 1.28 0.00 2.38 0.47 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
 b 16.98 1.13 2714.29 11.91 27.18 1.13 0.00 1.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Day10 mean 84.06 42.64 76.17 44.63 75.23 35.25 35.09 49.78 60.54 55.77 48.87 47.58 41.26 33.04 23.54 43.99 
 SD 54.28 9.16 12.03 12.86 36.37 11.78 12.69 20.53 27.36 22.75 21.33 17.25 11.83 12.58 14.10 11.75 
 RSD

%
64.58 21.49 15.80 28.82 48.35 33.42 36.17 41.24 45.20 40.80 43.65 36.26 28.68 38.06 59.88 26.71 

 SE 38.38 6.48 8.51 9.10 25.72 8.33 8.98 14.52 19.35 16.09 15.08 12.20 8.37 8.89 9.97 8.31 
 a 0.01 0.00 0.00 0.00 1.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 b 0.02 0.00 0.15 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.15 
Day20 mean 51.48 13.99 12.15 18.96 37.04 20.88 22.58 27.88 32.27 28.44 29.37 24.23 18.52 23.48 34.92 17.51 
 SD 18.52 10.61 5.15 13.95 16.00 17.74 19.23 18.90 18.28 17.47 20.20 17.01 14.36 20.62 35.29 13.01 
 RSD

%
35.98 75.90 42.41 73.57 43.21 84.99 85.19 67.79 56.64 61.43 68.79 70.22 77.53 87.85 101.06 74.31 

 SE 13.10 7.51 3.64 9.86 11.32 12.55 13.60 13.36 12.93 12.35 14.28 12.03 10.15 14.58 24.95 9.20 
 a 0.02 0.00 0.00 0.00 1.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 b 0.03 0.00 1.13 0.00 3.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18.77 
Day30 mean 24.54 41.70 23.03 41.72 27.26 48.77 49.39 40.57 34.78 36.89 41.53 41.13 43.84 51.22 63.01 41.76 
 SD 16.18 48.36 27.41 45.05 22.55 51.23 50.62 38.48 30.91 34.70 38.54 41.15 47.64 51.81 53.81 46.04 
 RSD

%
65.94 115.97 119.04 107.99 82.72 105.04 102.49 94.85 88.87 94.06 92.78 100.05 108.67 101.15 85.41 110.26 
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 PSM NP NP1EC NP2EC NP3EC NP1EO NP2EO NP3EO NP4EO NP5EO NP6EO NP7EO NP8EO NP9EO NP10EO NP11EO NP12EO 
 SE 11.44 34.20 19.38 31.85 15.95 36.22 35.80 27.21 21.86 24.54 27.25 29.10 33.69 36.63 38.05 32.55 

 

Table 10-59 Mean nonylphenol ethoxylate concentrations (μg kg-1 dw) from the mixed sludge mesophilic (dosed experiment) digester 

(MSM). 

 MSM NP NP1EC NP2EC NP3EC NP1EO NP2EO NP3EO NP4EO NP5EO NP6EO NP7EO NP8EO NP9EO NP10EO NP11EO NP12EO 
 a 92.18 1.90 25436.42 7457.65 36.52 10.90 36.89 194.49 185.25 118.90 73.55 45.95 17.66 7.44 5.30 7.53 
 b 17.12 1.18 26052.78 1174.91 11.23 2.94 25.98 74.77 61.94 51.13 37.77 28.87 10.84 5.85 17.73 24.20 
day1 mean 54.65 1.54 25744.60 4316.28 23.87 6.92 31.43 134.63 123.60 85.02 55.66 37.41 14.25 6.65 11.51 15.86 
 SD 53.07 0.51 435.83 4442.57 17.88 5.63 7.72 84.66 87.20 47.92 25.30 12.08 4.82 1.13 8.79 11.79 
 RSD% 97.12 32.96 1.69 102.93 74.89 81.28 24.55 62.88 70.55 56.36 45.46 32.29 33.86 16.94 76.33 74.29 
 SE 37.53 0.36 308.18 3141.37 12.64 3.98 5.46 59.86 61.66 33.88 17.89 8.54 3.41 0.80 6.21 8.33 
 a 30.44 1.27 16459.77 718.15 12.08 3.82 53.97 171.69 172.11 149.88 119.58 84.89 37.10 18.78 9.18 14.55 
 b 43.50 1.34 45757.91 932.02 14.71 4.69 72.92 270.27 337.43 307.71 242.61 172.36 81.83 39.46 0.00 14.07 
Day

3
mean 67.32 16.66 154.94 1622.15 43.76 42.63 15.00 61.37 66.10 45.12 31.68 20.42 18.63 8.87 41.27 41.31 

 SD 42.13 23.05 216.72 2148.50 44.01 54.66 13.50 2.13 6.29 15.90 19.50 16.79 21.53 11.42 49.58 46.64 
 RSD% 62.58 138.37 139.88 132.45 100.57 128.22 89.99 3.48 9.51 35.23 61.54 82.26 115.53 128.73 120.13 112.89 
 SE 29.79 16.30 153.24 1519.22 31.12 38.65 9.54 1.51 4.45 11.24 13.79 11.87 15.22 8.07 35.06 32.98 
 a 7.29 0.00 1089.06 29.08 8.50 2.43 58.27 189.13 160.72 138.94 107.65 74.15 35.27 17.53 6.35 7.29 
 b 13.61 0.62 5226.09 45.76 13.62 4.33 68.15 180.89 150.22 117.85 89.79 67.34 30.30 13.86 4.84 13.59 
Day

5
mean 46.19 77.33 146.56 825.83 65.85 83.43 49.77 2.49 6.98 23.23 37.66 47.07 65.38 68.40 77.59 72.94 

 SD 23.19 86.32 9.45 980.60 49.11 63.34 56.88 1.39 3.58 16.96 33.77 49.77 70.93 85.31 60.15 56.51 
 RSD% 50.20 111.62 6.45 118.74 74.58 75.91 114.30 55.83 51.33 73.01 89.66 105.74 108.49 124.73 77.52 77.48 
 SE 16.40 61.03 6.68 693.39 34.72 44.79 40.22 0.98 2.53 11.99 23.88 35.19 50.15 60.33 42.54 39.96 
 a 6.20 0.63 1777.76 44.09 6.22 1.86 31.77 151.36 114.61 121.13 99.60 71.15 29.79 20.52 11.16 18.72 
 b 9.44 1.26 5231.38 46.69 8.81 2.52 29.33 148.90 133.20 141.39 128.20 88.09 49.17 28.48 11.43 0.00 
4RT mean 33.30 86.33 6.57 406.06 54.65 60.35 77.26 28.40 26.93 42.50 56.77 70.47 79.32 92.53 60.03 58.72 
Day

7
SD 23.90 35.77 0.17 406.34 28.18 22.01 52.38 38.78 34.50 43.14 46.51 49.89 41.25 45.54 24.74 26.53 

 RSD% 71.79 41.43 2.52 100.07 51.57 36.47 67.80 136.52 128.12 101.51 81.94 70.80 52.00 49.22 41.21 45.18 
 SE 16.90 25.29 0.12 287.32 19.93 15.56 37.04 27.42 24.40 30.51 32.89 35.27 29.17 32.20 17.49 18.76 
 a 11.95 0.00 4292.18 60.63 12.61 3.14 0.00 2.00 0.00 0.00 0.00 0.00 0.64 0.00 0.00 0.00 
 b 13.02 0.00 3980.76 33.12 16.13 3.71 0.00 1.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 24.19 



Chapter10 Appendices:  

293 

 

 MSM NP NP1EC NP2EC NP3EC NP1EO NP2EO NP3EO NP4EO NP5EO NP6EO NP7EO NP8EO NP9EO NP10EO NP11EO NP12EO 
Day

1
0

mean 44.34 33.36 1.32 193.70 35.75 26.02 52.42 81.97 76.26 66.01 57.41 53.03 40.59 40.71 29.35 31.97 

 SD 38.81 11.41 1.70 132.41 22.37 14.78 21.75 77.15 73.34 50.21 34.68 25.12 16.15 12.03 16.77 18.68 
 RSD% 87.52 34.21 128.87 68.36 62.58 56.82 41.49 94.11 96.18 76.06 60.41 47.36 39.78 29.56 57.14 58.44 
 SE 27.44 8.07 1.20 93.63 15.82 10.45 15.38 54.55 51.86 35.50 24.52 17.76 11.42 8.51 11.86 13.21 
 a 0.01 0.00 0.13 0.00 1.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.75 8.13 
 b 0.01 0.00 0.37 0.00 0.48 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.34 14.58 
Day

2
0

mean 57.48 21.14 65.04 80.99 39.20 33.64 28.44 74.33 74.02 55.78 42.46 32.56 25.60 19.03 34.50 35.83 

 SD 42.48 18.48 90.28 17.87 33.07 32.79 18.47 27.98 31.34 28.68 25.37 20.93 20.06 14.88 32.02 31.98 
 RSD% 73.90 87.43 138.81 22.06 84.35 97.47 64.94 37.64 42.33 51.42 59.75 64.28 78.35 78.20 92.80 89.27 
 SE 30.04 13.07 63.83 12.63 23.38 23.19 13.06 19.78 22.16 20.28 17.94 14.80 14.18 10.52 22.64 22.61 
 a 0.02 0.00 1.63 0.00 2.58 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.43 12.73 
 b 0.03 0.00 1.03 0.00 0.81 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.48 
Day

3
0

mean 51.97 50.25 101.32 17.35 53.87 60.33 39.00 28.71 32.25 35.85 38.85 39.54 46.27 44.36 57.72 55.94 

 SD 31.02 52.58 53.01 6.67 43.11 52.53 36.68 12.62 14.27 22.02 29.56 34.99 45.37 47.85 49.61 47.13 
 RSD% 59.68 104.64 52.32 38.42 80.03 87.07 94.07 43.98 44.25 61.41 76.11 88.49 98.07 107.87 85.95 84.25 
 SE 21.93 37.18 37.49 4.71 30.48 37.14 25.94 8.93 10.09 15.57 20.90 24.74 32.08 33.84 35.08 33.33 
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10.6 Appendix VI 

10.6.1 Mass balance for steroid estrogens 

Table 10-60 Mass balance for steroid estrogens during mesophilic (35oC) and thermophilic (53oC) digestion of primary and mixed sludges. 
Flux (μg d-1)

 Mesophilic digestion Thermophilic digestion
                                      Primary sludge Mixed sludge Primary sludge Mixed sludge 
Steroid  
estrogens  

In-flux Out-flux 
6th RT 

Removal % In-flux Out-flux 
6th RT 

Removal % In-flux Out-flux 
6th RT 

Removal % In-flux Out-flux 
6th RT 

Removal % 

E1 4.53 0.96 78.80 2.28 0.68 70.32 3.49 0.16 95.51 1.61 0.51 68.22 
E2 0.26 1.12 -323.56 0.16 0.69 -325.08 0.32 1.51 -367.38 0.15 1.07 -621.33 
E3 0.25 0.14 45.40 0.20 0.11 43.55 0.30 0.25 16.64 0.26 0.25 4.08 
E1-3S 0.22 0.14 36.36 0.17 0.13 21.06 0.20 0.14 30.31 0.20 0.15 27.88 
EE2 0.53 0.35 32.71 0.26 0.25 4.55 0.49 0.28 43.56 0.50 0.43 14.82 
Natural 5.26 2.36 55.26 2.81 1.61 42.61 4.32 2.06 52.25 2.22 1.97 10.99 
ΣE1+E2 4.79 2.08 56.58 2.44 1.37 43.85 3.81 1.67 56.16 1.76 1.58 10.23 
ΣESTs  5.79 2.71 53.21 3.07 1.86 39.40 4.81 2.34 51.36 2.72 2.40 11.70 
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10.6.1 Mass balance for nonylphenol ethoxylates 

Table 10-61 Mass balance for nonylphenol ethoxylates during mesophilic digestion of primary and mixed sludges. 

Flux (mg d-1)
 Primary digesters Mixed digesters

Alkylphenolic  
compounds 

In-flux Out-flux 
6th RT 

Removal % In-flux Out-flux 
6th RT 

Removal % 

NPEOs
NP1EO 0.08 0.01 90.16 0.06 0.01 89.83 
NP2EO 0.01 0.00 92.60 0.00 0.00 73.05 
NP3EO 1.72 0.00 99.97 0.91 0.00 99.91 
NP4EO 7.56 0.00 99.97 3.95 0.00 99.94 
NP5EO 7.11 0.00 99.95 3.66 0.00 99.93 
NP6EO 6.09 0.00 99.94 3.26 0.00 99.92 
NP7EO 4.05 0.00 99.93 2.71 0.00 99.93 
NP8EO 2.78 0.00 99.93 1.99 0.00 99.93 
NP9EO 1.17 0.00 99.89 0.77 0.00 99.91 
NP10EO 1.11 0.00 99.95 0.76 0.00 99.96 
NP11EO 0.62 0.00 99.97 0.40 0.00 99.97 
NP12EO 0.49 0.00 99.94 0.96 0.00 99.98 
NP1-2EO 0.09 0.01 90.38 0.07 0.01 88.74 
NP3-12EO  32.70 0.02 99.95 19.37 0.01 99.93 
NP1-12EO 32.79 0.03 99.92 19.44 0.02 99.89 

NPEC
NP1EC 0.00 0.00 54.19 0.00 0.00 90.31 
NP2EC 1.10 3.44 -211.33 9.68 4.05 58.13 
NP3EC 0.00 0.04 -7692.09 0.00 0.05 -10312.28 
NPEC 1.10 3.47 -214.56 9.68 4.10 57.62 
   NP    
NP 0.01 0.01 45.43 0.01 0.00 51.03 
ΣNPEO 33.91 3.51 89.66 29.12 4.13 85.83 
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Table 10-62 Mass balance for nonylphenol ethoxylates during thermophilic digestion of primary and mixed sludges. 

Flux (mg d-1)
 Primary digesters Mixed digesters

Alkylphenolic  
compounds 

In-flux Out-flux 
6th RT 

Removal % In-flux Out-flux 
6th RT 

Removal % 

NPEO
NP1EO 1.22 1.19 1.98 7.55 0.00 99.98 
NP2EO 0.00 0.00 80.18 0.00 0.00 75.68 
NP3EO 2.00 0.00 99.85 1.50 0.00 99.95 
NP4EO 11.70 0.01 99.89 6.97 0.00 99.94 
NP5EO 13.22 0.00 99.98 8.87 0.00 99.99 
NP6EO 11.31 0.01 99.95 7.67 0.00 99.97 
NP7EO 8.20 0.00 99.97 6.31 0.00 99.97 
NP8EO 6.46 0.00 99.97 4.20 0.00 99.98 
NP9EO 3.08 0.00 99.93 1.87 0.00 99.95 
NP10EO 1.02 0.00 99.90 0.64 0.00 99.89 
NP11EO 0.97 0.00 99.90 0.28 0.00 99.88 
NP12EO 0.62 0.00 99.97 0.38 0.00 99.95 
NP1-2EO 1.22 1.19 2.30 7.55 0.00 99.96 
NP3-12EO  58.58 0.03 99.95 38.70 0.01 99.97 
NP1-12EO 59.80 1.23 97.95 46.25 0.02 99.97 

NPEC
NP1EC 0.00 0.05 -4684.47 0.00 0.56 -23389.46 
NP2EC 0.00 0.06 -6077.73 0.00 0.03 -848.50 
NP3EC 0.00 0.00 0.32 0.00 0.00 3.13 
NP1-3EC 0.00 0.11 -3591.44 0.00 0.59 -8921.60 

   NP    
NP 0.02 0.01 57.00 0.01 0.00 80.21 
ΣNPEO 59.82 1.34 97.76 46.27 0.61 98.68 

 


