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ABSTRACT

The supporting Flight Dynamics research contribution to the design of Demon, a

flapless UAV demonstrator which is the subject of the national research programme

FLAVIIR, is described in this thesis. In particular, an integrated flight control and

fluidic control system which employs aerodynamic circulation control (CC) to enhance,

or replace a conventional aileron is presented.

The elimination, or reduction in size, of hinged flight control surfaces on an aircraft

offers the possibility of reducing aircraft signature and reducing maintenance

requirements; fluidic maneuver effectors provide the opportunity to produce the forces

and moments required for flight vehicle maneuvering without using conventional

control surfaces. A novel alternative to a conventional single slot trailing edge CC

actuator that enables proportional bi-directional control was developed. The CC actuator

was manufactured and tested, and experimental evaluation confirmed that bi-directional

incremental lift generation comparable to that produced by a mechanical flap of similar

trailing edge span is entirely feasible.

Wind tunnel tests of a 50% full-span scale Demon model were carried out to establish a

representative aerodynamic model of the vehicle. A high fidelity 6DoF simulation of the

air vehicle was developed, based on the wind tunnel data and was used to assess vehicle

trim, stability and control properties. A mathematical model of the flow control

actuator, for interfacing the CC system with the flight control system, was developed

and incorporated in the dynamic model of the vehicle. The model determined flapless

performance and controllability of the aircraft and, in particular, specific saturation

limits and their impact on different phases of flight. Also, the requirements for a

secondary air supply system for the CC system and practical values of the volumetric air

flow requirement have been assessed.

A semi-autonomous primary Flight Control System to enable command and control by a

remote pilot throughout the flight was developed. A novel re-configurable control

architecture that shares control moment demand between conventional flaps and fluidic



motivators was designed and demonstrated to provide a sufficient degree of safety and a

flexibility to facilitate future experimental flight research.

The results of the research study showed the CC actuator to be a practical solution to the

problem of direct flow control at subsonic velocities and, hence, to have significant

potential to act as a direct replacement for a flap type control surface. Roll control

power equivalent to that of conventional ailerons can be achieved at practical trailing

edge slot blowing conditions. Thus, it is concluded that the CC actuator, in combination

with conventional elevator and rudder, can effectively control the Demon over its

proposed flight envelope.



i

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Mike Cook, for his help

and guidance. Throughout the duration of the project I received valuable advice, support

and motivation. I am eternally indebt.

I also would like to thank Dr Sasha Erbsloeh for his advice and especially his guidance

through the wind tunnel tests. Sasha always had time to discuss issues and always

provided me with valuable insights.

I gratefully acknowledge the support of EPSRC/BAE Systems who have jointly funded

the FLAVIIR research programme. I am also indebted to Dr Clyde Warsop, the current

industrial programme manager, for his enthusiastic support and contribution to the

project.

I would also like to thank the aerodynamics research group under the leadership of Dr

Bill Crowther at Manchester University who has willingly provided information from

their many and varied flow control experiments. Thanks also to the aircraft design

research group at Cranfield University under the leadership of Prof. John Fielding for its

contribution.

At last, a lot of thanks to all the people I do not name, but whose help has been

invaluable to me.



iii

TABLE OF CONTENTS

Acknowledgements………………………………………………………………………. i

Table of Contents…………………………………………………………………………iii

Table of Figures ………………………………………………………………………….vii

Notation………………………………………………………………………………….. xi

1 INTRODUCTION ………………………………………………………………. 1

1.1 The FLAVIIR project ………………………………………………….... 1

1.2 Background and Motivation……………………………………………… 3

1.3 Overview of the research……………………………………………….... 6

1.4 Aim and Objectives ……………………………………………………… 8

2 LITERATURE REVIEW………………………………………………………...11

2.1 The Eclipse UAV………………………………………………………....11

2.2 Coanda effect and Circulation Control Wing concept …………………..14

2.3 Circulation Control aerospace applications………………………………24

2.3.1 The use of Circulation Control for flight control………………...28

2.3.2 Dual slotted Circulation Control…………………………………29

3 DESCRIPTION OF THE AIRCRAFT…………………………………………. 35

3.1 Introduction……………...……………………………………………….35

3.2 Aerodynamic performances ……………………………………………. 37

3.2.1 Wind tunnel testing of the Demon ½ scale model ………………37

3.2.2 Sign and conventions …………………………………………… 39

3.2.3 Wind tunnel results ……………………………………………... 39

3.2.4 Damping derivatives for the Demon flying demonstrator………. 45

3.2.5 Control requirements …………………………………………… 46

3.3 Dynamic stability mode approximation………………………………….47

3.4 Concluding remarks ……………………………………………………. 53

4 DEVELOPMENT OF THE SIMULATION MODEL ………………………….65

4.1 Introduction ……………………………………………………………...65

4.2 Axes system and notation………………………………………………...67

4.2.1 Earth axes………………………………………………………...67

4.2.2 Aircraft body axes ……………………………………………….68



iv

4.2.3 Stability axes……………………………………………………..68

4.3 Aircraft notation …………………………………………………………69

4.3.1 Control angle definition…………………………………………. 69

4.4 Equations of motion……………………………………………………...69

4.5 Aerodynamic forces and moments……………………………………….73

4.5.1 Force and moment equations……………………………………..74

4.6 Propulsive forces and moments…………………………………………. 75

4.6.1 Thrust model ……………………………………………………. 75

4.7 Gravitational forces and moments………………………………………..78

4.8 Atmosphere model…………………………………………………….....78

4.8.1 International Standard Athmosphere model……………………...78

4.9 Actuator model …………………………………………………………..79

4.10 Trim………………………………………………………………………82

4.11 Longitudinal and Lateral mathematical model…………………………...84

4.11.1 Longitudinal mathematical model………………………………..84

4.11.2 Lateral directional mathematical model………………………….87

4.12 Stability mode Characteristics…………………………………………....97

5 DUAL SLOT ACTUATOR DEVELOPMENT ………………………………. 103

5.1 Introduction …………………………………………………………….103

5.2 Circulation Control actuator concept…………………………………...103

5.3 Experimental setup and test techniques ……………………………….. 105

5.3.1 Blowing parameters and experimental methods ……………….107

5.4 Experimental results and analysis ……………………………………...108

5.4.1 Characteristic of the baseline wing …………………………….108

5.4.2 Single slot CC actuator ………………………………………....109

5.4.3 Performance of a dual slot CC actuator ……………………….. 111

5.4.4 Drag with dual blowing ………………………………………...113

5.5 Mathematical model ……………………………………………………115

5.6 Simulation of circulation control dual slot actuator ……………………117

6 FLAPLESS FLIGHT CONTROL……………………………………………....135

6.1 Introduction……………………………………………………………..135

6.2 Circulation Control actuator model……………………………………..138



v

6.2.1 Pneumatic system model………………………………………..139

6.2.2 Servo actuator model……………………………………………141

6.2.3 Prediction of the Lateral Aerodynamic characteristics of

the Demon/CC……………………………………………………..........141

6.3 Pneumatic power supply………………………………………………...145

6.3.1 Engine with bleed……………………………………………….145

7 FLIGHT CONTROL SYSTEM DESCRIPTION ……………………………...153

7.1 Introduction……………………………………………………………..153

7.2 Primary Flight Control System architecture…………………………… 155

7.3 FCS Hardware description ……………………………………………..158

8 FLIGHT CONTROL SYSTEM DESIGN……………………………………...161

8.1 Longitudinal primary flight control system……………………………. 161

8.2 Longitudinal Stability Augmentation System design………………….. 162

8.2.1 Longitudinal stability augmentation system close loop

Analysis…………………………………………………………………164

8.2.2 Attitude command loop design………………………………… 166

8.3 Auto-throttle design……………………………………………………. 167

8.4 Longitudinal Stability Augmentation System gains selection…………. 167

8.5 Lateral Primary Flight Control System…………………………………168

8.6 Lateral Stability Augmentation System design…………………………169

8.6.1 Lateral stability augmentation system architecture……………..170

8.6.2 Lateral stability augmentation system closed loop analysis……171

8.6.3 Lateral stability augmentation system gain selection…………...174

8.7 Turn coordination and turn compensation……………………………... 177

8.8 Stability Augmentation System analysis………………………………..179

8.8.1 Longitudinal dynamics …………………………………………179

8.8.2 Lateral dynamics ……………………………………………….182

8.8.3 Directional dynamics …………………………………………...185

8.8.4 Control authority limit ………………………………………….187

9 CONCLUSIONS AND RECCOMANDATIONS ……………………………..191

9.1 Introduction……………………………………………………………..191

9.2 Conclusions …………………………………………………………….192



vi

9.2.1 Air Vehicle modelling ………………………………………….192

9.2.2 Circulation Control actuator ……………………………………193

9.2.3 Flapless Flight Control………………………………………….194

9.2.4 Flight Control System…………………………………………...195

9.3 Recommendations for future work……………………………………...196

REFERENCES …………………………………………………………………………199

PUBLICATIONS ………………………………………………………………………207

Appendix A ½ scale Demon model wind tunnel tests ……………..…………………209

A.1 Wind tunnel test corrections…………………………………………… 209

A.1.1 Solid blockage ………………………………………………… 209

A.1.2 Dynamic pressure correction ………………….......................... 210

A.1.3 Incidence correction ……………………………………………210

A.2 Data quality and repeatability………………………………………….. 211

Appendix B Simulation model development …………………………………………215

B.1 Dynamics module ………………………………………………………215

B.1.1 The generalized force and moment equations ………………….215

B.1.2 Kinematics equations …………………………………………..216

B.1.3 Rotation in space ……………………………………………….216

B.1.4 Navigation equations…………………………………………... 218

B.1.5 Auxiliary equations……………………………………………..219

B.1.6 Inclusion of wind………………………………………………. 219

Appendix C Aerodynamic model for the Demon aircraft (Mathcad code)……..…….221

Appendix D CC Actuator wind tunnel test …………………………………………...235

D.1 Drawings of the CC actuator wind tunnel test model………………….. 235

D.2 Corrections to wind tunnel data and CFD results ……………………... 237

D.2.1 CC actuator wind tunnel test corrections……………………….237

D.2.2 3D corrections of CFD data …………………………………… 238

D.3 Data quality and repeatability…………………...…………………….. 239

D.4 Mathematical model derivation of the actuator geometry.…………….. 239

Appendix E Prediction of the aerodynamic characteristics of the Demon/CC…… 245

E.1 Part span correction ……………………………………………………245

E.2 Rolling moment coefficient …………………………………………… 246



vii



vii

TABLE OF FIGURES

Fig. 1-1 The Eclipse UAV and the Demon modified version …………………. 2
Fig. 1-2 FTV flow schematic (Wilde, Gill, Michie & Crowther, 2007)……….. 2
Fig. 1-3 CC flow schematic…………………………………………………..... 2
Fig. 2-1 Basic circulation control aerodynamic (Kind, 1968), (Englar,1975) … 15
Fig. 2-2 Notation used in the transformation between an aerofoil and a circle .. 15
Fig. 2-3 Variation of lift coefficient with rear stagnation point, for a 20% thick

ellipse, =0o…………………………………………………………… 17
Fig. 2-4 Pure jet flap concept ………………………………………………….. 18
Fig. 2-5 Blown lift capabilities of a CC elliptical airfoil, 20% thick at =0o….. 19
Fig. 2-6 Effect of trailing edge geometry (Jones, 2005) ………………………. 21
Fig. 2-7 End view of Coanda surfaces with different elliptical ratio (Alexander

et al., 2004)……………………………………………………………. 22
Fig. 2-8 Effect of coanda surface (Alexander et al., 2004)…………………….. 22
Fig. 2-9 Effect of thickness and camber on CC airfoil performances (Englar,

2000)…………………………………………………………………... 23
Fig. 2-10 Retractable/Storable CCW trailing edge. (Loth, 2005)……………….. 25
Fig. 2-11 A-6/CCW STOL Flight Demonstrator Aircraft………………………. 26
Fig. 2-12 Dual radius CCW configuration, applied to a 16% Thick Supercritical

Airfoil (Englar, 1994)…………………………………………………. 27
Fig. 2-13 Schematic of the full span model; b) 6mm diameter TE and 0.15-0.3

mm slot height (Frith et al.,2004)……………………………………... 29
Fig. 2-14 Variation of rolling moment with asymmetric blowing (Frith et al.,

2004)…………………………………………………………………... 29
Fig. 2-15 LSB17 dual slot model cross section-slot location (xs/c): upper: 0.968,

lower: 0.97 (Imber, 2005)…………………………………………….. 30
Fig. 2-16 Control range increase with upper and lower slot (Imber,

2005)………………………………………………………………….. 30
Fig. 2-17 Dual slot low aspect ratio wing design (Rogers & Donelly,

2004)…………………………………………………………………... 31
Fig. 2-18 Dual slot low aspect ratio wing performance (Rogers,

2004)…………………………………………………………………... 32
Fig. 2-19 Small counter-flow (5%) from the second slot used to influence the

excessively turned jet (Rogers, 2004)………………………………… 32
Fig. 2-20 Static flow visualization of the jet using tufts (Rogers,

2004)…………………………………………………………………... 33
Fig. 2-21 2-Dimensional 17% Supercritical General Aviation Circulation

Control Airfoil with a circular trailing edge r/c: 2% (Jones,
2005)…………………………………………………………………... 33

Fig. 2-22 2-Dimensional 17% Supercritical General Aviation Circulation
Control Airfoil with a circular trailing edge r/c:2% ( Jones,
2003)…………………………………………………………………... 34

Fig. 3-1 Demon Flight Envelope……………………………………………….. 35
Fig. 3-2 The Demon control configuration ……………………………………. 37
Fig. 3-3 50% scale full-span DEMON model mounted in the 8x6 foot wind

tunnel at Cranfield University. (Downstream/front view, image was



viii

rotated through 180) …………………………………………………. 38
Fig. 3-4 Surface flow visualization of the half-scale Demon vehicle; free

transition on main wing. (=0°) ……………………………………… 55
Fig. 3-5 Static longitudinal dynamic characteristics of the Demon …………… 56
Fig. 3-6 Indication of the Demon aerodynamic efficiency. 50% scale:

K1=0.21, K2= 0.4 ……………………………………………………. 57
Fig. 3-7 Demon static margin characteristic …………………………………... 58
Fig. 3-8 Indication of the Demon lateral and directional static stability .50%

scale full span model …………………………………………………. 59
Fig. 3-9 Outboard aileron control characteristics of the 50% scale full span

model …………………………………………………………………. 60
Fig. 3-10 Inboard aileron control characteristics of the 50% scale full span

model …................................................................................................. 61
Fig. 3-11 Rudder control characteristics of the 50% scale full span model …….. 62
Fig. 3-12 Elevator angle to trim ………………………………………………… 63
Fig. 4-1 Non-linear simulation model data flow diagram ……………………... 67
Fig. 4-2 Earth Axes (Cook, 2007) ……………………………………………... 68
Fig. 4-3 Aircraft motion variables notation …………………………………… 69
Fig. 4-4 General rigid body dynamic ………………………………………….. 72
Fig. 4-5 Static thrust of the uninstalled engine @ STP (amtjets.com) ………… 77
Fig. 4-6 RPM commanded as a function of throttle (0-100 %) ……………….. 77
Fig. 4-7 Actuator response to sin wave signal ………………………………… 82
Fig. 4-8 Longitudinal linear model non linear model comparison ……………. 91
Fig. 4-9 Aircraft response to 1 deg elevator step input ………………………... 92
Fig. 4-10 Lateral linear model non linear model comparison …………………... 93
Fig. 4-11 Aircraft response to 1 deg rudder step input …………………………. 94
Fig. 4-12 Aircraft response to 1 deg -2s aileron pulse input ……………………. 95
Fig. 4-13 Comparison between the first order and the complete space model

step aileron response ……………………………….……………….... 96
Fig. 4-14 Roll attitude response to 1o 2s aileron pulse. Comparison of the spiral

mode at low incidence to the spiral mode at high incidence …………. 96
Fig. 4-15 Phugoid damping ratio of basic airframe plotted against equivalent

airspeed ……………………………………………………………….. 99
Fig. 4-16 Short period damping ratio of basic airframe plotted against

equivalent airspeed …………………………………………………… 99
Fig. 4-17 Dutch roll damping ratio of basic airframe plotted against equivalent

airspeed ……………………………………………………………….. 100
Fig. 4-18 Product of Dutch roll damping ratio and frequency of basic airframe

plotted against equivalent airspeed……………………………………. 100
Fig. 4-19 Roll mode time constant of basic airframe plotted against equivalent

airspeed-Most stringent MIL-F-8785C level flying qualities
maximum roll mode time constant …………………………………… 101

Fig. 4-20 Spiral mode time constant of basic airframe plotted against equivalent
airspeed. Most stringent MIL-F-8785C level flying qualities
minimum time constant ………………………………………………. 101

Fig. 5-1 General arrangement of a flow control actuator installation……...…... 104
Fig. 5-2 Section view of a wing trailing edge arrangement for a a)

conventional fixed slot and b) bi-directional circulation control



ix

actuator………………………………………………………………… 104
Fig. 5-3 Photographs of the experimental setup………………………………... 107
Fig. 5-4 Comparison of the baseline lift coefficient with no blowing …………. 121
Fig. 5-5 Comparison of the baseline drag coefficient with no blowing ……….. 121
Fig. 5-6 Effect of slot height on lift generation -  = 0o ……………………….. 122
Fig. 5-7 Effect of jet velocity on lift generation -  = 0o ……………………… 122
Fig. 5-8 Efficiency comparison of two different slot heights ………………….. 123
Fig. 5-9 Lift per fluidic power comparison for two different slot heights -  =

0o ……………………………………………………………………… 123
Fig. 5-10 Comparison of flap high lift characteristic with dual slot CC actuator

– h/r=0.2, C=0.02 ……………………………………………………. 124
Fig. 5-11 Lift increment dual slot actuator– h/r=0.2, =0o ……………………... 124
Fig. 5-12 Lift increment dual slot actuator– h/r=0.08, =0o ……………………. 125
Fig. 5-13 Variation of pitching moment with control angle deflection – =0o….. 125
Fig. 5-14 Drag polar– =0o……………………………………………………… 126
Fig. 5-15 Wake profile measurement 1 chord downstream, mid-span – h/r=0.2,

=0o......................................................................................................... 126
Fig. 5-16 Comparison of the drag polar of the baseline wing with the drag polar

of the CC wing with and without blowing ……………………………. 127
Fig. 5-17 Wake profile measurement 1 chord downstream, mid-span – h/r=0.5,

wake deflection ……………………………………………………….. 127
Fig. 5-18 Flow control actuator slot geometry ………………………………….. 128
Fig. 5-19 Comparison of the mathematical model with the experimental data …. 128
Fig. 5-20 Comparison of the computed baseline lift coefficient to wind tunnel

results …………………………………………………………………. 129
Fig. 5-21 Single slot trailing edge blowing.  = 0o ……………………………... 130
Fig. 5-22 Change in lift due to differential trailing edge blowing.  = 0o ……… 131
Fig. 5-23 Change in drag due to differential trailing edge blowing.  = 0o …….. 131
Fig. 5-24 Speed contours ………………………………………………………... 132
Fig. 5-25 Simulated pressure distribution on the airfoil – =0o ………………… 133
Fig. 5-26 Simulated pressure distribution on the airfoil – =5o ………………… 134
Fig. 6-1 Circulation Control actuator representation (a)……………………….. 138
Fig. 6-2 Circulation Control system representation (b)………………………… 139
Fig. 6-3 Experimental servo actuator system representation…………………… 139
Fig. 6-4 a) Rolling moment derivatives evaluated for the CC actuator replacing

the inboard aileron of the Demon. b) Air supply requirements……….. 144
Fig. 6-5 a) Comparison of the differential rolling moment at different blowing

setting with differential rolling moment achievable with mechanical
aileron deflection. b) Chamber pressure variation with flight
speed…………………………………………………………………... 145

Fig. 6-6 Static thrust performance of uninstalled AMT Olympus micro jet
engine with bleeds @ STP ……………………………………………. 147

Fig. 6-7 Thrust loss versus maximum bleed mass flow rate. b) Thrust loss per
bleed rate at each throttle setting ………………………………..…… 148

Fig. 6-8 Bleeding requirements at different throttle setting and different speed
within the flight envelope …………………………………………….. 149

Fig. 6-9 Throttle setting required for steady level flight as a function of true



x

airspeed @ 121m……………………………………………………… 150
Fig. 6-10 Effect of bleeding on max turning bank angle ………………………... 150
Fig. 7-1 Demon global system view……………………………………………. 153
Fig. 7-2 Longitudinal primary flight control system…………………………… 159
Fig. 7-3 Lateral –Directional primary flight control system…………………… 160
Fig. 8-1 Longitudinal flight control system architecture ………………………. 163
Fig. 8-2 Pitch trim design ……………………………………………………… 163
Fig. 8-3 Root locus plot – pitch rate feedback to elevator ……………………... 165
Fig. 8-4 Root locus plot – pitch attitude feedback to elevator …………………. 166
Fig. 8-5 Lateral flight control system architecture …………………………….. 170
Fig. 8-6 Root locus plot — yaw rate feedback to rudder …………………...…. 173
Fig. 8-7 Yaw rate feedback gain to rudder …………………………………….. 176
Fig. 8-8 Bank attitude feedback gain to cc actuator …………………………… 176
Fig. 8-9 Bank attitude feedback gain to aileron …………………...…………... 177
Fig. 8-10 Bank attitude time response …………………………………………... 177
Fig. 8-11 Pitch demand step input-time response ……………………………..... 180
Fig. 8-12 Pitch demand step input-time response ……………………………..... 181
Fig. 8-13 Longitudinal variables time response during simulation of a

coordinated turn ………………………………………………………. 183
Fig. 8-14 Lateral variables time response during simulation of a coordinated

turn ……………………………………………………………………. 184
Fig. 8-15 Ground track during bank-angle steering …………………………….. 185
Fig. 8-16 Variables variation during simulation of bank steering ………………. 186
Fig. 8-17 Ground track during bank-angle steering with control saturation ……. 188
Fig. 8-18 Variables variation during simulation of bank steering with control

saturation ……………………………………………………………… 189
Fig. A-1 Longitudinal data repeatability……………………………..…………. 213
Fig. A-2 Lateral data repeatability………………………………..…………….. 214
Fig. D-1 Data measurements repeatability=0o, h/r=0.16……………………... 241
Fig. D-2 Data measurements repeatability =0o, h/r=0.2 ……………………… 242
Fig. F-1 CATIA model illustrating the chamber internal arrangement………… 237
Fig. F-2 Detail of the servo actuator arrangement ……………………………... 237



xi

NOTATION

Roman alphabet

a Speed of sound, Wing lift
curve slope

a0 Wing section lift curve slope

ac Aerodynamic centre

ax Axial acceleration

ay Lateral acceleration

az Normal acceleration

Aj Slot area

AR Aspect ratio

A State matrix

b Wing span, bleed

B Input matrix

c Chord

c Mean aerodynamic chord

cg Centre of gravity

cp Centre of pressure

C Output matrix

CD Drag coefficient

0DC Zero lift drag coefficient

CL Lift coefficient

LC Lift curve slope

qLC Lift coefficient due to pitch

rate

L
C Rate of change of lift

coefficient with elevator
deflection

maxLC Maximum lift coefficient

LLC Rolling moment coefficient

pLLC Rolling moment coefficient

due to roll rate

rLLC Rolling moment coefficient

due to yaw rate

LLC Rolling moment coefficient

due to sideslip

LLC Rolling moment coefficient

due to aileron deflection

LLC Rolling moment coefficient

due to rudder deflection

CM Pitching moment coefficient

0MC Pitching moment coefficient

about aerodynamic centre of
wing

qMC Pitch damping moment

coefficient

MC Slope of CM- plot

MC Pitching moment coefficient

due to elevator deflection

CN Yawing moment coefficient

pNC Yawing moment coefficient

due to roll rate

rNC Yawing moment coefficient

due to yaw rate

NC Yawing moment coefficient

due to sideslip

NC Yawing moment coefficient

due to aileron deflection



xii

NC Yawing moment coefficient

due to rudder deflection

YC Side-force coefficient

rYC Side-force coefficient due to

roll rate

rYC Side-force coefficient due to

yaw rate

YC Side-force coefficient due to

sideslip

YC Sideforce coefficient due to

aileron deflection

YC Sideforce coefficient due to

rudder deflection

C Blowing momentum
coefficient

D Drag

DCM Direction cosine matrix

e Oswald coefficient factor

F Aerodynamic force

g Acceleration due to gravity

h Altitude, Slot height

hn Control fixed neutral point
position on reference chord

hac Aerodynamic centre position
on reference chord

hcg Gravity centre position on
reference chord

Ix Moment of inertia in roll

Iy Moment of inertia in pitch

Iz Moment of inertia in yaw

Ixy Product of inertia about ox
and oy

Ixz Product of inertia about ox

and oz

Iyz Product of inertia about oy

and oz

K Induced drag factor

Kn Control fixed static stability
margin

Kp Roll rate SAS gain

Kq Pitch rate SAS gain

Kr Yaw rate SAS gain

Kv Auto-Throttle gain

K Roll attitude SAS gain

q
K Turn coordination gain

r
K Turn coordination gain

K Pitch attitude SAS gain

K Lift augmentation

L Lift, Rolling moment

m Mass

m Mass flow rate

M Pitching moment

M Mach number

n Total normal load factor

N Yawing moment

o Origin of axes

p Roll rate

pss Steady state roll rate

P Atmospheric pressure

Pc Plenum pressure

Pintake Engine intake pressure

PE East position in earth axis

PN North position in earth axis

P0 Sea level pressure

q Pitch rate

Qdyn Dynamic pressure



xiii

r Yaw rate, Coanda surface
radius

rW Washout yaw rate

R Universal gas constant

RPM Engine speed

Re Reynolds number

s Wing semi-span

s Laplace operator

S Wing reference area

t Time

t/c Airfoil thickness to chord ratio

T Temperature, Uninstalled
thrust @STP

Tc Plenum temperature

TG Gross thrust

Tintake Engine intake temperature

Tr Roll mode time constant

Ts Spiral mode time constant

TW Wash out filter time constant

T Thrust

T0 Sea level temperature

u Axial velocity perturbation

u Input vector

U Axial velocity

v Lateral velocity perturbation

V Perturbed total velocity,

Lateral velocity

VD Normal velocity in earth axes

VE East velocity in earth axes

Vj Jet velocity

VN North velocity in earth axes

VT True airspeed

VW Wind velocity

V∞ Free stream velocity

x Longitudinal coordinate in
axis system

x State vector

X Axial force component

y Lateral coordinate in axis system

y Output vector

Y Side force component

z Normal coordinate in axis system

Z Normal force component

w Normal velocity perturbation

W Normal velocity



xiv

Greek alphabet

 Angle of attack

0 Zero lift angle of attack

 Sideslip

 Flight path angle, Specific heat
ratio of air

 Control angle

 Increment

 Elevator angle

 Rudder angle, Damping

d Dutch roll damping ratio

p Phugoid damping ratio

s Short period pitching oscillation
damping ratio

 Pitch angle

 Coanda surface axis offset

 Wing sweep angle

 Aileron angle

cc CC aileron actuator deflection

 Air density

0 Sea level air density

 Throttle

 Roll angle

 Yaw angle

 Undamped natural frequency

p Phugoid undamped natural
frequency

s Short period undamped natural
frequency



xv

Subscripts

0 Nominal slot height, Free stream flow conditions

 Free stream conditions

¼ Quarter chord point

ac Aerodynamic centre

b Bleed

B Aeroplane body axes

c Plenum chamber

cp Centre of pressure

d Demanded

e Equilibrium

E Aeroplane Earth axes

G Gravitational

I Initial

j Jet slot

l Lower slot

p Roll rate

q Pitch rate

r Yaw rate

s Slot position, Stagnation point location

S Aeroplane stability axes

trim Trim condition

u Upper slot, axial velocity

v Lateral velocity

w Normal velocity

wt Wind tunnel

 Angle of attack

 Rudder

 Aileron



xvi



1

1 INTRODUCTION

1.1 The FLAVIIR project

The research reported in this thesis describes the supporting Flight Dynamics

contribution to the Flapless Aerial Vehicle Integrated Interdisciplinary Research

programme (FLAVIIR).

The FLAVIIR project is a five year research programme looking at new technologies

for future Unmanned Air Vehicles (UAVs), funded jointly by BAE Systems and the

Engineering and Physical Sciences Research Council (EPSRC) in the UK. Managed

jointly by BAE Systems and Cranfield University, the project includes nine additional

collaborating university partners. The research programme covers all essential aspects

of aeronautical technologies integration for the next generation of advanced UAV

concepts. The focus for the research is the “Grand Challenge” proposed by BAE

Systems:

“To develop technologies for maintenance free, low cost UAV without conventional

control surfaces and without performance penalty over conventional craft”

The principal goal of this ambitious programme of research is to design, build and fly a

small, but representative, UAV embodying the integrated technologies developed in the

various research studies comprising the project. In particular, it is intended to

demonstrate the feasibility of total flight control utilizing flapless technologies. In the

context of the project, flapless flight control is interpreted to mean circulation control on

the wing by means of trailing edge blowing, and thrust vectoring the exhaust from a

small propulsive gas turbine engine. The project will culminate with the flight of a

demonstrator vehicle equipped with novel technologies related to flapless flight,

currently being developed at by the participating British Universities.

Further information about the FLAVIIR programme can be found on the project

website: www.flaviir.com.
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From the beginning of the FLAVIIR programme it was recognized that the flying

demonstrator should use as much as possible of an existing vehicle to recycle design

effort; this will reduce development, manufacturing and operating costs.

The demonstrator air vehicle selected for the project (Demon) is a modified version of

the Eclipse air vehicle, a pre-existing UAV design developed at Cranfield University

jointly with BAE Systems. The Eclipse air vehicle is shown in Fig. 1-1, together with

the modified version of the Demon.

Fig. 1-1. The Eclipse UAV and the Demon modified version

Two flow control mechanisms for flapless flight control are being developed by

Manchester University for Demon. The first utilises engine thrust vectoring for pitch

control by means of secondary blowing over fixed upper and lower Coanda surfaces

installed in the rectangular exhaust nozzle (Fig. 1-2). The second utilises wing

circulation control in place of conventional ailerons for roll control. The CC “aileron”

control also utilises blowing over a Coanda surface embedded in the trailing edge of the

wing (Fig. 1-3).

Fig. 1-2. FTV flow schematic (Wilde, Gill,
Michie & Crowther, 2007)

Fig. 1-3. CC flow schematic
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1.2 Background and Motivation

In recent years there has been an increasing interest in developing means by which

conventional flight controls can be replaced by controls that operate without altering the

external geometry of the aircraft. The elimination or reduction in size of hinged flight

control surfaces on an aircraft offers the possibility of reducing aircraft signature and

reducing maintenance requirements.

The conventional high lift generation by means of mechanical flaps not only results in

high noise levels, but is also structurally inefficient for the following reasons:

 The need to retract flaps in cruise imposes the use of a complex variable

geometry wing.

 Heavy mechanical loads and hinge moments due to flap deflection are transferred

to the thin trailing edge of the wing.

 Storage of flaps and slats within the wing structure reduces the effective volume

available for fuel storage and thus impacts effective aircraft range.

 Wing structural weight is increased and torsional loading on the wing box is

increased.

One of the most promising techniques to provide direct control of lift, involving virtual

aerodynamic shape change as opposed to a real mechanical shape change, is flow

control based on the Coanda effect, termed Circulation Control (CC). The concept of a

fluidic control refers to an actuator that provides control forces through modification of

the fluidic boundary conditions of a flow, as opposed to a conventional moving surface

actuator that functions by modifying the geometric boundary of the flow. A CC system

consists of a fixed geometry lifting surface with a circular trailing edge cross section.

Air is blown tangentially over the curved trailing edge to vary the location of trailing

edge separation. In a similar manner to conventional control surfaces, this changes the

section circulation, and hence varies the lift coefficient at a fixed angle of attack (Fig. 1-

3).

Fluidic flight controls are considered as a type of flow control device and thus are based

on the extension of well established flow control principles developed as aerodynamics

research over the last 100 years.
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Circulation Control technologies have been around since the early 1930s and have been

successfully demonstrated (Englar, 2000). Exploratory investigations have

demonstrated a threefold gain in lift over the conventional flapped airfoil section

(Englar, 1975) and at least a doubling of maximum lift coefficient for a three-

dimensional aircraft configuration (Englar & Hammerly, 1981). The main purpose of

the Circulation Control Wing (CCW) applications has been to increase the lifting force

of an aircraft at times when large lifting forces at slow speeds are required, such as take

off and landing. Wing flaps and slats are currently used during landing on almost all

aircraft and on take-off by larger jets. While flaps and slats are effective in increasing

lift, they do so at a high cost of drag. The benefit of the Circulation Control Wing is that

no extra drag is created and the lift coefficient is greatly increased. Such advances in

wing design could allow for dramatic wing size reduction in large, wide body jets.

The use of a CCW system eliminates the need for large complex components in the free

stream such as flaps and slats greatly reducing the noise pollution of modern aircraft.

Additionally, a much shorter ground roll coupled with steeper climb outs and

approaches reduces the ground noise footprint.

For performance enhancement applications, the gross changes to the flow are typically

smaller and it is convenient to use ‘low authority’ types of actuation, e.g. boundary

layer control. At low speeds, an aircraft has reduced airflow over the wing and vertical

stabilizer. This causes the control surfaces (ailerons, elevator and rudder) to be less

effective. The CCW system increases the airflow over these surfaces and consequently

can allow higher maneuverability at low speeds.

A distinguishing factor in more recent work is the drive to use flow control to provide

the forces and moments necessary for vehicle flight control as opposed to aerodynamic

tailoring for performance enhancement. Flight control applications by their nature tend

to require significant changes to the flow to be effective, and this leads to the concept of

‘high authority’ flow control actuators.

An experimental investigation has been performed by Frith and Wood (2004) at

Manchester University in which the interest was focused on potential manoeuvre

performance with a CCW. Work by Manchester University has established the physical

principles for flight dynamic flapless control of air vehicles replacing conventional
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ailerons with span-wise pairs of slots which permit differential operation sufficient for

lateral control and without the adverse yaw effect of a flap surface.

This work at Manchester University has led directly to the flapless flight control vehicle

concept which is central to the UK EPSRC/BAE Systems funded FLAVIIR research

programme.

The general challenges associated with the application of such flow control devices

compared to conventional flapped controls include:

 Effectiveness: devices must effect maneuver moments of sufficient magnitude to

meet the requirement of the aircraft’s flight envelope.

 Robustness to operating conditions: it is relatively easy to design conventional

hinged control surfaces that maintain effectiveness over a range of Mach

numbers, aerodynamic attitudes and rates. Flow control maneuver effectors, on

the other hand, are typically much more sensitive to the local flow conditions and

thus there may be additional cost in order achieve acceptable levels of robustness.

 Linearity: the nature of the fluid mechanic coupling at the heart of flow control

devices means that the control response obtained tends to be considerably more

nonlinear than that obtained from conventional hinged controls. In order to

achieve adequate stability margins for the overall flight control system it will

typically be necessary to linearize the actuator characteristics by appropriate use

of inner control laws. Of particular concern is the presence of non monotonic

control response, bi-stability and hysteresis.

Designing with Circulation Control is complex for the following reasons: the relation

between lift increase and blowing momentum is non-linear; for good cruise

performance one must change the wing geometry in flight from a round to a sharp

trailing edge. The bleed air from the propulsion engines or an auxiliary compressor must

be used efficiently. In designing with CC, the propulsion and control aspects are just as

important as aerodynamics.

Modulation of the resultant control force and moment generated by a fixed trailing edge

geometry utilising internal air flow throttling poses an interesting challenge. Potential

engineering difficulties include increased mechanical complexity for bi-directional
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control, control bandwidth limitation associated with airflow throttling and, probably

most significantly, the back pressure impact of on-off bleed air demand on a small gas

turbine engine compressor.

In view of the limitation associated with the standard CC control arrangement an

obvious question might be raised: “How to control the flow in a manner compatible

with conventional aircraft flight control?”. An attempt to answer this question provided

the basis for the design and development of an alternative CC actuator solution.

1.3 Overview of the research

In support of the project, a programme of flight dynamics research is underway in

which the main objective is to provide modelling and simulation as well as stability and

control analysis to the collaborating partners. The main aim of this research is the

application and modelling of circulation control technology for the purpose of

representative flight simulation. The main contributions to the project include flight

modelling, simulation and control, fluidic circulation control actuator development and

flight control system design.

The first objective of this research was to develop a six degree of freedom simulation

model (6DoF), based on the Eclipse airframe and to evaluate the control and stability

characteristics of the conventional flap control configuration. In order to obtain a

representative aerodynamic model of the vehicle an extensive Wind Tunnel (WT) test

campaign has been carried out. The contribution to aerodynamic modelling also

included a review of previous Eclipse aerodynamic tests and predictions from semi-

empirical sources to provide confirmation and accuracy, and to indicate areas of testing.

As new design data has become available through the life of the project, so the

simulation model has been continuously improved to be as representative as possible of

the Demon configuration. This process continues as the air vehicle design is refined

further. The flying demonstrator presents an unusual aircraft configuration and, due to

the small aspect ratio and large leading edge sweep performs not unlike a conventional

delta wing. Therefore the simulation model of the Demon air vehicle has been used to

assess the peculiar stability and control properties of the vehicle in the flight envelope.



7

Additionally, the configuration which utilizes only conventional flaps provided a useful

reference for the subsequent analysis of flapless control.

An objective of this research was to develop a flow control mechanism which could be

integrated with conventional flight controls, relying on minimal changes. An alternative

flow control mechanisation was proposed, comprising an actuator device fully capable

of proportional bi-directional control; the arrangement is envisaged as a direct wedge

shaped trailing edge replacement for a conventional surface flap and aims to avoid the

problems of the more typical arrangement described in section 1.2. What was not so

obvious was how practical the actuator might be and how much control power could be

achieved compared with a conventional flap of similar size.

The circulation control actuator prototype was manufactured and tested in a low speed

open section wind tunnel. The purpose of the experimental programme was to establish

the viability of the actuator mechanical design and to compare its performance with a

conventional equivalent flap surface.

The design method in sizing CC controls should be integrated with the overall aircraft

design, in the sense that the pneumatic power supply system requirements should be

included in the overall design cost function. The ability to achieve higher performance

is counteracted by the overall systems and performance cost associated with the

implementation. A study that aims to identify a design cost function, that weights

performance efficiency and systems cost, falls outside the scope of this research. This

study aims at looking at the flying demonstrator as a case study, to assess, with a first

order approximation, the impact of geometric saturation and power limits of CC on

performance at different flight phases and how that limit can change the boundaries of

the flight envelope with respect to the flap configuration. The effort/power saturation

limits for fluidic actuation arise due to the finite performance of the pneumatic power

supply for the actuator. Different options considered within the Demon system design to

supply compressed air are discussed.

This study was carried out by creating a model of the flow actuator that includes the

trends established from experiments, complemented by a first principles model. First, a
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reference point has been established for a configuration which utilizes only

conventional flaps. Second, the model of the flow control actuator was incorporated into

the computational model representing the dynamics of the vehicle full scale.

Having established a comprehensive understanding of the flight dynamics of the

Demon, further studies were undertaken to develop a primary flight control system

architecture. The full six degree of freedom (6DoF) simulation model including flap and

flapless motivators provided an essential tool for the subsequent development of the

Flight Control System (FCS). The FCS is a semi-autonomous system to assist control by

a remote pilot throughout the flight.

The Demon Flight Control System design challenges were as follows:

 To provide a safe stable platform with dynamics compatible with expected

manoeuvre envelope of Demon.

 Control characteristics consistent with “carefree” remote handling of a fast highly

loaded unconventional air vehicle.

 Configurable control architecture to enable conventional flap control, circulation

control and thrust vectoring separately and in combination.

 Provision for switching to alternative advanced primary control laws.

 System flexibility to facilitate future experimental flight research

Fluidic controls differ mainly from the conventional controls in their strong dependency

on the free stream velocity and variable air supply. It is important that the flight control

system should correctly compensate for flight condition dependent effects. The primary

flight control system retains the same functionality as a conventional auto-stabilisation

system, but with modifications to allocate commands to the various flap and flapless

motivators, and to provide a degree of safety in the event of failure of the flapless

controls.

1.4 Aim and objectives

The aim of this research is to evaluate the effect of installing fluidic maneuver effectors

on the flight control of a low observable (LO) air vehicle. In particular it is intended to

introduce a methodology for integrated flight control system design using flow control

devices as primary flight control motivators.
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The objectives of this work are:

 To introduce the air-vehicle used in this research and analyse the stability and

control properties of the modified airframe configuration.

 To develop a flight dynamics model of the air-vehicle with particular

emphasis on producing a representative aerodynamic model for the air-

vehicle.

 To research and develop a novel flow control actuator mechanical design,

which provides bi-directional flow control in a manner compatible with

conventional aircraft flight control.

 To identify the design factors, which determine the control effectiveness of

CC effectors in a similar manner to conventional trailing edge devices. In

particular, specific saturation limits and their impact on different flight

operation phases will be assessed.

 To develop a hybrid flight control system using flap and flapless flight control

features. Configurable control architectures using multiple systems (flap and

flapless motivators), while providing a flexible flight test bench, is envisaged

to provide reliability to guarantee that no element is critical to a safe recovery

of the aircraft.

This thesis will focus mainly on the implementation of the wing circulation control

device developed as a replacement for conventional ailerons. The Fluidic Thrust

Vectoring controller will not be discussed, because at the time of writing sufficient

technical design details were not available. Nevertheless, general conclusions about

interfacing fluidic controls with a flight control system will be drawn.
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2 LITERATURE REVIEW

The literature review focuses on two objectives. The first is to introduce the air vehicle

used in this research and gather all the sources of information and data required to

develop a simulation model of the air-vehicle. The second is to gain an understanding of

circulation control wing and its technology and provide a context for this current study

in relation to the state of the art.

2.1 The Eclipse UAV

The Eclipse UAV was designed and built in Cranfield University as the subject of the

BAE SYSTEMS/Cranfield Part-Time MSc in Aircraft Engineering. The aim was to

build and fly an Unmanned Air Vehicle of a novel aerodynamic configuration.

The air vehicle is a low aspect ratio diamond wing configuration and it weighs 35kg

with a 2.2 m wingspan. The Eclipse UAV is powered by an AMT Olympus jet

propulsion system, capable of producing a maximum thrust of 190N. The Aircraft

Systems are based around an Avionics crate known as XRAE, developed by Cranfield

under contract with DERA and flown successfully in the XRAE1.

The final design was notably different from the one chosen out of the conceptual design

stage (Bradbrook, 1999). The configuration evolved from an initial double-diamond

canard concept to a flying wing configuration. The wing was designed with an un-

cambered section and zero setting angle. The leading edge radius was sufficient to delay

separation at the tip and it was not necessary to twist the wing.

As part of the design process of the Eclipse, a series of wind tunnel tests were

performed in October 1998 at BAe Warton. The wind tunnel model was a 1/10th-scale

aluminium flat plate model with the Eclipse plan-form and a solid fuselage, machined

from model board. This process resulted in squared off leading edges.

According to Harrison (1999), the ‘flat plate’ technique has been used successfully to

characterize the aerodynamics of aircraft conceptual designs on a number of occasions
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at Warton. The approach was, therefore, justified, and, prior to the 1/10th-scale tests,

model ‘scalability’ was demonstrated through a series of separate wind tunnel tests on

flat plate and full scale models of another aircraft of similar plan-form to that of the

Eclipse. Wind tunnel test results for a 1/5th-scale flat plate model were found to be

sufficiently comparable to those for an Eclipse-scale model of a diamond wing aircraft.

(This 1/5th-scale diamond wing model had the same mean aerodynamic chord as the

1/10th-scale Eclipse model). Model performance at different Reynold’s numbers was

also investigated. Wind tunnel tests on the 1/10th-scale flat plate model were performed

with a flow velocity of 20m/s which produced a low Reynolds number of 1.8x105.

However, tests on a similar, larger reference model (the 1/5th-scale model mentioned

above) with a diamond wing plan-form at a Re number of 3x106 had also previously

been performed. Data from the low and high Re numbers were therefore compared, and

the differences in aircraft longitudinal behavior due to change in Re number were

deemed sufficiently small to justify the continued testing of the small 1/10th scale

model. The remaining tests were therefore performed at the lower Re number

(Bradbrook, 1999). The effects of the sharp leading edge of the 1/10th-scale model are

unknown, and may reflect an increased normal force with incidence. This observation

was discussed by Bradbrook (1999).

A more extensive series of tests was performed on the 1/10th-scale flat plate Eclipse

model to include the effects of control surfaces (Harrison, 1999). Control surface

deflections were achieved by bending the metal plate, and forces and moments were

measured using an internal strain gauge 5-component balance, which did not record

axial force. Therefore, the conversion of the body axes data to wind axes for assessing

performance was not possible, except by estimating the drag of the vehicle (Bradbrook,

1999).

This wind tunnel test data, produced early in the design phase of Eclipse, was used to

evaluate normal force and pitching moment control power. The pitching moment

control power was found to be significantly less than the one predicted during the early

design. This resulted in an insufficient control power to trim at high incidence, leaving

very little for control. Therefore, the vehicle was balanced to be neutrally stable at low

incidence and a leading edge strake was proposed to reduce the control deflection to

trim at high incidence. The strake was sized during wind tunnel test and a strake with a

leading edge sweep angle of 80o was chosen; this was effectively a chined edge to the



13

fore-body (Bradbrook, 1999). An investigation was carried out in order to remove the

vertical tail using alternative yaw effectors. However, no suitable alternative to the

rudder was found; the need for a vertical tail to stabilize the vehicle, and the provision

of sufficient rudder authority were demonstrated (Bradbrook, 1999).

The wind tunnel test results delivered an aerodynamic database that was used by

Gledhill (1999) to develop a six degree of freedom simulation model of the Eclipse,

using an Advanced Continuos Simulation Language (ACSL). The aerodynamic

derivatives for the simulation model were calculated from a combination of the wind

tunnel test (Harrison, 1999) and predictions from semi-empirical sources (ESDU data

sheets).

A longitudinal and lateral flight control system was also designed. However, the design

was affected by some limitations. The simulation incorporates a simple model engine

which was not based on real engine test data. Discontinuous elements such as actuator

rate limiting, control surface ends-stop and backlash were not modelled. Difficulties in

acquiring the correct trim from the 6DoF simulation affected the control law design.

The FLAVIIR flying demonstrator (Demon) proposed configuration at the start of the

conceptual design was as an Eclipse-Class Vehicle. However, the original Eclipse

configuration, first designed and build in 1999, has been subjected to many

modifications to accommodate the new integrated technologies. Design changes to the

back rear of the fuselage were made to permit installation of thrust vectoring. The

Eclipse is marginally unstable but internal layout changes have resulted in a more

forward cg to ensure a statically stable vehicle. A positive longitudinal stability was

envisaged as a risk reduction. The pitch control power was increased by revised design

of the elevator surfaces. Update aircraft configuration can be found in Yarf-Abbasi and

Allegri (2004).

These configuration changes undermine the aerodynamic model obtained from the

Eclipse wind tunnel tests. Moreover the wind tunnel test conducted on the 1/10th scale

model can not be considered sufficient to confirm the adequacy of the aerodynamic

model used for the 6DoF simulation model for the following reasons:
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 Aerodynamic data should be obtained at a flight scale Reynolds number.

 The estimated zero-lift drag and lift dependant drag should be confirmed.

 The effects of the sharp leading edge of the 1/10th-scale model are unknown.

 A more thorough set of test cases needs to be run for completeness, especially for

the lateral dynamics.

These conclusions directly influence the proposal of further wind tunnel tests to address

the following:

 Evaluate basic aircraft aerodynamics at a flight scale Reynolds numbers. At the

low Re used for the tests to date it is possible that the flow has remained laminar.

Therefore, it could be also be required to fix transition on the aircraft wing.

Implementation of flow visualisation should, also, be considered.

 The Demon wind tunnel model should be modified to reflect the change in aft-

fuselage. It is, also, necessary to add fixed landing gear to the wind tunnel model

and evaluate its contribution to aircraft stability and drag.

 Additional lateral-directional stability information is required; particularly,

sideslip data are especially required. It would be useful to assess the inboard

aileron roll control power separately from the outboard aileron.

2.2 Coanda effect and circulation control wing concept

The basic Circulation Control concept involves the Coanda principle, where a thin jet

air of high momentum air is ejected over a rounded trailing edge, as shown in Fig. 2-1.

The jet remains attached due to a balance between the pressure gradient normal to the

surface and the centrifugal force caused by the streamline curvature. Initially, at very

low blowing values, the jet entrains the boundary layer to prevent aft flow separation,

and is, thus, a very effective boundary layer control. Eventually, as the jet continues to

turn, a rise in the static pressure, plus viscous shear stress and centrifugal force,

combine to separate the sheet, and a new stagnation point and streamline are formed on

the lower surface. The large deflection of the stagnation streamline produces a

pneumatic camber, thereby increasing the airfoil circulation, and hence, the lift.
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Fig. 2-1. Basic circulation control aerodynamic. (Kind,1968),(Englar,1975)

Conventional airfoils feature a sharp trailing edge, which not only streamlines the flow,

but, also, determines the location of rear stagnation point. In other words, it can be

stated that lift generated by an airfoil with sharp trailing edge is only dependant on its

incidence, as the rear stagnation point is located at the trailing edge. If, however, the

aerofoil has a blunt trailing edge, the usual Kutta condition cannot be enforced and the

rear stagnation point is free to move dependent upon the circulation, incidence angle,

and free-stream velocity. Since the freedom of the rear stagnation point to move around

the trailing edge characterizes an inviscid fluid, a potential flow solution can be shown

to model approximately the flow around the airfoil.

Consider the irrotational flow in the  -plane past the circle a . On the circle itself let

 iae . Consider the transformation:
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Fig. 2-2.Notation used in the transformation between an aerofoil and a circle
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The circle becomes the ellipse given by

,sin)(,cos)( 1212    abayabax (2-2)

whose thickness /chord ratio is )/()(/ 2222 babact  .

The Kutta condition asserts that in the -plane the speed on the surface must be zero at

the point =- which corresponds to the trailing edge of the airfoil. This condition

gives,
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Eqs. (2-2) and (2-3) give,
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Fig. 2-3 shows the variation of lift coefficient with position of rear stagnation point

based on Eq. (2-6), for a 20 percent thick ellipse.
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Fig. 2-3. Variation of lift coefficient with rear stagnation point, for a 20% thick ellipse, =0o

The dependence of Circulation Control technology on boundary layer control, through

tangential wall jet blowing, distinguishes it from other forms of powered lift system like

Jet Flap. The Jet Flap relies on ejection of a considerable air mass flow in the form of a

jet sheet to generate lift and thrust simultaneously, (Fig. 2-4). The ejected jet sheet

contributes to the airfoil forces directly due to the horizontal and vertical components of

jet momentum and indirectly due to its influence on the flow field external to airfoil. As

the jet sheet penetrates the free stream, it causes a deflection and hence changes the

airfoil flow field in a manner very much similar to a mechanical flap. This interaction

between jet sheet and free stream produces extra lift and thrust.

The lift due to jet flaps can be attributed to three different sources:

a) Direct lift component of the jet reaction.

b) Circulation generated around the airfoil.

c) Boundary layer control.

The boundary layer effect is most significant when the jet momentum turn is small

while the super-circulation effect predominates when the momentum is moderate or

large.
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Fig. 2-4. Pure jet flap concept

The efficiency of a pure jet flap (typically vectored normal to surface) compared to

typical CC airfoils (vectored tangentially to the upper surface), is realized in the

differences in the induced effects that accompany the pressure field. It is recognized that

both of these airfoil techniques benefit from induced forces and reaction forces that can

be correlated to jet position and orientation. Nominally, Jet Flap airfoils depend largely

on the reaction force of the jet momentum. Coanda-type systems capture the induced

forces more efficiently and typically deliver larger lift gains than a pure Jet Flap.

In contrast to Jet Flap's direct interaction with flow field, Circulation Control features

direct control of circulation and, hence, lift by suppression of separation by boundary

layer control. Consequently, lift generated by CC is very sensitive to changes in

tangential jet momentum.

Aerodynamic performance of a CC device is characterized as a function of slot flow

momentum coefficient, C, which is the momentum flux exiting from the slot

normalized by the free stream dynamic pressure and a reference area – usually the area

of the wing with full span trailing edge slot:

SQ

Vm
C

dyn

jj


 (2-7)

A measure of the effectiveness of the blowing in generating lift is the lift augmentation

(CL/C,) which is defined as the ratio of the lift due to blowing to the jet blowing

momentum coefficient.
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Comparison of lift generated by Jet Flap and Circulation Control shows that CC can

produce as much as 4 times more lift than Jet Flap for the same value of Jet Momentum

(Fig. 2-5). Typical initial values of Lift augmentation ratio are 10.0 for a Jet Flap

system; however, for Circulation Control this will be from 30 to 40.

Fig. 2-5. Blown lift capabilities of a CC elliptical airfoil, 20% thick at =0o

Generally, the following relationship is true,

CL is proportional to C for Jet Flap

CL is proportional to C for Circulation Control with low C

However, for Circulation Control, the relationship is linear at low values of C and, as

C increases, the relationship approaches that of Jet Flap. The reduction in lift

generation performance at high C occurs due to increased losses in wall jet turning

around the trailing edge. These losses result in the jet leaving the airfoil surface as it

approaches the stagnation point and being exhausted, still having excess momentum

into the free stream like a jet sheet.
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The characteristic of a wall jet remaining attached to a curved surface dates back to

1800 when Young first described the phenomena and later to Henri Coanda in 1910.

The circulation control concept was not seriously investigated until the early 1960’s by

Dunham and later on by Kind. Dunham (1968) focused on application of CC to a

circular cylinder and his method represents the earliest method for representing lift of

circulation control airfoils with external flow. In 1966 R.J. Kind finished his PhD at

Cambridge University and provided the world with a proof of high CL =6 capability of

an elliptical wing section with circulation control by blowing at very low Cµ (Kind,

1968).

After 1970 The David Taylor Naval Ship Research and Development Center

(DTNSRDC) became a major center for circulation control research. Most of CC

research was focused on the application to rotorcraft and short take-off and landing

(STOL) vehicles, where an elliptical or rounded trailing edge airfoil was used.

Experiments by Englar, Abramson and others examined the effect of a wide range of

parameters on circulation control airfoils. For a summary of this work the reader is

referred to Englar and Applegate (1984).

It is useful to highlight some parametric dependencies of Circulation Control airfoils, in

order to identify the driving design parameters of interest which are thickness

distribution, camber distribution, location of the blowing slots, slot height to the mean

aerodynamic chord, shape of the Coanda surface and curvature. A review of the

available literature justified the engineering judgment that drove the design of the CC

actuator and provide an insight of potential area for testing.

Sizing the Coanda surfaces can be related to optimizing the lift and drag. Nominally a

larger trailing edge Coanda radius would lead to a higher CC lift coefficient as well as a

higher cruise drag. Jones (2005) tested different shape trailing edges with a fixed slot

height to chord ratio of h/c=0.0022. The shapes include circular, elliptic, and biconvex

profiles having effective trailing edge radius of r/c=2%, 1%, and 0% respectively. The

lift and the drag performance are compared in Fig. 2-6. The lift performance of the

larger radius configuration is higher than the other configurations. A comparison of the

drag performance highlights the improvement of the drag as a function of the smaller
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r/c. The elliptic trailing edge (r/c=1%) has less drag than the circular trailing edge

(r/c=2%) throughout the boundary layer and super-circulation region.

Fig. 2-6. Effect of trailing edge geometry, (Jones, 2005)

Aft-slot location can significantly improve the CC section performance. Englar test data

on a 15% thick CC airfoil, reported in Wood and Nielsen (1985), show comparison

between a rounded trailing edge with actual slot location at 96% of the chord and a pure

ellipse trailing edge with actual slot location at 92.4% of the chord, for different Mach

number. The rounded configurations are preferred for low speed operation. At low

speed the rounded trailing edge produces more lift than the elliptic geometry, although

the drag rises significantly as the Mach number increases compared to the pure ellipse.

Therefore, it appears that forward slot location and mild curvature at the slot exit are

more efficient at high speed compared to the rounded configuration favored at low

speed. This result seems to be further validated by an experimental study conducted by

Alexander, Anders and Johnson, (2004). A wind tunnel test was carried out on a six

percent thick slightly cambered elliptical circulation control airfoil with both upper and

lower surface blowing Parametric evaluations of jet slot heights and Coanda surface

shapes were conducted, using Coanda shapes with different elliptical ratio, (Fig. 2-7).
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a) End view of the Coanda surface
b) Coanda surface – aft. slot

location: xs/c =0.9

Fig. 2-7. End view of Coanda surfaces with different elliptical ratio, (Alexander et al., 2004)

At the transonic cruise condition, Mach =0.8, it was found that the effectiveness

increased with increasing Coanda surface elliptical ratio. At the low speed condition,

Mach =0.3, it was found that the effectiveness increased with decreasing Coanda

surface elliptical ratio, (Fig. 2-8).

a) upper slot blowing-Mach=0.3, =3o b) upper slot blowing-Mach=0.8, =3o

Fig. 2-8. Effect of coanda surface, (Alexander et al., 2004)

The efficiency of the Coanda blowing can be related to the slot height and the radius of

the coanda surface. For a fixed Coanda surface radius, experiments have proved that a

higher lift coefficient can be achieved with a smaller slot height for the same
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momentum coefficient (Englar, 1975, Wood & Nielsen, 1985 and Jones, 2005). This

result is valid only for subsonic free-stream velocity. Since it is always preferable to

obtain higher lift with as low a mass flow rate as possible, a thin jet is more beneficial

than a thick jet. However, the pressure required to generate a jet issuing through a

smaller slot is higher than the one for a larger slot at the same momentum coefficient.

The circulation around the airfoil poses an optimization problem dependant upon

whether the blowing air supply is mass flow or pressure ratio limited.

The level of performance of circulation control airfoils is directly related also to specific

aspects regarding airfoil design. Increases in camber and thickness ratio can double the

CC section performance, as shown in Fig. 2-9.

However, excessive camber or thickness have been shown to significantly increase the

growth of the upper surface boundary layer as it approaches the slot, which may result

in reduced lift augmentation (Wood & Nielsen, 1985).

a) Typical Blown-Lift Capabilities of 2-D CC
Elliptic Airfoils at = 0°

b) Equivalent Efficiencies for CC and
Conventional 2-D Airfoils

Fig. 2-9. Effect of thickness and camber on CC airfoil performances, (Englar, 2000)
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The lift increment is proportional, for high value of blowing, to the square root of the

blowing momentum. Therefore the blowing momentum that can be used to produce lift

augmentation is clearly limited to a maximum usable blowing coefficient that if exceed

will not produce any higher lift. It could be inferred from the definition of C , Eq. (2-

7), that the lift augmentation is directly proportional to the velocity ratio, Vj/V∞, and the

last has a significant role in the performance of CC system. Loth and Boasson (1984)

replotted data from Englar (1975) and showed that, at constant slot height, the lift

augmentation increases rather linearly with Vj/V∞. Loth and Boasson (1984), also,

determined that for single-slot blowing at constant slot height, the maximum value of

lift increment will be obtained at a value Vj/V∞ of approximately 4.6. However, at a

given C, there is only about 10% variation in CL over a range of Vj/V∞ values

between 2.5 and 12. At a constant blowing power [C Vj/(2V∞)] the optimum CL is

reached at a velocity ratio of 2.

Although circulation control can be achieved with a supersonic wall jet, Englar (1975)

showed that such a jet loses a significant portion of its momentum to wall shear, and

only the remaining jet momentum will be available to energize the Coanda surface

boundary layer.

The effect of free-stream velocity on the lift generated by blowing seems to be

negligible. Liu (2003) applied an unsteady three-dimensional Navier-Stokes analysis

procedure to CCW and showed that the performance of CC airfoils is independent of the

free-stream velocity under a fixed C and fixed jet slot height conditions, except at very

low free stream velocity where the jet velocity will be too low to generate a sufficiently

strong Coanda effect that eliminates separation.

2.3 Circulation Control aerospace applications

Historically, only two CC aircraft have ever been build and flight-tested in the past 30

years. The main reason for lack of success would appear to be not lack of effectiveness;

rather, the benefits of application have not exceeded the cost of implementation.
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For fixed wing vehicles, the high lift generated by CC wings makes them ideal

candidates for short take off and landing (STOL) aircraft. In 1968, West Virginia

University started the theoretical and experimental investigation of an elliptical

Circulation Control Rotor section for Navy Heavy Lift Rotor Helicopter development

under the contract with Office of Naval Research. A BD-4 airframe was modified by

rotating its flap by 166 degrees that would convert wing flap’s sharp trailing edge into

the round CC Wing and leading edge was dropped down to prevent leading edge stall

(Loth, 2005). Details of the modification are shown in Fig. 2-10 .

The BD-4 airplane was further modified and flight testing was performed in April, 1974

(Loth, 1976). The blowing air was supplied by an onboard 200HP compressor APU.

Fig. 2-10. Retractable/Storable CCW trailing edge, (Loth, 2005)

Numerous wind tunnel tests evaluation (Englar & Hammerly, 1981) led up to flight test

of a fixed CCW device on an A-6/CCW STOL demonstrator in 1979. Fig. 2-11 shows

the CCW installation on the fixed flap of the A-6 aircraft. The Grumman A-6 was

modified and flight tested to demonstrate the high lift and STOL capability of the

circulation control wing concept which employs a circular trailing edge blown by the

standard J-52 turbojet engine high pressure bleed air. A fully comprehensive description

of the flight test can be found in Pugliese (1979).
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Fig. 2-11. A-6/CCW STOL Flight Demonstrator Aircraft, (Englar, 2000)

The results of BD-4 Flight test demonstrator and A-6A Flight test demonstrator have

been compared and results showed full agreement. Lift curve slope was 4.74 for A-6A

and 5.0 for BD-4, while CdCL was 6.6 for both the airplanes.

Both these programs identified the following aspects:

- Circulation control airfoils, when producing high values of CL, are subject to

high drag loads which unlike Jet Flap are not nullified by jet thrust. This high

value of drag along with high lift is beneficial for STOL and Super STOL

airplane applications as it enables a stable, steep gradient landing approach at

very low forward speeds.

- During cruise, which constitutes a very big portion of any airplane mission, the

profile drag associated with blunt trailing edge produces very low values of Lift

to Drag ratio(L/D). Any significant reduction in cruise (L/D) can seriously

reduce the utility of an airplane. Therefore, the need to reduce the CCW drag in

cruise was a necessity for operational flight.

- The airflow acquired from high-pressure compressor bleed ports could be

increased up to 3 to 4 times than that of the standard engine spec bleed limit

without overheating, but obviously at the cost of takeoff thrust lost. High

induced drag may also preclude adequate acceleration at take off.

- To go very slow, at minimum level speed, all available 180 HP where required.

This is a clear indication of flying on the backside of the power curve. Flying
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slow, on the backside of the power curve, is not recommended because no power

is then left over to assist in stall recovery.

The high drag associated with the blunt, large radius trailing edge can be prohibitive

under cruise conditions when Circulation Control is no longer necessary. One way to

reduce the drag is to reduce the trailing edge radius. This, however, causes a loss of lift

compared to a large radius configuration. It was also found that the small radius CC

airfoil with larger slot height could cause jet detachment and sudden lift loss at higher

momentum coefficients nglar & Huson, 1983. Thus a compromise was needed. The

advanced CC airfoil, i.e., a circulation hinged flap (Englar et al., 1983, Englar, 1994 ),

was developed to replace the original rounded trailing edge CC airfoil. The advanced

CC airfoil developed by Englar is shown in Fig. 2-12.

Fig. 2-12. Dual radius CCW configuration, applied to a 16% Thick Supercritical Airfoil,
(Englar, 1994)

The upper surface of the CCW flap is a large-radius arc surface, but the low surface of

the flap is flat. The flap could be deflected from 0 degrees to 90 degrees. When an

aircraft takes-off or lands, the flap is deflected. Then, this large radius on the upper

surface produces a large jet turning angle, leading to a high lift. When the aircraft is in

cruise, the flap is retracted and a conventional sharp trailing edge shape results, greatly

reducing the drag. Overall, the hinged flap design still maintains most of the Circulation

Control high lift advantages, while greatly reducing the drag in cruise, associated with

the rounded trailing edge CCW designs. However, this kind of flap does have some

moving elements, which increase the weight and complexity over an earlier CCW

design.
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It is interesting to note that the majority of applications reviewed focuses on the

application of CC as a high lift device to pneumatically augment the lift. Englar (2000)

has experimentally observed that CC can produce usable control moments; for example,

high rolling moment increments can be produced by differential wing blowing.

However, an integrated flight control and CC system, which could be used to effectively

control the aircraft attitude, appears to be missing.

2.3.1 The use of circulation control for flight control

A distinguishing factor in more recent work is the drive to use flow control to provide

the forces and moments necessary for vehicle flight control as opposed to aerodynamic

tailoring for performance enhancement.

Research into flow physics and the application of flow control to aircraft flight control

has been made over a period of years, see for example, Frith and Wood (2002) and

Sellar, Wood and Kennaugh (2002). Recently concluded flow control research with

direct relevance to the FLAVIIR programme was completed by Frith and Wood (2003).

An experimental investigation into the application of circulation control on a 50° swept

delta wing was performed. This was then extended to a sting-mounted circulation

control demonstrator with two control surfaces, (Fig. 2-13), in order to determine

whether the technique could be used for roll control, whilst maintaining high lift

coefficients within the limits of pitch trim (Frith & Wood, 2004). A lift augmentation of

approximately 20 was achieved when symmetrical blowing was applied on both ports

and starboard slots. The control of rolling moment by circulation control was also

demonstrated (Fig. 2-14). A particular rolling moment could be achieved with a

particular value of Cμ independent of the angle of attack. A gradient of rolling moment

curves with C of approximately 7 was found and a blowing momentum coefficient of

0.0021, equivalent to an aileron deflection of 10 deg was obtained.

This finding is significant to this current study, as it has demonstrated the potential for

CC to produce roll control and pitch trim.

However, a significant rearward movement of centre of pressure was observed that

result in a pitching down moment that will need to be trimmed out. This finding

suggests that differential blowing on each side of the aircraft is necessary to cancel out
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the pitch down moment. Hence, the development of a bidirectional CC actuator is

required.

Fig. 2-13. a) Schematic of the full span model; b) 6mm diameter TE and 0.15-0.3 mm slot
height, (Frith et al., 2004)

a) Left CC rolling only b) Right CC blowing only

Fig. 2-14. Variation of rolling moment with asymmetric blowing, (Frith et al., 2004)

2.3.2 Dual slotted circulation control

Dual slotted devices correspond to system incorporating two slots at the trailing edges.

The literature published on this topic is quite narrow but a review of published materials

aims to introduce the concept exploited in this research.

The first dual slotted airfoil was designed and tested in 1987 by Jane Abramson and the

test documentation can be found in Imber (2005).

a) b)
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Fig. 2-15. LSB17 dual slot model cross section-slot location (xs/c): upper: 0.968, lower: 0.97,
(Imber, 2005)

Fig. 2-16. Control range increase with upper and lower slot, (Imber, 2005)

The airfoil was the first CC model designed at Carderock to incorporate both upper and

lower trailing edge blowing slots (h/c: 0.0013 and 0.0020). The dual slots provide the

ability to produce lift in either direction. The cross section sketch in Fig. 2-15 shows the

LSB17 model. Testing included three blowing modes: upper surface only, lower surface

only and dual blowing. One of the main design goals was to have the dual slotted model

perform as well as the single slotted ‘parent’ model.

The keys findings were:

- There was no detrimental effect of adding the 2nd slot.

- The control range was double so that the force control in both directions was

available, (Fig. 2-16).

An extremely comprehensive investigation was conducted by Rogers and Donelly

(2004) of a low aspect ratio CC wing in the Navy’s 10-foot large cavitation channel in
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Tennessee, shown in Fig. 2-17. Although the intended application is to naval

hydrodynamics, some interesting conclusions can be drawn.

a) model cross section and CC wing AR=2 b) detailed of the trailing edge design

Fig. 2-17. Dual slot low aspect ratio wing design, (Rogers & Donelly, 2004)

The key findings of this investigation were:

- For the wing, which has an aspect ratio of two, the response of CL to C is about

50% of that on the corresponding 2-D airfoil. This is the same percentage as the

CL versus angle of attack change for a conventional wing. Hence, there is no

indication of any basic effects of low aspect ratio that are unique to lift

developed by means of the Coanda form of circulation control, (Fig. 2-18a).

This study confirms the decision of testing the CC actuator on a low aspect ratio

rectangular wing.

- A clear advantage of dual slots is the ability to vector the jet thrust. In fact, in

static conditions, as representative of very low speed operation, when dual slot

blowing was examined, the yarn tufts showed that the two wall jets merged to

form a single free planar jet that could be adjusted to any angle, (Fig. 2-20).

- Wake filling is viable with dual slots, (Fig. 2-18b).

- It was concluded that excessive turning of the jet was causing the loss in lift. The

lower slot produces a very small counter flow to prevent the excessive turning of

the jet and lift roll-off, (Fig. 2-19).
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a) Comparison of actual performances to lift
line theory prediction

b) Wake filling

Fig. 2-18. Dual slot low aspect ratio wing performance, (Rogers, 2004)

Fig. 2-19. Small counter-flow (5%) from the second slot used to influence the excessively
turned jet, (Rogers, 2004)
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Fig. 2-20. Static flow visualization of the jet using tufts, (Rogers, 2004)

Several roadblocks to real aircraft application of CC guided the development of a 2-D

General Aviation Circulation Control (GAAC) wing concept (Fig. 2-21). A

comprehensive description of this work can be found in Jones (2005). Primary

objectives of this effort were to reduce the drag penalty associated with a large

circulation control trailing edge, to evaluate the dual blown pneumatic concept as a

control device and to determine benefit of returned thrust. A 17% thick supercritical

airfoil was chosen as baseline for the GAAC. The A-6/CCW airfoil was a 6% thick

supercritical wing section that incorporated a circular trailing edge radius of 3.67

percent chord. In order to minimize the drag, a baseline circular r/c of 2 % was chosen

for the GAAC.

Fig. 2-21. 2-Dimensional 17% Supercritical General Aviation Circulation Control Airfoil with a
circular trailing edge r/c: 2%, (Jones, 2005)

This blown configuration shows the possibility of reducing the cruise drag by blowing

both the upper and lower slot simultaneously. The equivalent cruise drag is showed in

Fig. 2-22. A 40% drag reduction compared to the un-blown case was realized. The drag

polar indicated that thrust can be adjusted for a given lift to reach an optimum cruise
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configuration. This frame work was a useful reference for the wind tunnel test model to

explore CC actuator.

Fig. 2-22. 2-Dimensional 17% Supercritical General Aviation Circulation Control Airfoil with
a circular trailing edge r/c: 2% , ( Jones, 2005)

McGowan, Gopalarathnam and Jones (2004) explored the use of adaptive circulation

control airfoil to achieve low drag at cruise and climb conditions while retaining the

well-known very-high-lift capability of traditional circulation-control airfoils.

Circulation control was achieved by blowing a jet of high-velocity air through slots on

the upper and lower surfaces over a small adjustable mechanical flap, so that extensive

laminar flow is achieved over a significant portion of the chord and turbulent separation

in the recovery region of the airfoil is avoided by use of the jet blowing. This study

suggests the use of a concept that integrate traditional high lift devices with blowing to

explore the capability of circulation control to adapt an airfoil to suit different flight

conditions.
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3 DESCRIPTION OF THE AIRCRAFT

3.1 Introduction

The Demon air vehicle selected for the project is derived from the Eclipse air vehicle,

which is a pre-existing UAV design developed at Cranfield University jointly with BAE

Systems. Eclipse is a tailless configuration, with a cropped diamond wing plan-form and

powered by a single AMT Olympus HP ES gas turbine engine. Table 3-1 shows the

main geometry and mass properties of the Demon variant of the vehicle. All data

presented is from Yarf-Abbassi and Allegri, (2004), unless otherwise stated. The flight

envelope is presented in Fig. 3-1. The Eclipse air vehicle has four trailing edge flaps

either side of the centre line. Outboard and inboard flap are used symmetrically for

longitudinal control and outboard aileron flaps are used differentially for lateral control.

The addition of a rudder allows the aircraft to be controlled about the three axes

independently.

Fig. 3-1. Demon Flight Envelope
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Fig. 3-2 illustrates the numbering system employed to identify control surface

deflections. The trailing edge control surfaces are referenced by number frequently

throughout the results and analysis sections of the report according to the following

scheme:

 Surfaces No.1: Outboard ailerons

 Surfaces No.2: Inboard ailerons (at the location of the flow control devices)

 Surfaces No.3: Outboard flap

 Surfaces No.4: Inboard elevator

The intended convention for the Demon is that surfaces No.1 should be ailerons, and

surfaces No.3 and No.4 should operate together as a large elevator.

The maximum symmetric and differential deflection of the wing trailing edge flaps is

+/- 15o.The maximum rudder deflection is +/- 20o.

MTOW m 44.2 kg

Wing area S 2.635 m2

Wing span b 2.2 m

Mean chord c 1.34 m

Roll moment of inertia Ixx 1.207 kgm2

Pitch moment of
inertia

Iyy 1.38 kgm2

Yaw moment of
inertia

Izz 12.28 kgm2

Inertia product Ixz -0.25 kgm2

Table 3-1. Demon geometry and mass properties

A principal feature of the Demon aircraft variant is that the aerodynamic flap control

surfaces No.2 shall be replaced with flow control mechanisms sufficient to demonstrate

total flapless flight control of the vehicle. In the context of the experimental programme,

the vehicle will be fitted with both flapless and conventional flap controls such that it

will be controllable by either means, or by a combination of both.

Two flow control mechanisms for flapless flight control are being developed for

Demon. The first utilises engine thrust vectoring for pitch control by means of

secondary blowing over fixed upper and lower Coanda surfaces installed in the

rectangular exhaust nozzle. The second utilises wing Circulation Control in place of
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conventional ailerons for roll control. The CC “aileron” control also utilises blowing

over a Coanda surface embedded in the trailing edge of the wing.

The Eclipse is marginally unstable but internal layout changes in the Demon

configuration have resulted in a more forward cg to ensure a statically stable vehicle.

During the flight envelope change of cg due to fuel consumption are marginal and

negligible, being the fuel tank placed at the cg. The cg position as measured with

respect to the nose point of the aircraft and its flat base is reported in Table 3-2.

cg position

(measured with respect to the nose point of the a/c and its flat base)

xcg [m] ycg [m] zcg [m]

1.203 0 0

Table 3-2. Demon centre of gravity

Fig. 3-2. The Demon control configuration

3.2 Aerodynamic performance

3.2.1 Wind tunnel testing of the demon ½ scale model

As part of the design process of the Demon at Cranfield University a wind tunnel test

campaign was performed with the full-span 50% scale Demon in the 8x6 ft facility at

Cranfield University.

The model was suspended from the wind tunnel ceiling with a rigid faired strut which

was mounted to a 6 component strain gauge balance placed inside the model. This



Thrust
Vectoring

Surface No.3

Surface No. 4

Rudder

Surface No. 2
( CC )

Surface No.1
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positioned the model just off-centre within the working section of the 8x6 ft closed

return wind tunnel at Cranfield University. The model also incorporated a tail-arm

supported by a set of high tension bracing wires that were used to set the angle of attack

of the model (Fig. 3-3). Representative conventional control surfaces and undercarriage

were incorporated. The engine system and jet exit system was not simulated and a

simple fairing was added to the front of the intake.

A summary of the test conditions is given in Table 3-3. Tested Reynolds number

compares to a Reynolds number flight range of between 1.8x106 and 4.5x106.

Fig. 3-3. 50% scale full-span DEMON model mounted in the 8x6 foot wind tunnel at Cranfield
University. (Downstream/back view, image was rotated through 180)

Scale Re     

50% 6105.1  -5, + 20 -12 , +12 ±15 ± 20 ± 15

Table 3-3. Summary of test conditions

Results were corrected for flow blockage and induced angle of attack and

implementation of the wind tunnel test corrections is given in appendix A.
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3.2.2 Sign and conventions

The non-dimensionalising of forces and moments was performed using the following

factors:

 Forces: refSV 2

2

1


 Lateral moments:
22

1 2 b
SV ref

 Longitudinal moment: cSV ref
2

2

1


where V is the wind tunnel velocity and the remaining model scale factors are

summarized in Table 3-4.

Reference area
Mean

aerodynamic
chord

Wing Gross
semi-span

Sref (m2) c (m) b/2 (m)

0.5913 0.67 0.55

Table 3-4. Scale factors used for the preparation of coefficients

Sign convention, which accords with Cook (2007), is that positive control

displacements give rise to a negative aeroplane response:

 Elevator (): positive trailing edge down

 Aileron (): positive if starboard aileron is deflected trailing edge down and port

trailing edge up

 Rudder (): positive if trailing edge of rudder is to port

 Incidence (): positive aircraft nose upwards

 Sideslip (): positive aircraft nose to the right of the wind vector

3.2.3 Wind tunnel results

3.2.3.1 Surface flow visualization

Due to the small aspect ratio and large leading edge sweep the Demon configuration

performs not unlike a conventional delta wing.
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A leading edge separation bubble forms at small angles of attack (~5°), most likely

due to laminar to turbulent transition. Increasing  further gives rise to a pair of vortices

that emanate from the fore-body with its leading edge extensions. These vortices travel

downstream parallel on either side of the fuselage causing the distinct streak line pattern

observed in Fig. 3-4. The flow over the remaining wing is initially unaffected and is

essentially parallel to the free stream. Typically, also, up to three smaller vortices form

along the leading edge extension.

Test conducted at 50% scale were subject to an extremely tight schedule considering the

large volume of test points that needed to be included to support the simulation work

adequately. Hence, only a very rudimentary consideration could be given to force

boundary layer transition in a sensible manner. Serrated tape was used to suppress

localized flow separation on the fore-body and intake as well as on the rudder (at around

10% chord). Forced transition could not be obtained in a sensible fashion on the main

wing and the decision was made to continue with free transition along the main wing

leading edge and fore-body strakes.

Wing leading edge separation occurs at around =7° with free transition. Once wing

stall has occurred the flow separates from the leading edge to form a secondary vortex

system that includes a tornado like focal point separation at the leading edge. This

feature travels inboard along the leading edge as  increases. The wing leading edge

vortex displays an especially obvious attachment line diagonally across the wing, (Fig.

3-4).

3.2.3.2 Longitudinal aerodynamics

Fig. 3-5 shows the static longitudinal aerodynamic characteristics results. Lift increases

linearly until wing stall occurs after which a complex three dimensional vortex structure

is formed evident by an increase in the lift curve slope and drag coefficient. The lift

curve is markedly linear up to the point where the fore-body vortex forms after which a

non-linear trend develops. It is troublesome trying to infer wing stall from the lift curve,

but a noticeable step change in the drag coefficient occurs. Pitching moment decreases

gradually with increasing  without any abrupt step changes (Fig. 3-5).
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An indication of Demon efficiency can be inferred from Fig. 3-6. Maximum lift to drag

ratio of this configuration is around L/D=8. Wing stall causes an abrupt change in the

induced drag factor, listed in Fig. 3-6 as K1, before wing stall, and K2, post-stall.

3.2.3.3 Longitudinal static stability

The classical theory for static stability of aeroplanes, as discussed by Duncan (1959),

states that the condition for stability is:

0
R

M

dC

dC
(3-1)

where RC is the total resultant aerodynamic force coefficient. Now, for the flying

demonstrator, as for the majority of aeroplanes, the lift to drag ratio is in order of 10 so

the condition for stability may be approximated by,

0
L

M

dC

dC
provided that 0




a

CL



Applying the condition for longitudinal static stability, the controls fixed neutral point,

is given (for  small) by:







L

M

Ln
C

C
Ch  (3-2)

The controls fixed static margin is given by,

cgnn hhK  (3-3)

which is the slope of the CM-CL curve, (Fig. 3-7).

As it can be inferred from Fig. 3-7, Demon is characterized by a relatively low stability

due to a low static margin at lower incidence, associated with higher speed. As the angle

of attack increases there is a significant rearward shift of the aerodynamic centre (ac)

which results in a higher static margin.
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3.2.3.4 Lateral directional and static stability

Fig. 3-8 illustrates the lateral/directional stability of Demon. Fig. 3-8 clearly shows that

a positive lateral stability is maintained over an increased angle of attack range. The

large sweepback is the main contributor to the lateral static stability, resulting in a quite

large roll due to sideslip, at low speeds (high CL) and a smaller one at high speed.

When held in sideslip the aircraft will generate yawing moment due to sideslip, which

will tend to restore the aircraft to symmetric flight, known as ‘weathercock’ stability.

Fig. 3-8 shows a healthy level of NC against angle of attack. The directional stability is

derived almost entirely from the fin and it is nominally constant for increasing incidence

at all the angle of attacks tested.

3.2.3.5 Lateral control

Fig. 3-9 illustrates the roll control power of the outboard aileron (5°, 10° and 15°). Up to

approximately 15° angle of attack the outboard flap control is linear with alpha. The

effectiveness between 0° and 15° is about 40% higher than between 15° and 30°. Above

15° the control power reduces probably as a result of tip separation moving inboard.

More detailed data of inboard aileron effectiveness is given in Fig. 3-10 and this dataset

will also serves as the reference for the circulation control devices.

Outboard aileron effectiveness is about 1.5 as effective as inboard aileron below 10°

alpha. However above 10° alpha the roll power on the inboard aileron increases.

A small and acceptable pro-verse yaw effect from both the inboard and outboard aileron

is evident, (Fig. 3-9 and Fig. 3-10).

Rudder control power is linear and constant against alpha. (Fig. 3-11)

3.2.3.6 Summary of mid-range derivative data

Table 3-5 contains a summary of the main derivatives obtained from the ½ scale model

wind tunnel test data. The table presents a comparison with limited data available from

two sources:

 Predictions from semi-empirical Datcom, obtained by the Cranfield

Design Integration group (Allegri, 2006).
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 Mid-range values of the derivatives obtained from the 1/10th scale flat

plate model wind tunnel test data.( Bradbrook, 1999)

The following observations can be made:

 The flat plate 1/10th model produced a higher CLand this is due,

probably, to the effect of the sharp leading edge of the 1/10th-scale model,

as it was discussed in the literature review.

 Elevator control effectiveness compares well with Datcom estimates.

 Similar lateral directional and control derivatives were obtained to those

achieved from the flat -plate tests. Comparisons of aileron effectiveness

with the 1/10th – scale flat plate model could not be made, as only the

effect of double aileron (surface No.2 and No.1 deflected together) was

tested on the flat plate model.
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½ model
1/10th

model
Datcom

LC 2.37 2.51 --

MC
0<<2.8

2.8<<11.8
11<<20

-0.022
-0.112
-0.220

-- --

 10LC

-5
0
5

10
15

0.2739
0.262
0.256
0.289
0.325

-- 0.294

 10MC

-5
0
5

10
15

-0.1318
-0.1307
-0.1295
-0.1467
-0.1673

-- -0.1399

 10NC

-5
0
5

10
25

0.1105
0.1193
0.1282
0.1227
0.1319

0.16 --

 10,  outboardCLL

0
5

10
15

-0.0807
-0.0823
-0.0937
-0.0736

-- -0.04

 10,  inboardCLL

0
5

10
15

-0.0631
-0.0619
-0.0782
-0.1009

-- --

 10,  inboardCN

0
5

10
15

-0.009
-0.009
-0.0153
-0.01269

-- --

 10,  outboardCN

0
5

10
15

-0.006
-0.008
-0.0114
-0.005

-- -0.0035

 10NC 0°< <15° -0.09 -0.112 --

Table 3-5. Summary of selected aerodynamic derivatives of the 50% scale full-span model. All
derivates are defined in (rad-1).

 =

 =

 =

 =

 =

 =

 =
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3.2.4 Damping derivatives for the Demon flying demonstrator

The damping derivatives have been obtained by the Cranfield Design Integration group

using digital –Datcom and a doublet lattice method (Allegri, 2006). Table 3-6 contains a

summary of the damping derivatives

The Digital-Datcom (empirical methodology, where historical data are reported and

properly interpolated) package has been employed to calculate the Demon damping

derivatives; these include the lift due to pitch rate, the pitching moment due to pitch

rate, the rolling and yawing moments due to roll rate and the rolling and yawing

moments due to yaw rate. All the damping terms involving moments are normalised

with respect to half of the aircraft wingspan for the lateral terms and the mean

aerodynamic chord for the longitudinal terms; the same convention holds for the pitch

and yaw rates.

No Digital-Datcom method is available for the estimation of the lift and pitching

moment due to the angle of attack rate for an aircraft without horizontal tail; therefore

these have been computed developing a doublet lattice method of the aircraft

configuration using MSC/NASTRAN (this simulation tool is based on potential

aerodynamics with a lifting surface assumption).
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LqC -- 1.37

MqC -- -0.473

YpC

-5o

0
5
10
15

-0.1040
-0.1040
0.1050
0.2170
0.3720

LLpC

-5o

0
5
10
15

-0.6820
-0.6830
0.6920
-0.6240
-0.4480

LLrC

-5o

0
5
10
15

0.0826
0.0916
0.0979
0.1020
0.1020

NpC

-5o

0
5
10
15

0.0135
0.0135
-0.0149
-0.0364
-0.1040

NrC

-5o

0
5
10
15

-0.2720
-0.2800
-0.3040
-0.3440
-0.3930

Table 3-6. Damping aerodynamic derivatives evaluated for a centre of gravity position of
1203mm measured from the aircraft nose. All derivatives defined in (rad-1).

3.2.5 Control requirements

The longitudinal condition for wings-level, equilibrium flight is for the lift to balance

the weight and the pitching moment to vanish, which can be written in algebraic matrix

form (Etkin, 1972):

WSVC

C

C

CC

CC

Ltrim

M

Ltrim

trim

trim

MM

LL













































2

2

1

0















(3-4)

 =

 =

 =

 =

 =



47

The Demon trim condition derivation was firstly calculated using a Mathcad

Programme with the aerodynamic model described in Table 3-5. The curve of control

angle ( to trim plotted against lift coefficient, known as the trim curve, is given in Fig.

3-12. The stability is indicated by the negative trend of the trim curve. This result

indicates a sufficient control power to trim over the design operating range, leaving

sufficient margin for maneuvering.

3.3 Dynamic stability mode approximation

To gain an insight into the important aerodynamic derivatives influencing the

longitudinal dynamics, approximations for the modes can be formulated, as presented

by Cook (2007).

The short period and phugoid modes can be calculated from the dominant concise

derivatives taken directly from the state matrix of the longitudinal Eq. (3-5).

BuAxx  (3-5)

where:
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The coefficients of the state matrix A are the aerodynamic stability derivatives, referred

to aeroplane body axes, in concise form, and the coefficients of the input matrix B are

the control derivatives also in concise form. The definitions of the concise derivatives

are given in full in Cook (2007). The derivatives can be referred to wind axes, e=0, by

making the following simplifications: Ue= Ve, sine=0, and cose=1, where the

subscript ‘e’ indicate equilibrium condition.

A complete list of longitudinal dimensionless aerodynamic stability and control

derivatives referred to aircraft wind axis is provided in Table 3-7 and Table 3-8. The

notation is consistent with Cook (2007).
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Derivative Description Expression Multiplier

uX Axial force due to
velocity SV

V

T
C

e
e

De


2

1

1
2






SVe
2

1

wX Axial force due to
incidence

e

D
Le

C
C




 SVe

2

1

qX Axial force due to pitch
rate

0 cSVe
2

1

wX 
Axial force due to
downwash

0 cS
2

1

uZ Normal force due to
velocity LeC2 SVe

2

1

wZ Normal force due to
incidence LDe CC  SVe

2

1

qZ Axial force due to pitch
rate

0 cSVe
2

1

wZ 
Axial force due to
downwash LC cS

2

1

uM Pitching moment due
to velocity 0 cSVe

2

1

wM Pitching moment due
to incidence nL KC


 cSVe

2

1

qM Pitching moment due
to pitch rate qMC

2

2

1
cSVe

wM 
Pitching moment due
to downwash MC

2

2

1
cS

Table 3-7. Longitudinal aerodynamic stability derivatives referred to wind axis

Derivative Description Expression Multiplier

X Axial force due to
elevator

 
eLL CKC 

2 SVe
2

2

1


Z Normal force due to
elevator LC SVe

2

2

1


M Pitching moment due to
elevator

)( cgcpeL hhC 


cSVe
2

2

1


Table 3-8 Longitudinal aerodynamic control derivatives referred to wind axis

The short period mode is a damped oscillation in pitch. The principle variables are

incidence, pitch rate and pitch attitude with speed remaining largely constant.
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In terms of dimensional derivatives, taking into account their relative magnitudes, the

damping and natural frequency of the short period mode are given to a good

approximation by,

y

ew
s

I

UM
 (3-6)

m

Z

I

M
w

y

q

ss 2 (3-7)

For a slender delta wing Mq is assumed to arise predominantly from the moment of the

wing trailing edge lift about the cg. Mq is negative for positive static stability.

The pitching moment due to normal velocity Mw is negative for a statically stable

aircraft and is a measure of the control fixed static margin, as it can be seen in Eq. (3-8):

n
L

ew K
d

dC
SVM


5.0 (3-8)

Zw is principally dependant on the lift/curve slope, as it can be seen in Eq. (3.9):









 D

L
ew C

d

dC
SVZ


5.0 (3-9)

The phugoid mode is a low frequency oscillation in speed, which couples into pitch

attitude and height. The undamped natural frequency is inversely proportional to speed.

A simplified approximate expression for the damping ratio and the frequency is:

0

2

V

g

m

gSCL
p 


 (3-10)











L

D
p

C

C

2

1
 (3-11)

The algebraic expressions in Table 3-7 for different trim conditions were derived with

the aid of Mathcad which includes a facility for symbolic calculation. The longitudinal

modes can be calculated using the reduced order model approximation described above.

Results of this computation are shown in Table 3-9.
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The short period natural frequency increase with airspeed is due to the forward velocity

term in the numerator of Eq. (3-6), being the control fixed static margin constant in the

range of velocities considered. The short period damping slightly increases as the

airspeed reduces, but it can be considered almost constant over the velocity range. It is

to be expected that the viscous ‘paddle’ generated pitch damping will reduce with

airspeed as the dynamic pressure decreases. However, this effect is compensated by the

decrease in the short period frequency with speed, in Eq. (3-7).

The frequency of the phugoid mode increases as the airspeed decreases due to velocity

term in Eq. (3-10).

Table 3-9.Longitudinal dynamic stability modes approximations

Short period mode Phugoid mode Concise derivatives
Airspeed

(m/s)

s
s

(rad/s)
p

p

(rad/s)
mw mq zw

30 0.479 4.1950 0.1040 0.4620 -0.587 -1.655 -2.367

35 0.477 4.8940 0.0920 0.3960 -0.684 -1.931 -2.742

40 0.477 5.5930 0.1000 0.3470 -0.782 -2.207 -3.127

45 0.476 6.2930 0.1120 0.3080 -0.88 -2.483 -3.513

50 0.476 6.9920 0.1290 0.2770 -0.978 -2.759 -3.901

55 0.476 7.6910 0.1500 0.2520 -1.075 -3.035 -4.289

60 0.476 8.3900 0.1730 0.2310 -1.173 -3.311 -4.678

The roll mode, the spiral mode and the dutch roll mode can be calculated from the

dominant concise derivatives taken directly from the state matrix of the Eq. (3-12):

BuAxx  (3-12)

where:
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][ rpvT x and ][ Tu

The coefficients of the state matrix A are the aerodynamic stability derivatives, referred

to aeroplane body axes, in concise form, and the coefficients of the input matrix B are

the control derivatives also in concise form. The definitions of the concise derivatives

are given in full in Cook (2007).

A complete list of lateral dimensionless aerodynamic stability and control derivatives

referred to aircraft wind axis is provided in Table 3-10. The notation is consistent with

Cook (2007).

Derivative Description Expression
Multiplier

vY Side force due to
sideslip VB

W

YYLe

L

Y
CCC

C

C


 2

2
SVe

2

1

pY Side force due to roll
rate V

p

Wp

YLe

L

Y
CC

C

C


22

1 b
SVe

rY
Side force due to yaw
rate Vr

YC
22

1 b
SVe

vL Rolling moment due
to sideslip VB

W

LLLLLe

L

LL
CCC

C

C


 
22

1 b
SVe

pL Rolling moment due
to roll rate VpWp LLLL CC 

22

1 2b
SVe

rL Rolling moment due
to yaw rate

V
r

Wr

LLLe

L

LL
CC

C

C


22

1 2b
SVe

vN Yawing moment due
to sideslip

VB

W

NNLe

L

N
CCC

C

C


 2

2 22

1 b
SVe

pN Yawing moment due
to roll rate

V
p

Wp

NLe

L

N
CC

C

C


22

1 2b
SVe

rN Yawing moment due
to yaw rate

V
r

Wp

NLe

L

N
CC

C

C
2

2 22

1 2b
SVe

Table 3-10. Lateral aerodynamic stability derivatives referred to wind axis

For small perturbations the transfer function of a simple first order lag with time

constant Tr describes the first second or two of roll response to aileron. The classical

approximate expression for the roll mode time constant being,
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p

x
r

L

I
T  (3-13)

where Lp is the dimensional derivative describing the aerodynamic damping in roll.

The spiral mode time constant may be expressed conveniently in terms of the

dimensional aerodynamic stability derivatives. An approximate expression for the time

constant of the spiral mode is defined as,

 
 rvvr

vppv

s
NLNL

NLNL

g

V
T




 0 (3-14)

The condition for the mode to be stable simplifies in,

rvvr NLNL  (3-15)

The damping and frequency properties of the dutch roll mode are given approximately

by,

z

v
d

I

N
V0

2
 (3-16)
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z

r
dd2 (3-17)

The algebraic expressions in Table 3-10 were derived with the aid of Matchcad. The

lateral modes can be calculated using reduced order model approximation described

above. Results of this computation are shown in Table 3-11.

The lateral motion of the Demon is characterized by low roll inertia, Ixx, due to the

concentration of mass along the aircraft centreline and high roll damping Lp due to the

large wing area. This results in a very short roll mode time constant that increases with

velocity as it is to be expected that the roll damping will reduce with airspeed as the

dynamic pressure decreases.

The spiral mode is stable which means that Eq. (3-15) is satisfied. The values on the left

and right of inequality condition of Eq. (3-15) become close at high speed, suggesting

the mode to be close to neutrally stable. Indeed this could be inferred by the fact that the

dihedral effect becomes smaller at high velocity (Fig. 3-8). It is important to note that
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the spiral mode time constant becomes very high as velocity increases and the mode

manifests itself as a very slow exponential convergence.

Table 3-11. Lateral dynamic stability modes
approximations

Spiral
mode

Roll
mode

Dutch roll mode
Airspeed

(m/s)
s

(s)
r

(s)
d

(rad/s)
d

30 11.2360 0.0250 3.8510 0.4200

35 22.7273 0.0190 4.5090 0.3920

40 45.4545 0.0160 5.1690 0.3770

45 100.0000 0.0140 5.8120 0.3680

50 228.6237 0.0120 6.4180 0.3650

55 1391.9822 0.0110 7.0280 0.3620

60 613.4969 0.0100 7.6410 0.3610

3.4 Concluding remarks

Since the Demon presents an unconventional configuration, some observations, based

on the stability analysis carried out in the previous sections, can be made.

Eclipse-based platforms have a relatively large wing area, thus, the damping terms

attain significant values with respect to more conventional configurations. This is

particularly reflected in the very high roll damping; this results in a very fast roll mode

time constant. Tailless aircraft are expected to have a lower value of pitch damping with

respect to tail aircraft, where the tail is a very effective damper. The Demon short period

mode is, however, quite well damped; this can be explained by the high pitch damping

caused by the large wing area, and, also, by the low moment inertia in pitch which

makes the pitch damping more effective than a similar value would be in conventional

types.
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Since the aircraft has a relatively low aerodynamic efficiency (L/D ratio), the phugoid

oscillations are likely to be under-damped with respect to more conventional

configurations.

The sweepback wing has inherent lateral static stability that increases with increasing

lift coefficient. This treat is reflected in the spiral mode characteristic. At low speed,

where the lateral stability is high and greater than the directional stability, the spiral

mode is stable; at high speed, when the lateral static stability is low and nearly equal the

directional stability, the spiral mode is close to be neutrally stable and the time constant

is very large.

Given that the moments of inertia in pitch and yaw are of similar magnitude, the

frequency of the dutch roll mode and longitudinal short period are of the same order.
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Fig. 3-4. Surface flow visualization of the half-scale Demon vehicle; free transition on main
wing. (=0°)
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Fig. 3-5. Static longitudinal aerodynamic characteristics of the Demon
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Fig. 3-6. Indication of the Demon aerodynamic efficiency. 50% scale: K1=0.21, K2= 0.4
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Fig. 3-7. Demon static margin characteristic
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Fig. 3-8. Indication of the lateral and directional static stability. 50% scale full span model
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Fig. 3-9. Outboard aileron control characteristics of the 50% scale full span model
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Fig. 3-10. Inboard aileron control characteristics of the 50% scale full span model
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Fig. 3-11. Rudder control characteristics of the 50% scale full span model.
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Fig. 3-12.Elevator angle to trim
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4 DEVELOPMENT OF THE SIMULATION

MODEL

4.1 Introduction

The vital step between developing novel control mechanisms and actually utilizing such

devices in an aircraft is the flight modelling and simulation. In fact, although several

investigations have already experimentally demonstrated fluidic technologies to be able

to augment lift, a detail simulation model is required. A quantitative estimate of their

impact from a system point of view has to be made to assess the feasibility of fluidic

control technology.

Moreover the use of flight simulation tools to reduce the risk and required amount of

flight testing for complex aerospace systems is a well recognized benefit of these tools.

However, some special challenges arise when one attempts to extrapolate these benefits

to low-cost Unmanned Aerial Vehicle (UAV). This type of vehicle is characterized by a

lack of payload capacity (and therefore limited capacity for additional flight test

instrumentation or telemetry), limited baseline capabilities (processing,

instrumentation), and by a lower marginal cost of additional flight tests.

Hence great attention was applied in developing a flight dynamic simulation model of

Demon, managing the consolidation of constantly evolving design data into the overall

simulation model.

A six degree of freedom (6DoF) simulation model has been developed, based on the

Eclipse airframe, to evaluate the control and stability characteristics of the conventional

flap control configuration. For this study Matlab and its associated graphical interface,

Simulink, was chosen as the simulation platform. This choice was based on the

extensive use of this program in industry and the functionality which the program

provides. The aircraft model was constructed in a modular manner to allow easy
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reconfiguration and to allow for the flow control actuator model to be developed

separately and to be integrated into the complete model.

The equations of motion were implemented in a modular format and include the 1976

standard atmosphere model. The equations represent the conventional six degree-of-

freedom motion of a rigid aircraft relative to a flat, non-rotating earth. Two major

subsystems represent the vehicle dynamics in the longitudinal and lateral-directional

axes respectively. The coupling between these two subsystems is due to inertial and

gravitational effects. The usefulness of the simulation model was enhanced by

incorporating several additional output equations, in particular, air data parameters,

acceleration variables and flight path variables. Representative aerodynamic/inertia

properties have been modelled based on an extensive wind tunnel tests on a half scale

Demon model, which has been presented in Chapter 3.

In order to improve the fidelity of the simulation model and to enhance representative

interpretation of the flight dynamic properties of the air vehicle, a model of the AMT

Olympus engine is included in the Demon simulation. A surface actuator model has also

been developed and included in the model, which consists of a second order transfer

function including the essential discontinuities (end stops and rate limiting), as these

were shown to be critical to satisfactory UAV control (Thomasson, 1993).

The structure of the simulation model follows standard practice and it is depicted in Fig.

4-1. The simulation model is defined in the following sections and this definition is

supplemented by appendix B.

This model has been used to carry out a flight dynamic analysis of the basic airframe in

order to validate the design choices and to test the control power of the conventional

controls configuration. As no previous flight dynamic investigation was conducted on

the aircraft, there are no alternative static or dynamic data available for comparison at

the present time. Therefore coupled with the simulation development an off-line linear

stability analysis has been carried on with the aid of Mathcad in order to validate the

simulation model results.
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Fig. 4-1. Non-linear simulation model data flow diagram

4.2 Axes system and notation

Three axes systems are used in the development of the simulation model. A fixed axis

system relative to a point on the surface of the earth, referred to as the ‘Earth Axes’, a

fixed axes system relative to the aircraft’s centre of gravity, referred to as the ‘Body

Axes’ and a fixed axes referred to as ‘Stability Axes’.

The axes systems follow the convention and notation defined by Cook (2007).

4.2.1 Earth Axes

For the purposes of normal atmospheric flight, air-vehicle motion can be measured with

reference to an earth fixed framework. The accepted convention for defining earth axes

determines that a reference point O0 on the surface of the earth is the origin of a right-

handed orthogonal system of axes (Oo, xo, yo, zo) where Ooxo points to the north, Ooy0
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points to the east and Ooz0 points vertically down along the gravity vector, as illustrated

in Fig. 4-2.

Fig. 4-2. Earth Axes (Cook, 2007)

4.2.2 Aircraft body axes

It is usual practice to define a right-handed orthogonal body-fixed axis system, (o, xB,

yB, zB) fixed in a rigid air-vehicle with the origin at o, which is fixed coincident with the

Centre of Gravity of the aircraft. The fore-aft, xB, and vertical, zB axes define the plane

of symmetry, with the xB axis directed towards the nose, the yB-axis pointing to

starboard and the zB-axis directed downwards. The aircraft body axes system is

presented in Fig. 4-3.

4.2.3 Stability Axes

The stability axis system is obtained by a rotation of the body axes system about oyB

axis trough an angle of attack,  until oxB is aligns with the velocity vector. A positive

angle  corresponds to a negative rotation about oyB. The resultant axis system is

denoted by (o, xS, yS, zS) and it is illustrated in Fig. 4-3.
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4.3 Aircraft notation

The motion of the aircraft is described in terms of force, moment, linear and angular

velocities and attitude resolved into components with respect to the aircraft body axes

system. These variables are presented in Fig. 4-3.

Fig. 4-3. Aircraft motion variables notation

4.3.1 Control angle definition

The elevator, aileron and rudder control angle deflections are defined so that a positive

control surface displacement gives rise to a negative aircraft response.

4.4 Equation of motions

The development of the non linear state-space model started from the standard rigid

body six degree of freedom equations of motion, derived under the following

assumptions:

 The airframe is a rigid body.
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 An Earth Centred Inertial (ECI) reference frame is utilised.

 The airframe, and hence the axes, are in motion with respect to an external

reference frame such as the earth (or inertial) axes. Note: The curvature of the

earth can be neglected for relatively short time simulations.

 The origin of the body axes is coincident with the vehicle’s cg.

 The mass of the air-vehicle is assumed constant for the duration of any

particular dynamic analysis

The model was extended with the equations of the Euler angles and altitude, needed to

determine the gravitational, aerodynamic and propulsive forces and moments.

The resulting equations can be combined in a single vector equation:

))(),(,( ttf tottot MFxx  (4-1)

where x represent the state variables (the linear and angular velocities of the aircraft, the

attitude and the coordinates relative to the surface of the Earth).

Expressing the external forces and moment as non linear functions of the input and state

variables yields the non linear state-space system:

)),(,( tt(t)f uxx  (4-2)

The input variables to this model are the control surface deflections which affect the

aerodynamic forces and moments and the engine inputs which affect the propulsive

forces and moments.

By calculating the disturbing forces and moments and knowing the initial values of the

body axes velocities, Ui, Vi, Wi, and body axes rotational rates, pi, qi, ri, the equations of

motion can be solved for the body axes velocities, U, V,W, and the body axes rotational

rates, p, q, r.

Having determined the basic equations of motion, a simulation model of the complete

aircraft was built by developing models for the aerodynamic, propulsive and

gravitational forces and moments, and by determining some atmosphere and air-data

variables that are required to compute these forces and moments. All elements

combined result in the mathematical model from Fig. 4-4. This model was enhanced

with several useful output equations including additional air-data parameters,

accelerations quantities and flight path variables.
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The generalized equations of motion derived from first principles (Cook, 2007 and

Stevens & Lewis, 1992) and the subsequent derivation of the aircraft attitude, relative

velocity, earth velocity and earth position are presented in the appendix B, and the

formulation of the aerodynamic, gravitational and thrust moments and forces are

presented in the following section.
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Fig. 4-4. General rigid body dynamics
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4.5 Aerodynamic forces and moments

The aerodynamic model of the Demon was derived from the wind tunnel tests results,

which are summarised in Chapter 3.

The total aerodynamic coefficients in each axis are expressed as a baseline component,

plus incremental or correction terms. The wind tunnel data comprised aerodynamic

force and moment coefficients at various combinations of angle of attack, sideslip angle

and control surface deflection. The range of variation for these parameters corresponds

to angle of attack limited to values below 20 degrees. The baseline component is

primarily a function of alpha, beta. Coupling terms between angle of attack and control

deflection are used to account for the dependence of control effectiveness on angle of

attack. Additional terms were added to the Taylor series expressions in an ad hoc

manner to account for dependence on angular rates (i.e., dynamic derivatives). Terms

associated with the pitch rates were added to lift (CLq,) and pitching moment (CMq,). CDq

was considered negligible and it was omitted. Terms associated with rate of change of

normal velocity were considered negligible and omitted. Terms associated with roll and

yaw rates were added to side force (CYp,), rolling moment (CNp, CLLr) and yawing

moment (CNp, CNr). CYr was negligible. Derivatives were considered not dependant of

velocity (subsonic regime). The equations used to calculate the total aerodynamic

coefficients in the Demon Simulink model are given in Eq. (4-3).
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The six degree of freedom aerodynamic model is built-up using look-up tables to

interpolate the coefficient data provided in the aerodynamic database. The coefficient

data is interpolated based on a number of independent variables including incidence,

sideslip and control surface deflection. Linear interpolation is applied over the range of

each independent variable with the end values of the coefficient data used for values

outside the range.

4.5.1 Force and moment equations

The total forces and moments acting on the aircraft are defined in terms of the total

dimensionless aerodynamic coefficients multiplied by a dimensional factor based on the

dynamic pressure, reference area and for the moment equations an appropriate scaling

length (wing semi-span, b/2, for the lateral moments and mean aerodynamic chord, c

for the longitudinal moment). The longitudinal force acts in a direction opposite to the

drag force and the vertical force acts in a direction opposite to the lift force. The

moments are computed around the moment reference centre, which is the centre of

gravity of the vehicle.

Longitudinal Force DdynxS SCQF 

Lateral Force Ydyny SCQF 

Vertical force LdynzS SCQF 

Lateral moment LLdyncgB C
b

SQL
2



Pitching moment Mdyncg CcSQM .

Yawing moment NdynBcg C
b

SQN
2

. 

(4-4)

where,

Dynamic pressure SVQdyn
2

2

1


Since the lift and drag forces are defined in stability axes, the transformation from

stability to body axes described by Eq. (4-5) must be applied.
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4.6 Propulsive forces and moments

The Demon UAV propulsion system is provided by an AMT Netherlands 190N

Olympus HP engine. The simulation model of the engine has been developed based on a

combination of limited engine data, and first principles. Key Engine characteristics are

listed in Table 4-1. Data presented are mainly from two sources:

 The manufacturer website (www.amjets.com)

 Preliminary engine static test conducted at Manchester University (Wilde, Gilde,

Michie & Crowther, 2007)

The engine model is based on the following assumptions:

 The engine thrust acts through the aircraft centre of gravity.

 The thrust line is aligned with the axial body axis system xB.

As the thrust is assumed to act through the cg along the body axes system x-axis, then,

in component form, there is only one component of thrust which is in the axial

direction. This component is determined as illustrated in the following section.

4.6.1 Thrust model

The engine uninstalled thrust at different throttle setting can be extracted from Fig. 4-5

and Fig. 4-6. The value of thrust corrected for flight speed is obtained through the

following procedure.

The engine intake pressure Pintake and intake temperature Tintake are defined by equations

(4-6) and (4-7) respectively.

  5.322.01 MPPintake  (4-6)

 22.01 MTTintake  (4-7)

where P and T are the atmospheric pressure and temperature, respectively.
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Engine mass flow rate can be approximated as a linear function of the engine speed by

Eq. (4.8),




mkm  (4-8)

where km is defined as,

110000
4.0

RPM
km  (4-9)

 and  are corrections factors defined by equations (4-10) and (4-11) respectively.

310325.101 
 intakeP

 (4-10)

2.288
intakeT

 (4-11)

Engine intake drag is defined as,

Tram VmD  (4-12)

The engine gross thrust is defined as

 TT
G (4-13)

where the static thrust at standard pressure and temperature (STP) condition T is given

as a function of the RPM in Fig. 4-5.

When the inlet momentum is added to the thrust the net thrust is defined,

ramG DTT  (4-14)
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Thrust @max RPM @

S.T.P.
190 N

Maximum RPM 110000

Idle RPM 36000

Thrust at idle RPM 8 N

Mass flow @ max RPM 400 g/s

Table 4-1. Engine specification (www.amjets.com)

Fig. 4-5. Static thrust of the uninstalled engine @ STP (www.amjets.com)

Fig. 4-6. RPM commanded as a function of throttle (0-100 %) (Wilde et al., 2007)
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4.7 Gravitational forces and moments

As the body axes origin is coincident with the centre of gravity the gravitational forces

and moments, referred to the body axes, can be defined by Eq. (4-15).
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(4-15)

Where the direction cosine matrix DCM is defined in appendix B.

4.8 Atmosphere model

The aerodynamic and thrust model presented are for an aircraft in atmospheric flight;

hence a model of the International Standard Atmosphere (ISA) has been implemented.

4.8.1 International Standard Atmosphere model

The ISA implementation in the simulation model defines the atmospheric properties

with respect to pressure, P, temperature, T, and density, from sea level to 20000 m,

i.e. the Troposphere and the lower Stratosphere.

The ISA is based on the assumption that the air consists of perfect gas which obeys the

equation of state,

RTP  (4-16)

where R is the universal gas constant (287 J/kg/K).

Sea level temperature T0, pressure P0, and density 0 are defined as,

mkg

mNP

KT

/225.1

/101325

15.288

0

2
0

0









The temperature is defined to vary linearly from sea level with altitude,

)(0 hTTT  (4-17)
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Where the temperature lapse rate T(h) is defined as,

kmhkmKhT

kmhkmKhT

2011/0)(

110/5.6)(




(4-18)

The other parameters of interest such as density, , and pressure P, can be calculated as

follows,

25588.5

0

0

25588.4

0

0
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T

T

T
PP



(4-19)

The local speed of sound in air, a, is defined as,

RTa  (4-20)

where the specific heat ratio of air is 

4.9 Actuator model

The actuators installed on the aircraft are pulse width modulated servos FUTABA-

S9204. The actuator is modelled as a second order system by Eq. (4-21), with positive

and negative slew rate limits, as well as end stops as per Table 4-2. The second order

response parameters, , , were extracted from Gledhill (1999), and are equal

respectively to 25rad/s and 0.6.

22

2

2 










ssd

(4-21)

Where:

 = actual deflection

d = demanded deflection

 = natural frequency

 = actuator damping
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max (rad)
min (rad) max (rad/s)

min (rad/s)

0.313 -0.313 1.55 -1.55

Table 4-2. Actuator saturation limits

The essential discontinuities have been modelled following the method determined by

Thomasson, (1993). The mathematical model is presented.

Unconstrained motion is governed by the differential equation:

d 222   (4-22)

The two ends stops are governed by equation:

0 (4-23)

The two rate limiting cases are governed by equation:

0 (4-24)

There are five continuous regimes and the system makes transition between these

regimes when it encounters the end stop discontinuity.

For this problem a set of equations can be written:

 2)(2  da (4-25)

aK r (4-26)

   (4-27)

 aK (4-28)

The Kr and Ks constant values within each path (as per Table 4-3) are given in Table 4-

4.
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Path
Transition Criterion

a From Free to +Rate limit 0max  aand 

b From +Rate limit to Free 0max  aand 

c From Free to -Rate limit 0max  aand 

d From –Rate limit to Free 0max  aand 

e From Free to +Amplitude limit 0max  aand

f From +Amplitude limit to Free 0max  aand

g From Free to – Amplitude limit 0max  aand

h From –Amplitude limit to Free 0max  aand

Table 4-3. Transition criteria

Path Kr Ka

a 0 1

b 1 1

c 0 1

d 1 1

e 0 0 (

f 1 1

g 0 0 (

h 1 1

Table 4-4. Actions for each transition

Simulations results for the rate and amplitude limited actuator are given in Fig. 4-7. The

amplitude and rate limiting are clearly visible and the jump of the velocity to zero on

reaching the end stops can also be seen. On the same graph the results of the simulation

implementing location of discontinuities without transition criteria and actions that are

required following the crossing of a boundary are plotted.
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Fig. 4-7. Actuator response to sin wave signal

4.10 Trim

The simulation model of the Demon air vehicle was used to assess the stability and

control properties of the air vehicle. These analyses do not, however, constitute a

validation or verification of the simulation model since there are no alternative static or
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dynamic data available for comparison at the present time. However, results were

assumed for plausibility.

A trim map was made for the vehicle in straight level flight at different flight speed. In

terms of assessing the trim parameters for a given flight conditions, two methods were

used. First, the computed trim was obtained from the Demon non linear simulation

model using the Matlab ‘trim’ routine. The ‘trim’ routine uses a sequential quadratic

programming algorithm to find values for the input (controls) and the states that

determine steady state points of the aircraft dynamic system, and satisfy user specified

output (speed and flight path angle). Second, an alternative simplified analytical trim

was determined using the method described by Eqs (4.29) Equations 4-29 were solved

to determine trim, angle of attack, symmetric elevon angle () and thrust throttle ()

setting, for a demanded airspeed and flight path angle. The method has been

implemented in Mathcad and the Mathcad routine is documented in appendix C.

 

1cos00

2/1)(

2

1

22
0

2

0



































































andSinwith

SVKCCT

WSVC

C

C

CC

CC

LtrimD

Ltrim

M

Ltrim

trim

trim

MM

LL

(4-29)

The results of the two longitudinal trim studies are shown in Table 4-5. The velocity

(30, 40 and 45 m/s) is representative of typical flight speeds of the Demon.

Comparison of the alternative trim analyses shows very good agreement for angle of

attack, elevator deflection, and throttle setting.
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Velocity

(m/s)

Throttle
Angle of

attack

(deg)

Elevator

(deg)

Computed trim

35 29.6 7.60 0.4872

40 32.5 6.1 1.7168

45 37.12 5 2.6623

Analytical trim

30 28.3 7.4 0.5

40 30.2 5.9 1.8

45 33.139 4.86 2.7

Table 4-5. Analytical and simulation based longitudinal trim

4.11 Longitudinal and lateral mathematical model

This section presents the analysis of the longitudinal and lateral motion of the un-

augmented basic airframe. The study is based on the assumption of small perturbations

and linear aerodynamic forces. The effects of actuator dynamic delays are neglected.

The 6DoF model was initialised as per Table 4-6 and the linear state space description,

referred to body axes, generated, in order to enable a comprehensive analysis of the

flight dynamics of the aircraft.

A linear model has been generated directly from the Simulink model, using the Matlab

routine ‘linmod’. Since the equilibrium flight (straight flight) is symmetric the

longitudinal and lateral directional dynamics can be decoupled.

Angle of
attack (deg)

Flight path
angle (deg)

Speed (m/s) Height (m) Throttle
Elevator

(deg)

5.03 0 45 121 37.12 2.66

Table 4-6. Trim condition

4.11.1 Longitudinal mathematical model

The state and output equation describing the longitudinal motion is shown below.
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(4-30)
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The validity of the longitudinal model was checked by comparing the response of

longitudinal response parameters to a step control input with those generated by the

non-linear model at the same flight conditions, see Fig. 4-8. The response shows a good

match over the first 5 seconds of simulation, hence confirming the validity for small

perturbation analysis.

Solution of the equations of motion determines the following response transfer

functions:

m/s/deg
38.66)+5.915s+(s0.07527)+0.06613s+(s

8.469)+1.445s+(s811)+(s0.0037

)(

)(
22

2


s

su



m/s/deg
38.66)+5.915s+(s0.07527)+0.06613s+(s

0.03304)+0.0644s+(s111.4)+(s0.3238-

)(

)(
22

2


s

sw



deg/s/deg
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)(

)(
22
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deg/deg
38.66)+5.915s+(s0.07527)+0.06613s+(s

3.154)+(s0.08944)+(s46.4784-

)(

)(
22


s

s





The longitudinal characteristic equation is given by,

038.66)+5.915s+(s0.07527)+0.06613s+(s(s) 22  (4-31)

Therefore the stability modes at the given flight condition are given by the roots of Eq.

(4-31). The first pair of complex roots describes the phugoid stability mode with

characteristics,

sTp

p

p

85.22Period

rad/s275.0frequencynaturalUndamped

121.0ratioDamping











The second pair of complex roots describes the short period pitching mode (SPPO),

1.01sPeriod

rad/s6.22frequencynaturalUndamped
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ω

ζ

These mode characteristics indicate that the airframe is longitudinally aerodynamically

stable.

In order to excite the airframes longitudinal dynamic modes a 1 deg step has been input

to the elevator. The long term response of the aircraft to a unit step (1 deg) elevator

input is shown in Fig 4-9. The responses show both the dynamic stability mode, the

short period pitching oscillation and the phugoid. However, the magnitude of each

stability mode differs in each variable. The pitching mode is more visible in the initial

transient in the variable w and q, whereas the phugoid mode is visible in all variables

although the relative magnitude varies considerably. From the longitudinal airspeed

component u response a time period for the phugoid, Tp, of approximately 20s can be

measured; this compares favourably with the time period calculated from the linear state

model.
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The mode content in each of the motion variables is given most precisely by the

eigenvectors. With the aid of MATLAB the eigenvector matrix V is determined as

follows,
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Clearly, the phugoid mode is dominant in u since 0.9977 >0.0651, the short period

mode is dominant in q since 0.1248>0.0077 and the short period and phugoid modes

content in h are of similar order. These observations accord very well with the responses

show in Fig 4-9.

4.11.2 Lateral-directional mathematical model

The state and output equation describing the lateral- directional motion is shown below.
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The validity of the lateral-directional model was checked by comparing the response

parameters to a step control input with those generated by the non-linear model at the
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same flight conditions, see Fig 4-10. The response shows a good match over the first 5

seconds of simulation, hence confirming the validity for small perturbation analysis.

The transfer functions describing the response to ailerons are,

m/s/deg
32.93)+4.393s+(s0.01326)+(s78.98)+(s
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The transfer functions describing the response to rudder are,
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The dutch roll poles are almost cancelled out of the p/ transfer function by the

complex zeros. Therefore weak coupling exists between the rolling and yawing motions.

The rudder to roll rate transfer function has a non minimum phase (NMP) zero farther

away from the origin. A positive deflection of the rudder directly produces a positive

rolling moment and a negative yawing moment. The negative yawing moment rapidly

leads to a positive sideslip, which will in turn produce a negative rolling moment.

The characteristic equation is given by,



89

032.93)+4.393s+(s0.01326)+(s78.98)+(s(s) 2  (4-32)

and its roots give the stability mode characteristics.

The first real root describes the stable spiral mode with time constant,

s57
01326.0

1
sT

The second real root describes the roll subsidence mode with time constant,

s0127.0
98.78

1
rT

The pair of complex roots describes the oscillatory dutch roll mode with characteristics,

rad/s73.5frequencynaturalUndamped

38.0ratioDamping





d

d





Since both real roots are negative and the pair of complex roots have negative real parts

then the mode characteristics indicate the airframe to be aerodynamically stable.

Fig. 4-11 shows the lateral directional response to a unit (1o) rudder step input. A

positive rudder step input is chosen and this will cause the aircraft to turn left. Once the

turn is established this results in a negative yaw rate and a negative roll and roll rate

induced by yaw-roll coupling. The roll response to rudder exhibits a sign reversal for the

first second or so of its response and it is the manifestation of the non minimum phase

effect, referred as adverse roll to rudder. This is a clear effect of the non minimum phase

numerator terms highlighted before. The cancellation of the roll subsidence mode by the

respective numerator zero in the yaw rate response to rudder means that the spiral mode

and dutch roll will dominate the shape of the yaw response. However, the oscillatory

dutch roll mode is almost not discernible being that this mode quite well damped.

The response of the airplane to a unit (1o) aileron pulse, held for 1 second and then

returned to zero, is shown in Fig. 4-12. At first glance the dutch roll mode is not so

distinctive since it is damped out after the first few seconds due to the relatively high

damping. Both the roll and spiral mode appears as exponentially convergent

characteristics since they are both stable. The roll converges quite quickly with a time
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constant of 0.013 sec, whereas the spiral mode converges very slowly with a time

constant of 80 sec. The spiral mode characteristic is seen in the roll attitude response

where it determines the longer term convergence to zero and it is fully established at 30

sec.

As it was observed from the linear analysis conducted in Chapter 3 the spiral mode

results in a much more longer time constant at low incidence (high speed) with respect

to low incidence (low speed), as a result of the lower directional stability. Fig. 4-13

compares the roll attitude response to aileron pulse correspondent to each of these

conditions. It is clear that at high velocity the spiral mode results in an almost neutral

stable behaviour.

The roll subsidence mode is observed to involve almost pure rolling motion. Thus a

reduced order model of the lateral directional dynamics, removing the side-force and

yawing moment equations and assuming wind axes, can be obtained. The roll response

to aileron transfer function is shown in Eq. (4-33) and is derived from the complete

lateral model assuming the previous hypothesis and that the rudder is held fixed:

)()(
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pls
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sp







(4-33)

First order roll mode approximation:

deg/s/deg
79.06+s

172.3-
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Comparison between the first order and the complete state space model step aileron

response is shown in Fig. 4-14. It can be seen that the two models compare vary

favourably.
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Fig. 4-8. Longitudinal linear model non linear model comparison
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Fig 4-9 Aircraft response to 1 deg elevator step input
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Fig 4-10. Lateral linear model non linear model comparison
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Fig. 4-11. Aircraft response to 1 deg rudder step input
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Fig. 4-12. Aircraft response to 1 deg -2s aileron pulse input
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Fig. 4-13. Roll attitude response to 1o- 2s aileron pulse. Comparison of the spiral mode at low
incidence with the spiral mode at high incidence

Fig. 4-14. Comparison between the first order and the complete state space model step aileron
response (flight condition correspondent to the one in table 4-6)
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4.12 Stability Characteristics

The stability characteristics of the classical modes of motion were assessed across the

flight envelope and compared with applicable flying qualities requirements, as

suggested by (Prosser and Wiler 1976). Prosser and Wiler (1976) seem to be the

definitive reference on RPV flying qualities, although it does not have much in the way

of unnamed aircraft flying qualities data. In fact any criteria that it does set forward are

quoted from Military specification MIL-F-8785B. It suggested that these guidelines be

followed in the absence of any unmanned flying qualities data.

It can be seen that the Demon is classed as a Class I aircraft and can be expected to

operate in Flight Phase Category A, B and C.

Coupled with the simulation development an off-line linear stability analysis has been

carried out with the aid of Mathcad in order to validate the model results. The full

implementation is documented in appendix C. A computation of the aerodynamic

derivatives required to build up the system matrices has been carried on (using hand-

computation) following the definition given in full in Cook (2007). Two separate

computational procedures of system matrices help to uncover modeling errors and to

check correctness and accuracy of numerical linearization performed in the Simulink

environment. Results of these computations are shown in Table 4-7 and Table 4-8.

Comparison of the alternatives analyses shows very good agreement. Moreover the

values compare vary favourably with the results obtained from the reduced order linear

analysis conducted in Chapter 3. The trend of the stability mode is in agreement with

the main observation derived from the reduced order analysis conducted in Chapter 3.

Table 4-7.Longitudinal dynamic stability modes approximations

Computed Analytical

Short period mode Phugoid mode Short period mode Phugoid modeAirspeed
(m/s)

s
s

(rad/s)
p

p

(rad/s)
s

s

(rad/s)
p

p

(rad/s)

30 0.474 4.32 0.060 0.416 0.433 4.685 0.072 0.414

40 0.420 6.18 0.097 0.318 0.428 6.253 0.091 0.310

50 0.475 6.91 0.148 0.275 0.426 7.817 0.132 0.248
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Table 4-8.Lateral dynamic stability modes approximations

Computed Analytical

Spiral
mode

Roll
mode

Dutch roll mode
Spiral
mode

Roll
mode

Dutch roll modeAirspeed
(m/s)

s

(s)
r

(s)
d

d

(rad/s)
s

(s)
r

(s)
d

d

(rad/s)

30 13.8 0.020 0.421 4.17 11.2 0.020 0.433 4.053

40 41.3 0.014 0.39 5.20 45.4 0.014 0.386 5.315

50 149.2 0.011 0.379 6.29 228.6 0.011 0.368 6.561

The Phugoid damping across the flight envelope is shown in Fig. 4-15 and the MIL-

F8785C level 1 flying qualities requirements are superimposed. The Phugoid mode is

adequately stable and the damping ratio meets the minimum requirements.

Note that the short period mode is stable for all the velocities. Its frequency increases

with increasing velocity but the damping is essentially constant.

The variation in SPPO damping across the flight envelope is shown in Fig. 4-16 and

superimposed are the relevant MIL-F8785C flying qualities. The damping ratio meets

the minimum requirements.

The linearized lateral directional modes are all stable across the flight envelope. The

Dutch roll mode damping across the flight envelope is shown in Fig. 4-17. The Dutch

roll mode is very well damped. From Fig. 4-18 the variation of product of Dutch roll

damping and frequency across the flight envelope can be seen. Superimposed on the

same figure are the applicable MIL-F8785C flying qualities requirements.

The roll mode is stable across the flight envelope and meets the most stringent level 1

MIL-F8785C flying qualities requirements as it can be seen from Fig. 4-19. The roll

mode time constant is extremely short.

The spiral model is plotted in Fig. 4-20. Note that this mode is very stable with a time

constant unusually long.
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Fig. 4-15. Phugoid damping ratio of basic airframe plotted against equivalent airspeed

Fig. 4-16. Short period damping ratio of basic airframe plotted against equivalent airspeed



100

Fig. 4-17. Dutch roll damping ratio of basic airframe plotted against equivalent airspeed

Fig. 4-18. Product of Dutch roll damping ratio and frequency of basic airframe plotted against
equivalent airspeed
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Fig. 4-19. Roll mode time constant of basic airframe plotted against equivalent airspeed- MIL-
F-8785C level flying qualities maximum roll mode time constant requirement: Tr< 1

Fig. 4-20. Spiral mode time constant of basic airframe plotted against equivalent airspeed. Most
stringent MIL-F-8785C level flying qualities minimum time constant

requirement: Ts< 17.3
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5 DUAL SLOT ACTUATOR DEVELOPMENT

5.1 Introduction

The aerodynamic research undertaken by Manchester University (Frith & Wood, 2004)

has established the operational principles for practical flapless control of air vehicles by

flow control means utilising the Coanda effect. In particular, it has been demonstrated

that a wing trailing edge incorporating a narrow span-wise slot through which high

pressure air is blown over the Coanda surface can produce usable control forces and

moments.

Modulation of the air supply to the slot by means of a control valve enables

unidirectional force and moment generation for control of the vehicle. Replacing

conventional ailerons with span-wise pairs of slots permits differential operation

sufficient for lateral control. However, modulation of the resultant control force and

moment generated by fixed trailing edge geometry, utilising internal air flow throttling,

raises the engineering challenge of avoiding the worst effects of dynamic interaction

between the air supply system components. Thus, smooth proportional control by means

of an air supply control valve suggests a less amenable engineering solution to a

practical mechanism for vehicle control. Potential engineering difficulties include

increased mechanical complexity for bi-directional control, control lag associated with

airflow throttling and, probably most significantly, the back pressure impact of

intermittent bleed air demand on a small gas turbine engine compressor.

Those considerations led eventually to the bi-directional flow control actuator solution

described in the following paragraphs.

5.2 Circulation control actuator concept

An alternative CC mechanisation developed at Cranfield comprises an actuator device

capable of proportional bi-directional control; the general arrangement of the flow

control actuator concept is shown in Fig. 5-1. The small wedge shaped plenum chamber
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comprising the body of the device is envisaged as an interchangeable replacement for a

conventional flap surface as shown.

Wing Panel

Flap/Actuator
recess

Flow Control
Actuator

High pressure
air supply

Link to servo
actuator

Rotating
cylindrical bar

Upper and lower
blowing slots

Fig. 5-1. General arrangement of a flow control actuator installation

The trailing edge of the actuator incorporates an upper and lower slot separated by a

span-wise cylindrical bar which acts as the Coanda surface. A cross section of the

trailing edge of the device is shown in Fig.5-2b. The cylindrical bar is free to rotate

eccentrically about its longitudinal (span-wise) axis, which is offset from its

symmetrical axis, such that the upper and lower slots can be adjusted from fully open to

fully close in an asymmetric manner. Thus by rotating the bar proportional bi-

directional modulation of the lift force can be effected.

a) b)

jh
juh

jlh



Fig. 5-2. Section view of a wing trailing edge arrangement for a a) conventional fixed slot and
b) bi-directional circulation control actuator

The flow control actuator avoids some of the problems of the fixed slot arrangement

described above. In particular, a continuous uninterrupted air supply is required, and
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since the total slot area remains constant, there is no back pressure effect on the air

supply source during normal operation. Since the device has only one moving part with

minimal inertia a high operational bandwidth is possible, and since there is no air flow

throttling control lag is insignificant. However, since the trailing edge slots and Coanda

surface geometry are critical to the performance of the device, precision engineering

accuracy is required if an appropriate level of control resolution is to be achieved.

5.3 Experimental setup and test techniques

In order to test the concept, a prototype flow control actuator was designed and

manufactured at a scale compatible with the Demon air vehicle. To facilitate wind

tunnel testing the device was inserted into the trailing edge of a rectangular wing panel

in place of a conventional interchangeable flap surface. The test wing panel was

manufactured with a symmetric RAE 104 aerofoil section, which is the same as that

used for the section of the Demon wing. The key geometric parameters for the test wing,

flow control actuator and interchangeable flap are given in Table 5-1.

Test wing with flap Test wing with CC actuator

Span (m) b 0.6 0.6

Chord (m) c 0.3 0.3

Thickness /chord ratio t/c 0.15 0.15

Area (m2) S 0.180 0.177

TE thickness (mm) 1.0 5.0 (at actuator te)

Flap span (mm) 150 150

Flap chord (mm) 66 58

Table 5-1. Test wing and actuator geometry

An interchangeable conventional control surface with 0.25b and 0.22c was implemented

to act as the baseline reference. It was interchangeable with a circulation control (CC)

actuator of equal span-wise extent, but reduced chord length due to the inset circular

trailing edge. The wing area was decreased by about 2% with the CC actuator installed.

The flow control actuator consists of a simple wedge shaped plenum chamber, the upper

and lower trailing edge surfaces of which have adjustable knife edges to set the slot
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heights above and below the cylindrical Coanda surface. High pressure air is supplied to

the plenum chamber by means of an internal pipe connection, and the Coanda surface is

actuated by means of a small model control servo driven from a standard PC.

Dimensioned drawings may be found in appendix D.

Coanda surface radius (mm) r 2.5

Nominal slot height range (mm) h 0.2-0.5

- r/c 0.8 %

- h/c 0.07 - 0.17 %

- h/r 8 - 20 %

Table 5-2.Trailing edge slot geometry

The trailing edge slot geometry was chosen as described by the parameters listed in

Table 5-2.

Wind tunnel tests were performed in an open jet subsonic wind tunnel at Cranfield

University and a three component floor balance was used to measure the aerodynamic

forces acting upon the wing. The free stream velocity was set at 30 m/s, corresponding

to a free-stream Reynolds number of approximately 6.7 x 105.

The experimental test rig comprising the wing mounted on the balance and placed in the

working section is shown in Fig. 5-3a. The trailing edge of the flow control actuator is

shown in Fig. 5-3b.

A summary of the tests performed is listed below:

i) Verification of wing performance and evaluation of conventional control surface

performance.

ii) Jet height (h/r) optimization study of a single slot trailing edge circulation control

actuator.

iii) Evaluation of the control forces generated by a dual slot CC actuator.
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a) Rectangular wing installed on 3
component balance.

b) TE detail of bi-directional actuator.

Fig. 5-3. Photographs of the experimental setup

5.3.1 Blowing parameters and experimental methods

Aerodynamic performance of a circulation control device is characterized as a function

of slot flow momentum coefficient, C, which is the momentum flux exiting from the

slot normalized by the free stream dynamic pressure and a reference area – usually the

area of the wing with full span trailing edge slot. It is important to define the blowing

momentum coefficient as,




2

2

2
M

M

b

b

c

h

SQ

Vm
C

jjj

dyn

jj


 (5-1)

where the definition only holds for an isentropic duct and when the jet exit static

temperature and density would be identical to the ambient values.

The local Mach number at the jet exit slot is calculated from the isentropic equation

expanding the plenum stagnation pressure to free stream static pressure as,
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Where the subscript ‘c’ implies total conditions in the blowing plenum duct, the

subscript ‘∞’ refers to free-stream conditions.
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The actual ambient pressure at the slot exit is not exactly free static pressure and it is

difficult to assess accurately. Thus free stream static pressure is assumed as a matter of

convenience and convention.

The pressure within the plenum was monitored using a pressure transducer and data

were transferred to the computer via an A-to-D card. The blowing momentum

coefficient was then obtained from Eqs. (5-1) and (5-2), using the nominal slot height

set under no flow conditions. This is assumed as a matter of convenience, as the actual

slot height (+/-0.05mm) may vary along the span under loaded conditions.

5.4 Experimental results and analysis

5.4.1 Characteristic of the baseline wing

The chosen aerofoil section is of a classical symmetrical profile. The lift increases

linearly with angle of attack up to about =12 and stall occurs beyond =14 (Fig. 5-

4). The lift curve slope was found to be CL=2.23 rad-1 at the relatively low free stream

Reynolds number of Re=6.7x105 and aspect ratio of AR=2, which is quite in agreement

to that predicted by Helmbold-Diederich formula for low aspect ratio wing and reported

by Laiton, (1989). A direct comparison with the wing-CC actuator combination is made

in Fig. 5-4. It shows that a negligible decrease of the overall wing lift curve slope is the

result. This effect is attributed to the increased trailing edge thickness from 0.003c to

0.017c over a span wise extent of 0.25b. The resulting decrease in wing area has been

taken into account for the evaluation of CL. Experimental data for a RAE 104 profile at

the same Re are compared in Table 5-3.

The clean wing drag is shown in Fig. 5-5. Boundary layer transition was artificially

introduced at 0.02c using a roughness with an average grain size of about 0.1mm and

chord wise extent of 0.07c (top and bottom) The un-blown drag coefficient
oDC is 0.032

for the CC wing at zero lift, which is about 12 % more than that of the conventional

wing with the usual sharp trailing edge. The issue of a blunt TE for typical CC

configurations at cruise will be addressed in the following section, where the advantage

of having a dual blowing capability will be evident.
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Airfoil Wing
(AR=2 )

CC Wing
(AR=2.025 )

Experimental
(Spence & Beasley,

1958)
Measured

Estimated
(Helmbold)

Measured

CLrad 5.883 2.23 2.43 2.22

Table 5-3. Baseline lift curve slope

5.4.2 Single slot CC actuator

The blowing coefficient C is the most critical parameter controlling the effectiveness of

a CC actuator, an increase in C resulting in an increase in lift. For fixed external

conditions, i.e. a constant denominator in Eq. (5-1), a large C may be obtained by

either a high mass flow and relatively low exit velocity or a high exit velocity with a

relatively low mass flow. These traits may be explored by varying the jet exit area via

the jet slot height, which herein is referenced to the Coanda surface radius, i.e. h/r.

Wood (1985) reported that smaller slot heights result in a larger return in lift at constant

C which implies that a high jet velocity/momentum ratio are required for an effective

actuator. To confirm this, tests were performed at constant free-stream Mach number

but varying slot height (h/r) and blowing coefficient (C) at a fixed angle of attack. The

results obtained at a fixed angle of attack (=0o) are presented in Fig. 5-6. For a fixed

Coanda surface radius of r/c=1%, a h/r of 0.08% performed better than a h/r of 0.2 %.

In the initial linear portion of the curve the lift augmentation (dCL/dC) for the smallest

slot was 44 compared to the 25 augmentation for the larger slot. A small h/r gave rise to

a non-linear relationship with a notable change in the lift augmentation. A dead-band at

low C was discovered particularly remarkable for the smallest slot heights.

Fig. 5-7 shows the same data as Fig. 5-6, but replaces C with velocity ratio along the

abscissa of the graph. It serves to emphasize that an equivalent C is attainable with

significantly different pressure ratios and therefore jet exit Mach numbers. The

circulation control airfoil poses an optimization problem dependent on whether the

blowing air supply is mass flow rate or pressure ratio limited.

A shift in the lift augmentation efficiency occurs at a velocity ratio of around 3 and

corresponds to the transition from a linear to a square root like response in Fig. 5-6. This
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may be attributed to the transition from boundary layer control to super-circulation, as it

has been previously observed by Englar, (2000). The super-circulation effect

predominates when the momentum is large and the deflected extending jet acts in a

manner similar to that of a jet flap. In fact the lift increment in the non linear region was

found to be almost the same for different slot height and equal to,

 CC

CL 2.1






The measured value of CD requires an additional correction term to develop a lift/drag

ratio that can be compared to that of conventional airfoils. Some account should be

taken of the power necessary to produce the kinetic energy of the jet. An incremental

drag coefficient associated with the kinetic energy of the jet is (Wood, 1985):
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With this correction the equivalent drag coefficient is:
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It should be noted that the kinetic energy or power that is added to the equivalent drag,

dominates the equation and leads to drag values that hide the thrust generated by a

typical CC airfoil.

The efficiency can be represented by the lift to equivalent drag ratio, as shown in Fig. 5-

8. Comparison of two slot configurations indicates a greater efficiency of the larger slot.

This is a result of the drag benefits of the larger slot. The peak efficiency occurs in the

vicinity of the transition region (refer to Fig. 5-7), as has been already observed in Jones

(2005).

Another performance parameter of interest is the lift-increment-per-power ratio, shown

in Fig. 5-9 . The total fluidic power has been introduced by Jones, (2005), and it can be

expressed as the power required to supply the jet velocity head plus the power lost at the

intake as the fluid power is drawn into the large reservoir,
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And non –dimensionally,
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The comparisons are made at CL=0.1 and CL=0.15 which is consistent with the two

transition regions highlighted before. The smaller slot develops more lift for a given

power setting but as the blowing is increasing into the super-circulation region, the

influence of the slot height on lift-to-power augmentation decreases.

Table 5-4 provides a comparison of the CC tested with other CC airfoils. The RAE104

performs as CC un-cambered elliptical airfoil of 15% thickness. The GAAC

effectiveness is notably higher due to the camber and the higher Coanda radius.

Lift Augmentation
CL/Cpf

(CL=0.5)

RAE104 (h/r=0.08) 44.5 27

GACC (h/r=0.07)(Jones,2005) 60.3 44.3

CC elliptical(Englar,1978) 30 26.3

Jet flap(Spence,1958) 7 7.48

Table 5-4. Comparison of powered system

5.4.3 Performance of a dual slot circulation

The dual slot flow control actuator was set up to operate at constant plenum pressure

corresponding to a constant blowing coefficient. In analogy with conventional control

surfaces, the Coanda cylinder deflection  is defined as positive when it results in a 

positive lift increment. At the datum control angle =0o the upper and lower slots are of 

equal height. The Coanda cylinder rotation is physically limited by the engineering

design of the actuator, being a function of the eccentricity of the hinge and h/r ratio. At

the largest angular deflection max the lower slot was closed and the upper slot was fully 

open with actual slot height h/r.
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The proof of concept for the dual slot actuator is given in Fig. 5-10 for h/r=0.2 and

C= 0.02i.e.Vj/V∞ = 5. The lift coefficient is a linear function of the cylinder

deflection with a lift increment for max = 15o of CL=0.15. The effectiveness of

actuation, in terms of dCL/d is almost constant with angle of attack.

To evaluate the control effectiveness of the flow control actuator, its performance was

compared with that of an equivalent span flap. Clearly, the comparison is of limited

value since the flap performance is a function of its chord ratio cf/c and span size,

whereas the actuator performance is a function of C and h/r. However, since the input

command to both controls is an angular displacement derived from a standard servo-

actuator, it is interesting to compare the effectiveness of two similar sized installations.

The comparison is also shown in Fig. 5-10 where the incremental lift is plotted as a

function of flap deflection angle  and actuator control angle . In spite of the limited

scope of the experiment it is clear that both characteristics are essentially linear and

have similar levels of performance. The CC actuator was found to have a superior

effectiveness for C=0.02:
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The actuator effectiveness is a function of C and h/r. Fig. 5-11 and Fig. 5-12 explore

this dependency. Clearly for constant TE geometry a higher jet exit velocity gives rise

to an increased effectiveness, whereas the smaller slot exhibits a larger effectiveness

with a limited cylinder rotation of max=7o . An inherent limitation of the mechanical

arrangement to position the slot knife edges caused small misalignments which were

large enough to cause significant leakage through the closed slot and a loss in maximum

lift increment in comparison with the single slot configuration where the lower slot was

sealed to avoid leakage.

Pitching moment is affected by the lift and centre of pressure variations. By definition

the aerodynamic centre is the chord-wise location about which the pitching moment is

not influenced by changes in lift. The location of the pressure centre on the reference

chord in terms of aerodynamic coefficients is given by Eq. (5-7).
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From a theoretical point of view circulation control is equivalent to a conventional wing

having a vanishingly small flap at the trailing edge. In the case of a flap chord

approaching zero length, the centre of lift due to flap deflection is for a short span wing

of AR= 2 at 69%c (Campbell et al., 1956). The experimental pitching moment for the

dual slot circulation control actuator as resolved around the quarter chord is presented in

Fig. 5-13. The dual slot flow control actuator shows a more negative pitching moment

than the mechanical flap which is assumed to be due to the extreme aft pressure peak

due to the jet slot efflux. The aerodynamic centre (ac) for the lift due to blowing is at

70%c for the larger slot and at 63 %c for the smaller slot. The ac for lift due to flap

deflection is at 45%c.

5.4.4 Drag with dual slot system

The dual slot CC wing can develop a range of lift coefficients at any given angle of

attack. By deflecting the cylinder up and down the lift can be incremented or

decremented from the unblown value, including passing though zero lift. Thus, there is

a wide drag polar diagram for each angle of attack. In Fig. 5-14 the drag increment from

the unblown value is plotted, corresponding to =0o. At zero angle of attack the drag

increment is the induced component associated with the development of lift due to dual

blowing only. The drag increment due to flap deflection is plotted in the same graph.

The unblown drag due to flap deflection equals that with the same lift obtained by

blowing. The drag data collapses to one single parabolic polar diagram. Therefore, the

induced drag for lift developed by CC is essentially the same as that from the

conventional flap.

The most reliable measurement technique for experimentally determining the drag of a

blown airfoil is the momentum-loss method that employs a wake pressure rake. The

profile drag can be determined by integrating the wake profile measured 1 chord

downstream of the trailing edge (Pope, 1954). For blown airfoils, it is important to note

that the measured profile drag from a wake rake must be corrected by subtracting the

momentum that was added by the CC system. The total horizontal forces on a 2D model
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do indeed exceed that indicated by conventional wake rake calculations by the quantity

Vm (Wood & Nielsen, 1985). Considering a frictionless hypothetical case where the jet

is exhausted at a total head equal to free stream total head easily confirms this principle.

Here, the wake will indicate zero drag, but the model will experience a trust of Vm .

The net forces are equal to:
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To address the issue of a blunt trailing edge for typical CC configurations at cruise, the

dual blowing capability, i.e. upper and/or lower blowing on the Coanda surface enables

the operator to adjust thrust for a given lift during cruise. Wake surveys were made to

determine the ability of dual equal slot flow (no lift increment) to eliminate the wake

momentum deficit that results from drag. Fig. 5-15 illustrates the wake filling result, for

mid-span at a location of 1 chord length from the trailing edge. The wake profile has

been favourably influenced by the momentum flux from the two slots. With blowing off

a nice pressure distribution exists. As blowing is increased the pressure variation

becomes smaller (C=0.008) until it actually reverse and become a thrust (C=0.02). A

velocity ratio of 3 correspondent to C=0.003 was sufficient to compensate for the

excess drag due to a blunt trailing edge (see Fig. 5-16).

The wake profile shown in Fig. 5-17 corresponds to the fixed blowing of C=0.02 and

total slot height of h=0.5 mm. As the cylinder moves from the neutral position to a

positive and negative deflection respectively the peak shifts down and up, indicating

that the upper and lower jet mix efficiently.
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5.5 Mathematical model

The upper surface exit slot geometry of the flow control actuator is shown in

Fig. 5-18, the lower slot being geometrically similar is not shown. The control angle 

defines the Coanda surface movement about the centre of rotation and is positive as

indicated – a positive control angle results in a positive lift increment. The upper and

lower slot height is ho when the control angle is zero. The offset of the centre of rotation

from the axis of the Coanda cylindrical surface is denoted r, where r is surface radius.

Thus, referring to the geometry in

Fig. 5-18, it is easily shown that the upper and lower slot height varies as a function of

control angle as follows, (derivation is reported in Appendix D). For the upper slot,
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And for the lower slot,
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Now the lift developed by blowing high pressure air through a slot is governed by the

blowing momentum coefficient C, which for a part span slot is given by,
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Thus, the upper and lower slot blowing momentum coefficient variation with control

angle is given by substituting Eqs (5-10) and (5-11) into Eq. (5-12),
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It follows directly that the upper and lower slot incremental blowing momentum

coefficients due to control angle are given by,
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Lift augmentation due to blowing for a velocity ratio Vj /Voo < 3 was found to be a linear

function of the blowing momentum coefficient for a given slot height and the

effectiveness is defined,
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Now the lift increment due to upper slot blowing is positive and the lift increment due to

lower slot blowing is negative, thus the total lift increment due to the combined effect of

both slots is given by,
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The lift increment due to control angle follows directly by substituting equations (5-14)

into equation (5-16),
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since typically the control angle is small and <±20°.

Experimental data from Fig. 5-11 have been fitted with the Eq. (5-17), where K is

taken as the lift augmentation of an equivalent single slot operating at the same

conditions, and results are shown in Fig. 5-19. The curve fit,
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is in excellent agreement with all the data.

Lift augmentation due to blowing for a velocity ratio Vj /Voo > 3 was found to be

proportional to C . Expressing C as in Eq. (5-12), it follows,
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The experimental data can be fit with Eq. (5-19), as shown in Fig. 5-7.

Taking the first term of the Taylor expansion of Eq. (5-19) around

d the nominal slot height h0/c, the lift augmentation in Eq. (5-19) becomes,
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It follows that the lift augmentation of the upper and lower slot respectively is given by,
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Thus the total lift increment due to the combined effect of both slots is given by,
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The lift increment due to control angle follows directly by substituting Eqs. (5-21) into

Eq. (5-22),
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since typically the control angle is small and <±20°.

Experimental data from Fig. 5-11 and Fig. 5-12 have been fitted with the Eq. (5-23),

with Kv=1.2. Results are shown in Fig. 5-19.

5.6 Simulation of steady circulation control dual actuator

This section reports a comparison of experimental measurements and preliminary CFD

predictions for the dual slot actuator. An initial 2D Computational Fluid Dynamics

(CFD) study was performed at BAE Systems UK, on a wing section of the experimental

configuration and preliminary results are presented in this section. The purpose of the
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study was to assist the experiments, ascertain the capability of CFD to predict the dual

slot actuator behaviour and confirm the trends found experimentally. The definition of

the TE Coanda geometry used in the CFD study is given in Table 5-5.

r (mm) 5.0

r/c 0.8 %

h (mm) 1

Table 5-5. Definition of Coanda geometry - CFD

Clearly, the comparison of experimental measurements and CFD predictions is of

limited value for the following reasons:

1- CFD results are valid for a wing section, whereas experimental results refer to a

low aspect ratio wing with a partial span CC blowing.

2- CFD study adopts the same Coanda surface geometry, being r/c ratio the same

as the experimental one. However, the height of the slot adopted in the CFD

study is double the experimental one.

However, once confirmed the validity of CFD predictions, it is interesting to carry out

some qualitative evaluation from the CFD results (pressure distributions, velocity

contours, etc.) which are not, otherwise, available from the wind tunnel experiments.

To facilitate comparison with experimental results, CFD results have been corrected

using finite aspect ratio wing theory and partial span corrections detailed in appendix D.

Fig. 5-20 shows the 2D baseline lift coefficient of the airfoil. The simulated 2D lift

curve slope compares well with the one obtained experimentally from Spence and

Beasley, (1958). The lift curve slope obtained from 2D calculations has been used to

calculate the 3D lift curve slope for a finite aspect ratio wing, using finite aspect ratio

wing theory corrections, reported in appendix D. This corrected lift curve slope was

used to predict the lift coefficient up to an angle of attack of 10o. Experimental data

showed that lift varies linearly in this region. It can be seen from Fig. 5-20 that the

agreement between estimated and measured values of lift is fairly good.

Fig. 5-21 shows the CFD predicted variation of 2D augmented lift for single upper slot

blowing, at a fixed angle of attack of zero degree. Data have been computed for two
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different values of pressure supply to the CC actuator plenum, respectively pc=0.25psi

and pc=0.50psi.

The CFD lift increment due to TE blowing was corrected for partial span to take into

account the limited span-wise extent of the TE device and facilitate comparison with

experimental results. Clearly the computed lift augmentation is lower than the

experimental one, due to a higher slot height adopted in the CFD study (as it was

experimentally observed, a higher slot results in a lower return in lift for a constant

blowing momentum).

Fig. 5-22 shows the computed change in lift with dual slot CC actuator corresponding to

a constant pressure supply of 0.25psi, with cylinder deflection limited at ± . The

lift varies linearly with cylinder deflection angle as it was experimentally observed. It

can be noticed, also, that the effectiveness is constant at all the angle of attack simulated

and this result is in agreement with experimental evidence.

Drag obtained from the 2D computation was assumed to be skin friction drag only and

therefore the induced drag was added:
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The lift distribution was not measured directly and the Oswald efficiency was calculated

via:
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For a wing of low aspect ratio e is found to be close to 1, and this value was used in the

computation.

The change in drag due to differential trailing edge blowing derived from CFD is

superimposed on the experimental drag increment in Fig. 5-23. It can be seen that the

agreement between estimated and measures values of lift is fairly good.

The computed speed contours of the jet are illustrated in Fig. 5-24 for a solution with

0.25psi total pressure jet, corresponding to a maximum velocity jet at the exit of 50m/s,

with the configuration in 25m/s free stream flow. It can be seen that the Coanda effect is
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correctly predicted with the jet being deflected. The simulation predicts the separation

on the lower surface of the cylinder.

The simulated static pressure distribution on the wing section is shown in Fig. 5-25 and

Fig. 5-26. This gives some insight into the airfoil loading produced by blowing. The

characteristic saddle back shape is typical of CC airfoils. It can be seen that the increase

in circulation resulting from blowing produces an increased loading over the complete

section. In particular, significant suction can be seen at both the leading and trailing

edge. At positive incidence the leading peak is more pronounced, while at zero angle of

attack the rear adverse gradient is further aft and of larger magnitude. The strong

asymmetry in the pressure distribution results in the rearward movement in centre of

pressure and explains the quite large negative pitching moment observed

experimentally.
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Fig. 5-4. Comparison of the baseline lift coefficient with no blowing

Fig. 5-5. Comparison of the baseline drag coefficient with no blowing
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Fig. 5-6. Effect of slot height on lift generation –  = 0o

Fig. 5-7. Effect of jet velocity on lift generation –  = 0o
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Fig. 5-8. Efficiency comparison of two different slot heights

Fig. 5-9. Lift per fluidic power comparison for two different slot heights –  = 0o
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Fig. 5-10. Comparison of flap high lift characteristic with dual slot CC actuator – h/r=0.2,
C=0.02

Fig. 5-11. Lift increment dual slot actuator– h/r=0.2, =0o
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Fig. 5-12. Lift increment dual slot actuator– h/r=0.08, =0o

Fig. 5-13. Variation of pitching moment with control angle deflection – =0o
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Fig. 5-14. Drag polar– =0o

Fig. 5-15. Wake profile measurement 1 chord downstream, mid-span – h/r=0.2, =0o
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Fig. 5-16. Comparison of the drag polar of the baseline wing with the drag polar of the CC
wing with and without blowing

Fig. 5-17. Wake profile measurement 1 chord downstream, mid-span – h/r=0.5, wake
deflection
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Fig. 5-18. Flow control actuator slot geometry

Fig. 5-19. Comparison of the mathematical model with the experimental data; (— curve
fit)
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Fig. 5-20. Comparison of the computed baseline lift coefficient with wind tunnel results
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Fig. 5-21. Single slot trailing edge blowing.  = 0o
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Fig. 5-22. Change in lift due to differential trailing edge blowing.  = 0o

Fig. 5-23. Change in drag due to differential trailing edge blowing.  = 0o
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a) C=0 - =0o b) C=0 - =0o

c) C=0.0078 - =0o d) C=0.015 - =0o

e) C=0.0078 - =30o f) C=0.015 - =30o

g) C=0.0078 - =15o h) C=0.015 - =15o

Fig. 5-24. Speed contours
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Fig. 5-25. Simulated static pressure distribution on the airfoil – =0o
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Fig. 5-26. Simulated static pressure distribution on the airfoil – =5o and constant blowing
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6 FLAPLESS FLIGHT CONTROL

6.1 Introduction

The following sections seek to identify the key differences between mechanical and

fluid controls and hence define the role of control gain and control efficiency in control

sizing. This section also considers the factors that determine the control effectiveness,

i.e. control saturation limits or effort/power saturation due to the finite performance of

the pneumatic power supply for the actuator.

Results of the wind tunnel test evaluations previously described (Chapter 5), were

incorporated into the design of a fluidic manoeuvre effector to control the air vehicle in

roll. This required prediction of the blown aircraft’s roll authority, with available or

postulated air sources powering the system, in order to assess, with a first order

approximation, the performance at flight conditions representative of the Demon flight

envelope.

Baseline Demon geometry and aerodynamic characteristics from ½-scale wind tunnel

results have been described already in Chapter 3 and these data were used in the

following analyses as a comparative sample case to investigate the key differences in

control sizing and effectiveness.

Aerodynamic forces F are defined in terms of dimensionless coefficient FC , the flight

dynamic pressure Qdyn, and a reference area S, as follow:

SQCF dynF  (6-1) 

Consider a conventional mechanical flap surface that produces a force output in

response to a control surface deflection. From basic aerodynamic theory the change in

local lift produced by the control input  can be expressed in non dimensional form as:


FF CC   (6-2) 
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where
FC is the effectiveness and it is usually a function of the size of the geometric

surface (ratio of the control surface area over the lifting surface area).

Consider now a CC actuator that produces a reaction force output in response to a

momentum input . As it has been shown in Chapter 5 the control force can be obtained

from the product of a gain term and the momentum input or in dimensionless terms:

CKCF   (6-3) 

Where K is the CC effectiveness and it is a function of span-wise extent of blown

trailing edge, the ratio of trailing edge radius to lifting section chord and the ratio of

blowing slot height to trailing edge radius. For fluidic controls, Eq. (6-3), the control

input is now a dimensionless coefficient as opposed to a angle. This means that the

actual dimensional control input required to achieve a given control force coefficient is

not independent of the reference momentum QdynS. This implies that as the free stream

speed increases, an increasing amount of input momentum is required to achieve a given

force coefficient.

For mechanical controls, control saturation can arise from two different sources. Firstly,

the control may reach the end of its geometric travel, i.e. reach max, or, secondly, the

maximum force available to move the control may be exceeded, i.e. an actuation

effort/power limit. Also, at low speeds, an aircraft has reduced airflow over the wing

and vertical stabilizer. This causes the control surfaces (ailerons, elevator and rudders)

to be less effective. Similarly, for fluidic controls, two different saturation limits exist

based on geometry and control/power constraints. In a similar manner to mechanical

controls, geometric limits for fluidic controls manifest as a break point in the control

response curve after which control gain is greatly reduced, i.e. where further increases

in input momentum produce little change in the aerodynamic forces acting on a body.

For CC system, a geometric limit exists due to the limited surface extent of the curved

trailing edge: this will typically limit the attachment angle of the jet to less than 180o.

The control/power saturation limits for fluidic actuation arise due to the finite

performance of the pneumatic power supply for the actuator. In this case the power can

be expressed as the total fluidic power required for supplying the jet velocity head. In
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terms of control/power saturation, engineering constraints for engine bleed or dedicated

Auxiliary Power Unit (APU) pneumatic power supplies lead to the systems being mass

flow limited or pressure limited. There also exists a third type of saturation due to jet

separation at high jet Mach numbers. Separation is brought on by high pressure ratio

across the nozzle, large slot heights and small radii on the Coanda surfaces (Wood &

Nielsen, 1985). Previous work has shown circulation control can be achieved with high

supersonic jet, although such a jet loses a significant portion of its momentum to wall

shear (Englar, 1975).

A principal feature of the Demon aircraft variant is that the hinged control surfaces shall

be replaced with CC actuator sufficient to demonstrate total flapless control of the

vehicle in roll. The performance specification reference that must be met for the CC

system is defined by the roll maneuver performed using conventional ailerons.

An estimate of the roll control power can be obtained by a simple strip method of

integrating the incremental change in roll due to a change in control deflection over the

region containing the CC aileron:




C
b

y
KCCC

CLLLL  (6-4)

where
CLLC is the unit of roll moment per unit of momentum input.

Assuming the aircraft is constrained to rotate around its x-axis only and solving the

equation of pure rolling motion, steady state roll rate can be obtained,
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where pLLC is the roll damping derivatives.

From Eqs. (6-4) and (6-5) the mass flow rate required to perform a roll manoeuvre can

be calculated as,
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It shows that for a given control location on the aircraft, wing geometry and flight

speed, the mass flow required is minimized by maximizing the CC gain, K , and

minimizing the CC slot area, Aj.

If air is bled from the compressor stage of a gas turbine engine, the pressure available is

typically well in excess of the typical maximum delivery pressure ratio of around 2

(sonic exit conditions) needed for fluidic control applications. Because of this, the main

power system constraint is mass flow rate availability. Therefore, it can be seen that for

efficiency the slot design should be driven towards using a high jet velocity. The control

gain is maximized by minimizing the dimensionless slot curvature h/r (experimental

results in Chapter 5 suggest that good performance is obtained for a dimensionless slot

curvature of around 0.08 or less).

6.2 Circulation Control actuator model

A model of the flow control device has been developed for incorporation into the

Demon air vehicle simulation.

The system has been modelled as shown in Fig. 6-1 and Fig. 6-2. Air is supplied

continuously to the plenum chamber and the jet momentum is directed through a

moving trailing edge actuated by means of a small model control servo as shown in Fig.

6-3. The model derivation of each block in Fig. 6-2 is carried out in the following

paragraphs.

Ps

cm
Pc , +



q∞

jj Vm
hj

Ps

cm
Pc , +



q∞

jj Vm
hj

Fig. 6-1.Circulation control actuator system representation (a)
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Fig. 6-2.Circulation control actuator system representation (b)

Fig. 6-3. Experimental servo actuator installation

6.2.1 Pneumatic system model

The model of the pneumatic system determines the plenum pressure Pc subject to the

following simplifying assumptions:

(i) Gas is ideal.
(ii) Gas density is uniform in the chamber and in the pipe.
(iii) Gas flow through the pipe is an isentropic process.
(iv) Flow in the connection port is isentropic.
(v) Flow leakage is negligible.
(vi) A quasi stagnation condition exists inside the plenum chamber.
(vii) The ambient pressure at the slot exit is the free stream static pressure.

The transient of the gas in the chamber has been modelled as variable volume between

two restrictions (Bigras, Wong & Botez, 2001), (Anderson, 1967). In accordance with

assumptions (i), (ii), (iii) the dynamic model of the gas in the chamber is given by the

following relations,

)( jc

c

c
c mm
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(6-7)
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Where ccc TVP ,, and cm are respectively the pressure, volume, temperature and mass

flow in the plenum chamber. R is the ideal-gas constant and is the ratio of specific

heats of the gaseous medium. In accordance with assumption (iii), the temperature in

the chamber is given by the following relations:



 1

0

0













c

c
cc

P

P
TT (6-8)

Where 0cP and 0cT are the initial conditions. According to assumption (iv) and (v) the

flow in the valve and in the connection port are then modelled as follow:
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Where cA is the orifice area of the connection port and ss TP , are the pressure and the

temperature respectively of the air supply. cC is the orifice discharge coefficient. The

piecewise flow function fr in Eq. (6-9) is defined as:
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Where rc is the critical pressure ratio given by )1/()1/2(  cr .

As a matter of convenience the plenum stagnation pressure is expanded to free stream

static pressure. Thus, the jet mass flow rate jm can be calculated isentropically using

compressible flow equation,
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The local Mach number at the jet exit slot is determined from the isentropic equation,
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6.2.2 Servo actuator model

The transient of the pneumatic system is governed by a first order model, Eq. (6-7), with

a lag which is dependent on the volume of the line. Given that the volume of the

chamber is small, the pressure transient is negligible and the open loop response of the

system is governed mainly by the transient of the actuator, since this is the slowest

component in the system. Measurements of the response of the experimental actuator

enabled a second order model to be described as,

22

2

2 










sd

(6-13)

Where d the commanded deflection angle and  is the actual deflection angle,  is the

frequency of the system, estimated as 15rad/s, and  is the damping ratio, estimated as

0.85.

6.2.3 Prediction of the Lateral Aerodynamic characteristics of the Demon/CC

In the absence of wind tunnel test evaluation of a 3-D Demon/CC model, semi-empirical

methods were used to reduce data obtained from wind tunnel tests on the rectangular

wing into 3-D finite wing data for the Demon, spanning the same portion of the wing as

the existing inboard mechanical ailerons (surface No. 2).

Let Seff be the fraction of wing area ahead of the part span trailing edge slot, then the

full span lift increment due to the CC actuator can be expressed as,

eff

LL
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F


  (6-14) 
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The lift increment due to trailing edge blowing was derived by applying a part span

correction (ESDU 74012) to take into account the limited span-wise extent of the TE

device. Using the same notation as in ESDU:

32.0/LFL CC   (6-15)

The lift increment per unit control deflection CL has been defined in Eqs. (5-17) and

(5.22) in Chapter 5. The implementation of the method is given in appendix E.

Thus, an effective 2-D momentum coefficient can be defined based on CC actuator

performance installed in a given wing plan-form. Let bj be the trailing edge slot part

span, then from the definition of flow momentum coefficient, it follows that,

j

DD
b

b
CC   32  (6-16)

An estimate of the roll control power for an aileron can be obtained by a simple strip

method integrating the incremental change in roll due to a change in control deflection

over the region containing the aileron:
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Where


 LFC
is the section lift coefficient on the station containing the aileron which

control effectiveness is thought dependant only on the h/r and h/c, c being the mean

aerodynamic chord of the section ahead the CC actuator

A semi-empirical method (ESDU 88013) has been used to estimate the rolling moment

derivative due to the operation of the CC actuator. The method is derived from the strip

method described in Eq. (6-17) and it adjusts the data for sweep, aspect ratio and partial

span flap effects. The implementation of the method is given in appendix E.

The design variables for the CC actuator are listed in Table 6-1. The plenum aspect ratio

determines the chord-wise extent of a CC unit. In the present work, the goal has been to

replace the mid-span hinged surfaces with CC actuator and the existing space for these

surfaces has been replaced with a plenum without trying to reduce the chord-wise
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extent. If the plenum aspect ratio (height of the slot over its span-wise extent) is small

then it is still possible to achieve good uniformity of total pressure at the slot. For a

given plenum geometry, the total pressure uniformity at the slot exit also depends on the

geometric tolerances of the slot itself.

Slot total pressure uniformity is maximized by maximizing the slot geometric

uniformity, however, there is a design and manufacturing cost associated with

decreasing slot tolerances and it becomes increasingly expensive to maintain a given

slot geometric uniformity as the mean slot height decreases.

Parameter wing with flap
wing with CC

actuator

Flap span (% b/2) ~ 15% ~15%

Flap chord (% c) ~ 6.5% -

Slot curvature h/r - ~ 6 %

Coanda surface radius/ fraction of the wing

ahead the CC chord
r/c - < 1%

Plenum AR h/bj - 0.2%

Table 6-1. Mechanical flap and CC actuators geometries.

If the ailerons were substituted with the CC system, the parameter dCLL/d would

remain valid, representing the rolling moment increment per unit control angle

deflection. This value would be a function of the blowing and, hence, the velocity ratio.

Fig. 6-4a shows the variation of rolling moment per angle deflection of the cylinder

with increasing blowing from the plenum. The rolling moment derivative for the

inboard and outboard mechanical aileron is superimposed. Fig. 6-4b shows, also, the

corresponding corrected mass flow rate, blowing momentum coefficients and jet

velocity ratio, according to the model described in paragraph 6.2.
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Fig. 6-4. a) Rolling moment derivatives evaluated for the CC actuator replacing the inboard
aileron of the Demon. b) Air supply requirements

Clearly the main advantage of a dual slot actuator is the possibility of achieving

differential control through actuation on the left and right wing. This would maintain

symmetry in the control and would have the main advantage of cancel out the pitching

moment created by the high lift effectors. This observation was discussed in the

previous Chapter 5.

The rolling moment generated blowing differentially from the left and right CC

actuators replacing ailerons is shown in Fig. 6-5a. The rolling moment due to

differential deflection of the ailerons () is shown on the same graph over an actuator

control angle of ±10o. The data indicates that a 10o deflection of an aileron could be

generated instead using a blowing coefficient of 0.001 at each plenum.

The blowing momentum coefficient is the most critical parameter controlling the

effectiveness of the CC unit. For a fixed slot geometry and chamber pressure the

blowing momentum coefficient is an inverse function of the dynamic pressure, i.e. the

flight velocity. Therefore in order to maintain a constant effectiveness air supply

pressure should increase with flight velocity. Fig. 6-5b shows the variation of pressure

ratio in the chamber with flight speed within the flight envelope.
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Fig. 6-5. a) Comparison of the differential rolling moment at different blowing setting with
differential rolling moment achievable with mechanical aileron deflection. b) Chamber pressure

variation with flight speed

6.3 Pneumatic power supply

Different options have been considered within the Demon system design to supply

compressed air to the CC actuator.

The power can be extracted from the thrust engines resulting in an available thrust level

reduction. A blowing air compressor driven from the propulsion unit through a shaft is

the most thrust efficient method of engine power extraction. Moreover this solution

allows the compressor to be sized in accordance to the needs at the blowing slot.

However, the engineering complexity and cost penalty made this method not a viable

option. Considering that the momentum required is less than 10% of the installed thrust,

the engine compressor bleed can provide relatively cool high pressure air, with the

advantage of high pressure ducting which requires much smaller duct and provides

better span-wise distribution.

6.3.1 Engine with bleed

The reduced static thrust associated with bleed air can be computed from cycle analysis

on T-S diagram of a jet engine. The magnitude of the turbine and compressor

efficiencies (c, t) and the temperature ratio’s (t3r, t4r) for the compressor and the
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turbine, determine the thrust loss associated with bleed air ( mmb b
 / ) and forward

speed (Ve).

The ratio of the static thrust with the bleed to the thrust without can be expressed as

(Loth, 1987),
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From Eq. (6-18) the reduced static thrust associated with bleed air can be computed as

function of the bleed mass ratio (b),
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(6-19)

kb is the percentage of thrust loss per bleed rate and it is dependant on the component

efficiencies and the temperature ratio’s for the compressor and the turbine.

A pneumatic power supply system, based on the AMT micro jet turbine engine

compressor bleed, has been designed, developed and tested at Manchester University

(Wilde et al., 2007); The analysis and discussion which follows is based on data mainly

from this source. The effect of engine bleed mass flow rate on thrust for a range of

throttle setting is shown in Fig.6-6. Test data were corrected for standard atmospheric

conditions and static uninstalled engine thrust is a function of power setting and bleed

ratio. Bleed flow is a function of total engine airflow at a specific throttle setting. Bleed

mass flow rate is presented non dimensionalized using the maximum mass flow rate

extracted. The engine throttle regulates the fuel flow rate via the engine control unit

(ECU). For a given throttle setting the fuel flow is constant. An exception to this rule is

if the engine approaches the maximum or minimum shaft spool speed. In this case the

engine will regulate the fuel flow in order to remain within the spool speed limits. At

maximum throttle the engine will maintain the maximum spool speed, by regulating the

fuel flow rate. The exhaust gas temperature increases with higher bleed. The maximum

bleed mass flow taken from the engine is limited by the turbine inlet temperature,



147

particularly at low throttle. In practise this was imposed by limiting the exhaust gas

temperature to 1100K.

Fig.6-6. Static thrust performance of uninstalled AMT Olympus micro jet engine with bleeds
@ STP

Thrust losses as a function of bleed rate at each throttle setting can be extracted from

Fig.6-6 and are presented in Fig.6-7a. Hence kb can be calculated from Eq. (6-19) and

results are reported in Fig.6-7b.

Thrust loss due to bleed averaged about 0.3N of thrust per gram per second of bleed air.

Bleed system can produce large amounts of mass flow at high throttle setting. Below a

throttle setting of 30% a low mass flow rate is produce with a large impact on thrust

loss.
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Fig.6-7. a) Thrust loss versus maximum bleed mass flow rate. b) Thrust loss per bleed rate at each
throttle setting

For a blowing mass flow rate b. m , the blowing jet thrust Tj is obtained from:

)/( ejjj VVbTVmbT   (6-20)

The ratio between the exhaust velocity from the engine Ve and the jet velocity Vj for

high pressure bleed due to pressure losses in the ducting and temperature drop can be

estimated as approximately 0.8. So the bleeding requirement in the flight envelope at

different throttle setting can be estimated using Eq. (6-20), for a required blowing

momentum of 0.001, Fig.6-8. Clearly the CC can be fed from the engine under the

condition the throttle setting to be higher than 30%.
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Fig.6-8. Bleeding requirements at different throttle setting and different speed within the flight
envelope

During cruise the engine will be operating at 30-35 % throttle setting. The 10 % bleed

mass flow requirement can be met with a thrust penalty of around 12 %.

The impact of thrust loss on the flight performance can be particularly significant

regarding the overall flight envelope. It must be observed that the Demon flight speeds

are relatively low and the amount of thrust spent during the different flight phases is

small compared to the total installed one. The loss of thrust due to bleed for constant

throttle settings is an issue due to the coupling between thrust and bleed mass flow rate.

The throttle setting must be inferred depending on the thrust required and bleed mass

flow rate. Considering steady level flight, Fig. 6-9 shows the changing in throttle setting

required for any given velocity within the flight envelope when 10% mass flow rate is

bled; for the design cruise speed VC the throttle setting required is about 45% of the

throttle setting. For the stall speed VS the throttle setting required is about 42% of the

throttle setting and for the design dive speed VD it is 65%. Therefore in the whole level

flight speed range the thrust loss due to engine compressor bleeding does not affect the

aircraft ability to fly.

.
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Fig. 6-9. Throttle setting required for steady level flight as a function of true airspeed @ 121m

If the aircraft is required to maneuver at higher load factors, the increase of induced

drag must be considered in the analysis. The maximum steady bank angle in a

coordinated turn is limited by the maximum thrust available, according to,
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 (6-21)

The effect of the reduction in maximum thrust due to bleeding on maximum bank angle

is illustrated in Fig. 6-10. The limits become more stringent if a bank angle in a steady

climb turn is considered, due to the further reduction of the excess power caused by the

component of weight that needs to be balanced.
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Fig. 6-10. Effect of bleeding on max turning bank angle
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A significant limitation on using fluidic technology in combination with bleeding from

the engine is represented by descending flight. Descending flight is a trade off between

flying at a sufficient high velocity to guarantee a thrust setting high enough to bleed and

not too high to compromise the efficiency of the CC actuator, as it has been observed

before, the last is an inverse function of the flight speed. In order to slow down the

aircraft, whilst keeping a high throttle setting, it is necessary to increase the parasite

drag artificially, using for example spoilers.

During the approach the throttle setting is low (almost idle) and below the limit under

which no air can be bled from the engine. One solution could be flying on the back side

of the power curve at minimum level speed corresponding to maximum lift coefficient.

The visibility during landing approach is not an issue for a UAV; therefore the aircraft

could approach at very high angle attack. However, flying slow, on the backside of the

power curve, is not recommended because no power is then left over to assist in stall

recovery.

From these observations it was concluded that the CC air mass flow requirements may

be provided by a relatively light weight Auxiliary Power Plant (APU) and this solution

was chosen for the Demon UAV. The APU selected for the project is a micro turbo-

shaft engine driving a compressor wheel delivering pressurised air and designed by

Wren Turbine Ltd. Details of the APU can be found in Lawson (2008). This solution

was envisaged as a risk reduction; besides not losing any thrust, the power can be

controlled separately from the main engine thrust setting In this manner the blowing

pressure is independent of the thrust level, thereby simplifying the operation with CC

and the flight control system design. However, these advantages are counteracted by an

increase in weight and cost. Fortunately, those implications are mitigated by the position

of the APU in the Demon aircraft. The APU is envisaged to be mounted inside the nose

fairing; this will help moving the cg forward to achieve the desired level of stability,

actually reducing the amount of balance required.
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7 FLIGHT CONTROL SYSTEM DESCRIPTION

7.1 Introduction

This chapter describes the proposed flight control system (FCS) installation for the

Demon UAV developed under the umbrella of the EPSRC/BAE Systems FLAVIIR

research programme.

The FCS has been tailored around the Demon UAV configuration for the first flight test

campaign. This utilizes four trailing edge devices per wing, only three of which are of a

conventional design (Surfaces No. 1, 3 and 4), where the fourth (Surface No. 2) is a

novel technology implementation of a circulation control system (CC) device. In

addition to the CC devices, a fluidic thrust vectoring system (FTV) is applied to the

vehicle providing control over the exhaust jet direction within the engine nozzle. A

conventional control surface is used for the fin and rudder assembly.

The pressurised air to power the circulation control system (CCS) is provided using an

APU located in the nose bay, between the front bulkhead and nose-wheel attachment.

The APU is a micro turbo-shaft engine driving a centrifugal compressor wheel

delivering an absolute maximum pressure of 1.7bar at a maximum temperature of 300K.

Figure 7-1 shows the Demon model with the main systems installed.

Fig 7-1. Demon global systems view
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The Demon FCS is based on the FCS developed and flight proven by Cranfield

Aerospace (CAe) on the Observer UAV system. An overview description of the CAe

miniature digital system hardware can be found in Cook, (2007b). The original FCS

architecture has been modified to meet the explicit functional requirements of Demon.

The FCS is separated into a primary system and an advanced guidance system. The

semi-autonomous system philosophy provides for a safety pilot who can take over from

the autonomous system at any time during a flight. In view of the relatively high risk

associated with the flapless control features of Demon, the semi-autonomous control

philosophy is proposed and that the primary control and trim functions will remain on-

line at all times under the command of a safety pilot. Thus the safety pilot can engage

and disengage the advanced guidance and control functions, and can intervene at any

time to recover control of the vehicle, or to make small flight path adjustments whilst

under auto-pilot control.

The development of the advanced guidance system is beyond the main purpose of the

research reported in this thesis. The aim is to propose an architecture with provision for

switching to alternative advanced primary control laws in flight and a level of flexibility

to facilitate future experimental flight research.

The primary flight control system retains the same functionality as that designed by

CAe but with modifications to allocate commands to the various flap and flapless

motivators, to allow for conventional take-off and landing (rather than catapult launch

and parachute recovery) and to provide a degree of safety in the event of failure of the

flapless controls.

The assumed operating procedure for the proposed flight test demonstrations determines

the primary flight control system architecture. The safety pilot will execute a

conventional take-off, climb to safe altitude and establish Demon in level flight cruise at

the specified trim condition. The pilot may then engage the primary flight control

system and execute demonstration manoeuvres using flow control devices. The pilot

may also engage the advanced guidance system which will execute a pre-programmed

demonstration manoeuvre entirely automatically, provided he keeps his hands off the

controls during the demonstration. On completion of the manoeuvre, the pilot will
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disengage the advanced guidance system and complete a manual recovery, approach

and landing in the usual way. This is considered to be a safe procedure since the vehicle

trim condition is not lost during the demonstration.

7.2 Primary flight control system architecture

The main features of the primary flight control system retain those of the CAe FCS with

modifications to facilitate the flapless control devices interface and simplifications to

ease the interface conditions for the advanced guidance and control algorithms. The

longitudinal FCS architecture is shown on Fig.7-2 and the lateral-directional FCS

architecture is shown on Fig.7-3 and both are self explanatory. A description of sensed

and internal FCS variable is given in Table 7-1. The main functional features of the FCS

are summarised as follows, and these should be considered in the context of the figures

to which they relate.

 Manually set roll, pitch and yaw trim is held on the mechanical flying

control surfaces such that in the event of loss of air supply to the flapless

controls, or loss of the engine the trim condition is not lost. Also, by holding

trim on the mechanical flap controls the problems associated with constant

flow vector offset and constant trim air supply demand are avoided.

 Normal operating mode primary piloted flight control is made by means of a

conventional roll/pitch stick spring loaded to centre such that in trim the

command signal outputs are zero. The command characteristic is attitude

command since that has been adopted by CAe and demonstrated to provide

a sound strategy for remote control of a small UAV. In normal operation

roll and pitch commands are routed via the flapless flow control devices. A

proportional system with no integral feedback is used, so as to make mode

switching easy in that the integrator initial conditions do not need to be

remembered or set following an FCS mode change.

 A reversionary piloted flight control mode is incorporated for emergency

recovery of the vehicle. This mode can be selected (switch S1) by the pilot

at any time, or engaged automatically following engine or air supply failure.

This mode provides a direct command from the roll/pitch stick to the
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mechanical flying control surfaces in the manner of a radio controlled model

aircraft. Consequently, when engaged this mode provides a rate command

characteristic.

 Engine thrust is not commanded directly. Instead, it is incorporated into a

speed command loop which is tailored to avoid rapid changes in thrust

demand and includes a minimum thrust protection limit (F1). Airspeed

demand (trim) is selected manually by the pilot. Again this is a proportional

feedback with no integral feedback. By demanding airspeed rather than

thrust, the control loop will automatically compensate for thrust droop in the

presence of variable compressor air bleed for the fluidic thrust vectoring

control systems.

 Provision is made for simple three axis rate stabilisation and the loops are

closed around the mechanical flying control surfaces only. This avoids

additional demands on the flapless controls and ensures that stabilisation

remains effective, along with trim, following emergency reversion to rate

command. The p,q and r feedback are limited so that a gyro failure would

not result in a hard-over of the control surfaces.

 Control input mixing is avoided to simplify the system and to enable the

advanced guidance and control algorithms to drive directly on to the

primary control motivators, with the exception of engine thrust. Engine

thrust is controlled indirectly via the speed demand loop.

 Turn coordination functions are included in the attitude command system to

assist pilot manoeuvring. These functions are not available in the emergency

rate command mode.

 The advanced guidance and control algorithms may be engaged/disengaged

(switch S2) by the safety pilot at any time during flight. Once engaged,

additional switching may be required to activate the various navigation

modes.
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Variable Description Sense

Vda Airspeed demand from advanced controller +ve increase

Vd Trim airspeed demand (pilot) +ve increase

pitch Pitch stick position (pilot) +ve stick pull

roll Roll stick position (pilot) +ve stick to starboard

d Roll attitude demand +ve starboard wing down

 Elevator angle +ve trailing edge down

d Elevator angle demand +ve trailing edge down

da Elevator angle demand from advanced controller +ve trailing edge down

 Equivalent fluidic elevator angle +ve trailing edge down

d Equivalent fluidic elevator angle demand +ve trailing edge down

da

Equivalent fluidic elevator angle demand from

advanced controller
+ve trailing edge down

trim Elevator angle to trim +ve trailing edge down

d Pitch attitude demand +ve nose up

trim Pitch attitude to trim (pilot) +ve nose up

 Thrust +ve forward

d Thrust demand +ve forward

 Aileron angle +ve starboard TE down

cc Equivalent circulation control aileron angle +ve starboard TE down

ccd
Equivalent circulation control aileron angle

demand
+ve starboard TE down

ccda
Equivalent circulation control aileron angle

demand from advanced controller
+ve starboard TE down

d Aileron angle demand +ve starboard TE down

da Aileron angle demand from advanced controller +ve starboard TE down

trim Aileron angle to trim (pilot) +ve starboard TE down

 Rudder angle +ve TE to port

d Rudder angle demand +ve TE to port

da Rudder angle demand from advanced controller +ve TE to port

trim Rudder angle to trim (pilot) +ve TE to port

Table 7-1. Flight control system variables
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7.3 FCS hardware description

The FCS system hardware comprises the Blue Bear Systems Research Ltd (BBSR)

generic FCS module: SNAP; SNAP is a single board computer which runs a Linux

based operating system with a unique application called snapharness. An overview of

the system is given in Smith, (2008). SNAP includes a number of Micro Electrical

Mechanical Sensors (MEMS); these provide basic rate, acceleration and pressure

readings to the control law. Snapharness uses this data to provide body attitudes. SNAP

uses a standard onboard SD card for logging all flight data and therefore providing

expandable memory capacity.

It is intended that the Demon FCS will utilise the same hardware installation with the

minimum number of modifications tailored to meet the needs of the application.

Proposed modifications include increase the number of PWM servo drive outputs from

the current 8 to match the number of independent controlled elements in Demon.

Furthermore, due to SNAP’s open architecture, the FCS software code implemented in

SIMULINK will be exported to SNAP using the Real Time Workshop (RTW).
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Fig 7-2. Longitudinal Primary Flight Control System
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Fig 7-3. Lateral – Directional Primary Flight Control System
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8 FLIGHT CONTROL SYSTEM DESIGN

8.1 Longitudinal primary flight control system

The following sections describe the design of the longitudinal primary Flight Control

Systems (FCS). The final design of the longitudinal architecture is of the form presented

in Fig. 8-1. The main functional features of the longitudinal Flight Control System are

summarised as follows:

 Manually set pitch trim is held on the mechanical flaps (surfaces No.3 and

No. 4) such that in the event of loss of air supply to the flapless controls, or

loss of the engine the trim condition is not lost. Also, by holding trim on the

mechanical flap controls the problems associated with constant flow vector

offset and constant trim air supply demand are avoided.

 The command characteristic is attitude command. Although provision has

been made such that in normal operation pitch commands are routed via the

flapless flow control devices, the design of flapless flight control system for

the longitudinal axis is beyond the purpose of this study. In the design,

described here, pitch command is routed via the mechanical flaps.

 Engine thrust is not commanded directly. Instead, it is incorporated into a

speed command loop which is tailored to avoid rapid changes in thrust

demand. Airspeed demand (trim) is selected manually by the pilot.

 Provision is made for longitudinal axes rate stabilisation and the loop is

closed around the mechanical flying controls (surfaces No.3 and No. 4)

only.

 Turn coordination functions are included in the attitude command system to

assist pilot manoeuvring.
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8.2 Longitudinal Stability Augmentation System design

In the absence of flying qualities requirements for UAV’s, piloted aircraft flying

qualities have been applied as suggested by (Prosser & Wiler, 1976) and those have

been shown in Chapter 4.

Gains have been chosen to meet the design objectives of the longitudinal Stability

Augmentation System (SAS), which were:

 Increase Short Period Pitching Oscillation (SPPO) damping ratio to 0.7 across the

flight envelope. This value allows for any degradation to stability that may occur

when the other loops are closed subsequently.

 To augment the response characteristics so that the steady state is reached with

appropriate rise time.

 To endow the aircraft with good long term holding characteristics.

The design process is described for one specific flight condition. Initially the design was

carried out in the linear environment using the linearized model extracted from the non-

linear simulation. The performance of this design was then verified in the non- linear

environment.

The design process assumes, in the first instance, that the dynamics of the gyro sensors

are not intrusive and may be ignored. However, the effect of the actuator and engine lag

has been assessed during the design process.

The systems consist of a pitch rate feedback to elevator with a gain in the feedback path,

plus pitch attitude feedback to elevator with a gain in the feedback path. The auto-

throttle consists of a proportional feedback of the speed error to the throttle. Elevator

trimming requirements are provided by means of a look up table, which is to contain the

required elevator to trim scheduled with flight speed velocity, as shown in Fig. 8-2.
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Fig. 8-1. Longitudinal flight control system architecture

Fig. 8-2. Pitch trim design

Assuming the aircraft in trimmed straight and level flight, the control law relating

attitude demand to elevator is given by Eq. (8-1):

trimqtrimdd qKK    )( (8-1)

Note that Eq. (8-1) omits turn coordination feeback.
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The control law relating engine speed to speed demand is given by Eq. (8-2):

)( VVK dvd  (8-2)

8.2.1 Longitudinal stability augmentation system closed loop analysis

The dynamics of the aircraft model in a level flight cruise condition at 130m altitude

and 40m/s true airspeed, are given by the state description,
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(8-3)

The basic aircraft state equation was then augmented with the actuator dynamics. The

reader is referred to Chapter 4 for a description of the actuator model. The actuator state

equation can be realised in controllable companion form,
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When the coefficient matrices (8-3) are augmented by the addition of Eq. (8-4) to

introduce the actuator dynamics, the result is:
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 (8-5)

The purpose of the pitch SAS is to provide satisfactory damping for the short period

mode. The feedback of pitch rate to elevator control will modify the damping and the

phugoid mode will be largely unaffected by this feedback.
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The open loop state Eq. (8-5) can now be used to obtain the transfer functions needed

for root locus design, at the design flight condition. The transfer function fromd to q is

found to be:

sdeg

deg

625)+30s+(s35.13)+5.195s+(s0.0993)+0.06074s+(s

2.979)+(s0.09084)+(ss23709.7182-
222 


d

q


(8-6)

The stability modes of the open loop aircraft (actuator modes are not shown) are:
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096.0ratiodampingPhugoid
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ω
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Fig. 8-3 shows the root-locus plot for negative values of Kq. As the pitch rate feedback

is increased the short period damping is rapidly increased and the poles become real for

relatively low values of Kq. A practical value of gain is Kq=-0.1rad/rad/s which increases

the short period damping to 0.7, simultaneously increasing the natural frequency of the

mode to 7.54rad/s. At this value of feedback gain the change in phugoid characteristics

are almost insignificant.

Fig. 8-3. Root locus plot —pitch rate feedback to elevator
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8.2.2 Attitude command loop design

The design process for the pitch attitude command loop uses the inner loop from the

previous paragraph and linearizes the complete dynamics (aircraft plus inner loop) with

pitch attitude angle as an output, under the same flight condition.

The transfer function from the pitch rate command to the pitch attitude angle is given

by:

deg/s

deg

498.9)+24.63s+(s56.92)+10.56s+(s0.07678)+0.06242s+(s

2.979)+(s0.09084)+(ss23709.7182-
222


dq


(8-7)

K is designed primarily to give good command characteristic without upsetting closed

loop stability. The effect of pitch attitude feedback on transfer function (8-7) can be

deduced from the root locus in Fig. 8-4. The root locus plot, pitch attitude feedback to

elevator for negative values of K, when Kq=-0.1rad/rad/s, shows that the phugoid poles

move to the real axis and eventually they terminate on the two remaining zeros. When

the effect of actuator is taken into account the short period poles must move toward the

right half plane. Thus the short period becomes less damped and the phugoid damping

increases. A pitch attitude feedback gain of K-0.3rad/rad was chosen which would

result in a good level of closed loop phugoid stability without reducing the short period

mode stability too much.

Fig. 8-4. Root locus plot—pitch attitude feedback to elevator
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Thus the longitudinal stability modes have been augmented to:

rad/s34.0frequencynaturalundampedPhugoid

97.0ratiodampingPhugoid
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8.3 Auto-throttle design

The auto-throttle loop consists of a speed error feedback to throttle through a

proportional controller. The throttle servo and engine response has been modelled by a

single 3s lag. The stability characteristic of the SPPO will remain almost the same,

while the phugoid will be replaced by two non oscillatory modes: the surge mode and

the heave mode. The design of the auto-throttle loop was carried out in the non-linear

environment, where adjustments of the gain were made.

8.4 Longitudinal Stability Augmentation System gains selection

Initially, using the root locus technique, values of the controller gains were determined

for each of the flight conditions under consideration in the linear environment. An

assessment of these gains was made and it was determined that the gains need not be

scheduled. It was found that single values of the two controller gains Kq, K could be

found that gave a satisfactory performance throughout the flight envelope. This is due to

the fact that the longitudinal modes characteristics do not vary significantly in the flight

envelope considered, as it was observed in Chapter 4; the short period damping ratio is

almost constant in the range of velocity considered.

Having used the root locus technique to determine values of the controller gains that

gave the required stability characteristics, the gains were adjusted accordingly so as to

augment the response shape, while maintaining the nominal stability characteristics. The

values of the controller gains were then assessed in the non-linear environment, where

small tuning adjustments were made.

As per the auto-throttle loop, the values of proportional gains were checked in the non

linear environment and they were assessed so as to maintain the indicated airspeed

within 2% of the reference speed, while maintaining the stability of the closed loop. The
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values of the controller gains that were assessed as being suitable to achieve the design

objective are presented in Table 8-2.

Controller gain Value

Kq (rad/rad/s) -0.1

Krad/rad) -0.3

Kvm/s 35

Table 8-2. Longitudinal controller gains

As classical control method has been used, any uncertainties in the aerodynamic data

are implicitly allowed for in the design process. The safety allowance will still be

adequately satisfactory. The augmented air-vehicle is not sensitive to control gain

accuracy, because gains have chosen to give enough stability margin for normal

operation.

8.5 Lateral primary flight control system

The following sections describe the design of the lateral primary Flight Control Systems

(FCS). The final design of the lateral architecture is of the form shown in Fig. 8-5.

The main functional features of the lateral control system are summarised as follows:

 Manually set roll and yaw trim is held on the mechanical flying control

surfaces (Surface No. 1 and rudder) such that in the event of loss of air

supply to the flapless controls the trim condition is not lost.

 The lateral command characteristic is roll attitude command. In normal

operation roll commands are routed via the CC devices.

 The power required for blowing with circulation control is to be provided by

an APU. Air is supplied continuously to the plenum chamber at a constant

total pressure at a value sufficient to endow the aircraft with acceptable

lateral control in the flight envelope. The internal airflow is not modulated

and therefore the actuation of the main trailing edge bar is the only input to

the system.
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 Provision is made for a lateral axes rate stabilisation and the loops are

closed around the mechanical flying control surfaces only (surfaces No.4

and rudder).

 Turn coordination functions are included in the attitude command system to

assist pilot manoeuvring.

8.6 Lateral Stability Augmentation System design

In the absence of flying qualities requirements for UAV’s, piloted aircraft flying

qualities have been applied as suggested by Prosser and Wiler (1976) and those were

shown in Chapter 4.

From the analysis of the stability properties (Chapter 3-4) the objectives of the lateral

SAS were defined. These are:

 To improve stability of the spiral mode across the flight envelope.

 Increase dutch roll mode damping ratio to 0.5 across the flight envelope.

The design process is described for one specific flight condition. Initially the design was

carried out in the linear environment using the linearized model extracted from the non-

linear simulation. The performance of this design was then verified in the non- linear

environment.

The design process assumes, in the first instance, that the dynamics of the gyro sensors

are not intrusive and may be ignored. However, the effect of the actuators has been

assessed during the design process.
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Fig. 8-5. Lateral flight control system

8.6.1 Lateral Stability Augmentation System architecture

The system consists of roll rate feedback to aileron, with a gain in the feedback path,

plus roll attitude feedback to CC actuator with a gain in the feedback path. Yaw rate is

fedback to the rudder to augment the damping ratio of the dutch roll mode. A wash-out

filter has been added to the yaw rate feedback loop to prevent yaw rate feedback

opposing the turn during steady turning flight.

It can be seen that the control law relating roll attitude demand to CC actuator is given

by Eq. (8-8):

 Kdccd  (8-8)

Inner loop stability augmentation is held on the conventional mechanical aileron

(normally, trim= 0):

pK pd  (8-9)

For the directional control axis, the control law is given by Eq. (8-10):

yaw
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Note that Eq. (8-10) omits turn coordination feeback.

8.6.2 Lateral stability augmentation system closed loop analysis

The dynamics of the aircraft model in a level flight cruise condition at 130m altitude

and 40m/s true airspeed, are given by the state description,
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The state equations have been augmented with the actuator models (rudder, aileron and

CC servo respectively) and a washout filter. The washout filter time constant Tw is

normally of the order of 1s and Tw =1 s is used here, since it was found to be quite

satisfactory.

The solution of Eq. (8-11) leads to the open loop transfer functions needed for root

locus design, at the design flight condition. The transfer functions of primary interest

are:

s

).s +.+) (s.s (s+.-rW

deg

deg

1)625)(s+30s+(s27.03)+4.06s+(s0.02425)+(s70.22)+(s

29880277205767137513229
22

2




 (8-12)

s

rW

deg

deg

1)625)(s+30s+(s27.03)+4.06s+(s0.02425)+(s70.22)+(s

5.13)+2.58s+(s307.4)-(ss376.0312
22

2




 (8-13)

s

r

cc

W

deg

deg

1)225)(s+25.5s+(s27.03)+4.06s+(s0.02425)+(s70.22)+(s

6.66)+3.425s+(s107.5)-(ss689.748
22

2




 (8-14)

625)+30s+(s27.03)+4.06s+(s0.02425)+(s70.22)+(s

7.888)+(s6.354)-(s0.02579)-(s22135.7063
22


c

p

 sdeg

deg
(8-15)



172

s

p

deg

deg

625)+30s+(s27.03)+4.06s+(s0.02425)+(s70.22)+(s

28.56)+3.935s+(s0.02511)-(s88578.6375-
22

2




(8-16)

s

p

cc deg

deg

225)+25.5s+(s27.03)+4.06s+(s0.02425)+(s70.22)+(s

27.89)+3.91s+(s0.02511)-(s75571.0252-
22

2




(8-17)

The dutch roll poles are almost cancelled out of the p/ and p/cc transfer function by

the complex zeros. Therefore weak coupling exists between the rolling and yawing

motions. At higher angle of attack the dutch roll poles will typically not be cancelled out

and the dutch roll mode will involve greater yaw – roll couplings.

The lateral – directional stability mode characteristics are as follows (actuator mode and

wash out time constant not reported):
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Roll time constant variation with flight conditions was illustrated in Chapter 4, showing

that this time constant was acceptably fast even at high angles of attack corresponding

to a landing approach condition, when a good roll response may be needed. Therefore

closed loop control of roll rate is not necessary to reduce the variation in aircraft roll

performances with flight conditions as the roll-subsidence mode has already a very short

time constant.

The required improvement in yaw damping is achieved by the closure of a simple

negative feedback loop from a yaw rate gyro sensor to the rudder actuator.

The transfer function relating yaw rate response rw to the rudder input  is Eq. (8-12).

A root locus plot for closing the yaw rate loop through the feedback gain Kr is shown in

Fig. 8-6. The role pole is almost exactly cancelled out by a numerator zero in Eq. (8-12).

The roll mode is therefore insensitive to this feedback option.

The actuator poles move to the right. As the magnitude of Kr is increased, the spiral

mode moves slightly closer to the washout zero at the origin and the washout pole
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moves toward the complex zero. The dutch roll poles move approximately around an

arc of constant natural frequency and increasing damping ratio. For values of feedback

gain Kr < -0.02rad/rad/sec the dutch roll mode becomes critically damped.

The value of feedback gain chosen for this flight condition is Kr=-0.06rad/rad/sec,

which is entirely adequate as it gives a dutch roll damping ratio of dr=0.5. The change

into the roll and spiral modes are indiscernible.

The lateral – directional stability mode characteristics are as follow (actuator mode and

wash out time constant not reported):
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Fig. 8-6. Root locus plot — yaw rate feedback to rudder

A roll attitude command controller has been designed in order to control the bank

attitude of the aircraft. K is designed primarily to give good command characteristic

without upsetting closed loop stability. The bank attitude feedback gives the aircraft

positive stiffness and stabilizes the spiral mode.

The closed-loop transfer function from the roll rate command to the bank angle is found

to be,
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Or, approximately:
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When the bank angle feedback loop is closed around Eq. (8-19) the root locus plot

shows that the spiral mode moves to the left the complex poles to the right and the roll

rate stability slightly decreases.

At a bank angle feedback gain of K=0.1 rad/rad the stable spiral mode time constant

was Ts~2s. With this value of gain the bank angle control loop is satisfactorily fast. Thus

the lateral –directional stability modes have been augmented as per Table 8-3.

Mode Open loop Closed loop

Dutch roll damping ratio 0.396 0.533

Dutch roll undamped natural frequency 5.20 5.23 rad/s

Spiral mode time constant 41.3 s 2.87 s

Roll mode time constant 0.015 s 0.015 s

Washout filter time constant 1 s 1.07 s

Rudder actuator frequency 25 24.2

Rudder actuator damping 0.6 0.586

CC actuator frequency 15 ~15

CC actuator damping 0.85 ~0.85

Table 8-3. Lateral modes of the un-augmented and augmented aircraft

8.6.3 Lateral stability augmentation system gain selection

Initially, using the root locus technique, values of the controller gains were determined

for each of the flight conditions under consideration in the linear environment. An

assessment of these gains was made and it was determined that there was a significant
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difference in the magnitude of the gains with increasing speed. As a result it was

decided that the values of the controller gains would be scheduled with flight speed.

Having used the root locus technique to determine values of the controller gains that

gave the required stability characteristics, the gains were adjusted accordingly so as to

augment the response shape, while maintaining the required stability characteristics.

These values of the controller gains were assessed in the non linear environment, where

small adjustments were made. The values of the controller gains that were assessed as

being suitable to achieve the design objective are presented in Fig. 8-7 and Fig. 8-8.

It is interesting to compare the gain schedules when the roll command is routed via the

CC actuator with the case when the roll command is routed via the mechanical aileron

(Fig. 8-8 and Fig. 8-9). The aileron effectiveness, as it was described in Chapter 3,

varies with angle of attack, becoming smaller at high angle of attack, hence causing

undesirable variations in aircraft roll performance. On the other hand the CC actuator

effectiveness is not affected by change in incidence but is proportional to the ratio of the

jet and free-stream velocity. Therefore it is less effective at high speed for a given jet

momentum, although this effect will be partially compensated by the fact the magnitude

of the rolling moment is by definition proportional to square of the free stream velocity.

These considerations are reflected in the gains scheduling.

The roll response has been assessed with the simulation. In order to capture the

modified spiral time constant a step attitude demand has been input. The time response

was obtained with the yaw rate and roll rate loops closed with the feedback gains shown

above. The input amplitude was adjusted so that response was of similar amplitude for

different velocities. Fig. 8-10 exhibits a significant improvement in the bank angle

speed of the response at all the velocities tested.

As classical control method has been used, any uncertainties in the aerodynamic data

are implicitly allowed for in the design process. The safety allowance will still be

adequately satisfactory. The augmented air-vehicle is not sensitive to control gain

accuracy, because gains have chosen to give enough stability margin for normal

operation.
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Fig. 8-7. Yaw rate feedback gain to rudder

Fig. 8-8. Bank attitude feedback gain to cc actuator
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Fig. 8-9. Bank attitude feedback gain to aileron

Fig. 8-10. Bank attitude time response

8.7 Turn coordination and turn compensation

If the aircraft is held at some other attitude rather than wings level, additional control

systems must be used to control sideslip and pitch rate, so that a coordinated turning

motion is produced. In a coordinated turn both the lateral acceleration and the sideslip

are zero. The result is that the aerodynamic lift force is normal to the y-axis. This is the
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most efficient turn since the sideslip is zero, and drag usually increases rapidly with

sideslip.

There is additional requirement for turning motion, and this is non zero pitch rate.

The turn can be specified by the Euler angle rate  . Then, given values of the attitude

angle  and  , both the pitch rate and the yaw rate required for a constant altitude turn

can be calculated from the kinematic equation as:
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The pitch rate and the yaw rate can be calculated using signals from the gyro sensor and

fed back to the pitch rate control system and rudder respectively as a command. This is

an open loop control and provides turn compensation that allows the aircraft to be

manoeuvred by applying commands to the bank angle control system.

The control law relating attitude demand to elevator, augmented with the turn

compensation, is given by Eq. (8-21):

  trimqqtrimdd VgKqKK    cossintan/)( (8-21)

For the directional control axis, the control law augmented with the turn compensation

is given by Eq. (8-22):
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The values of the controller gains were assessed in the non linear environment and they

are shown in Table 8-4.

Controller gain Value

q
K -0.38

r
K 38.0004.0  V

Table 8-4. Turn coordination gains
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8.8 Stability Augmentation System analysis

8.8.1 Longitudinal dynamics

The simulation has been initialized at a condition of straight and level flight at a

velocity of 40m/s and an altitude of 130m. The aircraft response to a pitch demand step

input is shown in Fig. 8-11. It is evident that the aircraft response is well damped, the

short period being almost indistinct. The pitch response, , is smooth and eventually

settles down within 5 s. From the elevator angle,  time history it can be seen that the

actuator dynamic is fast compared to the aircraft’s response.

The pitch attitude hold characteristic returns the vehicle to a trim attitude at the time

manual control manoeuvre inputs are removed, as shown in Fig. 8-12. The vehicle

returns to the reference attitude without overshooting.
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Fig. 8-11.Pitch demand step input-time response
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Fig. 8-12.Pitch demand step input-time response
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8.8.2 Lateral dynamics

The simulation has been initialized at a condition of straight and level flight at a

velocity of 40m/s and an altitude of 121m. A bank angle d = 40o is demanded after

10s. The aircraft enters a coordinated turn of radius R = 200m. Fig. 8-13 shows the

longitudinal variables time response during simulation. The speed did not decrease

during the 30-s simulation, thanks to the closed loop turn compensation. The altitude is

maintained within the accuracies specified in MIL-F-8785C (±60ft for a bank angle

between 30-60 deg). Fig. 8-14 shows respectively the lateral variables time response

during simulation. The bank angle settled down within 5 s and the response is well

damped. The sideslip is kept almost zero through rudder deflection. The control

deflections are within limits and sufficiently small to indicate an appropriate gain

selection.
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Fig. 8-13.Longitudinal variables time response during simulation of a coordinated turn
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Fig. 8-14.Lateral variables time response during simulation of a coordinated turn
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8.8.3 Directional dynamics

The simulation has been initialized at a condition of straight and level flight at a

velocity of 40m/s and an altitude of 130m. Fig. 8-15 shows the ground track of the

aircraft in response to a bank angle steering command. The altitude and the speed did

not decrease during the 35-s simulation, thanks to the closed loop turn compensation.

Fig. 8-16 shows respectively the bank angle response, the angle of attack, the sideslip

angle, the cc-actuator cylinder deflection and the rudder deflection. The bank angle

settled down within 5 s and the response is well damped. The control deflections are

within limits.

Fig. 8-15.Ground track during bank-angle steering
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Fig. 8-16.Variables variation during simulation of bank steering
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8.8.4 Control authority limit

Control systems limiting can be investigated with abrupt large amplitude commands.

This highlights the importance of modelling control surface rate and deflection limits so

that the simulation results are not unrealistic.

The simulation has been initialized at a condition of straight and level flight at a

velocity of 40m/s and an altitude of 130m. Fig. 8-17 shows the ground track of the

aircraft in response to a large bank angle steering command, which causes the CC

actuator to saturate, as it is shown in the CC actuator deflection (cc) time history in Fig.

8-18. The directional controls are still able to control sideslip and the elevator is not

saturated so that there is still longitudinal control available, sufficient to avoid pitch

departure.

Due to the geometrical constraints the mechanical limits of the CC actuator are such that

saturation could be reached if an excessive bank angle is demanded. In the described

FCS the maximum step bank angle change allowed without saturating the CC is 50deg.

This is, in fact, a manifestation of the control/power saturation limit due to finite

performance of pneumatic power supply. As a matter of fact, geometrical constraints

can be overcome if a greater air pressure supply is supplied, being the effectiveness of

CC control a function, for a fixed geometry installation, of the velocity ratio of the jet

and free stream.
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Fig 8-17.Ground track during bank-angle steering with control saturation



189

Fig 8-18.Variables variation during simulation of bank steering with control saturation
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9 CONCLUSIONS AND RECOMMENDATIONS

9.1 Introduction

The preceding research described the supporting Flight Dynamics contribution to the

design of a low observable UAV demonstrator (Demon) as part of a national research

programme (FLAVIIR). In particular, the study demonstrated an integrated flight

control and fluidic control system which employs a CC actuator to enhance or replace

the traditional roll control motivator.

Wind tunnel tests of a full-span 50% scale Demon model were successfully carried out

and delivered a representative aerodynamic model of the vehicle. A high fidelity 6DoF

simulation model for the airplane was developed based on wind tunnel experiments and

was used to assess vehicle trim, and stability and control properties. Simulations proved

the vehicle to have acceptable stability properties and good controllability over the

design operating range.

A novel alternative to a conventional single slot trailing edge circulation control

actuator that enables proportional bi-directional control has been developed. The

circulation control actuator has been manufactured and tested and experimental

evaluation has shown the flow control actuator concept to be a practical solution to the

problem of direct flow control at subsonic velocities and, hence, to have significant

potential to act as a direct replacement for a mechanical control surface. The potential of

the device has been recognized by BAE Systems who have filed a patent application

(P.A.N. 0617428.8).

A mathematical model of the flow control actuator, for interfacing the fluidic device

with the flight control system, has been derived and incorporated in the dynamic model

of the air vehicle. The model has established the factors that determine the effectiveness

of the CC effectors, in a similar manner to conventional trailing edge devices. The
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model has been used to predict flapless performance controllability of the aircraft and it

has resulted, also, in a valuable asset for interpreting the requirements for a secondary

air supply system and for establishing a practical source of the volume of air flow

required. In particular, specific saturation limits and their impact on different flight

operation phases have been assessed.

The dynamic simulation model of the flapless and flap configuration proved to be a

usable tool for proper flight dynamic representation and design of the Flight Control

System.

A semi-autonomous Flight Control System to assist control by a remote pilot throughout

the flight has been developed. A configurable control architecture that shares control

moment demand with conventional and fluidic motivators was proven to provide a

sufficient degree of safety and flexibility to facilitate experimental flight research.

Simulation results showed that the CC actuator, in conjunction with the elevator and

rudder, can effectively control the Demon attitude.

9.2 Conclusions

9.2.1 Air Vehicle modeling

The stability and control analysis of the Demon indicates that a satisfactory vehicle

behavior is expected over the design operating range. In particular:

 The position of the cg results in a positive static margin and positive longitudinal

stability. As the angle of attack increases there is a significant rearward shift of

the aerodynamic centre which results in a higher static margin. Nevertheless,

there is sufficient control power to trim, over the design operating range, leaving

enough margin for maneuvering.

 All the dynamic modes are stable across the flight envelope.

 Positive lateral and directional stability is maintained over an increased angle of

attack range. In particular, the sweepback of the wing has inherent lateral

stability that increases with increasing lift coefficient, resulting in a high level of

lateral stability at low speed and a low level of lateral stability at high speed. This
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is reflected in the spiral mode time constant; at high speed the spiral mode is

close to neutrally stable and manifests itself as a very slow exponential

convergence.

 Due to a relatively large wing area the damping terms attain significant values

with respect to more conventional configurations. In particular this is reflected in

the high roll damping which results in a very short mode time constant.

9.2.2 Circulation Control Actuator

The flow control actuator alleviates the problems associated with a fixed slot

arrangement:

 The total slot area remains constant and continuous air supply is required.

Consequently, control bandwidth limitations associated with internal air flow

throttling, to modulate the resultant control force and moment, are avoided.

Additionally, there is no back pressure effect on the air supply source; this could

be especially critical when air demand is bled from a small gas turbine engine

compressor.

 The flow control actuator can be integrated with conventional flap controls,

relying on minimal change, since the input command is an angular displacement.

Experimental evaluation has demonstrated:

 A remarkably linear lift response to rotation of the trailing edge Coanda surface,

through an equivalent control angle, within the operational envelope reported.

 Bi-directional incremental lift generation comparable to a mechanical flap of

similar trailing edge span and at a relatively modest blowing momentum

coefficient. The experiments have also shown that the bi-directional nature of

control remains fully functional up to the limit of the bandwidth of the model

aircraft servo (approximately 20 rad/s) used to actuate the Coanda surface. Thus,

since the bandwidth of the servo is much greater than that of the Demon, the

dynamic performance of the flow control actuator is entirely compatible with the

control requirements of subsonic UAVs.

 A significant drag reduction was shown for dual steady blowing (upper and lower

slot blowing simultaneously) compared with the un-blown configuration. The
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dual blowing capability addresses the issue of a blunt trailing edge for typical CC

configurations at cruise. This result indicates, also, that slot thrust can be adjusted

for a given lift to reach an optimum cruise configuration.

 A more negative pitching moment, compared with a mechanical flap of similar

trailing edge span, was observed. Aerodynamic centre of lift due to blowing was

found to be located at about 66% of the chord. This finding suggests that, if CC

acts as a replacement for aileron to provide roll control, differential blowing on

each side of the aircraft is necessary to cancel out the pitch down moment.

Hence, the bi-directional nature of the CC actuator addresses this problem.

9.2.3 Flapless Flight Control

From the analysis and discussions the following conclusion can be made:

 The fluidic devices can be modelled as momentum amplifiers specified by a gain

term and saturation limits.

 Unlike conventional mechanical controls, for fluidic controls, the dimensionless

control input required to achieve a given control force coefficient is not

independent of the reference momentum, hence, as the free-stream speed

increases, an increasing amount of input momentum is required to achieve a

given force coefficient.

 The saturation of fluidic controls is similar to geometric controls. Two saturation

limits exist based on geometry and effort/power constraints. For CC systems,

geometric saturation typically limits the attachment angle of the jet to less than

180° due to the extent of the curved trailing edge. The control/power saturation is

mass/pressure flow limited due to engineering constraints for engine bleed or

dedicated auxiliary power unit.

 Roll control power equivalent to that of conventional ailerons can be achieved at

practical slot blowing conditions. Results indicate that the effect of a 10o

deflection of aileron could be generated instead using a blowing coefficient of

0.001 at each plenum.

 CC provides the ability to control the Demon flying demonstrator in roll using

high pressure air supplied by the engine compressors during moderate-high

periods of engine operation. If the engine blowing power take off is constant then
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the excess jet momentum should be dumped or throttled as desired. However,

thrust losses associated with engine bleeding limit the manoeuvre flight with

respect to the same configuration using a mechanical control device. The most

critical condition is represented by a steady climb turn, where up to a maximum

of 10% loss in performance was observed compared with no bleeding case.

 Descending flight is the most critical flying condition when fluidic controls are

powered by air bled from the main engine. Engine needs to be throttled back to

slow down the aircraft, as the Demon lacks air-brakes.

 From these observations it was concluded that the CC air mass flow requirements

may be provided by a relatively light weight auxiliary turbo-compressor. In this

manner the blowing pressure is independent of the main thrust level, thereby

simplifying the operation with CC and the flight control system design.

9.2.4 Flight Control System

A semi-autonomous primary flight control system has been designed and the following

conclusions can be made:

 The FCS provides a safe stable platform with dynamics compatible with expected

manouevre envelope of the Demon. The control characteristics are consistent

with carefree remote handling of a Demon-class UAV.

 The configurable control architecture enables allocation of commands to

conventional flap control, circulation control and thrust vectoring separately and

in combination.

 CC actuator can be integrated in the flight control system and provides auxiliary

lateral stability augmentation, within the saturation constraints.

 A flight control strategy, where longitudinal and lateral directional controls share

multiple aerodynamic control effectors (mechanical and fluidic motivators), has

been demonstrated to be successful in alleviating the demand on a single fluidic

effector. This may be particularly useful for future tailless aircraft, especially

considering the atmospheric disturbance conditions and resulting increased

demand for pitch and lateral control, coupled with the inherently directional

unstable platform of a tailless aircraft.

 The system flexibility was designed to facilitate future flight research.
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9.3 Recommendations for future work

It has been recently anticipated that the Demon will be scaled by 15% when compared

to the original Eclipse UAV. The vehicle wing span will be increased to 2.53 m with

fuselage length of 2.88 m, giving an estimated flight weight of about 70kg. The vehicle

will be powered by a Titan AMT engine, with a maximum thrust of 360N. The 6DoF

simulation model will be modified and re-issued to reflect the current design status, and

to integrate new external data coming from other projects partners. In particular, the

simulation should be updated to include a model of the fluidic thrust vectoring system

developed by Manchester University.

Refinements of the flight control system are required prior to first flight. Extensive

simulation should be used to establish value of maximum climb and dive pitch angle

and maximum bank angle so as to provide carefree handling. In light of the results,

authority limits need to be modified so as to give the best margin for safe behavior.

The simulation model will be used to assist a series of simulated flight trials in the UAV

flight simulation suite at BAE Systems, Warton. The results will determine the limits of

the achievable flight envelope and drive the test plan for the first flights.

Due to the level of uncertainty around the fluidic control gain that will be achieved on

the final vehicle, the initial flight control systems have to be robust to this uncertainty. It

is believed that the robust LPV design methodology, undertaken at Leicester University

within the FLAVIIR project (Chen, Gu, Postlethwaite, and Natesan, 2008), could

provide a promising starting point for such an endeavor. More pragmatically, it would

make sense to do some very basic system identification on the fluid controls as part of

the initial flight tests.

The performance of the prototype actuator was limited by some features of its

engineering design. However, with improved design it should be possible to develop the

capability of the actuator to improve its range, resolution, weight and compressed air

consumption to provide a compact, robust and modular alternative to a conventional

flap for use in small scale air vehicles.

The following features of the actuator could be improved by design, with a resultant

improvement in performance:
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1) Improved plenum design to avoid span-wise asymmetry in the exit flow.

2) Higher mechanical accuracy of the trailing edge gap setting resulting in a more
uniform slot height with span.

Further electro-mechanical developments of the flow control actuator should be

investigated. In particular it is proposed to seek an alternative means for actuating the

cylindrical trailing edge bar within the device enclosure. It is envisaged that a successful

flow control actuator design will be self contained with a pipe connection for air

delivery and an electrical connection for actuation.

While the possibility of replacing a conventional roll control motivator with a CC

actuator has been demonstrated, further work could assess the full potential of fluidic

control as a primary lateral and pitch control effector.

Further experimental work using the full-span model may be undertaken to investigate

the application of the CC actuator control to yaw control and pitch trim. An

investigation of the aerodynamic characteristics of the Demon without the vertical tail

should be carried out to obtain aerodynamic data for the vertical-tail-less configuration

using CC as suitable alternative yaw effectors to the rudder. This investigation could

eventually lead to fully flapless flight. As fluidic systems are considerably less complex

mechanically than other high lift devices, this may be significantly beneficial when

contemplating maintenance, production costs and reliability.

The Demon presents a redundancy in control motivators which could call for effective

control allocation or re-allocation (in case of actuator failures) to distribute the required

control moment over available effectors. The objective of control allocation could be to

choose a configuration of the control effectors (actuators) to meet a specified objective,

subject to saturation constraints. In the case of actuator failures, it is desirable to

“reconfigure” the control allocation scheme (re-allocation) in order to make best use of

the remaining healthy actuators
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APPENDIX A

½ SCALE DEMON MODEL WIND TUNNEL TEST

A.1 Wind tunnel test corrections

Following acquisition of the force and moment data from each test case, corrections

were made to the data, noting:

 No tare corrections are necessary as an internal six-component balance was

used to take the measurements.

 Wake blockage (a reduction in wake pressure from the lateral constraint on

flow due to the tunnel wall) was negligible.

 Solid blockage, dynamic pressure and incidence corrections were deemed

necessary.

Notation in this section is consistent with the one presented in Barlow, Rae and Pope

(1999).

A.1.1 Solid Blockage

Solid blockage arises simply due to the presence of the tunnel walls which confine the

free air, and speed up the flow around the model. In this case it is used to correct the

dynamic pressure measurements, and can also be directly applied as a tunnel flow

velocity correction. The measurement is based on the model volume and tunnel cross-

section. According to Barlow, Rae and Pope (1999), this can be taken into account

through separate consideration of the wing and body, or by combining these and

considering the whole model. A more ‘approximate’ solid blockage can also be

calculated using an alternative correction factor, although this is usually applied to

unusual shapes, and should be limited to a model/test section area ratio of 7.5%. The

solid blockage correction based on total model volume was applied to the data, Eq. (A-

1). The solid blockage sb as a function of the whole model volume, VMODEL, is given by,
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2/3C

KVMODEL
sb  (A-1)

where K is 0.9 and C is tunnel cross-sectional area. The solid blockage correction was

found to be small, sb =002.

A.1.2 Dynamic Pressure (q) Correction

The solid blockage correction is applied to the dynamic pressure, qA, to produce a

corrected value of qC (Barlow, Rae and Pope, 1999).

2)1( sbAc qq  (A-2)

The corrected dynamic pressure values were used in the calculation of all the

aerodynamic coefficients.

A.1.3 Incidence correction

The measured values of angle of attack must also be subject to wall corrections which

account for the effects of the tunnel wall on the vortex wake shed from the vehicle. The

corrected angle of attack (c) is related to the geometric angle of attack (same as

measured angle of attack (g) by the addition of a correction factor, w (Barlow, Rae

and Pope, 1999).

cg w (A-3)

where, in degrees,

Lw
Lw

w C
C

SC
879.03.57* 


  (A-4)

 is a dimensionless wall correction factor, S is the model wing area, C is the tunnel

cross sectional area, and CLW is the model wing lift coefficient of each particular run (at

g).  is obtained graphically from the reference text Barlow, Rae and Pope (1999).

Additional wall corrections could also be made to lift and drag coefficients, but these

were deemed negligible.
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A.2 Data quality and repeatability

Table A-1 states the flow uniformity throughout the working section of the 8x6 low

speed wind tunnel.

Turbulence u' = 0.1%

Uniformity
±0.7% over 93% horizontal
±1.1% over 91% vertical

Angularity
0.25° yaw
0.75° pitch

Table A-1. Flow uniformity of the 8x6 wind tunnel (MacManus, 2005)

The 6-component balance accuracy is summarized in table A-2.

Lift Pitching

Moment

Drag Side Force Yawing

moment

Rolling

moment

Max

Load
140 kgf 15 kgf 25 kgf 40 kgf 12 kgf 5 kgf

Std % 0.03 0.03 0.07 0.05 0.03 0.06

Table A-2. 6-Component balance accuracy (95% confidence level)

Repeatability was monitored and assessed within the same wind on run and within the

same test series. Each of the tests started with complete resetting of the model.

Figure A-1 shows results of repeatability for the lift, pitching moment and drag

coefficient respectively. The configuration used for the tests was the clean

configuration, with the control surfaces of the model fixed at zero degree deflection.

Figure A-2 shows results of repeatability for the yawing moment, rolling moment and

side force coefficient respectively. Two series of test are reported: clean configuration,

with the control surfaces of the model fixed at zero degree deflection and 8 deg sideslip

measurements. In order to explore the trend and increase the level of confident in the

region between 5 and 10 degrees angle of attack, 1 degree of angle-of-attack step

increase was selected.
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It has been demonstrated that the level of repeatability, reported in table A-3 can be

achieved.

Within a test series

CL ± 0.001

CM ± 0.001

CD ± 0.0005

CLL ± 0.0015

CN ± 0.00015

CY ± 0.0005

Table A-3. Data repeatability for the Demon half scale model

From the result of the repeatability test, it can be said that the acquired data guarantees a

full level of confidence.
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APPENDIX B

SIMULATION MODEL DEVELOPMENT

B.1 Dynamics module

B.1.1 The generalized force and moment equations

The derivation of the equations of motion of a rigid symmetric aircraft is based on that

presented by Cook (2007).

The force equation of a rigid body, which described the motion of the cg about an

orthogonal axis system co-located with the cg in the body are given by:
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(B-1)

where m is the total mass of the body.

Equation (B-1) after rearranging and with the addition of the gravitational term, Eq. (4-

15), becomes,
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(B-2)

The moment equations of a rigid body which describe the rotational motion about the

orthogonal axes through the vehicle’s cg, since the origin of the axis is co-located with

the cg in the body, are given by:



216

)()(

)()(

)()(

22

qrpIIIpqrIN

rpIIIprqIM

pqrIIIqrpIL

xzxyz

xzzxy

xzyzx













(B-3)

Note that Eq. (B-3) is based on the assumption of the lateral symmetry of the aircraft.

Equation (B-3) can be rearranged to provide the angular accelerations:

NcLcqrcpcr

Mcrpcprcq

NcLcqpcrcp

9428

7
22

65

431

)(

)(

)2(











(B-4)

where the inertial coefficients can be defined as:
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B.1.2 Kinematics equations
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B.1.3 Rotation in space

Transformation from body axes to earth axes, and vice versa, is done through the

transformation matrix known as the direction cosine matrix (DCM). DCM can be

defined as presented in Eq. (B-7) and in terms of Euler angle as in Eq. (B-8)
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Where
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B.1.3.1 Quaternion

The Euler technique in defining the orientation in space is simple but its weakness is the

singularity, when the pitch approaches 90o, as it could be infer by Eq. (B-6).

Alternatively to the use of Euler angle for defining the orientation of the aircraft is the

use of the quaternion method (Kuipers, 2002). The DCM in terms of the quaternion can

be defined as in Eq. (B-9):
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DCM (B-9)

The rate of change of the Euler parameter e0 e1 e2 e3 with respect to the rotational rates p

q r is presented in Eq. (B-10).
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The initial values of the four quaternion parameters can be derived from the Euler

angles by Eq. (B-11). Therefore Euler angles need to be calculated at the start of the

simulation for initialization of the quaternions.
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The Euler angle, , , and which describes the angular orientation of the body axes

system relative to the earth axes system can eventually be derived as functions of

quaternion parameters as in Eq. (B-12): .
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The quaternion technique has been implemented in the non linear simulation. However,

in order to trim the model and obtain the linear state space model out of the non linear

simulation model the quaternion block-set have been replaced by the Euler one through

Eqs. (B-6) and (B-7). This allows reducing number of states and, hence, improving

states interpretation.

B.1.4 Navigation equations

The 3 navigation equations are simply the body axis velocities transformed using the

DCM into the earth axis component.
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B.1.5 Auxiliary equations

Incidence, , sideslip,  and the true airspeed, VT, can be derived from body axes

velocities, using the following expressions:
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(B-14)

B.1.6 Inclusion of wind

Assuming that the local wind has north, east and down components VWN, VWE and VWD

respectively and that it is locally constant over a region considerably larger than the size

of the aircraft, wind shearing effect and torques on the aircraft can be ignored.

Therefore, the velocity cg with respect of air is governed by:
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Where the subscript ‘r’ refers to the resultant body axes velocities which must be used in

the calculation of the aerodynamic forces and moments, since those are created by the

motion of the aircraft relative to the surrounding air.
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APPENDIX C

AERODYNAMIC MODEL FOR THE DEMON

AIRCRAFT (Mathcad Code)

Coupled with the 6DoF simulation model, an aerodynamic model for the Demon air-

vehicle was developed in Mathcad. In particular, the programme calculates an estimate

of the symmetric trim state of the aircraft for the selected Demon airspeed range; the

programme computes the stability aerodynamic derivatives, following the definitions

given in Cook (2007), required for the longitudinal and lateral state space model

description. The program printout is reported.
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M
i

V
i

a
Mach number

V
i

30 i 5Velocity Range (m/s)

i 0 7Counter

3.Set up velocity range for computations

a 1.4 287 Tratio 288Speed of sound

 Tratio
4.2558844359

densitySLAir density (kg/m 3)

Tratio 1 0.0065
height

1000
Temperature ratio

densitySL 1.225

height 121.92Altitude [m]

2. Atmosphere condition

Zcg 0.33

Ycg 0

Xcg 1.203c.g. location (m)
(w.r.t. the nose and
the flat base of the aircraft)

IxzB 0.25

Ixy 0

IzB 12.28

Iy 11.11

IxB 1.38Moment of inertia (kgm2)
(Referred to body axis)

W m 9.81

m 44.2Mass [kg]

1. Aircraft condition
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CMq 0.473Pitch damping derivatives

CMcg alfa eta( ) CMcg alfa( ) linterp _int CM alfa  eta
3.14

180









Pitching moment at CG

CM 0.1307 0.1295 0.1467 0.1673( )
T



Pitch. coefficient due to

Elevator deflection [rad-1]

CM alfa( ) if alfa 2.8 0.0222 if alfa 2.8( ) alfa 11.8( ) 0.1123 0.2203[ ][ ]Wing - body CM- [rad-1]

CMcg alfa( ) if alfa 2.8 0.0004 alfa 0.0110 if alfa 2.8( ) alfa 11.8( ) 0.002 alfa 0.0160 0.0038 alfa 0.386[ ][ ]

Pitching moment at CG clean

CL alfa eta( ) CL alfa( )
3.14

180
 CL0 linterp _int CL alfa  eta

3.14

180
Lift coefficient

CL 0.262 0.256 0.289 0.325( )
T



_int 0.051245171 5.129958143 10.32109832 15.51467673( )
T


Lift coefficient due to

Elevator (rad-1)

CLq 1.37Lift damping derivative

CL0 0.0669Zero angle of attack lift

CL 2.3667Wing body CL- (rad-1)

5.Wing- Body Aerodynamics

hcg

Xcg

mac
c.g. position (%c)

b 1.1Span (m)

mac 1.34Wing mean chord (m)

S 2.365Wing area (m2)

4. Aircraft Geometry - constant
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TX   linterp RPM TH  Thrust interpolation

TH

2.5636

22.3818

38.7091

60.6727

87.9273

110.9091

131.1091

141.6727

155.2364

164.8727

172.5818
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Olympus 190

Thrust as a function of
Mach and height

Zt 0

8.Thrust model

hn alfa( ) hcg
CM alfa( )

CL


7.Static margin calculatio n

hac alfa( ) hcg
1

CL CD alfa 0( )  cos alfa
3.14

180









 CL 2 CL alfa 0( ) K alfa( ) CL alfa 0( )  sin alfa
3.14

180





















CM alfa( ) 

6.Wing body Aero Centre calculation

CD alfa eta( ) CD alfa( ) linterp _int CD alfa  eta
3.14

180









Drag coefficient

CD 0.00349681 0.021916727 0.049920157 0.086716899( )
T

Drag de to flap (rad-1)

K alfa( ) if alfa 8.2 0.2331 0.3853( )Lift induced drag coeff.

CD alfa( ) if alfa 8.2 0.2331CL alfa 0( )
2

 0.0184 0.3853CL alfa 0( )
2

 0.0076 Drag polar clean config.

Parasite drag CD0 0.0184

Drag calculation
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trim 45( )

4.864

2.775

33.139












trim Vtot( ) Find    

TX  

Qdyn Vtot( ) S
CX   

W

Qdyn Vtot( ) S( )
sin
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 0

CMcg   
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mac


Qdyn Vtot( ) S
 0

CN    W
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 0

Given

 0.1throttle angle

 2elevator angle

 0angle of attack

Set start value for solving the equations:

Qdyn Vtot( ) 0.5  Vtot( )
2

Dynamic pressure

Flight path angle  0

set trim flight condition

9.Trim flight condition: steady state level fligh t
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Forces in body axes
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SUMMARY RESULTS OF TRIM CALCULATIONS

V
i
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trim
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5.9

4.864

4.119
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dTdV
k

0

Thrust derivative with respect to velocity

CLq 1.37

CLdot 0

Cmdot 0

Cmq 0.473Pitch damping

rad -1dCDd reverse sort dCDdr  rad -1dCDdrk

a2
k

a1
k

  57.3

0.4


a1
k

linterp trimr CDtrimr trimk 0.2 a2
k

linterp trimr CDtrimr trimk 0.2 

CDtrimr sort CDtrim( )

Reverse column order of data so that interpolation will worktrimr sort trim 

Drag coefficient dependency on angle of attack

dCDdM 0Drag coefficiency dependency on mach number

dCLdM 0Lift coefficiency dependency on mach number

10.1 Calculation of centain derivatives

k iFixed the flight condition for the linearization

10.LONGITUDINAL DYNAMIC STABILITY
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10.2 Dimensional Longitudinal aerodynamic Stability derivatives estimates referred to wind axes
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10.3 Dimensional Longitudinal aerodynamic control derivatives estimates referred to wind axes
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State equation format dx/dt = Ax+Bu

10.4 Elements of the A matrix : coincise derivative in terms of dimensional derivatives in wind
axes
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10.5 Elements of the B matrix in wind axis:coincise longitudinal control derivatives
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11.LATERAL DIRECTIONAL AERODYNAMIC STABILITY

11.1 Moment and product of inertia transformations from body axes to wind axis reference
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11.2 Derivative calculations - Wind axes reference

alpha for interpolation

i 10 5 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 30 35 40( )
T



 0.051245171 5.129958143 10.32109832 15.51467673( )
T



Wing-body contributions

Cy 0.2374 0.2448 0.2297 0.2273( )
T



CLL 0.0041 0.0584 0.1208 0.1145( )
T



Cn 0.1193 0.1282 0.1227 0.1319( )
T



Cyr 0
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Aileron

Cy 0.0124 0.0147 0.0193 0.0108( ) CLL 0.0807 0.0823 0.0937 0.0736( )
T



Cn 0.006 0.008 0.014 0.005( )

rudder

Cy 0.11 CLL 0.0173 0.0181 0.0101 0.0157( )
T



Cn 0.09
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11.3 Lateral direction stability derivatives (dimensionless) in wind axes

CY
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linterp  Cy trimk  CLL
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11.4 Lateral direction stability derivatives (dimensional) in wind axes
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11.5 Lateral direction control derivatives (dimensional) in wind axes
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11.6 Elements of the B matrix : coincise derivative in terms of dimensional derivatives in wind axes
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APPENDIX D

CC ACTUATOR WIND TUNNEL TEST

D.1 Drawings of the Circulation Control actuator wind tunnel test

model



236

Top view:

Side view:

Detailed trailing edge geometry (slot height 0.05-0.2mm, centre of rotation of cylinder

offset by 1mm):
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D.2 Corrections to wind tunnel data and CFD results

D.2.1 CC actuator wind tunnel test corrections

Following acquisition of the force and moment data from each test case, corrections

were made to the data, noting:

 Solid or wake blocking effect are negligible for open test sections.

 Incidence corrections were deemed necessary.

Notation in this section is consistent with the one presented in Pope (1954).

The corrected angle of attack (c) is related to the geometric angle of attack (same as

measured angle of attack (u) by the addition of a correction factor, t (Barlow, Rae

and Pope, 1999).

  sct (D-1)

The corrections for streamline curvature (boundary induce upwash along the chord) is

as follows,

ww LLsc CC
c

S
)00256.0(2   (D-2)

General downwash correction is as follow:

ww LL CC
c

S
)0256.0(  (D-3)

2is the streamline curvature effect on angle,  is a dimensionless wall correction

factor, S is the model wing area, C is the tunnel cross sectional area, and LwC is the

model wing lift coefficient of each particular run (at u). 2and  are obtained

graphically from the reference text Pope (1954).

Hence, the corrected angle of attack is:
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Lwuutc C)0282.0(  (D-4)

Additional wall corrections could also be made to lift and pitching moment coefficients,

but these were deemed negligible.

The induce drag increment due to the boundaries is:

22
)0256.0( LwLwD CCC   (D-5)

A cylindrical section formed part of the support structure which was immersed in the

free stream. Its added drag and reduction in wing moment have been taken into account.

Tare drag measurements have been made in isolation without the presence of the wing

and these were deducted from the measured total drag.

Wing tips have been kept blunt and it is recognised that this results in an increased

maximum lift coefficient being a function of the thickness to chord ratio. For t/c=0.15

an equivalent wing with rounded tips can be expected to have a reduction in maximum

lift coefficient of about 0.05.

D.2.2 3D corrections of CFD data:

The lift curve slope a0 obtained from CFD simulation has been used to calculate the 3D

lift curve slope for a finite aspect ratio wing, using approximation derived by Helmbold

and reported in Laiton, (1989),

;; 2976.5

4753.2
)4(2

1
0

1

2/12

0












ARrada

rad
AR

ARa
a

(D-6)

The lift increment due to TE blowing was derived applying a part span correction

(ESDU 74012) to take into account the limited span-wise extent of the TE device. Using

the same notation as in ESDU:

LFL CC  32.0 (D-7)
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Drag obtained from the 2D computation was assumed to be due to skin friction drag

only and therefore the induced drag was added:

 
DDfDiD CCC

2
 (D-8)

The lift distribution was not measured directly and the Oswald efficiency was calculated

via:

AK
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dC

dC
e

L

D


 1

2

11










 (D-9)

where K1 was derived from WT data.

No corrections were applied to the pitching moment coefficient.

D.3 Data quality and repeatability

The 3-component floor balance accuracy is summarized in table D-1.

Lift Pitching

Moment

Drag

Max

Load
20 kgf 0.4 kgf 4 kgf

Std % 0.03 0.06 0.04

Table D-4. 3 – Component floor balance accuracy

Repeatability was monitored and assessed within the same wind on run and within the

same test series. Each of the tests started with complete resetting of the model. Figures

D-1 and D-2 show results of repeatability for the lift, pitching moment and drag

coefficient respectively. The results are obtained for =0 and two different slot height,

h/r= 0.16 and h/r=0.2 respectively.

Being the data scatters linked directly to errors associated with the blowing momentum

measurement, some considerations regarding the errors associated with the slot set-up
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and, hence, the measurement of the non dimensional momentum coefficient should be

taken into account in analysing the repeatability of the wind tunnel test measurements.

The measurement of the non dimensional momentum coefficient can be obtained from

the measured pressure ratio inside the plenum and knowledge of the slot height. The slot

height was set with a height gage under no flow conditions and locked into place with

push and pull screws located approximately one inch from the slot exit inside the

settling region of the jet plenum. However, span-wise jet velocities variations were

observed at the slot exit. Most of these variations are associated with the wake of the

internal push and pull screws used for setting the slot height. It was also discovered that

the extreme inboard and outboard slot velocity was lower than the core region of the

span. This is attributed to the internal flow separation. This does effectively reduce the

blowing sections of the jet, and this correction has been taken into account in the

evaluation of the blowing momentum.

The distance between the upper and lower slot slightly increased under load, variations

being larger at higher pressure ratios. The maximum measurable variations were +-

0.025. However, as there was no direct measurement of either the velocity profile or the

mass flow rate, no exact determination of the slot height accuracy was possible.

All these errors contribute to the errors which ultimately affects the measurement of the

non dimensional blowing momentum coefficient.
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Fig. D-1. Data measurements repeatability - =0, h/r =0.16
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D.4 Mathematical derivation of the actuator geometry

Equation (5-10) and (5-11) have been derived as follow. Notation in this section is

consistent with Fig. 5-18.

Considering the pivot as the origin of axes, the cylinder perimeter can be defined by the

equation of a circle, which centre is offset of xc and yc respectively along the x and y

axes:

222 )()( ccc ryyxx  (D-10)

Thus, referring to the geometry in Fig. 5-18, it is easily shown that:

 rSinyrCosx cc  (D-11)

The height of the slot is given by,

tj yhrh  )( 0 (D-12)

Where yt is the intersect of the circle with the vertical x =r, and it is equal to:

 sin)cos1(1 2
cct rry  (D-13)

Thus, substituting Eq. (D-13) into Eq. (D-12), the height of the upper slot is found to be:

  sin)cos1(1)( 2
0 

cju rhrh (D-14)

The equation for the lower slot follows directly.
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APPENDIX E

PREDICTION OF THE AERODYNAMIC

CHARACTERISTICS OF THE DEMON/CC

E.1 Part span correction

The lift increment due to trailing edge blowing obtained from wind tunnel test on the

rectangular wing was part-span corrected to take into account the limited span-wise

extent of the TE device.

The corresponding full span lift coefficient increment is obtained from the part-span lift

coefficient increment applying a part span correction method presented in ESDU 74012.

Using the same notation as in ESDU,

io

L

LF

Li

LF

Lo
LLF

C

C

C

C

C
CC
























 / (E-1)

Factor  is a function of plan-form parameters and outboard and inboard limit of the

flap () expressed as a percentage of the span. The values evaluated graphically for the

test rectangular wing are presented in table E-1.

 

Inboard 0.375 0.423

Outboard 0.625 0.71

Table E-1. Part span correction factor for the CC actuator installed in the rectangular wing
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E.2 Rolling moment coefficient

A semi-empirical method (ESDU 88013) has been used for predicting the rolling

moment derivative due to the operation of the CC actuator in the Demon plan-form

replacing Surface No. 2.

The derivative for antisymmetric deflection of the actuators is given by Eq. (E-2),

 oi
LF

LL

C
C  












_

2/1 (E-2)

The derivative


 LFC
is the rate of change of lift coefficient due to deflection of the CC

actuator cylinder for full span trailing edge slot, as predicted in paragraph E.1.

In Eq. (E-2)  is taken as the mean of the control surface inboard and outboard limit

measured at the hinge line and expressed as a fraction of the semi-span, in the form of,

)(2/1
_

io   (E-3)

The function  evaluated at =i and =o respectively, is expressed as,

21 KK  (E-4)

where K1 and K2 are function of  and plan-form geometry and can be graphically

evaluated. Values of the corrections factors obtained for the Demon plan-form are

presented in table E-2.

  

Inboard 0.635 0.85 0.055

Outboard 0.7899 0.15 0.0465

Table E-2. Rolling moment coefficient correction factors from Eq. (E-4)
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APPENDIX F

DRAWINGS OF CC ACTUATOR INTEGRATION

WITHIN THE FLYING DEMONSTRATOR

Initial CATIA drawings of the integration of the CC actuator within the 15% scale

Demon, Fig. F-1 and Fig. F-2, have been produced in collaboration with the Cranfield

Integration Group. The goal is to replace the hinged inboard aileron with a plenum,

without reducing the chord-wise extent. Initial engineering drawings are reported.

Fig. F-1. CATIA model illustrating the chamber internal arrangement

Fig. F-2. Detail of the servo actuator arrangement

Rotating cylinder bar

Servo actuator
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