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Insight into High-quality Aerodynamic Design Spaces through Multi-objective
Optimization

T. Kipouros?, D.M. Jaegg?, W.N. Dawes, G.T. Parks?>, A.M. Savill* and P.J. Clarksor?

Abstract:  An approach to support the computationglower and the benefits discussed, this approach brings
aerodynamic design process is presented and dentbe-adoption of such techniques in real-world engineer-
strated through the application of a novel multi-objectiveg design practice a step closer.
variant of the Tabu Search optimization algorithm for
continuous problems to the aerodynamic design opfeyword: Multi-objective optimization, design opti-
mization of turbomachinery blades. The aim is to infnization modeling, metaheuristic continuous optimiza-
prove the performance of a specific stage and ultimatéign, Tabu Search, aerodynamic design, turbomachinery,
of the whole engine. The integrated system devegrallel computing.
oped for this purpose is described. This combines the
optimizer with an existing geometry parameterization |niroduction
scheme and a well-established CFD package. The sys-
tem’s performance is illustrated through case studiesSubstantial progress has been made in computational
one two-dimensional, one three-dimensional — in whigerodynamic design in both academia and industry in the
flow characteristics important to the overall performangast decade [Keane and Nair (2005)]. Simultaneously,
of turbomachinery blades are optimized. By showing tletosely related general design methodologies have influ-
designer the trade-off surfaces between the competimged a wide range of disciplines and applications, pro-
objectives, this approach provides considerable insighoting the use of optimization as an enabling technology
into the design space under consideration and presémtechnological innovation [Vanderplaats (2001)], while
the designer with a range of different Pareto-optimal dé&e rapid evolution of computing technology has facil-
signs for further consideration. Special emphasis is giviéated the use of optimization in design in a real-world
to the dimensionality in objective function space of tHeamework [Kroo (2004)]. Multi-objective and multi-
optimization problem, which seeks designs that perfodisciplinary optimization tools are increasingly impor-
well for a range of flow performance metrics. The resukant to the design process for many real-world applica-
ing compressor blades achieve their high performarns [Deb (2001); Alexandrov (2005)]. These tools have
by exploiting complicated physical mechanisms succe#fe potential both to reduce substantially the length of
fully identified through the design process. The systdhe design cycle and to improve the quality of the de-
can readily be run on parallel computers, substantially giggned product. In the engineering context, the large size
ducing wall-clock run times — a significant benefit wheand complex nature of the field of aerodynamics presents
tackling computationally demanding design problemgnome of the toughest, most demanding design optimiza-
Overall optimal performance is offered by compromig®n problems.
designs on the Pareto trade-off surface revealed througtha industrial and academic aeronautical design commu-
true multi-objective design optimization test case. Beaiities have invested much effort in the development of so-
ing in mind the continuing rapid advances in computirghisticated automated integrated multi-disciplinary aero-
1 Applied Mathematics and Computing, School of Engineerin?,ynamic design optimization systems [Keane and Nair
Cranfield University, UK. 2005)]. Extensive computational optimization is be-
2Engineering Design Centre, Department of Engineering, Univgeming an ever more realistic prospect thanks to the inex-
sity of Cambridge, UK. orable improvements in raw computing power available

3 Computational Fluid Dynamics Laboratory, Department of Engj-,. Lo . . .
neering, University of Cambridge, UK. Lilied to continuing developments in optimizers, in anal-

4Computational Aerodynamic Design, School of EngineerinySiS t00ls, in new surrogate modeling tools, and in post-
Cranfield University, UK. optimization analysis techniques [Lian and Liou (2005);
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Kipouros, Mleczko, and Savill (2008)]. Moreover, ima composite objective function. In one of the earliest
provements in parameterization and representation teexamples of such an application, Sasaki, Obayashi, and
nigques help by reducing the number of design variabakahashi (2002) combined a genetic algorithm (GA)
needed and thus the dimensionality of the design spagth a Navier-Stokes code to optimize the design of
to be searched, but still allow complex 3D geometry wings for a supersonic transport aircraft.

be captured accurately. Gaiddon, Knight, and Poloni (2004) performed multi-
The optimization of airfoil designs is typical of aerodyebjective optimization on a supersonic missile inlet.
namic design problems in general in that it is a chalhey compared a number of optimization algorithms us-
lenging, computationally expensive, highly constraineidg both composite and multiple objective functions, and
nonlinear problem. In consequence, the use of nawncluded that “performing real multiobjective optimiza-
gradient optimization algorithms is essential [Hajetéon and finding a Pareto front is the only effective way to
(1999)]. Heuristic search techniques have a clear roldfiimd a set of designs satisfying several performance crite-
handling design optimization problems with non-conveia in an industrial context.”

or disjoint design spaces with continuous design vaklemec, zingg, and Pulliam (2004) performed multi-
ables. As with most real-world problems, there are mulfipjective optimization on both a single and a multi-
ple (usually conflicting) performance metrics that an egfement 2-D aerofoil. Their integrated approach com-
gineer might seek to improve in optimizing, for exanhined a Newton-Krylov adjoint CFD code, a b-splines-
ple, the design of turbomachinery blades. This suggesiged parameterization scheme, and both a gradient-

the recognition that any consideration of robustness — faguits on some simple test problems.

retention of performance over a range of operating CQhriba Obayashi, Nakahashi, and Morino (2005) opti-
ditions, in the face of geometry changes (e.g. through_ ' '

i t also inevitabl tail multile obi ize the design of the wings of a transonic regional jet
E\r/zesp) etc. — must also nevitably entail multiple ObJeGs - 4t from a multi-objective, multi-disciplinary per-

spective. This is a large-scale, real-world application
The evolution and future direction of the design procegsh aerodynamic, structural and aeroelasticity objec-
for one particular aerodynamic application — the desiges using high-fidelity evaluation models. The system
of compressors — has been reviewed recently by Mqlked exploits parallel processing and the same GA-based

nari and Dawes (2006). They conclude that, with techptimizer developed and described by Sasaki, Obayashi,
nology development in turbomachinery design having @alng Nakahashi (2002).

most reached an asymptote, the new chgllenge IS to ﬁfirante, Catalano, Dadone, and Daloiso (2007) carried
velop new design tools and methodologies that ena
i

. (it single-objective optimization of the intake of a real
current technology to be applied faster and more re

small-scale turbojet engine using a gradient-based pro-

ably. To meet the objectives set by the Advisory Coun- . Lo . . .
. . ; ressive optimization technique. They achieved satisfac-
cil for Aeronautics Research in Europe [ACARE (200 P d y

ory improvements in the performance of the engine and

2084)]‘] _C:O genterﬁttetlnnovar;uve apflhaffordablf tSOIfUt'Oth lidated the results experimentally. However, they rec-
and, fundamentafly, 1o push past the asymplote 1or \ig,;; e the value of multi-objective optimization and sug-
current generation of large civil jet engines — they suggl%

|

: . , st extending their approach to a multi-point optimiza-
that ccr)]r_n;r)]lljtgtl?nal f:u:jd.dytr;‘an;;cs_(CFD) tools ;hOUIdk. fon problem by deploying the auto-adjusting weighted
more highly Integrated In the design process by MaKifg . ation of the objective function proposed by Zhu,
them fully available from the preliminary analysis stage,

S : . , Wang, and Yu (2004).
The use of multi-objective search methods is particula V' g u( )

r . . . .
appropriate in the early stages of the design process wﬁ\ghc‘ paper describes the development of an automatic in-
it is most natural to explore the trade-offs available bi¢drated design system for multi-objective aerodynamic
tween competing concepts. design optimization problems. This system is specif-

. . .. .. lcally developed for real turbomachinery applications,
Some recent studies have embraced multi-objective y P Y app

timization d ic desi d show th % d its performance is examined through a single-row
Imization In aerodynamic design and show the _p055|_t%,% tor compressor test case. The aims of the research are
benefits compared to single-objective optimization wit



to improve the performance of this specific stage, an
ultimately that of the whole engine, and to demonstrat

Blade / Airfoil parameters, I Geometry representation
design vector (CAD database)

how the combined use of CFD and a suitably adapte t

multi-objective optimizer can significantly enhance thg¢ ‘ Ratameieyiaation ‘
design process, not only in terms of design quality by A

also in terms of the insight into the nature of the desig ‘ . ‘ Mesh / Flow simulation

space afforded to the designer. Furthermore, we hig
light the need to tailor the computational tools to the ne
ture of the specific design process under investigation,
order to exploit fully the potential of the available com-
putational engineering design technology. This is reir ‘
forced by the approach and methodology proposed t
Morino, Bernardini, and Mastroddi (2006) for the multi-
disciplinary design of aircraft configurations. The op-
timization modeling is crucial in multi-disciplinary de-
sign problems, where design parameters and objectiv
exhibit different natural characteristics. The electrome New
chanical design problem presented in Jimenez-Octavi vector
Lopez-Garcia, Pilo, and Carnicero (2008) successfully

demonstrates and validates this notion in a different @gure 1: The basic steps of an integrated computational
plication domain. aerodynamic design optimization system

Initialisation of the process

Post-process ‘

Objective
function
values

‘ Optimisation routine ‘

Core of the process

2 Overview of the blade optimization system

The system, Multi-Objective Blade Optimization Systeff the main loop of the design system, which consists of
in 3 Dimensions (MOBOS3D), used in this work hade flow simulation and optimization processes.

been developed and described by Kipouros, Parks, Satrkrvey (2002) undertook detailed investigations, for the
and Jaeggi (2004) building on the single-objective intdesign problem in question, in order to identify the most
grated design optimization system BOS3D developed &gpropriate choice from the available techniques for each
Harvey (2002) and described by Dawes, Kellar, Harvestage of the system. Geometrical modeling in an auto-
Dhanasekaran, Savill, and Cant (2003). The system canated manipulation (conversion from CAD to CFD for-
bines an existing, efficient and flexible geometry parammats) is a quite time-consuming activity and a serious
eterization scheme, a well-established CFD package abdtacle to design optimization of aerodynamic forms
a novel multi-objective variant of the Tabu Search (T#)awes, Kellar, Harvey, Dhanasekaran, Savill, and Cant
optimization algorithm for continuous problems [JaegdR003)]. It may be preferable to use parameters that max-
Parks, Kipouros, and Clarkson (2006)]. imize geometrical flexibility rather than those most fa-

Fig. 1 presents a flow diagram showing the stages of fRBiar to the human designer. In this context, the PDE
process executed by MOBOS3D. The first stage is the pethod, described by Bloor and Wilson (1995), was
rameterization of the initial blade design, input througfund by Harvey to offer an exceptional level of geomet-
an initial CAD geometry, together with boundary condfical flexibility.

tions for the flow solution. This is an important stage @n receipt of a new design vector, a computational mesh
the process in which the long and complicated CAD file automatically generated from the geometry specifica-
description is transformed into a short, manageable striian, and then a detailed CFD analysis (blade to blade)
of numbers — the design vector. The geometry is paraisiperformed. The mesh is a 3D H-type structured grid
eterised using a Partial Differential Equation (PDE) apensisting of 3k97x45 nodes in each direction (tangen-
proach [Bloor and Wilson (1995)], giving a compact buial, axial, radial). The flow simulation is performed by
flexible representation of the design, in a design vectbe BTOB3D CFD code solving the 3D Navier-Stokes
comprising 26 variables. This design vector is the inpafuations. This routine returns all the metrics needed
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to describe the flow around the blade [Dawes (1988)ptimizer are sent to the slaves of a cluster for CFD eval-
The generality and robustness of the CFD code has baation. Then, the flow metrics of each new blade are
extensively demonstrated by application to a variety dturned to the master of the cluster, which controls the
test cases in industry and academia. It is essentiabfilimization process.

use a Reynolds-Averaged Navier-Stokes (RANS) solver

because, in order to improve the blade design, acgu- Definition and evaluation of objectives and con-
rate predictions of the complicated viscous flow in the gtraints

compressor are required, especially to capture the sec-

ondary flow effects responsible for the profile and end-1 Feasibility of designs

wall losses. Based on this simulation, the objective fungyan, though the parameterization scheme used in MO-
tions and constraints are evaluated and the optimizertip_@s3D is very flexible, at the same time a drawback
generates new design vectors that are, in turn, meshgdas. the possibility of generating infeasible geome-
aqd e_vaIL_Jated. This process continues until a terminatifRs \Wwnen using traditional engineering design param-
criterion Is met. eters it is often built into the blade representation that
Heuristic optimization methods have been found to be eiickness is guaranteed to be positive, that the leading
fective in tackling aerodynamic shape design problenegige (LE) has a certain minimum radius and that the
and (near-)optimal solutions within relatively complelslade fits between adjacent rows. In MOBOS3D, until
design spaces can be located in a reasonable améuw@imesh generation process begins, it is not possible to
of computation time [Aly, Ogot, and Pelz (1996)]give the same assurances by inspecting the blade’s de-
Gradient-based optimization schemes tend to get trappggh vector in PDE parameter form. This adds a layer
in the numerous real and false local minima commef complexity to the management of the geometry and
in the design spaces of real-world aerodynamic appts physical feasibility, but it is a price worth paying for
cations. The most widely used heuristic algorithms ate additional flexibility, and hence scope for considering
Simulated Annealing (SA) [Kirkpatrick, Gelatt, and Vecmore innovative designs, associated with the PDE-based
chi (1983), Aarts and Korst (1989)], Genetic Algorithmgpresentation.

(GA) [Goldberg (1989)] and Tabu Search (TS) [Glov&§imijar complexities are imposed on the design process

and Laguna (1997)]. TS is relatively simple to implgyhen considering the physical or designer-defined aero-
ment and has been shown to have great potential 'né&ﬂamic feasibility of new blade shapes. A particular de-
field of aerodynamics [Harvey (2002)]. The choice Qfign can cause flow patterns that are physically unaccept-
TS does notimply that it is in general superior to the Shje byt it is also possible for the numerical flow solver
and GA methods in optimizing aerodynamic problemg; f4jl 1o produce a converged flow solution for certain
Itis simply argued that TS has been shown to be partigjssigns. Thus, new candidate designs could be infeasible
larly effective in this application domain, and hence it i geometric, aerodynamic or computational reasons. In
likely to perform well in the context of this research. 5| these cases, infeasibility is treated as a hard constraint.
At the end of the optimization process, the best der practice it is found that much of the available search
sign vectors identified and their associated flow sokspace in this application is infeasible [Molinari, Jarrett,
tions are converted into a single output file. This is aclarkson, and Dawes (2006)].

complished by using Non-Uniform Rational B-Splines

(NURBS) [Rogers (2000)], a representation technig8e2 Definition and modeling of the objective flow met-
appropriate for complex 3D reconstructions, approximat-  rics

ing curves well using a small number of control points.

The optimal geometries can then be examined in deggilprewous StUd'.eS’ bIockag_e, the extent. to which vis-
through, for instance, contour plots. cous forces restrict the effective flow area in a blade pas-

. ) i sage, and entropy generation rate, an overall measure of
The system is parallelized by means of functional dgysses associated with the design, were used as objectives

composition_using the Message Passing Interface (Mm?pouros, Jaeggi, Dawes, Parks, Savill, and Clarkson
protocol [Snir, Otto, Huss-Lederman, Walker, and Do 008)]. In order to explore in more detail the way in

garra (1998)]. The new design vectors generated by (i, blade design affects the mechanisms of loss gen-



eration, here mass-averaged profile and endwall losbe secondary flows along the span of the compressor
along the span of the blade in the wake region of the fl@Made, arising from the interaction of the endwall bound-
are extracted from the flow solution and used as objeey layers and the blade passage, and tip clearance flows,

tives. are principally responsible for the development of the
secondary losses. Mass-averaged pressure losses are de-
321 Blockage fined and modeled in order to examine the effects of

Blockage is an estimation of the amount of low momeH1€S€ complex aerodynamic phenomena. An accurate 3D

tum mass flow in the vicinity of the hub and tip regiong‘,’ANS CFD code is required to capture the detailed flow

or the stage inefficiency. Exact measures of loss fréaracteristics.
CFD are unreliable, so the use of velocity to measurést, a non-dimensional stagnation pressure is defined:

performance has considerable attraction. The formula /TvTvl
used here to compute blockage was developed by Harvey, Psag = P . (3)
Dawes, and Gallimore (2003) as a heuristic assessment Po/ Toﬁ
Zfsthe magnitude of "bad flow features” and is encodeﬁ]is takes values between 0 and 1, and implies no losses
Vigw = 1—80min(V)+1—20max(V) when it takes the hl_ghest value (for an |s§ntrop|c pro-
) cess). The 0 subscripts denote the stagnation conditions
Vhigh = 1%max(V) I 1—10min(V) in the mid-span position at the inlet of the passage. Then
the mass-averaged stagnation pressure along the passage
J (Vhigh — min[Vhigh, max[Viow, V]| ) dAy can be defined as:
B=" ) J MPsagdA
A Pz = " (4)
A %30~ T T idA
whereV is the magnitude of fluid velocity. A

Eqg. 1 sets up limiting velocities to moderate any exherem is the mass flow rate through the passage. Fi-
trema, or spikes, which can appear in the flow solutiomally, the loss coefficient is described by:
and the integral in Eq. 2 is executed over a mesh quasi- APsag
orthogonal(r-8) plane,A. Usually A lies halfway be- Clos=—"—— 5)
e . Po — Pinlet
tween the trailing edge (TE) and the exit plane, to al- )
denotes the average static pressure on the

low some boundary layer development, but not the tof41€re Pinie \
smearing out of any secondary flows. mid-span x-0) plane at the inlet of the stator row.

The datum blade geometry, shown in Fig. 2, has been
3.2.2 Secondary Losses considered during the development of these flow metrics.

A key precursor for future improvements in turboma-llzhe conventional and uniform shape of this blade facili-

chinery designs is a detailed understanding of loss g&?:@s the verification of the implementation of the mass-

eration in the presence of the unsteady effects indu@é/graged pressure loss calculations, since the behavior of

by the machine environment. Better understandingtgle flow around similar geometries can be predicted from

loss mechanisms, and thus of general flow charactefisP c"1eNCe-

tics, is essential for the optimization of turbomachineshe mass-averaged pressure losses along the passage are
particularly at off-design conditions, and in the unstea&{pown in Fig. 3. The predicted losses follow the expected
flow prevailing in multi-blade row machines. Achievbehavior, and the position of the blade in the axial direc-
ing high efficiency and operating stability in off-desighon of the passage is clearly recognizable. The grid has
conditions depends on the control of loss mechanis@fs axial dimension of 97, and the trailing edge of the
and small scale flows in the compressors [Haller, WalkBlade lies on the 72na8 plane, followed by the viscous
Singh, and Inche (1997)]. Detailed explanations of tH&ke.

theory and the importance of these losses can be foun#im 4 presents the mass-averaged pressure loss distribu-
Storer and Cumpsty (1991), Denton (1993) and Dunhaion along the span of the blade (radial direction) for dif-
(1995). ferent axial positions. The blade span fraction shown on
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Figure 3: Mass-averaged pressure losses along the flow
passage
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Figure 2 : The datum blade geometry showing its veloc-§ 04 -
ity magnitude distribution; top left: 3D view; top right: @ ma
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A(mass-averaged stagnation pressure)
the vertical axis varies from 0 (hub) to 1 (tip). The an-
ticipated variation in the losses as the flow passes arofigure 4 : Mass-averaged pressure losses along the span
the blade can readily be seen. The stagnation inlet prefsthe blade
sure distribution, shown in Fig. 5, should be taken into
account to understand this flow behavior. This pressure
profile comes from real experimental data, and represents
the output from the upstream row. The complex, nonligion, The demarcations of endwall and profile losses are
ear nature of the flow close to the hub and tip regionsgi§own in Fig. 4: the former occupies the first 40% of the
demonstrated clearly. Itis noticeable from Fig. 3 that thgdes in thek (radial) dimension starting from the hub
flow solution exhibits unsteady behavior close to the LE 25% of span) and the remainder quantifies the profile
and TE regions. losses. The definition of these losses is based on the ref-
Obviously, the area of greatest interest is the unsteadgnce value of the inlet stagnation presspg®n each
flow in the wake, and the objective flow metrics are dkplane (and not the pressure difference with the inlet
fined for this region. Hence, the position where theBeplane), because of the non-uniformity of the bound-
metrics are measured in the axial direction is set al condition stagnation pressure profile along the span
j = 80, which is well inside the highly viscous wake refFig. 5).



i 0] subscripts identify the equivalent quantities for the datum
1 blade geometry, the initial design in the optimization — a
08+ real compressor blade design shown in Fig. 2.

The mass flow associated with the design is equality con-
strained for two reasons. First, if it was not, the in-
let dynamic head from the rotor would vary, and this is
not modeled by the boundary conditions. Second, if the
axial velocity drops, then the inlet static pressure must
be higher (since inlet pressure and flow angles are pre-
scribed), so that the static pressure rise across the stator
will be lower (outlet pressure is fixed), and the blade row
00 | 30 oo a0 | a0 aeso Wil not be an effective diffuser. Similarly, it is important
inlet stagnation pressure that, if the mass flow is fixed, the flow turning in the stage
should not be reduced during optimization, otherwise the
Figure 5: The inlet stagnation pressure profile static pressure recovery will not be sufficient. Therefore,
control of the flow turning is achieved by treating it as an
equality constrained penalty term as well.

3.3 Objective function formulation In addition, there are two terms in Eq. 6 describing ge-

. oo ometrical constraints on the blade. The first limits the
The design optimization of compressor blade geometrls%s

has previously been studied by Harvey (2002) from arpness 9f the blade's leading edge, while the secqnd
. o ) N ows a weighted penalty factor to trade off aerodynamic
single-objective perspective. In our multi-objective stud

ies we retain Harvey’s objective function, span-averaq&%rformance against mechanical proximity. The objec-
I

. . function value i nalized when the bl ign
blockage for a given mass flow rate, as an essentia Y5 U ction value is penalized when the blade desig

(throughflow) measure of blade performance, based o"’hS less thaliim (1.5 cm) clearance. Both these_ penalty
. . . . terms reflect a concern for robust aerodynamic perfor-
the non-uniformity of the flow in the trailing edge plane. . . :
L . : . o mance from the design, since these geometric features
This is a normalized function, relative to the specified da- .
o . . are closely related to the off-design performance of the

tum design, including penalty function terms for SpeCIflﬁade

flow characteristic and geometry constraints:

o
o
1

span fraction
o
N
1

0.2

hub g o

Harvey (2002) found that it was necessary to use a

penalty function approach with these constraints in order

to successfully navigate the highly constrained, nonlinear

B M 2 ) Rig search space characteristic of aerodynamic design opti-

f1= gt 250(1— %) + 0.4max <07 1- R 0> (6) mization problems. He established suitable values for the
AD C weightings for each of the penalty terms through exten-

+500max? (0, 1— E> + 0.5max® (0, 1— C—) sive testing. As discussed in Sect. 3.1, other constraints,

0 tim such as those on the geometric feasibility of blade de-
signs and on their operational feasibility (a design which

In Eq. 6,B represents the blockage, as defined by Eq.Ps0duces unsteady flow patterns is not acceptable), are
This is probably the most important metric in high-spe&?ndled as hard constraints — designs violating them are

compressor design. (In highly loaded compressors, fif¥ accepted.

flow tends to separate from the blade under conditions

of low mass flow. Flow separation acts as a blockage Multi-objective Tabu Search optimizer

in the flow path, which limits pressure recovery.) Then,

m is the mass flow ratelR g is the minimum radius of Our choice of TS as the optimizer is informed by the

the leading edge of the bladAf is the mass-averagedvork of Harvey (2002), who tested a number of meta-

flow turning; C measures the tip clearance of the bladeeuristic methods on a representative single-objective
andGCi; is the defined lower limit on tip clearance. The 8erodynamic design optimization problem and found TS
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to be superior to the GA and SA methods. geometry shown in Fig. 2. The flow metrics associated

Jaeggi, Asselin-Miller, Parks, Kipouros, Bell, and Clarith this geometry are presented in Tab. 1.

son (2004) developed the original version of the multi-

objective TS (MOTS) variant used here, and executed a

performance comparison on a set of unconstrained test Table 1: Flow metrics for the datum design
functions. Its constraint handling approach and the per-

formance of the algorithm on benchmark constrain
optimization problems were presented in Jaeggi, Pat

P2 |
I)flow metric Value

: " Annulus mass flow (kg/s) 15.7142
Kipouros, and Clarkson (2005). S Entropy generation (J/K) 1.36376
The single-objective TS implementation of Connor angy: gjade loading (N) 442 .872
Tilley (1998) is used as a starting point for our muIt—pm: Mass-averaged inlet static
objective variants. This uses a Hooke and Jeeves 10cglassyre (Pa) 34318
search algorithm (designed for continuous optimizatiorlbout: Mass-averaged outlet static
problems) [Hooke and Jeeves (1961)] coupled with Shorbressure (Pa) 35322.7
medium and long term memories to implement searchiirp - Mass-averaged inlet stagnation

tensification and diversification as prescribed by G|°\‘e|5ressure (Pa) 36448.3

and Laguna (1997). Pout: Mass-averaged outlet stagnation
The efficacy of the optimizer on a real multi-objectivepressure (Pa) 36294.7
aerodynamic design problem has been demonstrated hg: Mass-averaged flow turning (deg) 22.2076
Kipouros, Jaeggi, Dawes, Parks, and Savill (2005b)sq.: Mass-averaged velocity standard

and details of application-specific enhancements | tdeviation (-) 8.89887
the optimization algorithm (a different intensification-B: Blockage (-) 0.191383
diversification strategy, a different restart strategy, and a: Loss coefficient (%) 7.210

intelligent variable selection scheme based on the idea @fofile: Mass-averaged profile losses (-) 0.339676
path relinking [Glover (1999)], which provides enhanced @engwa: Mass-averaged endwall losses [(9.547357
local search capabilities) were presented by Kipouros,

Jaeggi, Dawes, Parks, and Savill (2005a).

5 Applications and analyses In all optimization runs the TS optimizer used the fol-

_ o _ _ lowing parameter settings. The number of tabu points
The first study presented in this paper investigates #i€e size of the short-term memory) was 15. After 25

trade-off between the endwall and profile losses forsgccessive iterations without refining the Pareto front,
constrained level of blockage, and illustrates how a dga search was intensified in the region of previously-
signer can distribute the secondary losses along the sRafhd Pareto-optimal solutions, stored in the intensifi-
and control the secondary flow effects on a compresg@fion memory. After 75 iterations without Pareto front
blade. Then the results from a three-objective optimizgfinement, the search was diversified to a previously un-
tion, considering the simultaneous minimization of prexplored region of the search space. After 95 iterations
file losses, endwall losses, and blockage are preseni@ithout Pareto front refinement, the search step sizes
demonstrating the ability of the optimizer to navigate &fyere reduced and the search re-started from a point on
fectively in the search space of high dimensionality aefigr current Pareto front. Every 20 optimization steps the
dynamic design problems. intelligent variable selection scheme was refreshed. The
Both test cases use the objective function formulatiaiternative restart strategy was executed after 5 step size
given in Sect. 3.3 subject to the same set of penalty fumeductions. If the intensification memory contained more
tion constraints, and the objective flow metrics are thagen 10 solutions an intensification step was executed in-
defined in Sect. 3.2. In addition, the inlet boundary costead of diversification. See Kipouros, Jaeggi, Dawes,
ditions presented in Fig. 5 are maintained througho®&rks, and Savill (2005a) for details of these optimizer
and each optimization run was initiated from the datui@atures.
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5.1 Testcase 1 - profile losses vs endwall losses values are replaced by the value at mid-span before the

. . . .. flgw metrics are evaluated.
In this case study we seek to increase the uniformity 09

the secondary flows for the compressor blade shown in

Fig. 2 by balancing the profile and endwall losses for the "°1" * 'i e o
same level of blockage in the wake region. Blockage is s = design_1
therefore treated as an additional equality constraint, and °2- . oA
the objective function formulation of Eq. 6 modified to: : N
5 0.6 - -
5 .
§ 044 «
f ® os5(1-B)i2s0(1- MV 7 -
e $as(o 2 aso(a ) :
% Bo Mo 02| A
JAS] -
+0.4max2(o,1— Re >+500nax2(0,1— —) L
EO ABg 0o .
2 C . -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30
+0.5max (O’ 1- Gi m) A(mass-averaged stagnation pressure)

Figure 6 : Classification of aerodynamic infeasible de-
The weighting for the blockage penalty term was set &fgns in terms of secondary losses
ter testing the effect of various choices on search perfor-
mance.

In Eq. 7, @ s the statistical meassure of mass-averag%ig' 6 illustrates the different cases of aerodynamic infea-
stagnation pressure difference (as defined in Eq. 4) BRIty in terms of secondary losses. Design 1 has more
tween a specific fraction of the span of the blade, in tﬂéan the acceptable number of negative valuea\iag

wake region, and the corresponding position of the fig{fd: @S & consequence, is deemed aerodynamically infea-
at the inlet of the passage. Hence: sible. Design 2 has some, but not too many, negative val-

ues ofAPgag, SO itis feasible, and would be evaluated af-
km ter the negative values have been corrected, as described
Qo= ZlAmi (8) above. Design 3 is aerodynamically infeasible because
i= APgag is Negative at mid-span.
wherekm s the number of grid nodes in the radial dire®n average, 20 CFD evaluations were executed per opti-
tion. In this case, there are 45 nodes in Kdgirection mization iteration. Only 4,300 designs were found to be
of the structured mesh, of which, 19 are used to calculéasible out of the 36,000 candidate designs visited in the
the endwall losses{25% of span), and the remaining 26earch space of this problem. The pattern of the search
to calculate the profile losses. in objective space is shown in Fig. 7. This optimization

In this case study, additional aerodynamic constraiftd) took 15 weeks on a 5-node cluster of AMD Opteron

were used in evaluating candidate designs. Many desi§fisPit 2.4 GHz processors.

exhibit unsteady behavior as characterized by negatiany discontinuities in the design space of this heav-

values of the mass-averaged pressure differéggg. ily constrained optimization problem were revealed, as
If a negative value oApPg4g is Observed at the mid-sparshown in Fig. 7, and the Pareto-optimal set found oc-

position of the blade, the design is deemed to be aerodypies only a very small region, which was extensively

namically infeasible. If negative values are observederplored by the optimizer. The large gap in the search
too many (more than 15%) of the other grid nodes, thpattern is due to geometrically and aerodynamically in-

the design is also deemed to be aerodynamically infedsasible regions of the design space (creating a disconti-
ble. If fewer than 15% of th&pgag values are negative,nuity in the objective landscape). The close-up view of

then the design is deemed to be aerodynamically fedke Pareto front found, shown in Fig. 8, reveals that the
ble, but, as negative valuespgag are unphysical, sucharea of global optimality is separated from a sub-optimal
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1800 lterations
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SR L L . .
TR R Flow profile | Compromise| endwall
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Normalised profile losses AG 229595 229657 229875
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B 0.187827 | 0.187221 | 0.187839
Figure 7: The optimization search pattern and the Pareto @ 6.098 6.123 6.071
front found for test case 1 Qprofile | 0.032035| 0.0352825 | 0.0366724
Qendwall | 0.247973| 0.247566 | 0.247902
1800 lorati Fprofile | 0.0910047| 0.0989504 | 0.121112
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Table 2: Optimized flow metrics for test case 1

Figure 8 : A close-up of the optimization search pattern
and the Pareto front found for test case 1

valley by another discontinuity in objective space. Nev-
ertheless, the MOTS optimizer managed to navigate the
search space successfully despite these difficult features.
Tab. 2 presents the flow metrics for the lowest profi
losses design (Fig. 9), the lowest endwall losses desigFses (Fig- 8) —as Fig. 2
(Fig. 10) and a compromise (Fig. 11) optimal design.

There is only 0.1% variation in mass flow rate and an

average reduction of 2% (relative to the datum design)litterestingly, for all these optimal designs there is a 2%
increase in the static pressure rise as a fraction of inlet

blockage for all these optimal designs.

fdgure 9 : The optimized geometry for lowest profile
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Trailing Edge

Leading Edge

provement in the loss coefficief as defined in Eq. 5, is
revealed in Tab. 2. The datum value is 7.21% and this is
reduced by 15% or more for all three optimal designs. In
addition, entropy generation rehas been reduced sub-
stantially (by 40% on average) confirming its correlation
with secondary losses. Finally, mass-averaged velocity
standard deviatioWsy. is important in the context of the
constraint on blockage, and a slightly increased value of
this metric is maintained throughout the optimal designs.

A few general geometrical characteristics distinguish the
optimal designs from the datum blade shape. Geometries
which exhibit much thicker 2D blade profiles, with the
suction side camber distribution peaking just before the
mid-chord point, can dramatically decrease secondary
losses in the wake region of compressor blades (nor-
malised profile losses by 91% and normalised endwall
losses by 54%). Despite the small variation in the opti-
mal blade shapes, there are some detailed refinements in

Figure 10 The optimized geometry for lowest endwalfin® 3D blade surfaces, responsible for the differences in

losses (Fig. 8) — as Fig. 2

Trailing Edge

Leading Edge

performance between them. Fig. 9 and Fig. 10 highlight
the key characteristic: the hub-mid-span section of the
lowest endwall losses design is shifted against the flow
direction by a small fraction of the chord. In addition,
blade thickness is increased in the radial direction for all
the optimal designs.

Datum

Lowest profile losses
Lowest endwall losses
Compromise

0.84

Apoan

o
o
1

span fraction
o
=
1

0.24

BB e 0 & & @ |Il|n¢¥

s

0.0 LY e A m

»
T T T
0.00 0.05 0.10 0.15 0.20 0.25

A(mass-averaged stagnation pressure)

Figure 11: The optimized geometry for a compromisgigure 12 : The distribution of profile losses along the

design (Fig. 8) — as Fig. 2

span of the optimal designs for test case 1

Fig. 12 shows the distributions of secondary losses along

dynamic head, relative to the datum blade performantiee span of the datum blade and the three selected optimal
The corresponding values of this metric are 0.481 for tHesigns. All the optimal designs give a very similar loss
optimal designs and 0.471 for the datum. Significant irdistribution, and only in the tip region close to the wall
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is the flow predicted to be unsteady. Small differencesduction in the step sizes, the area was refined further
in the losses in the mid-span area of the optimal blade®l a rich Pareto front was revealed at that stage of the
distinguish their performance. The flow patterns aroungtimization process.

these blades exhibit smooth changes in velocity distribu-
tion throughout the passage, and, more importantly, the -,
profile of bad flow features is spread evenly along their
trailing edge regions.

Fig. 13 presents the velocity contours for the selected §
compromise optimal design from test case 1 in compari-
son with the datum design. The improvement in the dis- “ = @ w7 5w oo 7w w &
tribution of poorer flow quality features across the blade

is clear. The area with separated flow is eliminated to-
wards the rear end of the suction surface, especially at{ |
the TE-tip corner, and also from the mid-span area.

700 lterations

10

084

Normalised endwall losses

Normalised endwall losses

Normalised endwall losses
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Design
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Figure 14: Snapshots of the optimization search pattern
s Desin for test case 1

At the 800th optimization step the restart strategy was ex-
ub ecuted, and, following a refinement in the step sizes, the

optimizer was able to advance the Pareto front (Fig. 14
: and Fig. 15). The restart strategy, in which the search was
Leadino Edae restarted from an extreme Pareto point, reinvigorated the
search and assisted in refining the optimal region.

"Ntter locating a new optimal area of design space, the
optimizer has to reduce the step sizes in order to refine
the search in this region. It is apparent in Fig. 15 that

The rate of optimization progress on this test casefii¢e Pareto designs could be found in consecutive suc-
shown in Fig. 14. The general area of optimality is I&essful steps on the first visit of the optimizer to this area
cated approximately in the first 400 optimization iter&f seéarch space (at 1300 iterations in Fig. 16). Finally,

tions after the execution of three step size reductions. &er four step size reductions executions, the region of
this stage there are two designs on the known Pareto fi@i@pal optimality was explored and refined in detail, and

(Fig. 15). Fig. 16 reveals that the other MOTS featufe® Optimal designs comprise the final Pareto front shown
particularly assisting the search in the early stages Wa§ig. 8.

the intelligent variable selection scheme, which was rEhe relatively short Pareto front found for this test case

freshed every 20 iterations. With appropriate design ps-noteworthy. This is perhaps to be expected since the
rameter step sizes, the optimizer proved able to explokerall secondary losses are significantly reduced, com-
this region of search space efficiently, and, after anotlpared with those associated with the datum geometry,

Figure 13: The velocity contours for the test case 1 co
promise design and the datum design
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0.485

optmsaion o is needed to locate this front.
0480 - - The Pareto trade-off surface between profile losses, end-
3 . . 1:1;88 wall losses and blockage_, showr_1 in Fig. 17, was revealed
g 04754 . 1500 after 52,800 CFD evaluations, with on average 22 per op-
g * % * 1800 timization step. The 2,400 iterations were executed in 23
3 . ‘. weeks on the same 5-node cluster as used for test case 1.
% ows] F ot wmy ey ‘ 54 optimal designs define the Pareto surface, which is ro-
S . tated about the blockage axis to give the different views
R B SR presented in Fig. 17. The black dots are points in 3D
P space, while the red, green and blue dots present the pro-
008 010 0f2 04 016 018 020 02 jections on the endwall losses vs profile losses, endwall

Normalised profile losses

losses vs blockage, and profile losses vs blockage planes.
(?nly 6,322 feasible designs were found. The optimiza-

Figure 15: The development of the Pareto front in te%on search pattern revealed is shown in Fig. 18,

case 1l
The discontinuous Pareto surface contains two clusters

in diametrically opposite regions of the 3D design space,
100+ and the third view in Fig. 17 highlights the gap between
e them. The region of the search space in which the de-
‘ signs perform better in terms of endwall losses is under-
explored, which indicates that more optimization steps

I’ are needed for a thorough search of the design space.

80 -

40

However, six Pareto designs lie in this area, and the trend
of the trade-off surface between profile losses and block-

age is outlined (blue points in the top-right corner in

° 0 200 400 600 800 1000 1200 1400 1600 1800 Flg. 17).

Opfimisation step Fig. 19, Fig. 20 and Fig. 21 illustrate the optimal designs

for minimum profile losses, endwall losses and block-
Figure 16 : The optimization search pattern in test cadd® respectively. Tab. 3 _presents_ their flow metrics, and
. reveals that all of the optimal designs have reduced val-

1, shown through the number of consecutive unsuccess- L . .

ful iterations ues for all of the objectives relative to the datum design.
Even though less than a 0.5% reduction in mass flow rate

(relative to datum) has been recorded, only the geome-

di th ilable trade-off bet tréfor lowest profile losses exhibits an improvement (of
and, in consequence, the avarable trade-otr between pyf %) in the static pressure rise through the passage (the
file and endwall losses is somewhat restricted.

value of this metric for the optimal design is 0.472, while

50 T 5 fil dwall | block for the datum design it is 0.471). In contrast, the blade
' est case 2 — profile vs endwall losses vs bloc agﬁapes for lowest endwall losses and blockage cause a

To test the capabilities of the system on problems wid#% and a 0.6% reduction in the static pressure rise
more than two objectives, a three-objective problem was a fraction of inlet dynamic head, respectively. How-
formulated. A combination of the same flow metricgver, the loss coefficient has been improved for the de-
formed an optimization problem with three figures @figns with lowest profile losses and blockage by 9.8%
merit, subject to the same aerodynamic and geome#itsl 3.5%, respectively, but not for the lowest endwall
constraints as in Eq. 6. Test case 1 was modified, wi@§ses design, which shows a 4% increase in this perfor-
blockage now treated as an objective, rather than a cBr@nce measure. The entropy generation rate is reduced
straint. The potential size of the Pareto front is subignificantly for all of these extreme optimal designs (by
stantially increased as the number of objectives risg¥re than 40%).

This means that significantly more computational time

20 Intensification

Number of unsuccessful iterations
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Normalised blockage

Normalised blockage

T
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Figure 17 : The Pareto front found in test case 2 fro

three viewing angles

abeyoo|q Pasiiewlon

2400 lterations

Normalised blockage

Normalised blockage

Figure 18: The optimization search pattern, in 3D and
2D projections, for test case 2

Tab. 4 presents the extreme values that each objective
function takes as the Pareto front develops, and, in con-
junction with Tab. 3, reveals that there is a strong trade-

off between endwall losses and the other two objectives

(designs giving low endwall losses have comparatively

high values for profile losses and blockage, and vice

versa), whereas the trade-off between profile losses and
blockage is less pronounced.

Analysis of the performance of some of the compromise
designs (Fig. 22, Fig. 23 and Fig. 24) lying on the Pareto
surface shown in Fig. 17 support these observerations.
Tab. 5 presents their flow metrics.

A maximum of 1% variation in mass flow is recorded.
Entropy generation rate is reduced for all these designs,
rglong with improvements in the objective flow metrics,
but compromise design B presents an undesirable com-
bination of these metrics. A first indication of this is an
increase in mass-averaged velocity standard deviation for
a lower value of blockage. In consequence, the loss coef-
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Trailing Edge

Tip

Leading Edge

A

Figure 19: The optimized geometry for lowest profile
losses (Fig. 17) — as Fig. 2

Leading Edge

Trailing Edge

e

Figure 21: The optimized geometry for lowest blockage

(Fig. 17) —as Fig. 2

Trailing Edge

Table 3: Extreme optimized flow metrics for test case 2

Lowest | Lowest | Lowest
Flow profile endwall | blockage

metric losses losses | optimum

optimum | optimum

i tdoe m 15.6825 | 15.6821 | 15.6402
b S 0.843567| 0.791276| 0.767695

N 429.160 | 461.878 | 425.331

Pin 34323.1 | 34322.2 | 34335.5

Pout 35310.5 | 35306.2 | 35311.3

Pn 36412.5 | 36417.6 | 36419.0

Pout 36278.2 | 36260.5| 36275.4

JAS] 22.5674 | 23.7639 | 22.2639

Vsad. 8.63363 | 9.39396 | 8.3880
B 0.120286| 0.142147| 0.111664

d 6.427 7.497 6.959
’ Qorofile | 0.028359| 0.190513| 0.065286
Qenawall | 0.263806| 0.126721| 0.268739
: . - Forotile | 0.068580| 0.377604| 0.205007
::()IS:(: (ZgiéT1h7e)gpa':;m|:|iz;dzgeometry for lowest endwall e | 0.487585| 0.354391| 0.501052
' ' Folockage | 0.631419| 0.749385| 0.588706

ficientis increased by 10% for this design, while compro-
mise designs A and C improve this performance metric
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Table 4 : Extreme objective values at various stages in

by 8.9% and by 5.6%, respectively. However, the stalt:if',gu
. . : . . 1gn

pressure rise as a fraction of inlet dynamic head is orﬁ)g

increased for compromise design A (by 1%).

Leading Edge

la

Trailing Edge

test case 2

Number of|  Fprofile | Fenawal | Folockage

iterations v

540 0.1699 | 0.499473| 0.769866
1.05236 | 0.994402| 1.00782

1000 0.123485| 0.354391| 0.691253 o
0.509026| 0.994402| 0.942785 o

1200 0.123485| 0.354391| 0.691253
0.509026| 0.994402| 0.942785

1540 0.123485| 0.354391| 0.63559
0.509026| 0.521492| 0.942785

2000 0.101713| 0.354391| 0.593134
0.509026| 0.520485| 0.905662

2400 0.068580| 0.354391| 0.588706
0.509026| 0.501052| 0.905662

re 23: The optimized geometry for compromise de-
B (Fig. 17) — as Fig. 2

Trailing Edge

Figure 24: The optimized geometry for compromise de-

_ o . sign C (Fig. 17) —as Fig. 2
Figure 22: The optimized geometry for compromise de-

sign A (Fig. 17) —as Fig. 2

those found in previous studies in which blockage was
The geometrical characteristics of the optimal design foinimized (Kipouros, Jaeggi, Dawes, Parks, Savill, and
lowest blockage, shown in Fig. 21, are very similar ©larkson (2008)). The downstream sweep of the mid-
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Table 5: Flow metrics for selected compromise desighggion.

for test case 2

Flow Design | Design | Design The same geometrical characteristics are exhibited by the
metric A B C compromise designs (Fig. 22, Fig. 23 and Fig. 24) as the
m 15.7476 | 15.5536 | 15.6636 balance between the objectives changes. Hence, com-
S 0.70788 | 0.73071 | 0.881915 promise design A is similar to the lowest profile losses
N 430.223 | 446.857 | 429.087 optimum, compromise design B to the lowest endwall
Pin 34304.9 | 34359.3| 34329 losses optimum, and compromise design C to the lowest
Pout 35309.8 | 35303.4 | 35310.7 blockage optimum. The most desirable blend of these
Pin 36414.6 | 36419.7 | 36417.6 geometrical features is not clear, but a combination with
Pout 36276.1 | 36256.1 | 36275.5 the dgminant characteristic for lowest profile losses looks
AB 23.0292 | 23.4832 | 22.4128 promising.

Vsad. 8.76655 | 9.82165 | 8.44371 The velocity distributions around the optimal blades
B 0.119129| 0.158312| 0.112325 are smooth and uniform in their viscous wake region.
® 6.565 7.940 6.803 Fig. 25 and Fig. 26 illustrate the secondary losses dis-
Qprotile | 0.063598| 0.087578| 0.059164 tributions along the span of the blade surfaces com-
Qenawall | 0.257864| 0.203924| 0.26807 pared with that for the datum design. The fact that all
Forofile | 0.19415 | 0.305924| 0.174042 these Pareto-optimal designs reduce the production of
Fenawar | 0.476463| 0.412085| 0.496716 secondary losses is clearly demonstrated, and a trade-off
Folockage | 0.624803| 0.859948| 0.5913 between profile and endwall losses has been developed.

Datum
Lowest profile losses

0.8

span area is acommon characteristic of these blades, and,
indeed, of all the designs exhibiting low blockage values
on the Pareto front for this test case.

In consequence, other three-dimensional facets, in the ra-
dial and circumferential directions, combined with back-
wards sweep of the mid-span area can then improve sec- 02
ondary losses. Fig. 19 to Fig. 24 present a normal view

of the suction side and a downstream side view of the R S TSNS P S S
optimal designs analyzed in this section. It is clear that
a spanwise camber distribution, with its peak advancing

deeper in the radial direction, is responsible for lower S .
secondary losses. Figure 25: The distribution of profile losses along the

The lowest blockage design exhibits this characteristiea" of the extreme optimal designs for test case 2

close to the hub region, and then follows the design for

lowest profile losses, and at the same time both the Hi@wever, the flow separates and reattaches in the TE-hub
and tip sections are slightly leaned. Fig. 20 demonstraf@gion of the lowest endwall losses blade (Fig. 20), and

that not only is the TE camber moving towards the tip, fRiS may contribute to the poor aerodynamic performance
order to achieve a significant reduction in endwall loss& this blade relative to the others. In addition, as already

but likewise the position of negative sweep in the mi#Pentioned, the design area associated with lowest end-
span area of the blade. The complexity of this geome¥@ll losses is under-explored, and only sub-optimal de-

increases as the hub and tip sections are leaned m®s may therefore have been found in this area.

while the top view reveals similarities with the optimdFig. 27 presents the velocity contours for various optimal

design for lowest endwall losses (Fig. 10), when blocgeometries from test case 2. All the designs have low val-

age is constrained around its datum value, in the LE-hus for the blockage objective apart from the lowest end-

Lowest endwall losses
Lowest blockage
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Datum

Compromise design A
Compromise design B
Compromise design C Lowest Blockage
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Lowest Profile
Losses

Figure 26 : The distribution of profile losses along the
span of the compromise optimal designs for test case 2

wall losses blade. This shows a step increase in blockage cowest enawa
clearly associated with development of 3D vorticity, but
concentrated only in a small area on the TE-hub corner

and in a similarly small area of the TE-tip corner.

The optimal geometry for lowest endwall losses also has

the highest value of the profile losses flow metric. Hence,

the area of separated flow is larger compared with the

other optimal geometries. The strength of the 3D vor-

tex varies throughout the trade-off surface according to

the value of blockage. Unsurprisingly the low endwall
losses/high blockage blade exhibits a markedly different . ..c
geometry to the other compromise optima.

Initially, the search of the 3D design space is managed
well by the MOTS optimizer, thanks to the effectiveness
of its intensification strategy and intelligent parameter
selection technique, and good progress is made in ad-
vancing all three objectives. 45 designs form the Pareto
front shown in Fig. 28 after 540 optimization steps, and
the high complexity of the trade-off between these objec-
tives is highlighted by the representation of the 3D Pareto
front in parallel coordinates [Inselberg (1985)] shown in
Fig. 28 and Fig. 29. In this representation the objective
functions are indexed on the horizontal axis and the ob-
jective values (normalized to their minimum-maximurE. 27 Th loci ¢ . imal
range, as in Tab. 4) are plotted vertically, with the valuglsggre + The velocity contours for various optima
. . . L . the test case 2
associated with each design being joined by a line. esigns
Fig. 28 and Fig. 29 show the progress in advancing

the Pareto front. After 540 iterations, the area associ-
ated with low endwall losses is further explored, and the

Compromise A
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indicated by its maximum value in

Tab. 4 at 1000 iterations. At this stage, the Pareto front

consists of 21 designs.

mainly with increased profile losses. Thetlese eight intensifications resulted in the optimization
this area is refined, while blockage reached the lowésén making further progress.

possible value that could be achieved with the initial step

size. Secondary losses gradually reduced until the opti-

mizer found the design area with lowest profile losses (at
the parameter selection technique and the inten-

sification/diversification strategy. Continuous progress

Figure 28: The Pareto front for test case 2, at 540, 7479ure 29 : The Pareto front for test case 2, at 1200,
and 864 iterations, with the corresponding parallel cod®40 and 2000 iterations, with the corresponding parallel
Pareto surface is enriched with 15 more designs after Tds executed instead of a diversification one. Five of

Fig. 30 clearly demonstrates that the most important
MOTS features in this stage of the search were intensifi-
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where intensification did not promote

the parameter selection techique assisted the
and further progress was then made. Eight

all cases the size of the intensification memory exceedgdghown through the number of consecutive unsuccess-

times the threshold for diversification was exceeded. Figure 30: The optimization search pattern for test case
the threshold value, and therefore an intensification sfapiterations

is exhibited in Fig. 30 after many intensification steps.

In some cases

progress
optimizer
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When step size reduction was executed for the first tinflNgw objective functions were defined and carefully mod-

the design area with good blockage characteristics coelldd to evaluate individually the profile losses and end-
be explored better (Fig. 28 and Fig. 29). The variatiovall losses, in order to improve understanding of the

in blockage mainly produced compromise designs in ttrade-offs between them in design. These investigations
profile losses vs endwall losses trade-off. The executi@yuired the tackling of a three-objective problem, and

of step size reduction for the second time improved ttiee effectiveness of our MOTS variant on this higher di-

search in low blockage area, while at the same time fanension problem was demonstrated successfully.

ther progress in reducing the level of endwall lossesggthermore, a methodology has been introduced for the
revealed (at the 1540th iteration, Fig. 29). analysis of multi-objective optimization results which
Fig. 29 illustrates the progress in the Pareto front afesmables the designer to understand the behavior of the
three step size reductions, and significant progress in plagticular optimization technique in the context of the
lowest blockage area is observed (at the 2000th itenature of the engineering discipline under investigation.
tion). Not only is blockage improved, but also many d&hus, optimization modeling may be viewed as an essen-
signs exhibit lower profile losses, and the number of d&l procedure for the successful exploration of real-world
signs lying on the Pareto front reaches its highest valuesoigineering design problems and identification of inno-
71. Further reductions in blockage together with profilative new solutions.

losses is recorded in Tab. 4 and the final trade-off surfa;qqough true multi-objective engineering design opti-
is pictured in Fig. 17. mization additional techniques and tools can be exploited
The continuous progress made by the optimizer in ttieprovide a better understanding of the design process
3D design space shown in Fig. 30 illustrates that the sat facilitate its improvement. Post-optimization analy-
of MOTS control parameters used is suitable for probis is an important stage of the process in which the ob-
lems with more than two objectives. It is anticipated thagctive functions are related to the design parameters, en-
given more iterations, the area featuring lower endwalling physics-based optimization to be performed Lian
losses designs would be further explored, and, in conagd Liou (2005); Kipouros, Mleczko, and Savill (2008).
qguence, the region of global optimality for this test ca¥hen these techniques are deployed proactively during
will be found. The optimizer navigates more efficientlihe design process then significant improvements in the
in the lowest endwall losses design space with large spepformance of the computational design system can be
sizes. Hence, execution of the restart strategy is expedaehieved, as demonstrated by Kipouros, Ghisu, Parks,
to be beneficial. A more detailed presentation and d&id Savill (2008).

cussion of these results can be found in Kipouros (2006he aerodynamic analyses of the optimal designs found
for each case study proved that the compromise blade
shapes exhibit robust behavior for many crucial, for the
efficiency of the machine, flow characteristics. As ex-
The results for the foregoing studies demonstrate that 8g€ted, the behavior of the entropy generation rate met-
multi-objective integrated turbomachinery design opfiC is nonlinear through the optimal designs of these test
mization system, MOBOS3D, can successfully tackle ieases. Only when blockage is constrained does the min-
alistic real-world problems, negotiating the highly corimization of profile losses reduce the entropy generation
strained, nonlinear search space, and presenting the'@tg monotonically. A four-objective optimization, con-
signer with a range of designs showing the trade-offs isédering all the flow metrics described in Sect. 3.2 and en-
tween the objectives under consideration, giving insigh@py generation rate, might reveal more robust designs,
into the nature of the design space and suggesting infldosen from the compromise region of the trade-off sur-
vative designs for further consideration. The important&ce.

and the value of optimization in real-world aerodynamia addition, these studies demonstrated that local search
design is proved and validated. is vital in aerodynamic design optimization problems.
The factors influencing the efficiency of turbomachinefyven though a few designs might represent an optimal
blades and the trade-offs between them are extrenfé®gign area, only detailed exploration can manage the
complex. Therefore this topic was investigated furth@ppropriate refinements in the optimal blade shapes, in

6 Conclusions
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order to achieve a generic performance improvement.Dawes, W. N.; Kellar, W. P.; Harvey, S. A;
Dhanasekaran, P. C.; Savill, A. M.; Cant, R. S(2003):
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