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ABSTRACT

A detailed analysis of the heat transfers and fluid flows within a
direct thermosyphonic solar-energy water-heater has been undertaken.
The collector energy equations when cast in a two-dimensional form
enabled heat transfer and thermal capacitance effects to be simulated
accurately at the small flow rates encountered commonly 1in such
systems. An investigation of thermocline relaxation processes within
the store indicated negligible mixing at the store inlet over a wide
range of Richardsons numbers (43,608 < Ri < 729,016). Thermal
relaxation under conditions of no flow was shown to be due
predominantly to axial conduction along the store wall. The use of an
appropriate non-isothermal friction factor correlation when calculating
frictional losses in the collector's riser pipes, produced predicted
steady-state flow rates which were corroborated experimentally to
within 2%. An indoor test facility, monitored and controlled by a
microcomputer, enabled "real" operating conditions to be simulated. The
predicted responses of the system to identical conditions showed good
agreement with the corresponding experimental observations, the

predicted heat delivery being within 2.8% of the measured value.

A technique for correlating the daily performances of thermosyphon
solar-energy water-heaters has been developed. The five dimensionless
groups which form the basis of the correlations and the functional
relationships between these groups were derived from an analytical
solution of a linear first-order differential transient heat balance
carried out on a generic system. Thermal performance data used in the
correlations was generated by the numerical simulation using
representative U.K. hourly weather data and operating conditions. The
minimum amount of data required to establish a characteristic curve for
an individual system was found to be thirty days. Using such a curve,
the total annual solar fraction agreed with that predicted by the high
level model to within 3%. Two universal curves were determined in which
the gradients of characteristic curves were correlated against the
derived dimensionless groups. The accuracy of the resulting two-stage
algorithm in determining annual solar fractions was established as

ranging from 5.5% for predominantly multiple-pass systems to a mean of

10.5% for single-pass systems.
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Where units are not specified, quantities are dimensionless
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fluid temperature at the fin base

FR Collector heat removal factor
F' Force acting on a control volume of water (N)
f Friction factor for the flow through

a cylindrical pipe

f' Solar fraction
G Solar fraction predicted by equation 8.22
Gr Grashof number for flow
Gz Graetz number
£ Acceleration due to gravity (ms"z)
H Total global radiation (Jm™%)
h Convective heat transfer coefficient (Wm™ %K~ 1)
h1 Vertical height of store downcomer port

above collector inlet (m)
h2 Vertical distance between collector

inlet and outlet (m)
h3 Vertical height of store upriser port

above collector inlet (m)
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K System parameter defined by equation 11.3
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the roof space

Nusselt number
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Fluid pressure on the surface of a

control volume

Total heat transfered

Dimensionless form of total heat transfered
defined by equation 8.18

Instantaneous rate of heat transfer
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pipe bend
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Temperature (units in K unless indicated

otherwise) (K)
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defined by equation 5.9
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by equation 5.9

t time (s)
t' Store reaction time defined by equation 5.6 (s)
t! Dimensionless time defined by equation 8.12
U General effective heat transfer coefficient (Wm'ZK“1)
V Volume of fluid within a control volume (m3)
\'4 Fluld velocity (ms'1)
W Specific load ratio
W, Width of collector fin (m)
W Total electrical power supplied to heater mats (W)
X Brooks number defined by equation 8.30
X! f-chart parameter defined by equation 8.1
X Distance perpendicular to the riser pipe (m)
Y Heywood number defined by equation 8.15
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y Distance along a component (m)
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defined by equation 5.8 (m)
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U Collector time constant defined by equation 6.11 (s)
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AC) Small increment in the quantity in parenthesis
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Thermal emissivity
Angle subtended by a pipe bend (degrees)
Collector efficiency
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&
r
¢
o
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Yy Kinematic viscosity
e Density
e Stefan Boltzmann constant
4' Root mean square deviation from a mean value
(units are variable)
T Transmittance of glass collector cover
¢ Angle of incident light (from normal) on
the glass collector cover
¥ Difference between ambient and mean store
temperature
L1 Theoretical store charge period (= Ms/ﬁc)
Subscripts:
a Refers to ambient conditions
BODY Refers to forces acting on entire mass of
fluid within a control volume
CJC Pertaining to conditions at or in the vicinity
of the cold junction card
C Pertaining to properties of the ceiling structure
C Pertaining to the collector
ce Pertaining to the edge of the collector

cell Referring to the cell number of a node
cor Refers to a value calculated using a

correlation technique

D Based on the internal diameter of the pipe
d Pertaining to the downcomer pipe

dp Refers to the dew point state

e Representing an effective overall value

f Pertaining to the collector absorber plate
g Pertaining to the glass collector cover

i Refers to properties of an insulant
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to a component

J Refers to a value calculated using operating
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to the month of June
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(K)
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sim

Sol
st

SURF

SW

tot

wind

refers to a node in the j th column of a
finite difference matrix

refers to a node in the k th row of a

finite difference matrix

Refers to thermal load on solar water heater
Refers to conditions within the roof space
Refers to "minor" frictional flow losses
Refers to mains water supply

Refers to a maximum value

Refers to a minimum value

Pertaining to the n th riser pipe from the

collector inlet

Representing optical properties at normal angles of incidence
The value of a fluid quantity at the outlet

to a component

Pertaining to characteristic common to both the upriser
and downcomer pipes

Pertaining to the collector riser pipes

Refers to a reference value

Refers to properties of external surface of roof
Pertaining to the storage tank

Pertaining to local heat transfer at the base of
the storage tank

Refers to a value calculated using the numerical
simulation model

Pertaining to solar heated water

Pertaining to local heat transfer at the top of

the storage tank

Refers to forces acting over the surface of a
fluid contained within a control volume

Pertaining to storage tank walls

Refers to properties at the local flulid temperature
Refers to total values

heating requirements

Pertaining to the upriser

Local property or state of water in component

Refers to heat transfer processes associated with

forced air flow across a collector



Z Pertaining to the penetration depth of a jet

of fluid into a reservoir

Superscripts:
~ Denotes a vector quantity
e Refers to end conditions
1 Refers to initial conditions
id Refers to a specific day
im Refers to a specific month
t Refers to the current state of a node in the

finite difference scheme
td Refers to daily values
tm Refers to monthly values

ty Refers to yearly values




CHAPTER ONE

INTRODUCTION: PREVIOUS INVESTIGATIONS



1.1 The general approach

To predict analytically the performance of a natural-circulation

solar-energy water heater, three alternative broad approaches can be

adopted, these being:

i) Simplified models (1,2)

ii) Correlation of performance characteristics from either the

simulation or monitoring of generic systems (3-6)

iii) Rigorous simulation models (7-18)

The first two approaches are intended for the estimation of the
long-term performance of a system and for the determination of the
system size that achieves the optimum solar fraction. Because of the
simplifications inherent in the first approach, such models are limited
by the range of operating conditions and system configurations over
which the simplifying assumptions are valid. Models refered to in this
category often require experimentally-determined information which is
only obtainable once the system has been constructed. The second
approach cannot be applied reliably to those systems for which

dimensions and c¢limatic conditions a correlation has not been

determined.

The third approach, that is the use of a rigorous simulation model has

three principle roles. These are,

i) the engineering optimisation of systems from short-term

performance simulations,

ii) to establish the long-term correlation of system
behaviour over a wide range of system types and

operating conditions, and

ijii) to determine the limits of the validity of
simplified models.



This paper describes the development and validation of a comprehensive

model of the third kind.

1.2 Previous Modelling of Thermosyphon Solar Water Heaters

A thorough review of previous experimental and analytical work in the
field of the present investigation is given by Norton and Probert (19).
Experimental observations by Close (7) indicated that in practical
multipie-pass thermosyphon solar-energy water heaters, the mean
collector temperature was only slightly higher than the mean storage
tank temperature. Based on this, a simple analytical model was
developed for predicting the day-time performances of such a water
heater. Conditions of no water draw off and sinusoidal variations with
time in both insclation and ambient temperature were assumed. Using a
simple heat balance for the entire system, a differential equation was
developed, the solution permitting the mean tank temperature to be
predicted. The analysis proved to be simple and accurate when applied
to specific systems under known conditions. However it was unable to
provide information on a systems' performance as a function of its
parameters or environmental conditions. Gupta and Garg (8) improved on
the Close (7) analysis by introducing a collector plate efficiency
factor. A Fourier series expansion was used to model variations in the
ambient temperature. In validating this model experimentally, a close
correlation was obtained during the day-time. The observed night-time

system loss was almost half way between the loss rates predicted for

the two extreme cases of,
i) perfect coupling, high reverse flow and

ii) perfect decoupling, no reverse flow between the collector

and storage tank.

An empirical analysis of the criteria for natural reverse thermosyphon

circulation to occur has been provided by Norton and Probert (20).



Ong (9,10) was the first to employ a finite difference method to
predict the system temperature distribution and thermosyphonic flow
rates. The use of a numerical solution to the governing equations meant
that actual hourly values of ambient temperature and insolation could
be used as inputs rather than the Fourier series approximations
necessary 1in previous analytical solution methods. In addition, this
solution technique enabled fluid properties and therefore heat transfer
and fluld flow frictional loss coefficients to be evaluated based on
current operating temperatures. There was some agreement between
predicted temperatures and those measured in one particular system near
the middle of the insolation period, but large discrepancies were noted
at other times. These may be attributable to the i1 nadequate
representation of the thermal capacities of the flat plate collector
and connecting pipes. Baughn and Dougherty (11) extended Ongs analysis

(10) to include the transition from laminar to turbulent flow.

Morrison et al (12) examined experimentally the transient dynamic
behaviour of a thermosyphonic 1loop which included an electrically
heated tube to simulate the solar energy collector. Laser-Doppler
anemometry was used to measure the flow rate, thus introducing no
additional fluid flow resistance. This study demonstrated the
inadequacy of using fully developed flow friction factor correlations
in determining the mass flow rate. A correction factor based on work by
Langhaar (21) was proposed, to account for developing flow in the

collector risers and connecting pipes.

Huang (13) developed an analysis of the ©behaviour of direct
thermosyphon systems by solving a dimensionless form of the momentum
and continuity equations. Ten dimensionless parameters for
characterising the system were evolved and the sensitivity of the
system performance to changes in these parameters was investigated.

Huang (13) noted that the performance of a low resistance direct

thermosyphon system was largely insensitive to the storage tank

elevation.

Vaxman and Sokolov (14), using a numerical simulation similar to that



of Huang (13), highlighted the phenomenon that despite the small heat

transfer area represented by the external surface of the upriser,
insufficient thermal insulation on this component can trigger reverse
circulation and cause significant night losses from the store. The
diurnal performance of a thermosyphon system was shown to be

insensitive to the degree to which the downcomer was insulated.

A theoretical and experimental study of the effects of draw-off on the
stratification in a horizontal solar-energy heated hot water storage
tank was carried out by Young (15). The observed destratification of
the temperature profile within the tank, due to the inertial and
buoyancy forces which ensue as hot water from the collector enters the
store, was modelled in his analysis by the introduction of mixing
coefficlients into the boundary conditions. The mixing coefficients had
to be adjusted by trial and error to give accurate results. The mixing
which occurs wheg warm water 1is introduced above a cooler layer was
simulated by a turbulent mixing term analagous to the axial conduction
term in the storage tank energy equation. This mathematical model was
found to give tank temperature profile predictions in close agreement

with experimental observations.

An alternative approach to destratification due to unstable temperature
inversions within the store was proposed by Morrison et al (1). This
involved a distributed return model where gradual mixing of the
collector return fluid was assumed as this fluid reached 1its
equilibrium position in the storage tank thermocline. Perfect
stratification was found to overestimate the system performance. The
"Detailed Loop Model" (16) extended Huangs approach (13) in order to
develop the most comprehensive parametric study to date. 1Unlike
previous analyses, the coupled energy and momentum equation were solved
assuming unsteady flow. All parameters were in a non-dimensional form.
The simulated mode of heat transfer to the storage water was indirect
(ie. via a heat exchanger). The performance of the system was found to
be insensitive to both the degree of stratification within the store
and the relative vertical orientation of the store and collector
(during the insolation period). This latter observation for indirect

systems 18 consistent with Huang's findings (13) for direct systems.



Defects in this analysis severely limit its usefulness in predicting

performance over a wilide range of system configurations and operating

conditions. These problems include:

i) an empirically-determined, one-dimensional, linear vertical

temperature profile was assumed for the hot water storage

tank and an unnecessarily simplified approach used to model

withdrawal of water from the tank,

ii) fluid density was assumed to vary linearly with temperature

in determining the buoyancy forces and

iii) constant heat transfer coefficients were employed.

Although this simulation model remains unvalidated, experimental
observations made later by Webster et al (22) verified, at 1least
quantitatively, some of the characteristics of 1indirect solar energy

water heaters identified using the Detailed Loop Model.

The correlation techniques used in predicting long-term system thermal
performances and more detailed discussions of the methods employed 1n
simulating the individual components in the models described above, are

presented in the ensuing chapters.



CHAPTER TWO

DEVELOPMENT OF THE THERMOSYPHON SIMULATION MODEL




2.1 The Collector Model

2.1.1 Collector models used in previous thermosyphon simulations

In order to predict the fluild outlet temperature in their models, both
Ong (9,10) and Young (15) used a collector heat removal factor. This
factor developed by Hottel, Whillier and Bliss, as presented by Duffie
and Beckman (23), gives the overall heat transfer characteristics of a

fin and tube arrangement, under steady state conditions and is the

ratio of the actual amount of heat transferred to the collector fluid,
to the heat which would be transferred if the entire collector plate

was at the fluid inlet temperature. This is defined mathematically as:

Fp = (mC /A U;)/[1 - exp[-(A U;F'/mn C )]]

equation 2.1

where F', the collector efficiency factor, is given by

F' - 1/UL
WelU (D + F(Wp = D.))] + (1/7D he )

equation 2.2

where F, the fin efficiency factor, 1s

F

tanh[m' (Wo - D.)/2]
equation 2.3

the factor m' being defined as

equation 2.4

Although equation 2.1 assumes effectively a non-linear temperature

profile along the collector tube, errors were introduced because:

i) as it was applied to the complete length of the collector tube,

equation 2.1 gilves no information on the actual temperature variation
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along the collector and so the contribution of the water in the
collector to the buoyant force in a thermosyphonic circuit has to be
calculated from the arithmetic mean of ¢the inlet and outlet

temperatures, and

ii) the thermal capacity of all components within the collector were

effectively neglected.

Some of the techniques used in the steady state analysis of flat-plate
solar-energy collectors have been incorporated into existing
non-steady state models. The collector efficiency factor F' defined in
equation 2.2 was employed by Huang (13) in a form adapted for parallel
plate absorbers. This form was also used in the "Detailed Loop Model"
(16). The physical interpretation of equation 2.2 1s that F' represents
the ratio of the the actual amount of heat absorbed by the fluid at a
particular point along the collector, to the amount of heat that would
be absorbed were the whole fin at the local fluid temperature. The
collector tubes could therefore be divided up along their lengths into
a series of nodes and F' assumed to hold constant for the length of
each node. A transient thermal analysis was then carried out on +the
fluid within this node, the heat transfer from the absorber plate to
the fluid being calculated using the 1local F' value. This gave the
additional advantage that since the fluid temperature of each node 1is
known, the contribution due to buoyancy forces within the collector
can be calculated accurately when determining the mass flow rate in the
system, without having to assume a linear temperature profile between
the inlet and outlet. Although the thermal capacity of the fluid in the
collector was accounted for, the capacity due to the remainder of the
collector components was in effect, neglected. Experimental work
carried out by Shitzer et al (24) under the climatic conditions of
Israel indicated that the centreline plate temperatures (ie. the plate
temperatures midway between, and parallel to, the risers) of a
collector in a natural-circulation loop reached a maximum value over
the day approximately two hours before the maximum fluid temperature at
the corresponding axial distance along the risers. The time lag between
these particular maximum plate and fluid temperatures was attributed 1in
part to the transient behaviour of the collector plate and was shown to

have a significant effect on the collector outlet temperature.

9



A comparison was made by Kirchhoff and Billups (25) of the
Hottel-Whillier-Bliss model with a steady-state finite-difference model
of a flat plate collector which allowed for two-dimensional conduction
in the collector absorber plate. Results showed good agreement between
the water temperature distributions predicted by the two analyses
(23,25) at high mass flow rates. However, the Hottel-Whillier-Bliss
model was shown to predict too high an efficiency at thermosyphonic
mass flow rates (ie. down to 5}(10"’3 kgs'1m'2) . This discrepancy was
attributed to a substantial component of heat flux in the collector
plate, parallel to the risers which becomes significant at low flow
rates and which is not accounted for in the Hottel-Whillier-Bliss
analysis. A similar steady-state, two-dimensional analysis was carried
out by BRao et al (26) and the resulting energy equations solved
analytically. The 1isotherms predicted by this model confirmed the
findings of Kirchhoff and Billups (25), namely that conduction within
the absorber plate increases significantly in a direction parallel to
that of the flow through the riser pipes at low flow rates. Although it
was stated that this model was in good agreement with experimental
observations, the significance of +this phenomenon for collector

performance was not explicitly investigated.
2.1.2 The collector model used in the simulation

A two dimensional finite difference model was developed based on that

of Kirchhoff and Billups' (25), but with transient terms added. The

main advantages of this over previously used Hottel-Whillier-Bliss (23)

relationships are:

i) the fluid, collector plate and glass cover assume individual thermal

masses and temperature profiles, and

ii) fewer assumptions are made about the heat transfer processes within

the collector plate and between the collector plate and fluid.

The following assumptions are made in the derivation of the energy

equations for the collector model.
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i) The collector plate is of a fin and parallel tube configuration.

ii) For the purposes of radiative heat exchange the glass cover and

collector plate are treated as two large, parallel, grey bodies.

iii) The glass cover is represented by a single node and is therefore

considered to be at a single uniform temperature at each moment in

time.

iv) The glass cover is opaque to long wave radiation.

v) Because the fin material is thin, the temperature gradient through

the fin is assumed constant; ie. two dimensional heat flow only.

vi) Conduction within the collector fluid in the direction of flow is
negligible.

The collector geometry considered was similar to that of a commercially
manufactured collector (29) a section of which is shown in figure 2.1.
wWater flows in tubes of diameter Dr' and length Lr attached to fins of
thickness Sf. Geometrical symmetry allows for the consideration of a
representative plate segment of width Wf which has a water tube located
at wf/e. An energy balance on an incremental volume dx.dy. Sf of fin,
after dividing ¢through by dx.dy gives an equation for the

two-dimensional plate temperature distribution.

+ hf,g(TS - Tf)

(iii)
+ (Up o+ U ahce/B)(Ty = Tg)
(iv)
+ Se (T H - T.%) + (x0T
f f e
(v) (vi)

equation 2.5

-1 - -1
where Sf,g = (Ef + Eg - 1)

The components of the equation represent:

11



FIGURE 2.1

Heat transfers within a flat-plate solar-energy collector
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i) the rate of change of internal energy,
ii) two-dimensional heat conduction,
iii) convective heat transfer between the fin and glass cover,

iv) heat transfer through the back and edges of the collector,

v) radiative heat exchange between the glass cover and fin,

vi) solar radiation incident on the fin. The transmittance-absorptance
product calculation 1is based on the angle of light incident on the

cover using the method presented by Duffie and Beckman (23).

Boundary conditions on the fin temperature profile T(x,y,t) are

from symmetry of adjacent nodes

in = 0

L e

equation 2.6

and since there is no heat flux through the ends of the plate
(collector edge losses have been spread over the absorbing area of the

collector),

sz - _B_I_:i‘, - '0
2 v |y=0 %y ly=L.

equation 2. 7

The boundary condition connecting the fluid temperatures to the plate
temperatures is obtained from a heat balance on an incremental area of

the plate at x = 0. In the limit as dx tends to zero,

LYY = hfzdﬁDr(Tf,x=0' Ty

‘Bx x=0 2(ks)f

equation 2.8
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The pipe wall is assumed to take on the same temperature (defined by
equation 2.4) as that of the fin at x = Wf/2. A heat balance on an

incremental section of fluid within the riser pipes (shown in figure

2.1) then gives,

2
(O MD 2/, + O ¥, = by MD(Tp L0 - T,
2t N Dy
(i) (ii) (iii)

equation 2.9

where the components represent:

i) the rate of increase in internal energy,

ii) the heat convected into the incremental fluid volume from the

"down-stream" direction,

iii) convective heat transfer between the fin and fluid.

To avoid the use of complex shape factors, assumption (iii)-that the
glass cover 1is at a single uniform temperature at any instant in
time-is used and the cover temperature is obtained in the following
energy balance. The mean temperature of the collector plate 1is

employed to determine the heat transfer between plate and cover.

- =4 o
( EC)g}EE = hg,f(Tf - Tg) + éSf’g(Tf - Tg )
At
(i) (ii) (iii)
<+ hwind(Ta -Tg) + dig(TSu -Tgu)
(iv) (v)

equation 2.10

The components of this equation are:

i) the rate of increase in internal energy of the glass cover,

ii) the heat transferred by convection between the absorber plate and

cover,

14



FIGURE 2.2

Assumed flow distribution within the risers and headers

of a solar-energy collector
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FIGURE 2.3

Designation of flows and temperatures within the header pipe of a

solar-energy collector
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1ii) radiative heat transfer between plate and cover,

iv) convective heat transfer between the outer surface of the glass

cover and surroundings (due predominantly to wind effects),

v) radiative heat transfer between glass cover and sky, where the sky

temperature is given by

_ 0.25
T = Ta[0.8 + (po -273)/250]

SKky
equation 2.11

In order to simulate accurately the transient response time of the
collector, it is necessary to take into account the thermal mass of
water in the collectors header pipes. The transient response of fluid
in this component has been shown (27) to account for the
experimentally-observed "retardation time". The retardation time is the
time lag between a change in the temperature of the fluid leaving the
end of the riser pipes and the time when this change appears at the
outlet of the header pipe. The mass flow rates in the sections of the
header pipes associated with each of the riser pipes will each have
different values (figure 2.2). It is therefore necessary to consider
each of these sections individually although (since only one riser pipe
is being considered) the incoming fluid temperature and mass flow rate
from the assosiated riser pipe is the same in each section. In order to
Keep the required computational time to a minimum, the section of
header pipe associated with each riser pipe 1is considered as a single

node as shown in figure 2.3. A heat balance on the nth section of the

header pipe gives,

(wfﬁw/ﬁlr)(«oh"‘/u)& = n(T,_; - T) + (Tg - Tp_q)
WM

equation 2.12

2.2 Storage Tank Model Used in the Simulation
__——____———-————___—-—-'—_———-—

An energy balance neglecting the thermal capacity of the insulation on

an incremental section (figure 2.4) of fluid in the tank which is not

17



in contact with the end sections of the tank gives

o _ P
AS(QC)WEEE + C.m AT = kwAs}’Tw + Us,aPs(Ta - T
L Y Syz

(i) (ii) (iii) (iv)

)

W

equation 2.13

L 4

where mg = m, - my
Term (iii) in equation 2.13 represents one dimensional axial thermal

conductivity within the storage tank fluid, and term (iv) the heat loss

through the vertical tank walls only.

The boundary conditions for the storage tank are determined by
considering incremental sections of fluid of thickness dy (figure 2.4)
in contact with the top and base of the tank. For the top of the tank,

as dy approaches zero,

(Ust/ks)(Ta - T,) +13T, =0

by

equations 2.14

Similarly for the base of the tank shown in figure 2.4,

(Usb/ks)(Ta - Tw) - %Tw = 0
Dy

equations 2.15

Because of the discontinuous nature of the temperature profile at the
fluid inlets and outlets in the store, an exact differential equation
has not been derived. The boundary conditions at the planes in which
water is added or removed from the store and which therefore divide
volumes in which there is no through-flow of water and volumes in which
a through flow exists, are derived directly in finite difference form.
A simple mixing model based on that suggested by Morrison and Tran (1)
was introduced into the storage tank simulation. If a layer of warm
fluid exists below a cooler layer, complete mixing is assumed to occur

and the two ad jacent nodes take on a single temperature. This process

18




FIGURE 2.4
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FIGURE 2.5

Fluid flows and temperatures within a general section of

an upriser or downcomer pipe
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is repeated throughout the tank until the thermocline is restored.
2.3 The Simulation of the Connecting (Upriser and Downcomer) Pipework

Neglecting the thermal mass of the insulation surrounding the upriser
and downcomer pipes, a heat balance on an element of fluid (figure 2.9%)

within the pipes gives

m MN.. = U %D _(T. -T..)

2
(QC)w'fTDp 'bTw + C o O p,aptTy T,

Wt dY

equation 2.16

2.4 The Momentum Equation

The general form of the integral momentum equation is

F F - [Vpav + |VpV.dA
F syre * F Bopy == [VfdV + [VEV-
3t

equation 2.17

For the four components comprising the thermosyphon loop, equation 2.17
becomes, for one-dimensional, incompressible flow,
+ Lu/L + LS/AS + Ld/Ap)‘émc

Psurr * Peopy = ‘Lr/Ar m,
At

P

equation 2.18

Pressure losses due to surface forces (ie. friction) are given by

peyrp = b | (FL). + (sL), o+ (sL)y | -Lip,
Zefe |- w7 _d
2 Ow(DA%) N Qw(DAz)p 0 (DA) |

equation 2.19

Where ):pM is the sum of the pressure losses due to turns, elbows and

tees.

Pressure terms due to body forces acting on the fluid arise from the

a



total vertical hydrostatic head integrated around the thermosyphon

loop,

equation 2.20

where © 1s the angle of the incremental length dy from the horizontal.
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