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ABSTRACT 

Twenty different materials have been successfully deposited as Langmuir- 

Blodgett monolayer films. All exhibit second harmonic generation (SHG) when 

irradiated with laser light at 1064 nm. 

E-1-docosyl-4-{2-(4-dimethylami nophenyl)ethenyl}quinolinium bromide 

(C22H45QHBr) and E-1-docosyl-4-{2-(4-dimethy laminonaphthyl)ethenyl}quinolinium 

bromide (C22H45QNBr) have been deposited separately as multilayer films. They form 

Y-type structures when deposition is alternated with the material N-docosyl-4- 

methylquinolinium bromide. The nonlinear responses are quadratic up to 20 and 10 

bilayers respectively and the response from the thick films is only 2 orders less than that 

produced by a Y-cut quartz plate. Similar results were obtained with C22H45QHBr when 

interleaved with 4,4'-dioctadecyl-3,5,3', 5'- tetra me thyldipyrrylmethenehydrobromide. 

Ellipsometry studies of the 10 bilayer film of C�H45QNBr indicate that the structure is 

interdigitated. This explains the stability of the film which gave the same SH response 

up to 6 months after deposition. A 10 bilayer films has also been fabricated using E-1- 

docosyl-4-{2-(4-{2-(4-dimethylaminophenyl)ethenyl}benzyl)ethenyl}pyridinium bromide 

(C22H45PBHBr) alternated with E-1-docosy1-4-{2-(4-methylphenyl)ethenyl}pyridinium 

bromide (C22H45PT). 

E-1-octadecyl-4-{2-(4-methyloxyphenyl)ethenyl}pyridinium iodide and E-1- 

methyl-4-{2-(4-octadecyloxyphenyl)ethenyl}pyridinium iodide have been fabricated into 

monolayer films that are transparent at 1064 and 532 nm, therefore resonant 

enhancement does not contribute to their nonlinear response which is attributed solely 

to charge transfer in the molecule. 

Mixed solutions of E-1-octadecyl-4-{2-(4-methyloxyphenyl)ethenyl}pyridinium 

iodide and sodium octadecylsulphate (C1SH37OSO3 Na+) have been deposited as very 

stable monolayers. The nonlinear response from the mixed film offers a significant 

improvement upon the performance of the film containing pure hemicyanine. 

Novel zwitterionic materials have been fabricated as LB monolayers that also 

exhibit SHG. 
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1.0 Introduction 

A brief description of molecular electronics is presented, containing a detailed 

look at one aspect of this field, nonlinear optical materials. The nonlinear effect of 

particular interest in this study is second harmonic generation (SHG), and the accepted 

mathematical and theoretical definitions are offered. The method chosen to prepare 

materials for SHG study was Langmuir-Blodgett (LB) films, and a short history of LB 

films is given. The theory of deposition and a summary of the possible applications of 

such films is also presented. Finally, an exhaustive review of SHG from LB films can 

be found in section 1.6, the conclusions from which formed the motivation for this 

thesis. 

1.1 Molecular Electronics 

Molecular electronics endeavours to recreate one of the functions that occurs in 

a biological organism. In such organisms, organic molecules perform electronic 

operations useful to the integrity of an hierarchical system. There are two accepted 

definitions of molecular electronics, and these are discussed below. 

It can be defined as organic molecular materials per forming an active function 

in the processing of information and its transmission and storage'. These processes are 

presently achieved with solid state electronics, using very large scale integration (VLSI). 

These are usually wafers of crystalline silicon, producing circuits containing components 

as little as 10 1cm long. Solid state electronics first became popular in the 1960's when 

it was associated with transistors made of doped semiconductors. These components 

were about a millimetre long, and before that, lengths of about 10 cm were used with 

the advent of vacuum electronics2. 

The ultimate limits of silicon circuits are already known. The circuits are made 

at the surface of a single crystal, giving them a two-dimensional character. Since the 

material is three-dimensional, superimposing further circuit layers would require 
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alternate layers of insulating and semiconducting materials. This is not expected to be 

available on already circuited chips. A 3D circuit architecture howev°r, is the 

prerequisite for parallel processing, in which very large amounts of data are processed 

simultaneously. 

The highly prospective field of molecular electronics offers the most prominent 

qualities required for mass data processing: speed (approximately 1012 s); 3D 

architectures are possible; the size of the elementary cell is molecular size; the molecular 

assemblies can be varied, and the advantages of molecular self organisation can be used 

instead of the micro-lithographic limits of silicon wafers. 

Functional materials have, of course, already being used to advantage in several 

electronic applications. The best known is that of liquid crystals and their use in displays 

and digital thermometers`. Other examples are piezoelectric polymers as very sensitive 

hydrophones5, photo-conducting polymers for copying6, photochromic molecules for 

reversible high density optical storage and signal processing', and bio or chemical 

sensors for converting specific solute or gas interactions into electrical signals for use 

in industrial or medical diagnostics8. 

One body of opinion estimates that the growth of molecular electronics is 

expected to merge into supermolecular electronics'. The reason offered is that the 

requirements of reliability and testing of complex structures suggest a system approach 

instead of the traditional one which uses the properties of individual circuit elements. 

Therefore sequential designs, because of their vulnerability, will be abandoned in favour 

of supermolecular arrays acting as concurrent processor networks, this evolution is 

traced in figure 1. 

The second definition of molecular electronics is that of switching on a 

molecular scale10. This is aimed more at the long term problem of fabricating molecular 

electronic devices. A method of achieving this is by the use of molecular optics, i. e. 

utilizing the optical qualities of materials for information processing and storage. An 

optical transistor, for example, would perform the same operations as its electronic 
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Figure 1. The proposed future of molecular electronics'. 
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analogue, but it would modulate light rather than control an electrical signal. In doing 

so it could operate at a much higher speed (10"12 s compared to 10"9 s). It would not 

incur increased power consumption unlike electronic devices, and as mentioned 

previously, there is the possibility of parallel processing. 

Molecular materials used for optical switching are surprisingly more resistant to 

laser damage than ionic crystalline materials. Many are more transparent at relevant 

frequencies than inorganic materials, and the wavelength-dependent transparency can be 

controlled by synthetic design to match specific laser frequencies. 

Switching can be achieved by utilizing the photochromic behaviour of 

molecules". Organic photochromic materials such as spiropyrans12, azobenzenes13 and 

zwitterions14 exhibit distinct optical states that change colour when irradiated at a 

suitable wavelength. By absorbing light in a different spectral range, for example at 

wavelengths which overlap the absorption band of the switched material, the colour 
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change can be reversed; therefore, information can be recorded (pre-switched form) and 

read (switched form). 

Research has been in progress on optical memories since the end of the 1960's. 

However it was not until 1982 that the breakthrough finally came with the audio 

compact disc's, although clearly this is not a photochromic device. This was closely 

linked with the availability of new semiconductor lasers as light sources. If the laser 

frequency were doubled in this system then the optical data storage would be 

quadrupled, as the minimum area of the beam is dependent upon 1/X2. A method of 

achieving this is to use materials that have a nonlinear response to light, i. e. nonlinear 

optical materials'6, " 

1.2 Nonlinear Optical Materials. 

The electric field from the usually intense electromagnetic radiation of a laser can 

produce many responses in optically nonlinear materials: for example, second harmonic 

generation (SHG) 18; the pockets effect19; parametric mixing20 and third harmonic 

generation (THG)21. 

Materials that exhibit any of these effects do so because the oscillating electric 

and magnetic field associated with light disturbs the electronic system within the 

material22. This induces an oscillating dipole moment, or polarisation, which in turn 

radiates a second oscillating electric field. The interference of the two fields produces 

the optical properties. If the fields are equal then the response is linear; however, the 

secondary field can be made up of a series of frequencies different from the incident but 

analogous, i. e. harmonics. This arises in real materials when a strong field, for example 

from a laser, induces oscillations of the charges that are no longer proportional to the 

applied field, i. e. anharmonic. A mathematical derivation of this phenomena is presented 

in section 1.3. Thus nonlinear effects can be used to control, convert and even amplify 
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signals. In work with pulsed lasers they have proved to be a very versatile way of 

controlling the wavelength, envelope and duration of the pulse. 

The ability to control pulses of light is also desirable in telecommunications, 

where the growing cost-effectiveness of optical fibres may lead to the increased 

transmission of data in the form of modulated infra-red beams. The peak power levels 

in this case are much lower than from a pulsed laser, so that nonlinear response is 

proportionally quite small, but here the manifest benefits of being able to switch the 

fibre optic signal directly without conversion to electrical form has led to the 

development of new and much more responsive materials. 

The first nonlinear process discovered, the pockels effect, is the change in 

refractive index of a material when a voltage is applied across it'9. This provides a way 

of converting the modulations in an electrical signal into an optical wave. It can also be 

used to form fast switching shutters, called Q switches, within the cavities of high 

powered lasers. These produce short pulses and modulate the amplitude of light so that 

it can carry information in the same way the radio wave does. In addition the effect can 

be used as a "waveguide" for switching optical signals between alternative routes in 

optical fibres23. 

At present almost all nonlinear optical and electro-optical devices are fabricated 

from inorganic materials such as LiNbO3, LiIO3 and the group III -V compounds24. 

Organic materials have a number of advantages over these. Firstly, at optical frequencies 

the nonlinear optical effect is electronic in origin and the increased electron 

delocalization occurring in conjugated organic molecules leads to much greater intrinsic 

nonlinearities than in the inorganic case. For example. the second order susceptibility 

of 2-methyl-4-nitroaniline (MNA) is about six times that of LiNbO3. Secondly, organic 

materials have a higher optical damage threshold25 and a quasi-instantaneous response 

which qualifies them for ultra fast optical signal processing. Finally there is a virtually 

unlimited potential of chemical synthesis allowing for the fine tuning of physical 

properties. 



6 

1.3 Derivation of Optical Nonlinearity. 

In a linear optical material, the polarisation (P) induced in a unit volume by an 

optical electric field (E) is directly proportional to this field26: 

P = £oxE (1) 

where FO is the permittivity of free space, and x is the constant of proportionality 

denoted as the "susceptibility of the material". Note that: 

n2 =1+x (2) 

where n is the refractive index of the material. 

In a nonlinear optical material, this strict proportionality no longer holds. The 

polarisation is expanded in powers of the electric field: 

P= 
oCx(')E' 

+ x(2)E` + x(3)E3 + ........ 
) (3) 

The higher order terms, E2 and E3 become important only at high electric field strengths, 

such as from a pulsed laser. They are the origins of the nonlinear optical effects. The 

fields, E and P, are vectors and the x coefficients are tensors. The third order nonlinear 

susceptibility, x(3) , can be finite in all materials. In order to obtain a non-zero second 

order susceptibility, xM, there must be a noncentrosymmetric arrangement of atoms or 

molecules within the material. 

The optical electric field, E, is described by the equation: 

E= Eosin(wt) (4) 
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where E. is the amplitude of the electric field and w is the frequency of the light at time, 

t. Combination of equations (3) and (4), and excluding terms above the second order, 

gives: 

(P/E0) = x(1)Eolsin(wt) + x(2)Eo2sin2(wt) (5) 

but as sin26 = 1/2[1 - cos(20)] substitution into equation (5) gives: 

(P/Eo) = 1/2x(2)E02 + x(1)Eolsin(wt) - 1/2x(2)E02cos(2wt) (6) 

The third term shows a component of the polarisation varies at double the input 

frequency and the light irradiated as a result of this component is known as the second 

harmonic. Second harmonic generation (SHG) occurs when two photons, of energy iw, 

combine. They form a new photon, of energy 2, w. SHG is commonly denoted by the 

term, x(2'(-2w; w, (o), where x(2) denotes the order of susceptibility from which the 

nonlinear phenomena arises. The terms in brackets denote the output frequency and two 

input frequencies respectively. 

For a single nonlinear optical molecule, (3) becomes: 

p= $o(aE + ßE2 + yE3 ........ ) (7) 

where a, ß, y etc are the nonlinear susceptibilities of the molecules. 

To fully understand the mechanism of nonlinearity, particularly second order 

nonlinearity, from organic materials, the structure of a known nonlinear compound, p- 

nitroaniline (pNA, figure 2), is considered27. The carbon and nitrogen atoms in pNA 

have one pZ or it orbital. These are orientated normal to the plane of the molecule and 

bonded comparatively weakly to similar orbitals on neighbouring atoms. The 

interconnected set of pZ orbitals forms a mobile source of electron distribution. Each 
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aromatic carbon contributes one electron, the amino contributes two, and the nitro 

nitrogen has a net deficit of one. This satisfies the in-plane bonding requirements. 

H0 

N N+ 

H0 

Figure 2. Molecular structure of p-Nitroaniline27 

If the it-electrons were to spread themselves out evenly over the pZ orbital 

network there would be a net transfer of electronic charge. This would go from the 

amino group across the ring to the nitro group. This tendency is opposed by two factors; 

the net positive charge left on the amino nitrogen when an electron is moved from it, 

and the net negative charge present on the nitro group when an electron moves to it. 

There is therefore a partial rearrangement of charge which produces a change in the 

dipole moment. This is directed in the positive sense, from the nitro to the amino group. 

Upon excitation, the molecule is elevated to a momentary excited state. In this 

state the kinetic energy of the ru-electrons is greater and the influence of the core 

potential is less. Therefore more uniformity of the distribution occurs. The result is that 

the excited state dipole moment is larger, but in the same direction. 

The contribution to ß from charge transfer (ßcß, the dominant term) and the 

component due to the induced symmetry in the charge distribution (ßp, DD), have been 

separated, such that: 

ß= 
ADD + ßCT ý8ý 
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It has been shown that: 

ßCT 
- wy. Ag/((jj - 2tw)'((0 - Vw)2 (9) 

where wo is the energy gap, is the oscillator strength of the charge transfer transition 

in the molecule and Au is the change in the dipole moment involved in the transition27. 

9-is also high because the orbitals of the it-electron system are coupled across 

the whole molecule so that the transition is symmetrical. The ground state dipole 

moments of a variety of organic materials have been studied for many years and 

extensive compilations of data exist25. Excited state dipole moments are less well 

understood because the experimental measurements are more difficult. The situation is 

unfortunate since it is the absolute difference Au I between the excited and ground state 

dipoles that is of the most relevance to B. Nonetheless, the perusal of tables of lug of 

organic compounds can provide useful information in order to identify chemical 

functionality with the appropriate properties. 

In organic molecular solids each molecule largely retains its electronic integrity. 

If each is suitably aligned it will contribute its second order nonlinear polarizability, ß, 

to the overall macroscopic quantity x(2). The intensity of the second harmonic is related 

to the macroscopic second-order nonlinear susceptibility as follows28: 

I2W = (Iwx(2)1)2/2(£oc3n2wn(02). sinc2(nl/21,, ) (10) 

where I2. is the intensity of the second harmonic radiation; I(, is the intensity of the 

wave propagating through the nonlinear material; 1 is the path length; c is the velocity 

of light and lc is the coherence length. Note that when 1/1c « 1, sinc2(nl/21,,: ) = 129. When 

the film thickness is less than the coherence length, the conversion efficiency (I2(11W) 

is seen to be proportional to the product (x(2))212. Therefore for a given material the 

intensity of the second harmonic should increase quadratically with thickness. 
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The molecules, therefore, must be aligned noncentrosymmetrically to prevent 

their susceptibilities, ß, from cancelling each other out. Unfortunately the large dipole 

moments present in most nonlinear materials causes the molecules to align 

centrosymmetrically in the crystal. This problem has been overcome by using a number 

of techniques such as poled polymers and liquid crystals. This work will concentrate on 

a further method, Langmuir-Blodgett (LB) film deposition. The LB technique offers a 

unique method of fabricating molecular arrays, specifically designed to enhance 

reproducible nonlinear properties. 

1.4 Langmuir-Blodgett Films 

The consequence of a gas or liquid being in contact with a solid or liquid is the 

basis for colloid and interface science. The layer of molecules at the interface are often 

regularly orientated and, if so, possess distinct properties that differ from those of the 

molecules in the two phases. It is this concept on which Langmuir films and Langmuir- 

Blodgett film deposition is founded. This has great importance in biology and in many 

industrial and domestic operations. 

1.4.1 A Brief History. 

The history of the observations and utilization of this concept is an irregular one; 

the babylonians noted the effect of oil on water and Aristotle observed similar 

phenomena30. The first person to address the subject of monolayer films at an interface 

and place it on a scientific basis was Benjamin Franklin, in the eighteenth century31. 

Franklin's account to the Royal Society in 1774 contained the observation of the 

calming effect of a drop of oil on the water in a Clapham pond. This "pouring oil on 

troubled waters" effect was employed by relatively few people until 1890 when Lord 

Rayleigh suggested correctly that oil films on water ultimately extend until they are one 

32 molecule thick. 
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The first model of what is now termed a Langmuir trough was designed and used 

by Agnes Pockels. Her simple apparatus was used to deduce the molecular size of a 

monolayer of olive oil. In a letter to Lord Rayleigh in 189 133 she described the methods 

which have remained to this day the essentials of monolayer research. 

This work was largely ignored until 1917 when Irving Langmuir documented his 

own and Rayleigh's and Pockels' work in the "Proceedings of the Royal Societyi34. He 

confirmed that a film on water was orientated, one molecule thick, with the polar 

functional group immersed and the long nonpolar chain directed almost vertically to the 

surface. 

The first formal report describing the preparation of Langmuir-Blodgett (LB) 

films did not appear until 1935 in a report by Katherine Blodgett to the American 

Chemical Society35. She had been acknowledged for her experimental work as early as 

1919 by Langmuir, but the war delayed their now historical observations. It seems 

astonishing that the explosion of interest in LB films has only occurred in the last 20 

years, despite Blodgett's report appearing nearly 60 years ago. 

Around 1970, Langmuir-Blodgett studies were used only as a tool of surface 

science for the study of surface interactions and wetting. It was then that Kuhn36,37 added 

a new approach by applying these layers as spacers to study energy transfer. Here a 

sensitizer molecule was separated from an acceptor molecule by a variable number of 

inactive layers. The changes in absorption spectra allowed a determination of the 

dependence on separation of the transfer of excitation from the sensitizer to the acceptor. 

Kuhn's work inspired investigations by others and during the 1970's electrical 

data was reported for LB films, offering scope for applications in electronics. Various 

reports from British and French groups suggested applications for LB films which 

stimulated the considerable research that has developed since. In 1978 a field effect 

transistor (FET) LB layer on InP was reported, on which no satisfactory insulating layer 

had previously been formed38. 

One of the first classes to be studied as LB film-forming materials were the 

alkanoic acids and their salts. Most of the "rules" governing surface behaviour have been 
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suggested using these materials. Such an LB film has been suggested for use as a 

microlithographical resist3 , since exposure of the monomer film to suitable UV or 

electron beam radiation results in polymerisation of the alkene function. In addition the 

prerequisites for applicable materials, i. e. solubility in organic solvents, surface stability 

and so on, are met. 

Unfortunately, systematic studies of LB films in an attempt to yield structure- 

property correlations have been sparse, compared to random studies using available 

materials. To date, there are no important industrial applications of Langmuir-Blodgett 

films in use. It is significant, however, that the level of financial investment, even in the 

general field of organic molecular solids, is still a small fraction of the sum being 

devoted to inorganic semiconducting materials. 

1.4.2 The Langmuir-Blodgett Film. 

Surface-active molecules can form Langm. uir films on an aqueous surface. This 

film can often be transferred to a solid substrate, forming a Langmuir-Blodgett film. The 

hydrophobic part of the molecule is insoluble in water whereas the hydrophilic part is 

strongly attracted to water; therefore, the molecules sit at the air/water interface. 

A 

B 

Figure 3. Position of molecules at air/water interface for a Langmuir film, (A) 

hydrophobic part, (B) hydrophilic part. 
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L. angmuir films are commonly formed by dissolving a surface-active material in 

a suitable solvent and by spreading the solution onto the surface of the pure water 

subphase. The solvent should be pure, and capable of dissolving sufficient material. It 

is preferable that the solvent is volatile and ideally it should be immiscible with water. 

Commonly used solvents are chloroform, dichloromethane and n-hexane. 

After evaporation the attraction between the water molecules and the hydrophilic 

groups will have the effect of pulling the monomolecular layer into the bulk of the 

aqueous phase. This gives rise to surface tension. This is defined as "the work required 

to expand the surface isothermally by unit area" and has units of mN m-1. Since surface- 

active molecules expand the surface they lower the surface tension. If the area that the 

molecules occupy at the surface is reduced then the surface tension will be further 

reduced. This reduction is denoted as surface pressure (n). 

The surface pressure versus area (n-A) isotherin can provide valuable information 

concerning the surface properties of the material. An example of a n-A isotherm is 

shown in Figure 4 for the Langmuir film forming material, stearic acid, and the 

important regions are shown in figure 5. 

When there is no external pressure applied to the subphase, the molecules act as 

a two-dimensional gas. The initial compression will cause a slight increase in surface 

pressure as the molecules are pushed together. Upon further compression there is a 

transition to a two-dimensional liquid phase where small changes in area per molecule 

cause significant increases in surface pressure. Finally the slope increases to near 

vertical. This represents a transition to an ordered two-dimensional solid phase 

characterized by a steep, approximately linear relationship between surface pressure and 

molecular area. Strictly speaking this isotherm should be described as a liquid condensed 

film40. This is because materials can also exhibit isotherms with a different shape. In 

these there are no clear phase transitions and the "area per molecule" remains at values 

much higher than those required for close packing. This type of film is known as liquid 

expanded. 
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Figure 4. - Pressure-area isotherm of stearic acid40. 

A B G 

Figure 5. Three phases observed when compressing a Langmuir film41; (A) 2D 

solid, (B) 2D liquid, (C) 2D gaseous. 
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Extrapolation of the isotherm indicates the area per molecule that the material 

would occupy as an non-compressed, close-packed layer. For stearic acid this 

corresponds to approximately 22A 2 molecule-'. This is similar to the cross-section of 

stearic acid molecules in a single crystal42, thus supporting the two-dimensional solid 

theory. 

Eventually the forces exerted upon the monomolecular layer become too strong 

for confinement in two dimensions and collapse occurs. The collapse pressure can be 

defined as the maximum to which a monolayer can be compressed without the 

detectable expulsion of molecules from the Langmuir film. The onset of collapse is 

dependent upon factors such as the rate of compression and history of the film. Collapse 

is believed to usually result in molecular layers riding on top of each other and forming 

multi layers. 

000000 
A 

z88 
b 

B 

0000000 

C 

-------------------------------- Compression --------------------------------> 

Figure 6. Monolayer collapse41: (A) 2D solid; (B) onset of collapse; (C) multilayer 

formation. 

Characteristics including collapse pressure, range of two-dimensional solid phase 

and stability of monolayer at constant pressure, have to be determined so that conditions 

for transfer to a substrate can be optimised. 
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Langmuir-Blodge tt film transfer is achieved by passing a suitable substrate 

through a compressed Langmuir film. The material is transferred to the substrate as a 

monolayer because of the attractive forces between the substrate and material. Treatment 

of the substrate so that it is either hydrophobic or hydrophilic dictates the method of 

deposition. 

Transfer onto a hydrophilic substrate can occur when the substrate is passed 

vertically up through the air/water interface. The direction of the meniscus allows direct 

contact between the hydrophilic end group and the hydrophilic substrate. 

u-uccccu 

Figure 7. Transfer of a monolayer onto a hydrophilic substrate41. 

Transfer onto a hydrophobic substrate occurs in the opposite sense (see figure 

8). The substrate will cause the meniscus to dip below the level of the water surface and 

wet the substrate at a wetting angle of 180°. This allows direct contact between 

hydrophobic tail and hydrophobic substrate. 
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Figure 8. Transfer of a monolayer onto a hydrophobic substrate41. 

These methods are used in the majority of LB deposition procedures. A novel 

alternative method is the "Langmuir and Schaeffer methodi43, in which the hydrophobic 

substrate is placed flat on top of the Langmuir film. In this way the hydrophobic tails 

have direct contact with the substrate. 

Multilayer deposition follows the general rules of upstroke and downstroke 

deposition. X-type multilayers are assembled on hydrophobic substrates by repeated 

deposition on the downstroke only (figure 9). Z-type multilayers are assembled on 

hydrophilic substrates by repeated deposition on the upstroke only (figure 10). There are 

two methods of Y-type multilayer deposition. In the first method a monolayer is 

transferred on to a hydrophilic substrate leaving the hydrophobic tails uppermost. 

Deposition then proceeds as for a hydrophobic substrate resulting in the hydrophilic head 

groups of the second layer being uppermost. Deposition continues as for a hydrophilic 

substrate and so on, producing a multilayer film with adjacent layers aligned in opposite 

directions (figure 11). The second method is the same as the first except that the first 

monolayer is transferred on to a hydrophobic substrate. 



18 

OC)303c)ooc)oc)ooooooooo3C)OC)OOOým 

C033030303003000030003003CCO30 

o3oo=a*-ýýýýýýýýýýýý ýýýýýýý 

Figure 9. X-type deposition onto a hydrophobic substrate 41 
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Figure 10. Z-type deposition onto a hydrophilic substrate 41 

X and Z-type multilayers are more difficult to fabricate. This is because the 

molecules are being forced to align with hydrophobic and hydrophilic parts adjacent to 

each other. If this type of deposition is successful it is often found that the multilayer 

is quite unstable. Y-type films, however, are energetically more favourable and therefore 

easier to fabricate. 
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Figure 11. Y-type deposition onto a hydrophilic substrate 41 

Materials are usually transferred in the two-dimensional solid phase, although 

they can be deposited in the two-dimensional liquid phase or from the liquid expanded 

isotherm. There are few examples of deposition from pressures outside the range 10 to 

40 mN m"1. Constant pressure is maintained by a compression mechanism which is 

sensitive to the pressure drop as the material transfers to the substrate. The rate at which 

the substrate can be passed through the water depends on the dynamic properties of the 

monolayer. This is typically about 1 mm s'. It should be noted that there is an initial 

water layer between the substrate and film which must drain away or evaporate before 

transfer is complete. 

A measure of the extent of deposition is the transfer ratio. This is the ratio of the 

area of monolayer removed from the water surface to the area of substrate covered by 

the material. If transfer ratios of unity are achieved one can assume that the orientation 

of molecules on the slide to be very similar to that on the water. Differences between 

the two orientations are indicated by large but consistent deviations from unity, poor 

film deposition is indicated by inconsistent transfer ratios. 
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1.5 Potential Applications of Langmuir-Blodgett Films 

The majority of work published on LB films in the past fifteen years has focused 

on the possible uses for the resultant film. The following is a synopsis of the most 

important applications suggested for LB films in this period, but as this thesis concerns 

the characterization of optically nonlinear materials, the other areas are only outlined in 

the briefest detail. 

1.5.1 Devices Utilizing Electrical or Electronic Properties 

A number of properties have been studied in an attempt to improve upon the 

existing methods used in this field. 

Conductivity. The enforced anisotropy of LB films makes any 

conductivity more attractive. Most reports concentrate on synthesising 

surface active analogues of known conducting materials 44,45,46. The 

understanding of conductivity in LB films is complicated by the fact that 

difficulties arise from either imperfect electrodes or monomolecular 

assemblies containing a large number of defects. Extensive studies on 

charge transfer salts of tetracyanoquinodimethane (TCNQ) and 

tetrathiofulvalene (TTF) have resulted in LB films with conductivities in 

the range 10-2 to 10' Scm-', in the plane of the film47. These values are 

comparable in order to weakly doped semiconductors. Polypyrrole and 

ferrocene LB films also exhibit a modest conductivity48'49. It has been 

shown that anthracene monolayers with short hydrophobic chains have a 

resistivity in the plane that is eight orders of magnitude higher than that 

in the film normal direction50'51,52. This exemplifies the way that LB films 

can enhance the properties of materials. 

Insulation. Simple calculations based on applying a few volts across 100 

A2 of organic material show the enormous charge storage capability of 
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metal-oxide I LB film I metal systems53. The criterion of thermal stability 

is very important for this application. Polymerised multilayers are 

therefore the most suitable materials. One approach involves the removal 

of the hydrophobic chain after deposition, in this way long alkyl amine 

salts are transferred then converted to polyamide54. To date, however, 

there are no reported LB films that can rival the thermal stability of 

established inorganic materials. 

Photoelectronic. Studies of photoconductivity, photovoltaic and 

photomagnetic effects in LB films have not succeeded in producing 

applicable systems. They have, however, enabled further understanding 

of intermolecular interactions and photophysical and photochemical 

processes in organic materials. The studies on sensitizers by Kuhn are an 

example of this36'37, so is the photopolymerisation of diacetylene films by 

surface active dyes in multilayer films55. The method by which sensitizing 

dyes work has been understood further by LB film studies of 

merocyanine, cyanine and oxono156-5s 

Pyroelectric. The first report of pyroelectricity in LB films was an X-type 

multilayer of amphiphilic azoxy compounds59. At present the best 

reported LB film systems possess pyroelectric coefficients of less than 5 

, uCm-2K"2 60-62. This contrasts with a value of 30 , uCm'2K"2 for 

poly(vinylidene fluoride)63. The consensus is that an increase in 

pyroelectric coefficient of approximately an order of magnitude will be 

needed before LB films become serious contenders for use in infrared 

imaging systemsTM. 

Rectification. Asymmetric current versus voltage behaviour has been 

recorded for a number of metal I LB film I metal structures65°66. This 

confirms the prediction by Aviram and Ratner that an asymmetric 

molecule containing the appropriate donor and acceptor groups separated 

by a short sigma-bonded bridge should exhibit diode characteristics67. 



22 

Many reports of rectification are open to speculation because of the 

experimental method used. For example, observations using scanning 

tunnelling microscopy using a gold substrate are inconclusive because of 

the conducting surface68. Donor-acceptor materials that are bridged by a 

it-bond may also exhibit rectification as an LB film, although the 

observations may be due to permanent dipole moments69. As a result it 

has not yet been proven unequivocally that molecular rectification occurs 

in LB films. 

1.5.2 Gas Sensors 

Organic molecules can be synthesised so that they selectively recognise certain 

functions. To understand the use that LB films has in this field it is important to note 

the three distinct stages in a sensor70. 

A) Recognition -a specific interaction between a molecule and the sensing surface. 

B) Change - the binding process must result in a detectable and systematic change in 

a physical parameter. 

C) Transducing - the change must be converted to an observable signal. 

Some examples of the methods by which LB films have been used to detect 

gases are given below. 

Conductivity. LB multilayer films of phthalocyanine complexes have 

been shown to detect gases such as NOc71'72, NH173,74, halogens and more 

recently, hydrazine75 and organophosphorus vapours76. Porphyrins are able 

to detect NO2 down to a few parts per million77. Both work by changes 

in conductivity upon exposure. The long response times of these have 

been improved upon by the use of the completely reversible system of 

TCNQ LB films, when exposed to NH378. 

Optics. Surface plasmon resonance is currently being studied extensively 

as a sensitivity too179-8'. Surface plasmons are electromagnetic waves at 
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the interface of a metal and a dielectric. Their excitation is influenced by 

changes in the properties of the dielectric layer in close proximity to the 

interface. Therefore LB films are ideally suited for this system. The most 

popular metal/dielectric is a silver/glass prism combination. Once 

parameters such as wavelength of incident light, refractive index of the 

glass, and thickness of the metal and organic layer have been optimised, 

the system can be exposed to the vapour being detected. Any changes in 

the resonance condition accompanying surface adsorption of the vapour 

results in the incident angle for peak resonance increasing. Substituted 

phthalocyanine LB films exhibit this property when exposed to acceptor 

gases 86 
. 

Acoustoelectr-ic. Quartz crystals coated with LB films of w-tricosanoic 

acid and a substituted phthalocyanine have been shown to detect the 

presence of NH3 and H, S down to 1 ppm87. This was achieved by the 

change in resonant frequency that occurred upon interaction. Surface 

acoustic wave oscillators currently use quartz or lithium niobate. There 

is a possibility of using piezoelectric LB films to launch the surface 

waves, however all reported values of piezoelectric coefficients in 

monolayers are currently too small. 

1.5.3 Biological Sensors. 

Monomolecular films are very similar to biological membranes. Phospholipids, 

which constitute a significant proportion of biological structure, may form condensed 

monolayers at the air/water interface. It is even possible to build up LB multilayers of 

some of these compounds. Some proteins have also being incorporated into 

multilayers88. Therefore the LB technique offers itself as a convenient means of building 

up artificial biological membrane structures. Stability requirements hinder many 

membrane analogues that have been studied. However some systems have shown great 
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potentialß9-92 and the enzyme glucose oxidase (GOD) in LB film form has been used as 

the basis of a solid state glucose sensor70. Absorption of antibodies to membrane bound 

antigens alter the potential across the membrane. As a consequence biologically 

interesting species have been sensed on LB films. The enzyme is immobilised onto the 

head groups of a lipid. The LB technique is used to transfer the mixed layer onto 

chromium/gold electrodes. The electrode system is biased and the resulting current is a 

direct measure of the H2O2 concentration generated by the reaction: 

GOD 
C6H 

1206 + 02 -------> 
C6H 

1006 + H202 

Changes in output current have been studied for the adsorption of enzyme 

glucose oxidase on two layers of cadmium arachidate70. Also, antigen concentration 

during deposition of an antibody can be detected by the fluorescence of the specific 

antibody93. 

1.5.4 Optics 

There has been extensive work carried out in the field of LB films for applied 

optics. The three main areas of interest are detailed below. 

Waveguide. In the simplest waveguide the guiding film is required to 

have a higher refractive index than those of the materials lying adjacent 

to it. This is so that light incident from within the film on to either of its 

boundaries will undergo total internal reflection. If the guiding film is 

thick enough for transverse constructive interference to occur, then light 

can be propagated over distances limited only by absorption of the field 

or by scattering due to defects, imperfections etc". Loss due to scattering 

needs to be less than 1 dBcm-l. Notable results for an LB waveguide 

have a measured attenuation of 11 dBcm-' in a relatively thick film of 
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preformed polymer94. Thick films of the DCANP material have achieved 

attenuation coefficients down to 12 dBcm"' measured at 633 nm95. There 

has been extensive studies of LB films of polydiacetylene, but they give 

enormous losses due to scattering96'97. 

Nonlinear optics. The property of fabricated single layer or multilayer 

films to generate nonlinear optical effects has created great interest. 

Second harmonic generation from LB films is of particular interest to this 

study and is discussed in detail in section 1.6. A substantial amount of 

work has been carried out investigating electro-optical effects from LB 

films98'99, but the number of films exhibiting this is a small fraction of 

those studied. Success has been achieved with films of hemicyanine 

derivatives'00, stilbazolium dyes101 and functionalised diarylalkynes102. In 

theory, third harmonic effects are much easier to study in LB films since 

the criteria of noncentrosymmetricity that constrains second order effects 

is not applicable. Diacetylene based LB filmsl°3,104 exhibit cubic 

susceptibility that is larger than that of gallium arsenide, an established 

inorganic crystal for third harmonic generation (THG). Other materials 

such as merocyanine and stilbazonium dyes as LB films also exhibit 

THG'°5' 106 

Optical data storage. There are various elaborate mechanisms by which 

LB films may be employed for this process. One method exploits the 

photoelectrochemical properties of an LB film of 4-octyl-4'-(5- 

carboxypentamethyleneoxy)azobenzene'3. The system can be converted 

photochemically or electrochemically between three chemical states. The 

system provides a potential storage process that allows for ultra high 

storage density, multi-function memory and non-destructive information 

readout. The trans form of the azobenzene is deposited as an LB film. 

The less stable cis form may be electrochemically reduced to 

hydrazobenzene; this is stable in an inert atmosphere but may be 
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electrochemically oxidised to the trans-azohenzene. Another method is 

to make use of the ability of some LB film forming aggregates. In one 

example the narrow absorption bands of red-shifted aggregates (. - 

aggregates) of some organic molecules are employed 107. The LB film is 

a mixture of methyl stearate and dioctadecyl-dimethylammonium 

chloride. The laser light disorders the structure of the aggregates, thereby 

diminishing them and reducing the absorption band. When the film was 

deposited on to an aluminium reflective layer, the structural change could 

be restricted to a single recording layer. LB films of a novel zwitterion 

show promise as possible systems for photochromic data storage14. The 

absorption bands of LB monolayers of Z-ß-(1-hexadecyl-4-pyridinium)-a- 

cyano-4-styryldicyanomethanide and its quinolinium analogue are very 

sharp at 495 and 565nm respectively. These bleach when irradiated at 

wavelengths which overlap the hands, the process being reversible in 

solution but irreversible in the films. Thus they have a potential use as 

components of a multiple frequency write once/read many (WORM) 

memory. 

N 
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414 NH 

Figure 12. Photoisomerisation of an azobenzene followed by electrochemical 

reduction 13- 
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1.5.5 Other Potential Applications 

The role of passive thin films in the electronics industry has been studied. In 

electron beam lithography a resolution better than 10 nm has been demonstrated for an 

LB film multilayer of a simple fatty acid salt108. These molecules disappear when 

irradiated due to sublimation and therefore the film is regarded as a positive resist. No 

organic systems are yet capable of challenging the established inorganic ones, however 

LB deposition will be well positioned once feature sizes reduce to 1, um in the 

semiconductor industry. 

There are many other suggested applications of LB films and the most promising 

are summarised below. 

LB films could be used to coat metal oxide layers thus sealing defects in the 

oxide layerlo9. The laser ablation of LB films of a phenylhydrazone dye, an amide and 

a prepolymerised polycondensate have been shown to be a clean and precise method that 

could be a viable technique for lithography"O Langmuir films of two component 

octadecanol/polymerised surfactant monolayers have been shown to control the 

evaporation of water"'. Hemicyanine dye monolayers can be used to align nematic and 

smectic liquid crystals, although the thermal and mechanical stability of the system 

needs to be improved to produce a worthwhile lifetime"2. Langmuir films of C60 have 

been deposited"', and shown to be stable and rigid with a high degree of structural 

organisation114. LB films of C60: C1SH37OH have been fabricated' 15 and LB films of C60 

on its own have recently been prepared although they are more stable when mixed with 

eicosanoic acid"6. This is a good example of how the Langmuir-Blodgett technique can 

be used to enable the investigation of new materials. 

At present the only LB film structure that is commercially available is a large 

area tritium standard source64. This is fabricated from monolayers of tritiated fatty acid 

deposited onto aluminium substrates. 
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1.6 Second Harmonic Generation from Langmuir-Blodgett Films 

Many groups have investigated the second-harmonic (SH) intensity from LB 

films. The methods of fabrication vary slightly, as does the method of SH measurement, 

therefore direct comparison of different work is difficult. Section 2.2 details how SH 

response was measured in this work, which is similar to the general method that has 

been used in the majority of studies reported. 

1.6.1 Early Reports of Monolayer SHG 

I 

II 

CIBH37HN 

C22Ha5 - 

N 
\\ 

N NO2 

OH 

X 

III C22H45 - 

Br 

Figure 13. (I) 4-N-octadecylamino-4'-nitroazobenzene117,118 ; (II) E-1-docosyl-4-{2-(4- 

hydroxyphenyl)ethenyl}pyridinium halide' 19,120; (III) E-1-docosyl-4-{2-(4- 

dimethylaminophenyl)ethenyl}pyridinium bromide l21. 

The first report of SHG from an LB film in 1983 gave a second order 

susceptibility x(2) of 4.2 x 10' esu for 4-(N-octadecylamino)-4'nitroazobenzene, 1117,118. 

This has the same order of magnitude as lithium niobate crystals. A larger second order 
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response was later observed from LB monolayers of a merocyanine dye, 1111" 120 

Unfortunately, the SHG is suppressed by protonation and it was necessary for the sample 

to be mounted in a cell containing ammonia vapour. An important early report of SHG 

was that of Girling et al121 in 1985, in which a hemicyanine dye, III, was first used for 

LB film fabrication. 

It is interesting to compare the SHG data for monolayers of II and III. II has a 

resonantly enhanced ß because its absorbance cut off is 650 nm. III also exhibits 

resonant enhancement but the effect is smaller because its absorbance cut off is at 590 

nm. This makes the hemicyanine, III, more desirable for applications, especially since 

exposure to air does not cause deterioration of the signal. 

Material Type of LB film Reported SHG data 

I Monolayer x('' = 1.8 x 10-11 m V_1 

II Monolayer ß=4.0 x 10-47 F m3 V-1 

III Monolayer ß=3.8 x 10-48 F m3 V-1 

Table 1. Reported optical coefficients for I, II and III117-121 

1.6.2 Molecular Structure and SH Response 

There have been various attempts to correlate molecular structure with SH 

response from an LB monolayer. In one such study, analogues of the optically active 

hemicyanine III were prepared and their general structure is shown in figure 14122. They 

are stable to laser damage for a C14 chain or longer. Measurements indicate a large tilt 

angle leading to significant cancellation of separate molecular contributions. The SH 
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response is similar to that of III, as expected since the donor and acceptor parts are 

similar and the same distance apart. 

IV 
R\ 

N 

Rý IN , 
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R= C6H13, C10H21 ; C14H29; C18H37' 

COCr 

Figure 14. Basic structure of IV: E-1-(2-carboxyethyl)-4-{2-(4- 

dialkylaminophenyl)ethenyl}pyridinium hydroxide dyes 122. 

Material 

IV (R = C18H37) 

Type of film 

Monolayer 

Reported SHG data 

8 =4.0x 10-so Fm3V-1 

Table 2. Approximate SH response of stable monolayers of IV 122. 

Another study of this nature arose from the desire for molecules which have 

their donor-acceptor groups oppositely aligned to that of III'°' Initial studies of the 

monolayers of V and VI have shown that one cannot simply predict the relative intensity 

of SH signals from the molecular structure. The N-stilbazene, V, unexpectedly has a SH 

response larger than hemicyanine; tilt angle studies show III to have a very similar 

alignment (0 = 22°), and therefore, the difference must he due to deleterious local fields 

in the films that enhance the effective hyperpolarizability. Also, the larger dielectric 

constant at 532 nm for N-stilbazene should result in greater resonant enhancement. The 

difference in tilt angle between 0-stilbazene and N-stilbazene probably causes the 

difference in their SH responses. 
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Figure 15. (V) E-1-methyl-4-{2-(4-octadecylam inophenyl)etheny1}pyridinium iodide; 

(VI) E-1-methyl-4-{2-(4-octadecyloxyphenyl)ethenyl}pyridinium iodide. 

Material Type of film Reported SHG data 

V Monolayer SH intensity = 7.5 (x III) 

0= 24° 

VI Monolayer SH intensity = 0.33 (x TIT) 

0= 34° 

Table 3. SHG data for two stilbazene dyes'O' 

These monolayer studies have been extended to include VI and four other 

phenylhydrazone or stilbazonium salt dyes, seen in figure 16123"125 Their monolayer SH 

response and estimated tilt angles are shown in table 4. 
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Figure 16. Phenylhydrazone and stilbazonium LB film forming materialsl23-125 

The slightly larger response of IX to X may be explained by the slightly larger 

inductive effect of a C18H37chain compared to a C16H, 3 chain. This is despite IX being 

inclined further away from the normal. The poor result of VIII compared to IX and X 

is indicative of the poor electron donor characteristics of the ester group. 
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Material Type of film Reported data Tilt Angle 

ß/F m3 V-1 

x(2) /m V-1 

VI Monolayer ß=5.6 x 1049 0= 50° 

x(2) = 2.1 x 10-10 

V il Monolayer ß= 7.4 x 10-48 0= 50° 

x(2) = 2.6 x 10-9 

VIII Monolayer ß= 4.1 x 10-49 0= 65° 

x(2) = 2.4 x 10-10 

IX Monolayer ß=1.5 x 1048 0= 60° 

x(2' = 7.6 x 10-10 

X Monolayer ß= 1.2 x 104$ 0= 55° 

X(2) = 7.2 x 10-'0 

Table 4. SHG data for phenylhydrazone and stilbazonium salt LB films12_-3-125 

The much larger response of VII compared to X is due to various factors: 

1. better quality films result from molecules containing two chains; 

2. the strong electron donor character of the dioctadecylamino group 

compared to the octadecyloxy group; 

3. the lower electron donor character of the methyl group; 

4. the absence of resonant enhancement between the SH and the first 

absorption peak of X which lies at 360 nm. 

It is interesting to note that the SH intensity from VII is approximately 6 times that of 

III reported by Girling121. 
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If all these results are assumed to be free of experimental variations then the 

classification of different chemical groups can he confirmed as: 

electron donor character; 

O CH3 C�H 
11 / 2n +l ý 

RCÖ<R O- < 

CH3 CnH2n 
+1 

N <-N < O" 
ý\ 

electron acceptor character. 

NO2 
\\ Q 

N+ CnH2n+1 < N+ CH3 

// 

Rules governing SH response have been suggested as a result of a study of 

another set of amphiphiles, shown in figure 17126,127. Some ideas of how molecular 

structure effects nonlinearity are confirmed: 

1. a substituent in the meta position decreases the molecular nonlinearity 

(XVI gave a larger responses than XI or XII); 

2. increased planarity brought about by the interaction between an OH 

group and the nitrogen in the bridge improves SHG (XVII gave a larger 

response than XVI), and this occurs without a change in absorption band; 

3. thioether instead of a simple ether bridge offers a significant 

improvement in nonlinearity (XXIV gave a larger response than XVI and 

XX gave a larger response than XIX). 

Some theories are, however, contradicted: 

1. the response is similar for XV and XVIII where one would expect the 

longer conjugated chain in the latter to give a larger response; 
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Figure 17. Materials studied by Bubeck et ali26"2' 
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2. the presence of an extra alkyl chain does not improve the order in the 

film and therefore its SHG (the responses from XI, XII, XIII and XIV 

are no larger than that from XV), instead results are inconclusive. 

More recently the same workers have approached the study of long substituted 

polyenes in the same way128. The experimental conditions were difficult to control and 

as a result the SH data was variable. It proved difficult, therefore, to assign any 

dependence of SH response on molecular configuration. 

Finally some useful observations have been made for SHG studies of two azo 

dyes 129. 

xxv H29 C 14 N 
Q 

N- 
0 

c 
\ OH 

I H 

XXVI H29C14 N 
O 

Figure 18. Two azo dyes with interesting SHG properties. '29 

Material Type of film Reported SHG data 

XXV Monolayer ß=2.8 x 1048 F m3 V-1 

XXVI Monolayer ß=1.2 x 1048 F m3 V-1 

Table 5. SH response of materials XXV and XXVI'29. 
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The ß are reasonable since XXVI has no obvious acceptor group whereas XV 

has. In fact in XXVI it is possible that the azo linkage is acting as the acceptor group. 

By depositing from an acidified subphase the SH signal for a monolayer was five times 

greater in XXVI than when deposited normally, ie pH = 5.5. This may be due to 

protonation of the azo group which will shift the absorption band of the chromophore 

towards the SHG frequency, leading to resonant enhancement. In addition, protonation 

of the azo linkage may improve its electron accepting properties. 

1.6.3 Multilayer films 

The fabrication of multilayer films has been attempted for many materials which 

have a large SH response as a monolayer. Alternate layer films of II and w-tricosanoic 

acid gave a signal greater than that from the monolayer120. In theory the signal should 

increase quadratically as the number of alternate layers increase but this was not 

observed. This departure was probably due to imperfect deposition. 

Alternate layer films of III and w-tricosanoic acid did not show quadratic 

behaviour either121. A reduction in the relative size of the s-signal indicated an increasing 

isotropic behaviour with thickness. As the number of layers increased the distribution 

of orientations may have changed also. 

Alternating III with behenic acid resulted in a multilayer film exhibiting 

quadratic dependence for up to 6 bilayersl30. The reason for this success compared with 

earlier attempts may be attributed to an improvement in experimental conditions. A 

single compartment trough was used and this meant that the surface had to be cleaned 

between every transfer, consequently cross-contamination of material was minimised. 

Z-type layers of III have also been fabricated'31. Subquadratic behaviour was 

observed for 1,2 and 3 layers and sublinear behaviour was observed for up to 12 layers. 

An expected centrosymmetric Y-type bilayer of III demonstrated the different 

properties of layer 1 compared to subsequent layers. A signal of s 25% of a monolayer 

was detected on layers 2 and upwards, on various samples. This indicates that the 
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molecules in the first layer are inclined at a different angle from those of the second 

layer. Incomplete transfer for one of the layers must not be ignored as a further 

possibility. 

The inactive fatty acid used as a spacer molecule with III was replaced by a 

nitrostilbene, XXVII or XXVIII, in further studies132. These molecule have their donor- 

acceptor groups aligned in the opposite sense, with respect to the hydrocarbon chain, to 

those of III. 

XXVII C17H35 
-C- 

N 02 ii 0 

XXVIII C22H45 - 

N 02 

Figure 19. (XXVII) 4-N-heptadecylamido-4'-nitrostilbene132; (XXVIII) 4-N- 

heptadecylamino-4'-nitrostilbene132. 

Material Film Reported SHG data 

III, XXVII Alternate ß(III) = 4.7 x 10-45 F m3 V-1 

multilayer ß(XXVII) = 8.6 x 10-49 F m3 V-1 

ß(III, XXV II) = 1.3 x 10-47 F m3 V-1 

Table 6. Molecular coefficients for monolayers and bilayers of III and XXVII132 
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XXVII displayed excellent LB film forming properties, it had a linear 

relationship between absorbance and number of layers for= up to 60 layers of a Y-type 

multilayer'33. In theory an alternate multilayer of III and XXVII should have additive 

second order nonlinear molecular polarizabilities. Initial studies showed the first 

evidence of approximate quadratic behaviour for active-active multilayers for up to 3 

bilayers. Molecular polarizability calculations for the hemicyanine were comparable to 

the monolayer121 

The ß coefficient of the bilayer is clearly greater than the addition of both 

individual polarizabilities. A thicker multilayer of ten layers was studied and the 

measured SH signal for this was still larger than an ideal model would predict134. This 

implies that there is some cooperative phenomenon occurring which renders the bilayer 

a much superior SH material than its individual components. 

The idea that a bilayer can act as a discreet unit is perhaps to be expected, since 

the chromophores within it are in close proximity and are therefore likely to interact 

strongly. IR spectral data indicates two points that cause this effect: 

1. XXVII molecules interact strongly by hydrogen bonding with each 

other, providing a rigid framework into which the III molecules may fit; 

III 

XXVII 

III 

XXVII 

III 

A 

Figure 20. The nature of multilayer deposition of III and XXVII132 
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2. there is a degree of interdigitation of the III and XXVII molecules in 

the bilayers in such a way that the III molecules are held more rigidly 

and at least partly separated from each other. The separation probably 

reduces aggregation which affects SH response. This effect is discussed 

in more detail in section 1.6.4. 

Material XXVIII was used instead of XXVII in attempt to improve the 

contribution from the nitrostilbene component. In XXVIII there is no carbonyl portion 

and this should increase the donor characteristics of the molecule. Unfortunately poor 

film quality rendered the SH signal similar to multilayers using XXVII. This is readily 

explained because the hydrogen bonding properties of the amide group are no longer 

available to provide the rigidity and alignment of the III molecules. 

A large Y-type alternate multilayer of XXVII and a novel functional diarylalkyne 

showed SHG for 150 bilayers less than that of 49 bilayers. This may have been due to 

lack of phase matching since for thinner layers there is insufficient optical path length 

for this to become important 135. Film deposition properties were excellent, further 

nonlinear optical experiments suggested ordering of molecules within the layer was low 

and decreased with an increasing number of layers. 

Studies on the material 4-{4-(N-dodecyl-N-methylamino}phenylazo)-3- 

nitrobenzoic acid (DPNA), XXIX, demonstrated two properties common to LB films of 

a number of materials. 136 

Firstly, DPNA required the presence of Cd 2+ in the subphase to stabilise it for 

LB deposition. Only layers deposited in the presence of Cd 2+ produced multilayers with 

a near quadratic dependence. The in the presence of Cd 2+ was 464 nm. Films 

deposited without Cd 2+ present had slightly smaller x(2) and ß values but were less stable. 

This was probably because Xmax is 504 nm without Cd 2+ which is closer to the SH 

frequency (532 nm) therefore resonant enhancement occurs. 

Secondly, the SH response for the first layer of the Z-type multilayer was 

anomalously large compared to subsequent layers. This observation was mentioned 

earlier and merits more discussion. The environment of the first layer is very different 
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Figure 21. (XXIX) 4-{4-(N-dodecyl-N-methylamino)phenylazo}-3-nitrobenzoic acid 

(DPNA) and related materials for LB film fabrication136. 

Material Type of film Reported SHG data 

XXIX Monolayer ß=1.8 x 10' F m3 V-1 

Table 7. Reported SHG data for DPNA'36 

to that of the second, third etc layers because it is adsorbed to glass, not another 

molecular layer. IR studies of LB films of III and XXVII indicated that the influence 

of the substrate in disordering the initial monolayer was gradually lost as more layers 

were deposited 137. Therefore both the structure and the orientation become more uniform. 
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It may be that the interaction between the substrate and the molecular layer 

causes the molecular hýyer to align at a different tilt angle to that formed when two 

molecular layers are adjacent. The difference in tilt angles causes a difference in SH 

response. The molecules in the first layer usually orientate their charge transfer axis 

more towards the input beam thereby giving a larger signal. In material XXIX the X(2) 

for Y-type layers was only 3 or 4 times smaller than those of Z-type layers with equal 

active layers 137-141. This is partially accounted for by the predominance of the first layer. 

The deposition of up to 6 passive layers of arachidic acid before the first active layer 

of XXIX showed a signal smaller than that from a monolayer of XXIX alone, 

supporting this theory. Other experiments have indicated that upper layers of these LB 

films bind less strongly than lower ones, giving rise to a significant decrease in ß. 

Thermodesorption experiments confirm a reduction in binding energy of upper layers, 

ellipsometry and surface plasmon resonance studies have confirmed this134. In fact the 

binding energy enhancement is thought to cover the first 3 to 4 layers, which would 

certainly explain the subquadratic behaviour of this material. 

The same workers have investigated the effect of confirmation changes in 

molecules on SH activity by studying XXX and XXXI. XXXI had a smaller ß value 

than either XXIX or XXX because of the lack of an electron attracting group in the para 

position. XXX had aß value slightly less than XXIX, probably because the ester is a 

weaker electron attracting than the acid. In addition the propionic acid form is a weaker 

electron donor than the alkyl chain. 

Alternate "active-active" Y-type multilayers of molecules XXX and XXXI were 

deposited and a sharp increase in SH response was observed where N (number of layers) 

> 5. Other combinations of passive-active multilayers were also deposited using XXX, 

XXXI and arachidic acid (see table 8). The results show that two active species 

eliminate the dilution effect of the passive species, in addition the similarity in their 

molecular configuration improves the stability of the multilayer. It is noted, however, 

that quadratic behaviour over a significant number of layers was not achieved due to the 
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increased disorder in the layers moving away from the substrate. The ideas presented 

have, however, proven a stimulus for many others in the field. 

Nature XXXI XXXI XXXI XXX XXX XXX XXX 

of active AA XXXI XXXI XXXI 

materials 

Film z Z Y+4 Y Y Y Y 

Active 7 12 11 1 3 7 11 

layers 

x(2) x 2.16 1.93 0.88 3.3 1.43 1.91 3.4 

1010 (SI) 

Table 8. Reported SHG data for various LB layers of XXX and XXXII3s. Note that 

AA denotes arachidic acid and that Y+4 indicates the deposition of four Y-type layers 

of arachidic acid followed by the transfer of the alternate bilayers. 

Materials XXXII and XXXIII, shown overleaf, were specifically designed to 

have opposite polarizabilities. The monolayer signal from XXXII was relatively large 

on a hydrophilic substrate, as one might expect from a molecule where charge transfer 

14' 
. occurs through a relatively large conjugated systemý'43 

Material Type of film Reported SHG data 

XXXII Monolayer 8=3.1 x 10"48 F m3 V-` 

Table 9. SHG data for XXXII142. 
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Figure 22. Two LB film forming materials (XXXII and XXXIII) designed to have 

opposite po(arizabilities14' 

Mixed bilayers deposited with either as layer 1 exhibited considerably higher 

SH responses compared to their monolayer signals. Further bilayers showed a significant 

decrease in nonlinear susceptibility reflecting a decrease in molecular order with 

increasing layers. An important observation from these results is that the SH response 

of XXXII on a hydrophilic substrate is much larger than when it is deposited onto a 

hydrophobic substrate. There appears no significant first layer anomaly for a 

hydrophobic substrate. This is indicated by the near total cancellation for a bilayer. The 

monolayer deposited on the hydrophilic substrate has its nonlinear part situated nearest 

to the substrate. This infers that the interaction between this and the substrate must be 

the cause of the "first layer effect". Observations of the frequency dependence of XXXII 

and XXXIII show that both these materials have resonant enhancement at 2w = 532 nm 

although the effect is much more marked for XXXIII"'. 

1.6.4 Aggregates 

Marked improvements in SH response have been observed when active materials 

have been mixed with inactive ones and then deposited as a monolayer. One of the first 

reports of this observed SHG enhancement by mixing hemicyanine with arachidic 
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acid13a A full range of hemicyanine molar ratios were deposited and their monolayer SH 

responses are shown in figure 23. 
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Figure 23. Second harmonic signal from mixtures of III and arachidic acid"". 

The fractional area of hemicyanine of approximately 0.62 where maximum 4-fold 

enhancement of pure hemicyanine occurs is equivalent to a 50: 50 mixture of 

hemicyanine and acid. This enhancement can be accounted for by two possible 

mechanisms: 

1. a change in packing results in better alignment relative to the incident 

and second harmonic electric fields, this is supported by the fact that 

enhancement is not perfectly uniform for all geometries and polarizations; 
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2. enhancement of the local optical fields is experienced by the 

hemicyanine because of the decreased shielding from more distant 

neighbouring dye molecules and evidence for this derives from the fact 

that the phenomenon is observed for all geometries and polarizations. 

A more detailed investigation of the same species is shown in figure 24145. The 

data supports the observation of optimum enhancement between 0.5 - 0.7 fractional area, 

and a constant film structure in the region 0.2 - 0.6 fractional area. 
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Figure 24. Second harmonic signal from transmission (0) and reflection (0) of 

mixtures of III and arachidic acid145. 

The value of ß for III was derived as 3.3 x 10" F m3 V'1, this is similar to that 

observed previously121. At concentrations greater than 50%, ß decreases and this is most 

probably the result of changes in the distribution of inclinations. It is possible that at 

lower concentrations there are fewer chromophores lying flat, thus making the observed 

signal larger. At higher concentrations there are relatively more chromophores inclined 

IIIIII 
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at angles that do not contribute as largely to the overall SH signal. Evaluation of the tilt 

angle of the chrornophore for each monolayer was reported to be almost constant 

therefore having little effect on the SH response. 

This early work on monolayer mixtures highlighted two fundamental points: 

1. efficiency of SHG is found to be greater for mixed dye-arachidic acid 

films than for a pure-dye film; 

2. efficiency of SHG does not increase quadratically with the number of 

layers in noncentrosymmetric multilayer films. 

The absorption spectrum and SHG of LB monolayers of both pure III and a 1: 4 mixture 

of III and arachidic acid indicate possible reasons for these observations 146 

t. o 

0.8 

0.6 

Absorbance (a. u) 
0.4 

0.2 

0.0 
250 350 450 

Wavelength / nm 

550 

Figure 25. Absorption spectrum of pure III (-) and 1: 4 mixture of III and arachidic 

acid (---)14. 

Both films have an absorption band at 263 nm and one at a higher wavelength. 

The high wavelength band of the mixed film is at 477 nm, which is close to the 

monomer band in chloroform solution (494 nm). The high wavelength band of the pure 
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III film at 339 nm is blue shifted more than 150 nm from the monomer band. These 

observations are a clear indication of H-aggregate formation in the pure III film. 

SHG measurements of both films confirmed an almost completely p polarised 

output beam from ap and s polarised 1064 nm incident beam. This indicates that in 

both films the molecular orientation distribution is uniaxial, with the symmetry axis 

normal to the film. 

The SH signal from the mixed film is 44 times greater than that of the pure III 

film. Therefore the second order susceptibility of the mixed film is 6.6 times higher than 

that of the pure film. The enhanced signal observed here and previously121,134 is also 

evidence of H-aggregate formation. Resonant enhancement of SHG will occur in the 

mixed film because of the spectral overlap of the monomers absorption band and the 

532 nm beam. The pure III film will not exhibit this because of the blue shift in 

absorbance. 

The ratio of the SH intensity for p and s polarised input beams at an incident 

angle of 45° is 5.9 ± 0.5 for pure III and 4.6 ± 0.5 for the mixed film. This indicates 

that the monomer and the aggregate dye have nearly the same orientation in the film. 

Therefore orientational effects do not play a major role in the difference in SHG 

efficiency of the monomer and aggregate. 

Further studies have indicated that the monomer dye is three times as active as 

the aggregate dye147-149. This could be due to antiparallel molecular alignment, which 

minimises electrostatic energy, resulting in cancellation of individual second-order 

susceptibilities. In addition, electronic coupling of separate molecules may diminish the 

molecular hyperpolarizability. 

As reported earlier, the Z-type multilayer film reported by Hayden et al131 failed 

to achieve quadratic dependence of SH response with number of layers. This may be due 

to the instability of Z-type structures. It can also be explained by the differing relative 

amounts of aggregate and monomer dye in each layer of the film150. This could occur 

through a change in the monomer-aggregate equilibrium with time at the air/water 

interface during multilayer deposition. Alternatively it may be a result of interlayer 
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interaction of the transferred films. Also, polarised IR spectroscopy studies show that 

the layers lose their registration with the surface of the substrate after only a few layers 

are deposited. 

Temperature studies of SHG, absorption and X-ray diffraction have shown that 

H-aggregation occurs when the concentration of III exceeds 50% in a IIl: arachidic acid 

film'". As the temperature increases for a 50: 50 film the molecular hyperpolarizability, 

B, increases because some of the aggregated molecules dissociate to monomers. At 60°C, 

ß decreases because the arachidic acid melts, allowing aggregate formation again. 

More azobenzene structures have been studied as mixtures with acids'52. They 

have been investigated extensively as LB films for nonlinear optical applications for 

various reasons. They have extended conjugated n systems, onto which electron- 

donating and electron-accepting groups may be easily attached during synthesis. In 

addition the synthetic pathways for azobenzenes allow flexibility in the attachment of 

amphiphilic substituents. They also exhibit high chemical and thermal stabilities, which 

is desirable if these materials are to be used as integral components in working 

optoelectronic devices. 

XXXTV HO(CH., ), 
- NH 4. )--- 

.9 uulb, a" "- \ -- Lio ' -" - \\ If \/\ 

ýN 
-ýý ýý-- N 02 

XXXV HO(CH, )� - NH ý\ A- N 
\N4\ 

/\ N02 

Figure 26. LB film forming azobenzenes: (XXXIV) 4-(N-hydroxyhexyl)amino-4'- 

nitroazobenzene152 (XXXV) and 4-(N-hydroxydodecyl)amino-4'-n itroazobenzene'52. 

They did not form stable monolayers unless they were mixed with stearic acid 

and the subphase had to he doped with bivalent cations (ie Cu' or Cd2+). Absorption 
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effects were minimal (1.5% at 532 nm for XXXIV). The best multilayer film fabricated 

from these materials was a Y-type "passive-active" film using 2: 1 stearic acid: XXXIV 

with stearic acid interleaved. The second harmonic dependence was only just 

subquadratic for 1,2 and 3 layers. This is considerably better than other systems 

reported, as well as contradicting the theory of anomalous first layer behaviour. Similar 

studies for XXXV were less successful; this could simply be explained as a carbon chain 

length mismatch since XXXIV matches the length of stearic acid very closely and 

XXXV does not. 

Material Type of film Reported SHG data 

XXXIV Mixed monolayer (3 = 2.4 x 10"49 F m3 V"1 

XXXV Mixed monolayer ß=1.3 x 10-49 F m3 V-1 

Table 10. Reported SHG data for XXXIV and XXXV'52 

1.6.5. Quadratic SHG Enhancement from Y-type Films. 

A large SH signal from a Y-type multilayer film of a simple chromophore and 

spacer material was reported by Japanese workers 153. Noncentrosymmetric LB films of 

more than 200 bilayers, with thickness of more than 1, um, were successfully fabricated 

with an alternating deposition of a phenylpyrazine derivative, XXXVI, and arachidic 

acid monolayers. 

The alternate layers were deposited consistently from a subphase containing 

BaC12 to stabilise the materials. The films were transparent from the visible to the near 

IR region so the SH response was not increased by resonant enhancement of the output 

beam at 532 nm. The LB multilayer absorption spectrum was blue shifted by 50 nm, 

indicating the formation of H-aggregates. The multilayer showed a quadratic dependence 
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of SH intensity with film thickness for up to 200 bilayers. The average tilt angle of 

XXXVI was estimated as 30°. This was supported by X-ray diffraction data which 

demonstrated that XXXVI was orientated predominantly normal to the film plane in the 

LB film. The second order nonlinear susceptibility was very large compared to other 

organic LB films. 

XXXvI C12H250 

5 

Figure 27. XXXVI: 5-(p-dodecyloxyphenyl)pyrazine-2-carboxylic acid'53. 
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Figure 28. SH intensity versus number of bilayers for an alternating multilayer film 

of XXXVI and arachidic acid `j3. 
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Material 

XXXV 

Type of film 

200 bilayers 

Table 11. Reported SHG data for XXXVIis3 

Reported SHG data 

x'-=4.2x10-11mV-1 

Further to this work, two new pyrazine derivatives were studied (figure 29) that 

also form thick noncentrosymmetric LB films'54 XXXVII and XXXVIII have similar 

hyperpolarizabilities to XXXVI. 

Material Type of film Reported SHG data 

XXXV I Monolayer ß= 3.3 x 10-10 F m' V-' 

XXXV II Monolayer ß=7.2 x 10-50 Fm3 V-' 

XXXV III Monolayer 8=2.8 x 10-50 F M3 V-' 

Table 12. Reported SHG data for pyrazine derivatives'''. 

C12H250 

XXXVII 
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C12H25S 
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COOH 

Figure 29. Two new pyrazine materials for LB film applications154 
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Fifty bilayer films were successfully fabricated using either XXXVII or 

XXXVIII. They were deposited from subphases containing either Ba 2+ or Cd 2+ ions. All 

the films exhibited an approximate quadratic dependence of SH intensity with number 

of bilayers. 
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Figure 30. SH intensity versus number of bilayers for 50 bilayer films of XXXVII 

and XXXVIII with arachidic acid'54. (o) XXXVII Ba salt, (+) XXXVIII Ba salt, (X) 

XXXV III Cd salt, (0) XXXV II Cd salt. 

The SH responses for the 50 bilayer films are listed in table 13 and it is 

worthwhile noting that the multilayer film of XXXVII U2+ salt possessed the largest 

second order susceptibility. The absorption bands of the Cd 2+ salt LB films were closer 

to the second harmonic wavelength than those of the corresponding Ba 2+ salt LB films. 

This probably explains why their susceptibility was larger. 

1±1 

.I. I 
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Material Type of film Reported SHG 

XXXVII Cd 2+ 50 bilayers 9.6 x 1011 m V-' 

XXXVIII Ba 2+ 50 bilayers 3.4 x 10-11 m V-' 

XXXVII Cd 2+ 50 bilayers 4.6 x 10" m V-' 

XXXVIII Ba 2+ 50 bilayers 2.9 x 1011 m V-' 

Table 13. Reported SHG data for new pyrazine derivatives XXXVII and 

XXXVIIIls4 

1.6.6. Quadratic SHG Enhancement from Z-type Films 

Materials suitable for LB deposition are very often unsuitable for Z-type 

multilayer fabrication. The requirement for hydrophilic head groups to transfer onto a 

layer of hydrophobic tails is usually too difficult. In fact in systems where this has 

occurred the resulting multilayer is usually quite unstable compared to a Y-type film of 

the same material. Interlayer rearrangement can drastically affect the consistency of each 

layer, and this has been shown to occur for Z-type films Of 111130. 

Z-type multilayers can be fabricated if the hydrophobic end groups are positioned 

along the chain'55. Similar molecules with hydrophobic end groups at the end of the 

chain do not deposit Z-type because the criterion of < 90° advancing contact angle and 

approximate 0° receding contact angle is not met'56 

A novel method of achieving stable Z-type layers is to deposit materials that 

prefer this alignment energetically. In the molecules XXXIX and XL centrosymmetric 

alignment does not occur because the negative ends have a columbic repulsion'57-159. 

Multilayer films of XL were fabricated using a two component trough with a floating 

monolayer in one side only. Continual rotation through both compartments allowed 
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repetitive upstroke transfer. Figure 32 shows that quadratic behaviour was achieved for 

up to 50 layers. 

XA'YIX C 16 H33 CN 

NC ýý CN 

XL C16 H33 

Figure 31. Zwitterionic LB film forming materials: (XXXIX) Z-ß-(1-hexadecyl-4- 

pyridinium)-a-cyano-4-styryldicyanomethanide; (XL) Z-ß-(1-hexadecyl-4-quinolinium)- 

157a-cyano-4-styryldicyanomethanide ise 

Material Type of film Reported SHG data (theoretical) 

XXXIX Monolayer 8=4.7 x 10-"s Fm3 V1 

Table 13. Reported SHG data for XXXIX157. 

Mixtures of XXXIX and XL also showed interesting behaviour"" The signal 

from XL was approximately 30 times that of XXXIX. Various mixtures indicated that 

SH response increased with increasing XL. The absorbance spectrum showed that the 

mixture was, in fact, an organic "alloy" having only one absorbance peak instead of the 

two component peaks. A plot of SH intensity vs Xmas of the mixture showed that SH 

response increased towards 2w (532 nm). In fact the pure film of XL provided the 
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optimum conditions for SHG; the harmonic is on the leading edge of the sharp charge 

transfer band with an absorbency at 532 nm of less than 0.002 per layer. 
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Figure 32. SH response versus number of layers for a multilayer of XLis' 

1.6.7 Polymers 

The stability of organic polymers make them ideal materials as LB films for 

SHG. Simple polymers such as polymethylmethacry late and polyvinylacetate and block 

copolymers can be transferred to a solid substrate but defect free multilayers have not 

yet been fabricated'60. 

Polymerisation of an amphiphile, after deposition, has been studied. Multilayer 

films of poly(benzothiazole) prepolymer showed a quadratic dependence of SHG with 

number of layers for up to 20 layers16'. A multilayer film of the polymer was obtained 

by heating the prepolymer film to 300°C. The SH response of the polymer multilayer 
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was 0.025 times as intense as the prepolymer. This indicates that alteration of the 

molecular structure and the disorder of layers has taken place. 

A multilayer film consisting of alternating layers of poly(N-(p- 

heneicosafluorodecylsulfonyphenyl)-L-prolinol acrylate and poly(2-(p-(1-oxy-1- 

trifluoromethyl-2,2-diheptafluoroisopropylethylene)phenyl)-2-oxazol ine) was prepared 162. 

Up to 80 layers of the multilayer showed a steady increase in SH response although this 

was not quadratic. 

A novel method is to incorporate a known nonlinear optically active 

chromophore along the backbone of a polymer and fabricated it into a Y-type 

multilayerl63'164 Molecules XLI and XLII were deposited alternately and the SHG for 

the first four bilayers increased quadratically. Although no absolute SH signals were 

reported it is interesting to note that the chromophores absorb visible light with a X.. 

= 390 nm and an absorption edge near 500 nm in chloroform. This makes them 

transparent to Nd: YAG laser light at 532 nm, however no spectrophotometry of the 

resultant LB film, was reported. 

In an attempt to reduce the effect of interaction between layers, a double spacer 

was used to fabricate an ABCC structure where A, B = polymers XLI and XLII, C= 

behenic acid and XLI is the first layer16s The acid was incorporated to prevent 

hydrophilic-hydrophobic interactions between polymer-dye bilayers and to insulate 

against interlayer local field effects. For comparison a non interleaved structure was 

studied. The results, shown in figure 34 indicated that the non-interleaved structure was 

not as SH responsive when two films of similar thickness were compared. This cannot 
66 

, local field effects145 , or be attributed to poor deposition, ionization of chromophores' 

successive disordering because of imperfect registry between bilayers. It can be 

concluded that through control of the film architecture it is possible to obtain quadratic 

enhancement of SHG intensity when the optically active bilayers are interleaved with 

an optically inert material. 
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Figure 33. Chromophores incorporated onto polymeric backbones163"". 
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Figure 34 SH response versus number of bilayers of XLI and XLII; 

0 interleaved structure, D non-interleaved structure. 
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Anderson and coworkers extended these studies by using material, XLIII, which 

has a larger second order polarizability167. This polymer has a hemicyanine type 

chromophore with a hydrocarbon tail covalently bonded to a polyether backbone. Its 

susceptibility is of the same order as the hemicyanine dye, the spacer was behenic acid 

again. 

H. 37C18 C2H5 
\/ 
N 

GH2 

-(CH- CH2 - 0-)n=24 

XLIII 

Figure 35. An improved chromophore incorporated onto a polymeric backbone 167. 

The increase in SHG with number of layers of the interleaved multilayer is 

shown in figure 36. The results were normalized to the intensity of a5 layer film 

thereby diminishing the effect of the anomalous first layer response. 

The response was subquadratic, however it should be noted that the 25 layer 

film had a SHG signal approximately 265 times stronger than a hemicyanine monolayer. 
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Absorbance data showed consistent deposition and a slight shift of Xmaz with increasing 

layers. In fact for 10 to 25 layers Xma, was blue shifted, therefore resonant enhancement 

was reduced slightly, reducing the relative SHG. This may explain the subquadratic 

behaviour. The effect of the spacer layer was investigated by SHG and optical 

absorbance measurements, however results were contradictory. 
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Figure 36. SH response versus number of bilayers for a XLIII: behenic acid 

interleaved multilayer film; (0) quadratic dependence, (0) actual dependence. 

Similarly, XLIV and polymer XLV were deposited' 66. Since merocyanine was 

used it was necessary to enclose the samples in a cell containing ammonia vapour to 

prevent protonation. The Y-type structure produced multilayers of various thicknesses 

up to 70 bilayers, which still appeared uniform when viewed through a microscope. 

The SHG did not increase in a linear fashion with thickness. A possible 

explanation is that most nonlinear organic molecules have permanent dipole moments 

of about 5 debye units or larger so that they produce an electric potential of 

approximately 1 volt in this film. The energy required to transfer an electron from one 
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chromophore to another is 10 eV. Hence for films with more than 10 layers, some of 

the chromophores can he ionised and the charge transferred from one side of the system 

to the other. The larger the film the greater the effect on SHG. 
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Figure 37. Two chromophores with their nonlinearity aligned in the opposite sense, 

relative to the hydrophobic chain 166. 

Further investigations used a hemicyanine chromophore instead of 

merocyanine168. A 120 layer film was deposited, as well as a film with a double spacer 

layer of arachidic acid deposited every ten layers. The latter film exhibited much better 

SH characteristics but was still not quadratic. A larger monolayer signal, from polymer 

XLVI, was observed and an alternating multilayer film of good optical quality was also 

fabricated169 

Alternating Y-type multilayers using arachidic acid and a polyacrylate containing 

a 4-amino-4'-sulfonylazobenzene chromophore exhibited quadratic dependence of SH 

response with increasing layers17o 
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Figure 38. XLVI Copoly(2-(N-ethyl-N-(4-nitrophenylazo)phenyl)amino)ethyl 

acrylate/methyl methacrylate169. 

Material Type of film Reported SHG data 

11 XLVI Multilayer x(2) = 9.8 x 10-12 m V-1 

Table 14. Reported SHG data for material XLVI169. 

One group fabricated 262 layers of a noncentrosymmetric structure that had a 

quadratic dependence of SHG with film thickness171, using the random copolymer 
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XLVII. Alternating multilayer films were deposited using w-tricosanoic acid as a spacer. 

The chromophore absorbed up to 580 nm therefore some resonant enhancement was 

responsible for the SH signal. 
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O CH2 
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HO-(CH2)2 -O-C-CH 

CH3 0 CH2 
I II 1 
N- ((CH2)20)3 - C- CH 

Figure 39. XLVII, a copolymer capable of fabrication into a thick alternate 

multilayerl'1 

The stability of the polymer as an LB film was in contrast to the lack of thermal 

or mechanical stability of the acid. Ellipsometry measurements indicated that the film 

was thicker than 1000 A. Polarisation studies of the SHG indicated that the 

chromophores were highly ordered. The value of x() for the multilayer of XLVII not 

only represents that largest signal recorded for a polymeric LB film, but is also one of 

the largest documented for any type of LB film. 

Material Type of film Reported SHG data 

XLVII Multilayer x(2) = 4.2 x 10-" F m3 V"1 

Table 15. Reported SHG data for XLVII1'1 
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Figure 40. SH response versus number of layers for a multilayer film of XLVII1'1. 

A novel analogue of the material 2-docosylamino-5-nitropyridine (DCANP), 

described in section 1.6.8., was polymerised as an LB I1m172. Multilayer films of 2-(21- 

docosenyl)amino-5-nitropyridine, XLVIII, were polymerised by X-ray irradiation. The 

UV/vis and IR spectrum before and after polymerisation were identical and it was found 

that polymerisation had no effect on the nonlinear optical coefficient of the film. 

1.6.8 Herringbone or Intercalated Y-type Multilayer Films 

A novel multilayer structure was deposited that derived its quadratic nonlinear 

properties from its alignment 173-176. Initially a group of materials were investigated as 

monolayers in an attempt to identify optimum LB film parameters, ie chain length, 

nature of substituent etc. The materials contained either a pyridine or a benzene ring. 
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Figure 41. General formula of pyridine and benzene derivatives fabricated as LB 

films for SHG173. 

Multilayer films of the pyridine derivatives, R1 = C18H37 to C26H53 and R2, R3 = 

H were fabricated. The molecules were transferred on the upstroke and downstroke until 

36 deposition cycles had taken place. The SH response from each film was investigated 

(figure 42) and it was found that the C�H41 analogue provided the largest signal. 

An investigation into the orientation of the chromophores indicated that local 

field effects of intermolecular interactions reduced the nonlinear optical activity of the 

C24 and C26 analogues. The C� analogue was most likely the optimum chain length 

because it counteracted this effect with its improved molecular alignment. It is possible, 

therefore, that slight changes in the hydrophobic part of a LB film significantly influence 

the orientation of the hydrophilic part and the associated material parameters. 

A large multilayer film of 2-docosylamino-5-nitropyridine (DCANP) exhibited 

a quadratic nonlinear dependence of SH response for up to 270 bilayers. This behaviour 

indicates that the nonlinearities of each layer were directed in the same direction, this 
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Figure 42. SH response versus chain length for multilayer films of the homologous 

materials, 2-alkylamino-S-nitropyridine173. (K) I parallel to dipping direction, (o) I 

perpendicular to dipping direction. 

alignment infers a X-type or Z-type structure. However X-ray diffraction studies 

indicated that the molecules in the film were highly ordered and centrosymmetric thus 

eliminating the feasibility of such film types. The layers must therefore be arranged in 

a novel Y-type arrangement, either: 

1. a polar Y-type structure with a herringbone-type arrangement; 

2. an intercalated structure with the alkyl chains orientated nearly 

perpendicular to the substrate. 

In both cases the noncentrosymmetricity results from a unique alignment of the 

chromophore in a single direction. The chromophore arrangement is probably enhanced 

or stabilised by interlayer hydrogen bridging between the amino and nitro substituents 

of adjacent molecules. This is similar to how it occurs in single crystals of 2- 
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cyclooctylamino-5-nitropyridine176. Intercalation requires a phase transition during or 

after film transfer and this makes it less likely than the "herringbone" structure. 

Oýbýb 

, lb 00 

AB 

Figure 43. Possible configurations for the multilayer structure of 2-dialkylamino-5- 

. nitropyridine: (A) "herringbone", (B) intercalated'74,175 

The nonlinear response for a 80 layer film of DCANP was calculated in terms 

ý2) of d, where d=ix 

Material Type of film Reported SHG data 

DCANP 80 layers d333 = 6.8 x 10"12 m V-1 

d311=0.9x10-12mV-1 

Table 16. SHG data for DCANP173-175 
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1.6.9 Summary of Findings 

It is evident that a huge number of very different molecules have been studied 

and as a result some simple prerequisites are apparent for the fabrication of organic LB 

films for SHG. Firstly, materials must be synthesised that are: 

1. stable at the air/water interface, preferably without requiring the 

presence of counterions; 

2. uniform and tightly packed at deposition; 

3. stable as a monolayer LB film, with their molecules aligned in parallel 

along the molecular layer. 

Secondly the molecules should contain a chromophore capable of nonlinear response 

upon irradiation from an intense light source. It is noted that a considerable number of 

the materials reported contain a conjugated, hydrophobic head group attached to a 

saturated aliphatic chain. Upon transfer to the substrate the chromophore should align 

at an angle that maximises its SH response in the direction of the light source. In order 

to generate a large SH response the material must be capable of forming stable 

multilayers having the nonlinear functions of each layer aligned in the same direction. 

If each layer has transferred perfectly then the thick film should have a quadratic 

relationship between SHG and the number of layers. 

It is important to achieve these ambitions with materials that are neither difficult 

or expensive to prepare, and ones that have a structure that can be altered slightly in 

configuration in order to improve performance. If so then a lot can be learned about all 

aspects of LB films, the surface properties of materials and SHG, as well as progressing 

towards the goal of assembling LB films for commercial applications. 
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2.0 Experimental 

The preparation of all the materials studied are presented, as well as the 

apparatus used for the LB investigations and the optical equipment used for the study 

of second harmonic generation (SHG). 

2.1 Synthesis 

2.1.1 Quinoliniurn Hemicyanines 

E-1-hexadecyl, E-1-octadecyl, E-1-eicosyl, and E-1-docosyl-4-{2-(4- 

dimethylam inophenyl)ethenyl}quinolinium bromide and E-1-octadecyl-4-{2-(4- 

dimethylaminophenyl)ethenyl}quinolinium iodide were synthesised in similar fashion. 

The synthesis of E-1-octadecyl-4-{2-(4-dimethylaminophenyl)ethenyl}quinolinium 

bromide is presented. 

To a solution of N-octadecyl-4-methylquinolinium bromide (1.13 g, 2.37 mmol) 

and 4-dimethylaminobenzaldehyde (0.34 g, 2.25 mmol) in hot ethanol was added one 

drop of piperidine. The solution was refluxed for four hours during which time it turned 

purple, it was then cooled to room temperature and yielded a purple precipitate. 

Recrystallisation from a 50: 50 methanol: water mixture produced purple crystals. 

Yield 21% Melting point 237-240°C. C17H5SN2Br requires C, 73.2; H, 9.1; N, 4.6% 

Found C, 73.0; H, 9.4; N, 4.4% IR: 2960,2920,2845,1620,1605,1525,1450,1430, 

1377,1328,1170,976,940,875,834,812 and 712 cm-'. 'H NMR (DMSO): 0.9 (3H, 

t, -CH3); 1.3 (32H, br s, (CH, )16; 3.0 (6H, s, (CH1)2N-); 4.9 (2H, t, CH, N+); 6.8 (2H, d, 

J=5.9 Hz, -CH=CH-); 7.9 - 8.5 (9H, m, Ar-H), 9.0 - 9.4 (1H, m, Ar-H). 
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Figure 44. Synthesis of E-1-octadecyl-4-{2-(4-dimethylaminophenyl) 

ethenyljquinolinium bromide (2.1.1). 

E-1-hexadecyl-4-{2-(4-dimethylaminophenyl)ethenyl}quinolinium bromide: 

Purple powder, 22% yield. Melting point 238-240°C. 

E-1-docosyl-4-{2-(4-dimethylaminophenyl)ethenyl}quinolinium bromide: 

Purple powder, 20% yield. Melting point 237-238°C. C41H63N2Br requires C, 74.2; H, 9.5; 

N, 4.2% Found C, 74.0; H, 9.8; N, 4.1% 

E-1-eicosyl-4-{2-(4-dime thylaminophenyl)ethenyl}quinolinium bromide: 

Purple powder, 62% yield. Melting point 241-244°C. 

E-1-octadecyl-4-{2-(4-dimethylaminophenyl)ethenyl}quinolinium iodide: 

Purple powder, 80% yield. Melting point 221-222°C. C37H55N2I requires C, 67.9; H, 8.4; 

N, 4.3; 1,19.4% Found C, 67.3; H, 8.5; N, 3.9; 1,19.8% IR: 2958,2919,2844,1625,1605, 

1523,1449,1430,1380,1333,1166,976,941,875,830,812 and 717 cm-'. 'H NMR 

(DMSO): 0.9 (3H, t, -CH3); 1.3 (32H, br s, (CH2)16; 2.9 (6H, s, (CH3)2N-); 4.8 - 5.1 (2H, 

t, CH2N); 6.9 (2H, d, J=5.9 Hz, -CH=CH-); 7.8 - 8.6 (9H, m, Ar-H), 9.0 -9.4 (1H, m, 

Ar-H). 

2.1.2 Pyridinium Hemicyanines 

E-1-hexadecyl, E-1-octadecyl and E-1-docosyl-4-{2-(4-dimethylamino- 

phenyl)ethenyl} pyridinium bromide, E-1-octadecyl-4-{2-(4-dimethylamino- 

phenyl)ethenyl}pyridinium iodide and E-1-docosyl-4-{2-(4- 

methylphenyl)ethenyl}pyridinium bromide were synthesised in similar fashion. The 
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ýý ýcH3 
EIOI i 

r_H_ + H-Cý ý-- N C,. Hr, -N+ -. J _- - \\ If '- "v -" --f 
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synthesis of E-1-octadecyl-4-{2-(4-dimethylami nophenyl)ethenyl}pyridinium iodide is 

presented. 

To a solution of N-octadecyl-4-methylpyridinium iodide (0.28 g, 0.6 mmol) and 

4-dimethylaminobenzaldehyde (0.089 g, 0.6 mmol) in hot ethanol was added one drop 

of piperidine. It was refluxed for two and a half hours during which time it turned red, 

it was then cooled to room temperature and yielded an orange/red precipitate. 

Recrystallisation from a 50: 50 methanol: water mixture produced red crystals. 

Yield 46% Melting point 194-195°C. C33H53N, Br requires C, 65.5; H, 8.8; N, 4.6% 

Found C, 65.2; H, 8.5; N, 4.3% IR: 2958,2915,2845,1637,1590,1525,1465,1430, 

1365,1328,1162,976,946,875,829,810 and 717 cm-1. 'H NMR (DMSO): 0.9 (3H, 

t, -CH3); 1.3 (32H, br s, (CH, )16); 2.9 (6H, s, (CH3)2N); 4.7 (2H, t, CH2N+); 6.7 (2H, d, 

J=5.9 Hz, -CH=CH-); 7.0 (1H, s, Ar-H); 7.5 (2H, d, Ar-H); 7.7 (1H, s, Ar-H); 8.0 

(2H, d, Ar-H) and 8.4 (2H, d, Ar-H). 
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-N± A- CH., + H- C -(, ý}- 
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-� 1/ 
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Figure 45. Synthesis of E-1-octadecyl-4-{2-(4-dimethylaminophenyl) 

ethenyl)pyridinium iodide (2.1.2). 

E-1-hexadecyl-4-{2-(4-dim. ethylam. inophenyl)ethenyl)pyridinium bromide: 

Red powder, 45% yield. Melting point 190-192°C. 

E-1-octadecyl-4-{2-(4-dim. ethylaminophenyl)etlzenyl}pyridinium bromide: 

Red crystals, 37% yield. Melting point 207-209°C. IR: 2960,2920,2848,1637,1605, 

1525,1455,1430,1380,1330,1162,975,943,875,826,808 and 715 cm'. 
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'H NMR (DMSO): 0.9 (3H, t, -CH3); 1.3-1.8 (32H, br s, (CH2)16); 3.1 (6H, s, (CH3)2N-); 

4.7 (2H, t, CH2N); 7.0 (1H, s, C=CH); 7.1 (4H, doublet of doublet, Ar-H); 7.7 (1H, S, 

HC=C); 8.4 (4H, doublet of doublets, Ar-H). 

E-1-docosyl-4-{2-(4-dimethylaminophenyl)ethenyl}pyridinium bromide: 

Red powder, 21% yield. Melting point 210-211°C. 

E-1-docosyl-4-{2-(4-methylphenyl)ethenyl}pyridinium bromide: 

Red crystals, 38% yield. Melting point 73-76°C. IR. 2960,2920,2844,1625,1605, 

1514,1455,1377,1333,1170,980,882,828,820 and 717 cm"1 . 

2.1.3 E-1-alkyl-4-{2-(4-dimethylaminonaphthyl)ethenyl}quinolinium or pyridinium 

bromide. 

E-1-octadecyl and E-1-docosyl-4-{2-(4-dimethylaminophenyl)ethenyl} 

quinolinium and E-1-octadecyl and E-1-docosyl-4-{2-(4-dimethylaminophenyl) 

ethenyl}pyridinium bromide were prepared by the same method. The synthesis of E-1- 

docosyl-4-{2-(4-dimethylaminonaphthyl)ethenyl}quinolinium bromide is presented. 

N-docosyl-4-methylquinolinium bromide (1.0 g, 0.22 mmol) was dissolved in 

refluxing ethanol and added to 4-dimethylaminonaphthaldehyde (0.45 g, 2.24 mmol). 

Two drops of piperidine were added and the mixture refluxed for twelve hours to 

produce a deep purple solution. This was filtered to leave a purple residue. The residue 

was recrystallised from a 50: 50 methanol: water mixture. 

Yield 42% Melting point 285-290°C. C45H65N2Br requires C, 75.8; H, 9.1; N, 3.9% 

Found C, 76.0; H, 9.5; N, 4.1% IR: 2955,2915,2848,1614,1603,1528,1455,1430, 

1375,1328,1160,972,940,872,834,818 and 717 cm"' 'H NMR (DMSO): 0.9 (3H, 

t, -CH3); 1.3 (40H, br s, (CH2)20; 3.1 (6H, s, (CH3)2N-); 4.9 (2H, t, CH2N+); 6.7 (2H, d, 

J=5.9 Hz, -CH=CH-); 7.7 - 8.7 (11H, m, Ar-H), 9.0 - 9.4 (1H, m, Ar-H). 
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Figure 46. Synthesis of E-1-docosyl-4-{2-(4-dimethylaminonaphthyl)ethenyl} 

quinolinium bromide. (2.1.3). 

E-1-octadecyl-4-{2-(4-dimethylarninonaphthyl)ethenyl) quinolinium bromide: 

Purple powder, 36% yield. Melting point 285-288°C. 

E-1-octadecyl-4-{2-(4-dimethylaminonaphthyl)ethenyl) pyridinium bromide: 

Red powder, 71% yield. Melting point 249-253°C. 

E-1-docosyl-4-{2-(4-dimethylaminonaphthyl)ethenyl) pyridinium bromide: 

Red powder, 60% yield. Melting point 251-255°C. 

2.1.4 E-1-alkyl-4-{4-(4-dimethylaminophenyl)-1,3-butadienyl}pyridinium bromide. 

E-1-octadecyl and E-1-docosyl-4-{4-(4-dimethylaminophenyl)-1,3- 

butadienyl}pyridinium bromide were prepared in the same manner as the other 

hemicyanines described in sections 2.1.2,2.1.3 and 2.1.4 only using 4- 

dimethy lam inocinnamaldehyde. 

E-1-octadecyl-4-{4-(4-dimethylarninophenyl)-1,3-butadienyljpyridinium bromide. 

Red powder, 28% yield. Melting point 275-280°C. 

E-1-docosyl-4-{4-(4-dimethylaminophenyl)-1,3-butadienyl}pyridinium bromide. 

Red powder, 8% yield. Melting point 279-281°C C19H63N2Br requires C, 73.2; 

N, 4.4% Found C, 73.7; H, 9.6; N, 4.6% 

H, 9.9; 
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Figure 47. Synthesis of E-1-octadecyl-4-{4-(4-dimethylaminophenyl)-1,3-butadienylj 

pyridinium bromide (2.1.4). 

2.1.5 E-1-docosyl-4-{2-(4-{2-(4-dimethylaminophenyl)ethenyl}benzyl)ethenyl} 

pyridinium bromide. 

This material was synthesised in the same manner as the other hemicyanines, 

using E-1-docosyl-4-{2-(4-methylphenyl)ethenyl}pyridinium bromide and 4- 

dimethylam inobenzaldehyde. 

Yield 7% Melting point 180-182°C. C45H67N, Br requires C, 75.5; H, 9.4; N, 3.9% 

Found C, 75.0; H, 9.0; N, 3.8% IR: 2952,2912,2845,1625,1610,1525,1464,1432, 

1380,1330,1162,975,945,875,825,808 and 715 cm-1 . 
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Figure48. Synthesis of E-1-docosyl-4-{2-(4-{2-(4- 

dimethylaminophenyl)ethenyl)benzy1)ethenyl)pyridinium bromide (2.1.5). 

2.1.6 E-1-alkyl-4-{2-(4-alkoxystyryl)ethenyl}pyridinium iodide. 

E-1-octadecyl and E-1-docosyl-4-{2-(4-methoxystyryl)ethenyl}pyridinium iodide 

and E-1-docosyl-4-{2-(4-butoxystyryl)ethenyl}pyridinium iodide were prepared. The 

materials were synthesised in the same manner as other hemicyanines only using 4- 

methoxybenzaldehyde or 4-butoxybenzaldehyde. 

E-1-docosyl-4-{2-(4-methoxystyryl)ethenyl}pyridinium iodide. 

Yellow powder, 62% yield. Melting point 170-172°C. 

E-1-octadecyl-4-{2-(4-methoxystyryl)ethenyl}pyridinium iodide. 

Yellow powder, 60% yield. Melting point 170-176°C. C32HSONOI requires C, 64.9; H)8.5; 

N, 2.4% Found C, 65.2; H, 8.1; N, 2.5% IR: 2955,2918,2845,1620,1611,1595,1510, 

1461,1377,1170,1038,980,840,810 and 720 cm"'. 'H NMR (DMSO): 0.9 (3H t, - 
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CH; ); 1.3-1.6 (32H, br s, (CH2)16); 2.7 (3H s, -OCH3) 4.6 (2H, t, CH2N+); 7.0 (1H, s, 

C=CH); 7.3 (4H, doublet of doublet, Ar-H); 7.9 (IH, s, HC=C); 8.8 (4H, doublet of 

doublets, Ar-H). 
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Figure 49. Synthesis of E-1-docosyl-4-{2-(4-metho)cystyryl)ethenyl)pyridinium iodide 

(2.1.6). 

E-1-docosyl-4-{2-(4-butoxystyryl)ethenyl/pyridinium iodide. 

Yellow powder, 35% yield. Melting point 165-166°C. 

2.1.7 4-octadecyloxybenzaldehyde 

To a solution of sodium (0.84 g, 37 mmol) in ethanol (19m1) was added 

hydroxybenzaldehyde (4.44 g, 3.7 mmol). The mixture was heated to give an orange 

solution. Bromooctadecane (12.12 g, 3.6 mmol) was added and the mixture refluxed for 

24 hours. On cooling a white precipitate formed which was dried at 80°C for a total of 

five hours. Recrystallised from ethanol produced a white powder. 

Yield 52% C25H42O2 requires C, 80.2; H, 11.2% Found C, 77.4; H, 11.4; IR: 2960,2918, 

2840,1705,1605,1505,1465,1365 and 810 cm-' 
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Figure 50. Synthesis of 4-octadecyloxybenzaldehyde (2.1.7). 

2.1.8 E-1-methyl-4-{2-(4-octadecyloxystyryl)ethenyl}pyridinium iodide. 

0- C18H37 

To a solution of 4-octadecyloxybenzaldehyde (0.41 g, 1.1 mmol) and N-methyl- 

4-pyridinium iodide (0.12 g, 1.1 mmol) in ethanol was added 1 drop of piperidine. It 

was refluxed for 24 hours during which the solution turned orange and on cooling to 

room temperature a yellow precipitate formed. Recrystallisation from a 50: 50 

methanol: water mixture produced a yellow powder. 
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Figure 51. Synthesis of E-1-methyl-4- f2-(4-octadecyloxystyryl)ethenyl}pyridinium 

bromide. (2.1.8) 

Yield 9% Melting point 190-191°C. C32H50NOI requires C, 64.9; H, 8.5; N, 2.4% 

Found C, 65.0; H, 8.7; N, 2.2% IR: 2962,2922,2841,1628,1604,1595,1510,1455, 

1375 , 1170,1040,975,832,815 and 715 cm-' 'H NMR (DMSO): 0.9 (3H, t, -CH3); 

1.3-1.6 (32H, br s, (CH2)16); 2.7 (2H t, -OCH2) 4.3 (3H s, CH3N+); 7.0 (1H, s, C=CH); 
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7.2 (4H, doublet of doublet, Ar-H); 7.9 (1H, s, HC=C); 8.8 (4H, doublet of doublets, Ar- 

H). 

2.1.9 Mechanism of Hemicyanine Synthesis 

The hemicyanines were synthesised by the method described by Girling et a112' 

and the following mechanism is proposed. 
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Figure 52. Mechanism of a typical hemicyanine synthesis. 

The piperidine acts as a base catalyst and extracts a proton from the cation. This 

deprotonated form is stabilised because of its resonant quinoidal form. The polar 

carbonyl carbon then attacks the olefinic carbon on the cation to form a 6-bonded 

structure. The acidified ethanol solution then extracts the hydroxyl group to leave a 

carbocation. This is easily stabilised by the loss of another proton to form the fully 

conjugated, trans bridged molecule. 
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2.1.10 Zwitteiion Adducts 

Z-ß-(N-hexadecyl-4-quinolinium)-a-cyano-naphthalenyldicyanomethanide and Z- 

ß-(N-hexadecyl-4-pyrid inium)-a-cyanonaphthalenyldicyanomethanide and their 

corresponding benzylmethyl analogues were synthesised in the manner described by 

Ashwell'78. The synthesis of Z-ß-(N-benzylmethyl-4-quinolinium)-a-cyano- 

naphthyldicyanomethanide is presented. 

N-benzylmethyl-4-methylquinolinium bromide (0.06 g, 0.2 mmol) and the 

naphthyl analogue of 7,7,8,8, -tetracyanoquinodi methane (0.05 g, 0.2 mmol) were 

dissolved in hot ethanol and two drops of N-methylpiperidine added. The resultant blue 

solution was refluxed for three hours and the cooled to room temperature to give a 

blue/green precipitate. Recrystallisation from an ethanol: water solution produced blue 

crystals. 

Yield 21% Melting point. 211-212°C. C; 2H20N4 requires C, 83.5; H, 4.3; N, 12.2% 

Found C, 83.1; H, 4.6; N, 12.3% IR: 2160,2120,1625,1610. 'H NMR (DMSO): 4.9 (2H 

broad d, CH2N+); 6.8 (1H d, Ar-H); 7.8 (1H d, Ar-H), 8.0 - 8.9 (15H m, Ar-H); 9.7 (1H 

d -HC=C(CN)-). 

Z ß-(N-hexadecyl-4-quinoliniurn)-a-cyano-naphthyldicyanomethanide. 

Green microcrystals, 19% yield. Melting point 235-238°C. 

C41H44N4 requires C, 82.8; H, 7.7; N, 9.4% Found C, 82.5; H, 7.8; N, 9.5% 

Z ß-(N-benzylmethy1-4-pyridinitun)-a-cyano-naphthyldicyanomethanide. 

Green microcrystals, 4% yield. Melting point 181-186°C. 

Z ß-(N-hexadecyl-4-pyridinium)-a-cyano-naphthyldicyanomethanide. 

Green microcrystals, 10% yield. Melting point 233-234°C 

The mechanism for this reaction has been well documented 157. It has been 

reported using either piperidine or N-methylpiperidine as a catalyst. Greater yields result 
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using the latter. This could be due to there being no amine-TCNQ addition products 

formed because TCNQ does not react with tertiary amines. 
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Figure 53. Synthesis of Z-ß-(N-benzylmethyl-4-quinolinium)-a-cyano- 

naphthyldicyanomethanide (2.1.10). 

2.2 Langmuir-Blodgett Films 

2.2.1 The Nima Technology Langmuir-Blodgett Trough 

All Langmuir film studies and LB film depositions were performed on a Nima 

Technology System 2000 L-D2-25 trough. The main body of the trough, shown in figure 

54, is machined from PTFE mounted on an aluminium base. 

It has two compartments, A and B, separated by a fixed surface barrier and two 

mobile barriers. Pressure measurement is made by two sensors using the Wilhelmy plate 

method, one for each of the two compartments. The mobile barriers separate the 

compartments and a dipper mechanism acts as a carrier for the substrate as well as 
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acting as part of the barrier. The system is fully computer controlled through an 

interface unit. 

Compartments A and B have a maximum area of 500 cm2 when the barriers are 

fully open. This is relatively small compared with many other troughs and reduces 

contamination inherent in large depths of water. 

The pressure sensors (figure 55) operate using the Wilhelmy plate method, i. e. 

when a strip of high grade filter paper is suspended at an air/water interface it is pulled 

down into the bulk of the suhphase by the surface tension of the water. The force acting 

on the paper is measured by a displacement transducer. The total error in the pressure 

reading is quoted as being less than 1%ai 

The dipper mechanism (figure 56) houses a substrate holder attached to two 

chain belts. These allow the substrate to be passed down through the air/water interface 

of one compartment and up through the other. A complete barrier is maintained by the 

two flexible PTFE sealing blocks. 

2.2.2 LB Trough Cleanliness 

The subphase needs to be as pure as possible therefore contaminants such as dust 

particles, ions or surface active impurities must be kept to a minimum. The following 

procedures are undertaken to ensure a dust free environment free from external 

vibrations: 

(a) the trough is situated in a clean room at a positive air pressure with 

the air intake filtered through Bassair micropore filters to remove any 

dust present; 

(b) clean room overalls, hoods and overshoes are worn to prevent 

contamination from airborne cloths and hair; 

(c) the trough is housed on a Wentworth Laboratories AVT-700 anti- 

vibration table; 
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Figure 54. Nima Langmuir-Blodgett Trough (with dipper mechanism and pressure 

sensors removed)41 
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Figure 55. Pressure sensor 41 
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Figure 56. The dipper mechanism during depositional 
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(d) all the surfaces of the trough, including the detachable barriers and 

dipper mechanism, are cleaned with organic solvents before and after use; 

(e) a lid is placed over the surface as further protection from any air-born 

contaminants. 

2.2.3 The Subphase 

The subphase used for all experiments was ultrapure water. Organic contaminants 

were removed by reverse osmosis, then the water was passed through an Elgastat C240 

purification unit to produce 5 MQ deionised water. This was further purified using a 

MilliQ-plus purification system. This system contains an activated carbon filter, three 

mixed bed filters, an Organex polishing unit and a final filter unit which contains a 

microporous filter to remove micro-organisms and particulate matter larger than 0.22 

, um, resulting in 18.2 MSS water at 25°C. The purity of the water subphase was 

confirmed by measuring its surface pressure (72.8 mNm"' at 25°C). Surface active 

contaminants were identified by compressing the barriers and observing any significant 

increases in surface pressure. The subphase was replaced every time the material of 

study was changed and at the end of each working day. 

2.2.4 Solvents 

All materials were deposited from organic solvents that met the criteria described 

earlier (section 1.4.2). The solubility of the material studied is important since solutions 

of less than 0.1 mg. /ml require too large a volume to form a reasonable layer. The purity 

of the solvent is crucial, therefore only Aristar grade was used. The purity was tested 

by spreading the solvent on the subphase and compressing it. A solvent was discarded 

or further purified if it produced a significant increase in surface pressure upon 

compression. 
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2.2.5 Substrates 

Either quartz slides or glass microscope slides were used. They were handled 

with plastic tweezers and treated hydrophilically, as described below. 

1. Wiped with a solvent that dissolved any existing film, using surfactant- 

free tissues. 

2. Wiped with Aristar grade chloroform until clean to the naked eye. 

3. Sonication for 15 minutes in a bath of chloroform. 

4. Sonication for 15 minutes in a bath of isopropanol. 

5. Sonication for 15 minutes in a bath of fresh 18.2 MQ water. 

6. Sonication for 15 minutes in a bath of isopropanol. 

7. Rinsed with fresh 18.2 MSS water. 

8. Left overnight in a bath of freshly prepared hydrogen peroxide solution 

(20% v/v). 

9. Rinsed with fresh 18.2 MQ water. 

10. Blow dried with nitrogen. 

2.2.6 Treatment and Storage of LB Films. 

Once deposition had taken place the LB film was returned to the horizontal 

position by the dipper mechanism. Deposition was always on one side of the substrate 

only, therefore the other side was dried with a surfactant-free tissue. The LB films were 

stored vertically in an air-tight box. 

2.3 Measurement of Second Harmonic Generation. 

To record the SHG from an LB film the experimental apparatus shown below 

was used. The monochromatic source was a Q-switched Nd: YAG laser (1.064 , um; pulse 

width 10 ns; repetition rate 2 Hz). 
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Nd: YAG laser Attenuator 
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Figure 57. Schematic representation of the standard SHG apparatus: PMT, 

fast rise-time photomultiplier tube (Philips XP 20202); F, 532nm narrow bandpass filter; 

F', infrared blocking filters; F", visible blocking filters; P, halfwave plate; P', Glan 

Thompson polarises, L, lens; M, infrared mirror; BS, beam splitter. 

The beam is p-polarised and incident to the film at 45°. A Hewlett-Packard 

54111D digitising oscilloscope recorded the signals from the photomultiplier tubes. The 

signal from the LB film was compared to that from the Y-cut quartz. The LB film was 

mounted in a stand that allowed vertical and lateral movement. Parts of the slide where 

no deposition was known to have taken place were analysed, and if the signal from these 

positions was zero then it was assumed that any signals measured were due only to that 

film. Several locations on the LB film were analysed, in order to identify consistent 

deposition. When the actual signal was recorded the average of five positions on the 

film was taken. These positions were constant so that a multilayer film could be 

periodically analysed under identical conditions. 

The apparatus was also used to estimate chromophore tilt angles. The angle of 

polarisation of the incident beam was rotated in conjunction with the polariser, P'. A 

sheet polariser set for p-polarised light was placed in front of the detector. Tilt angles 

were calculated using the equations: 
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? Cl/? Co = (41 
Pý1sr)' -3 

and 

(11) 

1) = tan-'(2X0/X, )/ (12) 

where IPP is the intensity of the SH response from the film when irradiated with p- 

polarised light, I, is the intensity of the SH response from the film when irradiated with 

s-polarised light and i' is the average angle of inclination of the chromophores relative 

to the normal of the substrate39. 
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3.0 Results and Discussion 

3.1 Standard Quinolinium and Pyridinium Hemicyanines 

3.1.1 Absorbance Spectra of Solutions 

The spectra of typical quinolinium and pyridinium hemicyanines in chloroform 

are shown in figures 58 and 59. It was observed that the solutions decomposed upon 

sonication. Both groups of hemicyanine solutions exhibited high molar absorption 

coefficients. 
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Figure 58. Absorbance spectrum of E-1-docosyl-4-{2-(4-dimethylamino 

phenyl)ethenyl}quinolinium bromide (C22H45QHBr) in chloroform. A list of the 

systematic nomenclature abbreviations is given in section 6.1. 
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The quinolinium hemicyanines exhibit a strong absorption peak at 560 nm, 

correspondiii to a charge transfer band between the donor and acceptor parts of the 

molecule. The intensity is largely dependent on two factors: (a) the probability of 

interaction between the radiation energy and the electronic system and (b) the difference 

between the ground and excited state. The probability of transition is proportional to the 

square of the transition moment (or dipole moment of transition), which in turn is 

proportional to the change in the electronic charge distribution occurring during 

excitation. Intense absorption occurs when a transition is accompanied by a large change 

in transition moment. It was seen in section 1.3 that this can be achieved upon excitation 

of charge transfer complexes. The absorbance in the 300 nm region can be assigned to 

n-n transitions in the aromatic part of the molecule. The peak at 498 nm in the 

pyridinium hemicyanine is also due to charge transfer. 
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Figure 59. Absorbance spectrum of E-1-octadecyl-4-{2-(4-dimethyl 

am inophenyl)ethenyl}pyridinium iodide (C18H37PHI) in chloroform. 
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The alkyl chain has no effect on the wavelength of transition, nor does the halide 

ion. Therefore the only relevant structural difference between the two sets of materials 

is the heterocycle. The energy of the transition is crudely given by: 

ECT = (ID - EA) -C (13) 

where ID and EA are the ionisation energy and electron affinity of the donor and acceptor 

ends of the molecule respectively and C is the coulomb energy. The donor ionisation 

energy and intramolecular charge separation are assumed to be equal. The quinolinium 

heterocycle is a stronger electron acceptor than pyridinium therefore the wavelength of 

the charge transfer transition is bathochromically shifted. 

The effect of solvent on the solution spectra is shown overleaf, the behaviour 

being similar for the quinolinium and pyridinium dyes. The aprotic solvents cause a 

hypsochromic shift of Xm with increasing polarity of solvent. This effect has been noted 

previously for highly polar complexes which undergo a reduction in dipole moment on 

charge transfer 178. The polar protic solvents show the same effect but the differences are 

reduced, probably because of hydrogen bonding. Dichloromethane and ethanol have 

similar polarity's but their ? 
max 

is not as similar as expected. This may be due to 

hydrogen bonding between ethanol and the solute which will result in an increased 

difference between the neutral and excited state thus lowering Amax. 

3.1.2 Molar Absorption Coefficient 

The molar absorption coefficient of C, 2H45QHBr was calculated using the Beer- 

Lambert Law, 

Loglo I, f I= 91. c (14) 
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where 10 and I are the intensities of the incident and transmitted light respectively; 1 is 

the path length of the absorbing solution; c is the concentration; log10 Io/I is the 

absorbance and ' is the molar absorption coefficient. Given a path length of 1 cm, 

ýg(Ci8H37QHI) = 2.33 x 104 mol"lm2 and 4ý(C22H45PHBr) = 8.25 x 104 mol-im2 (see figures 

60 and 61 respectively). The results for the other quinolinium and pyridinium 

hemicyanines were similar, showing that a change in alkyl chain length has no effect. 

Table 17. 

Solvent Dipole 

moment179, 

debyes 

C22H45QHBr 
kmax 

C18H37PHI 

%, 
max 

C6H5CH3 0.36 536 461 

C2H5OH 1.7 545 477 

CH3OH 1.7 548 479 

CHC13 1.01 560 496 

CH2C12 1.6 578 504 

(CH3)20 2.8 538 473 

CH3CN 3.8 537 468 

The effect of solvent on standard hemicyanines. 

3.1.3 Isotherms 

Surface pressure-area (n - a) isotherms of the quinolinium hemicyanines were 

obtained by spreading the dye from dilute chloroform solution on the pure water 

subphase of the LB trough, then the surface layer was compressed at 50 cm2min-'. 

Representative isotherms are shown in figures 62 and 63. 
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Figure 60. Absorbance versus concentration for C18H37QHI 
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Figure 62. U-a isotherm of C22H45QHBr. 

150 

The first pressure increase for C22H45QHBr is observed at an area per molecule 

of 120A 2. The face area of the hemicyanine chromophore has been estimated as 

approximately 100 A2 and therefore, it appears that the chromophore is lying flat on the 

water surface at this point. Extrapolation at zero pressure of the steep part of the 

isotherm gives an area per molecule of approximately 38A2. The cross-sectional area 

of the quinolinium hemicyanine chromophore has been estimated at 30 A2 
. It therefore 

appears that the hemicyanine is orientated close to the vertical. Collapse occurs at about 

50 mN m"1. It was observed that isotherms of all quinolinium hemicyanines were similar. 

The first pressure increase for C22H45PHBr is observed at an area per molecule 

of 120 A2, which agrees with the theory that the molecules are lying flat. Extrapolation 

to zero pressure of the steep part of the isotherm gives an area per molecule again of 

about 38A 2. Collapse occurs at a pressure of 40 mN m-l. The pyridinium hemicyanines 

r 
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were also very similar to each other. It can be seen that isotherms of quinolinium and 

pyridinium hemicyanines are similar in shape. 
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Figure 63. II -a isotherm of C22H45PHBr. 
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The isotherms of these materials showed a "kink" at about 70 mN m"1. This can 

be attributed to the molecules moving from being almost flat on the surface to being 

aligned towards the vertical. When the hemicyanines were compressed fifteen minutes 

after being transferred onto the subphase the isotherm shape was slightly steeper and the 

kink was less marked. 

The results of an experiment to illustrate the alignment changes in the films are 

shown in figure 64. It can be seen that, from right to left, the langmuir film does not 

return to a completely two dimensional gaseous state after being compressed, expanded 

and then compressed again 10 minutes later. Repeat compressions show the same 

phenomena. In conclusion: 
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1. the film forms a semi-ordered state after compression and does not 

return to its original orientation at zero pressure; 

2. the area per molecule at high pressure is almost exactly the same 

irrespective of the history of the film (as long as it has not previously 

collapsed). 

This means that for meaningful comparison of behaviour at the air/water 

interface, great care must be taken to achieve identical conditions. In addition, the 

conditions required for compression up to deposition pressure are not critical, because 

at 30 mN m-' and above the film always occupies the same area per molecule. 

Surface pressure, 

it, / mN m_' 

, -ZQ 

30 
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10 

0 
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Figure 64. The effect of four consecutive compressions on the same film of 

C22H45PHBr. From right to left, isotherms after 0 minutes, 10 minutes, 20 minutes and 

45 minutes. 

The it -a isotherms of both hemicyanines are quite steep in the "two-dimensional 

solid" region and there is a difference of about 13 mN m-' between the area at zero 
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pressure and the area at 30 mN m-1. For example at 30 mN m-1 C22H45QHBr occupies 

an area per molecule of 28A 2 compared to 41 A2 at extrapolated zero pressure. 

The estimated value for a reported pyridinium hemicyanine orientated vertically 

at the surface has been reported as between 25 to 30 A2 130,167,180 This suggests that 

C22H45PHBr is inclined slightly away from the vertical at the same pressure, as in figure 

65. A quinolinium hemicyanine orientated vertically at the surface should occupy a 

larger area by virtue of its extra benzene ring, therefore C22H45QHBr is inclined 

significantly closer to the vertical. 

0000 
Quinolinium hemicyanine Pyridinium hemicyanine 

Figure 65. Diagrammatic representation of how hemicyanines are orientated at the 

air/water interface at deposition pressure. 

Some slight differences in isotherm shape were observed for C16H37 analogues 

of both hemicyanines. The shorter chain materials had shallower curves indicating some 

material dissolving into the subphase. This was confirmed by some simple solubility 

tests whereas the other materials gave no evidence of solubility in water. 
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3.1.4 Stability of Langmuir Films 

A hemicyanine dye was spread onto the pure water subphase and compressed to 

25 mN m-'; the film was kept at constant pressure by the barriers and the reduction in 

area that occurred over twenty minutes was recorded. 
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Figure 66. Drop in area, at constant pressure, over time for C18H37QHI (0) and 

C16H33PHBr (A). 

C1SH37QHI underwent layer rearrangement for approximately six minutes and 

thereafter stayed in the same state. This is representative of all quinolinium and 

pyridinium hemicyanines of chain length C1SH37 and greater. C16H33PHBr is not capable 

of reaching such an equilibrium, probably because of its slight solubility in water. Some 

material dropped into the subphase at higher pressures, shown by its continual drop in 

area at constant pressure. 
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A layer of C16H33PHBr was completely removed from the surface by suction and 

the barrier opened to maximum area. Compression five minutes later indicated the 

presence of material at the surface, this had probably diffused to the surface from within 

the subphase, this is further evidence of dissolution especially since the other 

hemicyanines did not exhibit this characteristic. 

3.1.5 Monolayer Deposition 

Hemicyanines were deposited by the method described in section 1.4.2. Solution 

concentrations in the range 0.1 to 1 mg/ml, dipping pressures in the range 30 to 35 mN 

m_' and dipping speeds in the range 3.6 to 10 mm min-' were used. No deposition was 

found to occur on the downstroke, therefore all monolayers discussed are the result of 

upstroke deposition. 

Analysis of the respective isotherms shows the steepest parts to be above 25 mN 

M-1, therefore deposition was carried out at pressures in this region. The steep 2D 

"solid" regions in the isotherms are indicative of a compact phase. The molecules are 

aligned near to the vertical at the surface which aids deposition since the repulsion of 

the hydrophobic chain to the hydrophilic substrate is minimised. 

The slight solubility of C16H33QHBr and C16H33PHBr make area per molecule 

deductions at 30 mN m-1 erroneous. These analogues were deposited as quickly as 

possible to avoid further dissolution and to minimize error. 

In general, all the materials transferred to the substrate easily. None of the 

problems associated with poor LB film forming materials were encountered, ie the 

requirement of counterions in solution, columbic repulsions, high dissolution, formation 

of micelles etc. The transfer ratios for monolayer deposition were consistent for repeated 

experiments, inferring consistent and reproducible behaviour at the water surface and 

during transfer. The transfer ratios for the C16H37 analogues were higher which is 

symptomatic of slight dissolution. 



99 

3.1.6 Absorbance Spectra of LB Films 

The high molar absorption coefficients of these materials renders a glass slide 

slightly coloured after transfer of the monolayer. 

300 500 700 800 

Absorbance 
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Figure 67. Absorbance spectrum of a monolayer of C22H45QHBr. 

The charge transfer peak of a monolayer of C22H45QHBr is hypsochromically 

shifted compared to its solution spectrum, but the shape is very similar. The shape of 

the spectrum is typical of all quinolinium hemicyanines studied, and since the molecular 

environments affect the shape and position of the peak in the monolayer, it can be 

deduced that neither differences in chain length or anion affect the molecular packing 

or overlaps. Similar properties were noted for the pyridinium analogues. 
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Figure 68. Absorbance spectrum of a monolayer of C18H37PHBr. 

Various workers have reported evidence of aggregation in hemicyanine LB films 

in the form of shoulders or separate peaks in the absorbance spectra 34,146-152 

. The 

monolayer films shown here contain one peak representing the charge transfer of the 

chromophore, consequently there is no spectroscopic evidence of any aggregation. 

The spectra are physical evidence that deposition has taken place. One should 

observe consistent, reproducible absorbance intensities if a material produces consistent, 

reproducible monolayers. Transfer ratios of unity and subsequent SHG studies indicate 

monolayer formation. Evidence for consistent monolayer formation across the film is 
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derived from taking spectra at various positions on the slide and observing similar 

results. The intensities of both groups of materials varied, this is noted in table 18. 

Hemicyanine Absorbance, kmax Hemicyanine Absorbance, kmax 

C16H33QHBr 0.006 ± 0.0005 C16H33PHBr 0.002 ± 0.0005 

C18H3, QHBr 0.009 ± 0.0005 C18H37PHBr 0.006 ± 0.0005 

C2oH41QHBr 0.003 ± 0.0005 

C22H45QHBr 0.008 ± 0.0005 C22H45PHBr 0.004 ± 0.0005 

C1gH3-, QHI 0.008 ± 0.0005 C1sH37PHI 0.010 ± 0.0005 

Table 18. Absorbance for hernicyanine monolayers. 

The intensity of absorbance of these LB monolayers is an indication of the 

number of molecules per unit area. This is because the intensity depends on the 

probability of interaction which will be greater for a film with a greater molecular 

density. 

The values represent typical absorbance for each material and it is obvious that 

there is no simple configurational trend. The experimental conditions were kept as 

similar as possible. It appears possible, however, that experimental error present in the 

precarious technique of Langmuir-Blodgett deposition, is too great to allow sensitive 

comparison of monolayers. 

It is reasonable to deduce that the low absorbance of C16H33PHBr is due to its 

slight solubility in water, which has resulted in imperfect deposition. C16H33QHBr is 

slightly less soluble than its pyridinium analogue, however the relative absorbance for 

this material is not as low as expected. 
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3.1.7 Second Harmonic Generation from Monolayers 

Each monolayer was analysed for second harmonic generation using the 

apparatus described in section 2.3, with the monolayer inclined at 45° to the normal. The 

values are reported relative to C22H45PHBr (arbitrarily assigned as unity) for each 

experiment. 

Hemicyanine SHG Hemicyanine SHG 

C16H33QHBr 1.17 ± 0.02 C16H33PHBr 0.06 ± 0.00 

C18H37QHBr 3.54 ± 0.02 C18H37PHBr 1.92 ± 0.04 

C2oH41PHBr 0.81 ± 0.03 

C22H45QHBr 8.20 ± 0.01 C�H45PHBr 1.00 ± 0.01 

C18H37QH1 2.74 ± 0.02 C18H37PHI 6.09 ± 0.01 

Table 19. SHG from monolayers of hemicyanines. 

Girling et al studied the SH response of a LB monolayer of C22H45PHBr and 

reported a signal (1.17 x 104) x quartz146 This value has been used as a benchmark in 

recent years by workers in the same field. In this experiment the SH response from a 

monolayer of C22H45PHBr was recorded as (1.0 x 104) x quartz. 

It is noted that each material exhibited second harmonic generation. It can be 

seen that there is no obvious relationship between the length of the hydrophobic chain 

and SHG, or between the counterion and SHG and it is difficult to deduce if different 

heterocycles have an effect on SH response. Therefore the absorbance and SHG were 

compared regardless of configuration. The values reported in tables 18 and 19 were used 

as well as values gathered from similar experiments where different absorbance 

occurred. 
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The graph illustrates the wide variation in absorbance and emphasises the 

dependence of the SHG intensity on absorbance. It is worth noting that the highest 

absorbance was not as a result of bilayer formation since a bilayer would be 

centrosymmetric and a reduction in SH signal would be observed. 
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Figure 69. SHG versus absorbance of LB monolayers of hemicyanines. 

3.1.8 Multilayer LB films 

A monolayer of C22H45PHBr was deposited on the upstroke from compartment 

B of the LB trough. A second layer of C2, H45PHBr was deposited on the downstroke 

from compartment A, and a third on the upstroke from compartment B and so on. 

Various films of up to 9 layers were fabricated and the resulting SHG indicated a Y-type 

structure. 
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A large multilayer assembly was fabricated using the same material. Standard 

conditions were used and it was noted that deposition was generally more successful on 

the upstroke. 

This material had a monolayer absorbance of 0.005, therefore, assuming 

molecule-molecule absorbance equals glass-molecule absorbance, a perfect 40 layer 

assembly should have an absorbance of 0.200. It can be seen that absorbance does not 

have a linear dependence with number of depositions as proposed for Y-type deposition. 

This can be attributed to imperfect deposition, especially on the downstroke. Molecule- 

molecule deposition never achieved the same absorbance as glass-molecule absorbance. 

This may be a function of differing tilt angles giving different absorbance. 
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Figure 70. Absorbance versus number of depositions for a Y-type multilayer of 

C22H4iPHBr. 
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The absorbance data alone (table 20), is inconsistent. Absorbance is related to 

SH response in the form y= ax°, where y= absorbance and x= SH response, and for 

a quadratic relationship, n=2. Logarithms of each side of the equation give the straight 

line form log y=n. log x+ log a. Absorbance and SH response were recorded relative 

to layer one and plotted in this form (figure 71). The regression data gives a R-squared 

value of 0.943 for n=1.44, however when the data for layer one is ignored, R-squared 

= 0.967, for n=2.08, the latter is a good fit for only 4 data points. Firstly, this confirms 

the anomolous behaviour of the first layer, and secondly the SH response is related 

quadratically to absorbance. 

Table 20. 

Layer Absorbance (I/I1) 

1 0.005 ± 0.0005 1.00 ± 0.01 

3 0.012 ± 0.0005 2.47 ± 0.01 

5 0.014 ± 0.0005 2.96 ± 0.02 

25 0.020 ± 0.0005 7.90 ± 0.01 

11 37 1 0.023 ± 0.0005 8.35 ± 0.01 11 

Absorbance and SHG from a Y-type multilayer of C22H45PHBr. 

Various hemicyanines were deposited in an attempt to fabricate Y-type bilayers. 

The SH signal was seen to drop for the second layer in each case. Perfect 

noncentrosymmetric bilayers should have no nonlinear susceptibility because the 

properties of each layer should cancel out. A signal, smaller than that for the monolayer, 

was recorded in each film. This may have been because of the anomalous behaviour of 

the first layer, but transfer ratios indicated that imperfect deposition on the downstroke 

had occurred. 
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Log I 
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Figure 71. Log (SH response) versus Log (Absorbance) of a C22H45PHBr multilayer. 

(1) including first layer data, (2) not including first layer data. 

Z-type deposition has been observed previously by Hayden although no attempt 

at explaining the method of deposition was made"'. Therefore deposition of C22H45PHBr 

was attempted by transferring six times on the upstroke only. Transfer ratios were 

similar for each layer. 

Number of layers Absorbance (1/11)1/2 

1 0.004 ± 0.0005 1.00 ± 0.01 

6 0.012 ± 0.0005 1.50 ± 0.01 

Table 21. Optical data for an attempted Z-type multilayer of C22H45PHBr. 
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One would expect a signal approximately six times higher than that of layer 1 

for a perfect film. The absorbance indicates the equivalent of approximately 3 layers. 

This, coupled with a poor SHG response indicates incomplete deposition. 

The SHG from these films is large compared to others reported in the literature. 

The fabrication of stable, multilayer films would therefore be useful, however attempts 

at constructing homomolecular Y-type or Z-type multilayer films has proven difficult. 

Alternating multilayer were consequently studied, in which all active molecules are 

aligned in the same direction. The hemicyanine, C27H45QHBr, was studied in detail. 

Common materials used as interleaving passive layers are stearic acid and 

stearate salts. These do not exhibit SHG and therefore enable the fabrication of 

multilayers with each active layer orientated in the same direction. When alternating 

multilayer of these and C�H4, QHBr were studied they showed poor transfer ratios for 

the interleaving layers as well as inconsistent absorbance for each alternate layer of 

hemicyanine, probably because of imperfect transfer of the alternate layers. 

An alternative material was chosen, N-docosyl-4-methylquinolinium bromide 

(C22H45QBr). This is the cation precursor in the preparation of C22H45QHBr and has a 

similar molecular configuration. Monolayers of C22H45QBr had transfer ratios of unity 

but absorbance characterisation was not possible because of its transparency in the 

visible region of the spectrum. 

Initially C�H45QHBr was transferred on the upstroke. After this, bilayers of 

C22H45QBr/C�H45QHBr transferred at 30 mN m"1/35 mN m"1 respectively were deposited 

on the downstroke/upstroke. An initial study indicated that collapse of the structure was 

occurring above five bilayers, shown by the reduction in absorbance per bilayer. A 

second study focused on replenishing the cation for each revolution of the dipper 

mechanism. This considerably improved the quality of the film and a film of eight 

bilayers was deposited. 

A third study mirrored the conditions of the previous study and a multilayer film 

of twenty bilayers was deposited. The absorbance of the film was measured at regular 

intervals and the results are shown in figure 72. Clearly, an absorbance of 0.07 for 20 
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layers of C22H4SQHBr is a large increase on that achieved for the Y-type multilayer of 

CZ2H4SPHBr. The graph indicates that deposition onto the glass substrate (layer 1) has 

been more successful than deposition onto a molecular layer. Taking this into account 

the multilayer has an approximate linear relationship between absorbance and number 

of layers. This is a strong indication that consistent deposition has occurred. The SH 

signal dependence on number of bilayers is seen in figure 73. 
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Figure 72. Absorbance versus number of bilayers for a multilayer film of 

CieH45QHBr/C22H45QB r. 

It is common to compare the rise in SHG with the theoretical quadratic 

dependence normalised to layer 1. In this study the experimental data has been compared 

to a quadratic dependence normalised to layer 3, similar to the approach taken by 

Anderson et al'b7. Many reports have shown the signal from the first layer is 

disproportionably large and this has led to subquadratic behaviour being 

concluded 130,13', 13a, 1: ß-140, ta'ia3 The multilayer is known to have an anomalous absorbance 

for layer 1 therefore it appears reasonable to approach the comparison in this way. The 
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graph suggests, however, that an approximate quadratic dependence for up to 20 bilayers 

has still not been achieved. 
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Figure 73. SH response versus number of bilayers for a multilayer film of 

C2H45QHB r/C22H45Q B r. 

The absorbance spectra from a 20 bilayer film is shown in figure 74. It is nearly 

identical in shape to that of a monolayer of G, 2H45QHBr. There is no optical evidence 

for aggregate formation in the form of shoulders on the charge transfer peak. The cation 

has no absorbance in the visible region of the spectrum and is therefore not seen. 
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Figure 74. Absorbance of a twenty bilayer film of C22H45QHBr/C22H45QBr. 

In section 3.1.7 the proportionality between absorbance and SHG for various 

monolayers was established. There is also a proportionality between absorbance and 

SHG for multilayer films. Figure 75 clearly shows a quadratic dependence of SHG on 

absorbance. It also illustrates that some layers in the multilayer were not transferred 

perfectly. When a layer has a lower than average absorbance in the multilayer the 

subsequent SH signal is also lower than average. It is noted that the absolute SH signal 

from the twenty bilayer film is 0.04 x quartz. 
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Figure 75. SH response versus absorbance for a multilayer film of 

C22H45QHB r/C22H45QB r. 

Another material investigated as a suitable interleaved layer was 4,4'-dioctadecyl- 

3,5,3', 5'- tetramethyldipyrrylmethenehydrobromide. This was synthesised specifically for 

isý LB film fabrication' . 
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Figure 76. A molecular engineered spacer material for LB multilayer film fabrication, 

4,4'-dioctadecyl-3,5,3', 5'-tetramethyldipyrrylmethenehydrobromide (DPM). 
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The two hydrophobic chains of this molecule are sterically very compatible with 

C22H45QHBr. It is possible that alternate layers might deposit with the chain of the 

hemicyanine positioned inside the two chains of the spacer molecule. This would make 

individual bilayers very stable and may maintain long range order. 

The spacer material was sufficiently surface active to allow compression above 

35 mN m-' without collapse. A multilayer of CnH45QHBr/DPM was deposited using 

identical conditions to those used for the C22H45QHBr/C22H45QBr system. 

The SH signal dropped below the quadratic dependence line as layers increased. 

This may be due to imperfect deposition on some transfers. The relationship between 

SH response and absorbance was quadratic though, shown in figure 77. 
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Figure 77. SH response versus number of bilayers for a multilayer film of 

C22H45QHBr/DPM. 
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Figure 77 indicates clearly that the relationship between absorbance and SH 

response is not quadratic, probably because of poor deposition. The final signal was 

large (0.04 x quartz) therefore if the deposition characteristics were improved a useful 

system could be fabricated. The interdigitation that may have occurred between the two 

layers may be made easier by using chain lengths that are equal. Therefore two 

hemicyanines containing C18H37 hydrophobic chains were used, ie C18H37QHI and 

C18H37PHI. A detailed description of this work can be found in the papers by Ashwell 

et x1181-183 

3.2 Novel Hemicyanines 

The relationship between conjugation and nonlinear activity has been studied by 

many workers (see section 1.6.2). The materials studied in section 3.1 were chosen 

partly because molecular modifications are relatively simple. Therefore novel 

hemicyanine materials were designed, in which the level of conjugation differed. The 

effect that these alterations had on the LB film deposition characteristics and the 

subsequent nonlinear properties are discussed below. Figure 78 shows the general 

formula of the materials that were synthesised. 
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c, nu� 

Figure 78. Novel hemicyanines prepared for LB studies. (i) E-1-alkyl-4-{2-(4- 

dimethylaminobenzylphenyl)ethenyl}quinolinium bromide, C. H,,,. 1QNBr (ii) E-1-alkyl-4- 

{2-(4-dimethylaminobenzylphenyl)ethenyl}pyridinium bromide, C. H20+1PNBr (iii) E-1- 

alkyl-4-{4-(4-dimethylaminophenyl)-1,3-butadienyl} pyridinium bromide, C, H2, +1PEHBr 
(iv) E-1-docosyl-4-{2-(4-{2-(4-dimethylaminophenyl)ethenyl }benzyl)ethenyl}pyridinium 

bromide, C2H45PBHBr. 
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3.2.2 Isotherms 

The materials were compressed under the same conditions as their analogues in 

section 3.1.3. The isotherms of C22H45QNBr and C22H45PNBr were similar, the former 

is shown in figure 79. The important features of both, plus their analogues, are 

summarised in table 22. 
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Figure 79. II -a isotherm of C22H4SQNBr. 

The area per molecule that C22H45QNBr occupies as it begins to exert a surface 

pressure is slightly larger than that of C22H45QHBr. The former contains an extra 

benzene ring therefore it has a larger face area, about 110 A2, compared to 

approximately 100 A2. The figures indicate that both materials lie with their 

chromophore flat on the air/water interface before compression. A slight kink at 
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approximately 60A 2 for C22H45QNBr indicates an alignment phase change similar to that 

evident for C22H45QHBr. The minimum cross-sectional area for C22H45QNBr is 

determined by the two double aromatic rings therefore it should be slightly larger than 

C22H45QHBr. In the two-dimensional solid phase the area per molecule of C22H45QNBr 

is approximately 40 A2, for C22H45QHBr the corresponding area per molecule is 30 A2, 

confirming this theory. It is noted that these figures indicate that the molecules are 

aligned nearly vertical to the interface. 

Hemicyanine Area per 

molecule /A2 

Area per 

molecule / A2 

Area per 

molecule / A2 

1 mN m-' Phase change 30 mN m-' 

C22H45QHBr 120 ± 0.5 70 ± 0.5 30 ± 0.5 

C22H45QNBr 130 ± 0.5 60 ± 0.5 40 ± 0.5 

C22H45PHBr 120 ± 0.5 70 ± 0.5 30 ± 0.5 

C22H45PNBr 125 ± 0.5 60 ± 0.5 35 ± 0.5 

Table 22. A comparison of the isotherm characteristics of four hemicyanines. 

The it -a isotherm characteristics of C22H45PNBr confirms the similarities found 

in these materials. The relationship between C22H45PNBr and C22H45PHBr is similar to 

that for the quinolinium analogues. 

C22H45PEHBr exhibited no noticeable phase change in its it -a isotherm. It has 

an estimated chromophore face area of 105 A, therefore it appears to be lying flat at the 

water surface. Its area in the two-dimensional solid phase is approximately 50 A, 

indicating a larger angle of tilt away from the vertical than has been seen for other 

hemicyanines. 
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Figure 80. U-a isotherm of C22H45PEHBr. 

The pressure-area isotherm of C22H45PBHBr is seen in figure 81. It is interesting 

to compare this material to an isotherm of C22H45PHBr (figure 63), since the only 

difference between the two is that the former has an extra benzene ring along the length 

of the chromophore. At 30 A2 both exert a surface pressure of approximately 30 mN m-i. 

The area that the molecules would occupy at zero surface pressure is significantly 

greater for the longer molecule (approximately 60 A2 compared to 38 A2), this suggests 

that C18H37PBHBr is tilted further away from the vertical. 
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Figure 81. Pressure-area isotherm of C�H45PBHBr. 

3.2.3 LB Films of C22H4SQNBr 

LB films were transferred at 35 mN m-'. Monolayers, transferred on the upstroke, 

had consistent transfer ratios indicating reproducible films. Absorbance spectra was 

consistent and the film was visible to the naked eye after deposition. 

The charge transfer peak was hypsochromically shifted to 535 nm compared to 

its peak in chloroform solution. The spectrum was the same all over the substrate, 

indicating consistent coverage of the slide. It was noted that the absorbance decreased 

to 25% of its original value after four days. This drop may be due to a gradual 

rearrangement of the molecules on the slide to a tilt angle that is aligned further away 

from the normal of the irradiating beam in the spectrometer. It may also have resulted 

from some interaction with the laser beam when tested for second harmonic generation. 

SHG from the freshly prepared monolayer film was 1.6 x 104 x quartz. 
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Figure 82. Absorbance of an LB monolayer of C22H45QNBr. 

An alternating multilayer film of C22H45QNBr and C, H45QBr was fabricated. 

C22H45QBr was deposited on the downstroke at a pressure of 30 mN m'' followed by 

C22H45QNBr on the upstroke at a pressure of 35 mN m-'. The Langmuir film at the water 

surface was replaced for each transfer because this has been noted to improve 

subsequent film properties. The transfer ratios were consistent for both materials. After 

5 bilayers the film was purple, and after 10 bilayers there were no visible defects and 

absorbance was confirmed as consistent over the whole of the multilayer. 
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Figure 83. Absorbance versus number of bilayers for a multilayer LB film of 

C22H45QNB r/C22HasQB r. 

The dependence of SH response on number of bilayers is shown in figure 84, 

when normalised to the signal from layer 3 the response is quadratic up to ten bilayers. 

The SH signal from the ten bilayer LB film was 0.01 x quartz. 

The tilt angle of the chromophore relative to the normal of the substrate was 

calculated from the polarisation-dependent intensities of the second harmonic generation 

(figure 85). It was observed that I, Jps) ~- I2w(ss) aw 0 and I2ui(pp) rz 9.8I2u, (sp), 

corresponding to a tilt angle of 38°. The refractive index and thickness of the film, 

obtained using a Nanofilm 1000 ellipsometer equipped with a diode laser (X = 670 nm), 

was 1.59 and 4.5 nm respectively. The two molecules have a combined length equalling 
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Figure 84. SH response versus number of bilayers for a multilayer LB film of 

C22H45QNBr/C�H45QB r. 
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7.8 nm and this enables a calculation of the theoretical bilayer thickness of ca 6.0 nm. 

The observed bilayer thickness of 4.5 nm is explained if the hydrophobic chains of 

C22H45QHBr and C22H45QBr interdigitate. The proposed molecular arrangement for the 

multilayer is shown in figure 86. 

T 
4.5 nm 

Figure 86. Interdigitation of C22H45QNBr and C22H45QBr bilayer. 

3.2.4 LB Films of C18H37PNBr and C22H, SPNBr 

Monolayers of C18H37PNBr, deposited in the usual manner, gave an absorbance 

of 0.004 for the charge transfer peak, hypsochromically shifted compared to its spectrum 

in chloroform solution. The SHG from monolayers of this material was surprisingly 

small, approximately 2.5 x 10-5 x quartz; an order less than the standard hemicyanines 

reported in section 3.1.7. 

Alternating multilayer films were deposited in the same manner as the multilayer 

film of C22H45QNBr. Transfer ratios were consistent, however absorbance data for up to 
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5 bilayers was very poor. The SH signal for the five bilayer film was less than that for 

a monolayer. The n-a isotherm indicates a collapse pressure slightly less than that of 

other hemicyanines and simple solubility tests show the material to be slightly soluble 

in water. This may cause the molecules in the Langmuir film at the air/water interface 

to go into the aqueous phase instead of on to the substrate. This produces imperfect 

films of poor absorbance, as seen, which will become worse with subsequent layers. 

This inconsistency was supported by analyzing the whole of the film in detail and 

observing erratic and inconsistent results for both absorbance and SHG. 

Number of bilayers Absorbance I1 (a. u) 

1 0.004 ± 0.0005 1.00 ± 0.01 

2 0.006 ± 0.0005 1.14 ± 0.01 

3 0.008 ± 0.0005 1.39 ± 0.02 

4 0.010 ± 0.0005 1.19 ± 0.01 

5 0.013 ± 0.0005 1.43 ± 0.02 

6 0.015 ± 0.0005 1.18± 0.01 

Table 23. Absorbance and SHG data for a multilayer film of 

C22 H45 PNB r/C22 H 45 QBr. 

Monolayers of C22H45PNBr showed a charge transfer peak at the same 

wavelength as C22H45PHBr, its analogue, as expected. Interestingly the intensity of this 

absorbance is also 0.004. Since it is totally insoluble in water it appears that solubility 

has less of an effect on the first deposition than it does on later ones. This may be 

because the glass-molecule adsorption is a stronger interaction than the molecule- 

molecule adsorption. The SH response from the monolayer was 1.4 x 10-4 x quartz, 
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larger than C18H37PNBr and similar to that of a monolayer of C22H45PHBr. A multilayer 

film of C22H45PNBr was fabricated using the spacer C22H45QBr, and standard conditions 

for transfer as described earlier. Transfer ratios were inconsistent which is a clear 

indication of poor deposition. Although the absorbance was consistent for bilayers 2 to 

6 the SHG from the film indicates that imperfect deposition occurred. 

3.2.5 LB fiims of C22H45PEHBr 

One would expect this material to exhibit the same monolayer absorbance spectra 

as C22H45PHBr if their alignment were equal. This is because the only difference in 

chromophore groups is an extra double bond. The charge transfer peak is actually 

slightly hypsochromically shifted compared to that of C22H45PHBr. The transfer ratio and 

monolayer absorbance for various monolayers were consistent. The absorbance value, 

0.0026 is about 60% of the absorbance of C2, H45PHBr and indicates that the packing is 

less efficient. This may account for the slight difference in km since less molecules per 

unit area may be due to a different angle of alignment. The SH response was 1.1 x 104 

x quartz, approximately equal to C22H45PHBr (1 x 10-4 x quartz). This supports the 

observation that SH response is dependent on absorbance. One can assume that for an 

absorbance of 0.004 (ie equal to that of C22H45PHBr) the SH response would be 

noticeably larger. This is as expected because of the increased conjugation length 

between donor and acceptor. 

Two layers were deposited on the upstroke only. The study was done in duplicate 

and is shown in table 24. The transfer ratios indicated coverage on each pass through 

the air/water interface. The SHG indicates that the film was not aligned Z-type, but was 

probably a poorly deposited Y-type film. 
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Sample Layer 1 Layer 1 Layer 2 Layer 2 

Absorbance SH response* Absorbance SH response' 

1 0.003 ± 0.0005 1.10 ± 0.01 0.010 ± 0.0005 0.55 ± 0.01 

2 0.003 ± 0.0005 1.03 ± 0.01 0.009 ± 0.0005 0.49 ± 0.01 

Table 24. Absorbance and SHG data for 3 layers of C22H45PEHBr. 
  

relative to a monolayer of C22H45PHBr 

Alternating multilayer films of C22H45PHBr/C22H45QBr and 

C22H45PEHBr/C22H45QBr were compared. The transfer ratios for C22H45PHBr/C22H45QBr 

were consistent. 

Hemicyanine 

multilayer 

No. of bilayers Absorbance SH response 

C22H45PHBr 5 0.020 ± 0.0005 1.00 ± 0.01 

C22H45PEHB r 5 0.013 ± 0.0005 0.18 ± 0.02 

8 0.018 ± 0.0005 0.22 ± 0.01 

Table 25. A comparison of LB alternate multilayer characteristics for 

C22H45PHBr/C22H45QBr and C22H45PEHBr/C22H45QBr. *- relative to the signal from the 

5 bilayer film of C22H45PHBr/C22H45QHBr. 
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A multilayer film was fabricated using C22H45PBr as a spacer because this 

matched the configuration of C22H45PEHBr more closely and the results are shown in 

figure 87. The SH response did not show a quadratic dependence on the number of 

layers but it did show a dependence of SHG on absorbance. 
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Figure 87. SH response versus absorbance for each layer of a five bilayer film of 

C22H45PEHB r/C22H45PB r. 

3.2.6 LB films of C22H45PBHBr 

Langmuir films were stable and transfer on the upstroke occurred successfully. 

The absorbance of a monolayer was poor compared to C22H45PHBr, but the characteristic 

charge transfer peak in the 470 nm region was clearly evident. The SH response was 

small as expected for a poorly deposited film, ie 3.6 x 10-6 x quartz. This result was 

reproducible so a multilayer was deposited. The spacer chosen was E-1-docosyl-4-{2-(4- 

methylphenyl)ethenyl}pyridinium bromide (C22H45PT) since it was similar in 



127 

configuration. C12H4SPBHBr was deposited on the upstroke, followed by nine bilayers 

of C22H4SPT/C22H45PBHBr and the resulting film was yellow. The absorbance of ten 

layers was still poor but the SHG did increase with each layer. 
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Figure 88. SH response versus number of bilayers for a multilayer film of 

C22H45PBHBr/C22H45PT. 

C�H45PBHBr has therefore been shown to produce multilayers with a quadratic 

dependence of SHG to the number of layers. The SHG signal is not as large as a similar 

film of C,, H45QNBr, however extrapolation of the data indicates that if a much thicker 

film were fabricated, a very large signal could be achieved. 
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3.3 Transparent Materials for Nonlinear Optics. 

The common criteria for organic molecules exhibiting second harmonic 

generation is a donor and acceptor part linked by a conjugated chain, through which 

charge transfer occurs. Characteristically these materials have relatively low transition 

energies and maximum absorptions in the visible region. This limits the useful operating 

range for the material, as well as allowing resonant enhancement if the absorption occurs 

at the fundamental or second harmonic frequency. This has been called the 

"transparency-efficiency" trade off'-6, and most reported LB films that give large SHG 

signals absorb at one of these frequencies. 

The hemicyanine materials reported in sections 3.1 and 3.2 have intense 

absorptions in the visible region. A number of these materials show excellent film 

forming properties and very high SH responses. Therefore a material with a similar 

molecular configuration that does not absorb in the visible region is desirable. Two 

materials, E-1-octadecyl-4-{2-(4-methyloxyphenyl)ethenyl}pyridinium iodide (A) and 

E-1-methyl-4-{2-(4-octadecyloxyphenyl)ethenyl}pyridinium iodide (B), have been 

identified, synthesised, and studied in detail, they are shown in figure 89. 

3.3.1 Absorbance Spectra of Solutions 

The part of the molecule giving rise to charge transfer in both molecules is the 

same. Therefore the Xmax due to charge transfer occurs at identical wavelengths and the 

two materials have indistinguishable absorbance spectra. The absorbance spectrum of 

material (A) is shown in figure 90. Note that the tail of the charge transfer peak does 

not infringe on the second harmonic wavelength (532 nm) from the Nd: YAG source 

(1064 nm). 
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(A) 

(B) 

- CH3 

Figure 89. (A) E-1-octadecyl-4-{2-(4-methyloxyphenyl)ethenyl}pyridinium iodide 

and (B) E-1-methyl-4-{2-(4-octadecyloxyphenyl)ethenyl}pyridinium iodide. 
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Figure 90. Absorbance spectrum of (A) in ethanol. 
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3.3,2 Isotherms 

The shape of the n-a isotherm of (A) indicates that the molecules are lying flat 

on the air/water interface before compression. The gradient of the isotherm increases 

gradually upon compression up to about 15 mN m4 as the molecules align more closely, 

however the gradient then decreases slightly, which may be caused by dissolution of 

some molecules into the subphase. 

Surface pressure, 

n, mNm4 

40-, 

30-4 

20 ý 
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Figure 91. II -a isotherm of (A) 

The shape of the isotherm of (B) is more reminiscent of a classic Langmuir film, 

eg stearic acid. It has a steep pressure gradient and increases to pressures in the region 

of 45 mN m-1. There is little evidence of a kink. An understanding of the reason for the 

differences between (A) and (B) may be gained by visualising the molecules at the 

air/water interface (figure 93). 
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Figure 92. n-a isotherm of (B) 
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Figure 93. Illustration of the molecular arrangement of (A) and (B) at the air/water 

interface. 
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In both molecules the pyridinium nitrogen will be attracted towards the water 

subphase. In (A) this movement is restricted by the adjacent proximity of the 

hydrophobic chain which is repelled from the water. In (B) the chain is separated from 

the pyridinium nitrogen by the chromophore part of the molecule, therefore the molecule 

will tend more towards the vertical. This allows more efficient packing. Thus, the 

shallower curve in the it -a isotherm of (A) corresponds to the molecules realigning to 

a more vertical position. In (B) the molecules start compression in this position therefore 

a steeper gradient is observed. A C�H4; analogue of (A) was prepared and its n-a 

isotherm was steeper than (A), this was probably due to its greater hydrophobicity. 

3.3.3 Stability of Langmuir Films. 

Solutions of (A) and (B) in Aristar grade chloroform were spread on the pure 

water subphase and compressed to 30 mN m"1. Some dissolution of (A) was noted when 

the surface area was studied at constant pressure. In contrast, (B) was stable at this 

surface pressure. The C�H45 analogue of (A) was, as expected, stable at 30mN m-'. 

3.3.4 Monolayer Deposition. 

Both materials were deposited at 30 mN m-' from chloroform solutions (1 x 10"3 

mol dm"') and studied. The resulting monolayer films of (A) were not consistent in 

transfer ratio or absorbance. This is most likely due to its slight solubility in the 

subphase. Monolayer films of (B) were much more consistent. In fact (B) was also 

deposited at a surface pressure of 35mN m-' since the Langmuir film was perfectly 

stable at this pressure. 

Monolayers of the C�H45 analogue of (A) were also deposited. The resulting LB 

films were more reproducible than similar films of (A) and had a larger absorbance. It 

was noted that good deposition of all these materials only occurred when the solution 

was freshly prepared. 
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3.3.5 Absorbance Spectra of LB films 

The absorbance spectra of monolayers of (A) and (B) and the C22H45 analogue 

of (A) were identical in shape. They are characterised by a charge transfer peak at 380 

nm, with no absorbance above 450 nm. This is because the chromophore responsible for 

the charge transfer is identical in each material. 
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Figure 94. Absorbance spectrum of a monolayer of E-1-methyl-4-{2-(4- 

octadecyloxyphenyl)ethenyl}pyridinium iodide (B). 

3.3.6 Second Harmonic Generation from Monolayers 

Several monolayers of (A) were deposited in order to produce some films of 

equal absorbance. The reproducible monolayers of (B) gave consistent SH responses. 
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Monolayer Absorbance SHG (x quartz) / 10' 

(A) 0.007 ± 0.0005 1.50 ± 0.02 

(B) 0.010 ± 0.0005 4.00 ± 0.01 

Table 26. LB Film Properties of Monolayers of (A) and (B). 

The higher signal of (B) compared to (A) is most probably due to its better 

deposition properties. 

3.3.7 Multilayer LB Films. 

It is possible that (A) and (B) will form centrosymmetric multilayers when 

deposited Y-type. The charge transfer in a monolayer of (A) is aligned in the opposite 

direction to that in a monolayer of (B). If the two materials were to be deposited as an 

alternate Y-type multilayer then each layer would have its charge transfer aligned in the 

same direction. Thus a centrosymmetric multilayer would be formed with additive SH 

responses. 

Initially, bilayers were studied. Therefore (A) was transferred on the upstroke 

followed by (B) on the downstroke. The transfer ratio of (B) was less than its transfer 

on the upstroke as a monolayer, but still sufficient to indicate that adequate deposition 

had occurred, (this slight difference may be evidence of the "1st layer anomaly"). The 

absorbance of the bilayer was slightly larger than that of the monolayer but the SH 

response was less. Conversely, a bilayer was studied with (B) as the first layer 

(upstroke) and (A) as the second layer (downstroke) and similar results were obtained. 

There are three possible explanations for these observations: 

1. the molecules have formed a Z-type bilayer film; 

2. a "herringbone" structure has been formed where the angle of the two 

layers are such that their vertical components are oppositely aligned; 
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3. the second layer molecules penetrate the first layer to form an 

interdigitated monolayer; 

The first theory is unlikely because Y-type layers are usually more energetically 

favourable than Z-type. The second system has only been observed for molecules with 

small hydrophilic heads compared to the hydrophobic tail. The third theory is most 

likely because of the following observations: 

1. there was only a small increase in absorbance for the bilayer despite 

deposition being indicated by the transfer ratio; 

2. since the transfer ratio indicates transfer of a similar amount of 

material to form the second layer as there was to form the first layer and 

the absorbance has only increased slightly, ordered Y or Z-type film 

formation is unlikely; 

3. the SH signal dropped, if the second layer does penetrate the first layer 

the molecules will almost certainly flip so that the hydrophobic tails are 

adjacent. This results in the direction of the charge transfer in the 

respective molecules being aligned oppositely, thus cancelling each other. 

The fact that complete cancellation does not occur may be because a 

comparatively small number of molecules DO form a second layer. This 

is supported by the slight increase in absorbance. In addition the 

respective materials have different SH responses, plus unequal amounts 

of each material were deposited. 

C22H45PNBr was deposited as a bilayer with (B) because it also exhibits charge 

transfer in the opposite direction to (B) whilst exhibiting a similar SH response from the 

monolayer. The same results were observed as for bilayers of (A) and (B). 

The configuration of the molecules in theory (3) above, is the same as that 

predicted from the deposition of a mixed solution of (A) and (B). Therefore an 

equimolar solution of (A) and (B) was prepared and deposited as a Langmuir-Blodgett 

film. Deposition at 35 mN m-' produced a LB film with the same shaped absorbance 

spectrum as that of (A) and (B), with a ? 
mar of 0.007 (similar to that of a monolayer of 
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(A)). This suggests that the molecules have formed a monolayer. The SH response was 

markedly less than that of (A) which suggests that both sets of molecules have aligned 

symmetrically in the monolayer. This will have caused substantial cancellation of the 

individual responses. 

Equimolar mixtures of C18H37PHI and (B) also supported this theory. In this case 

the SH response for the mixture was substantially down on that for pure C18H37PHI but 

the absorbance indicated that the same amount of C18H37PHI was present. Mixtures of 

varying molar ratios indicated that there was a linear relationship between the relative 

amount of (B) with the drop in SH response. 

3.3.8 LB Monolayers of Mixtures. 

In response to the problems of interdigitation of the monolayer a new strategy 

was attempted. If the nonlinear material can be mixed with a compatible material and 

deposited, so that better monolayer films result, then the opportunity for penetration of 

that layer should be reduced. The material, sodium octadecylsulphate (C18H37OSO3-Na+), 

was chosen for three reasons: 

1. the hydrophobic tail matches that of (A) and will want to align itself 

adjacent to the tail of the nonlinear material; 

2. as a Langmuir film the Na' and F should dissolve into the subphase 

and with the hydrophobic tails adjacent the SO3- will be adjacent to the 

N+ of the pyridinium ring consequently forming a stable molecule pair; 

3. it does not absorb in the visible region. 

Therefore an equimolar solution (1 x 10-3 mol dm-3) of (A) and C18H37OSO3-Na+ 

was prepared. Note that (A) was dissolved in chloroform and C18H37OSO3-Na+ in 

distilled methanol. The mixture was transferred to the aqueous subphase and formed a 

Langmuir film, this film was more stable than films of (A) in similar conditions. The 

film was compressed and the n-a isotherm compared to that of (A) is shown in figure 

95. 
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Figure 95. II -a isotherm of (A): C18H37OSO3-Na+ (1: 1) compared to pure (A). 

It is clear that the slight solubility observed for films of (A) disappears when 

C18H37OSO3-Na' is added. This is due to the greater hydrophobicity of the complex. The 

area per molecule at 35 mN m"1 is similar to the proposed Van der Waals cross-section 

of the upright, closely packed complex shown in figure 96. In theory this structure 

should prevent penetration from molecules transferred onto the monolayer. 

A similar mixture of (B) and C18H37OSO3-Na' was prepared but its compression 

characteristics were very poor. This can be explained if one considers the two molecules. 

One would expect the SO3_ group to attach itself to the N+ part of the pyridinium ring 

as it does with (A). Therefore the hydrophobic tails of the two molecules are unable to 

align side by side. A stable Langmuir film is therefore not formed. To overcome this 

problem, equimolar mixtures of (B) and tetracosanoic acid, sodium salt (C23H47CO2Na+) 

were deposited. This was chosen because, in theory, the extra chain length would enable 
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the hydrophobic and hydrophilic parts to align adjacent to C18H37 and N' respectively. 

The compression characteristics were very similar to that of pure (B), and absorbance 

was also poor. 

Figure 96. Proposed configuration of (A) and C18H37OSO3-Na' at 35mN m-1. 

A monolayer of the (A): C18H370S03-Na' mixture, transferred at 35mN m-', had 

an absorbance similar in shape to that of pure (A), this is as expected since only (A) 

absorbs in the visible region. The intensity of absorbance was consistent for a number 

of monolayers deposited separately in the same conditions. It can be seen that this 

material does not absorb at the second harmonic wavelength (532 nm). 
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Figure 97. Transmission spectra for a monolayer of (A): C18H37OSO3-Na+ showing its 

transparency in the 450 - 800 nm region. 

The SH response from these monolayers was approximately six times that of a 

monolayer of (A). This response is due purely to charge interactions within the film 

since no resonant enhancement is possible at 2w. 
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Monolayer Absorbance SHG (x quartz) / 10-6 

(A): C18H37SO3-Na+ 0.015 ± 0.0005 9.30 ± 0.01 

Table 27. Monolayer properties of (A): C18H370S03"Na+. 

Mixtures of different molar ratios were deposited (figure 98). It is evident that 

the optimum SHG results from the monolayer where the molecules are able to form a 

complete set of molecule pairs. These molecule pairs produce higher SH signals than 

that of an individual molecule of (A). This is because the inclination of the molecule 

pair is different to that of an individual molecule of (A) and inclined in such a way as 

to give a higher signal per molecule of (A) than for an independent molecule. 
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Figure 98. SH response versus molar ratio for monolayers of (A): C, SH37OSO; "Na+. 
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Figure 99. Polarisation dependence of SH response of a monolayer of 

(A): C18H37OSO3-Na+. 

The angle of inclination of the molecule pair, calculated from the polarisation 

dependence of the SH response, is 33.5°. The packing efficiency is at its optimum for 

the 1: 1 mixture where a highly ordered monolayer is produced. At molar ratios greater 

than 0.5 aggregates of none complexed hemicyanine molecules reduce the SH efficiency. 

When the molar ratio is less than 0.5 the presence of non-complexed "passive" sulphate 

molecules reduces the "active" packing ratio. 

The effect of spacing in order to enlarge SHG from LB films has been studied 

previously'34"46'"47. It has been suggested that the increase is due to the prevention of 

aggregation, but the absorbance spectrum of the pure material (A) shows no indication 
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of aggregation. The results indicate, however, that C18H370S03-Na' prevents phase 

separation since the spacer is part of the complex. 

3.3.9 LB multilayers of mixtures. 

A monolayer of the 1: 1 mixture, (A): C18H37OSO3-Na' was deposited on the 

upstroke. The cation C18H37QBr was transferred on the downstroke on to the monolayer 

and on top of this was deposited another layer of the mixture. A total of five layers of 

the mixture were deposited. Absorbance spectra indicated that deposition was occurring, 

however the SH response was not quadratic. This can be explained by incomplete 

deposition. The results are promising though, since the SH response is increasing, 

therefore an even better film would be worth studying if a more suitable interleaved 

layer could be found, for example an analogue of 4,4'-dioctadecyl-3,5,3', 5'- 

tetramethyldipyrrylmethenehydrobromide (DPM). 
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Figure 100. SH response versus number of depositions for an interleaved multilayer 

of (A): C18H37SO3"Na+ / C18H37QBr. 
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Alternating multilayer films of (A): C18Hz7OSO3-Na, deposited on the upstroke, 

and (B), deposited on the downstroke, were studied however (B) would not transfer. 

3.4 Zwitterionic Adducts 

LB films of tetracyanoquinodimethane (TCNQ) based zwitterions have been 

reported to have a quadratic relationship between SH response and the number of layers 

in the filmi57_159. The materials shown below offer the prospect of increased SH response 

because of their conjugation, in addition the C7H9 analogues are of interest because they 

do not contain an aliphatic chain. 

C16 H33 

(a) 

(c) 

"16 H33 

(b) 

(d) 

Figure 101. Zwitterions studied: (a) Z-ß-(N-hexadecyl-4-quinolinium)-a-cyano-4- 

naphthyldicyanomethanide, C16H? iQBCNQ; (b) Z-ß-(N-hexadecyl-4-pyridinium)-a-cyano- 

4-naphthyldicyanomethanide, C16H3; PBCNQ; (c) Z-ß-(phenylmethyl-4-quinolinium)-a- 

cyano-4-naphthyldicyanomethanide, C7H7QBCNQ; and (d) Z-ß-(phenylmethyl-4- 

pyridinium)-a-cyano-4-naphthyldicyanomethanide, C7H7PBCNQ. 
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3.4.1 Absorbance spectra of solutions 

Spectra from methanol solutions were compared. The quinolinium zwitterions 

exhibited the same spectrum, as did the pyridinium zwitterions, but the two groups were 

different due to their different heterocycles. Both groups of solutions produced spectra 

of high intensity. The absorbance spectra shown in figures 102 and 103 show that the 

quinolinium analogues have a charge transfer band at a longer wavelength than the 

pyridinium zwitterions because of the differences in conjugation. The hydrophobic chain 

had no effect on the absorbance as expected. 

43, sý 
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Figure 102. Absorbance spectrum of C7H7QBCNQ in methanol. 

The effect of solvent on solution spectra illustrates some important points (table 

28). One would expect the highly polar nature of the molecules to be effected by the 
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Figure 103. Absorbance spectrum of C16H11PBCNQ in methanol. 

Zwitterion ýý ýinax ko, 
ý 

ýý Äraax 

MeOH C7H9 MeCN CHC13 CH2C12 

Quinolinium 

(C7H7QBCNQ) 

729 765 772 810 827 

Pyridinium 

(C7H7PBCNQ) 

640 755 657 795 815 

Table 28. The effect of solvent on X of zwitterions. 
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polarity of the solvents and this was observed. The aprotic solvents show a 

hypsochromic shift with increasing polarity. The protic solvent appears to be affected 

by hydrogen bonding as well as polarity. The absorbance for C7H7QBCNQ in 

acetonitrile (772 nm) is bathochromically shifted compared to an analogous quinolinium 

zwitterion, Z-ß-(N-hexadecyl-4-quinolinium)-a-cyano-4-styryldicyanomethanide 

(C16H33QBCNQ)179" In both materials the intramolecular charge separation and donor 

ionisation energy are assumed to be constant, therefore the energy of back charge 

transfer is mainly dependent upon the electron affinities of the anionic end of the 

molecule. C7H7QBCNQ has a charge transfer peak at a longer wavelength than 

C16H33QBCNQ. This is because the former is more conjugated at the acceptor end of the 

molecule and consequently there is less energy required for the transfer. The charge 

transfer may be an intermolecular or intramolecular transition. Evidence for the latter 

comes from concentration studies. C7H7QBCNQ has a linear dependence of absorbance 

on concentration in solution. A nonlinear dependence would indicate intermolecular 

charge transfer because of the establishment of an equilibrium between the donor and 

acceptor components. 

3.4.2 Molar Absorption Coefficient 

In a solution of acetonitrile, ýC7 7QBCNQ) = 1.14 x 104 mol-'m2 for X. 

C16H33QBCNQ had a similar absorbance for the same concentration and is therefore 

assumed to have a similar molar absorption coefficient. 

3.4.3 Isotherms 

The zwitterions were added dropwise to the pure water subphase from 

dichloromethane solutions. It was found that chloroform solutions were unsuitable for 

Lanmguir-Blodgett deposition. n-a isotherms of all four materials are shown in figures 

104 and 105. 
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Figure 104. U-a isotherms of (A), C7H7PBCNQ and (B), C16H37PBCNQ. 

Both pyridinium zwitterions began to increase in pressure at the same area per 

molecule, ie 100 A2, inferring that the hydrophobic chain had no effect on the dispersion 

of molecules. C16H33PBCNQ, however, had a steeper gradient, similar in shape to the 

n-a isotherm of stearic acid. At a surface pressure of 20 mN m-1, C16H33PBCNQ 

occupied an area of 70A 2 per molecule compared to 44A2 for C7H7PBCNQ. The former 

also collapsed at a higher pressure than the latter. The lack of a strong hydrophobic 

chain in C7H7PBCNQ may allow slight dissolution as compression occurs and this could 

be the reason for the differences. 

The isotherms of the quinolinium zwitterions show that the difference in 

heterocycle size affects the close packing, since these materials show similar trends but 

at higher corresponding areas per molecule. 
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Figure 105. II -a isotherms of (A) C7H7QBCNQ and (B) C16H37QBCNQ. 

3.4.4 Deposition of Monolayers 

The C16H37 zwitterions were transferred at a pressure of 35 mN m-1, the benzyl 

analogues were transferred at their highest stable pressures. No deposition occurred on 

the downstroke, therefore all monolayers reported are the result of upstroke deposition. 

All materials caused the Wilhelmy plate filter paper to drift away from the main 

area of the trough. This was presumably caused by the columbic effect of the molecules. 

The benzyl derivatives proved particularly difficult to compress because of their slight 

solubility. In fact C7H7PBCNQ and C7H7QBCNQ were deposited by a none standard 

method. The Langmuir films were compressed slowly until the surface pressure stopped 
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increasing, the film was then left for a few minutes to stabilise. Further slow 

compression took the film to a slightly higher pressure whereupon the surface pressure 

stopped increasing again. This method was repeated until the highest surface pressure 

possible was attained without collapse occurring. The maximum stable surface pressure 

achieved was typically 20 mN m-'. 

3.4.5 Absorbance Spectra of LB Films. 

The absorbance spectrum of a monolayer of C7H7PBCNQ clearly indicates a 

charge transfer peak at 660 nm. 
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Figure 106. Absorbance spectrum of a monolayer of C7H7PBCNQ 
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Firstly it should be noted that this spectrum is evidence of Langmuir-Blodgett 

deposition of a material whose molecular structure is not made up of distinct 

hydrophobic and hydrophilic parts. One would expect the presence of a phenylmethyl 

group instead of a highly hydrophobic aliphatic chain to inhibit deposition. Whilst the 

benzyl analogues are not easily transferred to substrates it has been shown that it is 

possible. If multilayer structures of benzyl and aliphatic analogues could be fabricated, 

the benzyl films would have a greater layer density in the normal to the substrate 

because of the smaller size of their hydrophobic part. For optically active materials this 

is an important factor as this will give the benzyl analogues a greater SHG efficiency. 

3.4.6 SHG from Monolayers 

The data collected for various films of the benzyl derivatives was inconsistent 

due to the inconsistent deposition, therefore the signals reported represent the best 

observed. 

Zwitterion SHG (x quartz) / 10"' 

C16H37PBCNQ 150.15 ± 0.03 

C7H7PBCNQ 25.21 ± 0.02 

C16H37QBCNQ 670.20 ± 0.02 

C7H7QBCNQ 5.00 ± 0.01 

Table 29. SH response from of LB monolayers of zwitterionic materials. 

It is evident that the poor monolayer deposition of the benzyl derivatives has 

resulted in poor films for SHG. Numerous attempts at improving the method of transfer 

were unsuccessful. The values for the C16H17 analogues are very promising. The 
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absorbance for all four materials was variable but it was noted that a larger SH signal 

was observed when a relatively larger absorbance was achieved. 

3.4.7 Multilayer LB films 

Ten layers of C16H37PBCNQ were deposited on the upstroke only. Transfer ratios 

indicated poor deposition, however absorbance data showed an equal increase in 

absorbance for each layer of approximately 0.02. This shows that deposition occurred 

on each layer. 

A twenty layer film deposited on the downstroke onto a monolayer of 

C16H37PBCNQ had an absorbance spectrum of half the intensity of a corresponding 

twenty layer film deposited on the upstroke only. Multilayers fabricated on both 

upstroke and downstroke showed good deposition on the upstroke and poor deposition 

on the downstroke. This shows that the material prefers Z-type to X-type or Y-type 

alignment. This method of deposition is possible because of the strong columbic 

repulsions present in these zwitterions. The anionic ends of the molecules probably repel 

each other causing one molecule to flip so that its hydrophobic chain is adjacent to the 

other molecules chromophore. 

Multilayer films of varying number of layers were analysed for SHG. All of 

them were damaged by the intensity of the laser. This was indicated by an initial large 

signal that quickly reduced to a minimal one. The films may have reorganised after 

irradiation into a less active form for SHG. 
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4.0 Conclusion 

Tables 30,31 and 32 (pages 154 - 158) summarise the major achievements of 

this work. The following conclusions can be made from all of the obtained results. 

1. The hemicyanine chromophore gives significant second harmonic 

generation when incorporated into a Langmuir-Blodgett film. 

2. Choice of chain length is important as to the stability of the Langmuir 

film, transfer properties and subsequent LB film properties. No significant 

difference in properties is noted between bromide or iodide counterions. 

3. In hemicyanine LB monolayers, the SH response is related to the 

absorbance of the film. 

4. In hemicyanine LB multilayers, the SH response increases 

quadratically in relation to absorbance and in well ordered multilayers, 

the SH response increases quadratically in relation to the number of 

nonlinear active layers deposited. 

5. Interdigitation has been indicated in a stable Y-type alternating 

multilayer film. 

6. The 1: 1 mixing of a spacer material with a nonlinear active material 

has significantly improved the response of the LB monolayer. 

7. Zwitterionic materials containing almost no hydrophobic character 

have been deposited as LB monolayers and SHG has been detected. 

The bulk of this study has been concerned with fundamental research in to 

fabricating Langmuir-Blodgett films that have a nonlinear response to intense irradiation. 

These results enable further work in to the development of such systems, and 

suggestions are listed below. 
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1. Identify the thermal and mechanical stability of hemicyanine LB films. 

These results indicate that multilayer films fabricated in an alternate Y- 

type manner where some interdigitation of the bilayer occurs, offer the 

best prospects. 

2. Improve the multilayer formation of the E-1-octadecyl-4-{2-(4- 

methyloxyphenyl)ethenyl}pyridinium iodide : sodium octadecylsulphate 

mixture because this monolayer has a significant SH response from the 

monolayer, is stable and does not absorb at 532 nm. 

3. The spacer material, 4,4'-dioctadecyl-3,5,3', 5'-tetramethyldipyrryl- 

methenehydrobromide (DPM), has a molecular configuration that enables 

interdigitation of hydrophobic chains from hemicyanine materials in a 

bilayer. This system should be analysed further. 

4. Novel zwitterions containing almost no hydrophobic chain have been 

deposited, these offer good SH response over a shorter monolayer 

thickness, if their LB properties can be improved by further study, then 

stable Z-type multilayers with high SHG efficiency are viable. 
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Material Monolaycr Monolaycr Multilayer 

absorbance SHG /F m' V-' film 

O. 008 (540 nm) 1.22 x 10-47 Not 

attempted 
CuHa, -N+ 

i \/\\/ 

( `cH, 

C18H37QHI 

_ 
- 

CH3 GnHy -W' 
0.008 (539 nm) 3.66 x 1047 Y-type 

/ 

N` (alternated) 
oH, 

& 20 bilayers 

C22H45QH Br 

C, sHm -Ný CH, 

0.006 (490 nm) 8.54 x 10-48 Not 

N Br_ attempted 
CH, 

C18H37PHBr 

CH3 CnHq -Hý 

0.004 (491 nm) 4.45 x 1048 Y-type 
/ý 

_H 
37 layers 

Sr CH, 

C22H45PHBr 

0.006 (535 nm) 6.10 x 1048 Y-type 

(alternated) 
CöHrs -N\ / 

/ 
/CH3 

" 10 bila ers \ y 
Br 

CH, 

C22H45QNBr 

Table 30 Summary of Results 
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Material 

(continued) 

Multilayer 

absorbance 

Multilayer 

SHG 

Quadratic Notes 

C18H37QHI n/a n/a n/a, 

C22H45QHBr 0.07 1.52 x 10-45 Yes Resonant enhancement 

C18H37PHBr n/a n/a n/a, 

C22H45PHBr 0.023 3.71 x 1047 No Imperfect deposition 

C22H45QNBr 0.033 3.80 x 10-46 Yes Tilt angle = 38° 

Bilayer thickness 

= 4.5 nm 

Table 30 continued 
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Material Monolayer Monolayer Multilayer Film 

absorbance SHG /F m3 V-1 

GizHas -NC - 
CH3 

0.004 9.50 x 10-49 Y-type 

\/ (490 nm) (alternated) 
CH3 Br 

\/ 5 bilayers 

C22H45PNBr 

CuH4y -"OF/ 

ý"' 

0.003 

490 

4.18 x 10"48 Y-type 

l 
_ \\ Br N ( nm) (a ternated) 

\ CH3 

5 bilayers 

C22H45PEHBr 

ý+» -ºý - 
0.001 1.52 x 1049 Y-type 

ý 
ý- (470 nm) (alternated) 

ý 
10 bilayers 

C22H45PBHBr 

CieHss -N\ - 

0.007 5.70 x 10-50 No, because of 
/\ 

OCH3 interdigitation 

(A) 

C+eHs7 -N\ 
OCH3 

0.015 3.53 x 1049 Y-type 

(alternated) 

5 bilayers 
(A) + C18H37S03 Na+ 

Table 31 Summary of results 
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Material Multilayer Multilayer Quadratic Notes 

(continued) absorbance SHG /F m3 V"1 

C22H45PNBr 0.015 1.32 x 10-48 No Imperfect 

deposition 

C22H45PEHBr 0.007 2.19 x 10-47 No Quadratic in 

relation to 

absorbance 

C22H45PBHBr 0.010 1.04 x 10-47 Yes Highly 

conjugated 

material 

(A) n/a n/a n/a SHG increases 

significantly in 

mixture. 

(A) + 0.05 1.15 x 10"48 No Monolayer tilt 

C18H37SO3"Na+ angle = 33.5(°) 

Table 31 continued 
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Material Monolayer 

absorbance 

Monolayer 

SHG 

Multilayer 

film 

0.032 2.55 x 10"48 No, damaged 

-H (765 nm) by laser 
C1gHM ý/- 

CN 

CN 
CN 

C16H33QBCNQ 

0.020 9.50 x 10"50 No, dainaged 

\/ `"2-ý /- CN 
(690 nm) by laser 

CN CN 

C7H7PBCNQ 

Table 32 Summary of Results 
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6.0 Appendix. 

6.1 Abbreviations of Systematic Nomenclature. 

C22H45QBr : N-docosyl-4-methylquinolinium bromide. 

C22H45PBr : N-docosyl-4-methylpyridinium bromide. 

C16H33QHBr: E-1-hexadecyl-4-{2-(4-dimethylaminophenyl)ethenyl} 

quinolinium bromide. 

C18H37QHBr: E-1-octadecyl-4-{2-(4-dimethylaminophenyl)ethenyl} 

quinolinium bromide. 

C18H37QHI E-1-octadecyl-4-{2-(4-dimethylaminophenyl)ethenyl} 

quinolinium iodide. 

C20H41QHBr: E-1-eicosyl-4-{2-(4-dimethylaminophenyl)ethenyl} 

quinolinium bromide 

C22H45QHBr: E-1-docosyl-4-{2-(4-dimethylaminophenyl)ethenyl} 

quinolinium bromide. 

C16H33PHBr: E- 1- hexadecyl-4- {2-(4-d imethy lam inophenyl)ethenyl} 

pyridinium bromide. 

C18H37PHBr: E-1-octadecyl-4-{2-(4-dimethylaminophenyl)ethenyl} 

pyridinium bromide. 

C18H37PHI : E-1-octadecyl-4-{2-(4-dimethylaminophenyl)ethenyl} 

pyridinium iodide. 

C22H45PHBr: E-1-docosyl-4-{2-(4-dimethylaminophenyl)ethenyl} 

pyridinium bromide. 

C18H37QNBr: E-1-octadecyl-4-{2-(4-dimethylaminonaphthyl)ethenyl} 

quinolinium bromide. 

C22H45QNBr: E-1-docosyl-4-{2-(4-dimethylaminonaphthyl)ethenyl} 

quinolinium bromide. 



C18H37PNBr: 

C22H45PNBr: 

C18H37PEHBr: 

C22H45PEHBr: 

C22H45PT: 

C22H45PBHBr: 

(A): 

(B): 

C16H33QBCNQ: 

C7H7QBCNQ: 

C16H33PBCNQ: 

C7H7PBCNQ: 
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E-1-octadecyl-4-{2-(4-dimethylaminonaphthyl)ethenyl} 

pyridinium bromide. 

E-1-docosyl-4-{2-(4-dimethylasninonaphthyl)ethenyl} 

pyridinium bromide. 

E-1-octadecyl-4-{4-(4-dimethylaminophenyl)-1,3-butadienyl} 

pyridinium bromide. 

E-1-docosyl-4-{4-(4-dimethylaminophenyl)-1,3-butadienyl} 

pyridinium bromide. 

E-1-docosyl-4-{2-(4-methylphenyl)ethenyl}pyridinium bromide. 

E-1-docosyl-4-{2-(4-{2-(4-dimethylaminophenyl)ethenyl} 

benzyl)ethenyl}pyridinium bromide. 

E-1-octadecyl-4-{2-(4-methyloxyphenyl)ethenyl} 

pyridinium iodide. 

E-1-methyl-4-{2-(4-octadecyloxyphenyl)ethenyl} 

pyridinium iodide. 

Z-ß-(n-hexadecyl-4-quinolinium)-a-cyano-4-naphthyl 

dicyanomethanide. 

Z-ß-(phenylmethyl-4-quinolinium)-a-cyano-4-naphthyl 

dicyanomethanide. 

Z-ß-(n-hexadecyl-4-pyridinium)-a-cyano-4-naphthyl 

dicyanomethanide. 

Z-ß-(phenylmethyl-4-pyridinium)-a-cyano-4-naphthyl 

dicyanomethanide. 
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