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ABSTRACT 

The traditional approach to a digital investigation when a computer system is 

encountered in a running state is to remove the power, image the machine using a 

write blocker and then analyse the acquired image. This has the advantage of 

preserving the contents of the computer’s hard disk at that point in time. However, the 

disadvantage of this approach is that the preservation of the disk is at the expense of 

volatile data such as that stored in memory, which does not remain once the power is 

disconnected. There are an increasing number of situations where this traditional 

approach of ‘pulling the plug’ is not ideal since volatile data is relevant to the 

investigation; one of these situations is when the machine under investigation is using 

encryption. If encrypted data is encountered on a live machine, a live investigation 

can be performed to preserve this evidence in a form that can be later analysed. 

However, there are a number of difficulties with using evidence obtained from live 

investigations that may cause the reliability of such evidence to be questioned. This 

research investigates whether digital evidence obtained from live investigations 

involving encryption can be considered to be reliable. To determine this, a means of 

assessing reliability is established, which involves evaluating digital evidence against 

a set of criteria; evidence should be authentic, accurate and complete. This research 

considers how traditional digital investigations satisfy these requirements and then 

determines the extent to which evidence from live investigations involving encryption 

can satisfy the same criteria. This research concludes that it is possible for live digital 

evidence to be considered to be reliable, but that reliability of digital evidence 

ultimately depends on the specific investigation and the importance of the decision 

being made. However, the research provides structured criteria that allow the 

reliability of digital evidence to be assessed, demonstrates the use of these criteria in 

the context of live digital investigations involving encryption, and shows the extent to 

which each can currently be met. 
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CHAPTER 1: INTRODUCTION  

1.1 INTRODUCTION   

As digital devices become ubiquitous, our day to day activities require more frequent 

interaction with digital systems, and as a result, more traces of our actions are left on 

these systems. Consequently, digital devices are often examined in order to infer what 

has happened in the real world. This process is referred to as a digital investigation.  

A digital investigation is defined as a process that formulates and tests 

hypotheses using digital evidence (see Chapter 2). These hypotheses are tested by 

examining digital evidence, which is defined as a set of reliable digital objects that 

support or refute a hypothesis (see Chapter 2). Digital evidence can be used for a 

variety of purposes, from investigating violations of acceptable use policies to 

criminal offences. Many digital investigations involve the latter and as a result the 

term ‘digital investigation’ is often used interchangeably with ‘forensic computing’. 

This latter term can be referred to specifically as a ‘forensic digital investigation’, 

which is a digital investigation with the additional requirement that the obtained 

digital evidence needs eventually to be presented in court.  

In digital investigations that involve seizing computer systems from the home 

or workplace of suspects during the course of the investigation, computer systems can 

be encountered while they are still powered on and running. The traditional approach 

to digital investigation has involved removing the power from these systems, i.e. 

‘pulling the plug’. This has the advantage of preserving the contents of the computer’s 

hard disk at that point in time, since after the power is removed, no data can be written 

to the disk. However, this has the disadvantage that this preservation of the disk is at 

the expense of volatile data such as that stored in RAM, which does not remain once 

the power is disconnected.  

There are an increasing number of situations where this traditional approach of 

‘pulling the plug’ is not ideal, for example: cases where large volumes of data are 

involved; where systems are ‘mission critical’; when relevant digital evidence is 

stored in memory only; and also when the machine under investigation is using 
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encryption, i.e. data is stored in a form that cannot be understood without the correct 

decryption key. This research investigates the effectiveness of the traditional approach 

to digital investigations when encryption is involved, and examines the advantages 

and disadvantages of a live investigation as an alternative to this approach. Live 

investigations involve examining a digital system while it is still running and using 

the operating system (the software that runs on the hardware and allows other 

programs to run) of the machine being investigated to acquire, analyse or present 

digital evidence. Live investigations are permitted by Principle 2 of the ACPO 

Guidelines1 and they are useful when encryption is involved since if physical access 

can be gained to a system at a point when the suspect is accessing the encrypted 

material, the investigator may be able to take control of the machine and will therefore 

also have access to the encrypted content.  

1.2 JUSTIFICATION  

As briefly described in the previous section and investigated in detail in Chapter 4, 

encryption poses a problem for the traditional approach to digital investigations and 

live investigations offer a simple mechanism to access the encrypted data in a form 

that can later be analysed. However, there are a number of difficulties with live 

investigations which are discussed in Section 2.4.4, for example, the difficulty in 

trusting the data supplied to live tools; the inherent intrusiveness of live techniques; 

the difficulty in verifying the output of live tools; and also ensuring that no evidence 

is missed. These difficulties mean that the reliability of evidence obtained using live 

investigation techniques could be called into question and, due to the lack of research 

and understanding of the subject, could result in digital evidence from live 

investigations being used when it should not be, or it not being used when it could be; 

either way, this could potentially result in an incorrect hypothesis being accepted.  

                                                 
1 Principle 2 of the Association of Chief Police Officers’ Good Practice Guide for Computer-Based 
Electronic Evidence states, “In circumstances where it is necessary to access original data held on a 
computer or storage media, that person must be competent to do so and be able to give evidence 
explaining the relevance and the implications of their actions” (ACPO, 2007). 
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1.3 AIM  

Encrypted evidence can cause problems for traditional digital investigations and live 

investigations provide a means to access evidence while it is still in its decrypted 

form. However, as described earlier, digital evidence from live investigations is 

potentially problematic since there are a number of challenges to using it. The aim of 

this research is therefore to determine the role that live digital investigations can play 

in investigations involving encrypted evidence.  

1.4 RESEARCH HYPOTHESIS  

Given that a digital investigation formulates and tests hypotheses by examining digital 

evidence, and that digital evidence is defined as a set of reliable digital objects that 

support or refute a hypothesis, this research is concerned with determining whether 

digital evidence recovered using live techniques from systems using encryption can be 

shown to be reliable and therefore accepted as digital evidence as part of a digital 

investigation. The research hypothesis is therefore: 

 

Digital evidence obtained from live investigations involving encryption can be shown 

to be reliable. 

 

1.5 RESEARCH METHODOLOGY 

1.5.1 General Methodology 

Digital evidence can be used for a variety of purposes and the decision of whether it is 

considered reliable depends on the situation and the person or persons making the 

judgement. This presents a problem in this research for assessing the reliability of 

digital evidence from live investigations, since adopting a subjective view of the 

reliability of digital evidence makes it extremely difficult to arrive at any conclusions. 

However, as described in Chapter 3, there are existing standards and requirements for 
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digital evidence2 and therefore it is assumed that reliability can be assessed against 

objective requirements. 

Based on this assumption, Chapter 3 proposes general requirements that can 

be used to assess the reliability of digital evidence. These are validated by comparing 

them to existing requirements and checking for consistency, and also demonstrating 

how current, accepted techniques for digital investigations satisfy them. Existing 

requirements are selected for comparison on the basis that they are well established, 

peer reviewed and/or used in practice. Requirements that disagree with those 

proposed are examined further to determine the cause of the discrepancy, since the 

difference may be due to existing requirements being specific versions of more 

general requirements. Also, since the definition for digital evidence is broad and 

accommodates its use in digital investigations as well as in the field of forensic 

computing, requirements that are specifically related to use of digital evidence in 

court are not considered to be appropriate for use in general requirements. 

The requirements derived in Chapter 3 are then examined in Chapters 4-7, 

where the extent to which they can be satisfied for live investigations is determined. 

Each chapter contains its own methodology section which describes the approaches 

used. Chapters 8 and 9 evaluate and conclude about the extent to which digital 

evidence from live systems using encryption can meet the proposed requirements, and 

therefore be considered to be reliable. 

 In addition to this overall research strategy, there are also a number of research 

tools that are used throughout the testing of this hypothesis, which are described in the 

following sub-sections.   

1.5.2 Use of Virtual Machines 

Virtualisation is a technique that “lets you run multiple virtual machines on a single 

physical machine, sharing the resources of that single computer across multiple 

environments. Different virtual machines can run different operating systems and 

multiple applications on the same physical computer” (VMWare, 2009). These 
                                                 
2 They are mostly in the form of principles for forensic digital investigations. 
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‘virtual machines’ are used throughout this research. Their multiple uses in digital 

investigations are discussed in detail in Pollitt et al. (2008), but in this research they 

are mainly used to allow virtual test systems (guests) to be quickly built in different 

configurations and run on a single physical machine (host) without the need for 

multiple pieces of hardware. Virtual machines also provide the advantage of quick 

access to the hard drives of the virtual machines without needing to spend long 

periods of time creating disk images of physical drives. This is possible since the 

disks of the virtual machines are represented on the physical system’s hard drive as 

one or more files (.vmdk files in VMware) which can be opened in any forensic 

software package and are treated as physical disk images. The memory of the virtual 

machine is also represented on the host system as a file (.vmem files in VMware) and 

can also be acquired in this way. There are some limitations to using virtual machines, 

specifically the inability to virtualise some hardware (e.g. Firewire) and some 

differences when analysing images of the virtualised memory. These are discussed in 

more detail later. 

1.5.3 Use of Forensic Software to Examine Disk Images 

Throughout this research, disk images (or the .vmdk files from VMware virtual 

machines) are examined. This is performed using ‘forensic software’ and there are a 

number of products from which to choose. X-Ways Forensics was chosen as the 

primary tool since it is a fraction of the cost of EnCase and Forensic Toolkit (FTK) 

and offers all the functionality needed for this research. X-Ways Forensics can 

interpret the file systems used in this research (FAT and NTFS), allowing traversing 

of these file systems and also the recovery of deleted files. It also offers a ‘Data 

Interpreter’ function that is useful for converting embedded dates and times and other 

values. X-Ways Forensics can also be used for file comparisons and text or 

hexadecimal searches and extractions (Casey, 2004b). While EnCase and FTK are 

more commonly used for performing ‘real’ digital investigations, they offer no 

advantages in this research. 
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1.5.4 Development of Software Tools 

Also, throughout this research, software is written to perform a variety of tasks. No 

single language is used since each offer their own advantages and disadvantages. For 

example Java is used to develop Graphical User Interfaces, C is used where speed or 

low level access is a necessity, and Perl is used for text parsing and scripting routine 

tasks. 

1.5.5 Testing for Randomness 

On a number of occasions it is desirable to test for randomness, and in this case a 

variety of statistical tests are applied. Forster (2005) implements the Chi-Square test 

as part of an automated technique to identify encryption, since the technique is 

described as the only statistic that “was capable of isolating the pseudo-randomness of 

the encrypted file”. In this research an existing piece of software ENT, (Walker, 

2008), is used for testing for randomness and detecting encrypted data. ENT performs 

a variety of statistical tests for randomness including, the Chi-Square test and others: 

entropy, the reduction in size though compression, the mean value, the Monte Carlo 

value for Pi and the serial correlation co-efficient. Where these are used, they are 

discussed in more detail.  

1.6 THESIS OUTLINE 

This section describes the structure of the thesis. 

 

Chapter 2 provides a review of relevant literature and describes in greater detail some 

of the ideas introduced in this section. It discusses the differences between digital 

investigations and forensic digital investigations, which is important since additional 

requirements for evidence are imposed by the latter. It also defines digital evidence 

and discusses the importance of reliability. The traditional ‘pull the plug’ approach to 

digital investigations is also discussed, along with the challenges that this approach 

faces. One such challenge is encryption, which is discussed in detail, along with the 

approaches that can be used by investigators after the power has been removed to 
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attempt to gain access to encrypted evidence. The limitations of these approaches are 

also discussed. Live digital investigations are presented as an alternative approach, 

including the distinction between live acquisition and live analysis. Also, the 

problems with results obtained using live techniques are described.  

 

Chapter 3 explains the need to determine basic requirements for digital evidence in 

order to assess reliability. It also describes existing requirements and shows how live 

digital investigations cannot meet some of those currently in use. However, it then 

shows that some of the existing requirements cannot be considered to apply to digital 

evidence in general, since they are either specific to law or can be shown to be 

technologically specific means of satisfying other more general requirements. It is 

shown that live investigations may also be able to satisfy these general requirements. 

The chapters that follow then investigate the extent to which the derived general 

requirements of completeness, accuracy and authenticity can be satisfied for live 

investigations.  

 

Chapter 4 examines the completeness requirement and considers the likely success of 

existing offline approaches for attempting to access encrypted evidence. It also 

considers which of the approaches’ success is affected by the amount of the disk that 

remains in unencrypted form after the power is removed. Encryption products are 

categorised based on the locations on disk they encrypt, and for those categories 

where offline access is unlikely using existing approaches, it considers if a live 

investigation could offer a more complete and therefore reliable set of digital 

evidence, which would support the overall hypothesis of this research. 

 

Chapter 5 complements the previous chapter and examines how completeness could 

be adversely affected by performing a live investigation. Live tools are inherently 

intrusive and as a result could overwrite potentially relevant digital evidence. This 

chapter considers how to assess what evidence is lost by monitoring the changes 

caused to test systems when using various live investigation tools and techniques. The 
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results of testing in this way can be used to predict the data that will be overwritten 

and therefore the extent of the decrease in completeness of preserved digital evidence. 

This chapter identifies the limitations of current techniques for monitoring systems 

and develops a more comprehensive system monitoring methodology which is used to 

test a number of live tools and techniques, including running live acquisition and 

analysis tools, and also the effect of connecting to a system using various interfaces.  

 

Chapter 6 considers how the accuracy of results obtained from live investigations can 

be assessed. In traditional digital investigations, accuracy can be demonstrated since 

the techniques used are repeatable and can be performed by multiple examiners on 

multiple copies of the same digital data. In this research a distinction is made between 

the acquisition and analysis of digital evidence from live systems. The consequence of 

this is that once evidence is acquired, the accuracy of the analysis stage of a live 

investigation can be demonstrated using the same tried and tested means as current 

investigations i.e. repeatability. This chapter therefore focuses on how to assess the 

accuracy of the acquisition stage of a live digital investigation. This is achieved by 

first considering the nature of error in digital investigations, which then allows 

methods to be developed to assess this error.  

 

Chapter 7 examines how the authenticity of evidence obtained from live 

investigations can be demonstrated. In traditional digital investigations, the original 

physical evidence is always accessible and this contains the raw data from which 

digital evidence is extracted. Therefore, if the procedures used to recover digital 

evidence are thoroughly documented, it can always be shown how digital evidence 

was obtained from a physical piece of evidence that can be traced back to a person. In 

a live investigation, the original evidence may not be available after the power is 

removed; this section considers in this case how live acquired data can be 

demonstrated to originate from a particular piece of physical evidence.  
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Chapter 8 revisits the original requirements from Chapter 3 and evaluates the extent 

to which they have been satisfied in each of the previous chapters for live digital 

investigations involving encrypted evidence.  

 

Chapter 9 summarises the conclusions and contributions of this research and 

describes future work.  

 

1.7 CONTRIBUTIONS 

This research tests the hypothesis that digital evidence obtained from live 

investigations involving encryption can be shown to be reliable, and demonstrates the 

strengths and weaknesses of performing live investigations of systems using 

encryption. The outcome of this is a set of requirements, which allows the reliability 

of digital evidence to be assessed. These requirements for digital evidence are clearly 

defined and the research as a whole acts as an example of how they can be used. 

These requirements could also be used in future to assess reliability of other types of 

digital evidence. 

 Also, in this research, categories of encryption products are validated and it is 

shown what affect these have on the locations on disk that become inaccessible when 

the power is removed. It is also shown how the categories affect offline approaches to 

attempting to gain access to encrypted digital evidence. The research therefore 

provides a demonstration of the increase in the amount of preserved evidence that a 

live investigation offers over the traditional approach, providing support for the use of 

live investigations.  

 This research also demonstrates the adverse affect that live investigations can 

have on the amount of preserved digital evidence. In the course of the research, a 

methodology and software tool is developed that simplifies the process of recording 

changes made to test systems. This allows the footprints of live tools to be 

determined, which is essential in minimising the loss of digital evidence due to 

actions of an investigator on a live system. This aspect of the research also has a 

number of additional future applications, including identifying locations of forensic 
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artefacts left by software, and also in computer security research for monitoring honey 

pots.  

 This research also provides a general definition for error in digital 

investigations, which is not available in current literature. This provides direction for 

the expression of error when presenting digital evidence. This definition of error is 

used to determine how error can be minimised in live investigations. The approach to 

this involves the development of a method that allows repeatability to be used to 

demonstrate the accuracy of live acquired copies of encrypted evidence. This involves 

acquiring specific information from the system at the same time as a decrypted copy 

of the encrypted evidence, which enables offline decryption of the static encrypted 

data. This is demonstrated in two ways: using the built in GUI of BitLocker and 

recovering decryption keys from a memory dump of a system running TrueCrypt.  

 Finally, it is shown how the physical origin of live acquired data can be 

demonstrated, even if the original data is unavailable, by integrating physical 

identifiers that are available before and after ‘pulling the plug’ into the acquisition 

process. 

 Many of these contributions have resulted in peer reviewed publications. 

Obtaining recovery keys in order to allow later access to Bitlocker encrypted data is 

discussed in Hargreaves and Chivers (2007) and Hargreaves et al. (2008). The latter 

also discusses the difficulty in gaining offline access to EFS encrypted files on 

Windows Vista. The key recovery approach to demonstrating accuracy of acquired 

digital evidence is discussed in Hargreaves and Chivers (2008b), where the ‘linear 

scan’ approach to key recovery is introduced. This key recovery approach is also used 

in Hargreaves and Chivers (2008a) to demonstrate how live imaging could be avoided 

in cases where it is impractical, such as when very large amounts of data are involved. 

Both papers on key recovery also include other aspects of this research, including the 

types of offline approaches that can be used for gaining access to encrypted evidence.  
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CHAPTER 2: L ITERATURE REVIEW  

2.1 INTRODUCTION 

This background chapter has three sections. First, general background is provided for 

digital investigations and digital evidence. This is necessary since if reliability of 

digital evidence from live investigations is to be assessed, then definitions for ‘digital 

evidence’ and related terms such as ‘digital investigation’ must be clear. This section 

also discusses the challenges to the traditional approach to digital investigations. 

Secondly, one of the challenges to traditional digital investigations is discussed in 

detail: the challenge of encryption. This is introduced and approaches are described 

that can be used in attempts to gain access to encrypted digital evidence during offline 

examinations. Also, the difficulties and limitations of the approaches are described. 

Finally, live digital investigations are defined and discussed, including reviewing 

existing live investigation techniques and the challenges they face.  

2.2 GENERAL BACKGROUND 

2.2.1 Introduction 

This section introduces digital investigations and describes the specifics of forensic 

computing, both of which involve recovering digital evidence, which is also defined.  

This ‘back to basics’ section is necessary since terms such as ‘digital investigation’ 

and ‘forensic computing’ are often used interchangeably, even though there are 

important differences. The differences are particularly relevant in Chapter 3, where 

requirements for digital investigations are considered, and it becomes clear that 

different groups have different standards for judging the reliability of digital evidence. 

This section also describes the traditional ‘pull the plug’ approach to digital 

investigations since a live investigation is a different approach and it is important to 

clarify the differences. Finally, challenges to the ‘pull the plug’ approach are 

discussed which demonstrates its limitations and the necessity of a new approach.  
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2.2.2 Definitions and Digital Evidence Introduction 

Carrier (2006a) makes the distinction between a digital investigation and a digital 

forensic investigation since “many corporations and intelligence agencies conduct 

investigations and collect evidence that will not be entered into a court of law”. 

Despite ‘forensic’ meaning “of or relating to courts of law” (Oxford, 2008), the terms 

‘digital investigation’ and ‘forensic computing’3 are often used interchangeably. In 

this research a similar distinction is made as in Carrier (2006a). The following 

sections define the terms ‘digital investigation’, ‘forensic computing’ and ‘digital 

forensic investigation’. 

Digital Investigation 

Carrier (2006a) describes the goal of a digital investigation as to “make valid 

inferences about a computer’s history”, which is achieved by making observations 

and formulating hypotheses. Before hypotheses can be tested, digital data must be 

observed; but unlike the physical world it is not possible for us to view digital data 

directly and we rely on both hardware and software to report this information (Carrier, 

2006a). Therefore, before higher level hypotheses are formed about computers’ 

histories, more basic hypotheses are made stating that the observed data (reported by 

hardware and software) is equal to the actual data (Carrier, 2006a). Furthermore, as 

described in Sammes and Jenkinson (2007 p. 63), patterns of bytes can represent 

anything; meaning is only derived when rules are applied to interpret this raw data. 

Therefore, hypotheses also need to be formed which state that not only that the actual 

data is equal to the observed data, but also that the interpretation of this observed data 

is “consistent with the interpretation used to establish the patterns” (Sammes and 

Jenkinson, 2007 p.63). As described in Carrier (2006a) “at the lowest levels of 

abstraction, hypotheses will be used to reconstruct events and to abstract data into 

                                                 
3 The term computer forensics is also used. However as described in Casey (2002 p.31), this is “a 
syntactical mess that uses the noun computer as an adjective and the adjective forensic as a noun, 
resulting in an imprecise term”. The term ‘computer forensics’ will therefore not be used in this 
research. 
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files and complex storage types. At higher levels of an investigation, hypotheses will 

be used to explain user actions and sequences of events”. Therefore, a digital 

investigation makes and tests both high and low level hypotheses.  

The definition used in Carrier (2006a) for a digital investigation is “a process 

that formulates and tests hypotheses to answer questions about digital events or the 

state of digital data” (Carrier, 2006a). However, digital events occur on a system, 

often as a result of interactions with another digital device, or as a result of 

interactions with the real world. Since these interactions affect the state of the 

computer system, they too are part of the computer’s history and it is sometimes 

necessary to infer what these interactions were. For example, it is necessary to 

determine if a web site was visited because a user manually typed in the web address 

or it was opened automatically by visiting another site. As a result, a digital 

investigation may need to answer questions not only about “digital events or the state 

of digital data” (Carrier, 2006a), but also about what real world events or other 

interactions caused digital events on the computer system to occur and therefore 

digital data to have its current state. Consequently, the definition used in this research 

for a digital investigation removes references to answering specific questions about 

digital data. This change allows any hypothesis to be tested during a digital 

investigation. Instead, to define specifically a digital investigation, it is highlighted 

that to test these hypotheses, digital data is examined. In this research, a digital 

investigation is therefore defined as ‘a process that formulates and tests hypotheses 

using digital evidence’. Digital evidence is discussed later in this chapter. 

Forensic Computing & Forensic Digital Investigation 

In order to define the forensic computing field, due to its relatively recent conception, 

it is useful to begin with definitions from traditional forensic science: “strictly 

speaking, Forensic Science is the application of science to law and is ultimately 

defined by use in court” (Casey, 2004a). Forensic computing could be defined based 

on this to be ‘the application of computer science to law’. Casey (2004a p.21) takes 

the approach of broadening the definition of forensic science to “the application of 
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science to investigation and prosecution of crime, or the just resolution of conflict”. 

The purpose of using this broader definition is in order to “encourage corporate digital 

investigators to apply the principles of Forensic Science”. While this is accepted as a 

worthwhile goal, this research does not use this broader definition of forensic science 

since it contradicts the more accepted definition of ‘forensic’ (“of or relating to courts 

of law” (Oxford, 2008)) and therefore defines forensic computing as the application 

of computer science to law. Based on this definition, the term ‘digital forensic 

investigation’, used in Carrier (2006a) can be used to describe a digital investigation 

which has the ultimate purpose of recovering digital evidence that could be admitted 

to a court of law. Here the principle from the definition of forensic computing 

(application to law) is taken and applied to a digital investigation, giving the 

definition for ‘forensic digital investigation’ of a process that formulates and tests 

hypotheses using digital evidence, where the results could be admitted to a court of 

law. Forensic digital investigations are therefore specific instances of digital 

investigations, which have the additional requirement of the results being admissible 

in a court of law. 

Digital Evidence 

Definitions 

Examining the definitions in the previous section, both digital investigations and 

forensic digital investigations use digital evidence to formulate and test hypotheses. 

This section considers alternative definitions for digital evidence and demonstrates 

why the definition in Carrier (2006a) is most appropriate. It is difficult to find a 

single, agreed upon definition of digital evidence, since it has a different meaning to 

different groups involved with digital investigations and those involved with the 

specifics of forensic computing. This difference is also evident when looking at 

multiple definitions of the word ‘evidence’; one is general: as a means to determine 

whether a belief or proposition is true; the other to establish facts in a legal 

investigation (Oxford, 2008). As discussed earlier, since the ‘forensic’ aspect is 

considered here to be a specific type of digital investigation, for ‘digital evidence’ to 
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be applicable to digital investigations and their forensic counterpart, a general 

definition of digital evidence is necessary. The following examples demonstrate the 

range of definitions that exist from different groups who conduct digital 

investigations. It also explains why a general definition of digital evidence is chosen. 

The Scientific Working Group on Digital Evidence accepts members only 

from active law enforcement (Scientific Working Group on Digital Evidence, 2006) 

and their view of digital evidence tends towards the legal definition. Digital evidence 

is defined as “Information of probative value stored or transmitted in digital form” 

(Scientific Working Group on Digital Evidence, 2000). The word ‘probative’ is 

primarily a term in law meaning “affording provide proof or evidence” (Oxford, 

2008) and as a result, this definition suggests that the term ‘digital evidence’ should 

be used only in a legal context. 

Another definition that also focuses on the investigation of an offence is used 

in Casey (2004a p.12), “any data stored or transmitted using a computer that support 

or refute a theory of how an offence occurred or that address critical elements of the 

offence such as intent or alibi”. This definition also refers to evidence for legal 

purposes but does not restrict the use of digital evidence to proving an offence. It can 

also be used to support or further an investigation.  

A definition with a wider scope comes from the United Kingdom’s 

Association of Chief Police Officers. It does not use the term ‘digital evidence’ 

specifically, but defines ‘computer based evidence’ as “information and data of 

investigative value that is stored on or transmitted by a computer” (ACPO, 2007). The 

wider scope of this definition is primarily due to the vague term ‘investigative value’, 

but nevertheless it is an all encompassing definition.  

Sommer (1999) also states that in law, ‘evidence’ is “no more and no less than 

that which tends to persuade the court to a particular conclusion”. Even though this 

refers to persuading a court it does describe evidence as being used to come to a 

conclusion, which is more consistent with the general definition in Oxford (2008) of 

“determining whether a belief or proposition is true”. This is also supported elsewhere 

in Sommer (1999): “[evidence] is material which is used to establish the truth of a 
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particular fact or state of affairs” and in Miller (1992), “evidence is information used 

to decide whether disputed propositions are true”. 

A more precise definition for digital evidence that agrees with this thinking 

and avoids referring only to its use in court is presented in Carrier (2006a), which 

compliments the earlier definitions of digital investigation and digital forensic 

investigation. In Carrier (2006a), digital evidence is defined as “digital data that 

supports or refutes a hypothesis about digital events or the state of digital data”. This 

definition uses the more general definition of evidence and takes into account that 

digital evidence may be used outside of a legal or criminal investigative context and 

simply used to determine the correctness of a belief or idea. 

As discussed earlier, the specifics of hypotheses being about digital events or 

the state of digital data should be removed, since digital events are often 

representations of real events, e.g. the creation of a Windows Registry entry in 

TypedURLs is caused by the RegSetValue operation, which can be caused by a user 

typing text into the address bar of Internet Explorer. Therefore, hypotheses can be 

made not only about digital events but also the real world events that caused the 

digital events to occur. 

Also, Carrier (2005 p.4) uses a similar but slightly different definition for 

digital evidence: “a digital object that contains reliable information that supports or 

refutes a hypothesis”. This definition explicitly states that digital objects must contain 

reliable information in order to be used as digital evidence. In this research, this 

requirement is considered to be a necessary constraint, since if evidence is used to 

support or refute a hypothesis, then the use of unreliable data could lead to an 

incorrect hypothesis being supported. Therefore, since this definition specifies that 

digital objects should contain reliable information, and it does not exclude hypotheses 

about the real world, in this research a definition based on Carrier (2005 p.4) is used. 

Digital evidence is therefore defined in this research as a reliable digital object that 
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supports or refutes a hypothesis.4 However, this definition does have a limitation, 

which is the lack of clarity of the term ‘reliable’. Reliability of digital evidence is 

difficult to define and this is discussed in detail in Chapter 3. 

Abstracted nature 

A property of digital evidence that is outside the scope of its definition but is 

important to discuss, is that digital evidence is a representation of some physical 

evidence. Carrier (2003) describes that this is more than a just a simple 

physical/digital divide and explains how digital investigation tools translate data 

through multiple layers of abstraction5. This is necessary because “all data, regardless 

of application, are represented on a disk or network in a generic format, bits that are 

set to one or zero”6 (Carrier, 2003) and as Casey (2004a p.16) summarised, “we never 

see the actual data but only a representation”. Therefore, all digital objects are 

abstractions of something physical and if digital evidence is a reliable digital object 

that supports or refutes a hypothesis, digital evidence must also be an abstraction of a 

physical piece of evidence. (TechWeb, 2008) 

                                                 
4 This definition is for digital evidence (singular). Another definition of digital evidence is also 
sometimes used in this research, where digital evidence (plural) is defined as ‘a set of reliable digital 
objects that support or refute a hypothesis’. 
5 In general computer science, levels of abstraction determine “the level of complexity by which a 
system is viewed” (TechWeb, 2008) and abstraction layers in digital forensics have the same function. 
6 This statement itself is an abstraction layer and hides details of how the binary data is stored on disk. 
Ones and zeros are not stored on disk since “only a flux change can create a signal, so every bit needs 
to be implemented by some kind of flux change; usually a reversal of magnetisation” (Sammes and 
Jenkinson 2007 p.108) and as a result a number of different encoding schemes are used to represent 
patterns of ones and zeros on disks. 
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2.2.3 Traditional Forensic Computing Approach 

The traditional philosophy of forensic computing can be best summarised by the four 

principles in the ACPO Good Practice Guide for Computer-Based Evidence  (ACPO, 

2007): 

 

• No action should change data held on a computer or storage media which may 

be relied on in court. 

 

• In circumstances where it is necessary to access original data held on a 

computer or storage media, that person must be competent to do so and be 

able to give evidence explaining the relevance and the implications of their 

actions. 

 

• An audit trail or other record of all processes applied to computer based 

electronic evidence should be created and preserved. An independent third 

party should be able to examine those processes and achieve the same result. 

 

• The person in charge of the investigation has overall responsibility for 

ensuring that the law and these principles are adhered to. 

 

The guide also contains further, more detailed instructions of how to conduct searches 

at crime scenes. The ACPO guidelines include advice for encountering computers that 

are switched on or computers that are switched off. If the computer is off then the 

guide states “do not under any circumstances switch the computer on”. This is 

because when a computer starts up a number of files and their metadata are changed, 

which could overwrite potential digital evidence.  

If a computer is encountered in a powered on state then until recently (before 

ACPO Version 4 in 2007) the advice was “If no specialist advice is available, remove 

the power supply from the back of the computer without closing down any programs.” 
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(ACPO, 2003) 7. This approach has become known as the ‘pull the plug’ method and 

is a simple and effective way to preserve the contents of the hard drive of a computer 

system. It is sometimes referred to in this research as a ‘traditional digital 

investigation’. This approach does have limitations: “It is accepted that the action of 

switching off the computer may mean that a small amount of evidence may be 

unrecoverable if it has not been saved to a storage medium but the integrity of the 

evidence already present will be retained” (ACPO, 2003). This will be discussed later. 

Once the computer is in a powered off state (either encountered in that way, or 

the power was removed) the physical equipment can be removed along with any other 

material at the scene which may be relevant (diaries, notebooks, manuals etc. (ACPO, 

2007)). Further steps can be found in guidelines from the National Institute of Justice 

(2004), that describe the detail of creating an exact duplicate of the hard drive of the 

seized equipment using a write blocker, which allows an investigator to “preserve and 

protect original evidence” (National Institute of Justice, 2004) by physically 

preventing any writes being made to the original hard drive. It is this duplicate that is 

then examined for digital evidence, since the duplicate can always be shown to be 

identical to the original. This is usually achieved using cryptographic hashes, where a 

mathematical function is applied to the whole data set to produce a fixed length bit 

string (Schneier, 1996 p.30). It is computationally infeasible to change the data in a 

way that will produce the same hash.  

2.2.4 Digital Investigation Methods and Process Models 

There are a number of process models for digital investigation based around both 

investigating computer security incidents, and also law enforcement procedures. 

There are also a number of abstract models that attempt to capture the general process 

of a digital investigation that can be applied equally to corporate investigations, 

incident response and law enforcement. 

                                                 
7 This is still in ACPO 2007 but also contains “Where possible, collect data that would otherwise be 
lost by removing the power supply e.g. running processes and information about the state of the 
network ports at that time”. 
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Carrier (2002) does not explicitly present a process model, however, digital 

forensics is described as having three major phases: acquisition, analysis, 

presentation. While this is not presented in Carrier (2002) as a process model for 

digital forensics, it can be used to broadly describe the process. Acquisition is 

concerned with “sav[ing] the state of a digital system so that it can later be analyzed”. 

In the traditional forensic computing approach described in the previous section, this 

phase can include locating the physical evidence upon which digital evidence resides, 

powering off the system to preserve the contents of the hard drive, seizing the 

machine and securely transporting to a lab and then acquiring a duplicate of the 

contents of the hard drive. Analysis “takes the acquired data and examines it to 

identify pieces of evidence” (Carrier, 2002). The presentation stage “presents the 

conclusions and corresponding evidence from the investigation” (Carrier, 2002) and 

the format of this presentation will vary based on the context of the digital 

investigation (corporate/law enforcement). However, it is on the presentation of 

evidence that a decision is likely to be made about whether hypotheses are believed to 

be correct.  

 There are also a significant number of more detailed and more complex 

models (Baryamureeba and Tushabe, 2004, Carrier and Spafford, 2003, Farmer and 

Venema, 2004, Mandia et al., 2003, National Institute of Justice, 2004, Palmer, 2001, 

Reith et al., 2002, Beebe and Clark, 2005, Ciardhuáin, 2004). However, these can be 

approximately mapped to the acquisition, analysis, presentation model (see Appendix 

A) where many of the models expand stages to provide more detail. For example, 

Reith et al (2002) has preservation and collection stages which are both concerned 

with acquisition. As a result, in this research, the higher level Carrier (2002) process 

model of acquisition, analysis and presentation is used. 

2.2.5 Challenges to Traditional Digital Investigations 

This section describes some of the major challenges to digital investigations and also 

how in some cases there is a move away from the ‘pull the plug’ approach described 
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in the earlier sections, towards carrying out actions on the live system (described in 

detail later in Section 2.4). 

High Volume of Data 

“The amount of data that exists in digital form is growing rapidly” (Craiger et al., 

2005) and this rapid increase in storage capacity is considered one of the greatest 

challenges in digital forensics (McKemmish, 1999). This is because “larger disk 

capacities increase the time required for analysis and the difficulty and expense of 

collecting all disk evidence” (Adelstein, 2006).  

A related problem described in Roussev and Richard III (2004) is the 

exponential growth in storage capacity compared to the linear growth in input/output 

transfer speeds. This means that the imaging stage of an investigation remains an 

inherent bottleneck in the current forensic process.  

In addition to the problem of the increased storage capacity of individual 

machines, another issue is the number of machines that could be included in an 

investigation. This is a problem due to the limited scalability of the traditional 

forensic approach (Sommer, 2004), since for each machine that is to be included in an 

investigation, the machine must have the power removed, the hard drive imaged and 

then analysed. Home users may now have more than one computer in a household, or 

more than one per individual, resulting in an increase in the resources needed to 

conduct an investigation. In enterprise environments where investigations could span 

tens or hundreds of machines, the traditional approach is simply not feasible.  

Ubiquity of Digital Evidence 

In addition to the increase in the number of computer systems that may need to be 

included in an investigation, digital evidence can also be found on an increasingly 

diverse range of devices. Since the definition of digital evidence is a reliable digital 

object that supports or refutes a hypothesis, any device capable of storing digital data 

may contain digital evidence. These can include ‘traditional’ computer systems, 

Personal Digital Assistant (PDAs), mobile phones, digital cameras, MP3 players, 
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digital photo frames, storage media such as USB sticks, Compact Flash and Secure 

Digital cards.  

Different devices can store data in different ways and the traditional approach 

may not apply, for example, removing the power from a PDA may eventually cause a 

loss of data (ACPO, 2007).  

Evidence in Memory Only 

Another problem with the ‘pull the plug’ approach to digital investigations is that in 

some cases, evidence that is relevant to the investigation may not be stored on the 

hard disk of the computer system and may reside only in memory. Three examples of 

this are described in the following sections. 

Messaging applications 

Carvey (2004) describes a situation where a live messenger session is encountered in 

the course of responding to reports of missing children. In this case critical evidence 

from instant messaging applications could be lost if standard procedure was followed 

and the power was disconnected. By performing a live investigation, information can 

be retrieved that may be stored purely in memory such as IP addresses (as evidence of 

a direct connection initiated between instant messaging clients) and records of 

conversations which may not necessarily be logged to disk. Both types of evidence 

could be useful in furthering the investigation. 

 

Malware in memory 

It is possible for malware to reside only in the memory of a computer system. This is 

described in Burdach (2004): “sometimes the live procedure is the only way to 

acquire incident data because certain types of malicious code such as Loadable Kernel 

Module (LKM) based rootkits are loaded into memory only and don’t modify any 

files or directories.” While Burdach (2004) discusses mainly Linux systems, it also 

mentions that this also applies to Windows and “the Code Red Worm is a good 

[Windows] example where the malicious code was not saved to a file but was inserted 

into and then run directly from memory.” More recent examples are provided in Vidas 
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(2007), e.g. the SQL Slammer worm. While memory only malware may have limited 

effectiveness as it may not survive a reboot without compromising at least one 

software component that gets loaded on system boot (Hoglund and Butler, 2006 p.46), 

the possibility does exists that malware may reside in memory only, particularly on 

systems that remain powered on for extended periods of time. 

 It is also possible for defendants to use the ‘hacker’ or ‘trojan defence’ 

(Ghavalas and Philips, 2005, Vidas, 2007, Haagman and Ghavalas, 2005). For 

example, a suspect may deliberately download some malware “unrelated to material 

they are accused of possessing” (Vidas, 2007) and claim that the malware was 

responsible for that material. It may be possible to examine the hard disk and identify 

the nature of the malware and Kennedy (2006) describes how this can be done using a 

combination of antivirus software, MD5 hashes and a search for ‘triggers’ (events that 

will trigger its execution, e.g. Registry start-up locations). However, claims of 

memory only malware, or malware that has deleted itself are possible. 

Privacy Mode of Browsers 

Also, since the release of Google’s browser Chrome, which offers ‘Incognito Mode’ 

(Google, 2008) which prevents browsing and downloading histories from being 

logged, other browsers are also offering this functionality, including Internet Explorer 

8’s ‘InPrivate’ mode (Zeigler, 2008) and Firefox 3.1’s ‘PrivateBrowsing’ (Mozilla, 

2008). For Internet Explorer 8, Zeigler (2008) describes a number of pieces of data 

that are not recorded, e.g. addresses typed into the address bar. However, it also states 

that “new temporary Internet files will be deleted after the Private Browsing window 

is closed”. However, the approach in Mozilla (2008) specifically describes “not 

writ[ing] anything to disk” as one of the top level requirements, which implies that 

data needed for the session will be kept in memory only. Therefore, while some 

browsers are resorting to deleting data after the session, others are trying to implement 

a full memory only privacy mode and in these cases, pulling the plug would erase the 

only traces of recent browsing activity. 
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Size of Memory 

The ACPO (2003) guidelines state that “It is accepted that the action of switching off 

the computer may mean that a small amount of evidence may be unrecoverable if it 

has not been saved to a storage medium but the integrity of the evidence already 

present will be retained”8. However, as the sizes of RAM increase, with computer 

systems sold to home users having capacities of 4GB (Sutherland et al., 2008), the 

amount of potential evidence that is lost due to the traditional ‘pull the plug’ approach 

is significantly larger. 

Encryption 

Finally, another challenge facing the traditional digital investigation approach is the 

use of encryption as an attempt to conceal evidence from an investigation. This is 

discussed in detail in Section 2.3. 

2.2.6 Summary 

This section has defined a digital investigation as a process that formulates and tests 

hypotheses using digital evidence. This is performed by examining digital evidence, 

which is a reliable digital object that supports or refutes a hypothesis. Digital 

evidence must be shown to be reliable since if it is used to support or refute a 

hypothesis and is not reliable, this could result in an incorrect hypothesis being 

supported and ultimately an incorrect conclusion being drawn. This constraint of 

reliability is examined in Chapter 3. 

 This section has also discussed the traditional approach to digital 

investigations, where the power is removed from the system at the scene, preserving 

the contents of the disk at the expense of volatile memory. The advantages of this 

approach and how it addresses the need for digital evidence reliability are discussed 

later in Chapter 3. This section also presented the challenges that digital investigations 

currently face and specifically discussed situations where this ‘pull the plug’ approach 

                                                 
8 However, this is not in ACPO (2007) 
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is inadequate since the discarded evidence from memory is important to the 

investigation. These challenges included situations where evidence is available in 

memory only, e.g. instant messenger applications, memory only malware, and certain 

browsers’ privacy modes. Finally, this section mentioned the use of encryption, which 

is the specific context in which live investigations are considered in this research, and 

is discussed in detail in the following section. 

2.3 ENCRYPTION AND DIGITAL INVESTIGATIONS 

2.3.1 Introduction 

This section introduces encryption and describes how it causes problems for 

traditional digital investigations. The section also describes existing approaches that 

can be used to attempt to gain access to encrypted evidence. The section also explains 

how live investigations can help with the problem of encrypted evidence. 

2.3.2 Background 

According to Schneier (1996 p.1), cryptography is “the art and science of keeping 

messages secure”. However, it can be used not only to preserve the confidentiality of 

messages, but also of stored data. Encryption is a process which takes data (the 

plaintext) applies a mathematical function with a key and produces a ciphertext.  The 

reverse process, decryption, takes that ciphertext, applies a mathematical function 

with a key and produces the original plaintext.  

 Schneier (1996 p.4) describes that there are two general types of key based 

cryptographic algorithms: symmetric and asymmetric (also known as ‘public key’). In 

symmetric algorithms, the encryption key can be calculated from the decryption key 

(in most cases they are the same). In asymmetric algorithms, it is computationally 

infeasible for the decryption key to be derived from the encryption key, allowing one 

of the keys to be public without compromising the other. 

 Using these principles it is possible to encrypt network traffic, specific 

communications technology such as e-mail and also to prevent access to files stored 

on a media (Denning, 1999 p.306). It is this latter use with which this research is 
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concerned. Cryptography has many legitimate uses, and as stated in Wolfe (2003), 

“no investigator should make any judgement as to innocence or guilt merely because 

the suspect has chosen to protect his or her privacy using data encryption”.  

However, encryption can be used by the criminal elements of society to 

conceal evidence of crimes. Therefore, if encrypted material is encountered in the 

course of a digital investigation, it is usually desirable to gain access to the contents 

since “it is likely that many encrypted files will contain evidence as it is usually 

incriminating or unlawful material that suspects seek to hide in this way” (Forster, 

2005). Since it is desirable to access all parts of the disk to search for digital evidence 

that supports or refutes hypotheses, the use of encryption by the suspect has the 

potential to impede or even stop an investigation and certainly “has the effect of 

frustrating enquiries in the immediate period following the arrest of suspects and the 

seizure of computer equipment” (Home Office, 2006). The point is also made in 

Denning and Baugh (1999) that “even when decrypted material has little or no 

investigative value, considerable resources are wasted in reaching that determination”. 

Also, the use of encryption is increasing. A report from the Home Office 

(2006) states that in the two to three previous years “investigators have begun 

encountering encrypted and protected data with increasing frequency”. Several 

examples are provided where encrypted data has adversely affected investigations: 

 

Suspect charged with possession of a collection of images including extreme 

level 4 images (penetrative adult abuse) of babies and some level 5 images 

(sadism and bestiality). Encrypted files were seized that the police cannot 

access, giving rise to concern they may contain worse material. 

 

Suspect charged with possession of a huge amount of level 1 images (erotic 

posing with no sexual activity). These images were protected insecurely and 

were made intelligible. Other data remains encrypted and unintelligible. 

 

Three individuals were convicted for possession and making of indecent 

images. All were in possession of encrypted data to which they claimed to have 
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forgotten their passwords. That protected data and the imagery contained in it 

remains unintelligible. 

 

Mr A was convicted of attempting to procure a child aged 10 for sex and 

sentenced to three years imprisonment. He was in possession of encrypted files 

that remain unintelligible. 

 

Mr B was suspected of possession of indecent images. He was found to be in 

possession of 27 encrypted disks, none of which could be opened. 

 

Two individuals possessed a set of encrypted disks. Only a few of these could be 

accessed. They were sentenced on the basis of these. The rest remain 

unopened. 

 

There are also a number of examples in Denning and Baugh (1999) of the use of 

cryptography in cases involving criminal activity and terrorism. Those described 

below specifically describe where investigations have been “derailed” by the use of 

encryption. 

 

At one university,  the  investigation  of  a  professor  thought  to  be  trafficking  

in  child pornography was aborted because the campus police could not decrypt 

his files. 

 

An  employee  of  a  company  copied  proprietary  software  to a floppy  disk,  

took  the  disk home,  and  then  stored  the file  on  his computer encrypted 

under PGP. Evidently, his intention was to use the software to offer competing 

services, which were valued at tens of millions of dollars annually (the software 

itself cost over $1 million to develop). At the time we heard about the case, the 

authorities had not determined the passphrase needed to decrypt the files. 

Information contained in logs had led them to suspect the file was the pilfered 

software. 
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At Senate hearings in September 1997, Jeffery Herig, special agent with the 

Florida Department of  Law  Enforcement,  testified  that  they were  unable  to 

access protected files  within  a personal finance program in an embezzlement 

case  at  Florida  State University.  He  said  the  files  could  possibly  hold  

useful information  concerning  the  location  of  the  embezzled  funds. 

 

[It is] also reported that they had encountered unbreakable encryption in a US 

customs case involving an illegal, world-wide advanced fee scheme. At least 

300 victims were allegedly bilked out of over $60 million. Herig said they had 

encountered three different encryption systems. Although they were able to 

defeat the first two, they were unsuccessful with the third. The vendor told them 

that there were no back doors. 

 

As these cases show, stored data that is encrypted may not be accessible to an 

investigator. The following section describes methods that can be used when 

attempting to gain access to encrypted evidence in the course of a digital 

investigation.  

2.3.3 Addressing the Problem of Encrypted Evidence 

This section discusses possible approaches that can be used by those carrying out 

traditional digital investigations to attempt to gain access to encrypted evidence. 

Countermeasures to each approach are described in order to demonstrate the 

difficulties and limitations. 

Persuade or force the suspect to hand over their keys 

“The simplest and easiest method of overcoming encryption is to ask the suspect for 

the password(s)” (Craiger et al., 2005). As a result, any interview process should 

include asking the suspect for any passwords and encryption keys that are needed to 

access their system (Wolfe, 2003) as suspects may co-operate “as part of a plea 

bargain” (Denning and Baugh, 1999).  
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However, many suspects may decide not to reveal their passwords or could 

claim to have forgotten them (Barrett, 2005) and as a result in the UK, an offence has 

been created for failing to provide access to protected electronic information.9 This is 

described in Part III of the Regulation of Investigatory Powers Act (2000) (RIPA) 

which makes it a criminal offence not to provide decrypted versions of encrypted files 

or the keys10. Legislation such as this may have limited effectiveness since many of 

the crimes that could be concealed by encryption carry longer sentences than refusing 

to disclose encryption keys: the maximum sentence for which in cases of national 

security is five years, or two years in other cases. Furthermore, technical means such 

as duress keys can be used whereby two keys can be used to decrypt data; one will 

reveal the true content, whereas the second ‘duress’ key reveals some prearranged 

innocent content.  

Locate unencrypted copies of the encrypted data 

During the encryption process, if the original data is deleted rather than wiped it may 

be possible to recover parts of the original copy of a now encrypted file 

(Zimmermann, 1998 p.159). More subtly, an encrypted file may have been written to 

disk during memory swapping operations, backed up to another media or stored 

temporarily on the disk in an unencrypted form while being processed (Casey, 

2002b). This is based on the premise that data cannot be processed while it is 

encrypted so must exist in a plaintext form to be manipulated in any complex way 

(Denning, 1999 p.309). 

 The success of this approach depends on the availability of locations in which 

unencrypted copies of data may be stored. As will be shown in Chapter 4, different 

                                                 
9 Barrett (2005) discusses legislation such as RIPA Part III as one of a number of policy options, and 
concludes that it is the best solution rather than “outlaw the use of strong encryption”, “[allow] only 
those forms of encryption which are sufficiently weak or are implemented with backdoors so as to 
allow law enforcement to gain access”, “allow strong encryption but require that pass-phrases (or the 
keys themselves) be lodged with some central, trusted escrow agent”. 
10 Part III was originally not activated but came into force on 1st October 2007 under Regulation of 
Investigatory Powers Act 2000 (Commencement No. 4) Order 2007 and was used in a recent case R. v 
S & A [2008] EWCA Crim 2177 
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categories of encryption software can affect this, with some categories making the 

success of this approach unlikely. 

Locate copies of the key or passphrase on the disk or in the surrounding area 

An alternative to searching for the original data on the system is to attempt to locate 

the keys or passphrase on the disk or in the surrounding physical area. The success of 

this relies on the suspect recording the password somewhere to avoid forgetting it, 

encryption software writing the key to RAM which is then written to disk (Craiger et 

al., 2005) or the key being written to a temporary file in some other way. Automated 

tools such as the Forensic Toolkit (FTK) from Access Data (2008a) can generate a full 

list of all keywords on a suspect disk which can be imported into the Password 

Recovery Toolkit (Access Data, 2008b) which will try all the extracted keywords as 

passwords for encrypted data. Using this approach “if the user purposefully or 

unintentionally stored their pass phrase on disk or an application wrote the pass phrase 

to disk, it will be available in the keyword list” (Casey, 2002b). Also, users often use 

the same password for several accounts (Craiger et al., 2005) which may increase the 

chances that a residual copy could be found on the system and also “it may be useful 

for an agency to attempt to (legally) break passwords for other accounts to which the 

suspect has access to determine if the suspect uses a guessable password” (Craiger et 

al., 2005). Keys can also be backed up to various media. For example, BitLocker 

recovery keys can be displayed on screen, printed, saved to a USB drive or any other 

folder (Microsoft, 2006b) and locating these would allow investigators access to 

encrypted data since they are provided for the purpose of recovering encrypted data in 

case a user loses their USB key or forgets their PIN (Microsoft, 2006a). 

Therefore, in terms of countermeasures and precautions that a suspect could 

take, if large proportions of the disk have been encrypted and are inaccessible, it is 

less likely that copies of the passphrase or key will be found on the disk. If this is the 

case and keys have not been written down or backed up to insecure media then this 

approach is unlikely to be successful. 
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Intelligent password attacks 

This approach is based on the theory that “most people do not construct their keys in a 

way that makes them difficult to guess. Their main concern is being able to remember 

the keys themselves” (Wolfe, 2002). Users will often use passwords that have 

personal meaning since these are the easiest to remember, e.g. birthdays, 

anniversaries, names of children or pets etc. (Craiger et al., 2005). Automated tools 

can be used which will try common passphrases and passwords derived from a 

suspect’s personal details gathered during the investigation. These tools can also use 

standard and customised dictionaries in different languages. Many can be downloaded 

from the Internet that are specific to the user’s interests, e.g. sports teams, characters 

from TV, film and literature etc. (Craiger et al., 2005) These passwords can also be 

tried in various combinations and permutations (Casey, 2002b). 

Careful selection of passwords and passphrases will defeat intelligent 

password attacks and there is a great deal of literature on selecting appropriate hard to 

guess passwords such as Keith et al. (2006) which suggests not using dictionary 

words, or indeed anything that would be in any precompiled dictionaries and to make 

the password as long as possible. There are also encryption solutions that offer the 

facility to avoid using passwords or to supplement them with multi-factor 

authentication. For example, TrueCrypt allows the use of ‘key files’ where one or 

more files’ content is processed and combined with the user’s password to produce a 

key.  

Exhaustive key search 

It is possible to use automated tools to try all possible keys in an attempt to recover 

encrypted data. However, “as strong encryption becomes more widely used by 

criminals, it is infeasible to attack the encryption directly using brute force methods” 

(Casey, 2002b) and other methods should be attempted before resorting to a brute 

force approach (Casey, 2004a p.270). For example, the key size of the Advanced 

Encryption Standard (AES) is up to 256 bits, giving 1.16 x 1077 possible keys. Since 

no recent information could be found on time estimates for brute forcing modern 
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algorithms, a simple test was conducted and a brute force tool was developed with no 

optimisation and was capable of testing 267,000 keys per second11, meaning that to 

try all possible keys would take 1.38 x 1064 years. Therefore, if a suitably large key 

has been used then the chance of the keys being identified in a time that is useful is 

extremely unlikely.  

Vulnerabilities in an implementation 

It may be possible to use vulnerabilities in a particular encryption product 

implementation to recover information from an encrypted file. Some products contain 

‘back doors’ which allow the vendors to assist users in recovering data if their keys 

are lost (Wolfe, 2003). In the appeal of United States v Hersh [2002], the court heard 

that F-Secure provided law enforcement with partial source code allowing an 

encrypted container to be partially interpreted so that the names of the encrypted files 

were visible. In this case the names were consistent with the names of known child 

abuse images.  

If the suspect has used Open Source Software, provided it is up-to-date, then 

the chances of there being undiscovered, unfixed vulnerabilities are much lower 

(Raymond, 2001 p.31). The use of Open Source Software also means that any 

deliberate code introduced into a piece of software to provide a ‘backdoor’, would be 

public and the software would either be avoided or fixed. 

                                                 
11 The brute forcing program was developed in the course of this research in C and tried 28,836,257 
keys in 1 minute 48 seconds on Windows XP, SP3 on an Intel Core 2, 1.86 GHz with 2GB of RAM. 
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Cryptanalysis  

Cryptanalysis is described as “the science of recovering the plaintext of a message 

without access to the key” (Schneier, 1996 p.5). Schneier (1996 p.5) describes six 

general types of cryptanalysis which are summarised below. 

 

Cipher text only: the cryptanalyst has access to several cipher texts of different 

plaintexts that have been encrypted with the same algorithm and key. 

 

Known plaintext: the cryptanalyst has access to the cipher text of several 

messages and also the original plaintexts. 

 

Chosen plaintext: The cryptanalyst is able to choose the plaintext that gets 

encrypted. 

 

Adaptive chosen plaintext: The cryptanalyst is able to choose the plaintext that 

gets encrypted and then submit further plaintexts for encryption based on 

previous results. 

 

Chosen cipher text: The cryptanalyst can choose different cipher texts to be 

decrypted and then has access to the plaintexts. 

 

Chosen key: The cryptanalyst chooses a relationship between a pair of keys, 

but does not know the keys themselves. The same plaintext is encrypted with 

both keys.  

 

Most current encryption products use public algorithms that have been, and are 

subjected to extensive research and scrutiny. For this reason, in this research, the 

encryption algorithms used are considered to be secure and cryptanalysis is not 

considered a viable option for data recovery. 



  Chapter 2 

 

 34 

  

  

Surveillance 

Either hardware or software surveillance techniques can be used to monitor a system 

in order to record the pass phrase that allows access to encrypted data. This can be 

used when a suspect is highly unlikely to co-operate. 

Software Surveillance 

Software surveillance techniques include key loggers and screen scrapers 

which record keyboard entry or the output of a graphics card respectively. 

These can be used to capture passwords or record the values in drop down 

menu based pass-code entry. Software based surveillance can capture 

information only after they have been launched. Since most are installed at the 

operating system level they are unable to capture passwords entered early on 

in the boot process (Wolfe, 2002). 

Hardware Surveillance 

Hardware key loggers are physical devices that sit between the computer and 

the keyboard and will capture any keyboard entry no matter what state the 

system is in (Wolfe, 2002). The captured passwords can either be stored in the 

device or transmitted on a designated radio frequency (Wolfe, 2002). Such 

devices can be obtained easily online or even high street shops for under £50 

(Maplins, 2008).  

 

Wolfe (2002) also points out that surveillance can take place before or after the initial 

seizure. The example is given of the former is United States v Scarfo [2001] where a 

key logger was installed on his machine covertly before the seizure in order to capture 

encryption passwords. In the latter, the machine is seized, imaged and then returned to 

the suspect with an installed key logger. In an unspecified case: “within three hours of 

returning his machine, the authorities had the needed keys and were then able to 

unlock the evidentiary copy of the encrypted hard disk” (Wolfe, 2002). 
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In the post-seizure case, surveillance could be defeated by a suspect who is 

aware not to enter their passwords after law enforcement has had unrestricted access 

to their machine. In the pre-seizure case hardware surveillance could be countered by 

exercising vigilance for suspicious devices attached to the system. Software 

surveillance could be detected by monitoring for suspicious processes and using both 

keyboard and mouse entry for pass phrase entry. The use of multi-factor 

authentication may also reduce the effectiveness of the surveillance approach. 

2.3.4 Summary 

As described in previous sections, the use of encryption by a suspect could present 

difficulties for those conducting digital investigations. Also the use of encryption is 

believed to be increasing. As shown in the previous section, there are a number of 

approaches for attempting to gain access to encrypted digital evidence, but there are 

countermeasures for each of the approaches.  

Another option available in some cases that was not covered in the previously 

discussed approaches is the use of ‘live investigations’. Live digital investigations are 

discussed in detail in the following section. 

 

2.4 LIVE DIGITAL INVESTIGATIONS 

2.4.1 Introduction 

This section defines live digital investigations. This is followed by examples of 

situations where live investigations are currently used and specific techniques are 

discussed in detail, including live acquisition and live analysis. In addition, when 

discussing analysis techniques, the nature of volatile memory and Windows operating 

system memory management are described. 

2.4.2 Defining Live Digital Investigation 

Section 2.2.3 described the traditional approach to a digital investigation, where the 

power is removed from a system in order to preserve the contents of the disk, but this 
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is at the expense of live memory. However, as previous sections have shown, some of 

that information located in memory could be useful or even essential for an 

investigation. 

 As described in Vidas (2007), “upon arriving on scene, a responder has two 

core choices, either interact with the system, or pull the plug”. A live investigation 

involves interacting with the system and takes into account the potential usefulness of 

volatile data that would be lost due to the ‘pull the plug’ approach. There are a 

number of definitions that highlight the difference between a live investigation and 

the traditional pull the plug approach (sometimes referred to as a ‘dead’ investigation, 

to complement a ‘live’ investigation). 

According to Carrier (2005 p.5), “A dead analysis occurs when you are 

running trusted applications in a trusted operating system to find evidence” and a live 

analysis is defined as “when you use the operating system or other resources of the 

system being investigated to find evidence.” However, in some cases this second 

definition conflicts with the first. In the case of bootable Linux CDs, the hardware of 

the suspect system is used, i.e. the resources of the system being investigated, but the 

investigation is also being performed in a trusted operating system using trusted 

applications, so from these definitions it is unclear where bootable Linux CDs would 

fit. 

Another definition from Mandia et al. (2003 p.27) simply states that “a live 

response is conducted when a computer system is still powered on and running.” This 

would suggest that a bootable Linux CD is indeed a live investigation.  

Carrier (2006b) offers another explanation of the terms ‘live’ and ‘dead’ 

analysis. Here “live analysis techniques use software that existed on the system during 

the time frame being investigated.” Carrier comments that using this definition, due to 

the fact that many hardware devices contain software (hard disk firmware), even 

imaging a disk on a trusted analysis machine would constitute a live investigation. In 

this research, the software embedded in hard disk controllers is ignored and disk 

imaging is not treated as a live investigation. Therefore, if the use of hardware and the 

software embedded within it is not considered to be a live investigation, since these 
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are the ‘other resources’ that are used by a bootable Linux CD, it does not constitute a 

live investigation either. As a result, a modified definition of using the operating 

system of the system being investigated to acquire, analyse or present digital 

evidence12 will be used to describe a live investigation. 

2.4.3 Current Live Investigation Techniques 

This section describes current live investigation techniques. Considering the high 

level view of the digital investigation process discussed in Section 2.2.4 (acquisition, 

analysis and presentation), first, tools are discussed that are referred to as ‘live 

investigation tools’, since they perform multiple stages of a digital investigation, 

acquiring and analysing data on the live machine. Following this, live acquisition 

tools are discussed, which just acquire data13. Live acquisition tools are discussed in 

terms of live disk acquisition and live memory acquisition. Also discussed are 

memory analysis tools, which are not usually run on the live system and are therefore 

not live tools, but they are important for analysing live acquired data from memory. 

However, analysis of live acquired disk images is not discussed as it uses the same 

analysis techniques as a standard digital investigation. 

Live Investigation Tools 

There are a number of live investigation tools that can be used to acquire and analyse 

information on a live system. The methodology for running such tools is best 

described in Wait (2008). This involves:  

 

1) establishing a trusted command prompt,  

2) establishing a method for transmitting and storing the collected information,  

3) running various tools and creating hashes of the output. 

                                                 
12 Note the removal of ‘or other resources’ from the Carrier (2005) definition and the substitution of 
‘find evidence’ with ‘acquire, analyse and present digital evidence’. This is to reflect the high level 
process model of acquisition, analysis and presentation used to describe a digital investigation. 
13 Live presentation tools are not discussed in this research as it is not a common term. However, by the 
definition used in this research, using VMware to boot a copy of a suspect’s machine to present as 
evidence in court would constitute a live presentation. 
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There are many tools that can be used in this way to gather information about a live 

system’s configuration and they are often grouped together into toolkits. They can 

also be scripted and written to CD so that the same tools are run in the same order for 

each investigation, e.g. FirstOnScene.vbs (Monday, 2004). Mandia et al. (2003, p.97, 

p.127) describes the live investigation tools for both Windows and Unix that should 

form the basis of any incident response toolkit. Table 1 shows the tools that are 

described as being essential for a Windows incident response toolkit. 

 
 

Tool Description Source 

cmd.exe A trusted copy of the command prompt. This will 

change for different versions of Windows. 

Built in 

PsLoggedOn A utility that shows all users connected locally and 

remotely. 

www.foundstone.com 

Rasusers A command that shows which users have remote-

access privileges on the target system. 

NT Resource Kit (NTRK) 

Netstat A system tool that enumerates all listening ports and 

all current connections to those ports. 

Built in 

Fport A utility that enumerates all processes that opened any 

TCP/IP ports on a Windows NT/2000 system. 

www.foundstone.com 

PsList A utility that enumerates all running processes on the 

target system. 

www.foundstone.com 

ListDLLs A utility that lists all running processes, their 

command line arguments, and the dynamically linked 

libraries (DLLs) on which each process depends. 

www.foundstone.com 

Nbtstat A utility that lists the recent NetBIOS connections for 

approximately the last 10 minutes. 

Built in 

Arp A system tool that shows the MAC addresses of 

systems that the target system has been 

communicating with, within the last minute. 

Built in 

Kill A command that terminates a process. NTRK 

Md5sum A utility that creates MD5 hashes for a given file. www.cygwin.com 

rmtshare A command that displays the shares accessible on a 

remote machine. 

NTRK 

 

Table 1: Live tools necessary to investigate a Windows system (Mandia et al. 2003, p.97) 



  Chapter 2 

 

 39 

  

  

 

One of the most popular collections of incident response tools is the Helix Live CD (e-

fense, 2008). This contains the tools described earlier and also specific toolkits that 

package together the tools. Helix 1.9a contains the following toolkits: Windows 

Forensic Toolchest (WFT), First Responder’s Utilities (FRU), Incident Response 

Collection Report, Agile Risk Management’s Nigilant32 which run the tools listed in 

Table 2.1 and various others. 

Live Acquisition: Disk 

The tools described above report specific information about a system, whereas disk 

acquisitions are traditionally bit stream copies of the entire drive of a system. 

However, Turner (2006) discusses alternatives to full disk acquisition and describes 

that there are multiple selective acquisition techniques: manual selective acquisition 

(the investigator chooses individual files for acquisition), semi-automatic selective 

imaging (investigator decides file types to acquire), automatic selective imaging 

(investigator selects only source and destination and evidence is automatically 

acquired according to pre-configured parameters related to the investigation). These 

will be discussed further in Section 4.2. 

There are a number of tools that can be used to acquire data from the disk of a 

live system. For example, on the Helix Live CD (e-fense, 2008), dd and FTK Imager 

are supplied. dd is a command line tool that can be used to acquire physical and 

logical drives. The version on Helix is part of George Garner’s Forensic Acquisition 

Utilities (FAU) (Garner, 2007). dd can be invoked using commands such as those 

shown below, which acquire the entire physical drive, and the C:\ partition 

respectively. 

 

dd if=\\.\PhysicalDrive0 of=E:\physical.dd  

dd if=C:\ of=E:\logical.dd 
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FTK Imager is a tool from Access Data (Access Data, 2007) that provides a Graphical 

User Interface for acquiring physical drives, logical drives and the contents of folders, 

as shown in Figure 1. 

 

 
Figure 1: Screenshot of FTK Imager 

 

There are also other versions of dd with purposes specifically described as forensic 

acquisition, for example dcfldd (US Department of Defence Computer Forensic Lab 

Version) (Harbour, 2006). However, no tool currently implements the Semi-automatic 

or Automatic Selective imaging techniques discussed in Turner (2006). These tools 

can also be used to image virtual file systems, but not mounted network drives (unless 

they are copied as ‘contents of a folder’ using FTK Imager).  

 It is also possible to use these live disk acquisition tools to obtain decrypted 

copies of data that would otherwise be encrypted. Due to the nature of a live 

investigation (‘uses the operating system of the system under investigation’), if 

encrypted data is available to the operating system then it will also be available to live 

investigation tools and can be copied to external media. 
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Live Acquisition: Memory 

In addition to live acquisition of disks, it is also possible to acquire the live memory of 

a system. There are a number of techniques for achieving this: 

 

\\.\PhysicalMemory (user mode): Similar to \dev\memory in Linux, this object 

provides access to the physical memory of Windows XP (Vidstrom, 2006a). This can 

be accessed and copied using user-mode programs such as a modified version of dd 

(Carvey, 2007b). This has the advantage that no software needs to be installed on the 

system under investigation (Schuster, 2005). However, the main practical problem 

with this approach is that it requires administrator privileges on the live suspect 

machine (Schuster, 2005). User mode access to the \\.\PhysicalMemory object is also 

not possible unavailable under Windows Server 2003 SP1 onwards, including 

Windows Vista (Schuster, 2005).  

 

\\.\PhysicalMemory (kernel mode): Recently a number of options have become 

available that overcome the problem of lack of user mode access to the 

\\.\PhysicalMemory object. These allow imaging of the memory of a Windows Vista 

machine using a kernel mode driver to access the \\.\PhysicalMemory object 

(Schuster, 2008b). There are a number of implementations of this (Schuster, 2008b): 

 

WinEn: This is included with EnCase versions 6.11 onward. It is also included 

on the latest version (2.0) of the Helix Live CD (e-fense, 2008). 

 

mdd (Stotts, 2008): The Memory DD tool from ManTech is open source and 

available on SourceForge (ManTech, 2008).  

 

win32dd (Suiche, 2008b): This tool is also open source but uses more kernel 

mode functions, including writing the output file, rather than mdd, in which 

“the [kernel] driver is only used to get \Device\PhysicalMemory handle 

(Suiche, 2008a). 
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Firewire (IEEE 1394): Firewire devices use Direct Memory Access (DMA) meaning 

they can access the memory of a system without using the CPU (Carvey, 2007b). 

Bolieau (undated) describes a way to use this property to obtain an image of a 

machine’s physical memory. This approach allows imaging of memory, even if a 

machine is locked. However, the technique is more difficult to configure and use than 

the \\.\PhysicalMemory tools and the target system must have a working Firewire 

port. There are also documented problems in Vidstrom (2006b), e.g. dumping the 

Upper Memory Area (UMA) and it can cause a fatal error and blue screen if non-

existent memory addresses are accessed (Schuster, 2008a).  

 

Process Memory Acquisition Tools: In addition to the acquisition of full memory 

dumps there are also software tools that can dump the memory used by a specific 

process. Examples of such tools include pmdump (Vidstrom, 2002) and userdump 

(Microsoft, 2007c). 

 

Cooling + Reboot: This approach is described in Halderman et al (2008) and explains 

that even though data in RAM does decay when the power is removed, “retention 

times can be increased by cooling” (Halderman et al., 2008). By cooling RAM chips 

to -50ºC using an inverted can of compressed air and using a warm or cold reboot, the 

bit deterioration may be reduced sufficiently so that by rebooting the system to a 

custom operating system with a minimal memory footprint (network based or on 

USB) the contents of RAM can still be imaged, albeit with some bit errors. This has 

the advantage of providing a trusted operating system in which to perform imaging. 

At time of writing the tool from Halderman et al (2008) (ram2usb) was not available 

but an alternative that uses the same principles is available from McGrew (2008). 

There are also additional problems to the bit errors: it is possible that the machine has 

been configured not to boot to network or USB, preventing an operating system from 

being loaded that can perform the memory imaging. It is also possible that the 

machine may perform a destructive memory test when restarting. As a result, there are 
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a number of variables that affect whether data from memory can be recovered using 

this technique and at present this remains an experimental approach.  

 

Cooling + Physical Removal of RAM Chips: This approach is also described in 

Halderman et al. (2008) and uses the same cooling approach. At -50ºC data is 

described to persist for several minutes, allowing the RAM chips to be physically 

removed from the system and placed in a second machine. This second system would 

be booted to an operating system with a minimal memory footprint which may allow 

previous memory contents to be acquired. This solves the problem of the suspect 

machine not booting to network or USB and a system can be used that does not 

perform a destructive memory test. However, it would require a compatible system in 

which to place the RAM chips.  

 

Crash Dumps: A system can be configured in advance through the Windows Registry 

or Start-up and Recovery settings to create a full dump of its memory to disk on a key 

press (on PS\2 keyboards14) (Microsoft, 2007e). This has the significant advantage 

that the entire system is halted when the contents of RAM are being written (Carvey, 

2007b), this means that this is a true ‘image’ of memory rather than a ‘smear’, since 

the data is not constantly changing as it is being copied. However, it is necessary to 

reboot the system for the Registry change to take effect (Microsoft, 2007e) and as a 

result is unlikely to be practically of use since systems are unlikely to be found in this 

configuration. There is also a further limitation described in Huebner et al. (2007) that 

“the key sequence used to generate the crash dump is insecure and could be 

intercepted by an application program”. 

 

Hibernation File: When a Windows system is put into hibernate mode, the system’s 

state is stored in hiberfil.sys file. Using the Sandman Framework the hibernation file 

can be converted to a flat, dd style image (Suiche and Ruff, 2008). Using the 

                                                 
14 It can also work with USB keyboards but only on Windows Server 2003 and it is necessary to install 
a hotfix for Kbdhid.sys driver 
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hibernation file to obtain an image offers the significant advantage that the system is 

completely stopped, so the acquired memory image is completely coherent and does 

not suffer the same ‘smearing’ as other techniques. Since the hibernation file is 

examined offline, it is not possible for malware to hide from an analysis. It is also 

counterproductive for malware to prevent itself from being written to the hibernation 

file as the malware would then not resume running when the system restarts from the 

hibernation file  

However, if the system’s power is disconnected and the hibernation file later 

imaged, the hibernation file may be significantly out of date; alternatively, the 

investigator intentionally putting the system to sleep will overwrite data in the current 

hibernation file on the disk. Ruff and Suiche (2007) also states that there is “no 

guarantee that 100% of physical memory has been saved”. Also, as will be seen in 

Chapter 4, the hibernation file is not available when certain types of encryption 

product are in use. 

 

Hardware Devices: Carrier and Grand (2004) describes a PCI card that can be fitted 

to a PC which can dump memory to an external storage device. Since this approach is 

hardware based it does not rely on potentially untrusted code. However, the hardware 

needs to be installed before an incident occurs (Carvey, 2007b) and as a result this is 

unlikely to be an option. 

Memory Image Analysis: Introduction to Memory and Memory Structures 

While live investigation tools described earlier can be used on a live machine to 

acquire, analyse and present information about the system, more recent approaches to 

live investigations separate out the acquisition of data from live systems and the 

analysis and presentation of the information (Walters and Petroni, 2007). The state of 

the art of memory analysis techniques is discussed in the next section and this section 

provides the necessary background. This section describes the nature of Random 

Access Memory (RAM) in physical terms and also in terms of how data is organised 

logically by the Windows operating system. 
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Physical: 

Random Access Memory (RAM) has two main types, static and dynamic. Dynamic 

RAM, which is used in modern computers as the main temporary storage consists of a 

collection of ‘cells’, where each cell contains a transistor and capacitor (Tanenbaum, 

1999 p.152). These capacitors charge and discharge, representing the binary values of 

one and zero. The capacitors will discharge naturally and in order to maintain a state 

of one, each must be refreshed every few milliseconds (Tanenbaum, 1999 p.152). It is 

for this reason that when the power is disconnected from a system the data in memory 

is lost. 

 

Logical Organisation: 

Computers are “electronic devices capable of storing and processing information in 

accordance with a predetermined set of instructions” (Oxford, 2008). These 

predetermined set of instructions are referred to as ‘programs’ and when they are run 

on a computer they are organised in memory as processes (Russinovich and Solomon, 

2005 p.6). Each process is a “container for a set of resources used when executing the 

instance of the program” (Russinovich and Solomon, 2005 p.6) and each is assigned 

memory in which to execute and store data.15 

 Processes do not generally access addresses in physical memory directly. 

Instead, each process is assigned its own ‘virtual memory’ space. This provides each 

process with “the illusion of having its own large, private address space” (Russinovich 

and Solomon, 2005 p.14) and allows the operating system to control and protect 

memory locations, ensuring that processes do not overwrite the operating system or 

each other’s data. When accessed, these virtual addresses are converted into the 

physical addresses of the computer’s memory by the system’s memory manager. The 

virtual address space is divided into blocks that are referred to as ‘pages’ (default size 

                                                 
15 Processes do not actually run, since only threads can run (Florio 2005). Processes contain one or 
more threads which are scheduled and executed by the system. However, processes are discussed in 
this section on memory structures since all threads of a process shares the process’s virtual address 
space (Russinovich and Solomon, 2005 p.13). 
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4k) and the references used to map virtual addresses to physical memory addresses are 

stored in Page Tables (Russinovich and Solomon, 2005 p.425). 

These virtual addresses may map not only to physical memory, but can also 

reference data stored on disk in ‘page files’. These page files exist since “most 

systems have much less physical memory than the total virtual memory in use by the 

running processes” (Russinovich and Solomon, 2005 p.15). To overcome this 

problem, pages from memory that are not currently in use can be written to page files 

stored on disk which frees up pages in memory for processes currently executing. 

Stored data in page files can be paged back into memory when needed. 

Each process is represented in memory by an Executive Process or 

EPROCESS block (Russinovich and Solomon, 2005 p.289). An EPROCESS block 

contains a number of pieces of information and also pointers to other data structures; 

full details are provided in Maclean (2006) and Russinovich and Solomon (2005 

p.291-293). A summary of important offsets in the EPROCESS block that are 

referenced in this section is shown in Figure 2. 

 

 
Figure 2: Simplified structure of an EPROCESS block describing locations of important information in Windows XP SP2. 

 

As shown in Figure 2, the EPROCESS block contains various pieces of information 

about the process, including the Process ID and links to the previous and next process 

(a double linked list (Florio, 2005)). The first part of the EPROCESS block contains a 
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sub-structure, a Kernel Process (KPROCESS) block or Process Control Block (PCB). 

This also contains information about the process, including a pointer to the start of the 

process’s Page Directory (Russinovich and Solomon, 2005 p.428). 

Each process has a single Page Directory, which keeps track of all Page Tables 

for that process. The Page Directory contains Page Directory Entries (PDEs) which 

point to the locations of Page Tables for the process (Russinovich and Solomon, 2005 

p.428). Page Tables then contain Page Table Entries (PTEs) which point to the correct 

page in physical memory. A 32-bit virtual memory address therefore has three 

separate components:  

 

1) The Page Directory Index (10 bits) which finds the Page Directory Entry that 

points to the correct Page Table. 

2) The Page Table Index (10 bits), which locates the correct Page Table Entry which 

points to the desired page in physical memory.  

3) The Byte Index (12 bits), which points to the desired byte in the selected page in 

physical memory.  

 

This is shown diagrammatically in Russinovich and Solomon (2005 p.427) and a 

simplified version is shown in Figure 3. 
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Figure 3: The relationship between Page Directory, Page Tables, and Pages of physical memory. 

 

In addition to the Page Tables that keep track of a process’s virtual memory, there is 

also another data structure that has a similar function. The EPROCESS block also 

contains references to a set of Virtual Address Descriptors (VADs) which keep track 

of “which virtual addresses have been reserved in the process’s address space and 

which have not” (Russinovich and Solomon, 2005 p.448). These are used to improve 

performance of the system by avoiding constructing Page Tables for allocated 

memory until the pages are accessed and a page fault occurs. Then the VADs are used 

to look up the accessed address range and to create a Page Table Entry.  

Memory Image Analysis: Techniques 

Recent approaches to live investigations separate the acquisition of data from live 

systems from the analysis of that data (Walters and Petroni, 2007). This involves a 

memory acquisition of the live system, followed by an offline analysis of the memory 

dump to recover information from it. This section describes some of the memory 

analysis techniques that are currently available. 
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String searches:  

Early analyses of memory dumps consisted of simply extracting text strings (Carvey, 

2007b p.88). This is achieved using tools such as strings (Russinovich, 2007), grep 

(on Linux) or bintext (Foundstone, 2000) and enables searches for passwords, IP and 

e-mail addresses and other text strings. The difficulty with evidence obtained in this 

way is that it is difficult to attribute to a specific process (Carvey, 2007b p.89).  

 

Process Enumeration:  

As described in the previous section, processes are linked to each other by a double 

linked list. Therefore if one EPROCESS block can be found in memory, the Forward 

Link (FLINK) and Backwards Link (BLINK) pointers can be used to enumerate all 

processes in the memory dump.  

 This approach relies on locating an EPROCESS block. There are a number of 

methods described for achieving this. Burdach (2005) explains how to find process 

blocks by searching for two processes that link to each other. Burdach (2005) states 

that two processes that link to each other are smsss and csrss16. These are found using 

a simple string search, checking for one which has a link to the other. However, when 

this was tested, more than 100 references to these strings were found making cross-

checking difficult. Maclean (2006) describes an alternative approach, where the 

‘system’ process’s Page Directory Base is consistent whenever Windows boots, 

pointing to 0x00039000. However, in experiments conducted as part of this research 

and as shown in Figure 4, this was not always the case17.  

 

                                                 
16 smss – session manager subsystem, csrss – client server runtime server subsystem 
17 The test was conducted on a Windows XP, SP2 system using VMware. The PDB at offset 0x18 
points to 0x00319000 
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Figure 4: PDB at offset 0x18 of the system process does not point to 0x00039000 but to 00319000 

 

An alternative approach exploits that the system process usually has a Process ID of 4 

(at offset 0x84 of the EPROCESS block). Using a simple Perl script a memory dump 

can be scanned for this pattern and the ‘System’ EPROCESS block located, as shown 

in Figure 5. 

 

 
/\x04[\x00-\xFF]ff\x53\x79\x73\x74\x65\x6d\x00\x00/ gsm 

Figure 5: Regular expression used in Perl script to locate ‘System’ process with command line output showing found system 

process. 

 

Once a process is identified, all others can be enumerated from the EPROCESS 

FLINKs and BLINKs. However, these are virtual addresses, and as described in the 

previous section, need to be translated to the real physical addresses. There are also 

further complications in that data may have been paged out to disk. In this case the 

virtual memory address will point to an address in one of the pagefiles. This is 

described in detail in Kornblum (2007).  
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However, there are limitations to this enumeration approach. Processes that 

have ended will be unlinked from the list and while information in the EPROCESS 

blocks may still be available in memory, it will not be recoverable using this approach 

(Schuster, 2006). Also, processes could be deliberately unlinked from this list and 

would not appear in a list of enumerated processes (Vidas, 2007). This is an approach 

known as Direct Kernel Object Manipulation (DKOM) that can be used for hiding 

malware.  

 

Process Carving: 

Schuster (2006) provides an alternative to the process enumeration approach that is 

similar to file carving in disk images. This approach scans through a memory image 

testing for valid process and thread structures using a 20 rule criteria. This is 

implemented in PTFinder.pl. There is also another implementation of this approach in 

Carvey (2007b p.104), lsproc.pl, which is limited to identifying processes rather than 

threads. 

 

VAD Tree Based Process Recovery: 

Another useful memory analysis technique is the recovery of memory that belongs to 

a specific process. As discussed earlier, the VAD tree provides access to areas of 

memory assigned to a process. The root of the VAD tree is stored in the process’s 

EPROCESS block at offset 0x11C. From this pointer the VAD tree can be traversed 

and the areas of memory assigned to the process can be extracted (Dolan-Gavitt, 

2007).  

Like the process enumeration approach described earlier, VAD nodes can be 

unlinked from the tree, since “memory reads appear to use the page directory to 

access memory first, and the VAD is only consulted if a page fault occurs” (Dolan-

Gavitt, 2007), which will hide the nodes from an analysis such as this. The VAD tree 

is also only available in processes that are still running and the pointers to the VAD 

root are zeroed when the process exits (Dolan-Gavitt, 2007). Also, the VAD root 

offset  has changed in Windows Server 2003 and Windows Vista (Schuster, 2007). 
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Memory Image Analysis: Toolkits 

Offline memory analysis is an extremely fast moving field and there are additional 

techniques that are available that have not been discussed in previous sections. These 

include identifying open ports, open files, recovering parts of an executable that has 

been run etc. These memory analysis techniques come from a variety of authors but 

are being combined into toolkits, meaning that an investigator does not need to rely on 

a collection of different tools in order to analyse memory dumps. 

 Responder is a commercial product that is “the industry's first live memory 

and runtime analysis platform for Windows operating systems”, (HBGary, 2008b) and 

allows an investigator to view the physical and virtual memory structures in a memory 

dump in a graphical environment.  

 The leading open source toolkit for memory analysis is the Volatility 

Framework which is “a completely open collection of tools, implemented in Python 

under the GNU General Public License, for the extraction of digital artefacts from 

volatile memory (RAM) samples” (Volatile Systems, 2008). Volatility allows a 

number of different analyses to be performed on a memory image from Windows XP 

SP2 and SP3 systems. These different analyses are shown in Table 2 (from Volatility 

1.3 Beta help file). 

 

Volatility command Information Obtained 

connections      Print list of open connections. 

 connscan         Scan for connection objects. 

 datetime         Get date/time information for image. 

 dlllist          Print list of loaded DLLs for each process. 

 dmp2raw          Convert a crash dump to a raw dump. 

 dmpchk           Dump crash dump information. 

 files            Print list of open files for each process. 

 hibinfo          Convert hibernation file to linear raw image. 

 ident            Identify image properties. 

 memdmp           Dump the addressable memory for a process. 

 memmap           Print the memory map. 
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 modscan          Scan for modules. 

 modules          Print list of loaded modules. 

 procdump         Dump a process to an executable sample. 

 pslist           Print list of running processes. 

 psscan           Scan for EPROCESS objects. 

 raw2dmp          Convert a raw dump to a crash dump. 

 regobjkeys       Print list of open Registry keys for each process. 

 sockets          Print list of open sockets. 

 sockscan         Scan for socket objects. 

 strings          Match physical offsets to virtual addresses. 

 thrdscan         Scan for ETHREAD objects. 

 vaddump          Dump the VAD sections to files. 

 vadinfo          Dump the VAD info. 

 vadwalk          Walk the VAD tree. 

 

Table 2: Analysis techniques that can be performed using the Volatility framework . 

 

As can be seen in Table 2, the Volatility Framework allows much of the information 

obtained using live investigation tools such as pslist to be obtained from an acquired 

memory image. Separating acquisition from analysis in this way simplifies 

overcoming some of the challenges to live investigations described in the next section 

and in detail in Chapter 3. 

2.4.4 Challenges to Live Digital Investigations  

As previous sections have shown, there are limitations to the traditional approach to 

digital investigations. It has also been discussed how live investigations tools can 

preserve digital evidence that would otherwise be lost. However there are a number of 

challenges to using live digital investigations which are discussed in this section.  

Trusting Results 

One of the biggest difficulties in performing live investigations is the ability to trust 

results. Mohay et al. (2003) states that “any system being examined live should be 

considered to be hostile until proven otherwise.” Unfortunately some part of the 
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system will need to be trusted; at the very least, the software used to mount a CD of 

trusted binaries (Burdach 2004). Carrier (2006) goes as far as saying that “the only 

difference between live and dead analysis is the reliability of results.” While this is 

not the case based on the definition of live analysis used in this research, it certainly is 

one of the most difficult issues to address, particularly in Windows environments 

where such extensive use is made of Dynamic Link Libraries (Carvey 2004). 

There are two main concerns regarding trust. The first is that the operating 

system could be modified in some way to provide false information (Kenneally and 

Brown 2005, Carrier 2006). This presents two possibilities: 1) a malicious root kit 

could be responsible for the creation of incriminatory evidence and hide all traces of 

itself, thus implicating an innocent user. 2) a root kit could be installed intentionally 

with the purpose of hiding parts of the disk from an investigator performing a live 

analysis. The second concern is that logic bombs, “booby traps” (Mohay et al. 2003, 

p.135) or “electronic mines” (Farmer and Venema 2004, p.5) could be placed on a 

system and used to destroy or corrupt evidence if triggered. 

Intrusiveness of Techniques 

A common concern with live investigations is that compared to a traditional 

investigation they are highly intrusive. Due to the inherent volatility of digital 

evidence it is very easy for it to become contaminated (Adelstein 2006) and the write 

blocking approach used in traditional forensics is not possible during live 

investigations (Nikkel 2005). As a result terms such as “modifying as little as possible 

on the system” (Carvey 2004) and “minimally invasive” (Hargreaves et al. 2006) are 

used when discussing live investigations. 

 Ultimately there is “no way to avoid making changes, since in order to 

conduct a live examination it is necessary to deploy tools on the live system to capture 

data, and such tools will make changes to the running system” (Sutherland et al., 

2008). The amount of change caused will vary, depending on hardware and software 

configurations (Vidas, 2007), but even when attempting one of the simplest of live 

responses, capturing a memory image, “no software tool is capable of capturing the 
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image of memory without, by the very act of its own execution, changing the content 

of memory” (Huebner et al., 2007). 

Verification of results 

One of the fundamental principles of digital investigation described by Pollitt (1995) 

is that examination results should be verifiable and repeatable. Compared to the ease 

at which results can be verified in traditional forensics by repeating the same 

procedure on a duplicate image of the original evidence, verifying certain results from 

a live investigation is difficult.  

As mentioned in earlier sections, recent approaches to live digital 

investigations separate acquisition from analysis. Once evidence has been acquired 

from a live system, the extracted data has the same properties as evidence obtained 

from a traditional investigation and can be exactly copied and any analysis techniques 

used can be repeated on duplicate copies by independent examiners. Therefore, the 

problem lies in the repeatability and verifiability of the acquisition stage of a live 

investigation since “the evidence gathered represents a snapshot of a dynamic system 

that cannot be reproduced at a later date” (Adelstein 2006). As a result the acquired 

image can be verified only against itself rather than the original media (Casey and 

Stanley 2004) which prevents the correctness of data from the acquisition stage being 

easily demonstrated. This could result in the challenges to the integrity of the acquired 

evidence, potentially affecting its weight in court or even preventing it from being 

admissible (Kenneally and Brown 2005). 

Ensuring a Complete Set of Evidence 

Another concern with live investigations is that it can involve selective file copying 

rather than creating a full image (Kenneally and Brown 2005). This could result in 

challenges claiming that a piece of digital evidence that proved innocence was not 

captured. Certainly putting first responders in a position where they need to identify 

relevant digital evidence is significantly different from their current role of identifying 

and preserving physical evidence upon which digital evidence may reside.  
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2.4.5 Summary  

This section has defined a live digital investigation as a digital investigation which 

uses the operating system of the system being investigated to acquire, analyse or 

present digital evidence. It has reviewed a number of live investigation techniques, 

including the live acquisition of disks and memory. Specifically, it has discussed that 

if a system is encountered that contains encrypted data, then it is possible to use live 

acquisition techniques to acquire that data in an accessible form prior to the machine 

being powered down. In addition to disk acquisition techniques it has been shown that 

memory analysis techniques can be used in an offline or ‘dead’ environment to obtain 

information from memory images acquired from live systems. This means that it is 

possible to separate out the acquisition and analysis stages of a live investigation, 

where previously ‘incident response’ tools had to be used to perform both acquisition 

and analysis using the operating system of the system under investigation. The 

importance of this will be discussed later in Chapter 6. Finally, the challenges to live 

investigations were described which show that while the acquisition of encrypted data 

seems a simple solution there are a number of problems with results obtained using 

live techniques: the difficulty in trusting the results, its inherent intrusiveness, the 

difficulty in verifying results and ensuring that no evidence is missed. 

 

2.5 CHAPTER SUMMARY  

In summary, this chapter has covered a broad range of topics. The first section 

discussed how digital investigations are different from forensic digital investigations, 

which is an important distinction due to the additional requirements imposed by the 

latter, i.e. that evidence must be admissible in a court of law, which will be subject to 

localisation.  

 It has also been discussed that both digital investigations and their forensic 

counterpart are centred on the recovery of digital evidence which has been defined as 

a set of reliable digital objects that support or refute a hypothesis. The specific 

constraint of ‘reliable’ has been shown to be important since if digital data is used to 
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support or refute a hypothesis and is not reliable, then this could result in an incorrect 

hypothesis being supported and ultimately, an incorrect conclusion being drawn. 

 The traditional ‘pull the plug’ approach to digital investigations has also been 

discussed. This involves the power being removed from running systems at the scene, 

which preserves the contents of the disk, but at the expense of volatile memory. This 

section has also presented the challenges that digital investigations currently face and 

specifically discussed situations where the ‘pull the plug’ approach is inadequate. One 

situation in particular, the use of encryption, has been discussed in detail. It has been 

shown that the use of encryption is increasing and while there are a number of 

approaches for attempting to gain access to encrypted digital evidence, there are 

countermeasures for each of the approaches. 

 Live digital investigations were introduced as an alternative approach and 

were discussed in detail, including being defined as ‘a digital investigation which uses 

the operating system of the system in question to acquire, analyse or present digital 

evidence’. While discussing a number of live investigation techniques, including the 

live acquisition of disks and memory, it was shown that if a system is encountered 

that contains encrypted data then it is possible before the machine is powered down to 

use live investigation techniques to acquire data in a form that can later be analysed. 

Live investigation tools were also discussed and it was shown that much of this 

functionality can now be achieved using an offline analysis of live acquired memory 

images, meaning that the acquisition and analysis stages of a live investigation can be 

separated. 

 Finally in this chapter, while it has been described how acquiring encrypted 

data from live systems seems a simple solution, it has also been shown that there are a 

number of problems with results obtained using live techniques: the difficulty trusting 

results, their inherent intrusiveness, the difficulty in verifying results and ensuring that 

no evidence is missed. The significance of these challenges will be discussed in the 

next chapter where the reliability of digital evidence is considered. 



  Chapter 3 

 

 58 

  

  

CHAPTER 3: ASSESSING THE RELIABILITY OF 

DIGITAL EVIDENCE  

3.1 INTRODUCTION 

The previous chapter proposed definitions for digital investigations, live digital 

investigations and digital evidence. A digital investigation was defined as a process 

that formulates and tests hypotheses using digital evidence. It is also possible that a 

digital forensic investigation may be performed where there is also the additional need 

for the results to be admissible in court.  

Both digital investigations and more specific forensic digital investigations are 

performed by examining digital evidence, which is defined as a set of reliable digital 

objects that support or refute a hypothesis. The limitation of this definition of digital 

evidence was explained in Chapter 2 to be that reliability is not defined. Due to the 

difficulty in defining and therefore assessing reliability of digital evidence directly, 

this chapter describes how reliability can be assessed using a set of proposed general 

requirements. These proposed requirements are validated by showing how they are 

either compatible with existing requirements or that existing requirements are specific 

means of satisfying those proposed.  

 The chapter is structured as follows: Section 3.2 explains why requirements 

are necessary in order to assess the reliability of digital evidence and Section 3.3 

proposes general requirements that can be used to assess this reliability. These 

proposed requirements are then validated in Section 3.4 by comparing them to 

existing requirements. It is shown that while those that already exist are valid in a 

particular context, they cannot be considered to be general requirements, but they are 

specific ways of satisfying the proposed general requirements. Section 3.5 explains 

the proposed requirements further and discusses how they are satisfied by the 

technical and procedural measures used in traditional digital investigations. It also 
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revisits the challenges that live digital investigations face (described in the previous 

chapter) and determines how these relate to the identified requirements. 

3.2 ASSESSING THE RELIABILITY OF DIGITAL EVIDENCE 

Digital evidence was defined in Chapter 2 as a set of reliable digital objects that 

support or refute a hypothesis. Therefore, digital objects should only be used as 

evidence if they are reliable. Defining reliability is extremely difficult as dictionary 

definitions describe ‘rely’ as being “depend on with full trust”, where ‘trust’ is a “firm 

belief in someone or something” (Oxford, 2008). Since belief is subjective, this makes 

independent, objective judgements of trust and therefore reliability difficult.  

 In other literature, Casey (2002a) describes that “reliability refers to the 

consistency of a measuring or recording process. A perfectly reliable process will 

record the same value when repeated measurements of the same entity are taken.” 

This definition of reliability makes no reference to the process producing correct 

results, only that they are consistent. If a digital object is used to support or refute a 

hypothesis, more is needed than consistency. In this research reliability is not used as 

a measure of consistency, but as a measure of quality.  

 Rather than attempting to explicitly define reliability in the context of digital 

investigations, an alternative approach can be taken: “where reliability cannot be 

assessed directly, there must be some indirect way of assessing reliability” (Miller, 

1992). An approach to achieve this is described in Pollitt (1995) which describes the 

purpose of developing standards for forensic computing as being “to ensure quality”, 

to “describe that which is the minimum acceptable level of performance” and to 

“serve as a guarantee to those not involved, of reliable results”. Therefore, it is 

assumed that the reliability of digital evidence can be assessed indirectly, by meeting 

certain standards or requirements, and is effectively defined in terms of those 

requirements.  
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3.3 PROPOSED REQUIREMENTS FOR DIGITAL EVIDENCE 

3.3.1 Introduction 

The previous section showed that the reliability of digital evidence can be assessed 

indirectly by assessing it against certain standards or requirements. There are a 

number of existing standards and requirements for digital evidence and they are 

discussed in Section 3.4. However, as will be shown later, none are suitable as general 

requirements for digital evidence. However, the requirements found in Miller (1992) 

for assessing the reliability of machine generated evidence e.g. a breathalyser or 

speedometer, are considered to have the potential to apply to digital evidence, and it is 

hypothesised that these principles can be adapted into general requirements to assess 

the reliability of digital evidence.  

3.3.2 Requirements in Miller (1992) 

Miller (1992) states that in cases where reliability of evidence cannot be assessed 

directly, the reliability of the source of the information is assessed instead. It also 

states that “in assessing the reliability of the source of information, several factors 

apply”, which are: “the source must be authentic” and “it must be possible to assess: 

a) the accuracy with which the source has recorded the information, b) whether the 

source accurately reproduces the information, and c) how complete the information 

is” (Miller, 1992). These are summarised below as authenticity, accuracy and 

completeness.  

 

Authenticity: Miller (1992) does not define authenticity; however, the assessment of 

authenticity is divided into a number of questions, which are: 

 

1. “How is it possible to verify the authenticity of input to a machine”? 

2. “How is it possible to verify the authenticity of the output of a machine”? 

3. “How can the question of deliberate tampering with information stored in a 

system be dealt with”? 
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According to Miller (1992), the authenticity of the output of a machine can be verified 

if a human being is “able to confirm that the output is from the machine in question” 

and “that the output is the result of one particular process if several processes are 

performed by the system”, i.e. it needs to be shown that the output was produced by 

running a particular process. Verifying the authenticity of the input to a machine is 

described as being more complex since information may be provided from other 

machines, large volumes of data may be involved and the sources may be human or 

machine. Miller (1992) gives the example of an accounting system which generates an 

auditing trail that records transactions carried out on the system. It is designed so that 

it is possible for a human to verify the authenticity of the information recorded by the 

system. However, there is no example that can be related to digital investigations. 

Also, tampering with evidence is not discussed in detail, only that “deliberate 

tampering with information stored in a system or the deliberate entry of false 

information into a system” needs to be considered.  

 

Accuracy: Miller (1992) also divides this into two parts: 

 

1. It must be possible to assess the accuracy of the information supplied to the 

machine 

2. It must be possible to assess the accuracy of the information produced by the 

machine 

 

In Miller (1992) ‘accuracy’ is not defined, but it is described that in accounting 

systems, manual procedures can be used to verify the accuracy of information 

supplied to a machine. However, the difficulty arises when more complicated systems 

are considered where the input to one machine may be the output from another.  

 

Completeness: Miller (1992) states that “if a decision is to be made on the basis of 

incomplete information, the decision may prove to be incorrect. The completeness of 

the information depends, in part, upon what decision is to be made”, e.g. in some 
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cases a bank statement showing current balance is sufficient, but for accounting 

purposes more details may be needed. One difficulty described is that machine 

generated evidence “may be unfamiliar in format or presentation [so] it may be 

difficult for a non-expert to form an opinion about whether it is complete information 

for the purposes of adjudicating a dispute.” 

3.3.3 Application of the Requirements to Digital Evidence 

One difficulty in applying the requirements in Miller (1992) directly to digital 

evidence is that it is unclear what would constitute a ‘machine’. In Miller (1992) 

‘machines’ are not explicitly defined, but they are described as being used to “process 

data” and “are not limited to computers or calculating equipment” and when 

describing the requirements of accuracy and authenticity of information, machines are 

described in terms of their input and output. It is also stated that they can obtain 

information from various sources, including information supplied by a human being; 

and information supplied by or obtained from another device. Examples include 

automatic video cameras and digital watches. Dictionary definitions of ‘machine’ also 

do not help in explaining what they may be, e.g. “an apparatus using mechanical 

power and having several parts for performing a particular task” (Oxford, 2008), since 

this excludes non-mechanical devices, i.e. digital devices. It is therefore necessary to 

consider how the machines in Miller (1992) relate to digital investigations.  

As described in Chapter 2, a digital investigation is a process that formulates 

and tests hypotheses using digital evidence. It can also be considered as a series of 

smaller processes, for example, the acquisition, analysis and presentation of digital 

evidence. In this research, the machines in Miller (1992) are considered to be 

equivalent to the processes that make up a digital investigation, since the machines in 

Miller (1992) process data and have inputs and outputs, as do the processes that make 

up a digital investigation. The remainder of this section discusses how the 

requirements in Miller (1992) can be applied to digital evidence.  
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Authenticity 

The dictionary definition of ‘authentic’ means “of undisputed origin; genuine” 

(Oxford, 2008) and therefore this requirement is concerned with being able to prove 

where a particular piece of digital evidence came from. Authenticity in Miller (1992) 

is broken into three parts and is first concerned with the authenticity, or origin, of the 

input to a process. The input to the first stage of a digital investigation (acquisition) is 

digital data which, as described in Chapter 2, is an abstraction of something physical 

e.g. data from a hard disk is actually an interpretation of changes in magnetisation on 

its surface (Sammes and Jenkinson, 2000 p.93-102). As a result, the ultimate origin of 

a piece of digital evidence is something physical and therefore digital evidence should 

be traceable back to an original physical piece of evidence. 

The second part of the authenticity requirement in Miller (1992) is that it must 

also be possible to assess the authenticity of the output from a process. Since the 

origin of the output of a process is the process itself, this means that it should be 

possible to demonstrate that the output data was the result of performing a particular 

process, i.e. to demonstrate what process was used to produce a specific output. This 

is equivalent to the example given in Miller (1992) of a person being able to verify 

that the output is from the machine (process) in question.  

Miller (1992) also states that “there is also always the question of how to deal 

with deliberate tampering with information stored in a system or the deliberate entry 

of false information into a system”. Therefore, accusations of tampering, i.e. 

“interfering without authority” (Oxford, 2008) with a piece of digital evidence should 

be refutable.  

In this research the requirement of authenticity for digital evidence is therefore 

a combination of the three aspects of authenticity in Miller (1992) and can be 

summarised as: it should be possible to demonstrate the origin of digital evidence, 

both in terms of coming from a particular piece of physical evidence and also being 

produced by running particular processes. In addition, accusations of tampering 

should be easily refutable.  
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Accuracy 

‘Accurate’ means “correct in all details” (Oxford, 2008), where ‘correct’ is defined as 

“free from error; true; right” (Oxford, 2008). This requirement has two parts in Miller 

(1992), where both the accuracy of the input and output of a process should be 

assessed. The requirement in Miller (1992) is not that the information supplied to or 

produced by a process needs to be accurate, i.e. free of error, but that the accuracy 

must be capable of being assessed. This is important given that proving absolute 

correctness is not possible since “all digital evidence has some degree of uncertainty” 

Casey (2002a), which is also supported in Palmer (2002) which describes that “there 

is error in every analytical method” and that “error rates in analysis are a fact. They 

should not be feared, but they must be measured”.  

 Given that digital evidence is an abstraction of some physical evidence that is 

translated through a number of layers of abstraction, and that error can be introduced 

at each abstraction layer (Carrier, 2003), it is important that at each abstraction layer 

the possible error is measured and understood. In addition, since this is a requirement 

that will be used to determine if digital evidence can be considered to be reliable, 

assessment on its own is insufficient; there must also be a measure of error that can be 

used to decide if a piece of digital evidence can be considered accurate, and therefore 

reliable. However, due to the different uses of digital evidence, the measure of error 

that is acceptable will depend on the context in which it is used and the decision to be 

made. Therefore, it is not possible to fix a measure of error that is acceptable. 

Therefore the requirement must be that the error must be acceptably small for the 

current investigation. Error in digital investigations is discussed in more detail in 

Chapter 6. In this research the requirement of accuracy means that: it should be 

possible to assess the amount of error associated with all techniques used to obtain 

and process digital evidence, and that amount of error should be acceptable in the 

context of the current investigation. 
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Completeness 

Rynearson (1989) cited in Carrier (2006a) points out that “everything is evidence of 

some event. The key is to identify and then capture evidence related to the incident in 

question”. A consequence of this is that due to the diverse range of investigations and 

types of digital evidence, the person performing the investigation is best placed to 

decide what to include to ensure that evidence is ‘complete’ and only they can justify 

this decision. This means that the ‘completeness of preserved evidence’ is ultimately 

subjective. However, using their previous experience and knowledge of the current 

case, the investigator should be well positioned to determine and to justify what 

evidence needed to be preserved for this particular case. Once the evidence is 

presented, it is then up to those making a decision about the evidence to determine if it 

is sufficient. Therefore, similarly to accuracy, the completeness requirement is: it 

should be possible to assess which digital evidence is preserved and which is lost, and 

the maximum amount of digital evidence relevant to the investigation should be 

preserved. 

3.3.4. Summary 

This section has proposed general requirements for digital evidence. These were 

based on those described in Miller (1992) for ‘machine generated evidence’ but have 

been adapted by considering the processes that are part of a digital investigation to be 

equivalent to machines in Miller (1992). The three requirements in Miller (1992) have 

been discussed and it was explained how they apply to digital investigations. The 

proposed requirements are:  

 

Authenticity: it should be possible to demonstrate the origin of digital evidence, both 

in terms of coming from a particular piece of physical evidence and also being 

produced by running particular processes. In addition, accusations of tampering 

should be easily refutable, 
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Accuracy: it should be possible to assess the amount of error associated with all 

techniques used to obtain and process digital evidence, and that amount of error 

should be acceptable in the context of the current investigation. 

 

Completeness: it should be possible to assess which digital evidence is preserved and 

which is lost, and the maximum amount of digital evidence relevant to the 

investigation should be preserved. 

 

3.4 EXISTING REQUIREMENTS FOR DIGITAL EVIDENCE 

3.4.1 Introduction 

This section examines current requirements that are often used for digital evidence 

and digital investigations. It first shows that there are existing requirements that 

specifically agree with those proposed; however, the explanations of the principles 

differ. It also shows how some other existing requirements cannot be satisfied for live 

investigations, but that this is due to them assuming the use of traditional digital 

investigation approaches. It also shows that many of these current requirements are 

actually specific means of satisfying the general requirements proposed in the 

previous section. In order to show this, a number of sets of existing requirements are 

discussed. Subsection 3.4.2 discusses a set of requirements that specifically agree with 

those proposed. The remaining subsections then discuss a number of other sets of 

requirements, but since many present similar requirements they are divided here into 

the following subsections: evidence should not be altered, results should be accurate, 

processes should be repeatable, records of processes should be maintained, 

information should be authentic, and only what is authorised should be seized. 

3.4.2 Requirements that Agree with those Proposed 

One set of requirements that need to be mentioned individually are those in Sommer 

(1998) since they are also adapted and developed from Miller (1992). Sommer (1998) 

describes three general principles for evaluating evidence that state that evidence 
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should be authentic, accurate and complete. The explanations of these principles are 

as follows: 

 

Authentic: It should be possible to show that evidence is “specifically linked to the 

circumstances and persons alleged – and produced by someone who can answer 

questions about such links.” 

 

Accurate: It should be possible to show that evidence is “free from any reasonable 

doubt about the quality of procedures used to collect the material, analyse the material 

if that is appropriate and necessary and finally to introduce it into court – and 

produced by someone who can explain what has been done.” 

 

Complete: It should be possible to show that evidence “tells within its own terms a 

complete story of particular set of circumstances or events.” 

 

These are significantly different to the explanations proposed for using these as 

general requirements for digital evidence; however, the sentiments in each are similar. 

Linking evidence to the alleged persons is achieved by connecting digital evidence to 

some physical evidence, which is then connected to a person. Also, in the proposed 

requirements it is explicitly stated that accusations of tampering should be refutable, 

which is necessary since without it, it would be difficult to link digital evidence to the 

persons alleged. Sommer (1998) states that the evidence should be free from any 

reasonable doubt about the quality of procedures used to collect, analyse and 

introduce the material to court. This expression of the requirement demonstrates that 

these were written for forensic digital investigations, since ‘introduce it into court’ is 

used rather than ‘present’. Also, the measure of acceptable error used in Sommer 

(1998) is ‘free from any reasonable doubt’. For requirements to be truly general they 

must take into account the variety of uses of digital evidence, and as a result 

specifying that the ‘amount of error should be acceptable in the context of the current 

investigation’ is considered more appropriate. The completeness requirement in 

Sommer (1998) specifies that evidence should tell the complete story of a particular 
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set of circumstances or events. The proposed requirement states that it should be 

possible to assess what has been preserved and lost, which allows an assessment to be 

made about whether the evidence does tell a complete story.  

Therefore, despite the different explanations of the same three requirements of 

authentic, accurate and complete, those proposed agree in principle with those in 

Sommer (1998). However, for the purposes of assessing reliability of digital evidence 

from live investigations, the proposed requirements provide more explicit criteria 

describing what is necessary for digital evidence to be considered reliable. In addition 

to this set of requirements, there are also other requirements that are found in various 

pieces of literature. 

3.4.2 Evidence should not be altered 

This requirement is found in various forms in Pollitt (1995), ACPO (2007) and Mocas 

(2004). This is a relatively simple requirement to satisfy for systems that are 

encountered in an offline state, since the hard drive of the machine to be examined 

can be connected to the imaging/analysis machine through a physical write blocker 

which allows access to the contents of the drive while preventing any writes being 

made to the disk (Lyle, 2006). However, for machines that are encountered in a 

running state, it is possible to satisfy this requirement if only the hard drive of the 

machine is considered to be capable of containing relevant digital evidence. If the 

memory of the system is considered to be a potential source of digital evidence then 

this requirement is impossible to satisfy for a live machine regardless of whether a 

live investigation is performed since ‘pulling the plug’ on a live machine will change 

and in most cases rapidly clear the contents of RAM (Vidas, 2007, Halderman et al., 

2008). 

Chapter 2 discussed the necessity of live investigations and showed that in 

some cases digital evidence in memory can form an essential part of the investigation. 

As stated in Walters and Petroni (2007), “volatile memory is a critical component of 

the digital crime scene and as such, should also be integrated into every phase of the 

digital investigation process used to analyze that crime scene”. Once we accept that 
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the RAM of a machine is part of the digital crime scene and can contain potentially 

relevant digital evidence, performing any sort of live investigation makes it 

impossible to satisfy this requirement. This is because “there is no way to avoid 

making changes, since in order to conduct a live examination it is necessary to deploy 

tools on the live system to capture data, and such tools will make changes to the 

running system” (Sutherland et al., 2008). The requirement to ‘change nothing’ is also 

heavily criticised in Casey (2007), which states that “conforming to such a standard 

may be impossible in some circumstances and, therefore, postulating this standard as 

the ‘best practice’ only opens digital evidence to criticisms that have no bearing on 

the issues under investigation”. Casey (2007) also draws comparisons with physical 

world forensics, citing an example of destructive DNA testing that is still considered 

to be forensically sound, and therefore the requirement of “change nothing is … 

inconsistent with other forensic disciplines”. However, it does go on to accept that 

“the acquisition process should change the original evidence as little as possible and 

any changes should be documented and assessed in the context of the final analytical 

results”.  

 The difficulty in satisfying this requirement is acknowledged in both ACPO 

(2007) Principle 2 (“where a person finds it necessary to access original data held on a 

computer or on storage media, that person must be competent to do so and be able to 

give evidence explaining the relevance and the implications of their actions”) and in 

Mocas (2004) which states “changing some data of the target machine may be 

unavoidable”. Mocas (2004) goes on to describe types of interference with evidence 

as ‘non-interference’ and ‘identifiable interference’, where the former does not change 

the original data set and in the latter, the original data set is changed but the changes 

are identifiable. 

 Not altering evidence therefore should not be used as a general requirement 

for all digital investigations. However, by revisiting the requirements proposed in the 

previous section, the requirement to not alter evidence can be considered to be a 

specific means of satisfying two of the proposed general requirements. First, by not 

changing any evidence and being able to demonstrate this, it is simple to show the 
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authenticity of the digital evidence since it can be compared to the data on the original 

physical device and shown to be the same, thus demonstrating the origin of the digital 

evidence. Also, if evidence is not changed and this can be shown to be the case, then 

it is simple to make arguments about the completeness of the preserved evidence, 

since if nothing has been changed or overwritten then the evidence is as it was when it 

was first encountered and the maximum amount of evidence possible was preserved. 

Not altering any evidence is therefore considered as a specific mechanism to 

demonstrate authenticity and completeness.  

3.4.3 Results should be accurate 

Pollitt (1995) states that “examination results should be accurate”, but does not 

expand on this requirement. This could be interpreted as meaning that results need to 

be completely free from error. This is discussed in Casey (2002a) where accuracy 

relates to how closely data represents actual events and concludes that “all digital 

evidence has some degree of uncertainty and an expert should be capable of 

describing and estimating the level of certainty that can be placed in a given piece of 

evidence.” Accuracy is therefore accepted as being an important requirement, but only 

as described in the proposed requirements, where the accuracy must be capable of 

being assessed, thus allowing a human judgement to be made on whether the error is 

acceptably low, depending on the context in which the digital evidence is used. In 

Pollitt (1995) or any other requirements where one hundred percent accuracy is 

implied, it is a specific instance of an accuracy requirement, that is likely to be 

unachievable.  

3.4.4 Processes should be repeatable 

This requirement is described in various forms in Pollitt (1995), Sommer (1999), 

Mocas (2004) and ACPO (2007). This requirement is problematic to satisfy for many 

aspects of live digital investigation, particularly the acquisition stage. As discussed in 

Walters and Petroni (2007), for live investigations, “we can never reproduce the exact 

same inputs to the exact same tools, thereby making it difficult to prove the 
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correctness of any results that have been gathered”. To determine if this is a 

requirement it is necessary to consider what repeatability achieves; if a technique is 

repeatable, multiple parties can perform the same actions on the same data and show 

the results are consistent. This actually does not achieve or test accuracy but assesses 

the precision of the technique18 since it makes the assumption that the process 

produces correct results. Accurate results can be demonstrated by performing different 

processes19 on the same data and showing the results to be the same, thus increasing 

confidence that the results are correct. The requirement for the use of repeatable 

processes is therefore considered as a means of assessing the accuracy of the results 

and satisfying the accuracy requirement proposed earlier. 

3.4.5 Records of processes should be maintained 

ACPO (2007) states that “An audit trail or other record of all processes applied to 

computer-based electronic evidence should be created and preserved”. This allows 

applied processes to be repeated by others which demonstrates accuracy of results, as 

discussed in the previous section. It also allows the requirement of authenticity to be 

addressed since it records the processes that have been used to recover digital 

evidence from some physical piece of evidence.  

 A similar requirement stating that “there should be a clear chain of custody or 

continuity of evidence” is described in Sommer (1998, 1999), and can involve 

recording the physical items recovered from the original scene. This again 

demonstrates authenticity in terms of the origin of a piece of digital evidence since it 

demonstrates where the physical evidence from which digital evidence was recovered 

was obtained. It also involves recording persons who have had access to the evidence 

                                                 
18 Oxford (2008) describes the difference between precision and accuracy: “Strictly speaking, precise 

does not mean the same as accurate. Accurate means ‘correct in all details’, while precise contains a 

notion of trying to specify details exactly: if you say ‘It’s 4.04 and 12 seconds’ you are being precise, 

but not necessarily accurate (your watch might be slow)” 

 
19 using a different tool or manually examining the original data (Carrier 2003) 
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which can be used to demonstrate authenticity by limiting those who have access to 

evidence and therefore reducing the risk of accusations of tampering. 

Audit trails of processes applied and continuity of evidence can be used with 

digital evidence obtained from live investigations and are important for addressing the 

requirement of authenticity. However, since they provide evidence of authenticity 

they are not independent requirements.  

3.4.6 Information should be authentic 

This is a requirement in Mocas (2004), which explains that “it is often important to 

connect a person to a piece of information”. The need for digital evidence to be 

traceable back to an original piece of physical evidence was discussed earlier and 

shown to be part of the authenticity requirement. 

3.4.7 Only that which is Authorised Should be Seized 

Mocas (2004) describes the ‘minimisation’ requirement where in some cases “the law 

does not authorize the government to seize items which do not have evidentiary 

value”. This requirement is specific to forensic digital investigations and is also 

specific to particular regions’ legal systems. Therefore, this should not form part of 

general requirements for digital evidence. This example of a region specific 

requirement further demonstrates why it is necessary to develop requirements for 

digital investigations in general rather than for forensic digital investigations, since 

involving specific legal requirements for a particular region would make the reliability 

of digital evidence region specific. If necessary, it is easier to impose additional 

requirements on general ones in order to address the particulars of local legislation, 

rather than to write exceptions.  

3.4.8 Summary 

There are a number of different proposed requirements for digital evidence and digital 

investigations. However, they can be shown to be compatible with, or be specific 

mechanisms to satisfy the requirements proposed in Section 3.3.3 of authenticity, 
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accuracy and completeness. This supports the claim that the proposed requirements 

can be used as general requirements to indirectly assess the reliability of digital 

evidence.  

 

3.5 SATISFYING THESE REQUIREMENTS 

3.5.1 Introduction 

This section discusses the requirements for digital evidence proposed in Section 3.3.3 

and how traditional digital investigation techniques satisfy them. It also explains why 

these traditional approaches to satisfying these requirements cannot be used during 

live investigations. Digital investigations are discussed here as they are described in 

Chapter 2; where the stages of a digital investigation can be summarised as 

acquisition, analysis and presentation. In condensed form, a traditional digital 

investigation involves seizing a piece of physical evidence e.g. a computer, at some 

location, which is taken from the scene and stored at a secure location. At some point 

a disk image is created of the hard drive of the machine and verified against the actual 

disk contents using a cryptographic hash e.g. MD5 or SHA1. The disk image is then 

examined using forensic software e.g. EnCase, FTK etc. and the results presented in a 

report. The following subsection describes how the proposed requirements are 

satisfied by this traditional digital investigation process.  

3.5.2 Authenticity 

The requirement for authenticity described in Section 3.3.3 was it should be possible 

to demonstrate the origin of digital evidence, both in terms of coming from a 

particular piece of physical evidence and also being produced by running particular 

processes. In addition, accusations of tampering should be easily refutable. In a 

traditional digital investigation it is possible to demonstrate that digital evidence came 

from a particular piece of physical evidence since generally a full disk image of a 

drive is obtained and examined. The cryptographic hash, (e.g. MD5) of the disk image 

can be compared to that of the contents of the physical drive from which it came and 
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shown to be identical, thus demonstrating that the disk image and therefore digital 

evidence extracted from it originated from the seized physical evidence. This physical 

evidence can be traced back to a physical location by examining documentation of the 

original seizure. Accusations of tampering can be minimised though the principle of 

‘continuity of evidence’, where it is documented who has had access to the physical 

evidence and at what stage. Also, any tampering with the evidence can be detected 

from the point at which a hash of the evidence is first recorded. 

 In a live digital investigation, continuity of evidence is still possible after the 

initial seizure. However, the proof that digital evidence came from a particular 

physical piece of evidence may not be possible in the same way. This is because data 

may have been volatile, and after acquisition at the scene from a live machine, no 

longer exists, e.g. it was wiped when the power was removed. Therefore, 

demonstrating authenticity of live acquired evidence currently relies on documenting 

the process and trusting those performing the seizure to report the origin correctly.  

3.5.3 Accuracy 

The requirement for accuracy described in Section 3.3.3 was it should be possible to 

assess the amount of error associated with all techniques used to obtain and process 

digital evidence, and that amount of error should be acceptable in the context of the 

current investigation. In a traditional digital investigation the accuracy of the results 

can easily be assessed since the original physical evidence is accessible. This allows 

the accuracy of the acquisition stage of a digital investigation to be assessed by any 

number of people who can re-acquire the disk image and compare the cryptographic 

hash of the new image to that of existing disk images. 

 The accuracy of the analysis stage is more complicated and relies on multiple 

examiners (e.g. prosecution and defence) being able to perform the same analysis on 

the same raw data. They are able to use the same tools on the same raw data and 

check the results are the same, which ensures that the tools were used correctly and 

were operating normally. Also, accuracy can be determined for each interpretation of 

raw data though manual verification or using multiple tools (Carrier, 2003). From the 
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abstractions of the raw data, multiple examiners can perform their own high level 

analyses and come to their own conclusions about the evidence. These conclusions 

may or may not agree  

 In a live digital investigation, in many cases, the acquisition stage can be 

performed only once, meaning the assessment of accuracy using repeated acquisitions 

is not possible. Also, running tools that acquire, analyse and present results all on the 

live system means that no assessment of accuracy of any stage is possible through 

repeatability. This is because the output from the acquisition stage (i.e. the input to the 

analysis stage), is not preserved and therefore the raw data is not preserved to be 

inspected by multiple parties. As described in Chapter 2, this problem can be 

addressed by separating out the acquisition and analysis stages of a live digital 

investigation. For example, a memory image can be acquired from a live machine, 

followed by an analysis of that memory image which takes place ‘offline’ in a trusted 

environment. Here the accuracy of the results of analysis can be determined using the 

same repeatability method as a traditional digital investigation. However, the problem 

of determining the accuracy of the acquisition stage remains.  

3.5.4 Completeness 

The requirement for completeness described in Section 3.3.3 was it should be possible 

to assess which digital evidence is preserved and which is lost, and the maximum 

amount of digital evidence relevant to the investigation should be preserved. For 

traditional digital investigations, this is satisfied by adhering to guidelines that 

predetermine the scope of what potentially relevant digital evidence should be 

preserved, e.g. preserving and acquiring the entire hard drive but discarding data in 

memory: “it is accepted that the action of switching off the computer may mean that a 

small amount of evidence may be unrecoverable if it has not been saved to a storage 

medium but the integrity of the evidence already present will be retained” (ACPO, 

2003). 

 In a live digital investigation the preservation of potentially relevant digital 

evidence is more complicated. Since any tools that are used will make changes to the 
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system under investigation (Sutherland et al., 2008) and it is difficult to determine 

what has been altered, it is therefore difficult to assess what has been preserved and 

lost, and therefore if the maximum amount of relevant digital evidence has been 

preserved. This requirement is therefore difficult to satisfy and there is presently no 

way of addressing this problem.  

3.6 Challenges to Live Investigations 

The challenges to live investigations identified in Chapter 2 were: the difficulty 

trusting results, inherent intrusiveness, difficulty in verifying results and ensuring no 

evidence is missed.  

In Chapter 2, the concerns regarding trusting results were that the operating 

system could be modified to provide false information (either hiding malware that 

was responsible for incriminating material on the system, or an anti-forensic rootkit 

deliberately installed to hide data from a live investigation) or that ‘logic bombs’ 

could be placed on the system which could destroy evidence if triggered. Relating 

these to the proposed requirements, it can be seen that the former (OS modification) is 

concerned with the accuracy requirement for digital evidence, since both malware and 

anti-forensic rootkits could mean that the acquired data contains error. The latter 

(logic bombs) is concerned with the completeness of the preserved evidence since the 

use of a logic bomb would make it difficult to assess what evidence has been lost and 

could result in evidence being erased which would obviously decrease the 

completeness of the preserved evidence.  

The inherent intrusiveness of live techniques is also a completeness problem, 

since as tools and techniques make changes to a system, it becomes more difficult to 

assess what data is preserved and what is lost, and this could result in a decrease in the 

amount of preserved relevant digital evidence. 

Verification of results is challenging in live investigations since it is difficult 

to supply the exact same inputs to tools (Walters and Petroni, 2007), particularly at 

the acquisition stage. When related to the proposed requirements, the difficulty in 
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verifying results means that it is a problem assessing the accuracy of results of live 

investigations. 

Ensuring that no evidence is missed could be problematic for live 

investigations if partial acquisitions are performed. Since the entire hard disk would 

not be preserved, it is possible that challenges could be raised about the completeness 

of the preserved digital evidence and that something that was relevant was not 

collected. However, this is only a challenge where not all data on a system is collected 

and partial acquisitions and live investigations are not synonymous.  

3.7 Chapter Summary 

This chapter has discussed the 'reliability' aspect of digital evidence; including the 

difficulty in defining reliability and also that measuring it directly may not be 

possible. It has also shown that the reliability of digital evidence can be measured 

indirectly by evaluating it against a number of requirements. This chapter has 

examined the requirements in Miller (1992) for machine generated evidence and 

shown how they can be applied to digital evidence. The proposed requirements and 

their explanations are: 

 

Authenticity: it should be possible to demonstrate the origin of digital evidence, both 

in terms of coming from a particular piece of physical evidence and also being 

produced by running particular processes. In addition, accusations of tampering 

should be easily refutable. 

 

Accuracy: it should be possible to assess the amount of error associated with all 

techniques used to obtain and process digital evidence, and that amount of error 

should be acceptable in the context of the current investigation. 

 

Completeness: it should be possible to assess which digital evidence is preserved and 

which is lost, and the maximum amount of digital evidence relevant to the 

investigation should be preserved. 
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These are proposed as general requirements for digital evidence and have been 

validated by comparing them against a number of existing requirements which were 

shown either to be compatible with, or to be specific mechanisms of satisfying those 

proposed. This chapter has also explained how the proposed requirements are satisfied 

in traditional digital investigations and how live digital investigations cannot satisfy 

them in exactly the same way. 

The remainder of this thesis considers the extent to which these three 

requirements can be satisfied by live investigations that involve encrypted evidence, 

and therefore determines to what extent digital evidence obtained from live 

investigations can be considered to be reliable. 
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CHAPTER 4: COMPLETENESS AND ENCRYPTION  

4.1 INTRODUCTION 

The previous section described the necessity for and details of the requirements used 

to assess the reliability of digital evidence. This section examines the ‘completeness’ 

requirement in the context of digital investigations involving encrypted evidence. 

Completeness was explained as it should be possible to assess which evidence is 

preserved and which is lost, and the maximum amount of digital evidence relevant to 

the investigation should be preserved. This chapter examines how the type of 

encryption on a system can affect the completeness of evidence recovered from an 

offline or ‘dead’ investigation. It considers if live investigations could increase the 

amount of evidence preserved and therefore increase the completeness and offer a 

more reliable set of digital evidence than traditional digital investigations. 

 

4.2 BACKGROUND 

This chapter examines the latter part of the completeness requirement described above 

and in Chapter 3 and therefore considers how the maximum amount of relevant digital 

evidence could be preserved. The difficulty with this requirement is identifying which 

digital evidence is potentially relevant to the investigation. There have been attempts 

to define the types and location of digital evidence that are specific to different types 

of investigations. For example, guidelines from the National Institute of Justice (2001) 

identify fourteen ‘crime categories’, a selection of which are shown in Table 3 to 

illustrate the types of digital evidence that can be examined.  
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Crime Category Common findings 

Child Exploitation Chat logs, data time stamps, digital camera software, e-

mail/notes/letters, games, graphic editing and viewing software, 

images, Internet activity logs, movie files, user created directory 

and file names that classify images. 

Computer Intrusion 

 

Address books, configuration files, e-mail/notes/letters, executable 

programs, Internet activity logs, Internet protocol (IP) address and 

usernames, Internet Relay Chat (IRC) logs, source code, text files. 

E-mail Threats/ 

Harassment/Stalking 

Address books, diaries, e-mail/notes/letters, financial/asset records, 

images, Internet activity logs, legal documents, telephone records, 

victim background research. 

 

Table 3: A selection of ‘common findings’ from three of the fourteen different crime categories in NIJ (2001). 

 

While these are useful broad starting points, since individual cases have specific 

requirements, these ‘crime categories’ can be used as guidelines only, and cannot 

contain exhaustive lists that define the scope or completeness of digital investigations.  

 The question of ‘completeness of evidence’ is particularly relevant when 

discussing the investigation of large volumes of data; particularly when the idea of 

‘partial’ or ‘selective’ acquisition is suggested. A selective acquisition occurs when 

the decision is made “not to acquire all the possible information during the capture 

process” (Turner, 2006). In the case of selective acquisition, completeness is an issue 

since it is difficult to know “that you have captured everything relevant to the case 

under investigation or have not missed evidence of other offences” (Turner, 2006). It 

is also possible that evidence that proves the suspect’s innocence was missed. 

 Kenneally and Brown (2005) examines in more detail the potential problems 

of selective acquisition, e.g. data that is not collected is inaccessible to the defence 

and could be relevant. Kenneally and Brown (2005) heavily focuses on case law from 

the United States to argue in favour of what is described as ‘risk sensitive digital 

evidence collection’, i.e. a selective acquisition, and also uses examples from physical 

forensic science. It is suggested that ‘reasonableness’ should be used to determine the 

scope of an investigation; “just as it would be unreasonable to expect that 

investigators cordon-off an entire building, mercury fulminate hundreds of offices for 
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latent fingerprints and seize every file cabinet during the course of a robbery scene 

investigation”, “the reasonableness standard takes into account cost and capabilities, 

and does not require perfection.” This example of seizing entire buildings in physical 

forensic science examples is often used, “complete bit-by-bit captures of huge targets 

may be completely impractical, in the same sense that capturing the state of an entire 

building is impractical in a (non-digital) forensics investigation involving a murder” 

(Richard_III and Roussev, 2006). 

While the issue of the completeness of selective acquisitions is interesting and 

is likely to be highly relevant for the future of digital investigations, it is considered to 

be outside the scope of this research. This work assumes that access to encrypted 

evidence is desired to ensure completeness. While it does not go as far as Forster 

(2005), where it is assumed that data that has been encrypted is likely to be of 

evidential value since “it is usually incriminating or unlawful material that suspects 

seek to hide in this way”, it is assumed that encrypted data is potentially relevant and 

it is necessary to gain access in order to determine if it is, or is not relevant to the 

investigation. Therefore, if encrypted data from a system is preserved in a form that 

can be analysed rather than being lost or rendered inaccessible then completeness is 

taken to be increased.  

4.3 METHODOLOGY 

This section describes the methodology that is used to examine encryption software 

and determine how a traditional digital investigation would be affected if such 

software was in use. The general methodology section describes the way in which the 

different products are categorised, which allows generalisations to be made about the 

locations on disk in which evidence is rendered inaccessible by encryption software. 

This is followed by the experimental methodology section which describes how the 

amount of evidence that is left in an accessible form is quantified.  

4.3.1 General Methodology 

To determine whether the completeness of preserved digital evidence (that would 

otherwise be in encrypted form) will increase if a live investigation is performed, it is 
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necessary to know whether the encrypted evidence is likely to be accessible if a live 

investigation were not performed and offline or ‘dead’ approaches were used instead 

(described in Chapter 2). Since there are a large number of different encryption 

products available, in order to generalise about the success of offline approaches and 

therefore the need for a live investigation, it is necessary to categorise encryption 

products in some way. 

 An existing method of categorisation is described in WinMagic (2005), which 

separates encryption software into four categories. These categories are:  

 

Manual File Encryption: A user selects a single file for encryption;  

Folder Encryption: all files contained within a particular folder are automatically 

encrypted;  

Virtual Drive Encryption: A virtual drive is created which is stored as a single file on 

the user’s file system. All data stored on that virtual drive is automatically encrypted. 

Data is decrypted on a block basis rather than by file;  

Disk Encryption: This encrypts all data on the disk including the operating system 

itself.  

 

These categories can be considered to define the scope of the encryption, since the 

category distinctions are made based on how much data is encrypted, a single file, 

folder, virtual drive or the entire disk. As more of the disk is encrypted, a live 

investigation will allow the preservation of more data that would otherwise be lost. 

However, there are techniques that can be used to attempt to gain access to encrypted 

data offline without performing a live investigation, which were described in Section 

2.3.3. The success of some of these approaches was dependant on what data on disk 

remained in unencrypted form. Since products are categorised based on this property, 

depending on which locations remain unencrypted, some product categories may not 

require a live investigation to be performed. Table 4.2 that follows discusses whether 

the success of each of the offline approaches is affected by the category of product in 

use.  
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Approach Discussion Success can be 
generalised depending 
on category 

Obtain keys from 

suspect 

This is dependent on the co-operation of the suspect, which is too case specific to 

generalise with regard to encryption product categories. 

n 

Locate 

unencrypted data 

Since plaintext can be found on disk, the amount of the disk that is accessible to an 

offline investigation is relevant and the success of this approach may be able to be 

generalised based on the product category. 

y 

Locate copies of 

the key/password 

Locating copies of the key is dependant on the key backup mechanism of the 

specific product in use, for example, BitLocker keys can be printed or stored on USB 

key or any other folder (Microsoft, 2007d), TrueCrypt full volume encryption 

requires that a TrueCrypt recovery CD is created (TrueCrypt, 2008e). However, as 

described in Chapter 2, the disk can be scanned for strings which may include any 

saved copies of the typed password, whether stored accidentally or on purpose. 

Therefore, the amount of disk available affects the amount strings that can be 

extracted and tried as possible passwords.  

y 

Intelligent 

password attacks 

The success of this approach depends on the complexity and length of the password 

used and the technical capability of the suspect. Password attacks can be speeded up 

using rainbow tables, where information is pre-calculated for specific sets of 

passwords. However, for longer passwords this is not feasible and it is necessary to 

be selective about the passwords tested. Intelligent password attacks are therefore 

dependent on the availability of information upon which to select likely passwords. 

Therefore the amount of the disk that is accessible to the investigator will have an 

effect on the success of this approach.  

y 

Exhaustive keys 

search 

As described in Chapter 2, brute force attacks are not feasible on modern algorithms. 

Therefore the success of this approach depends on a specific implementation using 

an insecure algorithm. 

n 

Vulnerabilities in 

implementations 

This is, by definition, implementation specific.  n 

Cryptanalysis As described in Chapter 2, in this research, the algorithms used are considered not to 

be vulnerable to cryptanalysis. The success of this approach would be dependant on 

a specific implementation using an insecure algorithm. 

n 

Surveillance This is case specific; however, the type of encryption may have an effect on the type 

of surveillance that can be used. For example pre-boot encryption such as Bitlocker 

prevent the use of software based key loggers but hardware versions can still be 

used. However, this is not considered in this research. 

n 

 

Table 4: Descriptions of whether the success of offline approaches to gaining access to encrypted digital evidence depends on the 

product category. 

 

Therefore, the success of three of the approaches described is affected by the locations 

on disk that are accessible to an offline investigation, and therefore the type of 

encryption product in use.  
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As can be seen in Table 4, the first approach that could be affected by product 

category is ‘locating unencrypted data’. For this there are two situations to consider. 

The first is whether the encryption software itself leaves plaintext data on the disk. 

This can either be as a result of failing to erase the original plaintext or by the creation 

of temporary files when data is decrypted. The second situation to consider is whether 

other applications that use the encrypted data while it is in decrypted form create 

copies of plaintexts that will be later accessible to an offline investigation. Metadata 

about files may also be left, even if the contents are not. This will be specific to the 

application that opens the encrypted data, e.g. notepad, Microsoft Word etc. Despite 

this, it is possible to identify particular locations on disk that could contain evidence 

that could be useful when using the described approaches, which are shown in Table 

5. 

For the second approach, ‘locating copies of passwords’, there are a number of 

likely candidate locations that may provide other passwords used by the suspect. 

These include the pagefile and also saved passwords from Internet browsers etc. 

These are also described in Table 5. 

The third and final approach ‘intelligent password attacks’ relies on collecting 

personal details about the suspect, from which likely passwords can be constructed. 

For this approach, a number of locations may be of use, for example browsing history 

and personal files. This is discussed in Table 5. 

 To determine whether the offline approaches are likely to be successful, it is 

investigated whether particular locations on disk remain accessible after the power is 

removed. Table 5 that follows describes different locations and content on disk that 

may be use in gaining access to the encrypted material on the disk. These locations 

are based on those in WinMagic (2005); however, some additional locations have 

been added that are specific to the encrypted data recovery techniques discussed in 

this chapter.  
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Location Description 

Temporary Files A temporary file is “a file created either in memory or on disk, 

by the operating system or some other program, to be used 

during a session and then discarded” (Microsoft, 2002). If a file 

that is encrypted is opened by some piece of software for editing 

or viewing then it is possible that a temporary file in decrypted 

form could be created which is not erased at the end of the 

session. Therefore, access to temporary files may mean access to 

copies of the plaintext. 

Pagefiles Pagefiles exist because RAM is a limited resource and when the 

total memory needed on a system exceeds what is available, data 

that is not immediately needed is ‘paged out’ of memory and 

stored on the disk (Microsoft, 2004). When the data is needed it 

is paged back into memory. 

 Pagefiles may contain a number of different types of 

useful information; they may contain temporary decrypted 

copies of encrypted data, passwords from memory that have 

been paged to disk, or data from memory from other applications 

that may help with intelligent password attacks. 

Slack space There are two types of slack space (Carrier, 2005 p.187). 

  

1. Between the exact end of the file and the end of the sector in 

which the file ends, which can contain data from memory (buffer 

slack or RAM slack). 

 

2. Between the last sector that contains part of the file and the 

last sector of the cluster, which can contain data from previous 

files that resided on that part of the disk (cluster slack).  

 

This is shown below diagrammatically (Sammes and Jenkinson, 

2007). 
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 Sector 1 Sector 2 

450 512 

buffer slack 

File 1 Free 

 

 

 

S.1 S.2 S.3 S.4 S.5 S.6 S.7 S.8 

Cluster 

cluster slack  

Slack space is important since it may provide access to deleted 

data which could be deleted plaintext or data that could be used 

to construct passwords. 

The Recycle Bin When files are deleted, they are first moved to the Recycle Bin. 

The file is renamed using the convention 

<DRIVELETTER><#>.<ORIGINALEXTENSION> e.g. 

‘d1.txt’. Its original name and path is stored in an INFO2 file in 

a folder named ‘recycled’ (Microsoft, 2007a). These files may 

be deleted plaintext or contain information that could be used to 

construct passwords. 

Deleted Files When the Recycle Bin is emptied, only then are files actually 

deleted. Even then, files are not actually erased. The space that 

the file occupied is marked as free and can be overwritten by 

new data stored to disk. The files are therefore still accessible 

after deletion for an undetermined but non-zero amount of time. 

The Windows Registry The Windows Registry is “a central hierarchical database used 

… to store information that is necessary to configure the system 

for one or more users, applications and hardware devices” 

(Microsoft, 2002). The Registry is stored as a number of ‘hive’ 

files, which are “files that contain a Registry sub-tree” 

(Russinovich and Solomon, 2005 p.263). 

 The Registry could contain a number of useful pieces of 

information, including hashes of some passwords used by the 

suspect, programs run and recently accessed files (which may 

point to encrypted files). 

Users Folders, e.g. This is where the majority of user data is likely to be stored. 
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C:\Documents and 

Settings\User 

Also applications should write their configuration data (e.g. 

browser caches) to these folders (Gajic, 2008). Encryption 

software may therefore use this location to store temporary files. 

Also, user data can be used to obtain information upon which to 

base intelligent password attacks. Alternatively user data may 

contain passwords intentionally stored by users to assist in 

remembering them. 

Hibernation file The hibernation file contains the complete state of the system at 

a specific point in time, including the memory (Ruff and Suiche, 

2007). Therefore, it could contain passwords or plaintext that 

was stored in memory at the time of the hibernation.  

Hidden partitions This is a “portion of the hard disk that an operating system, such 

as Windows, does not recognize or display a file system for” 

(WinMagic, 2005) and therefore could be used to conceal data 

since it is not accessible through normal use of the system. 

Free space between 

partitions 

Between partitions and at the end of the disk is free space, since 

partitions can be created with gaps in between. It is also possible 

to conceal data in these locations.  

 

Table 5: Locations on disk that may assist in providing access to encrypted data. 

 

WinMagic (2005) makes specific predictions about the availability of some of these 

locations for the different encryption scope categories. The diagrams used in 

WinMagic (2005) are shown in Figure 6, and are summarised in Table 6. 
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Figure 6: Graphics from WinMagic (2005) showing the availability of locations on disk 
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Location Expected Availability of Location 

 Single File Folder Virtual Drive Full Disk 

Temporary Files available possible possible encrypted 

Paging Files available available available encrypted 

Slack Space available available encrypted encrypted 

The Recycle Bin available encrypted encrypted encrypted 

Deleted Files available available encrypted encrypted 

User folders20 unspecified unspecified unspecified unspecified 

The Registry available available available encrypted 

Hibernation and Sleep Files available unspecified unspecified encrypted 

Hidden Partitions available unspecified unspecified encrypted 

Free Space between Partitions available available unspecified encrypted 

 

Table 6: Predictions of availability of unencrypted data to an offline analysis (WinMagic, 2005).  

 ‘Possible’ is entered if data in these locations may or may not be encrypted e.g. for temporary files, it depends in where they are 

generated. Also, ‘unspecified’ is entered where there were no claims made about the availability of data in a particular location. 

 

In order to determine the correctness of these predictions of availability of particular 

locations, experiments are set up to examine these locations on disk images from 

systems that have been running a variety of different encryption software from the 

different categories.  

4.3.2 Experimental Methodology 

For most categories examined, three products are used, with the exception being 

‘folder encryption’ where only one product could be found to belong to the category. 

The selection of products is based on the extent of their use or if they are particularly 

of interest. Random sampling from a sample frame could be used but since statistical 

techniques are not being applied and only inductive conclusions are drawn, random 

sampling is not considered necessary. Furthermore, this testing provides additional 

information that may be of use to the community21 other than just for the purpose of 

                                                 
20 This location was not discussed in WinMagic (2005) but has been added here since it may be useful 
for intelligent password attacks. 
21 E.g. the location of temporary files generated by the encryption software 
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this research. If products were chosen for testing at random and they were not in 

popular use, then this additional information would be of little further use.  

The tests are carried out on copies of a baseline virtual machine running 

Windows XP SP2. The use of virtual machines was discussed in Chapter 1. The 

baseline virtual machine used in this case has the following disk map: 

 
Figure 7: Disk map of the test drive used, showing start and end sectors of the different partitions. 

 

Each product under test is examined in its own virtual machine. The general 

procedure used for each product examination is detailed below. 

1. The baseline virtual machine is cloned to a new folder and booted. 

2. The encryption product on test is installed on the machine (in the full disk 

encryption cases this also involves encrypting the disk and in the case of 

virtual disks, the creation, formatting and mounting of a virtual disk). 

3. A new folder named ‘test’ is created on the virtual system (on the desktop for 

most but on the virtual drive in the appropriate cases). 

4. The programs gentest22 and gentemp23 are also copied to the test folder. 

5. A command prompt is opened on the virtual system and gentest is run from 

the test folder with the parameters gentest 600 b 1 , which produces a 

                                                 
22 The program gentest was written in C and produced a number of plaintexts of a specified size. The 
parameters passed are gentest [size] [unit (m/k/b)] [number of files] . The program 
produces files containing the text “This is the plaintext” preceded by a unique line number. This was 
inspired by (Farmer and Venema 2004 p.172) 
23 The program gentemp is also written in C and represents the worst case in terms of temporary file 
generation. This program simply creates an exact duplicate of the file it opens and places it in the folder 
from which the program was called. It then fails to delete the generated temporary file. The parameters 
passed are gentemp [path + name of file to open]  
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single 600 byte file, which is just larger than a sector (512 bytes) and has both 

buffer and cluster slack. 

6. The virtual machine is paused (after a short time in order for writes to the 

virtual disk to take place). 

7. The file representing the hard disk of the virtual system is examined in X-Ways 

Forensics and the disk examined for evidence of the plaintext file. If it is 

found then its location is documented. 

8. Each of the techniques listed below are applied to test for the presence of 

plaintext data in each of the locations specified earlier. The design of this 

procedure allows all locations to be examined sequentially in the order 

described in Table 7 without needing to revert to the virtual machine to the 

baseline snapshot. 

Location Method Used 

Temporary Files To test if temporary files are accessible, the developed software 

gentest is used. This simply creates a duplicate of the opened file in 

the directory from which it is called. This represents the most 

extreme form of temporary file generation, where the entire file is 

duplicated. Temporary files are generated in the location of the test 

file and also in the root of the C:\ drive. 

Paging Files The file on disk representing the virtual machine’s hard disk is 

loaded into X-Ways Forensics and the PageFile examined. If the 

contents are accessible (which is obvious since text is usually 

visible somewhere) then the Pagefile is considered to be 

‘accessible’. Also, where possible, attempts are made to use the 

encryption product under test to deliberately encrypt the pagefile.   

Slack Space As mentioned earlier, files are generated that are not multiples of 

the sector size. In these cases gentest 600 b 1  is used to 

generate a 600 byte file that just stretches across two sectors. The 

buffer and cluster slack of the original (where possible) and the 

encrypted file are examined before and after encryption. Also the 

general accessibility of slack space on other files on the disk is 

determined. 

The Recycle Bin Where possible the plaintext file is sent to the Recycle Bin and is 

accessed offline through X-Ways Forensics. If the contents of the 
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file can be read then the Recycle Bin is considered to be accessible. 

Encrypted files are also sent to the Recycle Bin and the contents 

examined. 

Deleted Files The Recycle Bin is emptied and the sectors in which the plaintext 

file previously existed examined and the ‘this is the plaintext’ 

string searched for. Also, in cases where the plaintext is erased by 

the encryption software, the sectors are examined and if non-text 

strings are encountered then the ENT program (Walker, 2008) used 

to test for statistical randomness (to check plaintext data was not 

simply permutated or substituted). Other files on the disk are also 

deleted to infer about the general accessibility of deleted files.  

The Registry The hive files that make up the Windows Registry (SYSTEM, 

SAM, SOFTWARE, DEFAULT, NTUSER) are opened in X-Ways 

Forensics. If the hives can be mounted and explored then they are 

considered to be accessible. 

User folders The folder C:\Documents and Settings\Chris is examined and if the 

folder can be browsed then it is considered to be accessible. A 

deliberate attempt is made to encrypt a file from this location. A 

sample file C:\Documents and Settings\Chris\Cookies\index.dat is 

used as a test case to determine whether it can be encrypted (this 

file is known to be reported as ‘in use’ by Windows). 

Hibernation Files The default Windows hibernation file is stored in C:\hiberfil.sys. If 

this file can be accessed in the disk image then the hibernation file 

is considered to be accessible. 

Hidden Partitions As described earlier, the disk of the virtual test system is set up so 

that there are several partitions. Partition 3 is unformatted and is 

therefore not visible to Windows but is manually filled with the test 

string “Hidden partition”. X-Ways Forensics is used to attempt to 

view the partition and if this is successful then it is considered to 

be accessible.  

Free Space between Partitions As described earlier, the disk is set up with space between 

partitions. This is edited manually in the baseline image to contain 

the text “space between partitions”. If after encryption this text is 

visible using X-Ways Forensics then this area of the disk is 

considered to be accessible. 

 

Table 7: Techniques used to test for the presence of plaintext data in various locations. 
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4.4 RESULTS 

4.4.1 Single File Encryption Results 

AxCrypt 

This is an open source, single file encryption product that uses AES encryption with 

128 bit keys (Axantum Software, 2008). It integrates with Windows Explorer and 

encryption is performed by right clicking a file and selecting encrypt, as shown in 

Figure 8. An encrypted file is opened by double clicking which then decrypts the file 

and opens it with the default program. 

 

 
Figure 8: AxCrypt and Windows Explorer right click integration providing the option for encryption and decryption. 

 

The results for the offline examination of an AxCrypt system are described in  

Table 8. 

 

Location Results 

Temporary Files Temporary files were produced by both the decryption process and 

by the software gentemp. ‘Pulling the plug’ while the plaintext file 

was open revealed a temporary copy of the plaintext file in the 

C:\Documents and Settings\Chris\Local Settings\Temp\axcrypt\... 

Also, temporary files produced using the gentemp program were 

accessible. 
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Paging Files An examination of the disk image showed that the pagefile was 

accessible to the offline analysis. Attempts to encrypt the pagefile 

with AxCrypt failed. 

Slack Space When encryption was applied to the test files, the buffer slack of 

the original plaintext was filled with zeros but the cluster slack was 

found to contain data from the files previously stored in that 

location. However, other than the manually encrypted files, other 

files’ buffer slack and cluster slack was accessible. 

The Recycle Bin An examination of the disk image showed that the contents of the 

Recycle Bin were accessible to the offline analysis. Attempts to 

encrypt the Recycle Bin were not successful. However, encrypted 

files that were sent to the Recycle Bin remained encrypted.  

Deleted Files AxCrypt encrypts to a new file and by default erases the original 

plaintext. The original sectors containing the plaintext were 

examined and found to contain random data. However, other files 

on the disk that were not encrypted and were deleted were 

accessible. 

The Registry An examination of the disk image showed that the Registry hive 

files were accessible to the offline analysis. Attempts to encrypt the 

hive files were not successful. 

User folders Individual files in user folders could be encrypted but this had to be 

done manually. However, attempting to encrypt C:\Documents and 

Settings\Chris\Cookies\index.dat failed. 

Hibernation Files The hibernate file, hiberfil.sys was available to an offline analysis. 

Attempts to encrypt this file were not successful.   

Hidden Partitions Other partitions were available to the offline analysis and could not 

be encrypted. 

Free Space between Partitions Free space between partitions was available to an offline analysis. 

 

Table 8: Results from AxCrypt. 
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GNU Privacy Guard (GNUPG) (for Windows) 

This is a free, open source implementation of the OpenPGP standard (Koch, 2007) 

which includes a full replacement for PGP that can be used on messages or on files. 

The software also provides right click integration with Windows Explorer for file 

encryption, as shown in Figure 9. The results of the offline encryption of GNU 

Privacy Guard are shown in Table 9. 

 

 
Figure 9: Windows Explorer integration of GNU Privacy Guard. 

 

Location Results 

Temporary Files When the encrypted file was accessed, a decrypted copy was 

created in the same directory as the encrypted file. When access to 

the file is no longer required, it needs to be either re-encrypted or 

manually erased. Temporary files were therefore accessible to an 

offline analysis. The same is true for any temporary files produced 

by software used to view the decrypted files. 

Paging Files The pagefile was accessible to an offline analysis and could not be 

encrypted.  

Slack Space The buffer slack of the encrypted file consisted of zeros and the 

cluster slack contained data from files that were previously stored 

in that location.  
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The Recycle Bin The Recycle Bin was accessible to an offline analysis. 

Deleted Files GNUPG encrypted the files to a new location and left the originals 

in place. GNUPG does not provide file erasing capabilities. 

Therefore, if plaintext files are deleted, they are likely to be 

available to an offline analysis unless manually erased using 

separate software. 

The Registry The Registry hive files were available to an offline analysis. 

User folders Individual files in user folders could be encrypted but this had to be 

done manually. Attempting to encrypt C:\Documents and 

Settings\Chris\Cookies\index.dat failed. 

Hibernation Files Hiberfil.sys was available to an offline analysis. 

Hidden Partitions Additional partitions were available to an offline analysis. 

Free Space between Partitions This was accessible to an offline analysis. 

 

Table 9: Results from GNU Privacy Guard. 

 ‘Encrypt Files’ 

The mechanism by which this software operates is slightly different but it still 

involves manual single file encryption. Instead of Windows Explorer integration, it 

uses a separate program that accesses the files on the disk. Through this single 

interface, file encryption is performed, as shown in Figure 10. The results of the 

offline examination of Encrypt Files are shown in Table 10. 
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Figure 10: The Encrypt Files software providing access to files on disk and the option to encrypt or decrypt those files.. 

 

Location Results 

Temporary Files The Encrypt Files software was used to convert files between 

encrypted and decrypted states. The availability of the plaintext 

depends on the ‘Source File Action’ option, used to re-encrypt the 

file each time, which is either ‘leave’, ‘delete’ or ‘shred’. From inside 

the software, once a file was decrypted it could be opened with other 

software. Any temporary files generated by other software were in 

unencrypted form and were accessible unless these additional copies 

were manually encrypted or erased.  

Paging Files The pagefile was accessible to an offline analysis and could not be 

encrypted using Encrypt Files. 

Slack Space The buffer slack was zeroed and the cluster slack contained data 

previously stored at that location. In general the file slack of files on 

the disk was still accessible.  

The Recycle Bin The Recycle Bin was accessible to an offline analysis. However, 

using the interface of Encrypt Files, files that had been previously 

sent to the Recycle Bin could be manually encrypted.  

Deleted Files Several options were provided for plaintext: ‘leave’, ‘delete’ or 

‘shred’. The default option is ‘shred’ which overwrites the original 

plaintext. However, when the ‘delete’ option was used, it was found 

that deleted files could be accessed.  
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The Registry The hive files that make up the Registry were available to an offline 

analysis and could not be encrypted using Encrypt Files. 

User folders Files in user folders could be manually encrypted but need manual 

decryption before they could be used. Index.dat could not be 

encrypted.  

Hibernation Files The hibernate file was available to an offline analysis and could not 

be encrypted using the software.  

Hidden Partitions Additional partitions were available to an offline analysis and could 

not be encrypted using Encrypt Files.  

Free Space between Partitions This was accessible to an offline analysis and could not be encrypted 

using Encrypt Files.  

 

Table 10: Results from Encrypt Files. 

Summary of Single File Encryption 

For all the single file encryption products, the majority of locations remained 

accessible to an offline analysis. Files had to be manually encrypted and decrypted 

and existed fully on disk in one of these states. For AxCrypt and GNU Privacy Guard 

files were decrypted to temporary files in order to be accessed, and while Encrypt 

Files did use temporary files, the actual file’s state changed between encrypted and 

decrypted and the availability of the previous state is dependent on the ‘source file 

action’ selected (shred, leave or delete). Any temporary files produced by other 

software were also accessible. The temporary files produced by the encryption 

software may or may not be erased after use, depending on the implementation. If the 

temporary files were not erased but deleted, then they would be accessible in 

unallocated space but are susceptible to being overwritten by new data. Also, only the 

logical file was encrypted and the cluster slack remained accessible.  

AxCrypt erases the plaintext file after encrypting and Encrypt Files provides 

the option to ‘shred’ the plaintext file. However, GNU Privacy Guard had neither and 

the plaintext file needs to be either manually deleted or erased with other software. 

The availability of the original plaintext is therefore implementation specific.  

 Due to the manual encryption process, these programs could not be used to 

encrypt the pagefile, hibernation file or Registry. Also, since the encryption is 
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designed for single files, both hidden partitions and free space between partitions 

could not be encrypted with this type of encryption software. Some files in the user 

folders could be encrypted, but any files in use by Windows e.g. \Cookies\index.dat 

could not be encrypted because the manual file decryption does not allow the 

operating system transparent access to the file.  

Regarding the approaches for attempting to access encrypted evidence 

discussed earlier, in terms of locating unencrypted copies of encrypted data, for these 

manual file encryption packages the availability of the original plaintext is 

implementation specific, depending on whether the original is deleted or wiped.  

 Encrypted files are decrypted in their entirety to files on disk while in use 

(either taking the form of temporary files (AXCrypt, GNUPG) or the file is changed to 

its decrypted form permanently (EncryptFiles)). The temporary files then are either 

deleted or erased after use. Temporary files generated by other applications are likely 

to be deleted only, since other applications are not aware of the sensitive nature of the 

files they have opened, and as a result may useful for obtaining unencrypted copies of 

encrypted data. 

 In terms of locating passwords, due to limitations of the scope of the manual 

file encryption software, any files that have not been manually encrypted are 

accessible, and text from them can be used as possible passwords. The inability of this 

type of encryption software to encrypt locations such as the Registry hives means that 

these locations can be used to obtain possible passwords or personal data from which 

passwords can be derived.  
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4.4.2 Folder Based Encryption Results 

Encrypting File System (EFS) 

The Encrypting File System (EFS) provides the ability to encrypt files on NTFS file 

systems. When files in NTFS are flagged as encrypted, as shown in Figure 11, they 

are transparently encrypted without the need to enter a password or provide keys since 

this information is recovered from the Registry using the user’s Windows logon 

password (Microsoft, 2006c). 

 

 
Figure 11: Advanced attributes allowing the encryption of files using EFS. 

 

It is also possible to flag an entire folder as encrypted, meaning that files stored within 

that folder will also be automatically encrypted. When a file is encrypted, both 

symmetric and asymmetric encryption is used and when the file is stored with the 

structure shown in Figure 12 (Microsoft, 2006d). 
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Figure 12: The structure of an EFS file (Microsoft, 2006d). 

 

The results for the offline examination of EFS systems are described below in  

Table 11. 

 

Location Results 

Temporary Files Temporary files generated inside the encrypted folder were also 

automatically encrypted. However, if the temporary files were 

generated in a folder that did not have the ‘encrypted’ attribute, 

then they were accessible to an offline analysis. In addition, there is 

a related implementation problem; when a single file is encrypted, 

a temporary copy is made of the plaintext named EFS0.TMP. 

When encryption is completed the file is deleted but not erased 

(Carrier, 2005 p.290). This can result in additional temporary 

copies of the plaintext being available on the disk. 

Paging Files The encrypted attribute could not be applied to the pagefile in 

Windows XP. However, “Windows Vista also supports encryption 

of items previously either impossible or not easily accomplished in 

Windows XP” (Morello, 2007). This includes the pagefile, and due 

to this significant difference between operating systems, another 

experiment was performed. It was eventually possible to encrypt 

the pagefile under Windows Vista using EFS.  

Slack Space The buffer slack of encrypted files consisted of random data, which 

is assumed to be encrypted. However, the cluster slack was not. 

The cluster slack was unchanged after encryption and contained the 

Logged Utility  

Stream Attribute 

00 01 00 00 

Data Attribute 

80 00 00 00 
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contents of previously deleted files. 

The Recycle Bin Contents of the Recycle Bin were generally accessible. When 

encrypted files were deleted they were moved to the Recycle Bin 

and the existence of the files and their metadata was available. 

However, the contents of the files remained encrypted. This is 

because the files were not actually moved and the encrypted data 

remained in the same location on disk, but the Parent ID of the 

entries in the Master File Table (MFT) were updated to reflect that 

they were now in the Recycle Bin. 

Deleted Files Once the Recycle Bin was emptied, the encrypted data from the 

deleted files was still present on the disk until overwritten by new 

data. However, recovery of deleted EFS files from unallocated 

space is difficult since carving is ineffective due to the content 

consisting of random data. Recovery therefore relies on finding the 

MFT entry for the deleted files.  

The Registry The Registry hive files could not be encrypted with EFS. 

User folders The encryption attributes were applied to the folder C:\Documents 

and Settings\Chris, but there were a number of files and folders 

that could not be encrypted because they were ‘currently in use’, 

including NTUSER.DAT, and index.dat in the cookies folder.  

Hibernation Files The hibernation file could not be encrypted with EFS. 

Hidden Partitions Any partitions that were not visible to Windows could not be 

encrypted with EFS.  

Free Space between Partitions Free space between partitions could not be encrypted with EFS 

since is not a file or folder and EFS encryption attributes could not 

be applied.  

 

Table 11: Results from EFS. 

Summary of Folder Based Encryption 

Only one product was found to belong to this category without examining file system 

level encryption from other operating systems, e.g. Private Folders in Ubuntu 8.10 or 

FileVault in Mac OS X. In terms of recovering unencrypted copies of encrypted data, 

the encryption mechanism may or may not produce temporary copies in decrypted 

form, depending on whether the ‘encrypted’ attribute is applied to a single file or the 
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folder in which a file is stored. Temporary unencrypted copies of the encrypted data 

that are generated by other applications may or may not be available depending on the 

location in which they are produced.  

 Due to limitations in the scope of EFS, a number of locations that could 

contain information for password attacks are available, including pagefile, deleted 

files, the Registry and certain files in user folders.  

4.4.3 Virtual Disk Based Encryption Results 

Pretty Good Privacy (PGP) 

PGP Corporation (2008) provides a range of products that offer different 

combinations of features. One of the features is PGP Virtual Disk which allows files 

and folders to be stored in a single encrypted file which can be mounted as a regular 

drive letter. This feature was examined in PGP Desktop 9.5.3. A container file was 

created and mounted as G:\, as shown in Figure 13. The plaintext file was generated in 

the root of the virtual drive. The results of the examination of PGP Desktop are 

described in Table 12.  
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Figure 13: PGP interface for creating a new virtual disk. 

 

Location Results 

Temporary Files When temporary files were generated on G:\ they were not 

accessible to an offline analysis using X-Ways Forensics. However, 

gentemp was also run from the Desktop and the temporary file 

produced there was accessible. Temporary files were therefore 

accessible if they were produced outside of the encrypted 

container.  

Paging Files The pagefile could not be successfully configured to reside on the 

virtual encrypted disk. Therefore, the pagefile was always outside 

the virtual disk and therefore accessible to offline analyses. 

Slack Space An examination with X-Ways Forensics revealed that both the 

buffer and cluster slack on the virtual disk were encrpyted, but 

slack space on C:\ was still accessible. 

The Recycle Bin The Recycle Bin on the live system is a combination of the hidden 

‘Recycled’ folders from all available hard disks (Microsoft, 

2007a). Files deleted from the virtual drive appeared in the Recycle 

Bin on the live system. However, to an offline analysis, contents of 

the ‘Recycled’ folder on C:\ were accessible but not from the 
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virtual drive.  

Deleted Files Files that were deleted on the virtual drive were in unallocated 

space on that drive. However, to an offline analysis, the 

unallocated space in the container was also encrypted and therefore 

deleted files from G:\ were inaccessible. However, deleted files on 

C:\ were accessible until they were overwritten. 

The Registry The hive files that make up the Windows Registry were accessible 

to an offline analysis and could not be encrypted. 

User folders The path for ‘My Documents’ could be changed to the mounted 

encrypted drive. However, only the Pictures and Music folders 

were moved and application data and other settings remained on 

C:\.  

Hibernation Files The hibernation file was accessible to an offline analysis. 

Hidden Partitions Hidden partitions were available. 

Free Space between Partitions Free space was also accessible.  

 

Table 12: Results from PGP. 

BestCrypt 7.20.2 

Like PGP, BestCrypt “creates and supports encrypted virtual disks, which are visible 

as regular disks with corresponding drive letters” (Jetico, 2008). The BestCrypt 

interface is shown in Figure 14 and the results from experiments shown in Table 13. 

 

 
Figure 14: BestCrypt interface for creating a new encrypted container. 
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Location Results 

Temporary Files Temporary files generated inside the virtual disk were not available 

to an offline analysis. However, plaintext was found if temporary 

files were generated on drive C:\.  

Paging Files It was not possible to successfully configure the pagefile to reside 

on the encrypted virtual drives. As a result, the pagefile was stored 

on C:\ and was therefore was accessible to an offline analysis.  

Slack Space The slack space of data stored on the virtual disk was encrypted 

and inaccessible but slack space on the remainder of the hard disk 

was available to an offline analysis. 

The Recycle Bin Deleted files went to the Recycle Bin on the live system. To an 

offline analysis the recycled folder on C:\ was accessible, but the 

recycled folder of the virtual drive was not accessible. 

Deleted Files Deleted files on the container were not accessible to an offline 

analysis. 

The Registry The hive files that make up the Windows Registry were accessible 

and could not be encrypted. 

User folders The path for ‘My Documents’ could be changed to the mounted 

encrypted drive. However, only the Pictures and Music folders 

were moved and application data and other settings remained on 

C:\. 

Hibernation Files The hibernation files were accessible. 

Hidden Partitions Hidden partitions were accessible. 

Free Space between Partitions Free space between partitions was accessible. 

 

Table 13: Results from BestCrypt. 

Cryptainer 

This is a free encryption product that allows the creation of 25 MB container files, 

with a non-free option available that allows larger containers (Cypherix, 2008). 

Cryptainer can be run in ‘portable’ mode from a USB stick, meaning that it does not 

need installation. Cryptainer Virtual Drives are mounted as removable drives rather 

than fixed. The Cryptainer interface is shown in Figure 15 and the experimental 

results shown in Table 14.  
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Figure 15: The Cryptainer interface. 

 

Location Results 

Temporary Files Temporary files generated on the virtual drive were not found 

during an offline analysis. However, files generated on the rest of 

the hard disk were accessible. 

Paging Files The pagefile could not be set up on a removable drive. 

Slack Space The slack space of the container was encrypted but any slack space 

on the rest of the hard disk was accessible. 

The Recycle Bin The Recycle Bin of the hard disk was accessible but files deleted 

on the virtual removable drive did not go to the Recycle Bin 

(removable media do not have recycled folders (Fellows, 2005)).  

Deleted Files Deleted files could not be found during an offline analysis. 

The Registry The Registry was available during the offline analysis. 

User folders The path for ‘My Documents’ could be changed to the mounted 

encrypted drive, however, only the Pictures and Music folders were 

moved and application data and other settings remained on C:\. 

Hibernation Files The hibernation file was accessible during an offline analysis. 

Hidden Partitions The hidden partitions were available during an offline analysis. 

Free Space between Partitions The free space between partitions was available during an offline 

analysis.  

 

Table 14: Results from Cryptainer. 
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Summary of Virtual Disk Encryption 

All plaintext data created on the virtual disks was encrypted and no original plaintext 

was available. Also, when temporary files were produced on the encrypted virtual 

disk they were not accessible. However, any plaintext data duplicated outside of the 

encrypted virtual disk was accessible to an offline analysis.  

 Regarding the availability of data that could be used for password attacks, the 

pagefile could not be configured successfully to reside on the encrypted virtual disk. 

While the option could be set for it to be on a virtual drive, the pagefile was never 

actually generated since it was generated before the virtual disk was mounted. 

Therefore, data from the pagefile could be used for password attacks. The Windows 

Registry was also available, allowing attacks to be mounted to determine the Windows 

password which may help with determining the password of the virtual disk. It could 

also be used to identify the names and other metadata of files stored in an encrypted 

container from lists of recently accessed files. Also, while some paths in user folders, 

e.g. My Pictures, My Music could be moved to point to the virtual drive, Internet 

browser caches and other application data could not be moved to the virtual drive.  

 So while encrypted containers protect more locations and are less likely to 

leave plaintext on the disk, it is still possible for this to occur. Also many locations are 

accessible that could assist in identifying passwords to the encrypted virtual disk or 

metadata about the files on them.  

4.4.4 Full Disk Encryption Results 

CompuSec 

CompuSec is a free Full Disk Encryption product for Windows and Linux. After 

installation and running through a wizard, the hard disk is encrypted. It also has pre-

boot authentication where a username and password needs to supplied before the 

system will boot, shown in Figure 16. The results from examining CompuSec are 

shown in Table 15. 
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Figure 16: CompuSec Pre-boot authentication. 

 

Location Results 

Temporary Files All temporary files generated were not available to an offline 

analysis. 

Paging Files The pagefile was not accessible. 

Slack Space Slack space (RAM or cluster) was not accessible. 

The Recycle Bin The recycled folder was not accessible. 

Deleted Files Deleted files were not accessible. 

The Registry The Registry was not accessible. 

User folders User folders were not accessible 

Hibernation Files The hibernation files were not accessible. 

Hidden Partitions The partition structure was visible but random data was found in 

all partitions. 

Free Space between Partitions Free space was also encrypted. 

 

Table 15: Results from CompuSec. 

BitLocker 

BitLocker is the Full Volume Encryption feature built in to specific versions of 

Windows Vista. It uses the Advanced Encryption Standard (AES) to encrypt the 

system partition using the Full Volume Encryption Key (FVEK). The FVEK is 
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encrypted with AES using the Full Volume Master Key (FVMK). This key is then 

protected in a variety of means, depending on the mode in which BitLocker is used 

(Microsoft, 2006b). BitLocker operates in one of five modes, as shown in Table 16: 

 

TPM only This is the simplest scenario and the Volume Master Key 

is encrypted by a key protected by the Trusted Platform 

Module (TPM). The system will boot with no user 

intervention, but the disk is encrypted and will be 

inaccessible if moved to another system or viewed offline 

using another operating system (Microsoft, 2006b). This 

means that any disk image produced using standard 

techniques will produce an encrypted image. 

TPM & PIN Keys are protected by the TPM and a 4–20 digit PIN must 

also be entered with the function keys for every boot or 

when resuming from hibernation (Microsoft, 2006b). 

TPM & USB Keys are protected by the TPM and a USB storage device 

that contains a start-up key that must also be provided for 

each boot (Microsoft, 2006b). 

TPM & PIN & USB This mode is only available after Windows Vista Service 

Pack 1 and offers ‘‘an additional multi-factor 

authentication method’’ (Microsoft, 2008b). 

USB only This can be used if a TPM is not enabled or not present. 

Startup keys are stored on a USB stick and must be 

provided in order for the system to boot. In this case the 

keys take the form of a 124 byte, hidden, read-only file, 

which by default has a file name of the format 

XXXXXXXX-XXXX-XXXX-

XXXXXXXXXXXXXXXX.BEK, where X is a 

hexadecimal digit (Microsoft, 2006c). 

 

Table 16: Modes of BitLocker. 

 

The following results in Table 17 are from running Windows Vista Ultimate with 

BitLocker on a virtual machine. Since the virtual machine does not have a TPM the 

system is configured in USB only mode. However, virtual machines also do not 
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recognise USB devices on start-up, and as a result the recovery key needs to be 

supplied to boot the machine. However, this does not affect the results. 

 

Location Results 

Temporary Files Temporary files generated on C:\ were not accessible. However, 

since only the C:\ partition was encrypted, if temporary files were 

generated on F:\ they were accessible to an offline analysis. 

Paging Files The pagefile on C:\ was not accessible. However, if a pagefile was 

generated on F:\ then it was accessible.  

Slack Space Slack space on C:\ was not accessible but could be accessed on 

unencrypted partitions.  

The Recycle Bin The Recycle Bin of the encrypted drive was not accessible but 

could be accessed on the unencrypted partitions.  

Deleted Files After files were emptied from the Recycle Bin, if they were 

originally on an encrypted partition then they were inaccessible, 

but it may be possible to access files deleted from an unencrypted 

partition if the data was not overwritten.  

The Registry The Registry was not accessible.  

User folders The user folders were not accessible. 

Hibernation Files The hibernation file was not accessible.  

Hidden Partitions The hidden partition could not be encrypted and was therefore 

accessible24. (Hynes, 2008) 

Free Space between Partitions The free space between partitions could not be encrypted and was 

therefore accessible.  

 

Table 17: Results from BitLocker. 

TrueCrypt V6.0a 

TrueCrypt is a “software system for establishing and maintaining an on-the-fly-

encrypted volume” meaning that “data are automatically encrypted or decrypted right 

before they are loaded or saved, without any user intervention” (TrueCrypt, 2008d). 

TrueCrypt offers a number of advanced features, including hidden volumes, whereby 

                                                 
24 This has changed as of Windows Vista Service Pack 1 and other partitions can also be encrypted 
(Hynes 2008) 
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two passwords can be use to decrypt the volume; one decrypts prearranged innocent 

content, the other the real content. TrueCrypt has become a popular tool for 

encrypting data with over 8 million downloads (December 2008) (TrueCrypt, 2008a). 

At the time of writing TrueCrypt is at Version 6.1a, having last been updated in 

December 2008 (TrueCrypt, 2008f). From Version 5.0 onwards, TrueCrypt provided 

the option to encrypt the system partition/drive with pre-boot authentication 

(TrueCrypt, 2008f).  The results from examining TrueCrypt 6.0a are shown in Table 

18. 

 

Location Results 

Temporary Files All temporary files were not available to an offline analysis. 

Paging Files The pagefile was not accessible. 

Slack Space Slack space was not accessible. 

The Recycle Bin The Recycle Bin was not accessible. 

Deleted Files Deleted files were not accessible. 

The Registry The Registry was not accessible. 

User folders User folders were not accessible. 

Hibernation Files Hibernation files were not accessible. 

Hidden Partitions The partition structure was visible but all partitions contained 

random data. 

Free Space between Partitions Space between partitions contained random data. 

 

Table 18: Results from TrueCrypt. 

Summary of Full Disk Encryption 

These tests revealed a subtle difference between Full Disk Encryption (FDE) and Full 

Volume Encryption (FVE), where in the case of BitLocker (a FVE product), only 

volumes/partitions are encrypted, meaning that some plaintext could be accessible to 

an offline analysis on other partitions and between partitions. Use of Full Disk 

Encryption meant that all partitions and the space between were encrypted. However, 

even the use of Full Disk Encryption did not mean the entire disk was encrypted, 

since code needed to decrypt the drive was accessible. Therefore, Full Disk 

Encryption encrypts all partitions and the space in between, whereas Full Volume 
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Encryption encrypts only the partitions. If this distinction is made between Full Disk 

and Full Volume Encryption then there are actually five categories of encryption 

product rather than four.   

For all the Full Disk Encryption products examined, no plaintext data was 

found to be accessible to an offline analysis. Also, no locations were available that 

could have produced data that could be used to launch password attacks. However, 

with Full Volume Encryption products it is possible that plaintext could be located on 

the unencrypted partitions. 

 

4.5 EVALUATION  

This chapter has categorised encryption products into five types based on the scope of 

the encryption. It has considered how three of the eight approaches for gaining access 

to encrypted evidence that were discussed in Chapter 2 are affected by the scope of 

the encryption and therefore the category of product in use. The limited number of 

approaches considered is due to four of the five remaining approaches being 

dependent on specific product implementations or the individual investigation. 

Research into these could therefore not be generalised and in order to keep track of 

whether particular approaches would be successful at gaining access to encrypted 

information, it would be necessary to create a database of individual encryption 

products. This would need to include information such as whether a product uses an 

insecure algorithm, and could therefore be used to determine if offline access to 

encrypted data would be later possible. Producing and maintaining such a database 

has many potential problems including keeping the information up to date and 

controlling access. This is considered to be outside the scope of this research. There 

are also difficulties in generalising for approaches that are investigation specific e.g. 

persuade the suspect to provide decryption keys. In some cases this may be possible, 

but in others a suspect may be uncooperative. Predicting this is difficult and error 

prone and therefore is not useful in determining if a live investigation preserves more 

digital evidence in accessible form than relying on offline approaches.  
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 The remaining approach of surveillance is likely to be generalisable based on 

the scope of the encryption in use, e.g. it may not be possible to install surveillance 

software when Full Disk Encryption is in use. However, this is not considered in this 

research since there is limited public information on software surveillance techniques 

in use, and in all cases hardware techniques are possible. 

 This chapter has also assumed that if encrypted evidence is preserved in a 

form that is accessible then completeness has been increased. However, this has the 

limitation of failing to consider loss of evidence due to live techniques applied, which 

is considered in Chapter 5. 

 

4.6 CONCLUSIONS 

This chapter has shown that there are different categories of encryption software that 

can be found on a system. Broadly speaking, each category leaves different locations 

available to an offline examination. It has examined the four categories in literature 

and found a subtle distinction that means Full Disk Encryption should be separated 

into Full Disk Encryption and Full Volume Encryption, which encrypt the entire disk 
25or entire partition respectively. Therefore, five categories of encryption product have 

been identified.  

Section 4.4.1 showed that the use of manual file encryption means that any 

data that has not been manually encrypted can be examined by an investigator. 

Furthermore, the manual decryption process prevents many files from being encrypted 

in this way. If manual encryption is found on a system then a significant amount of 

information is available in order to attempt to gain access to the encrypted material. 

Furthermore, for the three products examined, if data was available to a live 

investigation, if the power was removed instead of performing a live acquisition, the 

unencrypted data would still be available. This was because the temporary copies of 

the encrypted data were stored as files on the disk of the system. However, it is 

                                                 
25 With the caveats discussed earlier about the software needed to decrypt the drive remaining 
unencrypted. 
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possible that other single file encryption products could store data in memory instead 

of on disk. Therefore, it may be possible that a live investigation is not necessary for 

this category, but this is likely to be product specific. 

 Section 4.4.2 showed that folder based encryption allows a folder to be given 

the ‘encrypted’ attribute, meaning that all files created or moved to that folder are 

automatically encrypted. While there are limitations to the files and locations that can 

be encrypted in this way, the limitations are far fewer than for manual file encryption. 

Due to the folder encryption implementation that was examined (EFS) the keys 

needed to decrypt files are stored on the system under investigation26, albeit encrypted 

using the user’s logon password as a key. Therefore the security of EFS protected files 

is dependant on the password used by the suspect. Password cracking software such 

as OphCrack (Objectif Sécurité, 2008) and Cain (Oxid.it, 2008) can be used to 

perform dictionary, brute force and rainbow table attacks on the password hash from 

the Registry in an attempt to recover it. Once the password is obtained, this can be 

used in conjunction with the encrypted version of the user’s private keys stored in the 

Registry to gain access to the encrypted files. Therefore, attacks on EFS encrypted 

files (the only folder based encryption examined) are possible, but are dependent on 

the strength of the password used and the specific settings of how the password 

hashes are stored27. (Pilon, 2005, Irongeek, 2007) 

 Virtual disk based encryption prevents access to the plaintext of files stored on 

the virtual disk and the original copies of files are not accessible since files are 

automatically encrypted when they are created (see Section 4.4.3). Also no temporary 

files were generated by the decryption process since data is decrypted in blocks into 

memory as it is needed. However, temporary files produced by other applications, if 

generated outside of the container, may be accessible to an offline analysis. Since the 

pagefile cannot be encrypted in this way, unencrypted data may also be found here 

                                                 
26 Only if the machine is not part of a domain, in which case there may be cached password hashes 
stored in HKLM\SECURITY\CACHE\NL$1 to NL$10 and a dictionary attack can still be used (Pilon 
2005, Irongeek 2008) 
27 See Hargreaves et al. (2008) for details of the differences between password cracking on Windows 
XP and Windows Vista. 
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and in the hibernation file. There are also opportunities for password recovery from 

the pagefile and hibernation file, along with several areas in the user data folders, e.g. 

browser cache, which were not relocated when the ‘My Documents’ folder was 

moved to the encrypted virtual disk. It may be possible to move some application data 

to an encrypted location, but this would need to be manually configured inside the 

software in question. The Windows Registry was also available, potentially allowing 

names of files created inside the container to be obtained from lists of recently 

accessed files or programs run. Therefore, there is some information available that 

could be used to launch attacks on virtual disk based encryption products and success 

of these attacks is based on the password used for the virtual disk and on which 

applications have been used to open the encrypted data.  

This research has highlighted a difference between Full Volume and Full Disk 

Encryption. In Section 4.4.4 it was shown that for Full Volume Encryption 

information on the partition that is encrypted is inaccessible. However, if there are 

multiple partitions and the other partitions are not encrypted then there may be 

temporary files available or information that can be used as the basis for intelligent 

password attacks. Volume slack is also available which may contain information from 

previously deleted partitions that could be recovered. However, it is also possible that 

Full Volume Encryption could be used with only a single partition which fills the 

disk. In this case the situation is the same as Full Disk Encryption.  

 Full Disk Encryption is also discussed in Section 4.4.4. Full Disk Encryption 

products prevent the offline approaches considered here from being used. In some 

cases a password attack could be launched, but a disk that has been fully encrypted 

cannot be used to recover information upon which to launch an intelligent password 

attack. The success of offline approaches is therefore much less likely when Full Disk 

Encryption products are in use. Even with the introduction of legislation requiring the 

disclosure of keys (United Kingdom, 2000), some products even offer duress 

key/hidden operating system functionality allowing one key to disclose the true 

operating system and another to reveal a false one (TrueCrypt, 2008c). There are other 

practical approaches, for example, locating unencrypted copies of backup data or 
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locating recovery keys on paper or CD that allow the decryption of the drive. 

However, these are case dependent, product specific, and are not guaranteed solutions. 

Therefore, in some cases (particularly Full Volume and Full Disk Encryption) 

offline approaches have been demonstrated to be unlikely to succeed and in these 

cases the completeness of the preserved evidence will be significantly reduced. Even 

with other product categories, the success of offline approaches is dependent on what 

applications have been used to access encrypted content and the strength of the user’s 

password. Therefore, predicting whether it is possible to access encrypted data offline 

involves many variables and is difficult and prone to error. As discussed in Chapter 2, 

live acquisitions can be used to acquire encrypted data in a form that is accessible. 

Live investigations are therefore an effective method of preserving evidence that may 

otherwise not be accessible, and therefore can increase the completeness of the 

preserved evidence. However, live investigations are not perfect solutions since live 

tools and techniques are intrusive, meaning that they make changes to the system 

under investigation. Since the requirement states that it should be possible to assess 

which evidence is preserved and which is lost, also the maximum amount of digital 

evidence relevant to the investigation should be preserved, the need to assess what 

evidence is overwritten by performing a live investigation is discussed in Chapter 5.  
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CHAPTER 5: COMPLETENESS AND INTRUSIVENESS  

5.1 INTRODUCTION 

The completeness requirement described in Chapter 3 states that it should be possible 

to assess which evidence is preserved and which is lost, also the maximum amount of 

digital evidence relevant to the investigation should be preserved. The previous 

chapter demonstrated that during digital investigations involving encrypted evidence, 

a live response can preserve significantly more evidence than a traditional ‘pull the 

plug’ investigation. However, if a live investigation is performed then changes will be 

made to the suspect’s system since live techniques are inherently intrusive. This will 

result in some data being overwritten and therefore lost. Since the requirement states 

that ‘it must be possible to assess which digital evidence is preserved and which is 

lost’ it is therefore necessary to be able to determine which data has been overwritten 

by using live investigation techniques on a system. The ability to assess this also has 

implications for preserving the maximum amount of relevant digital evidence on a 

system since different live techniques will make different changes to the system. As a 

result an investigator needs to know the likely changes that will be made to the system 

in order to determine the most appropriate technique that will overwrite the least 

relevant data in the current investigation. This chapter develops a method for 

monitoring the changes made to test systems by live tools and techniques. The results 

of such experiments can assist an investigator in assessing the changes made to a 

system post-live investigation, and can also provide the knowledge needed for 

investigators to determine the most appropriate course of action during a live 

investigation in order to preserve the maximum amount of relevant digital evidence.  
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5.2 BACKGROUND 

5.2.1 Introduction 

In addition to the explanation of the completeness requirement mentioned in the 

introduction, Chapter 3 also discussed that in a traditional digital investigation, 

completeness can be assessed by adhering to guidelines that predetermine the scope of 

the investigation, i.e. by removing the power from a live machine the contents of the 

hard disk are exactly preserved, but the contents of memory and other volatile data are 

lost. The previous chapter showed that performing a traditional digital investigation 

when encrypted evidence is present may not result in the maximum amount of 

relevant digital evidence being preserved if offline access to encrypted evidence is not 

possible. It also explained that performing a live investigation can preserve encrypted 

evidence in an accessible form, and can therefore increase the completeness of the 

preserved digital evidence. However, live investigations will cause changes to the live 

system and as a result some data will be overwritten and therefore lost. This is 

unavoidable since live digital investigation techniques are intrusive, meaning that they 

change or overwrite potentially relevant digital evidence. There is no simple way to 

prevent changes to a live machine, since the write blocking approach (that physically 

preventing writes from being made to the disk) used in traditional digital 

investigations cannot be used during live investigations. As a result there is “no way 

to avoid making changes, since in order to conduct a live examination it is necessary 

to deploy tools on the live system to capture data, and such tools will make changes to 

the running system” (Sutherland et al., 2008). The amount of change caused will vary, 

depending on hardware and software configurations (Vidas, 2007), but even when just 

attempting one of the simplest of live responses, acquiring a memory image, “no 

software tool is capable of capturing the image of memory without, by the very act of 

its own execution, changing the content of memory” (Huebner et al., 2007).  

 The completeness requirement from Chapter 3 specifies that it should be 

possible to assess what evidence has been lost, and also that the maximum amount of 

digital evidence that is relevant should be preserved. Therefore, the changes caused by 
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using live tools and techniques should be capable of being assessed. Also an 

investigator should be able to determine which live techniques will minimise the 

amount of potentially relevant digital evidence that is overwritten and therefore lost in 

individual investigations.  

5.2.2 Existing Solutions 

It is suggested in Request For Comments (RFC) 3227 that in order to minimise the 

loss of digital evidence, collection should be performed in ‘order of volatility’ 

(Network Working Group, 2002), collecting the most volatile first, working towards 

the least volatile. An example order of volatility is provided in RFC 3227 for a typical 

system: 

• Registers and cache 

• Routing table, arp cache, process table, kernel statistics, memory 

• Temporary file systems 

• Disk 

• Remote logging and monitoring data that is relevant to the system in 

question 

• Physical configuration, network topology 

• Archival media 

 

Collection in this way attempts to minimise the loss of digital evidence by acquiring 

data in a particular sequence. However, it does not address the need for an 

investigator to be able to assess which evidence has been preserved and which has 

been lost due to the techniques used, i.e. explain the consequence of their actions 

(ACPO, 2007). 

 The need to assess what has been lost is explained in ACPO (2007) as “[an 

investigator] must be able to give evidence explaining the relevance and the 

implications of their actions”. It also states that “by profiling the forensic footprint of 

trusted volatile data forensic tools, an investigator will be in a position to understand 

the impact of using such tools and will therefore consider this during the investigation 
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and when presenting evidence”. ACPO (2007) does not suggest any specific means 

for determining the footprint of tools; however, it can be achieved by monitoring the 

changes made in test environments. If other literature is consulted, there are a number 

of techniques that can be used to monitor a test system and to record changes made by 

running a tool or performing a particular technique. These are described in the 

following section. 

5.2.3 System Monitoring Tools and Techniques  

This section describes three current tools and techniques that can be used for 

monitoring changes to a system and that could be used in a test environment to 

determine the forensic footprint of live investigation tools and techniques. The section 

concludes with a summary of the limitations of these three techniques. 

Live Logging Tools e.g. Filemon, Regmon, Procmon 

The live system monitoring tools Filemon and Regmon (Russinovich and Cogswell, 

2006a, b) can be run on a live system and used to record events relating to the file 

system and Registry respectively. The use of these tools has been described for 

monitoring changes to a system when dynamically analysing malicious software 

(Carvey, 2005). They can also be used during digital investigation research to 

investigate possible locations of artefacts left by particular pieces of software 

(Dickson, 2006a, b, c, 2007, van Dongen, 2007). These monitoring tools install 

drivers to log events, for example Filemon installs filem.sys which attaches to the 

device object for the mounted file system and intercepts and records file system 

requests (Russinovich and Solomon, 2005 p.706). Since they all install drivers, they 

therefore make their own changes to the system they are monitoring. 

The successor to Filemon and Regmon is Procmon (Russinovich and 

Cogswell, 2008) which works in a similar way but offers a number of improvements, 

including simultaneously recording both file system and Registry changes. Procmon 

records a massive amount of data in the form of extensive logs containing details such 

as the time of the event, process name, operation performed, path, etc. To illustrate the 
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extent of these logs, a run on an idle Windows XP system for 1 minute generated a log 

containing over 14,000 events. To process these large logs, advanced filters which 

form part of the software can be used to reduce the logs and monitor individual 

events, files or any other detail of interest. Procmon was used in Evans (2007) and 

Sutherland et al. (2008) to document changes made to test systems by some live tools, 

including: memory acquisition tools, e.g. dd; network status tools, e.g. fport; and, 

system status tools, e.g. psinfo.  

Forensic Package and Sort by Modification Date 

Another technique that can be used to detect changes made to a system by 

tools,techniques or malware under examination is, after the event, to conduct an 

examination of the disk of the test system using forensic software and to sort files on 

the disk by their attached metadata, i.e. modification date. This can be used to 

highlight files created and modified on the system within the time period in which the 

test was conducted. This technique has the advantage of being unintrusive since it can 

be run retrospectively on a disk image from the system under examination.  

InCtrl5 

InCtrl5 is a piece of monitoring software that allows the recording of changes made to 

a system during the installation of new software (Rubenking, 2000). The InCtrl5 

program requires installation prior to monitoring a software installation, but is then 

able to record changes “by running installation programs from within its tracking 

system” (Rubenking, 2000). It can also be used to monitor other changes to a system 

by creating snapshots before and after a certain action. InCtl5 produces a HTML 

report that reports Registry and file changes, including the stated modification date 

and size.  

Limitations of these techniques 

Both the live logging tools and the snapshot based approach of InCtrl5 are intrusive, 

since they run on the system being monitored. This means that to determine the 



  Chapter 5 

 

 123 

  

  

changes caused by the tools being tested, it is necessary to filter out the changes 

caused by the monitoring tools themselves. This can be performed either by the tools 

monitoring their own changes (Procmon), or by examining accompanying 

documentation28 (InCtrl5). The other issue with intrusive monitoring tools is that if 

changes to the memory of the test system are also of interest, e.g. how much data in 

memory has changed, the running of live monitoring tools makes this impossible to 

ascertain without running additional tests.  

The only un-intrusive technique described is the ‘sort by modification date’ 

technique, which has the separate problem of relying on Modified Accessed Created 

(MAC) times. This is a problem since, as Carrier (2005 p.12) points out, there is 

essential and non-essential data on a system, where essential data must be accurate in 

order for the system to function. Dates and times unfortunately fall into the non-

essential category and can be easily modified without affecting the operation of the 

system. This is particularly problematic in malware analysis since deliberate 

alterations of dates and times could take place to avoid detection. The InCtrl5 

snapshot based monitoring technique also has the limitation of failing to record 

changes that are made after the first snapshot but are undone before the second, e.g. 

the creation and removal of temporary files between snapshots. Also Procmon has 

been found to sometimes miss certain changes to the system being monitored, e.g. 

files related to restore points (Hargreaves, 2007).  

Since all monitoring methods can miss changes, another problem with these 

techniques is that it is difficult to validate the results from a single monitoring method. 

Also, no documented testing of any of the current techniques could be found, despite 

Procmon being used extensively for system monitoring, even in the forensic 

computing community. This lack of testing may be due to the challenges involved 

with attempting to test these monitoring techniques; if the tools are used concurrently 

on a system, attempting to compare the results is difficult since they produce output in 

very different formats that is difficult to cross-check. Also, since two of the 
                                                 
28 The modifications caused by the installation of InCrtl5 are listed in the accompanying readme.txt 
included with the installation program. However, InCtrl5 does not monitor its own installation changes 
(Rubenking, 2000).  
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techniques are intrusive, if tools are run concurrently, it then becomes necessary to 

filter out two sets of changes from the reports generated by the three techniques.  

Nevertheless, validation such as this should be performed since, as described 

in Carrier (2003), it is important to verify the results from any digital investigation 

tool, which can be done either manually or using a second tool. While these 

monitoring methods are not digital investigation tools, if they are used to profile 

changes made by live investigation tools and techniques, the results could be used to 

determine if the techniques overwrite potentially relevant digital evidence and to 

determine the best course of action for a live investigation. It is therefore important 

that the results are correct and comprehensive and they should therefore be verified to 

the same extent as results from digital investigation and forensic tools.  

If monitoring methods fail to record changes that are made to the system, the 

investigator will be unaware of potential digital evidence that will be lost due to the 

live techniques and may perform an investigation and overwrite relevant evidence. 

Also, if changes are recorded that are caused by the monitoring techniques and are 

wrongly attributed to the live investigation techniques, then an investigator may 

choose not to perform a live investigation when it could have been used, and therefore 

digital evidence that could have been preserved using live techniques may be lost. 

 So, while these limitations are not as significant for previous uses of system 

monitoring (e.g. indicating where evidential artefacts of software may reside), for the 

purpose of profiling a live technique’s footprint on a system these limitations are 

relevant and it is important to know that the changes recorded in tests are correct and 

comprehensive.  

5.2.4 Summary 

Live investigation techniques are inherently intrusive, i.e. they will make changes to 

the system under investigation. This could affect the completeness of the amount of 

potentially relevant digital evidence that is preserved. To minimise this loss, evidence 

can be collected in order of volatility. However, this does not address the need of an 

investigator to identify and quantify the evidence that has been lost due to the live 
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techniques used, i.e. to explain the consequences of their actions. It also does not 

address the subtle differences in the data that is overwritten by using different live 

techniques. In order to do this, monitoring techniques can be used on test systems to 

determine the changes that investigators are likely to make to a system due to the use 

of live tools and techniques. 

 Monitoring a system can be performed using a number of methods: live 

logging tools such as Procmon; sorting files by modification date; or using a snapshot 

approach such as InCtrl5. However, individually these techniques have limitations 

that could result either in changes failing to be recorded or additional changes being 

recorded that are due to the monitoring method itself. While these changes are not as 

significant for previous uses of system monitoring, when used for determining the 

changes made by live investigation tools and profiling their footprints, a more robust 

methodology is necessary. 

5.3 METHODOLOGY  

5.3.1 Introduction 

This section describes the methodology used in this chapter. As shown in the previous 

section, it is necessary to determine the changes made to a system due to live 

investigation tools and techniques. This information enables an investigator to 

determine what course of action to take (i.e. which methods to use) during an 

investigation in order to preserve the maximum amount of potentially relevant digital 

evidence. It also assists an investigator in assessing what digital evidence has been 

lost after the live investigation has been performed. These aims can be achieved by 

profiling the footprint of live tools, i.e. determining what changes they make in a test 

environment. Existing methods of monitoring changes on a system were described in 

the previous section, but they were all shown to have limitations, including their 

intrusive nature and the difficulty comparing results from different methods. In this 

section, first the general methodology used to identify changes caused by live 

investigation tools and techniques is outlined, including the justification for the 

‘footprinting’ approach. Following this, the selection of live tools and techniques that 
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are profiled is explained. The actual development of a new system monitoring 

technique is described later in Section 5.4. 

5.3.2 General Methodology 

This chapter has so far explained the need to determine the changes caused by live 

tools and techniques in order to assess what digital evidence has been lost, and also to 

allow the most appropriate course of action to be taken during a live investigation. 

Determining the best course of action in an investigation is a function best performed 

by the investigator, due to the specific requirements of each individual investigation. 

However, it has been shown that it is possible to monitor live tools in a test 

environment and document the changes they cause. Using the results of tests 

performed, an investigator will be able to combine the information gained from 

testing tools with their knowledge of the specific case to more effectively determine 

the best course of action in an investigation. Also, monitoring of live tools in a test 

environment will allow an investigator, post-live investigation, to more effectively 

determine what changes were made. This is because monitoring test environments 

will provide a greater understanding of changes that normally occur on a system and 

changes that are likely to be attributable to live tools. The research in this chapter 

therefore focuses on identifying changes caused to test systems by live tools. 

 As explained in the previous section, there are several existing methods for 

monitoring systems which could be used to identify changes caused by live tools. 

However, as explained earlier, they have limitations, including the possibility of 

missing changes, the results being difficult to correlate, and consequently the results 

being difficult to validate. So, while the research in this chapter is concerned with 

identifying changes to test systems, it specifically focuses on developing a new 

system monitoring methodology that overcomes the limitations of the existing 

techniques. Therefore, while individual results from testing live tools will be obtained 

in the course of evaluating the new methodology, the main aim is the production of a 

methodology that will allow changes to be identified in a test environment. 
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 Although building a catalogue of the footprints of live tools is outside the 

scope of this research, a range of tools will be tested in order to evaluate the 

effectiveness of the methodology. This testing will also provide a starting point to the 

rigorous testing that is necessary for the extensive and ever changing range of live 

tools and techniques on a number of operating systems in a number of different 

configurations. The choice of initial test scenarios is described in the following 

section.  

5.3.3 Testing Live Tools and Techniques 

The methodology developed in Section 5.4 is used to profile the footprint of a number 

of live tools and techniques in a basic Windows XP SP2 environment. This section 

describes the choice of live tools and techniques that are tested. 

Live digital investigation techniques are tested based on the overall 

methodology for running live investigation tools described in Wait (2006), which 

involves:  

1) establishing a trusted command prompt;  

2) establishing a method for transmitting and storing the collected information; 

3) running various tools and creating hashes of the output. 

 

The first stage is establishing a trusted command prompt from which to launch tools. 

However, live tools may not necessarily be launched in this way since some tools are 

launched directly, e.g. the EnCase Enterprise servlet and FTK Imager. Therefore, a 

number of different means of launching a program are considered. In this research 

three techniques are investigated: double clicking an executable; using Start->Run and 

typing the path and program to be executed; and then finally opening a trusted 

command prompt and launching a program from it. Monitoring is performed from the 

point at which the prompt is already running, in order to see the effect of launching 

programs from the prompt, not of launching the prompt itself. All of these techniques 

are tested by running simple ‘hello world’ programs, which are compiled in both 32 

and 16 bit environments using Visual Studio and DJGPP respectively.  
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 Secondly, changes are investigated that are caused by connecting to the system 

in order to enable the transmission or storage of acquired data. Figure 17 shows the 

back of a PC and some common interfaces are highlighted. In this research the 

changes caused by connecting with USB and Firewire (IEEE 1394) are considered 

since USB is a popular interface for storing live acquired data and Firewire is of 

interest due to its direct memory access which can be used for memory imaging. 

Connection via USB in this research involves attaching a USB thumb drive to the 

monitored system. For the Firewire connection, a Linux based laptop is configured as 

it would be to perform Firewire memory imaging (emulating an iPod, as described in 

Chapter 2). In addition to making the Firewire connection, an image of the system’s 

memory is also obtained over the connection. In addition to these connections, since 

live investigation tools should be run from a static media (Adelstein, 2006) the 

changes caused by inserting a CD-ROM into a system are investigated. Connection 

via Ethernet is not considered in this research since only limited testing is performed 

to demonstrate the use of the developed methodology, and since USB and CD-ROMs 

are popular tool delivery methods, and Firewire is of interest due to its potential for 

memory imaging, these interfaces were prioritised.  
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Figure 17: The back of a PC with common ports highlighted. 

 

The final stage in Wait (2006) is running various tools to obtain information from the 

live system. Since changes caused by the operating system when programs are 

launched are investigated in an earlier stage, this focuses on changes caused by 

specific software that may be run as part of a live investigation. As described in 

Chapter 2, much of the information that can be obtained using live analysis tools such 

as pstools and fport etc. can now be obtained from acquired memory dumps of live 

systems. Therefore, these experiments include live memory acquisition tools such as 

dd and Fast Dump, and also results from monitoring some live analysis tools which 

are taken from the Helix live CD.  

In addition, before these three live investigation stages are monitored, systems 

are examined in an idle state to determine background changes that occur normally on 

a system. For this, test systems are set up and left idle for 10 minutes, 1 hour and 24 

hours. A list of background changes is produced and is used to exclude these 

background changes from the later tests. 

USB 

Ethernet 

Firewire 

Serial 

Parallel 
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5.4 DEVELOPMENT OF A SYSTEM MONITORING METHODOLOGY 

5.4.1 Introduction 

As mentioned in earlier sections there are a number of limitations of the currently 

available system monitoring techniques. These include the intrusiveness of the 

monitoring tools, which means it is necessary to separate out changes caused by the 

monitoring tools themselves and those caused by the techniques under test. They also 

include the risk of missing changes, either due to files being created and removed 

between snapshots, or relying on non-essential data. It is also difficult to compare the 

results between different methods. This section describes the development of a 

methodology that overcomes these limitations.  

5.4.2 Overall Approach 

The overall approach uses virtualisation to examine changes made by the live 

investigation techniques under test (the advantages of virtualisation were discussed in 

Chapter 1). The technique combines the approaches described earlier, with a 

significant modification to the snapshot based approach. This modification is that 

instead of creating snapshots on the live machine under test (as with InCtrl5), virtual 

machines (in this case VMware) are used so that snapshots can be created of the entire 

machine at particular states from outside the environment under test. This provides an 

unintrusive option for monitoring a test system. The modified snapshot approach still 

suffers from the limitation of missing changes that are made and undone between 

snapshots, however, this problem is addressed by also running Procmon inside the 

virtual machine between snapshots which will record all changes made, including the 

ones missed by the snapshot approach. This prevents the approach from being fully 

unintrusive, but since only one intrusive technique is used, and this can be monitored 

in separate tests, it is possible to filter out the changes caused by this single intrusive 

method. In addition, the snapshots29 created in this way are much more 

                                                 
29 The snapshots discussed here should not be confused with the VMWare ‘Snapshot feature’ which 
creates a reference point in a virtual machine’s history, from which point changes are stored to a 
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comprehensive than other approaches since the entire disk and memory of the virtual 

machine is duplicated before and after the event being monitored. This full 

duplication of the disk allows different techniques to be applied retrospectively to 

determine the differences between the two snapshots, since it separates out data 

collection and analysis, which are discussed in Sections 5.4.2 and 5.4.3 respectively.  

5.4.2 Data Collection 

For each tool or technique to be monitored, a duplicate of a baseline virtual machine 

is created. The duplicated virtual machine is booted and configured to the state just 

prior to where changes to the system are to be monitored. The following steps 

describe the rest of the process. 

 

1. At the point at which changes needed to be monitored Procmon is launched. 

However, it is not yet set to log changes. The virtual machine is paused. 

2. A duplicate is created of the virtual hard disk file (.vmdk). 

3. A duplicate is created of the virtual memory file (.vmem). 

4. The virtual machine is resumed. 

5. The Procmon logging is started. 

6. The action/connection under test is performed. 

7. The Procmon logging is paused. 

8. The virtual machine is paused. 

9. A duplicate is created of the virtual hard disk file (.vmdk). 

10. A duplicate is created of the virtual memory file (.vmem). 

11. The virtual machine is resumed. 

12. The Procmon log is saved (including all events) as a Procmon Monitoring Log 

(PML) file. 

 

                                                                                                                                            

separate file rather than the machine’s virtual disk. The snapshots used here refer to manually created 
full duplicates of the files representing a virtual machine’s disk and memory (.vmdk and .vmem). 
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For simplicity, the copying of the files needed for the before and after snapshots is 

performed by before.bat and after.bat batch files. The latter is shown in Figure 18.  

 

 
Figure 18: after.bat, which is used to simplify creation of snapshots by copying the .vmdk and .vmem files to the ‘after’ 

subfolder. 

 

The Procmon logs are recovered from the virtual machine by connecting a USB 

device and saving the .PML file to it, since changes caused by connecting the USB 

stick are not relevant at this stage since the ‘after’ snapshot disk image records the 

state of the machine before these changes are made. Therefore, for each test, the 

following data is produced. 

 

\before\Windows XP Professional-flat.vmdk  The hard disk image before the event took place. 

\before\mem.vmem    The memory image before the event took place. 

\after\Windows XP Professional-flat.vmdk  The hard disk image after the event took place. 

\after\mem.vmem     The memory image after the event took place. 

logfile.pml      A Procmon log file of the live changes that  

took place on the system. 

5.4.3 Data Analysis 

Once the experimental data is collected, it needs to be processed to produce lists of 

changes caused to the system. Procmon logs (PML files) already consist of a list of 

changes; however, it is still necessary to process them in order to convert them into a 

format that can be combined with other methods, which simplifies later analyses. The 

disk images created before and after the event under test also require analysis in order 

to extract lists of changed files. The processing of the Procmon logs and also the two 

techniques that are used to extract file and Registry changes from the before and after 

disk images are discussed in the next three sub-sections. 
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Procmon Log Processing 

Due to the Procmon logs being saved in their complete form, i.e. including all events, 

it is necessary to filter them to highlight the details that are relevant. To do this, the 

saved PML logs are loaded into a version of Procmon on an analysis machine. 

Procmon filters are applied so that the logs are reduced to show only the relevant 

events. Different filter sets are used to separately show changes to files and changes to 

the Registry. File writes are filtered using the ‘Operation = WriteFile’ filter, which 

records any event where data is written to files. Registry changes are also filtered by 

the ‘Operation’ field, where events that cause writes to the Registry, e.g. creating keys 

and setting values, are included. The full list of Registry operations with descriptions 

is available in Microsoft (2008c) and the filters used to detect changes are: 

RegCopyTree, RegCreateKey, RegCreateKeyEx, RegCreateKeyTransacted, 

RegDeleteKey,  RegDeleteKeyEx, RegDeleteKeyTransacted, RegDeleteKeyValue, 

RegDeleteTree, RegDeleteValue, RegFlushKey, RegLoadKey, RegRestoreKey, 

RegReplaceKey, RegSaveKey, RegSaveKeyEx, RegSetKeyValueEx, RegSetInfoKey, 

RegSetValue, RegSetValueEx and RegUnloadKey. Other than the filters mentioned 

here, the default Procmon filters, which exclude $MFT, exclude Pagefile and others, 

are removed. After application of the filters, the subsets of the results are exported to 

Comma Separated Value (CSV) files, named files.csv and reg.csv. Since the logs 

record all changes as they occur, writes to an individual file or Registry entry can 

occur multiple times and therefore appear more than once in the logs. While the time 

of the event may be useful, for this method, only a summary list of files and Registry 

entries that have been changed is necessary. Therefore, the two CSV files are 

processed using a Perl script to remove fields that were not needed e.g. time of the 

event, sequence number, etc. and also to remove duplicate entries so that each file and 

Registry modification appears only once in the results.  

Snapshot comparison technique 

This technique identifies changes to the file system by traversing the file structure, 

calculating and outputting an MD5 hash of each file encountered. By generating these 
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lists of hashes it is possible to determine files that have changed between the 

snapshots. To obtain hashes, the disk images acquired before and after the event are 

mounted on the analysis machine and the tool md5deep (Kornblum, 2008) is used in 

recursive mode to output the hashes of the files. There are a number of ways to mount 

disk images: on a Linux system using the built in mount command, or on Windows  

using specialist software such as Mount Image Pro (GetData, 2008) or using 

VMWare’s disk mounting tool (VMWare, 2008)30. In this research the latter is used. 

The use of md5deep produces lists containing MD5 hashes followed by the 

full path of the file. These can be compared using Windows’ fc.exe or Linux’s diff, but 

these tools are not specifically designed for outputting a list of files that have different 

hashes, and in the output of the tools, each change is sandwiched between lines that 

do not contain changes. Therefore a short Perl script was developed and used to 

compare the two lists and to report those files that have changed between the 

snapshots. The output of fc.exe and the developed script is shown in Figure 19. 

  

 

 
Figure 19: Changes made between snapshots displayed with fc.exe (top) and the developed Perl script (bottom), the latter 

produces a cleaner, simpler list of changes. 

 

                                                 
30 This requires a workaround where, the .vmdk file that configures the virtual hard disk is duplicated 
and manually edited to reference the location of the new duplicate virtual disk.  

Only 

WindowsUpdate.log 

has changed 
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Contents of the Registries from snapshots can be extracted using the reg.pl script from 

Carvey (2007b p.134). This script extracts the contents from Registry hives in the 

form shown in Figure 20. 

 
Figure 20: Registry contents extracted using reg.pl. 

 

As can be seen in Figure 20, the data extracted from the Registry keys is difficult to 

interpret and is considerably different to the format of the Procmon logs, where each 

key is listed in full (including the sub-key written). This difference makes comparison 

with the Procmon logs difficult, and as a result another developed Perl script is used 

to format the extracted Registry data. This script converts the extracted Registry data 

into Comma Separated Value form so that it can be more easily read and manipulated. 

The output is of the format key, last written time, type, value, and due to its CSV 

format it can easily be tabulated as shown in Table 19.  

 

Key Last 

Written 

Type Value 

HKLM\Software\Microsoft\Windows\CurrentVersion Wed Sep 

12 10:33:02 

2007 

  

HKLM\Software\Microsoft\Windows\CurrentVersion\DevicePath  REG_EXP

AND_SZ 

%SystemRoot%\inf  

HKLM\Software\Microsoft\Windows\CurrentVersion\MediaPath

Unexpanded 

 REG_EXP

AND_SZ 

%SystemRoot%\Media  

HKLM\Software\Microsoft\Windows\CurrentVersion\SM_Games

Name 

 REG_SZ Games  

HKLM\Software\Microsoft\Windows\CurrentVersion\SM_Config

ureProgramsName 

 REG_SZ Set Program Access and 

Defaults  

HKLM\Software\Microsoft\Windows\CurrentVersion\ProgramFil

esDir 

 REG_SZ C:\Program Files  

HKLM\Software\Microsoft\Windows\CurrentVersion\CommonFil

esDir 

 REG_SZ C:\Program Files\Common 

Files  
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HKLM\Software\Microsoft\Windows\CurrentVersion\ProductId  REG_SZ 76487-338-5610986-22153  

HKLM\Software\Microsoft\Windows\CurrentVersion\WallPaper

Dir 

 REG_EXP

AND_SZ 

%SystemRoot%\Web\Wallpa

per  

HKLM\Software\Microsoft\Windows\CurrentVersion\MediaPath  REG_SZ C:\WINDOWS\Media  

HKLM\Software\Microsoft\Windows\CurrentVersion\ProgramFil

esPath 

 REG_EXP

AND_SZ 

%ProgramFiles%  

HKLM\Software\Microsoft\Windows\CurrentVersion\SM_Access

oriesName 

 REG_SZ Accessories 

 

Table 19: Registry contents formatted to CSV format using the developed Perl script displayed in table form. 

 

Using this simpler CSV format, the differences between the Registries extracted from 

the before and after disk images can be more easily identified using another script. 

‘Sort by modification date’ based technique 

As described earlier, it is also possible to use forensic software to sort files from a 

disk image by their modification date and to report those which changed during the 

period in which the test was performed. To determine the timeframe from which to 

report file changes, the time could be manually recorded from the system clock at the 

point at which event monitoring begins. However, this can also be automated since 

the virtual machine’s memory is duplicated in addition to the virtual disk. This is 

performed before and after the monitored event and using the Volatility toolkit 

(Walters and Petroni, 2007) it is possible to recover the system time from the memory 

images automatically (using the datetime function of the Volatility toolkit)31. A 

challenge to using this Modified Accessed Created (MAC) times based approach is 

that most forensic tools are used though a graphical interface which makes automation 

of the process and outputting a specific format report difficult. However, The Sleuth 

Kit (TSK) (Carrier, 2009) (originally Linux only but also now with a Windows 

version) provides a series of command line tools for recovering information from a 

disk image. Using these tools, the ‘after’ disk image can be analysed using the 

                                                 
31 The dates and times could also could be taken from the Procmon log. 
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command fls -F -u -r -p -o 63 –m ,32 which indexes all the files in the disk 

image to a text file along with their metadata, separated by ‘|’, including MAC times, 

(with Modified time in column 12, and Created time in column 13). This file is 

processed with a Perl script to parse the output from fls, retrieve the times from the 

memory images using Volatility, convert them to the same format as in fls, and then 

filter the results by these times.  

5.4.4 Data Correlation: Manual and Automated 

As described above, all the outputs from the individual monitoring methods are either 

generated or formatted using Perl scripts. This means that the format of the outputs 

can be controlled so they are all similar and can therefore be compiled and compared 

to each other to produce comprehensive and validated results.  

Since this analysis is repetitive, time consuming and error-prone, and since it 

needs to be performed for all the experimental data collected, the process is automated 

as much as possible. This is achieved by the development of an automated toolkit 

written in Perl, the structure of which is shown diagrammatically in Figure 21. 

 

                                                 
32 fls options do the following: 

-F: files only 

-u: display undeleted only 

-r: recursive 

-p: display full path 

-o: image offset (63 sectors into physical disk image) 

-m: display metadata, including MAC times 
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Figure 21: Simplified architecture of fully automated results processing and report generation. 

 

The core of the automated analysis is the Analyse.pl script which reads a 

configuration file that contains a list of directories in which generated experimental 

data is stored. For each experiment directory, the script mounts the before and after 

virtual disks and calls the developed Virtual Machine Snapshot Analysis Tool 

(VMSAT) to extract the Registry and disk changes from the two snapshots. The 

Analyse.pl script also formats the Procmon logs and identifies changed files based on 

their ‘modified time’ metadata from the ‘after’ disk image. Finally, additional scripts 

are used to combine the results from the three methods and summarise them in an 

HTML report. This automation allows multiple sets of experimental data for file 

changes to be automatically processed and reports generated. Sample output is shown 

in Figure 22 and Figure 23. 
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Figure 22: Main index page of the generated HTML report. 

 
Figure 23: Sample summary of file changes in the combined HTML report. 
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5.4.5 Extending to Real Systems 

One limitation of this methodology is that it can only be used on virtual machines. As 

described in Chapter 1, one of the limitations of virtual machines is that not all 

hardware can be virtualised, and in the case of this research, one relevant example is 

the Firewire port. As a result, it is necessary to adapt the technique for compatibility 

with real systems. The modified procedure requires tools to be run on the system 

under test in order to create duplicates of the disk and memory, and as a result this 

version of the technique is additionally intrusive. Also, since the images of memory 

and disk are obtained from a real system, it is not possible to ‘pause’ the machine as 

when virtual machines are used. Therefore, disk images acquired from real systems 

are not snapshots but are ‘smears’, where data may change between the start of 

acquiring an image and the end. Therefore, many of the advantages of the technique 

are lost when used on a real system. However, in a limited number of cases, this is 

necessary. The modified procedure is described below. 

 

1. The test system is configured with two hard drives, one to contain the 

operating system and another to store images of disks and memory. 

2. A baseline copy of Windows XP is installed to the system drive33. 

3. The system is booted to the point at which changes needed to be monitored 

and Procmon is launched (but is not yet set to log changes).  

4. The Procmon logging is started34. 

5. The memory of the system is imaged, using FastDump, to the second drive. 

6. The system hard drive is imaged live using dd to the second drive. 

7. The action/connection under test is performed. 

8. The memory of the system is imaged, using FastDump, to the second drive35. 

                                                 
33 For ease of testing, after Windows was installed, the baseline installation was imaged to the second 
drive so it could be easily restored after each test. 
34 In Procmon, the backing file for the log is set to the second drive rather than the pagefile (default). 
35 This can also be achieved using the Ctrl Scroll Lock method described in Chapter 2, although the 
Procmon log must be saved first. 
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9. The system hard drive is imaged live using dd to the second drive36. 

10. The Procmon logging is paused. 

11. The Procmon log is saved (including all events) as a Procmon Monitoring Log 

(PML) file to the second drive. 

 

In order for these disk images from real systems to be used with the automated 

analysis software they need to be mountable. This is achieved by converting them 

using LiveView (CERT, 2007), which converts them to VMware compatible virtual 

disks and allows the same analysis technique used for virtual disks to be used for disk 

images from real systems. 

5.4.6 Summary 

Due to the limitations of current system monitoring techniques and the difficulty in 

correlating results from multiple tools, in order to monitor the 'footprint' of live 

investigation tools, a more advanced system monitoring methodology is necessary. 

This section has described two ways in which virtualisation can be used to monitor 

systems externally in an unintrusive manner. First, the virtual machine can be 

monitored for changes using a snapshot based approach that determines whether files 

have changed based on their MD5 hashes calculated before and after an event occurs. 

Second, changes to the virtual machine’s disk can be determined externally by 

examining the after snapshot for changed files by filtering the results by last modified 

date/time in files' metadata. However, the limitations of these individual approaches 

means that changes may be missed either due to files being created and deleted 

between snapshots or due to files being modified without updating the MAC times. 

As a result, these techniques have been supplemented by integrating a third, but 

intrusive technique (Procmon) into the monitoring process, which runs inside the 

virtual environment and logs changes made between the snapshots.  

                                                 
36 This can also be achieved by powering off the system, booting to a CD such as Helix and imaging the 
hard drive, although reordering of the steps is necessary so this is the final stage. This may be desirable 
if examining malicious software since powering off provides a trusted operating system in which to 
acquire the second disk image. 
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The developed method also allows results from these three techniques to be 

automatically combined into a report allowing three-way comparison of the results. 

Despite the technique using virtual machines, it can also be extended to real systems. 

This is necessary for performing tests on hardware that cannot be virtualised, e.g. 

Firewire, or for analysis of malware which may detect that it is running in a virtual 

environment and not run correctly. However, the technique for real systems has 

additional limitations since it cannot be ‘paused’ and therefore, the live acquired 

images of disk and memory are ‘smears’ rather than snapshots. Nevertheless, this 

developed methodology provides a more comprehensive list of changes made to a 

system than using a single method. 

 

5.5 RESULTS: RUNNING PROGRAMS 

5.5.1 Introduction 

Using the developed system monitoring technique the different mechanisms for 

running software on a system were examined. As described in the methodology 

section, programs can be launched by double clicking, using the Run command on the 

Start menu, and also launched from a trusted command prompt. These situations are 

examined in this section and the results described. 

5.5.2 Running Programs: Double Click 

In the first instance the ‘hello world’ programs were copied to the desktop and 

changes were logged when they were launched by double clicking. Both 16 and 32 bit 

versions of the program were run and this was found to affect the artefacts created. 

For the 32-bit versions of the ‘hello world’ program, prefetch files37 for each of the 

‘hello world’ programs were created in C:\Windows\Prefetch\. Carvey (2007a) 

                                                 
37 Prefetch files are created by the prefetcher which “tries to speed the boot process and application 
startup by monitoring the data and code accessed by boot and application startups and using that 
information at the beginning of a subsequent boot or application startup to read in the code and data” 
(Russinovich & Solomon, 2005). 
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describes that “XP can maintain up to 128 Prefetch files”, and during testing, after the 

creation of 128 prefetch files, no new .pf files were created.  

For the 16-bit version of the program, prefetch files for ‘hello world’ were not 

created. However, there was a prefetch entry for NTVDM.exe which is the “Windows 

support image” that allows 16 bit processes to run under 32 bit Windows (Russinovich 

& Solomon 2005). This prefetch file contained references to the 16 bit programs that 

were run. In experiments running hello1.exe – hello10.exe only 8 entries were stored, 

i.e. running hello9.exe & hello10.exe overwrote the entries for hello1.exe & 

hello2.exe. Therefore, if running a 16 bit process on a live machine the potential exists 

to overwrite an entry for a previously run 16 bit process in the ntvdm.exe prefetch 

entry. For all the 16 bit programs, temporary files were also created in 

C:\Windows\Temp of the form scs#.tmp, where # is a hexadecimal digit. However, 

for both 16 and 32 bit programs, there were two Registry locations where artefacts 

were left that referred directly to the executed programs. These were: 

 

HKCU\Software\Microsoft\Windows\ShellNoRoam\MUICache\ 

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\ ..\ 

 

The first contained references for all the versions of hello[x].exe that were run with 

their full path. This is created by the Explorer.exe shell when the executable is run 

(Carvey 2005). The second location also contains entries for programs that have been 

run on the system, but is encoded using ROT13, which is trivial to interpret, since 

each character is simply shifted by 13 places. Each entry also had a binary value 

associated with it, the latter half being a Windows 64 bit hex value date and time 

describing the last time that the program was run (Farmer, 2007). These have not been 

found to be overwritten once a certain number is reached. However, further 

experimentation is necessary to guarantee this. 
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5.5.3 Running Programs: Start -> Run 

Programs were also launched using the Run command from the Windows start menu. 

The artefacts produced were the same as double clicking to execute a program. 

However there were some additional artefacts found. Entries were created in: 

 

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\RunMRU\ 

 

This key contains references to the full path of executables run and they are stored in 

sub keys named a-z, therefore there are 26 possible entries, after which previous ones 

are overwritten. Each new entry assigned a letter is added to  

 

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\RunMRU\MRUList 

 

In addition, if the files are not typed directly into the Start -> Run option, but are 

browsed using the dialogue box, there are also entries created in sub-keys a-z 

(maximum 26 entries) in: 

 

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\ComDlg32\OpenSaveMRU\exe\ 

 

5.5.4 Running Programs: Trusted Command Prompt 

Applications can also be launched by first opening a command prompt then running 

programs from there. In this case, first a prefetch entry was created for cmd.exe and 

the Registry artefacts described in the previous two subsections were created for 

cmd.exe. When launching programs from the trusted command prompt, in the case of 

32 bit programs (only 32 bit processes were tested in this case), prefetch files were 

also created for each of the programs run from the command prompt. However, the 

following Registry keys contained references only to cmd.exe, not to the programs 

run from the command prompt: 

 

HKCU\Software\Microsoft\Windows\ShellNoRoam\MUICache\ 

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\ 
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5.5.5 Running Programs: Summary 

Programs can be run in a number of different ways and each causes different disk and 

Registry changes to take place. For all programs run, prefetch entries were created on 

disk. In the case of 32 bit processes, one is created for each process run and in the 

case of 16 bit processes, they are run through NTVDM and therefore only this has a 

prefetch entry. However, in the latter, files are also produced in the Windows 

temporary folder for each program run. Registry changes also occur and record 

processes that have been run (e.g. the MUI Cache and UserAssist Registry keys). 

Running programs using Run from the Start Menu also added entries to RunMRU 

and, if the dialogue box was used to browse to another location, additional changes 

were made in the OpenSaveMRU key. When programs were launched from a 

command prompt, the prefetch files were created for each program run, but Registry 

entries were only created for cmd.exe, not the programs run from it. 

 There are a number of implications. All methods for launching software will 

create prefetch entries for the software run. However, during testing, after the creation 

of 128 prefetch files, no additional prefetch files were created, suggesting that 

evidence will not be overwritten in this way. Also, it has been shown that tools should 

ideally not be run using Start->Run since this will make additional entries in 

RunMRU which only stores a fixed number (26) of run programs and therefore may 

overwrite a record of a previously run application.  

 Further implications of these tests are that if it is necessary to run multiple 

tools and it is necessary or desirable to minimise entries in the Registry (in 

MUICache, UserAssist and RunMRU) then it is preferable to launch programs from a 

trusted command prompt since only one Registry entry will be created.  

 However, if just launching a single program, double clicking is preferable 

since it will make fewer prefetch entries. The possible need for an investigator to be 

able to launch a program by double clicking has implications for live tool design since 

it means that if parameters need to be passed to a tool, this should be achievable using 

means other than command line parameters, e.g. using a configuration file or 

designing programs with interactive shells. 
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5.6 RESULTS: CONNECTING TO A LIVE SYSTEM 

5.6.1 Introduction 

Using the developed system monitoring technique the different mechanisms for 

connecting to a system were examined. As described in the methodology section, 

inserting a CDROM, connecting a USB device and connecting via Firewire were 

considered. This section describes these results. 

5.6.2 Mounting a CD 

A CD was mounted containing the ‘hello world’ test programs used earlier. The 

changes made when the CD was inserted were monitored. Changes were made to the 

following Registry keys, but no identifiable information could be extracted: 

 

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2 

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Tracing\Imapi 

HKLM\System\CurrentControlSet\Enum\Root\LEGACY_IMAPISERVICE\ 

HKLM\System\CurrentControlSet\Enum\IDE\CdRomHL-DT-ST_DVD+-RW_GSA-

H31L_______________1.05____\3031303030303030303030303030303030303130\Device 

Parameters 

 

Also, in the HKCU\Software\Microsoft\Windows\ShellNoRoam\MUICache Registry 

key, 8 entries were created, all of which began with @shell32.dll, and represent the 

tasks added to the user interface for an inserted CD. However, no maximum amount 

of entries stored in this key has yet been found. 

 

@shell32.dll,-8504 REG_SZ Auto&Play 

@shell32.dll,-12589 REG_SZ Files Currently on the CD 

@shell32.dll,-12590 REG_SZ Files Ready to Be Written to the CD 

@shell32.dll,-31353 REG_SZ CD Writing Tasks 

@shell32.dll,-31355 REG_SZ Write these files to CD 

@shell32.dll,-31234 REG_SZ These tasks apply to the files and folders you select 
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@shell32.dll,-31273 REG_SZ These links open other folders and take you quickly to 

useful places. 

@shell32.dll,-31275 REG_SZ This section displays the size, file type, and other 

information about a selected item. 

 

Locations containing data that specifically referenced the inserted CD are shown 

below. 

 

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\CD Burning\Current Media 

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\CD Burning\Current Media\TotalBytes 

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\CD Burning\Current Media\FreeBytes 

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\CD Burning\Current Media\Media 

Type 

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\CD Burning\Current Media\UDF 

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\CD Burning\Current Media\Disc Label 

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\CD Burning\Current Media\Set 

 

This information may be important if a CD needs to be ejected in order to load an 

investigator’s toolkit on to the machine using another CD, since on removal of the CD 

the keys are deleted. Deleted Registry keys have not been investigated as part of this 

research but new values are written on inserting a different CD. It is possible that 

these may overwrite the details of the previously inserted CD. Note that these changes 

documented in this sections are for a CD inserted into a drive capable of writing CDs; 

there are far fewer made for standard CD drives. 

5.6.3 Attaching a USB Device 

Changes caused by connecting a USB device have been previously documented in 

Carvey and Altheide (2005) which described that on a Windows XP system, the 

setupapi.log in the system root is changed, as are the following Registry keys: 

  

HKLM\System\CurrentControlSet\Enum\USB 

HKLM\System\CurrentControlSet\Enum\USBStor 

HKLM\System\MountedDevices 
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Tests were performed to validate these changes. If the USB device is the first to be 

inserted then the usbstor.sys driver is installed (25.9KB) which will overwrite data in 

unallocated space. During testing it was found that references were added to 

setupapi.log, including references to the USB device’s Vendor ID, Product ID and 

serial number. However, these details were appended to setupapi.log, so an 

investigator adding a USB device will not overwrite any of the existing log. However, 

the changes added to the log totalled 1401 bytes of data, which may overwrite a small 

amount of data in slack and unallocated space. Also, a prefetch entry is created for 

RUNDLL32.EXE which executes DLLs and places them into memory, although an 

inspection of the prefetch entry with bintext (Foundstone, 2000) could not find any 

USB specific references. In addition to the Registry changes mentioned above, 

references to the attached USB stick were also found in: 

 

HKLM\System\CurrentControlSet\Control\DeviceClasses\ 

HKLM\System\CurrentControlSet\Enum\STORAGE\RemovableMedia\ 

HKLM\System\MountedDevices 

5.6.4 Connecting a Firewire Device 

To examine the changes made by connecting a Firewire device the technique had to 

be modified for use on a real system instead of a virtual machine, as discussed in 

Section 5.4.5. A Linux based laptop was configured using the pythonraw1394 scripts 

from Bolieau (2006), connected to the system and the system’s RAM was imaged 

using the 1394memimage script, also from Bolieau (2006).  

 On connecting via the Firewire port, since it was the first use of the port, Serial 

Bus Protocol 2 (SBP2) drivers were installed for the port: 

 

WINDOWS\system32\dllcache\sbp2port.sys (43136 bytes)  

WINDOWS\SYSTEM32\DRIVERS\SBP2PORT.SYS (43136 bytes)  

 

There were also entries added to sysevent.evt log reporting an error of the SBP2 

driver: 
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112 19/11/2008 16:57:08 19/11/2008 16:57:08 4  Error 40  sbp2port  TEST-PC 

113 19/11/2008 16:57:15 19/11/2008 16:57:15 4  Error 40  sbp2port  TEST-PC 

 

There were also Registry changes related to the driver installation: 

 

HKLM\System\CurrentControlSet\Control\Class\{4D36E967-E325-11CE-BFC1-

08002BE10318}\0006  

HKLM\System\CurrentControlSet\Control\Class\{D48179BE-EC20-11D1-B6B8-

00C04FA372A7}\0000  

HKLM\System\CurrentControlSet\Control\CriticalDeviceDatabase\gendisk 

HKLM\System\CurrentControlSet\Enum\PCI\VEN_1033&DEV_00F2&SUBSYS_00CE1033&REV_

01\  

HKLM\System\CurrentControlSet\Services\EventLog\System\sbp2port 

HKLM\System\CurrentControlSet\Services\sbp2port 

  

Since the Linux machine simulates the connection of an iPod, other changes made 

when connecting the Firewire cable were similar to inserting a USB stick. In the 

Windows folder, the file setupapi.log had 3232 bytes appended to it, describing the 

installation of drivers for an iPod, and Registry entries for the installed ‘iPod’ could 

be found in: 

 

HKLM\System\CurrentControlSet\Enum\1394\Apple_Computer__Inc.&iPod\ 80E000024C0000 

HKLM\System\CurrentControlSet\Enum\SBP2\Apple_Computer__Inc.&iPod&LUN0\00004c0200000

e08 

5.6.6 Connecting to a Live System: Summary 

There are a number of ways of connecting to a live system. Programs are often run on 

a system from an investigator's CD ROM and this is advised in Adelstein (2006) since 

it is a read only medium. During the test scenario for CDs, a number of changes were 

made to the Registry and if the drive is capable of writing CDs, among these changes 

is information about the currently inserted CD. The consequences of this are that if an 

investigator ejects a CD already in the machine then digital evidence of that CD being 
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in the drive may be lost. While this is only likely to be relevant in a small minority of 

cases it is still a point worth noting. 

 Another option for getting programs on to a system, and data from it, is the 

USB port. Connecting a USB device makes changes to files on disk (setupapi.log) and 

to the Registry. The information added to setupapi.log and to the Registry is always 

appended, as yet with no identified limit. Therefore, the risk of overwriting evidence 

is limited to data in slack and unallocated space, which is overwritten as data is added. 

Since data is appended, USB devices (preferably read-only for tool delivery) could be 

considered in situations where the contents of the CD drive may be of interest. 

 Connection via Firewire produced similar changes to connecting a USB 

device, although since Firewire devices are not as popular as USB it may be more 

likely that the Firewire driver needs to be installed; which will overwrite more data in 

unallocated space since SBP2PORT.SYS is created twice on the system and changes 

are also made to sysevent.evt. There were also several Registry keys created and 

modified. Specific iPod related changes could be found in setupapi.log and 

HKLM\System\CurrentControlSet\Enum.  

 There are also other connections that have not been considered in this 

research, for example Ethernet and e-SATA. Also, the specifics of connecting a USB 

hard drive rather than a thumb drive have not been examined. However, the developed 

methodology can be used in future to examine these interfaces on virtual and real 

systems. 

5.7 RESULTS: RUNNING LIVE INVESTIGATION TOOLS 

5.7.1 Introduction 

Using the developed system monitoring technique, a number of live investigation 

tools were examined. Acquisition tools for both disk and memory were examined, as 

were some analysis tools, e.g. pslist and psinfo. 
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5.7.2 dd for acquiring disk 

dd (from the Forensic Acquisition Utilities (FAU)) was executed from an already 

running command prompt and used to image a section of the hard disk to another 

drive. Running dd created only a single prefetch entry and single Registry change:  

 

WINDOWS\Prefetch\DD.EXE-1D9BD197.pf 

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed 

5.7.3 FTK Imager for acquiring disk 

FTK Imager was executed and used to image the system drive of the virtual machine 

to a second drive. This created the following prefetch file: 

 

WINDOWS\Prefetch\FTKIMAGER.EXE-00778F2F.pf 

 

There were also several Registry changes made, including 

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed. Also, The Registry key 

HKCU\Software\Smart Projects\AccessData Corp.\Version was created which 

describes the version of FTK Imager that was run. There were also Access Data 

specific entries created in HKCU\Software\AccessData. There were also a number of 

additional Registry entries created in this key that were deleted when the imaging was 

complete. These were: 

 

HKCU\Software\AccessData\FTK Imager\ProfUIS240\Profiles\FTK Imager\ControlBar  

HKCU\Software\AccessData\FTK Imager\ProfUIS240\Profiles\FTK Imager\ControlBar\data_size  

HKCU\Software\AccessData\FTK Imager\ProfUIS240\Profiles\FTK Imager\ControlBar\data_integrity 

HKCU\Software\AccessData\FTK Imager\ProfUIS240\Profiles\FTK 

Imager\ControlBar\block_0x00000000\data_0x00000000 

… 

HKCU\Software\AccessData\FTK Imager\ProfUIS240\Profiles\FTK 

Imager\ControlBar\block_0x00000000\data_0x00000058 

 

Therefore, running FTK Imager made significantly more changes than using dd. 
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5.7.4 dd for acquiring memory 

The modified version of dd obtained from the Helix Live CD was run from the 

command line and was used to image the memory of the test system. This produced 

the same results as the previous use of dd for disk imaging: a prefetch entry for dd and 

a change to the …\Cryptography\RNG\Seed Registry key. 

5.7.5 Fast Dump for acquiring memory 

FastDump (FD) (HBGary, 2008a) was run from the command line and used to 

acquire a memory image of the test system, and file changes consisted only of a 

prefetch entry: WINDOWS\Prefetch\FD.EXE-062D3D04.pf. There were no Registry 

changes detected. 

5.7.6 PSList 

PSList from SysInternals was run from the command line and listed processes running 

on the system. In addition to the prefectch entry caused by launching the tool 

(WINDOWS\Prefetch\PSLIST.EXE-08928D72.pf), one Registry entry was modified and 

another created. The created entry contained a flag to record that the End User 

License Agreement (EULA) for the software had been read and accepted on the first 

run of the program. 

 

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed   (modified) 

HKCU\Software\Sysinternals\PsList    (created) 

5.7.6 PSInfo 

After running psinfo from the command prompt a number of prefetch files were 

created, as was a psinfo specific Registry key regarding acceptance of the EULA: 

 

WMIAPSRV.EXE-1E2270A5.pf 

WMIPRVSE.EXE-28F301A9.pf 

RUNDLL32.EXE-321A7019.pf 

RUNDLL32.EXE.451FC2C0.pf 
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HKCU\Software\Sysinternals\PsInfo\EulaAccepted (created) 

 

There were also 59 other Registry key changes, 20 of which were specifically 

attributed to the psinfo process by Procmon.  

5.7.7 WinAudit from Helix Live CD 

WinAudit produces a HTML report detailing various information about the system, 

including the system specification, the current date and time, up-time, size of RAM, 

size of disk, installed software, open ports, running programs and services. Executing 

WinAudit created one additional prefetch entry to the one for the WinAudit program: 

 

WINDOWS\Prefetch\WMIPRVSE.EXE-28F301A9.pf 

 

During testing there were also 132 Registry changes made, which is particularly 

significant when compared to the number of changes caused by disk and memory 

imaging. Particularly when much of the information obtained using WinAudit could 

be obtained from disk and memory images. 

5.7.7 Running Live Investigation Tools: Summary 

The changes reported in this sub-section exclude the Registry changes that are due to 

'running a program' which were discussed in a previous section. The disk acquisitions 

performed with dd and FTK Imager made different numbers of changes, with dd 

making fewer changes to the system than FTK Imager, which is unsurprising since 

FTK Imager uses a graphical interface and offers more features. 

 The memory of the test systems was acquired using dd from the Helix Live CD 

and also FastDump. Both made very few changes. dd made one file and one Registry 

change and FastDump just a single file change, which was a prefetch entry for itself. 

Both these tools had to be launched from the command line, which, as shown in a 

previous section, is not ideal due to the extra prefetch entry created. 
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 The results of memory acquisitions are particularly interesting when compared 

with the results from running live analysis tools. Pslist made fewer changes than 

expected: a single file change (prefetch) and two Registry changes, one related to 

EULA acceptance. Psinfo was also run, and created a number of prefetch and Registry 

entries, one Registry key specifically being related to EULA acceptance. Also 

WinAudit was run from the Helix Live CD which created two prefetch entries and a 

considerable number of Registry modifications.  

While these live analysis tools were previously the only way to obtain 

information from a live system, the additional changes made by these live analysis 

tools could now be considered to be unnecessary since much of the information 

obtained by running these tools can be recovered from a memory dump of a live 

system. This is particularly true if the changes caused by 'launching programs' are 

considered, since live investigation tools usually perform a single task and many of 

them are run sequentially to obtain a broad amount of information from a system. This 

is a problem since each piece of software run will produce a prefetch entry, and at 

least one addition to the Registry. Considering that in many cases these live 

investigation tools can be replaced by a memory acquisition and an offline (but still at 

the scene) analysis of that image, changes to the suspect system can be minimised by 

taking the memory acquisition approach and minimising the reduction in the 

completeness of preserved digital evidence. Some information obtained using live 

tools cannot be recovered from memory images and requires information from disk. 

However, if dd was modified to perform selective acquisition and could be configured 

to obtain files from which this additional information could be recovered e.g. Registry 

hives, then these files could also be analysed at the scene, but offline. This would 

allow reduction in completeness to be minimised further. This selective acquisition 

approach remains future work. 
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5.8 EVALUATION  

5.8.1 Methodology Evaluation 

This chapter has investigated the extent to which the completeness requirement 

explained in Chapter 3 can be satisfied for live investigations. The requirement states 

that it should be possible to assess which digital evidence is preserved and which is 

lost, and the maximum amount of digital evidence relevant to the investigation should 

be preserved. This means that the changes caused to a system due to live tools and 

techniques should be identifiable so that the evidence lost due to data being 

overwritten can be assessed post-live investigation. It is also important to know, 

before the investigation takes place, what changes are normally made by live tools, 

since this can assist an investigator in determining the most appropriate live technique 

to use in order to preserve the maximum amount of relevant digital evidence. The 

approach to achieve both of these was to develop a methodology to allow the 

monitoring of live tools in a test environment and to record changes made. This is 

now possible and a number of interesting results have been obtained.  

 However, there are limitations to this methodology. First, only a small 

selection of live techniques have been examined and there are many other live tools in 

use and many other methods of connecting to a live system. However, as discussed 

earlier in the chapter, the focus of this research was to develop a methodology to 

allow changes to be identified, rather than to provide a comprehensive testing of all 

available live techniques. This is therefore not considered to be a significant 

limitation. In addition, a broad range of different test situations have been examined, 

which demonstrates the versatility of the developed technique.  

Another limitation is that the tests were all performed on a single operating 

system: Windows XP Service Pack 2; and while this is a popular operating system 

choice, the changes made by tools running on different operating systems may change 

and also need to be examined. However, again, this can be achieved using the 

developed methodology and remains future work. Also, the test systems are basic 

installs of the test operating system, i.e. free of any other installed software, e.g. 
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antivirus. Therefore, they are unlikely to represent real life systems that will be 

encountered in the course of live digital investigations. However, the research carried 

out can be considered to be the first stages of testing, whereas in future, test systems 

can be constructed that better represent those that may be encountered during live 

investigations. It is also possible, post-live investigation to build a test system in a 

similar configuration to that examined, and use it to identify changes that were likely 

to have been made during the real investigation.  

Recording the footprint of live tools on test systems allows predictions of what 

changes will occur on real systems. However, the data that was changed on a system 

from a real investigation can be better inferred using information available on the 

system after the live investigation takes place. As a result, after a live investigation, it 

is still necessary to examine the system to determine what evidence has been lost. 

However, the results obtained from monitoring test systems also assist with this 

process, since an improved understanding is gained of the changes that are made to 

systems. This allows an investigator to draw conclusions about the cause of a 

particular artefact being found on the examined system (whether they were due to 

normal background activity or the live tools). Also, one of the implemented 

techniques (MAC times based approach) can be applied to acquired data from a live 

investigation, and changes made after the recorded time of the beginning of the 

investigation can be extracted. However, this MAC times based approach is 

insufficient on its own, since not all changes to the system will update MAC times. A 

complete methodology for identifying changes made post-investigation remains future 

work. 

Despite these limitations, for a live investigation, this test system based 

approach, and the prediction of likely changes is extremely useful. The approach 

provides information that can be used by an investigator to understand likely changes 

that will be caused by the tools used. This allows them to make a decision about the 

best course of action in order to preserve the maximum amount of potentially relevant 

digital evidence. The examination of test systems also assists after the investigation 

has taken place, since it increases understanding of artefacts left on the system and 
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allows some of the detected changes to be attributed to normal background processes 

and the actual changes caused by live tools to be identified.  

5.8.2 Monitoring Technique Evaluation 

The system monitoring technique described in this chapter was developed to record 

changes made to test systems and to overcome the limitations of existing monitoring 

techniques. The three existing techniques for system monitoring described were: live 

logging tools, snapshot based approaches and MAC times based analysis. Live 

logging tools are intrusive techniques that intercept system events and record them to 

logs, and experiments have shown that these techniques can fail to record some 

events, and this research has not found a conclusive explanation for this. The existing 

snapshot based approach (InCtrl5) is also an intrusive monitoring technique that has 

the disadvantage of not recording changes that are made and undone in between 

snapshots, e.g. the creation and deletion of temporary files. The MAC times based 

approach is the only unintrusive technique, but this will also miss changes where the 

file metadata has not been updated. 

 The developed approach significantly modified the snapshot approach so that 

it was an unintrusive technique based on the use of virtual machines. It also combined 

it with the two other approaches into a much more comprehensive monitoring 

methodology, where a broader amount of changes are captured. However, the overall 

technique has remained intrusive due to the reliance on live logging techniques 

(Procmon). However, since only one intrusive technique is used, filtering out changes 

caused by Procmon is straightforward, as it can be monitored running on its own, the 

changes recorded and filtered out from future results. Also, in future, the combined 

technique could be used to monitor a virtual machine from a completely external 

perspective by removing the live logging tools, if the limitations of the snapshot 

approach could be overcome. Procmon is currently necessary due to the snapshot 

approach missing changes that are made and undone between snapshots. The impact 

of this limitation could be minimised, if in addition to the live file set, unallocated 

space in the two snapshots was also examined for changes, which would capture files 



  Chapter 5 

 

 158 

  

  

created and deleted between snapshots. It may also be possible to run the live logging 

tools on the host system and to translate writes to the virtual machine’s disk file into 

changes made in the virtual file system. Alternatively, open source virtualisation 

software could be modified to record changes to the virtualised system as they occur. 

However, these improvements remain future work. 

Alternatively, the Procmon monitoring could still be used, but separated out. 

This would mean conducting two experiments for each technique under test. Using 

the developed scripts for formatting tool output and combining them into a single 

report, the Procmon log from one test could be combined with the virtual system 

monitoring results from another. If the same baseline virtual machine was used, the 

results should not be significantly different. Alternatively, by combining results from 

systems in slightly different configurations, the robustness of the results could be 

increased. This separation of the live logging tools would mean that the snapshot and 

MAC address experiment was completely unintrusive, which would also enable the 

analysis of changes to the memory of the virtual machine to take place, since it would 

not be affected by monitoring tools. In this research, only changes to disk have been 

considered, without examining changes to the memory of the system. This is because 

it currently cannot be preformed correctly without additional experiments, due to the 

use of the intrusive Procmon tool. This is not a problem in this research, as changes to 

memory are not discussed since current techniques do not preserve memory at all, and 

therefore the intricacies of losing a small part of memory due to the use of a particular 

tool are not considered. However, this will need to be examined in future and the 

proposed modifications to the technique discussed in this section will allow this. 

The developed approach also offers the advantage of combining the results 

from the three approaches into a single report. The purpose of this was to validate the 

results of each of the monitoring methods. However, this has not been fully achieved 

since the different methods often do not agree because each method misses certain 

changes. So, while the complete validation of the individual methods has not been 

possible, combining them produces a more comprehensive list of changes and 

highlights the need to correlate multiple monitoring techniques. 
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There are also some practical limitations of the developed monitoring 

technique to consider. One consequence of the thoroughness of the monitoring is that 

the space requirements are much greater: for each experiment, two additional copies 

of the virtual machine’s hard disk and memory are made, in addition to the log from 

the live logging software. There is also a time issue, where creating duplicates of 

virtual hard drives for the ‘before’ and ‘after’ snapshots is more time consuming than 

the live logging approach alone. However, due to the low cost of hard disk storage, 

the amount of data generated has not been a significant problem, neither has the time 

needed to create duplicates of the virtual hard disks since the timescale is in minutes 

rather than hours. 

There are also specific difficulties with the new snapshot based approach. 

When the virtual machine is paused immediately after performing some action or 

running a piece of software, the changes are sometimes not recorded due to caching of 

disk writes. This is not a problem in the overall approach since the live logging 

method does record them, and this has been addressed in this research by leaving a 

short time after the event to allow changes to be written. However, a more effective 

solution to this problem is still being sought. 

Finally, it is still a challenge to efficiently filter out background changes. 

While changes that occurred on an idle system were documented and excluded from 

results manually, it is not possible to say with certainty that files that normally change 

in the background do not also change as a result of actions performed on the system. 

This is a weakness of the methodology that can currently only be resolved through 

manual inspection of all background changes listed by the techniques, which is 

repetitive, time consuming and error prone. One way in which this process could be 

made easier is by replacing the HTML based reporting of the current system with a 

full interactive user interface, designed specifically for examining reported files for 

changes. However, this also remains future work.  

 Despite these limitations, the virtual machine snapshot approach provides a 

realistic alternative to live logging tools, particularly if a method of identifying 

changes made and undone between snapshots can be devised. Also, the automation of 
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the report generation, while improvements are needed, allows the changes made to a 

number of test systems to be easily examined and allows a three way comparison of 

results that would not be feasible if performed manually.  

 

5.9 CONCLUSIONS 

5.9.1 Summary 

The completeness requirement means that it should be possible to assess which digital 

evidence is preserved and which is lost, and the maximum amount of digital evidence 

that is relevant to the investigation should be preserved. Evidence lost can be easily 

assessed in a traditional digital investigation since it is pre-determined with procedure 

(‘pull the plug’) what will be preserved (the hard disk) and lost (memory). The 

previous chapter showed that in certain circumstances, e.g. Full Disk Encryption, this 

approach will not preserve the maximum amount of relevant digital evidence and 

therefore a live investigation should be performed.  

 Therefore, it is necessary to be able to assess which digital evidence is 

preserved and which is lost when a live investigation is performed. While in the Full 

Disk Encryption example a live investigation is capable of preserving more than a 

traditional investigation, there are subtleties within the live investigation: live tools 

are intrusive and therefore overwrite data and cause evidence to be lost, but some 

tools or techniques may make fewer changes and therefore preserve more digital 

evidence than others. Also, different tools make different changes and data that is not 

relevant in one investigation may be relevant in another. Therefore, a different choice 

of tool or technique in different investigations may allow the maximum amount of 

relevant digital evidence to be preserved for a particular investigation. It is therefore 

necessary to identify changes that are caused by performing different actions on 

systems, so that the most appropriate action can be chosen for the current 

circumstances. 

 This chapter has developed a methodology for monitoring live tools and 

techniques in a test environment to establish the changes that they make. This can be 
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achieved using existing methods: live logging tools, intrusive snapshots, or sorting 

files by their MAC times. However, each of these approaches has limitations that 

mean they may miss certain changes that are made to a system. Therefore, this could 

result in live investigations being performed that overwrite relevant data and 

consequently fail to preserve relevant digital evidence. The developed methodology 

combines the approaches into a single technique that uses each of the methods’ 

strengths to overcome the weaknesses of others, providing a more comprehensive set 

of results. 

 This developed methodology was used to examine a number of live tools and 

techniques in test environments and to record the changes made. The tests carried out 

can be grouped into ‘launching programs’, ‘connecting to a live system’ and ‘running 

live investigation tools’. A number of interesting results were found which are 

summarised in the following sub-sections. 

5.9.2 Launching Programs 

Changes caused by running programs in a variety of ways were recorded: launching 

by double clicking, using Run from the Start Menu, and also by launching from a 

trusted command prompt. The least intrusive way to launch programs depends on how 

many programs will be run. If more than one live tool will be run then a command 

prompt is better as it makes fewer changes to the Registry. However, if a single tool is 

to be run, then launching by double clicking is preferable since the Registry changes 

are the same but with one fewer prefetch file created. This is also an important point 

for developers of live tools since tools are often designed so that parameters are 

passed to live tools using the command line. If this is not always desirable then 

alternatives such as configuration files or interactive shells should be considered. 

5.9.3 Connecting to a Live System 

Options for connecting to a live machine were also considered. Information about the 

currently mounted CD was found in the Registry, but was deleted when the CD was 

removed e.g. for an investigator to load a toolkit. However, without investigating 
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deleted Registry keys it is not possible to know if information about previously 

inserted CDs would have been recoverable if an investigator’s CD had not been 

inserted. Therefore, in a small number of cases where the currently inserted CD may 

be relevant, it is important not to eject the current CD to load live tools on to a system.  

 Attaching a USB mass storage device and Firewire device was also considered 

and both made a number of changes to the disk and Registry of the system. However, 

from the tests performed, the amount of potential digital evidence that could be lost 

due to connecting these devices is minimal since all data written is appended and does 

not replace existing values. Therefore, the loss of evidence is limited to data in 

unallocated space, slack space or deleted keys in the Registry. 

5.9.4 Running Live Tools 

A number of live acquisition tools were also investigated. Two disk imaging tools 

were tested and dd was found to cause fewer changes than FTK Imager. Also, 

memory was acquired using dd (from Helix Live CD) and FastDump, both of which 

produced prefetch files for themselves and dd caused an additional Registry change. 

More significant is the difference between the amount of change caused by these 

memory acquisition tools compared to live investigation tools, with the latter 

producing many more changes. This is important since much of the information 

obtained by running live analysis tools can now be recovered from a memory dump 

using tools such as Volatility (described in Chapter 2). Therefore, by using memory 

acquisition tools, which have a smaller footprint, and then obtaining information from 

the acquired image offline (but still at the scene), fewer changes to the suspect system 

can be made, which minimises the reduction in completeness of the preserved digital 

evidence.  

5.9.5 Final Summary 

It has been shown that it is possible to assess the changes made by live tools in a test 

environment and, with the assumption that similar changes will be made on systems 

during actual investigations, it is therefore possible to predict the changes that will be 
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made to systems during actual live digital investigations. Further experimentation 

using test systems that better represent ‘real life’ machines can be performed to make 

this assumption more valid, and will allow better understanding of the changes caused 

by live tools and techniques. This will allow the evidence preserved and lost as a 

result of live investigations to be assessed and will also assist an investigator to decide 

the best course of action at the scene that will preserve the maximum amount of 

relevant digital evidence. An example of this would be using a live memory 

acquisition followed by an offline analysis of that memory image, rather than using 

live investigation tools which obtain the same information, but make far more 

changes. 
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CHAPTER 6: ACCURACY  

6.1 INTRODUCTION 

In Chapter 3 it was explained that in a digital investigation it should be possible to 

assess the amount of error associated with all techniques used to obtain and process 

digital evidence, and that amount of error should be acceptable in the context of the 

current investigation. This chapter considers the nature of error associated with digital 

evidence and how it can be assessed. It examines how repeatability can be used as a 

means of assessing the accuracy of techniques used to recover and process digital 

evidence, and shows that this is not usually possible for live digital investigations. 

However, this chapter also shows that in the context of live digital investigations 

involving encrypted evidence, other data can be recovered from a live machine that 

allows offline decryption of encrypted data. Since offline decryption is possible, this 

means that the acquisition of encrypted digital evidence can also be performed in a 

repeatable manner, allowing the accuracy of the processes used to be assessed.  

 

6.2 BACKGROUND 

6.2.1 Introduction 

A limitation of the explanation provided for assessing the accuracy of digital evidence 

described above and in Chapter 3, is that error in the context of digital investigation 

techniques (acquisition, analysis and presentation) has not been defined. The technical 

definition of error is “a measure of the estimated difference between the observed or 

calculated value of a quantity and its true value” (Oxford, 2008). The difficulty in 

using this definition of error for digital evidence is that a piece of digital evidence is 

generally not a value and the error cannot be expressed as x ± y. Also, since digital 

evidence is always an abstraction of something physical (see Chapter 2), and it is not 

possible to view the actual data directly, this would make it impossible to assess the 

error in any digital investigation, since the ‘true’ value of the data cannot be known. 
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This section explores how error associated with digital evidence can be assessed in a 

meaningful way.  

6.2.2 Error in Specific Aspects of Digital Investigations 

There are several papers that discuss error related to digital evidence and each focuses 

on error associated with a particular aspect of a digital investigation. Carrier (2003) 

considers the introduction of error due to analysis tools (which are used to “translate 

data through one or more layers of abstraction until it can be understood”). Two types 

of analysis tool error are described. One is tool implementation error which is due to 

programming and tool design errors. The other is abstraction error, which is 

introduced “because of simplification used to generate the layer of abstraction” and 

when “abstraction is not part of the original design”. An example of this in a 

traditional digital investigation would be the skin colour based detection feature of X-

Ways Forensics (X-Ways, 2009), where files below a certain threshold are not 

displayed. This separation of files based on skin colour removes files from the view of 

the investigator in a way that is not part of the original operating system design. Since 

this approach for filtering relevant files is imperfect, this could filter out files that are 

important to the investigation, and the technique could therefore introduce abstraction 

error. However, abstraction layers do not necessarily introduce error and are described 

in Carrier (2003) as “lossless” (zero error)38 or “lossy” (error greater than zero).  

Carrier (2003) also mentions other types of error that are not due to analysis 

tools, including “errors introduced from the attacker covering his tracks, from faulty 

imaging tools, or from an investigator misinterpreting the results of a tool”. However, 

they are not discussed in detail. 

Casey (2002a) also discusses error in digital investigations, focusing on error 

in digital evidence obtained from networks. Similarly to Oxford (2008), Casey 

(2002a) describes error as “the difference between the true value and the 

measured/recorded value”.  

                                                 
38 ASCII is an example of a lossless abstraction layer 
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Casey (2002a) discusses ‘temporal uncertainty’, (where ‘uncertainty’ is 

described as the “probable upper bound of the error”) which can be caused by clock 

offset (either small drift or deliberate tampering) and by also limits in resolution, for 

example a record of “connections to/from a suspect’s computer that are totalled every 

ten minutes”. This means that from this data “it is not possible to distinguish between 

a Web site that the suspect accessed for ten minutes and a Web site that was only 

viewed for a few seconds.”  

Casey (2002a) also discusses ‘uncertainty in origin’, which could be confused 

with the authenticity requirement used in this research. However, due to the way in 

which ‘uncertainty in origin’ is discussed in Casey (2002a), in this research, this term 

relates to the accuracy requirement. In the examples given in Casey (2002a), the term 

‘uncertainty in origin’, rather than being concerned with identifying the physical 

evidence from which the digital object was obtained, relates to the events that caused 

the digital object to have its current value. For example, Casey (2002a) describes that 

the ‘from’ header in an e-mail could be falsified and has a high degree of uncertainty, 

and also that there is difficulty in using an IP address to determine an individual 

machine that is behind a Network Address Translation (NAT) device. In these 

examples, the digital evidence artefacts are the e-mail header and the IP address 

respectively. The origin of both, using definitions in this research, is considered to be 

the physical evidence from which it was obtained, likely a server. Showing that the 

digital objects were obtained from a particular server would therefore be part of the 

authenticity requirement. However, “uncertainty in origin” as referred to in Casey  

(2002a) i.e. determining the uncertainty in what actual events caused digital objects to 

have their current values, relates to accuracy. This is because, if there are multiple 

events that could cause the same state of digital data, there is an actual, true event that 

caused it, and one or more other events that did not. Considering why these digital 

objects have the states that they do, the ‘from’ entry in an e-mail header found on a 

server could have its value for a number of reasons, including that it came from that 

sender; or that it came from a different address and the header has been falsified. 

Equally, a reference found to the IP address of a NAT device could actually be caused 
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by connections from one of several machines behind that device. Discussing error in 

terms of a set of alternative reasons for a digital object having a particular value leads 

to a general definition of error for digital investigations.  

6.2.3 Defining Error in Digital Investigations 

In Chapter 2, it was explained how interactions with the real world and other digital 

devices can cause digital events to occur, which in turn create digital evidence 

artefacts, e.g. a person typing a URL into Internet Explorer (physical event) will 

trigger software code to execute, including an Application Programming Interface 

(API) call that creates a Registry entry (digital event) in the TypedURLs Registry key 

that contains the text typed into the address bar (digital evidence artefact). Chapter 2 

also described that the aim of a digital investigation is to “make valid inferences about 

a computer’s history” (Carrier, 2006a), where a computer’s history is defined as “a 

sequence of its previous states and events” (Carrier, 2006a). Since digital data on a 

system is usually as a result of interaction with another digital device or the real 

world, it is often necessary in an investigation to infer about these past external 

interactions of the computer being examined. Therefore, a computer’s history is 

defined from Carrier (2006a) as “a sequence of its previous states and events”, and an 

event can be any “occurrence that changes the state of the system”. ‘Events’ can 

therefore include digital events on the system, e.g. API calls or automatic pop-ups, 

interactions with other digital devices, e.g. connection to a USB device or the receipt 

of an e-mail, and also real world events, e.g. a user launching a program, clicking an 

HTML link, or typing some text.  

 Since the history of a computer is not fully recorded (Carrier and Spafford, 

2006), it is necessary during a digital investigation to infer about previous events in a 

computer’s history by formulating and testing hypotheses using the currently 

available digital evidence. Therefore, modifying the Oxford (2008) definition of error 

and using the main aim of a digital investigation and the idea that a computer has a 

history, the error associated with digital evidence can be defined as the difference 

between the inferred history and the true history of the examined digital evidence. 
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This error cannot be expressed as a definite value, e.g. x ± y, but can be expressed as 

uncertainty (possible error) in the inferred events, i.e. alternative possible 

hypothesised events that explain the current state of the examined digital evidence. 

For example, cached images from a prohibited web site (digital evidence) could be 

found in a user’s cache because the site was intentionally visited, or because it was 

opened automatically in the background by another site (alternative possible events). 

While this explanation of the definition of error has discussed inferring 

incorrect events in a computer’s history, these are errors only in high level 

hypotheses. In order to form these high level hypotheses about sequences of events, it 

is necessary to first form and test lower level hypotheses to “abstract data into files 

and complex data structures” (Carrier, 2006a), for example, the hypothesis that a 

particular piece of data embedded in a file represents the time it was modified, or that 

the typed URLs in the Registry need to be interpreted as Unicode characters. 

However, these are also included in the proposed definition of error since it is the 

difference between the inferred history and true history of the examined digital 

evidence. The history of the examined digital evidence includes events such as the 

acquisition of the digital data from the original physical evidence and the 

interpretation of this raw data to produce the digital objects in a form that can be 

analysed. Therefore, incorrect interpretations/abstractions of raw data can also be 

considered to be alternative hypotheses to that which assumes data structures are 

interpreted correctly and deterministically by the tools used to translate raw data into a 

form that can be understood. 

6.2.4 Assessing Error in Analysis in Digital Investigations 

Determining and explaining what caused the examined digital evidence to have its 

current state is part of the analysis stage of a digital investigation, e.g. determining 

whether pictures were intentionally downloaded or were part of an automatic pop up. 

Error in analysis is present if incorrect events are induced from the available digital 

evidence. Casey (2002a) proposes a means to specifically address the problem of 
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quantifying the certainty in digital evidence using a ‘Certainty Scale’ from C0 to C6. 

This is shown in Table 20.  

 

Certainty 

level 

Description/Indicators Certainty 

C0 Evidence contradicts known facts. Erroneous/incorrect 

C1 Evidence is highly questionable. Highly uncertain 

C2 Only one source of evidence that is not protected against tampering. Somewhat 

uncertain 

C3 The source(s) of evidence are more difficult to tamper with but there is 

not enough evidence to support a firm conclusion or there are 

unexplained inconsistencies in the available evidence. 

Possible 

C4 Evidence is protected against tampering or multiple, independent 

sources of evidence agree but evidence is not protected against 

tampering. 

Probable 

C5 Agreement of evidence from multiple, independent sources that are 

protected against tampering. However, small uncertainties exist (e.g. 

temporal error, data loss). 

Almost certain 

C6 The evidence is tamperproof and unquestionable.  Certain 

 

Table 20: Certainty scale described in Casey (2002a). 

 

A scale such as this is useful in estimating uncertainty in analysis and coming to 

conclusions; for example, if the Internet history on a machine contains references to 

prohibited web sites and a server log (outside the control of the suspect) records 

access to that site from the suspect’s machine, the hypothesis of the machine 

accessing that site would be given a certainty scale of C4-C5. However, the subtleties 

of this example, i.e. to determine whether the suspect intentionally accessed the site 

requires further digital objects to be examined e.g. typed URLs, bookmarks etc. 

Therefore, the Certainty Scale can be applied to a specific hypothesis, e.g. the 

machine accessed the prohibited site, and can also then be re-applied to new 

hypotheses as they arise, e.g. the suspect deliberately accessed the site. The scale is 

therefore best used to assess the certainty of specific conclusions.  

However, this scale alone does not address the problem of assessing the 

accuracy of lower level hypotheses, since in order to use multiple independent sources 
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for low level analyses, it is necessary to be able to run different tools on the same 

data, in which case, what is necessary is repeatability. Repeatability also allows 

multiple, independent sources in terms of a different examiner running the same 

analysis tool to check the results, i.e. that an examiner used the tool correctly. 

 Uncertainty in high and low level hypothesis formation and testing, can 

therefore be addressed in traditional digital investigations since the data is preserved 

at a low level of abstraction. The raw data can be examined using multiple tools or 

manually to translate it into a form that can be understood. If multiple tools agree or 

the manual reconstruction of the information can be shown, this allows the alternative 

hypothesis of incorrect interpretation/abstraction to be ruled out from the history of 

the examined digital objects. Also, the analysis can be performed by multiple 

examiners who can repeat the low level analysis techniques to determine if they were 

performed correctly. They can also repeat the high level analysis, which allows 

investigators to form and test their own individual hypotheses about sequences of 

events that caused digital objects to have particular values. The data that supports or 

refutes these hypotheses can be evaluated against a Certainty Scale, either 

introspectively or using one such as that in Table 6.1 and a decision can be made 

about which hypothesis is most likely. The Certainty Scale also assists with making a 

decision about what error is acceptable in the current investigation. Therefore, 

assessing uncertainty in the analysis stage of a traditional digital investigation relies 

on a combination of repeatability and a scale against which to judge the certainty of 

conclusions drawn. 

Both repeatability and Certainty Scales can also be used to assess accuracy in 

the analysis stage of a live digital investigation, but only if the acquisition and 

analysis stages are separated. This is because once an image is acquired from a live 

machine, it has the same properties as digital evidence acquired in a traditional digital 

investigation, i.e. the live image can be exactly copied in full and any analysis 

performed can be repeated on duplicate copies by independent examiners who can 

interpret the raw data and form and test different hypotheses. The difficulty in 
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determining the accuracy during live investigations therefore lies in the acquisition 

stage. 

6.2.5 Assessing Error in Acquisition in Digital Investigations 

A simple acquisition is an exact bit stream copy of the source data, i.e. the output 

should be the same as the input, and the input should equal the actual digital data. If 

any of these are not equal then this is an abnormal event in the history of the acquired 

and therefore examined digital object. In a traditional digital investigation it is not 

usually necessary to consider alternative histories of the acquisition since it is 

performed using tested, trusted software. Also, it can be verified at any time that the 

output is equal to the actual digital data, since the original evidence is still available. 

Furthermore, it is performed in a trusted environment, so there is no reason for the 

input provided to the acquisition process to differ from the actual data. It is also 

possible to repeat the acquisition many times and verify newly acquired data against 

existing images or the original evidence. 

However, this is not the case during a live acquisition since it is performed on 

a machine that is running and the acquired evidence “represents a snapshot of a 

dynamic system that cannot be reproduced at a later date” (Adelstein, 2006). The 

acquired image can therefore be verified only against itself rather than against the 

original media (Casey and Stanley, 2004). Not only can live data change between 

consecutive acquisitions, but live acquisitions are particularly problematic in the 

context of this research i.e. when encryption is involved. This is because, as shown in 

Chapter 4, when acquiring encrypted evidence, ‘pulling the plug’ on a machine 

running file system, virtual disk or full disk encryption, means that the decrypted form 

of the evidence is no longer accessible and cannot be re-acquired to validate the live 

acquired data.  

In a live acquisition, not only could the output of acquisition tools not equal 

the input, which introduces uncertainty, but also the operating system itself is 

untrusted (Carrier, 2006b, Kenneally and Brown, 2005). This means that the input 

data to the acquisition process may not equal the actual data. The normal behaviour of 
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an operating system is to provide the acquisition process with input that is equal to the 

actual data. However, acquired data can also have an alternative history where the 

data provided by the operating system as input to the acquisition process is 

manipulated in some way to add data, or more commonly to hide data. This is a 

common technique used by rootkits which can also be specifically designed for anti-

forensics (Bilby, 2006) and can modify the operating system to hide files, folders, 

Registry entries and processes.  

Therefore, by performing a live acquisition, extra elements of uncertainty are 

introduced. This uncertainty takes the form of an alternative history of the examined 

digital evidence where the output of the acquisition tool has not duplicated the input 

data correctly (faulty imaging tools, e.g. missed one or more sectors), and/or the 

operating system has supplied data to the acquisition process that does not represent 

the data on the system (‘faulty’ operating system). These elements of uncertainty 

currently cannot be ruled out, making the assessment of error and therefore 

assessment of accuracy difficult. 

6.2.6 Summary 

One of the requirements described in Chapter 3 is that during a digital investigation it 

should be possible to assess the amount of error associated with all techniques used. 

This section has defined the error associated with digital evidence based on its main 

purpose in a digital investigation, which is to “make valid inferences about a 

computer’s history” (Carrier, 2006a). Therefore, based on this aim and the definition 

in Oxford (2008), error associated with digital evidence is defined as the difference 

between the inferred history and the true history of the examined digital evidence. The 

possible error or uncertainty is expressed as alternative possible events that explain 

the current state of the examined digital evidence. This definition and expression of 

error has the advantage that it can be used to assess error in both the analysis and 

acquisition stages of a digital investigation. This is because it considers events in the 

history of the examined digital evidence, which includes both its change in state on 
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the system in question, and its change in state from raw data on the physical evidence, 

to acquired raw data, to data in a form that can be understood. 

 Error in the analysis stage of a digital investigation has been discussed and it 

was shown that it can be assessed; this is because the data that is being analysed can 

be exactly duplicated and can be examined by multiple investigators who can form 

and test their own hypotheses and reach their own conclusions about the most 

probable events that created pieces of digital evidence. They can also qualify their 

conclusions based on the agreement of different sources that support that conclusion 

using a Certainty Scale such as that in Table 20. 

The analysis stage does not present a particular problem for live 

investigations, since if the acquisition and analysis stages are separated, then data 

acquired from a live system has the same properties as data acquired in a traditional 

digital investigation. These properties are that data can be exactly duplicated and 

examined multiple times by multiple parties. However, uncertainty can be introduced 

during the acquisition stage of a live digital investigation, since it is difficult to 

demonstrate that in the history of the examined digital evidence, during the 

acquisition process, the actual data on the system was not captured incorrectly. This 

could either be due to acquisition tool error or the operating system supplying data to 

the acquisition process that does not represent the actual data on the system. The 

accuracy of a live investigation is therefore dependent on demonstrating the accuracy 

of the acquisition stage. As a result, this research examines how the accuracy of the 

acquisition of digital evidence from live systems using encryption can be assessed.  

 

6.3 METHODOLOGY 

This chapter examines how encrypted digital evidence from a live system can be 

acquired in a way that allows its accuracy to be demonstrated using repeatability, 

since this is used successfully in traditional digital investigations. The proposed 

approach involves recovering data from the live system that allows the encrypted data 

to be decrypted offline in a trusted environment. This means that since the decryption 

is done offline, data is static and the inputs to the decryption process are constant. 
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Decryption can be therefore performed in a repeatable manner in a trusted 

environment allowing the accuracy to be assessed and alternative hypotheses of faulty 

acquisition tools or manipulated operating systems to be ruled out. The only data used 

where the accuracy cannot be determined through repeatability is that which is used to 

allow offline decryption, since that data is acquired from a live system and will no 

longer exist after the power is removed. However, the accuracy of this particular piece 

of digital evidence can be assessed in another way: it can be demonstrated to be 

correct if it successfully decrypts the encrypted data, since if it were not correct then 

the data would not decrypt.   

 First it is shown how such information can be obtained from a live machine 

that is running an encryption product that allows recovery keys to be exported as part 

of the product’s design. It is then shown how these keys can be used offline to recover 

the decrypted contents of an encrypted drive. This is demonstrated using BitLocker in 

Windows Vista. Secondly, since not all products offer such a key recovery feature, it is 

also shown how decryption keys can be recovered from the memory of a live system 

which are then used to decrypt encrypted data offline in a repeatable manner. This is 

demonstrated using TrueCrypt. 

 This approach for key recovery from memory differs from that discussed in 

Chapter 2 (locating copies of the key or passphrase on the disk or in the surrounding 

area) where keys are searched for on the powered down disk or on physical media at 

the crime scene. The approach described in this chapter is different since a live 

investigation is used specifically to recover keys prior to the power being removed, 

rather than hoping that they can be subsequently located post-seizure. The following 

two sections describe the GUI based key recovery using BitLocker and key recovery 

from a memory dump using TrueCrypt. 
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6.4 GUI BASED KEY RECOVERY: BITLOCKER 

6.4.1 Introduction 

This section demonstrates how the recovery keys of Windows Vista’s BitLocker can 

be obtained by performing a live investigation. These keys can then be used offline to 

obtain a disk image of the decrypted data in a repeatable manner allowing the 

accuracy of the acquisition stage to be assessed using repeatability.  

 

6.4.2 BitLocker Background 

BitLocker is the Full Volume Encryption feature built into particular versions of 

Windows Vista (Enterprise and Ultimate). It offers five different modes which differ 

in how the decryption keys are protected: Trusted Platform Module (TPM) only, TPM 

& PIN, TPM & USB, TPM & PIN & USB and USB only. These were explained in 

detail earlier in Section 4.4.4. Regardless of the mode in use, Windows Vista will 

always provide the option for a recovery key. The purpose of this is to allow access to 

encrypted data if the decryption keys are lost, the PIN is forgotten or the encrypted 

volume is moved to another system (Microsoft, 2006b). Therefore, the recovery key 

will unlock the volume without the need for the PIN to be supplied or the USB stick 

or TPM to be present.  

 During the BitLocker life-cycle recovery keys are created prior to encrypting 

the drive and can be stored on USB drives, any other accessible folder, or printed 

(Microsoft, 2006b). Even though they are created prior to the encryption, it is also 

possible to create additional copies of these recovery keys at any point after the 

volume has been encrypted. This can be performed simply, using a graphical user 

interface in Vista, which is described in Section 6.4.4. 

 

6.4.3 Identification of BitLocker 

Before obtaining recovery keys for BitLocker, it first needs to be identified. As 

mentioned earlier, BitLocker is only available in Enterprise and Ultimate editions of 
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Vista (Microsoft, 2006f) so identification of other versions of Vista can rule out the 

presence of BitLocker39. If Enterprise or Ultimate versions are installed, due to the 

requirement for a 1.5 Gigabyte system partition which must remain unencrypted 

(Microsoft, 2006b), drive partitioning such as this may be the first sign to indicate the 

presence of BitLocker. There are also scripts that can be run on a live system that 

report the status of each volume and will describe if BitLocker is running (HogFly, 

2007, Microsoft, 2007b). The output of the built in Microsoft script is shown in Figure 

24 and shows a protected volume.  

 

 
Figure 24: Results of running the built-in manage-bde.wsf script identifying encrypted volumes on a live system. 

6.4.4 Obtaining Recovery Keys 

Once BitLocker has been detected, the recovery keys can be obtained using the 

graphical user interface. This can be accessed through the Control Panel and the 

option ‘Manage BitLocker Keys’ in the ‘Security’ sub-section. The interface is shown 

in Figure 25.  

                                                 
39 This can be achieved on a live system using the psinfo tool or by examining the system properties 
through the Control Panel. 
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Figure 25: The ‘Manage BitLocker Keys’ graphical interface. 

 

Using this interface, a copy of the recovery keys can be created on an attached USB 

device. Sample recovery keys are shown in Figure 26. 

 

 
Figure 26: The format of BitLocker Recovery Keys. 

6.4.5 Acquisition of a Powered Off System Using Recovery Keys 

After seizure, in the TPM only scenario, the machine can be booted normally with no 

intervention and in the other scenarios the recovery keys can be provided (typed using 

the Function keys). After this, the system can be booted in order to create a logical 

disk image. However, this is not a desirable way in which to recover evidence since it 

boots an already powered off system in order to perform a live investigation which 
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makes unnecessary changes to the original evidence and will affect the completeness 

of the preserved evidence. 

 Changes to the original evidence can be avoided by creating a physical disk 

image of the original drive (in encrypted form) and converting it to a VMware virtual 

machine disk file using LiveView (Kaplan, 2007). At this point, the virtual machine 

disk image can be booted which causes Vista to enter recovery mode since the 

hardware has changed. Entering the recovery key boots a virtual version of the 

original system and makes it possible to create a logical image in unencrypted form. 

Note that in this case, even in the TPM only scenario, the recovery keys are necessary 

since the TPM is not present in the virtual machine used to boot the disk image. A 

disadvantage of this approach is that it relies on the suspect’s operating system, which 

as described earlier could introduce uncertainty. There is also the problem that even 

after booting the virtual copy of the machine it is possible that a Windows password 

will then be necessary in order to log on to the system, which may not be available. 

To resolve these problems a second virtual machine can be created40, Vista 

Ultimate edition installed and the converted image from the original machine added to 

the new system as a second virtual drive. By booting into this freshly installed virtual 

Vista machine and using the BitLocker interface it is possible to unlock the drive 

using the recovery keys and produce a logical, unencrypted image of the original 

drive using a trusted operating system41. This method also has an advantage over 

connecting the original physical drive through a write blocker to a real Vista system to 

perform this drive unlocking, since the initial disk imaging stage remains the same as 

any other investigation. This disk image is then used for the entire analysis and 

recovery of evidence. This may be useful if those performing the analysis and 

attempting to gain access to the encrypted data are not the same as those who 

performed the initial disk imaging. 

                                                 
40 Which needs to be done only once. 
41 It is also possible to mount the virtual drive on a real system using software such as Mount Image 
Pro. Neither offer particular advantages and it depends on the software available. 



  Chapter 6 

 

 179 

  

  

6.4.6 Evaluation 

There are a number of limitations to this approach; most significantly that few 

encryption implementations offer such an easy to access key recovery system, and as 

a result, this technique does not generalise well. There are also potential problems to 

using this approach for BitLocker on Windows Vista, if User Account Control (UAC) 

is enabled. The goal of this feature is to enable users to run standard privilege 

accounts, only escalating privileges to administrator when necessary (Microsoft, 

2006e). UAC has implications for obtaining the recovery key since running the 

BitLocker management tool requires administrator privileges. If the account is an 

administrator then the keys can be obtained since running processes as administrator 

only requires clicking ‘Allow’ in the UAC prompt. However, if the account is a 

standard user then a password is required to access the mechanisms to create backups 

of BitLocker recovery keys. 

Also, this method may violate the End User License Agreement from 

Microsoft, since even the Windows Vista Ultimate License states that BitLocker may 

not be used with Virtualization Technologies (Microsoft, 2008a). However, in a 

forensic computing situation it is unknown how this will affect law enforcement. 

It is also conceivable that the suspect’s operating system could be modified to 

supply a false recovery key that will not decrypt the drive. However, this is 

speculation and has not been investigated. 

6.4.7 Summary 

BitLocker Recovery Keys can be recovered from Windows Vista using the built in 

GUI regardless of the mode used. This allows a disk image of the encrypted system to 

be acquired in decrypted format in a trusted environment. This allows the accuracy of 

the acquisition to be demonstrated since the technique is repeatable. The live acquired 

data can be shown to be the same as the offline acquired data. 

 However, there are problems, including the difficulty obtaining keys if UAC is 

enabled and the user account does not have administrator privileges. Despite this, the 

principle of key recovery followed by an offline decryption to assess the accuracy of 
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live acquired images is sound and if a more flexible key recovery approach (one that 

would generalise) could be used then many of the limitations of the approach could be 

overcome.  

 

6.5 MEMORY IMAGE BASED KEY RECOVERY: TRUECRYPT 

6.5.1 Introduction 

The previous section showed how decryption keys could be recovered from a system 

running BitLocker using the built-in interface. This section describes a technique for 

recovering the keys from a memory dump of a system, and uses them to demonstrate 

the accuracy of live acquired disk images. This is demonstrated using the popular, 

open source product TrueCrypt.  

6.5.2 TrueCrypt Background 

Introduction 

TrueCrypt is a “software system for establishing and maintaining an on-the-fly-

encrypted volume” meaning that “data are automatically encrypted or decrypted right 

before they are loaded or saved, without any user intervention” (TrueCrypt, 2008b). 

TrueCrypt has become a popular tool for encrypting data with over 8 million 

downloads (December 2008) (TrueCrypt, 2008a). 

Version History 

At time of writing TrueCrypt is at Version 6.1a, having last been updated in 

December 2008 (TrueCrypt, 2008f). Various features and bug fixes are implemented 

between versions. Also the default encryption scheme changes: Cipher Block 

Chaining (CBC) was used prior to V. 4.1, Liskov, Rivest & Wagner (LRW) for V.4.1 

- 4.3a and it currently uses XOR Encrypt XOR based, Tweakable Codebook Mode, 

Ciphertext Stealing, (XTS) (V.5.0 onwards). Another important difference is that in 
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the most recent versions (V.5.0 onwards), TrueCrypt offers more advanced options 

than just creating an encrypted container42, which are discussed below. 

 

Encrypted container: This is an encrypted file stored on disk that contains an 

entire file system that can be mounted as a drive letter in order to be accessed 

(Virtual Disk Encryption in Chapter 4). 

 

Encrypted Volume: Here an entire partition on a drive is encrypted. However, 

the partition table is still accessible in the clear, even during a ‘dead’ analysis. 

The partition is visible to Windows as a drive letter but appears unformatted. 

The decrypted partition can then be mounted with TrueCrypt as a different 

drive letter. 

 

Encrypted Drive: Here the entire drive is encrypted including the partition 

table. The entire drive from sector 0 onwards appears as random data. The 

drive is not accessible to Windows as a drive letter but can be seen through the 

Control Panel disk management tool. 

  

System Partition or Drive: Here either the drive or the partition containing the 

operating system is encrypted. 

The TrueCrypt Decryption Process 

This section describes the operation of TrueCrypt and how containers are decrypted. 

This is necessary to understand the details of the key recovery technique used later. 

 TrueCrypt encrypted containers appear to contain nothing but random data and 

have no file signature. Prior to Version 6 of TrueCrypt the first 512 bytes of a 

TrueCrypt container are actually a header43, but are encrypted using a Header Key so 

still appears to be random data. TrueCrypt decrypts the header using a user-supplied 
                                                 
42 Encrypted containers are referred to as Encrypted Virtual Drives in Chapter 4. 
43 The start of containers from Version 6 onward is still a header, but data begins at offset 131072 . 
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password or keyfile, salt44 from offset 0-64 (bytes) and then the process of trial and 

error using different encryption and key derivation algorithms and modes of 

encryption (CBC, LRW, XTS etc.). Successful decryption of the header is when bytes 

64-67 decrypt to the ASCII string ‘TRUE’. The entire header is then decrypted which 

in the case of XTS mode, contains the Master Key and Secondary Master Key (Tweak 

Key) needed to decrypt the actual contents of the container, from the ‘Data Area’ 

which begins at offset 512 prior to Version 6. 

XTS Encryption Mode 

As mentioned in the version history, since TrueCrypt Version 5.0, LRW mode has 

been replaced with XTS. This section outlines this encryption mode’s operation but 

full details are available in IEEE (2007). The data to be stored is divided into data 

blocks greater than 128-bits. Each of these data blocks is then divided into 128-bit 

sub-blocks. XTS uses two keys (key1 and key2) and each plaintext sub-block is 

encrypted with key1. However, before and after the actual encryption the sub-block is 

XORed with a tweak value calculated using the index of the block, the index of the 

sub-block and key2. This tweak value is calculated by encrypting the data block index 

with key2. This is then multiplied by 2 to the power of the sub-block index, modulo 

the polynomial x128 + x7 + x2 + x + 1. The overall process is depicted in Figure 27. 

 

 

                                                 
44 Salt is used to prevent pre-computation of password hashes. 



  Chapter 6 

 

 183 

  

  

 
 

Figure 27: XTS encryption of a single sub-block. 

6.5.3 Methodology 

The technique described in this section demonstrates the accuracy of a live acquired 

disk image of encrypted data using key recovery from a memory dump. The 

encrypted data is referred to as an encrypted container throughout this section, but the 

same technique can be applied to containers, volumes and drives, including those 

containing the operating system. 

The live acquired image of the contents of the encrypted container can be analysed 

but if it then becomes necessary to demonstrate the accuracy of the acquisition then an 

additional process can be carried out. Decryption keys can be recovered from the 

memory dump and used to decrypt the offline encrypted container. This can then be 

compared against the live acquired image and shown to be consistent, demonstrating 

the accuracy of the live acquired image since the decryption of the offline container 

was performed in a trusted environment and can be repeated.  

This is illustrated in Figure 28 and the full methodology that allows the recovery 

of keys and demonstration of the accuracy of acquired images of encrypted 

containers, from the point of encountering a live system, is: 

 

1. Identify the type of encryption software on the system, to determine whether 

the technique needs to be applied. 
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2. From the live machine, acquire the contents of the encrypted container. 

3. From the live machine, acquire the physical memory. 

4. Offline, recover keys from memory image. 

5. Decrypt the offline encrypted data using the recovered keys. 

6. Determine if the decrypted offline copy is consistent with the live acquired 

image. 

 

 
Figure 28: The overall approach for demonstrating accuracy of live acquired images. 

 

6.5.3 Key Recovery Technique 

One of the stages in the above methodology is the recovery of decryption keys from 

memory. There are a number of options for this, which are described in the following 

section. However, the specific technique used is not critical to the overall 

methodology. 

Existing Key Recovery Techniques  

There are a number of existing techniques to recover information from memory that 

may allow access to encrypted data. While not decryption keys, an anonymous work 

(anon, 2007) and Bolieau (undated) describe that some Full Disk Encryption packages 

cache plaintext passwords at offset 0x417 in memory images, including PGP Desktop. 

TrueCrypt can also cache plaintext passwords in the TrueCrypt driver memory if the 
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“cache passwords and key files in memory” option is selected (TrueCrypt, 2008d). 

However, these options are limited to particular products.  

 TrueCrypt key recovery from a Linux memory dump is described in Walters 

and Petroni (2007), where the operating system’s data structures are parsed and the 

master keys recovered from a clearly identifiable variable. This approach has also 

been extended to Windows in Kaplan (2008) where the TrueCrypt driver is located in 

memory and the keys extracted from particular offsets.  

 Also Halderman et al. (2008) describes a key recovery method that 

specifically takes into account bit errors introduced during cold boot memory 

acquisition techniques (See Chapter 2.3.4). The approach involves searching for data 

other than the key (the key schedule which stores pre-computed data for rounds of 

encryption for performance reasons) and using it to recover the key. 

Since the approaches in Kaplan (2008) and Halderman et al. (2008) were not 

made public until late into this research, the following sub-sections describe the 

development of an additional key recovery technique.  

Overview of Developed Key Recovery Approach 

The overall developed key recovery approach uses a linear scan of a memory image, 

using each consecutive position in that image, extracting possible keys according to 

an identified pattern and attempting to decrypt the container. The correct keys are 

identified when the container successfully decrypts. In this sense the overall approach 

of the technique can be described as a dictionary attack on the key from a limited key 

space generated from the memory of the system. The overall key recovery approach is 

shown in Figure 29 and the following subsections describe each of the stages of 

developing the key recovery methodology. 
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Figure 29: Depiction of the linear scan approach to key recovery. The keys used to perform test decryptions actually slide one 

byte at a time, rather than 256 as shown here. 

Setup of test environment 

For the development of this technique VMware Workstation was used to create a 

virtual Windows XP Professional machine. TrueCrypt was installed on the virtual 

machine and an encrypted container created with the password set to be ‘password’. 

After mounting the container the virtual machine was shut down and rebooted. The 

encrypted container was mounted using TrueCrypt and the appropriate password. 

With the container mounted, the virtual machine was paused and a copy of the .vmem 

file representing the virtual system’s RAM created. 

Identifying patterns in memory 

During the initial setup, when an encrypted container is created, the TrueCrypt 

graphical interface displays parts of the keys used to encrypt the container, as shown 

in Figure 30.  

 
Figure 30: Parts of the keys displayed by the TrueCrypt GUI on creation of an encrypted container. 
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It is this property of TrueCrypt, rather than it being open source that allowed the 

pattern matching to be easily developed. Without this shortcut, establishing patterns in 

memory is much more complex and is discussed later in the evaluation section. Since 

the keys are known, they can be easily identified in the memory dump and a clear 

pattern in memory identified, as shown in Figure 31. Experiments showed the first 

256 bit block to be the Master Key for the container and the second 256 bit block to 

be the Secondary Key for XTS (keys are reversed prior to Version 4.3a, see 

Hargreaves and Chivers (2008b)). 

 

 
Figure 31: Part of a memory image showing the Primary and Secondary Master keys. 

 

It should be noted that the Header key cannot be found at all in memory. This is 

because the Header key is only necessary for TrueCrypt to decrypt the container 

header and extract the Master and Secondary keys, which are then used to decrypt the 

rest of the container. Therefore, once the Master and Secondary keys are stored in 

memory, the Header key is no longer needed and can be erased.  

Once the patterns of the keys are identified, it is simply necessary to linearly 

scan memory, extracting keys in this pattern until the correct keys are found. 

However, it is first necessary to find a way to identify the correct keys.  

Identifying Correct Keys 

This key recovery technique uses known plaintext to identify the correct keys. During 

normal TrueCrypt operation the string ‘TRUE’ is used to show correct decryption of 

the header. From the header, the Master and Tweak keys are extracted, known to be 
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correct and are used to decrypt the data in the container. A similar known plaintext 

approach was developed to test for correct Master and Secondary keys; although, 

there are alternatives which are mentioned later in the future work section. Suitable 

plaintext was identified by creating, mounting and imaging several containers, and 

examining the images for consistent plaintexts. Offsets 3-7 of a mounted, decrypted 

10 Megabyte FAT formatted container, decrypted to ASCII ‘MSDOS’, as shown in 

Figure 32. These correspond to offsets 515-519 of the encrypted container (skipping 

0-512 which is the TrueCrypt header encrypted by the Header Key and not 

accessible). 

 

 
Figure 32: Known plaintext on FAT16 file systems. 

 

Larger, FAT32 file system based containers were also examined and the known 

plaintext ‘MSDOS’ can still be used. However, NTFS containers have the string 

‘NTFS’ at offsets 3-6 which needs be used to identify correct decryption of the data 

area of an NTFS formatted container. 

 There are also differences depending on whether a container, volume or disk is 

encrypted. As described above, for a container, the known plaintext file system data is 

located 3 bytes into Sector 1 (sector numbers begin at 0). For an encrypted volume the 

known plaintext is in Sector 64, Sector 1 for an encrypted Drive and Sector 63 for 

System Partitions and Drives. A summary of positions for the TrueCrypt headers and 

known plaintexts is shown in Table 21.  
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Mode Sector on disk containing 
TrueCrypt header 

Sector on disk containing 
known plaintext 

Container Variable Variable45 
Volume 63 64 
Drive 0 1 
System Partition 62 63 
System Drive 62 63 

 

Table 21: Positions and indexes of known plaintext in different modes of TrueCrypt. 

Decrypting the container from the master keys 

Software was developed in C that used sample AES decryption code from Devine 

(2006) which after implementing the modes of operation, allowed parts of the 

container to be decrypted from supplied keys. The developed software is compatible 

with LRW mode and the newer XTS encryption mode. Since the known plaintext 

strings (‘MSDOS’ and ‘NTFS’) are located at offsets 3-7 of the known-plaintext 

sector, and AES decrypts in blocks of 128-bits, the known plaintext resides in the first 

block of the data area of the encrypted container. This means that only one block 

needs to be decrypted. 

Automating key recovery 

Once a means of identifying correct keys was developed it was then necessary to 

automate the process of trying test keys so it could be applied to the entire memory 

dump. Software was developed in C, to scan through the whole of memory, using 

each 48 byte block as Master Keys and Secondary Keys in a fixed pattern, as shown 

earlier in Figure 29. The ‘window’ from which keys were obtained moves through 

memory one byte at a time, so for example in a 512 Megabyte memory image:  

 

512 × 1024 × 1024 = 536,870,848 bytes 

536,870,848 – 64 (‘window’ size) = 536,870,848 

 

                                                 
45 Position is variable on disk since containers can be stored in various places in the file system. 
However, the TrueCrypt header is in Sector 0 of the container and the known plaintext is in Sector 1 of 
the container.  
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This means there are 536,870,848 possible key positions in the full 512 Megabyte 

memory dump. 

As mentioned, the developed software only decrypts the first block of the data 

area of the container since that is all that is needed to determine if the keys are correct 

or not and allows significantly faster operation. 

6.5.4 Results  

Key Recovery 

The developed software successfully recovers encryption keys from a memory dump 

of a live system. It has been tested on and successfully used with memory dumps 

obtained from VMware and using dd. Figure 33 shows the output of the getkeys 

program. 
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Figure 33: Keys recovered from a live memory dump. 

 

The software recovered keys from 512 Megabyte memory images in an average of 1½ 

minutes on an Intel Core 2 Duo, 1.9GHz. A memory dump that did not contain keys 

was provided and the software scanned the entire memory dump and reported that no 

keys were found in 18 minutes. This gives a scanning rate of approximately 480,000 

keys per second or 27 Megabytes per second. Significant further optimisations are 

possible and are discussed later. 

Comparison with Live Acquired Image 

Once the keys are recovered it is then necessary to decrypt the entire container or 

volume in order to compare it with the live acquired version. The TrueCrypt program 

derives the header key from the user supplied password and a salt value in the 
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TrueCrypt header, which is then used to decrypt the master and secondary key stored 

in the header. It is not therefore possible to use the recovered master and secondary 

keys to directly open the container. However, as described in Walters and Petroni 

(2007) “with a few minor changes to the [TrueCrypt] mounter, we can use the 

extracted cryptographic information to mount the volume offline without the 

password.” Another approach is to extend the decryption code used to test for known 

plaintext and use it in a loop to decrypt the entire container or volume. This second 

approach is used to decrypt the container which can be analysed in the usual manner 

or compared against the already analysed live acquired image.  

Comparison of two acquired images of a mounted encrypted container (one 

acquired from the live system using dd, the other acquired offline by decrypting the 

container using keys extracted from memory) showed the containers to be identical. 

This can be seen by the hashes in Figure 34. 

 

 
Figure 34: MD5 hashes of live acquired container and offline decrypted container. 

   

However, comparison of two acquired images of a system running TrueCrypt Full 

Volume Encryption showed the acquired images not to be identical. This is due to live 

systems constantly changing, as discussed in Chapter 5. However, using the same 

technique used in Section 5.4.3, md5deep (Kornblum, 2008) can be used to obtain 

hashes of individual files on the acquired image. The hashes of files in both acquired 

disk images can then be compared. The results from an acquisition of a Full Volume 

encrypted system are shown in Figure 35 and show that 4 files changed between the 

live acquisition and the system being powered off. The differences were identified 

using the developed software md5listcompare. 
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Figure 35: Differences between the live acquired Full Volume Encrypted drive and the offline decrypted version. 

 

For the files on the encrypted disk that are not listed in the figure above, their 

accuracy has been demonstrated since the offline acquired versions are consistent with 

those acquired from the live system. The offline acquisition can be performed 

multiple times using different acquisition tools which reduces the likelihood that the 

image is incorrect due to faulty imaging tools. 

 However, regarding the files that have changed between the images, these 

could be excluded from the investigation as the live acquired versions cannot be 

shown to be the same as those obtained in a repeatable manner using a trusted 

operating system. However, if the files are important to the investigation, the files can 

be inspected more closely and the parts of the files that are the same can be used, with 

just the parts of the files that have changed excluded. It may also be possible to 

explain the discrepancies in detail, for example the change to logon.scr (see Figure 

35) occurred 10 minutes after the acquisition began which was when the screensaver 

on the live machine activated (in practice this activation of the screensaver should be 

prevented). The extent of the differences between the live and dead images therefore 

depends to a certain extent on the actions of the investigator, although in this case the 

changes caused by running dd (prefetch file, Registry changes, etc.) were recorded in 

both the live and dead acquisitions since the live imager acquired the parts of the disk 

that contained those changes after they were made.  

 However, other software running on the system may increase the number of 

differences, e.g. antivirus scans, Windows updates etc., although it should still be 
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possible to explain these differences. Also the longer the system is running before the 

power is removed the longer the system has to make changes to the drive. However, 

given that no differences were found with the live and dead acquired encrypted 

containers, differences are most likely to be a concern with Full Volume Encryption. 

In these cases background changes to the system are very small in relation to the total 

size of the data that is preserved. In this example a small 4 Gigabyte drive was used 

and still only 0.09% (3809953 bytes) was different.  

 Referring back to Section 6.2.5, it was explained that by performing a live 

acquisition, extra elements of uncertainty were introduced: the output of the 

acquisition tool could incorrectly replicate the input (faulty imaging tool), but also 

that the live operating system could provide the acquisition tool with incorrect data 

(‘faulty’ operating system, e.g. a rootkit). In addition to addressing the alternative 

hypothesis of a faulty imaging tool, by acquiring data offline using a trusted operating 

system, this eliminates the possibility of data being hidden due to the operating 

system behaving incorrectly (i.e. due to a rootkit) since rootkits cannot operate while 

the compromised operating system is not running and hidden files will be visible. This 

method therefore provides the opportunity to eliminate both of these alternative 

hypotheses since the encrypted data can be reacquired multiple times using multiple 

tools (addresses faulty acquisition tools), and it is possible to detect if the live 

operating system is incorrectly reporting its state, since when the offline acquisition is 

performed the suspect operating system is not running and therefore it is not possible 

for installed rootkits to run (addresses ‘faulty’ operating system).  

6.5.5 Evaluation of this Key Recovery Approach 

There are a number of limitations to this particular key recovery approach. One 

practical limitation is that the software has been developed only for AES in LRW and 

XTS mode. TrueCrypt supports a number of other algorithms including Serpent and 

Twofish. It could be argued that as the number of algorithms and modes increase, the 

number of combinations that need to be tried for each test key makes using this 

approach more of a challenge (Kaplan, 2008). Since the technique is simple and fast 



  Chapter 6 

 

 195 

  

  

due to only needing to decrypt a single block, even increasing the time by nine using 

three algorithms in three modes (AES, Serpent and Twofish with CBC, LRW and 

XTS), key recovery should still be possible in less than 5 hours. There are also many 

optimisations possible: sliding the key window more than 1 byte at a time; performing 

a simple entropy test on data prior to trying decryption, and rewriting the code to use 

multiple CPU cores or multiple machines; all of which will reduce the time taken to 

recover keys. In addition, at the stage where encryption is identified on a system, it 

may be possible to determine this information. TrueCrypt, for example, allows the 

properties of mounted containers to be viewed on a live machine, which describes the 

type of encryption (Container, Volume, Drive), the encryption algorithm and the 

mode used. This is shown in Figure 36. 

 

 
Figure 36: Properties of a mounted encrypted container identified on a live system. 

 

A specific limitation of the linear scan approach is that it relies on keys being stored 

in consistent patterns in memory. It is conceivable that keys could be split in memory; 

however, this is simply a more complex pattern that would need to be identified. 

Introducing a random element to the storage location of keys is one way to hamper the 



  Chapter 6 

 

 196 

  

  

use of this technique. However, by design, keys need to be constantly accessible to 

on-the-fly encryption products, and even if the key was split over randomly spaced 

locations, the encryption software would need to keep track of these. In this situation, 

to recover keys it would be necessary to have a greater understanding of the internal 

operation of the software in question, but as described in Kaplan (2008), “given 

enough time, both the secret key and the exact details of each cryptosystem’s 

operation can be discovered”. 

 Also, the known plaintext used to identify successful decryption of the 

container is non-essential data, meaning that this can be changed without hampering 

the operation of the container. However, it is possible to change the scanning process 

so that the known plaintext used is essential data46 or use statistical techniques to 

identify possible correct decryptions.  

 While this key recovery approach has been developed for only one product 

(albeit two versions), the work in Halderman et al (2008) has shown that keys are also 

available in memory for BitLocker, FileVault and dm-crypt. It also stands to reason 

that due to the inherent design of any on-the-fly encryption software, the keys have to 

be accessible in order to perform decryption, since the same keys are used for each 

block they need to be constantly accessible. Therefore, any product that does not 

decrypt all of the plaintext at once and decrypts data as it is needed is susceptible to 

some key recovery approach. 

 In addition to its generalisability, this approach overcomes the limitations of 

the GUI based approach where UAC could prevent keys from being recovered. While 

dd memory acquisition techniques require administrator privileges, a Firewire 

memory acquisition could be performed without needing to provide a password to 

UAC. It also is not affected by the use of duress keys, provided the seizure is 

performed when the real encrypted data is mounted, rather than the duress data. This 

is because the technique will recover the keys from memory that allow the currently 

mounted encrypted container to be decrypted offline.  

                                                 
46 Such as the starting address of the root directory or number of FATs (Carrier 2005 p.214) 
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 However, it is necessary to obtain the memory dump from the system while 

the encrypted data is in use i.e. in the case of container or volume encryption, it needs 

to be mounted. However, this is implementation specific since TrueCrypt securely 

wipes the keys once volumes are dismounted. Also, for any system volume, removing 

the keys from memory is not possible until the system is shut down. 

 The identification of key patterns in memory for this product was trivial, not 

due to the open source nature of TrueCrypt but because the GUI design reveals part of 

the keys during the creation of containers. However, any open source product could 

be modified to display this data in this way to assist in determining key patterns. For 

closed source products, a number of approaches are still being explored including 

reducing a memory dump to data that has changed before and after mounting a 

container and correlating memory dumps from multiple systems mounting the same 

container. Also, the use of a debugger may allow these keys to be viewed as the 

program executes. However, this is ongoing work.  

Another limitation that is unrelated to the accuracy requirement but is 

important practically, is that it cannot be known in advance if the keys can be 

successfully extracted from memory, e.g. memory may not have been correctly 

acquired. The acquisition of and key recovery from memory is therefore presented as 

an additional step as well as acquisition of the mounted encrypted containers and 

volumes. The key recovery is used if necessary to defeat challenges about the 

accuracy of an otherwise unverifiable live container image. However, a solution to 

this limitation is provided in Hargreaves and Chivers (2008a), where keys are verified 

offline but still at the scene, allowing live imaging to be avoided if necessary; but this 

is outside the scope of this research. 

 Finally, as mentioned earlier, limitations of this specific key recovery 

approach are not critical to the overall methodology for demonstrating accuracy of 

acquired encrypted containers or volumes since alternative or multiple key recovery 

techniques can be substituted.  
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6.5.6 Key Recovery Summary 

The accuracy of live acquired encrypted data has been demonstrated by recovering 

decryption keys from a dump of the system’s memory which was acquired at the same 

time. These recovered keys can be used to decrypt the static, offline data in a 

repeatable manner in a trusted environment, and the decryption can be used to verify 

the live acquired image. The only data that cannot be verified through repeatability is 

data that is inconsistent due to unavoidable changes on the live system and also the 

acquired memory image. As discussed earlier, files that are inconsistent due to the live 

system changing files can be inspected more closely to determine the exact nature of 

the discrepancies. Regarding the memory image, the only part of it that is used as 

evidence is the decryption key, the accuracy of which is evident since it successfully 

decrypts the encrypted data. In the Certainty Scale in Casey (2002a), this particular 

digital evidence artefact (the decryption key) achieves C6 (the highest level of 

certainty), meaning it is “tamperproof and unquestionable”. This key recovery 

approach has been demonstrated using the open source product TrueCrypt for all 

modes of operation: container, volume and drive encryption.  

6.6 EVALUATION  

Both methods of key recovery shown in this chapter, GUI based and linear memory 

scanning, have shown how encrypted data can be accessed offline in a trusted 

environment where the process is repeatable. Using repeatable techniques and trusted 

environments are existing and accepted ways in which accuracy of acquisitions can be 

assessed. 

 Therefore, while there are specific limitations of individual approaches, e.g. 

UAC for the GUI based approach on Vista and countermeasures for key recovery 

from memory, e.g. splitting the key, the multitude of approaches for obtaining keys 

means that if the encrypted data is being used on the live system, then keys must be 

stored somewhere and will be recoverable.  

 Allowing the accuracy of encryption to be assessed in this way reduces the 

possible error by eliminating the alternative hypotheses that the analysed digital 
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evidence has its value because the operating system supplied incorrect information to 

the live acquisition tool, e.g. due to the presence of a rootkit. This is because in the 

offline environment any malware on the evidence being examined cannot run. It can 

also eliminate possible error introduced due to the acquisition tool not operating 

correctly, since once the offline data is decrypted, multiple acquisition tools can be 

used to acquire data and it can be shown to be the same as the live acquired data.  

Referring back to Casey’s certainty levels (Section 6.2.4), use of this method 

increases the certainty in the live acquired encrypted disks from C2 (“only one source 

of evidence that is not protected against tampering”) to C5 (“multiple independent 

sources that are protected against tampering, however small uncertainties exist” (in 

this case these small uncertainties are the differences between images due to 

unavoidable file changes on a live system)). 

However, this method does not fully address the logic bomb problem, where 

software could be configured to erase data47 on the system given certain conditions 

e.g. adding a USB stick or running a certain piece of software. However, systems that 

are used to store encrypted data still need to be usable and preventing the use of USB 

sticks will reduce the usability of the system. It may also be possible to address this by 

examining the system prior to inserting a USB stick or running software to search for 

such ‘logic bombs’ or to examine the acquired images for traces left by the use of 

logic bomb software. However, this remains future work. 

 A consequence of relying on offline repeatability to demonstrate accuracy of 

data from live acquisitions of encrypted data (i.e. performing a dead acquisition) is 

that this approach does not generalise to other live investigations e.g. demonstrating 

the accuracy of a memory dump or the accuracy of live investigation tools such as 

psinfo. However, an alternative approach is possible to assess the accuracy of 

acquisitions: the Certainty Scale in Casey (2002a), (see Section 6.2) uses multiple 

sources of evidence during the analysis stage to test a particular hypothesis about the 

history of digital data. However, this approach could also be applied to hypotheses 
                                                 
47 Logic bombs could also lock the system, revert the data to its encrypt data or crash the system but 
this would not result in inaccuracy since that event would obviously have happened and would prevent 
the live investigation from progressing.  
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about the history of digital evidence during the acquisition stage i.e. whether the 

collected data has its value due to a manipulated operating system or a faulty imaging 

tool. To do this, memory could be acquired using multiple tools that use different 

sources to acquire an image, for example a dd based approach and the use of Firewire. 

Comparing the results could increase the certainty level from C2 (only one source of 

evidence that is not protected against tampering) to C4 (multiple, independent sources 

of evidence agree but evidence is not protected against tampering). This has the 

potential to allow a system to be screened for processes that may make it behave 

abnormally, therefore establishing if results from running further live tools on the 

system are likely to contain error due to the operating system misrepresenting its state. 

This is a promising area for future work, but generalising the assessment of accuracy 

of digital evidence for general live investigations, rather than those involving the 

acquisition of encrypted data, is outside the scope of this research.  

 

6.7 CONCLUSIONS 

One of the requirements in Chapter 3 was explained as it should be possible to assess 

the amount of error associated with all techniques used to obtain and process digital 

evidence, and that amount of error should be acceptable in the context of the current 

investigation. In this chapter, the error associated with digital evidence has been 

defined as the difference between the inferred history and the true history of the 

examined digital evidence, where possible error or uncertainty is expressed as 

alternative events that explain the current state of the examined digital objects.  

 This definition and expression of error has the advantage that it can be used to 

assess error in both the analysis and acquisition stages of a live digital investigation. 

This chapter has focused on the error in the acquisition stage of a digital investigation, 

since error in the analysis stage is concerned with interpretation of the acquired data 

and can be assessed by using multiple techniques that can be repeated by multiple 

examiners. If there are any differences in interpretation, the alternative hypotheses for 

the existence or state of digital evidence artefacts can be compared and the most 

probable decided on. It is then up to those making the decision to consider whether 
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the uncertainty is sufficiently small in the context of the current investigation to come 

to a decision. 

 The accuracy of the acquisition stage of a traditional digital investigation can 

also be assessed using repeatability since the original evidence is still accessible and 

the acquisition can be repeated in trusted environments using multiple tools and the 

results shown to be the same, which eliminates uncertainty about the acquisition 

methods or operating system functioning correctly. However, in a live acquisition, 

possible error, or uncertainty can be introduced either due to live acquisition tools 

operating incorrectly or by the operating system providing the acquisition tool with 

data that is not consistent with that on the system. This introduces a number of 

alternative hypotheses that explain the examined digital evidence having its current 

state. This uncertainty cannot normally be addressed for live investigations. 

 However, this chapter has shown that in the context of live digital 

investigations involving encryption it is possible to assess accuracy of live acquired 

copies of encrypted data. This is possible if at the same time as the live acquisition 

takes place, information is recovered from the live system that allows encrypted data 

to be decrypted offline in a trusted environment. This allows the accuracy of the 

acquisition to be assessed since offline decryption and offline acquisition are 

repeatable techniques, the output from which can then be used to validate the live 

acquired image. In this case, the only information used where the accuracy cannot be 

assessed through repeatability is data from the live disk that changed between being 

acquired and the system being powered off, and that which allows decryption of the 

encrypted data. However, the information that allows decryption is known to be 

correct since if it were not, then the encrypted data would not decrypt successfully.  

 This chapter has demonstrated recovery of this information from live systems 

and offline decryption in two ways. First, the built in graphical interface was used to 

export keys, which were then used to decrypt data offline. This was demonstrated 

using BitLocker on Windows Vista. The second approach involved obtaining a 

memory dump at the same time as the live acquisition of the mounted encrypted data. 

From this memory dump, decryption keys were extracted that allowed the offline 
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decryption of the encrypted data. The reason this is possible, and why it can be 

generalised, is that on-the-fly decryption is performed on a system as data is required, 

and the same key is used for all data. This means that the key needs to be stored 

somewhere for the encryption system to operate, and it can therefore be recovered.  

 Therefore, in summary, for live digital investigations involving encryption, the 

accuracy of the live acquisition of encrypted data can be assessed by recovering 

information that allows it to be also decrypted offline. This offline decrypted copy can 

then be acquired multiple times using multiple tools and compared to the live acquired 

data, eliminating the uncertainty that the operating system or live acquisition tool was 

behaving abnormally.  
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CHAPTER 7: AUTHENTICITY  

7.1 INTRODUCTION 

This chapter examines the authenticity requirement for digital evidence. This 

requirement specifies that the origin of digital evidence should be provable. The 

origin of digital evidence was explained in Chapter 3 to include demonstrating that it 

comes from a particular piece of physical evidence, since all digital evidence is an 

abstraction of something physical and ultimately the physical evidence can be 

connected to a real person. Also, authenticity is concerned with demonstrating what 

processes that have been used to obtain data from the physical evidence and then 

translate it through various layers of abstraction into a form that can be interpreted. 

The requirement also stipulated that accusations of tampering should be easily 

refutable.  

 These requirements are satisfied in a traditional investigation since the original 

physical evidence from where the digital evidence was obtained is still available and 

acquired evidence can be compared to the original. Also, records of all processes 

applied can be shown to be correct as they can all be repeated, and the same final 

result obtained. For a live investigation this is not the case since the original evidence 

may not be accessible, either because it was erased on removal of the power, e.g. 

memory or has reverted to a state that means it cannot be accessed e.g. encrypted data. 

The chapter shows that two aspects of this requirement can be satisfied for live 

investigations using existing techniques: digital evidence can be shown to be 

produced by running particular processes using digital evidence bags; and that 

accusations of tampering of acquired evidence can be refuted using cryptographic 

hashes. The chapter therefore focuses on developing a method to demonstrate that 

digital evidence was obtained from a particular piece of physical evidence, which 

assists in allowing the recovered digital evidence to be traced to a person. 
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7.2 BACKGROUND 

7.2.1 Authenticity in Traditional Digital Investigations 

As described in Chapter 3, the authenticity requirement for digital evidence specifies 

that the origin of digital evidence should be provable, both in terms of coming from a 

particular piece of physical evidence and also being produced by running particular 

processes. In addition, accusations of tampering should be easily refutable.  

 Revisiting the traditional digital investigation process described in Chapter 2, 

after seizing the physical evidence, usually a full disk image is created of the contents 

of the seized computer’s hard drive and this image is then analysed. The image that is 

analysed can be shown to be the same as the data on the seized physical evidence by 

computing a cryptographic hash of both, e.g. using MD5 or SHA1. This demonstrates 

that the acquired disk image, and therefore digital evidence extracted from it, 

originated from the seized physical evidence. Since the disk image can be shown to be 

the same as the original physical evidence, this prevents accusations of tampering 

with the disk image, since if the image is altered in any way, the hashes of the data 

stored on the physical evidence and on the disk image would not match. Accusations 

of tampering with the original physical evidence prior to imaging are countered using 

the principle of ‘continuity of evidence’, where it is documented who has had access 

to the physical evidence and at what stage. This is able to “provide continuity and 

assure provenance of the item from the time the item was seized to the time the item is 

used as evidence in court” (Turner, 2005). Demonstrating that digital evidence was 

obtained from the disk image by running particular processes is also achieved by 

thoroughly documenting actions performed. During the analysis, actions performed 

are recorded in detail, meaning that a third party could repeat those actions on the disk 

image and achieve the same results. This demonstrates that the final digital evidence 

artefacts obtained were as a result of running particular processes. This process of 

demonstrating authenticity in traditional digital investigations is shown 

diagrammatically in Figure 37.  
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Figure 37: Tracing digital evidence artefacts back to a piece of physical evidence in a traditional digital investigation. 

 

In a live investigation, if the acquisition and analysis stages are separated, 

documentation and repeatability can also be used to demonstrate that the obtained 

digital evidence artefacts are obtained as a result of running particular processes on 

the disk image. Therefore, the problem of demonstrating authenticity of digital 

evidence in a live digital investigation lies in the acquisition stage. This is because 

data acquired during a live investigation may not be accessible on the original 

physical evidence after the power is removed. Therefore cryptographic hashes cannot 

be used to demonstrate that the acquired evidence came from a particular piece of 

physical evidence because there is no original data to hash (memory) or it has reverted 

to a different state (encrypted data). This is shown diagrammatically in Figure 38.  

 

 
Figure 38: Tracing digital evidence artefacts back to a piece of physical evidence in a live investigation. 
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7.2.2 Authenticity in Live Digital Investigations 

It can be shown that data is produced as a result of running particular processes by 

documenting steps performed and by running known tools from read only media such 

as CD-ROMs. Combinations of tools are often combined into toolkits which execute a 

set of tools in a particular order and record a log of all actions performed. Toolkits 

such as these can be found on the Helix Live CD. 

Also, these logs can be made tamperproof if hashes are calculated at the time 

of creation. Turner (2005) describes a format for Digital Evidence Bags (DEB), which 

allows information to be attached to acquired evidence in the form of a ‘tag file’. The 

information is protected from tampering by incorporating a ‘tag seal number’ which is 

a hash of the current information in the tag.  

Digital Evidence Bags can be used not only to attach information such as the 

name of the investigator and the date and time of capture to the acquired evidence, but 

also to allow ‘real-time evidence capture’ where command line instructions supplied 

to a live machine can be captured directly into Digital Evidence Bags along with the  

time, the name and hashes of the commands run and hashes of the output from the 

tools (Turner, 2007). This provides a means to demonstrate that the data acquired is as 

a result of running particular processes.  

Since tampering accusations from the point of acquisition can be refuted by 

creating hashes of acquired evidence, and the processes run on the live system can be 

recorded by capturing command line instructions using a format such as Digital 

Evidence Bags, the remaining difficulty in demonstrating authenticity of live acquired 

evidence is showing that it came from a particular piece of physical hardware. 

 Some acquired data has embedded information that could be used to identify 

the physical origin, for example BIOS information such as make, model and serial 

number of the computer system can be obtained from memory dumps (Mcquown, 

2008). However, live acquisitions may not necessarily be an acquisition of memory 

and such identifying information may not always be found in acquired data, e.g. an 

acquired mounted encrypted container will not contain such information.  
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It is possible to demonstrate the authenticity of live acquired containers using 

key recovery and offline decryption techniques described in Chapter 6, since the 

original evidence becomes accessible and the original physical origin can be 

demonstrated in the same manner as traditional digital investigations. However, in 

cases where the key patterns have not yet been identified, there is another approach 

that can be used to demonstrate the physical origin of live acquired digital evidence.  

 

7.3 METHODOLOGY 

7.3.1. Overall Technique  

This research demonstrates that live acquired data can be shown to come from a 

particular piece of physical evidence even though the original data on the physical 

evidence is not longer available or accessible. The overall approach is to modify an 

acquisition process to also obtain unique system identifiers at the time of acquisition 

that will still be accessible after the power is removed from the system. At the time of 

the acquisition, the live acquired evidence can be cryptographically hashed with these 

identifiers. After the seizure, during the analysis stage, the live acquired image can be 

re-hashed with the seized physical evidence and the hashes shown to be the same as 

those produced from the live acquisition. This demonstrates that the live image was 

acquired on the seized physical evidence, which is shown diagrammatically in Figure 

39.  



  Chapter 7 

 

 208 

  

  

 
Figure 39: The overall methodology for demonstrating the origin of a piece of live acquired digital evidence. 

 

7.3.2 Choice of Process for Proof of Concept 

The technique described in the previous subsection is demonstrated in this research 

using a prototype, proof of concept implementation. This is achieved by modifying a 

live acquisition tool to include the hashes of system identifiers. There are a number of 

tools that could be used, for example tools for the acquisition of physical memory or 

for the acquisition of mounted encrypted containers. Both are of interest since, as 

described earlier it is possible to obtain a great deal of information from acquired 

memory images and are increasingly likely to be performed. Therefore, memory 

dumps would be a useful proof of concept tool. However, in the context of this 

research, the live acquisition of mounted encrypted evidence is particularly of interest. 

For the proof of concept development, dd from the Helix Live CD is used as an 

example since it can be used to acquire both physical memory and mounted encrypted 

containers.  
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7.4 DEVELOPMENT OF PROOF OF CONCEPT TOOL 

7.4.1 Introduction 

This section describes the development of a prototype tool that combines dd from the 

Helix Live CD with system identifiers in order to demonstrate the origin of live 

acquired data. 

7.4.2 Overview: Two-Stage Methodology 

The process of demonstrating the origin of live acquired data has two stages: live and 

dead. First, during the live investigation, a process is run that launches the acquisition 

tool dd, obtains some system identifiers, and hashes the acquired image with these 

identifiers. Then, later in an offline environment, the same system identifiers are 

obtained from the seized physical evidence. Offline, the live acquired image is then 

hashed with the system identifiers recovered from the powered off physical hardware. 

This latter process can be repeated at any time and the live acquired data can therefore 

be shown to have originated from the seized physical evidence.  

Due to this design, the system identifiers need to be accessible even after the 

power is removed, and even in cases where Full Disk Encryption is in use. Since in 

this case the contents of the drive will not be accessible after the power is removed, 

the use of software identifiers such as the Windows Product Key is not possible. It 

would be possible to generate a hash of some of the encrypted data that will be 

available after the power is removed and use this as a unique identifier. However, as 

described in Hargreaves and Chivers (2008a), in some cases it is difficult to obtain 

encrypted data from a live machine since the encryption software often transparently 

decrypts it. It is therefore desirable to use hardware identifiers, since these will be 

consistent when the machine is live and running the suspect’s operating system, and 

when the system is accessed offline during the later analysis stage of the investigation. 

There are a number of additional requirements for the system identifiers that are used: 

they should be unique to the system and difficult or impossible to tamper with.  
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7.4.3 Choice of Hardware Identifiers 

This section describes possible hardware identifiers that can be used to identify a 

machine. 

MAC Address 

One option is the Media Access Control (MAC) address of the computer. This is the 

physical hardware address attached to Network Interface Cards (NIC). The MAC 

address of the network card can be easily accessed on a live suspect Windows 

machine using ipconfig /all , and post-seizure, in a controlled environment48 

using ifconfig –a , see Figure 40. Also, the BIOS of some machines can report 

the MAC address of built in network cards. 

 

 
Figure 40: Displaying the MAC address under Linux. 

 

However, the MAC address of network cards can be changed under both Windows 

(Gorlani, 2008) and Linux. The changes to MAC addresses are not permanent and are 

specific to the running operating system. If the suspect is using a modified MAC 

address, this would have the consequence that during the live acquisition, the 

modified MAC address would be obtained, but during the offline analysis in a 

controlled environment, the true (but different) MAC address would be obtained.  

                                                 
48 Controlled environment refers to booting the machine using a Linux CD such as Helix 
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Hard disk identifiers 

A hard disk has more than one identifier, the Volume Serial Number, and the 

Manufacturer’s Hard Drive Serial Number, which are discussed below.  

 

Volume Serial Number: This serial number is a 32 bit number assigned to a partition. 

It is created when the partition is formatted and is derived from the time of the format 

(Wilson, 2005). Therefore, a drive with more then one partition would have more than 

one Volume Serial Number. This value is displayed when running a simple dir 

command, as shown in Figure 41.  

 

 
Figure 41: Volume Serial Number displayed with ‘dir’. 

 

Therefore, the Volume Serial Number can be easily retrieved from a live system. 

However, if the drive or volume has been encrypted, the Volume Serial Number will 

not be accessible to a later offline analysis, since the Volume Serial Number is stored 

within the partition itself (at offset 0x43 of sector 0 of the partition). 

Also, the Volume Serial Number can be changed using the tool VolumeID 

(Russinovich, 2006). However, unlike the changing of MAC addresses, these changes 

would still be present after a reboot and if encryption is not considered, could be used 

to link live acquired data to a specific machine. However, in this research, encryption 

does need to be considered.  

 

Manufacturer’s Hard Drive Serial Number: This is the serial number of the drive 

that is set during its manufacture. It can be retrieved using software such as HD Tune 

(EFD Software, 2008) and is often printed on the label of the drive (shown in Figure 

42 and Figure 43). Unlike the MAC address, no technique has been identified that can 

be used to change the manufacturer’s serial number. 
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Figure 42: Manufacturer’s serial number shown using HD Tune. 

 

 
Figure 43: The same serial number obtained from the label of the drive. 

 

Since no technique could be found to alter the manufacturer’s hard drive serial 

number and it can be accessed during a live investigation and during a later offline 

analysis, this is currently considered to be the best choice to identify a particular 
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machine. The following two sub-sections describe the implementation of the two 

stages of the proof of concept tool. 

 

7.4.4 The Live Side 

As described earlier, the proof of concept implementation uses dd to acquire the 

contents of an encrypted container and combines the acquisition with the output of a 

tool that obtains the manufacturer’s hard drive serial number. In this implementation, 

combining this functionality into a single tool is achieved using Perl. While Perl is an 

interpreted scripting language that requires software such as ActivePerl to be installed 

on a Windows machine to run scripts, it is possible to convert these scripts to self-

contained executables using the tool Perl2Exe (IndigoSTAR Software, 2008). This 

was used to produce the executable acquire_and_authenticate.exe which makes calls 

to other software using the ‘system’ command or the ‘backtick’49, as shown in Figure 

44. The contents of the mounted encrypted volume are acquired using dd from the 

Forensic Acquisition Utilities (Garner, 2007).  

 

 
Figure 44: Calls to dd and md5 from the Perl script. 

 

The manufacturer’s hard drive serial number is retrieved on a live machine using a 

Visual Basic script that uses code from Wilson (2006). This code is shown in Figure 

45. 

 

set svc = getobject ("winmgmts:root\cimv2") 

set objEnum = svc.execQuery ("select * from win32_p hysicalMedia") 

                                                 
49 ‘System’ returns the called program’s exit code, whereas ‘backticks’ return the program’s output. 
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for each obj in objEnum 

wscript.echo obj.GetObjectText_ 

next 

Figure 45: Code that recovers the manufacturer’s serial number. 

 

The combined hash is obtained by calling a program that calculates the MD5 hash of 

input provided to it. First a hash is calculated of the acquired data50, and then a hash of 

the serial number obtained using the earlier script. The output of the tool includes 

these two hashes and then a single hash of the combined two hashes, as shown in 

Figure 46. This hash can be documented and written to a text file.  

 

 
Figure 46: Output from the live tool. 

7.4.5 The Dead Side 

With the combined hash recorded, and the live acquisition performed, the system can 

be powered off and seized. During the later analysis, the live acquired data can be 

demonstrated to originate from the seized hardware by recovering the manufacturer’s 

serial number and re-hashing this serial with the live acquired image.  

There are a number of options for recovering the manufacturer’s serial number 

for a hard drive. For some drives it is printed on labels placed on the outside of the 

hard disk itself, and it can therefore be recovered easily. However, this is not the case 

for all drives and in these cases, it is possible to recover the serial number by booting 

to a Linux based CD (which allows the drive to be mounted as read only to prevent 

changes) and using: hdparm -i /dev/sda, the output of which is shown in Figure 47.  

                                                 
50 Since the hash is calculated of the acquired data, not the actual data, there are no difficulties due to 
the data continuously changing.  
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Figure 47: Output from hdparm –i /dev/sda to obtain the manufacturer’s serial number. 

 

With the serial number obtained, the offline verification of the acquired evidence’s 

origin can be achieved using the developed executable, offline_authenticate.exe, 

which is another Perl2Exe converted Perl script that takes the path of the acquired 

image and the text string of the hard disk serial number and calculates the combined 

hash. If this is identical to the hash obtained during the live acquisition, then the live 

acquired image can be shown to have come from that piece of physical evidence. 

 

7.5 RESULTS 

The prototype tool was tested on a live system running BestCrypt (where key recovery 

from memory is not yet possible). A test system was built51 and an encrypted 

container was created using BestCrypt. 

 The Perl wrapped version of dd was used to acquire the contents of the 

encrypted container and the hashes were displayed on screen. The hashes were 

documented and the screen photographed (shown in Figure 48). The system was then 

powered off. 

 

                                                 
51 In this case a real system was built rather than using virtual machines so that the hard drive serial 
number could be photographed. 
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Figure 48: Photograph of the output from the live tool. 

 

For the offline stage, the hard drive was removed from the system and the 

manufacturer’s hard drive serial number recorded from the label (Figure 49). This 

serial number was entered into the offline authentication software as shown in Figure 

50 and the outputted hashes compared to those obtained during the live investigation.  

 
Figure 49: Photograph of the physical drive’s serial number. 
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Figure 50: Output of the offline tool which is the same as that produced on the live system (Figure 48), which links the live 

acquired disk image to the seized hardware. 

 

As can be seen in Figure 48 and Figure 50, the hashes produced at the time of the live 

investigation by the acquisition tool which were documented and photographed agree 

with those produced using the seized hardware that is available for repeated 

inspection in controlled environments. If the image was acquired from a different 

system to the one seized, the hashes would not match as shown in Figure 51. 

 

 

 
Figure 51: Hashes produced do not match if the image was not acquired from the seized system. 

 

This demonstrates that the live acquired image came from the hardware in the 

possession of the investigator that can be linked to a suspect using traditional means.  
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7.6 EVALUATION  

This developed approach allows live acquired data to be demonstrated to come from a 

particular piece of physical evidence. This is part of the authenticity requirement, as 

explained in Chapter 3: the origin of digital evidence should be provable, both in 

terms of coming from a particular piece of physical evidence and also being produced 

by running particular processes. In addition, accusations of tampering should be 

easily refutable. In this research only the physical origin has been considered, since 

running particular processes can be demonstrated using the principles used in Digital 

Evidence Bags (Turner, 2006, , 2007) and it may also be possible to determine 

processes run on a system during a live investigation by the changes made to the 

system by the processes run (see Section 9.3). Also, if the acquisition and analysis 

stage of digital investigations are separated then accusations of tampering with digital 

evidence can be refuted since the hash of the analysed data can be shown at all stages 

to be the same as when it was first acquired.  

 There are some limitations to this approach. First, administrator privileges are 

required to obtain the hard drive serial number, and these may not be available. In this 

case it would be necessary to revert to using the MAC address or other hardware 

configuration information such as disk sizes to establish a link between the live 

acquired data and the seized physical evidence.  

Also, as described in the previous chapter, the operating system may not 

provide accurate information to live investigation tools. If the operating system 

behaves abnormally and provides false information e.g. a false hard drive serial 

number, when the offline analysis is performed in a controlled environment and the 

system does behave normally, the hashes will not match and the origin of the live 

acquired data will be difficult to prove. However, this would involve modifying the 

operating system to return a modified hard drive manufacturer’s serial number, and a 

means of achieving this has not been found. Even if this is achieved, it is still possible 

to use multiple identifying factors to counter this. Hashes could be obtained of the 

volume serial number, the MAC address and even hard disk sizes. While some could 

be changed, or rendered inaccessible offline by encryption, being able to access and 
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hash acquired data with several of the multiple factors could increase confidence that 

the acquired data came from the seized hardware. As a result, future work involves 

exploring further options available to link live acquired data to physical evidence. It 

also may be possible to use the real-time capture implementation of Digital Evidence 

Bags and integrate the hashing of physical evidence identifiers to demonstrate the 

physical origin of acquired digital evidence into the DEB framework. However, 

prototype DEB tools are not yet available and this remains future work.  

There are also limitations of the particular implementation: the Perl proof of 

concept is clumsy since it makes calls to other software to perform much of the 

functionality. If the technique is developed into a real tool then obtaining hardware 

identifiers and computing combined hashes should be integrated into the acquisition 

tool itself. Also, in this implementation, the hard drive serial numbers can only be 

obtained for IDE drives using the current script. However, code has now been found 

to obtain SATA serials (Napalm, 2006) but has not yet been integrated into the  

developed authentication programs. 

Also, referring back to Chapter 5, the changes caused to a system by dd were 

determined to be minimal (single prefetch entry and single Registry change). Future 

work will involve examining the changes caused by the additional functionality of 

calculating MD5 hashes and obtaining hardware identifiers. Identifying these changes 

is necessary for any ‘real’ implementation of this prototype tool. 

Also, it is important to emphasise that this ‘physical identifier approach’ is not 

sufficient on its own to demonstrate authenticity. It is possible to ‘cheat’ the system 

by using a modified version of the aquire_and_authenticate.exe that would take a 

fake memory dump as input that contains some fabricated evidence. This modified 

acquire_and_authenticate.exe could be run on the suspect’s system instead and would 

produce a combined hash of the faked evidence with the suspect’s hardware. When 

this is examined offline, this fake evidence will be authenticated as coming from the 

suspect’s machine. Therefore, the approach described in this chapter needs to be used 

in conjunction with a technique such as digital evidence bags which records the name 

and hash of the process run on the suspect machine. This means that it can be shown 
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that the evidence was obtained using the ‘standard build’ of 

acquire_and_authenticate.exe, which is known to acquire data from the machine on 

which it is running; not to take any custom input and generate a combined hash. The 

question still remains of how to demonstrate that the Digital Evidence Bag software 

has not been tampered with, but using procedural measures such as running from a 

read only medium such as a CDROM, multiple investigators signing documents to 

certify that certain software was run, or even videoing the procedure live, it is possible 

to demonstrate the authenticity of live acquired data.  

Finally, while this ‘hardware hashing’ approach is useful in the context of this 

research (acquiring live encrypted data), and can be extended to apply to memory 

acquisitions and other live acquisitions saved to removable storage media, it is not yet 

known how this approach could be applied to demonstrate the physical origin of other 

types of digital evidence, for example packet capture on a network. Nor can it be 

applied to a memory image acquired over a Firewire connection since the physical 

identifiers of the source system cannot be obtained in the same way. However, live 

acquisitions of disk or memory to a USB storage device or other removable media 

represents a significant proportion of live acquisitions and this is therefore a useful 

technique. Also, as described earlier, BIOS information and other identifying material 

may be used to determine the origin of acquired memory dumps, including in the case 

of Firewire acquisitions. Nevertheless, demonstrating physical origins of other types 

of digital evidence remains future work. 

 

7.7 CONCLUSIONS 

The authenticity requirement means that the origin of digital evidence should be 

provable, both in terms of coming from a particular piece of physical evidence and 

also being produced by running particular processes. In addition, accusations of 

tampering should be easily refutable. It has been shown that two aspects of the 

authenticity requirement can be satisfied using existing techniques. Specifically that 

digital evidence can be shown to be obtained as a result of running particular 

processes using Digital Evidence Bags, which can create a tamperproof record of 
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processes run and their output. Also, accusations of tampering with the acquired 

evidence can be refuted if cryptographic hashes are created of the acquired evidence, 

which can be checked throughout the life of a piece of digital evidence. 

 However, demonstrating the physical origin of live acquired evidence is 

difficult, particularly in the case of encrypted data, since the original data is not 

accessible once the power is removed. This chapter has shown that by hashing live 

acquired evidence with some unique physical property of the computer system, in this 

case the manufacturer’s hard drive serial number, the physical origin can be 

demonstrated, even without access to the original data in unencrypted form.  
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CHAPTER 8: EVALUATION  

8.1 INTRODUCTION 

This chapter reviews the research performed, and evaluates it against the original 

research hypothesis of digital evidence obtained from live investigations involving 

encryption can be shown to be reliable. Chapters 4 to 7 have examined each of the 

requirements used to assess the reliability of digital evidence and each chapter has 

evaluated the extent to which the requirement can be satisfied. This chapter provides a 

summary of the conclusions of the previous chapters, and evaluates them against the 

original research hypothesis. The chapter first considers the overall methodology used 

to test the proposed hypotheses, followed by evaluations of the methodologies used to 

examine each of the requirements that are used to assess the reliability of digital 

evidence, and also to determine if they support the original hypothesis.  

 

8.2 METHODOLOGY EVALUATION  

Digital evidence was defined in Chapter 2 as a set of reliable digital objects that 

support or refute a hypothesis. Therefore, this research was concerned with 

determining whether digital objects recovered using live techniques from systems 

using encryption could be considered to be reliable, and therefore used as digital 

evidence. The research hypothesis was that digital evidence obtained from live 

investigations involving encryption can be shown to be reliable. In order to test this 

hypothesis a measure of reliability was needed. As discussed in Chapter 2, digital 

evidence is used for digital investigations and forensic digital investigations, and each 

demand different levels of reliability of digital evidence. A higher degree of digital 

evidence reliability is needed to convict someone in a criminal court than in a 

corporate environment to come to a decision about a violation of an acceptable use 

policy, where the consequences of the decision are very different. Even within a 

forensic digital investigation, there are differences between the standard of evidence 

necessary for a decision in civil and criminal cases, where balance of probabilities 
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and beyond all reasonable doubt are used respectively. Therefore, whether digital 

evidence is convincing enough to come to a decision is dependant on the decision to 

be made and the person making the decision. As shown in Chapter 1, the reliability of 

digital evidence is therefore context sensitive and subjective. This presented a 

problem for this research since adopting a subjective view of digital evidence 

reliability means that this hypothesis could not be tested. However, in Chapter 3 it 

was shown that there is an alternative approach, where standards or requirements can 

be used to “ensure quality” and to “guarantee to those not involved of reliable results” 

(Pollitt, 1995). It was shown in Chapter 3 that there are number of existing standards 

or requirements that are currently used to assess the reliability of digital evidence, e.g. 

the ACPO guidelines, and since reliability is already assessed in this way, it was 

assumed that reliability of digital evidence can be assessed using a set of standards or 

requirements. Once this was established, it was then necessary to identify appropriate 

requirements.  

 

8.3 REQUIREMENTS EVALUATION  

Based on the assumption that the reliability of digital evidence could be assessed 

using standards or requirements, it was necessary to identify appropriate 

requirements. Existing requirements were examined but they were found to have 

limitations. Many were produced by those involved in forensic digital investigations 

and as a result they contained legal specific terminology, for example “chain of 

custody” (Sommer, 1998). This was not appropriate in this research since general 

requirements for digital evidence were needed, since digital evidence is used for 

forensic digital investigations and also general digital investigations, where the results 

do not need to be presented in court. Also, some of the existing requirements were 

written before live investigations became necessary and as a result the requirements 

were based around an approach where only the disk is considered to contain evidence. 

The consequence of building requirements on the assumption of evidence being only 

on disk, is that requirements such as “evidence should not be altered” (Pollitt, 1995) 

can then be used, since discarding memory by disconnecting the power is not 
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considered to be altering evidence. Once it is accepted that memory can contain 

relevant digital evidence, requirements such as this become impossible to satisfy.  

 As a result, existing requirements were not considered appropriate and it was 

necessary to produce technology neutral and general requirements for assessing the 

reliability of digital evidence. As a basis for this, a set of requirements for assessing 

the reliability of machine generated evidence was found in Miller (1992) that had the 

potential to be applied to assessing the reliability of digital evidence. These 

requirements were adapted to apply to digital evidence by considering the processes 

that make up a digital investigation to be equivalent to the machines in Miller (1992). 

From these, a set of general requirements for assessing the reliability of digital 

evidence were proposed, which were: 

 

Authenticity: it should be possible to demonstrate the origin of digital evidence, both 

in terms of coming from a particular piece of physical evidence and also being 

produced by running particular processes. In addition, accusations of tampering 

should be easily refutable; 

 

Accuracy: it should be possible to assess the amount of error associated with all 

techniques used to obtain digital evidence, and that amount of error should be 

acceptable in the context of the current investigation; 

 

Completeness: it should be possible to assess which evidence is preserved and which 

is lost, and the maximum amount of digital evidence relevant to the investigation 

should be preserved. 

 

However, the hypothesis that these are the requirements for assessing the reliability of 

digital evidence has the limitation that it can never be demonstrated conclusively that 

it is correct, only that a counterexample has not yet been found. Therefore, to 

determine if the requirements could be shown to be incorrect, existing requirements 

and standards were examined and compared to those proposed, since if the proposed 
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requirements were incorrect, then there would be significant inconsistencies with 

existing requirements. Requirements were selected to be examined that were in 

current use, taken from peer reviewed literature, or produced by experts in the field. 

These were discussed in Chapter 3 and found either to agree with the proposed 

general requirements, or it was shown how they were specific means of satisfying the 

proposed requirements e.g. “chain of custody” (Sommer, 1998) is shown as a way of 

demonstrating authenticity. Other requirements such as “evidence should not be 

altered” (Pollitt, 1995) were shown to be inappropriate for reasons discussed earlier. 

Also, the requirements that were specific to law, for example, only seizing evidence 

allowed by law (Mocas, 2004), were shown not to apply to all digital investigations 

and therefore inappropriate for general requirements for assessing the reliability of 

digital evidence.  

 From this examination of existing requirements it was not possible to find a 

valid counterexample, thus supporting the hypothesis that these requirements were 

suitable as general requirements for assessing the reliability of digital evidence.  

However, one of the challenges of proposing general requirements for assessing the 

reliability of digital evidence is that there is an extremely broad range of sources of 

digital evidence, including PCs, network devices, mobile phones etc. Therefore, it is 

possible that counterexamples may be found in other specific sub-categories of digital 

investigations. However, given the sample of existing requirements to which these 

proposed requirements were compared and shown to be compatible with, it is believed 

that any changes that are found to be necessary over time to these requirements, due 

to their generalised nature, will be minor adjustments to phrasing and explanation of 

the requirements.  

Therefore, since contradictory examples to assessing reliability of digital 

evidence using these three requirements were not found, in the remainder of the 

research, the reliability of digital evidence obtained from live investigations involving 

encryption was assessed against the three criteria of completeness, accuracy and 

authenticity. 
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8.4 COMPLETENESS EVALUATION  

The completeness requirement stated that it should be possible to assess which digital 

evidence is preserved and which is lost, and the maximum amount of digital evidence 

relevant to the investigation should be preserved. This requirement was examined 

over two chapters, Chapters 4 and 5. The requirement was first examined from the 

perspective of whether a live digital investigation or a traditional digital investigation 

should be performed to preserve the maximum amount of relevant digital evidence. In 

order to assess relatively what was preserved and lost by performing a particular type 

of investigation, it was considered whether offline access to encrypted data was likely 

using the approaches described in Chapter 2. Several of these techniques for gaining 

access to encrypted evidence were case specific, e.g. persuade the suspect to provide 

decryption keys, and therefore it was not possible to generalise about whether offline 

access to encrypted evidence would be possible for certain types of product, and 

therefore whether a live investigation would increase the completeness of the 

preserved evidence. Also, these case specific approaches make assumptions, e.g. that 

the suspect would co-operate and provide keys. These factors are difficult to predict 

and therefore were not of use in determining whether a live investigation should be 

performed. There were also approaches that were product implementation specific, 

e.g. find a vulnerability in an algorithm in use. The likely success of these specific 

approaches also could not be generalised and as a result were not considered in this 

research. The limitation of not considering product specific approaches is that offline 

access to encrypted evidence may be possible for particular implementations. 

Therefore, without taking product specific approaches into account, a live 

investigation could be performed when it was not necessary. However, in order to 

address this problem, a database of encryption products, including any vulnerabilities 

that allow offline access, would need to be developed. This would require a team of 

researchers to maintain, including keeping it up-to-date and controlling access. 

Therefore, this was not considered to be a feasible approach in this research.  

 However, the remaining offline approaches were explored as to whether 

general conclusions could be drawn about the likelihood of successfully gaining 
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access to encrypted evidence. It was found that the success of three of the approaches 

was affected by the amount of the disk that remains accessible after the power is 

removed: locating copies of data in unencrypted form; locating copies of the password 

or key; and intelligent password attacks. Encryption products were therefore 

categorised based on this property (the amount of the disk that remains accessible) 

and the categories identified were: 

 

Manual file encryption A user selects a single file for encryption. 

Folder encryption All files contained within a particular folder are 

automatically encrypted. 

Virtual drive encryption A virtual drive is created which is stored as a single 

file on the user’s file system and all data stored to this 

virtual drive is automatically encrypted. 

Full Volume Encryption52 An entire partition is encrypted, but other partitions 

and the partition structure are accessible. 

Full Disk Encryption The entire disk is encrypted, including the partition 

table. 

 

By examining which locations were left on the disk after a traditional digital 

investigation approach was used (‘pull the plug’), for each category, the effect on the 

investigation in terms of the completeness of the digital evidence preserved could be 

determined, with some categories preserving less digital evidence than others. The 

areas of the disk rendered inaccessible by pulling the plug may or may not contain 

relevant digital evidence. However, in this research it was assumed that the encrypted 

evidence was relevant and therefore access was needed to it. This is a valid 

assumption because even if the encrypted content was not relevant to the 

investigation, access would be needed to it in order to determine this. As a result, if 

                                                 
52 This category was identified during the research. The initial categories used were based on 
WinMagic (2005) which proposed four original categories, which did not include a distinction between 
Full Volume Encryption and Full Disk Encryption. 
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data could not be accessed because it was encrypted then completeness was assumed 

to have decreased.  

 In addition to which locations were encrypted and therefore inaccessible after 

the power is removed, it was also considered how useful the locations remaining 

would be in assisting with offline approaches to gaining access. The different product 

categories were examined and some left areas of the disk accessible that could contain 

information that would be useful in obtaining access to encrypted data on the disk 

during an offline examination, e.g. C:\temp, or the Windows Registry. However, other 

factors also affect the likelihood of gaining access using these approaches. These 

include the suspect’s technical ability, the complexity of their password, and their 

understanding of the precautions necessary when using encryption, e.g. erasing 

temporary files. It was therefore found that if a system is encountered in a live state 

and encrypted data is accessible, given the variables involved in attempting to predict 

whether offline access will be possible, the most effective method to obtain encrypted 

data in a form that is accessible is to perform a live acquisition. 

 However, there are more complexities to the completeness requirement once 

the decision has been made to embark upon a live investigation. These complexities 

were explored in Chapter 5. This was necessary since any live investigation is 

inherently intrusive and all actions performed on a live system will make changes to 

the system under investigation, which will overwrite data and decrease the 

completeness of the preserved digital evidence. Chapter 5 examined how these 

changes caused by live techniques could be assessed. Understanding changes caused 

by live tools and techniques makes it possible to predict which particular live 

technique should be used in an investigation to attempt to maximise the preservation 

of potentially relevant digital evidence. Since different tools overwrite different 

evidence, this means that depending on what needs to be preserved for the current 

investigation, techniques can be chosen and used that overwrite only data that is 

known to be irrelevant. Due to the diversity of system configurations, predictions may 

not be exactly correct and therefore being able to assess changes post-live 
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investigation is also necessary in order to determine which data has been overwritten 

and on the system in question after the live investigation has been performed.  

 The approach used to assess the evidence preserved and lost was to develop a 

methodology to monitor a test system and record the changes made to it. This 

monitoring methodology was used to record the changes made by running programs 

(including live investigation tools) and also connecting to the system in a variety of 

ways. However, the limitation of this approach is that these are records of changes 

made to simple test systems only, and further work is necessary to extend these 

predictions, and consider changes that are made to systems in configurations that are 

encountered in real investigations. However, the developed techniques and 

methodology will assist in performing this future work. 

 Therefore, completeness can be increased and decreased by performing a live 

investigation. If encrypted evidence is encountered on a live system, it is difficult to 

predict if offline approaches for gaining access to this encrypted digital evidence will 

be successful, whereas performing a live acquisition can preserve this information in a 

form that can be analysed. However, performing a live investigation will overwrite 

data on the system and decrease completeness. The assessment of this decrease in 

completeness caused by performing a live investigation can be achieved by testing 

tools in advance using the developed methodology. This allows changes to be 

predicted and therefore the best course of action decided upon for the current 

investigation, which attempts to minimise the loss of relevant digital evidence. It also 

assists in demonstrating post-live investigation, what changes were actually made and 

what evidence was lost. 

 

8.5 ACCURACY EVALUATION  

Chapter 6 examined the accuracy requirement for digital evidence, which was 

explained as it should be possible to assess the amount of error associated with all 

techniques used to obtain and process digital evidence, and that error should be 

acceptable in the context of the current investigation. However, this explanation has a 

limitation, since ‘error’ in the context of digital investigations was not defined. 
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Therefore, the concept of error in digital investigations was reviewed in Chapter 6 and 

then defined as the difference between the inferred history and true history of the 

examined digital evidence, where error is expressed as alternative events that explain 

the current state of the examined digital objects. This definition can be used to assess 

error in the acquisition and analysis stages of a digital investigation. However, this 

research did not consider error in the analysis stage of live investigations, since if the 

acquisition and analysis stages are separated; once live data is acquired, the remainder 

of the investigation process is no different to data acquired in a traditional 

investigation. This means that once data is acquired from a live system to a storage 

medium, it has the same properties as digital evidence from a traditional digital 

investigation, in that it can be exactly duplicated and examined multiple times by 

multiple examiners. Therefore, this research has concentrated on assessing the 

accuracy of the acquisition stage of a live investigation involving encrypted evidence.  

 This research showed that it is possible to assess the accuracy of live acquired 

data from systems using encryption, if, at the time of seizure, in addition to the 

mounted encrypted data, other information is acquired that allows offline decryption 

of the encrypted data. This was demonstrated by obtaining recovery keys from 

BitLocker in Windows Vista, and also recovering decryption keys from a memory 

dump of TrueCrypt. Both of these techniques allowed the encrypted data to be 

decrypted offline in a repeatable manner in a trusted environment. This offline 

acquired copy was then used to demonstrate the accuracy of the live acquired data 

since it eliminates alternative hypotheses that examined digital objects (the acquired 

data) have their values due to the operating system misrepresenting its state or the 

acquisition tool being faulty. The only digital object that is used as evidence, whose 

accuracy cannot be demonstrated in this way, is the data that allows offline 

decryption, and the accuracy of this is proven by its ability to decrypt the data. 

 There are however, two main limitations to this approach (excluding 

limitations of specific offline decryption approaches, e.g. TrueCrypt key recovery 

only being implemented for certain algorithms). First, is that it does not address the 

logic bomb problem, i.e. a piece of software could be installed so that when a certain 
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action is performed e.g. an investigator plugs in a USB stick, this causes data to be 

erased or manipulated, the system to be locked or the system crashed so that data 

reverts to its encrypted state. Only the first of these is an accuracy problem since it 

changes the history of the examined digital objects by changing their state, whereas 

the others prevent the data from being acquired at all. The second limitation is that the 

accuracy of a live acquisition has not been assessed using only live techniques, and an 

offline decryption and acquisition was necessary to allow accuracy to be assessed 

using repeatable methods. This is possible only for live acquired encrypted evidence, 

since after ‘pulling the plug’ the original data is inaccessible rather that permanently 

erased. So while the accuracy of digital evidence from live investigations involving 

encryption can be assessed by comparing it to the offline decrypted data, this 

approach can not be generalised to other live investigations, e.g. acquisition of 

memory or the output of live tools such as pslist.  

However, a general approach to assessing accuracy may be possible using an 

alternative method. As described in the conclusions section of Chapter 6, the 

Certainty Scale in Casey (2002a), which can be used during the analysis stage of an 

investigation to compare multiple sources of evidence to test and describe confidence 

in a particular hypothesis, could also be applied to live acquisitions. In this case 

multiple live acquisition tools that acquire data using different sources could be used 

and the results compared e.g. a Firewire acquisition and a dd based acquisition. If 

mapped to the Certainty Scale in Casey (2002a), by using multiple tools, this would 

increase the certainty in the acquired data since data could be verified by multiple 

sources. Also, if the accuracy of a memory image can be assessed, it is then possible 

to begin to determine whether the system is ‘behaving normally’ i.e. there are no 

suspicious processes whose function cannot be explained. This would allow an 

investigator to search for traces of logic bombs, determine if the system is behaving 

normally for the purposes of determining changes caused by live tools, and also 

screen a system for processes that may affect the results of other live tools later run on 

the system. However, this remains future work, but highlights the importance of 

memory acquisitions in demonstrating accuracy of results obtained from live systems.  
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 Therefore, if live acquisition is separated from analysis and presentation, the 

error associated with processes that analyse and present live acquired evidence can be 

assessed in the same way as in a traditional investigation. Also, the accuracy of the 

live acquisition of encrypted evidence can be demonstrated if information is recovered 

from the live system that allows offline decryption. This allows the accuracy of the 

live acquired copy to be verified by comparing it to the offline acquired copy, which 

was obtained in a trusted environment where the process and can be repeated, which 

therefore eliminates alternative hypotheses of the acquisition tool being faulty or the 

operating system providing false information to the acquisition tool. However, 

limitations remain, since there is possible error due to logic bombs erasing relevant 

data, which may or may not be significant depending on the individual investigation. 

In addition, this could be addressed with future work.  

 

8.6 AUTHENTICITY EVALUATION  

The authenticity of digital evidence from live investigations involving encryption was 

examined in Chapter 7. This requirement stated that it should be possible to 

demonstrate the origin of digital evidence, in terms of coming from a particular piece 

of physical evidence and also being produced by running particular processes. In 

addition, accusations of tampering should be easily refutable. Of the three aspects of 

the authenticity requirement, two could already be addressed for live investigations 

using existing techniques. First it can be demonstrated that data is produced as a result 

of running particular processes by maintaining a record of processes run and the 

output captured using a technology such as digital evidence bags. Also, accusations of 

tampering after acquisition can be refuted by creating hashes of acquired evidence 

which can be recalculated at any time and the evidence shown to be unchanged. The 

limitation of this is that accusations of tampering prior to acquisition cannot be refuted 

using technology. However, this is the case regardless of whether a live investigation 

is performed, since in a ‘pull the plug’ investigation, evidence could be manipulated 

prior to the power being removed, and tampering at the scene is possible in real-world 

forensics. This problem can be addressed procedurally using multi-person teams of 
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investigators and it would also be possible to video the entire seizure to record all 

actions performed at the scene. Therefore, accusations of tampering prior to 

acquisition were not considered in this research. 

 Since two aspects of the authenticity requirement could already be addressed, 

this research focused on demonstrating that live acquired data came from a particular 

piece of physical evidence. This was achieved by modifying the acquisition process to 

obtain unique physical identifiers of the system (in this case the hard drive’s 

manufacturer’s serial number) and to cryptographically hash the acquired data with 

these identifiers. Since these identifiers are available before and after the power is 

removed from the system, during the later analysis, even though the original data is 

not available (e.g. it is encrypted or erased when the power is removed) it is still 

possible to obtain the physical identifiers from the seized evidence. It is then possible 

to perform the same hashing operation and show that the live acquired evidence came 

from the seized piece of hardware, which can be connected to the suspect. 

 Therefore, authenticity can be demonstrated for live acquisitions using a 

combination of technological and procedural techniques. It can be demonstrated that 

data is produced as a result of running particular processes, either procedurally or 

using a technology such as Digital Evidence Bags, accusations of tampering after 

acquisition can be refuted by creating hashes of acquired evidence, which can be 

recalculated at any time and the evidence shown to be unchanged, and the physical 

origin can be demonstrated by hashing evidence with physical identifiers of the 

system which can be repeated at any time which demonstrates that the acquired digital 

evidence came from a particular piece of physical evidence.  

 

8.7 CONCLUSIONS 

In summary, the original research hypothesis was digital evidence obtained from live 

investigations involving encryption can be shown to be reliable and this research has 

proposed that reliability of digital evidence can be assessed in terms of three criteria: 

authenticity, accuracy and completeness. It is been shown that for a live investigation, 

authenticity can be satisfied by recording the processes run, either procedurally or 
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using a technology such as Digital Evidence Bags; that acquired evidence has not 

been tampered with after acquisition by creating cryptographic hashes of the acquired 

evidence; and that the acquired evidence came from a particular piece of physical 

evidence by hashing acquired digital evidence with physical identifiers such as 

manufacturer’s hard drive serial number. It has also shown that the accuracy of digital 

evidence from live investigations is dependant on demonstrating the accuracy of the 

acquisition stage. This was shown to be possible by acquiring specific information, in 

addition to the mounted encrypted data, which later allows the static encrypted data 

that remains when the power is removed to be decrypted offline in a repeatable 

manner in a trusted environment and compared to the live acquired copy. This 

additional information can be in the form of recovery keys or a memory dump, from 

which decryption keys can be extracted. While this approach cannot be extended to 

general live acquisitions, in the context of live investigations involving encryption, 

this technique allows digital evidence to be acquired in a form that can be analysed 

and the accuracy of that acquisition to be assessed. It has also been shown that live 

investigations can increase the completeness of the preserved digital evidence, and 

assuming the encrypted evidence is considered relevant to the investigation, will 

preserve the maximum amount of digital evidence relevant to the investigation. It has 

also been shown that it is possible to assess the evidence that is preserved and lost by 

monitoring live tools and techniques in test environments and recording the changes 

made. This testing assists an investigator in determining the best course of action 

during a live investigation using predictions about what will be overwritten by 

particular live tools and techniques. Also, the results obtained from footprinting live 

tools and also other software that is found on systems e.g. antivirus, increases 

investigators’ understanding of the changes that occur on a system, which assists with 

the analysis of the machine post-live investigation, to identify changes made and 

therefore potential digital evidence that was not preserved. While the test 

environments examined do not yet truly reflect the real systems on which live tools 

are run, the developed methodology makes this future work possible.  
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Therefore, referring back to the original hypothesis of digital evidence 

obtained from live investigations involving encryption can be shown to be reliable, 

despite the use of these requirements to assess reliability and the success of the 

implemented solutions to satisfy them, it is important to remember that in reality, the 

reliability of digital evidence is subjective and context sensitive, as discussed at the 

beginning of this chapter and in Chapter 3. So while reliability can be assessed against 

requirements, it is necessary for those requirements to address the context sensitivity 

of digital evidence reliability. The requirements proposed allow for this, for example, 

the requirement for accuracy states that it must be possible to asses error, and that this 

error should be acceptable in the context of the current investigation. Also, the 

completeness requirement states that the maximum amount of relevant evidence 

should be preserved, where what is considered relevant digital evidence will change 

depending on the investigation. Also, when considering authenticity, it is possible for 

the person collecting evidence to subvert the collection process, by introducing, 

altering or removing evidence. It is therefore necessary for decisions about these 

factors to be made for individual investigations: whether the error is acceptable, 

whether something relevant was not preserved, or whether the person who collected 

the evidence performed the evidence collection properly. This is the responsibility of 

those making the decision, which will in turn depend on the decision to be made. 

Therefore, it is not possible to broadly say whether digital evidence obtained from live 

investigations involving encryption is reliable, because it depends on the 

circumstances in which it is used. However, this research has provided structured 

criteria that allow this reliability to be assessed and has also demonstrated the use of 

these criteria in the context of live investigations involving encryption and shown the 

extent to which each can currently be met if the most reliable evidence possible is 

aspired to.  
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CHAPTER 9: CONCLUSIONS 

9.1 CONCLUSIONS 

This final chapter provides a summary of the contributions of this thesis, discusses 

future work and provides a summary of the work performed and the conclusions 

drawn. 

9.2 CONTRIBUTIONS 

This research has tested the hypothesis of digital evidence obtained from live 

investigations involving encryption can be shown to be reliable, which has involved 

investigating the strengths and weaknesses of performing live investigations of 

systems that use encryption. While it is not possible to say that digital evidence from 

live investigations involving encryption is reliable, since this is investigation 

dependent, it has been possible to produce a set of criteria, against which reliability 

can be assessed. The explanations of these requirements for digital evidence have 

been clearly defined and the research as a whole acts as an example of how they can 

be used. 

 Also, categorisations of encryption product have been validated and it has 

been shown how these affect the locations on disk that become inaccessible. It has 

also been shown how these categories affect offline approaches to attempting to gain 

access to encrypted digital evidence.  This research showed that it is difficult to 

predict the success of offline approaches and therefore offline access may or may not 

be possible. However, live investigations allow data to be preserved in all cases and 

particularly in the case of Full Disk or Full Volume Encryption, are likely to offer a 

significant increase in completeness.  

 The adverse affect on completeness by performing live investigations has also 

been explored. A methodology and software tool has been developed that simplifies 

the process of recording changes made to test systems. These allow the footprints of 

live tools to be determined. Testing also produced some specific results, including the 

advantages of acquiring an image of memory followed by extracting information such 



  Chapter 9 

 

 237 

  

  

as processes running from the image, rather than using live investigation tools such as 

pslist to produce the same information.  

 A general definition for error in digital investigations has also been proposed, 

which was lacking in current literature. A clear definition of error in digital 

investigations based around alternative hypotheses for digital objects having their 

current state provides direction for the expression of error when presenting digital 

evidence. After defining error, it was clear that in a live investigation, the alternative 

hypotheses for acquired data having its current state were the operating system 

providing false information to the acquisition tool, or the acquisition tool obtaining 

data incorrectly. To address this problem, a method was developed that used 

repeatability and the use of trusted operating systems as means of demonstrating the 

accuracy of live acquired copies of encrypted evidence. This involved acquiring 

specific information from the system at the same time as a decrypted copy of the 

encrypted evidence, which allowed offline decryption of the static encrypted data. 

This was demonstrated in two ways: using the built in GUI of BitLocker and 

recovering decryption keys from a memory dump of a system running TrueCrypt. 

This approach can be extended for all on-the-fly encryption systems.  

 Finally, it has also been shown how physical origin of live acquired data can 

be demonstrated by integrating physical identifiers that are available before and after 

‘pulling the plug’ into the acquisition process. 

 Many of these contributions have resulted in peer reviewed publications. 

Obtaining recovery keys in order to allow later access to Windows Vista Bitlocker 

encrypted data was discussed in Hargreaves and Chivers (2007) and Hargreaves et al. 

(Hargreaves et al., 2008). The latter also discussed the difficulty in gaining offline 

access to EFS encrypted files on Windows Vista. The key recovery approach to 

demonstrating accuracy of acquired digital evidence was discussed in Hargreaves and 

Chivers (2008b), where the ‘linear scan’ approach to key recovery was introduced. 

This key recovery approach was also used in Hargreaves and Chivers (2008a) to 

demonstrate how live imaging could be avoided in cases where it is impractical, such 

as when very large amounts of data are involved. Both papers on key recovery also 
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included other aspects of this research, including the types of offline approaches for 

gaining access to encrypted evidence.  

 

9.3 FUTURE WORK 

This research has also opened up many opportunities for further work. First, the 

criteria proposed for assessing the reliability of digital evidence could be applied to 

other types of digital evidence. An obvious example would be mobile phones since 

evidence is often obtained using a live investigation, i.e. using the operating system of 

the system under investigation to recover evidence, and no literature could be found 

on the reliability of digital evidence obtained from mobile phones.  

One of the most interesting areas for future work is determining the footprint 

of live investigation tools and techniques. The developed methodology can be used to 

identify changes made to test systems and can be used to predict the locations of 

artefacts left by a live investigation. However, an individual post-live investigation 

analysis of a machine is still necessary for each case. Developing an optimised and 

standard methodology for performing this later analysis would speed up an 

investigator’s ability to assess the changes made by the live tools used and determine 

which digital evidence may have been lost. Standardising this part of the analysis does 

not suffer from the same difficulties as attempts to standardise general digital 

investigations (including problems such as the diversity in investigations and the 

number of different questions to be answered), since only a single question is being 

asked – what changes were made to the system due to the investigators actions? 

The actual methodology and software developed for live tool testing also 

enables other future work; firstly, they can both can be significantly improved. The 

methodology could be changed so that the live logging tools are not used, which 

would make the monitoring completely unintrusive. However, for this to be possible, 

other changes would need to be made, as described in Chapter 5, for example, the disk 

caching problem overcome, and an inspection of changes in unallocated space. 

Making the method completely unintrusive offers the advantage that changes to 

memory could be monitored simultaneously, since the memory of the system would 
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not be modified by the monitoring tools. The analysis of changes caused could also be 

improved, with more experiments into ‘background changes’, and more significantly, 

a modification of the reporting environment from a simple HTML report to a full GUI 

that allows recorded changes to be easily inspected to determine if they are relevant. 

Also, there is the potential for further automation. VMware offers an API which has 

not yet been fully explored, but at least allows virtual machines to be paused and 

resumed from the command line. This is a small optimisation but it may allow one-

click snapshot generation, simplifying the collection of test data. 

The developed system monitoring methodology, improved or otherwise, could 

be used to examine additional live investigation tools and techniques e.g. other 

memory acquisition tools, connecting via Ethernet, etc. It could also be used to 

examine them in greater detail: repeating the tests, using systems with different 

background software running e.g. antivirus, and on different service packs\operating 

systems. These may or may not make significant differences to the changes caused 

but experimentation is needed to determine this.  

Identifying changes caused by live tools also has implications for the 

authenticity requirement; specifically that by identifying the changes made by live 

tools, it may be possible to use the artefacts that remain on a system after a live 

investigation to support investigators’ records of their actions performed on the live 

system. 

 Also, the methodology and tools developed could be used to significantly ease 

a popular area of digital investigation research: determining the forensic artefacts left 

by pieces of software. Using the developed methodology and tools it is possible to 

generate comprehensive reports detailing the changes caused by performing actions 

on a system, e.g. running Skype from a USB stick. If the tools are improved in the 

manner described earlier, recorded changes could be inspected through an interface 

designed for highlighting these changes, allowing relevant changes to be easily 

identified. The automated nature of the tools, particularly if the VMware API can be 

utilised, allows these reports to be very easily generated, allowing the 

investigator/researcher to concentrate on the analysis of the recorded changes. 
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 This also raises a question about how to store and present these changes. This 

problem applies to changes caused by live investigation tools and also artefacts left by 

pieces of software. One of the difficulties is presenting the results in a form that is 

useful. Currently this achieved by interspacing file or Registry paths between text that 

explains the cause of the change. A standard, structured format for storing and 

disseminating this type of information would enable querying and visualisation tools 

to be built on top of this standard format, which would allow different methods for 

displaying this information to be developed. This has the potential to improve the 

process of sharing this type of information, which is extremely common in digital 

investigation research.  

 Additional future work is possible due to the research into accuracy of digital 

evidence. The demonstration of accuracy through key recovery was only performed 

for two products. Key recovery from memory has already become a popular area for 

research, with alternative approaches to the developed linear scan technique already 

published. There are an increasing number of on-the-fly encryption products available 

and key recovery approaches will be possible until keys are stored securely in 

hardware. However, developers of on-the-fly encryption software are aware of key 

recovery approaches and are modifying the way in which keys are stored in memory 

to defeat simple approaches. Therefore, developing key recovery techniques is likely 

to be a continuous source of future work. Also, research can be performed into 

demonstrating accuracy in live investigations that do not involve encrypted evidence, 

i.e. where offline data recovery is not possible. Applying a Certainty Scale such as 

that in Casey (2002a) has the potential to allow accuracy of digital evidence obtained 

from live acquisitions to be assessed by acquiring data from multiple sources and 

correlating the results. Exploring the anti-forensic techniques for different memory 

acquisition techniques would increase the understanding of what could cause acquired 

data from memory to have its state, and given the known technical expertise of the 

suspect, likelihood could be provided by an experienced investigator of these 

alternative explanations.  
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 Finally, future work that is possible due to the research into demonstrating the 

authenticity of live acquired digital evidence includes exploring the procedural 

mechanisms used to demonstrate how live evidence was obtained, including requiring 

technological solutions such as video capture and Digital Evidence Bags, and how 

these could be used to increase confidence in the origin of live acquired digital 

evidence.  

 

9.4 FINAL SUMMARY  

Traditional digital investigations, i.e. ‘pulling the plug’ have the advantage of 

preserving the contents of the computer’s hard drive at a specific point in time, since 

while the power is removed no data can be written to the disk. However, when the 

power is removed, this means that volatile data, including data in memory is lost. This 

also has implications for investigating systems that are using encryption since while 

decrypted content may be accessible when the system is running, once the power is 

removed, the decrypted content, which may include all of the drive, may revert to its 

encrypted state and therefore become inaccessible.  

 As a result, this has led to the use of live investigations, where the computer 

system is investigated while it is still running, using the operating system of the 

suspect’s machine. Such investigations are useful when encryption is involved since 

when a live investigation is performed, the investigator has the same access to the 

system as the suspect had prior to the investigator taking physical control of the 

machine. Therefore, if encrypted data was accessible to the suspect at the time of the 

seizure, then the investigator would also have access to the decrypted content. 

 However, there are a number of difficulties with live investigations, including 

the difficulty in trusting the data supplied to the live tools; the inherent intrusiveness 

of live techniques; the difficulty in verifying the output of live tools; and also ensuring 

that no evidence is missed. Due to these difficulties it is possible that digital evidence 

from live investigations is used when it should not be, or is not used when it could be; 

either way potentially resulting in an incorrect decision being made. Given that live 

investigations are a useful technique for addressing the problem of encrypted 
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evidence, but have associated difficulties, the aim of this research was therefore to 

determine the role that live investigations could play when encrypted evidence is 

involved. The research hypothesis that was tested was digital evidence obtained from 

live investigations involving encryption can be shown to be reliable.  

 To test this hypothesis, this research first defined reliability as being assessed 

using three requirements: authenticity, accuracy and completeness. The remainder of 

the research evaluated evidence from live investigations against these three criteria. 

The requirement of authenticity was discussed in Chapter 7 and was shown to be 

satisfied by recording the processes run, using hashes to demonstrate that acquired 

digital evidence has not been tampered with, and hashing live acquired evidence with 

hardware identifiers to demonstrate its physical origin. Accuracy was discussed in 

Chapter 6 and it was demonstrated how certain sources of error in live acquisitions of 

encrypted data could be eliminated by also obtaining other specific information at the 

time of the live acquisition that allowed the static encrypted data to be decrypted later 

during an offline examination in a repeatable manner using a trusted operating system. 

This eliminates alternative hypotheses that acquired data contains error due to a 

manipulated operating system or faulty acquisition tools. However, potential error 

remains in that the investigators actions triggered a ‘logic bomb’ that manipulated 

evidence in some way prior to acquisition. This may or may not be significant 

depending on the specific investigation. Completeness was discussed in Chapters 4 

and 5 and it was shown to be significantly increased by performing a live 

investigation, since this can preserve data in a form that can be analysed rather than 

being encrypted. However, live investigations also overwrite data on the live machine, 

and the significance of this will depend on the specific investigation. A software 

monitoring tool and a methodology has been developed that assists in predicting these 

changes and identifying which evidence has been overwritten on the system after the 

live investigation has been performed.  

 Therefore, it is possible for digital evidence from live investigations involving 

encryption to be considered to be reliable, but as discussed in the evaluation chapter, 

reliability of digital evidence depends on the specific investigation and the importance 
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of the decision being made. However, this research has provided structured criteria 

that allow the reliability of digital evidence to be assessed and the research as a whole 

has demonstrated the use of these criteria in the context of live digital investigations 

involving encryption and shown the extent to which each can currently be met.  
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APPENDIX A 

There are many process models that are used to represent a digital investigation. This 

appendix summarises them in table form. In this research, the simplest process model 

from Carrier (2003) is used, which is acquisition, analysis and presentation. Using 

this model does not consider preparation for performing a digital investigation, since 

a process model of the digital investigation itself is sought.  
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Carrier (2002) Farmer (1999) Palmer/DFRWS(2001) Man dia et al (2003) NIJ (2001) Reith et al 
(2002) Carrier & Spafford (2003) Baryamureeba & Tushabe (2 004) O' 

Ciardhuain(2004) Beebe & Clark (2005) 

   Pre-Incident Preparation   Operational Readiness Operational Readiness   

      Infrastructure Readiness Infrastructure Readiness   

   Detection  Identification Detection and Notification Detection Awareness  

      
Confirmation and 

Authorisation 
 Authorisation  

     Preparation   Planning Preparation 

        Notification  

   Initial Response       

   Response Formulation  Approach 
Strategy 

   Incident Response 

Acquisition Secure and Isolate         

      
Physical Crime Scene 

Phase 
Physical Crime Scene Investigation (1)   

  Identification      
Search and 

Identify  

          

 Record the scene Preservation   Preservation Preservation    

          

 Search for evidence Collection Duplication Collection Collection   Collection Data Collection 

 
Collect and package 

evidence 
     Digital Crime Scene Investigation (1)   

 Maintain chain of custody       Transport  

        Storage  

      Survey Confirmation   

      Documentation    

      Search and collection Submission   

       Digital Crime Scene Investigation (2) (Identification)   

       Authorisation   

       Physical Crime Scene Investigation (2)   

       Digital Crime Scene Investigation(3)   

       Reconstruction   

   Investigation      Data Analysis 

   Security Measure Implementation       

   Recovery       

Analysis  Examination  Examination Examination   Examination  

  Analysis  Analysis Analysis   Hypothesis  

          

      Reconstruction    

Presentation  Presentation    Presentation Communication Presentation Findings Presentation 

        Proof/defence  

      Review Review   

   Reporting Reporting Reporting   Dissemination  

   Follow up  Return Evidence    Incident Close 

 

Table 22: Comparison of process models for digital investigations. 
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