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ABSTRACT 

Numerical calculations were performed over a variety of two-dimensional rib roughness 

configurations in which the ratio of flow depth to roughness height was varied from 1.1 

to 40. Periodically fully developed flow was achieved by employing periodic boundary 

conditions and the effect of turbulence was accounted for by a two-layer model. 

These calculations were used to test the hypothesis that any rough wall resistance may 

be reduced to an equivalent wall shear stress located on a plane wall. The position of the 

plane wall is determined by a novel method of prediction obtained by consideration of 

strearnwise force moments. The resistance is then determined by three dynamically 

significant length scales: the first (yo) specifies the position of the equivalent plane wall, 

the second is the depth of flow h and the third is similar to Nikuradse's sand grain 

roughness k,,. The latter length scale is however depth dependent and a universal 

relationship is postulated: 

ks 

y,, -, 
= F(Tk- 

where ksw is the asymptotic value of ks at very large flow depths. For the calculation of 

friction factor, a resistance equation is proposed of the form typical of fully rough flows. 

These postulates are supported by the numerical model results though further work 

including physical experiments is required to confirm them. 

Before applying the two-layer model to this problem it was tested on smooth rectangular 

duct flows and Schlichting's (1936) long angle roughness experiments. The opportunity 

was taken to further explore these flows, and in addition calculations were carried out 

for Grass et al's ( 199 1) open channel rib roughness experiments. 

The periodic boundary conditions were also applied to a larninar counter-flow plate-fin 

heat exchanger. A novel source-sink arrangement for heat flux was developed in order 

to implement these boundary conditions. 
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NOTATION 

Flow Variables 

p= instantaneous pressure [N M, 
2] 

P= time averaged pressure [N M, 
2] 

P "local pressure" i. e. periodically distributed pressure obtained by subtraction of 

linear ("reduced") pressure gradient [N M-2], or approximate solution for P in 

pressure correction method [N nf2] 

P"= pressure correction [N nf2] 

p '= fluctuating component of turbulent pressure [N M, 2] or linear ("reduced") part of 

pressure distribution in fully developed periodic flow [N m7 2] 

u, v, w= instantaneous velocity components in the x, y and z directions [m s-1] 

U, V, W= time averaged velocity components in the x, y and z directions [m s" 

(or U. for (x = 1,2 or 3) 

U *, V *, 'W *= approximate solutions for U, V, W in pressure correction method [m s" 

U', V", W'= velocity corrections in pressure correction method [m s-11 

UVw '#= turbulent fluctuating components of velocity in the x, y and z directions [m s-11 

u instantaneous velocity vector [rn s"I 

U time averaged velocity vector [m s- 

U`= turbulent fluctuating component of velocity vector [m s"] 

U= cross-sectional average velocity [m s-1] 

&= maximum velocity [m s" I 
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General Latin Symbols 

cross-sectional area of duct [m 2] or area of cell face [M2] or coefficient in universal 

velocity profile or coefficient in universal k, equation 

a= coefficient in finite volume equations [kg s-1] or coefficient in resistance equation 

coefficient in universal velocity profile or coefficient in universal k, equation 

source in finite volume equations [(units of 0) x kg s"] or duct semi-width [m] or 

coefficient in resistance equation 

Chezy coefficient [MI/2 s'll or 

PHOENICS boundwy condition coefficient [kg M, 
3 

S, I] 

pipe diameter [m] 

diffusion coefficient for U velocity [kg s"] 

roughness parameter used in law of the wall 

, 8, r/ -- friction factor defined b) / PU, 

acceleration due to gravity [M S-2] 

height of duct [m] or depth of flow [m] 

Ahf = head loss due to friction in a pipe [m] 

total ( convection and diffusion) momentum flux [kg m-1 S, 2] 

turbulent kinetic energy [J kg-11 

ko = roughness length scale [m] 

kh = height of roughness element [m] 

length of roughness element [m] 

ks = Nikuradse sand grain size [m] 

ks 
oa = Nikuradse sand grain size at infinite flow depth (small scale roughness) [m] 

1= period length for roughness pattern [m] or strearnwise length scale [m] 

Im = mixing length [m] 
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Ir length of separated flow region [m] 

m coefficient in universal k. equation 

mu = mass flow rate for U velocity [kg s"] 

n= Mannings roughness coefficient [s m' 1/3] or coefficient in universal k. equation 

P. = wetted perimeter of open channel [m] 

q= volume flow rate per unit width [m2 s"] 

R= radius of pipe [m] 

Rh = Yp = hydraulic radius [m] 
1W 

S= source in general differential equation [(units of 0) X kg s"I 

S= source per unit mass in general differential equation [(units of 0) X s"I 

s= spacing between roughness elements [m] 

Sf = friction slope 

%SF,,, = shear force on the side wall of a smooth rectangular duct as a percentage of the 

total perimeter shear force 

T= temperature ['C] 

TO-0 = moment or torque about axis 0-0 [Nm] 

t= time [s] 

T. p = Reynolds stress [N M"2] 

U. r = 
F7ý 

= shear velocity [m s" I 

V= PHOENICS boundary condition value [units of 0] 

(NB: also used for time averaged velocity component in they direction) 

yo = rough wall datum level measured from the base of the roughness elements, i. e. 

from the plane y=0 [m] 

xv 



General Greek Symbols 

I' = exchange coefficient [kg rn" s"] 

8= boundary layer thickness [m] 

8,, 6 = Kronecker delta operator; 5,,, =I for (x = P; 8,, fl =0 for (x #P 

c= dissipation rate of turbulent kinetic energy [J kg-1 s-11 

ic = von Kannan's constant 

fl, ff =, u+pt = effective viscosity [kg m"s'll 

pt = eddy viscosity [kg m"s"] 

dynamic viscosity [kg m" s-11 

,u v= kinematic viscosity [m 2 
S, 

11 
= 

rl = profile parameter for Coles' wake function 

p= density [kg M-3] 

a= normal stress [N m'2] 

r= shear stress [N M-2] 

(D = approximate solution of general variable 

general specific variable for a conserved property 

co = Coles' wake function 

Geometric Variables 

x= streamwise co-ordinate 

vertical transverse co-ordinate 

z= horizontal transverse co-ordinate 

"present" cell centre 
N, S, E, W, H, L-- cell centres to the north, south, east, west, high and low sides of the 

"present" cell 
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Subscripts / Superscripts 

n, s, e, , h. I= north, south, east, west, high and low face of cell P 

nb neighbouring cells 

up upstream face 

dwn = downstream face 

at a wall 

.f= main flow region, i. e. from the top of the roughness elements to the top 

of the duct. 

g.,,,. L = geometric mean level of the roughness elements 

ea. m. = datum level obtained by equating strearnwise force moments 

Lv. p_ = logarithn-dc velocity profile 

t= turbulent 

I= laminar 

w= 
-r- 
hee stream 

Dimensionless numbers 

Re = Reynolds number based on depth of flow = 
Uh 
V 

Re, = roughness Reynolds number = 
U, k, 

V 

P= Peclet number = 'OU1 where 1 is the length scale of a computational cell Ir 

Relative depth =h kh 

Y' = Non-dimensional distance from the wall =U Tý/V 

U' = Non-dimensional velocity = 
NUT 
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PHOENICS Co-ordinate System and Grid Nomenclature 
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Common PHOENICS Variables 

PI= first phase time averaged pressure [Pa] 

U1, V1, W1 =first phase time averaged velocity in the x, y and z directions [ms"] 

KE= kinetic energy of turbulence 
EP = dissipation rate of turbulence 

RHOl = density of first phase 

NX = total number of cells in the x direction 

NY = total number of cells in they direction 

NZ = total number of cells in the z direction 

Convention for Distances 

The distance between the nodal points P and E is expressed as the modulus of the vector 
IPEI and similarly the distance between the west and east face of cell P is 1wel. Between 

the points e and eE the convention le(eE)l is used. 

Convention for Stress Components 
A positive stress corresponds to a positive force acting on 

the positive face of a control volume or alternatively a 

negative force acting on the negative face of a control 

volume. The first subscript denotes the direction of the 

normal to the surface on which the force acts and the second 

subscript denotes the direction in which the force acts. Note 

that ryy and r. are direct stresses and may be written as cy 

and cr., . 

To 

T. 

To 
L-X 

Figure (iii): Two-dimensional stress 
components 
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1. INTRODUCTION 

Fundamental to river management is the ability to predict the water level in a river or 

channel for a given flow rate, bed slope, cross-sectional geometry and channel 

roughness. The variation of flow rate (discharge) with water level (stage), termed the 

stage-discharge relationship, is essential information for the vital task of flood warning. 
In the UK, storm weather forecasting and a knowledge of the stage-discharge 

relationships for the local catchment area form the leading part of the new flood warning 

system to be implemented following recommendations by the Ministry of Agriculture, 

Fisheries and Food (MAFF) (Pritchard 1996). Due to increased media attention in the 

past decade (e. g. flooding of the Mississippi, USA, Economist magazine 1993), flood 

forecasting has become increasingly high profile, focusing public attention on the vital 

role of the hydraulic engineer. 

The stage-discharge relationship in a river is governed by the resistive forces acting on 

the channel bed and banks. These forces are also responsible for the process of erosion 

which is a major problem for rivers world-wide (e. g. Lawler 1994). Boundary forces are 

the primary production mechanism for turbulent mixing, which controls the cross- 

stream transport of sediment, heat, chemicals and other pollutants. The prediction of 

pollutant concentrations plays a large part in the management of effluent discharges in 

our urbanised and industrial society. A knowledge of the boundary forces which occur 
in river channels is also essential to the design of new waterways, the scope of which 

may vary from re-routing natural rivers to the design of new irrigation canals, including 

the development of recreational water facilities (e. g. white water kayak courses, Cetina 

and RaJar 1993). 

Tighter restrictions have been imposed on all new waterways under the Wildlife and 
Countryside Act of 1981 in which the National Rivers Authority (now the Environment 

Agency) and internal drainage boards have a duty tofurther the conservation of wildlife 

and the landscape, so far as is consistent with the primary function of the channel. 
Conservation of natural features (e. g. meanders, pools and riffles) increases the 
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complexity of hydraulic calculations by making the channel form less regular. Examples 

of these features are included in the three recent river restoration projects reported by 

Vivash et al (1996). 

1.1 Determining Resistance 

The determination of resistance to flow in river channels is complicated by two factors: 

Turbulence. A fundamental problem shared by all turbulent flows is that the 

mathematical representation of the fluid mechanics (the Navier Stokes and 

continuity equations) cannot be solved analytically. Direct numerical solutions can 

now be obtained for simple low Reynolds number flows using the largest 

computers available. However the ability to use direct numerical simulation on 

flows typically found in river channels is unlikely in the foreseeable future. 

2. Roughness irregulari! y. It is doubtful whether a single parameter can be used to 

represent the extreme range of roughness elements which may occur in river 

flows. Such a parameter would need to account for factors such as the shape, size, 

distribution and surface texture of the roughness elements, which may take the 

form of solid rock, natural vegetation or debris. The scale of roughness elements 

may vary from small sand grains to large rocks. The channels which contain these 

roughness elements may vary from small streams to rivers many metres deep. 

However, empirical methods relating the flow rate, cross-sectional geometry and bed 

slope via a resistance coefficient have been in use since the 18fl, century. These include 

Manning's equation and the Chezy equation which are still used today (described in 

Chapter 2). The resistance coefficients employed in these equations are determined in 

the field from personal judgement by trained and experienced engineers, aided by tables 

and photographic databases (e. g. French 1986). They depend on the Reynolds number of 

the flow, boundary roughness and the shape of the channel cross-section. Errors in 

predicting the resistance coefficients of ±15 % are quoted by Aguire-Pe and Fyentes 

(1990) and French (1986). 
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Alternatively, the resistance equation may be obtained by the Darcy-Weisbach equation 

and boundary layer analysis. Provided that the roughness elements are of small scale in 

comparison with the flow depth, the bed generated turbulence creates a mean flow 

structure adequately described by the theoretically based logarithmic law of the wall and 

the velocity defect law. Integration of the latter leads to a resistance equation (e. g. 

Schlichting 1960) for the friction factor f. 

By comparing velocity profiles over various roughness configurations with the standard 

profile produced by Nikuradse (1933) for flow over sand grains, an equivalent sand 

grain diameter (k, ) may be determined. This length scale can be used as a measure of 

resistance and is taken to be independent of flow depth, provided that the roughness is 

of small scale. However, when the roughness length scale is not small compared with 

the depth of flow, the assumptions on which this theory is based are no longer valid. 
Given that large scale boundary roughness is frequently encountered in natural river 
flows, this breakdown of classical rough boundary layer theory makes the prediction of 

channel resistance problematical. For this reason, the prediction of resistance in such 

flows is a potentially fruitful area of research and is the subject of the study reported 

here. 

The study of fluid flow over large scale roughness elements is also applicable to various 

other facets of engineering. Similar flows are encountered in channels transporting a 

wide variety of fluids through factories and process plants. Boundary layer flows which 

obey the same resistance laws include air cooled integrated circuit boards and air flow 

over crops (e. g. Paeschke 1937). 

1.2 Aim of Project 

The primary aim of this study was to investigate the application of boundary layer 

theory to obtain a resistance equation applicable to flow over depth scale roughness, i. e. 

in which the size of the roughness elements are of the same order of magnitude as the 

depth of flow. 
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1.3 Methodology 

Numerical analysis is becoming increasingly popular as a tool for simulating fluid flow 

and in some cases may have advantages over physical modelling in the laboratory 

(Patankar 1980). In particular, computational modelling is becoming more cost effective 

and ever faster solutions on higher density grids are becoming available through 

progress made in hardware and software design. The ability to evaluate flow variables 
that are not easily obtainable by physical measurement was considered to be important 

in the present work, in which the distribution of local boundary shear stress and static 

pressure was required. Although a computational model is no better than the 

mathematical representation of the fluid mechanics on which it depends and the results 
have to be validated against experimental studies, in the present application it was 

considered that even if the computational model fell short of a completely faithful 

reproduction of the physical fluid dynamics, this drawback would be compensated by 

the degree of consistency attainable from one application to the next. 

It was for these reasons that this investigation was performed using a computational 
fluid dynamics (CFD) code based on the Reynolds averaged equations in conjunction 

with a turbulence model. A commercially available program was employed to eliminate 

the time required to develop and write the CFD code, which would have simply 

replicated the commercially used techniques. Roughness elements were chosen to be of 

a simple geometric shape, periodically distributed in the streamwise direction. The 

possibility of modelling the complexity of the free surface boundary condition was 

considered but for the present application it was decided that a simple plane of 

symmetry would be sufficient. 

To validate the numerical model, simulations were performed in which the results were 

compared with experimental studies on flow in three-dimensional smooth ducts and 
two-dimensional roughness configurations. 

New criteria were used to define numerical convergence, based on analysis of the 

hydrodynamic forces acting within the fluid and on the boundaries. Analysis of 
hydrodynamic forces also enabled strearnwise force moments to be used in a novel 
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prediction method to determine the datum position of the rough wall. This was an 
integral part of a proposed new method of predicting, resistance over depth, scale 

roughness. 

1.4 Organisation of Thesis 

A review of previous research into hydraulic resistance is presented in Chapter 2 to give 

the theoretical background to the main part of this study. The general theory of Reynolds 

averaged numerical solutions is given in Section 2-2, with the particular techniques 

employed by the computational model PHOENICS (CHAM Ltd. ) presented in Section 

2-3. For readers particularly interested in the PHOENICS code, a brief guide is given in 

Appendix 1. 

During the course of this study, several theoretical developments were carried out to aid 

computation and analysis. These included the implementation of periodic boundary 

conditions, the calculation of period averaged transverse shear stress, a force balance 

within the domain, various methods of calculating k, values, and a novel method to 

determine the rough wall datum position by consideration of strearnwise moments. 

These techniques are presented in Chapter 3. 

Before commencing on the study of depth scale roughness, the turbulence model 

employed was tested against the physical experiments of Schlichting (1936). This work 

is set out in Chapter 4 together with additional calculations carried out on the roughness 

configuration of Grass et al (1991). A series of simulations over rough boundaries in 

which the depth of flow was varied from very deep to very shallow is presented in 

Chapter 5, together with the analysis which leads to a relationship between the 

roughness length scale k, and the depth of flow. 

Chapter 6 discusses two other applications of the numerical methods used within this 

study, namely three-dimensional flow in a smooth rectangular duct, and laminar flow in 

a counterflow plate-fin heat exchanger. The smooth rectangular duct calculations were 

in fact conducted early on in the study with the primary aim of performing simple 
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simulations to validate the computer code. However the opportunity was taken to 

examine the distribution of boundary shear stress and the effect of the side wall with 

varying duct aspect ratios. The heat transfer in a plate-fin heat exchanger was conducted 

as a feasibility study for a potential commercial application. 

Conclusions drawn from each of the investigations reported are presented in Chapter 7. 

For the reader's convenience, descriptive figures are located within the text, and figures 

illustrating results are presented at the end of each chapter. The notation used within this 

thesis is set out at the beginning of the document. 

Throughout the thesis an italic font is used for mathematical variables, and an ARIAL 

font is used for variables employed in the computer code. 

1.5 Using Commercial Software 

This concluding note is addressed to the reader who may be unacquainted with the 

difficulties incurred by the application of commercial CFD codes. It is offered with the 

intention of correcting the possible impression that using PHOENICS or an equivalent 

package entails no more than lifting a model "off the shelf" and simply running it. 

No doubt this practice occurs, and may be common place among inexperienced users 

especially in industry, but in the author's view it is fraught with danger. It is relatively 

easy to model a flow and produce a plausible output, especially when judged on the 

appearance of the velocity distribution, but in other respects the results may be severely 

flawed. 

A large proportion of this project period was spent by the author in understanding the 

numerical methods of PHOENICS and painstakingly developing the procedures set out 
in Chapter 3. Great emphasis was placed on checking every solution for the 

conservation of momentum flux, ensuring that the source representing the pressure 

gradient was balanced by the sink representing the resistance at the boundary. 
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These procedures had to be designed and programmed by the user in the PHOENICS 

subroutine called GROUND. The author accepts full responsibility for this work, and of 

course for the analysis of the computational results set out in Chapters 4 to 7. 
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2. THEORETICAL BACKGROUND AND 

LITERATURE REVIEW 

2.1 Hydraulic Resistance 

The study of hydraulic resistance is essentially concerned with defining the relationship 

between the flow rate carried by a channel and the corresponding boundary shear stress 

developed in it. A comprehensive solution to this problem has not yet been found for 

turbulent flow over rough boundaries, despite the large amount of research dedicated to 

the subject. 

2.1.1 Empirical Resistance Equations 

In open channels the flow rate may be related to the bed slope and the hydraulic radius, 

and various equations of the form 
U=aRh'Sfy2 Equation 2-1 

have been presented, where Rh is the hydraulic radius, Sf is the friction slope (equal to 

the bed slope for uniform flow), b is a constant and a is a resistance coefficient. The 

Chezy equation follows from dimensional analysis in which r- pU2, giving 
U=CRhY2S 

f 
Y2 Equation 2-2 

where C is the Chezy coefficient which has to be determined empirically. 

The Manning equation, developed in 1889 is another empirical formula resulting from a 

curve fitting process to experimental data: 
12 

Rh 3 Sf Y2 Equation 2-3 

Since the Chezy and Manning equations describe the same phenomena, the coefficients 

and n are related: 
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II 

n 
Rh6 

Equation 24 

For turbulent flow in a pipe, Darcy (1803 to 1858) found the head loss due to friction to 
be 

hf &P f &U, 
Equation 2-5 

, pg 2dg 

where f is the Darcy-Weisbach friction factor', & is the length of the pipe and d is the 

diameter. The wall shear stress may be related to f by using 
dP 

Equation 2-6 dx 

where Rh = AIP., which is equal to d14 for a pipe (in which A is the cross-sectional 

area and Pu, is the perimeter of the pipe). Equation 2-5 may then be written as 

r. dP fOU2 

Equation 2-7 Rh cix 2d 

or 
8r, 

Equation 2-8 

The friction factor can also be used in open channels by relating the friction slope Sf to 

the bed shear stress: 

r. = pgRh Sf Equation 2-9 

from which Equation 2-8 may be written as: 

Sf 
U2 

89 h 
Equation 2.10 

The relationship between f and n, and between f and C, may then also be found: 

n= Rh 116 
FTfg 

Equation 2-11 

1 For convenience f will simply be termed as the friction factor for the remainder of this thesis. 
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C= 
rfg 

Equation 2-12 

To complete the representation of resistance, the coefficients C, n or f need to be 

determined for each channel or duct. These may be obtained by charts, for example the 

Moody chart (e. g. Massey 1989), tables or data bases. French (1986) presents three 

methods for evaluating Manning's n for open channel flow and quotes an accuracy in 

determining the flow rate of ± 15%. The choice of C, n or f is subject to personal 

preference, though some authors have found advantages of one over the other. Sayre and 

Albertson (1963) show the Chezy C to be accurate over a wider range of roughness than 

Manning's n, which has been used by numerous authors (e. g. Coon, 1994, Jha et al, 

1994, Einstein and Barbarossa, 1952 and Miller et al, 1994). In the review by the ASCE 

task force (1961) the use of Manning's n is only advised for "fully rough channels", for 

which n is nearly constant. However the use of f is recommended for most situations 

because more correlated data exists. 

2.1.2 The Universal Velocity Profile 

Resistive forces are transmitted from the boundaries through the fluid by the action of 

viscous and turbulent shear. These shear layers are directly related to the velocity 

profile, shown in Figure 2-1 for turbulent flow over a smooth bed. Analysis of velocity 

profiles leads to a more theoretically sound method of determining resistance. 

I= ly 

. aminar sub-layer 

II 

Figure 2-1: Typical smooth wall turbulent velocity profile 



In the viscous region adjacent to the solid boundary Newton's law of viscosity gives 
dU 
dy 

Equation 2-13 

which on integration and assuming a constant shear stress results in 
U= MY 

Equation 2-14 
Ur v 

The velocity profile in turbulent flow may be derived using Prandtl's mixing length 

hypothesis to describe turbulent shear (zi): 

dU dU 
d dy 
L 
y dy 

Equation 2.15 

Assuming that in the region near a wall, the mixing length I.. is proportional to the 

distance from the wall 
1. = icy Equation 2-16 

and that the shear stress is constant, r= r,,, then (e. g. Schlichting 1960) 

U=Y, UIny+c Equation 2-17 

In spite of the fact that these assumptions are valid only in the near wall region of a zero 

pressure gradient boundary layer, Equation 2-17 is commonly applied over the complete 

depth of a fully developed channel (h) or pipe of radius R, resulting in the velocity 

defect law: 

U-U h 
n U, y 

Equation 2-18 

where for this case h is the depth of flow in a channel. Alternatively the constant of 

integration, c, in Equation 2-17 may be evaluated from the condition that U=0 at a 

certain distance from the wall, which is of the same order of magnitude as the thickness 

of the laminar sub-layer. This leads to the well known law of the wall 

,, 
In U'y 

-Y 
Uy 
Ur v , Infl Equation 2-19 

The constant of proportionality, ic in Equation 2-16 is von Kannan's constant, generally 

taken to be 0.4. The coefficient 8 in Equation 2-19 depends on the nature of the 
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boundary surface and, for flow in smooth walled pipes, was found to be 0.111 by 

Nikuradse (1933). Thus for flow over a smooth boundary the universal velocity 
distribution is 

U=5.5 
+ 2.5 In 

Ur Y 
Equation 2-20 Ur V 

or generally 
U 

=A+Blog 
(U'Y 

Equation 2-21 Ur CV-) 

where A=5.5 and B=5.75 y 
,rx 

Ylog 
e). This is shown in Figure 2-2 together with 

the velocity distribution in the laminar sub layer. 

yur 20 

15 

10 

S 

0 

75 log Y 

5 11.6 30 Y+ (log scale) 

. 
flie Figure 2-2. Universal velocity pro 

Using the relationship between f and the wall shear stress 

f= 8% 
PU2 

Equation 2-22 

then integration of the velocity defect law (Equation 2-18) leads to the Prandtl universal 

resistance law (e. g. Schlichting 1960) 

1 
2.0 log(Re 0.8 Equation 2-23 Tf = 

which may also be written as: 
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log eVV 2.0 
Tf /2.51 

2.1.3 Rough Walls 

Equation 2-24 

For boundaries of increasing roughness the coefficient A in Equation 2-21 is known to 

decrease. Hama (1954) describes the action of the roughness as being equivalent to a 

velocity reduction (AM; 

u=B 
log 

U'(y - yo) +A- läu 

iý v Uf 
Equation 2-25 

where A and B are the coefficients used in the smooth wall relationship and yo is the 

datum position of the rough wall. Perry and Joubert (1963) note that the effect of the 

roughness is similar to viscosity and is confined to a thin region adjoining the surface. 
The roughness effect can therefore be accounted for by using a modified coefficient of 

viscosity, V'; 

U= 
Blog 

U, (y - YO) 
+A Equation 2-26 Ur V. 

Equation 2-19 may also be written in the form (Jayatilleke 1969) 

VU y (U, yE 
, 

In ýý) Equation 2-27 

where E is a roughness parameter. For smooth walls, E=8.6 and for rough boundaries 

E is 

E=29 ýYRer Equation 2-28 

where Re, is the roughness Reynolds number (kU, Iv). The roughness length scale (k, ) 

is the equivalent sand grain roughness, described below. 

As an alternative to using 
U'y, 

Hosni, Coleman and Taylor (1993) suggest that they 
V 

co-ordinate should be made non-dimensional with respect to the momentum thickness. 

For the same roughness configurations, plots of Ul U, against y/ iY .. t do indeed show a 

single curve for all values of Reynolds number. For different roughness patterns 
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however the presented data points are coincident at high values of y, but the correlation 

is not maintained closer to the wall. 

In Nikuradse's (1933) famous experiments on pipes uniformly roughened with sand 

grains, the friction factor was found to be a function of Reynolds number and k. /d only, 

where k. was the diameter of the sand grains and d was the pipe diameter. At higher 

Reynolds numbers the flow become independent of viscosity and was a function of 

k., ld alone. Since 

y,, )U, 
_ 

(y - y,, ) Uks 

v k, v 
Equation 2-29 

then the velocity distribution for a pipe in the fully rough regime was written as: 

u 
=A+Blog ur 

(ý ýkyo)) Equation 2-30 

where A now differs from that used in Equation 2-21 and is a characteristic function of 

the roughness concerned. For the particular case of Nikuradse's sand grain experiment, 

the constant A in Equation 2-30 was found to be 8.48, the value of B remaining at 5.75. 

Taylor etal (1985) and Grass etal (1991) use the logarithmic velocity distribution in the 

form (using cuffent notation): 

U 
-Blogy-yo u 

1. 
ko 

Equation 2-31 

in which the coefficient A of Equation 2-30 is incorporated within the general roughness 

length scale (ko). As expected, Monin and Yaglom (1971) found this to be a constant 

within the logarithmic region. 

Granville and Taylor (1984) refer to the two different fonns of the universal velocity 

profile as 'Reynolds number mode' (Equation 2-21) and 'relative roughness mode' 

(Equation 2-30). 

A resistance law for rough pipes may be derived in a similar manner to Equation 2-23 

(e. g. Schlichting 1960) 
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=2. Olog(R/, 
)-a 

Equation 2-32 

where R is the radius of the pipe and the constant a also depends on the roughness 

Reynolds number. For Nikuradse's sand grain experiments, a was found to be 1.74 at 

high Reynolds numbers. 

2.1.4 Equivalent Sand Roughness 

Schlichting (1936) proposed that flow in ducts of unknown roughness could be 

calculated through the use of an equivalent sand roughness parameter k. whereby the 

resistance of a duct under investigation is equal to an equivalent duct lined with sand 

grains of diameter k,. Any small scale roughness could then be given a k,, value and the 

velocity profile described by 

u=8.48 
+ 5.75 log 

((Y 
- YO) 

UT 
ýky-) Equation 2-33 

The friction factor was then calculated knowing the equivalent sand roughness from 

2.0109 
(7k, 1.74 Equation 2.34 

Colebrook (1939) combined the smooth wall resistance law (Equation 2-23) with 

Equation 2-34 to give the Colebrook-White equation for transitional flow 

(Tk 
+ 

2.51 ) 

T7 = -2.0 log 
.4 Rej 

Equation 2-35 

A discussion on the merits of the Colebrook-White equation is given by Matthew 

(1990). It is used extensively for predicting f but its implicit nature means that a 

numerical solution is required. Haaland (1983) has reviewed some approximate explicit 
formulae and recommended 

-1.8 log (k- / 
+6 

1ý 
77.4R) 'YR e 

Equation 2-36 

The resistance equation for rough flow, Equation 2-34 was also modified by French 

(1986) for use in open channels 
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I, 12Rh 

Tf = 2.0 log( 
k, 

) 
Equation 2-37 

In his review of channel flow, Ackers (1958) concluded that the Colebrook-White 

equation was the best available method for determining flow rate, however he suggested 

that the k. value for channel flow should be increased by approximately 20% over the 

value used in pipes. The k,, value for a surface is taken to be constant at high Reynolds 

numbers and may be obtained from charts for various materials commonly found in 

open channel and engineering flows (e. g. French 1986 or Massey 1989) or from analysis 

of the velocity profile (e. g. Knight, Alhamid and Yuen 1992, Kumar and Roberson 1980 

and Schlichting 1936). 

When used as an equivalent sand roughness the k., parameter is simply a roughness 

length scale which has no physical interpretation and should be regarded in the same 

manner as the general roughness length scale ko employed by Taylor et al (1985) and 

Grass et al (1991) (Equation 2-31). Indeed the two length scales are related by equating 
Equation 2-3 1 (assuming B=5.75) to Equation 2-33 which leads to 

ko 
= lo(-8,4Y5.75) = Y3 0 T. Equation 2-38 

In order to obtain k. for practical purposes various correlations of k, as a function of the 

roughness geometry have been proposed. Keulegan (1938) suggested 
5.75 log k, = 8.5 -c+5.75 log k. Equation 2.39 

however the constant c is still unknown. Kironoto and Graf (1994), Miller and Wenzel 

(1985) and Parker and Peterson (1980) calculated k, from a representative diameter of 

random roughness elements, using k., = d5o, d9o and 2dqO respectively. (d,, is the diameter 

of bed particles for which n% are finer. ) The k., parameter has also been related to the 

Chezy resistance coefficient (Aguire-Pe and Fyentes 1990) and the Manning's n 

(Einstein and Barbarossa 1952). 
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The k., parameter is now widely used for all types of flow and is increasingly used as the 

roughness parameter in computational models (e. g. Cebeci and Chang 1978, Christoph 

198 1, Miller and Wenzel 1985, Johns, Soulsby and Xing 1993). 

2.1.5 Alternatives to the Universal Velocity Profile 

The derivation of the Prandtl log law (Equation 2-17) implies that it is only valid in the 

near wall region. Experimental evidence (e. g. Hama 1954, Kirksoz 1989, Bergeron 1994 

and Ferro and Baiamonte 1994) indicates that two regions exist in the velocity profile. 

The inner, or wall region consists of the viscous sub-layer and a logarithmic region 
(Equation 2-19). The velocity distribution is controlled by the wall shear stress, wall 

roughness, distance from the wall, the density and the viscosity of the fluid. The inner 

region extends out from the wall to a distance of 10 - 20% of the boundary layer 

thickness (ASCE task force 1963, Perry and Joubert 1963, Bergeron 1994, Ferro and 

Baiamonte 1994) or up to Y= 130 (Jayatilleke 1969). The outer region extends inwards 

from the edge of the boundary layer and is described by the velocity defect law 

(Equation 2-18). The velocities are controlled by turbulent shearing and the depth of 
flow. For the high Reynolds numbers usually encountered in channel flow, the two 

regions overlap. 

Hama (1954) uses the equations in Table 2-1 to describe the two regions. 

subdivision y range velocity profile law 

5: 5 yur 32 
U=5.6 log Ury 

+ 4.9 
logarithmic region . V U, V 

YU 
:50 045 

or 
. , 5*0 O-U YU, 5.6 log ,+0.6 U, 8OU 

t i 
0.15 5 ý/S: 5 1.0 U -u = 9.6 (I ou er reg on U, 

Where: 5= boundary layer thickness = 0.30 8* %Ur 

9* = displacement thickness 
Table 2-1: Turbulent velocity distribution after Hama (1954) 
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The complete turbulent boundary layer may alternatively be described using a wake 

function such as that given by Coles (1956) 

u=1 InU'(Y-yo) 4-B+ 
ri 

co(y - Y" 
ul Ic v Ic ý-s -) Equation 240 

For zero pressure gradient boundary layers over a smooth wall the profile parameter (H) 

was calculated as 0.55 and the wake function co as 

co Y-yo 2sin 2 Equation 241 

The Coles wake function has also been found to apply in open channel flow over 

smooth boundaries by Nezu and Rodi (1986) and by Kirksoz (1989) using a profile 

parameter of 0.2 and 0.1 respectively. The lower values of profile parameter obtained in 

open channels was explained by Nezu and Rodi as being due to the absence of an 
intermittence region in open channel flow 2. The deviation from the logarithmic law for 

such small values of I-I is however very slight and is within the bounds of scatter in the 

data reported by Kirksoz. 

For open channel flow over rough boundaries, Kirksoz obtained so much scatter in his 

data that a good estimate of the wake function was found impossible. The velocity 

profile over two-dimensional block roughness elements measured by Grass et al (1991) 

did however show significant deviations from the logarithmic law in the outer region, 

though a wake function was not applied. 

Investigating flow over gravel bed rivers, Ferro and Baiamonte (1994) demonstrated the 

alternative wake function suggested by Dean (1978) to be more accurate than either the 

Coles wake function or that suggested by Finley et al (1966). This however was due to 

the more complex mathematical formulation of Dean's function which allowed the 

maximum strearnwise velocity to be located below the free surface. This dip in the 

location of maximum velocity has been reported by many authors (e. g. Nezu and Rodi 

The intermittence region refers to a region within a zero pressure gradient boundary layer, near the free 

stream, which alternates between laminar and turbulent flow (e. g. Tritton 1977). 
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1985) and was explained by the existence of secondary currents in channels of narrow 

aspect ratio. 

Two different flow regions were identified by Aguire-Pe and Fyentes (1990) for flow in 

steep rough streams. The first zone, close to the top of the roughness elements, 

contained overlapping wakes generated by the roughness elements. The velocity in this 

region was assumed to be uniform. Above this a logarithmic region was identified. Two 

similar regions were found by Bathurst (1988), however as the roughness elements 
became larger the velocity profile ceased to follow a logarithmic profile (Marchland, 

Jarret and Jones 1984), typically forming an 'S' shaped curve (Bathurst 1988 and Ferro 

and Baiamonte 1994). Bathurst gave the conditions for an 'S' shaped profile as 

1. channel slopes to be above I% and the ratio of depth to d84 to be between I and 4. 

2. the bed material to have a non-uniform size distribution. 

The latter criterion is required to provide the physical space between the major boulders 

for development of the lower zone. 

2.1.6 Flow Classification 

Morris (1954) reasoned that the generation, spreading and dissipation of vortices was 

the major source of frictional loss in rough flows. Because the vortices were generated 

at the tip of each roughness element, the longitudinal spacing of the roughness elements 

should be the roughness dimension of greatest importance. Two non-dimensional 

parameters utilising the roughness spacing were suggested to replace the Nikuradse 

relative roughness h Ik,: 

roughness index = 
roughness spacing 

=1-k, 
element height kh 

relative roughness spacing = 
depth of flow 

-h roughness spacing I -k, 

where I is the period length. Three flow regimes were then identified. With decreasing 

period length these were: 
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1. Isolated rouRhness: The wake zones and vortex generation zone were developed 

and dissipated before the next roughness element was reached. The roughness 
index was suggested as the relevant non-dimensional parameter. 

2. Wake interference flow: Zones of separation, vortex generation and dissipation 

were not completely dissipated before the next roughness element was reached. 
The relative roughness spacing was suggested as the relevant non-dimensional 

parameter. 

3. Ouasi-smooth or skimming flow: Dead water with stable vortices was present 

between each roughness element. For this flow regime the roughness index was 
again suggested as the non-dimensional parameter. 

Knight and Macdonald (1979) extended this into a six fold classification 

1. Smooth turbulent flow. 

Semi-smooth turbulent flow. 

3. Non-uniform hyper-turbulent flow. 

4. Uniform hyper-turbulent flow. 

5. Semi-quasi-smooth flow. 

6. Quasi-smooth flow. 

Perry et al (1969) described two classes of roughness configuration from examination of 

the friction factor - Reynolds number relationship. The roughness configurations which 

followed the Nikuradse scheme, in which f= F(Re, kh 
11d), they termed T type 

roughness. However they noted that examples of rough flows in the quasi-smooth 

regime had been reported (e. g. Streeter and Chu 1949 and Ambrose 1956) for which the 

friction factor - Reynolds number characteristics were insensitive to the parameter kh1d, 

and the roughness function was 
L, d 

rather than of 
U, k 

As the length scale (d) used 
vv 
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within the roughness function was associated with the outer flow, this appeared to be 

inconsistent with Nikuradse's law of the wall (Equation 2-30) and the roughness was , 
accordingly termed 'd' type roughness. 

2.1.7 Datum Levels 

Moore (1951) showed that the logarithmic velocity distribution could only be applied to 

rough walls if a hypothetical velocity origin was located some distance (yo) above the 

true bed but below the height of the roughness elements. The position of this datum 

level might then be considered as a measure of the interaction between the mean flow 

and the roughness. Perry et al (1969) suggested that yo should be related to the 

roughness function but pointed out that no such relation had been found. 

I- Ykj, 

Raju and Garde 

(1970) 

Adachi 

(1964) 

Knight and 
Macdonald (1979) 

> 5.0 160 > 6.94 0 

80 0.05 

40 0.15 

3.75 20 0.25 

10 0.4 

5.21 0.5 

5 0.77 

2.5 4.1 3.47 1.0 
Table 2-2: Typical valuesfor rough wall datum level 
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The most popular method of determining yo is to use the geometric mean level (g. m. l. ) 

(e. g. Schlichting 1936, Simpson 1972, Ferro and Baimonte 1994). Other authors also 

find yo from the geometry of the roughness elements and the flow classification. Some 

examples are given in Table 2-2 and in Alhamid (1991). Morris (1954) suggested that 

the datum level should be located on the plane corresponding to the top of the roughness 

elements, using the argument that the turbulent vortices were generated at this point. 

A more theoretically sound method of calculating yo is from analysis of the logarithmic 

region which results from plotting UIU, against log (y - yo). Clauser (1956) points out 

that a shift in the position of the datum plane causes the straight line logarithmic region 

to become curved. The correct value for yo should therefore be that which gives the best 

straight line through the data points. This "progressive origin shift" method was also 

employed by Perry and Joubert (1963) and Grass et al (1991) and in different forms by 

Coleman et al (1984) and Pyle and Novak (1981). Coleman et al used linear least 

squares regression to obtain a constant value of ko for his data set y- yo using the 

expression 
(K%) 

k0=(y-y0)e Equation 242 

which is simply a re-arrangement of Equation 2-31 in the natural logarithmic form. 

Implicit in the linear least squares technique is the assumption that the shear velocity 

(based on the bed shear velocity) is constant. More accurately, the value of shear stress 

acting on the datum plane will vary with the location of the datum plane, requiring the 

use of non-linear regression techniques to obtain yo. 

Pyle and Novak found that adjusting yo resulted in a straight line logarithmic region 

with an altered slope, rather than a curve as suggested by Clauser. The datum level 

employed in their investigation was accordingly one which resulted in a constant slope 

(and therefore x) for all the roughness concentrations investigated. The chosen value of 

r was 0.285, employed because this was found to be the constant value obtained for low 

23 



roughness concentrations before the datum shift was applied. This value of ic is however 

significantly lower than the range typically quoted (0.42 ý: Ký! 0.32) for flow over rough 

boundaries (Schlichting 1936) and suggests that a datum shift was also required for the 
low roughness concentrations. 

Three alternative methods were used by Knight, Alhamid and Yuen (1992): the 

geometric mean level, a velocity datum and a shear datum. The velocity datum was 
found by integrating measured velocities, comparing the flow rate with an orifice plate 
discharge and suitably adjusting the datum. However, for each set of velocity profiles 

the value of A obtained contained a large amount of scatter and this method was 

discarded. The shear datum was obtained by comparing the cross-sectional mean 
boundary shear stress determined from the measured velocity profiles with that 
determined from the energy slope. Both of these methods are however subject to large 

experimental errors. For example, in experimental studies on a smooth duct, for which 

the position of the boundary is known, Rhodes (1991) reported errors of up to 6.8% in 

matching the integrated boundary shear stress with the friction slope. For roughened 
boundaries higher errors would be expected which could lead to an error in the datum 

shift of the same order of magnitude as the height of the roughness elements. Rhodes 

reported considerably lower errors in matching the cross-section mean velocities, for 

which large scatter was observed in the experiments of Knight, Alhamid and Yuen. 

2.1.8 Further Methods of Calculating Resistance 

The resistance to flow over a roughened boundary may be classified into two processes: 

skin friction and form drag. Skin friction is produced by viscous shear stresses acting on 

surfaces parallel to the primary flow direction, while form drag is produced by direct 

stresses acting on surfaces which are normal to that direction. Form drag usually 
dominates and is characterised by flow separation and vortex shedding. It may be 

accounted for using a drag coefficient of the form 

F CD 
= Y2pU'A Equation 243 
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where F is the force on the element typically found by integration of the pressures over 

each roughness element of area A normal to the flow. 

Einstein and Barbarossa (1952) calculated the total resistance to flow in natural streams 
by summing the form drag (Equation 2-43), for each individual large scale roughness 

element, and the shear force due to the underlying bed material. The latter small scale 

roughness was termed grain resistance following Nikuradse's experiments and was 

accounted for by using Manning's n as a function of k,: 

Ck, 
29.3 

Equation 244 

Shen et al (1990) also calculated the resistance by summing the form drag and skin 

friction, using a shear coefficient to account for the grain resistance and a drag 

coefficient for the fonn drag. 

Kumar and Roberson (1980) defined the flow as either semi-rough, in which the 

resistance consisted of skin friction and form drag, or fully rough in which the effects of 

viscous shear at the boundaries was neglected and form drag accounted for the total 

resistance. Using known logarithmic velocity distribution laws and the theoretical linear 

shear stress distribution, an algorithm to predict the resistance was presented. Similar 

algorithms are also suggested by Roberson (1970) and Lewis (1975). These analytical 

approaches are however limited to the flow regimes on which the governing equations 

are based. Thus, for example the wake generated by a large scale roughness element 

upstream will not be taken into account. 

Alternatively, flow through a duct may be determined by modelling the duct 

numerically. The effect of rough boundaries may then be accounted for by three 

methods: 

1. Refined flow method. The computational domain includes the geometric 

representation of each roughness element. A fine grid is usually required to 

accurately predict flow over individual roughness elements (e. g. Liu et al 1995 

and Chang and Mills 1991). 
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2. Discrete element approach. The effect of a collection of elements is taken into 

account by including a form drag term in the momentum equation and including 

an allowance for the blockage effect of the roughness elements. Models have been , 

presented by Finson and his co-workers (1979,1979,1982), Christoph and 
Pletcher (1983), Christoph (198 1) and Taylor, Coleman and Hodge (1985). 

3. Wall laws. By specifying a roughness parameter (such as C, n, f or k, ) a wall 
function (e. g. Cebeci and Chang 1978) or resistance function (e. g. Miller and 
Wenzel 1985) may be used within a numerical model to account for the effect of a 

rough wall. 

2.2 Computational Hydraulics 

Numerical modelling is now widely used to simulate fluid flow in open channels and 
closed conduits. Due to the wide range of applications, models are available with 

varying degrees of complexity. 

In numerical modelling the governing differential equations of fluid flow are 

approximated by a set of algebraic equations, and an algorithm is prescribed for solving 
the latter. The numerical solution consists of a set of numbers from which the 

distribution of the dependant variable 0 can be constructed. In this sense a numerical 

method is akin to a laboratory experiment in which a set of instrument readings at a 
finite number of measurement stations gives the distribution of the measured quantity. A 

computational model consists of the computer coding required to implement the 

numerical algorithm and thereby solve the equations with appropriate boundary 

conditions. 

The rest of Section 2.2 gives a general background into the various differential 

equations used to model fluid flow in current computational river models and the 

techniques available for solving these equations are then presented. Section 2.3 contains 

specific details of the commercial software PHOENICS which is used in this study. 
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2.2.1 Differential Equations for Fluid Flow 

Classical fluid dynamics uses the continuity and Navier-Stokes equations to describe 

fluid motion. For incompressible, isothermal flow these are 
U, 6 0 Equation 2-45 
X, 8 

Ua, 
+ U. 8 

a U" ap D2 Ua 
+ Sa Equation 2-46 Tt D X, 8 PD Xa D X, 8 

D X. 8 

These equations and those which follow are written in Cartesian tensor notation which 

is briefly described in Appendix 2. The Navier-Stokes equations in full Cartesian 

notation are given in Appendix 3. 

2.2.2 Representation of Turbulence 

Theoretically, it is possible to solve the Navier-Stokes equations directly, using Direct 

Numerical Simulation (DNS). Indeed, this has been achieved for laminar flows and 

turbulent flows of low Reynolds number in simple geometries. However flow in 

conduits are generally highly turbulent, and often with complex geometries. Such high 

Reynolds number turbulent motion contains a hierarchy of eddies which, at their 

smallest scale 3, can only be resolved by a computational mesh size which is beyond the 

storage capacity and processing speed of the most powerful computers currently 

available. 

An alternative to DNS is Large Eddy Simulation (LES) in which the large eddies are 

resolved by the grid and are therefore calculated from the Navier-Stokes equations, but 

the unresolved smaller eddies are modelled. The success of this method is based on the 

premise that the large scale eddies in the flow are directly affected by the boundary 

conditions, whereas the smaller scale eddies have more universal characteristics and are 

thus more amenable to modelling. Because the smallest eddies are modelled, the 

computational cells can be much larger than the Kolmogorov length scale, and a lower 

number of grid cells may be used for LES than are required for DNS. However large 

3 The Kolmogorov scale. See e. g. Tennekes and Lumley (1978) or Willcox (1994). 
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numbers of cells are still required. Willcox (1994) for example suggested that 

approximately IXI Cý grid points are required to model a channel flow with a Reynolds' 

number of 61,600 compared with 1.5 x 108 cells for DNS. 

Because hydraulic engineers are not usually concerned with the detailed turbulent 

motion but only with its effect on the mean flow, an approximation can be made by 

averaging the turbulent velocity fluctuations over a time scale much larger than that of, 

the random motions (but the time scale should not be long enough to average out bulk, ' 

time dependent flows, such as tides or flood waves). Using this method the flow 

properties of velocity and pressure may be defined in terms of a mean (time averaged) 

component and a randomly fluctuating component: 

U=U+u' 

P=P+P f 
Equation 247 

After substitution into Equation 2-45 and Equation 246, this gives the time averaged 

continuity equations and the Reynolds equations which in tensor form are (an expanded 

representation is given in Appendix 3): 
DU)6 

aX, 6 

au" 
+ Uß 

DU« 
at axß 

where 
-, 77 Ta, 8 -P( UaU 6) 

1 DP 1DT,,, 8 +vD 
Xj6 D XO 

+ Sa 
P 

ýXa +PX, 
6 

Equation 248 

Equation 2-49 

This averaging process creates the Reynolds stresses (T., ) which are additional 

unknowns. The equations do not form a closed set, and further equations are required to 

model the Reynolds stresses. Such turbulence models are based on hypotheses 

concerning turbulent processes and require empirical input in the form of functions or 

constants; they do not simulate the details of the turbulent motion but only the effect of 

turbulence on the mean-flow behaviour. A comprehensive review of the turbulence 

models used in hydraulic engineering is given by Rodi (1984) and Willcox (1994), from 

which certain aspects have been selected for discussion here. 
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One of the most common ways to model the Reynolds stresses is to use the Boussinesq 

eddy-viscosity concept. Using an analogy with laminar flows, it assumes that the 

turbulent stresses are proportional to the mean velocity gradients at that point in the 

flow: 

JUt 
Ua+ ýU6 

- Y3 pk gao 
(ýa 

X. 8 
a X, 

Equation 2-50 

where pt is the eddy viscosity. This is not a property of the fluid (unlike the laminar 

dynamic viscosity) as it varies throughout the flow field. The eddy-viscosity is of course 

still unknown, so that the problem has now changed from modelling the Reynolds 

stresses to finding a value for the eddy viscosity. Models which use the eddy-viscosity 

concept generally use the result obtained by dimensional analysis (e. g. Tennekes and 
Lumley 1978) where the eddy viscosity is given as the product of a single length scale, a 

single velocity scale and the density. A review of the use of these models in practical 

river channel applications is presented in Senior (1994). Such models may be classed 

according to their complexity. 

Zero-eciuation models 

Zero-equation models use no transport equations to model the eddy viscosity. The eddy 

viscosity may be either prescribed as a constant, or related to the time averaged flow 

distribution. It is well known (e. g. Rodi 1984) that /4 has a nearly parabolic distribution 

with depth in open channel flow and the use of a constant eddy viscosity leads to 

unrealistic velocity fields. However many river and tidal computational models which 

are used to simulate large bodies of water use a depth averaged eddy viscosity within a 

two-dimensional depth averaged model. 

In Prandtl's mixing length model the eddy viscosity is a function of a prescribed length 

scale ( 1,, ) and the local velocity gradient (e. g. Schlichting 1960): 

12, 
au 

DY Equation 2-51 

As the flow becomes more complex, the value of 1m becomes increasing difficult to 

define 
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One-equation models 

The models in this group use a single equation for the transport of a turbulence property 

to determine the velocity scale. Most commonly used is the equation for the kinetic 

energy of turbulence, k. The square root of k gives the velocity scale required so that - 

. ", = c,, Pk 
1121. 

where c,, is a constant derived from empirical data. 

Equation 2-52 

One-equation models still require the specification of a length scale as for zero-equation' 

models, but take better account of turbulent transport. 

Two-eQuation models 

These contain two transport equations from which the velocity and length scales may be 

determined. Several models have been proposed (e. g. Rodi 1984 or Willcox 1994) but 

by far the most popular is the k-e model. The kinetic energy of turbulence is used to find 

the velocity scale, as employed in the one-equation model, and the length scale is 

derived from the dissipation rate of turbulent kinetic energy, e (e. g. Tennekes and 

Lumley 1978): 

CA 
312 

im 
-- 9 

Equation 2-53 

The constant cD is usually set to unity (Launder and Spalding 1974). Combining 

Equation 2-52 and Equation 2-53 gives an expression in which the length scale has been 

eliminated: 
2 

C/, P- Equation 2-54 
8 

The transport equation for k is; 

p 
Dk a (, at Lk 

+, at 
a U, (a U, 

+DU, 6 P-0 Equation 2-55 ý -X. 
x", 

ý 
ck a x", 

) 

DX, 6 
ýDxfl DXa 

and the transport equation for the dissipation rate of turbulent kinetic energy, e, is; 
De jut 

2,5 c auir 
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Equation 2-56 to Z tý k 
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The empirical constants c. 9 Ck. t7to C19 C2 have - been evaluated from physical 

measurements of various turbulent flows and are given in Table 2-3. (Launder and 
Spalding 1974). 

CP Ck 9 a, CI C2 

0.09 1.0 1.314 1.44 1.92 

Table 2-3: Constants used in the k-e model 

By the use of these semi-empirical techniques, Equations 2-50,2-54,2-55 and 2-56 

together with the continuity and Reynolds equations (Equations 2-48 and 2-49) form a 

closed set and may be solved. 

Equations 2-55 and 2-56 are only valid for high Reynolds numbers and give an 
isotropic eddy viscosity, which is used in Equation 2-50 to calculate all of the Reynolds 

stresses (ýýu', 6) . Very near to the wall the local Reynolds number is low and the 

standard k-e model is invalid. Empirically based wall functions are commonly used to 

bridge the gap between the wall and the fully turbulent region, but these are not accurate 

near separation and stagnation points. For example Senior and Aroussi (1992) found 

that a wall function used in conjunction with the k-, - model under-predicted the re- 

attachment length behind a backward facing step by up to 20%. To overcome this 

limitation, low Reynolds number forms of 'the k-e model have been developed (e. g. 
Jones and Launder 1972). Another expedient is the two-layer model. 

The two-laver model 

A two-layer form of the k-e -turbulence model (Rodi 199 1) has been found to perform 

more accurately than the standard k-e model, by resolving the flow in the viscosity 

affected near wall region, thus obviating the need for empirical wall functions. It does 

however require a greater number of cells and therefore an increase in storage capacity 

and computational time. 
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The domain is split into two 'layers', a near wall layer and an outer fully turbulent layer 

and different turbulence models are used in each layer. In the fully turbulent region, of 

the flow, the standard high Reynolds number k-e turbulence model is used. Close to the 

wall the one-equation model of Norris and Reynolds (1975) is used. In the latter model; 

the equation for e (Equation 2-56) is no longer employed and instead the length scale 1M 

is determined by a simple algebraic expression: 

.u 
X* C-Y4 

y (I 
- exp (-0.0 198 Rey)) Equation 2-57 

where C,,, is 0.09, ic = 0.41 and Rey = ky' 1. The velocity scale again comes from a V 

transport equation for the turbulent kinetic energy k. The dissipation rate of turbulent 

kinetic energy, appearing as a (negative) source term in the kinetic energy transport 

equation, is determined from: 

1 5.3 Cdk 2 
(1+ 

-i-ey Equation 2-58 

where the coefficient Cd = 0.1643. Thus the eddy viscosity now reads: 

v, = C.,, k' I.. Equation 2-59 

When implemented in the PHOENICS CFD code the one-equation model is matched 

with the high Reynolds number k-e model at locations where Rey = 350. 

Reynolds stress and algebraic stress models 

In certain flow situations the assumption of an isotropic eddy viscosity inherent in the 

standard k-e model is too crude. For example the turbulence driven secondary motion 

observed in rectangular ducts is not predicted by isotropic eddy viscosity models. In 

order to allow for the development of different Reynolds stresses and to account 

properly for their transport, models have been developed which employ transport 

equations for the individual stresses (U a U'P) - 

From the Reynolds equations, Reynolds stress transport equations may be developed 

which express the fact that the distribution of the Reynolds stress is influenced by the 
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physical processes of convective and diffusive transport, stress production, pressure- 

strain and viscous dissipation (Rodi 1984). The diffusion, pressure-strain and dissipation 

terms contain correlations for which model approximations must be introduced in order 

to close the Reynolds stress transport equations. 

The Reynolds stresses are obtained by the solution of six partial differential equations. 
With the continuity equation and the solution of various additional model terms, the 

numerical solution is not trivial, thus making the model computationally demanding and 

restricting its application. For this reason, efforts have been made to simplify the 

Reynolds stress transport equations into algebraic relationships. Various ways of 

performing this have been tried, the most successful models including the turbulent 

kinetic energy term k and its rate of dissipation c. These are obtained by means of 

transport equations, so these algebraic stress models are particular forms of k-. c model, 

but having the facility to compute the turbulence driven secondary flow production 

terms, which the standard k-e model does not have. 

Choice of turbulence model 

For the application of modelling flow over periodically spaced roughness elements, a 

two-layer model was chosen for the following reasons. 

I. When boundary layer separation occurs on a bluff body, the flow streamlines can 
be roughly described in terms of a wake region surrounded by a free stream. The 

free stream pressure is imposed on the wake region which generally creates a 

pressure distribution on the downstream face of the bluff body much lower than 

that on its upstream face. This is the mechanism of form drag. 

It follows that if the streamlines bounding the wake region are known, the pressure 

distribution around the bluff body may be calculated approximately using 

irrotational flow theory. Haque and Mahmood (1983) did this when they used 

finite element analysis to calculate the irrotational flow around sand dunes and 

thereby predict the drag force. In the present case it was required that the 

turbulence model should give a good prediction of the streamlines bounding 
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separated flow regions, and for this reason a turbulence model was sought which 
had a good track record in predicting boundary layer separation and re-attachment. - 

2. The full Reynolds stress transport model satisfied these criteria and was available 
in PHOENICS. However, its PHOENICS implementation used a wall function 

rather than integrating the conservation equations right up to the boundary, and 

this would have given a poor prediction of wall shear stresses in the recirculating 

region behind a roughness element. 

The facility to predict turbulence driven secondary flows, as the Reynolds stress 

model does, was immaterial to the present application. Although it was originally 
intended to model flow over three-dimensional roughness elements, their 

staggered arrangement would have precluded the development of turbulence 
driven secondary flows of any significance. For flows over two-dimensional 

roughness elements turbulence driven secondary flows are absent from the 

physical flow. 

For these reasons the full Reynolds Stress transport model offered little to the 

present application, while imposing high demands upon computational resources. 

3. As previously mentioned, it was considered essential that the numerical model 

should integrate the conservation equations right up to the wall. This eliminated -- 

the standard k-e model and focused attention on low Reynolds number k-, - models 

and two-layer models (using the k-e model in the fully turbulent region) both of 

which had a good reputation for predicting separation and reattachment. 

After testing the PHOENICS implementation of the low Reynolds number k-E 

model (Lam and Brernhorst 1981) and the two-layer model (Rodi 1991) it was 
decided to adopt the latter. Rodi's model was successfully applied with a far less 

stringent requirement for fine grid cells near the wall. The Lam-Bremhorst model 

required particularly fine resolution of the high gradient in r in the near wall 

region. 
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2.2.3 Simplifications to the Differential Equations 

A variety of approximations may be made to the original Reynolds equations enabling 

the computer model to be simpler, less demanding on computational resources and 

therefore more economic. For a given flow problem the choice of approximations 

employed will depend on factors such as geometry, expected flow pattern, accuracy 

required, cost and the computational resources available. Typical approximations 
include: 

Time dependence. Neglecting the time dependent term 
dual 

,,, in the Reynolds 
1(71- 

equations (Equation 2-49) gives a steady state solution. 

2. Reduced dimensionality. Averaging the flow over a channel cross-section greatly 

reduces the numerical complexity and leads to the one-dimensional St. Venant 

equation (e. g. French 1986). Low processing requirements enable long reaches of 

rivers to be modelled quickly and cheaply. (e. g. Neat et al 1989). Two- 

dimensional depth averaging of the Reynolds equations leads to the shallow water 

equations (e. g. Ligget 1994) which may be used to model shorter reaches of river 

(e. g. Schymitz et al 1983). A typical vertical plane can also be modelled in two 

dimensions if the solution of transverse distributions is not required, for example 

on the centre line of a channel when the influence of the side walls can be 

neglected. 

2.2.4 Numerical Solutions 

Algebraic equations are derived from the original set of differential equations by 

discretizing the flow variables over space and time (if time dependent). Thus at a 

general point Pp the dependent variables such as velocity are given in terms of 

conditions at adjacent points, PE and Pw (where the subscripts E and W denote points to 

the east and west) and at time t, which are located at a finite distance and time away. 

The space co-ordinate is often elliptic for irregular channel flows, i. e. points either side 

of Pp are used, but time is parabolic in that only the previous time is used in the present 

calculation. The continuous nature of the physical flow is thus approximated by values 

at a finite number of specific points. 
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Figure 2-3: Finite difference line 

The algebraic equations, also referred to as discretized equations, can be derived in 

various forms. These result from different methods of derivation and the different, 

profiles used for specifying the variation of 0 between the points. A discussion of all the 

schemes shown here may be found in Peyret and Taylor (1986). 

1. Finite difference methods. The finite difference equations are typically derived 

from a truncated Taylor series. For example consider the grid points along a single 
line as shown in Figure 2-3. For grid point 2, located mid way between points I 

and 3 the Taylor series gives 
26 

01 = 02 
- A"X 

(do 
+I (AX)2 
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rdx' 
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03 = 02 + AX (do 
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+ 

Equation 2-60 
rdX'2 

)2 

dX 

)2 

2 

2. 

3. 

Adding and subtracting these equations gives expressions for the second and first 

derivatives of 0 at point 2 respectively. The substitution of such expressions into 

the differential equations leads to the finite difference equations, which may have 

a variety of forms, for example Preissmann's box scheme and the Abbott 6 point 

scheme, both of which are discussed at some length by Cunge, Holly and Verwey 

(1980). 

Finite element methods. Finite element analysis may use variational formulation 

or the method of weighted residuals. The general variable 0 is integrated over 

triangles, quadrilaterals or hexagons and gives a profile of 0 over each element. 

Finite volume method. Also known as the finite domain or control volume 

method. The domain is divided into a number of non-overlapping control volumes 

(cells) such that there is one control volume surrounding each point. The 
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differential equations are integrated over each control volume. Piecewise profiles 

expressing the variation of 0 between the grid points are used to evaluate the 

required integrals but are not part of the eventual solution. 

4. Method of characteristics. This method has been developed from inviscid 

supersonic theory and uses the fact that such flows can be characterised by 

families of intersecting lines along which disturbances propagate. These lines, 

called the characteristics of the flow, are used to construct the grid. The position 

of the lines, and therefore the grid shape, are unknown at the start of the 

calculation. As the grid adapts during the solution it is possible for the grid to 

collapse onto itself in areas of high gradients, causing this method to fail. 

2.2.5 Boundary Conditions 

Boundary conditions represent the physical conditions which occur at the boundaries of 

the computational domain. 

At solid boundaries all velocity components, including the turbulent fluctuations are 

zero. These conditions may be specified directly if the high gradients which occur in the 

viscosity affected sub-layer are resolved by very fine cells. Alternatively a wall function 

such as that presented in Section 2.3.4 can be employed which specifies the flow 

conditions outside of the viscosity affected region. 

The free surface of open channel flow is most simply represented by a plane of zero 

shear stress. This may be improved by damping the turbulent fluctuations normal to the 

free surface (e. g. Nezu and Rodi 1986, Celik and Rodi 1984). Various models have been 

presented which may be used to calculate the position of the free surface and may be 

used to simulate waves (e. g. Hirt and Nichols 1981, Maxwell 1977 and Johns, Soulsby 

and Xing 1993). 

If mass enters or leaves the domain, values need to be specified for the rate at which this 

occurs. Any properties pertaining to the incoming fluid, for example temperature or 

turbulence, will also need to be specified. The mass flow rate can be defined directly 

through the use of a velocity profile, or in some open channel models the water levels 
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may be specified at inlet and outlet. When modelling a pressure driven duct, the mass 
flow rate is most effectively defined by specifying a lower pressure distribution at exit 
than at inlet. The incoming fluid will be transporting momentum into the domain which 

will need to be explicitly defined together with any other properties convected into the 

domain. 

2.3 Mathematical Basis of PHOENICS 

This section explains the equations which are used within the PHOENICS CFD code' 

and the numerical methods used to solve them. Only the material directly relevant to this 

study is presented. A more general description of the PHOENICS equations is given in 

the PHOENICS manual TR99 (Rosten and Spalding 1987). A more in depth discussion 

of many of the numerical methods surnmarised in this section is given by Patankar 

(1980). 

During the course of this study several errors were found within the code, these are 

presented in Appendix 4 together with the coding used to correct the problem. 

2.3.1 Differential Equations 

PHOENICS, in common with several other CFD codes, predicts the distribution of'a 

general specific (i. e. per unit mass) variable 0 which obeys conservation laws of the 

form: 
do 

+ div (u 0) = div (r grad 0) +S YO 

unsteady term 
diffusion 

tenn term 

Equation 2-61 

where IF is the exchange coefficient and S is the source term for the general variable 

(indeed these should be written ro and So but this would lead to too many subscripts in 

later work). 

The conservation laws used by PHOENICS in this study are illustrated in Table 2-4, 

each determined by the definition of 
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Conservation Law Specific Exchange Types of source 

variable 0 coefficient Ir 

Conservation of mass 1.0 0 Source of mass per unit 

(Continuity Equation) volume 

Conservation of U, V, W May contain: 

momentum (Navier- (larninar) 
/I (larninar) 1) Sources of momentum 

Stokes or Reynolds U, V, W Aff =A+P 2) pressure gradients 

equations) (turbulent) (turbulent) 3) gravitational forces 

Conservation of k r= juý, ff /a h Generation of k per unit 
turbulence kinetic where: volume 
energy Ck = 1-0 

Conservation of 1, =, Uff /a, Generation of e per unit 
turbulent kinetic energy where: volume 
dissipation rate a, = 1.314 

liable 2-4: Conservation Laws 

2.3.2 Discretization Equations 

Section 2.2.4 mentions various numerical methods by which the governing differential 

equations of a problem are changed into a set of algebraic equations. PHOENICS uses 

the Control Volume formulation, often termed the Finite Volume or Finite Domain 

method. The discretization equations (or Finite Volume Equations, FVE) obtained 

express the conservation principle for 0 over a finite control volume, just as the 

differential equation expresses it for an infinitesimally small control volume. Some 

characteristics of this method are discussed below. 

I. An attractive feature is that the resulting solution gives integral conservation over 

any group of cells, and consequently over the whole calculation domain, for any 

size of cell and not just in the limiting case of infinitesimally small grid cells. This 

differs from the Finite Difference method which expresses the conservation 

principle only for an infinitesimal control volume. 
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The average value of 0 for a particular cell may be represented by the value at one 

point located at the centre of the cell, termed the grid node or the grid point. 

3. The solution consists only of values of 0 at these grid points and gives no 

information about the profile of 0 between them. Thus although piece-wise 

profiles over each cell are used to evaluate the integrals, the assumed profile may 
then be forgotten. The Finite Element method on the other hand also gives the 

assumed profile across the cell as part of the solution. 

After integration, the FVE for each variable may be cast into the following form: 

apop = aEOE+awow+aNON+ asos + allOH+aLOL+aTOT +b Equation 2-61 

or 
a, O, = 1: a, bOb 

nb=E, W, N. S. H. 4T 

where the subscript P represents the current node and E, W, N, S, H, L and T represent 

the neighbouring nodes (subscript nb) to the east, west, north, south, high, low and 

previous time as defined by Figure (ii). The coefficients of the FVE's represent thý6' 

influence from one cell to its neighbour and are: 

aE= max(O, d, - alm, 1) + max(O, -m, ) 

a,, = max(O, d,, -alm,.,, I)+max(O, m,, ) 

aN= max(O, d. -aim. l)+max(O, -m. ) 

as = max(O, d, - alml) + max(o, m. ) 

aH= max(O, d, - alm, l) + max(o, -m, ) 

aL = max(O, d, - ajný 1) + max(o, m, ) 

aT = 
PT (AXAY 

At 

ap = aE+aw+aN+ as + all+aL+aT 

a source term contribution 

" (P AXAYAZ/At) 
Pa 

term for false time step relaxation 

" boundary conditions 
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The dominant effect of upstream values due to convection is taken into account through 

the use of the hybrid scheme. This scheme and a theoretical background of the FVE 

coefficients is given in Appendix S. 

The last term in Equation 2-62 represents the source term given by 

S, + 
Op P (AxAyAz) Tla +boundary conditions Equation 2-63 

This contains part, or all, of the information about the source of the entity 0. Any 

additional terms or external influences which are not yet accounted for may also be 

added to the source term. Thus the complete source term may contain several individual 

terms, some of which were mentioned in Table 2-4. In PHOENICS the total source is 

expressed as a linear function of Op: 

S= Sl + S20P Equation 2-64 

S2 is the gradient of the linear function and is thus: 

S2 
(0s) 

Equation 2-65 ýdO)p 

andS, =S -S20P * 

After discretization, the linear part of the source terrn, -S2 , becomes part of the ap term 

and S, contributes to the b term in Equation 2-62. Also included within the b term are 

sources due to boundary conditions, and relaxation when the false time step method is 

used. 

2.3.3 Solution Procedure 

Although Equation 2-62 has the appearance of a linear equation, it is in general non- 

linear. The coefficients may themselves depend on the values of 0, and since 0 can 

represent a number of physical quantities the coefficients for one meaning of 0 may be 

influenced by some other quantity 0. Thus to obtain 0 for each grid point, an iterative 

procedure needs to be employed. This consists of a number of sweeps throughout the 

computational domain. A single sweep visits each grid point and updates the value of 
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for all variables. Many sweeps are usually required until a converged solution is 

obtained, i. e. when the values of 0 from one sweep to the next change by an amount 

smaller than the specified convergence criterion. 

For steady two-dimensional simulations, PHOENICS possesses two solution' 

procedures, the Jacobi point by point and the slab-wise simultaneous procedure. 

Jacobi point by point 

This procedure visits each grid node once in a defined order, replacing the current value 

of Op with a new value calculated from: 

op =Za. � 0, *� 
ap 

Equation 2-66 

where Ob denotes the value of Oat some neighbouring point from the previous sweep. 

The point by point scheme is conceptually easy, however information is transmitted at, 

one grid interval per iteration and therefore convergence may be slow. 

Slab-wise simultaneous 

PHOENICS defines a slab as a two-dimensional array of grid cells in x and y shown in 

Figure (ii). The FVE may then be written as: 

a, (i, j)O(i, j) =a E(I, j)O(i+l. j) + aw(i, j)O(i-,, j) +a N(i, J)O(i, j+l) + as(i, J)0(1. j_, ) + b(i, 
j) Equation 2-67 

The procedure is a variant of the Tri-Diagonal Matrix Algorithm (TDMA) and solves 

the 0 values for the whole slab simultaneously. 

For domains in three dimensions, a slab consists of x and y cells at a constant IZ value. 

The solution procedure steps through each IZ slab in turn. The influence of the 

neighbouring z cells to a slab are represented by the coefficients at, and aL which, for 

the slab by slab method, are included inside the b term. Alternatively the whole field 

solution procedure (Spalding 1980) which is an extension of the slab by slab procedure, 

may be employed for three-dimensional grids. 
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To formulate the procedure it is noted that at the boundaries of a slab the coefficients 

will be zero, i. e. 

as(i, l) =0 
aw(l. j) -,,,: 0 

a N(i, M) :-0 

a E(N, j) =0 

so for example applying Equation 2-67 to i=I andj =I will give: 

a NOM +.! 
E(I. 1) 

+ 
ap(,,, ) ap(,,, ) Equation 2-68 

FN+FE2,1)+ b(I'l) (1,1)0(1,2) (111A 

where F represents a functional relationship. Postulate that for all grid cells, 0 may be 

given in terms of its north and east neighbours, i. e.: 
NEb 

'4 j) i+l, j) +F Equation 2-69 F 
j)o(,, j. 1) +F 0( (0) 00-A " (i, (i. 

The following two relations may then also be written: 
NEb 
U-I'Aou _I, j) 

Equation 2-70 OU-Ij) =F -I'j+I) 
+ F(i-IIAOUIA + Fýj 

and 
0(,, j_, ) =FN+FE+Fb Equation 2-71 (ij-00(i-j) (i, j-l)o(i+l, j-1) (Q-1) 

Substituting Equation 2-69, Equation 2-70 and Equation 2-71 into Equation 2-67 gives: 

ap(,. j)o(,, j) :,, aFN +F 
E 

+F 
b 

SUIAI (i. j-I)O(i, j) (ili-I)O(i+l. j-1) (i i-l)l 

+a N(i, j)O(i, j+l) 

NE 
+a (i, w(i, j)[F +F + Fýj_,, j) j-I)O(i-l, j+l) (i-lli)O(i, j) 

I 

+a E(i, j)O(i+l, j) + b(i, 
j) 

Putting this equation into the same form as Equation 2-69: 

0(,, j) 
[ap(,, 

j) -a FN -a FE SUIP (ili-1) W(ili) U-1, D] 

a N(i, j)O(i, j+l) +a E(i, j)O(i+l, j) 

+a FE +F 
b 

S(Q)1 (i, j-I)O(i+l, j-1) U, i-01 

+a FN +F 
b 

WUIAI (i, j-I)O(i-l, j+l) U Ilid 

+ b(i, j) 

then 

Equation 2-72 

Equation 2-73 
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j) 

FEa 
E(ij) 

d(,. 
j) 

E 
(i. j a )(F _1)0(,. �j (i W(i. i) (i 1. j» + b(i. j) F(b, 

' 
=s 

(', j _I) j_1» 
(F 

d(�j) 

d( ap(,. j) -a FN -a iA ý-- S(ili) (ili-1) W(ili) 

Equation 2-74 

Equation 2-74 gives the value of 0 for all grid points in terms of the neighbouring cells 

to the north and to the east (however, see note below). 

The slab by slab procedure is then as follows: 

Calculate FN FEdFb forj= I to NYandi= I to NX. UIAI (Q), UIAI (Q) 

Note: the calculation of Fý . involves the terms 0(j. 1, j. 1) and 0(i. 1, j,., ). These are (Q) 

unknown in the current sweep and therefore the approximate values obtained from 

the previous sweep are used. Further iterations over the slab will improve the 

calculated value of Fb U, j) 

2. Compute 0 from Equation 2-74 forj = NY to I and i= NX to 1, i. e. starting from 

the north east comer of the domain. 

Relaxation of solution procedure 

In the iterative solution of the algebraic equations it is often desirable to speed up (over 

relax) or to slow down (under relax) the changes from one iteration to the next. The two 

methods of performing this in the PHOENICS code are linear relaxation and thefalse 

time step method. 
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Linear relaxation 
The general FVE (Equation 2-62) may be written as 

Op = Op* + 
7, anbOnb+b_ 

0; -- Equation 2-75 
ap 

where Op* is the value of 0 from the previous iteration and the contents of the 

parentheses represent the change in Op produced by the current iteration. This change 

may be altered in a linear manner by the introduction of a relaxation factor a 

Op = Op* +a 
lanbOnb+b_ 

0; - Equation 2.76 
ap 

False time step or inertia method 
The FVE may alternatively be written as 

(a. + i)Op = I: a.,, O,, b+b+io, * Equation 2-77 

where i is the false time step or inertia relaxation coefficient. If i takes a very small 

value then Equation 2-77 reduces to the standard FVE and the relaxation will have no 

effect. The name "false time step" is due to the analogy between iterations converging to 

a steady value and an unsteady flow becoming steady. Note that the term io, * is 

analogous to aTOr if Op* = OT and i= aTi. e. 
PAXAYAZ This method is employed At 

for the momentum equation as the false time interval allows for the influence of inertia 

in the fluid. 

2.3.4 Boundary Conditions and Sources 

All differential equations require boundary conditions to make the solution determinate. 

PHQENICS applies these boundary conditions as additional sources applied over a 

range of cells (a PATCH in PHOENICS). For example, the cells on one edge of the 

computational domain may contain sources to model the effects of a solid wall with 

friction on the external faces of these cells. Boundary conditions must be supplied at all 

external faces of the domain, but they may also be supplied internally to account for the 

effects of, for example, an internal wall. If the user does not explicitly define boundary 
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conditions for all the external faces of the domain, PHOENICS will automatically 

supply a boundary condition of zero diffusion flux, i. e. all gradients of 0 are set to zero. 
This is equivalent to a plane of symmetry. 

Sources to define boundary conditions are specified in the form: 

S= T(C + Ilmll) (V - 
where: 

Equation 2-78 

T is a multiplier dependent on the PATCH type. This is commonly the volume of the 

cell for which the units of T are [m 31. 

V is the value of the boundary condition to be specified (dimensions are that of 

C is the coefficient of the boundary condition. Assuming a volume PATCH type, the 

dimensions of C are [kg M-3 S, 
I]. 

m is the mass flow rate through the PATCH type. Again assuming a volume PATCH 

type, the dimensions of m are [kg M-3 S-1]. 

The units of the source term are therefore [0 kg s"]. The operator 1111 returns the 

maximum of zero and the quantity enclosed. The presence of Ilmll accounts for the mass 

created in the current PATCH by the P1 boundary condition. For the majority of 

boundary conditions no mass is created, thus m=0 and the source is: 

S=TC (V-0p) 

or 
S=TCV-TCO, 

Equation 2-79 

Equation 2-80 

This may be put into the same form as Equation 2-64 by putting S, =TCV and 

S2= -TC. 

The following are some examples of frequently encountered types of boundary 

condition. These include the fixed source, the fixed value, the mass flow and the wall 
boundary condition. 
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Fixed source boundary condition 

If a fixed flux of a variable 0 is required then the coefficient C in Equation 2-79 may be 

set to a small number (e. g. 2x 10-10) and the value of the boundary condition (V) set to 

the required flux (JO) divided by the coefficient: 

V= 
JO 

Equation 2-81 c 

The source term (Equation 2-80) then becomes (ignoring the multiplier 7): 

10-10 
jo 

10-10 OP Equation 2-82 - 7-- IVO 

PHOENICS supplies the variable FIXFLU which when used as the coefficient supplies 

a value of 2x 10-10 and automatically divides V by 2x 10-10. 

Fixed value boundary condition 

If it is desired that 0 should take the value of V at the cell in question, the C is set to a 

large number, e. g. 2x 1010 and the FVE (Equation 2-62) then becomes: 

OP = 
aN+as+ +aL+(2xlO'OxV) 

Equation 2-83 
aN+as+ +aL-(-2xlO'O) 

in which all terms are negligible compared with the source terms giving 

OP = 
2XIO'OXV v Equation 2-84 

2x IWO 

The PHOENICS variable FIXVAL of value 2x 1010 may be used as the coefficient to 

achieve this. 

Mass flow boundary condition 

The conservation law for mass flow is the continuity equation but, as can be seen from 

Table 2-4, there is no variable 0 for this law. To overcome this, the variable P1 is used 

as a flag for the continuity equation (note that the P1 variable does not have its own 

conservation law). The concept used is that of pressure as a driving force for mass flow; 

an inflow (for example) of mass is the result of a difference between the external 

pressure (the value) and the internal pressure (P1 at the current cell). 
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Thus to model a fixed flux of mass into a domain, the variable used is P1 and the 

coefficient is FIXFLU. If mass is flowing into the domain (or being "created" within the 

cells of the current PATCH) then other fluid properties (such as turbulence) are 

consequently convected into the domain. To account for this the source of 0 (where 0 is 

the convected quantity, e. g. turbulence kinetic energy) is used in the form of Equation 2- 

78 or 
S=TC (V-OF, ) +T Ilmll (V 

- Op) Equation 2-85 

The first terrn accounts for diffusive inflow and is usually neglected by setting C=O. The 

second term represents the convective inflow of the property 0. The use of the operator 

1111 on m ensures that only positive values of m will give rise to convected inflow. This 

procedure may be performed in PHOENICS by setting the coefficient equal to 

ONLYMS (ONLY MasS flow) and 0 to the required convected quantity. 

The continuity equation may also be used as a method of specifying boundary 

conditions for pressures directly. Thus to fix the pressure at a particular cell to a desired 

value, the coefficient FIXVAL (2 X 10-10) could be used with the variable P1. However, 

CHAM (1987) report that convergence problems may arise due to round off error and 

suggest the use of F1XP (numerical value of 1.0) as the coefficient. Intermediate values 

of the coefficient will change the "stiffness" of the fixed pressure boundary condition. 

Wall boundary condition 

The following example shows how the strearnwise velocity, parallel to a wall with 

friction, is reduced to zero by applying a (negative) source of momentum flux per unit 

area of 'a 
dVdy. 

i 
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Figure 2-4: Wall boundary condition velocity cell 

For the cell shown in Figure 2-4 having wall area A the source of U (i. e. specific 

momentum) required is 

Equation 2-86 

which can be expressed in linear form using: 

and V=O 

PHOENICS however provides several PATCH types which supply the factor #A 
. For 

8 

the orientation in Figure 2-4 it is the south face of the cell on which the wall boundary 

condition is applied, so the PATCH type used is SWALL. Thus the PHOENICS user 

should supply a coefficient C equal to 1.0 and a value V equal to zero. 

Alternatively, the wall function employed by PHOENICS is that suggested by 

Jayatilleke (1969) 

U= 
-1 In 

EyU, ) 
Equation 2-87 U, J(v 

to prescribe the strearnwise velocity in the near wall cell. The roughness parameter E 

may be defined in terms of k., by the user (Equation 2-28). The turbulence quantities are 

specified by: 
u. 2 

Equation 2-88 

ý10- - 0-9 
0.090.75 x k"' 
- Equation 2-89 

Ay 
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2.3.5 Calculation of the Flow Field 

Equation 2-62 is the FVE for a general variable 0 which may be used to calculate the 

distribution of 0 at the grid points for a given flow field. To calculate the flow field, 

conservation of momentum (Navier-Stokes or Reynolds equations) is used with 0=U, 

V and W representing the specific momentum in the three co-ordinate directions. From 

Table 2-4 and Equation A2.3 it can be seen that the source term includes the pressure 
dP1 gradient term, - /dX which is unknown. A discussion of this problem is given in 

Appendix 6. A two-fold solution is employed by PHOENICS with a staggered grid 

arrangement of cells, whereby scalar variables such as pressure and turbulence 

quantities are stored at cell centres and velocity components are stored on cell faces. 

This is shown in Figure (ii). The momentum equations are then solved together with the 

continuity equation using the SIMPLEST scheme. Details of the -staggered grid and 
SIMPLEST are also given in Appendix 6. 

2.3.6 Grid Methods 

Introduction 

The size, shape and distribution of grid cells for a given simulation will depend on the 

following factors: 

1. Revres ntation of geomet . The computational domain and any internal 

geometric features are defined only at cell boundaries and therefore any small 

scale geometric features will require small cells. Complex non-orthogonal 

geometries may be approximately represented by orthogonal geometries using 

small cells. Alternatively curvilinear grids may be used, which in PHOENICS may 
be orthogonal or non-orthogonal and are termed Body Fitted Co-ordinates (BFC). 

2. Resolution of results. A finer grid will be required in regions of particular interest 

and where gradients in the flow are large. 
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3. Numerical accuracy. To solve the original differential equations accurately the 

control volume needs to be as small as possible, towards the limit of infinitely 

small cells from which the differential equations originate. Areas of non-linearity 

and high gradients require particularly small cells to ensure that the finite volume 

equations accurately represent the differential equations. 

Numerical inaccuracies may also arise from control volumes which have widely 
differing length scales, either from one control volume to the next or from cells 

which have an extreme ratio of length to height. 

4. Turbulence model and flow pattern. Further conditions on cell size are imposed by 

the turbulence model employed and expected flow structure. For example in order 

that the viscous region of a boundary layer is represented, the two-layer model 

requires the centre of the cell nearest to a boundary to be located inside the sub- 

layer. The standard k-e model on the other hand employs a wall function to bridge 

the sub-layer and dictates that the first cell must be located outside the viscosity 

affected region. 

If all of the above factors are met to an acceptable degree then the solution should be 

insignificantly affected by the grid, a condition termed grid independence. For many 

practical purposes however the computational time and storage requirements to obtain a 

sufficiently grid independent solution are not available and a compromise has to be 

made. 

The density of cells may often be safely reduced in some regions of a domain. Using 

conventional grid techniques, non-uniform distributions of cells are allowed in each co- 

ordinate direction, though each line of cells must be continuous. Multi-block gridding 

(MBG) is a technique which allows individual cells to be subdivided to allow increased 

resolution in isolated regions of the domain. This method was first introduced in version 

2.1 (March 1995) of PHOENICS and due to its promising benefits the feature was 

investigated (see Appendix 7). However errors in the coding and inflexibility in defining 

sub-divided grids prohibited its use in the current project. 
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Both BFC and MBG's require increased computational resources and can lead to 
divergence of the solution procedure, which may outweigh the advantages of these 

techniques. 

Non-uniform cartesian Lyrids 
PHOENICS specifies the position of each grid cell in terms of a cumulative fraction of 
the total domain in each co-ordinate direction. This is defined within the QI file using 

the XFRAC, YFRAC and ZFRAC arrays. Taking the x direction as an example, if the 

cells I to i occupy a distance of x then cell i has an XFRAC of 

XFRAC(i) =x XLAST 

where XLAST is the total length of the domain. 

Equation 2-90 - 

Using this method of defining grids allows great flexibility but is tedious if each cell is 

defined separately. PHOENICS includes built-in functions to facilitate the generation of 

uniform grids and expanding/contracting grids which follow a power law. For the latter -, 

case each cell is defined by (using the x direction as an example) 

XFRAC(i) =i 
(NY) 

Equation 2-91 

An expansion factor, k, of greater than one produces an expanding grid. If k is less than 

one a contracting grid is generated. 

Geometric law 

Modelling the viscous sub-layer requires very small cells adjacent to the wall. For this 

application a geometric expansion gives an improved cell distribution. A geometric 

progression is defined as the series 

A, Alk, Alk', Alk 3, 

Ik 
n-I Equation 2-92 

for which the sum of the first n terms is given by 

n A. (k' 
- 1) 

S= ýi 
k-I 

Equation 2-93 

Here A, is the thickness of the first cell, k is the expansion factor and n is the number of 

cells. 
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For ease of generating a grid with geometric and uniform distributions the XFRAC, 

YFRAC and ZFRAC arrays were written using a simple FORTRAN program and then 

imported into the QI file. 
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3. METHODOLOGY 

3.1 Introduction 

During the course of this study, several techniques were developed to aid the modelling 

of flow over rough boundaries and the subsequent analysis. 

For all of the investigations reported, periodic boundary conditions were employed to 

achieve fully developed flow, while minimising computational resources. Two methods 

of implementing periodic boundary conditions within the PHOENICS code were 
developed, one of which is recommended for use. 

In addition to the usual procedure of monitoring the history of residuals in the finite 

volume equations, and monitoring each variable at specific locations, other convergence 

criteria were developed which had a more obvious physical basis. These were derived 

from an analysis of the Reynolds equations and were used to: 

1. Confirm the theoretically linear cross-stream distribution of period averaged shear 

stress. 

2. Confirm that the Reynolds equations employed within PHOENICS satisfied a 

strict force balance. 

To analyse flow over rough boundaries, several techniques were developed to obtain the 

equivalent sand roughness or k, value from a standard velocity profile or resistance 

equation. 

Finally a new technique to calculate the position of an equivalent plane wall to replace a 

rough boundary was developed. This involved a novel application of strearnwise force 

moments over a rough bed. 

Discussion of these techniques forms the subject of this chapter. 
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3.2 Periodic Boundary Conditions 

3.2.1 Introduction 

In duct and open channel flow studies (both physical and computational) the area of 
interest usually lies in the fully developed region. Fully developed flow is an asymptotic 

condition and various criteria have been employed to define an approximate flow 

development length. For example Gessner's (1981) criterion of 60 times the hydraulic 

diameter employed by Nezu and Rodi (1986) for flow in smooth open channels was 

probably at the low end of the range. 

The thickness of a turbulent boundary layer over a smooth plate at the strearnwise 

location x was given by Schlichting (1955) as 

8=0.37 (U-x )-Y5 

x 
CT Equation 3-1 

where U. is the free stream velocity. This can be used to estimate the boundary layer 

thickness on a rough wall by applying the work of Perry and Joubert (1963) in which it 

was shown that the effect of roughness can be accounted for by using a modified 

viscosity which increases with higher degrees of roughness. Equation 3-1 with a 

modified (larger) viscosity predicts that a rough wall boundary layer would develop 

more rapidly, as would be expected given the larger cross-stream turbulent velocity 

scale. For a given duct, the strearnwise location at which boundary layers from each wall 

meet can therefore be determined, though a further length of duct is then required for the 

velocity profiles to fully develop. To the author's knowledge there has been no 

published application of this method as a means of predicting the required development 

length, however Samuels (1997) used a similar technique to predict the development 
- 

length for the SERC flood channel facility at Hydraulics Research Ltd, Wallingford. 

In CFD the provision of a development length requires additional cells in the primary 
flow direction that are unused in the final analysis. This makes corresponding demands 

on computer storage and run time which may be alleviated by the following alternative 

methods: 
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1. using a parabolic flow approximation. 

2. inputting accurate profiles for all variables at the inlet to the domain, 

3. using a periodic or cyclic boundary condition. 

Parabolic flow approximation 

Flow may be classed as parabolic if the primary velocity at every point in the fluid is in 

one direction only, the curvature of streamlines is minimal and the convective/diffusive 
transport in the cross-stream direction is negligible. Such flows may be simulated by a 

single slab solution procedure which greatly reduces the storage and processing 

requirements. Flows over roughness elements however do not satisfy these criteria but 

require influences to propagate in all spatial directions and are thus elliptic in nature. 

Inlet velocity profiles 
The difficulty in specifying correct inlet profiles is that universal distributions are 

generally limited to the primary velocity and only known for a very limited number of 
flows. For example, in a simple two-dimensional boundary layer on a smooth wall, the 

primary velocity distribution may be approximated by the 1/7th power law 
I 

UUHN) X0 Equation 3-2 

or the universal velocity profile (Equation 2-21). However this method is inherently 

unsuitable for investigating unknown flow fields. Never-the-less, approximate 

distributions (such as Equation 3-2) may be usefully employed to give the initial values 

in an iterative procedure. 

Periodic boundary conditions 

In the application of periodic boundary conditions the value of each variable at the 

outlet is used as the inlet boundary condition for the next stage in the computation. Thus 

the computational domain consisting of an integer number of periods can be viewed as a 

short length of duct repeated indefinitely. This method allows the flow to develop 

naturally and works equally well for all domains which have a repetitive strearnwise 

distribution. 
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Patankar et al (1977) describe the method mathematically in the form: 
U(X, Y)=U(x + I, y)=U(x + 21, y) etc. Equation 3-3 

for the velocity field and for the pressure field as: 

P (x, y)- P (x + 1, y)= P(x + 1, y) -P (x + 21, y) etc. Equation 3-4 

where 1 is the period length. It is therefore the pressure drop which is periodic, rather 

than the pressure. The pressure may be thought of as being the sum of two components. - 

a "local" pressure, P* and a linear "reduced" pressure gradient dpYdx 

p(X, y)=po(x, y)+p, +X. dP; /dx 
,n Equation 3-5 

where P,., is the reduced pressure at inlet. The local pressure P* is periodic 

P*(x, y)=P*(x + l, y)=P*(x + 21, y) etc. Equation 3-ý 

Within the PHOENICS code, cyclic boundary conditions may be written and controlled 
by the user or the in-built facility may be employed. 

3.2.2 User Controlled Cyclic Boundary Conditions 

In PHOENICS a duct flow is most effectively modelled by defining a source of mass 
flux (and associated momentum flux) at inlet and a pressure distribution at exit (Section 

2.3.4). Due to the slab-wise solution procedure employed by PHOENICS, a converged 

solution is most quickly reached if the predominant flow direction is chosen to be the 

same as the direction in which the slabs of cells are solved, i. e. the z direction. (e. g. 

PHOENICS library case No. 290). 

A duct based on these boundary conditions may be made periodic by simply extracting 

the partly developed velocity and turbulence profiles at exit and repeating the 

calculation with these profiles as inlet boundary conditions. The exit pressure profile is 

set equal to the pressure distribution at inlet, minus the pressure drop between the duct 

entrance and exit. It is convenient to set the average value of the outlet pressure 
distribution equal to zero, allowing the pressure distribution throughout the rest of the 

domain to adjust to this datum. A similar method of implementing periodic boundary 

conditions was employed by Beale (1989) for laminar flow through a plate fin heat 

exchanger. 
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For flow over periodically 
................. ............... ........... I ......... ... spaced roughness elements, 

Figure 3-1 shows that an extra 

TZ- 1 2. - - NZ-1 NZ 

/ ----------- riri; aza ----------- - ----------- sji; aw ---------- \ 
Extm cell Extm cell 

Figure 3-1: Flow rate boundary condition location of recycled 

variables 

cell needs to be added at both 

inlet and outlet to ensure that the 

variables are recycled to the 

correct locations. Thus the 

strearnwise velocity is recycled 
from IZ=NZ-1 to IZ=I and the 

pressure and turbulence 

quantities from IZ=2 to IZ=NZ. 

Note that the W1 velocity cannot be calculated on the downstream boundary (Section 

2.3.5). 

FORTRAN code to transfer the arrays of Wl, Pl, KE and EP may be written by the 

user in the GROUND subroutine of PHOENICS (Appendix 8). 

Testing the user controlled cyclic boundary conditions 

Using the long angle (case XX) roughness configuration described by Schlichting 

(1936), the cyclic boundary conditions were tested for periodically fully developed flow 

and efficient convergence. Figure 3-8 shows example profiles of strearnwise velocity 

(Wl) taken at the inlet face of the first period and the outlet face of the second period. 

The velocity profile at inlet was less developed then the profile at exit, indicating that 

further recycles were required to achieve fully developed flow. The convergence of each 

variable is indicated by the history of spot values throughout the solution procedure, 

given in Figure 3-9 and 3-10 which show the monitoring values of the W1 and P1 

variables at cell IZ=NZ/2, IY=NY/2. The discontinuities show when recycling took 

place. The frequency of recycling (set by the variable NF) was adjusted to ensure that 

any oscillations triggered by the recycling had decayed before the next recycle. In the 

tests described, all the variables were recycled every 3,000 sweeps. 
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In order to reduce the large number of iterations required, various schemes werei, 
investigated in which recycling of particular variables, for example pressure, wasl 

switched off for part of the solution procedure. The effect of relaxation was also 

investigated to give an optimum rate of convergence. 

A more fundamental problem associated with this method is indicated by the profiles of 

the pressure variable at the start and end of the domain (Figure 3-11). For fully 

developed flow the profiles should be identical in shape, separated by the pressure drop 

AP. The average value of the exit pressure profile should also be zero. An examination 

of the code during the solution procedure revealed that the exit pressure distribution was 

calculated correctly within GROUND but that the coefficient used to fix' this 

distribution to the required field values was too low. As a consequence the inlet pressure 

profile also developed incorrectly. 

Increasing the exit pressure coefficient from I to 1000 caused the solution to oscillate, 

as indicated by the spot values of PI and W1 in Figures 3-12 and 3-13. Further, profiles 

of W1 and P1 at inlet and outlet (Figures 3-14 and 3-15) show that fully developed flow 

was again not achieved, though the inlet distribution of pressure was more realistic. -- 

Finally, after prolonged investigation, it was concluded that a pressure coefficient could 

not be found which was able to give a converged solution of fully developed flow for 

the domains tested and further development of this method was discontinued. 

3.2.3 PHOENICS Controlled Cyclic Boundary Conditions 

The PHOENICS XCYCLE command was designed for modelling flow in circular cross- 

sections using a segment defined in the cylindrical co-ordinate system. The 

circumferential direction is defined as the x direction, which therefore prescribes the 

direction in which recycling takes place. In the present application, recycling was 

required in the primary flow direction and therefore this had to be the x direction. 

1 See Section 2.3.4 for details on pressure boundary conditions. 
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In the XCYCLE facility, the flow domain is bounded by two x-planes which are linked 

by the convection and diffusion coefficients in the finite volume equation (Equation 2- 

62 and Appendix 5). In the present rough wall application the x-planes are an integer 

number of periods apart. The values of each variable within a cell in the first x-slab are 

thus dependent on its immediate neighbours and the corresponding cell in the last x- 

slab. Similarly the values of variables in the last x-slab are dependent on the current 

values of the first x-slab. The user has no control over this process and therefore it is the 

"local" pressure P* which is recycled and not P. Therefore the "reduced" pressure 

gradient that drives the flow has to be modelled by other means. This is achieved by 

applying a source of momentum flux per unit volume to each cell in the domain, 

equivalent to applying a body force per unit volume. In this method, the magnitude of 

the "local" pressure2 p* is completely independent of any external boundary conditions 

and simply requires a reference datum to be specified at some arbitrary location within 

the domain. For incompressible flow the value of the datum is most conveniently 

defined to be zero. Generally this was achieved here by setting P* to zero in one cell in 

the first x-slab. 

An advantage of this method is that there are no discontinuities within the re-cycling 

procedure and no additional FORTRAN coding is required. However, to model a duct 

with a specified flow rate, adjustment of the momentum flux source is required. Initially 

this was achieved by comparing the latest computed value of the flow rate with the 

required value and adjusting the pressure gradient in a linear manner: 
Of (IPP Required flow rate 

=- X- 

dX 
new 

dX 
old Computed flow rate 

Equation 3-7 

Linear relaxation was also incorporated into this procedure, which was performed at a 

specified frequency of iterations using GROUND coding (Appendix 11). However, if 

2 The term "local" pressure will be simplified to "pressure" for the remainder of the thesis. 
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the friction factor is independent of Reynolds number, the pressure gradient is 
I1 -1 

proportional to the square of the average velocity and the effect of using a linear 

relationship is therefore to increase the degree of relaxation. 

Due to oscillations in the pressure gradient obtained using this method (Chapter 5), an 

alternative procedure was developed. Starting with an estimated source of momentum 

flux, a nearly converged solution was obtained (error between driving and resistive 

forces of 5%). The required momentum flux source was then more accurately calculated 

by 

Of dP' ( Required flow rate 
- =- x 
(IX new 

dxold (Computed flow rate) 
Equation 3-8 

and the solution continued. After confirming that the error between the required and 

computed flow rates was less than 5%, further iterations were performed until full 

convergence was achieved, as defined in Section 3.3. 

The PHOENICS controlled method of cyclic boundary conditions was tested on flows 

in a smooth walled rectangular duct and also using the long angle roughness 

configurations of Schlichting (1936). In all tests momentum was conserved and accurate 

periodic distributions were obtained for all variables. The results for the smooth duct 

tests are presented in Section 6.2 and those for Schlichting's roughness plates XX, XXI 

and XXII are given in Section 4.1. 

3.3 Convergence Criteria 

Due to the iterative nature of computational fluid dynamics, convergence criteria are 

required to specify the desired degree of numerical accuracy. A converged solution is 

commonly accepted when the residuals of the finite volume equations fall below 

specified values, and when further iterations do not produce appreciable changes in the 

values of each variable at specific monitoring locations. 

For the investigations reported here, additional convergence criteria were used based on 

the flow physics rather than on the numerics of the solution. This ensured that the 
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calculated flow was physically realistic and provided more enlightening evidence of 

numerical accuracy. The two criteria employed were: 

1. That the period averaged shear stress profile in the transverse direction should be 

linear. The derivation of period averaged shear stress is discussed in Section 3.3.1. 

2. That the driving force acting on the fluid should be equal and opposite to the sum 

of the resistive forces exerted by the duct boundary, to within 0.1%. The 

calculation of this force balance is discussed in Section 3.3.2. 

3.3.1 Period Averaged Shear Stress 

Governing eguations 
The Reynolds equations, using the eddy viscosity concept to model the Reynolds 

stresses, are given in Equation A3-9. For a two-dimensional flow in the x-y plane, the x 

component is 

P+pU2- 21F 
X+ Y3 Ad _PUV + , 

(dU 
+ 

dV 
Equation 3-9 

0- - 
ry. 

or 

-do,. = 
dry. 

dx 09Y 
Equation 3-10 

Applying the continuity equation for incompressible flow gives (Appendix 3): 

d dU 
": _d -puv +r 

dU 
dx 

P+ PU' - 17 dx + Y3 A Equation 3-11 

Tyl. 

It is in this form that PHOENICS solves the momentum equations. Note that one of the 

irdUl, terms has disappeared from the left hand side of Equation 3-10, as has the / Obc 
rOV/0, term from the right hand side. Thus, although this equation is exact, it no / O! C 
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longer describes the complete set of stresses over a finite control volume. The. temis 

within the derivatives will be denoted the "reduced" stresses: 

Ir 1 =-puv+r 
du 

Equation - 3-12 
YX 0), 

2 du 
-ax=P+PU -r-ý+%pk Equation 3-13 

and 

CITY. Equation 3- -14 
0ý dx 

Physical interpretation 

Consider the general flow given by U= U(y) as shown in Figure 3-2. If the " Y 

momentum flux is positive there is a net transfer of momentum in the +ve y 

direction, from level I to level 2. Therefore 
7'. the fluid at level 2 will tend to accelerate as 

U. U(Y) 

.......... 

x 

Figure 3-2: Flux and shear stress 

jy =- lrylx. 

though it were dragged in the positive x 

direction by the lower fluid and the fluid'at- 

level I will experience a resistance in the -ve 

x direction. This is equivalent to a -ve shear 

stress on the +ve y face of the fluid at level 1. 

Thus the total convective and diffusive flux in 

the positive y direction represents a negative 

reduced shear stress in PHOENICS, i. e. 

Equation 3-10 may also be derived by examining the force balance over a finite 

control volume as shown in Figure 3-3. 

Summation of the forces gives 

&c(, r,. + sr'. ) + gy(o-. + 3C. ) - &. T, - a.,. &=0 

i. e. 

64 



gryx. &+ 8a.. 8y = 
or 

d% dd 
Oýr 

1dx 

Flow 

Ty.. +Sr-ý 
l CF +8CF - ------ ix" x 8y 

ax 
....... ... 

Figure 3-3: Shear stress control volwne. 

3. For periodically developed flow, the terms pU' - I' 
dU 

+2 dx 3A in Equation 3-13 

are identical on the upstream and downstream faces of the period. Equation 3-14 

then reduces to 

dr 
Y., AP 

dy 1 
Equation 3-15 

where r' is the period averaged value of r, '. and -AP is the pressure drop over a YX 

period length. Thus the gradient of the period averaged reduced shear stress 

profile is constant and equal to the average pressure gradient over one period. 

The reduced stress ry'., is approximately equal to the true shear stress in the 

majority of the flow region. However, immediately above the roughness block and 

in the recirculation region, the term dVl- will be significant and ry'.., will not be /O! C 

an accurate representation of the shear stress. 
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It is interesting to note that when the omitted term Ird7ld was included in the "Idx 

calculation of -ry,, then the profile of shear stress was found to be no longer linear. 

This is shown in Figure 3-16 using the roughness test RCDA3 (Section 5.3) as an 

example. The reason for this discrepancy can be seen by plotting a period 

distribution of the transverse velocity V1 at ay plane above the roughness 

element. Figure 3-17 shows a very high value of V1 behind the leading edge of the 

roughness element. This area of the domain does not contain sufficient cells to 

accurately determine the distribution of the peak value. When the gradient dVl- 
/ O! V 

is calculated (Figure 3-18 and 3-19), gross errors will be obtained. Although 

Figure 3-17 shows continuity to be satisfied over a period, the integrated value of 

19% in Figure 3-18 is non zero. "Id x 

Implementation within PHOENICS 

The reduced stress ry'. and thus its period averaged value ry'. was found by two 

methods. 

1. Most simply, each term in Equation 3-12 was calculated by extracting the values 

of U, V, I' and the co-ordinates for each cell. The gradients were obtained by 

taking the difference between adjacent cells. Integrating ry, over one period 

length for each y plane gave a distribution of ry',,. The GROUND subroutine 

MANEFF (Appendix 11) shows how this was implemented within PHOENICS. 

This method uses the same principles as those in the central difference scheme 

(Appendix 5). 

2. In calculating the flow field, PHOENICS uses the hybri4 scheme to solve 
Equation 3-11. In recognition of this, the reduced stress ry'. was also calculated 

using the convection and diffusion coefficients used within the finite volume 

equations (Equation 2-62 and Appendix 5). 
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Implementation using convection and diffusion coefficients 

Using the general variable (D, Patankar (1980 Equation 5.54) gives the integrated total 

flux for the east face of a scalar control volume as 
«DP pUrAy0p + a. (DE) Equation 3-16 

The integrated total flux for variable U over the north face ('en' in Figure (ii)) of the U1 

velocity cell is therefore 
J. = PVe '-U 

,. 
Ax Up + aN (UP 

N Equation 3.17 

where J,,, =f Jy. dx or -f rý. dx and aN is the convection and diffusion coefficient 

in the finite volume equations. Note that due to the staggered grid, Up and UN are 

located on faces 'e' and 'en'. Thus the average shear stress over one roughness period is 

-Ax PNX 
J. Equation 3-18 

IX=l 
PNX 

m 
U. U 

=-I: 
[aN(UN-UP)- 

en P] 1 
IX=l 

where Ax is the length of one cell and PNX is the number of cells in the x direction over 

a roughness period of length 1. Using chapters 4 and 5 of Rosten and Spalding (1987) 

and the conventions described in Notation, then the remaining terms in Equation 3-18 

have the following meanings: 

Up is the U1 velocity of the P cell, located at the centre of face V, in accordance with 

the staggered cell arrangement (Appendix 6). Similarly, UN applies to the U1 

velocity of the cell N. 

mý is the mass flux (kg s"') across the north face of the U1 velocity cell, i. e. the face 
ell 

(Mn + MnEy 

4en' in Figure (ii) : mu -2 en 

where m. =pV. A., and M, E =P VnEAnE 
* 
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aN is the coefficient which represents the combined effect of convection and 

molecular/ turbulent diffusion through the north face of the U1 velocity 

cell: aN= max (0, du. - almu 1) + max (0, -mu) en en 

where cc = 0.5 for the hybrid scheme and < is the diffusion coefficient (kg s-1) ell 

across the north face of the U1 velocity cell, i. e. <= (d. + d. 
E where en Y2 

dr- and 
d, 

E = 
rnEA 

The exchange coefficient, F A; ýPNJ ý(E(NEý 

(kg m" S-1) may be determined by arithmetic or harmonic averaging. It is the 

latter which is used for the momentum equations, for example 
21PNI 

rp + 
ln(nN)V 

jr, 
(I ny T 

JL N 

In PHOENICS the convection flux (M) is stored as an inflow to the relevant velocity 

cell. Thus for the U1 velocity cell P, the flow across face 'en' may be either 

1. Flowing from north to south: thus the flux is in the -vey direction and stored as an 

inflow to the U1 cell P across its north face. The PHOENICS variable is LD 11 

(when NDIREC=I) and the user GROUND variable is CUN (convection of U1 

over north face). 

2. Flowing from south to north: thus the flux is in the +ve y direction and stored as 

an inflow to the U1 cell N across its south face. The PHOENICS variable is LD 12 

(when NDIREC=I) and the user GROUND variable is CUS (convection of U1 

over south face). 

These GROUND variables are extracted from the F-array in group 8 of GROUND. The 

diffusion coefficient through the north face of the Ul velocity cell ( dý ) is extracted en 

from group 9 of GROUND using the PHOENICS variable LAN (when NDIREC=I) 

and put into the user GROUND array DUN. 
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The rest of the coding to obtain ry'., is put into the subroutine EFFSS, called from 

section 8, group 19 of GROUND (Appendix 11). This first calculates the total 

convection flux array (CON= m. u. ) by summing the arrays CUS and CUN, taking into 

account the negative direction of CUN. Next the terms 

SDN =(U,, -UP)[max(O, d, '-ajmu,, j)] Equation 3-19 en en 

SCN=(UN -Up)[max(O, -m, 
ý)] Equation 3-20 
en 

SFN = -mu Equation 3-21 en 
X UP 

max (0, 
-men are calculated, noting that I ,, 

)] = CUN. These are combined to give 

SHR=SDN+SCN+SFN 

or 
SHR= (U, -U,, 

)[max(O, d' -almu 
I) +max(O, -mu)]-mu U1, Equation 3-22 en en en en 

The shear force over the north face of each U1 velocity cell (SHR = -J. ) is then 

summed over the complete period of the rough duct and divided by the period length 

(Equation 3-18). 

Conclusions 

As can be seen from Figure 3-16 there was no discernible difference between methods I 

and 2 of calculating -ry'., for the application considered. The reason for this is that 

although PHOENICS uses the hybrid scheme, the absolute values of cell Peclet numbers 

were below 2 for the majority of cells and therefore the numerical procedure effectively 

used the central difference scheme for its cross-stream momentum flux calculations. 

3.3.2 Force Balance Over One Period 

The forces acting on a fluid flowing over a rough boundary for one period are shown in 

Figure 3-4: 
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----------------------------------------------------- 

Shear force on top wall (enclosed ducts only) 

Driving force 

Shear force on block 

Form drag 

Shear force on upstream bed wall Shear force on downstream bed wa. U! 

Figure 34: Force balance over one period 

The driving force is modelled by a source of strearnwise momentum flux per unit 
11 

volume added to each cell in the flow domain. This is equivalent to a pressure drop Alý 

over the period length, from which the driving force may be calculated as 
Driving force = AP x cross - sectional area of duct Equation 3-23 

The resistive force is the sum of the bed shear forces, the shear force on the top of the 

roughness element and the form drag (or pressure induced force) on the roughness 

element. 

Wall Shear Forces 

The shear forces on the fluid due to the top wall (enclosed ducts only), the bed and the 
horizontal surface of the roughness elements are calculated in the GROUND subroutine 
SHFOR (Appendix 11). Use is made of the PHOENICS variable PVSTRS (a block 

location of the F-array; see Appendix 1) which stores the magnitude of the shear stress 

multiplied by the fluid density. For the two-layer model where the first cell is located 

within the laminar sub-layer, this is calculated internally within PHOENICS from 

= 

1(ul(tx=wjy=l) +U 1OX. 
PJYl 1'r, 4 

V2 Ay 
Equation 3-24 

where Ay is they dimension of the first cell from the wall, P is the current IX cell and W 

is the neighbouring cell to the west. 

The direction of the shear force is found by examination of the direction of the local 

average U1 velocity, (u 1(tx=wjY=i) +U I(IX-PJY=I))/2 
. If this is greater than zero then the 
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shear force exerted by the boundary on the fluid will act in the -ve x direction. The 

force on each surface is obtained by summing the product of the shear stress and cell 

area for each cell adjacent to the wall under consideration. 

Pressure Force on a Block 

The difference between the integrated pressures on the upstream and downstream faces 

of the block gives rise to a hydrodynamic force acting on the block. This force also acts 

on the fluid, causing a "bluff body" form drag or resistance force. 

Using the differential form of the Reynolds equations in the x direction (Equation 3-9), 

the direct stress in the x direction is 

=P+pU'-2rýý+%pk dx 
Equation 3-25 

Due to the staggered grid arrangement employed by PHOENICS, the pressure is not 

calculated at the boundary of a cell and therefore Equation 3-25 cannot be evaluated 

next to the solid boundary. To find the direct stress acting on the wall, a force balance 

must be taken over a control volume consisting of the cells adjacent to the solid 

boundary. 

Integrating Equation 3-10 with respect to x and y gives 

(ryx, 
2 - ryz, l 

) AX = -(6x, 2 - 6x. l 
) Ay 

where ry.., 1 and Tyx, 2 occur at co-ordinates y and y+ Ay respectively and ax, I and Cx, 2 

occur at co-ordinates x and x+ Ax. Rearranging gives 
(-r_,., 

2 - Z»yx, 1) läX 
+ 

(ax, 
2 - Uz, 1) 

Ay =0 

and substituting 
ryx. l = Ts and Tyx, 2 = Ir 

n 

ax, l = crp and Cx, 2 = Ce 

gives 
(T 

rk Ax + ap) Ay =0 Equation 3-26 
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[-ý P cell 
U1 velocity cell for P cell 
W (west) cell 

U1 velocity cell for W cell 

Upstream side 

------------- .............. 

Xu P 
CTO %JP 

(north) 
y 

(wcst) x (cait) 

(soluth) 
Downsirewn sidc 

! lp 

.... ...... Ti7FB 

ix= IBC2-1 IBC2 IBC3 IBC3+1 -; 
Figure 3-5: Pressureforces over a block 

Replacing r, with r,,,, p and zý with r.,. p, Equation 3-26 gives the force balance for' the 

half velocity cell upstream of the block in Figure 3-5. 

Summing over the total number of cells in the vertical face of the block (BNY) gives-. ',, - 
BNY 
Ya [(Ce 

aP) AY] + 
(rn(IY=BNY), 

up - 
'; (IYul), up) 

A'X =0 Equation 3-22 
IY. 1 

as, r..,, P(, Y=, ) 

Using the shear stress acting on adjacent cells as an estimate, the effect-of 

Ax on the total block force was found to be of the order of 10-6 % 
n(IY=BNY) s(IY=1)) 

and the second term in Equation 3-27 was therefore regarded as negligible. Therefore 
BNY BNY 

(CPAY) (a"&Y) Equation 3- 
1 
28 

IY=I IY-I 

and the total force exerted by the upstream face of the block on the fluid is 
BNY BNY 
1: (a. AY) = 

16: 
j 

(CP AY) I 
up= 

TP FU Equation 3-29 
IY=I IY=I 

in the +ve x direction. 
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By the same method, the total force exerted by the downstream face of the block on the 

fluid in the +ve x direction is 
BNY SNY 

-I 
(a. AY) 1: (CP AY) I 

dwn= TPFD Equation 3-30 
IY=l IY=l 

and the total force on the fluid is 

TPFB = TPFU + TPFD Equation 3-31 

Evaluation of Direct Stress 

The direct stresses cp in Equation 3-29 and Equation 3-30 were evaluated using the 

convection and diffusion coefficients used within the discretization equations in a 

similar manner to that used in finding the reduced shear stress in Section 3.3.1. Using 

the reduced direct stress (Equation 3-13) to be consistent with the equations employed 

by PHOENICS and 

Jp =fJ, dy Equation 3-32 

where 

J. =P U2 
_ I- 

dU 
Equation 3-33 

dx 

from Patankar (1980, Equation 5.49a), then 
BNY BNY 
I (-CPAY) I 

-P =I 
[(P 

+ Y3 pk)Ay + Jp Equation 3-34 
IY=I IY=1 

or 
BNY BNY 
I (ap, &Y) I 

UP -1 [Pl. AY + ip Equation 3-35 
IY=I IY=1 

as the PHOENICS variable P1 =P+ Y3 pk Thus from Equation 3-29: 
BNY 

TPFU= 1: (-Pl-Ay-Jp) 
-P 

Equation 3-36 
IY=I 

Also 
BNY BNY 
I (6PAY) I 

dwn 
I (P1 

- 
Ay + JP)j 

d.,, = TPFD Equation 3-37 
IY=1 IY=1 
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Implementation into PHOENICS 

The pressure variables P1 
UP and P1d.,, were taken directly from the cell values stored 

in the F-array. The flux Jp,. 
p was found from the convection and diffusion fluxes 

flowing through the east face of the U1 velocity cell associated with the cell IBC2-1. 

Following from Equation 3-16 then the integrated total flux for variable U1 over face P 

is 

JP =Y2(Uw+Up)pAyUw+ap[Uw -Up] Equation 3-38 

where Uw is the velocity on face W and Up is the velocity on face 'e' in Figure (ii). 

Also 

up 0 

mu + max(O, -mu) ap = max(O, du - al p pp 

mp (U,, + UPY2 u=pAE 

Again, for the hybrid scheme, oc=0.5. The convection flux mu and the diffusion P 

coefficient du were obtained from PHOENICS using FORTRAN coding in the P 
GROUND module (Group 8, section 8 and 9), and were put into one-dimensional user 

arrays for each y cell in the roughness element. These were named MBU for the 

convection flux and DBU for the diffusion coefficient. Thus 

du = DBU(IY) =LAE where IX = IBC2 -1 and 1Y =1 to BNY 
p 

where LAE is the F-array location for diffusion through an east cell face. PHOENICS 

stores the convection coefficient as an inflow to a cell only, so for a flow in the negative 

x direction, i. e. flowing west into the east face (i. e. face P) of the U1 velocity cell 

associated with cell IBC2-1 in Figure 3-5, the convection coefficient is stored in the F- 

array at location LD1 1. For a positive flow, the convection coefficient across face P is 

stored as an inflow to the west face of the 1/2 wall cell (velocity cell of IBC2) which has. 

an F-array location of LD 12. Thus 

mu = MBU(IY) = -LD1 1+ LD12 p IX. P. 1 IX-P where P= IBC2 and IY =1 to BNY. 
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The downstream flux Jpd,,,,, was based on flow through the east face of the Uw half wall 

cell, i. e. the velocity cell for IX=IBC3; 

JP"' Y2(Uw +U, )pAyxUw +ap[Uw -Up] Equation 3-39 

where again 

ap = max(O du - almul) + max(O, -mpu) tP Equation 3-40 

and Uw= 0. 

Using DBD and MBD as arrays containing the diffusion coefficient and convection flux 

respectively for this downstream side then 

d' = DBD(IY) = LAE p where IX = IBC3 and IY =1 to BNY 

mu= MBD(IY)= -LDlllx.,, + LD12 where P= IBC3 and 1Y =1 to BNY P IX-P 
Having found du and Mu then Je was calculated in the GROUND subroutine PBLK PP 
for both the upstream and downstream faces. The total pressure force acting on the fluid 

by the block was calculated from Equation 3-31 and Equations 3-36 and 3-37. 

3.4 Obtaining k, Values 

The equivalent sand grain roughness, k, may be calculated from the universal velocity 

profile (Equation 2-30), or alternatively from the resistance equation which is derived 

from it (Equation 2-34). For flow over roughness elements which have a physical height 

kh approaching the depth of flow h, it becomes increasingly difficult to accurately 

determine a region of flow which conforms to the logarithmic law and therefore the 

universal velocity distribution becomes impossible to apply. However, even for the 

lowest values of h1kh a k, value may be calculated from the resistance equation, 

although the assumption on which this equation is derived, i. e. a constant value of k,, 

becomes uncertain for this flow condition. It is the manner in which ks varies with 

decreasing flow depth which was of primary interest in this study. 
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3.4.1 Velocity Profile Analysis 

Method 1: In his roughness experiments Schlichting (1936) obtained k, values by 

comparing the universal velocity profile for flow over roughness elements of height kh 

v= A'+ B'Iog Y- YO Equation 3-41 Ur kh 

with the distribution specific to flow over sand grains 

ýVur =A+Blogy k. 
YO Equation 3-42 

Schlichting used the values for A and B suggested by Nikuradse (1933), i. e. A=8.48 

and B=5.75. However in this study the values recommended by Jayatilleke (1969) 

were employed, whereby A= 8.27 and B=5.62. Rearranging Equation 3-41 gives - 

A"=UU -B'Iogy-y' Equation 3-'43 
kh 

Assuming that B" = B, then a value for the coefficient A" may be obtained for each 

data point in the velocity profile and a mean value rA ) calculated. Comparing Equation 

3-42 and Equation 3-43 and substituting in the mean value of A' gives 

Blogks =A-T Equation 344 
kh 

from which a value of ks may be obtained for each experiment. 

Method 2: A similar technique to that used by Schlichting may be performed 

graphically. Writing Equation 3-42 as 
VU, 

=A-B logk, +B log (y - Y. ) Equation 3-45 

a plot of Ul U, against log (Y-yo) will give a straight line for the logarithmic region of 

the boundary layer with an intercept C= A-B log k,. The equivalent sand roughness is 

then 

=I o(A--Cl) ks B Equation 346 

Method 3: Linear least squares regression may be perfonned on Equation 3-42 to obtain 

Writing Equation 3-42 as 
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Y'= k. x 10' Equation 47 

where y'= y-y, W= UIU, and x= 
U+ -A then the error is 

B 

y'- x 10" Equation 48 

Standard least squares regression (e. g. Crow et al 1960) then gives the k., value as 
n Y, 

Y'XIOX 

k, iýl 
n 

io2x 
Equation 349 

Method 4: The previous methods of calculating k., have assumed that the position of the 

bed datum, yo, and thus the shear velocity on this plane, are known. Various methods 

were discussed in Section 2.1.7 for obtaining the bed position. An alternative method is 

to optimise the values of both yo and k., in Equation 3-42 to fit the known coefficients 

and the data set. The datum position is then calculated in a similar manner to the 

progressive origin shift method suggested by Clauser (1956) (Section 2.1.7). This may 

be performed by non-linear least squares regression using the MATLAB analysis 

program. The details of this method are given in the MATLAB manual (Optimisation 

Toolbox User Guide, Grace 1990). 

Discussion 

1. The above methods assume that the gradient of the plot of Ul U, against 

log (y - yo) does follow a standard law (B=5.75 or 5.62). A check on this may be 

made by evaluating the gradient given by the data set. 

2. By plotting the velocity profile, the region in which the logarithmic law applies 

may be observed and the correct range of the data set chosen. As can be seen from 

Figure 5-16 the velocity distribution is not logarithmic at low values of y where it 

is disturbed by the roughness elements. Neither does the logarithmic law apply 

near the plane of maximum strearnwise velocity, where the assumptions used in 

deriving the Prandtl universal velocity profile are not valid (Section 2.1.2). The 
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logarithmic region was also found to vary according to the value of yo used. In 

applying these techniques to the present analysis only the data which fitted the 

logarithmic law was used. 

3.4.2 Resistance Equation 

The fully rough turbulent resistance equation corresponding to the universal sand 

roughness velocity profile is 

h 

I 
=a-b log(ýkk Vf 

h 
Equation 3-50 

where Nikuradse recommended the values a=1.74 and b=2.0. French (1986) 
.I 

suggested that the coefficient a should be 1.5563 for open channel flow but maintained 

the same value of b. For this study, the coefficients a and b were determined from 

simulations over two-dimensional roughness elements using a two-layer model for 

flows in which the roughness scale was as small as could be computed and for which the 

k. value calculated from the velocity profile was approximately constant with depth. In 

addition alternative coefficients were determined from a series of tests performed using 

the standard k-e model with k. specified within a wall function (Section 5.5). 1 

For shallow flows, in which the velocity profile is not logarithmic, the k, value may 

then be found by rearranging Equation 3-50: 

k, =2RhxlOyb(' Equation 3-51 

3.5 Datum Position of Rough Wall 

The traditional method of analysing the resistance of a rough wall is to effectively treat 

the wall as a plain boundary but to apply a roughness parameter in order to compensate 
for the increased friction at the boundary. This is effectively what Nikuradse (1933) did 

when he derived the roughness length scale k, based upon sand grain diameters, and 

what Schlichting (1936) did when he applied the same parameter to regularly distributed 
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roughness patterns on a flat plate. Moore (195 1) effectively proposed that the position of 

the plane wall should be located at the hypothetical velocity origin, discussed in Section 

2.1.7. 

The position of the equivalent plane wall becomes increasingly significant as the 

relative roughness becomes larger. The dimension yo defining the datum level becomes 

a larger proportion of the flow depth thereby affecting not only the logarithmic velocity 

profile, but also the hydraulic radius of the equivalent plane duct itself. For this reason 

the present study gave attention to obtaining a yo which was dynamically significant, 

based on determining the line of action of the resulting strearnwise force on the rough 

wall by using moments. 

0 0 

F1 

Direction of flow 

khl -------------------------- --------- ----- --- ------ 

h 

1 
Figure 3-6: Moments of streamwise forces in a rough duct 

Consider the duct shown in Figure 3-6 with one smooth wall and a bottom wall 

containing periodically spaced roughness elements. If the pressure drop is modelled by a 

source of linear momentum flux, then the driving force per unit width for one period is 

dP lh)-(ýfkjkh) 
dx dx 

Equation 3-52 
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The resistive force is equivalent to a sink of linear momentum flux. For the period 

length I the total resistive force (Rb) acting on the rough wall will be the sum of the bed 

shear forces on the upstream and downstream part of the period, the shear force acting 

on the top surface of the roughness element and the bluff body pressure force on the 

block. This total resistive force will have a moment about 0-0 denoted by RMb. 

Equilibrium of forces for this period gives 

dP lh) - 
(ýý 

klkh)=Rb+ F, 
dx 

( 
dx dx 

Equation 3-53 

where F, is the shear force on the smooth wall. Taking moments about 0-0 on the 

smooth wall gives the net moment of the system: 

= 
df [1 hY2 

- k1kh(h _kýl TO-0 
dx 2)]-RMb Equation 3-54 

If the rough bed is replaced by a smooth bed with displacement yo and a shear force F, 

the net moment of the new system is 

_Y(, )(h-y(, 
y 

Equation 3-55 T' dp [1 
(h 

0-0 dx 2 
]-F(h-y,, 

) 

Equilibrium of forces for the new system gives 

F=ýLI(h-y,, )-F, Equation 3-56 
dx 

Equating TO-0 and Tý-O to conserve angular momentum flux, and substituting for F 

from Equation 3-56 gives; 
k/= ýf 

(I. (h - y,, )l 
2 (h - yo)(ýf I(h - y(j) - F. 

) Equation 3 dp (I h/2 
- k1kh (h 

- ý2 RMb 2 -57 dx -5T dx dx 

This quadratic in yo, expressed as a y"2 + by,, + c, has the following coefficients: 

a= -Y21 
dP 
dx 

b= dP hl-F, 
dx 

C= 
dP k1k - 

Y2 kh) - lh'] + RMb+ Fh 
dX 

I 
h(h 
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and e may be found from 

YO -b ± fb-' --4ac 

2a 
Equation 3.58 

The positive root gives a value for yo between zero and the height of the roughness 

element. The negative root gives a mirror image of this position centred around the 

position of zero shear stress. 

Substitution of yo into Equation 3-56 gives the equivalent plane wall shear force F 

acting on the plane given by the datum position. For the remainder of this thesis, the 

datum level obtained by equating strearnwise force moments will be denoted by YO e. s. m. - 

Discussion 

u 
Plane of symmetry 

. 77.: n. 7.77.: 7. "7.77.: 7.77.77.: n. 7.77.: n. -. 77 ----' 
D- A 

Ay 

Br Ax c 
..................................................... 

Equivalent plane wall 

Ax 

y 
Figure 3-7. Force moment on an equivalent plane bed 

Equation 3-57 ensures that the new, plane walled duct has the same net strearnwise 

force moments as the original rough duct. Further insight may be gained by considering 

the force moments about the plane of symmetry on the control volume ABCD of the 

simplified duct shown in Figure 3-7. 
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The shear stress in the fluid will vary from zero at the plane of symmetry to a value of 

r=h dP,, ' at the position of the equivalent plane wall. Taking moments about the 1dx 

plane of symmetry gives 

d 
T= f, 

=,, 
(APydy)-rAxxh 

[Y2 6py2]h 
- r, &x xh 

0 
=y2APh 2 -rAxxh 

where T is the moment (torque). Using rh dP/ /dx gives 

T APh2-hdP/ Axh = Y2 1dx 
Equation 3-59 

= -y2h 2Ap 

This approximate analysis shows that the moment due to the pressure gradient is half of 

that due to the bed shear force. The net effect of this shear force and the pressure 

gradient is to produce a circulation in the -ve (clockwise) direction, as indicated by 

Ud, where s is measured along the line ABCD in Figure 3-7 and U, is the velocity 

along the line. Starting from A the circulation is 

IF = 0. Ay + 0. Ax + 0. Ay - 
0. Ax 

Equation 3-60 
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Figures relating to user controlled periodic boundary condition tests 
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Figures relating to period averaged shear stress 
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4. COMPARISON WITH ROUGH DUCT PHYSICAL 

EXPERIMENTS 

A two-layer model (Section 2.2.2), in conjunction with the PHOENICS controlled 

method of cyclic boundary conditions for flow over rough walls was validated against 

experiments performed by Schlichting (1936). Additional work was carried out on the 

roughness configuration of Grass et al (1991). Checks were made against theoretical 

predictions of the cross-stream shear stress profile, force balance within the domain and 

the calculation of the equivalent sand roughness. 

4.1 Schlichting's Experiments 

4.1.1 Introduction 

Schlichting performed experiments in a rectangular duct of aspect ratio (width to height) 

b1h = 4.25. One of the longer walls was roughened and the remaining three boundaries 

were smooth. The total length of the water duct was about 100 hydraulic diameters, the 

first half being completely smooth. Measurements of strearnwise velocity were taken 

using a pitot tube at the centreline of the exit cross-section. Static pressure was 

measured at eight locations uniformly distributed over the second half of the duct. 

The roughnesses configurations examined here were the two-dimensional "long angle" 

strip roughness denoted as plates XX, XXI and XXH in Schlichting's original 

experiments, corresponding to strearnwise period lengths of 6 cm, 4 cm and 2 cm 

respectively. For each roughened plate, 5 different Reynolds numbers (6 for case XXH) 

were simulated in the range of approximately IX 105 to 2.7 X 105. In each computation, 

Schlichting's measured pressure gradient was represented by a uniformly distributed 

source of momentum flux per unit volume. A complete listing of all the input 

parameters is given in Table 4-1a. Figure 4-1 gives a comparison of the geometry 

employed by Schlichting and that used in the computational model. 
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Schlichting assumed that the shear stresses on the side walls had negligible effect upon 

the centreline bed shear stress and the flow could therefore be treated as two- 

dimensional in this region. Coleman et al (1984) expressed a contrary opinion but based 

on the following argument, it is believed that Schlichting was correct in his assumption 

and consequently a two-dimensional solution was employed. 

Side wall effect 

It was assumed that the position of zero shear stress (ry., = 0) on the z=0 plane occurs at 

the location of the maximum primary velocity, i. e. at y= h2 (Figure 4-1) and that the 

locus of ry,, =0 across the duct may be approximated by they = h2 plane. The effect of 

the side wall on the centreline smooth bed shear stress is then approximately equal to 

the side wall effect in a smooth rectangular duct of aspect ratio b1h I where b= 170 mm. 

For all the long angle experiments b1hi -- 12 and the smooth rectangular duct results 

Ty 
presented in Figure 6-4 for 1001(1+blh) -8 give a very nearly equal to one, i. e. the 

2d 

flow may be treated as two-dimensional on the centreline of the smooth bed. Analysis 

presented in Appendix 9 shows that the same conclusion can be drawn for the centreline 

rough bed shear stress. 

Computational grid and convergence 

The computational domain, together with the grid construction is shown in Figures 4-2 

and 4-3. For the first tests undertaken (plate XX) a domain consisting of two periods 

was used. After fully developed periodic flow had been confirmed, the remainder of the 

tests used a single period domain to reduce the computational resources required. 

A grid independence test (Grid 2) was performed for each roughness configuration at 

the highest Reynolds number. The construction of these grids is shown in Figure 4-4. 

An example of a typical QI input file is given in Appendix 10. The ground coding used 

for these simulations was very similar to that used in the depth scale roughness tests, 

presented in Appendix 11. 
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4.1.2 Results 

The results of the computational experiments are compared with Schlichting's original 

results in Table 4-1. 

The grid independence tests show that the results varied only slightly with an increased 

cell density. The greatest change in the prediction of maximum velocity and the rough 

wall shear stress was I%. The smooth wall shear stress however changed by up to 2.9%. 

The numerical solution is shown to be periodically fully developed by examination of 

the cross-stream profiles of pressure and strearnwise velocity (Figures 4-5 and 4-6). The 

figures show profiles taken at the start and end of the middle period for the plate XX 

case 5 (Grid 1). The strearnwise pressure profile (Figure 4-7) taken over two periods at a 

fixedy co-ordinate also demonstrates periodic behaviour. 

The cross-stream distribution of period averaged shear stress (Section 3.3.1) for plate 

XX case 5 is shown in Figure 4-8 and is seen to be perfectly linear. The slope, 

d TYX 
dl = 1411.8, differs from the pressure gradient by only 0.4%. Also shown is the 
Y 

resultant period averaged rough wall shear stress, calculated by strearnwise force 

moments (Section 3.5) and the plane on which this acts. A linear period averaged shear 

stress distribution was confirmed for each test. 

Schlichting measured the velocity profile mid-way between two roughness elements and 

immediately behind the trailing edge of a roughness element, but found little difference 

between the two profiles. Again using plate XX case 5 as an example, Figure 4-9 shows 

the velocity profiles obtained at these two locations and also the period averaged 

velocity profile. Schlichting's measured maximum velocity is also shown. In general the 

position and value of maximum velocity predicted by the computational model was in 

good agreement with Schlichting's measured values; the discrepancy in & was typically 

of the order of 1-2%, with case XXI profile 1 giving the highest error of 11.3% and the 

maximum error in the position of 0 was 2.5% of the total duct height. 
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Comparison of shear stresses 

In the numerical model, the smooth wall shear stress was calculated from the velocity 

gradient within the laminar sublayer 
dU 

rý = /i- dy 
Equation 4-1 

The shear stress on the rough wall was found by extrapolating the linear reduced shear 

stress to the rough wall. For comparison with Schlichting's results the plane on which 

the rough wall shear stress acted was determined from the geometric mean level of the 

roughness elements (rg... I. ). 

Schlichting obtained the smooth wall shear stress from the Prandtl universal velocity 
distribution for a smooth wall, assuming that the roughness elements did not affect the 

smooth wall boundary layer. Writing the Prandd universal velocity law (Equation 2.21) 

as 

UT/ v 
U=5.75U,,,, log y+5.5U,,, + 5.75 U,,, log v Equation 4-2 

then the value of U,,., was obtained from the gradient of the graph of U against log y 

(where in this instance y was measured from the smooth wall). 

Schlichting calculated the rough wall shear stress by two methods and took the average 

as his best estimate. In the first method the rough wall shear stress (-r,,, ) was obtained by 

balancing the forces due to the smooth and rough wall boundary shear stresses and the 

force due to the pressure gradient. For two-dimensional flow 

h(dP) 
dx 

Equation 4-3 

where h is the height of the duct. Knowledge of the pressure gradient and of r, from U,, s 

led to a value for rr,,. For the second method, Schlichting used the law of the wall in the - 

relative roughness form (Equation 2.30); 

u (Y-Y(, V -=A+5.75log U,, 
r2 

/ ah) Equation 4-4 
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By plotting U against log (y-yo) and comparing the gradient (n,, ) with that of Equation 

4-4, then 

n Ur, 
r2 =/5.75 Equation 4-5 

This method gave the value of 'rr, 2 at the plane defined by yo, whereas the first method 

gave -r,,, at the plane through the base of the roughness elements. For the roughness 

configurations considered here, yo (calculated from the geometric mean level) is 

negligible and therefore the two planes were virtually coincident. Due to the sensitivity 

of the logarithmic velocity profile equation to yo, Coleman et al (1984) recommended 

the first method of calculating r,. 

When compared with the numerical predictions, the average values of rough wall shear 

stress quoted by Schlichting agreed to within 1.4% for plate XX (Table 4- 1 b). For plates 
XXI and XXII the maximum error increased to 16.6% and 14.4% respectively. The 

variation with Reynolds number of the rough wall friction coefficient defined by 
8rr 

P& 2 Equation 4-6 

is shown in Figures 4- 10 to 4-12 for both methods of calculating the shear stress used by 

Schlichting and for the value obtained numerically. For plate XX, the numerical 

prediction was mid-way between the two values calculated by Schlichting. For plates 

XXI and XXII, the two values calculated by Schlichting did not give constant values of f 

and followed opposite trends. The numerical predictions fell below the experimental 

values for both plates XXI and XXII, but gave constant values of f for all values of 

Reynolds number, indicating that the flow was in the fully rough regime. It should be 

noted however that the range of Reynolds numbers (I x 105 to 2.7 x 105) was too 

narrow to be confident that f was truly Reynolds number independent. 

The relative errors between experiment and numerical prediction were significantly 

higher for the shear stresses on the smooth walls, the average error for all tests being 
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approximately 130%. The variation of f with Reynolds number for the smooth walls is 

also shown on Figures 4-10 to 4-12. For all plates the numerical model showed that the 

value of f was approximately constant with Reynolds number, more characteristic of 

rough wall flows, though again the Reynolds number range was too narrow to draw any 
firm conclusions. 

The solid line in Figure 4-13 shows the velocity profile on the smooth wall which would 

result from the Prandd velocity distribution law (Equation 4-2) using the shear vel(? clity 
found by Schlichting for plate XX case 5. It is evident that the profile given by Equation 

4-2 under-predicted Schlichting's own value of maximum velocity by approximately 

24%. This would imply that one of the following was in error in Schlichting's original 

experiments: 

1. Value and position of maximum velocity. 

2. Measurement of velocity profile used to obtain U., 

3. Use of the Prandtl velocity distribution law. 

Value and position of maximum velocity 

The value and position of maximum velocity could readily have been determined with 

reasonable accuracy using a pitot tube and therefore it was unlikely to have been the 

cause of the error. 

Measurement of velocity prorile used to obtain U 
'M 

It is more likely that experimental error was present in the measurement of the velocity 

distribution within the logarithmic region of the smooth wall boundary layer. This is a 

reasonable conclusion given that the profile was at maximum only 8 mm from the wall 

to the point of maximum velocity. In order that a sufficient number of points could be 

measured to an acceptable degree of accuracy, the traversing gear and pitot tube 

assembly would have needed special care. In flow regions of high shear it is now known 

that pitot tube measurements require an adjustment to account for the effective centre of 

the pitot tube. This procedure was demonstrated by Young and Maas in 1936, though it 
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was not mentioned by Schlichting in his experimental procedure, also performed in 

1936. 

Use of the Prandtl velocity distribution law 

The last source of error concerns Schlichting's assumption that the presence of the 

rough wall did not influence the smooth wall boundary layer. In order to test this 

assumption additional computations were carried out in which the smooth wall was 
isolated from the influence of any roughness elements (Section 4.1.3). By extensive 

analysis it was concluded that the roughness elements did affect the distribution of flow 

variables in the smooth wall boundary layer, altering the value of smooth wall shear 

stress by 15.5%. This however does not account for the 130% discrepancy between the 

computed shear stress and that obtained by Schlichting, which is more readily explained 
in terms of inaccurate measurements of the smooth wall velocity distributions as 

previously discussed. 

4.1.3 Simulations of Schlichting's Smooth Wall Region 

A domain was chosen to replicate the smooth wall region of the computational tests of 

plate XX, case 5 in which a plane of symmetry, located at the position of maximum 

velocity computed from the rough walled duct, was used as the boundary condition. 
Three "smooth wall only" tests were performed, corresponding to the original grid in the 

model of the complete duct (Grid 1), the grid independence test for the complete domain 

(Grid 2) and a further grid independence test (Grid 3). The input conditions are 

summarised in Table 4-2. The pressure gradient was adjusted until the maximum 

velocity reached the value found in the computational test of the complete rough walled 

duct. Convergence was measured by the error between r,,, Ip calculated from the laminar- 

sub layer velocity distribution and that calculated from 

dP/ xh ldx 5/p 
_-p 

An error of less than 0.1% indicated sufficient convergence. 

Equation 4-7 
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Figure 4-14 shows the velocity distribution obtained from the smooth wall test (Grid 2) 

and the period averaged smooth wall velocity profile predicted by the complete 

computational model. The maximum velocities can be seen to be identical as specified. 
However the velocity distribution for the complete Schlichting duct shows a fuller 

profile, resulting in a higher depth averaged velocity and steeper velocity gradients near 

the wall with consequently higher shear stresses (by = 15.5%). The difference between, 

the two velocity profiles must have been due to the roughness elements present in the 

complete model affecting the smooth wall boundary layer. This was most likely to be 

caused by the roughness elements generating higher levels of turbulent mixing and also 

cross-stream mean flow convective fluxes. At y=0.033, the location of maximum 

velocity, Figure 4-15 shows that the turbulent kinetic energy in the complete duct was 

about three times higher than for the smooth wall only. The position of minimum kinetic 

energy should also lie on this line of maximum velocity if Schlichting's assumption was 

correct. However the profile indicates that the minimum had been shifted towards the 

smooth wall, due to the influence of the rough wall. Figure 4-16 shows that the' 

distribution of the rate of dissipation of kinetic energy was not significantly affected. 

The distribution of turbulent viscosity is shown in Figure 4-17. On the line of maximum 

velocity, the turbulent viscosity was nearly five times higher for the complete model. - - 
Also note that whereas the gradient was constrained to be zero on this line due to the' 

plane of symmetry condition for the smooth wall only case, the complete model had a 

non-zero gradient. These results show that the roughness elements did affect the 

boundary layer on the smooth wall. It is also possible that the effect of the roughness 

elements was the cause of the constant value of f on the smooth wall for all Reynolds 

numbers (Figures 4- 10 to 4-12). 

As well as the effect of rough wall turbulence upon the smooth wall shear stress, in 

Schlichting's duct there must have been an influence from the periodic acceleration and 
deceleration of the fluid caused by the periodic variation in cross-sectional geometry. 
Figure 4-18 illustrates the distribution of shear stress on the smooth wall of the 

numerical model of Schlichting's duct, plate XX case 5. Over the two periods modelled, 

the distribution of shear stress was periodic, corresponding to the spacing of the 
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roughness elements. The variation of shear stress over one period was approximately 
3.5%. This was due to the strearnwise velocity increasing and decreasing as a 

consequence of the variation in flow area bounded by the continuous streamline over the 

roughness elements. 

In the method by which Schlichting obtained the value of smooth wall shear stress, this 

variation of shear stress might have had two consequences: 

I. The point values of shear stress obtained could have been in error by ± 1.75% 

from the period averaged value. 

2. Diffusion of momentum deficit from the wall might not have occurred with 

sufficient speed to extend far enough into the boundary layer to achieve the 

universal law of the wall profile corresponding to the local value of wall shear. In 

this sense the velocity profile would always have been out of step with the wall 

shear stress. 

From the latter it follows that in applying the law of the wall to the calculation of wall 

shear stress there would inevitably have been an error. In order to test this hypothesis a 

simple analysis of the flow was carried out using Bernoulli's equation, the conclusion of 

which was that the local wall shear stress and velocity profile mutually adjusted at a fast 

enough rate to preserve the logarithmic law. The analysis is as follows. 

The variation of strearnwise velocity over two periods is shown in Figure 4-19. The 

distribution illustrated was taken at they location where the period averaged strearnwise 

velocity was a maximum 
(y. ). The strearnwise (x) location where U was a maximum is 

labelled I and location 2 refers to the position of minimum strearnwise velocity. As the 

flow passes from location I to 2, the velocity profile on the smooth wall was slightly 

retarded (Figure 4-20). At the position y=y,,, the vorticity was zero and therefore the 

change in velocity could be predicted by the Bernoulli equation rearranged to give 

ul - 
U2 2 (P2- PI) 

P (Ul + U2) 
Equation 4-8 

95 



where the pressure distributions are as shown in Figure 4-21. There is very good 

agreement between the velocity difference obtained by the numerical model and that 

obtained by Bernoulli at y=y,, as shown by Figure 4-22. 

Moving towards the smooth wall the pressure difference P., Pj decreased (Figure 4-21) 

and therefore the Bernoulli and numerical model predictions of UI-U2 also decreased. 

Nearer still to the wall the strearnwise velocity (and therefore UI+U2 ) decreased rapidly 

and the pressure difference reached a constant value so that the Bernoulli and numerical 

model predictions of UI-U2 both increased. Between y=y., and the wall the vorticity, 

became increasingly significant limiting the validity of the Bernoulli equation to a 

streamline. The fact that lines of constant y were not streamlines is the most likely 

explanation for the discrepancy between UI-U2 predicted by the numerical model and 

the Bernoulli prediction over the range 1.2 x 10-3. c: y,., ý yel . 

At approximately 1.2 X 10 -3 m from the wall a point of inflection occured in the profile 

of UI-U2 given by the numerical model. This probably indicates the point reached by 
I 

turbulent diffusion from the wall during the time fluid was convected between locations 

I and 2 by the primary flow. Between this point and the wall, turbulent viscosity would 

give rise to large energy losses which would invalidate the Bernoulli equation. 

Schlichting (1960, p38) gave the growth in a turbulent boundary layer over length I as 

0.31 
Ul _Y5 (v) 

Equation 4-9 

Taking U to be the strearnwise velocity at a distance of 1.2 x 10-3 M from the wall, given 

by Figure 4-20 to be about 6 m/s, then the extent of turbulent diffusion between 

locations I and 2 is approximately given by: 

0.37 x 0.031 x(6X0.03 
1 ), V5 

ý 1.17 X 104 

= 1.05 x 10-3 

Equation 4-10 
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This confirms that the extent of diffusion from the smooth wall was approximately 

,. I X 10-3 M, which corresponds to a Y+ - 300. Figure 4-23 shows this to be well into the 

logarithmic region of the velocity profile and therefore the law of the wall would have 

been adequately developed for the local value of wall shear stress. This is also 

confirmed by the good agreement of the logarithmic velocity profiles at locations 1 and 

2. The equation of both these lines is 

u uly 

ur =4.7+5.4 log 
v 

Equation 4.11 

which corresponds well to the profile obtained in the numerical simulation of a smooth 

wall only (Equation 4-13). 

Comparison of two-layer model results on a smooth wall with the logarithmic law 

The simulation on the isolated smooth wall region was also used as a validation of the 

two-layer model applied to a smooth wall and to investigate the effect of grid 

dependency. The computed velocity profile for the smooth wall only was fitted using 

linear regression by the equation 
U 

=A+Blog 
U'ry 

Ff v 
Equation 4.12 

to give the coefficients A and B. These are compared with the coefficients used by 

Nikuradse (1933) and Jayatilleke (1969) in Table 4-2. Figure 4-24 and 4-25 gives the 

logarithmic velocity profiles for Grid I and Grid 3. The results for Grid 2 were nearly 

identical to those of Grid 3 and are omitted for clarity. From these results it was 

concluded that: 

1. The first computation was not sufficiently grid independent. The two finer grids 

however did give substantially grid independent solutions. 

2. The two-layer model predicted the smooth wall velocity profile to be 

u=5.06 
+ 5.54 log 

U" y 
UT v 

Equation 4-13 
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4.1.4 Evaluation of k. 

Schlichting proposed that the resistance due to any roughness configuration could be 

measured by comparing the developed logarithmic velocity profile with the standard law 

of the wall for Nikuradse's sand roughness, thus giving a value for the equivalent sand 

roughness k, Using Method I described in Section 3.4.1 and the velocity datum level yo 
found from the geometric mean level of the roughness elements, Schlichting obtained 

values of k. for each of his roughness experiments. 

Figure 4-26 (magnified in Figure 4-27) shows the logarithmic velocity profile over. the 

rough wall obtained numerically for three of Schlichting's roughness experiments. For 

each roughness plate, the profiles at each Reynolds number were essentially the same so 

only the highest Reynolds number test for each plate is shown for clarity. The region 

over which the logarithmic law applied was determined by careful examination of the 

plot. The points where the profile was observed to deviate from the straight line gave the 

data range used. This subjective method was backed up by fitting a linear least squares 

regression line through the data points and confirming that the standard error in the least 

squares fit was a minimum. The resulting regression lines are also shown in Figures 4- 

26 and 4-27 by the solid lines. It can be seen that an extremely good fit is obtained from 

approximately 
Y 0.15 to nearly the full depth of the boundary layer (h2)-' Y Yh, 

YO 

According to current theory, this is in the "outer" layer which is not accurately modelled 

by the law of the wall. 

The gradient of this line was found to vary slightly with each period length, (Table 4- 

1d), ranging from 6.58 to 6.8. These values are significantly higher than the universal 

gradient quoted by Prandtl and Nikuradse (5.75) and makes any evaluation of k, based 

on Nikuradse's law inaccurate. For completeness however, the value of k. obtained by 

Schlichting's method is given in Table 4-1d. Also given are the values of k, obtained 

using Method 2 (Section 3.4.1). It is interesting to note that Schlichting's method gave 

consistently higher values of k, than Method 2. 
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Further insight is gained by using an alternative method to determine the datum level yo. 

Figure 4-28 shows the logarithmic velocity profiles obtained using yo found by equating 

strearnwise force moments (yo Section 3.5). The profiles are seen to follow the 

accepted "inner" or logarithmic region and the "outer" or wake region. The two regions 
Y-V / 

intersected at approximately 7h, 
-YO=0.2. 

The gradients obtained from linear 

least squares regression over the logarithmic region ranged from 5.50 to 4.86, depending 

on the roughness period length. These are consistently lower than the gradient quoted by 

Nikuradse, and closer to that found by Jayatilleke of 5.616. The k, values obtained from 

this logarithmic velocity profile are also shown in Table 4- 1 d. 

These results show that by altering the value of yo, both the range and the gradient of the 

logarithmic region are changed. In order to define an equivalent sand roughness, a 

universal gradient (constant for all roughness patterns) needs to be established together 

with a method of determining the datum level which gives the correct gradient and a 

method of specifying the correct data range. 

4.2 Roughness Configuration of Grass et A 

4.2.1 Introduction 

Numerical simulations were performed on water flow over two-dimensional rib 

roughness (5 mm square rod) with a period length of 25 mm in a channel of depth 55.9 

mm (Grass et al 1991, Experiment A). The Reynolds number of the original experiment 

was 8091 and a laser Doppler anemometer was used to measure the mean velocity 

profile and Reynolds stresses at two measuring locations, one above the centreline of the 

roughness elements and the second mid-way between the roughness elements. 

In the numerical simulation, a plane of symmetry was used to model the free surface and 

the PHOENICS controlled periodic boundary conditions were employed to achieve fully 

developed flow. Turbulence was modelled by a two-layer model and the properties of 
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-rh-3, water adopted were the same as those used by Grass et al (p = 998.2 kg % 

v= 9.7x 10-7 M 2/s). The computational domain and grid are shown in Figure 4-29. 

The results quoted by Grass et al include the flow rate and the shear velocity at the bed, 

obtained by extrapolating the linear total shear stress distributions (Reynolds stress and 

viscous stress) to the boundary'. Two numerical simulations were therefore undertake n. 

The first used a pressure gradient calculated from 

dP U, 2p 

dx h 
Equation 4-14 

If 
as the input value for the source of momentum flux per unit volume. In the second 

simulation this source of momentum flux was adjusted to achieve the flow rate obtaineýd 

by Grass et al. 

4.2.2 Results 

The results of both the input shear stress and the input flow rate simulations are 

compared with the experimental results in Table 4-3. 

For the simulation in which the shear stress was used as the input, the numerical model 

under-predicted the flow rate by 21.8% and the maximum velocity by approximately' 

20%. Similarly poor results were obtained when the flow rate was used as the input, the 

model over-predicted the bed shear stress by 59%. The error in the maximum velocity 

was approximately 4%, however inaccuracies of this order were possibly due. to 

extracting the value of maximum velocity from the graph published by Grass et al. 

The roughness length scale ko was obtained by plotting U+ against (Y-YO) on 'a 

logarithmic scale and evaluating (y-yo) for 0 by linear least squares regression. 

The value of yo used was that quoted by Grass et al of 1.4 mm obtained using a method 

Note that only the period averaged shear stress distribution will be linear. Although undocumented, it is 

assumed that Grass et al used the average distribution obtained at the two measuring stations. 
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based on the progressive origin shift suggested by Clauser (1956). The resulting plot of 

U* against 
(Y-Yý)Iko's 

shown in Figure 4-30 for the input shear stress method. 

Following Grass et al, the k, value may be calculated from (Section 2.1.1): 

=3 Equation 4-15 

, 
Yk,, 

The roughness length scale (and therefore k, ) was over predicted in the numerical model 

by 24.8% for the input shear stress method and by 31.4% by the input flow rate method. 

Convergence 

The convergence criterion of an error of less than 0.1% between the driving force due to 

the pressure gradient and the resistance calculated from the sum of the boundary forces 

was not achieved. Final errors of 0.26% and 0.32% were obtained for the input shear 

stress and input flow rate methods respectively. Further iterations were found to have no 

effect on the solution and the history of residuals was constant. It should be noted that 

obtaining the same convergence criterion for similar flow regimes in Section 5.3.1 was 

also found to be problematical. 

However, the transverse distribution of period averaged shear stress (Figure 4-31) was 

linear with a slope corresponding to the pressure gradient. 

4.2.3 Discussion 

The numerical solution (Figure 4-32 2) shows that the streamline separating from the 

trailing edge of the upstream roughness element re-attaches below the tip of the next 

element downstream (at y1kh = 0.77) resulting in a elongated vortex trapped between 

each roughness element. The distribution of the resulting normal stress acting on the 

upstream vertical face of the roughness element is shown in Figure 4-33, illustrating the 

effect of streamline impingement. The average value of normal stress acting on this face 

2 Figure 4-32 relates to the simulation in which the shear stress was used as the input, however sin-dlar 

streamlines were observed for the input flow rate simulation. 
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is governed by the curvature of the free-stream streamlines in this region. The low 

degree of curvature shown in Figure 4-32 indicates a relatively low form drag associated 

with the roughness element. A higher form drag would result if the point of re- 

attachment were to move lower down the block or onto the bed, requiring a larger 

curvature of the streamlines. 

In order to match the total bed shear stress quoted by Grass et al for his given flow 
-rate, 

a decrease in the numerical prediction of resistance is required, which could be achieved 
by the point of re-attachment moving further up the roughness element. This would 

result in a quasi-smooth or skimming type of flow regime, for which Perry et al (1969) 

suggested the dominant scaling parameter in the resistance function to be the flow- 

depth, and which they denoted as 'd' type roughness. However this conclusion would be 

contrary to Grass et al's description of their roughness as T type. Unfortunately, time 

averaged streamlines were not presented by Grass et al, nor was the method by which, 

the roughness was defined as T type. There must therefore be some uncertainty about 

the roughness regime in this particular case. 

Whether or not the roughness was T type or 'd' type does not serve to explain the, 

discrepancy between the physical measurement and the numerical model results. Given 

the much better agreement obtained in Schlichting's experiments (Section 4.1.2), where 

the model predicted re-attachment on the bed, it is tentatively concluded that the 

numerical model was inaccurate for the flow regime in which re-attachment occurred on 

the vertical face of a roughness element. There are at least two possible reasons for this: 

Grid devendence. In particular a potential barrier to turbulent diffusion is created 

by the thin layer of cells of very wide aspect ratio across the top of the roughness 

elements on the plane y= kh. Given the very small v-component limiting cross- 

stream convective flux in this case the possibility of grid dependence carried some 

weight. However, enlarging the cells in this region gave nearly identical 

streamlines. This is shown in Figure 4-32 for which the cross-stream grid 

consisted of 115 uniforrnly distributed cells. Although not exhaustively proved, 
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grid dependence seems an unlikely explanation for the large discrepancies 

between numerical model and experiment. 

2. Inadequate representation of the flow physics by the two-layer model. The point of 

re-attachment on the vertical face of a roughness element is likely to be sensitive 
to the turbulence structure in this region, which in the model had been Reynolds 

averaged and its diffusive characteristics represented by an isotropic eddy 

viscosity. This is the more likely explanation for the discrepancies between model 

and experiment. 
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Figure 4-2: Computational grid and domain, plate XX (Grid 1) 
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Figure 4-4: Computational grid and domain for plates XX, XXI and XXII (Grid 2) 
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Fip, ures relating to the roughness confi%! uration of Grass et al 
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depth 
cells 

(NX x NY) Yi+-, 
ceii 

dP 
dx UC A B 

7. OOE-03 3x 21 2.456 11768 0.2873 4.4589 5.5883 

7.13E-03 3x43 1.212 11249 0.2835 4.9051 5.5801 

7.13E-03 3x 91 0.904 11113 0.2818 5.0564 5.5411 

Nikuradse: 5.5 5.75 

Jayatilleke: 5.25 5.62 

Table 4-2: Results of simulations performed on the smooth wall region only of 
Schlichting's duct. A and B refer to the coefficients in the law of the wall for smooth 

walls and are compared with the coefficients suggested by Jayatilleke (1969) an-d 
Nikuradse (1933) 
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Tables relating to the roughness configuration of Grass et at 

Grass et al 
original expts 

Input shear 
stress method 

Input flow 
rate method 

q (M2 S-) 7.85E-03 6.14E-03 7.86E-03 
Re 8091 6335 8108 
& (m S-) 0.18 0.14 0.19 
dP/ /dx (Pam-') 4.63 7.37 
rw (N m-2) 0.26 0.26 0.41 
ko (M)l 9.60E-04 I 1.20E-03 1.26E-03 
ks (M)i 0.0288 1 0.0359 0.0378 

Table 4-3: Comparison of experimental and 
computational results 
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5. DEPTH SCALE ROUGHNESS CALCULATIONS 

5.1 Introduction 

The roughness problem would be solved if, for any given roughness shape, height and 
distribution, the rough wall resistance could be reduced by some dynamically consistent 

method to an equivalent wall shear stress located on a plane wall. In this case the rough 

wall resistance could be accounted for by three dynamically significant length scales. 

The first (yo) would detennine the position of the equivalent plane wall, the second 

would be the flow depth (h) and the third (k. ) would specify the equivalent wall shear 

stress. This concept was employed by Schlichting (1936) in which a sand roughness 

value (k. ) was applied to an equivalent plane wall by comparison with the sand 

roughness experiments performed by Nikuradse (1933). 

If the k. length scale determined by this means was small compared with the flow depth, 

it would be reasonable to suppose that the k. value would be invariant with flow depth, 

an implicit assumption in the work of Schlichting and more generally in the fully rough 

resistance equation (Equation 3-50). If k., was significant in scale compared with the 

depth of flow, then k. would no longer be invariant with flow depth and the sand 

roughness concept would normally be invalid for this flow regime. 

However, if every rough wall flow could be reduced to an equivalent plane wall, there is 

the prospect that the corresponding k., value might vary with flow depth in a universal 

way. A possible relationship between k,, and flow depth that might be universally 

applicable is 

ks (W k,, 
-F 7 k- _y 

Equation 5-1 
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where k. 
- is the asymptotic value of k., at very large flow depths and F denotes a 

functional relationship in which (h-yo) is the depth of flow in the equivalent plane 

walled conduit. 

It was decided to test out this hypothesis using CFD over various two-dimensional 

roughness configurations initially, with the intention of extending the work to three- 

dimensional roughness distributions. However, given the difficulties experienced in 

successfully implementing the two-dimensional application over the wide range of flow 

depths required, it became impossible to simulate three-dimensional rough walled flow 

without unacceptably extending the project period. 

5.2 Summary of Simulations Performed 

The complete set of successful tests performed and the input parameters are presented in 

Table 5- 1 a. All simulations employed a two-layer turbulence model (Section 2.2.2) and 
the PHOENICS controlled method of cyclic boundary conditions. The source of 

momentum flux was adjusted so that the computed flow rate was within 5% of the 

required value. The criterion for convergence was that the percentage error between 

resistive forces on the boundary and the driving force provided by the source of 

momentum flux should be less than 0.1%. A sample QI input file and the GROUND 

coding used is presented in Appendix 11. 

5.3 Block Roughness Simulations 

Tests were initially performed to simulate turbulent flow over two-dimensional 

roughness elements of 50 mm square cross-section, periodically spaced in the primary 

flow direction. Period lengths of I m, 0.5 in and 0.1 m were used to provide flow 

regimes of isolated roughness, wake interference and quasi-smooth flow as defined by 

Morris (1954). The relative flow depth, defined as h1kh, was varied from 1.1 to 20 by 

adjusting the position of a plane of symmetry. A constant Reynolds number (= 462,200), 

sufficiently high to ensure fully rough turbulent flow, was maintained for all tests. The 
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domain consisted of two periods which, when compared, confirmed that fully developed 

periodic flow was established. 

At a defined frequency of sweeps', the source of momentum flux was adjusted in 

proportion to the ratio of the required flow rate and the integrated velocity profile 
(Section 3.2.3). It was found that all simulations required excessively large numbers of 

sweeps to reach the required flow rate and the stipulated convergence criterion 

For the isolated roughness regime (1 =I m), labelled as the RCDA roughness 

configuration, 50,000 to 80,000 sweeps were typically required to achieve convergence 

at most depths of flow. Significantly more sweeps were required for the higher relative 
depths of 10.05 and 20.05 due to the larger distances over which turbulent diffusion had 

to take place in order to develop the correct wall profiles. Indeed the convergence 

criterion was not quite achieved for the deepest flow examined (relative depth of 20.05), 

the error between driving forces and resistive forces remaining constant at 0.112%. 

The domain and grid structure for these tests are given in Figure 5- 1 a. Due to the lower 

wall shear stresses which occurred in the deeper flows, the size of the near wall cell 

could be increased while remaining within the viscosity affected layerý- This allowed the 

number of cells to be significantly reduced (Figure 5-1b) and was used for the relative 
depth of 10.05 as a grid independence test. Only one period was modelled to further 

reduce the computational resources required. The latter grid reduced the time per 
iteration, however a similar number of sweeps, in the order of 500,000, was again 

required. The effect on the solution of reducing the grid is shown in Table 5-2. 

As the period length of the roughness elements was reduced below I m, a converged 

solution became more difficult to obtain. For the skimming flow regime, the 

1A set of iterations over the domain (Section 2.3.3) 

2 As rand therefore U, decrease, the value of y will increase for a fixed I'. Therefore the location of the 

near wall cell centre can be moved further away from the boundary. 
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convergence criterion was not achieved for any depth of flow and further iterations had 

no appreciable effect on the solution. The final percentage error between the driving and 

resistive forces varied from 0.7% for a relative depth of 1.1 to 200% for a relative depth 

of 20. Consequently these tests were not used for analysis. 

5.3.1 Convergence Problems 

Due to the possibility of computer operational interruptions, a complete simulation was 

designed to consist of several consecutive stages of approximately 10,000 sweeps each. 

For the relative depth of 10.05 each set of 10,000 sweeps required approximately 50 

hours CPU time, relating to 150 hours real time when performed on an Axil SPARC 

220 running SOLARIS. At the end of each stage, the history of spot values and of 

residuals in the FVE was examined to enable relaxation factors to be altered. Due to the 

large range of cell sizes employed (10-5 to 5x 10-2 M) it Was found difficult to estimate 

the optimum value of false time step relaxation required and large adjustments were 

required to have any effect. 

One possible explanation for the long convergence times and the difficulty of obtaining 
full convergence for the shorter period lengths relates to the layer of very thin cells on 

the plane y= kh. These large aspect ratio cells were required to model the shear over the 

top of the roughness elements. However it is possible that in-between the roughness 

elements they may have acted as a barrier to flow development. This would have been 

particularly significant for flows which did not have a large component of velocity 

across this layer of cells, such as the skimming flow regimes. Figure 5-2 shows the 

streamlines obtained for a relative depth of 4.05 and a period length of 0.5 m. The 

discrepancy between the driving force and resistive force for this case was 38%. The 

horizontal streamlines immediately above the roughness elements, typical of skimming 
flows, show that there was negligible flow across this layer of thin cells and thus no 

convective transport of momentum. Momentum exchange occurred only. through the 

slower processes of turbulent and viscous diffusion. 

In order to overcome this problem investigations were made by: 
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1. Employing multi-block gridding techniques to enable a fine grid to be located only 
in the region surrounding a roughness element. As discussed in Appendix 7 no 

adequate grid could be obtained. 

2. Increasing the Reynolds number and therefore the velocity gradient across the 

layer of thin cells. 

3. Using thin strip roughness elements, in which the shear stress 'on the top of the 

blocks could be neglected and therefore a much coarser grid could be used in this 

region. 

None of these investigations provided a solution to the problem, which was similar to 

that encountered in simulating the roughness configuration of Grass et al (1991) 

(Section 4.2). Further studies involved increasing the number of iterations within the 

linear equation solver, which again showed no appreciable improvement. The use of 

alternative solvers, such as the conjugate linear equation solver, was not investigated. 

Another reason for the excessive number of iterations, especially as the flow depth was 

increased, was the computational time required to fully develop the flow. The physically 

long duct length required for development of deeper flows necessitated more 

computational sweeps of the flow domain when periodic boundary conditions were 

employed. 

Monitoring of the adjustments made to the source of momentum flux per unit volume 

showed oscillations which were also responsible for the large number of sweeps 

required. These oscillations were partially controlled by decreasin the sweep frequency 9 

at which the source of momentum flux was adjusted (an effect similar to relaxation). A 

new procedure for updating the source of momentum flux per unit volume was also 

developed (Section 3.2.3) which was employed for subsequent tests. 
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5.4 Thin Strip Roughness Simulations 

Given the difficulty in obtaining converged solutions for block roughness flows for 

period lengths lower than I in, the roughness configurations of Schlichting examined in 

Section 4.1 were used in the knowledge that a converged solution was obtainable for a 

range of period lengths. The use of thin strip roughness elements also allowed a lower 

density of grid cells to be employed above the plane y= kh- In these simulations of 
Schlichting's roughness geometries, only the rough wall region was modelled and the 
depth of flow was varied by altering the location of a plane of symmetry boundary 

condition. Relative depths of between 1.5 and 40 were examined. The Reynolds number 

was kept constant at approximately the same value as that used in Schlichting's original 

experiment (Re =2X 105). Period lengths of 6 cm and 4 cm were simulated, 

corresponding to Schlichting's roughness plates XX and XXI. For the current 
investigation, these were labelled RSA and RSB respectively. 

The grid structures and the domain consisting of one period, are given in Figure 5-3. For 

the higher relative flow depths (h1kh > 7) the density of cells in the vicinity of the walls 

was again reduced due to the low values of wall shear stress. A grid independence test 

was conducted for the relative depth of 7 to confirm that this did not affect the solution. 

For these tests, the pressure gradient was adjusted using Equation 3-8. It was found that' 

the number of sweeps required to achieve convergence was of the same order of 

magnitude as the RCDA tests but, due to the lower number of cells in the domain, run 

times were reduced to approximately 80 hours to achieve convergence for a specified 

pressure gradient. Longer run times were again required for the higher depths of flow. 

5.5 Simulations Employing a Wall Function 

For the purposes of comparison, simulations were also performed using the standard k-, - 

model with a wall function to determine the coefficients a and b in the fully rough 

turbulent flow resistance equation (Equation 3-50). 
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The two-dimensional duct consisted of a plane wall on which an equivalent sand 
roughness of 0.001 m was imposed and specified within the wall function. The depth of 
flow was varied by defining a plane of symmetry boundary condition at a distance of 0.1 

to 1.0 m from the wall. In all 10 simulations the Reynolds number was maintained at 7x 

106 to ensure a fully rough flow regime (Re,, > 100), by adjusting the source of 

momentum flux per unit volume according to Equation 3-7. A grid of 100 cells was 

employed in the cross-stream (y) direction, expanding from the wall according to a 

power law of factor 1.5. Although flow over a plane wall is parabolic, an elliptic 

equation solution procedure was employed using the PHOENICS controlled cyclic 
boundary conditions, to be consistent with other tests reported in this study. The 

strearnwise (x) period dimension was chosen to be identical to the depth of flow (h) and 

uniformly distributed with 50 cells. 

An estimate of f, and therefore also of r., was obtained by using Equation 3-50 with the 

coefficients quoted by Nikuradse (a = 1.74, b=2.0). The initial pressure gradient was 

then estimated from 

dP r. 
dx h Equation 5-2 

The standard velocity profile of Jayatilleke (1969) (Equation 2-27) was used to establish 

a realistic starting condition for the velocity field. 

The solution was deemed to have converged when the difference between the shear 

stress calculated from the velocity profile and the shear stress calculated from 

dP 
xh dx 

Equation 5-3 

was less than 0.2%. A more stringent convergence criterion was found to require 

unacceptably high numbers of sweeps for negligible changes in the solution. 

5.5.1 Correction to the Computational Code. 

During these tests an error was found within the PHOENICS code in the calculation of 

the non-dimensional skin friction factor. The details of the error and the correction 

applied are given in Appendix 4. 
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5.5.2 Convergence 

Despite the very simple nature of this simulation, large numbers of sweeps (='50,000) 

were required to achieve convergence. This was due to two factors: 

Oscillations in the adjustment of pressure gradient. This was controlled by the 

number of sweeps (typically 3,000) between each adjustment (Section 3.2.3). To 

achieve final convergence, the adjustment process was switched off. 

2. Cyclic bounda[y conditions. It was concluded that the cyclic boundary conditions 

required a large number of sweeps to achieve convergence as a consequence of 
flow development. 

5.5.3 Evaluation of Coefficients in the Resistance Equation 

Table 5-2 shows the variation of friction factor with depth of flow. The wall shear stress 

used in the calculation of f was obtained from 

dP 
xh dx 

Equation 5-4 

A plot of against log 2R h (Figure 54) gave a near perfect straight line frorn 1V-7 
k, 

which the coefficients a=1.888 and b=1.985 were determined by least square's 

regression. 

5.5.4 Universal Velocity Profile 

The opportunity was also taken to find the coefficients in the universal velocity profile 

law (Equation 2-30) predicted by the k-. c model by plotting 
1ý 

against log-L for each Ur k, 

flow depth. The logarithmic region was taken to apply from the second cell away from 

the wall to y 1h = 0.15 as suggested by Hama (1954), although even closer to the plane 

of symmetry the data was found to fit the logarithmic law. This is shown in Figure 5-5 

for the depth of 0.5 m as an example. Least squares analysis gave the intercept A and the'- 
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gradient B, as shown in Table 5-3. It can be seen that the gradient was nearly constant 
for all depths, but was significantly higher than the gradients obtained by Nikuradse 

(1933) and Jayatilleke (1969). The coefficient A was found to decrease by 4.8% over the 

depths tested, the majority of the change occurring at the lower depths where the 

roughness might not have been small scale (Figure 5-6). The average value of A was 
however remarkably close to the value given by Nikuradse, with a difference of just 

0.18%. The value used within the wall function (that of Jayatilleke) was 2.29% lower. 

5.6 Discussion of Rib Roughness Simulation Results 

The results of the numerical simulation of flow over the rib roughness configurations 
investigated using the two-layer model are presented in Tables 5-1,5-2 and 5-3, and in 

Figures 5-7 to 5-22. 

5.6.1 Fully Developed Periodic Flow 

The flow periodicity is illustrated, by the RCDA roughness of a relative depth of 7.05 as 

an example, in Figures 5.7 and 5.8 which show transverse profiles of pressure and 

strearnwise velocity one period apart. 

5.6.2 Convergence 

The convergence criterion was achieved for all of the cases presented with the exception 

of two high depth flows, RCDA relative depth of 20.05 and RSB relative depth of 40, 

for which the error between resistive and driving forces was 0.177% and 0.332% 

respectively (Table 5-1c). For all cases the distribution of the period averaged reduced 

shear stress was linear. The line of action of the equivalent bed shear stress, calculated 

by equating strearnwise force moments (YO e. s. m. ), together with the value of the 

equivalent bed shear stress also fell on this line. This is shown in Figure 5-9 for the 
(dr. ',, 

example RCDA, relative depth 7.05. The reciprocal of the gradient ýý) was within 
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0.1% of the pressure gradient for the majority of cases, the maximum error being 
-0.25% 

(Table 5- 1 c). 

Monitoring of spot values and of the total residuals in the FVE for the variables P 1'9' U1-, 

V1, KE and EP during the solution procedure indicated that further iterations would 
have had negligible effect. 

Additionally, a check on the conservation of mass was made by comparing the flow rate 

obtained by integrating the velocity profile above a roughness element with 
, 

the 

integrated period averaged velocity distribution. In all cases the error was below 10 -4 %. 

5.6.3 Grid Independence 

For the roughness configurations RSA and RSB, a more coarse grid was used for the 

higher depths of flow (h1kh > 7). To confirm that the solution was independent ofthis 

change in the grid, the test RSA7 was simulated using both the fine and the coarse grid. 

The results are compared in Table 5-4 and show that, for the same pressure gradient, the 

discrepancy in flow rate is only 0.6%. The error in the position of the datum leve I 

YOe. s. m., the friction factor and the k, value calculated from the resistance equation 3 

(Equation 3-50) are all in the order of 1%. It was concluded that the solution was 

suitably grid independent and that the coarser grid could be safely used for the deeper. 

flows. 

An attempt to use a coarser grid was also made for the roughness configuration RCDA, 

but a grid independence test (Table 54) on the relative depth of 10.05 showed 

significant effors. Due to time constraints further grid independence tests were not made 

and the fine grid was used for all depths of flow. 

3 The coefficients used within the resistance equation were: a=1.49 and b=1.97 (Section 5.8.2). The 

hydraulic radius was calculated from R. =h-y,, where yo was obtained from equating strearnwise force 

moments. 
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For all roughness configurations and all flow depths, checks were made to ensure that 

the first wall cell was located inside the laminar sublayer. For the vast majority of cases 

the P value at the centre of the cell adjacent to the bed was below 5. However for the 

extremely shallow depths, high velocity gradients resulted in high values of r in some 

regions of the bed. The maximum Y* values obtained were 25.1 and 17.1 for cases 

RCDALI and RSAI. 5 respectively. On the horizontal surface of the roughness 

elements large values of Y* were obtained, particularly on the leading edge due to the 

large shear in this region. Y* values of up to 77 were observed. To model the flow 

accurately in this region, without the aid of multi-block grid techniques, would have 

required an extremely large number of cells. The computational resources for such a 

grid were not available in this study. However, the rough wall resistance was 

predominantly form drag and therefore little affected by the error in skin friction. 

5.6.4 Reynolds Number Dependency 

Table 5-5 shows the effect of increasing Reynolds number upon the friction factor, the 

position of the datum plane yo and the k, value obtained from the resistance 

equation. The case RSA, relative depth of 40 was used. 

To increase the Reynolds number by 72.8% the pressure gradient was required to be 

increased by 208.4%. Note that 

dP dP (I'- 

dx 
ýji 

dx ii 

), 
Equation 5-5 

where the subscripts i and ii refer to the low Reynolds number and high Reynolds 

number tests. 

The literature (e. g. Schlichting 1960) shows that for fully rough flows the friction factor 

is independent of Reynolds number, though a slight increase (3.2%) was observed in 

this test. The value Of YO e. s. m. increased significantly with Reynolds number (19%) and 

the k. value increased by 6.4%. 
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5.6.5 Variation in Streamlines and Velocity Profiles 

Plots of streamlines and period averaged velocity profiles are presented in Figure 5-10 

for the roughness configuration RSB for all relative depths between 1.5 and 15. For 

relative depths above 10, the streamlines have a similar appearance. The stream function 

was calculated within the GROUND subroutine by integrating the strearnwise velocity 

distribution from each cell to the plane y=0. 
I 

All the streamlines show a primary region of recirculation downstream of the roughness 

element, a characteristic of isolated roughness and wake interference flow regimes. The 

re-attachment length (1, I) is constant with depth (1,11kh = 5.20) for all but the shallowest 

of flow depths. Immediately upstream of each roughness element a secondary region of 

recirculation exists, with the distance (1,. 2) between the separation point and the element 

increasing with flow depth from 0.55 to 3.73 block heights. The reason for this variation 
is not known at present. Within each of these regions of recirculation, an additional 

small eddy was found located in the lower comer region adjacent to the roughness 

element. The locations of the separation and re-attachment points were obtained by 

finding the cells adjacent to the wall in which the local velocity changed direction. 

At low relative depths, the velocity above the roughness elements reached extremely 
high values (of the order of 160 m/s) for the Reynolds numbers employed. This 

prevented the recirculation region downstream of the roughness element from extendin Ig 

above the height of the roughness element and produced a shorter re-attachment length. 

Despite the physically unrealistic velocities obtained for these shallow flows, the 

Reynolds equations employed were still applicable given that the effects of 

compressibility could be neglected. Schlichting (1960, p9) assumed that compressibility 

could be neglected if 

Y2 M2,, ý< I Equation 5-6 

where M is the Mach number (= I/C) and c is the speed of sound in water (1498 m/s), 

for the present application. Thus 

U << V2ýc 

2118 
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In all the numerical simulations performed, U << 2118 and therefore the effects of 

compressibility were ignored. 

Figure 5-10 shows that as the relative depth increased the streamlines extended above 

the height of the roughness element and formed a typical vena contracta. The re- 

attachment length then rapidly assumed a constant value (1,11kh = 5.20). For h1kh > 7, 

the velocity profiles above the roughness elements took the shape of a typical rough wall 
distribution. Within the height of the roughness elements, the period averaged profile 

resembled a stretched 'S', with a slightly negative value of strearnwise velocity adjacent 

to the boundary. 

Streamlines for the other roughness configurations, RSA and RCDA, are shown for the 

relative depths of 4 in Figures 5-11 and 5-12 and the re-attachment and separation 

lengths are included in Table 5-lb. For an increase in period length, the roughness 

configuration RSA showed that the point of re-attachment moved slightly downstream. 

This was due to the turbulence intensity generated by roughness element having a 

greater length in which to dissipate before the next roughness element was reached, and 

was therefore a characteristic of the wake interference flow regime. As shown by Senior 

and Aroussi (1992), a greater turbulence intensity in the region of a backward facing 

step leads to a shorter re-attachment length. All the re-attachment lengths observed in 

this study were comparable with the range given in the literature for flow over a 

backward facing step (see for example the review by Senior 1992). 

5.6.6 Boundary Stresses 

The wall shear stress distribution between the roughness elements, plotted as a 

percentage of the period averaged rough wall shear stresS4, is shown for all depths of 

flow in Figures 5-13 and 5-14 for the roughness configurations RSA and RSB. 

For all tests, the largest absolute shear stress was located in the primary reverse flow 

region, downstream of the roughness elements. Although the value of local shear stress 

4 Including form drag as well as viscous shear. 
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decreased with an increase in depth (due to the lower velocities), as a percentage of the 

period averaged bed shear stress, it significantly increased with deeper flows. This is 

because the form drag on the roughness elements is proportional to the square of the 

velocity, but the skin friction is proportional to the velocity. 

As the period length was reduced (RSB, Figure 5-14), the region of positive shear stress 

also decreased. Consequently the integrated shear stress produced a resultant force on 

the fluid in the strearnwise direction (Table 5-1c). 

The integrated bed shear stress was negligibly small when compared with the driving 

force within the domain for all cases simulated. The resistance to flow was therefore 

almost entirely due to the direct stresses on the vertical faces of the roughness element 
(the shear on the top of the roughness elements being negligible). This is shown in 

Figure 5-15 for the configuration RSB. A breakdown of the constituent terms of CT' 

(Equation 3.13) showed that the only terms which had any significant effect were 

P+ Y3 k. The distribution of direct stress was almost uniform on the downstream face 

of the roughness element, which supports the Helmholtz hypothesis quoted by Haque 

and Mahmood (1983) of a constant pressure in the eddy region. On the upstream side of 

the roughness element the distribution of direct stress was again nearly uniform, falling 

slightly towards the top of the roughness element. 

5.6.7 Roughness Datum Level 

The following argument demonstrates that a rough estimate yo' of the roughness datum 

level can be obtained from geometric considerations alone. Taking the distribution of 

direct stress on a roughness element to be approximately uniform, and the shear on all 

horizontal surfaces to be negligible, then the strearnwise moments on the rough wall can 

be estimated by (Section 3.5) 

RMb" = 
dP (lh-kikh)(h-y2kh) 
dx 

Equation 5-8 

The estimated datum position (y6) is then calculated by equating strearnwise force 

moments (c. f. Equation 3-57, noting that F. = 0): 
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t2 y6 -2hy6+khh=O Equation 5.9 

from which y6 is given by 

2h-1(2hy -4khh Equation 5-10 
2 

The estimated datum position is therefore a quadratic function dependent on the duct 
height and roughness height only. Table 5- 1b compares these estimated datum positions 

with those obtained by equating the true strearnwise force moments (YO e. s. m., Equation 

3-57) and shows good agreement, the maximum error5 being 10%, with the majority of 

the thin strip roughness configurations having an error of less that 570 Of Yo e. s. m.. Also 

shown in Table 5- 1c are the datum levels (yo j.,. p. ) obtained by non-linear regression on 

the logarithmic velocity profile (Method 4, Section 3.4-1) for h1kh ý: 7. Reasonable 

agreement between Yo e. s. m. and yo I.,. p. is shown, the maximum error being 18% of 

Yoe. s. m. As the flow depth decreases a similar trend of increasing datum level position is 

6 shown for Yo e. s. m., y6 and yo j.,,. p. For the roughness configurations examined , Yo e. s. m. 

varied between 0.48 :5 yolkh :50.71. This variation contrasts with the datum position 

predicted by the geometric mean level which varied with the roughness volume per 

period only. For the thin strip roughness elements (tests RSA and RSB) the geometric 
datum level was always negligible in comparison with the roughness height. 

5.7 Velocity Profile Analysis 

For flows with a high relative depth (h1kh ý: 7) the period averaged velocity profiles 

each contained a region which had a logarithmic distribution. Figure 5-16 compares the 

5 This is with the exception of case RSB40, for which the value of yo was inaccurate due to lack of 

convergence. 

See footnote 5. 
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logarithmic velocity profiles for the bed datum positions yo g...,. and yo for the 

roughness configuration RSA. 

Three regions were identified within each of the velocity profiles: 

1. A "roughness" layer in which the velocity was controlled by the shape and 
distribution of the roughness elements. The velocity profile in this region varied 
with strearnwise position, however the period averaged value (Figure 5-10) was 

approximately linear. 

2. A logarithmic region (Equation 2-30). 

3. A narrow region near the plane of symmetry in which the velocity decreased from 

that predicted by the logarithmic law. This was due to the, boundary condition of 

zero gradient at the plane of symmetry. 

The "outer" or wake region (e. g. Coles 1956) was not obtained for these simulations. 

The boundaries of the logarithmic region were identified by determining at which grid 

cells the logarithmic velocity profile deviated from a straight line. For a given roughness 

configuration and method of determining yo, the lower boundary remained independent 

of the flow depth. For A e. s. m. the logarithmic region extended from immediately above 

the roughness elements to approximately ýýh 
- yo = 0.72, whereas a shorter region was 

obtained when yo was calculated from the geometric mean level. However when yo 

was employed a slightly wavy profile was observed within the logarithmic region 

(Figure 5-16f) for the deeper flows. This effect was quantified by calculating the 

standard error of estimate in the data set, defined as (e. g. Crow et al 1960): 

(Yi 
-YI) 

n-2 
Equation 5-11 

where yj is the data value for point i in a total of n and yf is the value predicted by the 

equation derived by least squares linear regression. Values of the standard error of 

estimate are given in Table 5-6. 

144 



As shown in Table 5.6, the gradient of the logarithmic profile was found to be 

consistently higher when yo g...,. was employed and systematically decreased with 

increasing depth. The profiles are illustrated in Figure 5.16(a)-(f). Using yo the 

gradients were found to be much closer to the values (5.75 and 5.616) quoted by 

Nikuradse (1933) and Jayatilleke (1969) and no systematic variation of slope with depth 

was observed. A consequence of the two different velocity profiles, produced by the 

different wall datum values, is that the estimate of k. is different in each case. 

5.8 Evaluation of k. 

5.8.1 Comparison with Standard Velocity Profile 

The k. values, calculated from the logarithmic velocity profiles using each of the four 

methods described in Section 3.4.1, are shown in Table 5-6 for the relative depths 

greater than 7. The variation of k, with relative depth is shown in Figure 5-17 for each 

roughness configuration. The alternative methods used to calculate k., gave a larger 

variation in ks when yo g. m. L was used for the datum level as opposed to equating 

strearnwise force moments. For A e. s. m., each roughness configuration showed that 

Method I lay approximately mid-way between the other methods of calculating k,,, and 

this method was chosen for further analysis. 

At the highest flow depths (h1kh > 20), the value of k., was found to be approximately 

constant with respect to flow depth (to within 4.5%) for the roughness configurations 

RSA and RSB. Indeed case RSB showed k,, to be within 3.2% over the range 7: 5 hlkh: 5 

40. The maximum relative depth simulated for the RCDA cases was h1kh = 20, and 

below this ks varied with flow depth. Because the subsequent analysis required a 

constant value of k, at very deep flows and this was not achieved for the RCDA 

roughness configuration, only the RSA and RSB results were used in the derivation of 
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the resistance equations described in the following sections. The RCDA simulations 
were however included in the final application of the resistance equations. 

The deepest flows simulated for all of the roughness configurations had flow depths 

which were large compared with the height of the roughness elements, i. e. h1kh 40 

(h1kh = 20 for RCDA). However the ks values obtained were significantly higher than 

the roughness heights, resulting in maximum h1k, values of approximately 8.5,6.0 and 

5.8 for RSA, RSB and RCDA respectively. The roughness length scale (k,, ) was 

therefore still of the same order of magnitude as the depth of flow. 

The k. values for RSA and RSB agreed well with the results of the closed duct 

simulation of Schlichting's original experiment (Section 4-1). The values of k" were 

higher for the roughness configuration RSB than for RSA, i. e. the degree of roughness. 
increased with a decrease in period length. This result agrees with Morris (1954) for the, 
isolated roughness and wake interference flow regimes. However, for skimming flows 

Morris found the k. value to decrease with a shorter period length. 

The ks values were not surprisingly an order of magnitude higher for the flow over the , 

50 mm block roughness elements, given the roughness height relative to that of 

Schlichting's long angle roughness. 

5.8.2 Resistance Equation 

The ks value can also be obtained using a resistance equation of the form (Equation 3- 

50) 

1 
=a-blog 

ks 
J 2Rh 

provided that the coefficients a and b are known. The equation for k,, is 

ks = 2Rh X 10 
Yb(a-, y4-f) 

Equation 5-12 

Equation 5-13 
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In the present study, the coefficients a and b were detennined using the k, values 

obtained, from the velocity profile analysis of the deep flow thin strip rib roughness 

experiments RSA and RSB. The duct friction factor (Table 5-1b) was calculated from 

= 
8ry() 
U2 P 

Y,, 

Equation 5-14 

7 
where -rYO is the shear stress with line of action at y= yo and UY,, is the velocity 

averaged over the depth h- yo, i. e. U. 
0 = 

Yh 
_ YO. 

This differed from the standard 

practice of calculating the friction factor relative to the base plane of the roughness 

elements: 

= 
8r. 

F72 pu 
Equation 5-15 

where zi, is the shear stress with line of action through the base of the roughness 

elements and U is the velocity averaged over the maximum flow depth. The latter 

method was discarded because of its incompatibility with the rough wall datum level. 

Figure 5-18 shows 114-f plotted against log(2Rh/k, ) for the roughness configurations 

RSA and RSB (h1kh ý: 7) with all points closely fitted by a straight line. Least squares 

regression gave the following resistance equation: 

1.49-1.97log 
k" 

2Rh 
Equation 5.16 

Also shown in Figure 5-18 are the resistance equations by Nikuradse (1933) (a=1.74, 

b=2.0), French (1986) (a=1.556, b=2.0) and by simulations in which the k, value was 

specified within a wall function using the standard k-e mode18 (a=1.888, b=1.985). 

7 For all subsequent analyses, yo was calculated from equating streamwise force moments. For clarity of 

writing, the subscript e. s. m. will therefore be omitted for the remainder of this chapter. 

8 Described in Section 5.5. 
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All of the resistance lines shown in Figure 5-18 are parallel, with a coefficient b 

approximately equal to 2. As the intercept increases, the degree of roughness and 

therefore k. also increases. 

It should be noted that in the present application of the resistance equation (5-16) to an, 

equivalent plane walled duct, the hydraulic radius Rh ": (h-yo). 

5.8.3 Non-dimensional Variation of k, 

Using the coefficients a=1.49 and b=1.97 (two-layer model) within the resistance 

equation, the k, value was calculated for all of the relative depths using Equation 5-13. 

The distribution of k,, with depth is shown non-dimensionally in Figure 5-19 by plotting 
ký 1h 

- yo against 
Yk, 

_ 
I where ksm is the value of k. obtained at the largest flow depth 

for each roughness configuration. A logarithmic scale was employed for the ordinate to 

resolve the data at higher flow depths. Also shown in Figure 5-19 are the k. values 

obtained from the velocity profile analyses for relative depths greater than 7. The k. 

values predicted by the resistance equation are in reasonable agreement with the k. 

values from the velocity profiles. 

The resistance equation predicted a very similar trend in k, for the three roughness 

configurations tested. The k,, value decreased slightly as the depth of flow was reduced 

from the maximum, then at approximately 
k; 

= 1, the value of k. fell rapidly. '1h 
- yo 

Tt% ha ký, increased from unity as the depth of flow decreased from its maximum value 

highlights the fact that k,, was not entirely independent of flow depth, even for the 

deepest of the flows simulated. The variation was small enough however to deduce that' 

the value of ks. would not have changed significantly even if simulations of deeper 

flows had been possible. 
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A curve of the form 

k-9 
=A 

(Tk,, n 
+B 

m 
+1 k, 

_ _YO) 
Equation 5-17 

was fitted through the data of RSA and RSB, as shown in Figure 5-20. Non-linear least 

squares regression returned the coefficients as A= -4.036, B 4.087, n=1.125 and m 

= 1.094. This best fit line intercepts the x axis 
(Y(h 

- y,, ) 
0) at 

Yks_ 
=I with a 

vertical gradient. 

Figure 5-21 shows the variation of k, with flow depth obtained from Equation 5-17 

using a Newton-Raphson solution, and the previously computed values of k, and 

yj. The agreement with the k, values obtained from velocity profile analysis for 

h1kh > 7, also shown in Figure 5-21 is quite good as it should be given that these k, 

values were used to detennine Equation 5-16. 

Using Equation 5-14, the k., values obtained from Equation 5-17 were also added to the 

resistance line of Figure 5-18, as shown in Figure 5-22. All of the roughness 

configurations (including RCDA which was not used in the derivation of either 
Equation 5-13 or Equation 5-17) are seen to lie close to the line predicted by Equation 

5-13. This indicates that the resistance equation, Equation 5-16, in combination with 

Equation 5-17 defining k., is valid for any depth of flow over the roughness 

configurations tested. 
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Figure 5- 1 a: Domain and grid structure for roughness configuration RCDA 
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Figure 5- 1 b: Domain and grid structure for grid independence test, RCDA 
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Figure 5-2: Streamlines for skimming flow regime 
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Figure 5-3b: Domain and grid structure for roughness configuration RSA 

and RSB, relative depths h1kj, =7 to 40 
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Figures 5-7 to 5-9 refer to the 
roughness configuration RCDA, 

relative depth of 7.05 
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h A B 
0.1 

1 

8.735 6.016 
0.2 8.609 6.013 
0.3 8.537 6.014 
0.4 8.486 6.014 
0.5 8.447 6.014 
0.6 8.415 6.014 
0.7 8.388 6.014 
0.8 8.364 6.013 
0.9 8.343 6.013 
1.0 8.325 6.013 
Average 8.465 6.014 

Nikuradse , 8.480 5.750 
Jayatilleke l 8.271 5.616 

Table 5-3: Coefficients in the logarithmic velocity profile obtained using a wall 
function. Comparisons against Nikuradse (1933) and Jayatilleke (1969) 

NX per 
period NY 

dP/ 
-/dx q A U y0 (e. s. m. ) f k 

RCDAIO original grid 230 84 30.3 0.479 1.232 2.33E-02 0.134 0.189 
_ coarse grid 125 44 30.3 0.468 1.205 2.53E-02 0.141 0.202 

% error , 
2.5 2.2 -8.4 -5.0 -6.8 

RSA7 riginal grid 62 1 42 1 1.60E-05 0.245 14.849 1.64E-03 0.240 1.7 1 E-02 
- fine grid 122 1 73 1 1.60E-05 0.243 14.813 1.62E-03 0.243 ! Eý-02 7.7 E 02 

% error -0.6 -0.2 -1.0 1.2 1.7, 
Table 5-4: Grid independence test for two-layer model 

dP/ 
1dx q Re f yo (e. s. m. ) k, 

RSA40 (i) 2.27E+02 0.238 203648 0.0675 1.47E-03 0.0152 
RSA40 (ii) 7. OOE+02 0.412 351823 0.0697 1.75E-03 0.0162 
% change _ 

208.4 72.8 72.8 1 3.2 19.0 6.4 

Table 5-5: Reynolds number independence test for two-layer model 

174 



ý - - N N C14 N N C14 (14 N N N N N 
0 0 0 1? 9 1? R C? 1ý 9 9 0 C, C, 
ýo V'j en CS Qý r- N IT M CN tn tn 00 

. Qý r, ý r, ý 1ýq Iq 1ýq Iq IR tn In " ;ý 
. " " -: q 

- - ý N N C14 C14 C14 C-1 

C4 C14 N N N C14 C-4 N N 
Cý C, G 1? 9 1? 9 ) li a 0 0 C C a 0 

en W I W I W vJ W W vJ W . UJ UJ W ýh Vý ýh ýh " WI) C) r- 0 00 N W) 10 en r- 
WX r- 1.0 Wi llý 'J: - N - - C) ON 

C'i C-i C'i C'i C'i 
N N N C14 N N N N N C14 N C14 

C CD 0 C? R C? R C? :ý (? 9 R R C? C? 
N . 

tn 00 ON 00 M ON Cý 'ýT C'4 00 ýc r- W) r- 
1ýq IR V! q: --: 0ý 
N 

1N N N " - 
C14 C14 N N N N C14 N N N N C14 

C? C? C? ) 9 0 C C 0 
w W w 
01% ON 1.0 m r- N C) C14 "o ýc M 

-A! Cý ON IC "D 1ýq IP Vi Vi In -i -i -! -: . I-! C14 N C14 C14 N N 

1.0 w) ON r- ýo r- M ef) Itt ti) wlt r, 
! en '4Zj' t- ") Itt C14 s r- CN 00 m r- 00 Z Cý Cý rlý 

G 
In In ' llý In Ci It tf) tlý 

tn W) W) W-) tn W) tr; W) 
I 

tn tn WI) %n till W) 
in CS IC r- ON 00 r- m C14 0 VI) en 0 

m C14 r- m C14 tn 10 It 

I I 1 1 

C O O 0 0 0 0 0 0 0 
, 

0 0 0 
. 

0 0 

ý 20 t ON 00 It 
T k rj W) N o - N w) ON ýo 

I 

C) a 0 a CD CD 0 CD CD CD CD 0 0 C CD 

C', en "" en 
C*4 C9 C14 N C14 N C14 C*4 N N N 

ý ý C C; q C! q 0 a 0 0 C; C; 

I l 

C14 (14 
C? C? C? c? 

C, 

I I 

W W W W W W 
Cý ýc IC CN 'D rý IT 00 Ct) C14 - r- 00 

. Qý cf) q OR r, ý w! Cý r, ý 4ý 
. 

Cl? 
C, 4 C14 N N1 ~ ~ - N C'4 N N (14 N 

- - en C#) C14 C14 N C4 N N N C%l N N 
C C) 10 0 (0 9 9 C? C? C? C? 1? 9 C? 

Uý Uý ýh ýh w uj w uj w w w w w 
C14 IT 01% ý-c V) C14 C14 M W'l W') C14 N C14 

I I t 
C-4 N N N N N N C14 N N N N 

C? C, c o c c o o 

'T r- 00 0 en r%- CD W) N 10 It C'4 
I: Cli Cý q Cý rl: rý Cý Ci 

N (14 ~1 C14 C14, (14 ~ ~ - en C4 N C14 C14 N 

ro en M W) C#) CN en M -tt 8 ýo :; - ýt (14 ýc 
ý (14 ON N - (ON a r- M C14 00 kn 00 [ rlý ýq 1ýq Cý In In 1: 1: It r"ý V) , I: I: Ci 

0 ýc 
, 

ýc ýo ý01 ý0 10 ý01 1AD1 1%ol z Vo ZI z1 10 
1 

1%0 
1 

V) 
t 

- 
It 

Cý 
li 

C, 4 C) 0 
m 

en 
14 

r- 
- 

n r- 't 
r) l c en a C en 

, 
0 

, C a a .a 
0 CD 

I 

6 d 6 6 d 61 
;ý V) . 00 . 1.0 0 en CN - It r- 0 0 en ON Itt r- 

(4 C14 00 C4) It VI) r- ýo r- ef) It V) r, IC tl- m 
r) ýq r ýq '4q IR ýc lgý w! "R lp 1ýq lp lp 

0 C1 01 01 c c1 01 01 01 c cI a1 01 01 

"t 00 00 C, 4 C, 4 N N "" N N N N N C-4 N 
- 00 %lo 0 IC 10 ýo IC ýo ýo IC Z z "0 ýo 10 I 

-Zý Cý 
1 

(: ý 
1 

al . q: q: 'IT 

I 

't 

I 

tt) 
q 

- 
c3 

- 
C5 (I- C , ') C 0 = 

, C- 0 

r- - C14 
- N m ýt - 

00 E 
< 
u 

d 
W? 

E 

0 

Cl) 

:0 

.0 

2 
cts 
E 

"a 
ýq 

"a 

Ln 

co 

en 
0 

U 

0 

cz 

M 

0 

10 

04 
0 

bo 
c* 

"0 

10 . C's = 

10 
Cý as 6. 

Ici 

0 4ý 

.M V2 

iz 

E2 

175 



ALL MISSING PAGES ARE BLANK 

IN 

ORIGINAL 



OTHER APPLICATIONS 

6.1 Introduction 

During the course of this study some of the techniques developed in Chapter 3 were 

utilised in two applications of common engineering interest, but which were not directly 

related to the study of flow over rough boundaries. The two applications were three- 

dimensional flow in a smooth rectangular duct and the heat transfer in a counterflow 

heat exchanger. The former application was performed in the early stages of this project 

primarily as a means of validating the computational code using a simple duct geometry. 

Calculations on a plate-fin heat exchanger were carried out as part of a feasibility study 

into the application of CFD for heat flow calculations for Serck Heat Transfer Ltd. 

(Birmingham). 

6.2 Simulations of Smooth Rectangular Ducts 

Computational experiments were performed on three-dimensional flows in a smooth 

walled rectangular duct in order to: 

1. Confirm that PHOENICS controlled cyclic boundary conditions could be used to 

achieve fully developed flow. 

2. Validate the two-layer turbulence model against theoretical and experimental 

results. 

3. Investigate the distribution of the boundary shear stress between the wall and bed 

elements. 

4. Investigate the side wall effect upon centreline bed shear stress. 

Items 3 and 4 were opportunistic experiments unconnected with the primary 

investigation into rough ducts. 
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6.2.1 Description of Computational Experiments 

f 
------------------- ------ -- 

Computational 
1. 

Domain 
h 

z 

b 
Figure 6-1: Cross-section of smooth duct 

Calculations were performed on a 
1/4 segment of a three-dimensional 

duct as shown in Figure 6-1, 

utilising the horizontal and vertical 

planes of symmetry. Seventee'n 

aspect ratios were computed from 

1.0 :5 Yh :5 50.008, chosen to 

correspond to the physical 

experiments conducted by Knight 

and Patel (1985) and Rhodes and 
Knight (1994). All of the tests modelled turbulent air flow at a Reynolds number 
ýR4UI 

v 1, 
) 

of between 2.95XI04 and 1.07XI05. The test parameters for each case are 

shown in Table 6-1. Fully developed flow was achieved in all cases by using 
PHOENICS controlled cyclic boundary conditions (Section 3.2.3) in which the 

strearnwise pressure gradient was modelled by a source of momentum flux per unit 

volume within each cell of the domain. The correct Reynolds number was achieved by 

adjusting the momentum source after each sweep, so that the calculated cross-section 

averaged velocity matched the required average velocity. This was performed using, 
GROUND coding (Appendix 12) which was also used for preliminary analysis to 
calculate the shear stresses and force balance. 

The rate of convergence was monitored by the examination of residuals within the finite 

volume equations (Section 2.3.2) and of spot values of the flow variables at specifiC 

points in the domain. The criterion for terminating the solution procedure was that the 
driving force due to the momentum source and the resistive force due to boundary shear 

should balance to an acceptable degree of accuracy. The maximum discrepancy in all of 
the computational tests performed was 0.078%. Additionally it was confirmed that 
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further iterations did not produce a significant change in the value of percentage shear 

force on the side wall (%SF,, ). 

6.2.2 Computational Grid 

In the two transverse directions (y and z) a geometrically expanding grid of factor - 1.24 

was used to model the high gradients adjacent to the duct walls. The core of the duct 

was covered by a uniform mesh of cell size equal to Y20 of the duct dimension. The 

procedure used to calculate the grid is described below. 

1. The size of the uniform cells in they direction was calculated from Y20 
* 

2. The size of the first cell adjacent to the wall was set to be 1.56 XIO-4 m for all tests 

and was assumed to have its cell centre located at approximately V=1. The exact 

values of Y* for the wall cell on the bed centre line for each case are shown in 

Table 6-1. Note that Y' - and therefore the maximum value of I' 

occurred at the position of maximum wall velocity, i. e. the bed centreline. 

3. A FORTRAN program was used to calculate the geometric expansion factor and 

the number of cells required in the geometric portion of the grid. This was 
performed by choosing the number of cells which would be required if the 

complete duct height were to be filled using a geometric grid with an expansion 

factor of =1.24. Manual inspection of the resulting cell sizes showed where the 

geometrically expanded cell size exceeded the required uniform cell size and thus 

the number of geometric cells required, together with the distance over which the 

geometric grid was applied. The results of this procedure are given in Table 6-2. 

4. Using PEL commands in the QI file (Appendix 12), the grid for the y direction 

was then generated. 
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5. The z direction grid was calculated within the Q1 file by utilising the s, ame 

geometric expansion, but extending (or truncating) the geometric region of the 

grid to the point where the last geometric cell was only just smaller than Y20 x b. 

While developing the coding, ten slabs were used in the strearnwise (x direction) to 

confirm fully developed flow. The x dimension of each slab was varied with each 

simulation, the total "period" length of the duct being made equal to the full duct height. 

For the tests described here however, only two strearnwise slabs were used, both having 

the same x dimension as the size of the uniform cells employed in they direction. 

Grid independence test 

A grid independence test was performed on the duct with aspect ratio Yh 
= 1.94. The 

transverse grid in both the x and y directions was calculated using the same procedure'as 

described above. However the thickness of the first cell next to each wall was reduced to 

0.8 XIO .4m. and the maximum cell size (uniform grid size) was reduced to V40 of the 

domain dimension. The results shown in Table 6-1, indicate a slight grid dependency. 

The greatest effect was on the centreline bed shear stress which fell by 5.76% , while the 

ratio T decreased by only 0.238%. 
Y'r, 

2 D 

6.2.3 Results and Discussion 

Fully developed flow 

Confirmation of fully developed flow is most easily seen by viewing profiles of flow 

variables at various streamwise locations. For the domain used in these tests the domain 

length was only Y10 of the semi height and therefore any further development within 

this domain length was indetectable. However initial tests on a longer duct in which the 

strearnwise direction was equal to the full duct height and contained a grid of 10 cells 

showed identical profiles for all variables. 
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Boundary shear stress 

Larninar flow solution 

The computational results were compared with the laminar flow solution calculated 
from the velocity distribution for fully developed flow in smooth rectangular ducts given 
by Cornish (1928). In cuffent notation this is 

9 Z) 

lý h' Lp 
ý j: 

1 -Y2 
cosh(n 2w. y+h U-3 =3 

(_I)n 
cosh n«! + _L 

dP (y2 
- 2hy) 

9p dx --1.3. _ n 
cosh(n 

xb(2 -h) 2p dx 
2 h) 

Equation 6.1 

The viscous shear stress on the side wall is then 

(av T. (Y) 
z=b = 11 + (-, ýX7 

Lqz 
16 p1 +h 

Equation 6-2 
hLI-- (- )nE tanh(n cos(n .., 

72 
CLX n=1,3. _ 

n22 h) 2h 

because w=0, and the bed shear stress is 

'rb (Z) = Ty. 
1 
y=� =g 

il 
, 

£9u ( ac e) 

osh n 
;r z) Equation 6-3 

16 h dp 12 ;rC( 2h 
_h 

dp 
Z3 dX 

n=1,3. _ n2 cosh n 
;rb dx (2 

W) 

because v=0. The total force per unit axial length over the bed b is 

16 2 ýp I ;rb j rbdz - -ýTh tanh(n 
)I 

- bh dp 
Equation 64 

dx n=714 
V 2W dx 

and over the side wall h 
h 16 2 dP I ;rb 

r. dy=-7h - anh n Equation 6-5 f 
dX 

n=1,3... 2 h) 
0 

Adding Equation 6-4 and Equation 6-5 (for each quarter of the duct) and multiplying by 

4 gives the total perimeter shear force per unit axial length as 
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-4bh 
dp 

Equation 66 
dx 

i. e. equal to the duct cross-sectional area x pressure gradient. The shear force on the two 6 

side walls as a percentage of the total boundary shear force (%SF .. ) is obtained by 

multiplying Equation 6-5 by 4, dividing by Equation 6-6 and multiplying by 100: 

%SF. = 100 16 h 
-43 tanh n 

2E b 
Equation 6-7 7b h) n=1,3. - n2 

Boundary shear stress distribution 

The distribution of local boundary shear stress, non-dimensionalised by cross-sectional 

mean boundary shear stress is given in Figure 6-2 for the aspect ratio Yh = 10. The 

results of the two-layer model are compared with the laminar flow solution and the 

experimental results of Rhodes and Knight (1994) for the same aspect ratio. 

In the vicinity of the comer the boundary shear stress is reduced for the laminar and 

turbulent flow, however for the latter the increase in mixing maintains a higher shear 

stress deep into the comer. The experimental results show the effect of turbulence 

driven secondary flow cells; there is a further increase of shear stress deep into the 

comer region, and a decrease at the mid-height of the shorter side wall and at an 

approximately equal distance along the bed. The two-layer model is incapable of 

generating turbulence driven secondary flow and does not show these effects. 

Percent shear force on side wall 

The relationship between the shear force on the side wall (as a percentage of the total 

perimeter shear force) and the aspect ratio Yhwas 
examined by Knight and Patel (1985) 

for II smooth ducts in which the aspect ratio was varied within the range 1 :5 
Yh 

:5 10- 

The work was extended by Rhodes and Knight (1994), using 6 aspect ratios in the range 

10 :5 Yh :5 50. These experimental results are plotted in Figure 6-3 with the current 

computational results. Rather than %SF., the more sensitive dependent variable IF was 

used, defined by 
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r= %SF. - 
100 

(1+ I) Equation 6-8 

The term 100/(1 + Yh) represents the geometric estimate of %SF,, made by assuming a 

uniform boundary shear stress and by taking the side wall length as a proportion of the 

total perimeter. The abscissa used was also 1000 + Yh) rather than Yh because it gave 

a better resolution at low aspect ratios. 

Rhodes and Knight applied a non-linear least squares fit to the experimental data to give 

%SF,, = 
100 

'y -1.057 
Equation 6-9 

1+1.345 b 
1+ 1.345 Yh 

shown by the solid line in Figure 6-3. 

Figure 6-3 utilises a useful property of rectangular closed ducts, in that when the duct is 

rotated by 90', the wall and bed elements are transposed but there is no effect at all upon 

the fluid mechanics. However, the aspect ratio defined as the semi-width divided by the 

semi-height is now Yb- Therefore it may be concluded that a set of boundary shear 

stress measurements for a particular range of aspect ratios Yh > 1, also applies to 

another range Yh :51 in which each aspect ratio is the reciprocal of the corresponding 

value in the first range. 

The empirical model, laminar flow solution and the computational results all show 

maxima and minima in r. The reason for this is that as Yh tends to infinity both %SF. 

tends to zero both %SF, and I 00/(I + h) and I 00/(I + Yh) tend to 0%, and as Yh Y 

tend to 100%. Thus at the extremes IF is zero. At Yh =1, symmetry dictates that both 

%SF,, and I 00/(I + Yh) equal 50% and therefore r is again zero. As can be seen from 

Figure 6-2, within the ranges 0< Yh <I and l< Yh< - the wall shear stress is 

183 



depressed in the vicinity of the duct comers. This will significantly affect the average 

values for the shorter side but will have less effect on the longer boundary. The effect is 

to cause %SF.. to deviate from the value predicted from purely geometrical 

considerations, creating the maximum and minimum values in IF. 

The deviation is greatest for laminar flow and least for the experimental results 

represented by Equation 6-9, the latter reflecting the greater uniformity of the boundary 

shear stress distribution caused by turbulent mixing. The results of the computational 

model lie between the two, indicating an intermediate mixing process. The momenturn 

transfer to the side wall is underpredicted by the two-layer model for two possible 

reasons: either the level of turbulent mixing is underestimated or the absence of 

secondary flow in the computational solution means that this enhanced mixing 

mechanism is unrepresented and the effect is significant. Given that the two-layer model 

has been found to satisfactorily predict two-dimensional boundary layers (Rodi 199 1), it 

seems most likely that the discrepancy between the computational model and the 

experimental results is due to the inability of the two-layer model to generate turbulence 

driven secondary flows. 

Centre-line bed shear stress 

The ratio of centre-line bed shear stress to the two-dimensional value, calculated frorn 

the pressure gradient, is shown in Figure 6-4 plotted against 1001('+Yh). The 

experimental results of Leutheusser (1963) and Knight and Patel (1985) are shown 

together with the laminar flow solution and the computational results. Given the good 

agreement between the experimental results of Leutheusser and Knight and Patel, it is 

surprising that at the three highest aspect ratios Knight and Patel give non-dimensional 

centre-line bed shear stress values greater. than 1.0. These results could be caused by 

secondary flow convecting high momentum fluid towards the wall in the vicinity of the 

centre-line, though at the aspect ratios concerned (Yh > 7.5) the more likely explanation 

is that of experimental error. 
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For Yh :56 the results of the computational model lie systematically bctwccn the 

experimental measurements and the laminar flow solution. This shows that the mixing 

mechanism that transfers momentum deficit from the side wall towards the ccntrc-linc 

of the channel is underestimated by the two-laycr model. For the rcason previously 

suggested this is likely to be due to the absence of turbulence drivcn sccondary flow in 

the computational model, rather than inadequate representation of turbulent mixing. 

This conclusion is reinforced by the fact that at low aspect ratios, especially for the 

square duct, secondary flow convects low momentum fluid away from the ccntrC of the 

bed thus depressing the measured local shear stress. 

6.3 Simulation of a Plate-Fin Heat Exchanger 

6.3.1 Periodic Distribution of Temperature 

There are many applications in all disciplines of engineering for which periodically 
developed flow over rough boundaries is significant. Several of these flows involve the 

transfer of heat (e. g. Beale 1989, Prakash 1985, Patankar et al 1977), for which the 

application of periodic boundary conditions is problematical due to the fact that the 

distribution of temperature is not periodic. This may be overcome in an manner similar 

to the treatment of the pressure variable (Section 3.2) for the idealistic situation in which 

the temperature at any point may be described by the sum of two components, a "local" 

temperature T* which is periodic and a linear "reduced" strearnwise temperature 

gradient dTYdx* Just as the pressure gradient may be replaced by a source of momentum 

flux per unit volume, a source of heat flux per unit volume will account for a change in 

T' over a period length. 

6.3.2 Simulation of a Prototype Heat Exchanger 

This technique was tested on a plate-fin counterflow heat exchanger using the 

PHOENICS controlled cyclic boundary conditions in which a source of momentum flux 

per unit volume was used to simulate the fluid pressure gradient. The simulation was 

based on a prototype oil/water laminar flow heat exchanger designed for use in a diesel 
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engine and manufactured by Serck Heat Transfer Ltd. (Figure 6-5). The physical 
prototype consisted of multiple contiguous water and oil filled ducts which allowed the 

centreline of a typical water duct to be modelled by a plane of symmetry. The flow 
domain therefore consisted of a single oil duct sandwiched between two half-ducts 

conveying water. Symmetry conditions were also employed in the z direction to model a 

single period width and the x direction consisted of one strearnwise period (Figure 6-6). 

Uniforrnly distributed cells were used in each region of the grid, though varying in size 
from region to region. Details of the grid are given in the Q1 data file (Appendix 13). -. 

The simulation was performed in two stages. Initially only the flow field was calculated, 

using a pressure gradient of 500 Pa/m and 106 Pa/m for the water and oil ducts 

respectively. On obtaining a converged solution the calculation of 7' was activated and ý 

the solution of the velocity field was switched off. The temperature' of the oil afthe 

start of the period, on the centreline of the oil duct was specified as a datum value of 

100'C. An estimated value of the heat flux source per unit volume was added to the oil 

and enclosed fins and a sink of heat flux per unit volume was applied to the water ducts 

so that the net source of heat flux was zero. For the dimensions simulated, the volurn'e 

of water and oil happened to be identical and therefore the magnitude of the source and 

sinks per unit volume were equal. After each sweep the estimate of heat flux source 

was adjusted by comparing the temperature at a reference point located at the 

start of the period on the water duct centrcline) with a specified reference temperature 

(7'*,, f = 70'C) using the formula 

S T*caic 
snew old T*.. ef 

Equation 6-10 

The simulation was continued until the required adjustment of the heat flux source was 
less than 0.1% and the histories of spot values and residuals were constant. 

1 For the remainder of this chapter references to temperature will mean 7". 
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6.3.3 Discussion of Results 

The input conditions and the results of the simulation are presented in Table 6-3. The 

essential output is that for a prescribed temperature difference between the oil (100"C) 

and water (70'C) the heat flux from the working fluid to the coolant has been obtained. 

This could readily be used to compare the heat transfer efficiencies of different plate-fin 
heat exchanger designs. In addition the calculated temperature field helps in the 
diagnostic process, when seeking to remedy inefficiencies in the design. 

Source of heat flux per unit volume 

The following analysis of the heat flux over one period through the copper/steel plate 

separating the oil and water filled ducts confirms that the source of heat flux 

corresponded to the resultant temperature field. The heat flux through the plate equals 

the sink of heat flux in one of the two water half-channels 

4plate = S- x 
V/2 

= 0.3168 W 
Equation 6-11 

where S.. is the sink of heat flux per unit volume in the water channel and V. is the 

volume of one period of a single complete water channel. The heat flux through the 

copper/steel plate can also be found from the temperature gradient across either the 

copper or steel plate, as the heat flux through each was identical. Accounting for the fact 

that this temperature gradient varied with strearnwise position then 
IX--NX 

q= I KsdT x Ay 
IX=l 

: Xdy Equation 6-12 

where K, is the conductivity of steel and Ay is the cell area in the plane of the 

copper/steel plate. This gave a value for the heat flux through the copper/steel plate of 

0.3182 W, a discrepancy of 0.7%. 

Distribution of temperature 

Combined with the heat flux across a heat exchanger, a useful aid to the designer is the 

distribution of temperature throughout the domain (Figure 6-7). The temperature 
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gradients in the oil flow were significantly higher on the faces of the vertical fins't, han 

on the base and top plates, indicating higher rates of heat transfer to the fins. This -was 
due to the flow structure through the fin configuration (Figure 6-8) which convected 

high temperature fluid towards the fins. There was virtually no convection in the vert ical 

direction (Figure 6-9) in either the oil or water flows and heat transfer was due to 

viscous diffusion only. 
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Fillures relating to simulations of smooth rectangular ducts 
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Figure 6-2: Distribution of local boundary shear stress for aspect ratio b1h = 10 
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Figures relating to simulations of a plate-fin heat exchanger 
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Figure 6-5: Heat exchanger design (idealised) 
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TW = "thickness" of water 1.5 mm 
TS = thickness of steel plate 0.2 mm 
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TP = thickness of fin base 0.2 mm 
TO = "thickness" of water 3.0 mm 
WIDTH = width of fins 2.0 mm 
S= spacing between fins 2.0 mm 
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Figure 6-6: Heat exchanger domain 
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Figure 6-7: Contours of temperature (*C) on z plane 
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Calculation of geometric grid Cy direction) Total Cells 

Aspect 

ratio h 
. -. Auni k GNY A last cell GDIS NY NZ 

1 0.0825 4.125XIO-3 22 1 1.248736 15 3.497 x 10'3 1.692 XIO-2 30 30 

1.49 0.0825 4.125xI 0-3 22 1.248736 15 3.497 XIO-3 1.692 XIO-2 30 32 

1.94 0.0825 4.125X 10-3 22 1.248736 15 3.497 x 1073 1.692 XIO-2 30 33 

2.50 0.0800 4. OOOXI 0-3 22 
1 

1.246495 15 3.4103 XIO-3 1.661 X 10-2 30 34 

3 0.0665 3.325x 10-3 21 1.249387 14 2.819 XIO-3 1.350 XIO-2 29 34 

3.75 0.0535 2.675x 10-3 20 1.250000 13 2.270 XIO-3 1.072 XIO-2 28 34 

5 0.04 2. OOOXI 0-3 19 1.244332 12 1.727 XjO, 3 8.159 XjO, 3 27 35 

6.25 0.032 1.600x 10-3 18 1.244273 11 1.387 XIO-3 6.429 XIO-3 26 35 

7.5 0.0265 1.325X 10-3 17 1.247789 10 1.143 X 10-3 5.130 XIO-3 26 34 

8.75 0.0230 1.150X 10-3 17 1.233490 10 1.031 XIO-3 4.779 XIO-3 25 35 

10 0.02 1.00OXIO-3 16 1.241883 9 8.826 XIO'4 3.886 XIO-3 25 35 

9.993 1 0.06162 3.08 IXIO-3 21 1.243504 14 2.651 X1073 1.290 X10-2 29 40 

15.005 0-04104 2.052X 10-3 19 1.246580 12 1.762 X 10-3 8.275 XIO-3 27 39 

20 0.03079 1.539x 10-3 18 1.240657 11 1.347 X 10-3 6.300 XIO-3 40 

24.992 0.02464 1.232x 10-3 17 1.240445 10 1.084 XIO-3 4.947 XIO-3 25 40 

37.459 0.01644 0.822X 10-3 15 1.245256 8 7.243 x 104 3.041 X 10-3 -T4- -40-- 

50.008 1 0.01232 0.616x 10-3 
1 14 1.237523 1 7 5.603 x 104 

1 
2.262 XIO-3 23 

Notes: 

thickness of first cell in geometric region GNY = number of cells in geometric region 

= 1.56 XIO'4 A last cell = size of last (largest) cell in 

h= semi height of duct geometric region 

Auni = size of uniform cells 
GDIS = length of geometric region 

k= expansion factor 
NY = total number of cells in y direction 
NZ = total number of cells in z direction 

Table 6-2: Calculation of grid for smooth rectangular duct tests 
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Tables relating to simulation of a plate-fin heat exchanger 

Inputs 

Pressure gradient in oil flow IX 106 Pa m" 

Pressure gradient in water flow 500 Pa m*1 

Temperature of oil at start of period 100 Oc 

Temperature of water at start of period 70 0C 

Conductivity of oil 0.286 W nf I C)IC, 

Conductivity of water 0.597 W rn-' IC' 

Conductivity of steel 381 W m7 1 OIC' 

I Conductivity of copper 48 W m'l Olcl 

Results 

Flow rate of oil 1.527 x 10-6 M3 S'l 

Flow rate of water (per channel) 1.264 X 10-6 M" S-' 

Heat flux across plate (per period) 0.317 W 

Average (local) temperature of oil 98.55 0C 

Average (local) temperature of water 77.29 0C 

Table 6-3: Inputs and results for simulation of a plate-fin heat exchanger 
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7. SUMMARY AND CONCLUSIONS 

7.1 Comparison With Rough Duct Physical Experiments 

The two-layer model with periodic boundary conditions was applied to the long angle 

roughness configurations of Schlichting (1936) to validate the computational model 

against physical measurements for flow in rough ducts' and also to implement the 

techniques described in Chapter 3. These included the convergence criteria of a linear 

transverse shear stress distribution and a force balance, and the determination of a 

dynamically significant rough wall datum position by consideration of streamwise force 

moments. The opportunity was also taken to test the two-layer model by simulating the 

roughness configuration of Grass et al (199 1). 

7.1.1 Schlichting's Experiments 

The duct employed in Schlichting's experiments was modelled by a two-dimensional 

domain consisting of one smooth wall and one wall with rib roughness elements of 

relative heights in the range 0.075 :5 kh1h :50.081 and relative period lengths Ilkh ,: 

18.75,12.90 and 6.67. Each roughness configuration was modelled for Reynolds 

numbers in the range 1.0 X 105 -< Re: 5 2.7 x 105. The results of these simulations are 

discussed in Sections 4.1.2 and 4.1.3. 

Methodolou 

The methodology used for the majority of experiments in this thesis are described in 

Chapter 3. When applied to the simulation of Schlichting's experiments the main 

conclusions were: 

1 The computer code was also validated by simulating the flow in three-dimensional smooth rectangular 
ducts prior to the rough duct experiments reported here. Simulations of smooth rectangular ducts are 
described in Section 6.2 and conclusions drawn in Section 7.3.1. 
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1. A pressure driven, periodically fully developed duct flow with uniformly 
distributed roughness elements was simulated using the PHOENICS CFD code by 

utilising the built-in XCYCLE facility. A uniformly distributed source of 

momentum flux per unit volume was required to account for the pressure gradient. 

2. Numerical convergence was satisfactorily determined by two criteria, namely: 

a) By confirming that the transverse distribution of period averaged shear stress 

was linear and had a slope equal to the reciprocal of the pressure gradient. 

b) By comparing the driving force acting on the fluid due to the source of 

momentum flux per unit volume with the sum of the boundary resistive forces, 

to ensure an adequate balance. 

3. A dynamically significant method of obtaining the rough wall datum position was 

achieved by finding the line of action of the period averaged shear stress that gave 

the same moment of strearnwise forces as the original forces distributed about the 

roughness elements and bed. For the modelled Schlichting roughness 

configurations this method predicted the datum plane to be located slightly above 

kh / 

Comparison of model with physical experiments 

For each flow configuration a pressure gradient equal to that measured by Schlichting 

was applied in the numerical model and therefore the sum of the period averaged 

boundary shear stress in model and experiment had to be equal. Given that Schlichting 

otherwise reported only his measured peak velocity, it was therefore this variable which 

was used to test the ability of the computational model to reproduce physical reality. 

It was concluded that given the excellent agreement between peak velocities at the 

highest Reynolds numbers simulated (maximum discrepancy of 2.1%), the two-layer 

model had performed sufficiently well to proceed with confidence in its application to 

similar computations where the depth of flow would be varied (Depth Scale Roughness 

Calculations). 
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A more detailed investigation into the boundary layer shear stress and velocity 
distributions was also carried out: 

Boundary shear stresses 

The results presented in Table 4-1 and discussed in Section 4.1.2 show an average 

discrepancy of 130% between the calculated period averaged shear stress on the smooth 

wall and that measured by Schlichting. The main conclusions were: 

4. Schlichting's assumption that the rough wall did not affect the distribution of flow 

variables in the smooth wall region was probably incorrect. The modelled 

turbulence intensity in the region of the smooth wall was found to be higher than 

that predicted by an isolated smooth wall simulation. This is consistent with a 

rough wall effect, characterised firstly by increased turbulence kinetic energy and 

secondly by its convective transport into the smooth wall region, enhanced by 

cross-stream fluxes created by the roughness elements. Comparison of the 

numerical model of the smooth wall region in Schlichting's duct with an isolated 

smooth wall model gave a 15.5% higher shear stress in the former for the same 

Reynolds number (Plate XX, case 5). This effect, though not accounting for the 

much greater discrepancy between model and physical experiment, was consistent 

with a rough wall effect upon the smooth wall flow. 

5. The very large discrepancy between the smooth wall boundary shear stress of 

model and experiment was most readily explained in terms of Schlichting's 

application of the law of the wall to velocity measurements of dubious quality. 

The maximum velocity predicted by Schlichting's smooth wall shear stress and 

the law of the wall was so different from his measured maximum velocity that 

either the law of the wall did not apply (and the previous conclusion indicates that 

it did apply approximately) or his measured velocity distribution was in error. The 

latter is a reasonable conclusion given that he had to deten-nine the logarithmic 

region in a profile at maximum only 8 mm in extent from the wall to the point of 

maximum velocity. 
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6. The streamwise variation in smooth wall shear stress resulting from the periodic 
acceleration and deceleration of the streamwise velocity (due to the periodic 
variation in the cross-stream geometry) was investigated and found to be minimal. 
Diffusion of momentum deficit from the wall occurred at a sufficient rate to 

ensure that the law of the wall remained roughly in step with the strearnwise 
variation in smooth wall shear stress. Consequently this effect on the smooth wall 
shear stress was minimal. 

Velocity distribution 

The logarithmic velocity distribution on the rough wall was used to calculate k. as 
described in Section 3.4 and employed in Section 4.1.4. The main conclusions were: - 

7. The numerical model indicates that the coefficients in the rough wall logarithmic 

velocity distribution law (Equation 2-30) and the region over which this equation 

applied were strongly dependent on the datum position (yo) employed for the 

rough wall. 

8. The use of the geometric mean level to calculate the datum position in the 

numerical model's results gave a value for B in the logarithmic law which was 

significantly higher than that quoted in the literature (e. g. Nikuradse 1933 or, 
Jayatilleke 1969). If this represented the physics of Schlichting's experiments then 

the use of this datum by Schlichting would have given highly inaccurate k, values. - 

This conclusion agrees with Coleman et al (1984). 

9. Using strearnwise force moments to calculate the datum position resulted in a 

value for B which was comparable with that suggested by Jayatilleke and this 

method of determining yo is therefore recommended. 

7.1.2 Roughness Configuration of Grass et A 

The roughness configuration of Grass et al (1991, experiment A) was simulated by a- 

two-dimensional domain of depth h= 55.9 mm, with a rough bed periodically 
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distributed with roughness elements of 5 mm square cross-section, spaced 20 mm apart. 
The Reynolds number based on duct height was 8091 and the free surface of the water 

channel was accounted for by a plane of symmetry. For a specified friction velocity, the 

flow rate was found to be under-predicted by 21.8% in comparison with that measured 
by Grass et al. The main conclusion was: 

10. For flow regimes in which the separation streamline from the trailing edge of a 

roughness element impinges on the vertical face of the next roughness element, 

the form drag predicted by the numerical model was probably in error. In the 

depth scale roughness configurations analysed (Chapter 5) the point of re- 

attachment always occurred on the bed and therefore the condition giving rise to 

the unsatisfactory solution for Grass et al's experiments did not pertain. 

7.2 Depth Scale Roughness Calculations 

Calculations were performed on a two-dimensional rough walled duct flow in which the 

flow depth was varied from very shallow to deep, the range of relative depths being 1.15 

:5 h1kh :5 40. Turbulence was accounted for by the two-layer model, periodic boundary 

conditions were employed to achieve periodically fully developed flow and the duct 

plane of symmetry was used to represent the free surface in an open channel flow. Two 

types of roughness were simulated: a square cross-section block roughness (kh " 50 

mm) with a period length of Im and a thin strip roughness of height kh = 3.2 mm. with 

period lengths of 40 and 60 mm. 

The outcome of this work is a new proposed method for calculating the channel friction 

factor f, which is applicable not only to small scale roughness but also to rough wall 

flows when the roughness length scale is large compared with the depth of flow. If 

confirmed by physical measurements this method would be a significant advance in the 

application of boundary layer theory to rough wall flows, where the roughness length 

scale is large compared with the depth of flow. 
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The primary conclusions of this analysis are treated in Section 7.2.1 and ancillary 
conclusions are drawn in Sections 7.2.2 and 7.2.3. 

7.2.1 Evaluation of k. 

For relative depths h1kh ý: 7, the equivalent sand roughness length scale (k., ) was 

obtained from the computational results by analysis of the logarithmic velocity profiles, 
as described in Section 3.4.1 and performed in Section 5.8.1. Further analysis in Section 

5.8.2 led to a resistance equation relating f, k, and RI, The main conclusions from this 

analysis were: 

For all of the roughness configurations simulated, the resistance equation 

predicted k, values which varied in a similar way. This was expected from 

physical reasoning, and from Figure 5-20 and 5-22 it was tentatively conclude'd 

that k. could be calculated for any depth of flow and any roughness configuration 

using a relationship of the fonn 

ks 
ks_ Equation 7-1 

from a knowledge of the flow depth h, the bed datum position yo and k, -, the ks 

value for the roughness type at infinitely large flow depths (small scale roughness 
value). Using a resistance equation of standard form 

I 
=a-blog 

k, 
Jf 2Rh 

L 

Equation 7-2 

but modified coefficients, and the previously calculated value of k, Figure 5-22 

shows that the friction factor could then be deduced for any relative flow depth. 

Implicit in this calculation procedure was the determination of a dynamically, 

significant value of yo which was important at all depths but especially so at the 

shallow end of the range where it critically affected the hydraulic radius 
(Rh= h- yo) of the equivalent plane walled duct. The method therefore amounted 
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to the determination of the dynamically significant length scales, k, yo and h. 

This conclusion was tentative depending as it did upon a Reynolds averaged 
turbulence model implemented by a numerical method and limited in the present 

application to two-dimensional periodic roughness distributions. 

12. A corollary of this determination of yo is that the rough wall was thereby 

transformed into an equivalent plane walled duct. The friction factor was then 

calculated as 
8ryo 
- PUY. 

Equation 7-3 

where ryo is the shear stress at the bed datum or equivalent plane wall, and UY, is 

the velocity averaged over the depth (h - yo), rather than that currently in 

common use 
8r. 

PU 
Equation 74 

where z,,, is the shear stress with line of action through the base of the roughness 

elements and U is the velocity averaged over the maximum flow depth. 

13. The position of the rough wall datum level moved further away from the wall for 

lower relative depths of flow. 

14. The alternative methods for calculating k., by means of standard velocity profiles 

(e. g. Nikuradse 1933 or Jayatilleke 1969) described in Section 3.4.1, gave a larger 

variation of ks when yo was obtained from the geometric mean level than when it 

was derived by strearnwise force moments. The calculation of yo using strearnwise 

force moments is therefore recommended. 

15. For the thin strip roughness only, the k, values were found to be approximately 

independent of flow depth for high relative depths (h1kh > 20) despite the fact 
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that the k. value was still of the same order of magnitude as the depth of flow 

(h1k., < 10) and therefore did not represent small scale roughness. A constant k. 

value was not obtained for the block roughness configuration. 

16. The coefficients in the resistance equation (Equation 7-2) obtained from analysis 

of the velocity profiles agreed with those quoted by French (1986) for flow' in 

open channels. 

7.2.2 Velocity Field 

The variation of the distribution of streamlines with depth and transverse profiles of 

streamwise velocity for a typical roughness configuration are presented in Figure 5-10 

and are discussed in Section 5.6.5. The same transverse velocity profiles plotted 

logarithmically are presented in Figure 5-16 and discussed in Section 5.7. The main 

conclusions were: 

17. For the majority of relative depths, the length of the recirculating flow region 
immediately downstream of each roughness element (the primary recirculating 
flow region) was independent of flow depth. At very low relative depths however, 

the presence of high strearnwise velocities over the tops of the roughness elements 

restricted the development of the vena contracta which form due to the reduction 
in flow cross-sectional area. Consequently the re-attachment length was reduced. 

18. For the roughness configurations examined, the re-attachment length associated 

with the primary recirculating region underwent a slight decrease as the period 

length decreased. This was probably due to the higher turbulence intensity 

resulting from the wake of the upstream roughness element and is a characteristic 

of wake interference flows. The values of re-attachment length were comparable 

with those reported in the literature (e. g. Senior and Aroussi 1992) for flow over 
backward facing steps. 

19. The length of the recirculating flow region upstream of each roughness element 
(the secondary recirculating region) increased systematically with increasing 
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relative depth and lower values of local strearnwise velocity. The reason for this is 

not clear at present. 

20. Distributions of the period averaged strearnwise velocity support Conclusions 7,8 

and 9. 

7.2.3 Normal and Shear Stresses at the Boundary 

The resistive forces on the boundary were due to the shear stresses on the horizontal 

surfaces and the normal stresses on the vertical faces of the roughness elements, both of 

which are discussed in Section 5.6.6. The main conclusions were: 

21. For all simulations reported, the largest absolute value of boundary shear stress 

was located in the primary recirculating flow region. Although the value of local 

shear stress decreased with an increase in flow depth (due to lower strearnwise 

velocities) as a percentage of the period averaged bed shear stress 2 it increased 

significantly as the flow depth increased. This was because the form drag on the 

roughness elements scaled with the square of the velocity, but the skin friction 

scaled with the velocity. 

22. The resistance force due to the bed shear stress was negligible in comparison with 

the form drag on the roughness elements. In fact the integrated bed shear stress 

resulted in a force on the fluid in the positive strearnwise direction for many of the 

roughness configurations, due to the regions of reverse flow. 

23. The direct stresses on the vertical faces of the roughness elements were nearly 

uniform, varying little with vertical position. Assuming the resistance force due to 

the bed shear stress to be negligible (Conclusion 22 above) then for two- 

dimensional rib roughness the bed datum position could be roughly estimated as a 

function of the duct geometry only by the consideration of strearnwise force 

moments. 

2 Including form drag and as well as viscous shear. 
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7.3 Other Applications 

7.3.1 Simulations of Smooth Rectangular Ducts 

The two-layer model was applied to rectangular duct flows of aspect ratios 1.0: 5 b1h :5 

50 for Reynolds numbers in the range 5.9 x 104: 5 Re: 5 2.1 x 105 . The primary purpose 

of these simulations was to perform initial validation tests for the computer code and the 

implementation of periodic boundary conditions. However the opportunity was taken to 

investigate the distribution of boundary shear stress and the effect of the side wall upon 

the centreline bed shear stress. The simulations are described in Section 6.2.1 and the 

results presented in 6.2.3. 

24. Results indicated the correct implementation the of periodic boundary conditions 

which led to their successful application to the rough duct flows (Conclusion 1). 

25. Comparison with the experimental results of Knight and Patel (1985) and Rhodes 

and Knight (1994) indicated that the inability of the two-layer model to generate 

turbulence driven secondary flow was significant in the following calculations: 

a) The relationship between the percentage boundary shear force acting on the side 

walls (%SF,,, ) and the aspect ratio b1h, computed using the two-layer model, 

differed significantly from experiment. The difference reflected the enhanced 

mixing created by turbulence driven secondary flow in the physical model. 

b) For aspect ratios b1h < 6.5 (approximately) the side wall effect, represented by 

the ratio of the centreline bed shear stress to the two-dimensional value, differed 

between computation and experiment for the same reason as given in 

Conclusion 25a. For greater aspect ratios the flow was so nearly two- 

dimensional that the difference became imperceptible. 

7.3.2 Simulation of a Plate-Fin Heat Exchanger 

A laminar flow solution of a two fluid counterflow plate-fin heat exchanger was carried 

out as a test of the PHOENICS XCYCLE periodic boundary conditions when applied to 
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a temperature field. As described in Section 6.1 the change in temperature over one 

period length was accounted for by applying a source of heat flux per unit volume in one 

fluid and a corresponding sink in the other fluid. The main conclusions of the results 
discussed in Section 6.3 were: 

26. The change in temperature over one period could adequately be accounted for by a 

joint source/sink of heat flux per unit volume, enabling periodic boundary 

conditions to be utilised. This is thought to be a novel method of solution for this 

problem. 

27. The contours of "local" temperature and the velocity vectors proved a useful aid to 

the design of heat exchangers. For the prototype examined, the heat transfer 

between the two fluids would have been enhanced by generating more vertical 

convection in both streams. 

7.4 Computational Fluid Dynamics 

Several conclusions have been reached with regard to the use of CFD as a tool for 

simulating flow in rough ducts. 

7.4.1 Convergence 

One of the limiting factors associated with this project was the inability to rapidly obtain 

solutions for a wide variety of roughness configurations and high relative depths. Three 

possible reasons for this are: 

28. Grid structure. Despite the simple geometry, large numbers of cells were required 

to model the viscosity affected region near the boundaries. This also resulted in 

cells with a very large aspect ratio. 

29. Periodic bounda[y conditions. Periodically fully developed flow was achieved 

through the use of periodic boundary conditions in order to reduce the 

209 



computational resources required. However, the results of this study3 indicated 

that although extra cells were not required to model the development length, and 
therefore there were considerable economies in computer storage, the saving in 

computational time was considerably less because the total number of calculations 

was not significantly reduced. 

30. High flow depths require longer convergence times. A converged solution is only 

obtained when the boundary layer is fully developed and therefore for flows of 
high relative depth, the cross-stream distance over which convective and diffusive 

transport is required is longer. Also the influence of the roughness elements in the 

region of the free surface or plane of symmetry diminishes at higher depths and 

consequently convective and diffusive cross stream transport in this region is low. 

It was the author's experience that beyond a certain relative depth, converged 

solutions were unobtainable. 

7.4.2 Use of Commercially Available CFD Packages 

A major advantage of the general purpose CFD package is that a detailed knowledge of 

the differential equations, numerical procedures, or the source code is not required to 

perform simple simulations. However when more detailed calculations are required, an 

understanding of all these topics becomes essential. For codes written by the user, this 

information is readily available or already known. In the case of commercial packages 
however, comprehensive documentation is required to supply the same information. 

Also access to the source code is needed in order to make knowledgeable adjustments to 

solution parameters, add user-written coding to the existing program, and to find and 

correct errors in the original code. 

The author found it essential for present purposes to painstakingly develop procedures 
for checking the physical realism of the computational results. This required an 

3 In particular the wall function tests (Section 5.5), which consisted of an extremely simple domain and 

grid. 
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understanding of the numerical procedures and led to the methodology described in 

Chapter 3. 

7.5 Suggestions for Further Work 

The analysis of depth scale roughness performed in the current study was limited by the 

results obtained for three principal reasons: 

1. Small scale roughness was not achieved. Due to the long convergence times 

required to simulate ducts of high depth, and the large k., values obtained, it was 

not possible to achieve a flow in which the roughness length scale (k, ) was really 

small in comparison with the flow depth (k,, /h<0.1). 

2. Insufficient variation of roughness configurations. Difficulties in obtaining 

converged solutions for short period lengths resulted in only three' roughness 

configurations being successfully simulated. All of these were probably in the 

wake interference flow regime and were limited to two-dimensional rib roughness 

elements. 

3. Limitations of a Reynolds averaged turbulence model. When a turbulence model, 

used within a numerical solution process, is employed to predict any type of flow, 

there are uncertainties of how accurately the flow physics are represented. In 

particular, Reynolds averaged turbulence models contain empirically based 

coefficients which are not applicable to all flow regimes. Also, certain 

mechanisms such as turbulence driven secondary flows may not be represented. It 

was concluded in Section 4.2.3 that in modelling flows ovef two-dimensional rib 

roughness elements in which the separation streamline impinged on the 

downstream roughness element, the point of impingement might not be accurately 

predicted by the two-layer model. When modelling flow over other roughness 

elements, such as hemispheres, there would also be uncertainties in the prediction 

of the point of separation. 
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To confirm that Equation 7-1 is indeed a universal function, further work is required 

which in particular addresses the three shortcomings outlined above. It is therefore 

recommended that experimental investigations should be performed, initially on an 

enclosed duct flow to avoid free surface effects, in which flows over a variety of two 

and three-dimensional roughness configurations would be examined. One way of 

undertaking such a project would be to measure the form drag using surface pressure 

tappings located on the vertical face of a roughness element. The bed shear stress could 

with care be obtained by measuring the velocity gradient in the viscous sub-layer using 
high resolution laser Doppler velocimetry (Wei and Willmarth 1989). Before 

undertaking these experiments, the researcher would need to consider the following 

points: 

1. In order to determine the distribution of the normal stress acting on the vertical 
faces of the roughness elements, a number of pressure tappings would be required 

(= 10) which would establish the minimum permissible roughness height. For 

two-dimensional flow, the density of pressure tappings in the vertical direction 

could be increased by staggering the tappings in the cross-stream direction. 

2. In order to achieve small scale roughness, a ratio of h1k, > 10 would be required. 

The current results for flow over two-dimensional thin strip roughness elements 

gave 5 kh :5k. -5 6.5 kh corresponding to a ratio of h1kh > 65, which implies an 

inordinately large duct depth requiring a long development length. It is likely 

however that other roughness configurations (e. g. three-dimensional roughness) 

would result in lower k. values for the same value of kh and permit a more 

manageable size of duct. 

3. To achieve two-dimensional flow the results of Section 6.2 suggest that an aspect 

ratio of b1h > 6.5 is required for a smooth channel though this would be less for a 

roughened duct with smooth side walls. Using the argument presented in 

Appendix 9, Schlichting obtained two-dimensional flow using an aspect ratio b1h 
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= 4.25 for a duct containing one rough wall. A further consideration is that if the 

channel width were increased, the length of channel required to achieve fully 

developed flow would also increase. 

4. Accurate measurement of bed shear stress over a period length could prove to be 

difficult to obtain, particularly for three-dimensional roughness configurations for 

which the flow structure would be complex. For three-dimensional roughness the 

integrated bed shear stress could also significantly affect the total resistance to 

flow. 

These points indicate that a very large duct might be required for an investigation using 

this technique. An alternative experimental procedure could be to carry out 

measurements of the forces and moments on the bed and roughness elements 

themselves, employing peizo-electric load cells and moment balances, however this is 

unlikely to permit the use of smaller roughness elements due to the very small forces 

being measured. 

Given that the ultimate application of this work is the prediction of resistance for depth 

scale roughness in natural open channel flows, the subjects of randomly distributed 

irregular roughness elements and of the effect of the free surface both require serious 

investigation. Implicit in the present project is the hypothesis that if through the 

determination of yo, any roughness configuration can be reduced to an equivalent plane 

walled duct, then equations 7-1 and 7-2 derived from regular roughness patterns should 

be equally applicable to randomly distributed irregular roughness. This hypothesis needs 

to be tested. 

The free surface imposes an extra level of complexity on the determination of channel 

resistance due to depth scale roughness. This is not a reference to the damping of 

turbulence fluctuations near the free surface and the consequent effect on secondary 

flow, important though this may be in the comer regions of channel flow. Rather it is a 

reference to the significant disturbance of the free surface that occurs when the 

roughness scale is large compared with the depth. This firstly changes the flow 
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geometry and secondly adds another route for energy dissipation through wave drag and 

hydraulic jumps (e. g. Hubbard and Thome 1994). The problem of depth scale roughness 

will therefore only be partially treated until these Froude number effects are fully 

investigated. 
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Appendix 1: Guide to PHOENICS 

Parabolic, Hyperbolic Or Elliptic Numerical Integration Code Series (PHOENICS) is a 

commercial CFD code written by CHAM Ltd (Wimbledon, London). During this study 

versions 1.6 to 2.1.1 of the code were used, mounted on a UNIX operating system at the 

Royal Military College of Science, Shrivenham. 

For instructions on the PHOENICS CFD code, the reader is referred to the PHOENICS 

manuals, now available as an on-line help system called POLIS. However a brief guide 
to the structure of PHOENICS is given here as a reference aid to some of the features 

and terms used in this thesis. 

PHOENICS consists of two essential computer codes; a pre-processor called 

SATELLITE and the processor called EARTH. SATELLITE interprets the user-written I 

data file (the Q1 file) and writes a data file (EARDAT) for the processor EARTH. On 

completion of the solution procedure, EARTH writes two files, the PHI file containing a 
dump of all flow variables and the RESULT file which contains user specified results in 

an easily viewed format. 

The Q1 file contains instructions written in the PHOENICS input language (PIL) which 
defines the domain and parameters for each Computational study. The Q1 file is 

organised into the following groups: 
GROUP 1 Run title and other preliminaries. 
GROUP2 Transience: time-step specification. 
GROUP3 X-direction grid specification. 
GROUP4 Y-direction grid specification. 
GROUP5 Z-direction grid specification. 
GROUP6 Body-fitted coordinates or grid distortion. 
GROUP7 Variables stored, solved and named. 
GROUP8 Terms (in differential equations) and devices. 
GROUP9 Properties of the medium (or media). 
GROUP 10 Interphase-transfer processes and properties. 
GROUP 11 Initialization of variable or porosity fields. 
GROUP 12 Convection and diffusion adjustments. 
GROUP 13 Boundary conditions and special sources. 

1 The QI file may alternatively be written automatically using a menu system within SATELLITE 
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GROUP 14 Downstream pressure (for free parabolic flow). 
GROUP 15 Termination criteria for sweeps and other iterations. 
GROUP 16 Termination criteria for inner iterations. 
GROUP 17 Under-relaxation and related devices. 
GROUP 18 Limits on variables values or increments to them. 
GROUP 19 Data communicated by SATELLITE to GROUND. 
GROUP20 Control of preliminary printout. 
GROUP21 Frequency and extent of filed printout. 
GROUP22 Location of spot-values & frequency of residual printout. 
GROUP23 Variable-by-variable field printout and plot and/or tabulation of 

spot-values/residuals printouts. 
GROUP24 Preparation for continuation runs. 

For the majority of cases the domain and parameters can be adequately defined within 

the Q1 file. However additional functions may be written by the user in a FORTRAN77 

subroutine (GROUNDY) which is part of the EARTH module. In the current project 

the GROUNDY subroutine was employed both to control the fluid calculation and to 

provide preliminary analysis of the results. 

In order to perform these tasks within GROUNDY the values of the variables stored 

within EARTH needed to be accessed. The following section gives a simplified 
description of how this is performed. 

1.1 GROUND. F Subroutine 

The subroutine GROUNDY contains a structure similar to that of the Q1 file, however 

not all of the groups are active and some groups are sub-divided in sections. One of the 

most useful groups is group 19, in which each section provides access at each stage of 

the solution procedure (see Section 2.3.6): 

C--- GROUP 19. Special calls to GROUND from EARTH 
C 

19 GO TO (191,192,193,194,195,196,197,198,199,1910,191 1), ISC 
191 CONTINUE 

C* ------------------- SECTION 1 ---- Start of time step. 
RETURN 

192 CONTINUE 
C* ------------------- SECTION 2 ---- Start of sweep. 

RETURN 
193 CONTINUE 

C* -------------- - --- SECTION 3 ---- Start of iz slab. 
RETURN 

194 CONTINUE 
C* ------------------- SECTION 4 ---- Start of iterations over slab. 

RETURN 
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1911 CONTINUE 
C* ------ - ------ ---- SECTION 11 ---After calculation of convection 
C fluxes for scalars, and of volume 
C fractions, but before calculation of 
C scalars or velocities 

RETURN 
199 CONTINUE 

C* ------------------- SECTION 9 ---- Start of solution sequence for 
Ca variable 

RETURN 
1910 CONTINUE 

C* -- - ------- - -- - -- SECTION 10 ---- Finish of solution sequence for 
Ca variable 

RETURN 
195 CONTINUE 

C* ----- - ------ - ---- SECTION 5 ---- Finish of iterations over slab. 
RETURN 

196 CONTINUE 
C* ------ - ------ - --- SECTION 6 ---- Finish of iz slab. 

RETURN 
197 CONTINUE 

C* ------------------- SECTION 7 ---- Finish of sweep. 
RETURN 

198 CONTINUE 
C* --------------- --- SECTION 8 ---- Finish of time step. 
c 

RETURN 

Any variable which is STORED or SOLVED in the Q1 file (such as P1, U1, V1, W1, 
EP, KE etc. ) is also stored in EARTH and may be accessed in group 19. Most EARTH 

variables are known asfullfield variables and have a value for each grid cell (i. e. NX x 

NY x NZ values). PHOENICS stores all of these variables in a single, one-dimensional 

array, the size of which may be set by the user. This is termed the F-array. Each EARTH 

variable is allocated a block of elements NX x NY x NZ long within the F-array which 
has a first element labelled the "zero F-Location index" or LOF The variable is then 

stored for each slab of fixed IZ cells. For a given slab the elements of the F-array are 
arranged as shown in Figure Al. 1. 

Thus for example the two-dimensional array of U1 velocities is put into the user array 
MYU 1 (IX, IY) for the current slab by the following coding in group 19, section 6: 
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REALMYU1(NX, NY) 
INTEGER LOUI 
LOUI=LOF(Ul) 
DO IX=1, NX 

DO IY=1, NY 
I=IY+NY*(IX-1) 
MYU1(IX, IY)=F(LOU1+1) 

END DO 
END DO 

To aid manipulating segments of the F-array a library of functions (FNO - FN1 17) is 

provided which perform simple arithmetic operations on EARTH variables. 

1Y increasing 

NY-1 2xNY 3x NY (NX-IxNY)+l NXxNY 

NY-2 2x NY-1 (NX x NY)-l 

3 NY+3 

2 NY+2 

NY+l 

- 

2x NY)+l P (NX-1) x NY+l 

0 
IX increasing 

Figure ALP F-array locations of an x-y slab 
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Appendix 2: Introduction to Tensor Notation 

For the reader not familiar with cartesian tensor notation, a short introduction to this 

subject is provided here. Tensor notation is used in this thesis because it allows three- 

dimensional equations to be written in a considerably more compact form than is 

possible with conventional notation. 

In cartesian tensor notation, vector quantities are written by attaching an index to the 

symbol denoting the quantity. The components of a vector in three-dimensional space 

are obtained by setting the index equal to 1,2 and 3. For example, the general velocity 

vector will be: 
Ua "-: W) = (Ul 

2 
U2.9 U3) (uj, V, Equation A2-1 

A quantity with two indices (eg (x and 0) is called a tensor and has 9 components which 

can be obtained by permutation of the 2 indices from I to 3, so for example, the product 

of two velocity vectors yields a tensor: 
Ua U9 

Ul Ul Ul U2 Ul U3 
) Equation A2-2 

U2UI U2U2 U2U3 

%, U3UI U3U2 U3U3j 

The Reynolds stress tensor is an example of this type. 

In the summation convention used with tensor notation: 
3 

U, 1: U. Ua = Ul Ul + U2 U2 + U3 U3 Equation A2-3 

a-I 
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Appendix 4: Errors and Modifications to the 

PHOENICS Code 

A4.1 List of Errors and Modifications 

During the course of this study several errors were found within the PHOENICS code 

(from versions 1.6 to 2.11). For the purpose of describing the code used in this study, 

some of the significant errors and modifications employed are shown below. The dates 

given at the beginning of each entry indicate when the problem was reported to CHAM. 

In some cases CHAM has corrected the errors in later releases of the code. 

1. [24/5/941 Activation of the two-layer model. The PIL command to activate the 

two-layer model is 
TURMOD (KEMODL-2L) 

however this command is not recognised by SATELLITE. To activate this model the 

lower level commands 
TURMOD (KEMODL) 
IENUTA=8 
DISWALL 

should be used. 

2. [2/6/941 Calculation of the wall shear stress. Use of the Q1 command YPLS=T 

elicits printout of wall shear stress, non-dimensional distance from the wall (Y) and the 

skin friction coefficient. However two errors were found in relation to the wall shear 

stress: 

a) The printout of shear stress (SHSTRESS) is actually 

b) When using the two-layer model the skin friction inside the laminar sub-layer is 

incorrectly calculated in the function FNSKIN (subroutine GXWALL. F), part of the 

CHAM supplied GREX library of GROUND subroutines. The line 

F(LOSTRS+J)=SKINF*F(LORLVL+J)**2 
should read 
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F(LOSTRS+J)=F(LOSK+J)*F(LORLVL+J)**2 
The correct implementation is shown in the printout of FNSKIN in Section A4.2. ', 

3. [8/6/941 Error in definition of blockaizes. The method of defining blockages in 

PHOENICS is to use the CONPOR command over a patch of cells; for example fr6m 

BNXF (block NX first) to BNXL (block NX last) and similarly in they and z directions: 

CONPOR (BLOCK, O. O, CELL, BNXF, BNXL, BNYF, BNYL, BNZF, BNZL) 

However this results in erroneous velocities being calculated inside the upstream cell of 

the block. To prevent this, the following lines must also be added (for flow in the +ve x 

direction): 
PATCH(INIU, INIVAL, BNXF, BNXF, BNYF, BNYL, BNZF, BNZL, 1,1) 
INIT(INIU, U1,0.0,0.0) 

This extra code manually sets the velocity on the upstream face of the block to be zero. 
, 

4. f3/10/941 Typing error in documentation. In the description of the block location 

indices of the F-array for patchwise variables (p6.14 of TR200b) the line 

LF=LOF(LB)+(IY-IYF+1)+(IYL-IYF+I)*(IX-IXF+I)+(IYL-IYF+I)*(IXL-IXF+I)*(IZ-1ZF+l) 
should read 
LF=LOF(LB)+(IY-IYF+I)+(IYL-IYF+I)*(IX-IXF)+(IYL-IYF+I)*(IXL-IXF+I)*(IZ-IZF+1) 

5. f3/10/941 Specifying Vatchwise variables. Contrary to the documentation, the 

patch name which forms the argument of the GROUND function IPNAME must 

contain exactly 8 characters. Hence the additional character '8' in the line: 

LOSB=LOPVAR(PVSTRS, IPNAME('WALLBED8'), IZ) 

6. [20/3/951 Multi-block grids. Numerous errors were encountered in the first 

release of the multi-block grid feature. These are listed in Appendix 7: Multi-block 

Grids. 

7. f 19/5/951 Error in-calculation of non-dimensional wall distance. Further errors 

were found in the function FNSKIN (subroutine GXWALL. F) relating to the calculation 

of Y. The corrected function is given in Section A4.2 with current modifications'. 

commented with a line prefixed by: 
C#### aks 19/05/95 
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8. f 15/9/951 Access to group 19 in G ROU N D. 

a) The group 19 of the ground subroutine is called twice for each sweep from the parent 

program. This may have consequences in any user code placed here. To ensure that any 

code in sections 3 and 6 is activated once only, it should be located inside the following 

IF statement: 
IF (LOOPZ. EQ. 1) THEN 

C user coding 

END IF 

Note that the following COMMON block must also be included; 

COMMON /GENI/IGFL1 (45), LOOPZ, IGFL2(14) 

b) In a two-dimensional simulation, group 19 is called from ISWEEP=I to LSWEEP. 

For a three-dimensional simulation it is called from ISWEEP=O to LSWEEP. 

9. [30/1/961 Typing error in documentation. The POLIS entry for wall functions 

give two different values for the roughness parameter E for smooth walls (8.6 and 9.0) 

in different parts of the entry. The actual value used within the PHOENICS wall 

function is 8.6. 

10. [29/5/961 Inaccuracies within wall function. Inaccuracies were found in the 

calculation of velocity at a near wall cell when using the standard k-e model with wall 

functions. The cause of this inaccuracy was traced to the calculation of the skin friction 

factor, which is calculated within the function FNSKIN by: 

PU 
2 

In 1.01+ERe 
Equation A4-1 FU2 

The addition of the term 1.01 is to prevent a denominator of zero. Re-arrangement gives 

the velocity profile as: 

u=I In 1.01+EUTýlv) -ur- /C 
( 
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which is identical to the standard wall function, apart from the inclusion of the term 
1.01. It is this term which under some circumstances may produce a significant error. 
Examination of the possible conditions gives: 

1) If E Re is large then the addition of 1.01 is inconsequential. 

2) If ERe 'r 'r is slightly greater than one the addition of 1.01 will still be 
F-FUr2 

unnecessary, but will produce significant error. 

3) If ERe is =1.00000.... then the addition of 1.01 will prevent a division 

by zero, but will also give a significant error. 

For this study an improved scheme was used whereby a conditional statement was 
included to the effect that if 

ERe AFpU2 
= 1-0000 

then the value would be changed to 1.01 and a warning message would be printed. The 

1.01 term could then safely be removed. This revised scheme is also shown in the 

corrected function FNSKIN given in Section A4.2 (comments prefixed with C### aks 
29/5/96). 

11. [1/10/961 Typing error in documentation. The POLIS entry for the false time 

step method of relaxation contains: 

This has the effect of making Aext very close to Olatest when DTFALS is large, so 

that changes can occur only after many repetitions of the adjustment process. " 

This sentence should read: 

This has the effect of making 4e 
,,, t very close to Oatest when DTFALS is small, so 

that changes can occur only after many repetitions of the adjustment process. " 
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12. [1/4/971 Error in calculation of IX At the end of the solution procedure (in 

GROUND, section 8 of Group 19), the value of the variable IX (denoting the current x 

cell) becomes equal to NX+l, i. e. greater than the total number of x cells in the domain. 

Consequently, the standard method of extracting values from the F-array using 
I=IY+NY*(IX-1) 
VAR=F(LOVAR+I) 

will give incorrect values unless IX is redefined. 

A4.2 Corrected version of FNSKIN (part of GXWALL. F) 

SUBROUTINE FNSKIN 
C**** This subroutine calculates the dimensionless skin-friction 
C factor SKINF = stress/(rho * relvel**2) from one of: - 
C the Blasius law 
C the logarithmic law 
C the generalised log law 
C 

INCLUDE'lp2l/d-includ/grdloc' 
INCLUDE 'Ip2l /d-includ/grdeae 
COMMON/SODAUDBG, LOGIC(4) 
COMMON/RDATA/TINY, RDFILI (17), ENUL, ENUT, RDFIL2(5), GRND, RDFIL3(59) 
COMMON/IDATA/NX, NY, IDFILl (23), FSWEEP, LSWEEP, IDFIL2(51), VISL, 
1 IDFIL3(39), VIST, NPHI 
COMMONfrURB3/RTTDKE, AKC, EWC, ACON, TAUDKE 
COMMON/LWFUN2/DHCHKD(l 00) 
COMMON/LWFUN1/DOSKIN(100) 
COMMON /LWFUNMALL, STRGNR 
COMMON/LDATA/LDAT1 (56), WALPRN, LDAT2(27) 
LOGICAL WALL, STRGNR, DHCHKD, GTZ, ROUGH, DOSKIN, STORKE, STORGN 

C#### GTR 21.02.94 ADD NUTNEO 
LOGICAL DBG, LOGIC, NEZ, LDATI, LDAT2, NUTNEO 
COMMON/NAMFN/NAMFUN, NAMSUB 
CHARACTER*6 NAMFUN, NAMSUB 
INTEGER FSWEEP, VISL, VIST, COGRN 
DATA KOUNT/0/ 

C 
NAMFUN='FNSKIN' 
COGRN=ISC-1 
if(dbg) then 
call writ40('entry to fnskin called from gxwfun 
call writ2i('indvar ', indvar, 'cogrn ', cogrn) 

endif 
C .... Blasius formula s=0.0395/(Re)**0.25 
C with low-Reynolds-number modification 
C .... Idl 1 contains laminar viscosity divided by wall distance, 
C ie the laminar wall coeff icient. 

LOMUDD=LOF(LD1 1) 
LOSK= LOPVAR(PVSKIN, IREG, O) 
LORLVL=LOPVAR(PVRLVL, IREG, O) 
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LOSTRS=LOPVAR(PVSTRS, IREG, O) 
STORKE=. FALSE. 
STORGN=. FALSE. 

C 
IF(COGRN. EQ. 1) THEN 

C .... GRND1 
CTURB=0.0395 
CRIT=0.1 

ELSE 
C .... GRND2 or 3 

STORKE=STORE(KE) 
C#### GTR 21.02.94 ADD NUTNEO 

NUTNEO=NEZ(ENUT) 
IF(NUTNEO) LOYPLS=LOPVAR(PVYPLS, IREG, O) 

C#### mrm 01.03.94 USE NUTNEO 
STORGN=STORE(LGEN1). AND. NUTNEO 
IF(STORGN) THEN 
LOGENI=LOF(LGENI) 
LOGENR LOPVAR(PVGENR, IREG, O) 
LOGENW LOPVAR(PVDISS, IREG, O) 
IF(ENUT. LT. O. 0) LOVIST=LOF(VIST) 
LOSU=LOF(LSU) 
LOMI=LOF(LMI) 

ENDIF 
LORCDS=LOPVAR(PVRCDS, IREG, O) 
ROUGH=GTZ(WALLA) 
IF(COGRN. EQ. 2) THEN 

C .... GRND2 
if(dbg) call writll('rough %rough) 

C .... It is possible to test the effect of the number of iterations 
C on the solution by setting ISKINA in SATELLITE 

NUMITS=5+ISKINA 
SHALFM=1.0/1 1.5 

ELSEIF(COGRN. EQ. 3) THEN 
C .... GRND3 

LOKE=LOF(KE) 
ENDIF 

ENDIF 
C .... Start of DO loop 

J=O 
IPLUS=(IXF-2)*NY 
KOUNT=12 
I F(. NOT. LDAT1 (32)) THEN 

IF(KOUNT. EQ. 12. AND. ISWEEP. EQ. FSWEEP + 1) KOUNT=O 
IF(ISWEEP. EQ. LSWEEP-l. AND. KOUNT. EQ. 0) KOUNT=1 

ENDIF 
DO 20 IX=IXF, IXL 
IPLUS=IPLUS+NY 

CDIR$ IVDEP 
DO 20 IY=IYF, IYL 
I=IY+IPLUS 
J=J+l 

C.... Reynolds number = relvel/(kinematic viscosity / wall distance) 
REYN=F(LORLVL+J)/(F(LOMUDD+I) + TINY) 
SKINFL=1.0/(REYN + 1. E-20) 

C#### aks 19/595 FNSKIN: correct error in YPLS for laminar flow 
SLHALF=SQRT(SKINFL) 
IF(COGRN. EQ. 1) THEN 
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C.... Blasius law (GRND1) 
IF(REYN. GT. CRIT) THEN 
SKINF=CTURB * REYN ** (-0.25) 

ELSE 
SKINF=SKINFL 

ENDIF 
ELSEIF(COGRN. EQ. 2) THEN 

C.... Log law (GRND2, smooth or GRND3, rough) 
IF(ROUGH) THEN 
REYROU=REYN*WALLA*F(LORCDS+J) 

ELSE 
EREYNO=EWAL*REYN 

ENDIF 
FLOSK=AMAX1 (F(L0SK+J), 1. E-4) 
SHALF=AMIN1 (SORT(flOsk), SHALFM) 

C.... Iterative solution of: SHALF=AK. /LN( E*RE*SHALF) 
C### aks 29/5/96 1.01+ removed A 

DO 10 ITS=1, NUMITS 
IF(ROUGH) THEN 
LOEA2=LOF(EASP2) 
E=EW(SHALF*REYROU) 
EREYNO=E*REYN 

ENDIF 
ARG= EREYNO*SHALF 

C### aks 29/5/96 A 1.01 +removed 
C### aks 29/5/96 check on ARG added. 

IF(ARG. EQ. 1.0) THEN 
write(l 4, *) 'ERROR in FNSKIN IIP 
write(l 4, *) 'Argument of skin friction log_e = 1.0 
write(14, *) 'Value altered to 1.01 
ARG=1.01 

ENDIF 

IF(ISKINB. GT. 0) THEN 
AKPLUS=AKISHALF 
ARG1=(((0.04166667*AKPLUS+0.1666667)*AKPLUS 

I +0.5)*AKPLUS+1. )*AKPLUS+I. 
ARG=ARG+ARG1 

ENDIF 
10 SHALF=AK/ALOG(ARG) 

C#### GTR 21.02.94 ADD CHECK ON ENUT 
C#### aks 19/5/95 FNSKIN: correct error in YPLS for laminar flow 

IF(NUTNEO) F(LOYPLS+J)=AMAX1(REYN*SHALF, REYN*SLHALF) 
SKINF=SHALF*SHALF 
IF(ROUGH) F(LOEA2+1)=E 

ELSEIF(COGRN. EQ. 3) THEN 
C.... Generalised log law, GRND3 

SORK=SQRT(F(LOKE+I)) 
SQKDVS=SQRK*F(LORCDS+J)/F(LOMUDD+I) 
IF(ROUGH) THEN 
RERDH=RTTDKE*SQKDVS 
TERM=EW(RERDH*WALLA)*RERDH 

ELSE 
TERM=EWC * SQKDVS 

ENDIF 
SKINF=AKC*SQRK/(ALOG(TERM/F(LORCDS+J)) F(LORLVL+J)) 

C### aks 29/5/96 A 1.01+ removed 
C#### GTR 21.02.94 ADD CHECK ON ENUT 
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C#### aks 19/5/95 FNSKIN: correct error in YPLS for laminar flow 
IF(NUTNEO) F(LOYPLS+J)=AMAX1(RTTDKE*SQRK/F(LOMUDD+I), 

1 REYN*SLHALF) 
ENDIF 
F(LOSK+J)=AMAXI (SKINF, SKINFL) 

C.... Put into patchwise store PVSTRS the turbulent shear stress 
C divided by density 
C#### mrm 01/03/94 change STORKE to LGENI. NE. 0 so that near-wall 
C generation rate computed for algebraic turbulence models 

IF(LGENI. NE. 0) THEN 
C.... Note that it would be more appropriate to augment the relative 
C velocity by some factor which allowed for the fact that the 
C outer boundary of the cell probably has the same shear stress 
C but a higher relative velocity. 
c#### aks 2/6/94 change SKINF to F(LOSK+J) 

F(LOSTRS+J)=F(LOSK+J)*F(LORLVL+J)**2 
IF(STORGN) THEN 

C.... Here the generation rate computed in GREX is modified. It has 
C already been added to the source of KE by reason of the KESORC 
C patch created by the turmod(kemodl) command. The generation rate 
C to be used in the k-balance equation is placed in the patch-wise 
C store PVGENR after subtraction of the dissipation rate which is 
C calculated but not stored. 

GENRTN = F(LOSTRS+J)*F(LORLVL+J) 
C.... The velocity-squared term is adjusted here to an appropriate 
C value for use in the enthalpy equation 

VLGRD2=GENRTN*0.5*F(LORCDS+J) 
IF(ENUT. GT. O. 0) THEN 
F(LOGEN1+1)=VLGRD2/ENUT 

ELSE 
F(LOGEN1+1)=VLGRD2/(F(LOVIST+I)+TINY) 

ENDIF 
F(L0GENW+J)=F(L0GEN1+I) 
IF(COGRN. EQ. 3) THEN 

C .... Set to zero the (incorrect) sources resulting from the 
C velocity-gradient-squared and epsilon terms resulting, 
C for near-wall cells, from the KESOURCE patch. 

F(LOSU+I)=O. O 
C .... Calculate the dissipation rate from a formula which 
C would make DISS equal GENRTN if tau/rho were equal to 
C the constant TAUDKE. Note that: 
C GENRTN = (tau/rho) * relvel 
C DISS = (tau/rho)**1.5/Sqrt(skinf) 
C DISS = (F(LOKE+I)*TAUDKE)**1.5/SQRT(SKINF) 

DISS = (F(LOKE+I)*TAUDKE)**1.5*(ALOG(TERM/ 
1 F(LORCDS+J)))/AK 

C### aks 29/5/96 1.01+ removed A 
F(LOGENR+J) = GENRTN - DISS 

ENDIF 
ENDIF 

ENDIF 
20 CONTINUE 

C.... End of DO loop 
DOSKIN(I REG)=. FALSE. 
if(dbg) then 

CALL WRIT40('exit from FNSKIN called from GXWFUN 
call prnpat('skinfrco', pvskin, ireg) 
if(storke) call prnpat('tau/rho ', pvstrs, ireg) 
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if(storgn. and. cogrn. eq. 3) then 
call pmpat('gen-diss', pvgenr, ireg) 
call prnpat('Igenwall', pvdiss, ireg) 

endif 
endif 
NAMFUN='fnskin' 
END 

******************************************************************* 
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Appendix 5: Coefficients in the Finite Volume 

Equations 

The coefficients in the FVE (Equation 2-62) have the following meanings: 

A5.1 Time Dependence 

aT represents time dependence, i. e. the influence of the past on the present. The 

coefficient consists of- 

aT - 
PT (AXAYAZ)T 

At Equation A5-1 

where (A. XAYAZ)T is the cell volume at the earlier time (note that cell volumes may 

change with time), pr is the density at the earlier time and At is the magnitude of the 
C74 

time interval. For steady flows i. e. 
Oz 

= 0, such as are examined in this study, this /Ot 

coefficient is equal to zero. 

A5.2 Convection and Diffusion Coefficients 

aE, aw etc. express the convection and diffusion contributions from neighbouring cells. 

As an illustrative example, take the case of a steady one-dimensional situation which 

contains only convection and diffusion. It will be shown that unless the convective term 

receives special treatment the solution for 0 becomes physically unrealistic. 

The governing differential equation for one-dimensional incompressible flow is: 

d (PUO) =d 
(r 

dx dx 

Integrating this over the control volume shown in Figure A5-1 gives: 

(PUO). - (Puo), = (r '%), - (r tlý 
119x)" 

Equation A5-2 

Equation A5-3 
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CIX*d %bbum 

E 
0 

Figure A5-1: One-dimensional 

control volume 

Initially we assume a piece-wise linear profile for 0 (known as the central difference 

scheme) 

01 =1 (OE + Op) and 0� =1 (op + ow) Equation A5-4 

but as will be shown this assumption will lead to a physically unrealistic solution for 

The factor 1/2 arises if the faces 'e' and 'w' are located mid-way between points 'P' and 
'E' respectively. Equation A5-3 may now be written as 

re (OE 
- OP) rw (OP 

- OW) 

5 (PU)e (OE + OP) -I (PU)w (OP + OW) = Equation A5-5 
22 (AX), (AX)W 

The values of r at faces 'e' and W may be found using either the arithmetic mean 

=("P'rE) Y2 
(rp + rwY2 

or the harmonic mean (see Notation for meaning of e(eE) and w(wW) ) 

21PEI 
1we 

+ 
le(eE) Yrp XE 

21PWI 
1wey 

r r+ 
lw(WW) 

/p 
Yrw 

Equation A5-6 

Equation A5.7 

both of which are available in PHOENICS through the use of the last argument of the 
PIL command SOLUTN. In general, harmonic averaging is employed for the 

momentum equations and the arithmetic mean is used for the continuity equation and 

turbulence conservation equations. 

Equation A5-5 is then cast into the standard form of a FVE: 

242 



a,, O, = aEOF+ a, O, Equation A5-8 

where 

r puý - aE 
Ax C2 

pu. aw +2 Equation A5-9 

ap = a. + a, + p(U. - U. ) 

=0 

Note that the last term in ap goes to zero due to continuity. This now gives the complete 

FVE. However, problems with this formulation emerge when we attempt to solve the 

following simple example: 

rI=, rj 
=1 and pU. =pU,, =4 

AX e 
AX 

If OE and Ov are known, as for example: 200 and OW = 100, then Equation A5-8 

gives Op = 50, which is clearly unrealistic since the value of OP cannot lie outside the 

range of its neighbours. The error is in the assumption of a linear distribution of 0 across 

the cell (Equation A54). 

Improved profile assumption. If Ir is taken to be constant (pU already being constant 

from the continuity equation) then the governing equation, Equation A5-2, may in fact 

be solved analytically. Using the boundary conditions: 

atx = 

O= 01 at x= 1 

gives (Patankar 1980) 

0-0 0 exp(P ý/, )-I 

01-00 exp(P) -I 
Equation A5-10 
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k 

4: s 

k 

where P is the Peclet number 

=P 
%representing 

the relative 
M 

strengths of convection and 
diffusion. The exact solution is 

plotted in Figure A5-2 for various 

values of Peclet number. In the limit 

of zero Peclet number, the pure 
diffusion (or conduction) problem is 

obtained and the 0-x variation is 
linear. When the flow is in the 

positive x direction (i. e. for positive 

values of P), the values of 0 in the 
0x domain are more influenced by the 

Figure A5-2: E=ct solution of the ID convection-diffusion upstream value of 0. For a large 
problem. 

positive value of P, the value of 

remains very close to the upstream value Oo over much of the domain. When the flow is 

in the negative x direction, 01 becomes the upstream value of 0. For a large negative P 

the value of 0 over most of the domain is very nearly equal to 01. 

It can now be seen that the 0-x profile is far from linear except for small values of 1PI. 

When IPI is large the value of 0 at x= 1/2 (i. e. the cell interface) is nearly equal to the 

value of 0 at the upwind boundary, i. e. the value from the upstream cell. Also note that 

at large pl, do I is nearly equal to zero at x= 1/2, thus the diffusion term in Equation 1dx 

A5-3 is negligible. Several improvements on the simple linear profile have been found, 

such as the upwind scheme, the exponential scheme, the power law scheme and the 
hybrid scheme (Patankar 1980 p86). PHOENICS by default uses the hybrid scheme 

which calculates Oat the east face of each cell by the following method: 
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For -2: 5 P,,: 5 2 01 =2 
OE + OP) (central difference scheme) 

otherwise for pU, >0 A= 
VIC 

OP 

PU,, <0 
(upwind scheme) Oe ̀  OE 

where Pe is the Peclet number on the east face of the cell. A similar procedure is used 

for the calculation of 
a. 6ý d. 

5 

3 I 

2 

e 

\4 Further insight may be gained by 
a, 
T P., 3 

plotting the dimensionless coefficient 
Pe 

2 

a E aE/de (where d, =rWA. for this one IE 0 T. d, 

__,., 
-Exact dimensional case) as a function of 

-5 -4 -3 -2 -1 012345 
Peclet number, as shown in Figure Pe 
A5-3. The solid line shows the exact 

Figure A5-3: variation of the coefficient aE 
solution which has the properties: 

with Peclet Number 

for P,, a, 
d. 'ý4 0 

2. for P,, 
aE Yd. 

-ý-p 

3. at P,, =0 the tangent is a, Id, 
=I- 

P/e2 

These three straight lines give a reasonable approximation to the exact curve, and 

constitute the hybrid scheme. Thus: 

for Pe < -2 
a, Id, 

=-P. 

for -2: 5 P.: 5 2 a, =I- 
Id, P/2 
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a, / for P, > 2d ý--o 

These expressions can be combined into a compact form by the use of the operator 

'max' which returns the maximum value of its arguments. Thus: 

aE= d. xmax(-P. , I-P/2 0) Equation A5-ý] I 

The coefficient may also be regarded as having a convection term and a diffusion term, 

the latter being influenced by the convective stream. For strong convection, the 

diffusion may be reduced to zero. Thus aEmay also be written as: 

aE= d. x max (0,1 - 0.51P, 1) + d, x max (0, - P, ) Equation A5-12 

or 

aE= max(o, d, -0.51ml) +max(O, -m, ) Equation A5-13 

diffusion with convective influence convection term 

where me is the mass flux through face e. Note that the factor 0.5 may be replaced by 

the variable a which may be regarded as the value of I/P, at which the diffusion term is 

switched off. The value of a may be changed through the use of the PHOENICS 

variable DIFCUT. If a= 0 then the hybrid scheme returns to the upwind scheme and 

the value of 0 at the cell interface is taken to be the value of its upstream neighbour. 

Coefficients representing the influence of the W, N, S, H, L cells may be determined in 

a similar manner. 

A5.3 Coefficient of Current Cell 

The coefficient of Op is made up as follows: 

ap = aE+aw+aN+ as +aH +aL +aT 

+(-S, ) a source term contribution 

(p, &xAyAz /, ) Equation A5.14 
-/A a term for false time step relaxation 

+ boundary conditions 
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Note that, as suggested by the one-dimensional case in Equation A5-9c, the terms 

aE+ a, +a, +a, + all+aL+aT in the expression for ap are a consequence of mass 

conservation. 

247 



ALL MISSING PAGES ARE BLANK 

IN 

ORIGINAL 



Appendix 6: Calculation of the Flow Field 

A6.1 Introduction 

The flow field may be calculated using the FVE (Equation 2-62) with 0=U, V or W 

and by noting that the continuity equation and the momentum equations are linked via 
the pressure field. When the correct pressure field is substituted into the momentum 

equations, the resulting velocity field will satisfy the continuity equation. 

volume C, m' M, 

E 

(äx). 

However a problem arises when the pressure 
gradient term of the momentum equation is 

discretized. Integrating the term -dPl- over ldx 

a three point grid cluster such as the one shown 
in Figure A6-1 and using a piecewise-linear 

Figure A6-1: One dimensional control volume 
profile (for algebraic convenience only) gives 

_p =PW+PP _PP+PE =PW-PE P", 
e222 Equation A6-1 

Thus the discretised equations contain pressure differences between alternate grid points 

and not between adjacent ones. The intennediate grid point is skipped, which has the 

consequence that an unrealistic wavy pressure distribution, for example as shown in 

100 50 100 50 100 50 

Figure A6-2: Wavy pressure distribution 

Figure A6-2, will be seen by Equation A6-1 as a uniform distribution. A similar 

difficulty arises for the discretization of the continuity equation. For the steady one- 

dimensional constant density case, the continuity equation is simply 

dU=O 
Equation A6-2 

dx 
which integrated over the control volume given in Figure A6-1 gives: 

Ue - Ull, =0 Equation A6-3 
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Again using a piecewise-linear profile for U gives 

UP+U' UW+UP= 
220 

Equation A6-4 

or 

UE -UW 0 Equation A6-5 

where again the intermediate point 'P' is skipped, leading to the same possible 

consequences as described above for the pressure gradient term. 

Before a scheme for finding the velocity field from the pressure field could be 

presented, a solution to the problem posed above was required. This was fulfilled by the 

staggered grid, first used by Harlow and Welch (1965) and which now forms the basis 

of the SIMPLE procedure of Patankar and Spalding (1972). 

The solution relies on the fact that the 

VI velocity 0 

VI 

UI 

Figure A6-3: Staggered grid 

location of the control volumes does 

not need to be the same for all of the 

general variables 0. The staggered grid, 

[_i, _I&i, FC, jf--(Figure A6-3), uses one grid for the 

calculation of pressure and other scalar 

---variables, and for each velocity 

component an additional grid is 

---: ý--------employed, displaced from the original 

grid by 1/2 a cell length in the direction 

of the velocity component. Therefore 

the velocities may also be viewed as 
being calculated at the cell faces of the 

original grid, thus 

Up velocity is calculated on the face 'e' 

Vp velocity is calculated on the face 'n' 

Wp velocity is calculated on the face W. 
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The two problems found in discretizing the pressure gradient term and the continuity 

term are then solved. Integrating the pressure gradient term in the momentum equation 

over the staggered velocity cell corresponding to the V cell results in a pressure 

difference over the cell which may be represented by two adjacent pressures 

r( dP 
i ý7-T ý-- PP - PE 

Velocity cell 
x) 

Equation A6-6 

Likewise integrating the continuity equation over a pressure cell leads to a velocity 

difference using stored velocities only and no profile assumption is required. 

One consequence of using the staggered grid however is that velocities cannot be 

calculated at the boundary of the domain due to Equation A6-6 above. For example, the 
1 velocity corresponding to cell 'P' is calculated at face V. If this face happens to be 

a boundary to the domain, PE does not exist and therefore the momentum equation 

cannot be solved for this particular cell. 

A6.2 Momentum Equations 

Taking the x direction as an example, the discretization equation for 0=U over the one- 

dimensional control volume shown in Figure A6-4 is 

, 
)A, a, U, = lanbUnb+b+(P,, -P, Equation A6-7 

In discretizing the Navier-Stokes equations the pressure gradient term becomes the 
)A, Since the pressure and velocity fields are interlinked it pressure force term (P, - P, 

would be inconvenient to include this term as part of the source term, as is often done in 

the Navier-Stokes equations. During the solution procedure only approximate values of 
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Pp and PE are known, obtained from the last sweep and denoted here by P, * and PE* 

The resulting velocity field calculated from this imperfect pressure distribution will not 

satisfy the continuity equation and will be denoted by U *. The approximate velocity 

field may then be calculated from the following discretization equation: 
Un*b+ b+ (P, * 

nb 

The pressure and velocity corrections 

Equation A6-8 

A procedure is required which will iteratively improve the approximate pressure P* 

such that the resulting velocity field U* will progressively get closer to satisfying the 

continuity equation. Writing 

P= P* + P'where Pis termed the pressure correction and 
U=U*+U' 

and subtracting Equation A6-8 from Equation A6-7 gives 
p a. U. = ja ")Ae nbUnb 

+ (PP 
- PE Equation A6-9 

The term I anbUn'b may be evaluated in terms of the pressure and velocity corrections 

of the neighbouring cells, however these neighbours would in turn bring in the influence 

of their neighbours and so on. Ultimately the velocity correction equation would involve 

the pressure correction at all grid points in the calculation domain and would be 

unmanageable. Fortunately this term only affects the rate of convergence and not the 
final solution (Patankar 1980) and so may be omitted to give 

or 

,#_A, (R" Up- R") 
eE Equation A6-10 

Ae 
j Ue 

a. 

(PP 
- 

PE) EquationA6-Ila Ue *+ 

This velocity correction equation shows how the approximate velocity U, * needs to be 

corrected in response to the pressure corrections to produce a better estimate of velocity, 

U, In a similar manner the correction equation for the other velocity components can be 

written as 
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A,, V. = V. (pl, 
- 

PN) 
Equation A6-Ilb 

a. 

W EquationA6-Ilc P- 
PHO 

h=K+ýý(Pj ah 

Pressure correction equation 
The pressure correction equation can be obtained by integrating the three-dimensional 

steady incompressible continuity equation 

d(pU) 
. 

d(pV) 
+ 

d(pW) 
0 Equation A6-12 

z dx 0')? d, 

over a standard grid cell, such as that shown in Figure (ii). This results in 
[(PU), 

-(PU),.,, 
IAYAZ+[(PV)n 

-(PV)SIAZAZ+[(PW)h -(PW)I]AXAY =0 EquationA6-13 

Substituting in the velocity correction equations (Equation A6-1 1) gives (after re- 

arranging) the pressure correction equation 
or It apR =aR+a, P, ' +a+a, Ps"+ a,, P. + a, P, + b 
pEEN 

PN Equation A6-14 

where 

a, P. 
A, 
a. 

a, p,, 
Aw Ayýz 
aw 

aN A 
AL 

AZAX 
a. 

as p. 
A, AzAx 
a, 

aH =Ph 
Ah 

AX, &y 
ah 

aL =A 
Al AXAY 
a, 

a,, = aE+aw+aN+as+aH+aL 
b= [(PU*),, 

-(PU*), 
]'&YAZ+[(PV*), 

-(PV*)nýZAX+[(PW*)l -(PW*)h]AXAY 

Note that the source term b in the pressure correction equation (Equation A6-14) is the 

discretized continuity equation evaluated for the estimated velocities U *, V *, W *. If 

these estimated velocities do indeed satisfy the continuity equation then b=0 and no 
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pressure correction is required. During the solution procedure the term b then represents 

a mass source which needs to be reduced by means of pressure corrections and their 

associated velocity corrections. One such solution procedure is the SIMPLE algorithm. 

The SIMPLE algorithm 
The SIMPLE algorithm (Patankar 1975) stands for Semi-Implicit Method for Pressure 

Linked Equations. The procedure is semi-implicit due to the omission of the term 

janbU. 'b in the velocity correction equation. This term represents an indirect or 

implicit influence of the pressure correction on the velocity field. Since this influence is 

not included the procedure is only partially implicit. 

The procedure may be written as: 

1. Guess the pressure field P*. 

2. Solve the momentum equations (such as Equation A6-8) to obtain U *, V*, W* 

3. Solve the pressure correction equation for P "(Equation A6-14). 

Calculate P from P= P* + P'. 

5. Calculate U, V and W from the velocity coffection equations (Equation A6-1 1). 

6. Solve the discretization equations for the other variables 0 (such as turbulence 

quantities). 

7. Make P*=P and repeat from step 2 until convergence. 

Improved algorithms 

The SIMPLE algorithm has been used by numerous authors. However in an attempt to 

improve the rate of convergence, two adaptations have been formulated, the latter of 

which is used in PHOENICS. 
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SIMPLER (Patankar 198 1) stands for SIMPLE Revised. The omission of the term 
J: a U' in the velocity correction equation of SIMPLE over-estimates the nb nb 

pressure correction and therefore slows down convergence. To overcome this an 

alternative equation for the calculation of the pressure field is employed which 

uses a pseudo-velocity field. No approximations are used in the derivation of these 

equations which are fully implicit. 

2. SIMPLEST (Spalding 1980) stands for SIMPLE ShorTened. The rate of 

convergence was found to be particularly slow if fine grids were used. This was 

traced back to the convection terms in the momentum FVE being non-reciprocal, 

i. e. the west convection coefficient of point P is not identical to the east 

convection coefficient of point W. As a consequence an incorrect velocity is 

convected downstream, increasing the total momentum imbalance in the field. 

Large pressure corrections are then required to eliminate this imbalance. 

SIMPLEST therefore only contains diffusion contributions to the momentum 

equation coefficients aE, aw, aN, as, aH, aL. The convection terms are added to the 

momentum source b. The velocity and pressure corrections are consequently 

smaller and the rate of convergence is increased. In this method the error resulting 

in omitting the term I: a, bU,, b is reduced and the procedure used in the original 

SIMPLE algorithm can be used. 
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Appendix 7: Multi-block Grids 

A7.1 Description of Multi-block Grids 

Multi-block gridding was first released in version 2.1 (March 1995) of PHOENICS. Its 

implementation in PHOENICS can be of two types: 

Linked blocks. Two separate grids are joined along a common line. In this way the 

domain may be split into several blocks of cells, each containing an independent 

grid. It is not required for the cells in both grids to match, or that adjoining blocks 

have identical numbers of cells, however the boundaries of adjoining blocks must 

match along common grid lines. The total domain may now be of an irregular 

shape. 

2. Embedded fine grids. Where a higher resolution is required a section of the 

domain may be split into finer cells by "overlaying" an additional, finer grid. The 

original grid lines are required to match up with a integer multiple of the new grid 

lines. 

Multi-blocking has two advantages over conventional grid techniques: 

1. 

2. 

In domains where large areas are blocked off, for example in compound duct 

flows, the domain may defined to cover only the volume containing the fluid, thus 

removing the need for unnecessary cells. 

In domains which require a local fine grid, 

the fine cells can be placed only where they 

are required. For example Figure A7.1 

shows how a conventional strearnwise grid 

models the vertical boundaries of a 

roughness element. The layer of fine cells 

extends to the full height of the duct, 

Figure A7.1: Conventional grid 
(streamwise distfibution only) 

257 



although they are not required in the main flow region. By using multi-block grids, 

the fine cells are limited to the region surrounding the block. 

It was found however that the use of multi-block gridding in PHOENICS was 

accompanied by a number of complicating factors: 

1. A new numerical scheme. Multi-block grids no longer used the staggered grid 

system. Instead extra velocities were calculated at the centre of each cell. These 

were tenned "co-located velocities". 

2. Storage of values in the F-array. The extraction of values from the F-array was 

made more complex due to the fact that there were now numerous independent 

grids, each stored separately. Thus a neighbouring cell in physical space might not 
be a neighbour in computational space. The layout of the grids in the F-array is 

illustrated in Figure A7.2. 

I 
-.. 

LL 
ýýCIMELNXIxNY 

1 FFTT- 
Grid 3: 
Linked , NX3 x NY3 

Grid 2: 
Embedded; 
NX2 x NY2 

Domain 

NY 

NYI 

NY2, NY3 

c 

Figure A72: F-Array structure ofmulti-block grids 

3. Use of body fitted co-ordinates (BFQ. To use multi-block grids, the BFC option 
in PHOENICS had to be activated, even if the grid required was orthogonal. This 

resulted in a longer and more tedious grid generation procedure, and less 
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flexibility in defining each grid, due to the fact that XFRAC, YFRAC and 
ZFRAC might not be defined explicitly. Only the supplied power law could be 

used and not user defined geometric expansions. 

4. Blockages. Due to a error in PHOENICS, the method of defining blocked off 

areas, using CONPOR, was found not work with multi-block grids. This problem 

was later solved with the release of version 2.1.1. 

5. A further problem encountered was that the post processor PHOTON was unable 

to process multi-block grid output files. 

Due to the advantages in using multi-block gridding, a thorough examination was 

undertaken to determine ways of increasing the resolution of grid cells in the region 

surrounding isolated roughness elements. This is discussed in the following section. 

A7.2 Defining a Multi-block Grid over a Roughness Element 

Method 1 

Conceptually the easiest method of increasing the grid resolution surrounding a 

roughness element is to use uniform grids which are then sub-divided in the region 

encompassing the roughness element. A number of sub-divisions may be performed to 

achieve the required wall cell size. For example Figure A7.3 shows two grid 

subdivisions of the main grid. Implementation of this method presented several 

difficulties: 

1. The roughness element had to be blocked off using the CONPOR technique in 

PHOENICS. Due to the error mentioned previously, this was not possible. 

2. If the blockage could have been correctly specified, it would have contained lots 

of very small cells which would have been wasteful of computational resources. 
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3. Many grid sub-divisions would have been required to gradually reduce the size of 

the cell from that used in the core flow region to that required adjacent to the solid 
boundary of the roughness element. 

An attempt was also made to find a geometric or power law expansion within these sub- 

grids, but no adequate method of joining the sub-grid boundaries was found. 

r---T --- 1----i 

-r-__ 

-1 
41 

Figure A 7.3: Embedded multi-block grids 

Method 2 

To avoid defining the roughness element as a blockage, the linked blocks method was 

employed to exclude the roughness element from the domain. Again no solution could 

be found for joining adjacent expanding grids of the type shown in Figure A7.3 (they 

direction only is shown for clarity). 
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-------------------------------------- ------------------------------------------------ 
............. 

-------------------------------------- ...................................... 
------------- 

----------------------------------------------------------------------------------------- 
------------- 

----------------------------------------------------------------------------------------- 
------------- 

-------------------------------------- -------------------------------------- 
-------------------------------------- -------------------------------------- 

-------------------------------------- -------------------------------------- 
-------------------------------------- -------------------------------------- 
-------------------------------------- -------------------------------------- 

Figure A7.3: Linked multi-block grids (y direction only) 
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Appendix 8: PHOENICS Code for User 

Controlled Periodic Boundary Conditions 

A8.1 Domain and Grid 

The user controlled periodic boundary conditions were tested using Schlichting's 

(1936) roughness plate XX, case 5 (Re = 2.2 XICý ) for which the domain and grid 

employed are shown in Figure AM. Two periods were used to aid the visualisation of 

fully developed flow. The QI input file (Section A8.2) specified all of the flow 

parameters. The inlet and outlet boundary conditions, specified in Group 13 of the QI 

file, used the flag GRND which enabled the value of the boundary condition to be set 

in the GROUND subroutine. 

The recycling of the arrays of the variables W1, P1, U1, V1, EP and KE was 

performed in Group 19, Section 7 of GROUND, in which further subroutines were 

called. Each variable was extracted from the F-array at the relevant slab and inserted 

into user defined one-dimensional arrays. Thus the W1 velocities were recycled from 

cell IZ=NZ-1 to IZ=1 (Figure 3-1), via the GROUND array W1 IN. A scale factor, 

CMASS was calculated as 

CMASS= NYxNX 

Wo 

ý [cell high area(n) X W1 IN(n)] otalhigharea 
n-1 

/t 

Multiplying the array W1 IN by CMASS ensured that the average velocity remained 

equal to the required averaged velocity, WO. The boundary condition for the pressure 

variable was the source of mass flow, specified by W1 x CMASS x RHO1. The 

variables U1, V1, EP and KE were recycled in a similar manner to the W1 variable 

(though CMASS was not used for these variables). 
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The outlet pressure distribution was set by extracting the pressure distribution from IZ=2 

and placing it into the GROUND array P1 DOWN. The average of this array was 
calculated by summing the product of the cell pressures with the high face cell areas, 
from the top of the roughness elements to the top wall. This average value was then 
taken away from the original P1 DOWN to create a new P1 DOWN, which was used as 
the exit boundary condition. This ensured that the average pressure at outlet was zero 
and gave the correct strearnwise pressure gradient. 

A8.2 01 file 
TALK=F; RUN(1,1); VDU=Xll JERM 
NOCOPY=T; NOCOMM=T 
SAVE=T 

CYCLIC DUCT FLOW 
ALASTAIR SENIOR, RMCS 

" Uses mass flow at inlet, fixed pressure at outlet 
" with recycling of velocites and pressure distribution 

" File name: f rxx 
" Test number(#): 6 
" Date: 14/12/96 
" Running on: v2.1.1, SUN, SOLARIS 

Comments: 2d, cyclic b. c. 
Case: Sch XX, profile 5 (high Re. ) 
high P1 exit coeff 

GROUP 1. Run identifiers and other preliminaries. 

TEXT(CYCLIC DUCT 
PARAB=F 
REAL(DEPTH, PLTH, SLTH, WIDTH, WO) 
REAL(BLKHGT, BLKLTH, MFDTH) 
INTEGER(BNY, BNZ, PNZ, SNZ, MFNY, IBC1, IBC2, IBC3, IBC4) 

BLKLTH=0.3e-3 
PLTH=60e-3 
SLTH=PLTH-BLKLTH 
BLKHGT=3.2e-3 
DEPTH=39.7e-3 
MFDTH=DEPTH-BLKHGT 

* WO = specified bulk velocity(m/s) 
WO=5.025 

GROUP 2. Time-dependence and related parameters. 
STEADY=T 
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* GROUP 3. x-direction grid specification. 
CARTES=T 

* GROUP 4. y-direction grid specification. 

BNY=20 
MFNY=50 
NY=70 
YVLAST=DEPTH 
YFRAC( 1)=-I; YFRAC( 2)= 1.25945E-03 
YFRAC( 3)=l; YFRAC( 4)= 1 . 49986E-03 
YFRAC( 5)=l; YFRAC( 6)= 1 . 78618E-03 
YFRAC( 7)=l; YFRAC( 8)= 2 . 12715E-03 
YFRAC( 9)=l; YFRAC( 10)= 2.53320E-03 
YFRAC( ll)=l; YFRAC( 12)= 3.01677E-03 
YFRAC( 13)=l; YFRAC( 14)= 3.59265E-03 
YFRAC( 15)=l; YFRAC( 16)= 4.27846E-03 
YFRAC( 17)=l; YFRAC( 18)= 5.09519E-03 
YFRAC( 19)= ll; YFRAC( 20) = 5.03778E-03 
YFRAC( 21)=I; YFRAC( 22)= 3.77834E-03 
YFRAC( 23)=l; YFRAC( 24)= 4.33739E-03 
YFRAC( 25)=l; YFRAC( 26)= 4.97916E-03 
YFRAC( 27)=l; YFRAC( 28)= 5.71589E-03 
YFRAC( 29)=l; YFRAC( 30)= 6.56163E-03 
YFRAC( 31)=l; YFRAC( 32)= 7.53250E-03 
YFRAC( 33)=l; YFRAC( 34)= 8.64703E-03 
YFRAC( 35)=I; YFRAC( 36)= 9.92647E-03 
YFRAC( 37)=l; YFRAC( 38)= 1.13952E-02 
YFRAC( 39)=l; YFRAC( 40)= 1.30813E-02 
YFRAC( 41)=l; YFRAC( 42)= 1.50168E-02 
YFRAC( 43)=l; YFRAC( 44)= 1.72387E-02 
YFRAC( 45)=l; YFRAC( 46)= 1.97894E-02 
YFRAC( 47)=l; YFRAC( 48)= 2.27175E-02 
YFRAC( 49)=l; YFRAC( 50)= 2.60789E-02 
YFRAC( 51)=l; YFRAC( 52)= 2.99376E-02 
YFRAC( 53)=l; YFRAC( 54)= 3.43672E-02 
YFRAC( 55)=l; YFRAC( 56)= 3.94522E-02 
YFRAC( 57)=I; YFRAC( 58)= 4.52897E-02 
YFRAC( 59)=l; YFRAC( 60)= 5.19909E-02 
YFRAC( 61)= 7; YFRAC( 62)= 4.49802E-02 
YFRAC( 63)= 5; YFRAC( 64)= 2.51889E-02 
YFRAC( 65)=l; YFRAC( 66)= 2.00309E-02 
YFRAC( 67)=l; YFRAC( 68)= 1.61293E-02 
YFRAC( 69)=l; YFRAC( 70)= 1.29876E-02 
YFRAC( 71)=I; YFRAC( 72)= 1.04579E-02 
YFRAC( 73)=l; YFRAC( 74)= 8.42088E-03 
YFRAC( 75)=l; YFRAC( 76)= 6.78065E-03 
YFRAC( 77)=l; YFRAC( 78)= 5.45991 E-03 
YFRAC( 79)=l; YFRAC( 80)= 4.39642E-03 
YFRAC( 81)=l; YFRAC( 82)= 3.54008E-03 
YFRAC( 83)=l; YFRAC( 84)= 2.85054E-03 
YFRAC( 85)=l; YFRAC( 86)= 2.29531 E-03 
YFRAC( 87)=l; YFRAC( 88)= 1.84823E-03 
YFRAC( 89)=l; YFRAC( 90)= 1.48823E-03 
YFRAC( 91)=l; YFRAC( 92)= 1.19835E-03 
YFRAC( 93)=l; YFRAC( 94)= 9.64934E-04 
YFRAC( 95)=l; YFRAC( 96)= 7.76983E-04 

266 



YFRAC( 97)=l; YFRAC( 98)= 6.25641 E-04 
YFRAC( 99)=l; YFRAC( 100)= 5.03778E-04 

* ******* ********* ****** ***** *** *********** **** *** ****** *** ** 

GROUP 5. z-direction grid specification. 

NZ=l 26 
BNZ=4 
SNZ=58 
ZWLAST=0.12015 

ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 
ZFRAC( 

1)= -1; ZFRAC( 2)= ( 
3)= 4; ZFRAC( 4)= E 
5)=l; ZFRAC( 6)= 8.: 
7)=I; ZFRAC( 8)= 1.1 
9)=l; ZFRAC( 10)= 1 
1 1)=l; ZFRAC( 12)= 
13)=I; ZFRAC( 14)= 
15)=I; ZFRAC( 16)= 
17)=l; ZFRAC( 18)= 
19)=l; ZFRAC( 20)= 
21)=l; ZFRAC( 22)= 
23)=I; ZFRAC( 24)= 
25)=l; ZFRAC( 26)= 
27)=I; ZFRAC( 28)= 
29)=l; ZFRAC( 30)= 
31)=l; ZFRAC( 32)= 
33)=l; ZFRAC( 34)= 
35)= 28; ZFRAC( 36) = 
37)=l; ZFRAC( 38)= 
39)=l; ZFRAC( 40)= 
41)=I; ZFRAC( 42)= 
43)=l; ZFRAC( 44)= 
45)=I; ZFRAC( 46)= 
47)=l; ZFRAC( 48)= 
49)=I; ZFRAC( 50)= 
51)=l; ZFRAC( 52)= 
53)=l; ZFRAC( 54)= 
55)=l; ZFRAC( 56)= 
57)=l; ZFRAC( 58)= 
59)=I; ZFRAC( 60)= 
61)=l; ZFRAC( 62)= 
63)=l; ZFRAC( 64)= 
65)=I; ZFRAC( 66)= 1 
67)= 4; ZFRAC( 68)= 
69)=I; ZFRAC( 70)= i 
71)=l; ZFRAC( 72)= 
73)=l; ZFRAC( 74)= 
75)=l; ZFRAC( 76)= 
77)=I; ZFRAC( 78)= 
79)=l; ZFRAC( 80)= 
81)=I; ZFRAC( 82)= 
83)=l; ZFRAC( 84)= 
85)=l; ZFRAC( 86)= 
87)=l; ZFRAC( 88)= 
89)=l; ZFRAC( 90)= 

3.24220E-04 
3.24220E-04 
32293E-04 
00917E-03 

. 22363E-03 
1.48367E-03 
1.79896E-03 
2.18127E-03 
2.64482E-03 
3.20688E-03 
3.88838E-03 
4.71471 E-03 
5.71665E-03 
6.93152E-03 
8.40456E-03 
1.01 906E-02 
1.23563E-02 

1.29897E-02 
1.23563E-02 
1.01 906E-02 
8.40456E-03 
6.93152E-03 
5.71665E-03 
4.71471 E-03 
3.88838E-03 
3.20688E-03 
2.64482E-03 
2.18127E-03 
1.79896E-03 
1.48367E-03 
1.22363E-03 
1.00917E-03 
B. 32293E-04 
6.24220E-04 

B. 32293E-04 
1.00917E-03 
1.22363E-03 
1.48367E-03 
1.79896E-03 
2.18127E-03 
2.64482E-03 
3.20688E-03 
3.88838E-03 
1.71471 E-03 
5.71665E-03 
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ZFRAC( 91)=l; ZFRAC( 92)= 6.93152E-03 
ZFRAC( 93)=l; ZFRAC( 94)= 8.40456E-03 
ZFRAC( 95)=l; ZFRAC( 96)= 1.01906E-02 
ZFRAC( 97)=I; ZFRAC( 98)= 1.23563E-02 
ZFRAC( 99)= 28; ZFRAC( 100)= 1.29897E-02 
ZFRAC( 1 01)=l; ZFRAC( 102)= 1.23563E-02 
ZFRAC( 103)=l; ZFRAC( 104)= 1.01 906E-02 
ZFRAC( 105)=l; ZFRAC( 106)= 8.40456E-03 
ZFRAC( 107)=l; ZFRAC( 108)= 6.93152E-03 
ZFRAC( 109)=l; ZFRAC( 110)= 5.71665E-03 
ZFRAC( 11 1)=l; ZFRAC( 11 2)= 4.71471 E-03 
ZFRAC( 11 3)=l; ZFRAC( 114)= 3.88838E-03 
ZFRAC( 115)=l; ZFRAC( 11 6)= 3.20688E-03 
ZFRAC( 117)=I; ZFRAC( 118)= 2.64482E-03 
ZFRAC( 11 9)=l; ZFRAC( 120)= 2.18127E-03 
ZFRAC( 121)=l; ZFRAC( 122)= 1.79896E-03 
ZFRAC( 123)=l; ZFRAC( 124)= 1.48367E-03 
ZFRAC( 125)=l; ZFRAC( 126)= 1.22363E-03 
ZFRAC( 127)=l; ZFRAC( 128)= 1.00917E-03 
ZFRAC( 129)=I; ZFRAC( 130)= 8.32293E-04 
ZFRAC( 131)= 1; ZFRAC( 132)= 6.24220E-04 

GROUP 6. Body-fitting and other grid distortions. 

GROUP 7. Variables (including porosities) named, 

stored & solved. 
SOLVE(V1) 
SOLVE(WI) 
SOLVE(Ul) 

. Solve for P1 by whole-field method 
SOLVE(Pl) 
SOLUTN(Pl, Y, Y, Y, N, N, N) 
STORE(ENUT) 
STORE(CWN, CWS, CON, DWN, DVH, SDN, SMW) 
STORE(SCN, SDH, WDIF, VDIF, SHR) 

GROUP 8. Terms (in differential equations) and devices. 
UCONV=T 
UDIFF=T 

GROUP 9. Properties of the medium (or media). 

REAL(RREF1) 
* Water in M (from Sch) 

RH01=998.2 
ENUL=1.1700e-6 

RREF1 =RHO1 
TURMOD(KEMODL); IENUTA=8; DISWAL 
REAL(ENLREF); ENLREF=ENUL 

GROUP 10. Interphase-transfer processes and properties. 

GROUP 11. Initialization of fields of variables, 
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porosities, etc. 

RESTRT(ALL) 

REAL(KEIN, EPIN) 
KEIN=(WO*0.05)**2 
EPIN=(0.009*(KEIN**2))/(50*ENUL) 

FIINIT(Wl)=WO 
FI[NIT(Ul)=l. OE-9 
FIINIT(Vl)=l. OE-9 
FIINIT(Pl)=O. O 
FIINIT(KE)=KEIN 
FIINIT(EP)=EPIN 

GROUP 12. Convection and diffusion adjustments 

GROUP 13. Boundary conditions and special sources 

** inlet bc 
INLET(IN, LOW, 1, NX, 1+BNY, NY, 1,1,1,1) 
VALUE(IN, P1, GRND) 
VALUE(IN, W1, GRND) 
VALUE(IN, V1, GRND) 
VALUE(IN, KE, GRND) 
VALUE(IN, EP, GRND) 

** Outlet bc 
PATCH(OUT, HIGH, 1, NX, l +BNY, NY, NZ, NZ, 1,1) 
COVAL(OUT, P1,1000, GRND) 
COVAL(OUT, Vl, ONLYMS, 0.0) 
COVAL(OUT, Wl, ONLYMS, 0.0) 
COVAL(OUT, KE, ONLYMS, 0.0) 
COVAL(OUT, EP, ONLYMS, 0.0) 

** bed wall 
PATCH (WALLSBED, SWALL, 1, NX, 1,1,1, NZ, 1,1) 
COVAL(WALLSBED, W1, GRND2,0.0) 
COVAL(WALLSBED, KE, 1.0,0.0) 
COVAL(WALLSBED, LTLS, 1.0,0.0) 

PATCH (WALLSTOP, NWALL, I, NX, NY, NY, 1, NZ, 1,1) 
COVAL(WALLSTOP, W1, GRND2,0.0) 
COVAL(WALLSTOP, KE, 1.0,0.0) 
COVAL(WALLSTOP, LTLS, 1.0,0.0) 

Definition of blocks (z direction) 
Given as last cell in region, ie of block or seperation 

IBC1 =1 +BNZ 
IBC2=IBCI+SNZ 
IBC3=IBC2+BNZ 
IBC4=IBC3+SNZ 

** blockages 
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CONPOR (BLOC1,0.0, CELL, -#l, -#l, -l, -BNY, -l, -IBC1) 

* set the wl vel=O in cell 
CONPOR (BLOC2,0.0, CELL, -#l, -#l, -l, -BNY, -(IBC2+1), -IBC3) 
PATCH(INIW2, INIVAL, #l, #1,1, BNY, IBC2, IBC2,1,1) 
INIT(INIW2, Wl, 0.0,0.0) 

NlWl=NlWl+BNZ+SNZ 
CONPOR (BLOC3,0.0, CELL, -#l, -#I, -l, -BNY, -(IBC4+1), -(IBC4+1)) 
PATCH(INIW3, INIVAL, #l, #l, 1, BNY, IBC4, IBC4,1,1) 
INIT(INIW3, Wl, 0.0,0.0) 

GROUP 14. Downstream pressure (for free parabolic flow). 

GROUP 15. Termination criteria for sweeps and 
outer iterations. 

Number of sweeps 
LSWEEP=99999999 

LSWEEP=2 

GROUP 16. Termination criteria for inner iterations. 

GROUP 17. Under-relaxation and related devices. 

Variable declarations 
REAL(MAXV, MINL, RELX) 

* Estimate of the maximum velocity within domain 
MAXV=WO*1.5 

* Estimate of the minimum cell dimension 
MINL=5. OOOOE-05 

* Level of relaxation (100 - weak, 0.1 - strong) 
RELX=30 

* AUTO Linear relaxation applied to P1 
* (0.9 weak, 0.1 strong) 

RELAX(Pl, LINRLX, 0.7) 
* AUTO False time-step relaxation applied to V1 

RELAX(Vl, FALSDT, MINUMAXV*RELX) 
* AUTO False time-step relaxation applied to W1 

RELAX(Wl, FALSDT, MINLIMAXV*RELX) 
* AUTO False time-step relaxation applied to KE 

RELAX(KE, FALSDT, MINUMAXV*RELX) 
* AUTO False time-step relaxation applied to EP 

RELAX(EP, FALSDT, MINUMAXV*RELX) 

GROUP 18. Limits on variables values or increments 
to them. 

GROUP 19. Data communicated by SATELLITE to GROUND 
ROUGHGRDY uses locations 1 to 9 
CYLICGRD. F uses locations 10 to 19 
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* Bulk vel+ block cells 
RG(10)=WO 
IG(4)=BNY 

Recycling stages: 

* NF Number of sweeps per stage 
IG(10)=3000 

* RS1 no recycle 
IG(l 1)=O 

* RS2 vel and turb only 
IG(12)=O 

* RS3 vel, turb. and press 
IG(l 3)=20 

* RS4 vel and turb only 
IG(14)=O 

* RS5 vel, turb and press 
IG(15)=O 

* RS6 vel and turb only 
IG(16)=O 

* RS7 no recycle 
IG(17)=O 

monitoring. Set IG(20) to: 0 for no monitoring 
I for complete monitoring 
? for specific mon. See CYCLEGRID 

IG(11 9)=I 

GROUP 20. Control of preliminary printout 

GROUP 21. Frequency and extent of field printout. 
YPLS=F 
ECHO=T 
OUTPUT(Pl, Y, N, N, Y, N, Y) 
OUTPUT(Wl, Y, N, N, Y, N, Y) 
OUTPUT(Ul, N, N, N, Y, N, Y) 
OUTPUT(Vl, N, N, N, N, N, N) 
OUTPUT(KE, N, N, N, N, N, Y) 
OUTPUT(EP, N, N, N, N, N, Y) 
OUTPUT(VPOR, N, N, N, N, N, N) 
OUTPUT(LTLS, N, N, N, N, N, N) 
OUTPUT(ENUT, N, N, N, N, N, N) 

GROUP 22. Location of spot-value & frequency of 
residual printout. 

IYMON=3*NY/4 
IZMON=NZ/2 
IXMON=NX/2 
TSTSWP=10 

GROUP 23. Variable-by-variable field printout and plot 
and/or tabulation of spot-values and residuals. 

Control tabulation & plotting of spot-values/residuals 
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Tables and plots 
YZPR=T 

NZPRIN=l 
NYPRIN=I 

GROUP 24. Preparation for continuation runs. 

STOP 

A8.3 Ground Coding 
SUBROUTINE GROUND 

C 
C 
C* CYCLIC DUCT FLOW - Flow Rate Method 
C* ALASTAIR SENIOR, RMCS 
C 
C 
C 
C FILE NAME: ground. f. f 
C DATE: 2/12/96 
C VERSION: 2.1.1 (Also suitable for 2.0 - change INCLUDE) 
C COMMENTS: Full 3d cyclic B. C., using 1D arrays. 
C Suitable for rough ducts only. 
C Recyc. every NF+2 sweeps. 
C Recycling in stages: (Set in 01) 
C 
C In Q1 set: 
C GRND as VALUE of P1, W1, U1, V1, EP, KE at'IN' 
C P1 at'OUT' 
C LSWEEP=999999 
C 
C 
C Also includes monitering of spot values, 
C set in G19 of 01. 
C 
C 
C 
C Updates and corrections: 
C 20/9/95 - clean up 
C 20/9195 - Change calc. of main flow area, MFATOT, (G 19, S3) 
C to inc. blockages via VPOR, for V2.1.1, as 
C CONPOR no longer holds blocked area. 
C 25/9/95 - Put recyclicing into subroutines, gives 
C more flexibilty in the type of recyclicing. 
C Change q1 to grd array location assignments. 
C 27/9/95 - Correction to RS2, G1 9, S1 [was RS2=RS3+IG(l 2)] 
C 
C 27/9/95 - Correction to calc of upstream pressure average, 
C now starts from BNY+1 
C Also changed monitoring to grid independant 
C 
C 
cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
x 

272 



C Version 2.1.1 
INCLUDE 'lp2l/d-includ/sateae 
INCLUDE 'lp2l/cl_includ/grdloc' 
INCLUDE'lp2l/d-includ/grdeae 
INCLUDE'lp2l/d_includ/grdbfc' 

C Version 2.0 
C INCLUDE 'lp2/cLinclud/sateae 
C INCLUDE'lp2/d-includ/grdloc' 
C INCLUDE 'lp2/d-includ/grdeae 
C INCLUDE 'lp2/d-includ/grdbfc' 
C 
CI Set dimensions of data-for-GROUND arrays here. WARNING: the 
C corresponding arrays in the MAIN program of the satellite 
C and EARTH must have the same dimensions. 

PARAMETER (NLG=100, NIG=200, NRG=200, NCG=100) 
C 

COMMON/LGRND/LG(NLG)/IGRND/IG(NIG)/RGRND/RG(NRG)/CGRND/CG(NCG) 
C This common block gives the loopz variable (used in G 19) 

COMMON/GENI/IGFL1 (45), LOOPZ, IGFL2(14) 
LOGICAL LG 
CHARACTER*4 CG 
SAVE 

C Dimension statments - cyclic coding 
C Real arrays - single dimension, must be over ny*nx 
C NB: These must also be changed in subs RECVEL and RECIPRES 
C AAH=hIgh cell areas 
C P1 DOWN=press. from iz=2 to'OUT' 
C W1 IN=wl vel. from nz-1 WIN' 
C V1 IN=vl """ 
C Ull IN=ul .... .. 
C EPIN=EP values from nz-1 WIN' 
C KEIN=KE values from nz-1 WIN' 

REAL W1 IN(100), AAH(100), Pl DOWN(100) 
REAL VII lN(100), EPlN(100), KElN(100), UI IN(1100) 

C Real variables 
C WO=specified bulk vel. 
C WB=calc. bluk vel. 
C CMASS=scale factor for mass flow 
C MFATOT=total of main flow high areas 
C PA=outlet average press. 

REAL WO, WB, CMASS, ATOT, MFATOT, PA 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

Integers 
NC=counter for recycle 
NF=sweep freq. for recycle 
N=do loop counter 
LO***=F-array indicator 
I=F-array indicial expresion 
RS 1=I st stage in recyle 
RS2= 2st stage in recyle 
RS3= 3st stage in recyle 
RS4= 4st stage in recyle 
MONTYPE= monitor type (set in Q1 via IG(2) 
BNY= number of cell in roughness element 
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INTEGER NC, NF, N, I, RS1, RS2, RS3, RS4, MONTYPE, BNY 

C 
c 
c 

IXL=IABS(IXL) 
C NB: some sections have been removed for simplisty. 

IF(IGR. EQ. 1) GO TO 1 
IF(IGR. EQ. 1 3) GO TO 13 
IF(IGR. EQ. 1 9) GO TO 19 
RETURN 

C 
C--- GROUP 1. Run title and other preliminaries 
C 

1 GO TO (1001,1 002), ISC 
1001 CONTINUE 

C 
C User may here change message transmitted to the VIDU screen 

IF(IGR. EQ. 1. AND. ISC. EQ. I. AND.. NOT. NULLPR) 

C1 
CALL WRYT40('A. Senior. Cyclic b. c: flowrate method. ') 

RETURN 
1002 CONTINUE 

RETURN 

C 
C--- GROUP 13. Boundary conditions and special sources 
C Index for Coeff icient - CO 
C Index for Value - VAL 

13 CONTINUE 
GO TO (130,131,132,133,134,135,136,137,138,139,1310, 
11311,1312,1313,1314,1315,1316,1317,1318,1319,1320,1321), iSC 

130 CONTINUE 
C ------------------- SECTION 1 ------------- coefficient = GRND 

RETURN 
131 CONTINUE 

C ------------------- SECTION 2 ------------- coeff icient = GRND1 
RETURN 

132 CONTINUE 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

11 Material omitted if 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
C ------------------- SECTION 11 ------------- coefficient GRND10 

RETURN 
1311 CONTINUE 

C ------------------- SECTION 12 ------------------- value GRND 
C Set cyclic b. c. 

IF (NPATCH. EQAN') THEN 
IF (INDVAR. EQ. Pl) THEN 
CALL SETYX(VAL, Wl IN, NY, NX) 
CALL FN25(VAL, RHO1) 
CALL FN25(VAL, CMASS) 

ELSE IF (INDVAR. EQ. Wl) THEN 
CALL SETYX(VAL, Wl IN, NY, NX) 
CALL FN25(VAL, CMASS) 

ELSE IF (INDVAR. EQ. Vl) THEN 
CALL SETYX(VAL, VI IN, NY, NX) 
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ELSE IF (INDVAR. EQ. Ul) THEN 
CALL SETYX(VAL, Ul IN, NY, NX) 

ELSE IF (INDVAR. EQ. KE) THEN 
CALL SETYX(VAL, KEIN, NY, NX) 

ELSE IF (INDVAR. EQ. EP) THEN 
CALL SETYX(VAL, EPIN, NY, NX) 

END IF 

C Set outlet press distribution to average zero. 
ELSE IF (NPATCH. EQ. 'OUT') THEN 

CALL SETYX(VAL, P1 DOWN, NY, NX) 
END IF 

RETURN 
1312 CONTINUE 

C ------------------- SECTION 13 ------------------- value = GRND1 
RETURN 

1313 CONTINUE 
C ------------------- SECTION 14 ------------- - ---- value = GRND2 

RETURN 
1314 CONTINUE 

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
11 Material omitted 1! 

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
C ------------------- SECTION 21 ------------------- value = GRND9 

RETURN 
1321 CONTINUE 

C ------------------- SECTION 22 - --- - ------------ value = GRND10 
RETURN 

C 
C --- GROUP 19. Special calls to GROUND from EARTH 
C 

19 GO TO (191,192,193,194,195,196,197,198,199,1910,1911), ISC 
191 CONTINUE 

C* ------------------- SECTION I ---- Start of time step. 
C Initialise values 
C NB: cyclicgrd uses array location 10 to 20 for q1 to grd 

CMASS=1.0 
NC=1 
WO=RG(10) 
BNY=IG(4) 

NF=IG(l 0) 
C set recycle stages (in INIF sweeps) 
C no recycle: 

RS1=IG(11) 
C vel (and turb) only: 

RS2=RS1+IG(12) 
C vel and press: 

RS3=RS2+IG(13) 
C vel (and turb) only: 

RS4=RS3+IG(14) 
C vel and press: 

RS5=RS4+IG(15) 
C vel (and turb) only: 

RS6=RS5+IG(16) 
C no recycle: 
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RS7=RS6+IG(17) 

C Set monitoring: 
MONTYPE=IG(19) 

C Initialise cyclic arrays suitable for a restart. 
C Correction 7/9/95 

LOP 1 =LOF(ANYZ(P 1, NZ)) 
LOW1=LOF(ANYZ(Wl, 2)) 
LOV1 =LOF(ANYZ(VI, 2)) 
LOU1=LOF(ANYZ(Ul, 2)) 
LOEP=LOF(ANYZ(EP, 2)) 
LOKE=LOF(ANYZ(KE, 2)) 

DO 1915 IX=1, NX 
DO 1916 IY=1, NY 

I=IY+NY*(IX-1) 
PlDOWN(I)=F(LOPI+I) 
WlIN(I)=F(LOWI+I) 
VIIN([)=F(LOV1+1) 
UlIN(I)=F(LOU1+1) 
EPIN(I)=F(LOEP+I) 
KEIN(I)=F(LOKE+I) 

1916 CONTINUE 
1915 CONTINUE 

RETURN 
192 CONTINUE 

C* ------------------- SECTION 2 ---- Start of sweep. 
RETURN 

193 CONTINUE 
C* ------------------- SECTION 3 ---- Start of iz slab. 

C Used to ensure only one visit in S3 AND S6 
IF(LOOPZ. EQ. l) THEN 

C Get cell area arrays for recycling; 
C (flow area only, ie total area - blockages = main flow area) 

IF (ISWEEP. EQ. 1. AND. IZ. EQ. 1) THEN 
LOVPOR=LOF(VPOR) 

CALL GETYX(AHIGH, AAH, NY, NX) 
MFATOT=0.0 
DO 1931 IX=1, NX 

DO 1932 IY=1, NY 
C (NB: corrected for V2.1.1 by inc. VPOR on 20/9/95) 

I=IY+NY*(IX-1) 
MFATOT=MFATOT+(AAH(I)*F(LOVPOR+I)) 

1932 CONTINUE 
1931 CONTINUE 
C WRITE(l 4, *)'main flow area is', MFATOT 

END IF 

END IF 

RETURN 
194 CONTINUE 
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C* ------------------- SECTION 4 ---- Start of iterations over slab. RETURN 
1911 CONTINUE 

C* ------------------- SECTION 11 ---- After calculation of convection 
C fluxes for scalars, and of volume 
C fractions, but before calculation of 
C scalars or velocities 

RETURN 
199 CONTINUE 

C* ----------- --- --- SECTION 9 ---- Start of solution sequence for 
Ca variable 

RETURN 
1910 CONTINUE 

C* ------------------- SECTION 10 ---- Finish of solution sequence for 
Ca variable 

RETURN 
195 CONTINUE 

C* ------------------- SECTION 5 ---- Finish of iterations over slab. 
RETURN 

196 CONTINUE 
C* ------------------- SECTION 6 ---- Finish of iz slab. 
C Used to ensure only one visit in S3 AND S6 

IF(LOOPZ. EQ. 1) THEN 
C Convergence monitoring. 

IF (MONTYPE. GT. 0) CALL MONITOR(MONTYPE) 
END IF 

RETURN 
197 CONTINUE 

C* ------------------- SECTION 7 ---- Finish of sweep. 
C Working section for recycling. 
C (ie recycle at NF + 2) 

IF (ISWEEP. EQ. ((NC*NF)+2)) THEN 

C Recycle vel and turb only 
IF(NC. GT. RS1. AND. NC. LE. RS2) CALL RECVEL(Wi IN, V1 IN, 

1 U11N, EPIN, KEIN, AAH, W0, MFATOT, CMASS) 

C Recycle vel and turb AND pressure 
IF(NC. GT. RS2. AND. NC. LE. RS3) THEN 

CALL RECVEL(WI IN, V1 IN, UI IN, EPIN, KEIN, AAH, 
1 WO, IVIFATOT, CMASS) 

CALL RECPRES(Pl DOWN, AAH, MFATOT, BNY) 

END IF 

C Recycle vel and turb only 
IF(NC. GT. RS3. AND. NC. LE. RS4) CALL RECVEL(Wi IN, V1 IN, 

1 U1 IN, EPIN, KEIN, AAH, WO, IVIFATOT, CIVIASS) 

C Recycle vel and turb AND pressure 
IF(NC. GT. RS4. AND. NC. LE. RS5) THEN 

CALL RECVEL(Wl IN, V1 IN, U1 IN, EPIN, KEIN, AAH, 
1 WO, MFATOT, CIVIASS) 

CALL RECPRES(P1 DOWN, AAH, MFATOT, BNY) 
END IF 

C Recycle vel and turb only 
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IF(NC. GT. RS5. AND. NC. LE. RS6) CALL RECVEL(Wl IN, Vl IN, 
Ul IN, EPIN, KEIN, AAH, WO, MFATOT, CMASS) 

C counter for recycling 
NC=NC+l 

END IF 
C End cyclic codeing 

C Finish computation (set LSWEEP) 
IF (ISWEEP. EQ. ((NF*RS7)-l)) THEN 

WRITE(l 4, *)Finish at isweep =', ISWEEP 
LSWEEP=ISWEEP+l 
ENUFSW=T 

END IF 

C Temp section 2719/95 
IF(ISWEEP. EQ. LSWEEP) THEN 
LOP1 =LOF(ANYZ(Pl, NZ)) 
PA=O 
DO 1971 IX=1, NX 

DO 1972 IY=BNY+I, NY 
I=IY+NY*(IX-1) 
PA=PA+(F(LOP1 +1)*AAH(l)) 

1972 CONTINUE 
1971 CONTINUE 

PA=PA/MFATOT 
WRITE(l 4, *)'PI outlet av =', PA 
END IF 

RETURN 
198 CONTINUE 

C* ------------------- SECTION 8 ---- Finish of time step. 
c 

RETURN 

END 

SUBROUTINE RECVEL(Wl IN, VI IN, Ul IN, EPIN, KEIN, AAH, 
1 WO, MFATOT, CMASS) 

C 
C Rcycles velocity and turbulence, le fills the arrays: 
C W1 IN, V1 IN, Ul IN, EPIN, KEIN from NZ-1. 
C Also calcs scale factor for mass flow. 
C 

INCLUDE 'lp2l/d-includ/sateae 
INCLUDE 'lp2l/d-includ/grdloc' 
INCLUDE 'lp2l/d-includ/grdeae 
INCLUDE 'Ip21 /d-includ/grdbfc' 

C Version 2.0 
C INCLUDE'lp2/d-includ/sateae 
C INCLUDE 'lp2/d-includ/grdloc' 
C INCLUDE 'lp2/d-includ/grdeae 
C INCLUDE 'lp2/d-includ/grdbfc' 

PARAMETER (NLG=100, NIG=200, NRG=200, NCG=100) 
COMMON/LGRND/LG(NLG)/IGRND/IG(NIG)/RGRND/RG(NRG)/CGRND/CG(NCG) 
LOGICAL LG 
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CHARACTER*4 CG 

C Subroutine variables 
REAL W1 IN(l 00), V1 IN(100), Ul IN(l 00) 
REAL EPIN(100), KEIN(100), AAH(100) 

REAL WB, MFATOT, WO, CMASS 
INTEGERI 

WRITE(l 4, *)'Recyc vel at isweep =', ISWEEP 
L0WI=L0F(ANYZ(Wl, NZ-1)) 
LOVI=LOF(ANYZ(Vl, NZ-1)) 
LOUI=LOF(ANYZ(Ul, NZ-1)) 
LOEPI=LOF(ANYZ(EP, NZ-1)) 
LOKEI=LOF(ANYZ(KE, NZ-1)) 
DO 10 IX=1, NX 

DO 20 IY=1, NY 
I=IY+NY*(IX-1) 
Wl IN(I)=F(LOWI+I) 
VlIN(I)=F(LOVI+I) 
UlIN(I)=F(LOUI+I) 
EPIN(I)=F(LOEPI+I) 
KEIN(I)=F(LOKEI+I) 

20 CONTINUE 
10 CONTINUE 

C Calculate scale factor 
WB=0.0 
DO 30 N=1, NY*NX 

WB=WB+AAH(N)*Wl IN(N) 
30 CONTINUE 

WB=WB/MFATOT 
CMASS=WO/WB 

RETURN 
END 

SUBROUTINE RECPRES (PI DOWN, AAH, MFATOT, BNY) 
C Recycles pressure only, ie finds P1 DOWN from IZ=2, finds 
C average to give pressure drop and fills array P1 DOWN. 
C 

INCLU DE 'lp21 /d-Includ/sateae 
INCLUDE'lp21/d-includ/grdloc' 
INCLUDE'lp21/d-Includ/grdeae 
INCLUDE'lp21/d-Includ/grdbfc' 

C Version 2.0 
C INCLUDE'lp2/d-includ/sateae 
C INCLUDE'IP2/d-Includ/grdloc' 
C INCLUDE'lp2/d-Includ/grdeae 
C INCLUDE'lp2/d-Includ/grdbfc' 

PARAMETER (NLG=100, NIG=200, NRG=200, NCG=100) 
COMMON/LGRND/LG(NLG)/IGRND/IG(NIG)/RGRND/RG(NRG)/CGRND/CG(NCG) 
LOGICAL LG 
CHARACTER*4 CG 
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0 Subroutine variables 
REAL PlDOWN(100), AAH(100) 
REAL PA, IVIFATOT 
INTEGER BNY 

WRITE(14, *)'Recyc pres at isweep =', ISWEEP 
LOP1=LOF(ANYZ(Pl, 2)) 

DO 10 IX=1, NX 
DO 20 IY=1, NY 

I=IY+NY*(IX-1) 
Pl DOWN(I)=F(LUVi +1) 

20 CONTINUE 
10 CONTINUE 

C Calc dwnstrm pressure profile 
C Find upstrm press. average. 

PA=0.0 
DO 30 IX=1, NX 

DO 40 IY=BNY+1, NY 
I=IY+NY*(IX-1) 
PA=PA+(PI DOVV1, jk1)-, RAr1(I)) 

40 CONTINUE 
30 CONTINUE 

PA=PA/MFATOT 
DO 50 IX=1, NX 

DO 60 IY=1, NY 
I=IY+NY*(IX-1) 
P1 DOWN(I)=P1 DOWN(I)-PA 

60 CONTINUE 
50 CONTINUE 

WRITE(14, *)'Pressure drop is', PA 

RETURN 
END 

c*************************************************************** 
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Appendix 9: Side Wall Effect in Smooth and 
Rough Ducts 

In Section 4.1.1 it was argued that Schlichting's assumption that his flow was two- 
dimensional, i. e. that the side wall effect on the centreline bed shear stress was 

negligible, was valid at least for the smooth wall of his duct. The following discussion 

presents the case for the side wall effect on the rough wall to be also negligible. 

Smooth waU 

h2 Smooth 
side wal 

------------- U=& --------- Plane of zero shear stress T 

rax. r 
Smooth 
side wall 

ow direction t X'---o 

Z 
Rough wall 

4p 

b 
Figure A9-1: Non-symmetrically roughened duct with smooth side walls 

Considering the duct shown in Figure A94 and assuming that a plane of zero shear 

stress acts at they location of maximum strearnwise velocity, then the smooth and rough 

wall regions may be considered as isolated symmetrical ducts with semi-depths h, and 

h2 respectively. For the duct with smooth walls and neglecting the side wall effect, the 

two-dimensional bed shear stress would be 
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dP 
'rs, 2d dx Equation A9-1 

Including the effect of the side walls, this becomes 

dP ýý, r 
Equation A9-2 dx dz 

) 

where is the depth averaged value of the shear stress . in the smooth region. The 

percentage deviation from the two-dimensional value is 

10OX Ts - rs, 2d 
= 10OX CIZ 

Equation A9-3 dP/ . rs, 2d /dx 

Similarly for a duct with two symmetrical rough walls 
dP Tr, 2d 2 dX Equation A94 

h2 
dP 

+d Equation A9-5 
(- 

dx dz 

and the deviation from the two-dimensional value is 
d r., / 

CL 10ox- dz 
Equation A9-6 dP/ /dx 

At the side wall, F,.,, = F,. where F,. is the average shear stress on the side wall. As a 

rough approximation, assuming a linear distribution with y of side wall shear stress, 

then f, == Y2fý,,,. If the distribution of T . w, r ,. with x is also approximately linear, 

then 

=i sw dz dz b 
Equation A9-7 

where b is the width of the duct. The deviations of centre-line bed shear stress from the 

two-dimensional bed shear stress values (Equation A9-3 and Equation A9-6) are 
therefore approximately the same for both the rough and smooth wall regions. 
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Appendix 10: PHOENICS Code to Model 
Schlichting's Duct 

The following Q1 input file is typical of that used to simulate the flow in Schlichting's 

rough duct described in Section 4.1. The GROUND coding associated with this QI file 
is similar to that given in Appendix 11 and is therefore not repeated here. 

TALK=F; RUN( 1,1); VDU=Xl 1 -TERM 
NOCOPY=T; NOCOMM=T 
SAVE=T 
PARAB=F 
REAL(DEPTH, PLTH, SLTH, WIDTH, U1, DPDX) 
REAL(BLKHGT, BLKLTH, MFDTH) 
REAL(KEIKEPIN) 
REAL(MAXV, MINL, RELX, RELXT, RELXDP) 
INTEGER(BNY, BNX, PNX, SNX, MFNY, NF, IBU, IBD) 
CHAR(ID, NUMBER) 
BOOLEAN(SETUI, TWALL, RSTART) 

Group 1: CASE PARAMETERS SET UP 

* Set case name and number (max 4 charaters). 
ID='xxii' 
NUMBER='p6-2' 
TEXT(Schlichting Duct 

MESG(* CYCLIC DUCT FLOW 
MESG(* ALASTAIR SENIOR, RMCS 

M ESG Uses xcycle and momentum source method. 
MESG(* 
MESG( * Case identification: 
MESG( 
ID 
NUMBER 
MESG(* Date: 2/11/96 
MESG(* PHOENICS ver: v2.1.1, SUN 
MESG(* GROUND ver: s3 
MESG(* 
MESG(* Previous swps: 80 k 
MESG(* 
MESG(* Comments: Single period. SOLAIRS 
MESG(* Dense grid 
MESG(* 

specify a restart run 
RSTART=T 
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* Number of sweeps 
LSWEEP=80000 

: 
Domain dimensions: 

BLKLTH=0.0003 
PLTH=0.02 
SLTH=PLTH-BLKLTH 
BLKHGT=0.003 
DEPTH=0.0397 
MFDTH=DEPTH-BLKHGT 

y-grid set up 
BNY=32 
MFNY=82 
NY=BNY+MFNY 
YVLAST=DEPTH 

x-xgrid set up 
NX=71 
BNX=8 
SNX=63 
XULAST=PLTH 

Estimate of the minimum cell dimension 
MINL=5. OOOOE-05 

Fluid properties, Water in M (from Sch) 
RH01=998.2 
ENUL=1.1700e-6 

Specify flow. Set SETUI =T to specfiy a average velocity 
=F to specify a pressure gradient 

SETUI=F 

IF (SETUI) THEN 
" MESG( Setting required velocity... 

Specify required average velocity above blocks 
" UI=O 

" specify initial estimate for pressure gradient 
" DPDX=O 

" specify update frequency for pressure gradient 
" (NB: use =0 for manual update of pressure gradient) 

+N F=O 

" IF (NF. GT. 0) THEN 
" MESG(with automatic update of pressure gradient. 
" ELSE 
" MESG(with manual update of pressure gradient. 
" ENDIF 
ELSE 
+ MESG( Setting required pressure gradient. 

" specify required pressure gradient 
+ DPDX=21960.4000 

" Specify initial estimate of velocity field 
* (not required for continuation runs) 

+ UI=7 
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* INIF is not required; use default of zero 
+ NF=O 
ENDIF 

End of setup. 

Additional preliminaries 

x grid block labels 
IBD=BNX. 12 

IBU=IBD+SNX+ I 

Estimate of the maximum velocity within domain 
MAXV=UI*1.5 

CARTES=T 
STEADY=T 

GROUP 3. x-direction grid specification. 
XFRAC( 1)= -4; XFRAC( 2)= 1.87500E-03 
XFRAC( 3)=l; XFRAC( 4)= 2.500OOE-03 
XFRAC( 5)=l; XFRAC( 6)= 2.76013E-03 
XFRAC( 7)=l; XFRAC( 8)= 3.04733E-03 
XFRAC( 9)=l; XFRAC( 10)= 3.36442E-03 
XFRAC( 1 1)=I; XFRAC( 12)= 3.71449E-03 
XFRAC( 13)=l; XFRAC( 14)= 4.101 OOE-03 
XFRAC( 15)=l; XFRAC( 16)= 4.52772E-03 
XFRAC( 17)=l; XFRAC( 18)= 4.99884E-03 
XFRAC( 19)=l; XFRAC( 20)= 5.51898E-03 
XFRAC( 21)=l; XFRAC( 22)= 6.09325E-03 
XFRAC( 23)=l; XFRAC( 24)= 6.72727E-03 
XFRAC( 25)=l; XFRAC( 26)= 7.42726E-03 
XFRAC( 27)=l; XFRAC( 28)= 8.20009E-03 
XFRAC( 29)=l; XFRAC( 30)= 9.05334E-03 
XFRAC( 31)=l; XFRAC( 32)= 9.99536E-03 
XFRAC( 33)=l; XFRAC( 34)= 1.1 0354E-02 
XFRAC( 35)=l; XFRAC( 36)= 1.21837E-02 
XFRAC( 37)=l; XFRAC( 38)= 1.34514E-02 
XFRAC( 39)=l; XFRAC( 40)= 1.48511 E-02 
XFRAC( 41)=l; XFRAC( 42)= 1.63964E-02 
XFRAC( 43)=l; XFRAC( 44)= 1.81025E-02 
XFRAC( 45)=l; XFRAC( 46)= 1.99861 E-02 
XFRAC( 47)=l; XFRAC( 48)= 2.20657E-02 
XFRAC( 49)=l; XFRAC( 50)= 2.43617E-02 
XFRAC( 51)=l; XFRAC( 52)= 2.68966E-02 
XFRAC( 53)=l; XFRAC( 54)= 2.96953E-02 
XFRAC( 55)=l; XFRAC( 56)= 3.27852E-02 
XFRAC( 57)=l; XFRAC( 58)= 3.61966E-02 
XFRAC( 59)=l; XFRAC( 60)= 3.99629E-02 
XFRAC( 61)= 5; XFRAC( 62)= 3.700OOE-02 
XFRAC( 63)=l; XFRAC( 64)= 3.99629E-02 
XFRAC( 65)=l; XFRAC( 66)= 3.61966E-02 
XFRAC( 67)=I; XFRAC( 68)= 3.27852E-02 
XFRAC( 69)=l; XFRAC( 70)= 2.96953E-02 
XFRAC( 71)=l; XFRAC( 72)= 2.68966E-02 
XFRAC( 73)=l; XFRAC( 74)= 2.43617E-02 
XFRAC( 75)=l; XFRAC( 76)= 2.20657E-02 
XFRAC( 77)=l; XFRAC( 78)= 1.99861 E-02 
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XFRAC( 79)=l; XFRAC( 80)= 1.81025E-02 
XFRAC( 81)=l; XFRAC( 82)= 1.63964E-02 
XFRAC( 83)=l; XFRAC( 84)= 1.48511 E-02 
XFRAC( 85)=I; XFRAC( 86)= 1.34514E-02 
XFRAC( 87)=l; XFRAC( 88)= 1.21837E-02 
XFRAC( 89)=l; XFRAC( 90)= 1.10354E-02 
XFRAC( 91)=l; XFRAC( 92)= 9.99536E-03 
XFRAC( 93)=l; XFRAC( 94)= 9.05334E-03 
XFRAC( 95)=l; XFRAC( 96)= 8.20009E-03 
XFRAC( 97)=l; XFRAC( 98)= 7.42726E-03 
XFRAC( 99)=l; XFRAC( 1 00)= 6.72727E-03 
XFRAC( I 01)=l; XFRAC( 102)= 6.09325E-03 
XFRAC( 103)=l; XFRAC( 104)= 5.51898E-03 
XFRAC( 105)=l; XFRAC( 106)= 4.99884E-03 
XFRAC( 107)=l; XFRAC( 108)= 4.52772E-03 
XFRAC( 109)=l; XFRAC( 110)= 4.101OOE-03 
XFRAC( 11 1)=l; XFRAC( 11 2)= 3.71449E-03 
XFRAC( 113)=l; XFRAC( 114)= 3.36442E-03 
XFRAC( 115)=l; XFRAC( 116)= 3.04733E-03 
XFRAC( 117)=l; XFRAC( 11 8)= 2.76013E-03 
XFRAC( 11 9)=I; XFRAC( 120)= 2.500OOE-03 
XFRAC( 121)= 4; XFRAC( 122)= 1.87500E-03 

* GROUP 4. y-direction grid specification. 

YFRAC( 1)=-1; YFRAC( 2)= 6.29723E-04 
YFRAC( 3)=1; YFRAC( 4)= 7.00477E-04 
YFRAC( 5)=1; YFRAC( 6)= 7.79182E-04 
YFRAC( 7)=1; YFRAC( 8)= 8.66729E-04 
YFRAC( 9)=1; YFRAC( 10)= 9.64113E-04 
YFRAC( 1 1)=1; YFRAC( 12)= 1.07244E-03 
YFRAC( 13)=1; YFRAC( 14)= 1.1 9294E-03 
YFRAC( 15)=1; YFRAC( 16)= 1.32697E-03 
YFRAC( 17)=1; YFRAC( 18)= 1.47607E-03 
YFRAC( 19)=1; YFRAC( 20)= 1.64192E-03 
YFRAC( 21)=1; YFRAC( 22)= 1.82640E-03 
YFRAC( 23)=1; YFRAC( 24)= 2.03161 E-03 
YFRAC( 25)=1; YFRAC( 26)= 2.25988E-03 
YFRAC( 27)=1; YFRAC( 28)= 2.51380E-03 
YFRAC( 29)=1; YFRAC( 30)= 2.79624E-03 
YFRAC( 31)=1; YFRAC( 32)= 3.11042E-03 
YFRAC( 33)= 16; YFRAC( 34 )= 3.14861 E-03 
YFRAC( 35)=1; YFRAC( 36)= 2.51889E-03 
YFRAC( 37)=1; YFRAC( 38)= 2.78686E-03 
YFRAC( 39)=1; YFRAC( 40)= 3.08334E-03 
YFRAC( 41)=1; YFRAC( 42)= 3.41136E-03 
YFRAC( 43)=1; YFRAC( 44)= 3.77427E-03 
YFRAC( 45)=1; YFRAC( 46)= 4.17579E-03 
YFRAC( 47)=1; YFRAC( 48)= 4.62003E-03 
YFRAC( 49)=1; YFRAC( 50)= 5.11153E-03 
YFRAC( 51)=1; YFRAC( 52)= 5.65531 E-03 
YFRAC( 53)=1; YFRAC( 54)= 6.25694E-03 
YFRAC( 55)=1; YFRAC( 56)= 6.92258E-03 
YFRAC( 57)=1; YFRAC( 58)= 7.65903E-03 
YFRAC( 59)=1; YFRAC( 60)= 8.47383E-03 
YFRAC( 61)=1; YFRAC( 62)= 9.37531 E-03 
YFRAC( 63)=1; YFRAC( 64)= 1.03727E-02 
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YFRAC( 65)=l; YFRAC( 66)= 1.14762E-02 
YFRAC( 67)=l; YFRAC( 68)= 1.26971 E-02 
YFRAC( 69)=l; YFRAC( 70)= 1.40478E-02 
YFRAC( 71)=l; YFRAC( 72)= 1.55423E-02 
YFRAC( 73)=l; YFRAC( 74)= 1.71957E-02 
YFRAC( 75)=l; YFRAC( 76)= 1.90251 E-02 
YFRAC( 77)=l; YFRAC( 78)= 2.10491 E-02 
YFRAC( 79)=l; YFRAC( 80)= 2.32883E-02 
YFRAC( 81)=l; YFRAC( 82)= 2.57658E-02 
YFRAC( 83)=l; YFRAC( 84)= 2.85069E-02 
YFRAC( 85)=l; YFRAC( 86)= 3.15396E-02 
YFRAC( 87)=l; YFRAC( 88)= 3.48949E-02 
YFRAC( 89)=l; YFRAC( 90)= 3.86071 E-02 
YFRAC( 91)= 8; YFRAC( 92)= 3.99874E-02 
YFRAC( 93)= 8; YFRAC( 94)= 1.57431 E-02 
YFRAC( 95)=l; YFRAC( 96)= 9.69372E-03 
YFRAC( 97)=l; YFRAC( 98)= 8.78304E-03 
YFRAC( 99)=l; YFRAC( 1 00)= 7.95792E-03 
YFRAC( 1 01)=l; YFRAC( 102)= 7.21031 E-03 
YFRAC( 103)=l; YFRAC( 104)= 6.53294E-03 
YFRAC( 105)=I; YFRAC( 106)= 5.91920E-03 
YFRAC( 107)=l; YFRAC( 108)= 5.36312E-03 
YFRAC( 109)=l; YFRAC( 110)= 4.85928E-03 
YFRAC( 11 1)=l; YFRAC( 112)= 4.40278E-03 
YFRAC( 113)=l; YFRAC( 114)= 3.98916E-03 
YFRAC( 115)=l; YFRAC( 11 6)= 3.61440E-03 
YFRAC( 117)=I; YFRAC( 118)= 3.27484E-03 
YFRAC( 119)=l; YFRAC( 120)= 2.96719E-03 
YFRAC( 121)=l; YFRAC( 122)= 2.68844E-03 
YFRAC( 123)=l; YFRAC( 124)= 2.43587E-03 
YFRAC( 125)=l; YFRAC( 126)= 2.20703E-03 
YFRAC( 127)=l; YFRAC( 128)= 1.99969E-03 
YFRAC( 129)=I; YFRAC( 130)= 1.81183E-03 
YFRAC( 131)=l; YFRAC( 132)= 1.64162E-03 
YFRAC( 133)=l; YFRAC( 134)= 1.48740E-03 
YFRAC( 135)=l; YFRAC( 136)= 1.34766E-03 
YFRAC( 137)=l; YFRAC( 138)= 1.22106E-03 
YFRAC( 139)=l; YFRAC( 140)= 1.10635E-03 
YFRAC( 141)=l; YFRAC( 142)= 1.00241 E-03 
YFRAC( 143)=I; YFRAC( 144)= 9.08239E-04 
YFRAC( 145)=l; YFRAC( 146)= 8.22914E-04 
YFRAC( 147)=I; YFRAC( 148)= 7.45606E-04 
YFRAC( 149)=l; YFRAC( 150)= 6.75560E-04 
YFRAC( 151)=l; YFRAC( 152)= 6.12094E-04 
YFRAC( 153)=l; YFRAC( 154)= 5.54591 E-04 
YFRAC( 155)=l; YFRAC( 156)= 5.02490E-04 
YFRAC( 157)=l; YFRAC( 158)= 4.55284E-04 
YFRAC( 159)=l; YFRAC( 160)= 4.12512E-04 
YFRAC( 161)=l; YFRAC( 162)= 3.73759E-04 
YFRAC( 163)=l; YFRAC( 164)= 3.38646E-04 
YFRAC( 165)=l; YFRAC( 166)= 3.06832E-04 
YFRAC( 167)=l; YFRAC( 168)= 2.78006E-04 
YFRAC( 169)=l; YFRAC( 170)= 2.51889E-04 

* GROUP 5. z-direction grid specification. 
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GROUP 6. Body-fitting and other grid distortions. 

GROUP 7. Variables (including porosities) named, 
stored & solved. 

SOLVE(V1) 
SOLVE(Ul) 
SOLVE(PI) 

*Y in SOLUTN argument list denotes: 
*1 -stored 2-solved 3-whole-field 
* 4-point-by-point 5-explicit 6-harmonic averaging 

SOLUTN(P1 Y, Y, N, N, N, N) 
SOLUTN(Ull Y, Y, N, N, N, Y) 
SOLUTN(V1 Y, Y, N, N, N, Y) 

STORE(ENUT) 
* Storage for effective shear stress variable 

STORE(SHR, SCN, SFN, SIDN, SDE) 
STORE(CUS, CUN, CON, DUN, DVE, UDIF, VDIF) 

GROUP B. Terms (in differential equations) and devices. 

Used to extract convection and diffusion fluxes in ground 
UCONV=T 
UDIFF=T 

GROUP 9. Properties of the medium (or media). 

REAL(RREFl) 

RREFURH01 
TURMOD(KEMODL); IENUTA=8; DISWAL 
REAL(ENLREF); ENLREF=ENUL 

GROUP 10. Interphase-transfer processes and properties. 

GROUP 11. Initialization of fields of variables, 
porosities, etc. 

IF(RSTART)THEN 
" MESG( Running on from previous PHI file. 
" RESTRT(ALL) 
ELSE 
" MESG( Running from scratch. 
" KEIN=(UI*0.05)**2 
" EPIN=(0.009*(KEIN**2))/(50*ENUL) 
" FIINIT(Ul)=Ul 

" The U1 vel may be set to a different initial value 
" by using the last argument in [NIT below 

" PATCH(VELO, INIVAL, 1, NX, 1, BNY, 1,1,1,1) 
" INIT(VELO, Ul, O, UI/2) 
" FIINIT(Vl)=O. O 
" FIINIT(Pl)=O. O 
" FIINIT(KE)=KEIN 
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+ FIINIT(EP)=EPIN 
ENDIF 

GROUP 12. Convection and diffusion adjustments 

GROUP 13. Boundary conditions and special sources 

* momentum source for Ul 
PATCH(Ul MT, VOLUME, 1, NX, 1, NY, 1, NZ, 1,1) 
IF (SETUI. AND. NF. GT. 0) THEN 
" MESG( Adjusting pressure gradient via GROUND. 
" COVAL(UlMT, Ul, FIXFLU, GRND) 
ELSE 
+ COVAL(UIMT, U1, FIXFLU, DPDX) 
ENDIF 
PATCH(BAL, CELL, 1,1, NY, NY, 1,1,1,1) 
COVAL(BAL, P1, FIXP, 0.0) 
XCYCLE=T 

* bed wall 
PATCH (WALLSBED, SWALL, 1, NX, 1,1,1, NZ, 1,1) 
COVAL(WALLSBED, U1, GRND2,0.0) 
COVAL(WALLSBED, KE, 1.0,0.0) 
COVAL(WALLSBED, LTLS, 1.0,0.0) 

* top wall 
TWALL=T 
PATCH (WALLSTOP, NWALL, 1, NX, NY, NY, 1, NZ, 1,1) 
COVAL(WALLSTOP, U1, GRND2,0.0) 
COVAL(WALLSTOP, KE, 1.0,0.0) 
COVAL(WALLSTOP, LTLS, 1.0,0.0) 

Definition of blocks (x direction) 
** downstream half of block 

CONPOR (BLOCD, O. O, CELL, -l, -IBD, -l, -BNY, 1,1) 
upstream half of block 
(+set the ul vel=O in cell prior to block) 

CONPOR (BLOCU, O. O, CELL, -IBU, NX, -I, -BNY, 1,1) 
PATCH(INIU, INIVAL, IBU-I, IBU-1,1, BNY, 1,1,1, l) 
INIT(INIU, U1,0.0,0.0) 

GROUP 14. Downstream pressure (for free parabolic flow). 

GROUP 15. Termination criteria for sweeps and 
outer iterations. 

See Gl 

GROUP 16. Termination criteria for inner iterations. 

GROUP 17. U nder- relaxation and related devices. 

* Level of relaxation (100 - weak, 0.1 - strong) 
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RELX=30 
RELXT=l 0 

* AUTO Linear relaxation applied to P1 
* (0.9 weak, 0.1 strong) 

RELAX(Pl, LINRLX, 0.7) 
* AUTO False time-step relaxation applied to VI 

RELAX(Vl, FALSDT, MINL/MAXV*RELX) 
* AUTO False time-step relaxation applied to Ul 

RELAX(Ul, FALSDT, MINUMAXV*RELX) 
* AUTO False time-step relaxation applied to KE 

RELAX(KE, FALSDT, MINL/MAXV*RELXT) 
* AUTO False time-step relaxation applied to EP 

RELAX(EP, FALSDT, MINUMAXV*RELXT) 
* Ground relaxation in calc. of dpdx 

RELXDP=0.5 

GROUP 1 B. Limits on variables values or increments 
to them. 

* GROUP 19. Data communicated by SATELLITE to GROUND 
RG(I)=PLTH 
RG(2)=BLKLTH 
RG(3)=DEPTH 
RG(4)=BLKHGT 
IG(1)=SNX 
IG(2)=BNX 
IG(3)=MFNY 
IG(4)=BNY 
RG(5)=DPDX 
RG(6)=Ul 
RG(7)=RELXDP 
CG(1)=': ID: ' 

CM., CG(2)=': NUMBr-n. 
LG(1)=TWALL 
LG(2)=SETUI 

Set monitoring. 0 no monitoring 
1= complete monitoring 
2= P1 and Ul 
3= EP and KE 
4= dpdx calc. 

IG(5)=l 

GROUP 20. Control of preliminary printout 
ECHO=T 

* Print out of Y+ 
YPLS=T 

GROUP 21. Frequency and extent of field printout. 
ECHO=T 
YPLS=T 
OUTPUT(Pl, Y, N, N, Y, N, Y) 
OUTPUT(Ul, Y, N, N, Y, N, Y) 
OUTPUT(Vl, Y, N, N, N, N, N) 
OUTPUT(KE, Y, N, N, Y, N, Y) 
OUTPUT(EP, Y, N, N, Y, N, Y) 
OUTPUT(VPOR, N, N, N, N, N, N) 
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OUTPUT(LTLS, N, N, N, N, N, N) 
OUTPUT(WDIS, N, N, N, N, N, N) 
OUTPUT(VDIF, N, N, N, N, N, N) 
OUTPUT(UDIF, N, N, N, N, N, N) 
OUTPUT(DVE, N, N, N, N, N, N) 
OUTPUT(DUN, N, N, N, N, N, N) 
OUTPUT(CON, N, N, N, N, N, N) 
OUTPUT(CUN, N, N, N, N, N, N) 
OUTPUT(CUS, N, N, N, N, N, N) 
OUTPUT(SDE, N, N, N, N, N, N) 
OUTPUT(SDN, N, N, N, N, N, N) 
OUTPUT(SFN, N, N, N, N, N, N) 
OUTPUT(SCN, N, N, N, N, N, N) 
OUTPUT(SHR, Y, N, N, N, N, N) 
OUTPUT(ENUT, Y, N, N, N, N, N) 

GROUP 22. Location of spot-value & frequency of 
residual printout. 

IYMON=3*NY/4 
IZMON=NZ/2 
IXMON=NX/2 
TSTSWP=100 

GROUP 23. Variable-by-variable field printout and plot 
and/or tabulation of spot-values and residuals. 

Control tabulation & plotting of spot-values/residuals 
Tables and plots 

ITABL=2 
NPRI NT= 100000 
NXPRlN=1 
NYPRIN=1 

GROUP 24. Preparation for continuation runs. 

MESG( 
STOP 
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Appendix 11: PHOENICS Code for Rough Duct 
Experiments 

The following QI input file and GROUND coding was used to simulate flow over 
roughness elements contained in a duct in which a plane of symmetry was used to 
represent the free surface. The depth of flow was varied from very shallow to deep as 
described in Chapter 5. 

A11.1 01 file 
TALK=F; RUN(1,1); VDU=Xll -TERM 
NOCOPY=T; NOCOMM=T 
SAVE=T 
PARAB=F 
REAL(DEPTH, PLTH, SLTH, WIDTH, U1, DPDX) 
REAL(BLKHGT, BLKLTH, MFDTH, KEIN, EPIN) 
REAL(MAXV, MINL, RELX, RELXT, RELXDP) 
REAL(RE) 
INTEGER(BNY, BNX, PNX, SNX, MFNY, NF, IBU, IBD) 
CHAR(ID, NUMBER) 
BOOLEAN(SETUI, TWALL, RSTART) 

Group 1: CASE PARAMETERS SET UP 

* Set case name and number (max 4 charaters). 
ID='rsa' 
NUMBER='4' 
TEXT(Rough Strip Duct 

MESG(* CYCLIC DUCT FLOW 
MESG(* ALASTAIR SENIOR, RMCS 

MESG( * Uses xcycle and momentum source method. 
MESG(* 
MESG( * Case identification. ' 
MESG( 
ID 
NUMBER 
MESG(* Date: 
MESG(*PHOENICSver: v2.1.1, SUN 
MESG(* GROUND ver: s12 
MESG(* 
MESG(* Previous swps: 
MESG(* 
MESG(* Comments: 

293 



MESG(* 
MESG(* 

MESG(* 

* specify a restart run 
RSTART=T 

Number of sweeps 
LSWEEP=1 0000 

Domain dimensions (m): 
BLKLTH=0.3e-3 
PLTH=60e-3 
SLTH=PLTH-BLKLTH 
BLKHGT=3.2e-3 
DEPTH=0.01 28 
MFDTH=DEPTH-BLKHGT 

y-grid set up 
BNY=36 
MFNY=28 
NY=BNY+MFNY 
YVLAST=DEPTH 

: 
x-xgrid set up 

BNX=8 
SNX=1 14 
NX=BNX+SNX 
XULAST=PLTH 

Estimate of the minimum cell dimension 
MINL=0.01E-03 

Fluid properties, Water in M (from Sch) 
RH01=998.2 
ENUL=1.17e-6 

Specify flow. Set SETUI =T to specfiy a average velocity 
=F to specify a pressure gradient 

SETUI=T 
RE=2e5 

IF (SETUI) THEN 
" MESG( Setting required velocity... 

* Specify required average velocity above blocks 
" UI=RE*ENUU(DEPTH-BLKHGT) 
" Ul 

specify initial estimate for pressure gradient 
" DPDX=1.48867E+06 

" specify update frequency for pressure gradient 
" (NB: use =0 for manual update of pressure gradient) 

" NF=O 

" IF (NF. GT. 0) THEN 
" MESG(with automatic update of pressure gradient. 
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" ELSE 
" MESG( with manual update of pressure gradient. 
" ENDIF 
ELSE 
+ MESG(Setting required pressure gradient. 

" specify required pressure gradient 
+ DPDX=O 

" Specify initial estimate of velocity field 
" (not required for continuation runs) 

+ UI=O 
" NF is not required; use default of zero 

+ NF=O 
ENDIF 

End of setup. 

Additional preliminaries 

x grid block labels 
IBD=BNX/2 
IBU=IBD+SNX+l 

: 
Estimate of the maximum velocity within domain 

MAXV=UI*1.5 

CARTES=T 
STEADY=T 

* GROUP 3. x-direction grid specification. 
XFRAC( 1)= -4; XFRAC( 2)= 6.250OOE-04 
XFRAC( 3)=l; XFRAC( 4)= 8.33333E-04 
XFRAC( 5)=l; XFRAC( 6)= 9.20044E-04 
XFRAC( 7)=l; XFRAC( 8)= 1.01578E-03 
XFRAC( 9)=l; XFRAC( 10)= 1.12147E-03 
XFRAC( 1 1)=l; XFRAC( 12j= 1.23816E-03 
XFRAC( 13)=l; XFRAC( 14)= 1.36700E-03 
XFRAC( 15)=l; XFRAC( 16)= 1.50924E-03 
XFRAC( 17)=l; XFRAC( 18)= 1.66628E-03 
XFRAC( 19)=l; XFRAC( 20)= 1.83966E-03 
XFRAC( 21)=l; XFRAC( 22)= 2.03108E-03 
XFRAC( 23)=l; XFRAC( 24)= 2.24242E-03 
XFRAC( 25)=l; XFRAC( 26)= 2.47575E-03 
XFRAC( 27)=l; XFRAC( 28)= 2.73336E-03 
XFRAC( 29)=l; XFRAC( 30)= 3.01778E-03 
XFRAC( 31)=l; XFRAC( 32)= 3.33179E-03 
XFRAC( 33)=l; XFRAC( 34)= 3.67847E-03 
XFRAC( 35)=l; XFRAC( 36)= 4.06123E-03 
XFRAC( 37)=l; XFRAC( 38)= 4.48381 E-03 
XFRAC( 39)=l; XFRAC( 40)= 4.95036E-03 
XFRAC( 41)=l; XFRAC( 42)= 5.46546E-03 
XFRAC( 43)=l; XFRAC( 44)= 6.03416E-03 
XFRAC( 45)=l; XFRAC( 46)= 6.66203E-03 
XFRAC( 47)=l; XFRAC( 48)= 7.35523E-03 
XFRAC( 49)=l; XFRAC( 50)= 8.12057E-03 
XFRAC( 51)=l; XFRAC( 52)= 8.96554E-03 
XFRAC( 53)=l; XFRAC( 54)= 9.89843E-03 
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XFRAC( 55)=l; XFRAC( 56)= 1.09284E-02 
XFRAC( 57)=l; XFRAC( 58)= 1.20655E-02 
XFRAC( 59)=l; XFRAC( 60)= 1.33210E-02 
XFRAC( 61)= 56; XFRAC( 62)= 1.30060E-02 
XFRAC( 63)=l *, XFRAC( 64)= 1.3321 OE-02 
XFRAC( 65)=l; XFRAC( 66)= 1.20655E-02 
XFRAC( 67)=l; XFRAC( 68)= 1.09284E-02 
XFRAC( 69)=l; XFRAC( 70)= 9.89843E-03 
XFRAC( 71)=l; XFRAC( 72)= 8.96554E-03 
XFRAC( 73)=l; XFRAC( 74)= 8.12057E-03 
XFRAC( 75)=l; XFRAC( 76)= 7.35523E-03 
XFRAC( 77)=l; XFRAC( 78)= 6.66203E-03 
XFRAC( 79)=l; XFRAC( 80)= 6.03416E-03 
XFRAC( 81)=l; XFRAC( 82)= 5.46546E-03 
XFRAC( 83)=l; XFRAC( 84)= 4-95036E-03 
XFRAC( 85)=l; XFRAC( 86)= 4.48381 E-03 
XFRAC( 87)=l; XFRAC( 88)= 4.06123E-03 
XFRAC( 89)=I; XFRAC( 90)= 3.67847E-03 
XFRAC( 91)=l; XFRAC( 92)= 3.33179E-03 
XFRAC( 93)=l; XFRAC( 94)= 3.01778E-03 
XFRAC( 95)=l; XFRAC( 96)= 2.73336E-03 
XFRAC( 97)=l; XFRAC( 98)= 2.4757SE-03 
XFRAC( 99)=l; XFRAC( 1 00)= 2.24242E-03 
XFRAC( 1 01)=l; XFRAC( 102)= 2.03108E-03 
XFRAC( 103)=l; XFRAC( 104)= 1.83966E-03 
XFRAC( 105)=l; XFRAC( 106)= 1.66628E-03 
XFRAC( 107)=l; XFRAC( 108)= 1.50924E-03 
XFRAC( 109)=l; XFRAC( 110)= 1.36700E-03 
XFRAC( II 1)=l; XFRAC( 112)= 1.23816E-03 
XFRAC( 113)=l; XFRAC( 114)= 1.12147E-03 
XFRAC( 115)=l; XFRAC( 11 6)= 1.01578E-03 
XFRAC( 11 7)=l; XFRAC( 11 8)= 9.20044E-04 
XFRAC( 11 9)=l; XFRAC( 120)= 8.33333E-04 
XFRAC( 121)= 4; XFRAC( 122)= 6.250OOE-04 

** ** ** ** *********** **************************** 

GROUP 4. y-direction grid specification. 

YFRAC( 1)=-l; YFRAC( 2)= 7.81250E-04 
YFRAC( 3)=l; YFRAC( 4)= 8.96846E-04 
YFRAC( 5)=l; YFRAC( 6)= 1.02955E-03 
YFRAC( 7)=l; YFRAC( 8)= 1.18188E-03 
YFRAC( 9)=l; YFRAC( 10)= 1.35675E-03 
YFRAC( 1 1)=l; YFRAC( 12)= 1.55750E-03 
YFRAC( 13)=l; YFRAC( 14)= 1.78795E-03 
YFRAC( 15)=l; YFRAC( 16)= 2.05250E-03 
YFRAC( 17)=l; YFRAC( 18)= 2.35620E-03 
YFRAC( 19)=l; YFRAC( 20)= 2.70483E-03 
YFRAC( 21)=l; YFRAC( 22)= 3.10504E-03 
YFRAC( 23)=I; YFRAC( 24)= 3.56447E-03 
YFRAC( 25)=I; YFRAC( 26)= 4.09188E-03 
YFRAC( 27)=l; YFRAC( 28)= 4.69732E-03 
YFRAC( 29)=l; YFRAC( 30)= 5.39235E-03 
YFRAC( 31)=l; YFRAC( 32)= 6.19021 E-03 
YFRAC( 33)=l; YFRAC( 34)= 7.10613E-03 
YFRAC( 35)=I; YFRAC( 36)= 8.15757E-03 
YFRAC( 37)=l; YFRAC( 38)= 9.36459E-03 
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YFRAC( 39)=l; YFRAC( 40)= 1.07502E-02 
YFRAC( 41)= 16; YFRAC( 42)= 1.07422E-02 
YFRAC( 43)=l; YFRAC( 44)= 3.90625E-03 
YFRAC( 45)=l; YFRAC( 46)= 4.37650E-03 
YFRAC( 47)=I; YFRAC( 48)= 4.90335E-03 
YFRAC( 49)=l; YFRAC( 50)= 5.49363E-03 
YFRAC( 51)=l; YFRAC( 52)= 6.15497E-03 
YFRAC( 53)=l; YFRAC( 54)= 6.89592E-03 
YFRAC( 55)=l; YFRAC( 56)= 7.72607E-03 
YFRAC( 57)=l; YFRAC( 58)= 8.65616E-03 
YFRAC( 59)=l; YFRAC( 60)= 9.69821 E-03 
YFRAC( 61)=l; YFRAC( 62)= 1.08657E-02 
YFRAC( 63)=l; YFRAC( 64)= 1.21738E-02 
YFRAC( 65)=l; YFRAC( 66)= 1.36393E-02 
YFRAC( 67)=l; YFRAC( 68)= 1.52812E-02 
YFRAC( 69)=l; YFRAC( 70)= 1.71208E-02 
YFRAC( 71)=I; YFRAC( 72)= 1.91818E-02 
YFRAC( 73)=l; YFRAC( 74)= 2.1491 OE-02 
YFRAC( 75)=l; YFRAC( 76)= 2.40781 E-02 
YFRAC( 77)=l; YFRAC( 78)= 2.69767E-02 
YFRAC( 79)=l; YFRAC( 80)= 3.02243E-02 
YFRAC( 81)=l; YFRAC( 82)= 3.38628E-02 
YFRAC( 83)=l; YFRAC( 84)= 3.79393E-02 
YFRAC( 85)=l; YFRAC( 86)= 4.25065E-02 
YFRAC( 87)=l; YFRAC( 88)= 4.76235E-02 
YFRAC( 89)=l; YFRAC( 90)= 5.33566E-02 
YFRAC( 91)=I; YFRAC( 92)= 5.97798E-02 
YFRAC( 93)=l; YFRAC( 94)= 6.69763E-02 
YFRAC( 95)=I; YFRAC( 96)= 7.50391 E-02 
YFRAC( 97)=l; YFRAC( 98)= 8.40725E-02 

GROUP 5. z-direction grid specification. 

GROUP 6. Body-fitting and other grid distortions. 

GROUP 7. Variables (including porosities) named, 
stored & solved. 

SOLVE(VI) 
SOLVE(Ull) 
SOLVE(Pl) 

*Y in SOLUTN argument list denotes: 
*1 -stored 2-solved 3-whole-f ield 
* 4-point-by-point 5-explicit 6-harmonic averaging 

SOLUTN(PI Y, Y, N, N, N, N) 
SOLUTN(Ull Y, Y, N, N, N, Y) 
SOLUTN(V1 Y, Y, N, N, N, Y) 

STORE(ENUT) 
* Storage for effective shear stress variable 

STORE(SHR, SCN, SFN, SDN, SDE) 
STOR E(CUS, CUN, CON, DUN, DVE, U DI F, VDI F) 

GROUP 8. Terms (in differential equations) and devices. 

Used to extract convection and diffusion fluxes in ground 
UCONV=T 
UDIFF=T 
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GROUP 9. Properties of the medium (or media). 

REAL(RREF1) 
RREF1=RHO1 
TURMOD(KEMODL); IENUTA=8; DISWAL 
REAL(ENLREF); ENLREF=ENUL 

GROUP 10. Interphase-transfer processes and properties. 

GROUP 11. Initialization of fields of variables, 
porosities, etc. 

IF(RSTART)THEN 
" MESG( Running on from previous PHI file. 
" RESTRT(ALL) 
ELSE 
" MESG( Running from scratch. 
" KEIN=(UI*0.05)**2 
" EPIN=(0.009*(KEIN**2))/(50*ENUL) 
" PATCH(Ul INPROF, INIVAL, 1, NX, I, NY, 1,1,1,1) 
" INIT(Ul INPROF, Ul, O, GRND) 
" FI[NIT(Vl)=O. O 
" FIINIT(Pl)=O. O 
" FIINIT(KE)=KEIN 
" FIINIT(EP)=EPIN 
ENDIF 

GROUP 12. Convection and diffusion adjustments 

GROUP 13. Boundary conditions and special sources 

momentum source for Ul 
PATCH(Ul MT, VOLUME, 1, NX, I, NY, 1, NZ, 1,1) 
IF (SETUI. AND. NF. GT. 0) THEN 
" MESG( Adjusting pressure gradient via GROUND. 
" COVAL(UlMT, U1, FIXFLU, GRND) 
ELSE 
+ COVAL(UlMT, U1, FIXFLU, DPDX) 
ENDIF 
PATCH(BAL, CELL, 1,1, NY, NY, 1,1,1,1) 
COVAL(BAL, P1, FIXP, 0.0) 
XCYCLE=T 

* bed wall 
PATCH (WALLSBED, SWALL, 1, NX, 1,1,1, NZ, 1,1) 
COVAL(WALLSBED, U1, GRND2,0.0) 
COVAL(WALLSBED, KE, 1.0,0.0) 
COVAL(WALLSBED, LTLS, 1.0,0.0) 

* top wall 
TWALL=F 

Definition of blocks (x direction) 
** downstream half of block 

CONPOR (BLOCD, O. O, C ELL, - 1, - 1BD, - 1, -BNY, 1,1) 
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upstream half of block 
(+set the ul vel=O in cell prior to block) 

CONPOR (BLOCU, O. O, CELL, -IBU, NX, -l, -BNY, 1,1) 
PATCH(INIU, INIVAL, IBU-1, IBU-1,1, BNY, 1,1,1, l) 
INIT(INIU, U1,0.0,0.0) 

GROUP 14. Downstream pressure (for free parabolic flow) 

GROUP 15. Termination criteria for sweeps and 
outer iterations. 

See Gl 
Switch off auto resref 

SELREF F 
RESFAC 1. OOOE-03 
RESREF(Pl )=1. OOOE-08; RESREF(Ul 1. OOOE-08 
RESREF(Vl )=1. OOOE-08; RESREF(KE 1. OOOE-08 
RESREF(EP )=1. OOOE-08; RESREF(LTLS) = 1. OOOE-08 

GROUP 16. Termination criteria for inner iterations. 

GROUP 17. Under-relaxation and related devices. 

* Level of relaxation (100 - weak, 0.1 - strong) 
RELX=70 
RELXT=70 

* AUTO Linear relaxation applied to P1 
* (0.9 weak, 0.1 strong) 

RELAX(Pl, LINRLX, 0.8) 
* AUTO False time-step relaxation applied to V1 

RELAX(Vl, FALSDT, MINUMAXV*RELX) 
* AUTO False time-step relaxation applied to Ul 

RELAX(Ul, FALSDT, MINL/MAXV*RELX) 
* AUTO False time-step relaxation applied to KE 

RELAX(KE, FALSDT, MINUMAXV*RELXT) 
* AUTO False time-step relaxation applied to EP 

RELAX(EP, FALSDT, MINUMAXV*RELXT) 
* Ground relaxation in calc. of dpdx 

RELXDP=0.5 

GROUP 18. Limits on variables values or increments 
to them. 

* GROUP 19. Data communicated by SATELLITE to GROUND 
RG(1)=PLTH 
RG(2)=BLKLTH 
RG(3)=DEPTH 
RG(4)=BLKHGT 
IG(1)=SNX 
IG(2)=BNX 
IG(3)=MFNY 
IG(4)=BNY 
RG(5)=DPDX 
RG(6)=Ul 
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RG(7)=RELXDP 
CG(1)=': ID: ' 
CG(2)=': NUMBER: ' 
LG(1)=TWALL 
LG(2)=SETUI 

Set monitoring. 0= no monitoring 
1= complete monitoring 
2= P1 and U1 
3= EP and KE 
4= dpdx calc. 

IG(5)=l 

GROUP 20. Control of preliminary printout 

GROUP 21. Frequency and extent of field printout. 
ECHO=T 
YPLS=T 
OUTPUT(Pl, Y, N, N, Y, N, Y) 
OUTPUT(Ul, Y, N, N, Y, N, Y) 
OUTPUT(Vl, Y, N, N, N, N, N) 
OUTPUT(KE, Y, N, N, Y, N, Y) 
OUTPUT(EP, Y, N, N, Y, N, Y) 
OUTPUT(VPOR, N, N, N, N, N, N) 
OUTPUT(LTLS, N, N, N, N, N, N) 
OUTPUT(WDIS, N, N, N, N, N, N) 
OUTPUT(VDIF, N, N, N, N, N, N) 
OUTPUT(UDIF, N, N, N, N, N, N) 
OUTPUT(DVE, N, N, N, N, N, N) 
OUTPUT(DUN, N, N, N, N, N, N) 
OUTPUT(CON, N, N, N, N, N, N) 
OUTPUT(CUN, N, N, N, N, N, N) 
OUTPUT(CUS, N, N, N, N, N, N) 
OUTPUT(SDE, N, N, N, N, N, N) 
OUTPUT(SDN, N, N, N, N, N, N) 
OUTPUT(SFN, N, N, N, N, N, N) 
OUTPUT(SCN, N, N, N, N, N, N) 
OUTPUT(SHR, Y, N, N, N, N, N) 
OUTPUT(ENUT, Y, N, N, N, N, N) 

GROUP 22. Location of spot-value & frequency of 
residual printout. 

IYMON=3*NY/4 
IZMON=NZ/2 
IXMON=NX/2 
TSTSWP=l 00 

GROUP 23. Variable-by-variable field printout and plot 
and/or tabulation of spot-values and residuals. 

Control tabulation & plotting of spot-values/residuals 
Tables and plots 

ITABL=2 
NPRINT=100000 
NXPRIN=1 
NYPRIN=1 
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* GROUP 24. Preparation for continuation runs. 

STOP 

A11.2 GROUND code 
C23456789012345678901234567890123456789012345678901234567890123456789012 

SUBROUTINE GROUND 
C 
C 
C* ROUGH DUCT ANALYSIS 
C* ALASTAIR SENIOR, RMCS 
C* ROUGHGRD. F 
C 
C 
C Single Period Rough Walled Cyclic Duct Flow 
C 
C This ground routine is to be used with a Y-X domain using the 
C XCYCLE/ momentum source method of cyclic boundary conditions. 
C The domain should consist of I full period in the X (streamwise) 
C direction: 1/2 block - space - 1/2 block. 
C The blocks should be named 'BLOCD' and 'BLOCU' in the Q1 file. 
C 
C Coding includes options of a plane of symmetry or a top wall 
C and specification of a required pressure gradient or a required 
C average velocity. If the latter is selected, the pressure gradient 
C may be updated automatically wrt the required average velocity 
C or may be updated manually at the end of each run. 
C 
C The elapsed run time is printed in the file "result2". 
C 
C Output files: 
C phi - standard PHOENICS output. 
C result - standard PHOENICS output. 
C result2 - Analysis and summary of results. 
C res-pau. m - matlab input file for period averaged velocity 
C res_sig. rn - matlab input file for direct stress on block 
C resjau. m - matlab input file for shear stress on block 
C res-shr. rn - matlab input file for effective shear stress 
C (con/diff method) 
C res-mshr. m - matlab input file for effective shear stress 
C (manual method) 
C res-ynf. rn - matlab input file for north face y coords from 
C BNY+1 to NY for use with res-shr. m and res-mshr. m 
C 
C Before using this code, CHECK THE ARRAY DIMENSIONS below. 
C 
C FILE NAME: ground-f 
C DATE: 31/3/97 
C VERSION: s12 
C COMMENTS: 
G 
C al to Ground variables: 
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C 
C PLTH RG(1) PLEN 
C BLKLTH RG(2) BLIKLEN 
C DEPTH RG(3) DEPTH 
C BLKHGT RG(4) BLKHGT 
C DPDX RG(5) DPDX 
C Ul RG(6) Ul 
C RELXDP RG(7) RELXDP 
C KSI RG(8) KS 
C SNX IG(1) SNX 
C BNX IG(2) BNX 
C MFNY IG(3) MFNY 
C BNY IG(4) BNY 
C IG(5) MONTYPE 
C NF IG(6) NF 
C TWALL LG(1) TWALL 
C SETUI LG(2) SETUI 
C 
cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
C Version 2.1.1 

INCLUDE 'Ip21 /d-includ/sateae 
INCLUDE'lp2l/d-includ/grdloc' 
INCLUDE 'Ip21 /cLinclud/grdeae 
INCLUDE 'Ip21 /d-includ/grdbfc' 
PARAMETER (NLG=100, NIG=200, NRG=200, NCG=100) 

C 
COMMON/LGRND/LG(NLG)/IGRND/IG(NIG)/RGRND/RG(NRG)/CGRND/CG(NCG) 

C This common block gives the loopz variable (used in G 19) 
COMMON/GENI/IGFL1 (45), LOOPZ, IGFL2(14) 
LOGICAL LG 
CHARACTER*4 CG 
SAVE 

C User common block, ROUGH I 
C Integers: 
C IBU=Iabel for IX cell of upstream face of block 
C IBD=Iabel for IX cell of downstream face of block 
C BNY=Number of Y cells in block 
C Reals: 
C PLEN=Period length 
C DPDX=Pressure gradient 

COMMON/ROUGHI/IBU, IBD, BNY, PLEN, DPDX 
REAL PLEN, DPDX 
INTEGER IBU, IBD, BNY 

C Subroutine variables 
C 

C Real Arrays 
C 
C Check that the dimensions in the corrisponding subs are the samel 
C 
C in IX; 
C ASFTW=(subs ground, SHFOR, APRN) array shear force top wall 
C ASFBW=(subs ground, SHFOR, APRN) array shear force bottom wall 

REAL ASFTW(600), ASFBW(600) 
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C in NY; 
C MBU=(subs ground, PBLK) mass flow through cell upstream of block 
C MBD=(subs ground, PBLK) mass flow through cell dwnstream of block 
C DBU=(subs ground, PBLK) diff. coeff through cell upstream of block 
C DBD=(subs ground, PBLK) diff. coeff through cell dwnstream of block 

REAL MBU(600), MBD(600), DBU(600), DBD(600) 

C Integers: 
C MONTYPE=Iabel for type of convergance monitoring required 
C BNX=number of X cells in block 
C SNX=number of cells in the spaces between blocks 
C MFNY=number of cells in the Y direction above the blocks 
C (Main Flow area) 
C Wocation index for F-array 
C IW=additional location index, used for extracting west cells. 
C IXX=Ioop counter if ix 
C IYY=Ioop counter if iy 
C LOAE=Iocation zero point of area east segment of F-array 
C LOU 1 =location zero point of UI vel segment of F-array 
C NF=DPDX effective step in sweeps 
C NC=counter of NF 
C MUIY=IY cell of period ave max vel 
C BNY=NY of block cells 
C Integer arrays: 
C STIME(20)=array giving run start time 
C Logicals: 
C SETUI=equal to. TRUE. if the velocity is specifed in the Q1 
C Reals: 
C TPFB=total pressure force on block 
C TPMU=total press. moment on upstrm face of block 
C TPMD=total press. moment on dwnstrm face of block 
C TSFB=total shear force on block 
C Ul=inputed Ul velocity 
C UC=calculated Ul velocity 
C UMAX=estimate of max vel used for initial conditions 
C MU=real, max vel 
C AMFET=area, main flow, east face, total 
C BLKLEN=Iength (in strearnwise dir) of block 
C DEPTH=total depth of domain 
C BLKHGT=height of roughness element (block) 
C DPDX=pressure grad 
C KS=estimate of Ks used in initial conditions 
C YO=estimate of YO (gml) used in initial conditions 
C UTAU=estimate of Utau based on Yo above 
C note, following used for SETUI=TRUE only 
C FLOWF=flow factor used to calc DPDX 
C RELXDP=relaxation factor for DPDX 
C ERR=error used in calc of RELXDP 

REAL TPFB, TPMU, TPMD, TSFB, U1, UC, AMFET, FLOWF, UMAX 
REAL RELXDP, ERR, DEPTH, BLKLEN, BLKHGT, MU, DPDX, KS, Yo, UTAU 

C Integers 
INTEGER MONTYPE, BNX, SNX, MFNY, 1, IW, IXX, IYY, MUIY 
INTEGER LOAE, LOU1, BNY 
INTEGER STIME(20) 

c Logicals 
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LOGICAL SETUI 
C 

C 
IXL=IABS(IXL) 

C NB: Some sections have been removed for simplisty. 
IF(IGR. EQ. 1) GO TO 1 
IF(IGR. EQ. 8) GO TO 8 
IF(IGR. EQ. 1 1) GO TO 11 
IF(IGR. EQ. 13) GO TO 13 
IF(IGR. EQ. 19) GO TO 19 
RETURN 

C 
C--- GROUP 1. Run title and other preliminaries 
C 

1 GO TO (110011,11 002), ISC 
1001 CONTINUE 

C 
C User may here change message transmitted to the VDU screen 

IF(IGR. EQ. 1. AND. ISC. EQ. 1. AND.. NOT. NULLPR) 
1 CALL WRYT40('Single Period Rough Duct Ground called. ') 

C 
CALL MAKE(YG2D) 
CALL MAKE(YV2D) 
CALL MAKE(XG2D) 
CALL MAKE(XU2D) 

RETURN 
1002 CONTINUE 

RETURN 

C 
C--- GROUP B. Terms (in differential equations) & devices 
C 

8 CONTINUE 
IF(ISC. EQ. 8) GO TO 88 
IF(ISC. EQ. 9) GO TO 89 
RETURN 

88 CONTINUE 
C* ------------------- SECTION 8 ---- Convection fluxes 
C--- Entered when UCONV =. TRUE.; block-location indices are: 
C LD1 1 for east and north (accessible at the same time), 
C LID1 2 for west and south (accessible at the same time), 
C LD2 for high (which becomes low for the next slab). 
C User should provide INDVAR and NDIREC IF's as appropriate. 

IF (ISWEEP. EQ. LSWEEP) THEN 

C Extract convection flux through north and south faces of U1 cell 
C for use in calc effective shear stress 

IF (INDVAR. EQ. Ul. AND. NDIREC. EQ. 1) THEN 
CALL FNO(LBNAME('CUN'), LD1 1) 
CALL FNO(LBNAME('CUS'), LD12) 

END IF 

C Convection terms for use in calc force over block 
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IF (INDVAR. EQ. Ul. AND. NDIREC. EQ. 3) THEN 

LOLD11=LOF(LD11) 
LOLD12=LOF(LD12) 

C Setup block upstrm total mass flow arrays 
IXX=IBU-1 

C write(14, *)'ix is', IXX 
DO IYY=l, BNY 

I=IYY+NY*(IXX-1) 
IW=IYY+NY*(IXX-2) 

C write(14, *)'iy is', IYY 
C write(14, *)'mass bu east is', F(LOLD12+1) 
C write(l 4, *)'mass bu west is (-)', F(LOLD1 1 +IW) 
C write(14, *)'' 

MBU(IYY)=-F(LOLD11+IW)+F(LOLD12+1) 
END DO 

C Setup block dwnstrm total mass flow arrays 
IXX=IBD+l 

C write(l 4, *)'ix is', IXX 
DO IYY=1, BNY 

I=IYY+NY*(IXX-1) 
IW=IYY+NY*(IXX-2) 

C write(14, *)'iy is', IYY 
C write(14, *)'mass bd east is', F(LOLD12+1) 
C write(l 4, *)'mass bd west is (-)', F(LOLD1 1 AW) 
C write(l 4, *)'' 

MBD(IYY)=-F(LOLD 11 +IW)+F(LOLD 12+1) 
END DO 

END IF 

END IF 

RETURN 
89 CONTINUE 

C* ------------------- SECTION 9 ---- Diffusion coefficients 
C--- Entered when UDIFF =. TRUE.; block-location indices are LAE 
C for east, LAW for west, LAN for north, LAS for 
C south, ILD1 1 for high, and LD1 1 for low. 
C User should provide INDVAR and NDIREC IF's as above. 
C EARTH will apply the DIFCUT and GP1 2 modifications after the user 
C has made his settings. 
C 

IF(ISWEEP. EQ. LSWEEP) THEN 

C Find diffusion coeff throu' north face of Ul cell for eff. stress 
IF(INDVAR. EO. Ul. AND. NDIREC. EQ. 1) CALL FNO(LBNAME('DUN'), LAN) 

C Find diffusion coeff upl dwn of block for force over block 
IF (INDVAR. M. W. ANDADIREC. E0.3) THEN 
LOLAE=LOF(LAE) 

C Setup block upstrm diffusion arrays 
IXX=IBU-2 
DO IYY=1, BNY 

I=IYY+NY*(IXX-1) 
DBU(IYY)=F(LOLAE+I) 

END DO 
C Setup block dwnstrm diffusion arrays 

IXX=IBD 
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DO IYY=l, BNY 
I=IYY+NY*(IXX-1) 
DBD(IYY)=F(LOLAE+I) 

END DO 

END IF 

END IF 

RETURN 

c 
C--- GROUP 11. Initialization of variable or porosity fields 
c Index VAL 

11 CONTINUE 

IF (NPATCH. EQ. 'U1 INPROF') THEN 
C define Ul inital field from 117th pwr law vel profile 
C (under blocks is set to const value of Ul at BNY+1) 
C NB: This can not be used if top wall is presenffl 

DEPTH=RG(3) 
UI=RG(6) 
BNY=IG(4) 
UMAX=8*UI/7 
LOVAL=LOF(VAL) 
LOY=LOF(YG2D) 
DO 111 IXX=I, NX 
DO 111 IY=1, NY 

I=IY+(IXX-1)*NY 
A=(F(LOY+I)/DEPTH)**0.1428 
F(LOVAL+I)=A*UMAX 

111 CONTINUE 
DO 112 IXX=1, NX 
DO 112 IY=1, BNY 

I=IY+(IXX-1)*NY 
F(LOVAL+I)=F(LOVAL+BNY+l) 

112 CONTINUE 

ELSEIF (NPATCH. EQ. 'Ul KSPROF) THEN 
C define U1 inital field from Nik rough wall vel profile 
C (under blocks is set to const value of U1 at BNY) 
C NB: This can not be used if top wall is present! l 

WRITE(14, *)'Setting initial U1 field using CHAM WF law. 
DEPTH=RG(3) 
BLKHGT=RG(4) 
BLKLEN=RG(2) 
KS=RG(8) 
DPDX=RG(5) 
PLEN=RG(l) 
BNY=IG(4) 

YO=(BLKHGT*BLKLEN)/PLEN 
UTAU=SQRT((DPDX*(DEPTH-YO))/RHOl) 
A=8.2710904 
B=5.75 

LOVAL=LOF(VAL) 
LOY=LOF(YG2D) 
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DO 113 IXX=1, NX 
DO 113 IY=BNY, NY 

I=IY+(IXX-1)*NY 
F(LOVAL+I)=UTAU*(A+B*LOG((F(LOY+I)-Yo)/KS)) 

113 CONTINUE 
DO 114 IXX=1, NX 
DO 114 IY=I, BNY-1 

I=IY+(IXX-1)*NY 
F(LOVAL+I)=F(LOVAL+BNY) 

114 CONTINUE 

END IF 

RETURN 

C 
C--- GROUP 13. Boundary conditions and special sources 
C Index for Coefficient - CO 
C Index for Value - VAL 

13 CONTINUE 
IF(ISC. EQ. 12) GO TO 1311 
RETURN 

1311 CONTINUE 
C ------------------- SECTION 12 ------------------- value = GRND 

C Set dpdx - press grad used for momentum source. 
IF (NPATCH. EQ. 'U 1 MT) THEN 

CALL FNI(VAL, DPDX) 
END IF 

RETURN 

C 
C--- GROUP 19. Special calls to GROUND from EARTH 
C 

19 GO TO (191,192,193,194,195,196,197,198,199,1910,191 1), ISC 
191 CONTINUE 
ý* ------------------- SECTION I ---- Start of time step. c 

c 

C 

Set start time 
CALL MCLOCK(STIME) 
Initialise values 

PLEN=RG(l) 
BLKLEN=RG(2) 
DEPTH=RG(3) 
BLKHGT=RG(4) 
SNX=IG(l) 
BNX=IG(2) 
MFNF=IG(3) 
BNY=IG(4) 
DPDX=RG(5) 
UI=RG(6) 
RELXDP=RG(7) 
MONTYPE=IG(5) 
SETUI=LG(2) 
NF=IG(6) 
NC=1 
FLOWF=1.0 
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UC=0.0 

C Definition of blocks (x direction) 
IBD=BNX/2 
IBU=IBD+SNX+l 

C Find true depth from coord of y north face 
WRITE(14, *)'' 
WRITE(14, *)'Input depth is', DEPTH 
DEPTH=F(LOF(YV2D)+NY) 
WRITE(14, *)7rue depth is, DEPTH 

C Print y coords of north cell faces (used for p2m. f) 
CALL PRN('ynf', YV2D) 

RETURN 
192 CONTINUE 

C* ------------------- SECTION 2 ---- Start of sweep. 

RETURN 
193 CONTINUE 

C* ------------------- SECTION 3 ---- Start of iz slab. 
RETURN 

194 CONTINUE 
C* ------ - ----- - ---- SECTION 4 ---- Start of iterations over slab. 

RETURN 
1911 CONTINUE 

C* ------------------- SECTION 11 --- After calculation of convection 
C fluxes for scalars, and of volume 
C fractions, but before calculation of 
C scalars or velocities 

RETURN 
199 CONTINUE 

C* ------------------- SECTION 9 ---- Start of solution sequence for 
Ca variable 

RETURN 
1910 CONTINUE 

C* ------------------- SECTION 10 ---- Finish of solution sequence for 
Ca variable 

RETURN 
195 CONTINUE 

C* ------------------- SECTION 5 ---- Finish of iterations over slab. 
RETURN 

196 CONTINUE 
C* ------------------- SECTION 6 ---- Finish of iz slab. 
C Calculate improved pressure grad. 

IF(SETUI. AND. NF. GT. O. AND. ISWEEP. EQ. (NF*NC)+2) THEN 
WRITE(14, *)'Updating pressure grad at sweep =', ISWEEP 
NC=NC+l 
IXX=NX 
LOAE=LOF(AEAST) 
LOU1=LOF(Ul) 
UC=0.0 
AMFET=0.0 
DO 1961 IYY=BNY+1, NY 

I=IYY+NY*(IXX-1) 
UC=UC+(F(LOUI+I)*F(LOAE+I)) 
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AMFET=AMFET+F(LOAE+I) 
1961 CONTINUE 

UC=UC/AMFET 
FLOWF=UI/UC 

C WRITE(14, *)'Ul is', UI 
C WRITE(l 4, *)'UC is *, UC 
C WRITE(11 4, *)'f low factor is', FLOWF 
C Set relaxation for calc of dpdx 

ERR=FLOWF-1 
ERR=ERR*RELXDP 
FLOWF=ERR+l 

C: WRITE(l 4, *)'flow factor after relax is', FLOWF 
C WRITE(14, *)'dpdx old is, DPDX 

DPDX=DPDX*FLOWF 
IF(DPDX. LE. O. 001) DPDX=0.001 

C WRITE(14, *)'dpdx new is, DPDX 
C WRITE(14, *)" 
C recalc flowf for printing 

FLOWF=UI/UC 
END IF 

RETURN 
197 CONTINUE 

c* ------------------- SECTION 7 ---- Finish of sweep. 

C Convergance monitoring. 
IF (MONTYPE. GT. 0) CALL MONITOR(MONTYPE, SETUI, UC, FLOWF) 

RETURN 
198 CONTINUE 

C* ------------------- SECTION 8 ---- Finish of time step. 
C 
C Calculate period average effective shear stress. 
C Method 2: Convection/diff usion method. 

CALL EFFSS 
C Calculate period average effective shear stress. 
C Method 3: manual method. (25/11/96) 

CALL MANEFF 
C Finds shear force on walls/blocks 

CALL SHFOR(ASFTW, ASFBW, TSFB) 
C Finds total pressure force/moment over block 

CALL PBLK(TP FB, TPMB, BLKHGT, MBU, MBD, DBU, DBD, DEPTH) 
C prints period average Ul velocity 

CALL PAVEL(DEPTH, TPAU, MU, MUIY) 
C stream function 

CALLSTREAM 
C Analsyis and printout 

CALL APRN(TPFB, TPMB, ASFTW, ASFBW, TSFB, 
1 DEPTH, BLKHGT, BLKLEN, U1, STIME, SETUI, TPAU, FLOWF, MU, MUIY) 

C writes contour files (except stream) 
CALL CONTOUR 

RETURN 
END 

SUBROUTINE EFFSS 
C Finds period average effective shear stress by convection/diffusion 
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C method. 

INCLUDE'lp2l/d 
- 

includ/satear' 
INCLUDE 'lp2l /d-includ/grdloc' 
INCLUDE 'Ip2l /d-includ/grdeae 
INCLUDE'lp2l/d-includ/grdbfc' 

C Version 2.0 
C INCLUDE'lp2/d-includ/sateae 
C INCLUDE'lp2/cLinclud/grdloc' 
C INCLUDE'lp2/d-includ/grdeae 
C INCLUDE'lp2/d-includ/grdbfc' 

PARAMETER (NLG=100, NIG=200, NRG=200, NCG=100) 
COMMON/LGRND/LG(NLG)/IGRND/IG(NIG)/RGRND/RG(NRG)/CGRND/CG(NCG) 
LOGICAL LG 
CHARACTER*4 CG 

C My common block for rough duct analysis subroutines 
COMMON/ROUGHI/IBU, IBD, BNY, PLEN, DPDX 
REAL PLEN, DPDX 
INTEGER IBU, IBD, BNY 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

Subroutine variables: 
Real Arrays: 

PASHR(IY)=Final array of period averaged effective shear stress 
Reals: 

A, B, B1, B2, B3=Temp coeff used in func's 
ALPA=Coef used in diff. term. Hybrid scheme=0.5 

Integers: 
ISHR=x cell location of period ave. SHR 
Wocation index for F-array 
ll=location index for F-array of p. ave SHR at ISHR 
LSHR=F-array name for SHR 
LSCN=F-array name for SCN 
LSFN=F-array name for SFN 
LSDN=F-array name for SDN 
LCUS=F-array name for CUS 
LCUN=F-array name for CUN 
LCON=F-array name for CON 
LDUN=F-array name for DUN 
LUDIF=F-array name for UDIF 
LOSHR=Iocation zero point of SHR segment of F-array 
LOSCN=Iocation zero point of SCN segment of F-array 
LOSFN=Iocation zero point of SFN segment of F-array 
LOSDN=Iocation zero point of SDN segment of F-array 
LOCUS=Iocation zero point of CUS segment of F-array 
LOCUN=Iocation zero point of CUN segment of F-array 
LOCON=Iocation zero point of CON segment of F-array 
LOU1=1ocation zero point of Ul segment of F-array 
LOAE=Iocation zero point of AEAST segment of F-array 
LOYNF=Iocation zero point of YV2D (y north face) segment of F-array 

REAL PASHR(600) 
REAL A, B, B1, B2, B3, ALPA 
INTEGER ISHR, 1,11 
INTEGER LSHR, LSCN, LSFN, LSDN, LCUS, LCUN, LCON, LDUN, LUDIF 
INTEGER LOSHR, LOSCN, LOSFN, LOSDN, LOCUS, LOCUN, LOCON, LOUI, LOAE 

C Earth arrays (nx*ny), part of F-array: 
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C (see TR99 under U-vel equ. for terms). 
C SHR=Period averaged shear stress, for each cell 
C =(U-N-U-P)[max(O, d-en-alpalrrLenl)+max(O, -m-en)]-m-en. U_P 
C consisting of the following sub terms: 
C SDN= "" diff usion over north face 
C =(LLN-U-P)[max(O, cL-en-alpalm-eni)] 
C SCN=stress due to convection over north face 
C =(U-N-U-P)[max(O, -m-en)] 
C SFN= "" additional flow term 
C =U_P. rn--ýen 
C other earth arrays used in calc: 
C CUS=mass flow (conv) of Ul through south face of every cell C CUN=mass flow (conv) of U1 through north face of every cell C =[max(O, -m-en)] 
C CON=total mass flow (conv flux) throu' n. face of every cell C =m-en 
C DUN=diff usion coeff. of U1 through north face of every cell 
C =d-en 
C UDIFALnorth - U_current =(U-N-U-P)= U1 (ix, iy+l)-Ul (ix, iy) 

C Set up EARTH variables 
C Prefix'L'means LBNAME 

LSHR=LBNAME('SHR') 
LSCN=LBNAME('SCN') 
LSFN=LBNAME('SFN') 
LSDN=LBNAME('SDN') 
LCUS=LBNAME('CUS') 
LCUN=LBNAME('CUN') 
LCON=LBNAME('CON') 
LDUN=LBNAME('DUN') 
LUDIF=LBNAME('UDIF') 

C For accessing F array directly 
LOSHR=LOF(LSHR) 
LOSCN=LOF(LSCN) 
LOSFN=LOF(LSFN) 
LOSDN=LOF(LSDN) 
LOCUS=LOF(LCUS) 
LOCUN=LOF(LCUN) 
LOCON=LOF(LCON) 
LOU1=LOF(Ul) 
LOAE=LOF(AEAST) 
LOYNF=LOF(YV2D) 

WRITE(14, *)'sub effss' 

C For debugging: 
C CALL PRN('cun', LBNAME('CUNI)) 

C calc of total convective flux over north face of Ul cell 
C by: CON(ix, iy)= -CUN(ix, iy) + CUS(ix, iy+l) 

DO 10 IXX=I, NX 
DO 10 IY=BNY+l, NY-1 

I=IY+NY*(IXX-1) 
F(LOCON+I)=F(LOCUS+1+1) 

10 CONTINUE 
DO 20 IXX=1, NX 
DO 20 IY=BNY+I, NY 
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I=IY+NY*(IXX-1) 
F(LOCON+I)=F(LOCON+I)-F(LOCUN+I) 

20 CONTINUE 

C Calculate sub term SDN; diffusion over north face 
C Use SDN=abs(CON) as temp store) 

CALL FNO(LSDN, LCON) 
CALL FN40(LSDN) 

C FnIO gives SDN = DUN - 0.5(SDN) 
A=0.0 
13=11.0 
ALPA=-0.5 
CALL FN10(LSDN, LDUN, LSDN, A, B, ALPA) 
CALL FN22(LSDN, O) 
CALL FN103(LUDIF, Ul, l) 
CALL FN26(LSDN, LUDIF) 

C Calculate sub term SCN; convection over north 
C face of U1 cell; SCN= UDIF*CUN 

A=0.0 
13=11.0 
CALL FN21 (LSCN, LCUN, LUDIF, A, B) 

C Calc sub term SFN; additional north convection term =-CON*Ul 
A=O 
B=-l 
CALL FN21 (LSFN, LCON, U1, A, B) 

C Now have the 3 sub terms SCN, SFN, SDN. 
C The total effective shear stress is the sum of these: 

A=0.0 
131=1.0 
132=1.0 
B3=1.0 
CALL FN12(LSHR, LSDN, LSCN, LSFN, A, B1, B2, B3) 

C Open Matlab files 
OPEN (41, FlLE='res-shr. m') 
WRITE(41, *)'% MATLAB array in y of effective shear stress' 
WRITE(41, *)'% from NY=I to NY-1' 
WR ITE(41, *)'% (using convection/diff usion method)' 
WRITE(41, *)'' 
WRITE(41, *)'shr=[' 
OPEN (42, FlLE='res-ynf. m') 
WRITE(42, *)'% MATLAB array in y of y north face co-ords' 
WRITE(42, *)'% from NY=1 to NY-1' 
WRITE(42, *)'' 
WRITE(42, *)'ynf=[' 

C Find period average, write to array PASHR and write 
C matlab files res_shr. m and res-ynf. m 

DO 40 IY=1 INY-1 DO 50 IXX=1, NX 
I=IY+NY*(IXX-1) 
PASHR(IY)=PASHR(IY)+F(LOSHR+I) 

50 CONTINUE 
PASHR(IY)=PASHR(IY)/PLEN 
WRITE(41, *) PASHR(IY) 
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WRITE(42, *) F(LOYNF+I) 
40 CONTINUE 

WRITE(41, *)']; ' 
WRITE(41, *)'' 
WRITE(42, *)']; ' 
WRITE(42, *)'' 

RETURN 
END 

SUBROUTINE MANEFF 
C Finds period average effective shear stress by manual method 
C 
C tau-yx = -rho * UV + Gamma(dU/dy + dV/dx) 
C 
C and then 
C 
C tau_eff = 1/Plen SUM ( tau-yx * north face cell area) 
C 
C Shear stresses are taken over the north face of a scaler cell 
C from BNY+1 to NY-1 
C 
C Note the term dV/dx in eq (1) should be omitted 
C 
C Period average shear stress is given in matlab file'maneff. m'. 
C 

INCLUDE 'Ip2l /dinclud/sateae 
INCLUDE 'Ip2l /d-includ/grdloc' 
INCLUDE 'Ip2l /d-includ/grdeae 
INCLUDE 'Ip2l /d-includ/grdbfc' 

C Version 2.0 
C INCLUDE 'lp2/d-includ/sateae 
C INCLUDE 'lp2/d-includ/grdloc' 
C INCLUDE 'lp2/d-includ/grdeae 
C INCLUDE 'lp2/d-includ/grdbfc' 

PARAMETER (NLG=100, NIG=200, NRG=200, NCG=100) 
COMMON/LGRND/LG(NLG)/IGRND/IG(NIG)/RGRND/RG(NRG)/CGRND/CG(NCG) 
LOGICAL LG 
CHARACTER*4 CG 

C My common block for rough duct analysis subroutines 
COMMON/ROUGHl/lBU, IBD, BNY, PLEN, DPDX 
REAL PLEN, DPDX 
INTEGER IBU, IBD, BNY 

C Subroutine variables: 
C Real Arrays 
C EFFS = array in lY of effective shear stress 

REAL EFFS(600) 

C Reals: 
C SUMTAU = sum of tau*area 
C UCP Ul vel at centre of P cell 
C UCN Ul vel at centre of N cell 
C UNF U1 vel at centre of north face of P cell 
C ENUTNF = ENUT at centre of north face of P cell 
C T1 =1 st term in equation 
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c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

T2 = 2nd term in equation 
GAM = rho*(enul+enut) 
ADUDY = dU/dy at north face of P cell 
ADVDX = dV/dx at north face of P cell 
DELX = dx in ADVDX 

REAL SUMTAU, UCP, UCN, UNF, ENUTNF, T1, T2, GAM, ADUDY, ADVDX, DELX 

Integers: 
I= location index for F-array of current (P) cell 
IN of North cell 
IW of West cell 
INW " of North West cell 
IE of East cell 
IW of West cell 
IW of West cell 

Set up EARTH variables 
LOUI=LOF(Ul) 
LOV1=LOF(Vl) 
LOAN=LOF(ANORTH) 
LOYC=LOF(YG2D) 
LOXC=LOF(XG2D) 
LOYNF=LOF(YV2D) 
LENUT=LBNAME('ENUT) 
LOENUT=LOF(LENUT) 

WR ITE(l 4, *)'sub maneff ' 
OPEN (49, FILE=res-mshr. m') 
WRITE(49, *)'% MATLAB script of manual eff shear stress' 
WRITE(49, *)'% from BNY+1 to NY-1 
WRITE(49, *)'' 
WRITE(49, *)'mshr=[' 

DO 10 IY=BNY+I, NY-1 

SUMTAU=O 
DO 20 IXX=1, NX 

C 

C 

c 
c 

I=IY+NY*(IXX-1) 
IN=(IY+1)+NY*(IXX-1) 
IF (IXX. EQ. 1) THEN 

set IW as slab NX 
IW=IY+NY*(NX-1) 
INW=(IY+I)+NY*(NX-1) 

ELSE 
IW=IY+NY*(IXX-2) 
INW=(IY+1)+NY*(IXX-2) 

END IF 
IF (IXX. EC). NX) THEN 

set IE as slab IX=1 
IE=IY 

ELSE 
IE=IY+NY*(IXX) 

END IF 

Interpolate to find values of variables on north face of 
scaler cell. 
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UCP=0.5*(F(LOUI +1)+F(LOU I AW)) 
UCN=0.5*(F(LOU1+IN)+F(LOUI+INW)) 

UNF=(F(LOYC+IN)-F(LOYNF+I))*(UCN-UCP) 
UNF=UCN-(UNF/(F(LOYC+IN)-F(LOYC+I))) 
ENUTNF=(F(LOYC+IN)-F(LOYNF+I))*(F(LOENUT+IN)-F(LOENUT+I)) 
ENUTNF=F(LOENUT+IN)-(ENUTNF/(F(LOYC+IN)-F(LOYC+I))) 

Tl =-I *RHOl *UNF*F(LOVI +1) 
GAM=RHOl *(ENUL+ENUTNF) 

ADUDY=(UCN-UCP)/(F(LOYC+IN)-F(LOYC+I)) 
IF (IXX. EQ. 1) THEN 
DELX=PLEN-F(LOXC+IW)+F(LOXC+IE) 

c WRITE(14, *)'delxl=', delx 
ELSE IF (IXX. EQ. NX) THEN 
DELX=PLEN-F(LOXC+IW)+F(LOXC+IE) 

c WRITE(l 4, *)'delxnx=', delx 
ELSE 

DELX=(F(LOXC+IE)-F(LOXC+IW)) 
END IF 
ADVDX=(F(LOV1+IE)-F(LOV1+IW))/DELX 

C comment this term to use ADVDX term 
ADVDX=O 

T2=GAM*(ADUDY+ADVDX) 
TAU=(Tl +T2)*F(LOAN+I) 
SUMTAU=SUMTAU+TAU 

C The following two lines print out the local Peclet number 
C to the result file. 
C PE=RHO1 *F(LOV1 +1)*(F(LOYC+IN)-F(LOYC+I))/GAM 
C WRITE(l 4, *)'IY is', IY, ' IX is', IXX, 'Pe is, PE 

20 CONTINUE 
EFFS(IY)=SUMTAU/PLEN 
WRITE(49, *) EFFS(IY) 

10 CONTINUE 
WRITE(49, *)']; ' 
CLOSE(49) 

RETURN 
END 

c*************************************************************** 
SUBROUTINE SHFOR(ASFTW, ASFBW, TSFB) 

C Finds shear force on walls/blocks 
INCLUDE'lp2l/d-includ/sateae 
INCLUDE'lp2l/d-includ/grdloc' 
INCLUDE'lp2l/d-includ/grdeae 
INCLUDE 'lp21 /d-includ/grdbfc' 

C Version 2.0 
C INCLUDE 'IP2/d-includ/sateae 
C INCLUDE 'IP2/d-includ/grdloc' 
C INCLUDE 'lp2/d-includ/grdeae 
C INCLUDE 'lp2/d-includ/grdbfc' 

315 



PARAMETER (NLG=100, NIG=200, NRG=200, NCG=100) 
COMMON/LGRND/LG(NLG)/IGRND/IG(NIG)/RGRND/RG(NRG)/CGRND/CG(NCG) 
LOGICAL LG 
CHARACTER*4 CG 

C My common block for rough duct analysis subroutines 
COMMON/ROUGHl/lBU, IBD, BNY, PLEN, DPDX 
REAL PLEN, DPDX 
INTEGER IBU, IBD, BNY 

C Subroutine variables 
C Real Arrays in IX (check dimensions!!! ) 
C 
C ASFTW=(sub ground, APRN) array shear force top wall 
C ASFBW=(sub ground, APRN)array shear force bottom wall 

REAL ASFTW(600), ASFBW(600) 

C Reals: 
C TSFB=total shear force block 
CU1 AVE=U 1 vel average between U-p and U-e 
C Logicals 
C TWALL=. TRUE. if top wall exits, else a plane of sym. 
C Integers 
C SIGN=sign of U1 AVE and therefore of shear stress 
C I=integer to give F-array location of current cell 
C IW=integer to give F-array location of previous (west) cell 
C ID=integer to give F-array location of patch wise varables 
C IYF=first y cell of patch 
C IYL=Iast y cell of patch 
C IXF=first x cell of patch 
C IXL=Iast x cell of patch 
C LOAN=Iocation zero point of area north segment of F-array 
C LOU1=location zero point of U1 segment of F-array 
C LOSB=Iocation zero point of 'shear on bed' segment of F-array 
C LOSBD=Ioc. zero pt. of 'shear on dwnstm 1/2 of block' segment of F-array 
C LOSBU=Ioc. zero pt. of 'shear on upstrn 1/2 of block7 segment of F-array 

REAL TSFB, UI AVE 
INTEGER SIGN, I, IW, ID, IYF, IYL, IXF, IXL, LOAN, LOU1, LOSB, LOSBD, LOSBU 
LOGICAL TWALL 
SIGN=1 
TWALL=LG(l) 

C Location of north cell areas 
LOAN=LOF(ANORTH) 
L0U1=L0F(U1) 
LOXC=LOF(XG2D) 
IF (TWALL) THEN 
LOST=LOPVAR(PVSTRS, IPNAME('WALLSTOP'), O) 

END IF 
LOSB=LOPVAR(PVSTRS, IPNAME('WALLSBED'), O) 
LOSBD=LOPVAR(PVSTRS, IPNAME('BLOCD-SW'), O) 
LOSBU=LOPVAR(PVSTRS, IPNAME('BLOCU-SW'), O) 

WRITE(14, *)'' 
WRITE(14, *)'sub SHFOR' 

C Write out to MATLAB file (open file) 
OPEN (51, FILE=resjau. m') 
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WRITE(51, *)'% MATLAB script of wall shear stress results! WRITE(51, *)" 

C Array shear force top wall 
IY=NY 
IYF=NY 
IYL=NY 
IXF=1 
IXL=NX 
IXX=1 

C* If no top wall then plane of sym. ie free surface. 
IF (. NOT. TWALL) THEN 
DO 5 IXX=I, NX 

ASFTW(IXX)=O. O 
5 CONTINUE 

ELSE 
C Write out to MATLAB file (header) 

WRITE(51, *)'twtau=[' 

DO 10 IXX=1, NX 
C Find sign of shear force, acting on the fluid 

I=IY+NY*(IXX-1) 
IW=IY+NY*(IXX-2) 
Ul AVE=(F(LOU 1 +I)+F(L0U1 +IW))/2 
IF (UIAVE. GT. O. 0) THEN 

SIGN=-1 
ELSE 

SIGN=1 
END IF 

C Find shear force 
ID=(IY-IYF+1)+(IYL-IYF+I)*(IXX-IXF) 
ASFTW(IXX)=F(LOST+ID)*SIGN*F(LOAN+I)*RHOi 

C WRITE(l 4, *)' 
C WRITE(I 4, *)'t/r topw is', (F(LOST+ID)*SIGN) 
C WRITE(14, *)'cell area is', F(LOAN+I) 
C WRITE(14, *)'' 
C Write out to MATLAB file (shear stress*sign) 

WRITE(51, *) (F(LOST+ID)*SIGN*RHOl) 
10 CONTINUE 
C Write out to MATLAB file (footer) 

WRITE(51, *)']; ' 
WRITE(51, *)'' 

END IF 

C Array shear force bottom wall 
C NB IXF, IXL must apply to PATCH WALLSBED, but loop is 
C over space between blocks only. 

IY=l 
lYF=1 
lYL=1 
IXF=l 
IXL=NX 

C Write out to MATLAB file (header) 
WRITE(51, *)' xcc bed shear stress 
WRITE(51, *)'bwtau=[' 
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DO 20 IXX=IBD+1, IBU-1 
C Find sign of shear force, acting on the fluid 

I=IY+NY*(IXX-1) 
IW=IY+NY*(IXX-2) 
IF (IXX. EQ. IBD+l) THEN 

UlAVE=F(LOU1+1)/2 
ELSEIF (IXX. EQ. IBU-1) THEN 

UlAVE=F(LOUI+IW)/2 
ELSE 

UlAVE=(F(LOU1+1)+F(LOU1+IW))/2 
END IF 
IF (UlAVE. GT. O. 0) THEN 

SIGN=-1 
ELSE 

SIGN=1 
END IF 

C Find shear force 
ID=(IY-IYF+1)+(IYL-IYF+1)*(IXX-IXF) 
ASFBW(IXX)=F(LOSB+ID)*SIGN*F(LOAN+I)*RHO1 
WRITE(l 4, *)" 
WRITE(14, *)'ix is', IXX 
WRITE(l 4, *)'t/r bedl is', (F(LOSB+ID)*SIGN) 
WRITE(14, *)'cell area is', F(LOAN+I) 
WRITE(14, *)'sign is', SIGN 
WRITE(14, *)'Ul ave is', UlAVE 
WRITE(l 4, *)" 

C Write out to MATLAB file (shear stress*sign) 
WRITE(51, *) F(LOXCA), (F(LOSB+ID)*SIGN*RHOl) 

20 CONTINUE 
C Write out to MATLAB file (footer) 

WRITE(51, *)']; ' 
WRITE(51, *)'' 

C Total shear force block 
C Write out to MATLAB file (header) 

WRITE(51, *)' xcc block shear stress' 
WRITE(51, *)'blktau=[ 
IY=BNY+l 
IYF=BNY+l 
IYL=BNY+l 
TSFB=0.0 

C Upstream 1/2 of block (NB: dwnstrearn end of domain) 
IXF=IBU 
IXL=NX 
DO 40 IXX=IXF, IXL 

C Find sign of shear force, acting on the fluid 
I=IY+NY*(IXX-1) 
IW=IY+NY*(IXX-2) 
U1AVE=(F(L0U1+I)+F(L0U1 +IW))/2 
IF (UlAVE. GT. O. 0) THEN 

SIGN=-1 
ELSE 

SIGN=1 
END IF 

C Find shear force 
ID=(IY-IYF+1)+(IYL-IYF+1)*(IXX-IXF) 
TSFB=TSFB+(F(LOSBU+ID)*SIGN*F(LOAN+I)) 

C Write out to MATLAB file (shear stress*sign) 
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WRITE(51, *) F(LOXC+I), (F(LOSBU+ID)*SIGN*RHOl) 
40 CONTINUE 
C Dwnstream 1/2 of block (NB: upstream end of domain) 

IXF=1 
IXL=IBD 
DO 45 IXX=IXF, IXL 

C Find sign of shear force, acting on the fluid 
1=[Y+NY*(IXX-1) 
IF (IXX. EQ. 1) THEN 

IW=IY+NY*(NX-1) 
ELSE 

IW=IY+NY*(IXX-2) 
END IF 
UlAVE=(F(LOU1+1)+F(LOU1+IW))/2 
IF (UIAVE. GT. O. 0) THEN 

SIGN=-1 
ELSE 

SIGN=1 
END IF 

C Find shear force 
ID=(IY-IYF+1)+(IYL-IYF+1)*(IXX-IXF) 
TSFB=TSFB+(F(LOSBD+ID)*SIGN*F(LOAN+I)) 

C Write out to MATLAB file (shear stress*sign) 
WRITE(51, *) F(LOXC+I), (F(LOSBD+ID)*SIGN*RHOl) 

45 CONTINUE 

TSFB=TSFB*RHOl 

C Write out to MATLAB file (footer and close) 
WRITE(51, *)']; ' 
WRITE(51, *)'' 
CLOSE (51) 

RETURN 
END 

SUBROUTINE PBLK(TPFB, TPMB, BLKHGT, MBU, MBD, DBU, DBD, DEPTH) 
C Finds total pressure force/moment over block (ie sigma_x) 
C Force is taken to act on the fluid in the +ve X direction. 
C For method see notes (in printout) dated 2/11/95, A. Senior. 
C (Corrected 22/11/95) 

INCLUDE 'Ip21 /d-includ/satear' 
INCLUDE 'lp21 /d-includ/grdloc' 
INCLUDE'lp2l/d-includ/grdeae 
INCLUDE'lp2l/d-includ/grdbfc' 

C Version 2.0 
C INCLUDE 'IP2/d-includ/sateae 
C INCLUDE 'IP2/d-includ/grdloc' 
C INCLUDE 'lp2/d-includ/grdeae 
C INCLUDE 'IP2/d-includ/grdbfc' 

PARAMETER (NLG=100, NIG=200, NRG=200, NCG=100) 
COMMON/LGRND/LG(NLG)/IGRND/IG(NIG)/RGRND/RG(NRG)/CGRND/CG(NCG) 
LOGICAL LG 
CHARACTER*4 CG 

C My common block for rough duct analysis subroutines 
COMMON/ROUGHl/lBU, IBD, BNY, PLEN, DPDX 
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REAL PLEN, DPDX 
INTEGER IBU, IBD, BNY 

C Subroutine variables 
C Real Arrays in BNY (check dimensionsM) 
C 
C MBU=(sub ground) array of mass flow across face P upstream of block 
C MBD=(sub ground) array of mass flow across face P dwnstream of block 
C DBU=(sub ground) array of diff. coeff across face P upstream of block 
C DBD=(sub ground) array of diff. coeff across face P dwnstrearn of block 

REAL MBU(600), MBD(600), DBU(600), DBD(600) 

C TPFU=total pressure force upstream (of block) 
C TPFD=total pressure force downstream (of block) 
C TPFB=total pressure force over block 
C TPMU=total pressure moment upstream (of block) from IY=NY 
C TPMD=total pressure moment downstream (of block) from IY=NY 
C TPMB=total pressure moment over block from IY=NY 
C ALPA=coeff of hybrid scheme = 0.5 
C AE=convection/diff coeff for east face of UI cell 
C DEPTH=duct depth (=flow area for 2D) 
C UDIF= U1-w - Ul-e 
C JP=total flux across face P/ area of cell east face 
C TJPU=total force due to JP on upstrm side of the block 
C TJPD=total force due to JP on dwnstrm side of the block 
C PFU=pressure force upstream (of block) 
C PFD=pressure force downstream (of block) 
C Wnteger to give F-array location of current cell 
C IE=integer to give F-array location of next (east) cell 
C LOYC=Iocation zero point of y cell center segment of F-array 
C LOAE=Iocation zero point of area east segment of F-array 
C LOP1 =location zero point of P1 segment of F-array 
C LOUI=Iocation zero point of U1 segment of F-array 

REAL TPFU, TPMU, TPFD, TPMD, TPFB, ALPA, AE, UDIF, JP, PFU, PFD 
REAL TJPU, TJPD 
INTEGER 1, IE, LOP1, LOW, LOAE, LOYC 

C Set up EARTH variables 
LOP1 =LOF(Pl) 
LOU1=LOF(Ul) 
LOAE=LOF(AEAST) 
LOYC=LOF(YG2D) 

WRITE(14, *)'' 
WRITE(14, *)'sub PBLK' 
OPEN (60, FILE--ýres--sig. m') 
WRITE(60, *)'% MATLAB file of sigma_x on upstream face of block 
WRITE(60, *)'% -sigbup' 
WRITE(60, *)'% and sigma_x on downstream stream face of block' 
WRITE(60, *)'% -sigbdwn' 
WRITE(60, *)'%' 
WRITE(60, *)'% ycc sigma_x PI jP 
1 area-east ' 
WRITE(60, *)'' 

61 FORMAT (5(El 1.5,2X)) 

C Find upstream pressure forces 
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C First find Jp, based on flow throu' east face 
C of cell Uw, ie IBU-2 

WRITE(60, *)'sigbup=[' 
TPFU=0.0 
TPMU=0.0 
TJPU=0.0 
ALPA=0.5 
IXX=IBU-2 

C WRITE(14, *)'ix is', IXX 
DO 10 IY=1, BNY 

C WRITE(14, *)iy is', IY 
I=IY+NY*(IXX-1) 
IE=IY+NY*(IXX) 
AE=AMAX1 (0.0, (DBU(IY)-(ALPA*ABS(MBU(IY))))) 

C WRITE(14, *)'ae-1 is', AE 
AE=AE+AMAXI (0.0, -MBU(IY)) 

C WRITE(14, *)'ae-2 is', AE 
UDIF=F(LOU1+1) 

C WRITE(14, *)'ul is', UDIF 
JP=((AE*UDIF)+(MBU(IY)*F(LOUl +1))) 
PFU=(F(LOP1+IE))*F(LOAE+I) 
TJPU=TJPU+JP 
TPFU=TPFU+PFU 
TPMU=TPMU+((PFU+JP)*(DEPTH-F(LOYC+IE))) 

C WRITE(14, *)'pl is', F(LOPI+IE) 
C WRITE(14, *)'pfu is', PFU 
C write to MATLAB file... 

WRITE(60,61) F(LOYC+I), (JP+PFU)/F(LOAE+I), F(LOP1+IE), JP, F(LOAE+I) 
10 CONTINUE 
C WRITE(14, *)'tpfu is', TPFU 
C WRITE(14, *)'tjpu is', TJPU 
C WRITE(14, *)'' 

TPFU=-l*(TPFU+TJPU) 
WRITE(60, *)']' 
WRITE(60, *)'' 

C Find dwnstream pressure forces 
C First find Jp, based on flow throu' east face 
C of 1/2 wall cell, ie 1131) 

WRITE(60, *)'sigbdwn=[' 
TPFD=0.0 
TPMD=0.0 
TJPD=0.0 
ALPA=0.5 
IXX=IBD 

C WR ITE(l 4, *)'ix is IXX 
DO 20 IY=I, BNY 

C WR ITE(l 4, *)iy is lY 
I=IY+NY*(IXX-1) 
IE=IY+NY*(IXX) 
AE=AMAX1 (0.0, (DBD(IY)-(ALPA*ABS(MBD(IY))))) 

C WRITE(14, *)'ae-1 is', AE 
AE=AE+AMAX1 (0.0, -MBD(IY)) 

C WRITE(14, *)'ae-2 is', AE 
UDIF=-F(LOU1+IE) 

C WRITE(14, *)'ul is', UDIF 
JP=AE*UDIF 
PFD=(F(LOP1 +IE))*F(LOAE+IE) 
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TPFD=TPFD+PFD 
TJPD=TJPD+JP 
TPMD=TPMD+((PFD+JP)*(DEPTH-F(LOYC+IE))) 

C WRITE(14, *)'pl is', F(LOP1+IE) 
C WRITE(14, *)'pfd is, PFD 
C write to MATLAB file... 

WRITE(60,61) F(LOYC+I), (JP+PFD)/F(LOAE+I), F(LOP1+IE), JP, F(LOAE+I) 
20 CONTINUE 
C WRITE(14, *)'tpfd is', TPFD 
C WRITE(14, *)tjpd is', TJPD 

TPFD=TPFD+TJPD 
TPFB=TPFD+TPFU 
TPMB=-l *(TPMU-TPMD) 

C WRITE(14, *)'tpfd2 is', TPFD 
C WRITE(14, *)'tpfb is', TPFB 
C WRITE(14, *)'tpmu is', TPMU 
C WRITE(14, *)'tpmd is', TPMD 
C WRITE(14, *)'tpmb is', TPMB 
C WRITE(14, *)'' 

WRITE(60, *)']' 
WRITE(60, *)'' 
CLOSE(60) 

RETURN 
END 

SUBROUTINE PAVEL(DEPTH, TPAU, MU, MUIY) 
C Finds period average Ul vel. and writes results to matlab 
C file pavel. m. Also intergrates to find vol. flow rate. 

INCLUDE 'Ip21 /d-includ/satear' 
INCLUDE'lp2l/d-includ/grdloc' 
INCLUDE 'Ip21 /d-includ/grdear' 
INCLUDE'lp2l/d-includ/grdbfc' 

C Version 2.0 
C INCLUDE 'lp2/d-includ/sateae 
C INCLUDE 'lp2/d-lnclud/grdloc' 
C INCLUDE'lp2/d-includ/grdeae 
C INCLUDE 'lp2/d-includ/grdbfc' 

PARAMETER (NLG=100, NIG=200, NRG=200, NCG=100) 
COMMON/LGRND/LG(NLG)/IGRND/IG(NIG)/RGRND/RG(NRG)/CGRND/CG(NCG) 
LOGICAL LG 
CHARACTER*4 CG 

C My common block for rough duct analysis subroutines 
COMMON/ROUGHl/lBU, IBD, BNY, PLEN, DPDX 
REAL PLEN, DPDX 
INTEGER IBU, IBD, BNY 

C Subroutine variables: 
C PAU(IY)=Real array in y of period averaged Ul vel 
C TPAU=Real, average of PAU(IY) 
C MU=real, max vel 
C MUIY=int, IY cell of MU 
C UCUR=real, u current in calc UM 

REAL PAU(600) 

322 



REAL TPAUJAN, MU, UCUR 
INTEGER MUIY 

LOAN=LOF(ANORTH) 
LOAE=LOF(AEAST) 
LOU1=LOF(Ul) 
LOYCC=LOF(YG2D) 

C Calc period average vel 
DO IY=1, NY 
TAN=0.0 
DO IXX=1, NX 

I=IY+NY*(IXX-1) 
IE=IY+NY*(IXX) 
PAU(IY)=PAU(IY)+(F(LOU1+1)* (F(LOAN+I)+F(LOAN+IE))/2) 
TAN=TAN+((F(LOAN+I)+F(LOAN+IE))/2) 

END DO 

PAU(IY)=PAU(IY)/TAN 
C write(14, *)'tan is', TAN 

TPAU=TPAU+(PAU(IY)*F(LOAE+I)) 
END DO 
TPAU=TPAU/DEPTH 

C Write out to MATLAB file 
OPEN (50, FILE='res-pau. m) 
WRITE(50, *)'% MATLAB script to plot U1 period average. ' 
WRITE(50, *)'' 
WRITE(50, *)'pau=[' 
DO IY=1, NY 

WRITE(50, *) PAU(IY) 
END DO 
WRITE(50, *)']; ' 
WRITE(50, *)'' 
CLOSE (50) 

C Write out y cell centre coords to MATLAB file ycc. m 
C NB: the program p2m. f also creates an identical file. 

OPEN (52, FILE='ycc. m') 
WRITE(52, *)'% MATLAB script of y cell centre coords. ' 
WRITE(52, *)'' 
WRITE(52, *)'ycc=[' 
IXX=l 
DO IY=1, NY 

I=IY+NY*(IXX-1) 
WRITE(52, *) F(LOYCC+I) 

END DO 
WRITE(52, *)']; ' 
WRITE(52, *)'' 
CLOSE (52) 

C calc max vel 
MU=-l OE1 0 
DO 1=1, NY 

IF (PAU(I). GT. MU) THEN 
MU=PAU(I) 
MUIY=l 

END IF 
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END DO 

RETURN 
END 

C 

SUBROUTINE APRN(TPFB, TPMB, ASFTW, ASFBW, TSFB, 
1 DEPTH, BLKHGT, BLKLEN, U1, STIME, SETUI, TPAU, FLOWF, MU, MUIY) 

C Analsyis and printout 
INCLUDE 'lp2l /d-includ/satear' 
INCLUDE 'lp2l/d-includ/grdloc' 
INCLUDE'lp2l/d-includ/grdeae 
INCLUDE'lp2l/d-includ/grdbfc' 

C Version 2.0 
C INCLUDE 'lp2/d-includ/sateae 
C INCLUDE 'lp2/d_includ/grdloc' 
C INCLUDE'lp2/d-includ/grdeae 
C INCLUDE 'lp2/d-includ/grdbfc' 

PARAMETER (NLG=100, NIG=200, NRG=200, NCG=100) 
COMMON/LGRND/LG(NLG)/IGRND/IG(NIG)/RGRND/RG(NRG)/CGRND/CG(NCG) 
LOGICAL LG 
CHARACTER*4 CG 

C My common block for rough duct analysis subroutines 
COMMON/ROUGHI/IBU, IBD, BNY, PLEN, DPDX 
REAL PLEN, DPDX 
INTEGER IBU, IBD, BNY 

C Subroutine variables 
C brought in: 
C Real Arrays in IX (check dimensionsll! ) 
C 
C ASFTW=(sub ground, SHFOR) array shear force top wall 
C ASFBW=(sub ground, SHFOR)array shear force bottom wall 

REAL ASFTW(600), ASFBW(600) 

C Reals 
C TPFB=total pressure force over block 
C TPMB=total pressure moment over block from IY= north NY 
C TSFB=total shear force block 
C DEPTH=duct height (=flow area for 2D) 
C BLKHGT=biock height 
C BLKLEN=block length 
C UI=U1 velocity (over top of blk) inputed from Q1 file (desired vel) 
C MU=max period ave vel. 
C TPAU=total, ie averaged, period averaged Ull vel 
C FLOWF=f low factor used to calc dpdx from UI 
C Integers (array) 
C STIME= stime time array 
C Integers 
C MUIY=IY cell of MU 
C Logicals 
C SETUI=. TRUE. if average Ull is set in 01 

REAL TPFB, TPMU, TPMD, TSFB, DEPTH, BLKHGT, BLKLEN, MU 
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REAL UI, TPAU, FLOWF 
INTEGER STIME(20), MUIY 
LOGICAL SETUI 

C internal only: 
C Reals 
C STWP=(total) shear (force) top wall (over the) period 
C SBW=(total) shear (force) bottom wall 
C TRFB=total resistive force bed 
C TRMB=total resistive moment bed (taken from IY=NY) 
C DP=pressure drop over period due to body force 
C DF=driving force over period (-block body force) 
C EBSSP1 =equivalent bed shear stress position 
C EBSS1 =equivalent bed shear stress 
C A=quadratic coeff (eA2) used in EBSS 
C B=quadratic coeff (eAl) used in EBSS 
C C=quadratic coeff (eAO) used in EBSS 
C UC=calculated U1 average velocity 
C MFAET=main flow area east total 
C US=calc of bed vel. stationary point (= -ve if adj. vel change sign) C PEDF=% error in boundary forces wrt driving force 
C PEU= % error in average velocity wrt Ul 

C integers 
C Wnteger to give F-array location of current cell 
C IW=integer to give F-array location of west cell 
C NS=index for array CUS (vel bed stationary points) 
C CUS(20)=array, Cell numbers where bed U vel is Stationary. 
C STIME(3)=start date 
C STIME(4)=start hours 
C STIME(5)=start mins 
C FTIME(3)=finish date 
C FTIME(4)=finish hours 
C FTIME(5)=finish mins 
C TH=time, hours 
C TM=time, minutes 
C TIME=total time in minues 
C LOU1=location zero point of U1 segment of F-array 
C LOAE=Iocation zero point of area east segment of F-array 
C LOYC=Iocation zero point of y cell centers segment of F-array 

C charaters 
C S/F1 -5 are all start/finish time charaters 
C ID= case identification 
C NUMBER=case number 

C Logicals 
C TWALL=. TRUE. if top wall exits, else a plane of sym. 

REAL STWP, SBW 
REAL TRFB, TRMB, DP, DPB, DPC, DF, EBSSPI, EBSSI 
REAL A, B, C, EBSSP2, EBSS2 
REAL UCUR, ARWU, RWA, UC, MFAET, US, PEDF, PEU 
CHARACTER*4 ID, NUMBER, ST1, FT1 
CHARACTER*2 ST4, ST5, ST3, ST2, FT4, FT5, FT3, FT2 
INTEGER FTIME(20), CUS (20) 
INTEGER TH, TM, TIME, LOU1, LOAE, LOYC, I, NS 
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LOGICALTWALL 

C Earth location variables 
LOU1=LOF(Ul) 
LOAE=LOF(AEAST) 
LOYC=LOF(YG2D) 
LOXC=LOF(XG2D) 

ID=CG(l) 
NUMBER=CG(2) 
TWALL=LG(l) 

C Calc times 
C **NB: If running on a CRAY, comment out this section, and the 
C ** relevent section in the Print header. 

CALL MCLOCK(FTIME) 
WRITE(ST4, '(12.2)') STIME(4) 
WRITE(STS, '(12.2)') STIME(5) 
WRITE(ST3, '(12.2)') STIME(3) 
WRITE(ST2, '(12.2)') STIME(2) 
WRITE(FT4, '(12.2)') FTIME(4) 
WRITE(FT5, '(12.2)') FTIME(5) 
WRITE(Fr3, '(12.2)') FTIME(3) 
WRITE(FT2, '(12.2)') FTIME(2) 
WRITE(STI, '(14.4)') STIME(l) 
WRITE(FT1, '(14.4)') FTIME(l) 
TIME=(FTIME(3)-STIME(3))*24*60 
TIM E=TI M E+((FTIME(4)-STIME(4))*60)+ (FTIME(5)-STIME(5)) 
TH=TIME/60 
TM=MOD(TIME, 60) 

WRITE(14, *)" 
WRITE(14, *)'subAPRN' 
WRITE(14, ")" 
WR ITE(I 4, *)'See file "result2"' 
OPEN(4, FILE='result2') 

C Print header 
*)'' WRITE(4 , *)'' WRITE(4 , 

WRITE(4, *)'* A. Senior. RMCS. 
WRITE(4, *)'* File = "result2" 
WRITE(4, *)'* Gives GROUND results of xcyclic rough ducts 
WRITE(4, *)'* for single period domains. 
WRITE(4 *)'* , WRITE(4 *)'* GROUND update: 31/3/97 , WRITE(4, *)'* GROUND version: s12 
WRITE(4, *)'* All units are standard Sl unless stated in Q1. 

WRITE(4 *)'* , WRITE(4, *)'* Case ID name: ', ID, ' 
WRITE(4, *)'* Case number: %NUMBER, 
1 
WRITE(4, *)'* 
WRITE(4, *)'* Started at: ', ST4, ':, ST5, on', 
1 ST3, V, ST2, 'f, ST1, ' *1 
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WRITE(4, *)'* Finished at: ', FT4,: ', FT5, on', 
1 FT3, 'P, FT2, 'P, FT1, ' *1 
WRITE(4, *)'* Total run time is: ', TH, 'hrs', TM, 
I 1mins *1 
IF (FT2. NE. ST2. OR. FT1. NE. ST1) THEN 

WRITE(4, *)'***** CHECK MONTH AND DAYS******' 
END IF 

C Print inputs 
WRITE(4, *)'* 

WRITE(4, *)" 
WRITE(4, *)'INPUTS: ' 
WRITE(4, *)'===-== 
WRITE(4, *)" 
WRITE(4, *)'Domain geometry: ' 
WRITE(4, *)' Duct depth (from north face coord) is', DEPTH 
WRITE(4, *)' Period length is ', PLEN 
WRITE(4, *)' Block height is ', BLKHGT 
WRITE(4, *)' Block length is ', BLKLEN 
WRITE(4, *)'..... X direction cells: ' 
WRITE(4, *)' Downstream cell of block is ', IBD 
WRITE(4, *)' Upstream cell of block is -, IBU 
WRITE(4, *)' Total number of X cells is ', NX 
WRITE(4, *) . ..... y direction cells: ' 
WRITE(4, *)' Block Y cells is ', BNY 
WRITE(4, *)' Total number of Y cells is ', NY 
WRITE(4, *)" 
WRITE(4, *)'Fluid properties: ' 
WRITE(4, *)' Density (rho) is ', RHO1 
WRITE(4, *)' Kinematic viscosity (ENUL) is', ENUL 
WRITE(4, *)'' 
IF(SETUI) THEN 

WRITE(4, *)'Input average velocity, ', UI 
WRITE(4, *)'over top of blocks: ' 

ELSE 
WRITE(4, *)'Input pressure gradient: ', DPDX 

END IF 
WRITE(4, *)" 
WRITE(4, *)'Current run of', ISWEEP, ' sweeps. ' 

Calculate results 

C 1a] find average vel from above block: 
IXX=l 

C find average vel 
UC=0.0 
MFAET=0.0 
DO IY=BNY+l, NY 

I=IY+NY*(IXX-1) 
UC=UC+(F(LOUI+I)*F(LOAE+I)) 
MFAET=MFAET+F(LOAE+I) 

END DO 
UC=UC/MFAET 

C lb] Find points of zero Ul vel on the rough bed 
IY=l 
NS=l 
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DO IXX=IBD+1, IBU-1 
I=IY+NY*(IXX-1) 
IW=IY+NY*(IXX) 
US=F(LOU1+1)*F(LOU1+IW) 
IF(US. LE. O. 0) THEN 

CUS(NS)=IXX 
NS=NS+l 

END IF 
END DO 

C 3] Force balance over period 
C Body force pressure drop over whole period domain: 

DP=DPDX*PLEN 
C Driving force 

DF=(DP*DEPTH)-(DPDX*BLKLEN*BLKHGT) 

C find shear (force) on walls (over) period etc. 
STWP=O 
SBW=O 
DO 30 IXX=1, NX 

STWP=STWP+ASFTW(IXX) 
30 CONTINUE 

DO 40 IXX=IBD+1, IBU-1 
SBW=SBW+ASFBW(IXX) 

40 CONTINUE 
C find total resistive force of bed 

TRFB=TPFB+SBW+TSFB 

C 2] Equivalent bed shear stress, body force method, 20/12/95 
C Finds V and equivalent bed shear stress using con. ang. momt. 
C find total resistive moment of the bed 

TRMB=TPMB+(TSFB*(DEPTH-BLKHGT))+(DEPTH*SBW) 
C multipty TRMB, STWP by -1 to agree with convection of notes 
C (ie. modulas only. Sign is incorperated in following theory) 

TRMB=-l*TRMB 
STWP=-l*STWP 

C find quadratic coeffs 
A=-0.5*PLEN*DPDX 
B=DEPTH*PLEN*DPDX-STWP 
C=DPDX*(BLKHGT*BLKLEN*(DEPTH-0.5*BLKHGT)-PLEN*DEPTH**2)+TRMB+ 
1 DEPTH*STWP 

C find position (displacement Vf rom bed) 
EBSST=B**2-4*A*C 
IF (EBSST. LE. 0) THEN 

WRITE(4, *) 'ERROR in effective bed shear stress; ' 
WRITE(4, *) 'negative square root. See APRN item 2]. ' 

ELSE 
EBSSP1=(-B+SQRT(B**2-4*A*C))/(2*A) 

C .... force 
EBSSI=DPDX*PLEN*(DEPTH-EBSSPI)-STWP 

C .... and stress 
EBSSI=EBSS1/PLEN 

C 2nd root 
EBSSP2=(-B-SORT(B**2-4*A*C))/(2*A) 
EBSS2=DPDX*PLEN*(DEPTH-EBSSP2)-STWP 
EBSS2=EBSS2/PLEN 

END IF 
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C Return -ve sign to STWP 
STWP=-l*STWP 

C Print out results 
WRITE(4, *)'' 

WRITE(4, *)" 
WRITE(4, *)'RESULTS' 
WRITE(4, *)'=======' 
WRITE(4, *)" 
WRITE(4, *)'l) Velocities. ' 
WRITE(4, *) --------------- - 
WRITE(4, *)'' 
IF (SETUI. AND. NF. GT. 0) THEN 

WRITE(4, *)'( Flow factor to obtain desired velocity is 
I FLOWF, ')' 

WRITE(4, *)" 
END IF 
WR ITE(4, *)'Ave rage Ul over middle of block is', UC 
WRITE(4, *)' corresponding flow rate is, UC*(DEPTH-BLKHGT) 
WRITE (4, *)'Ave rage U1 from period averaged profile is', TPAU 
WRITE(4, *)' corresponding flow rate is', TPAU*DEPTH 
WRITE(4, *)" 
WRITE(4, *)'From period averaged profile (see file res-pau. m): ' 
WRITE(4, *)'Maxium U1 velocity is ', MU 
WRITE(4, *)' IY cell is ', MUIY 
WRITE(4, *)' Y position is ', F(LOYC+MUIY) 
WRITE(4, *)'' 
DO NS=1,20 
IF (CUS(NS). GT. 0) THEN 
WRITE(4, *)'Bed velocity stationary point', NS, 'is at' 
WRITE(4, *)' x cell', CUS(NS) 
WRITE(4, *)' coord', F(L0XC+(NY*(CUS(NS)-1))) 

END IF 
END DO 
WRITE(4, *)'' 
WRITE(4, *)'2) Shear stresses over period. 
WRITE(4, *) -------------------------------------------- - 
WRITE(4, *)" 
WRITE(4, *)'See file res_tau. rn for wall shear stresses. 
WRITE(4, *)'' 
IF (TWALL) THEN 
WRITE(4, *)'Smooth wall shear stress is ', STWP/PLEN 
WRITE(4, *)' shear velocity is ', 

I SQRT(ABS(STWP/PLEN)/RHOl) 
WRITE(4, *)'' 

END IF 
WRITE(4, *)'Equivalent bed shear stress / datum levels. ' 
WRITE(4, *)' yO geometric roughness level is ', BLKHGT*BLKLEN/PLEN 
IF (MUIY. EQ. NY) THEN 

C max vel located at upper boundary; use DEPTH as pos of 0 shear stress 
WRITE(4, *)' tau is ', 

1 ((BLKHGT*BLKLEN/PLEN)-DEPTH)*DPDX*(-l) 
ELSE 
WRITE(4, *)' tau is', 

1 ((BLKHGT*BLKLEN/PLEN)-F(LOYC+MUIY))*DPDX*(-l) 
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END IF 
WRITE(4, *)' (calc from theortical linear shear stress profile)' 
WRITE(4, *)'' 
WRITE(4, *)' yO from con. ang. momt. is, EBSSP1 
WRITE(4, *)' tau is', EBSSI 
WRITE(4, *)'(calc from conservation of angular mornentum)' 
IF (MUIY. EQ. NY) THEN 

C max vel located at upper boundary; use DEPTH as pos of 0 shear stress 
WRITE(4, *)' tau is 

1 (EBSSPI-DEPTH)*DPDX*(-l) 
ELSE 
WRITE(4, *)' tau is ', 

1 (EBSSPl-F(LOYC+MUIY))*DPDX*(-l) 
END IF 
WRITE(4, *)'(calc from theortical linear shear stress profile)' 
WRITE(4, *)' ' 
WRITE(4, *)' Note that con. ang. momt. gives 2nd roots as: ' 
WRITE(4, *)'tau is ', EBSS2 
WR ITE(4, *)'position is', EBSSP2 
WRITE(4, *)" 
WRITE(4, *)'Also see file: res-shr' 
WRITE(4, *)'for period averaged effective shear stress. ' 
WRITE(4, *)'' 
WRITE(4, *)'' 
WRITE(4, *)'4) Force balance over period. ' 
WRITE(4, *) ------------------------------------- - 
WRITE(4, *)' (NB; forces are acting on the fluid)' 
WRITE(4, *)'' 
WRITE(4, *)'Ddving forces: ' 
WR ITE(4, *)'The driving force is due to a body force acting' 
WRITE(4, *)'on each fluid cell, dependant on the press. grad. ' 
WRITE(4, *)' Pressure gradient is ', DPDX 
WRITE(4, *)' and the pres. drop is ', DP 
WRITE(4, *)' area over which this acts (flow depth) is', DEPTH 
WRITE(4, *)' gives a force of ', DP*DEPTH 
WRITE(4, *)'However, the body force will not apply on the block; ' 
WRITE(4, *)' block body force pressure drop is, DPDX*BLKLEN 
WRITE(4, *)' block body force is ', DPDX*BLKLEN*BLKHGT 
WRITE(4, *)" 
WRITE(4, *)rThus total driving force is ', DF 
WRITE(4, *)" 
WRITE(4, *)'Resistive forces: ' 
WRITE(4, *)' total shear force on smooth top is', STWP 
WRITE(4, *)' total shear force on bed is ', SBW 
WRITE(4, *)' total shear force on block is ', TSFB 
WRITE(4, *)' total press. force on block is ', TPFB 
WRITE(4, *)'Total resistive force is ', TRFB+STWP 
WRITE(4, *)'' 
PEDF=1 00*(DF-(-l *(TRFB+STWP)))/DF 
WRITE(4, *)'% error in driving/ resistive forces is', PEDF 
WRITE(4, *)'(with respect to driving force). ' 
WRITE(4, *)'' 
WRITE(4, *)" 

WRITE(4, *) 
WRITE(4, *)'Results summary: ' 
WRITE(4, *)' Total run time is: ', TH, 'hrs', TM, 
I 1mins' 
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WRITE(4, *)" 
IF (SETUI. AND. NF. GT. 0) THEN 

WRITE(4, *)'Flow convergance for a required average 
WRITE(4, *)'veloc4 with automatic update of DPDX: ' 
WRITE(4, *)" 
WRITE(4, *)' Flow factor (Ul/UC) is, FLOWF 
WRITE(4, *)' Latest pressure gradient is', DPDX 
WRITE(4, *)' % error in driving/ resistive forces is', PEDF 
WRITE(4, *)'' 

ELSEIF (SETUI. AND. NF. LE. 0) THEN 
WRITE(4, *)'Flow convergance for a required average 
WRITE(4, *)' velocity with manual update of DPDX: ' 
WRITE(4, *)" 
WRITE(4, *)' Pressure gradient used is', DPDX 
WRITE(4, *)' Average velocity required is', Ul 
WRITE(4, *)' Average velocity calculated is', UC 

C find % error wrt Ul 
PEU=100*(Ul-UC)/Ul 
WRITE(4, *)' % error is', PEU 
WRITE(4, *)" 
WRITE(4, *)'% error in driving/ resistive forces is ', PEDF, 
WRITE(4, *)" 
WRITE(4, *)rTo continue solution: ' 
IF(ABS(PEDF). GT. 5) THEN 

WRITE(4, *)'Hold value of DPDX and run on. ' 
ELSE 

IF (ABS(PEU). LT. 5) THEN 
IF (ABS(PEDF). LT. 0-1) THEN 
WRITE(4, *)'Case converged! ll' 

ELSE 
WRITE(4, *)'Reynolds number (and U1 average) correct' 
WRITE(4, *)'Hold DPDX and run on to convergance. ' 

END IF 
ELSE 

WRITE(4, *)'Forces adiquatly converged. 
WRITE(4, *)'Run on with new value of DPDX=', 

DPDX*(Ul/UC)**2 
END IF 

END IF 
WRITE(4, *)'' 

ELSE 
WRITE(4, *)' Flow convergance for a required pressure gradient: ' 
WRITE(4, *)'' 
WRITE(4, *)'% error in driving/ resistive forces is, PEDF 
WRITE(4, *)" 

END IF 
WRITE(4, *)'' 
WRITE(4, *)'End of file "resultT. ' 

CLOSE(4) 

RETURN 
END 

SUBROUTINE MON ITOR(MONTYPE, SETU I, UC, FLOWF) 
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C Creates matlab files for convergance monitoring 
C Set IG(5) in Q1 to: 0 for no monitoring 
C1 for complete monitoring 
C2 for P1 and Ul 
C3 for EP and KE 
C4 for dpdx calc. 

INCLUDE'Ip21/d-JncIud/sateae 
INCLUDE 'lp2l/d-includ/grdloc' 
INCLUDE'lp2l/d-includ/grdeae 
INCLUDE 'Ip21 /d-includ/grdbfc' 

C Version 2.0 
C INCLUDE'lp2/d-includ/sateae 
C INCLUDE 'lp2/d-includ/grdloc' 
C INCLUDE 'lp2/cL-includ/grdeae 
C INCLUDE 'lp2/cLinclud/grdbfc' 

PARAMETER (NLG=100, NIG=200, NRG=200, NCG=100) 
COMMON/LGRND/LG(NLG)/IGRND/IG(NIG)/RGRND/RG(NRG)/CGRND/CG(NCG) 
LOGICAL LG 
CHARACTER*4 CG 

C My common block for rough duct analysis subroutines 
COMMON/ROUGHl/lBU, IBD, BNY, PLEN, DPDX 
REAL PLEN, DPDX 
INTEGER IBU, IBD, BNY 

C Subroutine variables 
REAL MON, UC, FLOWF 
INTEGER MONTYPE 
LOGICAL SETUI 

IF (MONTYPE. EQ. 1. OR. MONTYPE. EQ. 2) THEN 
C p1l at inlet 

IXX=1 
IY=3*NY/4 
I=IY+NY*(IXX-1) 
IF (ISWEEP. EQ. 1) THEN 
OPEN (20, FILE='mon-p1-in. m') 
WRITE(20, *)'% MATLAB monitoring plotting: ' 
WRITE(20, *)'% of P1 at IX=', IXX, 'IY=', IY 
WRITE(20, *)'' 
WRITE(20, *)'mon=[' 

END IF 
MON=F(LOF(Pl)+I) 
WRITE(20, *) MON 
IF (ISWEEP. EQ. LSWEEP) THEN 
WRITE(20, *)']; ' 
WRITE(20, *)'' 
WRITE(20, *)'plot (mon)' 
WRITE(20, *)'title ("Spot values of P1 at IX=', IXX, 'IY=', 

IY, - . ). 
WRITE (20, *)'xiabel ("sweep number")' 
WRITE(20, *)'ylabel("spot value")' 
CLOSE (20) 

END IF 
END IF 

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
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Material removed 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

RETURN 
END 

SUBROUTINE STREAM 
C Calculates field values of stream function at north east 
C comer of each cell. 
C Outputs array PSI to file res_stm in text (excel) format: 
C 
C ynf 1 ynf2 ynf3 ynf4 ... C xefl * 
C xef2 * 
C xef3 * 
C 
C 

INCLUDE'lp2l/cLinclud/sateae 
INCLUDE 'Ip21 /d-includ/grdloc' 
INCLUDE'lp2l/d-includ/grdeae 
INCLUDE'lp2l/d-includ/grdbfc' 

C Version 2.0 
C INCLUDE'lp2/d-includ/sateae 
C INCLUDE 'lp2/d-includ/grdloc' 
C INCLUDE 'Ip2/cL-incIud/grdear` 
C INCLUDE 'lp2/d-includ/grdbfc' 

PARAMETER (NLG=100, NIG=200, NRG=200, NCG=100) 
COMMON/LGRND/LG(NLG)/IGRND/IG(NIG)/RGRND/RG(NRG)/CGRND/CG(NCG) 
LOGICAL LG 
CHARACTER*4 CG 

C My common block for rough duct analysis subroutines 
COMMON/ROUGHI/IBU, IBD, BNY, PLEN, DPDX 
REAL PLEN, DPDX 
INTEGER IBU, IBD, BNY 

C Subroutine variables: 
C PSI(NY, NX)=Real array in y of period averaged Ul vel 

C NY+1 *NX+1 
REAL PSI(120,125) 

WRITE(14, *)'sub stream' 

LOAN=LOF(ANORTH) 
LOAE=LOF(AEAST) 
LOU1=LOF(Ul) 
LOXE=LOF(XU2D) 
LOYN=LOF(YV2D) 

write x-east on 1 st col of PSI 
IYY=l 
DO 30 IXX=I, NX 

I=IYY+NY*(IXX-1) 
PSI (1, IXX+1)=F(LOXE+I) 
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30 CONTINUE 

C write y-north on 1 st row of PSI 
IXX=l 
DO 40 IYY=I, NY 

I=IYY+NY*(IXX-1) 
PSI(IYY+1,1)=F(LOYN+I) 

40 CONTINUE 

C write stream function, starting at array (2,2) 
DO 10 IXX=1, NX 

IYY=l 
I=IYY+NY*(IXX-1) 
PSI(IYY+1, IXX+1)=(F(LOU1+1)*F(LOAE+I)) 
DO 20 IYY=2, NY 

I=IYY+NY*(IXX-1) 
PSI(IYY+1, IXX+I)=PSI(IYY, IXX+1)+ (F(LOU1+1)*F(LOAE+I)) 

20 CONTINUE 
10 CONTINUE 

C write to file 
OPEN (71, FILE='con-stm') 

c NY (dimension as above) 
72 FORMAT(120(E10.4,2X)) 

WRITE(71,72) PSI 
CLOSE(71) 

RETURN 
END 
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Appendix 12: PHOENICS Code For Simulating 
Flow in Smooth Rectangular Ducts 

This Appendix contains an example of a QI input file and the GROUND subroutine 
which was used in the numerical simulation of flow in smooth rectangular three- 
dimensional ducts, described in Section 6.2. 

A12.1 01 Inputfile 
TALK=F; RUN(l, 1); VDU=Xll-TERM 
NOCOPY=T; NOCOMM=T 
SAVE=T 
PARAB=F 

REAL(HDEPTH, HWID, LENGTH, ASPECT) 
REAL(Ul, DPDX) 
REAL(KEIN, EPIN) 
REAL(MAXV, MINL, RELX, RELXT, RELXDP) 
REAL(GYDIS, GZDIS) 
REAL(KFRAC, DEL, DELTI, DUMMY, AUN, UC, DELTZ) 
INTEGER(GNY, GNZ, UNY, UNZ, LNX, JJM, NF) 
CHAR(ID, NUMBER) 
BOOLEAN(SETUI) 

GROUP 1. Run identifiers and other preliminaries. 

Inputs: 

* Set case name and number (max 4 charaters). 
ID='sd' 
NUMBER='10' 
DPDX=2.5 
ASPECT=10 
HWID=0.20 
UI=10.038 
RH01=1.18293 
ENUL=1.51319E-05 

y grid 
DELT1 =1.56e-04 
KFRAC=1.2418838966258 
GNY=9 
GYD I S=3.88661 e-03 

TEXT(SMOOTH DUCT 

MESG(* CYCLIC DUCT FLOW 
MESG(* ALASTAIR SENIOR, RMCS 

MESG( 
MESG(* Case identification: 
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MESG( 
ID 
NUMBER 
MESG(* Date: 12/11/96 
MESG(* Running on: v2.1.1, SUN 
MESG(* 
MESG(* Previous sweeps: 0 
MESG(* 
MESG( * Investigations into shear stress distrubtions 
MESG(* in a smooth wide duct. Uses xcycle and momentum 
MESG( * source method and the 2 layer KE model. 
MESG( * Input requires bulk velocity and a dpdx estimate. 
MESG(* Only 1/4 duct is modelled. Dim; metres. Fluid; air. 
MESG(* 
MESG(* 
MESG(* 
MESG(* # 
MESG(* #= wall # 
MESG(*- -=symmetry # 
MESG(* -------------- # 
MESG(* I# 
MESG(* hdepthl ## 
MESG(* (h) I## 
MESG(* yxI## 
MESG(* II. ## 
MESG(* I/ z ############################ 
MESG(* hwid 
MESG(* (b) 
MESG(* 
MESG(* 

* Run inputs 
LSWEEP=1 00000 

* Use this section for continuation runs. 
KEIN=(UI*0.05)**2 
EPIN=(0.009*(KEIN**2))/(50*ENUL) 

RESTRT(ALL) 
FIINIT(Ul)=Ul 
FIINIT(Vl)=l. OE-9 
FIINIT(Wl)=l. OE-9 
FIINIT(Pl)=O. O 
FIINIT(KE)=KEIN 
FIINIT(EP)=EPIN 

general preliminaries: 
HDEPTH=HWID/ASPECT 
SETUI=T 

* grid 
"Uniform cell size: 1/20 hdepth 

AUN=(HDEPTH-GYDIS)/(HDEPTH/20) 
UNY=AUN 

UNY 
GNY 

336 



" grid -z dir. kfrac and deltl as y 
" last cell geo cell =11/20 of hwid 

UC=HWID/20 
DELTZ=DELTI 
GZDIS=DELTZ 
GNZ=l 
LABEL LOOP 
DELTZ=DELTZ*KFRAC 
GNZ=GNZ+l 
GZDIS=GZDIS+DELTZ 
IF (DELTZ. LT. UC) THEN 
GOTOLOOP 
ENDIF 

* go back one 
GZDIS=GZDIS-DELTZ 
GNZ=GNZ-1 

"Uniform cell size: 1/20 HWID 
AUN=(HWID-GZDIS)/UC 
UNZ=AUN 

UNZ 
GNZ 

* grid x dir (streamwise) 
LNX=2 
LENGTH=LNX*UC 

* finish of grid: 
NY=UNY+GNY 
NZ=UNZ+GNZ 
NX=LNX 

NZ 
NY 
NX 

" Estimate of the maximum velocity within domain 
MAXV=UI*1.5 

* Estimate of the minimum cell dimension 
MINL=DELT1 

PARAB=F 

GROUP 2. Time-dependence and related parameters. 
STEADY=T 

GROUP 3. x-direction grid specification. 
CARTES=T 
NREGX=I; REGEXT(X, l) 
IREGX=1; GRDPWR(X, LNX, LENGTH, l) 

GROUP 4. y-direction grid specification. 
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DEL=DELT1/HDEPTH 
NREGY=2 

two region grid, geo... 
define uniform grid initially 

IREGY=I; GRDPWR(Y, GNY, GYDIS, 1.0) 
IREGY=2; GRDPWR(Y, UNY, (HDEPTH-GYDIS), I. O) 

** alter yfrac for geo grid, expanding from north boundary 
YFRAC(1)=DEL 

DO JJ=2, GNY 
" DEL=KFRAC*DEL 
" JJM=JJ-l 
" YFRAC(JJ)=YFRAC(JJM)+DEL 
ENDDO 

GROUP 5. z-direction grid specification. 

DEL=DELTI/HWID 
** two region grid, uniform.... 

NREGZ=2 
IREGZ=1; GRDPWR(Z, UNZ, (HWID-GZDIS), 1.0) 
** and geo. Define uniform grid initially 

IREGZ=2; GRDPWR(Z, GNZ, GZDIS, 1.0) 
** compute expanding grid from high Z boundary 

ZFRAC(NZ)=l 
ZFRAC(NZ-I)=l -DEL 
DUMMY=DEL 

DO JJ=NZ-2, NZ-(GNZ-1), -l 
" DEL=KFRAC*DEL 
" JJM=JJ+l 
" DUMMY=DUMMY+DEL 
" ZFRAC(JJ)=1.0-DUMMY 
ENDDO 

GROUP 6. Body-fitting and other grid distortions. 

GROUP 7. Variables (including porosities) named, 
stored & solved. 

SOLVE(VI) 
SOLVE(W1) 
SOLVE(Ul) 

* Solve for P1 by whole-field method 
SOLVE(Pl) 
SOLUTN(Pl, Y, Y, Y, N, N, N) 
STORE(ENUT) 

GROUP 8. Terms (in differential equations) and devices. 
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GROUP 9. Properties of the medium (or media). 

REAL(RREF1) 
RREF1=RHO1 

* Turbulance model (2 layer ke) 

TURMOD(KEMODL); IENUTA=8; DISWAL 

REAL(ENLREF); ENLREF=ENUL 

GROUP 10. Interphase-transfer processes and properties. 

GROUP 11. Initialization of fields of variables, 
porosities, etc. 

See group 1 

GROUP 12. Convection and diffusion adjustments 

GROUP 13. Boundary conditions and special sources 

* momentum source for Ul 
PATCH(Ul MT, VOLUME, 1, NX, 1, NY, 1, NZ, 1,1) 
COVAL(Ul MT, U1, FIXFLU, GRND) 
PATCH(BAL, CELL, 1,1, NY, NY, 1,1,1,1) 
COVAL(BAL, P1, FIXP, 0.0) 
XCYCLE=T 

** walls 
PATCH(WALL- BED, SWALL, 1, NX, 1,1,1, NZ, 1,1) 
COVAL(WALL. BED, U1, GRND2,0.0) 
COVAL(WALL- BED, W1, GRND2,0.0) 
COVAL(WALL- BED, KE, 1.0,0.0) 
COVAL(WALL BED, LTLS, 1.0,0.0) 

PATCH(WALLSIDE, HWALL, 1, NX, 1, NY, NZ, NZ, 1,1) 
COVAL(WALLSIDE, U1, GRND2,0.0) 
COVAL(WALLSIDE, V1, GRND2,0.0) 
COVAL(WALLSIDE, KE, 1.0,0.0) 
COVAL(WALLSIDE, LTLS, 1.0,0.0) 

GROUP 14. Downstream pressure (for free parabolic flow). 

GROUP 15. Termination criteria for sweeps and 
outer iterations. 

GROUP 16. Termination criteria for inner iterations. 

GROUP 17. Under-relaxation and related devices. 
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RELX=30 
RELXT=l 0 

* AUTO Linear relaxation applied to P1 
* (0.9 weak, 0.1 strong) 

RELAX(Pl, LINRLX, 0.7) 
* AUTO False time-step relaxation applied to V1 

RELAX(Vl, FALSDT, MINUMAXV*RELX) 
* AUTO False time-step relaxation applied to Ul 

RELAX(Ul, FALSDT, MINUMAXV*RELX) 
* AUTO False time-step relaxation applied to KE 

RELAX(KE, FALSDT, MINL/MAXV*RELXT) 
* AUTO False time-step relaxation applied to EP 

RELAX(EP, FALSDT, MINL/MAXV*RELXT) 
* Ground relaxation in calc. of dpdx 

RELXDP=0.5 

GROUP 18. Limits on variables values or increments 
to them. 

* GROUP 19. Data communicated by SATELLITE to GROUND 
RG(1)=Ul 
RG(2)=HDEPTH 
RG(3)=HWID 
RG(4)=DPDX 
RG(5)=RELXDP 
CG(1)=': ID: ' 
CG(2)=': NUMBER: ' 
LG(1)=SETUI 

Set monitoring. 0= no monitoring 
1= complete monitoring 

IG(2)=l 

GROUP 20. Control of preliminary printout 
ECHO=t 

* Printout values of y+ 
YPLS=T 

GROUP 21. Frequency and extent of field printout. 

GROUP 22. Location of spot-value & frequency of 
residual printout. 

IYMON=NY/2 
IXMON=NX/2 
IZMON=NZ/2 
TSTSWP=I 0 

GROUP 23. Variable-by-variable field printout and plot 
and/or tabulation of spot-values and residuals. 

" Control tabulation & plotting of spot-values/residuals 
" Tables and plots 

NZPRIN=l 
NYPRIN=1 
NXPRlN=1 
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GROUP 24. Preparation for continuation runs. 

STOP 

A12.2 Ground Subroutine 

C23456789012345678901234567890123456789012345678901234567890123456789012 
SUBROUTINE GROUND 

C 
C 
C* SMOOTH DUCT ANALYSIS 
C* ALASTAIR SENIOR, RMCS 
C* SMOOTHGRD. F 
C 
C 
C 
C This ground routine is to be used with a Y-X domain using the 
C XCYCLE/ momentum source method of cyclic boundary conditions. 
C It is suitable for 3D domains. 
C 
C Before using this code, CHECK THE ARRAY DIMENSIONS below. 
C 
C FILE NAME: ground-f 
C DATE: 11/12/95 
C VERSION: 2.1.1 (Also suitable for 2.0 - change INCLUDE) 
C COMMENTS: 
C 
C 
C 
C Q1 to Ground variables: 
C DPDX RG(5) DPDX 
C U1 RG(6) Ul 
C RELXDP RG(7) RELXDP 

C 
C 
cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
C Version 2.1.1 

INCLUDE 'lp2l/d_includ/sateae 
INCLUDE 'Ip21 /d_includ/grdloc' 
INCLUDE'IP21/cLinclud/grdeae 
INCLUDE 'lp2l/d-includ/grdbfc' 

C Version 2.0 
C INCLUDE'lp2/d_includ/sateae 
C INCLUDE 'IP2/d-includ/grdloc' 
C INCLUDE 'IP2/d-includ/grdear' 
C INCLUDE'IP2/d-includ/grdbfc' 
C 
C1 Set dimensions of data-for-GROUND arrays here. WARNING: the 
C corresponding arrays in the MAIN program of the satellite 
C and EARTH must have the same dimensions. 

PARAMETER (NLG=100, NIG=200, NRG=200, NCG=100) 
C 

COMMON/LGRND/LG(NLG)/IGRND/IG(NIG)/RGRND/RG(NRG)/CGRND/CG(NCG) 
LOGICAL LG 
CHARACTER*4 CG 
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SAVE 

C variables used to calc DPDX 
C Logicals: 
C SETUI=equal to TRUE. if the vol flow is specifed in the Q1 
C Real: 
C VFLOW=calculated vol flow rate 
C Ul=average velocity from 01 
C VFLOWI=vol flow rate calculated from Ul 
C FLOWF=flow factor used to calc DPDX 
C DPDX=pressure gradient 
C RELXDP=relaxation factor for DPDX 
C ERR=error used in calc of RELXDP 

LOGICAL SETUI 
REAL VFLOW, UI, VFLOWI, FLOWF, DPDX, RELXDP, ERR 

C variables used for smooth duct analysis 
C Real: 
C HWID= 
C HDEPTH= 

REAL AAN(l 00), AAH(l 00) 
REAL HWID, HIDEPTH 
INTEGER MONTYPE 
INTEGER STIME(20) 

C 
C 

IXL=IABS(IXL) 
C NB: Some sections have been removed for simplisty. 

IF(IGR. EQ. l) GO TO 1 
IF(IGR. EQ. 13) GO TO 13 
IF(IGR. EQ. 19) GO TO 19 
RETURN 

C 
C--- GROUP 1. Run title and other preliminaries 
C 

1 GO TO (1001,1 002), ISC 
1001 CONTINUE 

C 
C User may here change message transmitted to the VDU screen 

IF(IGR. EQ. 1. AND. ISC. EQ. 1. AND.. NOT. NULLPR) 
1 CALL WRYT40('A. Senior smooth duct ground. f called 

C 
C CALL MAKE(YG2D) 
C CALL MAKE(YV2D) 

RETURN 
1002 CONTINUE 

RETURN 

C 
C--- GROUP 13. Boundary conditions and special sources 
C Index for Coeff icient - CO 
C Index for Value - VAL 

13 CONTINUE 
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IF(ISC. EQ. 1 2) GO TO 1311 
RETURN 

1311 CONTINUE 
C ------------------- SECTION 12 ------------------- value = GRND 

C Set dpdx - press grad used for momentum source. 
IF (NPATCH. EQ. 'Ul MT') THEN 

CALL FNI(VAL, DPDX) 
END IF 

RETURN 

C 
C--- GROUP 19. Special calls to GROUND from EARTH 
C 

19 GO TO (191,192,193,194,195,196,197,198,199,1910,1911), ISC 
191 CONTINUE 

C* ------------------- SECTION 1 ---- Start of time step. 
C Set start time 

CALL MCLOCK(STIME) 
C Initialise values 

UI=RG(1) 
HDEPTH=RG(2) 
HWID=RG(3) 
DPDX=RG(4) 
RELXDP=RG(5) 
SETUI=LG(1) 
MONTYPE=IG(2) 
RETURN 

192 CONTINUE 
C* ------------------- SECTION 2 ---- Start of sweep. 

C Set calculated vol flow rate=O for use in calc DPDX 
VFLOW=0.0 

RETURN 
193 CONTINUE 

C* ------------------- SECTION 3 ---- Start of iz slab. 
RETURN 

194 CONTINUE 
C* ------------------- SECTION 4 ---- Start of iterations over slab. 

RETURN 
1911 CONTINUE 

C* ------------------- SECTION 11---- After calculation of convection 
C fluxes for scalars, and of volume 
C fractions, but before calculation of 
C scalars or velocities 

RETURN 
199 CONTINUE 

C* ------------------- SECTION 9 ---- Start of solution sequence for 
Ca variable 

RETURN 
1910 CONTINUE 

C* ------------------- SECTION 10---- Finish of solution sequence for 
Ca variable 

RETURN 

343 



195 CONTINUE 
C* ------------------- SECTION 5 ---- Finish of iterations over slab. 

RETURN 
196 CONTINUE 

C* -------------- - --- SECTION 6 ---- Finish of iz slab. 

IF(SETUI) THEN 
C Calculate improved pressure grad. 
C First find total volume flow, VFLOW 

IXX=NX 
LOAE=LOF(AEAST) 
LOU1=LOF(Ul) 
DO IYY=1, NY 

I=IYY+NY*(IXX-1) 
VFLOW=VFLOW+(F(LOU1+1)*F(LOAE+I)) 

END DO 
END IF 

C find array in IZ of north cell area arrays (used in PRN) 
LOAN=LOF(ANORTH) 
IYY=l 
IXX=l 
I=IYY+NY*(IXX-1) 
AAN(IZ)=F(LOAN+I) 
write (14, *)' area north is', AAN(IZ) 

C find array in lY of high cell area arrays (used in PRN) 
IF(IZ. EQ. NZ) THEN 
LOAH=LOF(AHIGH) 
IXX=l 
DO IYY=1, NY 

I=IYY+NY*(IXX-1) 
AAH(IYY)=F(LOAH+I) 

C write(I 4, *)' area high is', AAH(IYY) 

END DO 
END IF 

RETURN 
197 CONTINUE 

C* ------------------- SECTION 7 ---- Finish of sweep. 
C WRITE(l 4, *)sweep', ISWEEP 

IF(SETUI. AND. ISWEEP. GT. 2) THEN 
C Calculate improved pressure grad. (cont) 
C then find flow factor and calc dpdx 

VFLOW=VFLOW/(HWID*HDEPTH) 

FLOWF=UINFLOW 

C Set relaxation for calc of dpdx 
ERR=FLOWF-1 
ERR=ERR*RELXDP 
FLOWF=ERR+l 
DPDX=DPDX*FLOWF 
IF(DPDX. LE. O. 1) THEN 

DPDX=O. l 1 
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FLOWF=1.001 
END IF 

END IF 

C Convergance monitoring. 
IF(ISWEEP. GE. 1) THEN 

IF (MONTYPE. GT. 0) CALL MONITOR(MONTYPE, VFLOW, FLOWF, DPDX) 
END IF 

RETURN 
198 CONTINUE 

C* ------------------- SECTION 8 ---- Finish of time step. 
CALL PRNT (HWID, HDEPTH, DPDX, STIME, U1, FLOWF, VFLOW, AAN, AAH) 

c 
C 

RETURN 
END 

SUBROUTINE PRNT (HWI D, H DEPTH, DPDX, STIME, U 1, FLOWF, VFLOW, AAN, AAH) 
C Analsyis and pHntout 

C Version 2.1.1 
INCLUDE 'lp2l/d-includ/sateae 
INCLUDE 'lp2l/cLinclud/grdloc' 
INCLUDE'lp2l/d-includ/grdeae 
INCLUDE'lp2l/d-includ/grdbfc' 

C Version 2.0 
C INCLUDE'lp2/d-includ/sateae 
C INCLUDE 'lp2/d-includ/grdloc' 
C INCLUDE 'lp2/d-includ/grdeae 
C INCLUDE 'lp2/d-includ/grdbfc' 

PARAMETER (NLG=100, NIG=200, NRG=200, NCG=100) 
COMMON/LGRND/LG(NLG)/IGRND/IG(NIG)/RGRND/RG(NRG)/CGRND/CG(NCG) 
LOG ICAL LG 
CHARACTER*4 CG 

C Subroutine variables 
C SB(IZ)=array in NZ of shear stress on bed wall 
C AAN(IZ)=array in NZ of cell area north force 
C SW(IY)=array in NY of shear stress on side wall 
C AAH(IY)=array in Ny of cell area high face 
C FB=total bed shear force 
C FW=total side wall shear force 
C FP=percentage of shear force on sidewall 
C DX=dis from cell centre of ix=I to 2, or x len. of one cell (uni grid) 
C DF=driving force due to momentum source 
C RF=resistive force due to shear stresses 
C RDPDX=resistive press. grad, from RF 
C TWODSH=2D soln. for (centre line) bed shear stress 
C FLOWF=flow factor for DPDX calc 
C VFLOW=calculated average Ul vel 
C DPDX=pressure gradient used as input for momentum source 
C Ukinputted average UI vel 
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C STIME=start or run time 
C FTIME=finish of run time 

REAL SB(l 00), SW(l 00), AAN(I 00), AAH(l 00) 
REAL FB, FW, DX, DF, RF, RDPDX, TWODSH, ASPECT, HWID, FP 
REAL HDEPTH, WID, DEPTH, FLOWF, VFLOW, DPDX, Ul 
CHARACTER*4 ID, NUMBER, ST1, FT1 
CHARACTER*2 ST4, ST5, ST3, ST2, FT4, FT5, FT3, FT2 
INTEGER FTIME(20), STIME(20) 

INTEGER TH, TM, TIME 
INTEGER IXPP, IYPP 

WRITE(14, *)" 
WRITE(14, *)'sub PRN' 
WRITE(14, *)'' 
WRITE(14, *)'See file "result2u' 

C Initialisation 
ID=CG(l) 
NUMBER=CG(2) 
DEPTH=HDEPTH*2 
WID=HWID*2 
ASPECT=HWID/HDEPTH 

C Analysis: 
C Find F array values for wall-bed 

IY=1 
IYF=1 
IYL=1 
IX=NX 
IXF=NX 
IXL=NX 
IZF=1 
IZL=NZ 
DO 10 IZ=IZF, IZL 
LOSB=LOPVAR(PVSTRS, IPNAME('WALL. BED'), IZ) 

[=(IY-IYF+1)+(IYL-IYF+1)*(IX-IXF) 
SB(IZ)=F(LOSB+I) 
write(I 4, *)'' 
write(14, *)'ix is, ix 
write(14, *)'iz is', iz 
write(I 4, *)'iy is ', iy 
WRITE(14, *)'tau/rho for wall bed is', SB(IZ) 
SB(IZ)=SB(IZ)*RHOl 
write(14, *)'aan is', AAN(IZ) 
FB=FB+SB(IZ)*AAN(IZ) 

10 CONTINUE 

C Find F array values for wallside 
c note: wall is now at high Z 

IYF=I 
IYL=NY 
IX=NX 
IXF=NX 
IXL=NX 
IZ=NZ 
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IZF=NZ 
IZL=NZ 
LOSW=LOPVAR(PVSTRS, IPNAME('WALLSIDE'), IZ) 
DO 20 IY=IYF, IYL 

1=(IY-IYF+I)+(IYL-IYF+1)*(IX-IXF) 
SW(IY)=F(LOSW+I) 

C write(l 4, *)'' 
c write(14, *)'ix is', ix 
C write(14, *)'iz is, iz 
C write(14, *)'iyis', iy 
C WRITE(14, *)'tau/rho for wall side is', SW(IY) 

SW(IY)=SW(IY)*RHOl 
C write(14, *)'aah is, AAH(IY) 

FW=FW+SW(IY)*AAH(IY) 
20 CONTINUE 

FP=FW/(FW+FB) 

C Find DX 
CALL GETONE(DXG2D, DX, NY, 2) 

C WRITE(14, *)DX is', DX 

C Driving force from momentum source 
DF=DPDX*DX*HWID*HDEPTH 

C Resitive force 
RF=FW+FB 
RDPDX=RF/(HWID*HDEPTH*DX) 

C 2D soln for bed shear 
TWODSH=RDPDX*HDEPTH 

C Calc times 
C **NB: If running on a CRAY, comment out this section, and the 
C ** relevent section in the Print header. 

CALL MCLOCK(FTIME) 
WRITE(ST4, '(12.2)') STIME(4) 
WRITE(ST5,1(12.2)') STIME(5) 
WRITE(ST3, '(12.2)') STIME(3) 
WRITE(ST2, '(12.2)') STIME(2) 
WRITE(FT4, '(12.2)') FTIME(4) 
WRITE(FT5, '(12.2)') FTIME(5) 
WRITE(FT3, '(12.2)') FTIME(3) 
WRITE(FT2, '(12.2)') FTIME(2) 
WRITE(STI, '(14.4)') STIME(l) 
WRITE(FT1, '(14.4)') FTIME(l) 
TIM E=(FTIM E(3)-STI M E(3))*24*60 
TIME=TIME+((FTIME(4)-STIME(4))*60)+ (FTIME(5)-STIME(5)) 
TH=TIME/60 
TM=MOD(TIME, 60) 

c **** Print out to file result2 

OPEN (4, FILE='result2') 
WRITE(4, *)" 
WRITE(4, *)" 

WRITE(4, *)'* A. Senior. RMCS. 
WRITE(4, *)'* File = "result2" 
WRITE(4, *)'* Gives GROUND results of xcyclic rough ducts. 
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WRITE(4, *)'* All units are standard Sl unless stated in Q1. 

WRITE(4, *)'* 
WRITE(4 *)'* Case ID name: ' ID ' , WRITE(4, *)'* , , Case number %NUMBER, 
1 
WRITE(4 *)'* , WRITE(4, *)'* Started at: ', ST4, T, ST5, 'on', 
1 ST3, 'f, ST2, 'f, ST1, ' *1 
WRITE(4, *)'* Finished at: ', FT4, T, FT5, on', 
1 FT3, 'f, FT2, 'f, FT1, ' *1 
WRITE(4, *)'* Total run time is: ', TH, hrs', TM, 
I 'mins *1 
IF (FT2. NE. ST2. OR. FTI. NE. ST1) THEN 

WRITE(4, *)'***** CHECK MONTH AND DAYS******' 
END IF 
WRITE(4, *)'* 

*)'* WRITE(4 Finished on sweep number: ', I SWEEP, ' , WRITE(4, *)'* *1 

WRITE(4, *)'' 
WRITE(4, *)'INPUTS: ' 
WRITE(4, *)'======' 
WRITE(4, *)" 
WRITE(4, *)'Domain geometry: ' 
write(4, *)" 
write(4, *)' Aspect Ratio is ', ASPECT 
write(4, *)' Width, b, (z dir) is ', 2*HWID 
write(4, *)' Height, h, (y dir) is, 2*HDEPTH 
write(4, *)' 1/2 width is ', HWID 
write(4, *)' 1/2 height is ', HDEPTH 
write(4, *)' NY is', NY, ' NX is', NX, ' NZ is', NZ 
write(4, *)'' 
WRITE (4, *)Ave rage input velocity is', Ul 
WRITE(4, *)'' 

WRITE(4, *)'' 
WRITE(4, *)'RESULTS' 
WRITE(4, *)'=======' 
WRITE(4, *)" 
WRITE(4, *)'l) Check on convergance: ' 
WRITE(4, *)' Flow factor is %FLOWF 
WRITE(4, *)' Average velocity is %VFLOW 
write(4, *)' Pressure gradient is', DPDX 
WRITE(4, *)'' 
WRITE(4, *)'2) Shear forces: ' 
write (4, *)s hear force on sidewall is ', FW 
write(4, *)'sh ear force on bedwal I is ', FB 
write (4, *)percentage of shear force on sidewall is', FP* 100 
write(4, *)'' 
write(4, *)'shear force per unit length on sidewall is', FW/DX 
write(4, *)'shear force per unit length on bedwall is ', FB/DX 
write(4, *)'NB: Force given is for 1/4 duct only. ' 
write(4, *)'' 
write(4, *)'' 
write(4, *)'3) Force balance: ' 
write(4, *)' Driving force is', DF 
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write(4, *)' Resitive force is', RF 
write (4, *)'Percentage error is ', 100*(DF-RF)/DF 
write(4, *)'' 
write(4, *)'4) Centerline shear stresses: ' 
write(4, *)' 2D theortical solution is', TWODSH 
write(4, *)" 
write(4, *)' Shear stress on bed center line is ', SB(1) 
write(4, *)' Ratio: tau/2D tau is', SB(I)/TWODSH 
write(4, *)' the % difference is', ((TWODSH-SB(1))*100)/SB(1) 
write(4, *)" 
write(4, *)'[ for inverse aspect ratio =, HDEPTH/HWlD, 'j' 
write(4, *)' [ Shear stress on wall center line is ', SW(NY), ']' 
write(4, *)'[ Ratio: tau/21D tau is', SW(NY)/TWODSH, ']' 
write(4, *)' [ the % difference is', 
1 ((TWODSH-SW(NY))*l 00)/SW(NY), ']' 
write(4, *)'' 
write(4, *)" 
write(4, *)'Results summary: ' 
write(4, *) -------- - -- - -- I 
write (4, *)'percentage of shear force on side is', FP*l 00 
write(4, *)'Ratio: tau/2D tau is ', SB(I)/TWODSH 
write(4, *)'% error in force balance is 'j 00*(DF-RF)/DF 
write(4, *)'' 
write(4, *)'' 
write(4, *)'End of file Result2' 

CLOSE (4) 

RETURN 
END 

SUBROUTINE MON ITOR(MONTYPE, VFLOW, FLOWF, DPDX) 
C Creates matlab files for convergance monitoring 
C Set IG(2) in Q1 to: 0 for no monitoring 
C1 for complete monitoring 

INCLUDE'lp21/d-includ/satear 
INCLU DE 'lp21 /d-includ/grdloc' 
INCLUDE'lp21/d-includ/grdeae 
INCLU DE 'lp21 /d-includ/grdbfc' 

C Version 2.0 
C INCLUDE'lp2/d-includ/sateae 
C INCLUDE'lp2/d-includ/grdloc' 
C INCLUDE'lp2/d-includ/grdeae 
C INCLUDE'lp2/d-includ/grdbfc' 

PARAMETER (NLG=100, NIG=200, NRG=200, NCG=100) 
COMMON/LGRND/LG(NLG)/IGRND/IG(NIG)/RGRND/RG(NRG)/CGRND/CG(NCG) 
LOGICAL LG 
CHARACTER*4 CG 

C Subroutine variables 
REAL MON 
INTEGER MONTYPE 

IF (MONTYPE. EQ. 1. OR. MONTYPE. EQ. 2) THEN 
C ul at true duct centre 

IX=NX 
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IY=NY 
IZ=1 
L0U1=L0F(ANYZ(U1, IZ)) 
I=IY+NY*(IX-1) 
IF (ISWEEP. EQ. 1) THEN 
OPEN (20, FILE='mon-u1. m') 
WRITE(20, *)'% MATLAB monitoring plotting: ' 
WRITE(20, *)'% of Ul at IX=', IX, 'IY=', IY, '[Z=', IZ 
WRITE(20, *)" 
WRITE(20, *)'mon=[' 

END IF 
MON=F(LOU1+1) 
WRITE(20, *) MON 
IF (ISWEEP. EQ. LSWEEP) THEN 
WRITE(20, *)']; ' 
WRITE(20, *)'' 
WRITE(20, *)'plot (mon)' 
WRITE(20, *)'title ("Spot values of U1 at IX=', IX, 'IY=', 

I IY, - iz=-, iz, - .. ). 
WR ITE(20, *)'xlabel ("sweep numbee')' 
WRITE(20, *)'ylabel("spot value")' 
CLOSE (20) 

END IF 
END IF 

IF (MONTYPE. EQ. 1. OR. MONTYPE. EQ. 4) THEN 
C VFLOW, calculated bulk flow vel 

IF (ISWEEP. EQ. 1) THEN 
OPEN (29, FILE='mon-uc. m') 
WRITE(29, *)'% MATLAB monitoring plotting: ' 
WRITE(29, *)'% of VFLOW' 
WRITE(29, *)'' 
WRITE(29, *)'mon=[' 

END IF 
MON=VFLOW 
WRITE(29, *) MON 
IF (ISWEEP. EQ. LSWEEP) THEN 
WRITE(29, *)']; ' 
WRITE(29, *)" 
WRITE(29, *)'plot (mon)' 
WRITE(29, *)'title ("Calculated values of VFLOW. ")' 
WR ITE(29, *)'xlabel ("sweep number")' 
WRITE(29, *)'y1abel("bulk velocity")' 
CLOSE (29) 

END IF 
END IF 

IF (MONTYPE. EQ. I. OR. MONTYPE. EQ. 4) THEN 
C FLOWF, flow factor 

IF (ISWEEP. EQ. 1) THEN 
OPEN (30, FILE='mon-flowf. m') 
WRITE(30, *)'% MATLAB monitoring plotting: ' 
WRITE(30, *)'% of flowfactor' 
WRITE(30, *)'' 
WRITE(30, *)'mon=[' 

END IF 
MON=FLOWF 
WRITE(30, *) MON 
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IF (ISWEEP. EQ. LSWEEP) THEN 
WRITE(30, *)']; ' 
WRITE(30, *)'' 
WRITE(30, *)'plot (mon)' 
WRITE(30, *)'title ("Values of flow factor. ")' 
WRITE(30, *ftlabel("sweep number")' 
WR ITE(30, *)'ylabel("f low factoe')' 
CLOSE (30) 

END IF 
END IF 

IF (MONTYPE. EQ. 1. OR. MONTYPE. EQ. 4) THEN 
C DPDX, pressure grad. 

IF (ISWEEP. EQ. 1) THEN 
OPEN (31, FILE='mon-dpdx. m') 
WRITE(31, *)'% MATLAB monitoring plotting:, 
WRITE(31, *)'% of pressure grad' 
WRITE(31, *)'' 
WRITE(31, *)'mon=[' 

END IF 
MON=DPDX 
WRITE(31, *) MON 
IF (ISWEEP. EQ. LSWEEP) THEN 
WRITE(31, *)']; ' 
WRITE(31, *)" 
WRITE(31, *)'plot (mon)' 
WRITE(31, *)'title ("Values of DPDX. ")' 
WRITE(31, *)'xIabeI("sweep number")' 
WRITE(31, *)'yIabeI("DPDX")' 
CLOSE (31) 

END IF 
END IF 

RETURN 
END 
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Appendix 13: PHOENICS Code for Simulating 
Flow in a Plate-Fin Heat Exchanger 

The following Q1 and GROUND code was used to calculate fully developed periodic 
flow in a two fluid counterflow plate-fin heat exchanger of the type described in 
Section 63. 

Al 3.1 01 data file 
TALK=F; RUN(1,2); VDU=Xl 1-TERM 
NOCOPY=T; NOCOMM=T 
SAVE=T 
PARAB=F 
REAL(TW, TS, TC, TO, IH, TP, S, WDTH) 
INTEGER(NTW, NTS, NTC, NIH, NTO, NTP, NS, NWDTH) 
INTEGER(STW1, FNWI, STS1, FNS1, STC1, FNC1, STOIL, FNOIL, STC2, FNC2) 
INTEGER(STS2, FNS2, STW2, FNW2, FNB, STT, YMID) 
INTEGER(FX2A, FX1 A, FX2B, FX1 B, FZ2) 
REAL(DPDXO, DPDXW, TKOIL, TKWAT, TSOUC) 
REAL(UIO, UIW, MAXV, MINL, RELX, RELXDP) 
CHAR(ID, NUMBER) 
BOOLEAN(CALCV) 

Set case name and number (max 4 charaters). 
ID='hx' 
NUMBER='aa20' 
TEXT(HEAT EXCHANGER 

MESG(* CYCLIC HEAT EXCHANGER FLOW 
MESG(* ALASTAIR SENIOR, RMCS 

MESG( * recyclic bc 
MESG(* 
MESG( * Case identification: 
MESG( 
ID 
NUMBER 
MESG(* Date: 21/4/96 
MESG(* Running on: v2.1.1, SUN 
MESG(* 
MESG(* 
MESG(* 

GROUP 1. Run identifiers and other preliminaries. 

Number of sweeps 
LSWEEP=1 000 

Domain dimensions: 
TW=1.5E-3 
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TS=0.2E-3 
TC=O. l E-3 
TO=3E-3 
TP=0.2E-3 
S=2E-3 
IH=TO-(2*TP) 

WDTH=2E-3 
* Domain cells: (Note: NS and NW must be an even number) 

NTW=8 
NTS=4 
NTC=2 

* NB: NIH should be an odd number 
NIH=15 
NTP=4 
NS=6 
NTO=NIH+(2*NTP) 

NWDTH=12 

* Set flow, dpdx estimate 
DPDXO=le6 
DPDXW=500 

* set initial temp source estimate 
TSOUC=1.2E-7 

* required U vel 
UIO=O. l 
UIW=O. l 

MESG(* Grid locations: 
* grid locations -Y 

STW1 =1 
FNWI=NTW 
STSI=NTW+l 
FNS1=STSI+NTS-1 
STC1=FNS1+1 
FNCI=STCI+NTC-1 
STOIL=FNC1+1 
FNB=STOIL+NTP-1 
STT=STOIL+NTO-NTP 
FNOIL=STOIL+NTO-1 
STC2=FNOIL+l 
FNC2=STC2+NTC-1 
STS2=FNC2+1 
FNS2=STS2+NTS-1 
STW2=FNS2+1 
FNW2=STW2+NTW-1 
YMID=(FNW2+1)/2 
STW1 
FNW1 
STS1 
FNS1 
STCI 
FNCI 
STOIL 
FNB 
STT 
FNOIL 
STC2 
FNC2 
STS2 
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FNS2 
STW2 
FNW2 
YMID 

* grid locations -X 
FX2A=NS/2+1 
FXIA=FX2A+NTP+NS 
FX2B=FXlA+NTP+NS 
FXlB=FX2B+NTP+NS 
FX2A 
FX1A 
FX213 
FX113 

* grid locations -Z 
FZ2=(NWDTH/2)+l 
FZ2 

calc vel 
CALCV=T 

* Estimate of the minimum cell dimension 
MINL=TO/NTO 

* Estimate of the maximum velocity within domain 
MAXV=UIO*1.5 

GROUP 2. Time-dependence and related parameters. 
STEADY=T 

GROUP 3. x-direction grid specification. 
CARTES=T 
NREGX=9 
IREGX=1; GRDPWR(X, NS/2, S/2,1) 
IREGX=2; GRDPWR(X, NTP, TP, l) 
IREGX=3; GRDPWR(X, NS, S, l) 
IREGX=4; GRDPWR(X, NTP, TP, l) 
IREGX=5; GRDPWR(X, NS, S, l) 
IREGX=6; GRDPWR(X, NTP, TP, l) 
IREGX=7; GRDPWR(X, NS, S, l) 
IREGX=8; GRDPWR(X, NTP, TP, l) 
IREGX=9; GRDPWR(X, NS/2, S/2,1) 

GROUP 4. y-direction grid specification. 

NREGY=9 
IREGY=1; GRDPWR(Y, NTW, TW, l) 
IREGY=2; GRDPWR(Y, NTS, TS, l) 
IREGY=3; GRDPWR(Y, NTC, TC, l) 
IREGY=4; GRDPWR(Y, NTP, TP, l) 
IREGY=5; GRDPWR(Y, NIH, IH, l) 
IREGY=6; GRDPWR(Y, NTP, TP, l) 
IREGY=7; GRDPWR(Y, NTC, TC, l) 
IREGY=8; GRDPWR(Y, NTS, TS, l) 
IREGY=9; GRDPWR(Y, NTW, TW, l) 

* ****** *** *** **** *** ** *** ****** ** ***** * ********** * 

* GROUP 5. z-direction grid specification. 
NREGZ=2 
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IREGZ=1; GRDPWR(Z, NWDTH/2, WDTH/2, I) 
IREGZ=2; GRDPWR(Z, NWDTH/2, WDTH/2,1) 

GROUP 6. Body-fitting and other grid distortions. 

GROUP 7. Variables (including porosities) named, 

stored & solved. 
SOLVE(V1) 
SOLVE(Ul) 
SOLVE(Wl) 

* Solve for P1 by whole-field method 
SOLVE(Pl) 
SOLUTN(Pl, Y, Y, Y, N, N, N) 

* Solve for TEMI 
SOLVE(TEM1) 

* store?, solve?, wholefield?, pt-by-pt?, exp(trans)? har. ave? 
SOLUTN(TEM1, Y, N, Y, N, N, Y) 

STORE(ENUL) 
STORE(PRPS) 
STORE(BLOK) 

GROUP 8. Terms (in differential equations) and devices. 

GROUP 9. Properties of the medium (or media). 

RHO1=GRND10 
PRNDTL(TEM1)=-GRND10 

* Laminar kinematic viscosity (mA2/s) 
ENUL=GRND10 
CP1=GRNDIO 

GROUP 10. Interphase-transfer processes and properties. 

GROUP 11. Initialization of fields of variables, 
porosities, etc. 

FIINIT(Ul)=UIO 
FIINIT(V1)=1.0E-9 
FIINIT(W1)=1.0E-9 
FIINIT(P1)=0.0 
FIINIT(TEMI)=273+70 

* set initial properties 
INIADD=F 
PATCH(INW1, INIVAL, 1, NX, STW1, FNWI, 1, NZ, 1,1) 
PATCH(IN01, INIVAL, 1, NX, STOIL, FNOIL, 1, NZ, 1,1) 
PATCH(INW2, INIVAL, 1, NX, STW2, FNW2,1, NZ, 1,1) 

INIT(INW1, Ul, O, U[W) 
INIT(INW1, BLOK, 0,67) 
INIT(INW1, PRPS, 0,67) 

INIT(INOI, Ul, O, UIO) 
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INIT(IN01, BLOK, 0,65) 
INIT(IN01, PRPS, 0,65) 

INIT(INW2, Ul, O, UIW) 
INIT(INW2, BLOK, 0,67) 
INIT(INW2, PRPS, 0,67) 

* blocks 
CON POR(STEI, -l, CELL, -l, -NX, -STS 1, -FNS1, -l, -NZ) COVAL(STE1, PRPS, 0.0,1 11) 
COVAL(STEI, BLOK, 0.0,2) 

CONPOR(COPI, -l, CELL, -l, -NX, -STC1, -FNCI, -l, -NZ) COVAL(COP1, PRPS, 0.0,103) 
COVAL(COPI, BLOK, 0.0,3) 

CONPOR(COP2, -l, CELL, -l, -NX, -STC2, -FNC2, -l, -NZ) COVAL(COP2, PRPS, 0.0,103) 
COVAL(COP2, BLOK, 0.0,4) 

CONPOR(STE2, -l, CELL, -l, -NX, -STS2, -FNS2, -l, -NZ) 
COVAL(STE2, PRPS, 0.0,1 11) 
COVAL(STE2, BLOK, 0.0,5) 

*Set fins etc. - check vel just before fins 
CONPOR (FlA, -l, CELL, -FXlA, -(FXlA+NTP-1), -STOIL, -FNOIL, $ 
-1, -(FZ2-1)) 
COVAL(FIA, PRPS, 0.0,1 11) 
COVAL(FlA, BLOK, 0.0,6) 

CONPOR (FlB, -l, CELL, -FXlB, -(FXlB+NTP-1), -STOIL, -FNOIL, $ 
-1, -(FZ2-1)) 
COVAL(Fl B, PRPS, 0.0,1 11) 
COVAL(Fl B, BLOK, 0.0,7) 

CONPOR (F2A, -l, CELL, -FX2A, -(FX2A+NTP-1), -STOIL, -FNOIL, $ 
-FZ2, -NZ) 
COVAL(F2A, PRPS, 0.0,1 11) 
COVAL(F2A, BLOK, 0.0,8) 

CONPOR (F28, -l, CELL, -FX2B, -(FX2B+NTP-1), -STOIL, -FNOIL, $ 
. FZ2, -NZ) 
COVAL(F2B, PRPS, 0.0,1 11) 
COVAL(F2B, BLOK, 0.0,9) 

* set base fins 
CONPOR (BlA, -l, CELL, -1, -(FXIA-1), -STOIL, -(STOIL+NTP-1), $ 
. 1, -(FZ2-1)) 
COVAL(BlA, PRPS, 0.0,1 11) 
COVAL(BlA, BLOK, 0.0,10) 

CONPOR (Bl B, -l, CELL, -(FX1 B+NTP), -NX, -STOIL, -(STOIL+NTP-1), $ 
. 1, -(FZ2-1)) 
COVAL(Bl B, PRPS, 0.0,1 11) 
COVAL(Bl B, BLOK, 0.0,1 1) 

CONPOR (B2A, -l, CELL, -1, -(FX2A-1), -STOIL, -(STOIL+NTP-1), $ 
-FZ2, -NZ) 
COVAL(B2A, PRPS, 0.0,1 11) 
COVAL(B2A, BLOK, 0.0,12) 
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CONPOR (B2B, -l, CELL, -(FX2B+NTP), -NX, -STOIL, -(STOIL+NTP-1), $ 
-FZ2, -NZ) 
COVAL(B2B, PRPS, 0.0,1 11) 
COVAL(B2B, BLOK, 0.0,13) 

* Definition of top fins 
CONPOR (Tl, -I, CELL, -(FX1 A+NTP), -(FX1 B-1), -(FNOIL-NTP+1), $ 
-FNOIL, -1, -(FZ2-1)) 
COVAL(Tl, PRPS, 0.0,1 11) 
COVAL(Tl, BLOK, 0.0,14) 

CONPOR (T2, -l, CELL, -(FX2A+NTP), -(FX2B-1), -(FNOIL-NTP+I), $ 
-FNOIL, -FZ2, -NZ) 
COVAL(T2, PRPS, 0.0,1 11) 
COVAL(T2, BLOK, 0.0,15) 

GROUP 12. Convection and diffusion adjustments 

GROUP 13. Boundary conditions and special sources 

PATCH(WAT1, VOLUME, 1, NX, STWI, FNW1,1, NZ, 1,1) 
PATCH(OILI, VOLUME, 1, NX, STOIL, FNOIL, 1, NZ, 1,1) 
PATCH (WAT2, VOLUME, 1, NX, STW2, FNW2,1, NZ, 1,1) 

* momentum source 
COVAL(WAT1, Ul, FIXFLU, DPDXW) 
PATCH(RPW1, CELL, 1,1, STW1, STW1, NZ/2, NZ/2,1,1) 
COVAL(RPW1, PI, FIXP, 0.0) 

COVAL(OIL1, Ul, FIXFLU, DPDXO) 
PATCH(RP01, CELL, 1,1, YMID, YMID, NZ/2, NZ/2,1,1) 
COVAL(RP01, Pl, FIXP, 0.0) 

COVAL(WAT2, Ul, FIXFLU, DPDXW) 
PATCH(RPW2, CELL, 1,1, FNW2, FNW2, NZ/2, NZ/2,1,1) 
COVAL(RPW2, Pl, FIXP, 0.0) 

XCYCLE=T 

GROUP 17. Under-relaxation and related devices. 

Level of relaxation (100 - weak, 0.1 - strong) 
RELX=10 

* AUTO Linear relaxation applied to P1 
* (0.9 weak, 0.1 strong) 

RELAX(Pl, LINRLX, 0.3) 
* AUTO False time-step relaxation applied to V1 

RELAX(Vl, FALSDT, MINUMAXV*RELX) 
* AUTO False time-step relaxation applied to W1 

RELAX(Wl, FALSDT, MINUMAXV*RELX) 
* AUTO False time-step relaxation applied to Ul 

RELAX(Ul, FALSDT, MINUMAXV*RELX) 
RELXDP=0.5 

GROUP 18. Limits on variables values or increments 
to them. 
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* GROUP 19. Data communicated by SATELLITE to GROUND 

LG(1)=CALCV 
RG(6)=TO 
RG(7)=TW 
IG(1)=STW1 
IG(2)=FNW1 
IG(3)=STS1 
IG(4)=FNS1 
IG(5)=STC1 
IG(6)=FNCI 
IG(7)=STOIL 
IG(8)=FNB 
IG(9)=STT 
IG(10)=FNOIL 
IG(l 1)=STC2 
IG(12)=FNC2 
IG(13)=STS2 
IG(14)=FNS2 
IG(15)=STW2 
IG(16)=FNW2 
IG(17)=YMID 

GROUP 20. Control of preliminary printout 
ECHO=T 

GROUP 21. Frequency and extent of field printout. 

GROUP 22. Location of spot-value & frequency of 
residual printout. 

IYMON=3*NY/4 
IXMON=NX/2 
TSTSWP=10 

GROUP 23. Variable-by-variable field printout and plot 
and/or tabulation of spot-values and residuals. 

Control tabulation & plotting of spot-values/residuals 
Tables and plots 

ITABL=2 
NPRINT=100000 
NXPRIN=l 
NYPRIN=1 

GROUP 24. Preparation for continuation runs. 
NOWIPE=T 
NSAVE='phil' 

STOP 

* Run 2- calc temp field 
TEXT (HEAT EXCHANGER 

* temp inputs: 
TKO I L=273+1 00 
TKWAT=273+70 

NAMFI='Phil' 
RESTRT(Pl, Ul, Vl, WI, TEMi) 
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CALCV=F 
LG(1)=CALCV 

RG(8)=TKWAT 
RG(9)=TSOUC 

"Switch off solution of pressure and velocities and cut 
out printout 

SOLUTN(Pl, Y, N, N, N, N, N); SOLUTN(UI, Y, N, N, N, N, N) 
SOLUTN(Vl, Y, N, N, N, N, N); SOLUTN(Wl, Y, N, N, N, N, N) 
OUTPUT(Pl, N, N, N, N, N, N); OUTPUT(Wl, N, N, N, N, N, N) 
OUTPUT(Ul, N, N, N, N, N, N); OUTPUT(Vl, N, N, N, N, N, N) 
OUTPUT(BLOK, N, N, N, N, N, N) 
"Activate whole-field solution of teml 

SOLUTN(TEM1, Y, Y, Y, N, N, Y) 
OUTPUT(TEM1, Y, N, N, Y, Y, Y) 
"Activate block solver 

ISOLBK=1; IVARBK=50; ISOLX=1; ISOLY=I 
* source of heat in oil flow 

COVAL(OIL1, TEM1, FIXFLU, GRND) 
PATCH(TREF, CELL, 1,1, STOIL+NTO/2, STOIL+NTO/2, NZ/2, NZ/2,1,1) 
COVAL(TREF, TEMI, FIXVAL, TKOIL) 

* sink of heat in water flow 
COVAL(WATI, TEM1, FIXFLU, GRND) 
COVAL(WAT2, TEM1, FIXFLU, GRND) 

* Set sweeps 
FSWEEP=LSWEEP 
LSWEEP=LSWEEP+500; LITER(TEM1)=20 

NSAVE='Phi2' 
STOP 

A13.2 GROUND coding 
C FILE NAME GROUND. FTN -------------- - ---------------- 081294 
c#### dbs/hqq 08.12.94 UCONV comments provided 
c#### dbs/mrm 10.08.94 new access point on group 19, section 11 

SUBROUTINE GROUND 
c 
c 
c* HEAT EXCHANGER GROUND CODING 
c* ALASTAIR SENIOR, RMCS 
c 
C 
c 
C FILE NAME: aa20. grd 
C DATE: 21/4/96 
C VERSION: 2.1.1 
C COMMENTS: 
c 

INCLUDE'lp2l/d-includ/sateae 
INCLUDE 'Ip2l /d-includ/grdloc' 
INCLU DE 'lp2l /d-includ/grdeae 
INCLUDE 'lp21 /d-includ/grdbfc' 

CXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX USER SECTION STARTS: 
C 
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PARAMETER (NLG=100, NIG=200, NRG=200, NCG=100) 
c 

COMMON/LGRNDILG(NLG)/IGRND/IG(NIG)/RGRND/RG(NRG)/CGRND/CG(NCG) 
LOGICAL LG 
CHARACTER*4 CG 

C 
C Subroutine variables: 

REAL Ull, U12, UC, FLOWA, DPDX1, DPDX2, FLOWF, RELXDP, ERR, VOLF, IH, WH 
REAL FRW, ATW, TVOLW, ATO, TVOLO, KSTEEL, DELY, Q, TAQ, TQB, VQA, VQB 
INTEGER STW1, FNW1, STS1, FNS1, STC1, FNC1, STOIL, FNOIL, STC2, FNC2 
INTEGER STS2, FNS2, STW2, FNW2, FNB, STTYMID 
LOGICAL CALCV 

C 
c 
c 

IXL=IABS(IXL) 
IF(IGR. EQ. 1) GO TO 1 
IF(IGR. EQ. 13) GO TO 13 
1 F(IG R. EQ. 19) GO TO 19 

25 CONTINUE 
RETURN 

C 
C--- GROUP 1. Run title and other preliminaries 
C 

1 GO TO (1001,1002), ISC 
1001 CONTINUE 

C 
C User may here change message transmitted to the VIDU screen 

IF(IGR. EQ. 1. AND. ISC. EQ. I. AND.. NOT. NULLPR) 
1 CALL WRYT40('GROUND file is GROUNDY -hx2-; 22/4/96 

C 
CALL MAKE(YG2D) 

RETURN 
1002 CONTINUE 

RETURN 

C 
C--- GROUP 13. Boundary conditions and special sources 
C Index for Coeff icient - CO 
C Index for Value - VAL 

13 CONTINUE 
GO TO (1130,131,132,133,134,135,136,137,138,139,1310, 
11311,1312,1313,1314,1315,1316,1317,1318,1319,1320,1321), ISC 

130 CONTINUE 
C ------------------- SECTION 1 ------------- coefficient = GRND 

RETURN 

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

MATERIAL OMITTED 11 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

1311 CONTINUE 
C ------------------- SECTION 12 ------------------- value = GRND 
C Set sources, either momentum or temp. 

IF(CALCV)THEN 
C Set momentum source 

write(14, *)'ERRORII - ground setting mt source. ' 
ELSE 

C Set teml source - temp grad. 
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IF (NPATCH. EQ. 'OILI') THEN 
CALL FN1 (VAL, TSOUC) 

C CALL PRN('vl', VAL) 
END IF 
IF (NPATCH. EQ. 'WAT1') THEN 

CALL FM (VAL, TSOUC) 
c CALL PRN('v2', VAL) 

CALL FN25(VAL, -1.0) 
C CALL PRN('v3, VAL) 

CALL FN25(VAL, VOLF) 
c write(14, *)'volf is', VOLF 
C CALL PRN('v4', VAL) 

END IF 
IF (NPATCH. EQ. 'WAT2') THEN 

CALL FNI (VAL, TSOUC) 
CALL FN25(VAL, -I. O) 
CALL FN25(VAL, VOLF) 

END IF 

END IF 

RETURN 
1312 CONTINUE 

C ------------------- SECTION 13 ------------------- value = GRND1 
RETURN 

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

MATERIAL OMITTED 11 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

1321 CONTINUE 
C ------------------- SECTION 22 ------------------- value = GRND10 

RETURN 

C 
C --- GROUP 19. Special calls to GROUND from EARTH 
C 

19 GO TO (191,192,193,194,195,196,197,198,199,1910,1911), ISC 
191 CONTINUE 

C* ------------------- SECTION 1 ---- Start of time step. 

C Initialise 
IH=RG(6) 
WH=RG(7) 
TREF=RG(8) 
TSOUCI=RG(9) 

STW1=IG(l) 
FNW1=IG(2) 
STS1=IG(3) 
FNS1=IG(4) 
STC1=IG(5) 
FNC1=IG(6) 
STOIL=IG(7) 
FNB=IG(8) 
STT=IG(9) 
FNOIL=IG(10) 
STC2=IG(l 1) 
FNC2=IG(12) 
STS2=IG(13) 
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FNS2=IG(14) 
STW2=IG(15) 
FNW2=IG(16) 
YMID=IG(17) 

CALCV=LG(l) 
IF(CALCV) THEN 

write(l 4, *)'solving for vel 
ELSE 

write(i 4, *)'solving for teml 
END IF 

TSOUCI=0.8E+6 
TSOUC=TSOUCI 
TMPF=1.0 
NSWP=l 
TACT=1.0 
VOLF=IH/(2*WH) 
write(l 4, *)'water height *2 is ', 2*WH 
write(14, *)'oil height is', IH 
write (1 4, *)'volf I is', VOLF 

C For itergration of results: 
FRW=0.0 
FRO=0.0 
ATW=0.0 
ATO=0.0 
TVOLW=0.0 
TVOLO=0.0 
TQA=0.0 
TQB=0.0 
VQA=0.0 
VQB=0.0 
TOTQ=0.0 
totan=0.0 

RETURN 
192 CONTINUE 

C* ------------------- SECTION 2 ---- Start of sweep. 
RETURN 

193 CONTINUE 
C* ------------------- SECTION 3 ---- Start of iz slab. 

RETURN 
194 CONTINUE 

C* ------------------- SECTION 4 ---- Start of iterations over slab. 

RETURN 
1911 CONTINUE 

C* ------------------- SECTION 11---- After calculation of convection C fluxes for scalars, and of volume 
C fractions, but before calculation of C scalars or velocities 

RETURN 
199 CONTINUE 

C* ------------------- SECTION 9 ---- Start of solution sequence for 
C a variable 

RETURN 
1910 CONTINUE 

C* ------------------- SECTION 10 ---- Finish of solution sequence for 
C a variable 

RETURN 
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195 CONTINUE 
C* ----- - ------------ SECTION 5 ---- Finish of iterations over slab. 

RETURN 
196 CONTINUE 

C* ------------------- SECTION 6 ---- Finish of iz slab. 

C Find actual temp at cell WALT, wall ref for update of Tsource 
C point at IY=1, IX=1 

IF(. NOT. CALCV) THEN 
IF(IZ. EQ. NZ/2) THEN 
LOT1=LOF(LBNAME('TEMI')) 
IY=1 
IX=1 
I=IY+NY*(IX-1) 
TACT=F(LOT1+1) 

END IF 
END IF 

C Intergrate results 
C Flow rate of water and oil, taken at ix=NX/2 

IF(ISWEEP. EQ. LSWEEP) THEN 

LOU1=LOF(Ul) 
LOAE=LOF(AEAST) 
IXX=NX/2 
DO IYY=1, FNW1 
I=IYY+NY*(IXX-1) 
FRW=FRW+(F(LOU1+1)*F(LOAE+I)) 

END DO 
DO IYY=STOIL, STT-1 
I=IYY+NY*(IXX-1) 
FRO=FRO+(F(LOU1+1)*F(LOAE+I)) 

END DO 

C Ave. temp of water 
LOT1=LOF(LBNAME('TEMI')) 
LOVL=LOF(VOL) 
DO IYY=I, FNW1 
DO IXX=1, NX 
I=IYY+NY*(IXX-1) 
ATW=ATW+(F(LOT1 +1)*F(LOVL+I)) 
TVOLW=TVOLW+F(LOVL+I) 

WRITE(14, *)'IY is', [Y 
WRITE(14, *)'IX is', IX 
WRITE(14, *)'vol wat is', F(LOVL+I) 

END DO 
END DO 

C Ave. temp of oil [NB: PRPS(oil)=65] 
LOPR=LOF(LBNAME('PRPS')) 
DO IYY=STOIL, FNOIL 
DO IXX=1, NX 
I=IYY+NY*(IXX-1) 
IF(F(LOPR+I). EQ. 65) THEN 

ATO=ATO+(F(LOT1 +1)*F(LOVL+I)) 
TVOLO=TVOLO+F(LOVL+I) 

END IF 
END DO 

END DO 

C Ave temps in steel plate, used to calc 0 through plates 
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C temp ref points 
IYA=9 
IYB=l 2 
LOYC=LOF(YG2D) 
LOAN=LOF(ANORTH) 
DO IXX=1, NX 

IA=IYA+NY*(IXX-1) 
IB=IYB+NY*(IXX-1) 
DT=F(LOT1 +IB)-F(LOTI +IA) 
DY=F(LOYC+IB)-F(LOYC+IA) 
TOTQ=TOTQ+((DT/DY)*F(LOAN+IA)) 
totan=totan+F(LOAN+IA) 

END DO 

END IF 

RETURN 
197 CONTINUE 

C* ------------------- SECTION 7 ---- Finish of sweep. 

C For Calculation of temperature only 
C Calculate improved TEM 1 source. 

IF(. NOT. CALCV) THEN 
WRITE(14, *)'temp act is', TACT 
WRITE(14, *)'temp ref is, TREF 
TMPF=TACT/TREF 
WRITE(14, *)'tempfac is', TMPF 
TSOUC=TSOUC*TMPF 

C Convergance monitoring. 
CALL MONTEMP(NSWP, TACT, TMPF, TSOUC) 
NSWP=NSWP+l 

END IF 

RETURN 
198 CONTINUE 

C* ------------------- SECTION 8 ---- Finish of time step. 
WRITE(11 4, *)' 
WRITE(14, *)' 
WRITE(14, *)'' 
WRITE(l 4, *)'Results: 
WRITE(11 4, *)" 
WRITE(14, *)'Flow rate of water is', FRW 
WRITE(14, *)'Flow rate of oil is', FRO 
WRITE(14, *)'Ave temp of water is', ATW/TVOLW 
WRITE(14, *)'Ave temp of oil is', ATO/TVOLO 
WRITE(14, *)'Temp. source is', TSOUC 
WRITE(14, *)'' 

C To calc q across the wall 
KSTEEL=48.0 
Q=KSTEEL*TOTQ 
WRITE(14, *)'Q is', Q 

c 
RETURN 

END 

SUBROUTINE MONTEMP(NSWP, TACT, TMPF, TSOUC) 
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INCLUDE'lp2l/cL. includ/sateae 
INCLUDE 'Ip2l /d-includ/grdloc' 
INCLUDE 'lp2l /d_includ/grdeae 
INCLUDE 'lp2l /d-includ/grdbfc' 
PARAMETER (NLG=100, NIG=200, NRG=200, NCG=100) 
COMMON/LGRNDILG(NLG)/IGRND/IG(NIG)/RGRND/RG(NRG)/CGRND/CG(NCG) 
LOGICAL LG 
CHARACTER*4 CG 

C Subroutine variables 
REAL MON, TACT, TMPF, TSOUC 

C Act. temp 
IF (NSWP. EQ. 1) THEN 
OPEN (20, FILE='monjact. m') 
WRITE(20, *)'% MATLAB monitoring plotting: ' 
WRITE(20, *)'% of TACT' 
WRITE(20, *)'' 
WRITE(20, *)'mon=[' 

END IF 
MON=TACT 
WRITE(20, *) MON 
IF (ISWEEP. EQ. LSWEEP) THEN 
WRITE(20, *)']; ' 
WRITE(20, *)'' 
WRITE(20, *)'plot (mon)' 
WRITE(20, *)'title ("Spot values of TACT 
WRITE(20, *)'xlabel("sweep number")' 
WRITE(20, *)'ylabel("spot value")' 
CLOSE (20) 

END IF 
C Temp factor 

IF (NSWP. EQ. 1) THEN 
OPEN (21, FILE='monj. m') 
WRITE(21, *)'% MATLAB monitoring plotting: ' 
WRITE(21, *)'% of TMPF' 
WRITE(21, *)'' 
WRITE(21, *)'mon=[' 

END IF 
MON=TMPF 
WRITE(21, *) MON 
IF (ISWEEP. EQ. LSWEEP) THEN 
WRITE(21, *)']; ' 
WRITE(21, *)'' 
WRITE(21, *)'plot (mon)' 
WRITE(21, *)'title ("Spot values of TMPF 
WR ITE(2 1, *)'xlabe I ("sweep number")' 
WRITE(21, *)'yIabeI("spot value")' 
CLOSE (21) 

END IF 
C temp source 

IF (NSWP. EQ. I) THEN 
OPEN (22, FILE='mon-js. m') 
WRITE(22, *)'% MATLAB monitoring plotting: ' 
WRITE(22, *)'% of TSOUC' 
WRITE(22, *)'' 
WRITE(22, *)'mon=[' 

END IF 
MON=TSOUC 
WRITE(22, *) MON 
IF (ISWEEP. EQ. LSWEEP) THEN 

366 



WRITE(22, *)']; ' 
WRITE(22, *)'' 
WRITE(22, *)'plot (mon)' 
WRITE(22, *)'title ("Spot values of TSOUC 
WRITE(22, *)'xlabel("sweep number")' 
WRITE(22, *)'ylabel("spot value")' 
CLOSE (22) 

END IF 
C DPDX1 

IF (NSWP. EQ. 1) THEN 
OPEN (23, FILE='mon-dpdxl. m') 
WRITE(23, *)'% MATLAB monitoring plotting: ' 
WRITE(23, *)'% of DPDX1' 
WRITE(23, *)'' 
WRITE(23, *)'mon=[' 

END IF 
MON=DPDX1 
WRITE(23, *) MON 
IF (ISWEEP. EQ. LSWEEP) THEN 
WRITE(23, *)']; ' 
WRITE(23, *)'' 
WRITE(23, *)'plot (mon)' 
WR ITE(23, *)'title ("Spot values of DPDX1 
WRITE(23, *)'xlabel("sweep number")' 
WRITE (23, *)'ylabel ("spot value")' 
CLOSE (23) 

END IF 
C DPDX2 

IF (NSWP. EQ. 1) THEN 
OPEN (24, FILE='mon-dpdx2. m') 
WRITE(24, *)'% MATLAB monitoring plotting: ' 
WRITE(24, *)'% of DPDX2' 
WRITE(24, *)'' 
WRITE(24, *)'mon=[' 

END IF 
MON=DPDX2 
WRITE(24, *) MON 
IF (ISWEEP. EQ. LSWEEP) THEN 
WRITE(24, *)']; ' 
WRITE(24, *)" 
WRITE(24, *)'plot (mon)' 
WRITE(24, *)'title ("Spot values of DPDX2 
WRITE(24, *)'xIabeI("sweep number")' 
WR ITE(24, *)'ylabel ("spot value")' 
CLOSE (24) 

END IF 

RETURN 
END 

SUBROUTINE MONVEL(NSWP, DPDX1, DPDX2) 

INCLU DE 'lp2l /d-includ/sateae 
INCLUDE 'Ip2l /d-includ/grdloc' 
INCLU DE 'lp2l /d-includ/grdeae 
INCLU DE 'Ip2l /d-includ/grdbfc' 
PARAMETER (NLG=100, NIG=200, NRG=200, NCG=100) 
COMMON/LGRND/LG(NLG)/IGRND/IG(NIG)/RGRND/RG(NRG)/CGRND/CG(NCG) 
LOGICAL LG 
CHARACTER*4 CG 
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C Subroutine variables 
REAL MON, DPDX1, DPDX2 

C DPDX1 
IF (NSWP. EQ. 1) THEN 
OPEN (23, FILE='mon-dpdxl. m') 
WRITE(23, *)'% MATLAB monitoring plotting: ' 
WRITE(23, *)'% of DPDXV 
WRITE(23, *)'' 
WRITE(23, *)'mon=[' 

END IF 
MON=DPDX1 
WRITE(23, *) MON 
IF (ISWEEP. EQ. LSWEEP) THEN 
WRITE(23, *)']; ' 
WRITE(23, *)'' 
WRITE(23, *)'plot (mon)' 
WRITE(23, *)'title ("Spot values of DPDX1 
WRITE(23, *)'xlabel("sweep number")' 
WRITE (23, *)'ylabel ("spot value")' 
CLOSE (23) 

END IF 
C DPDX2 

IF (NSWP. EQ. I) THEN 
OPEN (24, FILE='mon-dpdx2. m') 
WRITE(24, *)'% MATLAB monitoring plotting: ' 
WRITE(24, *)'% of DPDX2' 
WRITE(24, *)'' 
WRITE(24, *)'mon=[' 

END IF 
MON=DPDX2 
WRITE(24, *) MON 
IF (ISWEEP. EQ. LSWEEP) THEN 
WRITE(24, *)']; ' 
WRITE(24, *)'' 
WRITE(24, *)'plot (mon)' 
WRITE(24, *)'title ("Spot values of DPDX2 
WRITE(24, *)'xIabel("sweep number")' 
WRITE (24, *)'ylabel ("spot value")' 
CLOSE (24) 

END IF 

RETURN 
END 
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