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ABSTRACT 

Adopting a Continuous Space Modelling-type scenario of 
no detailed data being available at a customer-specific 
level, and on the basis, therefore, of basic information on 
delivery-area size, total number of locations to be visited 
and average road-speeds etc., quantitative expressions are 
derived for, 

the relationship between the number of vehicles 
operating from a central depot and the total 
fleet mileage that is required to visit a set 
of locations, and, 

2. the effect of time-window constraints on the 
total cost of a similar operation. 

These expressions are derived using a simulation-based 
methodology, involving the setting-up of a computer program 
which both generates Travelling-Salesman tours and provides 
information on these tours at a detailed, disaggregated 
level. In the time-constrained context, it was necessary to 
develop a heuristic route-building procedure for solving 
Travelling-Salesman Problems due to the algorithmic 
difficulties posed by time-windows. 
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CHAPTER 1 

INTRODUCTION: THE DISTRIBUTION PROBLEM 

The general subject-matter of this thesis is provided by 

the Distribution Problem, a term that refers to a group of 
related problems that commonly involve the dispatching of goods, 
people or services from one or more points of origin to a set 
of specified locations. In the real world, this problem 
manifests itself in the industrial context of distributing 
finished goods or raw materials from a central supply point 
to a population of consumers, either directly or via a smaller 
number of production points or depots. Since it is the 
movement of items over space that is the main activity here, 
the fundamental problem is obviously one of transportation, 
but the wider issue of distribution also involves the storage 
of goods within the system in warehouses, and also the 
question of whether the process of distribution should include 
a "break 

, -of-bulk" stage, (ie. whether the goods being 
transported should be divided into smaller consignments for 

subsequent carriage by smaller vehicles). 

The Transportation Problem is another term that may be 
used generally to refer to a class of problems whose general 
objective is to distribute goods optimally, given an existing 
network of depots. This type of problem invariably involves 
employing the optimum vehicle fleet in terms of the number 
and carrying-capacity of vehicles used, and usually includes 
the task of minimising the total distance travelled by this 
fleet, subject of the maintenance of a minimum level of 
service. 

The distance-minimisation stage is associated with a 
rather specialised body of literature concerned with The 
Travelling-Salesman Problem, which will be discussed, in 
several of its formulations, later on in this chapter. 

The transportation component of distribution can be seen 
in several different contexts, including the mass transportation 
of people as well as goods, and the context within which the 
problem is set will obviously influence the objectives and 
constraints that are involved. For example, in freight 
transport the vehicle-fleet employed will be required to 
dispatch goods to a set of locations-Inorder to satisfy a 
periodic demand, and often be expected to do so on a particular 
day of each week, or even at a specified time of day. The 

major limiting factors on an operation will normally be the 
length of the working day and the maximum legal speed and 
carrying-capacity of the'vehicles, and it is within the 
framework of these constraints, along with the required 
frequency and quality of service, that costs may be minimised. 

In the area of passenger transport, however, the question 
of the level of service provided becomes more important. In 
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some cases., as discussed later, the minimisation of a measure 

representi-ng the total inconvenience caused to passengers 
becomes a major objective. However, passenger-orientated 
prdb1ems: a, r. e still restricted by similar -time, speed and 
capacity constraints to those experienced with freight 

operations, and the issue of cost minimisation is rarely 
disregarded, despite the greater emphasis placed on customer- 
satisfaction. 

The problem of distribution is clearly an important one, 
since the cost of this activity accounts for a substantial 
proportion of the retail-price of any manufactured item; 

subsequent chapters will demonstrate that, by close 
examination of the cost-functions and key parameters of 
distribution operations, it is possible to significantly 
reduce these costs. 

A more detailed summary of the precise research objectives 
of the thesis, along with an outline of the cost components 
and system characteristics that are to be examined, will 
appear in Chapter 2; the following section, meanwhile, 
describes the Distribution Problem, with its different 
formulations and sub-problems, in greater detail. 

1.1. The Major Components of the Distribution Problem 

Figure 1.1. is a-taxonomic diagram, in as much as its 
purpose is one of classification, whose role here is to 
define the relationships between each of the various components 
of the Distribution Pfoblem, which may be divided into three 
main parts: - 

1. the Warehousing Problem, which covers all issues 
associated with the management of people, equipment 
and flows within a depot or warehouse, 

2. the Depot cation Problem, dealing with the location 
and siting of one or a network of depots or 
warehouses, 

and 3. the Routing & Scheduling Problem, which focuses on 
the size, nature and management of the fleet of 
vehicles operating from one or more operating centres. 

It is the routing & scheduli: ng component of the problem 
that is of interest here, and Figure 1.1. divides routing & 
scheduling into the four formulations of the problem that are 
most commonly found in the literature: the Travelling- 
Salesman Problem, the Dial-a-Ride Problem, the Chinese 
Postman Problem and the School Bus Problem. 

. 
1.2. Routing & Scheduling Problems 

Both Figure 1.1. and Figure 1.2. serve to describe the 
relationship of Routing & Scheduling to the other components 
of the Distribution Problem. Figure 1.2. goes on to define a 
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Taxonomic diagram of the Distribution Problem 
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taxonomic space in terms of the following three dimensions: - 

(a) the type of routing & scheduling problem addressed, 
(b) the availability or unavailability of details on 

the location and demand-characteristics of 
individual customers, 

and (c) the presence - or absence of time-window constraints. 

It should be stressed that Figure 1.2. is by no means 
intended to be a totally comprehensive taxonomic framework 

within which all work relating to routing & scheduling problems 
may be classified; such a model would, of course, need to be 

multi-dimensional, and therefore be impossible to portray 
diagrammatically. However, it is useful to use such a frame- 

work as a basis for discussion, as it enables quite a diverse 

subject-area to be presented as a set of more specialised 
areas of inquiry. Furthermore, the above dimensions, 
particularly dimensions "(b)"and "(cy'., highlight the aspects 
of the current research that give originality to the thesis, 
and emphasise the importance here of estimating the effects of 
time-windows on the behaviour of the major parameters of 
distribution operations, especially in the absence of customer- 
specific data. 

1.2.1. The Formulations of the Routing & Scheduling Problem 

This dimension of the framework shown in Figure 1.2. 
illustrates the variety of different formulations-ofthe 
problem of distributing goods, people or services to a set 
of locatiýons,, each of which may either deal purely with a 
routing problem, or deal specifically or simultaneously with 
the scheduling of vehicles and crews. The Routing Problem on 
its own is typically mainly concerned with distance-minimisation 
in the absence of time-window constraints, whilst the task of 
scheduling is rather more orientated towards the question of 
time-constraints, whether thes6 constraints are imposed by 
customers or suppliers, in the form of restrictions on times 

of delivery & collection or by drivers' hours limitations. 
Both routing and scheduling entail the order in which-customers 
on a route are visited, and are, in practice, normally dealt 

with together; the Classical Travelling-Salesman Problem, 
however, is mainly concerned with the minimum distance that is 
required to serve a given set of customers. 

The Travelling-Salesman Problem. 

One of the earliest, and certainly: ox-eof the most 
commonly-referenced, attempts at offering a solution to the 
Travelling-Salesman Problem was presented by Clarke & Wright(l) 
in 1963; in this paper, the "Savings Method" is outlined, an 

(1) CLARKE, G., and WRIGHT, J. W., "Scheduling of vehicles from 

a central depot to a number of delivery points. " OPERATIONS 
RESEARCH. Vol. 11., P. 568. (1963). 
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iterative procedure which produces an optimum, or near-optimum, 
route through a set of points, starting and finishing at a 
central depot. This method has subsequently been used, refined 
and developed by a number of researchers. A more detailed 
description and discussion of the Savings Method can be found 
in Chapter 7. 

The Dial-a-Ride Problem. 

Rather more complex solutions are required to distribution 
problems involving scheduling, whether it is goods or people 
that need to be transported. In the context of passenger 
transport, there is an extensive*body of literature which 
deals with the Dial-a-Ride Problem, a theoretical problem 
named after a shared-ride scheme in which users state a 
desired time and location for both pick-up and delivery. 
Clearly, a solution for sucha customer-orientated problem 
would be rather unrealistic if scheduling in terms of time 
were not considered, although Stein, D. M., (2), for instance, 
defines pick-up and delivery-times as decision-variables 
which are imposed upon each customer in order to maximise 
bus-utilisation, rather than as constraints. However, despite 
the importance of time-constraints in this problem, the 
usefulness of dial-a-ride-orientated algorithms to the 
Travelling-Salesman Problem is limited, since each passenger 
has two stated "arrival-times"; usually, in the context of 
freight distribution, the problem involves just one time- 
window per location during each delivery-cycle. This 
important distinction means that the Many-to-Many Dial-a-Ride 
Problem is algorithmically quite different to the One-to-Many 
Distribution Problem. Furthermore, the former's strong 
emphasis on passengers' needs means that customer-service 
considerations must be directly incorporated into the objective 
function of the model, a requirement that has led to various 
attempts at quantifying the concept of "customer-inconvenience". 
For example, the main stated objective of Sexton & Bodin's, (3), 
Mathematical Programming formulation is to schedule a single 
vehicle so as to minimise the total of each customer's 
"Excess Ride Time" (defined as actual ride-time less the 
minimum feasible ride-time) plus "Delivery-Time Deviation" 
(desired delivery-time less actual delivery-time). Similarly, 
Hung et al seek to minimise the number of vehicles utilised 
whilst maintaining a pre-determined level of customer-service, (4), 

(2) STEIN, D. M. , "Scheduling Dial-a-Ride Transportation 
Systems". Transportation Science (1978), Vol. 12., No. 3, 
P. P. 232-49 
(3) SEXTON, T. R., and BODIN, L., "Optimising Single Vehicle 
Many-to-Many Operations with Desired Delivery Times: I. 
Scheduling. " Transportation Science, (1985a), Vol. 19., 
P. P. 378-410. 
(4) HUNG, H., CHAPMAN, R., HALL, W., and NEIGUT, E., A heuristic 
algorithm for routing and scheduling dial-a-ride vehicles. 
(Presented at the ORSA/TIMS 1982 Joint National Meeting in 
San Diego, Oct. 1982). 
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and Psaraftis minimises a weighted sum of travel-time and 
"customer-dissatisfaction", (this measure being assumed to be 
a linear function of the waiting and riding times of each 
customer), (5). Despite the importance of customer-service 
to freight distribution operations in the real world, there 
is, as yet, no evidence of customer-inconvenience, or a 
similar variable, being used in algorithms to provide a 
solution to a Travelling-Salesman Problem. 

The Chinese Postman Problem. 

Another problem based ondistance-minimisation is the 
Chinese Postman Problem. Whereas the theoretical salesman is 
required to visit each of a set of points, the postman in 
these problems must traverse every "streettl in a street-network, 
so that the latter problem deals with Arc Routing, as opposed 
to Node Routing. The Chinese Postman Problem is so-called 
because one of its earliest formulations was presented in 
Chinese Mathematics in 1962, (6). Despite the conceptual 
similarity between this formulation and the Travelling- 
Salesman Problem, their solutions require totally different 
algorithms. The Chinese Postman Problem will be discussed 
no further here but more detailed descriptions of this 
problem have been put forward by both Bodin et al, (7), and 
Minieka, (8). 

The School Bus Problem. 

There are certain contexts in which the routing & 
scheduling of vehicles is merely part of a wider Location- 
Allocation Problem, usually in connection with the location 
and dispersal of public services; an example of this is the 
School Bus Problem, in which the given fixed variables are 
the number and location of schools, the number and location 
of bus-stops associated with certain schools, the number of 
children assigned to each bus-stop and the starting-- and 
finishing-times of the schools. 

(5) PSARAFTIS, H. N., "A Dynamic Programming Solution to 
the single vehicle many-to-many immediate request Dial-a-Ride 
Problem. " Transportation Science, (May, 1980), Vol. 14., 
No. 2, P. P. 130-54. 
(6) MEI-KO, K., "Graphic Programming using odd or even points. " 
Chinese Mathematics, (1962), Vol. l., P. P. 278-87. 
(7) BODIN, L. D., GOLDEN, B. L., ASSAD, A. A., and BALL, M. O., 
"Routing & Scheduling of vehicles and crews: The State of the 
Artil. Computers and Operations Research, (1983), Vol. 10., 
No. 2, P. P. 63-211. 
(8) MINIEKA, E., "The Chinese Postman Problem for mixed net- 
works. " Management Science, (1979), Vol. 25., P. P. 643-8. 
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The time-window component of this problem is the timing 
of the pick-up and delivery of children at their bus-stop 

and school, the main objective being to minimise the cost of 
the whole operation, which is a function of both the number 
of vehicles used and the running cost of the fleet. Among 
the researchers who have addressed this problem are Swersey & 
Ballard, (9), who assume that the bus-routes for each school 
are given, Bennett & Gazis, (10), and Bodin & Berman, (11). 

1-2-2. The availability or unavailability of customer- 

sket-ific data 

There are many examples of algorithms which are designed 
to give optimal or near-optimal solutions to Routing & 
Scheduling problems, given information on the location and 
demand-characteristics of a set of customers; where such 
details are not available, key cost components and other 
important parameters of distribution systems may be 

estimated using an approach known as Continuous Space Modelling. 

This approach, of which one of the earliest. examples is 
Kantorovich's use of the technique it-19421 to. describe. -the 
movement of bulk materials, (12), sets out to give accurate 
estimates of cost components using simple, analytical 
expressions derived from basic parameters such as the density 
of customers and the size of the distribution-area etc.. In 

other words, customers may be located anywhere within the 
study-area, which is regarded for the purpose of the analysis 
to be both continuous and homogeneous, without affecting the 
resulting estimates; it is the dimensions and overall 
characteristics of the delivery-zone and its customers that 
are of importance. 

Eilon etal, (13), use Continuous Space Modelling to 
estimate the length of at rave 11 ing: -sia lesman. t-our in a square 

(9) SWERSEY, A., and BALLARD, W., Scheduling School Buses 
(Yale School of Organisation and Management Technical Report, 
Yale University, 1982). 
(10) BENNETT, B., and GAZIS, D., "School bus routing by 
computer. " Transportation Research, (Dec., 1972), Vol. 6., 
No. 4, P. P. 317-25. 
(11) BODIN, L., and BERMAN, L., "Routing and Scheduling of 
school buses by computer. " Transportation Science, (1979), 
Vol. 13., No. 2, P. P. 113-29. 
(12) KANTOROVITCH, L., "On the translocation of masses. " 

-Comptes 
Rendus (Doklady) de 1' Academie des Sciences de VURSS. L (1942), Vol. 37., No. s 7-8, P. P. 199-201. 

(13) EILON, S., WATSON-GANDY, C. D. T., and CHRISTOFIDES, N., 
kistribution management: mathematical modelling and practical 
Ap2lysis. (Griffin,. Lgndon, 1971T. 
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zone of given dimensions as a. function of the number of 
customers that may be visited during one vehicle-tour, the 
area-ofthe delivery-zone and the aggregate distance between 
the depot and each of the locations that require a delivery; 
when customers are randomly located in the delivery-zone, the 
latter parameter is, of course, a direct function of area-size. 
This work is discussed in greater detail in Chapter 4. 

Another example is provided by Blumenfeld & Beckmann, 

who derive simple expressions for both the number of 
destination stops per load, and the distance travelled per 
load, from information regarding the average density of 
locations and the average and variance of demand. Although 
the equations are, by the authors' admission, merely 
generalised estimates, 

.......... for the cost of distributing freight under general 
conditions ........... 

they are useful in as much as they are convenient to use 
whilst still maintaining a good level of accuracy, (14). 

Similar work using Continuous Space Modelling has been 
carried out by Daganzo, who calculates total distance 
travelled per drop from vehicle-capacity, the number of 
customers to be visited and a parameter representing the 
average of the distances from the depot to any random point 
in the delivery-area, (15). 

The same author also explores the impact of zone-shap"e 
on the expected length of travelling-salesman tours, thus 
illustrating the usefulness of deriving such analytical 
expressions for estimating the consequences of changing a 
given variable on the cost components of a distribution 
operation, (16). 

Daganzo applies the same concept of continuous space to 
the Many-to-One Demand-Responsive Transportation Problem, a 
problem similar to that of Dial-a-Ride, involving a single 
vehicle picking up passengers from a "rendez-vous" point and 

(14) BLUMENFELD, D. S., and BECKMANN, M. J., "Use of Continuous 
Space Modelling to estimate freight distribution costs. " 
Transportation Research., Vol. 19A., No. 2., P. P. 173-87. (Mar., 1985). 
(15) DAGANZO, C. F., "The distance travelled to visit N points 
with a maximum of C stops per vehicle: a manual tour-building 
strategy and case-st-udy. " Research Report, Institute of 
Transportation Studies University of California. (Aug-Sep., 
1982). 
(16) DAGANZO, C. F., "The length of tours in zones of 
different shapes. " Transportation Research - B., Vol. 18B., 
No. 2., P. P. 135-45. (1984). 
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distributing them to a random set of destinations, before 

picking up a fresh load of randomly-located passengers on the 
way back to the rendez-vous point; the vehicle is constrained 
to return to this point periodically at fixed times. A 
typical application for this problem is a shardd-tide 
taxi-service operating from an airport or railway station, 
(17). In this paper, Daganzo refers to one of his own 
unpublished pieces of work in which he proposes a simple 
analytical model for the Many-to-Many Dial-a-Ride Problem 
itself, (18). 

These applications of Continuous Space Modelling suggest 
that the same approach can also be used to tack-le the other 
types of Routing & Scheduling Problem outlined above. 

1.2.3. The presence or absence of time-window constraints 

In the real world, the routing of a fleet of vehicles is 
invariably conditioned by time-constraints of one type or 
another; this, of course, introduces a divergence from the 
original Travelling-Salesman Problem, which is primarily 
concerned with minimising the distance travelled through a 
given set of points, regardless of time restrictions. 

The most obvious type of time constraint involved is 
the limit on the working-day, as vehicles are often required 
to return to the depot at the end of each day's work; even 
if it is feasible for a driver and vehicle to continue away 
from their operating centre for one or more nights, there are 
still limits on the aggregate and continuous time during which 
a driver may drive. 

But the type of time-constraint that has received most 
attention from researchers in this area is the "time-window. " 
A time-window, in the context of freight distribution, may be 
defined as the time-period during which a visit may be made 
to a given location for the purposes of delivery or collection; 
the two times that define the span of each time-window will 
normally be specified by the customer. 

The presence or absence of time-windows will obviously 
influence both the formulation of the particular problem and the 
choice of algorithm. The extent to which the total mileage 
travelled by a fleet is increased as a result of time-windows 
depends on how severe these restrictions are, in terms of 
either the width of the time-band during which delivery or 
collection may be made, or the percentage of outlets that 
specify such limitations. 

(17) DAGANZO, C. F., HENDRICKSON, C., and WILSON, N. H. M., 
"An approximate analytic model of many-to-one demand responsive 
transportation systems. " (Aug. 1977). 
(18) DAGANZO, C. F., An analytic model of Many-to-Many Dial- 
a-Ride transportation sytems. (Unpublished manuscript, 1974). 
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Time constraints must also be taken into account when 
con sid6rýng-)D-t--h-er-_ types -of routing & scheduling problem. For 

example, in the context of the Dial-a-Ride Problem, time- 
constraints exist in the form of customers' desired time of 
arrival at their destination; although each customer need 
not necessarily arrive at the precise time preferred, a 
major objective of the problem is to minimise the sum of 
deviations from the stated delivery-time of all customers. 
Furthermore, the time at which each customer should be 
picked up is determined in order that Total Customer Excess 
Ride-Time should be minimised, so that the overall objective 
of dial-a-ride problems is to minimise total inconvenience 
for the whole population of customers. In other words, a 
time-window is, in this example, a precise time that is 
stated by the customer, but which need not necessarily be 
complied with, so that the time-. at which a vehicle arrives 
at a given location is a decision-variable. 

The time-windows considered in the current thesis, 
however., are defined by time-limits within which a delivery 
must be made to a certain customer, and these time-limits 
act as fixed constraints on the final solution. 

Of the relatively few references that deal specifically 
with time-windows in the context of freight operations, it 
is common for time-window constraints to be added to a 
problem after the generation of an initial feasible solution. 
For example, the approach used by Baker is to derive an 
initial solution, using a technique based on Nearest 
Neighbour Analysis, in the absence of time-window constraints, 
and to then impose time-windows at a second stage, (19). 
Savelsberg uses a similar two-stage method when he employs 
route-improvement procedures to reduce both total travel-time 
and the total time taken to complete a tour, having initially 
generated a feasible solution, (20). 

1.3. Summary 

The foregoing sections have provided a general definition 
of the Distribution Problem, and have described both the major 
sub-problems of which it consists, and the main formulations 
of the more specific Routing & Scheduling Problem. This 
problem-area is conveniently summarised by the taxonomic 
diagrams of Figures 1.1. and 1.2., and, referring to the 
latter, it is the area of interest that is indicated by the 

(19) BAKER, E. K., "Vehicle routing with time-window 
constraints. " The Logistics and Transportation Review. Vol. 18., 
No. 4. (1982). 
(20) SAVELSBERG, M. W. P., Local search in routing problems with 
Time-Windows. (Report OS-R8409, Centre for Mathematics and 
Computer Science, Amesterdam-,: 1984)... 
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symbol "X" that provides a focus for the current thesis. In 

other words, the general aim, here, is to analyse the 
Travelling-Salesman Problem with Time-Windows using the 
"Continuous Space Modelling" approach that is employed by 
Blumenfeld & Beckmann (14), Daganzo (15,16,17,18), and 
others. 

Chapter 2 now goes on to present a more detailed 

statement of the thesis's research objectives, along with a 
description of the common features of the various problem- 
definitions that are used in subsequent chapters. This 

objectives statement is then placed in the context of the 
objectives pursued by other researchers in this field. Finally, 

a summary is given of the thesis's structure and of how this 
structure relates to the objectives that have been set. 
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CHAPTER 

THESIS OBJECTIVES AND METHODOLOGY 

2.1. Thesis Objectives 

The central aim of the research is to explore how a 
computerised simulation model may be used to measure the 
effect of, 

1. the number of vehicles that make up the 
vehicle fleet, and, 
2. the severity of constraints on delivery-times, 

on the cost of a hypothetical delivery task. This task is 
to deliver a uniform consignment of goods, using a uniform 
fleet of vehicles, to each of a set of customers. These 
customers are located within a delivery-area of known 
dimensions, and each one specifies a "time-window" during 
which a delivery must be made. 

A simulation model is constructed in order to provide 
a simplified representation of a distribution system. This 
model includes a number of assumptions, particularly about 
the nature of the area within which goods are to be 
distributed. Generally, these assumptions correspond to 
those associated with Continuous Space Modelling, (which 
has already been discussed in Chapter 1). The most important 
of these are: - 

1. The customer-locations requiring a delivery are 
distributed irregularly throughout the delivery- 
area with the location of individual customers 
being unspecified. 
2. The delivery-area is, for all intents and 
purposes, homogeneous, so that vehicle speed 
within this area is constant regardless of the 
direction of travel. No information is given on 
the details of a road network; therefore, the 
straight-line distance between two customer 
locations is taken to be equivalent to the "road 
distance" between them. 
3. The delivery task must be accomplished from a 
single depot, using a uniform fleet of vehicles. 

A formal problem definition is presented in Section 2.2.. 
Once the simulation procedure has calculated the mileage that 
is required for making a delivery to each customer-location, 
this distance figure is then converted to cost using vehicle 
cost tables published by Commercial Motor magazine. 
These costings, along with the assumptions that underlie 
them are discussed in depth in Section 3.3.. 

The creation of such a model makes it possible to 
exercise complete control in the hypothetical system that 
is provided, so that a particular parameter of interest may 
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be made variable whilst all other parameters are held 

constant. The general methodology pursued here is to 

observe the way in which the Total Cost of making deliveries 

to a given set of customer-locations is affected when 
controlled changes are made to, first, the size of the 

vehicle fleet, and then to the severity of the time-window 

constraints. The objective then is to derive quantative 
expressions to describe the observed relationships. The 

purpose of this process of running a simulation model to 

generate such equations is to produce predictive tools that 

can estimate, say, the minimum length of a Travelling- 
Salesman tour required to visit a given set of customer- 
locations within a delivery-area of given size and shape. 
Obviously, other assumptions, such as average road-speeds 
within this area, also have to be made. Although the 

applicability of the models predictions is initially 

restricted to the types of operation described in the 

problem definition of Section 2.2., the technique of 
simulation allows the flexibility of being able to 

elaborate on these basic assumptions. For example, a 
constraint on the length of the working day may be added to 
the model so that more than one vehicle is required for all 
deliveries to be made before the end of the day. In other 
words, the model has an aptitude for impact analysis, 
predicting the impact of a change in working practices, in. 

this example, on the Total Cost of an operation. In 

particular, the current research focuses on the effects of 
changes in both the size of the fleet and the constraints 
that are imposed on delivery-times at demand-points. 

The research also aims to contribute to the existing 
body of knowledge that is associated with Continuous Space 
Modelling, a methodology that has been used extensively for 

research at a tactical/strategic level. Continuous Space 
Modelling has already been described in Section 1.2.2., but 
it might be useful to clarify the precise meaning of the 
terms "tactical" and "strategic", since they have a variety 
of interpretations when applied to planning, policy 
analysis and research methods. This is dealt with in the 
following sub-section. 

2.1.1. The Distinc- 
Operational Plannim 

ion between Strateqic, Tactical and 

The distinction between "strategic", "tactical" and 
"operational" levels of activity is well documented. 

(1) CHRISTOPHER, M. G., Strateqy of distribution manaqement 
effective logistics manaqement. 
(Gower, 1985). 
(2) WALLER, A. G., "Use and location of depots. " in 
GATTORNA, J., Handbook of physical distribution manaqement, 
(Third Edition). (Gower, 1970). 
(3) BOWERSOX, D. J., Loqistical Manaqement: A systems 
inteqration of physical distribution management and 
materials manaqement, (Second Edition). (McMillan, 1978). 
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Christopher (1) is specific in describing these three terms 

as, 
11 ........ distribution planning horizons ........ 

and Waller (2) portrays them as forming a, 
11 ......... hierarchy of decision levels ......... 

whilst making specific reference to depots and warehousing. 
Bowersox (3) takes a more general view when he refers to 
the three terms as a, 

..... classification of planning situations .... 
and suggests that the relevant criteria when using this 
means of categorisation are, 

11 ..... the nature of asset commitment, the time 
duration of the plan, the likelihood of implementation". 

the time duration element of these criteria is clearly 
important. All three of the authors quoted above put 
forward their views on the time horizons that are associated 
with operational, tactical and strategic decision-making 
activities. These views are summarized in Table 2.1.. This 
table reveals a broad agreement within this small sample of 
authors on the operational and strategic time horizons, but 
it is interesting that it is only Waller, who bases his 
classification on the number of times that each type of 
decision would normally be reviewed, is specific about the 
time-horizon that is associated with the tactical planning 
level. Christopher, for example, defines a two-tiered 
hierarchy, in which strategic planning, (or "resource 
planning"), adopts 

Table 2.1. Views as to the time horizons that correspond 

. 
to operational, tactical and strategic decision-making 

TIME HORIZON 

AUTHOR OPERATIONAL TACTICAL STRATEGIC 

Bowersox Up to 1 yr Adaptation 5 to 10 yrs 
within 
strateaic 
horizon 

Christopher I year 5+ years 

Waller Review many Review once Review every 
times each a year 3 to 5 years 
year 

whatever time horizon enables all resources to be considered 
variable, whilst, with operational decision-making, 
resources are effectively fixed. Similarly, Bowersox 
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sugge., tts that the tactical planning level shares the same 
time horizon as the strategic level, but that the former is 

concerned with the setting up of contingency plans, support 
requirements and procedures for adaptation which are to be 

used by decision-makers working in an operational environment. 
Bowersox goes on to argue that tactical planning may also be 

regarded as being short-term, since it is, 
11 ........ event orientated ........ 

All three authors agree that, whatever the precise definition 

of the terms, the three planning levels described above are 

mutually-dependaht. Both Dowersox and Waller point out that 
operational and tactical activities take place within a 
structure that has already been established at a strategic 
level, whilst Christopher suggests that the development of 
decision support systems'and more systematic management 
techniques has enabled the products of strategic planning to 
be used increasingly at an operational level. A trend that 
is exemplified in the recent growth in the use of "desk-top" 
software for Routing & Scheduling and stock control tasks 

etc ** 
An alternative set of definitions is offered by Ballou (4), 

who, whilst making no attempt to define the time horizon 
that is associated with each term, distinguishes between 
strategic planning, which he describes as, 

11 ........ deciding in a broad sense what the overall 
system configuration should be for distribution. " 

and tactical planning, which is considered to be concerned 
with the efficient use of facilities, equipment or fleet. 
Ballou goes on to suggest that tactical planning is not 
bound to a specific time horizon, and that it may even be 

carried out on a daily basis. Ballou's definition of 
decision-making at an operation level is somewhat dismissive 
in that he describes is as being, 

11 ..... a process for developing logistical policy and 
plans to handle routin or regularly anticipated management 
action ......... 11 

Slater (5), with reference to load planning, suggests 
that tactical decision-making is associated with a time 
horizon of a few months, often in the presence of seasonal 
variations, whilst decision-making at an operational level 
involves the planning of routes on a day-to-day basis. He 
describes strategic planning as dealing with matters such as 
depot location, fleet size & composition, changes in the 
length of driver's working day, change in customers' order 
patterns and opening hours. 

The conclusion from the limited literature survey 
described above is that there is no agreement on what 
constitutes planning, or a decision, at a tactical level; 
in fact, some authors do not recognise a tactical tier 
between the strategic and operational levels at all. There is, 

(4) BALLOU R. H., Basic business loqistics - transportation, 
materials manaqement, physical distribution, (Second Edition) 

(5) SLATER, A. G., "Load Planning. " in GATTORNA, J. Handbook 

Df physical distribution management, (Third Edition) 
(Gower, 1970). 



-16- 

however, certainly a distinction made between operational 
activities and those which fall into the broad category of 
"tactical/strategic planning". 

The following sub7section considers how the current 
thesis might be described, in relation to the foregoing 
discussion. 

2.1.2. The planning and decision-makinq level that 
corresponds to the current thesis. 

First of all, it should be made clear that this research 
does not consider the effect of decisions that are made at 
an operational level of activity. In fact, it may be argued 
that an approach at this level is precluded by the use of 
Continuous Space Modelling through out the thesis, since 
this is a technique that regards a delivery zone as being a 
"Black Box" of known size within which no information is 
available on location, order-size or time-window width at a 
customer-specific level; the products of this research, 
therefore, are more likely to be of relevance to strategic 
decisions such as the optimum size of the vehicle fleet etc., 
than of direct use in the day-to-day task of routing and 
scheduling vehicles, for example. Although the Travelling 
Salesman Problem provides a central theme for the research, 
no attempt will be made to produce a model or algorithm that 
might be used by, say, an operations manager for his daily 
duties. 

In other words, the parameters of an operation that are 
dealt with here, such as fleet-size, are not flexible at an 
operation level, or within an operational time-scale. 
Furthermore, the time-horizon assumed for analysing the 
impact on Total Cost of changes in working-hours restrictions, 
policy on overnight stays, or customers, policies on delivery- 
time restrictions, etc. would relate to the tactical/strategic 
level of planning outlined in the foregoing discussion. 

Another feature of the modelling methodology is that 
simulation enables all parameters to be variable, with the 
facility to change even the size of delivery zone. Using 
Christopher's definition of a strategic planning horizon 
being one at which all resources are variable, therefore, 
(SEE sub-section 2.1.1. ), it may be argued that the findings 
of the research are applicable at this strategic level. 
Furthermore, the number of vehicles in the fleet, the variable 
that is shown to be the most important influence on Total 
Cost in both Part 2 and Part 3 of the thesis, is set at the 
strategic planning stage. Also, due to the substantial 
capital commitment that is involved with a change in fleet 
size, this is not a decision that is reviewed on a regular 
basis. 

To further strengthen the argument that the current 
research deals with the planning of distribution operations 
at a strategic level, Slater has already been quoted, (again 
in Section 2.1.1. ), as using Fleet size, drivers' working 
hours and customers, opening times (ie. time-windows) as 
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being examples of variables and constraints that provide 
the subject-matter for strategic planning. 

It is difficult to categorise the thesis in terms of 
it being either strategic or tactical, because of the 
difference of opinion that exists as to the precise definition 
of the latter term. Taking Ballou's view that tactical 
planning involves optimising resources, however, the current 
research may be defined as tactical, considering the emphasis 
that is placed on finding the optimum fleet size for a given 
task, and on the minimisation of both mileage and cost. On 
the other hand, the research does not focus on contingency 
and support mechanics, which form the basis for Bowersox's 
definition of tactical planning. It may be argued that the 
subject-matter of the thesis is not bound by any particular 
time-horizon since, whereas fleet size is clearly a variable 
that must be planned on a long-term basis, a change in 
customers' opening times or a company's policy on allowing 
drivers to make overnight stays may occur at short notice, 
and so will be associated with a far shorter time scale. 
Furthermore, the part of the analysis that examines routing 
and scheduling might be described as tactical, since the 
algorithm employed in this task, or the zoning technique 
used, might be changed at short notice and with no effect 
on capital input. 

Because there is a range of issues addressed here, the 
thesis can not readily be placed in one category or the other, 
and there is arguably little point in trying to make a firm 
distinction between tactical and strategic levels. It may 
be reemphasised, however, that the central theme of the 
thesis is the effect of various decision variables and 
constraints on fleet size, and so the findings of such 
research will clearly be mainly applicable to strategic 
planning activities. 

2.1.3. Reasons for focusing on fleet size and time-windows. 

Ideally, the ultimate objective of such analysis is to 
develop an interactive model of a distribution system, which 
describes the relationships between all of the variables that 
have a significant effect on Total Distribution Cost, and 
which may be applied to any physical distribution context. 
It is clearly not feasible to try to achieve this with the 
current research, and so it has been necessary to be selective 
in choosing the particular relationships that are to be 
examined; the thesis therefore focuses on the effect on Total 
Cost of the number of vehicles in the fleet, and the severity 
Of time constraints that are imposed on the fleet's deliveries. 

One of the reasons for concentrating on these two 
Variables is that their effect on distribution cost has so 
far received little attention from researchers in this field 
and subsequent chapters will demonstrate that both have a 
considerable influence on Total Cost. 
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There is a fundamental difference between fleet-size 

and time-windows in the way which they relate to Total Cost, 
since, whereas timing constraints are taken to be an external 
influence on a distribution system, that is largely beyond 
the control of the operator, fleet-size is a decision-variable 
which is related to other aspects of the relevant distribution 
system. For example, there is a fundamental trade-off 
between the average carrying-capacity of a fleet's vehicles, 
(denoted later as IIxII), and the number of vehicles used, 
('In"); the way in which fleet size influences distribution 
cost via its effect on IIxII is examined in some detail in 
Chapter 3. Similarly, Chapter 5, which considers the 
influence of factors relating to drivers, working-hours, 
explains how the number of vehicles used is once again the 
major variable that affects Total Cost, whilst Chapter 4 
focuses on the way in which fleet size itself influences 
distribution costs through its effect on Total Fleet Mileage. 

The structure of the thesis is described in greater 
detail in Section 2.5.; Section 2.2., meanwhile, describes 
the basic problem. formulation that is used throughout. 

2.2. Problem Definition 

The problem-definition that is used as a basis for 
analysis often differs in detail throughout the thesis, 
and so relevant variations in constraints and assumptions 
are outlined at the start of each section, as and where 
appropriate. 

However, these precise formulations of the Distribution 
Problem have many common features. The most important of 
these features is that they are based on the fundamental 
problem of distributing a consignment of goods from a 
centrally-located depot to a set of randomly-distributed 
demand-points at the lowest possible cost, given a set of 
constraints. Again, many of the assumptions that are made 
correspond to those associated with the Continuous Space 
Modelling technique, in that it is assumed that there is 
no infomation available on the location of individual 
customers, which are distributed within a homogeneous area 
in which precise details of the road network are unimportant, 
and where road-speeds are uniform in all directions. It is 

also generally assumed that the level of demand is the same 
for edch customer, and that the: fleet of vehicle's operating 
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from the depot is also uniform in terms of capacity. The 
information that is given in each section usually concerns 
the number of customers requiring a delivery, the size of 
the circular, or square, area in which they are located and 
data referring to the temporal constraints in which the fleet 

must operate, (eg. the maximum permissible length of a 
working-day, average road-speeds, amount of time required at 
each location, etc. ). 

The first objective in the context of this problem 
formulation is to deliver the required consignment of goods 
to the set of locations at the lowest cost possible. In 
order to achieve the wider objectives outlined in Section 
2.1., it is then necessary to estimate the Total Cost of an 
optimum solution to this Distribution Problem, and then to 
examine the way in which this Total Cost estimate varies in 
response to changes in both the assumptions that are made, 
and value of certain parameters. A more detailed statement 
of these objectives already appears earlier on in this 
chapter; Section 2.3. now goes on to compare these objectives 
with those of other researchers in this field. 

2.3. Comparison of Thesis Objectives with those of Other 

Researchers 

The research-objectives outlined above have most in 
common with those of Daganzo and Blumenfeld & Beckmann, 
whose use of Continuous Space Modelling to develop formulae 
that might be used as analytical tools has already been 
discussed in Chapter 1, (referred to in that chapter as 
references (15), (16), (17), (18), and (14), respectively). 

Far more researchers have as their objective the 
development of a distance-minimising, tour-building algorithm 
for solving Travelling-Salesman Problems, such as Held & 
Karp (6). Also, because of the computational complexity of 
such problems, particularly when a large number of customers 
is involved, references concentrating on the implementation 
of route-building or route-improvement algorithms have 
appeared. Such work presents algorithms which, despite 
being able to derive only near-optimum tours, have the 
advantage of requiring sub. stantially less computer time or 
capacity than similar precedures that are designed to produce 
optimum solutions. For example, Golden, Magnanti & Nguyen (7), 

it 
....... consider heuristic algorithms for vehicle routing 

.... presenting modifications and extensions which permit 
problems ..... to be solved in a matter of seconds. " 

(6) HELD, M., and KARP, R. M., " The Travelling-Salesman 
Problem and Minimum Spanning Trees, Part II. " Mathematical 
jrogramming, (1971), Vol. l., No. 1, P. P. 6-25. 
(7) GOLDEN, B. L., MAGNANTI, T. L., and NGUYEN, H. A., 
"Implementing vehicle routing algorithms. " Networks, (1977), 
Vol. 7., P. P. 113-48. 
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and Baker, Schaffer & Solomon (8) suggest streamlined route- 
improvement procedures for the Vehicle Routing Problem with 
Time-Windows, which lead to, 

11 
...... significant increases in algorithmic efficiency 

wi h minimal deterioration in solution quality. " 

There is also a section of the literature whose 
objectives are confined to one particular sub-problem. For 
instance, both Ball 

' etal (9) and White(io) focus on issues 
concerning the size of a vehicle-fleet, whilst Kirby(ý1) and 
Wyatt(12) consider methods for establishing optimum fleet- 

size. 

The Fleet-Size Problem is closely related to the more 
general Vehicle Loading Problem, which deals with the 
allocation of a set of consignments to a fleet of vehicles of 
known size, the objective being to minimise the number of 
vehicles used; a thorough discussion of this problem appears 
in Chapter 10 of Eilon et al ( 13 ) 

Golden et al ( 14 ) go a step f urther - to consider both the 
optimum fleet-size and the optimum mix of leased and owned 
vehicles, formulating the Fleet Mix Problem as a Mathematical 
Program, and Gould (15) uses Linear Programming for the 
same purpose. 

Having outlined some of the different objectives that 
are pursued by other researchers, in relation to the 
Distribution Problem, it is also possible to put the current 

(-8) BAKER, E. K., SCHAFFER, J. R., and SOLOMON, M. M., 
Vehicle Routing & Scheduling problems with time-window 
constraints: efficient implementations of solution improvement 
procedures. (Unpublished paper, Oct. 1986). 
(9) BALL, M. O., GOLDEN, B. A., ASSAD A. A., and BODIN, L. D., 
"Planning for truck fleet-size in the presence of a common- 
carrier option. " Decision Sciences., (1983), Vol. 14., P. P. 103-117. 
(io) WHITE, G. O., TAn easy lower bound on the number of trucks 
needed to service a set of destinations. " OMEGA, The International 
Journal of Management Science., Vol. 8., No. 3., (1980), P. P. 385-7. 
(11) KIRBY D., "Is your fleet the right size? " Operational 
Research Quarterly, (1959), Vol. 10., P. 252. 
(12) WYATT, J. K., "Optimal Fleet Size. ", Operational Research 
Quarterly, (1961), Vol. 12., P. P. 186-7. 
(13) EILON, S., WATSON-GANDY, C. D. T., and CHRISTOFIDES, N., 
Distribution Management: mathematical modelling and practical 
analysis. (Griffin, London, 1971). 
(14) GOLDEN, B. L., MAGNANTI, T. L., and NGUYEN, H. A., (1977). 
Op cit. 
(15) GOULD, J., "The size and composition of a road transport 
fleet. " Operational Research Quarterly, (1969), Vol. 20., 
P. P. 81-92. 
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thesis into perspective with existing literature by examining 
the methodology that is used here. This is the aim of the 
following section. 

2.4. Methodology 

There are three main ways in which the thesis may be 
described, vis-a-vis the methodology that is used: 1. The 
central technique employed for generating data is that of 
stochastic simulation, as opposed to empirical observation or 
the analysis of existing data associated with actual 
distribution systems. 2. The particular modelling technique 
used has much in common with what has already been referred 
to here as Continuous Space Modelling. 3. All of the 
algorithms that are used for deriving "Optimum" solutions 
are "heuristic" in nature, rather than "exact", (both of these 
terms will be defined later). 

The simulation aspect of the methodology used refers to 
the generation of vehicle-tours using a computerised 
Travelling-Salesman algorithm - this algorithm is used 
iteratively to generate a number of hypothetical vehicle-tours 
in order to estimate the length of a ýet of tours given basic 
data on the number of vehicles used, the size of the delivery- 
area, the number of locations visited etc.. The fundamental 
research-strategy here is that of building a computerised 
model of a distribution operation, in which all of the 
relationships between important variables are quantified. 
Having set up such a model that is adequately representative 
of an actual operation, observations may be made as to 
the effect of changes in the value of key variables and/or 
in the nature of important constraints, on factors such as 
Total Distribution Cost, Total Fleet Mileage etc.. In other 
words, once such a model has been established, inferences 
as to the nature and behaviour of actual systems may be made 
on the basis of the results yielded by this model. Apart 
from the facility of being able to quantitatively predict 
the effect of various changes in selected parameters, the 
use of simulation enables the researcher to produce a 
number of solutions for the same problem, so that each 
series of iterations may yield, not only a mean result, but 
also an indication of the variance that is associated with 
this mean figure. The advantages of being able to measure 
this variance are described and illustrated in greater detail 
in Chapter 4. 

A major characteristic of the way in which distribution 
systems are modelled, here, is the fact that it is assumed 
that no information is available on the location of individual 
customers, and that the area in which these customers are 
situated is a featureless plain in which "road"-speeds are 
uniform in each direction. This is, of course, a 
characteristic of Continuous Space Modelling, which is 
described in greater length in Chapter 1. 
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Having described the algorithms used to generate Travelling- 
Salesman solutions as being "heuristic", as opposed to "exact", 
it is necessary to provide a more detailed definition of 
these terms. The distinction between these two approaches is 
quite neatly presented by Rand (16), who when referring to 
the methodological approaches available for Depot Location 
studies, portrays this choice as a trade-off involving the 
acceptance of sub-optimum solutions to Travelling-Salesman- 
type problems as a result of using less complex procedures 
for solving them. Rand illustrates this trade-off by means 
of the 2-dimensional taxonomic space reproduced in Figure 2.1., 
which defines a continuum that ranges from approaches that 
seek to derive optimum solutions using exact methods, to 
those that arrive at more approximate solutions by less 
complex means. For example, as Figure 2.1. suggests, the 
"Route-Optimisation" approach seeks to develop a very complex 
procedure that will guarantee an absolute optimum solution, 
(eg. Held & Karp (17)), but, because of the level of 
sophistication of the search procedure involved, this can 
only be achieved if a relatively simple cost function is used. 
On the other hand, "Heuristic" procedures employ a more 
detailed and realistic cost function, at the expense of 
complexity in the search procedure. Above, and to the left 
of, "heuristics" in the continuum of Figure 2.1. are 
"Simulation Models", whose cost function is even closer to 
reality, with the accompanying simplification of the search 
procedure. 

Whilst assessing the position of the current research in 
Rand's continuum, it is important to point out that the 
creation of exact algorithms is not the central aim of the 
thesis, (SEE Section 2.1. for a precise statement of objectives). 
The development of an algorithm for constructing Travelling- 
Salesman tours in the presence of time-windows, in Chapter 6, 
is made necessary by the absence of a suitable existing 
algorithm under such conditions, and, in common with the 
Savings-based method used in Chapter 4, is merely a means to 
the end of generating a sample of vehicle tours on which 
further analysis may be carried out. In other words, 
rather than the production of optimum tours, what is of 
importance here is that the route-building algorithm employed 
should enable a parameter of interest, (eg. delivery-area 

size), to be varied whilst all others are held constant, in 

order to examine the effect of this parameter on, say, Total 
Fleet Mileage. A model that produces near-optimum tours is 
therefore adequate for the purposes of the current analysis. 

It should also be noted that no attempt is made to 
simulate an actual distribution system in detail, so that the 
methodology employed here cannot be described as being purely 
simulation; in fact, it is assumed that there is a very simple 
situation of a delivery-area in which vehicle speed is 

(16) RAND, G. K., "Methodological choices in Depot Location 
studies, " Operational Research, Vol. 27, No. 1, (1974). 
(17) HELD, M. M., and KARP, R. M., op cit 
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Figure 2.1. Rand's continuum of methodological approaches 
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uniform in all directions, and all cost-data that are used 
are based on very generalised cost-tables (18). Referring, 
again, to Figure 2.1., therefore, it can be argued that, 
since each Travelling-Salesman tour "simulated" merely 
represents a simple, hypothetical tour within a homogeneous 
space, the thesis, in Rand's continuum, can by no means be 
described as occupying a position at the extreme 
"Simulation" end of the scale, due to the nature of the 
cost-function that is used. 

An example of the type of tour-building algorithm 
that is used here for deriving Travelling-Salesman 
solutions is the "Savings Method", developed by Clarke 
& Wright (19); although it may be argued that this 
algorithm falls short of producing optimum solutions, 
the "near-optimum" tours provided by this method are 
adequate for the purpose of exploring the way in which 
Total Fleet Mileage varies in response to changes in 
other key parameters. 

As with the particular problem-formulation adopted, 
details of the methods used, along with a fuller description 
of the relevant model that is constructed, will be included 
in the text as and where appropriate. Section 2.5. now 
outlines some alternative algorithms for solving the 
Travelling-Salesman Problem that might have been used, 
and discusses the reasons for adopting a savings-based 
method, similar to that of Clarke & Wright, in the 
simulation program. 

2.5. The Savings Method and Alternative Routing AlcTorithms 

The travelling-Salesman Problem may be formulated 
in a symmetric or an asymmetric context. The difference 
is that the symmetric version of the problems assumes 
that the cost of travelling between, say, locations i and 
j is the same regardless of whether the direction of 
travel is i-to-j or j-to-i; this "cost" may be measured 
simply in terms of travel-time. The asymmetric Travelling- 
Salesman Problem, on the other hand, does not include 
this assumption, so that a matrix of the costs of travelling 
between pairs of locations would be asymmetrical. 
Algorithms for solving the asymmetric case are therefore 
more complex than those designed for the simpler case, and 
require more computer time and computer storage space. 
In this section, however, the discussion is confined to 
algorithms for the symmetric version of the problem. 

(18) The cost-tables used were published by Commercial 
Motor magazine in1982. 

(19) CLARKE, G., and WRIGHT, J. W., "Scheduling of vehicles 
from a central depot for a number of delivery-points. " 
Operations Research. Vol. 11., P. 568., (1963). 
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There is no theoretical difficulty in finding 
exact solutions to the Travelling-Salesman Problem. 
For each set of points that is generated, there is a 
finite set of tours which pass through these points; 
the length, or cost, of each tour may be calculated and 
the tour incurring the lowest cost may be identified as 
the "optimal" tour. In practice, however, even with 
problems involving a relatively small number of locations, 
the number of possible tours makes such a complete 
enumeration of all options impractical, even with the 
use of a computer. The total number of tours that 
might pass through a set of C customer locations may 
be calculated using the simple formula, 

(C - 1)! 

For example, when there are 3 locations to be 
visited, only 2 tours are possible, and when C=4, 
there are six alternatives, (since 3! = (3x2) = 6). In 
simple cases such as these, there is no problem in 
quantatively evaluating all alternatives, but a problem 
involving 10 customer-locations has 9!, or 362880, possible 
solutions, whilst one with 15 locations has (8.7 x 10) 
solutions. The computer capacity that is required for 
complete enumeration of problems involving substantially 
more customer-locations is therefore extremely large. 
This limitation as to the number of locations that can 
be dealt with by algorithms that yield exact solutions 
underlines the need for heuristic methods that can produce 
near-optimum tours using far less computer time and 
storage space. 

Procedures for solving the Travelling-Salesman 
Problem fall into one of four categories: - 

1. Partial enumeration. This method, by definition, can 
not guarantee an exact solution, since not all possible 
routes are enumerated. This is because some links between 
locations are eliminated before the enumeration stage of 
the procedure'in order to r6duce the computational size of 
the problem. For example, this might be done by excluding 
links which are obviously not likely to form part of the 
optimal tour, so that a complete enumeration may be carried 
out on the reduced set of possible links that remain. 

2. Sequential tour-building. Both exact and approximate 
algorithms may be employed with this strategy. The method 
involves first selecting the customer location that is 
"closest" to the depot (in terms of distance, time or cost, 
etc. ), as the first location that should be visited in the 
tour. The next step is to select the point that is nearest 
to the customer location, using the same criterion, in order 
to form the second link in the tour. This process continues 
until it is no longer possible to add another location to 
the tour and return to the depot without violating a time or 
mileage constraint on the length of a tour. Most commonly 
this involves the constraint on the length of the working-day, 
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or legislative limitations on drivers' hours. If no further 
additions to the tour are feasible, the tour must be completed 
by making a link from the last customer-location to be added 
to the depot. Should there be some customers that have not 
yet received a delivery, then a new tour must be initiated, 
using the same procedure. A number of methods may be employed 
for selecting the next customer-location to be added to the 
tour, from simple Nearest Neighbour Analysis to exact techniques 
such as branch & bound procedures and dynamic programming. 

3. Tour-to-Tour Improvement. Methods falling into this 
category begin by generating an initial, feasible solution 
which is then improved upon according to a set procedure. 
This might, for instance, involve removing one or more 
locations from one tour and replacing them with other 
locations, or entail reversing the order in which locations 
are visited. The former method of tour improvement is used 
by Lin (20), who describes a tour as being 1r-optimal" if 
no improvement can be obtained by replacing r of its links 
with r alternative links, (21). Usually, a 3-optimal, or 
even a 2-optimal, tour will have a high probability of being 
the optimal solution to a problem. An exact solution can 
only be guaranteed, however, if the tour is found to be 
"C-optimal", (C representing the number of locations that 
must be visited). Since such procedures rarely evaluate a 
tour beyond the 3-optimal stage, all algorithms based on 
tour-to-tour improvement, or "local optimisation" are 
approximate. 

4. Sub-tour Contraction. This method begins with a matrix 
of the distance, time or cost that separates each pair of 
customer locations, each of which is a potential link that 
might be included in the minimum-cost optimal tour. If all 
lowest-cost links are made until all locations have been 
linked to at least one other, then a solution to the 
"Assignment Problem" will have been produced. At this stage, 
however, the "solution" will not constitute a tour, but a 
series of sub-tours. The next step is therefore to eliminate 
the sub-tours so that a single tour is produced. Unlike 
tour-to-tour improvement, this strategy may be used to give 
exact solutions, as demonstrated by both Eastman (22) and 
Shapiro (23), using "Branch & Bound" algorithms. 

Branch & bound is one of the methods discussed in the 
following sub-section on algorithms that have been used to 
derive exact solutions to the Travelling-Salesman Problem. 

(20) LIN, S., "Computer solutions of the Travelling-Salesman 
Problem". Bell Systems Technical Journal., Vol-44., 
p. p. 2245-6ý, (1965). 
(21) Lin's notation is used here; his r should not be confused 
with the r used in Chapters 6&7 of the thesis. 
(22) EASTMAN, W. L., Linear proqramming with pattern 
constraints. (Harvard University Ph. D. thesis, 1958). 
(23) SHAPIRO, D., Alqorithms for the solution of the optimal 
cost travelling-salesman problem. (Washington University 
Sc. D. thesis, 1956). 



-27- 

2.5. Exact algorithms 

An example of the use of a branch & bound, or "tree- 
search), procedure is provided by Little et al (24). The 
method is based on the division of the set of all possible 
tours into a number of sub-sets, a process that is analogous 
to the branching of a tree. The procedure begins with the 
making of a link between two customer locations, (a link 
from, say, point i to point j). The forming of such a link 
has two implications: 1. The set of all possible tours may 
be divided into two sub-sets: those tours that contain the 
i-to-j link, and those that do not. 2. The number of 
feasible links to j from i may now be eliminated, along 
with any link that may cause a sub-tour to be formed, (such 
as j-to-i, in this example). The matrix of all possible 
links between customer locations is thus "reduced" whenever 
a "branch" is made. A lower bound on, (ie. the minimum 
value of), the length of the least-cost optimal tour within 
each of these sub-sets is then calculated, (ways in which 
the lower bound may be estimated are outlined in sub-section 
2.5.2. ). Each sub-set that is created by the selection of a 
link from one location to another may, in turn, be divided, 
by the same process, into two sub-sets. In this way, more 
and more, smaller and smaller, sub-sets of tours are formed. 
There is a point in this branching procedure at which the 
links that have been made form a tour, whose length, or 
cost, may be measured. If the length of this tour is less 
than, or equal to, the lower bounds of all sub-sets of tours 
that are to be branched from, then this tour is the optimal 
tour that is the solution to the Travelling-Salesman Problem. 
If this is not the case, then the search_procedure continues 
from a sub-set whose lower bound is less than the length of 
the initial tour; the search ends when a tour - the optimal 
tour - is found whose length is less than or equal to the 
lower bounds of all the sub-tours that remain "unbranched". 

Obviously, a tree-search of this type requires a great 
deal of computer-time and storage space, which increases 
considerably as the number of customer-locations involved is 
increased. The same comment may be applied to dynamic 
programming, a technique used extensively in operations 
research, which involves the solving of a recursive equation 
to find the minimum cost of each stage of a problem. In the 
context of routing & scheduling problems, the technique 
consists of finding all feasible tours through a set of 
locations, and the cost of each. Held & Karp (25) and 
Bellman (26) are among. those who have used dynamic 
programming for solving the Travelling-Salesman Problem. 

(24) LITTLE, J. D. C., MURTY, K. G., SWEENEY, D. W., and KAREL, C., 
"An algorithm for the Travelling-Salesman Problem". 
Operations Research, Vol. 11., p. p. 979-89, (1963). 
(25) HELD, M. M., and KARP, R. M., op cit 
(26) BELLMAN, R., "Dynamic Programming treatment of the 
travelling salesman problem". Jour. Assoc. Computer Mech., 
Vol. 9., p. p. 61-3, (1962). 
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In the context of the solutions produced for the 
purposes of the current thesis, however, exactness is by no 
means crucial. The simulation process used here involves the 
solving of a large number of Travelling-Salesman Problems, 
and so it is of greater importance that the algorithm used 
should be economical in terms of both computer time and 
computer storage space, whilst still producing near-optimal 
solutions. For this reason, the discussion will now be 
focused on alternative heuristic algorithms that might have 
been used. 

2.5.2. Heuristic methods 

The heuristic of Lin (20) has already been outlined 
above, in the section dealing with methodologies based on 
tour-to-tour improvement. Reiter & Sherman (27) employ a 
similar method. Havi-ng formed and initial feasible tour, one 
of the points through which the tour passes is removed from 
the tour; the objective is then to insert this point into 
the sequence of links that remains in the position that 
maximises the improvement of the overall tour. This procedure 
is repeated with each point, and then takes place with each 
linked pair of points. When it is no longer possible to 
reduce the total length of the tour, then the tour is said, 
using the same terminology used by Lin, to be 112-optimal". 
Similarly, 113-optimality" may be achieved by successively 
removing and replacing linked chains of 3 customer-locations. 

The "Sweep Algorithm", proposed by Gillett & Miller (28) 
is an example of a two-stage procedure, since customer 
locations are first sorted into clusters and then sequenced 
into tours at a secondary stage. The first phase begins 
with the selection of the location, i, that has the smallest 
anqle with the depot, (a customer location situated "due 
North" of the depot, for example, has an angle of zero 
degrees). The "sweep" continues with locations having the 
smallest angle with the depot, (j, k, l ..... etc. ), being added 
to the cluster until no more locations may be included 
without the violation of either distance or capacity 
constraint. At this point, the formation of a new cluster 
begins, and the process continues until every customer 
location has been assigned to a cluster. A shortest-path 
algorithm may then be employed for solving the Travelling- 
Salesman Problems that are presented by each cluster of 
points. In order to test whether the initial solution 
arrived at can be improved upon, the whole process may be 
repeated, with the "sweep" procedure beginning with j, the 
location that was originally the second point to be selected. 

(27) REITER, S., and SHERMAN, G., "Discrete optimising. " 
S. I. A. M. Review., Vol. 13., p. p. 864-89, (1965). 

(28) GILLETT, B. E., and MILLER, L. R., "A heuristic 
algorithm for the vehicle-dispatch problem. " Operations 
Research, Vol. 22., p. p. 340-9, 
(1974). 
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With the central depot acting as a pivot, the imaginary 
axis has effectively been rotated clockwise, so that point 
j's angle with the depot is now zero degrees and point i is 
the last point to be "swept". The procedure may be repeated 
as many times as there are customer locations in the problem 
definition. One advantage of the Sweep Algorithm is that it 
is effective for problems with up to 250 locations, but, 
according to Ballou & Agarwal (29), 

"Time windows on stops are not well handled 
by this method. " 

Tyagi (30) presents a similar two-stage methodology, 
which may also be described as a "cluster first route second" 
procedure. Nearest Neighbour Analysis is used to sequentially 
group customer locations ifito clusters, each -of which 
constitutes a separate Travelling-Salesman Problem. 

Some researchers have proposed methods which, though 
based on the Savings principle, differ from the procedure 
originally described by Clarke & Wright, (31). For example, 
Tillman & Cochran (32) employ a different method for deciding 
which links should be made. Whereas Clarke & Wright's 
method is for links to be made in order of greatest distance- 
saving, Tillman & Cochran consider connected pairs of links, 
so that the search procedure calculates the combined cost of 
making two choices in sequence. This principle may be 
extended further so that the total cost of making three 
connected links is calculated at each stage. At this point, 
however, the number of possible 3-location chains becomes 
quite large, as do the demands that are made on computer 
ýjme and storage space. 

Gaskell (33) differs from Clarke & Wright in the way 
in which savings are calculated. Gaskell's method is an 
attempt to counteract the tendency of the Savings Method 
to favour links between locations that are both close to each 
other and remote from the depot, thus giving rise to rather 
circum . ferential routes. This tendency is suggested by the 

(29) BALLOU, R. H., and AGARWAL, Y. K., "A performance 
comparison of several popular algorithms for vehicle routing 
and scheduling. " Journal of Business Lo4istics. Vol. 9., 
no. 1, p-p-51-65, (1988). 
(30) TYAGI, M., "A practical method for the truck dispatching 
problem. " Journal of the Operations Research Society of Japan. 
Vol. 10., p. p. 76-92, (1968). 
(31) CLARKE, G., and WRIGHT, J. W., op cit 
(32) TILLMAN, F. A., and COCHRAN, H., "A heuristic approach 
for solving the delivery problem. " 

, 
Journal of Industrial 

. 
Eýi n Vol. 19., p. 354, (1968). 
(33) GASKELL, T. J., "Bases for vehicle fleet scheduling. " 
Pperational Research Quarterly. Vol. 18., p. 281, (1967). 
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very nature of the savings formula, 

Sij = doi + doj - dij 

Where, Sij = the distance saving from 
linking points i&j, 

doi = the distance from point i 
to the depot, 0, 

and, dij = the distance between points 
i and j. 

In order to encourage more "radical" links, Gaskell 
proposes following formula which discriminates in favour of 
links between locations that are close together, and against 
those whose joining together yields the greatest saving, 

Aij = Sij (c + (coi - coj) - cij) (E. 2.2. ) 

Where, Aij = the modified measure of the 
desirability of a link, 

and, c= the average distance of all 
locations from the depot. 

The formula (S-- - c--) is also suggested as an 
alternative measure 

Nat 
mlijght be used. Since heuristic 

algorithms, by definition, are liable to produce less-than 
optimum solutions to routing problems, it is useful to be 
able to estimate the difference between the algorithm's 
solution and the optimum. One way in which the cost of an 
optimum solution may be estimated is using a formula devised 
by Beardwood, Halton and Hammersley, (34). They suggest 
that the shortest distance that is required to pass through 
a set of points within an area of known size is, 

K. aO. 5. CO-5. (E. 2.3. ) 

Where, K=a constant that has a value of 
approximately 0.75, 

a= the size of the area, 
and, C= is the number of points through 

which the route must pass. 

There are several other ways in which a "lower bound" 
on the cost of an optimal tour may be estimated. This may, 
for example, be done by calculating the "shortest Spanning 
Tree"; this is the minimum total length of all the links 
that are required to join all customer-locations, which does 
not necessarily have to be a tour. The Shortest Spanning 
Tree may be calculated using an algorithm designed by 
Kruskal (35). Similarly, the sum of the distances from 

(34) BEARDWOOD, J., HALTON, J. H., and HAMMERSLEY, J. M., 
"The Shortest Path through many points-" Proceedings of the 
Cambridqe Philosophical Society, Vol. 55., p-299, (1959). 
(35) KRUSKAL, J. B., "On the shortest spanning subtree of a 
graph and the travelling salesman problem. " Proceedings of 
the American Mathematical Society, Vol. 2., p. p. 48-50, (1956). 
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each location to its nearest neighbour and next-nearest 
neighbour may be considered as the lower bound on the length 
of a tour, and may be calculated as follows, 

"Sum of the shortest links" (djl + dj2)) 

(E. 2.4. ) 

where, djj and dj2 are the distances 
of j's nearest, and next-nearest, 
neighbour, respectively. 

The sum of these distances is divided by 2 in order to 
eliminate double counting, (36). 

An alternative strategy for evaluating heuristic 
algorithms is to compare their performances, both with one 
another and with exact procedures, when applied to a range 
of hypothetical test problems. The results of this type of 
research, where the savings method has been one of the 
heuristics tested, are reviewed in the following sub-section. 

2.5.3. The performance of the savinqs method compared with 
other alqorithms 

A recent evaluation of heuristic algorithms is provided 
by Ballou & Agarwal (37), who compare the performance of the 
savings, sweep and cluster (38) heuristics when used to solve 
a number of test problems. These tests are carried out 
using five types of point configurations, described as 
"random", "cluster", "West Coast", "sector" and "urban- 
rural"; these are illustrated in Figure 2.2.. Ten or twelve 
problems for each of these configurations is devised, with 
20 customer locations each time. In addition to the heuristics 
mentioned above, an exact method is used for deriving optimum, 
or near-optimum, solutions to each problem; the purpose of 
this is to provide a means of comparing the results of the 
approximate methods with the optimum solution. The exact 
algorithm used is set partitioning, a method based on integer 
programming. Although set partitioning is prone to becoming 
computationally complex when dealing with large problems, 
which is a characteristic of exact methods, the 20 customer 
locations that were involved in the test problems where 
insufficient to create any difficulties. A summary of 
results, for all five configuration-types, is presented in 
Table 2.2.. Clearly, the savings method emerges as the most 

(36) EILON, S., WATSON-GANDY, C. D. T., and CHRISTOFIDES, N., 
op cit. 
(37) BALLOU, R. H., and AGARWAL, Y. K., "A performance 
comparison of several popular algorithms for vehicle routing 
and scheduling. " Journal of Business Logistics, Vol-9., 
p. p. 51-65 (1988). 
(38) The "cluster method" used involves a two stage "cluster 
first route second" procedure, with Nearest Neighbour Analysis 
employed initial clusters, (although the details of the 
method are not the same as those of Tyagils (op cit)). 
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1ý1ýure 2.2. Ballouls test_problem_point_configurations.. 
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effective of the heuristics tested, producing solutions 
that varied from the optimum by less than 2%, on average, 
compared with average figures of 12.1% and 14.3% for the 
cluster method and sweep method, respectively. For each 
problem type, the savings method produced an optimum 
solution for at least one problem, something that was never 
achieved by either of the other heuristics, and the worst 
performance by the savings method in the entire experiment 
was a solution that differed from the optimum by 13.3%. 
Ballou & Agarwal also point out that the savings method 
produced solutions requiring more vehicles than the optimum 
solution on only 8% of occasions. 

Table 2.2. Summary of test results, (percentage deviation 
from optimum solutions 

Savin gs Method Cluster Method Sweep Method 
Problem type Min Ave Max Min Ave Max Min Ave Max 

WEST COAST 0.0 2.7 8.9 1.5 16.5 46.4 5.6 13.3 29.8 
URBAN RURAL 0.0 2.7 2.8 4.6 14.5 40.1 2.7 22.7 39.4 
CLUSTER 0.0 1.0 3.0 2.1 9.8 16.9 1.5 9.0 20.6 
RANDOM 0.0 2.8 10.2 4.6 10.0 14.3 0.2 10.2 18.2 
SECTOR 0.0 2.6 13.3 2.8 21.8 47.7 18.1 29.5 47.5 

OVERALL 0.0 1.9 13.3 1.5 12.1 47.7 
1 

0.2 14.3 47.5 

(After: Ballou & Agarwal 

Ballou has followed up this work by repeating the 
experiment with a larger number of customer locations, (39). 
The same point configurations are used, but with 50 or 100 
locations for each problem. It was therefore not feasible 
to use an exact method to produce optimum solutions and so 
the savings method was simply compared with modified versions 
of the cluster and sweep methods. Again, the savings method 
out-performed both of these, since, on average, the'cluster 
method gave solutions that were 7.9% longer than the savings 
method, whilst the sweep method produced solutions that were 
5.9% longer. With reference to the question of whether the 
savings method would be as effective on problems involving a 
larger number of locations, Ballou concludes that, 

11 ........ there is no reason to believe that the savings 
method did not perform as well as it did in the previous study". 

(39) BALLOU, R. H., "A continued comparison of several popular 
algorithms for vehicle routing and scheduling. " Journal of 
Business Loqistics, Vol-11., No. l., p. p. 111-126, (1990). 
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Herlihy, Butler & Pitts (40) performed similar tests 

on commercially available computer packages, using test 

problems of 100 customer locations, and found that packages 
based on the savings method produced solutions that were 
approximately 6% longer than the best known solutions, (the 
tests were based on widely used test problems, first 
suggested by Eilon et al (41)). It was with these test 
problems that Eilon et al had earlier found that, with small 
problems involving 10 customer locations, the Clarke & 
Wright savings heuristic gave solutions that were only 
approximately 3.2% longer than the optimum. 

2.5.4. Conclusions on the use of the savings method for 
generatinq travellinq-salesman solutions 

The role of the routing algorithms used within the 
simulation procedure, for the current thesis, is to produce 
solutions to travelling-salesman problems which approximate 
the optimum, but which do not require excessive amounts of 
computer time and storage space. Because the process of 
simulation requires that many routing problems are solved, 
then solution time is extremely important, especially as 
100 customer locations are involved in each problem. The 
sheer size of the routing problem in any case precludes the 
use of an exact algorithm. 

The savings method consists of an extremely simple 
formula, and is widely used in commercial routing packages, 
although there are some criticisms that might be made of it. 
The fact it has an inherent bias towards the linking of 
points that are both close to each other and remote from the 
depot, thus encouraging rather circuitous, circumferential 
routes, has already been mentioned, and Gaskell's 
modification is an attempt to counteract this tendency, 
(33). Clarke & Wright's procedure for constructing tours, 
based on savi-ngs, is another aspect of the methodology that 
is open to criticism. This is because links between points 
are made in descending order of savings value, so that the 
linkage that yields the largest distance saving is made 
first, and so on. The problem with this is that the remainder 
of the tour-building process is affected by this first link; 
initially, of course, this is because there are some links 
that are impossible due to the fact that these two points 
are irreversably linked together. In a situation where an 

(40) HERLIHY, P., BUTLER, M., and PITTS, E., Estimation of 
enerqy and cost savinqs arisinq from rationalisation of milk 
assembly operations. (EEC report EUR 9272 EN, 1984). 

(41) EILON, S., WATSON-GANDY, C. D. T., and CHRISTOFIDES, N., 
op cit. 
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optimum solution may have been derived if the link that 
yields the second-, or third-highest, saving had been made 
first, it is clear that the tactics of achieving the greatest 
saving with the first link would ensure that the eventual 
solution must be sub-optimal. Tilman's method of considering 
the desirability of selecting connected pairs of links is an 
attempt to overcome this problem, (32), although the general 
criticism of Clarke & Wright here is that their method is 
not interactive, in the sense that it does not return to 
decisions that have been made in order to consider whether 
the eventual solution might be improved. 

In spite of these criticisms, however, the work of 
those who have used test problems to evaluate the 
performance of heuristic methods has shown that the 
savings method, not only out-performs rival heuristics, 
but also produces solutions that are demonstrably near to 
the optimum. The use of the savings method for producing 
tours for the current research therefore appears to be 
fully justified. 

The most commonly cited weakness of the savings 
algorithm is that its effectiveness is substantially reduced 
when time-windows and other constraints are added to the 
problem formulation. This is not relevant to the current 
discussion, since the savings method is no longer utilised 
when time-window constraints are considered, in Chapters 
6 and 7. This issue is dealt with in Chapter 6. Meanwhile, 
Section 2.6. outlines the structure and content of the 
thesis. 

2.6. Summary of the Structure and Contents of the Thesis 

The analytical portion of the thesis is divided into 
two parts: Part 2, which deals with both the direct and 
indirect effects of fleet-size, a decision variable, on 
distribution costs, and Part 3, which considers the 
"external" influence of time-constraints, imposed by 
customers, on the cost of an operation. 

Part 2 begins with Chapter 3, which has as its major 
theme the dilemma of whether to deliver an order of goods 
using a large fleet of small vehicles, or a smaller fleet 
made up of vehicles with the largest carrying-capacity 
permissible, (given that the problem formulation constrains 
the fleet to being made up of vehicles of the same size). 
The central concept of this chapter is "Economies of Scale 
of Transport", which deals with the fundamental trade-off 
between fleet-size and vehicle carrying-capacity. This 
trade-off is associated with a similar problem, of which a 
hypothetical example is given in this chapter, which involves 
the choice between delivering a weekly order of goods to a 
number of customer-locations in one day using one large 
truck, and employing a smaller vehicle for the same task on 
every day of the week. 
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Chapter 4 considers specifically the spatial 
implications ofthe fleet-size decision, by examining the 
precise relationship that exists between the number of 
vehicles that operate from a depot and Total Fleet Mileage. 
As well as producing analytical equations to describe this 
relationship, this chapter also includes a description of an 
alternative method for estimating the total mileage of a 
fleet, given basic data such as the number of vehicles used, 
the number of customer-locations that require a visit, the 
maximum number of drops that may be made in a day, the size 
of the delivery-area etc.. 

Chapter 5 considers those decisions and constraints 
that concern the management of drivers and their hours of 
work. The two main topics included here are the impact of 
scheduling drivers to make overnight stays away from the 
operating -centre, instead of them being constrained to 
return before the end of each working-day, and the effect of 
altering the constraint.. on the number of hours that each 
driver may work in a day. The discussion of the overnight 
stay question also relates to the parts of Chapter 3 which 
deal with the Economies of Scale of Transport and the 
fundamental trade-off between fleet-size and vehicle-size. 

Chapters 6 and 7 focus upon the times that are laid 
down, if any, within which a delivery may be made at a 
location, (ie. "time-window"). Although such time-constraints 
may exist in many forms, the particular scenario that is 
assumed in these chapters is one in which each customer 
specifies one time-window during which deliveries may be 

made, whose width is the same at each location, and which 
may. be fixed at any time within the working-day. Because no 
algorithm currently exists for constructing Travelling- 
Salesman tours in the presence of such constraints, a 
considerable part of this section of the thesis is devoted 
to describing how such an algorithm was developed in order 
to make it possible to make estimates of vehicle-tour 
length in such circumstances. 

Chapter 7 discusses the output that is obtained from 

many iterations of the resulting program, and goes on to 
compare these results with those derived using alternative 
route-building algorithms. To provide a comparison with the 
analysis of the relationship between fleet-size and Total 
Fleet Mileage described in Chapter 4, this chapter also 
includes consideration of the same relationship in the 
presence of time-window constraints. 

2.7. Summary of Introduction 

After Chapter 1's general discussion of the Distribution 
Problem, with its various formulations and components, in 
which the broad area of interest of the thesis is defined, 
Chapter 2 has focused on the main objectives that are 
pursued in the following text, and has described in greater 
detail the relevant problem definition. The current 
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chapter also outlines the methodologies that are used for 
meeting these objectives, and the way in which the findings 
of the subsequent research are structured and presented. 

Another theme of this introductory section has been to, 
not only define the problem-area dealt with by the thesis, 
but to also set the research into the context of work 
already carried out by other researchers in this field. The 
discussion falls short, however, of attempting to make an 
exhaustive literature review of the subject-area; 
comprehensive surveys have already been carried out by 
Bodin et al (42 ) and by Bodin_: & Golden. (43 ). 

(42) BODIN, L. D., GOLDEN, B. L., ASSAD, A. A., and BALL, M. O., 
"Special issue - Routing & Scheduling of vehicles and crews - 
the State of the Art. " Comput. & Operations Research, (1983), 
Vol. 10., No. 2., P. P.. 63-211. 
(43) BODIN, L. D., and GOLDEN, B. L., "Classification in vehicle 
Routing & Scheduling. " Networks, (1981), Vol. 11., No. 2., P. P. 97-108. 



2. THE EFFECT OF FLEET SIZE ON THE COST OF A 

DISTRIBUTION OPERATION 
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CHAPTER 3 

FLEET SIZE AND VEHICLE SIZE: THE ECONOMIES 

OF SCALE OF TRANSPORT 

The concept of reducing the unit cost of a business or 
industrial concern by increasing the size of either the entire 
operation or of certain units of production, is based on the 
economic principle of Economies of Scale. The basis of this 
principle is the distinction between variable, or running, 
costs, which increase, often proportionately, as the size of 
an operation increases, and fixed costs, often referred to as 
"overheads", which remain constant regardless of the level of 
production etc.. As an example, consider an industrial firm 
that manufactures the product "A". As the output of this 
firm increases, the fact that fixed costs remain constant 
means that the total of fixed and variable costs of producing 
each unit of "A" rises less than proportionately, so that the 
average cost of production, (the cost of producing each 
individual unit of "A"), actually decreases. 

Similar reductions in the unit cost of transport can be 

made in road haulage operations, encouraging the carriage of 
freight by road in increasingly large vehicles; evidence of 
the advantages of Economies of Scale in physical distribution 
is the fact that the road haulage industry in the U. K. has 
recently continually called for an increase in the maximum 
permissible weight of vehicles on British roads from the 
current legal maximum of 38 tonnes. In the context of road 
freight, the most important fixed costs are drivers' wages, 
licences, taxes, insurance, rent and rates for operating 
centres and administrative costs, whilst the main variable 
costs involved are for fuel, maintenance, lubricants, tyres, 
depreciation and overtime costs. Variable and Fixed costs 
will be referred to here as Running Costs and Standing Costs 
respectively. 

The remainder of this chapter sets out to investi 
- 
gate 

the nature and extent of the Economies of Scale that are 
associated with distribution operatiofis, --first. by'-_-. 
disaggregating Total Cost and examining the behaviour of its 
major components in response to changes in the scale of an 
operation, and then by deriving expressions that describe the 
relationship between Total Cost and both vehicle-size and 
fleet-size. 

3.1. The Existence of Economies of Scale in Road Haulage 

22Lratiq Ln s 

In Road Haulage operations, there are two main ways in 
which Economies of Scale might be derived; firstly, transport 
costs per mile tend to increase less than proportionately 
with increasing distance and, secondly, the unit costs of 
transportation will be reduced as vehicle-size increases. 
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3.1.1. Economies of Scale with Distance 

The existence of Economies of Scale for transportation 
costs with increasing distance is one of the main conclusions 
of Daganzo & Newell, who consider not only the distance- 
orientated cost of transport but also inventory costs at the 
depot and the amount of time that goods spend in vehicles, 
although these economies are apparently only effective up to 
a certain size of delivery-area, (1). 

Economies of Scale with distance for any individual 
vehicle is, of course, to be expected, since, whereas 
Running Costs will increase proportionately with mileage, 
Standing Cost will, by definition, remain constant, so that 
Total Transport Cost will increase less than proportionately 
with distance. 

This view of the nature of transport costs is confirmed 
by Scott, who states that, 

11 It is a well-known feature of probably the 
va*Lý'majority of real transport systems that 
transport costs are in fact rarely directly 
proportional to distance. " 

and goes on to suggest that the unit costs of transport are 
of the general form, 

a. D b 

where, D= distance, 
and, a&b are parameters. 

The parameter "b", according to Scott, will normally 
have a value of less than 1.0 , thus allowing Economies of 
Scale as distance increases; Figure 3.1., adapted from Scott, 
illustrates the possible shape of this trade-off between unit 
cost and distance, (2). 

3.1.2. Economies of Scale with increasing vehicle size 

By way of comparison, it is interesting to plot transport 
costs per mile against vehicles' carrying-capacity. The 
resulting curve, Figure 3.2., might be compared with Figure 
3.1.; although the former curve is by no means a smooth one, 

(1) DAGANZO, C. F., and NEWELL, G. F., "Physical distribution 
from a warehouse: vehicle coverage and inventory levels. " in 
TranSDortation Research. Special Issue: Transportation Systems 
a-fi -d ý-Ls t LPar-t. -Mt-hodo-lo-aý. L). Vol. 19b., (Oct. 1985), Lo istics ( I_LaýLc 

-2 N 0.5., P. P. 397-4 07. 
(2) SCOTT, A. J., Combinatorial programming, spatial analysis 

(London, 1971). 
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Figure 3.1. Scott's trade-off between the unit cost of transport 

and distance 
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(and reasons for irregularities in this distribution will be 
discussed in a later section), there is still evidence of a 
definite tapering off of this curve, suggesting that Economies 
of Scale may be derived with increasing vehicle size as well 
as with increasing distance. It is also interesting to note 
here that the cost of fuel per mile, according to Commercial 
Motor 

' cost-tables, also increases less than proportionately 
with vehicle size, (SEE Figure 3.3. ). 

Figure 3.4. demonstrates how the distribution in Figure 
3.2. may be expressed in the form, 

a. x 
b (E. 3.2. ) 

where, x= vehicle size, 
and, a&b are parameters, 

a variation on the general formula proposed by Scott, (2). 
After simple Linear Regression Analysis on the transformed 
data, yielding an "R 21, value as high as 0-973, the resulting 
equation of the regression-line is, 

log. TC = 1-525 + 0-312 log. x (E. 3.3. ) 

where, TC = Total Cost per mile, (in f's). 
and, x= carrying-capacity of vehicle, (in tons). 

This equation may be rewritten as, 

TC = 33-4965x 0-312 (E. 3.4) 

and is represented by the continuous curve shown in Figure 
3.2.. It should be noted that this curve of predicted unit 
costs actually passes through "the origin"; of course, this 
situation will not occur in practice, as fixed operating 
costs ensure that cost per mile will never fall below a 
certain level, regardless of the carrying-capacity of a vehicle. 
In some cases, a problem would be created by the use of a 
curve passing through the origin of a graph to describe a 
distribution whose points will never meet the x-axis, since 
the variable described by the y-axis will inevitably be 
underestimated for small values of x. This is not the case 
with Figure 3.2., however, as equation E. 3.4. makes a very 
close estimate of the unit costs of the smallest vehicles, 
so that the acknowledged absurdity of cost-estimates for 
vehicles of much less than 15cwt carrying-capacity presents 
no problem in this context. 

The value of the parameter b in equation E. 3.4. is 
0-312, which agrees with Scott's assertion that, in most 
transportation contexts, b will be less than 1-0, and once 
again confirms the existence of Economies of Scale as vehicle 
size increases. 
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Figure 3.3. Fuel Cost per mile, 
(riglid-chassis vehicles). 
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It is on this type of Economies of Scale that the thesis 
will now concentrate. 

ith Increasing 

Vehicle Size 

Throughout the following discussion, all data referring 
to transportation cost is based on cost tables published by 
Commercial Motor magazine, an example of which may be found 
Tn-, Appendix A. Closer analysis of these figures reveals an 
interesting relationship between Running Cost per ton per 
mile, (having previously considered unit-costs in terms of 
cost per ton-mile), and the carrying-capacity of a vehicle, 
(so that cost per ton actually represents cost per ton of 
carrying-capacity). For example, Figure 3.5. shows this 
relationship for rigid vehicles of between 0-75 tons and 20 
tons carrying-capacity, and Figure 3.6. illustrates a similar 
curve for Standing Cost per ton per mile, again for rigid- 
chassis vehicles; because Commercial Motor cost tables express 
Standing Cost in terms of E per week, it is assumed that each 
vehicle travels 1000 miles each week, so that Running Cost 
and Standing Cost could be expressed in the same units. 
Figure 3.7. shows the similar shape of the Total Cost curve. 

To illustrate the closeness of the relationship between 
vehicle carrying-capacity and unit cost, Figure 3.8. graphs 
the results of a logarithmic transformation of the data on 
which the above figures are based; again, there is a "log. - 
linear" relationship, enabling the relationship between unit- 
cost and vehicle size to be described quite accurately with 
regression-lines. Table 3.1. summarises the results of the 
regression analysis performed on this transformed data, and 
includes results of the same analysis for articulated vehicles 
of between 10 tons and 22 tons carrying-capacity. The figures 
of interest in Table 3.1. are the coefficients of log. x, 
(ie. the powers by which x is raised, eg. -0-727 in the case 
of the Running Cost of rigid vehicles), since these represent- 
the elasticity of the cost estimates provided by these 
equations to changes in vehitle size. -.. 'These=elasticities are 
slightly smaller for arctics than for rigid vehicles, but 
this may again be accounted for by the absence of data on 
articulated vehicles of less than 10 tons carrying-capacity. 
Nevertheless, the figures contained in Table 3.1. provide a 
useful means of estimating the unit cost of transport as a 
function of vehicle carrying-capacity. 

Of course, it should always be borne in mind that the 
results of the above analysis are all derived from the basic 
data contained in the cost tables published by Commercial 
ýotor magazine; the following section therefore examines 
this data-source in greater detail. 

L 
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Figure 3.5. Running Cost per ton-mile. 
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Figure 3.8. LOGARITHMIC REGRESSIONS 
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Table 3.1. Expressi6ns describing transport costs in pence 

per ton per mile 

Running Cost Standing Cost 

Rigid-Chassis 21-3796 x- 
0-727 12.106 x -0-629 
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Articulated 11-885 x- 
0-5 9-8175 X- 

0-535 
Vehicles 
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3.3. Discussion of the Basic Data 

3.3.1. Data-Sources Available 

The cost figures used in this thesis were published by 
Commercial Motor magazine in 1982 with the intention of 
providing operators with a tool for costing their transport 
operations. These costs are based on a survey conducted by 
this trade magazine in conjunction with the Mercedez-Benz 
Transport Consultancy. Although this data is, at the time of 
writing, several years out of date, there is every reason to 
trust that these figures were as accurate as it is reasonable 
to expect them to be at the time that they were published, so 
that these cost tables may be accepted as a reliable basis 
for analysis. Cost data that appears in following sections 
therefore corresponds to 1982 prices, but these figures may 
be converted to 1988 levels by simply multiplying them by a 
factor, as described in Appendix A. 

These tables are not the only source of costing infor- 
mation available, since the Freight Transport Association 
also publishes figures based on a survey of its own, (SEE 
Table 3.2. ). Unfortunately, direct comparison of the two 
data-sources is difficult, as the F. T. A. categorises 
vehicles according to Gross Vehicle Weight, whilst Commercial 
Motor tables differentiate according to carrying-capacity, 
and, more importantly, the F. T. A. 's tables provide information 
on only five different sizes of rigid vehicle and three 
categories of articulated vehicle. Also, whereas Commercial 
Motor consider vehicles with a specific carrying-capacity, 
F. T. A. tables publish average figures for vehicles within a 
certain GVW range, (SEE Table 3.2. ). 

Despite these differences, graphs of F. T. A. figures, 
(SEE Figures 3.9.1., 3.9.2. & 3.9.3. ), confirm the presence 
of Economies of Scale, since transport costs certainly 
increase less than proportionately with increasing vehicle 
capacity. For the purpose of Figure 3.9., where a range of 
vehicle sizes is quoted, the largest Gross Vehicle Weight is 
taken. It should be noted, here, that these figures are in 
metric tonnes, as opposed to the imperial tons used by 
Commercial Motor; furthermore, as the F. T. A. publishes standing 
costs in terms of E per year, it was again assumed that 
each vehicle travels 1000 miles per week, and Commercial Motor's 
assumption that each vehicle is available for 45 weeks in a 
year was also adopted so that standing cost could be expressed 
in E per week. 

It is noticeable from Table 3.2. that F. T. A. data omits 
Rent & Rates and Wages from Standing Cost calculations; this 
is explained by the fact that "Driver Costs" and general 
"Administration Costs" are added to vehicle costs separately, 
to give "Total Costs per year". As figure 3.9.3. shows, the 
main effect of including these costs is to create a marked 
difference between the cost of vehicles of 7-5 tonnes GVW and 
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Figure 3.9.1. Standing Cost per week. 
(FTA, fl. -). 
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those of 3.5. tonnes GVW or less; this is primarily due to 
the much lower wage-costs involved with smaller vehicles, 
which is reemphasised in Figure 3.11.3.. It is also 
interesting that, whereas Commercial Motor considers 
depreciation to be a running cost, the F. T. A. includes this 
factor as a Standing Cost, although this difference does not 
significantly affect Figure 3.9.. 

Both data-sources are based on separate surveys of actual 
operators, so differences'in detail-will: 'inevitably exist; for 
the purposes of the rest of the analysis, all costs quoted 
will have originated from Commercial Motor cost tables 
published in 1982. 

3.3.2. Disaggregation of Basic Data 

The Total Cost curve of Figure 3.2. is made up of 
Running Cost and Standing Cost, whose individual cost per 
mile curves are shown in Figure 3.10.; the relationship 
between vehicle size and Standing and Running Cost per ton- 
mile is illustrated in Figure 3.5. and Figure 3.6. 
respectively, and has already been referred to in the previous 
section. Both Figure 3.2. and Figure 3.10. show 
irregularities in their respective curves, which might be 
explained by closer examination of the behaviour of the 
individual costs by which Standing Cost and Running Cost 
are defined. In the case of Standing Cost, the main reason 
for discontinuities in the curve is the stepped nature of the 
structure of licence-fees, wages and insurance charges, with 
rent & rates and interest, by contrast, rising uniformly with 
increasing vehicle size, (SEE Figures 3.11.1. to 3.11.5. ). 
Figures for licence costs are here based on the Unladen 
Weight of vehicles, and NOT on Gross Vehicle Weight and 
number of axles, which are the criteria on which Vehicle 
Excise Duty has been calculated since October 1982; Figure 
3.11.1. distinguishes three licencing levels for vehicles 
with a carrying-capacity of 1.5 tons or less, 2 tons to 8 tons 
and 10 tons or more. Wages and insurance costs have a similar 
structure, the main cut-off points being at 2,5,6 and-10 tons 
carrying-capacity, (SEE Figures 3.11.2. and 3.11.3. ), and it 
is the difference between the wages and insurance for a 
vehicle of 2 tons carrying-capacity and one of 3 tons carrying- 
capacity that mainly accounts for the discontinuity at this 
vehicle size in the Standing Cost curve of Figure 3.10.. 
The structure of wages and insurance charges is also largely 
responsible for the increase in Standing Costs from a5 ton 
vehicle to a6 ton vehicle. 

In all cases, Standing Cost per week is calculated by 
adding up the total cost of each cost element for a year and 
then dividing by 45, since it is assumed that each vehicle 
is operational for this number of weeks in a year, which 
takes into account drivers' holidays and maintenance time. 

Figures 3.12.1. to 3.12.5. also show that most of the 
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Figure 3.10. Costs per mile. 
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Figure 3.1 1 -3. Wage cost S. 
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Figure 3.12.1. Fuel costs, 
(tigid-chassis vehicles). I 
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Figure 3.12.3. Lubricant costs, 
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components of Running Cost have separate curves for-vehicles 

with carrying-capacities of less than 3 tons, 3 tons to 8 tons, 
and over 8 tons, and this is reflected in the overall curve 
for Running Cost shown in Figure 3.10.; the exception is the 
relatively smooth curve for fuel costs per mile, calculated 
from a base-price of LI-50 per gallon. For the cost of 
maintenance, tyres and depreciation, it is noticeable that 
the unit cost of a 10 ton vehicle is lower than that of an 
8 ton vehicle, (SEE Figures 3.12.2., 3.12.4. and 3.12.5. ). 
One explanation of this is that the Commercial Motor tables 
are based on the assumption that the 8 ton vehicle will have 
a life of 90,000 miles, whilst the initially slightly more 
expensive 10 ton vehicle will last for 200,000 miles; this 
means that depreciation, based on a five-year vehicle life- 
span with the cost of tyres and the vehicle's residual value 
subtracted from the list-price, will be less for the 10 ton 
vehicle. Similarly, the tyres on an 8 ton vehicle are 
assumed to have a life of 35,000 miles as opposed to 45,000 
miles in the case of a 10 ton vehicle; no explanation is 
given for this particular difference by Commercial Motor, 
although all running costs are based on a previous empirical 
survey with the final figure adjusted to account for inflation. 

Also, the difference between the Running Cost of a2 ton 
and a3 ton vehicle is partially explhined by the fact that 
a set of new tyres (excluding the spare) for a2 ton vehicle 
is assumed to cost L852 as opposed to E540 for a3 ton 
vehicle, (SEE Figure 3.12.4. ), and depreciation of a2 ton 
vehicle with a life of 90,000 miles is substantially less 
than that of a 1.5 ton vehicle with a life of only 75,000 
miles, (SEE Figure 3.12.5. ). 

In contrast,. the-.. cost of lubricants is virtually 
constant, regardless of vehicle size, and is in any case only 
a fraction of overall Running Cost, ranging from 0.4p per 
mile for a 15cwt van to 0.54p per mile for a 20 ton lorry. 

Despite these details of the behaviour of individual 
cost components in response to changes in vehicle size, the 
only major kink in what is otherwise a relatively smooth 
Total Cost per mile curve, (SEE Figure 3.2. ), occurs between 
vehicles of 8 tons and 10 tons carrying-capacity. 

Having disaggregated the raw cost data in such a way, 
the next logical step is to try to establish which, if any, 
of the cost components discussed above are mainly responsible 
for the Economies of Scale observed. This might be done by 
calculating the percentage of Total Cost attributable to each 
cost component for each vehicle size; these percentages are 
presented in Table 3.3.. There are very few trends in 
evidence in this table, and only the percentage of Total Cost 
accounted for by rent & rates declines consistently as vehicle 
size increases; also, insurance and licensing costs, both 
fixed costs, have a tendency to increase in terms of their 
percentage share of Total Cost as vehicle size increases. 

L 
hms. - 
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Figure 3.13.1. Wages costs per ton, 
(rigid chassis vehicles). 
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Figure 3.13.2. Maintenance cost per ton 
(rigid chassis vehicles). 
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Figure 3.13.3. Fuel costs per ton, 
(rigid chassis vehicles), 
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Figure 3.13.4. Depreciation cost per ton 
(rigid chessis vehicles). 
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ilowever, these three components together account for only 
about 4% to 7% of Total Cost, and so have relatively little 

overall effect. The behaviour of Wage Costs, the largest 

component of Total Cost, is worthy of note, since their 
percentage contribution to Total Cost decreases within 
certain ranges of vehicle size for which wages are constant, 
(SEE Figure 3.11.3. ), but then increase markedly when a 
higher wage-bracket is reached, (eg. a driver's weekly wage 
rises from E92-15 to E151-53 when vehicle carrying-capacity 
increases from 2 tons to 3 tons; SEE Appendix A. ). The 

overall effect, as Table 3.3. shows, is for wages as a 
percentage of Total Cost to fluctuate between 23-08% and 
30-73% for all sizes of rigid-chassis vehicles. As wage-costs 
make up. such a substantial proportion of Total Cost, it is 
useful to plot the relationship between the unit cost of wages 
- measured in pence per mile per ton of carrying-capacity, 
and assuming that a vehicle travels 1000 miles per week, 
(SEE Section 3.4. ) - and vehicle-size, (also measured in terms 
of tons carrying-capacity). Figure 3.13.1. reveals that the 
shape of the resulting distribution is, not surprisingly, 
very similar to that of Total Cost per ton-mile, as shown in 
Figure 3.7.. Figures 3.13.2. to 3.13.4. show similar curves 
for the three largest components of Running Costs - maintenance, 
fuel and depreciation respectively. 
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3.3.3. The Sensitivity of Cost Functions to the 
Assumptions Underlyinq the Data 

Having derived cost-functions based on cost data 

published by Commercial Motor, and having descibed the 
various components that go to make up Running Cost and 
Standipg Cost, it. is now necessary to look b9yond the raw 
data to consider some of the assumptions and methods of 
calculation on which this information is founded. Table 
3.3. has shown that depreciation, wages, fuel'and maintenance 
are the largest components of cost, together accounting for 
over 90% of Total Cost, and these will be dealt with in turn. 

(a) Depreciation and interest are considered separately 
by Commercial Motor. A crude method of straight-line 
depreciation is used, and a life-span of 5 years for all 
vehicles is adopted. Depreciation per mile is calculated 
by simply dividing the list price of the vehicle, (less 
the cost of tyres and the vehicle's residual value), by an 
assumed mileage life; therefore, for a 0.75-ton van costing 
ýE4240, which is taken to have a life of 75000 miles, the 
cost of depreciation is 5.65p/mile. 

Notwithstanding the fact that a more accurate method 
of depreciation might have been used, it is the assumption 
that each vehicle has a life of 5 years that is most 

. significant. This assumption may be tested by consulting 
consecutive editions of the Department of Transport's 
Transport Statistics Great Britain publication, (3). This 
source contains information on the total number of Heavy 
Goods Vehicles Licensed in the U. K. on the 1st of September 
each year. These figures are disaggregated in terms of 
vehicles' year of first registration. In other words, it 
is possible to calculate the number of "survivors" from 
each vehicle-cohort each year. Conversely, the number of 
vehicles in each cohort that do not survive from one year 
to the next can also be deduced. It is reasonable to 
assume, here, that the mean life-span of vehicles coincides 
with the median of this distribution, so that, if the 

percentage of HGV's surviving from each cohort is plotted 
against time, an. S-shaped curve will be produced whose 
mid-point coincides with the point at which the number of 
vehicle "deaths" is at a peak, (SEE Figure 3.14. ). This 

means that the mid-point in this curve, the time after 
which exactly 50% of the cohort remains, may be used as a 
measure of the average life-span 6f the cohort's vehicles. 

The data for all HGV's registered in 1981, for example, 
are shown in Table 3.4.. These figures show a general increase 
in vehic16 "deaths" over time-,. although 57.5% of the cohort 

(3) Transport Statistics Great Britain (Department of 
Transport, September 1985 to September 1990). 
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Table 3.4. Wastage of HGV's first reqistered in 1981 

Years after 
first 1 2 3 4 5 6 7 8 
Registration 

Number 38.7 38.3 37.4 35.8 33.2 30.4 26.6 22.3 
Remaining 

Percentage 100 99.0 96.6 92.5 85.8 78.6 68.7 57.6 
Remaining 

remained for an eighth year, (after which no further data 
are yet available). It is therefore necessary to extrapolate 
from incomplete curves such as this, in order to predict the 
number of years after first registration at which 50% of the 
cohort has failed to survive. The curves for vehicles first 
registered between 1981 and 1984, inclusive, are shown in 
Figure 3.15.; Figures 3.16.1. and 3.16.2. show the respective 
curves for vehicles of more than 20 tons gross vehicle weight 
and for those of 20 tons g. v. w. or less. 

Despite all these curves being incomplete, it appears 
from these graphs that 50% of each cohort will have 
disappeared from the record by year 8. The evidence of 
Figures 3.16.1. and 3.16.2., however, suggests that vehicles 
of over 20 tonnes g. v. w. have a slightly longer life than 
smaller vehicles, but, for the purpose of this exercise, it 
will be assumed from these data that the average life-span 
of a Heavy Goods Vehicle is 8 years. 

Mileage life assumptions made by Commercial Motor may 
also be contrasted with Department of Transport statistics. 
This time, weight categories used by the information source 
(4) are rigid-chassis vehicles with a g. v. w. of less than 
7.5. tons, and 11rigids" with a G. V. W. of 7.5 to 17 tons. 
The publication reveals that, in 1985,146707 vehicles in 
the lower weight category covered 2952 million kilometres; 
the distance travelled per vehicle is therefore 20122km for 
the year, (or 12503 miles). If a vehicle lasts for 8 years, 
then its mileage life is 100029 miles. This compares with 
Commercial Motor's assumptions of mileage life being 75000 
to 90000 miles for vehicles in this weight category. 
Similarly, according to the DoT source, 156560 vehicles in 
the higher weight category travelled 5066 million kilometres 
in 1985. Using the same logic, the mileage life of these 
vehicles may be estimated at 160855 miles, with Commercial 
Motor's assumptions ranging from 90000 to 200000 miles. 

The way in which depreciation is calculated may also be 
criticised. Adopting the philosophy that depreciation is 

(4) JOHNSON, F., The Transport of Goods by road in Great 
Britain 1985. (Department of Transport Statistics Bulletin 
(86) 23, Aug. 1986). 

L kum- 
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Figure 3.16.1. HGV -wastage over time, 
(yj; Mclas ovnr 20 twis gx. w. ý 
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equivalent to the amount of money that must be put aside 
each year in order to purchase a replacement item of 
capital, a straight-line method of calculation is used, 
with depreciation cost ultimately expressed in pence per 
mile. Interest is then treated separately. This is 

regarded as a standing cost, and is simply 15% of the 
vehicle's list price divided by the'number of weeks in the 
year. Interest is therefore assumed by Commercial Motor to 
be constant throughout the life of the vehicle. A more 
realistic alternative might be to calculate the depreciation 
and interest associated with a vehicle simultaneously. 
This may be done by finding the "Average Annual Equivalent 
Value" of the sum of money that is required for purchasing 
the vehicle; this measure may be calculated by means of 
a standard formula. For example, in the case of a 0.75-ton 
van, the average annual equivalent value of the 9,4240 
purchase price, at 15% interest, is 9944.88 per year, (using 
the aforementioned assumption of an 8-year life-span). This 
is equivalent to t2l. 00 per week. Using also the above 
estimate of a 100029 mile life of such a vehicle, over an 
8-year life-span, this works out as 7.56p per mile for 
depreciation and interest combined. These figures may be 
compared with those published by Commercial Motor for 1982 
of Z14.13 per week interest and 5.65p per mile depreciation. 
Using this publication's own assumption about a 0.75-ton 
van's life-span of 75000 miles and 5 years, whether 
depreciation and interest combined are 

Interest = S, 14-13 per week or 4.24p per mile 
Depreciation = Z18.83 per week or 5.65p per mile 

TOTAL = 932.96 per week or 9.89p per mile 

regarded as a Standing Cost or a Running Cost, therefore, 
the 

' 
Commercial Motor Figures are considerably higher than 

the alternative figures, based on the same initial outlay, 
that are devised in this section. This discrepancy may 
certainly be attributed to a large extent to the fact that 
the former cost estimates are based on the assumption of a 
5-year vehicle life. 

Alternative estimates of depreciation/interest cost 
may be made for the entire range of vehicle sizes - these 
estimates are shown in Figure 3.17.1., expressed in terms 
of cost per ton-mile. Figure 3.17.2. compares this new set 
of figures with Commercial Motor's figures for depreciation 
and interest combined. The latter shows that there is 
little difference overall in the two curves produced; 
Commercial Motor's estimates tend to be substantially 
higher only for the vehicles with carrying-capacities of 
0.75 to 1.5 tons and of 6 to 8 tons. For 10-, 17- and 20- 
ton vehicles, Commercial Motor Figures are actually lower, 
mainly because of the high mileage lives that this 
publication assumes for these vehicles. (These are 200000 

miles for 10-ton and 17-ton vehicles, and 250000 miles for 
20-ton vehicles). 

Similarly, the revised estimates may be tested for 
their sensitivity to changes in interest rates and vehicle 
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life-spans. In the above calculations, the rate of 
interest has been taken to be 15%, because this is a 
factor that can fluctuate considerably, and Figure 3.18. 

compares depreciation/interest per mile curves using interest 

rates of 10%, 15% and 20%. There is little difference in the 

shape of these curves, but a fluctuation of just 5% in 
interest rate makes a difference of 2p to 3p per mile for 
most sizes of vehicle. Because the assumed vehicle life 
of 8 years is only an approximation, and because this will 
in any case vary a great deal between vehicles, a similar 
exercise was carried out using vehicle life estimates of 7 

years and 9 years, (mileage was held constant and the 
interest rate was fixed at 15%). The three resulting 
curves are shown in Figure 3.19., and the impact of altering 
the vehicle life-span by 1 year is clearly less than that 
produced by changing the interest rate by 5%. 

(b) Wage cost per week estimates appearing in Commercial 
Motor tables are inclusive of National Insurance charges, 
employer's liability insurance, holiday and subsistence 
allowances and pension fund payments, but exclude clothing 
and laundry allowances, productivity bonuses and travelling- 
time payments. Obviously, these estimates are national 
averages, and do not reflect the fact that wage levels vary 
considerably geographically. This variation is highlighted 
by alternative costings published by the Freight Transport 
Association (5), which are based on voluntary returns from 
a cross-section of contributors operating throughout the 
U. K. According to this sample, basic wages for HGV drivers 
are 5% above the national average, gross wages are 12% above 
and the number of hours worked during the week is less than 
average; gross pay per hour is thus 20% above the national 
average. Conversely, basic pay and gross pay per hour in 
Scotland are respectively 8% and 13% below the national 
average. Added to these regional differences is the fact 
that earnings in the main centres of population in each 
region are usually greater than in rural areas. 

The FTA's costings confirm that wage costs increase 
with vehicle size according to a stepped progression that 
relates to the class of HGV licence that is required to 
drive different types of vehicle, (the stepped structure 
used by Commercial Motor is illustrated in Figure 3.11.3. ). 
The FTA's vehicle size categories in this publication are 
as follows, 

Light Rigid Vehicles - No HGV licence required 
(less than 7.5 tonnes g. v. w. ) 

Medium Rigid Vehicles - Class 3 HGV licence required 
(7.5 to 17 tonnes g. v. w. ) 

(5) The Managers Guide to Distribution Costs, 1990. 
(Freight Transport Association, Jan. 1990). 
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Figure 3.18. The effect of changing interest rates 
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Heavy Rigid Vehicles - Class 2 HGV licence required 
(more than 17 tonnes g. v. w. ) 

Articulated Vehicles - Class 1 HGV licence required 
(All sizes). 

This categorisation is slight-ly at variance with 
Commercial Motor's five-tier structure, which specifies 
three wage-levels for vehicles with a carrying capacity of 
8 tons or less. 

There is little point in comparing absolute figures 
published by the two organisations, since FTA costings 
refer to January 1990 levels whilst the Commercial Motor 
figures used are from 1982. ' The main reason for consulting 
a second source of costing information, however, is that 
the Freight Transport Association publishes, not just 
average figures, but also the minimum and maximum, and 
upper and lower quartile (6) values of the sample. In 
other words, FTA tables provide information on the variance 
of the data around the mean values; these figures are shown 
in Table 3.5.. The anomaly in this Table is the set of 
costings for light rigid vehicles, since the upper quartile 
value is actually less than the mean; this indicates that 
at least 75% of the sample of contributors reported the 

Table 3.5. Gross Wage Cost Estimates for January 1990 

Vehicle Class Minimum Lower Mean Upper Maximum 
Quartile Quartile 
(Difference (Difference 

from mean) from mean) 

Light Rigid 154.37 154.37 159.20 154.37 232.25 
(less than 
7.5 tonnes 
g. v. w. ) (-3.0%) (-3.0%) 

Medium Rigid 148.18 177.71 203.26 243-11 323.96 

(7.5. to 17 
tonnes g. v. w) (-12.6%) (+19.6%) 

Heavy Rigid 200.00 214.00 245.09 267.53 281.00 
(more than 17 
tonnes g. v. w) (-12.7%) (+9.2%) 

(Source: Freight Transport Association) 

(6) The lower quartile value is the value that is midway 
between the minimum and the median of the distribution; 

similarly, the upper quartile lies between the median and 

the maximum. 
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same figure - Z154-37 per week - as the gross wage for a 
driver. The figure for "medium rigids" and "heavy rigids" 
include the percentage deviation from the mean of both the 
lower and upper quartile values, and, in the absence of 
information on the standard deviation of the distribution, 
these figures may be regarded as good estimates of the 
variance of wage costs. Using these percentages it is 

possible to make estimates as to the quartile values 
associated with Commercial Motor cost data, in order to 
calculate the effect of varying wage levels between these 
limits on Total Cost. This, however, is unnecessary, as 
Table 3.3. already provides information on the percentage 
of Total Cost that is accounted for by wages, and so this 
percentage may be multiplied by the percentage variation 
from the mean wage level, to give the percentage variation 
in Total Cost. 

For example, FTA figures suggest that, with a 0.75-ton 
van, the maximum variation in wage level that can take place 
between the upper and lower quartiles is for gross wages to 
fall to a minimum level of Z154.37 per week - this 
constitutes a reduction of 3% from the average wage of a 
driver of this type of vehicle. Since Table 3.3. reveals 
that 30.7% of the cost of a 0.75-ton van is accounted for 
by wages, the effect on the Total Cost estimate of adopting 
this lower wage estimate is 0.92%, (since 0.03 x 0.307 
0.0092). Similarly, using the upper quartile figure 
instead of the mean value for a 20-ton rigid vehicle, the 
effect on the Total Cost estimate would be a 2.3% increase, 
(since 0.092 x 0.2487 = 0.0229). The maximum impact of 
using a quartile value instead of the mean is with a 10-ton 
rigid vehicle; adopting the upper quartile figure of 
9243.11 per week would increase the corresponding Total 
Cost estimate by 5.89%. It may be concluded, therefore, 
that the Total Cost Function is not particularly sen§itive 
to variation in the assumed level of wage costs within the 
quartile range of the FTA's figures. 

(c) Fuel and maintenance are the other main components 
of Running Cost. As they are both very closely linked to 
vehicle mileage, they may be dealt with together; separate 
graphs of fuel and maintenance cost against vehicle size 
appear in Figures 3.12.1. and 3.13.2, respectively. Both 
of these graphs show a definite trend for cost per mile to 
increase as the size of the vehicle increases. 

k 

The cost of maintenance is dependent on the regularity 
of maintenance checks and servicing, which in turn affects 
the number of man-hours that are assigned to this task each 
week. Maintenance cost also depends on whether this work 
is carried out on the operator's premises, or whether it is 
done under contract by another company. In the case of 
Commercial Motor's costings, it is assumed that there is 

11 ... the highest standard of maintenance, including 
servicing, repairs and washing. The costs produced 
are calculated from those incurred by operators using 
their own facilities and those charged by private 
garages. " 
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Among the factors that affect the level of maintenance 
cost are the wage levels of fitters and other workshop 
staff and the price of vehicle parts. 

Fuel cost per mile is a product of fuel consumption 
and fuel price. Both are very volatile and vary both 
regionally and temporally in respopse to a number of 
political and economic events. The rate of fuel consumption 
is sensitive to both the type and make of vehicle and to the 
individual driver. The factor that has a major influence 
on both fuel consumption and maintenance cost is the way in 
which the vehicle is employed, particularly the number of 
miles that are driven each year. Generally, a vehicle with 
a high annual mileage will have a lower unit cost than one 
which does fewer miles, usually because the latter is 
involved in more urban, "stop-start" activities. 

The Freight Transport Association deals with this 
"level of usage factor" by deducing three separate figures, 
from the information provided by its panel of contributors, 
for each cost factor - these are the average figure for both 
"high mileage" and "low mileage" operators, and the overall 
average. The criteria for high and low mileage vary 
according to vehicle size. For example, for a diesel- 
powered "car-derived" van, low mileage estimates refer to 
vehicles that travel approximately 18000 miles per year, 
whilst the average mileage per vehicle of a high mileage 
operator is 30000 miles; the overall average for the FTA's 
sample in this vehicle class is 24000 miles. At the other 
end of the scale, the corresponding figures for a 38-ton 
articulated lorry are 50000 miles, 80000 miles and 66000 
miles, respectively. Having categorised contributors 
according to the average mileage that is covered by one 
of their vehicles each year, average figures for maintenance 
cost, fuel consumption and other major components of 
distribution cost are calculated for each group of 
contributors. 

The FTA's fuel price estimate is based on both the 
retail price of diesel and the bulk purchase price, (which 
is substantially cheaper). On the assumption that 80% 
of all fuel purchases by the panel will be made in bulk, 
the cost of fuel per gallon is assumed to be the sum of 
80% of the bulk purchase price and 20% of the retail price. 

The figures published for 3.5-tonne diesel vans are 
fairly typical of the FTA costing as a whole, and these 
are displayed in Table 3.6.. The three columns of this 
table show considerable differences in cost per mile 
estimates. Fuel cost per mile, for example, varies 
between 8.1% and 10% either side of the overall mean 
figure depending on whether high mileage or low mileage 
is assumed, and maintenance cost per mile varies from 
+30.1% (low mileage) and -21.9% (high mileage) of the mean. 
The Total Cost per mile figures also show considerable 
divergence from the overall sample mean (from +37.7% to 
-20%), although it should be stressed here that the range 
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Table 3.6. Runninq Cost and Total Cost estimates for a 
3.5-tonne diesel van, Jan. 1990 

Low 
Mileage 

High 
Mileage 

Overall 
Mean 

Annual Mileage 15000 40000 26000 
Fuel Consumption (miles/gal) 25 30 27 
Fuel Cost (p/mile) 5.62 4.68 5.2 
Maintenance Cost (p/mile) 5.4 3.24 4.15 
Total Running Cost (p/mile) 11.75 8.43 9.92 
Total Cost (p/mile) 28.64 16.87 21.1 
Total Cost (S. /year) 4294 

11 
6746 

1 
5485 

1 

(Source: Freight Transport Association) 

of assumed annual mileages is also quite wide, (the lower 
and higher mileage estimates being respectively -42.3% and 
+53.8%. of the mean). Furthermore, the variations in Total 
Cost are a result of a number of variables changing in 
response to differences in assumed vehicle usage. If a 
single cost component, such as fuel cost, should change 
in isolation, as a direct result of an increase in the 
price of derv, for example, then the effect on Total Cost 
would be relatively minor. Given that Table 3.3. indicates 
that fuel costs account for between 14.3% and 19.1% of Total 
Cost, the variations in fuel cost of 10% or less shown in 
Table 3.6. can themselves have little impact on Total Cost 
estimates. 

The FTA's use of an upper and lower mileage estimate 
does, however, illustrate the extent to which operating 
costs may be influenced by vehicle usage and the nature of 
an operator's work. This indication of the possible variance 
of Running Cost estimates is particularly useful in view of 
the fact that Commercial Motor's statistics do not include 

such information. 

The purpose of this section has been to more closely 
examine the Commercial Motor cost data that are used for 
the research. This is important, since these figures form 
the basis of all the cost functions that appear in this 
and subsequent chapters. After a comparison of these data 
with those of an alternative source, namely the Freight 
Transport Association, the costings published by Commercial 
Motor have been disaggregated in order to assess the effect 
of each cost component on the Total Cost of a vehicle. The 
latter exercise has revealed that wages, fuel, maintenance 
and depreciation/interest'account for over 90% of this 
cost, and so the assumptions that underlie these cost 
estimates have been examined in greater detail in 
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sub-section 3.3.3.. More particularly, the importance of 
the assumption made as to the average life-span of Heavy 
Goods Vehicles has been evaluated, along with the effect of 
fluctuating interest rates and drivers; wage-levels on 
published costings. Alternative figures have also been 

produced for the cost of depreciation, using a different 

method of calculation to the simple-straight-line method 
employed in Commercial Motor. The following section, 
however, in which analyf-ical e. xpressions are develbppd 
for estimating Total Cost as a function of vehicle size, 
utilises vehicle cost data as originally published by the 
latter publication. 
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3.4. Estimating Total Cost as a Function of Vehicle Size 

The equations derived in Section 3.1. for Total Cost as 
function of vehicle size, (eg. Equation E. 3.4. ), estimate 

costs per mile per ton of carrying-capacity available for 

vehicles of different sizes, but these figures may be readily 
adjusted to provide an estimate of Toýtal Cost per week, given 
a fleet of n vehicles travelling m miles each week. Firstly, 

the Running Cost formula must be multiplied by the number of 
miles" actually travelled per week by the fleet, and Standing 
Costs, having been multiplied by the assumed weekly travel- 
distance of 1,000 miles, should be further multiplied by the 

number of vehicles used. Finally, the whole equation should 
be multiplied by vehicle size, (assuming a uniform fleet of 
vehicles), so that the modified equation for Total Cost per 
week of rigid vehicles is now, 

TC = x[n. 12106x -0-629 + m. 21-3796x- 0-727 1 
(E. 3.5. ) 

or, 
TC = [n. 12106x 0-371 + [m. 21-3796x 0-273 1 

(E. 3.6. ) 

where, TC = Total Cost per week, (E) 
x= vehicle carrying-capacity, (tons), 
m= weekly fleet mileage, 

and, n= number of vehicles. 

At this stage of the analysis, it is assumed that there 
is a very simple situation of a fleet of vehicles travelling 
from a supply-point to a demand-point and back, so that the 
length of a round-trip is twice the distance between these 
two points. Therefore, assuming that the vehicles can always 
be fully laden, 

td 

x 
(E. 3.7. ) 

where, t= tonnage to be delivered each week, 
and, d= the length of a round-trip. 



-73- 

obviously, the assumption that vehicles are always fully laden 
is not realistic, and the consequences of the integer effect 
experienced in reality will be discussed later. 

However, substituting equation E. 3.7. into E. 3.8. 
produces the equation, 

TC = [n. 12106x 0-371 1+ ftd. 21-3796x- 0-727 1 (E. 3.8. ) 

One problem with this equation is that the first term of 
Equation E. 3.8., the expression for Standing Cost, contains 
two terms -n and x- that are inter-related, for as the 
carrying-capacity of each vehicle increases, the number of 
vehicles required in the fleet to transport the same weekly 
tonnage of goods will decrease, and vice versa. To overcome 
this difficulty, it is possible to express n as a function of 
x, since the maximum number of round-trips required to 
deliver a given order each week can be expressed as (t/x), 
assuming a uniform fleet of vehicles always operating at full 
capacity. Therefore, on the basis of a five-day week, 

t 

5x 

3.9. ) 

(However, it should be stressed here that the value of n and 
(t/x) must always be rounded UP to the nearest whole number, 
as it is absurd to think in terms of using a fraction of a 
vehicle, and the same integer effect also applies to the 
number of round-trips made). Substituting this expression 
for n, E. 3.8. may be written as, 

TC =t 12106x 0-371 + 

5x 

or, 

TC = [t 12106x- 0-629) + 

5 

ftd . 
. 21-3796x- 0-727 1 

ftd. 21-3796x- 0-727 1 

(E. 3.10. ) 
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The main independent variable in this equation is "td", 

which represents the total ton-mileage required for a given 
distribution task. In this very simple example, in which a 
fleet of vehicles shuttles betweenione supply-point.. and.. a 
single d6stination, so that d is simpýy twice the distance 
between these two points, td serves as a convenient expression 
for the scale of an operation. Obviously, an increase in t 
or d will cause x or n, or both, to also be increased, which 
will, in turn, raise Total Cost. 

The shape of the Total Cost curve as td increases, in 
this simple situation, is illustrated by Figure 3.14.; the 
figures on which this graph is based were calculated using 
both equation E. 3.10., for rigid-chassis vehicles, and the 
following expression for articulated vehicles, 

TC [t . 9817-5x- 0-535 + [td. 11-885x- 0-5 (E. 3.11. ) 

5 

with the added assumption that the length of each round-trip, 
d-. is 100 miles.. A full list of the results of these 
c; lculations is presented in Table 3.. 7-. 

The major constraints involved here are that no more than 
one round-trip per vehicle per day is possible, and that 
vehicle carrying-capac ity, x, is a discrete variable whose 
value may only correspond to the vehicle-sizes quoted in the 
Commercial Motor cost tables on which the analysis is based. 
These vehicle-sizes are 0-75,1,1-5,2,3,4,5,6,7,8, 
10,17 and 20 tons capacity for rigid-chassis vehicles, and 
10,12,14,16,18 and 22 tons capacity for articulated 
vehicles; in addition to these, it is assumed that "artics" 
of 25,30,35 and 38 tons are also available. 

For each value of td, the carrying-capacity of each 
vehicle, of what is assumed to be a uniform fleet, is 
calculated using the following formula, 

t 
X 

5n 

(E. 3.12. ) 

where the smallest value of n that does not cause x to exceed 
the maximum carrying-capacity of 38 tons is used. For example, 
when t=250 tons per week, the calculated value of x, using 
Equation E. 3.12., is 50 tons when n=l. As this vehicle size 
is infeasible, n must be increased to 2, soýthat-the value. Of 
X, using the same formula, becomes 25 tons. 

Again, in all cases x must be rounded UP to the nearest 
feasible vehicle-size; where either an arti-culated or rigid- 
chassis vehicle may be used, the cheaper alternative is 
adopted, for the purposes of Table 3.7.. 
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The discontinuities in the Total Cost curve of Figure 
3.20. indicate the points at which an extra vehicle must be 
added to the fleet; Figure 3.21. graphs the carrying-capacity 
of each vehicle as weekly ton-mileage changes. Figure 3.22. 
shows the relationship between Average Cost, (in pence per 
ton-mile), and td, and illustrates once again the Economies 
of Scale that have been discussed throughout this chapter, 
showing that Average Cost declines as vehicle-size increases. 
As this unit cost per ton per mile is a direct function of x, 
as Equations E. 3.10. and E. 3.11. suggest,. -the discontinuous 
curve shown here is, in fact, more or less the inverse of 
Figure 3.15., and also bears a close resemblance to Figure 3.7., 
which is discussed in Section 3.2.. 

Another important feature of Figure 3.22. is the way in 
which the Average Cost curve bottoms out once the maximum 
vehicle-capacity of 38 tons is reached, which re-emphasises 
the fact that the Economies of Scale resulting from the use 
of a fleet of vehicles arise as a consequence of increasing 
vehicle-size, and not due to the increase in ton-mileage 
itself! 

3.5. A Formal Proof that Economies of Scale Exist in Road 
HaulaRe ODerations 

When the parameters t and d are held constant, so that 
x, and therefore n, become the independent variables in the 
Total Cost equation, the relationship between Total Cost and 
vehicle-size is as shown by the curve in Figure 3.23.; the 
results of the calculations on which this graph is based are 
contained in Table 3.8.. In this example, t is fixed at 190 
tons per week, and the length of a round-trip is 100 miles. 
For each feasible vehicle-size, the number of vehicles 
required is calculated using Equation E. 3.9. - again, 
rounding UP to the nearest whole number to take account of 
the obvious integer effects - and the Total Cost per week of 
using both rigid and articulated vehicles calculated with 
Equations E. 3.10. and E. 3.11., respectively. 

Figure 3.. 23. shows that the Total Cost curve continues 
to decline as vehicle carrying-capacity increases, so there 
is certainly visual evidence of Economies of Scale in this 
graph. However, the x-axis here extends to only 38 tons 
carrying-capacity, as this is the current maximum permissible 
weight for Heavy Goods Vehicles on UK roads, and so it is 
not clear from Figure 3.23- whether the observed Total Cost 
curve shows a truly downward-sloping cost function or merely 
the first part of a "U"-shaped curve. 

The fact that the former explanation is valid here, may 
be demonstrated algebraically, since Equation E. 3.6. may be 
written in the following general form, 
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Figure 3.20. Total Cost/td, (using Equations E. 3.10. & E. 3.11. ). 
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Fi2ure 3.22. 
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TC = [n. A. x [m. B xbI (E. 3.13. ) 

where, A&a are parameters 
Standing Cost, 

and, B&b are parameters 
Running Cost. 

pertaining to 

pertaining to 

Substituting Equations E. 3.7. and E. 3.9. into this expression, 

a-i b-1 TC = [t .Ax]+ 
[td 

. B. x 1 (E. 3.14. ) 

5 

Since the parameters a&b both have a value of less than 1, 
(SEE Table 3.1. ), the coefficient of x in the two parts of 
E. 3.14. will be negative in both cases. For this equation to 
describe a "U"-shaped curve, these two coefficients of x would 
have to have different signs; in such a situation, the 
expression for Total Cost could be differentiated and the 
optimum value of x, which would correspond to the lowest 
point of the Total Cost curve, could thus be calculated. 
However, Table 3.1. confirms that both Running Cost and 
Standing Cost have a negative elasticity with vehicle-size, 
ensuring that Total Cost will continue to decline as the 
value of x increases. 

The conclusion that may be drawn from this finding is 
that, when faced with the decision of whether to perform a 
delivery-task using a small fleet of large vehicles or a 
larger fleet of smaller vehicles, the former alternative will 
always be the lowest-cost operation, due to the fundamental 
behaviour of Running Cost and Standing Cost per ton-mile. 
The following section provides a hypothetical numerical 
illustration of the implications bf-these findings. 

A Numerical Illustration 

Consider a very simple situation in which 20 customers, 
distributed at random within a square delivery-zone, each 
require a delivery of goods amounting to exactly 1 ton each 
day; given that it is possible, from the point of view of 
both vehicle-capacity and time, to visit every customer- 
location in one day, the problem is one of selecting the 
vehicle-fleet that will perform this task at the lowest cost. 

To mention just two options, the deliveries may be made 
by either one 20-ton vehicle visiting each customer every day, 

or by a fleet of five 4-ton vehicles serving 4 locations each. 
The main trade-off here, in terms of cost, is between the 
lower cost PER VEHICLE of a larger fleet of small vehicles, 
and the fact that more vehicles in such a fleet will incur 
Standing Costs, such as insurance and licences etc.. 
Furthermore, it will be demonstrated later in this section 
that the distance covered by a fleet in visiting a given set 
of locations increases in proportion with the number of 
vehicles employed. 
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Table 3.9. summarises the estimated cost of a variety 
of options, assuming that rigids are to be used in each case; 
all of these estimates are therefore calculated using 
Equation E. 3.10.. The distance travelled by the fleet in a 
day is estimated using the following empirical formula, a 
formula that will be discussed in greater detail, along with 
other spatial aspects of distribution operations, in Chapter 
4, 

Total Fleet Mileage = a[5-308 + 0-566n] (E. 3.15. ) 

where, a= length of one side of the square 
delivery-zone, (miles). 

The main assumption associated with this formula is that the 
delivery-area in question is a homogeneous square of 
dimensions (axa), served by a fleet of vehicles operating 
from a single depot located at the centre. This expression 
merely describes the way in which the total distance 
travelled by the fleet - in a day, in this case - increases 
as the number of vehicles used increases. For the purposes 
of Table 3.9., it is assumed that a=50 miles. 

The figures confirm that the lowest-cost means of 
delivering the required tonnage of goods each day is to employ 
the largest vehicles available, and therefore the smallest 
possible fleet. As Figure 3.24. clearly shows, this is 
because the reduction in Running Cost achieved by selecting 
smaller vehicles, in spite of the consequent increase in 
Total Fleet Mileage, is insufficient to off-set increased 
Standing Costs resulting from the rise in the number of 
vehicles and drivers.. that need to be employed; as a result 
the Total Cost curve continues to go upwards as fleet-size 
increases. Furthermore, when the x-axis of Figure 3.2A. is 
extended to include very small vehicle-sizes, it becomes 
apparent that the Running Cost curve is, in fact, "U"-shaped, 

which further supports the assertion that costs will continue 
to rise as n increases. 

The "U"-shaped nature of the Running Cost curve is not 
unexpected, in view of the nature of the Running Cost 
formula. To recapitulate, the relevant part of Equation 
E. 3.10. here is, 

Running Cost = td. 21-3796x -0-727 (E. 3.16. ) 

Since the ton-mileage per week (t) and the value 11-885 are 
both constants, the two variable terms in this expression 

are x- 
0-727 

and d, the average distance per tour. As 

vehicle-size increases, the term x -0-727 will decrease due 
to the negative power of the coefficient,. whilst the--value of 
d will increase; this is because the use of larger vehicles 
implies a reduction in fleet-size, when t is constant, so 
that the average length of each vehicle-tour - which is the 
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Figure 3.24. Total Cost per week/n, (numerical illustration: 
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accurate definition of d now that the length of a round-trip 
is no longer fixed - decreases. Algebraic confirmation that 
d is reduced as x increases is given by the fact that the 
formula for average tour-distance is simply Equation E. 3.15. 
divided by n, so that, 

d= a[5-308 + 0-566n] (E. 3.17. ). 

n 

It is the fact that the two variable components of the 
Running Cost formula behave in opposite ways in response to 
changes in vehicle-size that causes the Running Cost curve 
to be "U"-shaped. 

The same conclusion must be drawn if Equation E. 3.16. 
is re-written in the form, 

Runnning Cost = 
td 

. 21-3796 x 
0-273 (E. 3.18. ) 

x 

In this case, the x 
0-273 term will clearly increase as 

vehicles become larger, whilst [ td ], which now represents 
x 

Total Daily Fleet Mileage, will decrease due to the reduction 
in the number of vehicles and vehicle-tours. 

In simple terms, Running Cost is fundamentally a function 
of the cost of operating a vehicle per mile, which increases 
when larger vehicles are used, and of the mileage travelled 
by a fleet, which decreases with increasing x due to the 
accompanying reduction in n. 

One implication of a "U"-shaped Running Cost curve is 
that, in circumstances where Running Costs are large in 
relation to Standing Costs, the Total Cost curve may also be 
"U"-shaped. This is not the case with Figure 3.24., but the 
situation may change after a sensitivity analysis. is performed 
on the data of Table 3.9.. For example, if the delivery-area 
in question is enlarged, so that "a" increases from 50 miles 
to 150 miles, Running Costs will undergo a three-fold 
increase also, causing the Running Cost curve to be raised. 
The revised cost calculations, when a=150 miles, are 
contained in Table 3.9. and are illustrated by Figure 3.25., 
which confirms that the Total Cost curve is, in this case, 
distinctly "U"-shaped. 

It should be noted, here, that although this numerical 
example provides an instance in which, for small values of 
n, Total Cost can actually be increased when the size of the 
fleet is reduced, this in'no way invalidates or contradicts 
the proof of the presence of Economies of Scale in road 
haulage, presented in Section 3.5.. This is because the 
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latter section refers to a situation in which the length of a 
round-trip is fixed, whilst the introduction of a spatial 
perspective means that d, being a direct function of n, is 
effected by changes in x. It is the interaction between x 
and d, therefore, that determines the extent to which 
Economies of Scale may occur in this situation, b particularly 
the effect that vehicle-size has on the term "x " in 
Equation E. 3.13., compared with its effect on the average 
length of a round-trip. It has already been pointed out in 
this section that the extent to which this "U"-shaped 
Running Cost curve influences the shape of the Total Cost 
curve is dependent on the relative importance of Running Cost 
and Standing Cost, which, in turn, involves factors such as 
the size of the delivery-area, fuel costs, average vehicle 
speed etc.. 

3.7. Conclusion 

The main characteristic of a vehicle-fleet considered 
in this chapter has been vehicle-size, measured in terms of 
tons car rying-capacity, and in particular'the interaction 
between vehicle-size and the number of vehicles employed. 
The major conclusion to arise from the preceding discussion--. 
is that Economies of Scale may be derived from a reduction 
in the numerical size of a fleet, and the use of a smaller 
number of larger vehicles. The existence of such economies 
has been both demonstrated graphically, (eg. Figure 3.7., 
Figure 3.22. etc. ), and proven algebraically given the 
characteristics of the data provided by Commercial Motor 
magazine. 

Throughout most of this chapter, the discussion has 
focused upon a very simplistic formulation of the Distribution 
Problem, involving the transportation of a given tonnage of 
goods from an origin to a single destination, using a uniform 
fleet of vehicles. The purpose of using such an uncomplicated 
example of a distribution operation has primarily been to 
simplify the fleet mileage variable, so that the interaction 
between the number of vehicles used and vehicle carrying- 
capacity could be examined in the absence of factors such as 
the shape of individual vehicles' delivery-zones and the 
average length of vehicle tours etc.. The impact of such 
spatial considerations, as a result of changes in the number 
of vehicles used, will now be discussed in Chapter 4. 
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CHAPTER 4 

THE SPATIAL IMPLICATIONS OF FLEET-SIZE 

In Chapter 3 it was assumed that the extent of a fleet's 
movement in space is to shuttle between one source and one 
destination; this simplistic situation was used in order to 
focus attention on the issue of Economies of Scale in 
transport. Consideration is now given to the more realistic 
scenario of a set of randomly distributed customers, and 
variables such as the size of the delivery-area, the number 
of customers served and the number of stops per vehicle-trip 
now replace the concept of weekly ton-mileage, (td), as 
indicants of the scale of a distribution operation. Less 
emphasis will be placed on factors such as carrying-capacity 
and loading of vehicles in this chapter, since the main concern, 
here, is with the relationship between the number--o-fvehicles 
used in an operation and Total Fleet Mileage. 

The distance travelled by the fleet will obviously be 
influenced by the shape of the delivery-area, the spatial 
distribution of customers and the location of the depot within 
this area, but as all of these factors may be viewed as being 
part of the environment in which a fleet must operate, the 
effect of such factors will be considered in Chapter 6. 

What is of interest in this chapter is the way in which 
the total distance that a fleet covers changes, purely as a 
response to variations in the number of vehicles used; in 
other words, Chapter 4 focuses on the relationship between 
the variables n and m. 

4.1. Formulation of the Problem and Discussion of the 

Assumptions Made 

The problem consists of making an accurate estimate of 
the minimum distance required to visit each of a set of 
customers located within a square delivery-zone from a 
centrally-located depot; although the precise co-ordinates 
of these customers within this continuous, homogeneous, 
Euclidean space are unknown, itis to be assumed that their 
distribution is, for all intents and purposes, random. This 
is, of course, the general formulation for the well-documented 
Travelling-Salesman Problem, although much Travelling-Salesman- 
type research concentrates on the distance required for one 
vehicle to visit all the relevant locations. In this 
analysis, it is assumed that, when more than one vehicle is 
being operated, the delivery-area is divided into n non- 
intersecting segments, whose boundaries intersect at the depot 
to form an angle of (360/n) degrees, (SEE Figure 4.1. ). For 
example, if 2 vehicles operate from the depot, then the 
delivery-area will simply be divided into 2 halves; if a fleet 
of 10 vehicles is used, then it is assumed that each vehicle 
operates within a 36-degree "wedge"-shaped zone. 
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There is no particular reason for using a square delivery- 

area. Although it may seem more logical to think of a 
delivery-area in a homogeneous plain as being circular, the 
boundaries of this area are of little importance; the 
inclusion of such boundaries here merely acknowledges the 
fact that there is a maximum distance that vehicles may travel 
from the operating centre. This limitation on the range of 
each vehicle is imposed by the requirement that each driver 
should return to the depot before the end of the working-day. 
The size of the delivery-area is therefore effectively 
defined, in reality, by factors such as average vehicle speed 
and the average time that a vehicle spends at each location, 
although neither of these factors is considered at this stage 
of the analysis. 

However, one implication of assuming that a fleet operates 
within an "a x a" square is that not all of the n sectors are 
of equal size, so that the average distance travelled by this 
fleet is slightly greater than would be the case if the 
delivery7area were a circle of diameter "a". (This is self- 
evident, since the area of such a circle is only 0-7857a). 
The impact that area-shape has on Fleet Mileage will be 
discussed in greater detail in Chapter 6. 

The method for dividing a square delivery-area up into 
a set of n sectors is certainly worthy of further discussion 
here, for despite the fact that a wedge-like sector may seem 
to be a fair approximation of the nature of a vehicle-tour 
found in reality, it may still be argued that alternative 
shapes might be just as appropriate. 

For example, when n=4 there is a dilemma as to whether to 
assume four square or triangular sectors; these alternatives 
are summarised in Figure 4.2. as "(a)" and "(b)"; this 
diagram has been reproduced from Eilon, Watson-Gandy and 
Christofides, (1971), (1). Eilon et alinvestigate the 
difference between the length of vehicle-tours in these two 
sector types, and their conclusion, whose notation has been 
altered for the sake of clarity, is that, 

it 
...... the length of a tour through points 

dii; tributed in a sector such as "W" has 
been found to be only 5% greater than the 
length of an equivalent tour in "(b)" in 
the case where n=4 . ........... and even 
less for larger values of n. " 

(Eilon et al, 1971). Throughout the current thesis, whenever 
a fleet is comprised of 4 vehicles, it is assumed that each 
operates within a delivery-zone of the type "(b)", shown in 
Figure 4.2.. 

(1) EILON, S., WATSON-GANDY, C. D. T., and CHRISTOFIDES, N., 
Distribution Management: Mathematical Modelling and Practical 
Analysis, (Griffen, London, 1971). 
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Sector shape is also an important issue when n is large. 
To take a rather extreme example, when n=48, the angle of 
each segment would be only 712-degrees, which would give rise 
to the absurd pattern on delivery-sectors shown in Figure 
4.3.1.; with such a large fleet, the assumption of non- 
overlapping segments is no longer realistic, especially when 
the number of stops per vehicle is also large. In such cases, 
a more efficient routing strategy might be to superimpose a 
series of concentric rings onto a set of larger segments, and 
so produce a pattern of zones similar to that illustrated by 
Figure 4.3.2.. The extent to which there is justification 
for adopting such a sectoring strategy may depend upon the 
extent of spatial clustering of the customers requiring a 
delivery, but since a random distribution of customers is 
assumed at this stage, this particular aspect of the 
sectoring question will also be considered in Chapter 9. 
Nevertheless, the issue of which of the strategies illustrated 
in Figure 4.3. should be adopted remains relevant to this 
section, since it is likely that the number of vehicles in a 
fleet pl 

, 
ays an important part in determining the point at 

which the assumption of a system of wedge-like sectors, (as 
in Figure 4.1. ), becomes unrealistic. Once such a strategy 
is abandoned, and some vehicle delivery-zones no longer 
extend to the depot, a vehicle-trip must be regarded as a 
two-stage process, consisting of both the journeys from the 
depot to the first and last customers to be served, and the 
total of the distance between each stop on the route. This 
distinction between what might be termed "stem distance" 
and "delivery distance", respectively, will be discussed in 
more detail in Setion 4.3.. 

Daganzo, when referring to tour-distances involving visits 
to remote clusters of locations, uses the term "line haul"and 
"detour distance" to refer to these two parts of a vehicle- 
tour, (SEE Figure 4.4. ). He describes a trade-off between 
the use of delivery-zones that are compact, but at some 
distance from the depot, and more "slender" zones that are 
contiguous to the depot; increasing the slenderness, or 
it elongation"of a formerly compact sector will reduce the line- 
haul portion of the round-trip, but at the expense of increasing 
the detour distance. Daganzo's conclusion is that wedge- 
shaped sectors which have contact with the depot should be 
used when, 

4C (E. 4.1. ) 

p 

where, C= the number of stops per vehicle, 
P= the number of customers served by 

the fleet, 
and, s is a "slenderness factor". 

The value of the "Slenderness Factor", s, is defined as an 
index based on the length and breadth of a rectangle that 
might be used to approximate the size and shape of a sector, 
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Figure 4.1. Assumed sectoring strategy in a square delivery- 

zone, (n=10) 

10 

Figure 4.2. Alternative sectoring strategies when n=4 

n= 1ý 

(Af ter: Eilon, S., et al (I)) 

Figure 4.3. Alternative sectoring strategies when n=48. 

Figure 4.3.1. Figure 4.3.2. 

n r- lt'% n= 42 
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the length of the rectangle's shortest side being divided by 
that of the longest side, (SEE Figure 4.5. ). For example, if 
the rectangle measures 4 miles by 1 mile, then the sector's 
Slenderness Factor is 0-25; similarly, a square sector will 
have the maximum s-value of 1-0, (2). 

Despite the importance of sector-type to the re , 
lationship 

between Total Fleet Mileage and the number of vehicles 
employed, the point at which one sectioning strategy becomes 
more appropriate that another will not be pursued further in 
this section. Since the number of vehicles involved in the 
following calculations is rarely so high as to make vehicle 
delivery-zones unrealistically slim, the delivery-area for 
current purposes is invariably divided into n wedge-like 
segments. 

4.2. A Simple Formula for Total Fleet Mileage 

In order to establish an expression to describe the 
relationship between the variables m and n, a simple method 
was used: a set of customer-locations was generated using 
random numbers and travelling-salesman tours were constructed 
manually for selected numbers of vehicles ranging from 1 to 
15 inclusive, the Total Fleet Mileage being measured in each 
case. Although this is an extremely crude and laborious method, 
the results provided an interesting comparison with those 
obtained using more sophisticated techniques, and, with 
relatively few customer-locations per vehicle-tour, it was 
not difficult to arrive at optimal or near-optimal solutions 
almost immediately using manual methods. 

The results ofthis tour-building exercise are presented 
in Table 4.1.; although the process was repeated many times 
for each fleet-size, only the average results are shown in 
this table, for the sake of brevity. The figures here are 
based on the assumption that the length of each side of the 
square delivery-area is equal to 1 unit, (ie. a=l), so that 
all distances are, in fact, multiples of a. It should also 
be noted here that, since few of the values of n considered 
divide exactly into 50, (the total number of customers to be 
served each week), the number of points generated each time 
for a given fleet-size often varied. For example, for a fleet 
of 11 vehicles, 6 vehicle-tours involved 5 customers and 5 
tours involved 4, and when n=14,7 tours included 4 customers 
and 7 tours only 3; in both cases, the intention was to reflect 
the fact that, with a total of 50 locations to visit, not all 
vehicles in a fleet will be scheduled to make the same number 
of stops each day. The figures in Table 4.1. are presented 
graphically in Figure 4.6.; clearly, the relationship between 
Total Fleet Mileage and the number of vehicles used is linear. 

Simple Regression Analysis on the data reveals that this 
relationship may be described by the equation, 

(2) DAGANZO, C. F., "The distance travelled to visit N points with a maxi- 
mum of C stops per vehicle: A manual tour-building strategy and Case Study. " 
Research Report Institute of Transportation Studies, University of California. 
(Aug. - Sep., 1982). 
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Figure 4.4. Da anzo's definition of "Line Haul" and "Detour 

Distance". Pf 

or suh-rý; 3ion 

(After: Daganzo, C. F., (2)) 

Figure 4.5. Daganzo's definition of the "Slenderness Factor". 

"Slenderness 
Factor" 

(After: Daganzo, C. F. (2)) 

Figure 4.6. Results of manual tour-building Ex. '. (P=50, a=l (square)) 
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y=5-308 + 0-566x, (R 2=0 -976); in other words, using the 
assumption that a=l, for the purpose of this exercise, the 
following empirical formula for Total Fleet Mileage may be 
put forward, 

Total Fleet Mileage = a(5-308 + 0-566n) 

(where C=50) 
(E. 4.2. ) 

The manually-derived figures of Table 4.1. closely match 
those obtained from computer simulations of the same problem- 
formulation; Table 4.2. compares the two sets of figures for 
values of n of up to 15, which are also plotted in the graph 
of Figure 4.7.. 

The computer-generated results were produced by means of 
a travelling-salesman program based on the Savings Method, 
although Table 4.2. suggests that the tours constructed by 
this algorithm are not, in this case, significantly superior 
to those derived manually; this is, perhaps, not surprising 
in view of the simplicity of the routing problems involved in 
this analysis. 

The main limitation of Equation E. 4.2. is that this 
formula is only applicable to a situation where there is a 
population of 50 customers in the delivery-area; this is 
confirmed by Table 4.3., which shows the average length of 
computer-generated travelling-salesman tours within the same 
square area, when the number of locations to be visited is 20 
and 100. It is obvious from this Table that an expression 
for Total Fleet Mileage as a function of both the number of 
vehicles employed and the number of customers served would be 
far more useful; such an expression will be developed in 
Section 4.3., and the effect of the total number of customers 
served on Total Fleet Mileage will then be considered in 
greater detail. 

An alternative formula for estimating the total distance 
travelled by a fleet of vehicles is suggested by Eilon etal, 
and is reproduced here in the form of Equation E. 4.3.; again, 
some of the variables in this expression have been altered, 
so that they should correspond to the notation that has been 
used previously, 

mdýA. 
D 

r+B. a 
0-5. D 

r 
0-5 

c 

(E. 4.3. ) 

where, Dr the sum of the radial distances from 
the depot, 

C the number of stops per vehicle, 
A and B are constants 

and, mdý Total Fleet Mileage per day. 
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Table 4.3. Results of computerised tour-building exercise, 
varying the number of customers to be served. (a=l (square)) 
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It should be emphasised that Total Fleet Mileage in this case, 
11m 

d 
it, represents the distance travelled by the fleet in one day, 

so that this variable should not be confused with the variable 
"m" in Equation E. 3.7. which represents a 5-day distance figure. 
The parameter "C" describes the number of stops made by each 
vehicle per tour, and is invariably an integer, when used 
elsewhere in this thesis; however, Eilon etal describe their 
equivalent variable as, 

it the average value of the maximum 
nu*m*ý; r of customers that can be 
supplied on one route ............ 

not specifying whether the constraint determining what this 
maximum number of deliveries may be is a function of vehicle- 
capacity or some time factor. Nevertheless, this variable is 
merely the discrete equivalent of the integer "C", or, 

P 

n 

(E. 4.4. ) 

where, P= the total number of customers 
to be served. 

The key independent variable in Equation E. 4.4. is D 
r' which 

represents the sum of the distances of all the customer-locations 
in the delivery-area from the depot; Eilon et al's major research- 
objective is to examine the relationships between this 
variable, Total Fleet Mileage and the number of stops per 
vehicle-tour. An additional objective is to assess the effect 
of the centrality of the depot's location within the delivery- 
area on the value of "m d it, and Eilon et al's findings on this 
subject are outlined in reference (1). The value of the 
constants "A" and "B", when the depot is centrally-located, 
are empirically found to be 1-8 and 1-1 respectively; 
Equation 4.3. therefore becomes, 

md= 
1-8. D 

r+ 1-1. a 
0-5. D 

r 
0-5 (E. 4.5. ) 

c 

It is quite valid to compare the estimates of fleet mileage 
calculated from Equations 4.5. and 4.2., since Eilonet al 
make the same key assumptions, described above, of a square 
delivery-area, a set of randomly-located customers and wedge- 
shaped, non-overlapping vehicle-tours. The aspect in which 
Eilon etal's estimates differ is in the algorithm employed 
to generate travelling-salesman tours - rather than rely on 
manual tour-building or the Savings Method, a "3-Optimal" 

scheduling algorithm is used. A fuller description of this 
algorithm, along with a description of the Principle of 
r-Optimality, also appears in Eilon (1), but it is sufficient 
here to note that this method involves the generation of an 
initial feasible route through a given set of points, followed 



-93- 

by a reduction in the length of this tour by replacing 3 of 
the existing links with 3 alternative links, (Eilon etJ). 

Estimates derived from Equation E. 4.5. are presented in 
Table 4.2., alongside the figures produced using both 
manually-constructed and computer-generated tours. When 
making calculations from Equation E. 4.5., the value of Dr was 
based on a finding from the results of the entire computerised 
tour-building'exercise, this being that the average distance 
of all customer-locations from a centrally-located depot in 
a square delivery-area is 0-36478 when a=1; Dr may be readily 
calculated by multiplying this figure by the number of customers 
to be served. 

The three sets of estimates contained in Table 4.2. are 
very similar, and this is re-emphasised by Figure 4.7., which 
shows a graph of the three corresponding distributions. One 
interesting feature of Figure 4.7. is that the estimates 
given by E. 4.5. tend to be less than those derived by simulation 
for lower values of n and higher for larger fleets, so that 
the line on the graph referring to Eilon etal's figures has a 
slightly steeper slope. This phenomenon was also found when 
estimates using the same equation were compared with the 
results of computer simulations with 20, and then 100, 
customers. 

Clearly, a major advantage of using Eilon et al's equation 
as opposed to the expression of E. 4.2. is that the former 
expression may be applied to situations -involving any number 
of customers, the latter referring solely to the problem of 
delivering to 50 locations. The following section therefore 
describes the development of a formula for calculating Total 
Fleet Mileage that takes account of both changes in the size 
of the fleet of vehicles employed and variations in the 
number of customers served, by expressing tour-distance as a 
function of both "n" and "C". 

4.3. The Development of a Formula for Estimating the Total 

Distance Travelled to Serve any Number of Customers 

Throughout this section it will be shown that the total 
distance travelled by a fleet of vehicles is a function, not 
only of the number of vehicles employed in the fleet, but 
also the total number of locations that are to be visited; 
it has already been pointed out that, because of the influence 
of the latter, Equation E. 4.2., on its own, is not an 
adequate tool for estimating Total Fleet Mileage. What is 
important, here, is the combination of the variables n&P to 
determine the number of trips, C, which must be made by each 
vehicle. 

The fresh aspect of the following discussion is the 
introduction of a distinction between the two components of a 
travelling-salesman vehicle-tour: "Stem Distance" and "Delivery 
Distance". This dichotomy is analogous to Daganzo's 
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distinction between "Line-Haul" an-d. "Detour Distance", referred 
to earlier in this chapter and illustrated in Figure 4.4., 

which he uses to differentiate between the separation of a 
sub-region or cluster of customers from the depot, and the 
total mileage travelled within that sub-region, (Daganzo, 1982). 
Stem Distance and Delivery Distance differ from the concepts 
defined by Daganzo only in as much as they refer to parts of 
a vehicle-tour that serves customers located at any distance 
from the depot; Stem Distance is the sum of the distances 
from the depot of the first and last customers to be served 
in each tour, whilst Delivery Distance is the distance 
required for the vehicle to travel from the first customer to 
the last and is thus directly equivalent to "Detour Distance". 
Both of these components of a vehicle tour are affected by 
the number of locations that a vehicle must visit, but in 
different ways; for this reason, Stem Distance and Delivery 
Distance will be discussed separately. 

4.3.1. Stem Distance 

Stem Distance accounts for a significant proportion of 
a vehicle-fleet's Total Mileage, since each individual vehicle 
has to make two "stem journeys" each day at the beginning and 
end of every delivery-round. Obviously, the importance of 
Stem Distance relative to Delivery Distance depends on the 
size of the vehicle-fleet, since Total Stem Distance is directly 
related to n; what is less clear is the relationship between 
n and Stem Distance per Vehicle! This depends greatly upon 
the method used for constructing travelling-salesman tours, 
since the choice of algorithm will directly influence which 
customers are likely to be visited first and last in each 
route. 

For example, one method of routing might be to begin a 
vehicle-tour at the nearest location to the depot, and then 
continue to include in the tour the next-nearest location 
until the constraint on the length of a working-day demands 
that the vehicle should return to the depot. Using this crude 
technique, the "stem journey" to the first customer will 
always be relatively short - for as long as the locations 
closest to the depot remain available - but the distance from 
the last customer-location on the route to the depot would 
be more or less random! 

In the most simple situation, in which it can be assumed 
that it is purely a random process as to which customers link 
directly to the depot, then Stem Distance may be estimated 
using the parameter Dr, which has been defined previously in 
this chapter as the average distance of all customer locations 
from the depot. In this case, Stem Distance per vehicle is 
approximately 2*Dr, so that Total Stem Distance for the fleet 
may be calculated as n(2 Dr) The value of D is simply a 
function of the size of 

ýhe delivery-area, alfhough it is 
necessary to. point out that delivery-area shape may also 
have an influence on this parameter. 
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From all of the computerised tour-building exercises 
conducted in order to produce the data on which this thesis is 
based, it was found that the average value of D for a square 

if if r delivery-area, whose sides are each a units in length, is 

approximately 0-3648a units, whilst the average Dr value of a 
circular zone which si "a" in diameter is approximately 0-3315a. 
The main reason for the discrepancy in these two figures is 
the fact that the square zone does, of course, cover a larger 

area. The figures are also both rather below Daganzo's 
estimate that D in a square zone is roughly 0-383a, 
(Daganzo, 1982)1 

However, the parameter Dr has limited relevance to this 

section, since, in the real world, customers visited first and 
last by each vehicle will not be at random distances from the 
depot; it is more likely that customer locations directly 

connected to the depot in actual vehicle tours, whether these 
tours are constructed manually or by computer, will be located 

rather closer to the depot than Dr. Furthermore, the computer 
program that is used here to contruct travelling-salesman 
tours is based on the Savings Method, an algorithm whose 
solution tend to begin and end with points that are located 

close to the depot; the reason for this is evident from the 

savings formula, reproduced here as Equation E. 4.6., which 
calculates the distance that is saved by linking a pair of 
locations in the same tour rather than visiting them both 

separately, 

S= a+b-x (E. 4.6. ) 

where, S= "savings value" of linking a pair of 
points, 

x= the distance separating the two points 
in question, 

and, a&b are the respective distances of the 
two points from the depot. 

The Savings Method involves the linking of pairs of customer- 
locations to form vehicle-tours, starting with the pair having 

the highest savings value and continuing to connect pairs of 
points in descending order of savings value. This procedure 
continues until either all customers requiring a delivery are 
included in one large vehicle-tour, or time or capacity 
contraints dictate that a tour may include no more locations. 
It is clear from Equation E. 4.6. that pairs of locations far 

away from the depot will become connected before less remote 
pairs that are the same distance apart, so that points located 

closest to the depot are most likely to be linked directly to 
it. For this reason, Stem Distance will always tend to be 
less than D 

r 
Even when employing the Savings algorithm, Total Stem 

Distance will also very according to the particular problem 
formulation and the idiosyncrasies of the method used. For 
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instance, in this chapter, when the size of the fleet, n, is 
greater than 1, Total Fleet Mileage is calculated by generating 
a random set of P/n co-ordinates within a segment whose angle 
is 360/n degrees at the depot, and then multiplying all 
distances by n. In this case, Total-Stem Distance is most 
often the sum of the distances from the depot of the two 
locations that are closest to this depot, multiplied by n. 
However, if n tours were built, from P customer-locations 
distributed throughout the entire delivery-area, then a 
different figure for Total Stem Distance would result; this is 
because customers that are located further and further away 
from the depot would be at the start and/or finish of a 
vehicle-tour. For example, if 50 customers are to be served 
by a fleet of 10 vehicles, then even assuming that it is 
always the least remote locations that link directly to the 
depot, the average length of the 20 stem-journeys made each 
day will not be the same as the corresponding figure derived 
by the method that is actually used in this analysis, (as 
described previously). 

It may be concluded, therefore, -that, using the Savings 
Method to construct hypothetical vehicle-tours, the parameter 
Dr can not be emplpyed-ýasan adequate estimate of Stem 
Distance; since it is by no means guaranteed that this 
algorithm will always link the nearest locations directly to 
the depot in every tour, the most satisfactory way to investigate 
the nature of Stem Distance is to do so by simulation. 

Because of the nature of the Savings Method, it is not 
difficult to isolate the stem-journey component of Total Fleet 
Mileage once a program for constructing travelling-salesman 
tours has been created. Having generated a set of P randomly- 
scattered points, (SEE Figure 4.8. for a detailed summary of 
the procedure used), the program calculates Total Fleet 
Mileage as being equal to (2. P. D 

r 
); in other words, it is 

initially assumed that all customers are served by a single 
vehicle that returns to the depot after visiting each location, 
so that Total Distance is equal to Stem Distance and Delivery 
Distance is zero. When the two locations with the highest 
savings value are connected to form the first tour, the distance 
that is thus saved, (ie. the savings value associated with 
this pair of locations), is subtracted from the existing 
figure for Total Fleet Mileage, (ie. from 2. P. D 

r 
). This 

process continues until all customer-locations are combined 
in a continuous tour, at which point Delivery Distance is the 
sum of all the savings values that are subtracted from the 
original 2. P. D 

r 
figure; Stem Distance must therefore represent 

the difference between Delivery Distance and the figure that 
is eventually calculated for Total Distance. Overall figures 
for Stem, Delivery and Total Distance, as fleet-size increases, 
are presented in Table 4.4. and illustrated by Figure 4.9., 
the major assumptions here being that the delivery-area is a 
square of dimensions Ix1, and that P=100. This graph 
emphasises the importance of Stem Distance as a component of 
Total Fleet Mileage, since Delivery Distance is virtually 
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constant as n changes. The flatness of the Delivery Distance 
curve is, to some extent, a reflection of the. particular method 
employed here to generate tours; if an alternative method were 
used that involved the building of n tours to serve P customers 
within the entire "a x a" delivery-area, it would be reasonable 
to expect that Delivery Distance would decrease slightly as 
fleet size increased, because the number of stem journeys would 
rise at the expense of the number of links 

" 
between customer- 

locations. However, using the current method of building tours 
to serve C customers in a delivery zone 1/n of the size of the 
larger area, Total Delivery Distance remains virtually constant, 
as Figure 4.9. shows. 

The growing dominance of Stem Distance over Delivery 
Distance as fleet size increases is reemphasised by Figure 
4.10. and Table 4.5., which show Stem Distance as a percentage 
of Total Distance. 

Because of the particular method used to produce the 
figures contained in Table 4.4., it is perhaps more useful to 
examine distances per vehicle trip, since all estimates of 
distance for the Eotal fleet here are merely figures per 
vehicle multiplied by n; figures for distances per vehicle-trip 
are presented in Table 4.6. and plotted together in Figure 4.11.. 
What is interesting in this graph is the way in which Total 
Distance per vehicle is disaggregated in terms of both Stem 
and Delivery Distance, since Stem Distance per vehicle 
increases with fleet-size, whilst, at the same time, Delivery 
Distance actually declines. In other words, although the 
rather linear relationship between Total Fleet Mileage and 
fleet size shown in Figure 4.9. tends to suggest that Total 
Distance increases rather uniformly as n is increased, Figure 
4.11. indicates that the processes affecting Fleet Mileage are 
far more complex, since Stem Distance and Delivery Distance 
are influenced by changes in n in different ways. 

To complicate the situation further, with a fixed 
population of customers to visit - in this case, P is fixed 
at 100 - an increase in the number of vehicles used affects 
distances both by reducing the size of the area in which each 
vehicle must operate and by decreasing the number of locations 
that each vehicle must visit. 

To examine these two processes in turn, in terms of the 
way in which they affect Stem Distance first of all, it would 
seem reasonable to hypothesise that the width, or "slenderness". 
of a vehicle's delivery-sector should not, on its own, be 
expected to significantly change Stem Distance. This is borne 
out by the figures in Table 4.7., (SEE also Figure 4.12. ), 
figures that were obtained by varying the number of vehicles 
used, and thus changing the angle of each vehicle's delivery- 
segment, whilst keeping the number of locations visited in 
each round-trip, C, constant. This graph suggests that there 
is, indeed, no effect on Stem Distance per vehicle as a result 
of changes in n itself. 
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Figure 4.9. Disaggregated distance figures. (P=100, a=l (square)) 
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It should be noted, here, that Figure 4.12. presents results 
that were obtained using a circular area. This is because of 
the distorting effect that a square area might have on results 
when n is a key parameter. It is sufficient here to refer to 
Figures 4.13.1. and 4.13.2., which compare the relationship 
between the parameter Dr and n for both a square and a 
circular delivery-area, (SEE also Table 4.8. ). These figures 
clearly show that, with a square delivery-area, the average 
distance of all customer-co-ordinates from the depot increases 
substantially for low values of n, whereas the corresponding 
Dr figures with a circular delivery-area approximate the 
average value of 0-33155, regardless of fleet-size. The 
inconsistency shown in Figure 4.13.1. is attributable to the 
corners of the axa square, which are excluded when a circle 
of diameter a is used instead; as it is reasonable to expect 
Stem Distances to be distorted in a similar fashio when n is 
small, all subsequent results of simulation discussed in this 
chapter are founded on the assumption of a circular area. 

Having established that fleet-size does not affect Stem 
Distance per vehicle by reducing the size of the delivery- 
sector, (SEE Figure 4.12. ), the next step in the analysis is 
to explore the extent to which n does so , 

indirectLL by 
changing the number of locations visited by each vehicle. 
This was achieved in similar fashi-o-n,, by changing the value of 
C whilst holding the size of the delivery-sector constant; 
Figure 4.14. graphs the resulting Stem Distance per vehicle 
figures, and these are presented in Table 4.9.. Notice, here, 
that Stem Distance per vehicle when C=l is recorded as being 
0-663. This figure is based not on the results of a series 
of simulation trials, but on the fact that, in the hypothetical 
situation of a vehicle having only one location to visit, 
Delivery Distance per vehicle is zero, whilst Stem Distance 
per vehicle is simply twice the value of Dr; the figure of 
0-663 in Table 4.9. is therefore derived by multiplying 
0-33155 by 2. 

In this case, the value of n is 20, so that the angle of 
the delivery-sector at the depot is 18 degrees, although 
similar experiments, using different values of n, confirmed 
the earlier finding that fleet-size has no direct influence 
on Stem Distance per vehicle, as almost the same curve as that 
shown in Figure 4.14. was produced each time. An example of 
this is provided by Figure 4.15., which shows the corresponding 
results when n=4. 

The general conclusion that may be drawn from Figures 
4.12., 4.14., and 4.15. is that, regardless of the delivery- 

sector's size, it is solely the number of stops that must be 

made by a vehicle that determines how far from the depot the 
nearest customers will be located, (accepting that it is to 
and from these nearest locations that stem journeys will be 
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Figure 4.12. Stem Distance per vehicle 
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Figure 4.14. Stem Distance per vehicle 
with n fixed. (n=20, a=l (circle)). 
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made). This finding is, of course, perfectly logical, since, 
if a depot is looked upon as being just one of (C+l) points 
located in a circle, which just happens to occupy a central 
position, then Stem Distance is simply a reflettion-ofthe 
average spacing of the (C+l) points, which, in-turn, is a 
direct function of the density of these points. Obviously, as 
(C+1) increases, so the density of the points within the 
circle will increase and Stem Distance will be reduced. The 

evidence presented here suggests that the implications for 
Stem Distance will be the same whether these points are 
distributed throughout the whole of the delivery-area or 
within a limited section, (although the same would, of course, 
not be true for Delivery Distance per vehicle). Figure 4.16. 
provides a numerical illustration of this explanation; Stem 
Distance in both Figure 4.16.1. and 4.16.2., is identical, 
since the two distributions are the same both in terms of the 
distance of each point from the depot and, more importantly, 
in terms of the probability of such a distribution of points 
being produced by a random co-ordinate generator. (This is 
because,, during the computerised construction of tours, random 
co-ordinates are actually generated for the whole delivery-area, 
and when the value of n causes attention to be focused upon a 
smaller segment of this area, all of those points which lie 
outside this segment are rejected). 

The main implication of the above findings is that Stem 
Distance per vehicle may be estimated purely on the basis of 
the number of customers served in each vehicle-tour, to which 
it is inversely related; a summary of the relationship of C 
to the other key parameters involved here is provided by 
Figure 4.17.. 

Obtaining an expression for Stem Distance per vehicle as 
a function of C may be readily achieved by Regression Analysis. 
This analysis was carried out on the data contained in Table 
4.9.; Figure 4.14. reveals a curved distribution when these 
figures are plotted.. on. a graph, and so a semi-logarithmic 
transformation was performed on them in order to make it 
possible to describe the relationship between Stem Distance 
per vehicle and C with a linear regression-line. The resulting 
graph is shown as Figure 4.19., and the relevant data is 
contained in Table 4.10.. After Regression Analysis on this 
partially transformed data, the following expressions were 
derived, 

Stem Distance per vehicle = a(0-7285 - 0-3418 log. C) 
(E. 4.7. ) 

and, therefore, (R 2= 0-9059) 

Total Stem Distance = n. a(0-7285 - 0-3418 log. C) 

where a= the diameter of the delivery-area. 

(E. 4.8. ) 

Table 4.11. andý Figure 4.18. compare the predicted values of 
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Figure 4.16. Illustration of the effect of reducing vehicle- 

sector size on Stem Distance and Delivery Distance per vehicle 
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Figure 4.18. SEMI-LOGARITHMIC REGRESSION 
Stem Distance per Vehicle / C. 
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Stem Distance per vehicle, as calculated from Equation E. 4.7., 
with the results of simulations from which this equation was 
developed; on the evidence of Figure 4.18., it would seem that 
the regression-line described by Equation E. 4.7. is an 
accurate enough representation of observed Stem Distances. 

The derivation of Equations E. 4.7. and E. 4.8. is 
relatively straightforward, owing to the fact that it has been 
established that only the number of points visited per vehicle 
directly affects the value of Stem Distance per tour. However, 
the development of an expression for Delivery Distance, the 
other component of Total Fleet Mileage, is more complex, since 
it is influenced by both the number of stops made per vehicle 
and the size of the vehicle's delivery-zone; the following 
section sets out to quantify the effect of both of these 
parameters. 

4.3.2. Delivery Distance 

The, simple definition of Delivery Distance is the distance 
that is travelled by each vehicle between the first and last 
customer to be served in each tour; in other words, Total 
Delivery Distance is Total Fleet Mileage less Total Stem 
Distance. It has been noted in the previous section that the 
effect of increasing the value of C, on its own, is to reduce 
Stem Distance per vehicle, and thus, when n is constant, to 
reduce Total Stem Distance. It must be concluded, therefore, 
that it is changes in Delivery Distance that are mainly 
responsible for the differences in Total Fleet Mileage brought 
about by changes in P that are observed in the data contained 
in Table 4.3.. This is quite plausible, since it would seem 
to naturally follow that an increase in the number of customer- 
locations to be visited will lead to an increase in the total 
distance travelled between stops. Close examination of the 
results of a separate series of computer-based routing 
exercises, however, reveals that there are several factors 
that influence Total Delivery Distance. 

To focus the discussion, once again, on i-ndivddua-1 vehicle- 
tours, there are three main influences acting on Delivery 
Distance per vehicle when the total population of customers to 
be served is fixed. Firstly, as the number of vehicles employed 
increases, the average Delivery Distance required for each 
vehicle-tour will obviously be reduced, because each one will 
involve fewer stops, (ie. C will decrease). A further 
implication of changes in C involves the way in which this 
parameter affects the relationship between Stem Distance and 
Delivery Distance; it has already been established that 
average Stem Distance per vehicle is inversely related to C, 
and so an increase in the distance between the depot and the 
two customer-locations that are linked directly to it would 
mean that the remaining space in the vehicle's delivery- 
segment, within which all the remaining customers requiring a 
visit are located, will be reduced as a result. Figure 4.20. 
provides a numerical illustration of the balance between what 
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might be termed "Stem Space" and "Delivery Space", two areas 
of a vehicle's delivery-sector that may be distinguished by a 
boundary-line whose distance from the depot corresponds to 
average Stem Distance per vehicle. In the example of Figure 
4.20., n is fixed at 10, (so that the angle of each vehicle's 
delivery sector is 36 degrees, at the depot), and in the two 
instances shown here, the value of C is 10 and 4, respectively. 
Using Equation E. 4.7., and assuming that the diameter of the 
circular delivery-area is 1, Stem Distance may be estimated as 
being approximately 0-52 when C=4, and roughly 0-39 when C=10; 
as the diagram shows, the space labelled "Delivery Space" is 
larger for the higher value of C. 

The space in which deliveries are made is also reduced 
in response to an increase in n due to the reduction in the 
overall size of each vehicle's delivery-area. The combined 
effect of diminishing delivery-space and the reduction in 
the nuinberýoflocations to be visited within this space, both 
brought about by an increase in fleet-size, is to produce the 
Delivery Distance per vehicle curve shown in Figure 4.1l.. 

In order to make an accurate estimate of Delivery Distance, 
it is necessary to disaggregate the vehicle-tour even further, 
so that attention is focused upon the distance between 
consecutive stops on a tour. The "average length of inter- 
nodal links", as this distance may be termed, (denoted as i 
here), is obviously related to such measures as density and 
the mean distance to each customer's nearest neighbour, 
although there is an important distinction to be made between 
i and the latter. 

In the very simple case where each vehicle visits only 
two customer-locations, (so that C=2), i will be equal to the 
Average Distance to a Nearest Neighbour, but this is clearly 
not. the case when C is large, since not all points in a tour 
will be linked directly to their nearest neighbour; furthermore, 
although every location has, by definition, only one nearest 
neighbour, all bar those at the beginning or end of a tour 
will be linked to two other locations! Figure 4.21. illustrates 
this point by means of a simple tour through a set of six 
locations that are arranged in two clusters of three; the 
points of each cluster are equidistant from one another, - so 
that each set of three forms an equilateral triangle. 
Although the distance to each point's neare-s-t neighbour is 
the same in each case, and despite the fact that every point 
is linked in the tour to a nearest neighbour, the average 
length of the 5 inter-nodal links in this example, i, is 
clearly greater than the average nearest neighbour distance, 
because of the space between the clusters. The Average 
Distance to Nearest Neighbour parameter can more usefully be 
regarded as the minimum value of i, and will, in turn, be a 
function of both the density of points within each vehicle's 
delivery-segment and, as Figure 4.21. indicates, the degree 
of clustering of the points. 
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Figure 4.20. "Stem Space" and "Delivery Space". (a=l) 
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Although it is true that i will always bear some 
relationship to indicants such as density and the average 
spacing of points, the value of i will invariably differ from 
these other measurements because it is a product of the tour- 
building process, and not merely a characteristic of a given 
distribution of points. For this reason, i will also be 
influenced by the choice of algorithm to be used in the 
construction of tours. If the average length of inter-nodal 
links were estimated on the basis of density or Nearest 
Neighbour data, then these estimates would ignore the fact 
that any tour-building algorithm is constrained to eliminate 
"sub-tours" when it links points together, in order to define 
a continuous route through a given set of points. This may 
be illustrated by referring once again to Figure 4.21.; if 
linkages were made based purely on the Nearest Neighbour 
criterion, then the final "solution" to this particular 
routing problem would be two separate sub-tours each consisting 
of three locations. The necessary addition of a constraint to 
avoid the formation of such sub-tours immediately causes the 
value ofýi to exceed the Average Distance to Nearest Neighbour 
figure of the set of points, and the difference between these 
two parameters will increase as the distribution of points 
becomes more clustered. Obviously, when a tour-building 
exercise involving the generation of random co-ordinates is 
repeated many times, as is the case here, it is to be expected 
that point distributions will show a degree of clustering on 
at least some occasions; therefore, the average value of i 
over many iterations of a Travelling-Salesman-type program 
will certainly significantly exceed density and other 
density-related parameters, which will be constant for each 
repetition. 

For these reasons, it is far more satisfactory to base 
estimates of Delivery Distance on i than on indicants of 
overall density or dispersal of points. 

The calculation of i is not merely Total Delivery Distance 
divided by the total number of customers served, as the 
number ofinter-nodal links making up a fleet's total tour- 
distance declines as n increases, due to the rise in the 
total number of stem-journeys, (SEETable 4.12. ). In fact, 
for each individual vehicle-tour, the number of inter-nodal 
linkages is always one less than C, so that i may be calculated 
as, 

Total Fleet Mileage - Total Stem Distance 
:L= 

n(C-1) 

The term (C-1) is, of course, always an integer; although this 
integer effect certainly has an effect on the content of Table 
4.12., particularly when n is small, the tendency for the 
total number of inter-nodal links to decline as n increases is 
attributable to the fact that more and more potential links 
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between customer-locations are replaced by return journeys to 
the depot. 

Having identified i as being the smallest unit to which 
a set of vehicle-tours may be disaggregated, and having 

established Equation E. 4.9. as a means of calculating the 
value of this parameter, the next stage of the analysis involves 
the relationship between i and both n and C, a relationship 
that may be used as the basis of a model for estimating Total 
Delivery Distance. 

Evidence of the way in which i varies with n is shown 
in Table 4.13., and displayed graphically in Figure 4.22.. 
These figures show that there's a definite trend for i to 
increase as n increases; this is, perhaps, surprising, since 
both density and Average Distance to Nearest Neighbour are 
not at all affected by fleet-size! The reason for this 
tendency is that, as n increases and causes both a decrease 
in the size of each vehicle's delivery-sector and a 
reduction in the number of points that each vehicle must 
visit, the value of (C-1) is reduced to a greater extent 
than the average Delivery Distance within the sector. In 
terms of Equation E. 4.10., 

Delivery Distance per vehicle (E. 4.10. ) 

(C-1) 

which is simply an alternative way of expressing Equation 
E. 4.9., a reduction of fleet-size leads to a greater decrease 
in the denominator of this expression than in the numerator, 
so that the overall effect of enlarging the fleet is to 
increase the value of i. This algebraic explanation is 

supported by Figure 4.23., which shows that, for smaller 
values of n, the slope of the (C-1) curve is, in fact, 

steeper than that of the Delivery Distance per vehicle curve. 

The relative impact of the main forces that influence the 
behaviour of i- changes in the size of each vehicle's 
delivery-sector and in the number of locations that are visited 
in each tour - may be examined by once again observing the 
effect of one of these parameters on i whilst the other is 
held constant, (and vice versa). Figure 4.24., for instance, 

shows the relationship between i and n with C fixed at 20 

stops per vehicle. The fact that the graph in Figure 4.24. 
illustrates a distinctly curved relationship is interesting, 
in view of the fact that i would be expected to be closely 
related to density, §ince the relationship of density to 
fleet-size, when C is fixed, is linear! The validity of the 
latter assertion-maybe demonstrated algebraically, using the 
simple example of a circular delivery-area whose radius is 

equal to 1 unit of distance; its area, 
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Figure 4.22. Relationship between i and Fleet Size 
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is therefore, 

7rr 

7r 

the area of each vehicle-segment, 
7r 

n 
and the density of points within this segment, 

c 
71 

This may be written as, 

Density of segment - 
C. 7. n. 

22 

(E. 4.11 .) 

and, as C is fixed at 20 in this case, the density of both the 
entire delivery-area and each individual segment is 6! 3636n. 
The linearity of the density - fleet-size relationship is to 
be expected, since the density of a fixed set of points will 
obviously double if the area in which they are distributed 
is reduced by half! 

The contrasting curved nature of the i- fleet size 
relationship, as shown in Figure 4.24., however, may be 
transformed into a more linear form using logarithms, and 
the graph resulting from this logarithmic transformation 
appears as Figure 4.25.. Using the same technique as is used 
to derive an expression for Stem Distance, described earlier 
in this chapter, a regression-line may be fitted to this 
distribution; the equation for this line is, 

Log. i = -0-1854 - 0-382 Log. n (E. 4.12. ) 

so that, when C=20 and a=l, 

i= 0-15325n- 0-382 (E. 4.13. ) 

The predicted values for i derived from this expression are 
compared with those observed empirically in Figure 4.26. and 
Table 4.14., and it is apparent from this table that Equation 
4.13. tends to under-estimate i for values of n greater than 
10 and less than 4, and to provide over-estimates for values 
of n within this range. The residuals of this regression 
analysis therefore display a degree of autocorrelation, -a fact 
which should be taken into account when this expression is 
used as part of a model for estimating fleet distances. 
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Figure 4.24. Relationship between i and 
with 0 fixed. (C=20, c=l(clrcle)). 
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However, these residuals are mainly very small, which suggests 
that Equation E. 4.13. does, nevertheless, provide a very good 
approximation of the i-values that were observed by simulation, 
and so may be accepted as an adequate tool for predictive 
purposes. 

The same procedure was carried out using fixed values of 
C of first 15 and 10; the resulting expressions for i as a 
function of fleet-size are respectively, 

i= 0-16904n- 0-3615 (E. 4.14. ) 

and, 

i= 0-20963n-0-3573 (E. 4.15. ) 

The distributions of observed and predicted values of i are 
plotted in Figure 4.27. when C is fixed at 15, (with the 
corresponding figures presented in Table 4.15. ), and in 
Figure 4'. 28. when C=10, (SEE also Table 4.16. ). Systematic 
correlation of residuals is again in evidence in both cases, 
but, again, Figures 4.27. and 4.28. suggest that the predicted 
values of i closely approximate those derived from simulations. 

Comparing Equations E. 4.13., E. 4.14. and E. 4.15., it is 
noticeable that the coefficient of n in each case is similar, 
although it is to be expected that the constant in each 
equation should increase as the value of C is reduced, (for 
reasons that are explained earlier in this Section). Taking 
these three equations together, it is possible to perform a 
Multiple Regression Analysis on all three, and thus derive 
an expression for i with both n and C variable; the resulting 
equation is, 

i= 0-7379. n- 
0-3638 C- 0-5394 (E. 4.16. ) 

(R 2=0 

-95) 

The coefficient of C here, -0-5394, is very similar to that 
found for the relationship between i and C with n held 
constant at 20, (so that different-sized sets of customer- 
locations were generated within an 18-degree segment). The 
full expression for i arising from these simulations is, 

i= (0-27146 . C- 0-5672 (E. 4.17. ) 

Figure 4.29., which includes both the observed and predicted 
values of i as C changes, (SEE also Table 4.17. ), again shows 
that there is a close association between the distribution of 
points plotted and the regression-line fitted to it, although 
the largest residuals are for small values of C; this reflects 
the fact that inconsistences in the empirical results are 
more likely to occur as the number of points generated for 
each iteration of the route-buiiding exercise decreaseý;. 
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But in order to test the effectiveness of Equation E. 4.16. 
as a tool for estimating the value of i, given n and C, it is 
obviously necessary to compare predictions made from this 
equation with observed i-values derived with both n and C 
variable. Such a comparison is provided by Table 4.18., whose 
figures are based on the assumption that P is fixed at 100, 
and a, the diameter of the circular delivery-area, is 1. In 
the corresponding diagram, Figure 4.30., the predicted values 
of i do not form a smooth curve, and appear, instead as a 
series of discrete points on the graph; this is purely 
because of the effect of C being an integer variable. 

From Equation E. 4.10., it may be deduced, 

Delivery Distance =i [n(C-1)] (E. 4.18. ) 

and so the final step required to produce a formula for 
Delivery Distance as a function of n and C is to combine 
Equations E. 4.18. and E. 4.16., so that, 

0-3638 -0-5394 Total Delivery Distance = a[(0-7379. n C )(n(C-1))] 

. *. Total Delivery Distance = a[(O. -7379. n 
0-6362. C 0-5394 )(C-1)] 

(E. 4.19. ) 

4.3.3. An expression for Total Fleet Mileage as a Function 

of n and C 

Having developed equations for both Stem Distance and 
Delivery Distance as a function of n and C in preceding sections, 
the task of deriving an expression for estimating Total Fleet 
Mileage now only requires the simultaneous use of Equations 
E. 4.8. and E. 4.9. to produce the following expression, 

Total Fleet Mileage 

= a[((0-7379. n 
0-6362. C- 0-5394 )(C-1)) 

(n(O-802147 - 0-4115 log. CM 
(E. 4.20. ) 

Table 4.19. presents a full list of both observed and predicted 
values of Total Distance, Stem Distance and Delivery Distance, 
when P is 100 and the diameter of the circular delivery-area 
is 1, and these figures are displayed graphically in Figures 
4.31.1., 4.31.2. and 4.31.3.. Despite the fact that the 
regression-lines shown in figures 4.27., 4.28. and 4.29. do 
not, as the residuals indicate, exactly fit the distributions 
that they describe, Figure 4.31. nevertheless suggests that 
the equation for Total Fleet Mileage, E. 4.20., that is derived 
directly from the associated regression equations, appears to 
serve as an adequate predictive tool. The two regression 
analyses that go to make up Equation E. 4.20., Equations E. 4.7. 
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Figure 4.29. Observed and predicted i 
with n fixed. (n=20, a=l (circle)). 
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Figure 4.30. Observed and predicted i 
with n and 0 variable. (P=100, a=l)). 
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Figure 4.31.1. Stem Distance 
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and E. 4.16., produced R' values of 0-9389 and 0-95 respectively, 
which confirms that the variables n and C account for nearly 
all of the variation in the distances observed by simulation. 

4.4. An Expression for Total Fleet Mileage as a Function of 

P nnd k- 

The previous sections in this chapter have concentrated 
on the combined effect on Total Fleet Mileage of fleet-size 
and the average number of stops made in each vehicle-tour. 
What these two parameters have in common is that they might 
both be described as "decision variables"; given a fixed 
population of customers, P, the value of C will be a direct 
function of the number of vehicles used. 

In a real world situation, it is most often the case that 
an operator wants to estimate the cost of a distribution 
operation on the basis of "external" constraints imposed by 
the characteristics of both the population of customers that 
are to be served and the environment in which they are situated. 
This change of emphasis may be accommodated by manipulating 
Equation E. 4.20. so that Total Fleet Mileage is expressed as 
a function of the parameters P and k, where k is the maximum 
value of C; this maximum may be determined either by constraints 
on the amount of time available for making deliveries, or by 
constraints related to vehicle carrying-capacity. Whichever 
is the case, it is realistic to assume that the number of 
stops made in each vehicle-trip will always, in practice, be 
at, or near, the maximum permissible, so that, for the 
purposes of the present discussion, C=k. Since fleet-size 
may be expressed as, 

P 

k 

the variable n may be eliminated from Equation E. 4.20., so 
that, 
TFM = a[(0-7379 

IQ 0-6362. k- 0-5394 )(k-1)] 

(0-802147 - 0-4115 log. k)] 

k 

This may be rewritten as, 

TFM = a[((0-7379. pO. 6362. k-1-1756)(k-1)I 
(E. 4.21 . 

+[ p (0-802147 - 0-4115 log. k))] 

k 



-122- 

Total Fleet Mileage is now estimated purely as a function 
of area-size, the number of customers to be served and the 
maximum number of delivery-drops that may be made per vehicle- 
tour. Because these three factors are external conditions 
that are imposed upon a system, it may seem more logical to 
have included this discussion in Part 3; however, since much 
of the research carried out elsewhere relating to the topics 
covered in this chapter tends to utilise such variables, it is 
felt that it is important here to express Total Fleet Mileage 
as a function of P and k, in order to facilitate comparisons 
with alternative formulae which will be discussed in Section 
4.6.. 

A method for estimating the value of k is described in 
Chapter 5, with the effect of the average time spent at each 
location introduced in Chapter 9. 

Tables 4.20. to 4.23., together with Figures 4.32. to 
4.36. , illustrate the ef f ect that the parameters P and k have 
on Total 

' 
Fleet Mileage according to estimates derived from 

Equation E. 4.21.. In Table 4.20., estimates of mileage as a 
function of n and C for selected values of P are included, in 
order to show the extent to which figures calculated from 
Equation E. 4.20. differ from those that are a function of P 
and k. The values of n and C used here are derived by 
assuming that n is always the integer of (P/k), with C the 
consequent discrete value of (P/n). Table 4.20. indicates 
that there is a discrepancy between the two sets of estimates 
produced from these equations when C is substantially less 
than k. An extreme example of the difficulty created when the 
value of P is small, is the hypothetical case in which a 
single customer is served from the depot; in this instance, 
the value of k in Equation E. 4.21. is still taken to be 10, 
whilst C can, in fact, only be 1, and the value of P/k, which 
replaces the term n in E. 4.20., is calculated as 0-1, when it 
is obvious that the number of vehicles used must be an integer 
variable! The result of this anomaly, as Table 4.20. reveals, 
is the absurdity of Delivery Distance being estimated at 0-443 
units, when it is clearly zero when P=l, and the Stem Distance 
estimate is unrealisticly small at 0-0391 units. Equation 
E. 4.21. should therefore be accompanied by the condition that 
it may only be usefully employed when C, and, of course, P, 
are not significantly less than the constraint k, (bearing in 
mind that C is the average number of stops made in each tour). 
This condition is implied in the initial C=k assumption that 
appears in the derivation of Equation E. 4.21., (SEE above). 

Estimates of mileage as a function of P and k in Table 
4.20. are founded on the assumption that (P/k) is a discrete 
variable, despite the fact that the equivalent parameter in 
Equation E. 4.20., n, is clearly an integer; this is so that 
graphs produced from Equation E. 4.21., such as those shown in 
Figure 4.32., represent the true shape of the relationships 
illustrated, without the interference of complicating factors 
such as the effects of integers. If integers are to be 
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Figure 4.32.1. Estimates of Stem Distance, Delivery Distance & Total Distance, 

using E. 4.21., with k fixed. (k=10, a=l (circle)) 
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retained, then the appropriate equation for Total Fleet Mileage 
as a function of P and k, which is again developed from E. 4.20., 
is, 

TFM = [(0.7379. (INT P 0-6362 k-o -5394) (k-1)] 

_k 
0-6362 

+ [INT p )(0-802147 
- 0-4115 log. k)) (E. 4.22. ) 

k 

This is a far more cumbersome expression than E. 4.21., and 
Figure 4.32. indicates that the effect of integers on estimates 
of distance are, in any case, minimal. Furthermore, the 
problems caused by differences between the values of C and k, 
described above, only arise when the total number of customers 
to be served, P, is small -a situation that is unlikely to 
occur with this type of problem in the real world - and so 
there is' good reason to accept Equation E. 4.21. as the most 
appropriate tool for estimating Total Fleet Mileage. 

It is interesting to compare the relationship between 
fleet mileages and P, as shown in Figure 4.32., with 
corresponding relationships involving n, (SEE Figure 4.31. ). 
In both cases, Total Stem Distance rises uniformly, which is 
mainly attributable to the fact that the number of stem- 
journeys is increased by both P and n, although there are 
obvious differences in the shape of the two Delivery Distance 
curves, and also in the effect that Pand n have on 

' 
Total 

Fleet Mileage. Whereas an addition to the number of vehicles 
that are to serve a fixed population of customers makes no 
difference to the Delivery Distance curve, Figure 4.31.2. 
clearly indicates that this component of Total Fleet Mileage 
increases substantially with P; this is to be expected, since 
any increase in the number of locations that are to be visited 
leads to a rise in the total number of between-customer links. 
As both Stem Distance and Delivery Distance increase with P, 
it follows that Total Fleet Mileage also rises; this is 
confirmed by Figure 4.32.. Although the Total Mileage curve 
in Figure 4.31.3. is virtually linear, the corresponding line 
with P as the independent variable is noticeably non-linear; 
this observation is confirmed by Figure 4.33.1., (SEE also 
Table 4.21.1. ), which shows the Marginal Cost, in terms of 
distance, of-adding an -extra cus. tomer--ý-1-oc-a-tiortto-t-he exisiting 
population, P- Figure 4.33.2., for the sake of comparison, 
graphs the marginal cost of adding an extra 

- 
vehicle to the 

fleet whilst P is held constant at 100. In Table 4.21.1., 
the Marginal Cost value is calculated by subtracting the Total 
Fleet Mileage for each value of P from the Total Fleet Mileage 
figure of the next-highest P-value; a similar calculation is 
performed for consecutive n-values in order to arrive at Table 
4.21.2.. 
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Figure 4.33.1. Marginal Cost, in terms of distance travelled, 

as a function of P, with k fixed, using E. 4.21, (a=l (circle)) 
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Figure 4.33.2. is particularly interesting, due to the 
fact that the shape of the Marginal Cost curve shown here is 

completely different to that described in Figure 4.33.1.; 

whereas Marginal Cost is a "U"-shaped function of the number 
of vehicles used, the extra Fleet Mileage required to visit 
one additional customer-location becomes increasingly less 

significant. The "U"-shaped nature of Figure 4.33.2. 's curve 
is not detectable from the seemingly linear Total Fleet Mileage 

curve of Figure 4.31.3.; Figure 4.35., which illustrates the 
shape of Stem Distance, Delivery Distance and Total Fleet 
Mileage curves that are predicted using Equation E. 4.20. in 
the absence of integer effects, does, however, reveal that 
both the Stem Distance and Delivery Distance curves are not 
completely straight, which causes a small bend in the Total 
Distance curve for small values of n. Nevertheless, these 
three curves are virtually identical to the straight lines of 
Figure 4.43., which are drawn using Equation E. 4.27., (SEE 
Section 4.6. for a discussion of this expression). Despite 
this close similarity between the nature of the aggregate 
distance-estimates shown in Figures 4.35. and 4.43., an 
indication of the fundamental differences that exist between 
the respective equations used, along with an explanation of 
the erratic behaviour of the Marginal Cost curves of Figure 
4.33.2., is provided by Figure 4.34.. This graph disaggregates 
the overall Marginal Cost curve derived from Equation E. 4.20., 
to show both the extra Stem Distance and Delivery Distance 
incurred by adding one vehicle to the fleet. Clearly, these 
curves contrast with the corresponding graph that would be 
derived using Equation E. 4.27.; Table 4.28. reveals that the 
Marginal Cost of both Stem Distance and Delivery Distance is 
constant, at approximately 0-66 and zero, respectively. 

It should be stressed that the impact of Equation E. 4.20. 's 
"U"-shaped Marginal Cost curve on predicted Total Fleet 
Mileage is relatively slight, and is, in any case, only 
effective when n is small. Nevertheless, Figure 4.34. draws 
attention to the structural idiosyncrasies of Equation 4.20., 
which are not otherwise apparent from aggregate figures, and 
also serves to further highlight the interaction between Stem 
Distance and Delivery Distance. 

Figure 4.36., (SEE also Table 4.23. ), illustrates the 
way in which the percentage of Total Fleet Mileage that is 
attributable to Stem Distance changes as P increases with k 
fixed at 5 stops, and may be compared with Figure 4.10., 
which shows the corresponding graph when n is the independent 
variable. The two graphs are similar in as much as Stem 
Distance as a percentage of Total Fleet Mileage increases 
with both P and n, but at an ever-decreasing rate. Closer 
examination of the curves, however, reveals that both the 
actual figure for this percentage, and the rate of increase, 
are greater for increasing fleet-size than for an expanding 
population of customers. This is because, whereas an 
addition to the size of the vehicle-fleet increases Stem 
Distance with virtually no change to Delivery Distance, an 
increase in P will lead to an increase in both components of 
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Total Fleet Mileage, (as Ftgures 4.32.1. and 4.32.2. conf irm) . 
Another difference between the two percentage graphs is that 
Figure 4.36. shows a smoother curve than the one plotted in 
Figure 4.10.; this is merely because the figures presented 
in Table 4.23. are estimates obtained directly from Equation 
E. 4.21., whilst those associated with Figure 4.10. are 
observed average distances from computer simulations, (SEE 
Table 4.5. ). 

4.5. The Presence of Variance in the Results of Simulations 

The data on which all distance estimates appearing here 
are founded, are derived from regression analyses that have 
been carried out on figures that are themselves made up of 
the means of many iterations of a simulation program; for this 
reason, the results published here are inev_it-a: b. 1-y associated 
with a certain amount of variance. In other words, each 
predicted value of, say, Total Fleet Mileage, given n and C 
for example, is not a deterministic statement of what distance 
a fleet of vehicles will always travel, given certain stated 
conditions; it is rather an approximation of the mean of a 
range of values within which the Total Mileage of the fleet 
would fall on any one simulation. This is to say that each 
estimate is part of a distribution of values, which has both 
a mean and a Standard Deviation. The shape and range of this 
distribution is important, since the amount of confidence that 
may be placed in an estimate from an equation will decline as 
the spread of values that such an estimate represents widens. 
This type of variance, which may vary as a function of the 
nature of the constraints imposed on the model, is an integral 
part of simulation, and is a result of the generation of 
random numbers; this should not be confused with the variance 
of residuals either side of the regression-line. The latter 
measure rather gives an indication of the "goodness of fit" 
of the regression-line to the distribution that it describes, 
and is quantified by the R2 -value that accompanies each of 
the above equations. This type of variation in the results 
is of less interest, since this error will gradually disappear 
as the number of iterations of the simulation program carried 
out increases. 

What is important is to be able to qualify distance 
estimates with an indication of the extent to which actual 
values will vary either side of what is really a mean figure, 
particularly as it is by no means certain that distance 
figures resulting from simulations will be normally distributed 
about this mean. 

There are various ways of doing this - the following 
description of one such method uses, as an example, the set 
of estimates generated of Stem Distance per Vehicle as a 
function of C; this data has been chosen because it has 
already been shown in Section 4.3. that this measure varies 
only with C, and is therefore independent of n. The shape of 
this relationship is similar to that shown in Figure 4.18., 
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although all figures appearing in this section are based on 
the assumption of a square delivery-area, due to the availa- 
bility of a larger body of data. For the purposes of the 
following numerical example, three values of C are considered, 
these being 5,10 and 20. The distributions of the results of 
all the simulations that contributed to the estimate of Stem 
Distance per Vehicle for each of these C-values, are 
illustrated in Figure 4.37., and the relevant statistics are 
contained in Table 4.22.. The histograms shown here, suggest 
that the actual distance figures produced by simulation are 
more or less normally distributed around the mean value for 
each value of C, although there appears to be a marked 
tendency for the distributions to become increasingly lopsided 
as C increases. This is confirmed by the skewness values 
given in Table 4.22.; although the value for when C=5 is 
virtually zero, the distributions of values when C=10 and 20 
are clearly slightly positively-skewed, indicating thal the 
majority of simulations in each case yielded distance estimates 
that were lower than the sample mean. A Normal Distribution 
would have a skewness coefficient of zero, but the coefficients 
contained in Table 4.22. are not sufficiently greater than 
zero for any serious doubt to be cast on the validity of 
accepting the mean value of each series of simulations as a 
reliable estimate of Stem Distance per Vehicle in each case. 

The statistics for kurtosis, also shown in Table 4.22., 
give some indication of the extent to which the distributions 
"peak". A Normal Distribution has a kurtosis of 3-0, so that 
the distribution plotted in Figure 4.37.1. is rather flatter 
than "Normal", whilst the corresponding histogram for C-values 
of 10 and 20 are shown to be slightly peaked, or "leptokurtic". 
Again, the kurtosis figures displayed in Table 4.22. do not 
diverge sufficiently from those that would be expected with a 
Normal Distribution to cast doubt upon the validity of 
distance-estimates associated with such distributions. 

Perhaps the most useful statistics appearing in Table 4.22. 
are the Standard Deviation figures - Standard Deviation being 
simply the square root of variance - as these provide a good 
indication of the amount of "spread" that exists in the 
original data, either side of an estimate. The Standard 
Deviations of the distributions increase as C decreases; this 
is to be expected, since the likelihood of obtaining an 
it erratic"-result from a single simulation will obviously be 
reduced as the number of. locations visited per vehicle-tour 
is increased. 

When used in conjunction with the mean value of a set of 
simulations, Standard Deviation may enable approximate 
confidence limits to be placed around an estimate, and, at 
the same time, illustrate the way in which variance changes 
for different values of the independent variable. For 
example, given a normally-distributed set of values, 68-2% 
of these will lie within a range of 1-0 Standard Deviations 
either side of the mean; similarly, 95-4% of these will fall 
within 2-0 Standard Deviations of the mean, and 99-7% within 
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Figure 4.37.1. Value-distribution of Stem Distance per vehicle 
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3-0 Standard Deviations. Using these figures, referring again 
to the information contained in Table 4.22., it may be deduced 
that there is a 0-682 probability that the Stem Distance per 
Vehicle figure resulting from any given simulation will have 
a value within one Standard Deviation of the mean; in other 
words, when C=5, this is the probability that any of the 
simulation results, taken at random, will yield a value of 
between 396-06 and 726-94. This calculation may be repeated 
for any value of C, so that confidence limits may be applied 
to a set of estimates of mean values, although it sýould be 
noted here that this is not the same thing as placing 
confidence intervals around a regression-line, as a regression- 
line does not necessarily coincide with the mean of each set 
of simulations. Figure 4.38. shows the results of performing 
this exercise on the three values of C featured in Table 4.22., 
(although it is quite possible to do these calculations for 
any value of the independent variable). The three lines 
linking these three sets of points have been extended to 
illustrate the way in which the range of values defined by 
these limits, which may be fixed to correspond to any chosen 
level of confidence, becomes smaller as C increases. The 
range shown in Figure 4.38. appears to be quite wide, 
particularly as 68-2% is a low level of confidence in relation 
to those that might normally be used in a real world context, 
although it should be pointed out that the probability of the 
result of a given simulation having a particular value within 
such a range increases the closer this value is to the mean. 

It would be unwise to draw too many firm conclusions 
from what is a relatively small sample, here, in terms of 
both the. numberof C-values considered, and the total number 
of simulations involved, (SEE Table 4.22. ). The numerical 
example above rather serves as an illustration of how 
stclitistics such as Skewness, Kurtosis and Standard Deviation 
may be used to test the validity of an estimate that is 
derived from a series of simulation exercises. Such a 
statistical check would, in fact, appear to be quite 
necessary, due to the inevitability of the presence of some 
variance in the results. 

4.6. Comparison of Findings with Work of Other Researchers 

Most of the published work by other researchers that 
relates to the topics dealt with in this chapter, is 
associated with the Continuous Space Modelling approach to 
the analysis of distribution systems; this approach has 
already been described in some detail in Chapter 1. Much of 
the research discussed in this section obtains a substantial 
amount of its data from sources that are described in the 
literature as "empirical" although such information is 
invariably derived by means of computerised simulation rather 
than by direct observation of real-world systems. However, 
there is no evidence of any attention being paid to the 
variance associated with such data. Nevertheless, equations 
for Total Fleet Mileage proposed elsewhere often have much in 
common with those developed earlier in this chapter, in as 
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Figure 4.38. Application of confidence limits to mean value. 
(a=1000) 
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Table 4.22. Dispersion statistics of Stem Distance per vehicle 

as a function of C 

C=5 C=10 C=20 

Mean 561-5 423-4 322-8 

Standard Deviation 165-44 153-25 120-26 

Skewness 0-018 0-515 0-691 

Kurtosis 2-384 3-592 3-289 

Number of observations 93 223 67 
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much as they involve similar parameters, and are often the 
product of a similar approach to the problem. 

For example, the formula that Daganzo proposes for Fleet 
Mileage per customer-location, (Daganzo, 1982), (which was 
originally published by Eilon et al, (Eilon Watson-Gandy & 
Chrisofides, 1982)), is*relevant to the findings described 
above, not only in the way in which it uses the variables P 
and C, but also in as much as a distinction is clearly made 
between what is described as "Line Haul" and "Detour Distance". 
The analogy that exists between these two terms, and Stem 
Distance and Delivery Distance, has already been described in 
Sections 4.2. and 4.3.. The expression in the form presented 
by Daganzo, although the precise notation has been changed for 
the sake of clarity, is as follows, 

TFM 1-8. D 
r+ 

1-8. D 
r (E. 4.23. ) 

pcv -P 

with the first term representing Stem Distance per Point and 
the second term Delivery Distance per Point. Daganzo relates 
the variable C to vehicle carrying-capacity, although it has 
already been argued in earlier sections that this parameter 
can be used as a general indicant of the maximum number of 
stops that may be made per vehicle-trip. Therefore, C in 
this equation can be inter-changed with k, and the whole of 
E. 4, -23. may be multiplied by P in order to convert this 
expression to a formulation for Total Fleet Mileage, Equation 
E. 4.23. thus becomes, 

TFM =P[ 
1-8. D 

r+ 
1-8. D 

r 
kp 

and so, 

TFM = 1-8. D +V _P (E. 4.24. ) 
r 

K 

LP 

This form of the expression makes comparisons with E. 4.21. 
far easier, although it should be noted that E. 4.24. is 
applicable to tours made within a square delivery-area, whilst 
the latter equation is based on the assumption of a circular 
area. 

The main difference between Daganzo's formula, and those 
developed in this chapter, is Daganzo's use of the parameter 
Dr in the calculation of both components of Fleet Mileage. 
In the context of Stem Distance, it can be deduced from 
Equation E. 4.24. that this distance may be estimated as 
being (1-8. D 

r* n), since n=P/C, so that Stem Distance per 
vehicle is 1-8. D 

r. regardless of the value of C. In other 
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words, this expression assumes that, no matter how many 
customer-locations are included in a tour, the average distance 
from the depot of both the first and the last location to be 
visited by each vehicle will always be 0-9 times. the. value 
of Dr; this means that Total Stem Distance will always be a 
direct function of n! Since the results of simulations have 
shown in this chapter that the average length of a stem- 
journey is reduced as C increases, Daganzo's estimate must be 
regarded as being a very crude one! Furthermore, the term 
(1-8 'D r* n) will clearly increasingly overestimate Stem 
Distance as the value of C becomes larger - this is illustrated 
by Table 4.24. and Figure 4.39., which compare estimates of 
Stem Distance per vehicle obtained from Equation E. 4.20., 
(SEE Table 4.19. ), with the value (1-8. D 

r 
). These figures are 

based on the assumption that the total population of customers9 
P, is fixed at 100, and that the parameters n and C are 
variable; as it is assumed that the delivery-area is a circle 
of I distance-unit in diameter, (1-8. D 

r) 
is fixed at 0-5968. 

As the graph shows, when C=I, both Equation E. 4.20. and 
Equation E. 4.23. actually underestimate Stem Distance, since 
average Stem Distance per vehicle, in this situation, is 
obviously 2. D 

ry or 0-6631! 

The Delivery Distance component of Fleet Mileage, 
according to Equation E. 4.23., is merely a function of Dr and 
P, with D in this case, being a direct function of a; 
(Daganzo Kiýself 

estimates Dr in a square area to be 0-382a, 
(Daganzo, 1982), which is slightly greater than the figure of 
0-3648a, suggested by computer simulations). The term Dr 
therefore acts as a constant reflecting the size of the 
delivery-area. When P is fixed, therefore, the estimate of 
Delivery Distance will remain constant - this is confirmed by 
Figure 4.9., despite the fact that Equation E. 4.20. describes 
Delivery Distance as a complex function of both n and C. 
Figure 4.40., (SEE also Table 4.25. ), summarises the distance 
estimates that are calculated from Equation E. 4.23., and the 
shape of the curves that are illustrated here are very much 
like those of Figure 4.9.. In much the same way, figures 
calculated from Equation E. 4.24., which expresses Total Fleet 
Mileage as a function of P and k, may be compared with the 
estimates that are presented in Table 4.20. and graphed in 
Figure 4.32.; Figure 4.41. shows that the general shape of 
the curves derived using, first E. 4.24., and then E. 4.21., is 
similar in as much as Stem Distance rises linearly with 
increasing P whilst Delivery Distance, and therefore Total 
Fleet Mileage, are seen to have a non-linear relationship 
with P. However, closer observation of the two sets of 
estimates, (SEE Tables 4.26. and 4.21.1. ), reveals that, 
as anticipated, Equation E. 4.24. substantially overestimates 
Stem Distance, which leads, in turn, to overestimates of 
Total Fleet Mileage, according to the evidence of the results 
obtained from computer simulations. This error becomes more 
and more pronounced as P increases. Figures for Delivery 
Distance using Equations E. 4.21. and E. 4.24. are far less 
disparate, although there is a definite tendency for the 
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Figure 4.39. Stem Distance per vehicle 
using E. 4.20. and 
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latter expression to underestimate. The Marginal Cost figures 
presented in Table 4.27., and plotted in Figure 4.42., reflect 
the non-linear nature of the Delivery Distance and Total Fleet 
Mileage curves of Figure 4.41., and follow the general shape 
of the Marginal Cost curves shown in Figure 4.33.1.. 

Another expression for Total Fleet M 
a clear distinction between Stem Distance 
Distance is proposed by Daganzo & Newell, 
course of exploring the trade-off between 
and costs related to the storage of goods 
the following expression, 

TFM 2. D 

PC 

0-57 

ileage which makes 
and Delivery 
(3), who, in the 
transportation costs 
in vehicles, utilise 

Again, the equation appears in the literature as a formula 
for distance per point, but this expression may readily be 
rearranged so that it may be used as an equation for Total 
Mileage, 

TFM = 
2. D 

rP+ 
0-57. P (E. 4.25. ) 

Ts 

The Stem Distance component of this expression is almost 
identical to that in Equation 4.23., except that the constant 
in this term is 2-0 rather than 1-8; the effect of this 
difference is to exaggerate the extent to which Stem Distance 
is overestimated for high values of P! 

The Delivery Distance term in this equation, however, is 
different, since it is expressed as a function of P and the 
density of customers in the delivery-area; the use of density 
in this context illustrates an alternative means of 
representing the average spacing between points to the 
parameter i. One advantage with using density is that it may 
itself be expressed in terms of P, as density is simply P/A. 
With a square delivery-area, when making calculations on the 
basis of "unit area", there is no problem, as, with aI by 1 
square, A=a=l, so that density is equal to P. With a 
circular area, however, the situation is slightly more complex, 
since, 

22 r' 

7 

(3) DAGANZO, C. F., and NEWELL, G. F., "Physical Distribution 
from a Warehouse: vehicle coverage and inventory levels". 
in Transportation Research Special Issue: Transportation 
Systems and Logistics, (Part B: Methodological). Vol 19b., 

Oct., 1985), No. 5., P. P. 397-407. 
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The value of r for a delivery-area of diameter 1 is 0-5, so 
that, 

A= 22 + 0-7857 

28 

Therefore, the density of the circular area is, 

p 1-2727. P. (E. 4.26. ) 
0-7857 

Substituting Equation E. 4.26. into E. 4.25., and using the 
empirical finding that Dr =0-33155 for a circular delivery-area, 

TFM = 
0-6631. P. 

C 

0-57. P 

Jl --2727. P 

Rearranging this expression, 

TFM = 
0-6631. P. 

c 

So that, 

TFM = 
0-6631. P. 

C 

- 0-5 - 0-5 0-57. P. 1-2727 .p 

0-5052. P 0-5 

I 

(E. 4 . 27. ) 

Again, distance estimates using this formula may be calculated 
and compared with those generated using alternative expressions; 
the relevant figures are presented in Tables 4.28. and 4.29., 
and illustrated graphically in Figures 4.43. and 4.44.. The 
ways in which these estimates differ from those calculated 
from Equation E. 4.20., with P fixed at 100, (SEE Table 4.20. ), 
are that Stem Distance figures are slightly higher whilst 
estimates of Delivery Distance, on the other hand, are 
slightly lower. In contrast to Figures 4.33.1., 4.33.2. and 
4.42., the curve for the Marginal Cost of P, using this 
equation, would be horizontal! When a constraint on the 
maximum value of C is imposed, so that P is the main 
independent variable, the tendency for Stem Distance to be 
overestimated and for both Delivery Distance and Total Fleet 
Mileage to be underestimated is repeated. 

Blumenfeld and Beckmann, (4), also use the concept of 
there being two distinct parts of a vehicle-tour, although 

(4) BLUMENFELD, D. E., and BECKMANN, M. J., "Use of Continuous 
Space Modelling to estimate freight distribution costs". Transportation Research., Vol. 19A., No. 2., (Mar., 1985), 
P. P. 173-87. 
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with k fixed, using Equation E. 4.24.. (k=10, a=l (square)) 
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Figure 4.42. Marginal Cost as a function of P, with k fixed, 
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Figure 4.43. Estimates of Total Fleet Mileage as a function 6f-. -p. afid-C 

with P fixed, using Equation E. 4.27.. (P=100, a =1 (circle)) 
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their problem formulation involves the distribution of freight 
to a sub-region, or cluster of locations, that is remote from 
theadepot. The two terms of the simple equation used for 
"Peddling Distance", which is equivalent to Total Mileage per 
vehicle-tour, 

2. D 

therefore represent the distance travelled from the depot to 
the'sub-region and back, and the distance covered within this 
sub-region, respectively, However, analogies may once again 
be made with the concept of Stem and Delivery Distance used 
throughout this chapter. 

The formula for the distance travelled within each sub- 
region, (ie. Delivery Distance per Vehicle), is, 

K 
/T A (E. 4.28. ) 

n 

where, K is a constant, 
and, A is the area of a delivery-zone 

whose shape is unspecified. 

Since, 

A= 
S 

and np 
c 

Equation E. 4.28. may be rewritten as a function of C, 15 and 
the constant, K, 

Kp. C 

or, K. C (E. 4.29. ) 
V/ -. 5 

Blumenfeld & Beckmann claim that the value of K, according to 
Daganzo, is approximately 0-6, (5), so that the total length 

(5) DAGANZO, C. F., The length of tours in zones of different 
ah. 2-ýes (Institute of Transportation Studies, University of California, Berkeley, 1982), Research Report 82-9. 
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of each vehicle-tour may be expressed as, 

TFM 

n 

Therefore, 

TFM n 

As n= P/C, 

2. D+ 0-6. C 
r 

2. D 0-6. C 

VII, 75 
(E. 4.30. ) 

TFM = 
2. D 

r' 
p 

C 

0-6. P 

V-, *' -15 
This expression for Total Fleet Mileage is now virtually 
identical to Equation E. 4.25., the only difference being that 
the latter formula associates a constant of 0-57 with Delivery 
Distance, instead of 0-6! 

4.7. Summary of the Spatial Implications of fleet-size 

The main focus of this chapter has been the way in which 
Total Fleet Mileage changes purely in response to changes in 
the number of vehicles operating from a single, central depot, 
both by controlling the number of customer-locations that 
each vehicle must visit in each round-trip, (C), and by 
altering the size and shape of the sector in which each vehicle 
operates. The different effects thatn &C have on Stem 
Distance and Delivery Distance are also demonstrated, and the 
end-product of efforts to quantify the relationships between 
these variables is an expression, (E. 4.20. ), that estimates 
Total Fleet Mileage as a function of fleet-size and the 
number of stops per vehicle-tour. Equation E. 4.20. is then 
modified so that Total Fleet Mileage is expressed as a 
function of the total population of customers served and the 
maximum number of locations that may be visited each day. 

These equations, and all other numerical expressions to be 
developed in this chapter, are founded upon stochastic 
simulation, as all distance-figures represent the average 
outcome of many iterations of a computer-program that builds 
and measures travelling-salesman tours through sets of C, randomly-distributed points. This program assumes a 
deliberately simplistic situation of a uniform fleet of 
vehicles delivering a fixed consignment of goods to a fixed 
population of customers situated within a circular, 
homogeneous delivery-area, so that the only variable that 
affects Total Fleet Mileage is n. Any further variation in 
the estimates of distance provided by this program, given a 
fixed number of customers requiring deliveries and a delivery- 
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area of fixed dimensions, is due to chance variation in the 
random co-ordinates generated, although the size of this 
error should be increasingly eliminated as the number of 
iterations of the program increases. 

Because of this acknowledged reliance upon empirical 
data and Regression Analysis, all estimates made using 
expressions developed in this chapter are only as accurate as 
the statistical analyses on which they are based. However, 
the precise details of such estimates are less important than 
the insights provided here into the relationships between 
some of the key cost components of distribution systems and 
their behaviour as the size of the vehicle-fleet changes. 
In any case, a discussion and numerical example of how variance 
in the results of simulation exercises may be dealt with 
appears in Section 4.5.. 

The assumption that the hypothetical study-area is a 
homogeneous plain, which does not cater for the fact that 
distances will be influenced in the real world by the 
characteristics of the road network within which the depot is 
located, is essential for the creation of a situation in 
which n is the only independent variable that affects the 
distances in question. Such an assumption has much in common 
with the continuous Space Modelling approach, whose main 
objective is to enable generalised estimates of distance to be 
made in the absence of detailed information on individual 
customers and idiosyncrasies of the delivery-area. 

However, it would be unfair to regard the homogeneous, 
square, or circular, delivery-zone as being a gross over- 
simplification of reality, since a set of customers may also 
be regarded as being distributed in "time space", with their 
locations within this space being fixed according to their 
"distance" in time both from the depot and from one another. 
Again, the effective boundary of the delivery-area will be 
determined by the length of the working day and drivers' hours 
restrictions. If road speeds and the degree of connectivity 
of the road network are more or less uniform in all directions, 
then a roughly circular shape would provide quite an accurate 
representation of a real-world delivery-area, whereas, in a 
more realistic situation in which road-speeds are higher 
along major roads in, say, four directions from the depot, a 
square delivery-area may be more appropriate. 

One of the main features of the method used to develop 
an expression for Total Fleet Mileage is the disaggregation 
of Total Distance into Stem Distance and Delivery Distance, 
and then eventually down to the level of i, the average 
distance between successive stops in a tour. 

It would have been possible to arrive at a similar 
expression to Equation 4.20. by means of, say, a Multiple 
Regression of Total Fleet Mileage figures with first n 
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variable, and then with C variable, using much the same 
procedure as is used to deri: ve Equation E. 4.16. although the 
disaggregation of Total Fleet Mileage into the various 
components described in this chapter has several advantages. 
For instance, graphs such as Figures 4.9., 4.10. and 4.11. 
demonstrate -the importance of Stem Distance in relation to 
Delivery Distance, and, at the level of distance travelled 
per vehicle, provide insights into the way in which Stem 
Distance increases with increasing fleet size whilst Delivery 
Distance declines. 

The value of distinguishing Stem Distance will become 
apparent in Chapter 5, when the question of whether or not to 
schedule drivers to make overnight stays will be discussed. 

The usefulness of being able to estimate Delivery 
Distance as a function of n and C, using the parameter i, may 
be illustrated with a simple numerical example. Consider a 
situation in which a fleet of 10 vehicles delivers to a 
population of 50 outlets distributed within a circular area 
50 miles in diameter. The value of C in this -ca-s-e 

is 5. 
Using Equations E. 4.8., E. 4.17. and E. 4.19., it may be 
estimated that, 

STEM DISTANCE = 244-8 miles 
DELIVERY DISTANCE = 268-04 miles 

TOTAL DISTANCE = 512-84 miles 

If travel-time between locations were to be reduced, due to 
improved road-speeds, perhaps, to the extent that it becomes 
possible to accommodate an extra customer-location into 
each vehicle's daily delivery-round, (so that C=6), the same 
equations could be used to estimate the amount by which Total 
Fleet Mileage would increase as a result. The adjusted 
distance-estimates are as follows, 

STEM DISTANCE = 231-26 miles 
DELIVERY DISTANCE = 303-67 miles 

TOTAL DISTANCE = 534-93 miles 

These figures indicate that, as expected, when C increases and 
n remains the same, it may be anticipated that Stem Distance 
be reduced slightly, whilst both Delivery Distance and Total 
Distance will increase. The same analysis may be carried 
out to estimate the impact of a reduction in the number of 
deliveries made by each vehicle. This might be caused by a 
fall in road-speeds, or might simply be due to a general 
decline in demand for a firm's goods or services; regardless 
of whether or not this reduction in the value of C is 
accompanied by a compensatory change in n, the impact of this 
decrease in the number of locations visited on the fleet's 
mileage figures may be estimated using the equations developed 
in this chapter. 

The use of the parameter i as the smallest component of 
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a set of Travelling-Salesman tours, contrasts with the work 
of other researchers in this field, who most often use the 
overall density of customer-locations to estimate Total 
Delivery Distance. A detailed comparison of some of their 
resulting equations with the expressions developed earlier 
in this chapter appears in Section 4.6.. 

The importance of fleet-size must ultimately be measured 
in terms of its effect on overall operating costs. In Chapter 3, 
n was featured as one of the key parameters influencing both 
Standing Cost and Running Cost, (SEE Equation E. 3.6. ), 
particularly in the way in which it directly affects the 
variable x, (ie. vehicle carrying-capacity). This chapter 
has focused upon the ways in which n, both directly and by 
means of its influence on C, influences the value of m, 
another key term in Equation E. 3.6., and thus Running Cost. 
As in Chapter 3, it must be concluded that, in order to 
minimise costs, the size of a fleet, in terms of the number 
of vehicles employed, should also be minimised, although 
this is not to suggest that the increased revenue resulting 
from an increase in the total number of customers served, 
that has caused fleet-size to be increased, would not offset 
the accompanying rise in distribution costs. 

The number of vehicles used is clearly just one element 
of the system that affects Total Fleet Mileage, which is 
itself merely one of mariy factors that contribute towards 
the Total Cost of a distribution operation. The impact of 
other decisions relating to what have been described here as "fleet characteristics" will now be discussed in Chapter 5, 
beginning with the question of whether vehicles are scheduled 
to stay away from the operating centre overnight, instead of 
returning at the end of each working day. The importance of 
Stem Distance in this context has already been hinted at in 
this section; the whole subject of overnight stays, as well 
as other decisions and constraints concerning the drivers 
of vehicles, will now be dealt with in greater detail. 



-146- 

CHAPTER 5 

THE EFFECT OF DRIVERS' HOURS RESTRICTIONS 

ON TOTAL DISTRIBUTION COST 

A key variable in the discussion so far has been k, 
the maximum number of customer-locations that may be served 
on each vehicle-tour. In Chapter 4, it is regarded as a 
constraint which has a fixed, arbitrary value, with no 
attention given to the factors that determine the value of k; 
this chapter both defines the variables that influence this 
constraint, and goes on to measure the impact that such 
variables have on Total Fleet Mileage. 

The amount of time that is required, on average, to visit 
a set of location wiFT-1clearly have an effect on the value 
of k, and will, in turn, be controlled by delivery-area 
characteristics such as average road-speeds and the average 
distance between customer-location. The time that is spent 
on loading, unloading and documentation at each stop also 
has an important bearing on the number of stops that may be 
made by each vehicle, and this factor will be dealt with in 
Chapter 9, but the constraint that appears to be most 
directly responsible for determining k is the r-equirement 
that each vehicle must return to the operating centre at the 
end of each working day. More precisely, this constraint 
refers to the limit on the amount of time that drivers may 
spend driving each day. As the problem formulation here 
dictates that each vehicle-tour must start and end at the 
depot, this time-limit effectively puts a restriction on the 
vehicle's range, since each one may only visit those locations 
that enable it to return to the depot before the expiry of 
the permissible driving-period. 

In order to measure the impact of this limit on the 
length of a working-day, an expression for k is developed in 
the section that follows. In contrast, Section 5.2. then 
goes on to examine the effect of allowing drivers to make 
overnight stays away from the operating centre, instead of 
returning to the depot at the end of each day's driving. 

5.1. The Development of an Expression for the Maximum 

Number of Stops per Vehicle-Tour 

To develop such an expression, it is necessary to 
introduce into the discussion the aspect of time, particularly 
the average amount of time that is required to complete one 
daily round-trip. This may readily be achieved by making 
use of the main variables used in Chapter 4- Total Fleet 
Mileage, P and k- with an added assumption concerning 
average vehicle-speeds within the delivery-area. 

For example, the Total Driving Time required to serve 
a population each day is, 
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TFM hours 

S 

where, TFM = Total Fleet Mileage, 
and, S= average vehicle speed, (in miles per 

hour). 

It has also been established in Chapter 4 that the total 
number of round-trips undertaken by the fleet each day may be 
expressed as (P/k), (see Equation E. 4.21), so that it may be 
estimated that, 

H (TFM/S) 

(P/k) 

or, 

H TFM k 
sp (E. 5.2. 

where, H= the number of driving hours 
requiredýper, vahicle-trip. 

This expression may be rearranged so that, 

S. P. H. 

T. FM (E. 5.3. ) 

although, in this situation, the variable "H" may be used to 
represent the maximum number of hours available for each 
vehicle-trip, on the premise that, in practice, an operator 
will always try to achieve maximum efficiency by fully utilising 
the driving-time that is available -a similar assumption is 
made in Section 4.4. 

In cases where Total Fleet Mileage is unknown, k may 
still be estimated by substituting Equation E. 4.21. into E. 5.3., 
although, as the former expression is rather cumbersome for 
algebraic manipulation, it is far more convenient to instead 
use an expression for Total Fleet Mileage proposed by Daganzo, 
which is reproduced in Chapter 4 as Equation E. 4.24., (1). 
The maximum number of stops per vehicle per day may thus be 
expressed as, 

k S. P. H. 

1-8 D (T- 
rk 

(1) DAGANZO, C. F., "The distance travelled to visit N points with a 
maximum of C stops per vehicle: -A manual tour-building strategy and 
Case Study". Research Report, Institute of Transportation Studies, 
University of California. (Aug. - Sep., 1982). 

(E. 5.4) 

c 
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This formula may be rearranged as follows, 

k= 

k( 

S. P. H. 

1-8 

1-8 

Dr* Tp ---I 

1-8 .DrpS. P. H. 

1-8 .Dr. P) + (1-8 
.Dr. 

JP. 
k) S. P. H. 

Therefore, 

k- (S. P. H. ) - (1-8 .Dr* P) (E. 5.5. ) 

1-8 .D r Fp 
The form of this equation suggests that there's a linear 

relationship between the maximum number of stops per vehicle 
and the limit on daily driving-hours, and this is confirmed 
by Figure 5.1.; Table 5.1. shows the data on which this graph 
is based, including both discrete and integer values of k. 
For the purposes of this exercise, it is assumed that a 
population of 200 customers is to be served within a circular 
delivery-area, 100 miles in diameter, in which 20 miles per 
hour is the average road-speed. 

It is perhaps more interesting to consider the impact of 
H on Total Fleet Mileage; having already developed an 
expression for k, this is not difficult, as Equation E. 5.5. 
may be substituted into E. 4.21.. Incorporating the same fixed 
values for population size, average vehicle-speed and delivery 
area size as-were used previously, the formula for Total 
Fleet Mileage becomes, 

ý4000 H- 11935-8 1-1756 
TFM 100.1( 3-81648 

843-9881 
100 

4000 H- 11935-8 
_1 + 000 H- 11935- 

843-9881 
1- 

( 

843-988! 1 

802147 - 0-4115 . Log. 4000 H- 11935-8 

843-9881 

when, a= 100 miles, 
P= 200 miles, 

and, S= 20 miles per hour. 

x 

r, 
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Estimates, using this equation, of both Stem Distance and 
Delivery Distance, as well as of Total Fleet Mileage, with H 
as the independent variable, are contained in Table 5.2., and 
illustrated in Figures 5.2.1. and 5.2.2.. 

Figure 5.2.1. suggests that the limit on driving-hours 
has little effect for H-values of between 7 hours and 11 hours, 
which may be regarded as the maximum range over which values 
of H are realistic. In order to show the overall shape of 
the curves shown in Figure 5.2.1., figures for daily driving- 
time limits ranging from 31 hours to 15 hours are plotted in 
Figure 5.2.2.. The evidence here indicates that, given the 
assumptions made for this numerical example, varying the 
value of H only has a really significant influence on Fleet 
Mileage when the length of the working day is very short; far 
shorter, in fact, than it is likely to be in the real world. 
The shape of the Stem Distance curve in Figure 5.2.2. shows 
that the rise in Total Fleet Mileage when very few hours may 
be driven each day is primarily due to the increase in the 
number of round-trips, and therefore vehicles, that are 
necessary each day. 

To support the view that the limit on the length of the 
working -day does not have a substantial effect on the total 
distance travelled, Table 5.2. reveals that, even when H is 
shortened from 11 hours to 7 hours, Total Fleet Mileage only 
increases from 925-72 miles to 755-44 miles. Expressing this 
difference in percentage terms, in order to lessen the 
influence of the assumed values attributed to parameters such 
as S, a, P&H, this is an increase of only 22-54%; a 
reduction of H from 11 hours to 9 hours extends TFM by only 
8-01%. A policy that may have a greater impact on distance 
travelled, however, is one which eliminates the need for 
vehicles to return to the depot at the end of each day's 
work; the question of the extent to which scheduling drivers 
to make overnight stays affects Total Fleet Mileage, and 
therefore Total Distribution Cost, is addressed in the 
following section. 

5.2. The Effect of Allowing Overnight Stays Away from the 

Operating Centre 

The option of allowing drivers to make overnight stays 
with their vehicle, away from the operating centre, which is 
not an uncommon practice in the real world, is not considered 
in the body of literature that is concerned with Travelling- 
Salesman-Type distribution problems. This is, perhaps, 
surprising, since the removal of the need for each vehicle- 
tour to start and finish at a central depot, relaxes a major 
constraint in the Travelling-Salesman Problem. 

The main purpose of adopting overnight stays is to save 
both time and distance by reducing the number of journeys 
that are made to and from the depot; in other words, it is 

r 
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Figure 5.2.2. Disaggregated fleet miles 
(H=3.5 .... 15). 
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mainly Stem Distance that is being saved, although the use of 
such a system also incurs certain costs. For example, the 
amount of distance that is saved, as a result of vehicles not 
having to return to the depot at the end of each working-day, 
must be traded off against the fact that a fleet of vehicles. 
that returns to the depot fewer times to be loaded will need 
to have a larger capacity per vehicle; therefore, the unit 
cost of transport, (both Standing Cost per vehicle and Running 
Cost per mile), will be higher. The cost of overnight stays 
themselves should also be considered, which includes not only 
the overnight payment that must be made to each driver, 
regardless of whether the vehicles are equipped with a 
sleeping compartment, but also the overnight parking charge 
that may be payable, for the vehicle. Furthermore, the extra 
distance that is travelled in driving to and from a suitable 
parking site, which will inevitably often require a detour 
from the vehicle's optimum route, may reduce the overall 
saving in distance. 

Nevertheless, in certain circumstances, the use of 
overnight stays can lead to substantial cost-savings, which 
are sufficient to off-set the associated extra costs 
mentioned above. Apart from the savings that result directly 
from reductions in Total Fleet Mileage, savings in time may 
also be made. Possible ways in which such time-savings may 
be quantified will be discussed at the end of the following 
sub-section, in which the general problem of whether to use 
a system of overnight stays is formulated in greater detail. 

5.2.1. The. simple case of comparing two one-vehicle operations 

In order to highlight the trade-offs that are involved 
in the decision of whether to dispense with the requirement 
for vehicles to return to the depot at the end of each day, 
a numerical example is presented here of two alternative 
types of one-vehicle operation which may be used to satisfy 
a weekly demand. One of these alternatives is for a vehicle 
to make separate round-trips, each starting and ending at 
the depot, on each day of the week, whilst the other is for 
a vehicle to visit each of the same set of locations 
consecutively, not returning to the depot until the-last of 
the week's deliveries has been made. Even using a system of 
overnight stays, of course, a vehicle must return to the depot 
at sometime, and so it is realistic to regard these 
alternatives as being, on one hand, a series of five separate 
vehicle-tours using a vehicle with a capacity of x tons, 
(assuming a five-day working-week), and, on the other, one 
weekly round-trip undertaken by a vehicle having a capacity 
of 5x tons. Figure 5.3. illustrates the alternative routing 
schemes graphically. In as much as the central trade-off is 
between increased unit costs and reduced Fleet Mileage, there 
are analogies here with the numerical example presented in 
Section 3.6. which illustrates the presence of Economies of 
Scale in Transport. 
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The current problem formulation invloves most of the 
general assumptions used elsewhere in this thesis, so that 
the set of customers, P, is located at random throughout a 
homogeneous plain, and that they are to be served from a 
centrally-located depot using a unifrom fleet of vehicles. 
However, in order to make it possible for a system of over- 
night stays to be praciticable, a number of additional 
assumptions must be made. For example, although it is still 
assumed that demand does not vary from customer to customer, 
deliveries must be required on a weekly basis, and both the 
size of the consignment of goods ordered at each outlet and 
the location of each customer must be known at the start of 
each week. Furthermore, it must be assumed that there are 
no restrictions as to the time and day of delivery at any 
outlet, so that the vehicle may be optionally routed in the 
absence of time-window constraints. The problem therefore 
consists of the comparison between two delivery-systems that 
are based on vehicle-tours which are assumed to be optimal, 
and which are designed at the beginning of each week. 

11 The practice of "tramping 
, whereby a driver sets off 

from the depot with a consignment of goods with the intention 
of replacing it with another load at his first destination, 
is not considered in this section. This is despite the fact 
that tramping operations require vehicles to be away from 
their operating centre, often for several days at a time. 

Because the current example involves the use of just one 
vehicle, it must also be assumed that the total weekly demand 
for goods from the population of customers does not exceed 
the maximum 

, 
load that one vehicle may carry. This upper limit 

may be effectively determined by either v(xlue or weight 
constraints, and so is not necessarily equivalent to the 
maximum legal weight which may be carried on roads; in any 
case, this legal limit varies between different countries. 
For the purposes of this exercise, the maximum value of x is 
fixed at 30 tons. Finally, it is also necessary to assume 
that the goods in transit are in no way perishable. 

The calculations which follow make use of parameters 
which, so far, have been excluded from the discussion of both 
the current chapter and Chapter 4; this is because, in order 
to calculate the cost of an operation, it is necessary to 
specify both the Total Weekly Tonnage of goods that need to 
be delivered, t, and the carrying-capacity of the vehicle, x, 
that is required. In the example here, it is assumed that 
each of 15 customers requires a weekly consignment of 0-25 
tons of goods, so that this demand may either be met by one 
0-75-ton vehicle returning to the depot each day, or by a 
4-ton vehicle visiting 3 locations each day and making 4 
overnight stays away from the operating centre. In both cases, 
the value of t is 3-75 tons. 

The mileage and cost figures for both vehicles may be 
calculated using Equations E. 3.6. and E. 4.20., respectively. 
Both expressions include the variable n, although, with the 
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assumption that deliveries are made to each customer on a 
once-a-week basis, this variable must be redefined for the 
purposes of the Total Fleet Mileage equation. This is 
because, whereas the number of round-trips made per day was 
formerly equal to the number of vehicles used, with each day's 
driving constrained to starting and finishing at the depot, 
the use of overnight stays means that each day's driving only 
accounts for a fraction of a completed vehicle-tour, (SEE 
Figure 5.3. ). The number of round-trips per delivery-cycle 
is therefore dependent on both the number of vehicles used 
and the number of times that a vehicle is constrained to 
return to the depot each week. For the purposes of this 
section, therefore, the term "n" in Equation E. 4.20. should 
be replaced with, 

v nn 

v where, nr 
and, n 

(E. 5.6. ) 

the number of vehicles in the fleet, 
the number of times per week that 
each vehicle must return to the 
depot. 

In the case of a daily delivery-cycle, the value of (n V. nr 
is 5, whilst it is 1 when overnight stays are used. 

Using this slightly modified version of Equation E. 4.20., 
it can be estimated that the number of miles travelled by a 
0-75-ton vehicle making 5 round-trips in a week, assuming a 
circular delivery-area, 250 miles in diameter, is 1325-2 
miles; the number of stops made in each round-trip, C, is 3, 
in this instance. The same expression estimates that the 
length of one-round-trip which includes all 15 customer- 
locations, so that C=15, is 678-9 miles. It is clear from 
this example, therefore, that the savings in Stem Distance, 
in what is quite a large delivery-area, are substantial when 
overnight stays are used. 

When these weekly mileage figures are incorporated into 
Equation E. 3.6. - where the "n" term still expresses the 
number of vehicles in the fleet - the cost of using a 0-75- 
ton vehicle every day is estimated as being E370-73 per week, 
whilst the cost of the one 4-ton vehicle option, not including 
the cost of overnight accomodation at this stage, is 
estimated at E414-39. 

These figures suggest that, in a one to one situation, 
it is, in fact, cheaper to use a vehicle that returns to the 
depot on each night of the week, although this result is, of 
course, very much subject to the assumptions made as to the 
size of the delivery-area, the number of customers served and 
their level of demand, etc .. The question of whether there 
are any circumstances in which it may be profitable to use a 
system of overnight stays, may be answered by increasing the 
value of "a", since, as Stem Distance is directly proportional 
to the diameter of the delivery-area, it seems logical to 
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expect that it becomes increasingly expensive to make journeys 
to and from the depot as this area becomes larger. Table 5.3., 
whose data are plotted in Figure 5.4., shows the relationship 
between area-size and Total Cost per week for both operations, 
and indicates that, when the value of "a" reaches a certain 
level, it becomes cheaper to permit overnight stays away from 
the operating centre. Figure 5.4. suggests that, in this 
example, this value of "a" is approximately 470 miles. At 
this point, however, with such a large delivery-area, the 
total distance travelled by the vehicle making one round-trip 
during the week is estimated at roughly 1300 miles, which, 
assuming an average vehicle-speed of 20 miles per hour, would 
take 65 hours to complete! If the limit of a working-week 
is assumed to be 50 hours, which is consistent with the daily 
maximum of 10 hours, then the use of overnight stays is not 
a practical proposition when locations are scattered over an 
area of this size. 

The analysis clearly shows that, for a one-vehicle 
operation, the distance-saving resulting from the making of 
overnight stays away from the depot will outweigh the increased 
unit costs associated with the consequent need to employ--. a 
vehicle with a greater capacity, provided that the delivery- 
area is large enough for Total Stem Distance to be the 
dominant variable in the calculation of Total Cost. As there 
is, however, in practice, a limit to the number of miles that 
may be driven in a day, the value of a at which the overnight 
stays option becomes the cheaper alternative may well exceed 
the maximum feasible delivery-area size, given the number of 
customers that are to be served and average road-speeds. 

One important factor that has not yet been considered in 
very much detail in this section, is the amount of time which 
may be saved using overnight stays. In-the above example, 
comparing a 0-75-ton vehicle and a 4-ton vehicle, although 
the use of the former is shown to be the least cost option, 
it may also be demonstrated that a substantial amount of time 
is saved by not having to return to the depot at the end of 
each day. If it is assumed that, in each case, average vehicle 
speed is 30 miles per hour, then each of the smaller vehicle's 
daily round-trips takes, on average, 8-83 hours. Similarly, 
it may be estimated that the 4-ton vehicle will complete a 
single round-trip in only 22-63 hours, so that the whole week's 
deliveries can be made in just over two days! 

This finding raises the general question as to the 
connection between time-savings and cost-savings, which is, in 
turn, related to the principle of the Value of Time. In the 
numerical illustration above, there is an obvious saving of 
two nights' accomodation and parking charges, although the 
real value of saving time is associated with the extra 
capacity that is created in the system; this is because 
additional customer-locations may be visited in the time that 
would otherwise have been spent in-travelling to and from the 
depot. This point. -may. 

be.. illuptkated. using. Equation E-ý5-3-, 
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k S. P. H. 

TFM 

(E. 5.3. ) 

which is discussed in greater detail earlier on in this 
chapter; this expression suggests that, as Total Fleet Mileage 
is reduced, mainly due to savings in Stem Distance, the 
maximum number of stops that may be made in each round-trip, 
k, will increase, provided, of course, that this increase in 
k does not cause vehicle-capacity constraints to be exceeded. 
It is when such improvements in efficiency, in terms of the 
number of customers that each vehicle may visit each day, 
actually allow a vehicle and driver to be dispensed with that 
a real, and tangible, saving is made. Time-savings are 
frequently quantified using indices that are developed on the 
basis of the amount of time that must be saved in order to 
make a measurable saving of this kind, together with the cost- 
saving that is involved; the whole issue of the Value of Time 
will be returned to, and discussed more fully, in Chapter 6. 

Such Value of Time indices can not be realistically 
applied to the current situation under consideration, where 
two one-vehicle systems are being compared, since there is 
no way in which a whole vehicle may be saved. Savings 
resulting from the introduction of overnight stays, in this 
case, are therefore restricted to those connected with Total 
Fleet Mileage and overnight accommodation and parking charges. 
The following section, however goes on to consider the same 
issues in situations where more than one vehicle is used. 

5.2.2. The effect of allowing overnight stays, in the context 

of a fleet of vehicles 

In situations where more than one vehicle is used, the 
likelihood that savings in time will enable a week's deliveries 
to be made by a fleet of (n-1) vehicles may be expected to 
increase as fleet-size increases. This is because the 
mileage of each individual vehicle, particularly the distance 
travelled between successive customer-locations, is reduced 
as the value of n increases, so that the amount of time that 
must be saved in order to achieve this reduction in fleet- 
size is correspondingly less. In other words, the amount of 
time that needs to be saved in order to lower the number of 
vehicles required, is related to the Delivery Distance that 
is attributable to each vehicle. Figure 4.11. confirms that 
this distance does, in fact, decrease as fleet-size increases. 

In order to further illustrate this point, it is most 
convenient to consider a situation in which two vehicles make 
weekly deliveries to a population of 30 customers, so that 
each vehicle visits 3 locations each day; an example of how 
a pair of routes on any one day of the week might look is 
given in Figure 5.5.1.. In this instance, there is 
insufficient time available for one vehicle to visit all 6 
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Figure 5.5. Alternative routes for one day's deliveries 

using both daily round-trips and overnight stays 
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locations and to return to the depot, "V, in one day, and 
so at least two vehicles must be used. What is important 
here is the relationship between the average length of a stem- 
journey, (e. g. C-X), and the extra distance that would be 
travelled by the first vehicle if it were to incorpoERte into 
a day's tour the locations currently served by the n. 
(i. e. the second), vehicle. In Figure 5.5., whose routes 
refer to the first day of a weekly cycle, this extra mileage 
is represented by the route linking points C, D, E and F. If 
the total tour-distance from C to F is less than, or equal to, 
the stem journey from C to X, then the round-trips of the 
two vehicles shown in Figure 5.5.1. may be replaced by the 
single route of a vehicle making an overnight stay away from 
the depot, as shown in Figure 5.5.2.. This ivernight stay 
may be made in the vicinity of location F, or between 
locations F and G, G being the first location to be visited on 
the second day of the week. Whether or not all customers 
can be served by one vehicle on days in the middle of the 
week depends on the relationship between the average length 
of two stem journey, examplified by the links A-X and F-X 
in Figure 5.2.1., and the tour distance from point Z, (the 
last location to be visited on the previous day), to point F. 
Similarly, because of the need for the single vehicle to 
return to the depot at the end of the week, it is the 
distance of the route between Z and X, via points A to F, 
that is of importance. Of course, even if there is not 
sufficient time to allow one vehicle to visit 6 locations on 
any particular day, it is still possible that a week's 
deliveries may be made by a single vehicle, provided that the 
entire tour may be completed within the time permitted for 
the week. 

The foregoing discussion illustrates the most important 
issues involved in deciding whether a time-saving may result 
in a tangible cost saving by reducing the number of vehicles 
required. For practical purposes, of course, there is no 
need to compare the corresponding routes, with and without 
the use of overnight stays, for each day's deliveries. What 
is far easier is to calculate the minimum number of vehicles 
required, given information on P, a and H etc., using the 
formulae already developed elsewhere in this thesis. 

As an example of how this might be done, consider a 
situation in which 200 customers are randomly distributed 
within a circular area, 50 miles in diameter, in which average 
road-speed is 50 miles per hour. The maximum length of a 
working-day, for each of 5 days in a week, is 10 hours, whilst 
the aggregate weekly demand of the whole population of 
customers is 3-75 tons. To complete the problem formulation, 
it is necessary to also consider two factors which have not 
so far been included in numerical examples in this chapter: 
the cost of overnight accommodation, B, which can be assumed 
to be fixed at E20 per night, and the time spent at each 
customer's premises, 1, which may be taken to be a uniform 
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30 minutes for each stop. It should be stressed here, 
therefore, that, because of the inclusion of handling and 
order-processing time at each customer-location, the 10 hour 
limit on the length of the working-day is effectively a limit 
on "Total Duty Time", which includes both driving-time and 
time spent on other activities such as loading and unloading 
etc.. 

The first question to be addressed is whether one 
vehicle, returning to the depot each day, can visit the 
necessary 40 locations in each daily round-trip without 
violating the 10 hours duty-time per day constraint. Using 

vr Equation E. 4.20., and given that C=40 and that (n .n5, 
the weekly mileage for one vehicle is 715-3 miles, which 
represents an average of approximately 143 miles for each 
daily round-trip. With average road-speeds of 50 miles per 
hour, each day's driving would therefore take just under 3 
hours, (171-67 minutes), so that there appears to be no 
problem with exceeding the maximum value of H purely on the 
basis of 

, 
driving-time. It is, however, the total time that a 

single vehicle would spend on customers' premises during the 
day which makes it necessary to use at least one extra 
vehicle; since C=40 and 1=30, "total handling time" is 20 
hours. With 2 vehicles each visiting 20 location in each 
round-trip, handling time per day, at 10 hours, is still 
enough, on its own, to exceed the Daily Duty-Time constraint. 
With 3 vehicles, when (n V. n r) = 15 and C=13(to the nearest 
whole number), the 200 customer-locations may be served using 
daily round-trips without violating this time-constraint. 
The calculations which led to this conclusion may be 
summarised as follows, 

When n V= 3, (nv. n r) = 15 and INT(C) = 13: - 

Total Fleet Mileage per week =1 200-3 miles 
Distance per round-trip = 92-33 miles 
Driving-time per round-trip 110-8 minutes 
Handling-time per round-trip 390 minutes 
Duty-time per round-trip = 500-8 minutes 

(i. e. approximately 8 hours, 20 minutes). 

Similar calculations may be carried out for an alternative 
system that uses overnight stays away from the depot; the 
two main differences in this situation are that n is now 
1, and the time-limit on a round-trip, including the 
aggregate time spent at all customer-locations, is 50 hours. 
The following summary indicates that the minimum size of 
fleet that may be used is one consisting of 3 vehicles, 
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When nv=1, (nv. n r) =1 and C= 200: - 

Total Fleet Mileage per week = 414-11 miles 
Distance per round-trip = 414-11 miles 
Driving-time per round- trip = 496-9 minutes 
Handling-time per round-trip = 6000 minutes 
Duty-time per round-trip = 6496-9 minutes 

When nv=2, (nv. n r) =2 and C= 100: - 

Total Fleet Mileage per week = 471-41 miles 
Distance per round-trip = 235-7 miles 
Driving-time per round-trip 282-8 minutes 
Handling-time per round-trip 3000 minutes 
Duty-time per round-trip = 3282-8 minutes 

When nv=3, (nv. n r) =3 and INT(C) = 67: - 

Total Fleet Mileage per week = 589-8 miles 
Distance per round-trip = 196-6 miles 
Driving-time per round-trip =235-9 minutes 
Handling-time per round-trip = 2010 minutes 
Duty-time per round-trip = 2245-9 minutes 

(i. e. approximately 37 hours, 30 minutes). 

On the evidence of these figures, therefore - and 
taking integer effects literally, so that the value of n is 
always rounded up to the nearest whole number - it must be 
concluded that it is not possible to reduce fleet-size using 
overnight stays, in this particular example. However, 
although the week's deliveries can not be made using only two 
vehicles, it is noticeable that, in the 3 vehicle option using 
overnight stays, only 37-5 hours' work is required of each 
driver, which indicates that there is a substantial amount of 
unused capacity in the fleet. In the real world, with just 
over 112 man-hours of work needed each week, it is unlikely 
that an operator would employ three drivers for 37-5 hours 
in a 50-hour week and have three vehicle's. idle for one day 
each week. It is far more realistic to expect that, perhaps, 
two drivers would be employed for a full 50-hour week, with 
the week's deliveries being completed by a third driver who 
is employed to work the remaining 12 hours; although the 
operator would still be faced with having to purchase a third 
vehicle, the use of part-time staff would certainly change 
vehicle routing-patterns, and thus Fleet Mileage figures. 
Another alternative is to extend the working-week of the two 
existing drivers into a 6th day, and there is also the option 
of hiring extra capacity to cope with the few deliveries that 
cannot be made with the two vehicles that the operator owns. 
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Consideration of aspects such as "Fleet Mix", a subject- 
area that deals with the balance between owned and hired 
capacity within a vehicle-fleet, and the extension of the 
number of man-hours that are available each week by 
introducing overtime, would considerably alter the form- 
ulation of the problem dealt with in this section. Therefore, 
the conclusion, in this case, if the assumption that the fleet 
of vehicles is uniform is to be retained, is that there is no 
cost-saving to be made by waiving the constraint that each 
vehicle must return to the operating centre at the end of 
each day; this is because it has already been shown, in 
Section 5.2.1., that, when fleet-size is the same, the 
cheaper alternative is to make daily round-trips. Confirmation 
of this is provided by the following figures, which are 
derived from Equation E. 3.6., 

Using daily round-trips: - 

v n3x= 0-75 tons 

Total Fleet Mileage per week = 1200-3 miles 

Standing Cost per week = E326-41 
Running Cost per week = E237-24 
Total Cost per week = E563-65 

Using overnight stays: - 

v n3x= 1-5 tons 

Total Fleet Mileage per week = 589-8 miles 

Standing Cost per week = E422-14 
Running Cost per week = E140-86 
Cost of overnight stays per week = E240-00 
Total Cost per week = E803-00 

Again, the question of whether a different conclusion 
might be arrived at using different assumptions should be 
addressed. As in Section 5.2.1., it seems logical to expect 
that increasing the size of the delivery-area is most likely 
to create a situation in which a system of overnight stays 
becomes the cheaper option. In order to generate estimates 
of both distances and costs, with "all as the important 
independent variable, a computer program was constructed, 
based on Equation E. 4.20. and E. 3.6.. The main aims of this 
program, which is summarised with the activity-sequence 
diagram of Figure 5.6., are both to investigate the size of 
delivery-area that is required for overnight stays away from 
the depot to make an overall cost-saving, and to estimate the 
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proportion of the cost of the two systems that is attributable 
to stem journeys. The assumptions. and. procedur-es-used-'in-the 
above calculation are all retained for this analysis. 

The first of the aforementioned objectives is largely 
achieved by Figure 5.7., which shows that the Total Cost 
curves for the two systems in question intersect when the 
diameter of the delivery-area is approximately 150 miles; 
when the value of a is greater than this, given the 
assumptions made about key variables,. it becomes more 
expensive to make daily journeys to and from the depot. The 
actual figures on which Figure 5.7. is based, along with all 
other data relevant to this section of the analysis, are 
contained in Tables 5.4.1. and 5.4.2.. 

On the evidence of Figure 5.8., which shows that the 
curves for fleet-size are very similar in shape to the Total 
Cost curves of Figure 5.7., the seemingly geometric increase 
in the cost of making daily round-trips with increasing area- 
size is very closely related to the resulting rise in the 
number of vehicles used. Similarly, Figure 5.9.1. suggests, 
by the parallel nature of the curves that it portrays, that 
it is the rise in the total cost of making stem journeys that 
is mainly responsible for the observed increase in Total Cost 
per week, rather than the increase in Standing Cost caused by 
having to use more vehicles. This is because, for all values 
of a, the vehicles involved in daily round-trips are 0-75 
ton vans, (SEE Table 5.4. ), which have low unit costs, so 
that the fixed costs associated with having a large number of 
vehicles are relatively small compared with the extra 
Running Costs resulting from increases in Total Fleet Mileage. 
As might be expected, the dominant effect of Running Costs, 
compared to that of Standing Costs, is exaggerated as the 
value of "a" becomes larger. Increases in Standing Cost are, 
however, detectable in Figure 5.9.1. from the irregularities 
in the Total Cost curve when the diameter of the delivery-area 
is increased from 125 miles to 150 miles, and from 225 miles 
to 250 miles etc.. 

It is interesting to compare this graph with Figure 5.9.2., 
which plots the three corresponding curves for a system of 
overnight stays. Running Cost is shown to rise linearly with 
delivery-area size, whilst increases in Standing Cost caused 
by changes in fleet-size are again indicated by two small 
"kinks" in the Total Cost curve, (when the value of a 
increases to 250 miles and 475 miles, respectively). 
Predictably, the cost of making stem journeys is far less 
significant than the cost associated with Delivery Distance, 
(which is calculated as the difference between Total Running 
Cost and Stem Distance Cost); this contrasts with Figure 5.9.1., 
in which the costs incurred by Delivery Distance decline in 
relation to the cost of Stem Distance. This aspect of the 
role of stem journeys is further highlighted by Figure 5.10., 
which plots Stem Distance Cost as a percentage of Total Cost. 
Clearly, this percentage increases steadily for both daily 
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round-trips and overnight stays, but, even when the diameter 
of the delivery-area exceeds 500 miles, Stem Distance Costs 
account for less than 5% of the Total Cost of a system that 
makes use of overnight stays away from the depot. 

It has already been pointed out that the Figures 
contained in Table 5.4., and subsequently illustrated in 
Figures 5.7. to 5.10., are based on the assumption that 
aggregate weekly demand, t, is only 3-75 tons. To provide a 
contrast, Tables 5.5.1. and 5.5.2. show the equivalent figures 
when t=200 tons, and the corresponding graphs to those of 
Figure 5.7. to Figure 5.10. are shown in Figures 5.11. to 
5.14., respectively. 

The first of these, Figure 5.11., reveals that the Total 
Cost per week curves are similar to those derived when t=3-75. 
The main differences between Figures 5.7. and 5.11. are that 
the overnight stays curve both occupies a higher position on 
the y-axis compared with the daily round-trips curve, and is 
straighter when t=200. The explanation for both of these 
differences is that, as Table 5.5. and Figures 5.12.1. and 
5.12.2. confirm, due to the general rise in the level of 
demand of the population of customers, the minimum size of 
fleet required for a week's deliveries, using overnight stays, 
is seven 30-ton trucks, (the maximum carrying-capacity 
permissible under the terms of the current problem - 
formulation). This has the effect of increasing the value of 
a, at which it becomes less economical to make daily round- 
trips, to between 450 and 475 miles; this is because it is 
generally possible to use fewer vehicles than are required 
for a system involving overnight stays when the diameter of 
the delivery-area is less than this figure. Also, as the 
number and size of vehicles required for weekly round-trips is 
constant for all values of a, when overnight stays are used, 
the relevant line in Figure 5.11. is straighter than the one 
in Figure 5.7., whose unevenness is attributable to changes 
in n. 

Figures 5.13.1. and 5.13.2., which disaggregate the Total 
Cost curves of Figure 5:. 11'4, bear a close resemblance. tb- 
Figures 5.9.1. and 5.9.2., respectively, except that the 
scale of the y-axis is larger when t=200. Estimates as to 
the percentage of Total Cost that is accounted for by Stem 
Distance Costs are also very similar when t is both 3-75 tons 
and 200 tons, (SEE Figures 5.10. and 5.14. ). 

5.3. Summary and Conclusion 

The foregoing discussion considers the impact of changes 
in the amount of time that is available for deliveries to be 
made each day. In Section 5.1., this is achieved by examining 
the relationship between the length of the working-day and 
the number of customer-locations that may be 

-visited each"day. 
The latter variable, C, is, in turn, closely related to fleet- 
size, n, which has already been shown to influence Total 
Fleet Mileage, and thus Total Cost. 
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The upper limit to the length of a working-day is 
imposed upon the operator by legislation governing drivers' 
hours limitations, although Section 5.2. suggests a means of 
overcoming this constraint, by highlighting the fundamental 
trade-offs that are involved in the decision as to whether to 
make deliveries on the basis of one round-trip per vehicle 
per day, or to allow vehicles and crew to stay away from the 
depot overnight. Using the latter system, each customer- 
location is visited once a week in the course of, what is 
effectively, a single round-trip. It is hypothesised, in 
Section 5.2.1., that the main potential saving involved in the 
use of overnight stays is the reduction in the number of stem 
journeys that are made to and from the depot, and the findings 
of Section 5.2.2. concerning the cost associated with Stem 
Distance and its relationship with Total Cost confirm this 
expectation. The results of calculations in this Chapter, 
which are mainly based on Equations E. 3.6. and E. 4.20., 
strongly suggest that, when the diameter of the delivery-area 
exceeds a certain critical value, the extra expense incurred 
through having to both employ a fleet which has higher costs 
per vehicle, and pay overnight charges for vehicles and crews, 
may be sufficient to off-set the distance savings derived from 
not having to return to the operating-centre at the end of 
each day. The value of "all at which overnight stays become 
more cost-effective is found to increase as the total weekly 
demand of the population of customers increases. The reason 
for the increase in this critical value, when t=200, has 
already been attributed to the fact that the Total Cost curve 
associated with overnight stays occupies a higher position on 
the y-axis in relation to the corresponding curve for a system 
involving daily round-trips, (SEE Figures 5.7. and 5.11. ). 
The reason for this may, in turn, be explained by referring to 
Figures 5.8. and 5.12.1., which show that, in a situation where 
only daily round-trips are permissible, and when a=50, a 
fleet of 3 vehicles is required to make a week's deliveries 
both when t=3-75 and when t=200, (SEE also Tables 5.4. and 5.5. ). 
In contrast, when overnight stays are used, the number of 
vehicles required, assuming the same delivery-area size, 
increases from 3 to 7 when the value of t is increased to 
200 tons per week; this is a result of the constraint that 
exists on the carrying-capacity of a vehicle - in this example, 
the limit on the value of x is 30 tons. As Table 5.5. indicates, 
an aggregate weekly demand of 200 tons may be delivered using 
three 14-ton vehicles making daily round-trips, whereas 7 
vehicles are required if overnight stays are made. 

Section 5.2.2. goes on to argue that it is the savings 
in time resulting from not having to return to the depot at 
the end of each working-day that provide the main 
opportunity for cost-reduction, as these time-savings may 
actually lead to a fall in the number of vehicles that are 
required for a week's deliveries. 

Such a reduction in fleet-size may lead to cost-savings 
in two ways: Firstly, a decrease in the total number of 
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round-trips made each week will reduce Total Fleet Mileage, 
and secondly, savings will be made in fixed costs such as 
drivers' basic wages and vehicle licences etc.. It has also 
been demonstrated that distance-savings, particularly savings 
in Stem Distance, become increasingly significant as the size 
of the delivery-area becomes larger. 

The main independent variable used in this analysis is- 
the diameter of the area in which the set of customers is 
located; this parameter is of importance because of its close 
relationship with average Stem Distance, and is therefore 
found to have a major influence on whether it is profitable 
to adopt a system that involves overnight stays. It is to be 
expected that other variables that effect the amount of time 
that is required to deliver goods to a given set of customers, 
such as average vehicle-speed and the average amount of time 
that is spent on handling the goods at each location, will 
have a similar effect on the Total Cost curves of the two 
types of operation considered. 

The relationship between delivery-area size and Total 
Cost per week is illustrated by the curves in Figures 5.7. 
and 5.11.. Perhaps the most interesting aspect of these 
graphs is that the cost curves for daily round-trips appear 
to rise geometrically with increasing area-size, whilst the 
corresponding curve for an operation using overnight stays 
seems. toibe linear. 'The reason. -for-this--. anomaly is: shown in 
Figure 5.15., (SEE also Table 5.6. ). This figure reveals the 
shape of the cost-curve associated with overnight stays, for 
values of "a" up to 3000 miles, and thus demonstrates that 
the shape of the entire curve is the same as that for daily 
round-trips. For the purposes of comparison, the latter 
curve is superimposed onto the overnight stay cost-curve, in 
Figure 5.15., and it is clear that the cost of making round- 
trips that start and finish at the depot each day rises 
sharply at a far lower value of "a" than the cost of using 
overnight stays. This rapid increase in Total Cost as the 
delivery-area becomes larger, is caused by the limit on the 
length of a working-day raising the minimum number of round- 
trips that are required at an ever-increasing rate, until 
the value of "a" at which not even one location can be served 
from the depot, within the specified time allowed, is reached. 
This is the point at which each line in Figure 5.15. 
terminates, (when the calculated value of C is less than 1). 
An operation that uses overnight stays is, of course, subject 
to the same type of time-constraint, and Figure 5.15. confirms 
that the relevant Total Cost Function eventually shows a 
similar sharp increase, as a result. The difference, here, is 
that the time-limit that is imposed on a vehicle-tour that 
occupies a whole week is substantially greater than that which 
is associated with daily round-trips. Given the set of 
assumptions made for the purposes of this analysis, the value 
of "a" at which the weekly time-constraint causes the number 
of vehicle-trips required to increase rapidly, (i. e. approx- 
imately 2000 miles), is absurdly high. For this reason, 
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for the delivery-area sizes that are considered in Figures 
5.7. to 5.14., the cost-curve associated with overnight stays 
appears to be linear. 



3. THE EFFECT OF TIME-WINDOWS ON THE COST OF A 

DISTRIBUTION OPERATION 
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CHAPTER . 6. 

THE DEVELOPMENT OF A METHOD FOR ASSESSING THE 

IMPACT OF TIME-WINDOWS ON DISTRIBUTION COSTS 

So far, the discussion of the distance-minimisation 
aspect of the Distribution Problem has assumed that the only 
time-constraint that is imposed is the requirement for each 
vehicle to return to the operating centre before the end of 
the working-day, (although Chapter 5 considers the special 
case in which the time-limit on a vehicle's round-trip is 
extended beyond a day). In reality, however, a delivery to 
a given location may only be possible at a certain time, or 
within certain time-limits; the range of time during which a 
location may be visited is referred to here as a "time-window" 

The role of Chapters 6 and .7 
is to examine the effect 

of the presence of time-windows on distribution costs and, in 
the process, to propose a method for doing this. 

The following section outlines the various types of 
time-window cosntraints that might be imposed upon a distri- 
bution operation, and discusses the effect of such limitations 
on the Travelling-Salesman Problem formulation. 

. 6.1. Time-Windows and their Effect on the Travellin 

Salesman Problem 

The precise nature of the time-constraints that affect 
a delivery-round will depend largely on the type of goods, or 
services, that are being distributed, and will usually be 
dictated by the customer. For example, it may be specified 
by some customers that a delivery may only be made in the 
morning, whilst others may make their premises available for 
deliveries in the afternoon. A time-window may also be more 
rigorous, and refer to a period of only a few minutes in which 
a vehicle must arrive, or, in extreme cases, may involve the 
scheduling of a consignment of goods to arrive at a location 
no later than a precise time. 

It is also possible for a time-window to be imposed on 
the initiative of the supplier of the goods, or by the 
distribution company; an example of how the latter might 
specify its own timing constraints is in the context of a 
service industry, such as dry-cleaning or TV repair, where, 
again, a certain time of collection or administering of the 
service may be stated. A degree of variation either side of 
this time may be tolerated by the operator in question, and 
may be incorporated into its routing & scheduling policy, so 
that fime-windows are, in this case, imposed in accordance 
with, and are a reflection of, the operator's desired level 
of customer-service. This type of timing constraint is more 
commonly seen in connection with demand-responsive passenger 
transport, where passengers state a preferred time for both 
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pick-up and arrival at their destination; this area of research, 
involving what is known as the Dial-a-Ride Problem, has already 
been described briefly in Chapter 1. 

Time-Windows may also be asymmetrical, in the sense that 
a customer or operator will accept earliness far more readily 
than lateness, meaning that the constraints on the earliest 
and latest times of delivery at a given location do not allow 
an equal time-interval either side of the stated time of 
arrival. 

In a real-world situation, of course, it is likely that 
a set of customers will impose a mixture of the types of 
time-constraint outlined above. 

Clearly, the introduction of any form of time-window into 
the problem formulation will have an effect on Travelling- 
Salesman solutions, as the presence of such a constraint at 
just one location may make it impossible for the routing 
algorithm employed to arrive at an optimum solution. There 
are three important ways in which time-windows effect the 
formulation of the Travelling-Salesman Problem, 

1. given assumptions about average road speeds etc., 
the total number of feasible links that may be made 
between customer-locations is reduced, 

2. the possibility'that a vehicle may arrive at a 
location and have to wait for a time-window to "open", 
and thus use up a certain amount of time that might 
otherwise have been used in travelling to another 
destination, raises the question of a trade-off 
between saving time and saving distance, 

and 3. both "I. " and "2. " imply that the least-cost 
scheduling solution to a problem involving time- 
window constraints will, almost certainly, not be 
the same as the shortest path through the given set 
of points, so that the Savings Method, which has 
been employed to generate Travelling-Salesman tours 
in all other sections of this thesis, may not be the 
most appropriate routing algorithm here. 

The impact of delivery-time constraints will not just 
increase Total Running Cost by increasing the average length 
of a vehicle trip, as the associated increase in travel-time, 
together with any time that is wasted by vehicles waiting at 
outlets for time-windows to open, will contribute towards the 
reduction of the number of locations that may be visited in a 
day. This lowering of C will, in turn, lead to a rise in the 
number of vehicles required, and so further increase both 
Standing Costs and Running Costs. 

The magnitude of the effect of time-windows on overall 
distribution costs will obviously depend on a number of factors, 
particularly the percentage of an operator's customers that 
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impose such conditions, and the size of these time-windows, 
The impact of timing-constraints should also be assessed in 
relation to that of the other parameters that have been 
discussed in earlier chapters, such as the average time spent 
at each location, average road-speeds etc.. As the importance 
of time-windows will also vary according to both the type of 
constraints in force, and the idiosyncrasies of the set of 
customers and delivery-area in question, the following section 
defines the precise formulation of the problem to be addressed 
in the discussion that follows, and outlines the major 
assumptions that are made. 

6.2. Problem-Formulation and Discussion of Assumptions 

The basic assumptions as to the nature of the problem 
are the same as those made in previous chapters; in other 
words, the problem consists of scheduling vehicles to serve a 
set of customers who are located at random points within a 
homogeneous delivery-area of known size, from a centrally- 
located depot. Furthermore, each customer-location must receive 
a daily visit, although the size of the consignment that must 
be delivered at each stop has no relevance to this particular 
problem-formulation. The latter assumption means that vehicle- 
capacity, x, is a variable of only minor importance here, so 
that the constraint that has a direct influence on n. is the 
number of customers that may be visited in a day before a 
vehicle must return to the operating-centre. The subsequent 
discussion is therefore just as pertinent to the routing & 
scheduling of vehicles that distribute a service - quite 
literally travelling-salesman, for example - as it is to that 
of a fleet of vehicles that delivers-an order of goods. 
Another aspect of the basic problem-formulation used here is 
the shape of the delivery-area served by the depot; in this 
case, it is assumed that the fleet operates within a square 
zone whose area is "a"', and not within a circle of diameter 
flail, as it sometimes is in other sections of the thesis. 

As far as concerns the time-constraints that are involved, 
it is assumed that each customer specifies one time-window, 
which defines the time-period during which a vehicle must 
arrive, so that handling and documentation procedures may 
continue after the time-window has "closed". The size of this 
time-window, (measured by its width, r, in time-space), is the 
same for each customer, and will always be expressed here in 
minutes; the mid-point, wI, of each time-window is, in contrast, 
assigned a random value representing the time of day at which 
a delivery must be made. This value must, of course, be 
feasible, in as much as it should be possible, given the 
spatial location of each customer, for a vehicle both to reach 
the premises from the operating centre before the specified 
dead-line, and to return before the end of the working-day, 
having spent the necessary time on handling and documentation. 

For the purposes of the current example, it is also assumed 
that each customer-location must be visited before the relevant 
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time-window closes, so that a vehicle must arrive at a time 
no later than (w 

I+ 
0-5 r). It is necessary to make this 

point, since, in-the real world, it is likely that a trade-off 
might be made between the cost of arriving at a location a 
few minutes late, and the extra cost that might be incurred 
through arriving on-time, (since this may be possible only at 
the expense of an increase in fleet-size, for example). On 
the other hand, although no degree of lateness is tolerated 
under the terms of this problem-formulation, a vehicle is 
permitted to arrive at a location before a time-window opens, 
although this will involve a certain amount of "waiting time" 
during which the vehicle will be idle. The implication of 
the possibility of some vehicles being scheduled to wait at 
customer-locations in this manner are dealt with in Section 
6-3., which also considers the other ways in which timing 
constraints complicate the basic Travelling-Salesman Problem- 

6.3. The Complications Caused byýTime-Windows, in Relation to 
Travelling-Salesman Problems 

There are three main ways in which time-window constraints 
affect the process of finding solutions to Travelling-Salesman 
Problems; two of these, which are discussed in Sections 6.3.1.. 
and 6.3.2. , concern the criteria used for measuring the 
distance between pairs of customer-locations, whilst the third, 
to be dealt with in Section 

. 6.3.3.., is associated with the 
construction of tours. 

6-3.1. The trade-off between saving waiting-time and saving 
Ai, ztnnrP 

A central problem involved in the routing and scheduling 
of a fleet of vehicles in the presence of timing constraints 
is the identification of what constitutes an "optimum solution" 
in this context. This is because an algorithm which strives 
merely to minimise distance may produce solutions which cause 
vehicles to spend a substantial amount of time waiting at 
customers' premises for time-windows to open, whilst, at the 
other extreme, a procedure that generates solutions which 
primarily minimise the amount of "idle time" in the fleet will 
inevitably not be very successful at reducing Total Fleet 
Mileage. 

The result of both types of inefficiency is that the 
average time that is spent in serving each customer is greater 
than it might otherwise be. Because of the limitation on the 
length of a working-day, this will reduce the number of 
deliveries that may be made each day, and thus cause the size 
of the vehicle-fleet required to also be unduly large. Since 
time is so closely related to cost, in this way, it would seem 
logical to "plot" the location of each customer in "time-space", 
alth-ough amajor flaw in using such a technique is that the value 
of saving travelling-time is not equivalent to the value of 
saving waiting-time; this is because a stationary vehicle 
waiting for a time-window to open is not incurring Running 
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Costs. It would seem to be even more appropriate, therefore, 
to weight potential savings in time and distance by expressing 
the separation of pairs of customer-locations in terms of 
the combined cost of both the mileage that is covered, and the 
time that elapses between a vehicle's departure from location 
i and the start of unloading procedures at location j. The 

cost of each mile travelled may be estimated from cost tables, 
in the usual way, although the attachment of a monetary value 
to a saving in waiting-time introduces the concept of the 
Value of Time. 

This is a concept that is employed in a variety of contexts, 
and is particularly relevant to transport operations. Time 
itself, of course, cannot actually be saved. The advantage 
gained through reducing the time that is taken to perform a 
given activity lies in the fact that each minute "saved" may 
be utilised productively elsewhere; if this is not the case, 
then a time-saving is worthless. In other words, there is an 
Opportunity Cost associated with each unit of time that is 
"wasted". 

In the context of the current discussion, the value of 
the time saved during the course of a vehicle's delivery-round, 
regardless of whether this is a reduction in waiting-time or 
travelling-time, may be capitalised by this vehicle utilising 
this time to visit more customer-locations. With a fixed 
value of Pa time-saving may be measured according to the 
amount by which the fleet-size required to perform a given 
delivery-task is reduced, so that a fall in the average time 
taken for each vehicle-trip is worthless unless it is large 
enough to enable the operator to dispense with at least one 
vehicle. 

The Value of Time is, therefore, generally a function of 
the time that must be saved for a tangible cost-saving to be 
made in this way, and the amount, in monetary terms, that is 
thereby saved, The value of an actual time-saving, in pounds 
(sterling) per day, may be expressed as follows, 

vot = C. 
s 

S 
r 

(E. 6.1. ). 

where, vot = the value of the time-saving, 
c= the cost-saving resulting from a 

unit reduction in fleet-size, 
s= the amount of time that is actually 

saved, (in minutes) 
and, sr= the time-saving thaý is required 

to enable a reduction in fleet-size 
(in minutes). 

A more generalised expression for the Value of Time is 
therefore, 
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cs 

s 
r 

s 

so that, 

vot 
(E per min) sr 

per minute 

(E. 6.2. ) 

The problem is now reduced to that of determining the 
value of the variables "c" and "sr". The amount of time that 
may be taken to represent the 'workload" of one vehicle is the 
sum of the average daily travel-time per vehicle, and the 
average amount of time that each vehicle spends at customers' 
premises each day. In practice, this figure may not be 
exactly equivalent to the aggregate amount of time that must 
be saved from the schedules of all the vehicles in a fleet 
in order to dispense with one vehicle, although this simple 
formula may be regarded as being an adequate estimate of Sr 
for the purposes of this section of the analysis. Assuming 
that vehicles are fully utilised throughout the working-day, 
and that each of these days consists of a maximum of 9 hours, 
then the value of s ry in minutes, may be assumed to be 540. 

The Total Cost saving that accrues as a result of saving 
sr minutes is equal to the difference between the cost of 
operating a fleet of n vehicles, (per day, in this case), and 
that of operating a fleet of (n+l) vehicles; this is, of 
course, a reference to the Marginal Cost of n. In Chapter 4 
it is demonstrated that the relationship between Total Cost 
and fleet-size is non-linear, but some of the important 
assumptions made in that chapter are no longer applicable when 
time-window constraints are in force. One of these is the 
assumption of non-intersecting vehicle-tours, which results 
in the pattern of vehicle delivery-zones shown in Figure 4.1.. 
Depending on the severity of the timing constraints imposed, 
each vehicle-route may include customers situated anywhere in 
the delivery-area; the likelihood of a vehicle operating 
within a full 360-degree arc around the depot in one day will 
obviously increase as r is reduced. Chapter 4's conclusions 
concerning the effect of fleet-size itself on Total Fleet 
Mileage are therefore inappropriate, given the problem- 
formulation relevant to this section. 

For the purposes of the approximate estimates that are 
to be made, here, it may be assumed that, notwithstanding the 
fact that the overheads associated with an operation will be 
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largely independent of n, the value of c may be taken to be 
equivalent to the cost of operating a single vehicle. 

The value of c may actually be calculated using cost 
tables (1), having made assumptions about the size of vehicle 
that is to be used; the value of x used for this analysis is 
0-75 tons, representing the smallest size of vehicle featured 
in the cost tables, (SEE Appendix A). This choice of vehicle- 
size was, however, purely arbitrary. The Standing Cost of 
one 0-75-ton van is quoted in the tables as being E119-80 per 
week; as this section deals with a system of daily round-trips, 
the relevant figure, here, is the daily cost of the van, ie. 
E23-96 per day, (assuming a 5-day week). As the vehicle's 
Running Cost per mile is estimated as being EO-1801 per mile, 
then Running Cost per day is E(0-1801. d), where d is the 
length, in miles, of one vehicle-trip. Therefore, when x=0-75, 

c= 23-96 + (0-1801. d) (E. 6.3. ) 
(in E per day) 

and, 

vot = 23-96 + 0-1801A (E. 6.4. ) 
(in f per min. ) 

540 

The presence of the term "d" in Equation E. 6.4., creates- 
a slight problem, since the average length of daily round- 
trips, with time-window constraints, is, so far, unknown. This 
problem was overcome by allocating an empirical value to d, 
since simulations, using a similar algorithm to that derived 
in this chapter, performed prior to the set of simulations whose 
results are to be discussed in Chapter 7,, revealed that the 
average length of each vehicle-trip is roughly 212 times the 
value of "a". A description of this alternative method, along 
with a record of the readings derived from it, also appear in 
the following chapter, (SEE, particularly, Figure 7.15. -), ý 
Again, the use of a fixed value for d in Equation E. 6.4. is 
not entirely satisfactory, especially as the estimate of "2-21-. a" 
is less accurate for smaller r-values. The purpose of thi s 
expression for the Value of Time is, however, merely to enable 
a comparison to be made between the cost of linking alternative 
pairs of customer-locations, and so it is not vital for this 
estimate of d to be absolutely precise. 

The objective of this section is to develop a means of 
making a trade-off bet'ween saving waiting-time at customer- 
locations, and saving time spent travelling between successive 
stops; having established an expression for "vot", it is there- 
fore now necessary to express Running Cost as a function of 
time. Retaining the assumption that x=0-75 tons, and assuming 

(1) Again, Commercial Motor cost tables from 1982 are used. 
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that average vehicle-speed, S, is 31-25 miles per hour (2), 
the Running Cost of the vehicle is EO-1801 per mile; as 
(31 - 25/60) miles are travelled in each minute, ( ie. 0- 5208 
miles), then the Running Cost of a 0-75-ton van is E(O-1801 
x 0-5208) per minute, (ie. EO-0938 per minute). 

The distance between each pair of customer-locations in 
"cost-spacell, or, more specifically, in terms of the cost of 
travelling plus the cost of any time that's spent waiting for 
a time-window to open, may therefore be measured. The formula 
for calculating this distance between a pair of locations is, 

GC = 0-0938. T 
t+T 

23-96 + 0-1801-d (E. 6.5. ) 
(in E) 540 

1 

where, GC = the combined, Generalised Cost of 
travelling-time and waiting-time, 

Tt = travelling-time between locations i 
and j, 

and, Tw = waiting-time at location j. 

Using this formula, a (PxP) matrix of distances in 
Generalised Cost Space may be constructed, although this 
particular step in the analysis is complicated by the 
introduction of time-window constraints; this problem is now 
dealt with in the following section. 

6.3.2., The asymmetrical nature of links in Generalised Cost 

Space 

Consider a pair of customer-locations, i and j; under 
the problem-formulation of the classical Travelling-Salesman 
Problem it is assumed that both distance and journey-time 
between these two locations is identical in either direction, 
although this is not the case when "distances" are measured 
in terms of Generalised Cost, and when time-windows are 
involved. The reasons for this may be illustrated with the 
following example. 

Assume that i and j are separated by a 2-minute drive, 
and that their w-values are 200 minutes and 250 minutes, 
respectively; it may also be assumed that each time-window is 
60 minutes in "width", and that handling-time at both locations 
is 10 minutes. Clearly, the value of r, in. this situation, 
is large enough, in relation to the time spent at each 
location and the spatial separation of i and j, to enable travel 
in either direction. The Generalised Cost of travelling from 
i to j is, however, different to the equivalent figure for the 
journey in the opposite direction. It is convenient to 
illustrate this point by assuming that, in each instance, a 

(2) This figure was originally assumed to be 50 km per hour 
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vehicle arrives at the first of these locations at the earliest 
time permitted by the time-window constraints. In other words, 
when considering a journey in the direction i-j, the arrival- 
time at i is (w 

i- 0-5 
r) minutes, (ie. 140 minutes), so that, 

after handling proced u res, the vehicle sets off for j after 
150 minutes. Arrival-time at j is therefore 170 minutes, 
implying that a wait of 20 minutes is necessary, before the 
time-window at location j "opens". For a journey in the 
reverse direction, (i to i), the vehicle would leave location 
j after 200 minutes and arrive at i after 220 minutes, and 
thus not incur a waiting-time cost. It is clear, therefore, 
that the Generalised Cost of linking locations i and j in a 
tour varies according to the direction of travel, although 
the distance involved is, of course, the same. 

In other circumstances, the presence of time-windows may 
cause travel between a pair of customer-locations to be 
feasible in one direction a-nd infeasi-ble in the other, thereby 
imposing a directional constraint on some links. 

Such problems caused by time-windows present obvious 
computational difficulties. A more serious complication, in 
as much as it creates algorithm problems for the construction 
of Travelling-Salesman tours, is the uncertainty attached to 
the time at which a vehicle arrives at each location; it is 
this problem that is to be discussed in the following section. 

6-*. 3.3. The problem of uncertainty concerning arrival-times 

The basic methodology for constructing Travelling-Sales- 
man tours used in previous chapters, has begun with the 
setting-up of a PxP matrix of values, which defines the 
relative location of each of the given set of P points. Using 
the criterion of Generalised Cost, however, this is not 
possible, because the amount of time that a vehicle must stand 
idle at a location will depend upon the time at which this 
vehicle departed from the previous location in the tour; at 
this stage of the analysis, of course, this information is 
unknown. 

This problem may. be illustrated by referring again to the 
numerical example given in Section 6.3.2., concerning the 
customer-locations J and j, (w. = 200 minutes, w. = 250 minutes). 
The time at which the vehicle aeparts from i, Onja journey to 
j, may take any value from 150 minutes to 270 minutes, 
(given that r=60 and 1=10), and this time will determine the 
waiting-time that is necessary, if any, at J. If i is not 
the first location to be visited in a vehicie-tour, then 
departure-time from i will be a function of the time at which 
the vehicle left the previous location on the route, and so 
on. Without prior knowledge of the sequence in which customers 
are to be served, therefore, there is no way in which an 
accurate matrix of Generalised Cost values may be drawn up. 

The only context in which a matrix-based algorithm may be 
employed is where vehicles are constrained to arrive at each 
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location at a precise time, (or earlier), so that the value 
of r is effectively 1. Similarly, when r is very small, a 
matrix of more approximate Generalised Cost values may be 
drawn up; provided that the average time spent at each location 
can be taken to also be negligibly small, this may be achieved 
by assuming that the time that each vehicle departs from 
location i coincides with "w 11 the mid-point of i's time- 
window. In this situation, 

the 
maximum error in the 

calculation of the vehicle's waiting-time at location j is 
11+11 or 1111 the value of r. When the time-windows involved 
are very narrow, this error may be readily accepted as an 
inaccuracy in calculation, although, for larger r-values, a 
matrix of such figures becomes absurd, so that an alternative 
route construction methodology is required. 

A method that is capable of dealing with the complications 
to the Travelling-Salesman Problem, that are described in 
this section, is outlined in Section 6 . 4.1. First, though, 
attention is turned to the general methodology that is used 
for this. part of the analysis. 

6.4. Methodology, in Relation to the Travelling-Salesman 

Problem with Time-Windows 

Given the problem-formulation outlined in Section 6 . 2., 
the most important variable relating to time-constraints is 
r, the width of the time-window specified by each customer, 
and so it would seem. logical to use this measure to represent 
the overall severity of the constraint imposed upon an operation. 
An alternative indicant, in this context, might have been 
the percentage of customers specifying such a retriction, 
although it has already been stated that it is assumed, here, 
that a time-window is defined for every location. 

In line with much of the analysis described elsewhere in 
this thesis, the methodology employed to examine the 
relationship between r and Total Distribution Cost is one of 
simulation, involving the construction of a computer program 
to simulate the type of distribution operation described 
above, with r as the main independent variable. The analysis 
is based on the hypothesis that, as the width of the time- 
window at each location is increased from a minimum of 1 
minute to a value that is so large that, effectively, timing 
constraints no longer exist, then restrictions on routing & 
scheduling are correspondingly relaxed; with Total Fleet 
Mileage, and therefore Total Fleet 

' 
Time, both consequently 

reduced by this lessening in the severity of such constraints, 
it naturally follows that Total Running Cost and fleet-size 
will also fall, thus reducing the overall cost of an operation. 
The rationale for such an argument is self-evident, although 
the results of these simulations will provide insights into 
the precise nature of the relationship between r and variables 
such as Total Fleet Mileage and Total Cost. 
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The initial stage of such an analysis is to determine the 
extent to which the imposition of time constraints reduces the 
set of feasible links that may be made between pairs of 
customers, given both their spatial distribution and the value 
of w. that defines the location of each time-window in time- 
space. As will be seen later, for the purposes of the 
simulation exercise, fixed values are used to represent 
vehicle-speed and the time that is spent at each location, 
although these values really stand for average figures. It 
would be more accurate, therefore, to use probability 
distributions, based on these averages, to represent such 
variables; whether or not a link between a pair of locations 
were feasible would then depend upon the probability of the 
second customer's time-window being "hit". The use of 
probabilities in this way becomes rather complicated when a 
succession, or "chain", of links is involved, and so all 
parameters used in the simulations described below, with the 
exception of the independent variable, r, and the randomly- 
generated customer co-ordinates and wI -values, are fixed. 

This provision means that the feasibility of a potential 
link between any pair of customers may be tested using a 
simple, algebraic expression, since it is infeasible for a 
trip to be made from location i to location j if, 

D> (w 
i+ 0-5 d- (wi - (0-5 

r+ 
1)) (E. 6 . 6. ) 

where, D= the "time-distance" between 
locations i and j, 

W. = the centroid of location i's 
time-window, 

w the centroid of location j's 
time-window, 

r the width of each time-window, 
and, 1 the time spent at each customer- 

location. 

This is because, even if the vehicle in question leaves location 
i at the earliest possible time, there±s insufficient time 
to reach location j before j's time-window closes. Similar 
expressions to Equation E. 6.6i, may be developed to ensure 
that no customer-locations are assigned wI -values that would 
make it impossible for the customer to be reached directly 
from the depot without transgressing the limit on the length 
of a working-day. 

Having checked that all customers may be served from the 
operating-centre, the next stage of the analysis is to derive 
the set of routes through the P customer-lpcations which 
minimises aggregate Generalised Cost, using Equation E. 6.5.. 
A method for achieving this is now presented in the following 
section. 
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6 . 4.1. A Shortest-Path algorithm for the Travelling-Sales- 

man Problem with Time-Window Constraints 

In the absence of the aforementioned complications caused 
by timing constraints, the process of finding the lowest-cost 
route, or set of routes, through the given set of points, would 
begin with the linking together of the pair of customer- 
locations which share the lowest value in the Generalised Cost 
matrix. The procedure would then select the pair of customers 
with the second-lowest value in the matrix, and continue this 
process until there is no location that is not incorporated 
into a vehicle-tour; at this point, an optimum, or near- 
optimum, route, or set of routes, would have been created. 
The introduction of time-windows, however, for the reasons 
which have been outlined above, precludes the use of such a 
procedure by hindering the initial creation of a matrix of 
Generalised Cost values. 

The strategy for building tours that is shown in Figure 
6-1. is "myopic", in the sense that, rather than search 

through a matrix for the pair of locations that has the 
smallest value, a route is compiled by scheduling a vehicle to 
travel next to the "nearest" customer-location to where it 
happens t-o be at any given time. In other words, each route 
is initiated by a link being made from the depot to the depot's 
nearest customer, which, in the current context, is the one 
situated the shortest distance away from the depot in 
Generalised Cost Space. The next step is to add, to this 
initial link, the nearest location to the first customer to 
be visited, and so on. This process continues until it is no 
longer possible to visit another location and still be able 
to return to the operating centre before the end of the 
working-day; at this point, the vehicle returns to its origin 
immediately, and, if there are still customers requiring a 
visit who have not yet been included in a vehicle's schedule 
for the day, a fresh tour is commenced, employing the same 
procedure. 

Using this myopic approach, there is little prospect of 
obtaining an optimum, Shortest-Path solution, either with 
time-constraints completely absent, or when r is so large as 
to cause the time-windows in force to be ineffective. With- 
out time-windows, therefore, the method which searches for the 
smallest value in a matrix, described previously, may be 
expected to be more successful at finding the shortest path 
th, rough a set of points; (it is this type of algorithm that 
is used for building Travelling-Salesman tours for the 
analysis described in Chapter 4- SEE Figure 4.8. ). The 
advantage of the myopic procedure, however, is that it 
eliminates the possibility of travel between a pair of 
locations being feasible in either direction, and avoids the 
problem associated with chains of customer-locations that is 
outlined above. The route-building algorithm described in 
Figure 

. 
6.1. was therefore adopted as a basis for the computer 
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Figure 6.1. "Myopic" tour-building strategy 
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program that was used to solve Travelling-Salesman Problems 
in the presence of time-window constraints. 

. 6.4.2. The Computer Program used to Investigate the Impact 

of Time-Windows on Distribution Costs 

A full description of the steps involved in this program 
is given by the Activity Sequence Diagram of Figure '6.2.. 
Simulation exercises, using this procedure, were repeated 
many times, with the main independent variable involved here, 
r, being incrementally increased, in order to test the 
hypothesis that Total Distribution Cost is inversely related 
to time-window width. 

The output generated by this program is presented and 
discussed in Chapter 7, which also c, ompares the associated 
findings with those derived using similar methods and algorithms 
to those described in the current chapter. 
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CHAPTER 7 

THE RELATIONSHIP BETWEEN TIME-WINDOW CONSTRAINTS 
AND DISTRIBUTION COSTS 

The program described in Chapter 6 was designed to 
produced estimates for fleet size, Total Fleet Mileage and 
the average length of each round-trip; the figures reproduced 
in this chapter, for each of these variables, represent 
average values derived from a number of simulations performed 
for each value of r. This information was later used to 
calculate Total Cost per week, again for each value of r. 

7.1. The Results of the Simulation Exercises 

Two of the major determinants of the Total Cost of an 
operation are the number of vehicles that are used to make a 
delivery, and the total mileage covered by the fleet; Figures 
7.1. and 7.2., (SEE also Table 7.1. ), show the relationship 
of both of these variables with r. For both of these graphs, 
and for all subsequent results, (unless otherwise stated), it 
was assumed that P=100, x=0-75 tons, 1=30 minutes and the 
maximum length of a working-day is 540 minutes. 

Not surprisingly, in view of the fact that Total Fleet 
Mileage is itself closely related to fleet-size, the 
distribution shown in these two Figures are very similar in 
shape. The hypothesis that the number of vehicles required 
will increase as time-window constraints become more stringent 
is accepted, with Figure 7.1. showing that this increase in 
fleet-size accelerates as the value of r approaches I minute, 
the smallest width of time-window considered, here. What is 
also apparent is that, using the technique developed in 
Chapter 6, the reduction in n as timing constraints are 
relaxed stops when the value of r increases to approximately 
250 minutes, at which point 9 vehicles appears to be the 
minimum f leet-size required, given the assumptions outlined 
above. This bottoming-out of Figure 7.1. 's curve as time- 
windows become larger contributes to the geometric shape of 
the relationship between fleet-size and time-window width. 
Similar comments may be made in connection with Figure 7.2., 
which plots the average Total Fleet Mileage figures derived 
from the simulations, although the curve shown here is 
noticeably shallower than that of Figure 7.1., and appears 
not to level out until r increases to around 350 minutes. 

A parameter that is related to both Total Fleet Mileage 
and fleet-size is d, the average length of a vehicle-trip; 
the way in which this variable behaves as time-window width 
changes is illustrated by Figure 7.3., (SEE also Table 7.1. ). 
The immediate impression given by this graph is that d is, 
generally, constant for values of r greater than 60 minutes, 
although closer inspection reveals that there is a very 
slight tendency for average trip-length to decline as r increases. 
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For narrower time-windows, however, the general trend is for 
d to decrease as timing constraints tighten; in terms of the 
independent variable, r, this fall in d coincides with the 
portion of Figure 7.1. in which fleet-size rises rapidly. 
In other words, this reduction in the average length of a 
round-trip as the value of r declines from about 60 minutes 
to 1 minute occurs because the corresponding increase in 
fleet-size, shown in Figure 7.1., is steeper than that of 
Total Fleet Mileage, (SEE Figure 7.2. ). 

A clearer picture of the processes that are in operation 
when time-windows are imposed, is provided by Figure 7.4., 

which shows the behaviour of the variable "i 
d 

it, representing 
the average distance that is travelled between successive 
stops, (including the depot), in response to changes in r. 
Clearly, id also increases as time-windows become narrower, 
especially when the value of r is very small. 

The parameter i should not be confused with "i", which 
is used in Chapter 41 (SEE Section 4.3.2., particularly 
Equation E. 4.10. ); the latter variable represents the average 
length of the trips made between customer-locations, so that 
stem-journeys are excluded. As Stem Distance is unknown in 
the present context, id represents the average length of each 
of the (C+l) between-customer links which go to make up 
Delivery Distan'ce, and may be written as, 

d 
= 

_____ 
(E. 7.1. ) 

(C+1) 

The evidence of Figures 7.1. to 7.4. suggests that the 

observed increase in Total Fleet Mileage as time-windows 
become narrower is due mainly to the rise in the number of 
round-trips required, rather than to increases in the average 
length of a round-trip. The value of Figure 7.4. is that it 

shows the way in which the average spacing between successive 
stops in a vehicle-tour increases as the value of r is reduced, 
although, at the same time, fewer locations are visited each 
day, so that the average length of a vehicle-trip is actually 
decreased. 

It should be emphasised that parameters such as C and id 
are average figures for each set of vehicle-tours, and that 
both will vary from vehicle to vehicle. This is because of 
the myopic nature of the Shortest-Path algorithm that is used 
to generate vehicle-tours, (SEE Section 6.4.1. ), whereby the 
first tours to be constructed include as many customer-locations 
as it is possible to visit before the end of the working-day, 
so that, as successive tours are built, fewer and fewer 
locations are available. By definition, therefore, the density 
of the set of customers that require a visit is lowered as 
each tour is constructed, which, in turn, increases the i d- value 
for each successive vehicle. Towards the end of the Routing 
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& Scheduling process, it is possible that the locations 

remaining to be served may be rather dispersed in terms of 
their spatial location and/or the time at which they would 
receive a delivery. Therefore, the number of customers 
visited, and the average distance that is travelled between 
each of them, may vary greatly between the first and the 
last vehicle-tour to be constructed. Again, this problem of 
having to operate one or more vehicles that are under-utilised, 
in as much as they serve only a few customers in a daily 
round-trip, is likely to be exacerbated as the value of r is 
reduced; this problem is, perhaps, the major drawback 
associated with the myopic approach to constructing tours 
that is used here. 

In order to test these hypotheses about such variations 
within each set of vehicle-tours, the program that is 
described by the flow-diagram of Figure 6.2. was adjusted so 
that it printed out the number of lo-cat. -ions that are visited 
in each vehicle-tour. From this information, it is possible 
to produce a set of histograms, for each value of r, which 
illustrates the decline in the number of customer-locations 
that are visited, from the first tour to be constructed in 
each iteration, to the last; an example of six of these 
histograms is presented in Figure 7.5., (ie. Figures 7.5.1. 
to 7.5.6. ). In each case, the columns of each diagram are 
arranged in the order in which the relevant vehicle-tour was 
constructed, the first tour being at the left-hand end of the 
x-axis. This set of diagrams, providing an example of the 
structure of one day's tours, for each value of r, confirms 
both the tendency for the tours formed first to include the 
most customer-locations, and for this tendency to be 
accentuated as time-windows become more stringent. In 

addition, Figures 7.5.4., 7.5.5. and 7.5.6. in particular 
highlight the problem of the last vehicle to be scheduled 
having to visit far fewer locations than the average for 
the fleet, C, even when the time-window constraints imposed 
are not particularly restrictive. 

The general effect of subjecting a fleet of vehicles to 
increasingly stringent time-constraints, therefore, is to 
increase the average distance that must be travelled between 

consecutive deliveries, which, given that there is a limit 
imposed on the length of a working-day, reduces the number of 
customers that may be served each day. The consequent 
increase in the number of vehicles required increases Total 
Fleet Mileage, primarily, as Chapter 4 demonstrates, due to 
the extra stem-journeys that are made, but also because of 
the extra Delivery Distance that is travelled per customer. 

All of the results discussed so far have been produced 
using an algorithm that constructs tours on the basis of the 
minimisation of the Generalised Cost of visiting each 
successive location; it is logical, therefore, for the next 
stage of the analysis to be that of investigating the effect 
of time-windows on Total Cost. All distance figures quoted 
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above are in the form of "unit distance", so that "all, the 
length of one side of the square delivery-zone, is effectively 
1. In order to present realistic cost-estimates, it is now 
necessary to make assumptions about the size of this area; 
for the purposes of the current analysis, it is assumed that 
a=50 miles. Again Commercial Motor cost-tables were used as 
a basis for these estimates, (SEE Appendix A), the key 
figures required being the Standing Cost and Running Cost of 
a 0-75-ton van, (which are E119-80 per week, and EO-1801 per 
mile, respectively). To get a weekly estimate of Running 
Cost it is merely necessary to multiply this figure by the 
appropriate figure for Total Fleet Mileage shown in Table 
7.1., then by 50, (the value of "a"), and, finally, by 5, 
(the number of days in a working-week). The resulting 
figures for Total Cost per week as a function of r are also 
presented in Table 7.2., and plotted in Figure 7.6.. 

Again, a curved distribution is shown; with Total Cost 
per week increasing most rapidly when time-windows are 
narrow and almost constant when time-windows are more than 
300 minutes in width. This graph bears a close resemblance 
to that of Figure 7.1., which illustrates the relationship 
between fleet-size and r. 

Because of the consistently curved nature of the 
distribution shown in Figure 7.6., it is not difficult to fit 
a regression-line to these points, although, due to the 
geometric relationship between Total Cost and time-window 
width, this may only be achieved after the Total Cost figures 
contained in Table 7.1. are subjected to a logarithmic 
transformation. This is the same technique that is used in 
Chapter 4 for deriving expressions for Stem Distance and 
Delivery Distance as af unc. tiýon of f leet-size, etc. . Figure 
7.7.1. shows the transformed version of Figure 7.6., and 
confirms that the relationship between the logarithms of TC 
and r is more or less linear; the regression-line which 
describes these points may be. described by the following 
expression, 

Log. TC = 3-7 - 0-177 Log. r 
(R 2=0 

-923) 
or, 

TC = 5012. r- 
0-177 (E. 7.2. ) 

Equation E. 7.2. may be used as a predictive tool, and Table 
7.2. compares the estimates of Total Cost as a function of 
time-window width, derived from this expression, with the 
Total Cost figures that are already presented in Table 7.1.. 
To give an indication of the degree of correlation that 
exists between observed and predicted figures for Total Cost 
Figure 7.7.2. reproduces the distribution of points shown in 
Figure 7.6., and superimposes the regression-curve that is 
calculated from Equation E. 7.2.; this close correlation is 
confirmed by the R2 value of 0-923. 
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A similar exercise may readily be carried out in order to 
quantify the relationship between r and fleet-size, since 
the curve shown in Figure 7.1. is very like that of Figure 
7.6., although the numerical details of regression equation 
that might be associated with this graph are of limited 
importance here; what is of value, though, is the form of 
the distributions produced as a result of these simulations. 
Although the figures contained in Tables 7.1. and 7.2. are 
greatly influenced by the assumptions that have been made, 
and by the problem formulation that has been adopted for the 
purposes of the current analysis, there would seem to be no 
reason to believe that a geometric relationship between the 
severity of time-window constraints, (represented by r), and 
distribution costs, similar to that shown in Figure 7.6., 
would not be found under similar conditions. It should be 
noted, however, that the shape of the Total Fleet Mileage 
curve, shown in Figure 7.2., cannot be taken to represent 
the way in which increasingly stringent time-constraints 
cause Travelling-Salesman solutions to deteriorate from the 
optimum; this is because the simulation procedure summarised 
in Figure 6.2. is founded upon a tour-building algorithm, 
(SEE Figure 6.1. ), which is not guaranteed to produce 
shortest-path solutions in the absence of time-windows. It 
is more appropriate, therefore, to state that the relationships 
described by Figures 7.1. to 7.5. may be partially a 
reflection of the way in which the performance of the 
algorithm used to generate vehicle-tours is affected as timing 
constraints become more restrictive. Because of the 
acknowledged importance of the algorithm used for the results 
of the entire simulation exercise, the following section 
describes two alternative techniques that could have been 
used in this analysis, and compares the output produced from 
them with the results described above. Meanwhile, Sub-section 
7.1.1. discusses the results of sensitivity analyses carried 
out on the simulation model. 

7.1.1. Sensitivitv analvsis 

There are two reasons for carrying out such an analysis 
on the simulation model's output: to test the sensitivity of 
the results produced to changes in the model's in-built 
assumptions, and to assess the extent to which there is 
variance between simulation runs. 

In order to meet both objectives, completely new data 
were generated. Although there is no reason why these figures 
should differ from those already presented in this Chapter, 
it should be noted that subsequent graphs and tables in this 
section are not derived from the same set of results as 
Figures 7.1. to 7.6.. 

In the first of these sensitivity analyses, the effect 
of changing the time that must be spent at each customer 
location, (1), on both the number of vehicles and mileage 
required in the model's solutions, was examined. Having 
generated a fresh set of control data, (ie. with no changes 



-208- 

to the simulation model's assumptions, so that 1=30), for 
values of r from 1 to 540, (on average, 5 iterations for 
each r-value were made), the run was repeated with I fixed 
at 15 minutes and then 45 minutes. Obviously, an increase 
in the amount of time that has to be spent at each 
customer's premises will increase the number of vehicles 
that are required to perform the delivery task, and thus 
increase total fleet mileage; the objective of the 
sensitivity analysis is to ascertain the extent to which 
this is the case. Similarly, runs were made, (with 1 fixed 
at 30 minutes), with the length of the working day changed 
from 9 hours to 10 hours, and then to 8 hours. The effect 
of changing average vehicle speed or the size of the 
delivery-area would have virtually the same effect as 
altering the length of the working day, as such changes 
would merely reduce the number of locations that can be 
visited by each vehicle before having to return to the 
depot, and so the effect of changing these variables was 
not considered. 

The results of the analysis are shown in Figure 7.8. 
and Figure 7.9., and indicate that neither altering the value 
of 1 nor the length of the working day by the amount mentioned 
above has very much effect on the total fleet mileage required, 
and the effect of extending or contracting the working day by 
one hour typically makes a difference of one vehicle either 
side of the figure produced by the "control run". Changing 
the value of 1 by 15 minutes does, however, have a far 
greater impact on the number of vehicles required for the 
delivery task, as Figure 7.8.1. clearly shows. The 
significance of these differences in fleet-size lies in 
the effect that the number of vehicles used has on the 
total cost of an operation; this is illustrated in Figure 
7.10.1.. As with Figure 7.6., these data refer to the total 
weekly cost of 0.75-ton vans operating in a square delivery- 
area of 50 miles x 50 miles. Comparison with Figure 7.10.2 
indicates that the effect, on the model's results, of altering 
drop-time by 15 minutes has a noticeably greater effect on 
the cost of the distribution task than changing the length 
of the working day by one hour. 

The second reason for a sensitivity analysis on the 
model's results being necessary is the fact that there is 
variance between runs in the simulation process. The issue 
of the presence of this variance is discussed in full in 
Section 4.2.. To investigate the extent to which this 
might be a factor in relation to the results presented in 
this Chapter, the simulation program was run 50 times with 
r fixed at I minute, and then 50 times with r fixed at 10 
minutes, and then 400 minutes. The dispersion statistics 
associated with this analysis are shown in Table 7.3., and 
the conclusion from these figures is that, after 50 runs, 
there is little variance from the mean. When r=l, for 
example, there is a 68.2% probability of the Total Fleet 
Mileage estimate generated by the model being within 2.481 
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Table 7.3. The variance in the Total Fleet Mileaqe 
estimates of 50 simulation runs, (unit distance). 

r=l r=10 r=400 

Mean Value 50.176* 47.628* 22.089* 

Min. Value 44.122 42.274 19.292 

Max. Value 55.334 53.404 26.096 

Standard Deviations 2.481 2.569 1.381 

Number of Iterations 50 50 50 

distance units of the mean, 50.156. In practice, however, 
it is not feasible to make 50 iterations of the simulation 

, program for each value of r, and so the important question 
to be asked is: after how many iterations of the program 
will the averaqe value of, say, Total Fleet Mileage, not 
vary significantly with the generation of more readings? 
In other words, after how many iterations does the average 
value level out? To answer this question, a rolling average 
of all Total Fleet Mileage estimates was recorded for the 
three sets of 50 runs, and the results of all three are 
shown in Figure 7.11.. Clearly, there is a great deal of 
variation in the difference between the rolling average 
and the eventual average after 50 runs for the first few 
iterations of the program but this is purely a function of 
how "erratic" the initial estimate is; for example, the 
first estimate when r=1 differs from the overall mean by 
only 0.56 distance units, and by 5.81 distance units when 
r=10. The disparity between the value generated at the 
first iteration, and the eventual mean value is of little 
significance, however; what is of importance is the point 
at which the three curves in Figure 7.11. level out, and 
for values of r of 1,10 and 400, this appears to be after 
11,9 and 7 iterations, respectively. It is interesting 
to note that, on the evidence of these three curves, the 
number of runs required to achieve this levelling out tends 
to increase as time-window width decreases. Generally, it 

may be concluded that, if the average of, say, 10 runs were 
taken as the estimate of Total Fleet Mileage for each value 
of r, then it may reasonably be assumed, on the evidence of 
this sensitivity analysis, that this figure would not change 
substantially if more runs were made. In practice, all of 
the figures included in this chapter are the result of at 
least 5 iterations of the simulation program. 
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7.2. The Results Obtained Using Alternative Simulation 
Techniques 

In the course of the development of the simulation 
program that is described above, two alternative tour- 
building strategies were considered. The first of these 
involves the use of a different Shortest-Path algorithm for 
constructing tours in Generalised Cost-space, whilst the 
second drops the notion of Generalised Cost, and instead 
defines the relative location of each customer in terms of 
time. 

7.2.1. The use of the Savings Method in the presence of time- 

windows 

The route-building algorithm used to derive the results 
that have been discussed in this chapter is based on the 
Nearest Neighbour criterion, since a vehicle's next 
destination on its schedule is simply the nearest available 
location that requires a visit. A similar tour-construction 
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procedure may be employed using the concept of "Savings", so 
that the "distance" from the vehicle's location, i, at any 
time, to each of the other locations, j, is equal to the 
saving that would be made as a result of linking i and j 
directly, in a tour. 

The use of the Savings Method, however, does nothing to 
overcome the problems, outlined in Section 6.3., concerning 
the initial formation of a matrix of values, and so it is 
still necessary to adopt a myopic approach for the process 
of linking together locations to form a tour. The difference 
between the context in which the Savings calculation is used 
in Chapter 4 and its utilisation in the current chapter, is 
that distances are now measured in terms of Generalised Cost. 
It is the consideration of waiting time as well as actual 
travelling time, along with the fact that a myopic tour- 
building strategy is used, that makes a Savings-based method 
used in the presence of time-windows rather different in 
nature to one which is employed in a non-time-constrained 
context; this is true from the point of view of both the way 
in which the tour-building procedure is initiated, and the 
manner in which the process continues. 

To reiterate what has already been explained in Chapter 
4, the Savings Method normally begins by assuming that all 
customer-locations are served individually by one vehicle 
which travels from the depot to one location, and back to 
the depot again; in this situation, the number of vehicle- 
trips is equal to P, and C=l. The procedure commences by 
calculating the distance that is saved by linking together 
a given pair of points, so reducing the number of vehicles 
used by 1. The calculation of this distance-saving may be 
illustrated with the aid of Figure 7.12. -. In this situation, 
the saving made from the inclusion of points A and B in the 
same trip, instead of serving them in separate vehicle-trips 
from the depot, "X", is, in algebraic terms, equal to, 

(2a + 2b) - (a +b 

A simplified version of this expression is one which has been 
reproduced earlier in this thesis. as Equation E. 4.6., 

a+b- 

where, S= the "Savings Value" of 
linking a pair of points, 

x= the distance separating 
the two points in question, 

arid, a&b are the respective distances 
of points A and B from the 
depot. 

In the non-time-constrained situation, the first step to 
be executed in the process of constructing a tour would be to 
link the pair of locations having the highest S-value; since 
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Figure 7.12, Illustration of Savings Method 
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it is necessary here to proceed in a myopic manner, however, 
the first link to be made must originate from the depot. 
The first step in this case, therefoe, is for the vehicle to 
be directed to the nearest customer in Generalised Cost-space, 
which may be assumed to be point A, for the purposes of 
Figure 7.12. Once the vehicle arrives at A, the saving made 
by travelling directly to point B is, purely in terms of 
distance, still (a +b- x), but the complication, here is 
the importance of the direction of travel when waiting-time 
is considered. The fact that the Generalised Cost of 
travelling between a pair of points is not the same in both 
directions has already been discussed in Seciton 6.3.2.; in 
terms of Equation E. 4.6., the two journeys which need to be 
costed are from A to the depot, X, and from the depot to B. 
As these Generalised Cost measurements are being made purely 
for the purposes of comparison, the cost of travelling from 
A to X may be omitted, since this journey is common to each 
calculation. The difference between a Savings-based method, 
in this particular context, and the Nearest Neighbour 
equivalent, therefore, is that the "distance" from the 
vehicle's location to each of the customers requiring a visit 
is calculated as (b - x), whilst the latter technique simply 
uses the measure "x". 

In practice, the Savings criterion will tend to favour 
the linking of those locations that are further away from the 
depot, and those that specify times for delivery that are 
later in the day; when r is so large as to make time-windows 
relatively insignificant, the bias will just be towards the 
more remote locations. The main advantage of using the 
(b - x) calculation is that customers that are most distant 
from the depot, and/or specify late delivery-times, are 
more likely to be included in a vehicle-tour early on in 
the tour-building process; this contrasts with the problem 
of dealing with such locations at the end of the Routing & 
Scheduling process, associated with the Nearest Neighbour 
approach, which may lead to the use of one vehicle to 
serve relatively few customers. 

A possible disadvantage of the Savings-based approach, 
however, is that, when a remote or "late" location is linked 
early on in the tour-building process, there is little time 
left for the vehicle to travel to other customer-locations 
before having to return to the depot. This is likely to 
reduce the number of customers that may be served in a day, 
and thus cause the number of vehicles used to be 
unnecessarily high. 

Such hypotheses about the relative strengths and weak- 
nesses of these two route-building strategies were tested by 
once again running the simulation program many times, and 
deriving figures for parameters such as fleet-size and Total 
Fleet Mileage, for each value of r. The results obtained 
using the Savings formula are presented in Table 7.4 ., and 
are compared with those derived using the Nearest Neighbour 
approach in Figures 7.13 to 7.16.. 
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These graphs provide a very clear indication of the 
difference between the two methods. Figure 7.13 indicates 
that the Savings Method tends, for most values of r, to 
produce solutions which require substantially more vehicles, 
but which, as Figure 7.14.. shows, involve less Total Fleet 
Mileage. This mileage reduction supports remarks made, in 
Section 7.1., to the effect that the route-building algorithm 
based on the Nearest Neighbour criterion is no-t guaranteed to 
produce a minimum-distance solution in the absence of time- 
windows. 

The consistent difference in the mileage per vehicle-trip 
required using the Savings Method, as indicated by Figure 
7.15., confirms that solutions based on this technique are 
characterised by generally larger fleets making shorter 
round-trips, which results in lower Total Mileage figures, in 
comparison with equivalent solutions obtained using the 
Nearest Neighbour approach. The fact that a larger fleet of 
vehicles can cover fewer miles may seem, at first, to 
contradict the findings of Chapter 4, which demonstrates that 
there isa positive relationship between TFM and n. The 
explanation for this apparent anomaly is that it is assumed, 
in Chapter 4, that vehicle-routes are non-overlapping; with 
time-windows, of course, this is no longer a realistic 
assumption, and so this earlier finding does not apply in 
the present context. 

Another difference between the two graphs of Figures 
7.13. and 7.14. is that, whereas both curves derived using 
the Nearest Neighbour approach tend to level out as time- 
windows become wider, both fleet-size and Total Fleet Mileage 
continue to decline when the Savings Method is used. In 
other words, neither n nor TFM appear to have a geometric 
relationship with r, using the latter approach. The effect 
of this is that, for larger time-windows the difference in 
Total Fleet Mileage is quite considerable, and, when the 
value of r exceeds 500 minutes, the Savings Method even 
produces solutions which also involve fewer vehicles. 

A more important issue, though, in this section, is the 
comparison between the two techniques when timing constraints 
are more stringent. Although Figure 7.1.5. shows that the 
value of d is lower, using the Savings criterion, for all 
values of r, Figures 7.13 and 7.14. indicate conclusively 
that the Nearest Neighbour approach is superior when time- 
windows are narrower. The conclusion is supported by 
Figure 7.16., which compares the two techniques in terms of 
Total Cost per week. Again, the curve obtained using the 
Savings Method continues to fall as the value of r increases, 
whilst the corresponding line for the Nearest Neighbour 
technique levels out, but it is not until the value of r rises 
to around 350 minutes that the two curves intersect. This 
graph clearly shows that the latter approach produces the 
lower-cost solutions when timing constraints are effective, 
a tendency that is increasingly accentuated as the width of 
time-windows is reduced. 
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7.2.2. The use of time as an alternative to Generalised Cost 

Having presented an alternative set of results, derived 
using a different Shortest-Path algorithm, in the previous 
sub-section, attention is now turned to the results produced 
from a series of simulations which employ the same myopic, 
Nearest Neighbour-based routing strategy; the difference, 
in this case, is that time is the sole measure that is used 
to estimate the distance between pairs of locations. To be 
more precise, tours are built by successively directing a 
vehicle to the location at which it can arrive, AND START 
UNLOADING, the soonest. In this way, account is still being 
taken of both the spatial location and the w-value of each 
location, although there is no monetary weighting attached to 
times in order to distinguish between waiting-time and in- 
transit time, as there was when Generalised Cost was used. 

The results obtained using this time-based technique are 
presented in Table 7.5.., and are illustrated graphically by 
Figures 7.17. to 7.20.. Clearly, these diagrams bear a 
very close resemblance to those produced using the Generalised 
Cost concept, (ie. Figures 7.1. to 7.4. ), except that the 
latter technique performs rather better in terms of Total 
Fleet Mileage, and thus Total Cost per week, when time-windows 
are narrower than about 60 minutes. Figure 7.1. and 7.1. '7., 
which show the relationship between time-window width and 
fleet-size, are almost identical, suggesting that the 
observed differences in Total Fleet Mileage figures when r is 
small are a result of differences in the average length of a 
round-trip; this may be confirmed by comparison of Figures 
7.3. and 7.19.. 

The variance that exists between the two sets of results 
are, admittedly, very slight, although the differences in 
the figures for Total Cost when r is small, (SEE Figures 7.6. 
to 7.20. ), do provide some justification for the Generalised 
Cost approach's emphasis on cost-minimisation. 

Passing reference is made in Section 7.2.1. to the 
findings, on the relationship between Total Fleet Mileage 
and fleet-size in the absence of time-windows, that are 
discussed in Chapter 4. Although the relationship between 
these two variables under conditions of time-constraints is 
not one of the primary aims of this part of the thesis, the 
data required for exploring this relationship is, neverthe- 
less, available as a result of the simulation exercises that 
have already been performed. The following section therefore 
uses this information to examine the effect of time-windows 
on this relationship. 

7.3. The Relationship Between Total Fleet Mileage and Fleet 
Size in the Presence of Time-Windows 

Although it is not valid to compare the absolute figures 
for'Total Fleet Mileage with and without time-window constraints, 
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owing to the fact that the sets of results presented in 
Chapters 4 and 7 are obtained using different algorithms, it 
is still interest'ýUng to compare the shape of the respective 
relationships. 

The relevant graphs in Chapter 4 are Figure 4.9., 
particularly the curve for Total Distance as a function of 
fleet-size, and Figure 4.11., which shows the relationship 
between fleet-size and the average length of a vehicle-trip. 
The equivalent data for the time-constrained context has 
already been presented, in Table 7.1.. As there are some- 
times several different mileage figures for each value of n 
in this table, average values for TFM and d were calculated 
in each case; these averages are contained in Table 7.6.. 
Figures 7.21. and 7.22. combine both these averages, and 
the raw data of Table 7.1., for TFM and d, respectively. 
(N. B. The average figures for when n=21 and 22, appearing in 
Table 7.6., are derived from simulations in which the value 
of r ranges from 1 to 15 minutes; these detailed results 
have been omitted from Table 7.1., for the sake of brevity). 

Another factor that inhibits the making of comparisons 
between the results obtained with and. without the imposition 
of time-windows is the fact that no data is available in 
Table 7.1. for n-values of less than 9. This applies 
particularly to the figures on average tour-length, as the 
steep portion of the d-curve of Figure 4.11. corresponds 
mainly to small fleets. Considering the scale of the y-axis 
in Figure 7. -22., the average length of a vehicle-trip is 
more or less constant, with only a slight decline with 
increasing vehicle-size in evidence; the same observation 
might also be made about the corresponding portion of the 
line shown in Figure 4.1l.. The lack of data for Total Fleet 
Mileage when n is small, in the presence of time-windows, 
should not present the same problem for making comparisons, 
since the line drawn in Figure 4.9. is virtually linear. 
Although the same cannot quite be said about the relationship 
shown in Figure 7.21., the general tendency for Total Fleet 
Mileage to increase at a more or less constant rate as fleet 
size increases is largely repeated. In fact, although there 
is a limited extent to which firm conclusions may be drawn 
from this very rough comparison of the output produced by two 
rather different simulation programs, it would appear that 
the general nature of the relationship between Total Fleet 
Mileage and fleet-size varies little according to whether or 
not time-window constraints are imposed. 

7.4. Summary of the Findings on the Effect of Time-Windows 

on Distribution Costs 

Chaper 6 begins by outlining the difficulties that are 
presented by the introduction of time-windows, making 
particular reference to the ways in which such constraints 
inhibit the use of existing algorithms for solving Travelling- 
Salesman-type problems. The major difficulty involved here, 
is the fact that time-windows hinder the initial setting up 
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of a distance-matrix to describe the relative locations of 
the customers that are to be served. In order to overcome 
this, an alternative, myopic Shortest-Path algorithm is 
proposed; prior to this procedure being put into operation, 
and to reflect the fact that the saving that is made in a 
fleet's travelling-time is not the same as that of a saving 
in waiting-time, allcustomer-locations are defined in terms 
of the Generalised Cost of travel. The formula for Generalised 
Cost appears as Equation E. 6.5., and the program used to 
generate Travelling-Salesman solutions is summarised by the 
flow-diagram of Figure 6.2.. 

The results of the simulation exercises carried out using 
the procedure developed in Chapter 6, have now been presented 
in Chapter 7. The most important finding, here, is the 
nature of the relationship between the Total Cost of an 
operation and r, the width of the time-windows that are imposed, 
(SEE Figure 7.6. ). This graph upholds the hypothesis that 
distribution costs will increase as timing constraints 
become more stringent, and, after transformation of the data 
using logarithms, a regression-line is fitted to this 
geometric distribution of points, (SEE Figure 7.7.2. ). 
Despite the close correlation that exists between this 
regression-line and figures produced by simulation, (the R2 
value associated with the regression is 0-923), there is a 
limit to the usefulness of the expression that describes this 
relationship, Equation E. 7.2., as a tool for estimating 
Total Cost per week. This is because the numerical details 
of the estimates derived from this equation are very 
dependent upon the particular assumptions that are built into 
the problem formulation that is involved here. Furthermore, 
the demonstrable increase in simulated Total Cost figures as 
time-windows narrow cannot be said to take place from a base- 
line level that represents the weekly cost of a distribution 
operation using an optimum routing strategy; this is due to 
the fact that the tour-building algorithm used, that has 
been developed for the specific purpose of overcoming the 
problems that are posed by time-windows, is by no means 
guaranteed to produce optimum solutions in the absence of 
such constraints. The results presented in Chapter 7 do, 
nevertheless, provide vivid insights into the way in which 
solutions to Travelling-Salesman Problems deteriorate as 
timing constraints become more severe, and there seems to be 
no reason to doubt that the geometric relationship shown in 
Figure 7.6. is not a true reflection of the way in which 
time-windows affect distribution costs in the real world. 

The analysis goes on to examine the behaviour of the 
major parameters of a distribution operation - namely Total 
Fleet Mileage, fleet-size and the average length of a vehicle- 
trip - as r changes, and compares the resulting graphs with 
Figure 7.6.. As Figure 7.1. and 7.2. indicate, the curves 
for n and TFM show the same geometric relationship with time- 
window width as that for Total Cost. The fact that the 
value of d is virtually constant as r changes, (SEE Figure 
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7.3. ), suggests that it is the increase in the number of 
vehicles required that is the main influence on the behaviour 
of the Total Fleet Mileage curve of Figure 7.2.. Figure 7.4. 
shows how the average distance between consecutive stops in a 
vehicle-tour, id, increases as time-windows narrow. This 
graph confirms that the overall effect of timing constraints 
becoming increasingly stringent is that vehicles are able to 
visit fewer more widely dispersed customer-locations in each 
working-day; this reduction in the value of C directly increases 
fleet size. Using the findings of Chapter 4, which explores 
the relationship between Total Fleet Mileage and fleet-size 
in the absence of time-window constraints, it may be concluded 
that it is the increase in the number of vehicle-trips, and 
therefore stem-journeys, that are made that causes TFM to 
behave in the manner indicated in Figure 7.2.. 

Because the above conclusions were drawn on the basis of 
many iterations of a computerised simulation model, sensitivity 
analyses were carried out to test the validity of the 
conclusions. These analyses showed that changing neither 
the model's assumption about average drop-times by 15 minutes, 
nor the, assumed length of a working day by 1 hour had any 
significant effect on Total Fleet Mileage estimates. It was 
shown, however, that changing the length of the working day 
by this amount changed the fleet size required, typically by 
one vehicle, whilst a 15-minute change in drop-time changed 
the required size of the fleet substantially more, (typically 
by 3 or 4 vehicles). To assess the extent to which there may 
be a problem of variance between successive Total Fleet Mileage 
estimates, the model was run 50 times with no changes made to 
the value of any of its parameters. An analysis of the 
difference between the rolling average of the estimates and 
the eventual average figure was carried out. This exercise 
suggested that, after about 10 iterations of the program, there 
was very little discrepancy between these two averages. 

It should be emphasised, of course, that the introduction 
of time-windows into the problem formulation limits the extent 
to which analogies may be drawn between the results of 
simulations carried out with and without the imposition of 
time-windows. Figures 7.21. and 7.22., however, indicate that 
the relationship of n to both TFM and d, with timing 
constraints, is probably not very different to the 
corresponding relationships in the non-time-constrained 
context, as shown in Figures 4.9. and 4.1l.. 



4. SUMMARY AND CONCLUSION 
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CHAPTER 

SUMMARY 

The role of Part 4 of the thesis is to summarise the 
major findings of the research, and to outline the conclusions 
that may be drawn from the results that are described in 
foregoing chapters. Whilst the current chapter provides a 
resume of the main end-products of this research, Chapter 
discusses the extent to which the objectives outlined in 
Chapter 2 have been met, and goes on to evaluate the degree 
to which the methods used here have been successful, and the 
way in which the thesis relates to other work done in this 
field. Chapter 9 closes with a section that makes 
suggestions for further research which might be carried out 
as an extension of the work that has been reported in the 
current thesis. 

The main focus of Chapter 3 is the relationship between 
two important decision-variables --"fleet-size, (n), and 
vehicle size, (x), and the basic dilemma involved in making 
a trade-off between the two when deciding on the composition 
of a vehicle fleet. This relationship is examined using the 
concept of Economies of Scale in Transport, which utilises 
the fact that the cost per ton (carrying-capacity) per mile 
of operating a goods vehicle decreases geometrically as 
vehicle carrying-capacity increases. This phenomenon is 
demonstrated by means of a deliberately simplistic hypothetical 
situation of an operation which involves delivering a fixed 
weekly consignment of goods from a single depot to a single 
destination using a uniform fleet of vehicles - using cost- 
data published by Commercial Motor magazine, the presence of 
Economies of Scale of the type described is demonstrated both 
graphically, (SEE Figure 3.7. ), and algebraically. The 
important policy implication of Economies of Scale in this 
context is that, given the constraints and assumptions 
associated with the particular problem formulation dealt with 
in this chapter, it is more cost-effective to employ a fleet, 
for the delivery of a fixed weekly consignment of goods, (t), 
which consists of the smallest number of vehicles possible, 
than to use a larger fleet made up of smaller vehicles. The 
basis of Section 3.5. 's algebraic proof of this finding is 
an expression, (Equation E. 3.11. ), which expresses Total 
Cost per week as a function of the parameters t and x, (with 
the length of the fixed round-trip, d, given). 

The removal of the assumption of a fixed vehicle trip, 
so that d is influenced by x, by the latter's effect on n, 
leads to the discovery that the curve describing the fleet's 
Running Cost per week is "U"-shaped when plotted against the 
number of vehicles in the fleet, (SEE Figure 3.22. ). This' 

. 
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is because Running Cost is a function of both vehicle-cost 
per mile, which increases with vehicle size, and the number 
of miles travelled per week, which decreases as vehicle size 
increases due to the associated reduction in fleet size. 
The implication of this "U"-shaped Running Cost curve is that, 
when d is variable, it is possible that the Total Cost curve 
may also be "U"-shaped, depending on the relative influence 
of Standing Costs and Running Costs, (SEE Figure 3.23. ). 
The main variables that determine whether the Total Cost 
curve will be "U"-shaped are therefore parameters such as 
area-size and fuel costs per mile; the possibility. does, 
however, mean that, in the absence of the assumption that 
vehicles travel on a route of fixed length, it is feasible, 
under certain conditions, for Total Cost to actually decline 
as n increases and x is reduced. In such circumstances, it 
is therefore possible to use this Total Cost curve to 
establish an optimum, least-cost fleet-size, with its 
associated value of x, to perform a given delivery-task. 

The theme of the influence of fleet-size on Total 
Distribution Cost-, although not in the context of the way in 
which it affects x, is continued in Chapter 4, in which the 
spatial implications of the number of vehicles employed, 
which are introduced in Chapter 3, now become the central 
issue. In fact, in the absence of any consideration of the 
size of the weekly consignment of goods to be delivered, or 
vehicle size, Chapter 4 concentrates on the way in which 
fleet-size affects Total Cost purely as a result of 
increasing the number of vehicle trips that are made, and 
thus Total Fleet Mileage. More precisely, with the total 
number of outlets to be served, (P), fixed, fleet-size is 
shown to affect Fleet Mileage by influencing the number of 
11stem journeys" that must be made to and from the depot, the 
average number of customer-locations that are served in each 
round-trip, and the average size of each vehicle's delivery- 
zone, (retaining the assumption of non-overlapping vehicle 
tours). 

Using stochastic simulation once again, by means of a 
route-building computer program based on the Savings Method, 
a formula for Total Fleet Mileage as a function of fleet-size, 
(n), and the average number of stops per tour, (C), is 
developed, (C being a function of P and n). The novelty of 
the approach here lies in the way in which Stem Distance, 
(the total distance that is travelled by a fleet between the 
depot and the first and last customer-locations of each 
vehicle tour), and Delivery Distance, (the total distance 
travelled between consecutive customers), are estimated 
separately, and, for the latter estimate, Delivery Distance 
is further disaggregated to the level of the term "i", which 
represents the average distance between consecutive stops. 
From an initial equation for Total Fleet Mileage as a- 
function of n and C, (SEE Equation E. 4.20. ), after algebraic 
manipulation, an expression for Total Fleet Mileage as a 
function of the "external" constraints P and k is developed, 



-229 - 

(SEE Equation E. 4.21. ), where P is the total population of 
customers requiring a delivery, and k represents the maximum 
number of deliveries that may be made each day by a single 
vehicle. The introduction of the parameter k, in this 
chapter, may be seen as the reappearance of vehicle carrying- 
capacity as a constraint, although this limit could equally 
be a result of temporal constaints. 

The graphs drawn from Equation E. 4.20., (SEE Figure 4.31. ), 
show that both Stem Distance and Total Fleet Mileage appear 
to increase linearly with n, whilst Delivery Distance is 
roughly constant - this underlines the assertion that it is 
the increase in Stem Distance that is the major factor in 
causing Total Fleet Mileage to rise as the fleet grows, in 
terms of the number of vehicles used. Despite this apparent 
linearity, however, the simulation analysis also provides 
data which reveals that the lines of Figure 4.31. are, in 
fact, slightly curved; Figure 4.33.2., based on figures 
generated from Equation E. 4.20., graphs the Marginal Cost, 
in terms of the extra distance travelled by the fleet, of 
each vehicle that is added, for both a 50-customer and a 
100-customer situation. The distinctly "U"-shaped, but 
asymmetrical, nature of these curves is then accounted for by 
Figure 4.34., which disaggregates the Marginal Cost curve 
for the 100-customer instance into the curves for Marginal 
Cost in terms of both Stem Distance and Delivery Distance - 
this graph shows that both of these lines are geometric in 
form, but that the Marginal Cost of Stem Distance increases 
with n. whilst that of Delivery Distance decreases. Similar 
graphs are also drawn to illustrate the figures generated 
from E. 4.21., (SEE Figures 4.32. and 4.33.1. ), the latter 
Figure demonstrating the increasingly gradual decline of 
Marginal Cost in terms of distance, of adding an extra 
customer-location to the fleet's delivery-schedule. The 
use of Marginal Cost figures in this way is itself an 
illustration of how the nature of vehicle tours is examined 
in Chapter 4 using the detailed data that is provided by 
the tour-building simulation program. 

As well as providing a great deal of information about 
the various components of vehicle-tours, mentioned above, 
and the relationships that exist between key parameters, 
Equations E. 4.20. and E. 4.21. also serve as useful predictive 
tools for estimating the length of vehicle tours and Total 
Fleet Mileage, given certain conditions and constraints. 
Because all such predictions are the result of a number of 
iterations of a simulation program, however, each predicted 
value is a mean figure, and therefore has a measurable 
variance and Standard Deviation with which it is associated. 
Section 4.5. provides an illustration of how this variance 
may be used to place confidence limits around these estimates, 
and suggests how statistical indices such as skewness and 
kurtosis might be employed in a similar way for qualifying 
the predictions that are derived from these expressions. 
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An example of the usefulness of distinguishing between 
Stem Distance and Delivery Distance is presented in the 
following chapter, Chapter 5, which deals with the impact of 
driver's hours limitations on Total Cost. The main focus of 
the first part of this chapter is the effect of the variable 
"H", the total amount of time that is available for each 
daily vehicle-trip, on Fleet Mileage estimates, that are 
disaggregated into Stem Distance and Delivery Distance; this 
set of estimates is derived from an equation that has been 
adapted from E. 4.21., which expresses Total Fleet Mileage 
as a function of P and k. The resulting graph , shown by 
Figure 5.2.2., reveals the geometric shape of the Total Cost 
curve, and clearly shows that Total Cost rises rapidly as 
the value of H declines to below about 6 hours, in this 
particular case. The same graph indicates, with equal clarity, 
that it is mainly due to the increase in Stem Distance that 
this sharp increase in Total Cost takes place, (Delivery 
Distance is seen to be almost constant), and Table 5.2. 
confirms that it is the limitation of the number of outlets 
that may be visited in each vehicle trip that causes this 
rise in the number of stem-journeys that are made. 

The analysis of the relationship between the parameters 
H and k then leads on to a discussion of the effect on Total 
Cost of allowing drivers to stay away from the operating 
centre overnight - the major advantage of an overnight stay 
is that the number of customer-locations that may be visited 
in a round-trip, k, is increased, and the number of stem 
journeys that must be made is reduced, which in turn, reduces 
the Total Mileage of the Fleet. The associated decrease in 
cost must however, be traded off against both the increased 
vehicle-cost per mile that results from having to use 
larger vehicles, and the overnight expenses that must be paid 
to each driver. Again, a simulation program was developed 
to compare the cost of delivering a weekly consignment of 
goods both using a system of overnight stays, and imposing 
the constraint that each vehicle must return to the depot 
at the end of each working-day; this program is based on the 
equation for Total Fleet Mileage as a function of n and C, 
derived in Chapter 4, (ie. Equation E. 4.20. ), and Chapter 3's 
E. 3.6., which enables Total Cost to be calculated as a function 
of fleet-size, Total Fleet Mileage and vehicle carrying- 
capacity. Using the size of the whole delivery-area as the 
main independent variable in this section of the analysis, 
output from the program shows the value of "a" at which it 
becomes cheaper to allow drivers to make overnight stays, 
(SEE Figure 5.7. ). This simulation data also shows, once 
again, the extent of the influence of Stem Distance on Total 
Fleet Mileage, through Figure 5.10., which illustrates the 
way in which the percentage of the latter that is accounted 
for by Stem Distance increases with increasing area-size; 
clearly, this percentage growth is far more pronounced in 
this graph for the Daily Round-Trips option than for a 
system that allows overnight stays. 
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The curves for Total Cost per week for both situations, 
(SEE Figure 5.15. ), shows the same geometric shape as the 
Total Cost curve of Figure 5.7., which is described in an 
earlier section of Chapter 5, although, in. Figure 5.15., it 
is the increasing size of the delivery-area, and not the 
diminishing amount of time required in which to make deliveries, 
that causes the sharp increase in Total Cost after a critical 
value of a, (which will vary according to the assumptions 
that are made). In both cases, though, it is shown that it 
is the limitation of k, the number of customers t. ha-t may be 
served in a single delivery-round, that actually causes this 
cost increase. Although the cost curve for Overnight Stays 
in Figure 5.15. has the same geometric form as that for Daily 
Round Trips, the advantage of being able to effectively 
increase the value of the constraint k means that this rapid 
cost increase with area size is delayed until a reaches a 
considerably lar-g&r value. Therefore, for the same portion 
of this graph, the Overnight Stays curve appears to rise 
linearly whilst the corresponding curve for Daily Round Trips 
increases geometrically. 

The main findings of Part 3- which is concerned with 
the external influences on distribution operations, which are 
normally beyond the control of the operator - centre around 
the effect that time-windows have on estimates of both 
Fleet Mileage and Total Cost. Throughout this section of the 
analysis time constraintsýazerepresented by the independent 
variable 'Y', which defines the "width" of a time-window, 
in minutes. Although it is acknowledged that time-windows 
may take on various forms in practice, just one type is used 
here as a general representation of time-constraints that 
are imposed on a fleet's schedules by the customer. In fact, 
it is assumed that every customer specifies one time-window 
of the same width, a time-window whose mid-point may take on 
any random value in time, provided that it is feasible for a 
vehicle to make a delivery to the relevant location from the 
depot, given the constraints on the length of the working 
day. 

The presence of such time-windows greatly complicates 
the building of vehicle-tours using the savings-based method 
used in Chapter 4, for reasons that are specified in Section 
6.3., and so, in order to test the effect of time-windows on 
estimates of Total Fleet Mileage, it has been necessary to 
design a heuristic method for constructing Travelling-Sales- 
man tours under such conditions. The development- of this 
algorithm provides the main subject-matter for Chapter 6. 

The fundamental trade-off involved with this heuristic 
is that between minimising the aggregate distance that is 
travelled by the fleet and minimising the total amount of 
time that all vehicles spend waiting at an outlet for a 
time-window to "open". It has been necessary, therefore, to 
develop a means of estimating the Value of Time, in order 
that the relative location of each customer may be defined 
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in terms of Generalised Cost, (SEE Equation E. 6.5. for a 
detailed definition of this measure). Using the "myopic" 
Shortest-Path algorithm described by Figure 6.1., a 
simulation program was used to construct and measure 
Travelling-Salesman tours in the presence of time-window 
constraints - although this program was not designed to 
produce optimum tours, it has been successful in providing 
output to enable the effect of time-window constraints on 
Total Fleet Mileage and Total Cost to be examined. 

It is not surprising that the results of these simulations 
support the hypothesis that the narrowing of time-window 
widths will increase fleet size, Total Fleet Mileage and 
Total Cost, although it is interesting to note the markedly 
geometric nature of the Total Cost curve of Figure -7.6., 
as well as that of the curves for n and Total Mileage shown 
in Figures 7.1. and 7. 

. 
2. , respectively. Again, it is 

demonstrated how such relationships may be quantified, and, 
after logarithmic transformation of the data and a regression 
analysis, an expression E. 7.2., is derived for Total Cost 
per week, as a function or r, 

TC 5011-87. r- 
0-177 

(E per wk) 

Although the numerical details of this equation are 
unimportant, in view of the fact that such details are very 
much dependent on the assumptions made for the purposes of 
the analysis, the regression that produced this equation 
returned an R'-value of 0-923, indicating that Equation 
E. 7.2. gives quite an accurate description of the relationship 
between Total Cost and time-window width. The advantage of 
simulation providing a great deal of disaggregated data, 
enabling a detailed analysis of the relationships that are 
discussed in Chapter 7, is again in evidence, and, comparing 
Figures 7.6 and 7.1., there is the strong suggestion that- 
it is the enforced increase in fleet size that causes the 
observed geometric rise in Total Cost with decreasing r. 
Figure 7.3. indicates that the average length of a vehicle- 
trip remains more or less constant as time-window width 
changes, confirming that increases in Total Fleet Mileage, 
and thus Total Cost, must therefore be due to increases in 
the number of round-trips made by the fleet. The explanation 
of the actual effect of increasingly stringent time- 
constraints on the spatial behaviour of a vehicle-fleet is 
completed by Figure 7.4., which graphs the average distance 
between consecutive stops against r.. It may be deduced from 
these Figures that, as time-windows become narrower, vehicles 
are able to visit fewer, but more widely-spaced, locations 
in each working-day; in algebraic terms, therefore, the 
reduction in C causes n to increase, which in turn, causes 
an increase in Stem Distance, Total'Fla-et Mileage and, 
consequently, Total Cost per week. 

To complement the research done on the relationship 
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between fleet size and Total Mileage, that's described in 
Chapter 4, the output produced for the time-constrained 
situation of Chapter 7 was examined to see if a similar 
relationship between these two variables is in evidence. 
This analysis was carried out on what is only a relatively 
small body of data in -c-ompa-fison with that used in Chapter 4, 
and, in any case, the significance of comparisons that might be made is limited, due to the fact-that the results 
generated by the two simulation programs involved utilise 
very different route-building algorithms, and, in the non- 
time-constrained context, it is assumed that vehicle-tours 
never overlap. Figure 7.21., which graphs Total Fleet 
Mileage against fleet size, does, however, show a roughly 
linear relationship which is not unlike that of Figure 4.9., 
albeit far less marked in the former case. The relationship between the average length of a vehicle-tour and fleet size, 
on the other hand, (shown in Figure 7.22. ), fails to show 
the decline in d with increasing n that's demonstrated by 
Figure 4.11., and this almost certainly because of the 
absence of the non-overlapping tours assumption. 

As well as providing a workable heuristic for 
constructing Travelling-Salesman tours in the presence of 
timing constraints, and allowing inferences to be made about 
the way in-which time-Wi-n-d. ows af f ect distribution operations, 
this section of the thesis also provides evidence of how the 
performance of route-building algorithms deteriorated under 
such condlt: iona. Apart from that of the procedure that was 
used to generate the data on which the results discussed so 
far are based, the performance of similar techniques, notably 
one employing the Savings criterion, (SEE Section 7.2.1. ), 
was also analysed, and a similar set of graphs was produced, 
(SEE Figures 7-. 13 to 7.16., inclusive). Comparison of the 
relevant graphs reveals that the technique based on the 
Savings criterion for choosing the next location in a tour 
generates solutions which generally require more vehicles, 
require less Total Fleet Mileage and, on average, shorter 
vehicle-tours than the heuristic that is actually. -used. 
More importantly, as Figure 7.16. illustrates, the latter 
technique produces solutions of less Total Cost per week 
when time-windows are narrow enough to be effective, (ie. 
when r is less than about 350 minutes), underlining once 
again the important influence of fleet size on Total Cost 
figures. 
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CHAPTER 9 

CONCLUSION AND DISCUSSION OF AREAS 

REQUIRING FURTHER RESEARCH 

Having summarised the major findings of the thesis in 
the previous chapter, it is now necessary to review the 
research objectives that have been set down in Chapter 2, and 
to evaluate the extent to which they have been satisfied. 
The current chapter also discusses how far the research has 
been successful in providing additIondl useful information 
concerning the relationships between key variables of 
distribution operations, and both considers the advantages 
and disadvantages of the general methodology and particular 
methods that are used, and makes suggestions as to the scope 
that exists for further research in this area. 

9.1. The Achievements of the Thesis. with Particular Reference 

to the Research Objectives 

The central objective of the research, as stated in 
Section 2.1., is the development of analytical expressions 
to describe the effect that both fleet size and time-window 
constraints'have on the Total Cost of a distribution operation; 
the chapters that present the relevant analytical results, 
here, are Chapters 4 and 7. 

In both of these chapters, the development of a precise 
expression is described - Equation E. 4.21. estimates Total 
Fleet Mileage as a function of the total number of customers 
to be served and the constraint on the number that may be 
visited within the limits of a working-day, whilst E. 7.2. 
quantifies the effect of time-window constraints, represented 
here by the width of each time-window, r, on Total Cost per 
week, (given basic information such as area-size, size of 
weekly consignment, etc. ). Because of the nature of their 
development, however, these two expressions vary in the 
extent to which they may be used as predictive tools. 

Equation E. 4.21., first of all, can certainly be used 
for predicting Total Fleet Mileage in situations that use 
similar constraints and assumptions to those outlined in the 
problem formulation at the beginning of Chapter 4. It is 
true that this formulation describes a rather simplified 
abstraction of a distribution system, using basic concepts 
such as a continuous, homogeneous delivery-area, a uniform 
fleet of vehicles and non-overlapping vehicle-tours, etc., 
but this scenario conforms quite closely to the type used by 
many studies of the classical Travelling Salesman Problem, 
particularly those claiming to use the technique of Continuous 
Space Modelling, (SEE Section 1.2.2. for a description of 
this approach). As a means of predicting aggregate tour 
length within a delivery-zone of known dimensions, which 
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contains a population of customers of known size requiring 
delivery of a given consignment of goods, therefore, 
Equation E. 4.21. is applicable to a wide range of hypothetical 
problems of this type. As with all research activities in 
which a simplified , computerised model is used as a 
representation of complex system, there is a problem as to 
the extent to which the findings of such a model are 
applicable to the relevant real-life situation. However, one 
of the advantages of using a simulation-based methodology, 
among others which will be outlined in Section 9.3., is that 
the program employed may be readily elaborated in order to 
more closely imitate an actual distribution system, and the 
constraints and assumptions involved may be changed to enable 
the model to deal with a range of problem formulations. 

The expression for Total Cost as a function of time- 
window width presented in Chapter 7, (Equation E. 7.2. ), 
provides an accurate means of estimating the cost of performing 
a given delivery-task within the confines of the problem 
formulation described in this chapter, and given the type of 
time-constraint that is assumed here. Although it is very 
unlikely that a distribution system would, in practice, be 
constrained by a time-window that is uniform for every 
customer in the delivery-schedule, the results produced by 
the simulation program demonstrate the behaviour of Total 
Cost estimates in response to increasingly stringent 
restrictions. o. fthis type. In other words, changes in the 
value of the precise independent variable, r, are used here 
as a representation of the varying degrees of severity of a 
set of, often diverse, constraints that inhibit the optimum 
scheduling of a fleet. The advantage of using r in this way 
lies in its flexibility, as it may take on a value of 1, to 
represent a scenario in which timing requirements are 
absolutely precise, and may take on a value that is equal to 
the length of a working-day, to represent a situation in which 
timing constraints are not significant. What is of interest, 
of course, is the effect that the parameter r has on Total 
Cost estimates as its value varies between these two extremes. 

Because of the complexity of time-windows in practice, 
(Section 6.1. provides examples of some types of time-windows), 
there is a danger that the use of one particular type in a 
model might be an over-simplification of the phenomenon. It 
should be pointed out, however, that the program described in 
Chapter 6 is flexible enough to cater for the characteristics 
of many more types of time constraint. There would be no 
problem, for example, in allowing the variable r to vary 
randomly from customer to customer, or to manipulate the 
simulation process to ensure any degree of "clustering" of 
time-windows in time, (so that x% of all time-windows must 
open before 11am, for example); it is also possible for only 
a specified percentage of customers to specify timing 
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constraints, a percentage which can.,. of course, be changed 
at each iteration. Despite these possibilites for increasing 
the variety of constraints that are imposed on a hypothetical 
system, the problem still remains as that of generalising the 
results of a simulation procedure to be able to draw general 
conclusions as to the effect that timing constraints have on 
Total Distribution Costs. This is to say that, whether the 
parameter to be varied in the simulation process is the 
percentage of customers imposing a constraint or the severity 
of the constraint at each location, its role as the independent 
variable in the analysis is exactly the same as that of r. in the 
research that is described in Chapters 6 and 7. 

The questi6n still remains , though, as to whether the 
particular type of time-constraint described by r, and its 
effect of Distribution Cost, is really representative of 
both the constraints that are encountered in real systems, 
and the other types of constraint that may be applied to the 
same hypothetical situation. Clearly, this question can only 
be satisfactorily answered by more, similar research in this 
area, (SEE Section 9.3. ). Nevertheless, the results gained 
from simulation so far do provide detailed information on 
the mechanisms that lead to the Total Cost curve of Figure 
7.6. and to the form of the expression that describes it, 
indicating quite clearly that it is the increase in the 
number of vehicles that are required as time-constraints 
become more stringent that has the strongest influence on 
the observed relationship between r and Total Cost. Because 
it would seem logical to expect the increasing severity of 
any type of time-window to affect vehicle-tours by the same 
fundamental process of reducing the number of locations that 
may be visited in one day, thus increasing the number of 
round-trips that are required, there is every reason to also 
expect the cost curve so-produced to closely resemble that 
of Figure 7.6.. What is important, though, is the generality 
of the coef f icient -0 - 177, of Equation E. 7.2. , which 
describes the slope of this curve; to obtain such 
quantitative information clearly requires further detailed 
analysis. Nevertheless, the conclusions that may be drawn 
from the current research, featuring just one type of time- 
window, still provide important insights into the nature of 
the effect of time-constraints on the costs of distribution, 
since no attempt has yet been made elsewhere to quantify this 
particular relationship. 

The latter point refers to one of the secondary 
objectives described in Chapter 2, that of making a contribution 
to the work that has already been done in developing 
analytical expressions which may be used to make estimates of, 
say, the Total Mileage of a fleet, in a situation where there 
is no detailed data available at a customer-specific level. 
The context of the current research has already been brought 
into sharper focus by Figure 1.2., which pin-points the 
Travelling-Salesman Problem with Time-Windows as being the 
specific subject area to which the thesis seeks to 
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contribute, In this respect, the current research has been 
successful in filling the under-researched niche that is 
described by the symbol "X" in this diagram. Although it 
should be pointed out that there is no novelty in considering 
the time-constrained Travelling-Salesman Problem itself - the 
work of both Baker, (1), and Savelsberg, (2), has already 
been described briefly in Chapter 1- most research on time- 
windows has concentrated on the development of a convenient 
route-building procedure, and there is nothing in the 
literature that is comparable to the current thesis, 
considering the emphasis that is placed here on the relation- 
ship between the severity of time constraints and Distribution 
Costs. 

Whereas a detailed model of the. relationship between 
Total Fleet Mileage and the number of vehicles used is 
developed in the non-time-constrained context described in 
Chapter 4, it has not been possible to derive reliable 
equivalent expressions which take account Of the effect of 
time-restrictions, given the information that has been 
generated so far. Whilst it is true that the general form 
of the relationship graphed in Figure 7.21; is very 
reminiscent of the corresponding curves of Chapter 4, 
(eg. Figure 4.31.3. ), it should be noted that the former 
graph is based on a far more limited body of data. 
Furthermore, comparison of output from these two chapters is 
hindered by the fact that the relevant simulation programs, 
on which all the reported results are based, utilise two 
very different routing algorithms - the program described in 
Chapter 4 is designed to generate optimum tours, based on 
the Savings Method, whilst the results of Chapter 7, because 
of the algorithmic difficulties caused by time-windows, 
rely on a myopic heuristic that is not guaranteed to produce 
optimum solutions when timing restrictions are ineffective. 
The extent to which analogies may be made between these two 
fundamentally separate pieces of research is therefore 
limited. 

In addition to addressing t. he. major research-objectives 
that are outlined in Chapter 2, the thesis has also produced 
a great deal of other information on the relationships that 
exist between the main variables of distribution operations - 
the following section discusses these findings, and highlights 
the other important contributions of the current research. 

9.2. Other Important Contributions Resulting from the 
R, ýQanvrh 

A theme that is maintained throughout the thesis, as 
far as concerns the results that are presented, is the 
geometric nature of the relationships described; this is 

(1) BAKER, E. K., (op cit) 

(2) SAVELSBERG, M. W. P., (op cit) 
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illustrated by graphs such as Figures 4.11., 4.24. and 7.6., 
which are all very similar in shape. Although the inverse 
relationship shown here between each pair of variables is 
not at all surprising - in the case of Figure 7.6. , for instance, 
it is to be expected that Total Cost will decrease as time- 
window constraints are relaxed - it is nevertheless informative 
to note that the relationships plotted here are clearly 
geometric, as opposed to being linear. This is important as 
it indicates that, as the variable represented by the x-axis 
approaches a critical point, the value of the dependent 
variable will be expected to increase rapidly. 

In the case of Figure 7.6., as the similarity with 
Figure 7.1. suggests, it is the rapid increase in the value 
of n- or, more precisely, in the number of separate vehicle- 
tours required, given a limit on the length of a working-day 
- that is mainly responsible for the geometric relationship 
between Distribution Cost and the severity of time constraints 
shown in this graph. A similar point might be made in relation 
to the relationship between Total Cost per week and delivery- 
area size that is shown in Figure 5.15.. In this situation, 
it is the fact that the average spacing between customers 
increases with the value of "a" that increases the time that 
it takes to visit a fixed number of customers. Because 
fewer locations may be served within the time allowed for 
each day, the number of vehicle-trips required rises, which, 
primarily by increasing the number of "stem-journeys" made to 
and from the operating-centre, increases Total Fleet Mileage. 

The importance of fleet size to Distribution Cost is 
re-emphasised in Chapters 3 and 4, which demonstrate n's 
indirect influence on Total Cost per week through its effect 
on x, and the direct relationship between fleet size and 
Total Fleet Mileage, respectively. 

It is Chapter 4's disaggregation of mileage figures into 
Delivery Distance and Stem Distance, and then down to "i", 
the average distance between consecutive stops in a tour, 
that provides interesting insights into the behaviour of the 
component parts of Travelling-Salesman tours as fleet size 
changes. Detailed information on the relationship between 
i and n, for example, (SEE Figures 4.22., 4.24., etc. ), and 
disaggregated Marginal Cost (in terms of distance) data such 
as that illustrated by Figure 4.34., may be used as an aid to 
the building of -more accurate models of distribution systems. 

A useful product of the investigation of the effect of 
time-windows on Distribution Costs, because of the algorithmic 
difficulties that these restrictions create, is the 
development of an original procedure for constructing vehicle 
routes under such conditions, (SEE Chapter 6). Using a 
I'myopic" Shortest Path technique, and being founded upon a 
concept of Generalised Cost that trades off time and distance 
that is saved against savings in "waiting time" at customer- 
locations, this algorithm is not designed with the aim of 
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generating optimum solutions to Travelling-Salesman Problems. 
It does, however, have the flexibility to construct tours in 
the context of a variety of time-constrained formulations; 

although the current thesis assumes a relatively simple 
situation of a set of customers all specifying a time-window 
of the same width, there is no problem in adapting the 
program used, to build tours in a situation where only a 
certain percentage of customers state time restrictions, or 
where the time-windows in force are of more than one type. 
This procedure, described by Figure 7.8., is also flexible 
in that the Value of Time component, that provides a basis 
for the aforementioned trade-off between waiting-time and 
travelling-time, may be readily adjusted. 

In order to evaluate the accuracy of this algorithm, of 
course, it would be necessary to compare its solutions with 
those of other algorithms using the same numerical examples; 
such an exercise would also have the utility of giving a 
better indication of how close Chapter 6's algorithm comes 
to producing optimum tours. 

Also of interest in connection with the discussion, in 
Part 3, of the . 

Time Constrained Travelling-Salesman 
Problem, is the demonstration of how the performance of an 
algorithm based on the Savings formula deteriorates as 
time-windows become narrower, (SEE Figure 7.16. ). This is 
important, since the Savings principle is commonly used in 

route-construction algorithms. Again, though, these findings 

are based on one variety of time-window constraint, and so 
further analysis is required before general statements may 
be made as to the decreasing effectiveness of this widely- 
used criterion. This is one example of how the results of 
the current research have left room for such further analysis 
- the following section takes a broader view of the areas for 
further research that are suggested by the thesis as a whole. 

9.3. Discussion of Areas Requiring Further Research 

The key finding in the investigation into the effect of 
time-constraints on Distribution Cost is the form of 
Equation E. 7.2., which describes the observed relationship 
between Total Cost per week estimates and the width of the 
time-window imposed at each customer-location. This equation 
has already been reproduced in Chapter 8; here, it is stressed 
that it is the extent to which the coefficient, "-0-177, " can 
be taken to be a generalisation of the relationship described, 
that determines the usefulness of this finding, and thus of 
this section of the analysis. By the same token, it is the 
testing of the value of this coefficient in similar situations, 
and in relation to different problem-formulations, that should 
form the basis of further research emanating from the current 
thesis. For example, because the analysis has concentrated 
on one type of time-window, it would be informative to explore 
the value of this coefficient, and thus the precise form of 
the Total Cost/time-constraint relationship, when the time- 
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windows imposed by customers are of a mixed nature, (ie. with 
a non-uniform value of r). It is an advantage of the simulation- 
based methodology that is used here that the program constructed 
for the generation of Travelling-Salesman tours, described by 
Figure 7.8. , is flexible enough to enable this additional 
data to be produced, merely by introducing an extra random- 
element into this procedure. An alternative means of 
representing the severity of time-restrictions on the 
routing of a fleet is to hold r constant whilst varying the 
percentage of locations at which a time-window is imposed, 
which is the approach adopted by Savelsberg, (op cit). This 
scenario, along with the situation in which customers' time- 
windows are "clustered" in time, so as to create peaks and 
troughs of demand for a visit throughout the day, or the 
concession of having more than one time-window to aim at for 
each location, could also readily be simulated by making 
minor adjustments to the same program. 

There are a number of other ways in which the nature of 
the time constraints imposed could be altered in order to 
make the: process of stochastic simulation more closely 
approximate an actual distribution operation. For example, 
the assumption that there is an absolute requirement for 
every time-window to be "hit" could be replaced by means of 
a problem formulation which states that lateness is 
permitted, but that there is a cost associated with this 
lateness. Th-is would require a "penalty" to be built in to 
the route-building algorithm for the late arrival at a 
customer's premises, to reflect the inconvenience that this 
customer is caused. A generalised Cost measure would have 
to be established for this loss of "customer-utility", in 
much the same way that a Generalised Cost index is calculated 
in Chapter 6 to assign a monetary value to the opportunity 
cost of waiting-time; this is arguably a more realistic 
formulation of the problem than the no-lateness condition 
currently imposed. There are, of course, a number of 
possibilities for elaborating on the basic situation of a 
set ofcustomers all imposing a uniform time-window, although 
it should be re-emphasised that, for any attempt to study 
the effect of the increasing stringency of these constraints 
on the cost of an operation, it is the value of the equivalent 
coefficient to that shown in Equation E. 7.2. that is of 
prime importance. 

Given the detailed analysis of the relationship between 
Fleet Size and Total Fleet Mileage in Chapter 4, it would be 
useful for further research to establish a similar 
relationship in the presence of time-windows, as, given the 
fact that the algorithms used to generate vehicle-tours in 
Parts 2 and 3 are fundamentally different, it is not possible 
to do this satisfactorily on the basis of the results described 
in foregoing chapters. To a certain extent, this could be 
achieved by using the program described in Figure 7.8. to 
generate similar data for a wider range of n-values to those 
represented in Figure 7. '21.. The main way in which Travelling- 
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Salesman tours constucted in a time-constrained and non-time- 
constrained situation differ is in the absence of the 
assumptions of non-overlapping routes in the former case, and 
it is this factor that might be expected to make the major 
difference in the Fleet Mileage/Fleet Size relationships 
observed. The extent to which conclusions can be drawn from 
the data on which Figure 7_21. is based is also limited by 
the fact that the independent variable in this instance, n, 
is itself a function of time-window width, and so the value 
of r is certainly not the same for each value of n. 

As far as concerns the scope for further research 
beyond that which is presented in Chapter 4, the main areas 
would appear to involve sensitivity analyses. Again, as is 
the case with the research carried out on time-windows, 
because of the flexibility of the simulation technique adopted 
here, this may be readily achieved by changing the values of 
certain parameters that are built into the program; among 
the variables that could be altered inthis way are the time 
that is spent at each outlet, 1, and average road-speed, S. 
As we. 1las performing sensitivity analyses on the program's 
parameters, a similar exercise may be carried out on the 
assumptions and constraints that form the basis of the 
problem formulation described in Chapter 2. For instance, 
the constaint that vehicle-tours must be non-overlapping may 
be relaxed, and tours may be built on the basis of different 
zoning strategies, such as those discussed in Section 4.1. 
and illustratedby Figure 4.3.. Similarly, the assumption 
that all customers are located randomly throughout the 
delivery-area may be abandoned, and varying degrees of 
spatial clustering of customers represented by making minor 
alterations to the program described in Figure 4.8.. 

In other words, having developed a simulation-type 
procedure to generate random customer-coordinates, Travelling- 
Salesman tours, and the Fleet Mileage and Total Cost data 
associated with them, a framework exists within which any 
number of sensitivity analyses may be performed, and problem 
formulations tested; for each formulation, as has been 
demonstrated here, it is possible to develop a set of analytical 
expressions such as those presented in Chapter 4. 

The overall formulation of the problem considered here 
could be widened further to include factors such as variable 
demand, (both between customers and over time), multi-depot 
networks and non-uniform vehicle-fleets, although to do so 
would be to move away from the basic Travelling-Salesman 
Problem and address related subject-areas such as the Vehicle 
Loading Problem, the Depot Location Problem and the Fleet 
Mix Problem, respectively, (SEE Chapter 1 for a discussion of 
these formulations). This section has therefore concentrated 
mainly on the scope that exists for further research within 
the problem formulation that is outlined in Chapter 2, and 
is therefore confined to the area of interest that is defined 
by Figure 1.2.. 
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APPENDIX 
COST TABLES PUBLISHED BY COMMERCIAL MOTOR 1982 



APPENDIX A. Cost tables published by Commercial Motor, 1982 

ý GOODS VEHICLES RIGIDS 15Cwt-2 ton Loads Diesel TABLE2 
Carrying C2D3C1tY 15cwt 20cwt 30cwt 40cwt Carrying capacity 
Unladen weight 21cwr 22cwt 30cwt 35cwt Unladen weight 

STýMING COSTS 
(per week) '. EE (per week) 

Licences .................................. .............. 2.00 2.00 2.22 186 .... . .............. . ................. . Licences 
Wages ...................................... 

: 
........ .... 

92.15 92-15 92.15 92 15 ......... . ........ . ........................ Wages 
Rent and rates ....................................... 

7.68 8.02 8.45 9.06 .............. . ........ ........... Rent and rates 
Insurance ........ . .................................... 

3.84 3.84 3-84 3.84 . ........... ...... ... .................... insurance 
Interest .... ............................................. 

14.13 19.28 22.03 21.65 .... . .............. 
Interest 

Total (per week) ................................. 
119.80 125.29 128.69 130.56 

............................... 
Total (per week) 

(pence per hour) ................................ 
299.55 313.29 321.78 325.47 . ........... ........... U)ence per hour) 

RUNNING COSTS 

L 

(pence per mile) p Pp p (pence per mile) 
Fuel .......... ..... . ...... . ............................ 

4.29 5.00 6.00 6.00 . ..... ...................... .......... ............ 
Fuel 

Lubricants ....... ................................ . ... 
0.40 0.40 0.40 0.41 ............. . ...... Lubricants ..................... Tyies.....: ................................................ 
1.26 1.33 1.41 3.41 . 

.................................... . ........ ....... 
Tyres 

Maintenanze ..................................... -.. 
641 7,48 9.26 9.83 

........................................ Maintenance 
Depreciation .......................................... 

5.65 7.71 8.81 7.22 
........................ . ................ Decreciaticn 

Total 
......... ............... ........................ 1&01 21.92 25.88 26.87 ................................................... Total 

TOTAL OPERATING COST-per mile 
'Miles per week p P p P Miles per week 
; 100 ........................................................ 

137.83 147.24 154.59 157.46 ............. . .............. ......................... 100 
1200 ................... . ...... ............. ............... 

77.92 84.58 90.24 
. 

92.16 . ....................... . ..... . ... . ..... . ....... . 
200 

; 300 ..................... . ....... . .... . .................. 
57.95 63.69 6878 70.40 ......... ............................................. 300 

. 4W ................................................... 
4 7. C-36 53.25 5806 59.52 ................... ............. . ... . ..... . ....... 400 

'500 ................... . ............... .................... 
41.97 46.98 51.62 52.99 .......................... . .... ................. SW 

TOTAL OPERATING COST-per week 
Miles per week r E E E Miles per week 
100 ...................... . ......... ....................... 

137.83 147.24 154.59 157.46 .................. .......... ........... .......... 100 
200 .................................................... 

155.84 169.16 180.47 184.33 . ............ . ................... .......... -. -.... 200 
300 ..... ................ ................................ 

V3.85 191.08 206.35 211.20 ............................ .................... 300 
400 .................... .......... . ........................ 

191 ý86 
213.00 232.23 238.07 ........ . ....................... . ......... .......... 400 

500 ................ ..... . ............................... 
20987 234.92 258.11 264.94 ................................... . .................... 5co 

MINIMUM CHARGE-per mile 
Miles per week P P P P Miles per week 
100 .................................................... 

192.96 206.14 216.43 220.44 ........................... : ................. ....... .. 100 
200 ....... ................ ............................. 

10909 118.41 126.34 129.02 ........ ........................... ... ......... 200 
300 ............ . ... .......... . .... . ..................... 

81.13 89.17 96.29 98.56 . ... . .................................. . ............ 
300 

400 ................ . .......................... ........... 
67.14 74.55 81.28 83.33 _..: .... ...................... .............. ........ 400 

50() ......................................................... 
- 58.76 65.77 72.77 74.19 . .......................... ....... ............. .... Soo 

MINIMUM CHARGE-per week 
Miles per week 
100 

................................................ . ..... . 200 

......................................................... 300 

................... . .................................... 
. ......... . ........................ Soo 

.................................. ...................... 

E 
192.96 
218.18 
243.39 
26860 
293,82 

E 
206.14 
236 82 
267.51 
29820 
32389 

E 
216.43 
252.66 
285.89 
325.12 
361.35 

E 
220.44 
256.06 
295.68 
333-30 
370.92 

Miles per week 

........................ .... . ........ .... ..... ...... 100 

................................................. 
200 

. ......................... . ....................... 
300 

. .......... . .......... ................................ 
400 

..... ................................................. 
Soo 

MINIMUM CHARGE -time plus mileage 
1) P P p Per hour 

.... . .......... ........ 
419.37 438.61 450.49 457.06 

.............................. . ................ 
Perhour 

Per mile .................................................. 
25.21 30,69 36.23 37.62 

..... .............. . ........ . ........ . .... 
Per mile 

SUPPORTING DATA ON WHICH COS TS ARE BASED 
Cost of fuel (pence per gallon) . ........... 

ISO ISO 150 150 
.............. 

Cost of fuel (pence per gallon) 
Fuel consumption (mpg) ...................... 

35 30 25 25 
....................... 

Fuel consumption (mpg) 
Cost of lyres (not spare) ............. .......... 

C252 E331 E352 E852 
. ...................... 

Cost of lyres (not spate) 
Mileage life of lyres jin thousands) 20 25 25 25 ? Mileage life of lyres (-n thousands) 
Mileage life of vehicle (in thousands)... 75 75 75 so 

.... 
Mileage life of vehicle (in thousands) 

Cost of vehicle (less cost of lyres and Cost of vehicle (less cost of lyres and 

IESIOU21 ýAl. P'l - __ -- __ .... - 
E4.240 E5.785 E6.61t) E6.495 

....................................... fesidual value) 

Opes ating Costs 1982 11 
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GOODSVEHICLES RIGIDS 3 ton-8 ton Loads Diesel TABLE3 
Carrying capacity 3 tons 4 tons 5, tons 6 tons 7 tons 8 tons - -5-ton van Carrying capacity 
Unladen weight 2 tons 2 ýi tons 2 31, tons 3 tons 3 V2 tons 3 31, tons 3 tons Unladen weight 

STANDING COSTS 
(per week) 

Licences .............................. . ............... Wages ......... . ......................................... Rent and rates ....................................... Insurance .... . ........................................ interest ......... . ....... ........... . ................ . 

E 
3.86 

151.53 
9,46 

11.97 
24-49 

E 
A. 84 

151.53 
10.40 
13.11 
28.78 

E 
5.33 

151.53 
10-80 
13.64 
31.79 

E 
5.82 

181.59 
11.30 
16.51 
34.97 

.E 
6.88 

181.59 
11.46 
17.93 
37.17 

E 
7.40 

181.59 
12.24 
18-82 
39,60 

E 
5.82 

151.53 
10.69 
14.60 
32.65 

(per week) 
... ...... Licences 

. ...................... . .. Wages 
Rent and rates 

. ..... . ....... . ........ . ......... ... Insurance 

..... . .................... ................ interest 

Total (pei week) ... ........ . ................. 
201.31 20&66 213.09 250.19 255.03 255.65 215.29 

........................ . ....... Total (per week) 

(; wnce per hour) ...... ......................... 
503.35 521.69 532.79 62S. 53 637.64 649.15 S38.28 . ....... . .............. . ..... (pence per hour) 

RUNNING COSTS 
(pence per mile) p p P p p p p (pence per mile) 

Fuel .................................................. 
7.50 8.33 9.38 10.71 10.71 10.71 9.38 ..................... ................. ......... . .... 

Fuel 
Lubricants .................. ......................... 0.45 0.45 0.45 0.50 0.50 0.50 OA5 .............................. .... . .... :.. Lubricants 
Tyres ................................ ..................... 2.16 1.80 1.86 2.38 2.58 4.62 1.86 ....... ...... . ...... .................... . ..... Tyres 
Maintenance ...... ..... ............................ 

8.27 8. B7 10.49 11.70 13.11 14.79 12.43 ......................... . ............. Maintenance 
Depreciation ...... ........... . ............... .... 

8.16 9.59 10.60 11.66 12.39 13.20 10.89 ............................ _-Depreciation 
Total ......... :....................................... 

26.54 29.04 32.78 36.95 39.29 43.82 35.01 ................................................... Total 

TOTAL OPERATING COST-per mile 
Miles per week p p p p p p p Miles per week 

200 .............. ............ .... .................... 127.21 133.38 139.34 162.06 166.82 173.65 142.67 . ....................................... . ..... 200 
400 ................................................ 

76.87 81.21 86.06 99.50 103.05 108.74 88.84 .......................... 400 
600 ............... . .... ......................... ... 60.10 63.82 68.30 78.65 81.80 87.10 70.90 . ..... ..... .... . ..... . ........ . .... . ....... 600 
800 .......... ..... . .......................... . ...... 51.71 55.12 59.42 68.23 71.17 76.28 61.92 

I. Ow ............... ......... ............... . .......... 46.67 49.91 54.09 61.97 64.80 69.79 56.54 . ............ .... 1,000 

TOTAL OPERATING COST-per week 
Miles per week E E E E E E E Miles per week 

200 .... . ............................... . ............... 
254.42 266.76 278.67 324.11 333.63 347.30 285.33 . .......................... ..... . ..... -... -. 200 

400 .............. . ..................................... 
307.50 324ý84 344.23 398.01 412.21 434.94 355.35 . ..................... 600 ............... . ............. .... L ...... ....... 360.58 382.92 40979 471.91 490.79 522.58 425.37 ...... . ................... . ................ ........ 

600 
800 .... . ........ . .................. .................. 413.66 441.00 475-35 545.81 569.37 610.22 495.39 ............................... . .......... . .......... Boo 

1.000 ................ . ... 
............................... 456.74 49908 540.91 619.71 647.95 697.136 56541 ............ . .......... . ..... . ......... .......... 1.000 

MINIMUM CHARGE-per mile 
Miles per week p p P p p p p Miles per week 

200 ........... ....... ................... . ... .... 178.09 186.73 195.08 226.88 233.55 243.11 199.74 ..................... .. 400 ........... ... . .................................... 107.62 113.69. 120.48 139.30 144.27 152.24 124.38 ....... . ........... . 600 ...................................................... 
84.14 89.35 95.62 110.11 114.52 121.94 99.26 . ................. . ..... . 800. 72.39 77.17 83.19 95.52 99.64 106.79 86.69 ... . ... . ............ ......... 

Boo 
1.000.:::: 65.34 69.87 75.73 86.76 90.72 97.71 79.16 . ............................ . ..... . .... . -.... 1.000 

MINIMUM CHARGE-per week 
Miles per week E E E E E E E Miles per week 

200 ...................................................... 355.19 373.46 390.14 453.75 467.08 486.22 399.46 ........ . 200 
400 ......................................... . ........... 430.50 454.78 481.92 557.21 577.09 608.92 497.49 .............................. 600 ................................... z .............. . .. 504.81 536.09 573.71 660.67 687.11 731.61 595.52 ...... . ......................................... .... .. 

600 
800 .... . ............................................... 

579.12 617.40. 665.49 764.13 797.12 854.31 693.55 . ... ................... .................. ...... ... BDO 
1.000 ............................................. . ....... 653.44 698.71 757.27 867.59 907.13 977.00 791.57 ...................................................... 1.000 

MINIMUM CHARGE-time plus mileage 
PPPPPP0 Perhour ...... . ..... . .... . .......................... 

704.69 730 * 
37 745.91 879.74 892.70 908.81 753.55 

............. . ........... . .... ............ 
Perhour 

Permile .... . ............................................ 
37.16 40.66 45.89 51.73 55.01 61.35 49.01 ....................... . .................. Permfle 

SUPPORTING DATA ON WHICH COSTS ARE BASED 
Cost of fuel (pence per gallon) .............. 150 150 150 , 150 150 150 150 .............. Cost of fuel (pence per gallon) 
Fuel consumption (mpg) 

.......... ............ 
20 Is 16 14 14 14 16 

....................... 
Fuel consumption (mpg) 

Cost of lyres (not spare) ........................ 
E540 E540 E652 E833 E903 E1.618 E652 

........................ 
Cost of lyres (not spate) 

Mileage life of lyres (in thousands) ....... 
25 30 35 35 35 35 35 Mileage life of lyres (in thousands) 

Mileage life of vehicle (in thousands).... 90 90 90 90 90 90 90 
.... 

Mileage life of vehicle (in thousands) 
Cost of vehicle (less cost of lyres and Cost of vehicle (less cost of lyres and 

residual value) .................... .............. 
E7.347 E8.635 E9.539 E10.492 El 1.151 El 1.881 E9.797 

....................................... residual value) 

bles of Operating Costs 1982 
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GOODSVEHICLES RIGIDS 10 ton-20 ton Loads TABLE5 

Carrying cajoacity 10 tons 17 tons 20 tons Carrying capacity 

Unladen weight 5* tons 7 tons 8 tons Unladen weight 
(6-wheeler) (8-wheeler) (Artic) 

STANDING COSTS 
(per week) 12 88 

E 
18 22 21.77 

(per week) 
. ........ . ............. . ...... . ...... 

Licences 
Licences. _..... - . .................. ........... 

..... . ....... Wages ....... . ..... . ............. . ... 
. 196.48 . 196.48 224.71 . ..... . .......... . ........... ................ 

Wages 
. Pent and rates ............. . ........................ 

12.21 12.21 13.12 ........... and rates 
. Insurance ........................... ............. 

23.60 32.86 35.91 ...... . ....... ............ 
Insurance 

Interest 
interest ................ . ......................... . ..... 

52-23 58.41 110.23 ................ .... . ...... .................. 

Total(perweek) ..... . .... . ................... 
279.40 318.18 405.74 ....... . ... . ............. . .. 

Total (per week) 

(pence per hour) ................ ... . ......... 
743.55 195,49 1.014.40 ............................ 

(pence per hour) 

RUNNING COSTS 
Ipence per mile) p p p (pence per mile) 

F el Fuel ......... . ..... . ......... 
.... ..................... . ..... Lubricants 

12.50 
0.50 

12.50 
0.51 

15.00 
0.54 

u . ............................ ............ Lubricants 
..... Tyres ............. .............................. .. - 

3.59 5.80 6.51 .......... ...... ........... ................ 
Tyres 

Maintenance .................................. 
13.00 
7 84 

13.27 
8 76 

14.52 
23 13 ....... . .......... . .... . .......... 

Maintenance 

. ..... .................. ............... 
Depreciation Depreciation ...................... . ....... . ....... . . . 

Total ....... .... ................................... 
37.43 40.84 49.80 ............... ........ ....................... 

Total 

TOTAL OPERATING COST-pe' r mile 
Miles per week P 0 p Miles per week 

400 4C>O .... . .... . ... . .... . ....... . ............ 
111.79 

00 87 
120.39 

87 93 
151.24 
117.43 . ........................... . .... ............... 

........................... .............. ........ 600 
600- 

...... ...................... . .. 
. 74.61 

67 17 
. 80.61 

72 66 
100.52 . 90.38 . ........ . ........... .... .................. 800 

. ............ . .................. . ........ . ... 
1.000 

1,000 ...... 2,000 ......... . ... .......... . ......... .............. 
. 52.30 . 56.75 70.09 ................................. ......... ...... 2.000 

TOTAL OPERATING COST-per week 
Miles per week E 

14 417 
E 

481 56 
E 

604.96 
Miles per week 

........ . ........ ......... 400 
4DO ............... . ............ 600 ........... .............................. ...... 

. 522.00 . 563.24 704.56 
800 ..... .......................... 

596.86 
671 72 

644.92 
60 726 

804.16 
903.76 1.000 

2,000 ............ .................................. 
. 1.046.02 . 

- 1.135-00 1.401.76 ............ . .................... . ........... 2.000 

MINIMUM CHARGE-per mile 
Miles per week p p p Miles per week 

4 )0 , 
400 . .......... . -, ****"**-""*, *,, * ........ . ..... 

156.51 168.55 211.74 . ......................................... -_. 600 ' 
60D :, *, -, *, ----*-*-*-""-*****, *, *, -"*** 

121.80 
104 45 

131.42 
85 112 

164.40 
140.73 .................... ........ . ............ 

Boo 

1 
800 ....... ......... . ... ......................... . 94.04 . 101.72 126.53 .0 00 -. 1 

2 000 
2.000 ..... ........ . ............ ................... 

73.22 79.45 98.13 . . ..... . .................................... ...... 

I 

MINIMUM CHARGE-per week 
Miles per week E.. EE 

94 18 846 674 
Miles per week 

.. ....................... . 400 .... .... . ..... ..................................... 600 ........ 
. . 626.00 

730.80 - 788.54 986.38 .. . .... ..... 
. .... ...................... ...... . ... . ................. . ............... Boo .... . ....... . ..................... ............... 

835.60 902.89 1.125.82 ..................................... . ....... ....... 
800 
000 1 

1,000 .................... . ...... . ........................ 2.000 ..... ........................................ .7 

940.41 1.017.24 1.265.26 
1.4,64.43 : 1.589.00 1.962.46 . . ..... ............................ 

-... Z ............................................... 
2.000 

MINIMUM CHARGE -time plus mileage 
Perhour . ........... ....... . .................... 

ppP 1.040ý97 1,113.69 1.420.16 
69 72 ..... . .......... ............. ................ 

Perhour 

.... Permile 
Per mile ..... ......... ..... ......................... . 52.40 57.18 .............................. . ...... 

SUPPORTING DATA ON WHICH COSTS ARE BASED 
C'ost of fuel (pence per gallon) ...... ... * ... 

150 150 ISO 
10 . ............ 

Cost of fuel (pence per gallon) 
Fuel consumption (mpg) 

Fuel consumption (mpg) ....................... 
................. . Cost of lyres (not spare) . 

12 12 
C1.617 E2,608 E3.256 . ..................... 

........................ 
Cost of lyres (not spare) 

.. . .. 1 lyres (in thousands) ....... Mileage life 0 45 45 50 
200 . ..... Mileage life of lyres (in thousands) 

Mileage life of vehicle (in thousands) , Mileage i Jeo vehicle (in thousands) .... 
200 200. 

Cost ol, vehicle (less cost of lyres and Cost of vehicle (less cost of lyres and 524 E33.070 671 E17 E15 .................................... ... residual value) 
residual value) ................................... . . 

Of Operating Costs 1982 
35 
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GOODSVEHICLES ARTICS 10 ton-22 ton Loads TABLE6 
Carrying Capacity 
Unladen we, ght 

10 tons 
4 tons 

12 tons 
4 Y, tons 

14 tons 
5 tons 

16 tons 
6 V- tons 

18 tons 
8 tons 

22 tons 
10 tons 

21-ton van 
II tons 

Carrying capacity 
Unladen weignt 

STANDING COSTS 
(per week) E E E E E E (per week) 

Licences ................................................ 995 12.42 14.20 20.28 25.62 38.95 43.68 .......................................... 
Aicences 

Wages .................................................... 196.48 196.48 196.48 196.48 196.48 224.71 224.71 .......................................... 
Wages 

Sent and rates ....................................... 12.48 13.86 14.58 15.20 15.78 16.37 16.37 ......... ................. . ........... 
Rent and rates 

Insurance .............................. . .............. 23.32 31.22 32.60 32.60 33.47 61.65 61.65 ......... ..................................... 
Insurance 

Interest .................................................. 56.78 60.22 
. 

67.09 77.39 77.63 108.92 121.21 ......... ......................................... 
Interest 

Total (per week) ................................. 
299.01 314.20 

. 
324.95 341.95 348.98 450.60 467.62 ..................... ........... 

Total (per week) 

(pence per hour) . .............................. 747.58 785.54 812.40 854.92 872.50 1.126.54 1,169.61 ................................ (pence per hour) 

RUNNING COSTS 
(pence per mile) , P P P P P P P (pence per mile) 

Fuel .................................. . .................... 12.50 12.50 15.00 16.67 18.75 21.43 21.43 ................ . ............................... . ..... 
Fuel 

Lubricants 
...................................... . ..... 

0.50 0.50 0.50 0.51 0.51 0.51 0.51 
........................ ................... 

Lubricants 
Tyres 

...................... . ........... . ................. 
5.96 - 5.96 5.36 5.36 4.47 6.25 6.25 

...................................................... 
Tyres 

Maintenance 
................... . .................... 

11.31 11.77 13.96 14.92 15.49 16.29 22.55 
........ . ......... . ........ . .......... 

Maintenance 
Depteciation 

........................ ............... 
8.52 9.03 10.06 9.67 - 9.32 13.07- 14.55 

.......................................... 
Depreciation 

Total 
................................................... 

38.79 39.76 44.88 47.13 48.54 57.55 65.29 
......... . .................. .... ... ........... 

Total 

TOTAL OPERATING COST-per mile 
Miles per week p p p P P P P Miles per week 
IDD ......................................................... 337.82 35198 369.84 389.10 397.54 SOB. 17 533.13 : ....................................................... i0o 
200 ........... ........................ .................... 188.31 10-667 207.36 218.11 223.04 282.86 299.21 . ............... . ........................... ..... ... 200 
300 ......................................................... 138.47 14d. 50 153.20 161.12 164.87 207.76 221.24 .................................. . ..................... 300 
400 ......................................................... 113.55 118.31 126.12 132.62 135.79 170.20 162.25 ..... ............................. ................... 400 
500 ..... ............ ... . ............................... 98.60 102.60 109.87 115.52 118.34 147.67 . 

158.86 ..... . ......................................... ........ 
500 

1.000 ..................................................... 68fiG) 71.18 77.38 81.33 83.44 102.61 112.07 . ......... ............................. 1.000 

TOTAL OPERATING COST-per week 
Miles pet week E E c c r E .c 

Miles pet week 
337.82 353.98 359.84 389.10 397.54 508.17 533.13 ..... . ..... .......... 100 
376.61 393.74 414.72 436.23 446.08 565.72 598.42 ......... ........ . 300 415.40 433.50 459.60 483.36 494.62 623.27 663.71 
454.19 473.26 504.48 530.49 543.16 680.82 729.00 .............. 500 ..... 492.98 513.02 549.36 577.62 591.70 738.37 794.29 ....... . ......... 500 

1.000 ..... 686.93 711.82 773.76 813.27 834.40 1.026.12 1,120.74 1.000 

MINIMUM CHARGE-per mile 
Miles per week P p P P p p p Miles per week 

1 DO ............ .............. ...... ................... 472.95 495.57 517.78 544.74 556.56 711.44 746.38 . ........ ------- -- *'**'**"* ........... 100 
2DD ....... . ............................................ 263.63 275-62 290.30 305.35 312.26 396.00 418-69 ................ *'***'****** ............................ 200 
200 ................... . ................................. 193.86 202.30 214.48 225.57 230.82 290.86 309.74 . ... ............................. ............ ....... 300 
4DO ...................................................... 158.97 165.63 176.57 185.67 1190.111 238.28 255.115 . ....................................................... 

4DO 
500 ... . ................................................. 138.04 143.64 153.82 161.73 165.68 2D6.74 222.40 . ... . .......................... . ...................... 

500 
1.000 .......... . .......................................... 96.17 99.65 108.33 113.86 116.82 143.65 156.90 . .................................................... 

1.000 

MINIMUM CHARGE-per week 
Miles per week E E c E E E E Miles per week 

1 00 ...................................................... 472.95 495.57 517.78 544-74 556.56 711.44 746.38 .................................................. . ..... 
100 

200 ...................................................... 
527.25 55124 58061 610.72 624.51 792.01 837.79 ......................................................... 

200 
3DO ....... . ............................................. 

581.56 606ý90 64344 676.70 692,47 872.56 929.19 ......................................................... 
300 

400 ......................... ............................ 
635-67 662.56 7D6.27. 742.69 828-38 951115 1.020.60 ......................................................... 

400 
500 ..................................................... 

69017 718.23 76910 808.67 828.38 1.033.72 1.112.01 .................................. . ..................... 
500 

LOW .......... .......................................... 
%-1.70 996.55 1.083.26 1.138.58 1.16816 1.436,57 1.569.04 ...................................................... 

Um 

MINIMUM CHARGE-time plus mileage 
PPPPPP0 Pe I hcwr ................................................. 1.046 . 61 1,099 . 76 1.137 . 36 1.196 . 89 1,221 . 50 1.577 . 16 1.637.45 ...... . ............... *........................ 

Perhour 
Per mile .................................................. 

54.31 55.66 62.83 '65.98 67.96 80.57 91.41 ............................... . ................. 
Per mile 

SUPPORTING DATE ON WHICH COSTS ARE BASED 
Cos I of fuel toence per gallon) ... .......... 150 ISO. 150 ISO 150 150 150 .............. 

Cost of fuel (pence per gallon) 
Fuel consumption (mpg) .......... ... ...... 12 12 10 9 8 7 7 ....................... 

Fuel consumption (mpg) 
Cost of lyres (not spare) . .... ..... ... . .... 

E2.680 E2.680 E2.680 E2.680 C2.680 E3.749 E3.749 .... 
Cost of tyres (not spate) * * * '* ' * 

Mileage life of lyres tin thouSanCS) ..... 45 45 50 50 60 60 60 leottyres(intriousands) a g e Ii ... 
::. il e 

Mileage life of vehicle 1-n thousands) . 200 200 200 240 250 250 250 Mileage life of vehicle (in thousands) 
Cost of vers, cle (less cost of lyres and Cost of vehicle (less cost of lyres and 

res-cual value). .... .... 
C 17.036 C18.066 E20.127 C23.218 E23.289 E32.676 E36.364 ......... ..... ..................... . residual value) 

J'ýts 

of Opt! rating Costs 1982 43 
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Conversion of 1982 Figures to 1989 levels 

According to the corresponding figures published by 
Commercial Motor magazine for 1989, (1), Running Costs per 
mile have changed only negligibly since 1982 for the whole 
range--o-fvehicle-sizes displayed in this Appendix, (with 
several figures showing a slight decrease). 

Standing Cost per week figures for rigid-chassis 
vehicles, however, show an increase of between 30-8% and 32-7% 
over this 7-year period, whilst the same figures for an 18-ton 
articulated vehicle, the only vehicle-category of this type 
that appears in both sets of figures, indicate an increase 
of 49-5%. 

(1) Commercial Motor Buyers' Guide, 1989. (Reed Business 

Publishing Ltd., 1989). 
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Table 3.1. Expressions describing transport costs in pence 

per ton per mile 

Running Cost Standing Cost 

Rigid-Chassis, 21-3796 x- 
0-727 12.106 x- 

0-629 
Vehicles 

Articulated 11-885 x- 
0-5 9-8175 x- 

0-535 
Vehicles 
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Table 3.8. Estimates of cost as a function of vehicle size 
using Equations E. 3.9., E. 3.10. and E-3.11 

:x CtAi 

11 I f/, 
JK) 

G. 'r 

("C/I 
i 

-To4cd Cos 
0. -) C' 

a Y- -C I S S13 E 00-7 10 5 2.0 
I r 21Z ýL &CO 4 o&2 ýý (OG2- 

I--S7 r 2.6 ZS/, S 3026 (Z' 5.90 
q 
", 2 

7- 

Lý r Io - I LýZ-3 3 LýOý, 
. - 

I ? -(o I 
r) C , ý 1) 

-I 
7 
15 2-4Lý 1 Lf 0 

10 oliý 1 S, Lý-3 
12- cl, q rc 7 3 cl 
Lf Ck 909 (o o 4- Sl 3 

3 L- -)(o5 9-1 f 
3 Z9 Z 

Y- 2 
22. igs- 
2.5 C, 0 q-ýl II iq 
30 C', C) 5 Lki ? - I On 
3: 5, n, 316 
36 533 3(,, (. 1? 99 

Table 3.9. Estimates of cost as a function of fleet size 
using Equation E. 3.10., (a=50) 

'Daill 
Fleeb Miltoýje 

Wwk) 

SL. IACWAS 
CDSý 

cj/wk. ) 

Runnin-9 Cost 

Cl /W V, 
ý 

-fo-Lac COSL 

1 20 291-'? 395-3s '7180-53 11,75-99 
2- 10 

.3 Z7, -0 5')?, -'RLF 605-10 11 -7-1.9Y 
LF S T) 9- G 830. ol sos-OT 1333-019 
5 4 406-9 93S-2.5 03. Go 141 S; - T5 

-5 
to 2- - 4- 13SS-13 440-'R'? Is 16 - oo 
9,0 1 TSII-+ 19(. S--50 LO w ofo 9.457 S(o 
40 V7, 139)4 a 94-s- 00 5, z, ) - 100 3Lý37-- 19 
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Table 3.10 Estimates of cost as a function of fleet size 
using Equation E. 3.10., a=150) 

n X TFM +, a 

(i /WV, ) 

sEanafA3 COSL 

(i /W k) 
Runnins COSIL 

(ý /W k) 
-Tg+cd Cbsb 

1 20 STH 99110 39S 234-2- 2')3'7 
2. 10 9 46*0 4, T300 573 Isis 23ST 
Lý s 1135.9 2%345 8,30 1501 2. SS9 
57 Lj- 1220-7 2-4414 935 14-51 23S(o 

10 2 U645-7- I 61ý52 B55 IM 2')319 
20 1 24941- 1 ? -'Fl 1 19(23 14'W2- 34Lý(o 
40 YZ 4192-2 104WO 2SP45 1-)G 1 4407 
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Table 4.1. Results of manual tour-building exercise. (p=50 

a=l (square)) 

t"r- 
qj4? 

- -1 oio-l 
LQCkCe 

-fi- 
1112ý11 

ic! e-ý 

oc) Lt- 

i-o 10- L"- I? 

13 
14- 1 -3 91 3 
Is 17, -? I 

Table 4.2. Estimates of Total Fleet Mileage. (P=50, a=l 
(square)) 

2l'S 

S on c 
fori-muic, 

2 (0- 10+0 - We 1-7 
.G- 2-Lý 

3 7- 00 (0' Is r 
-7-572- GLý 
2 -13q -1-92-0 

.) Lý c6 - 2-, 

9 ISO 9 
9 10 Li 
lo-401 
10 -9 1'01ý 10-C630 

if - 531-r 
I co 

12 - 
13- 232- 

Cl C6ý I L+ 2-77 
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Table 4.4. DisagRreRated distance figures. (P=100, a=1 
(square)) 

SLCM J)jslaince -Qml bMýce- 

C). -2 
Lý 25 I-Oqc. , to 9- -: )o 

C1 - 5q I 

1-7 1 

1 LV 9, -ý8 to 

13 2-855 SSS 9 
10 10 1+- 13Lý C, - I'/C D 1 ý)-29 4 

IZ S Lý-So q -'ýqc ILý-ZOG 

11 7 -ý -C ZZ 15-SS9 
-I - I+ CI - 11 - ý)=, 1 57 

C) - ce - SYI 

2o D 10-S90 9- 1(. -i- 20-05ý 
2-1 11-5ss CI-S35 qI- 440 

11-9q q -Zq a, 2: 1- lzý: O 
19-336 9-519 ýV71C-119 

Table 4.5. Stem Distance as a percentage of Total Distance 

P=100, a=l (square)) 

n 
3 32ý (6-13 
1ý 25 11-51 
5 20 IS-70 

1-7 19-99 
14 2-*- 1ý I 

0 13 23-32 
to to 31-01 
12- 9 3LP26 

n 11/40 
I 1ý 45-05 
1(0 G 4.4-83 

20 SLý- 49 
22 53-a 
25 4- 58-91 
35 3 (05-9.6 
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Table 4.6. Disaggregated distances per vehicle. (P=100, a=l 
(square)) 

sbem Dilsbance Deliv" Disýance- ToLat bisEance- 
3: ý Vý- SG5 3-0-72. 
25 2-112ý :1- 16 2; Lý 

5 20 o- 3(00 1- 55q 1-912 
S 13 0-3S7 I-S30 
10 1 C5 0-413 1.329 
12. S 0.1+0(0 0 -772 1.1193 
I(o (0 0-W; 0 -5-? 1 1-0,6% 
20 5 0 -545 0-4-5% 1-003 
2.5 14- 0 -559 O-S-72- 0.930 
35 3 O-S, 52- 0- 2: 79+ O-S26 

Table 4.7. Stem Distance 
_per vehicle, with C fixed. (C=20. 

a=l (circle 

.. 'e% -iýi -, Ir . n 
0- 2-GS 

29 1 

2.14- 

11 Sfcv%, % 1ý 

1 -: ý -n 2.7) 

L 7) 

-7 4 

Table 4.8. The relationship between D and n, with square 
and circular delivery-areas. 

(c % 

br 

10 

10 
22 
15 
35 
40 
;o 
loo 

0- Li-13 
0-32S 
Cý- 3-10 
0- 3i? o 
0- 4-07 
0- 4ol 
0-395 
O-SS3 
0 3zz 
C) 323 
o 

o 3Li-3 
0-350 
0- 'Z Gýs 
0- 

0 c1c., 
C) 

0- 3 E+ý 
I 

C) s 2.5 
o 32. (. 

Oicane-ter = -ý-) 

Ct(-. --. LkIcLr ctv-ec,, 
't)r- 

0-310 

Z, Z 

0-S3(O 
C> - -3-.? "7 
0-319 

0-3-63 

0-, 31tz 

0-335 
0- 32rs 
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Table 4.9. Stem Distance per vehicle with n fixed. (n=20, 

a=l (circle)) 

'Stem -Dý5\-- C- 

C> - 31-7 
)ý-9 9 

c). 2. tz- 
ýZ. S I 

O-S-19 C) 19 1-11 b 

Table 4.10. Partially-transformed data from Table 4.9.. 

-, er 

1 C) 
C? 3 1-0-792- 0 

30 

1-3q9 0- 

Table 4.11. Comparison of observed and predicted figures for 

Stem Distance per vehicle 

C- obýewjeo si: 
-ým 

C)- S9ý3 

C) - C-09 
0- Lý-ý3 0- ysgG 

(0 D- 5-) 5 (D - Lý(025 
0-3ý19 0- 4-19 S 

C, u-1. "ZoýQLA SýZrv% 
)o 0-: ýq9 C) - 3s (; I 
12 0-31--7 C) ZsgG 
is 0-2qg 0 -32-(. 5- 

20 0-2ss o- 
25 0-9-51 0-2.5 07 
: ýs 0-19S C) - 2-0077 
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Table 4.12. Variation in the number of inter-nodal links 

as n and C change. (P=100)- 

C InItc-noclol (; n kS C Wtýr-noAaA )_ýv%trs r\ 
I (Do 9q 13 IR LF 
2 so 9& ILý 7 Elf 
3 33 cflý, 1(0 (0 yo 

01(0 1,9 G 10 

G 1-7 
9S 
96, 20 

, 
5 so 

_ - 7 1 Lf 91 15 4 15 
' 

S 17- 99 as 3 70 
so 

110 10 90 50 

(N. B. Number of inter-nodal links = n (C-1)) 

Table 4.13. The relationship between i and n. (P=100, a=l 

(circle)) 

Lý 2-5 0-0s, 019 
20 0-0-13 

C) I 
7 o S i 31ý 0.0, ýf b 
9 11 0-091 10 

,g 9 C) 09 ý- 12- 0- OT3Lý- 

n 

13 0-0999 
14- 0- 09 -7-3 
19 0-0 Ci 43 
lý G o-i o23 
19 c-, 0-I0(D9 
2,0 0- iovi 

o- loGci 

Table 4.14. The relationship between i and n with C-fixed, 

(C=20, a=l (circle)) 

pr-ec! fdta 

1 0-1-71 O'l 5-ý + C> -0 jlý 
2- O_Hs +0-009 

C) -o "6,9 

-7 0-00 (ID 
C-9 0-007 

lo 0 C) o-c (c ., - 0- C_ 0 2. 
o- Cý, o o-o-:, 9 + 0-001 
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25 C. - C 1,: -l 
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Table 4.15. The relationship between i and n, with C fixed 

(C=15, a=l (circle)) 

Obsg-rie8 , nt 
0- 011+ 

ILý2- 4- 0 
12-Z 0-114 

1+ 0- 09 91 , 0- Jon 4. -0-003 
o- C) S Zi) 0- 094 0- C) I F- 
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14- o (D 5-(o 0- C)GS, -0-009 

0G 0-059 0-002 
oo5 0- o5-3- +0-005 
0-052- 0- 04? +0-005 

Table 4.16. The relationship between i and n, with C fixed 

(C=10, a=l (circle)) 

ri Oi: GeV-, JeC( L Pre cl ýCýe 0E Rezý cl U CL Is 

1 0- 2%+2 C) - 21 1 C? 
2 0- lsý. 0-I b4- 

0-142- 0- 1 Lf2 
4- 0-17-5 0-I ? -, ý 
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S 0 -093 o-I Oo 
10 O-OS3 o- 09 Z 
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35 o-0! 69 
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-0 - OOLý 
-0-0 (96 
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-0 _CO 1 
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Table 4.17. The relationship between i and C, with n fixed 
7 

(n=20, a=l (circle)) 

C Ohs rJec i Predcc¬d I 
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Table 4.18. Observed and predicted values for i, with both n 

and C variable. (P=100, a=l (circle)) 
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Table 4.20. Estimates of Stem Distance, Delivery Distance 

and Total Distance, using Equation E. 4.21., with k fixed. 

(k=10, a=l (circle)) 

P 'beuvER4 S TE tj 70TRL C IELWERIJ 5-rrpA -rbML 

`41 32. ';, A O'd -1, l.;, 0 C-SO7.0-102. 

P-2 1). 0-131,79 
0.871-529 0.117194 

4 1.0 77 1) 70 6 0.1 55 6,2 59 12 Aq. 5 5 
5 1. NIOL " 26 1). ! -'1 5123 29"0 1.42 1 2XI 0-515 1,753 

6 1.73 55797 0.714-S5 1.6201-8-5 
1. -91 12 `? -W 0. A j2 I. ' ýA4,1 

3 1.56MN 0.31290 1.7 76.5141 

9 1.731614 "' --K ! ),, lu " 2,1145136 
11 i. "41736i -m, 47 0.7; 1.; .. -). 7 C, 2.5 ti 8 ý .? - 1 to 1-1119 0,341 2-31 

1! 2.037955 4) .4 29 71i 2' . 4ý- 7569 
12 2. 

-! j, 
-, 847 0.46377-S 2, A-22-524 

13 2 7A '69 
-,, --6'o A. 5 -017 1 -844 21.7744 210 

14 " 15781 .. 37 C 4Q5 2.922697 
15 'L 46,2 -M -q970 3., ý . 31 55 2.7-S 2-614 0-224 3 . 4,19 
1-5 22 5264 33 1 0. . 52 50 35 -3.211467 
17 

-7 . 
65 8 13 7 0. 

-; 
64 05 9 10 . 7J 522 --' 7 

18 2.7 -3 7 68 8 0.703164 3.450351 
19 2) .a .95.2 46 0.742229 3.621747b 
20 2.930753 0.781294 3.762247 2.10 2*91N 0-Isl 3-74iL 
2 '1 3.074914 20358 O. H 3.8? 5293 
22 3.167300 0.859423 4.026723 

L, 31.258150 0.8984.08 4.156638 
24 3.347575 0.937.552 4.235127 
2 1.5 5653 3.411ý 0.976617 4.412271 

P 'bEUVFR'4 STeti --0-113, L C bEuvr-v%i STEM -T'Q-ML 

26 3.52245 49 1 . 011.6682 4.533141 4 1-15 4-14- 5-sir 

27 5- 3.6060A 14746 4.562805 
28 3.692511 1.09-3811 4.726 32 ') 
29 3.77'vS74 1 . 132876 4.5-19751) 
30 3.35 .8 197 1.171M 5.030138 
31 3.939528 1.211005 5.150534 
32 4.019910 1.210070 2 5.2.59530 
33 4.019,31-92 1.218? 135 5. Z. 98518 
'14 4.177984 1.32SH9 5.150-51,84 

. 35 4.255749 1.367264 5.6213013 
-36 4.332709 1.406329 5.7390318 
37 4.4088? 6 1-445.3193 542 5.8V L89 
1.9 4.484337 1.48445.8 5.968, 195 
-19 4.559059 1-523523 MUM 
40 4.637.087 1,56MR-8 6.195675 4P 't--633 i-5C3 

41 4.706445 1.601652 6.308098 
42 4.779155 1.640717 6.419872 
43 4.851237 1.679782 6.531019 
44 4.922713 1.718846 6.641559 
45 4.993599 1.71571,911 6.751511 
46 5.063915 1.796976 . 5.860891 
47 5.133677 1.81040 6.969718 
48 5.2012901 1.875105 7.0718007 
49 5.271602 1.914170 7,185773 
50 5.339795 1.953235 7.293030 lo 5'. '14 1-953 -7-293 

P DELIvERY 571 EM -TtrML c belavEPi STF-tt TCML 

51 5.4 0 74 941,992 12 
0,9 7.395794 
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K" 5. ' 541460 2.070429 7,611889 
54 . 9.607752 2.109493 7.717124t 
M, 5.673599 2.105-is 7,8221.57 
56 5.739012 2,187623 7.926635 

57 8 04 ON 22' 66 87 B. 03066? 
56 51,868577 2.265754 29 2 8.1343' 
55 5,9352749 2.304817 8.2,357566 
60 5.956526 2.343864 E. 340401,; 6 IC, It4 9-34 

61 6.059918 2.382946 6.442864 
K 6,1229.13 2.422011 M44944 
63 6.185579 2.461076 6.6466M. - 
L; 6.247864 2.50NO 6.714FK5 
656. Y) 979 *07 2.539205 E. .6450 () 2 
66 6., (713E3 2.5.76270 6,547654 -7 9-43 G-3it ; L-SO3,9-2r2 
676-4 312 63 26 171,34 9-049967 
66 6.4? 3548 2,65639i 9.14994E 

'149604 6 91 6.554141) 2.695464 9. L 
6.61-4412 2.7345129 9,54FU 

71 6,67 437-, % 2.7731553 5.447966 
72 6,73 4 C, 272.8126H 9,546,60.5 
73 6.75 31H -v 22,851723 3,60103 
?4 MKL24.15 2.69(, 7 ER 9,747M 

ML Ký 9.84105q 

P bELIVEIýj STF-tA TOTAL C t>EuN: EN STMIA Tc)TftL 

7A L-56969-1 2.96H17 9.93866B 
77 7.0278KO 3.007961 10.035S7 

'16 3,047646 IOAK 76 7.0658L 16 
3.086111 

8 6,7-20OBBI 3.12,5176 10.31605 '3 10 -1,2,1 3-aS 10-1210 

0 
61 7-25801F 3.164,240 10-42'225 
827.3146966 3.203305 HOMO 
K 7.371526 3.24 A' 37 Ol 10.6136c! 
84 7.4279,1-6 33 25 14 34 10.71-OK4 
B484 (142 04 Ice 6'r. t4 

ls5kA4 B6 7.5195,35-5,3- 
E. 

2E 33 .4C, -ý 7.0 IL 
IV 

2277 (12 3-516 9" 7.7o 12022 3.515K, 7 11. L C, 10 1 
5 cli 11 

927.67(ilP; 7- 1-11 . 46444 
E 11 13 0,1 9" 7. KlEf 

94 7 97Ms 3. M 
81 'ý MI1,14 11 . 7470i5 90 B 01 

9c. E (,: " ý' 5ý5750, iI. P-1 167 1 
37) E. 1199; 4 ', 78? "77-, 11.? 2? '9'7 

IZ. OL 
04 

100 5.4 ')ýc .4 S-139 3-9CL- 'a '17c; 2M 
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Table 4.21.1. Marginal Cost, in terms of distance travelled 

as a function of P, -with k fixed, using Equation E. 4.21. 
(a=l (circle)) 

k=lo K=5 
0.1,49529 
O. M. '6434 

, 18141,0.282687 0 "1 

C, S. -, 
0.2 472 

A1 12 ý 0.246260 
0,238971 

9 16 3 .5540,2322904 
9 163 4 0.227741 
0 

11 0.140. J., 19 35 51 
f 1) '9 0.1515-26 0.2158-6. 

'1748 13 0.14,3471' 0.21L 
14 0.145 

-; 
670.209? 27 

0.143111: 0.201-360 
0.140770 0.20501(i 

17 0.11,18615 0,20L 
Is 0.11,5622 0.20OE46 
19 0.1347,71 0-192,98., 

L 0.13-11MV 0.19725' 
21 0.131430 0.195614 

0.12991.5 
2 28438 0. HIL680 IL -3 
'14 0.191,30 2 0.127143 
25 0.12 58 70 0.19,0051 

kzio k=5 

z2 6 0.124663 0.165540 
27 0.123517 0.1271-9A 
28 0.122427 0,18b595 
27 0.121387 (1.18 55 -9 i 
30 0.120395 (., . 18.4 cý 5 ce 
31 0.110,446 c8.183602 
752 0.118537 0.16269C, 
33 0.117666 0, JE. 1, C;! ri 
34 0.116329 0.180975 
35 0.1160�19 0,18, fil . 47 

. j6 0.11.5251 c). 17939c, 
37 0.114505 0.178b42 
3-3 0.11. j786 0.17792(., 
39 0.113092 0.177224 
40 0.112422 0.176551 
41 0.111774 0.17590L5 
42 

. 
0.111147 0.17527C1 

43 0.110539 0.17,46E11 
44 0.109951 Ci. 174M- 
45 0.109380 0.17.35497 
46 0.108826 t1.172941 
47 0.108: 88 0.1724v(i 
48 0.107765 0. Pleh- 
4? - 0.107257 0.171 -, 65 
50 0.106763 (1.170369 

kZ10 =5 
0-106L L 'Is', 0.17 01 Ei 

lC6613 16m -S 
10,5356 1 E. ;4 57 

0.104? 11 () . 16 C, I () 
0.104477 0,16 5 -'4 

56 0.104053 0. U-914i 
0.1036 4 C, O'l 67734 

58 0-1032-36 0.167328 
84" 0.1660,32 

bo O-IN I '4k 0.166-945 
2075 61 0.10L 0.166167 

62 0.101710 0.165797 

6 
(1.165435 i, 

4 0.165080 
65 0.164733 
6A0.100312 0.164393 
6 '7 0.164060 
6E C"0996' 0,163734 
65.0.099337 0.163414 
70 0.099025 0.1630100 
71 0.162793% 
72 0.09EW 0.162491 
7 ", '1195 (I - (' ý 21 0.16L 
?40.037E3 35 0.161904 
75 (1,0375461.0,16161B 

P k=10 k =5- 
76 MUM IIHME 
17 0.0i 6? i ", (1,161062 
7E 0.056725 0.1607? 2 
7ý 0.160521 
80 0.0-16200 0.160264 .! 
5; (". o? f, '- 4; 0.160007 

ý 

B2 EMU IIPR5ý 
B3 MUM &15950ý 
64 Q, .052 10 11,0.15? 261 
65 (.,. 04? 61 (1 . 15 ? 02 

I'l 6ý 0.05472ý 0,155784 
67 0.0944K 0.15B551 
BE 0.0942M Q. 155321 
B5 No"ON 0.1 HNr, 
9ý 0-6 

. 
11 7? 0.157E72 

91 0.093595 M57653 
92 0.093303 M57437 
93 soup, 0.157224 
94 0.0522,962 0.157(114 
5" 0- (1.156 P, -? ' 
96 
i 7.0.092353,0. C'2 
9 'z C, - C, 3 21 "D Ci. 156 204 
9r 70- cli 15 61 

10 4'.. 

Table 4.21.2. Marginal Cost, in terms of distance travelled 

as a function of n, with P fixed, using Equation E. 4.20.. 
(a=l (circle)) 

n p= loo pz50 p= 100 P=50 
0. )27 0- 3 16 0.647641 0.858700 

2 0.7424,71 0.69 5152 17 0.6,91852 0.693698 
. 0. -5� 7; 2 0.6ib, 1 la 0. -556038 0 1693 ih 
4 0'. ý4'-.. 327 0.842343 19 0.660182 t) .703290 5 0 YN313 0, -5 33298 20 0.664273 0-7 LI !- -3 -*S a 
6 0. c23,015 0.67893,3 21 0.6683,02 0.71235-6 
7 0.52 -). f. ff 6 -') - .54 11- 9 -i 9 22 0.672263 0.716700 
5 0A2N68 16462e9 23 1676154 0.72092-, 
9 L62U21 odm243 24 0.679973 0,725030 

10 ýI ,b247? Ci 9 0- -5 J, 5 5:, 9 25 0.88371B 0,729026 
11 0*N598 0.6.52013 76 0. ýNilý : 
12 0A31228 0.667507 27 16M0 9. NUN 
13 0.635162 0.672954 28 OA"ms 0J40393 
14 0.639253 0.672317 29 %&"wo 0.74--iag 
15 0.643429 0, -. h; 3 5'? 1 

-30 0.701h4 0 7,4 741A, 

ri Pz loo p=SO 
. 31 0. " 7 ýAS6 0.75'0917 
320.707942 0.7 542 56 
33 0.711135 0.7575117 
34 0.7,4265 0.760702 
-5 0.717336 0.7673815 
36 0.720348 0.766a5? 

. 37 0.723304 0.769337 
38 0.726205 0.772751 
"iq 0.72903 0.775603 
40 0.731850 0.778397 
41 0.7345? 6 0,781133 
42 0.737295 0.783316 
43 0.739946 0,786446 
44 0.742552 0.76? 025 
45 0.745115 0.791555 
46 0.747634 0.7? 4938 
4 0,7501 - i; 720.716476 
43 0.752550 0.7? 8870 
49 0,7549; E 0.801221 
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Table 4.22. Dispersion statistics of Stem Distance per vehicle 
as a function of C 

C=5 C=10 C=20 

Mean 561-5 423-4 322-8 
Standard Deviation 165-44 153-25 120-26 
Skewness 0-018 0-515 0-691 
Kurtosis 2-384 3-592 3-289 

Number of observations 
I 

93 223 67 

Table 4.23. Stem Distance as apercentaRe of Total Fleet 
Mi leage, as esti mated fr om E quatio n E. 4 . 21.. (k= 10, a=1) 
p p 0/1 p rl., p 'A 

19 70.46!. j 37 24.680148 . 51 27.46759 '113 215--56653 
9 10.76,568 38 414., 'ojO')2 . 56 27.592,38 74 2;. 665711 

I ILSIACO 21 21.06.025 39 25.04731 rý 75 15.7'171 A. fit 
4 N. 7-55 ý8 22 213429 51 41) 2 5.2 206 E 27. K4226 7 5 5.87 
s ,H II . -111 

213 26 15 73 41 25.39042 55, 27.97934 i. 9712E 

.5 14 , 4667 4 24 21,87922* 42 25.55685 60 228.10272 7E 30.07 09 
7 15,17145ý 25 22.1341L 43 25.72005 t, 2IE . 212 4 IN _7; 10.16644 

26 ILLM1101 44 25.83016 K 26,3443? R 30.26M 
9 29 16. : 19L. - 

217 'LL. 62043 45 26-03730 13 228.462175 6_1 31.0 .360 
io 16AL1131 IN 22.852-85 46 216.19158 64 28.57955" 62 3110.45487, 
! I- 17.414. 

-Ib 
'49 23.07870 47 26.34311 65 28.694BI B "1 30.54534 

12 177 . 8,4-32 30 23.7-9838 43 26.45199 66 28. BO860 N Ut. 6405., -, 
13 13 -) 572 JI 1 21 3.5122 3 47 26.67,833 6? 26.92053 8S 36,73ZAA 
14 13.711242 2 23.72 1) 5a 50 26.78221 6S '19,03185 
15 1?. 09 72 1 33 23M 114 51 26.32 -3 71 6 Ot' 29.1414C, 67 . 10 . 9.1,2, 

-A 
A 

16 19.4-52-60 N 24.12196 K 27.0M., 70 29.24960 HE 
17 ' "MIC-64 3.9 24.31551 53 27.19MI 71 nq. - 31.060371 
18 21 0.14 _ý 05 15 0 4,5 1 24. Q . 54 27.33479 K 2L?. 462jl4 9 0, 31.176EA 
Ta ble 4.24. Com varison betw een St em'. Di stance Der -vehicle 

31 . 26312 
922 31.. 148VL9 
911 '11ANN" 
94 35 .5 1731 
ý5 I, 
9c. 
37 31.76.4 

71.0 5 SL- v. 4ý45 
Q 1. - 

51i . 5-Ir ̀7 Leo 

34 

figures as calculated from Equation E. 4.20., and (1-8. D ). 
iEw 

(P=100, a=l (circle)) 

Cx 

_u"i5vance per e- I 
im ct4z. i 

I. 

E 2c- - "-I -s A-1 r) 
ol 

L 5s 
2.0 

. 11 1-1 10 ic 

- 7 2.2- 
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Table 4.25. Distance estimates using Equation E. 4.23.. 
(P=100, a=l (circle))-. 

-Fo4txl 
IN, Zk, *,; 

IM i CQ 

2 

S 

P 

too 0-59ý 
50 1- ICILý 
33 I-SOS. 
2-5 2, - 32 -7 -3S5 

P 
I Lf 4- -Iý. 3 

13 Lt -59 1 

'bi5tck.. "-e- -i, ý i zr, % A, c2 

-t ct--Z-1 
m; ýf-ac-, e 

10 lo E; -ýf. s 5 -9 11 - 93(o 
12- 13 
14- 7 14-- 4-ý'1'4- 
l(0 9-CILP 15-915 

4ý 
2o :5 -935 

14 20 

Table 4.26. Estimates of Total Fleet Mileage as a Function 
of P , with k fixed, using Equat ion E . 4.24.. (k=10, a= l (squ are)) 

STEt-I I)EUVER4 'TO'TAL- STEM I)ELIVERy 'TOTAL- p STEh -DF-t4VFrZll -Tc)-tiqL 

0,05567? 0-99679 0.6156.46i -14 2.02908A- 3.479H3 5.508933. 67 MH453 4.8849,16 
. 
8,88-542' 

0.119359 0.84398B M0346 '15 LUPO 3.530657 5.615421 66 4-058172 4.521256 . 6.97942- 
0.177037 1.033670 1.21&M -36 2.145444 3.5, HDA 5.729184 6? 4.117B51 4.957310 7.0'11ý16- 
0.23B716 IA 91358 '1.432296 37. 2.2,1612 '7ý 3. OCtill : 5.83821 54 70 4.17753 4.993103 5.17063: 
0.298395 1.334463 . 33 , 22.267802, 3.678660 5.946-562' 71 4.237209 5.028641 -9.26,58S. " 
0.398074 1.461830 1.31790-4 "9 3 2.3,740.41 3.72169521 *6.054433 72 4.256886 5.063931 q. JLOSIC .V 0.417753 1.5789,97 1.9716710 40'. 2.3,58-116 "3.774431 6.161591 73 4.356.567 5,09857.5, 
0.47743.12 1.6,87977 2.151 54.17 41 1) 2.446639 3321320 6.268159 1 '14 4-416-246 5.133781'. 0.55002' 
0.5537111 1.75037 11.327481 42 2.506SIE 3. B67641 6,374159 75 4.475725 5.16835,1 M-4427i 
0.59679 1.687215 2.4840055 43, 21.5-66197 3,913413 6.4'119610 h 4.535604 5.202674 9.73229E 

0.65,6469 1.97930 2.63.55797 44' 2.6"567E 3.958657 6.584533 77 4.595283 5,236610 
0.716146 2.067341 2.783459 45 2.6ý8 55E, 5 4.0,103385 6.658544 7-9 4.654762 5.270706 9.92566E 
0.775827 2.151756 &1 .? &173.3 ý-% 46 2.7 4 51 2,74 4.04762,; 6.792860 7i 4.714641 5.3 04 . 71 6 5, 10 .0 't 90 'ý 
0.835506 2.232983 3.063-489 47, 2.6 04? 13 4.0911,81-, 6.896297 80- 4.77432 5.337852 10.11217 
0.695165 2.3,11357, 3.206542 43 2.864592, 4.046-5.2 6.999274' 81 4. B33? 39 5.1,7111 10.205H, 
0.954864 2.3c. 716 3,342e-14 . 49 21.924271 4.17753 7,101801 F2 4.891767F 5.404163 10.29784 
1.014543 ý1 .46 10 628 3.475171 50 2.98195 4.219942 7.203892 83 4.95, ", 35? . 5.4370150 1 C, . I, ; () .7 -1 
1,074222 2,531965, 3.606187 51 3.043 L-- 2? 4.261933 7.305562. 64 5-013036 5.469670 10.48-i7e 
1.133901 2.601347 3.7-1-5248 52 3.10330S 4 . 303513 7. ý(ý6 f2 i- 8 r, 5.072715 5. . 51 02 1 ", 1 N. 57464 
1.19355 2.666726 . 33.8.52506 ý 10 'llp . 16 29S7 4.34496 7.507683 S., 5.132394 5.5134402 1 (, -. u; &79 

1.4153415? 2.7342314 3.358094 
. 54 3.2226,66 4.385472 7.6(18158ý E-7. 5.19 2' 073 5.56640H I C, 75 '-Q 1, r 

1.312936 2.79519,31 4.112131 5% 845 4.425513 7.706158 L 
6; - 5.25175-7 5.15783,366 1 e. C, I 

1.372617 2.862104 4, '134721 56 1,3 420.24 4.465967 7.807991 F 51 .3 11 M. 3010: ý C... 51 
1.432296 13661 2.9L 4.355.957 57 3.401703 4.50.9 665 -7.9 0,113'6 60 

9 5.37111 5.661647 
1.49.1,975 2.98395 4.475975 5 1' -. 3.461-382 4.54 5017 6.00,6359 . 43085 5.693013 
1.551654 3.04100 4-51? 4697 - 55 3.5211061 4,584,630 6.109091 S. " 5.47046F . 5.7242OF 11.2-1467 
1.611,131 3,101011 4,712344 60 3.5-8074 4.622715 B. 203455 

5.16ý c'! 47 5.755-14 1 1.3 
1.6711012 3.157715 4-828? 27 61 3.640419 4,661078 8.1101497 94 5.6OK216 5.78053, 
1.7/30691 -%. 213812' 4.94 4 5-03 621 ". 700078 4.69? 129 6.399227 9.11 5, .6 -ý 55 cc 0 E., 5,8! 672; 11.4&ý2? 
1.7903,37 3.268753 5.059123 t. 13 3.759777 4.736873 0.456650 5" 5.72? 164 5.84732', 11.57 6 510 

i, 0 SP 4q 3.3-2276.4 -5.17218-35 64 3.8 19 456 4,774,12 6.5K1776 5 7- '51 .7B P- P, 61 5.677,69i 11.661. ýVL 
I. 90, ?2E 3.37575-4 5.295sal, 65 1-879135 4.811474 8,60,0605 9 E. .5.4E54 -7 5.9r 17 ?9 11.75646 

4 25 277 5.397704 66 3.938814 4. B48344 6.767156 91 .5 9 71 7 r 8A 
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Table 4.27. Marginal Cost as a function of P, with k fixed 

using Equation E. 4.24.. - (a=l (sq'uare)) 

k=10 k=S 
1 0. I-C16 8 77 0.366556 

ý, 3 (1.309040 2 
3 0.219! ýE-S 0.279267 
4 '00162 0.260241 0, IL 

kl . ! ̂ , 17046 0.246725. 
6 0.17-5505 0.236484 
7 0.168AH 0,228377 

'11750 8 0.16MI 0.24 
9 0-. 15,5524 0.216203 

10 0.15-1791 0.211470 
11 0.1476941 0.207370 
12 0.144074 0.203771, 
13 0.140909v 0.200564 
14 0-138,953 0.197732 
15 0.135491 0.195160 
1.5 0.133147 0.192826 
1: 1 0.131016 0.190695 
180. L-9060 0.188739 
Ig 0.127257 0.186936 
20 0.125588 . 0.185267 
"1 0.124036 '0.153715, 

12HO 0.16.21 22 OM f. 63 
'13 0.121236 O. IBO? 15 

0.119967.0.179646. 24 
25 0.1! 9772 0.17801 

14110 k=5 
26 0.117646 0.177325 
27 0.116533 0.176h, 
28 0.115575 0.17e-54 52 
29 0.114619 0.174298 
30 0.113711 0.173,190 
31 0.112846 0.172525 
32 0. IN 2022 1714701 

-13 0.1112.35 170914 
34 9.111,1452 0.170161 
35 0.109761 (). lý944c, 
36 0.109070 0.182749 
37 0.108407 0.1 8 
38 0.107770 0.167449 
39 0.107158 (). 1682. p 
40 0.106368 0.166247 
41 0.105999 0.16567E 
4,191 0.105451 0.1t. 5j «i (, 
43 0.104922 0.1b4b(lit 
44 0.104411 0.164070 
45 0.103916 0.10595 

. 
46 0.103438 0.163117 
47 0 . 102975.0.1626--14 
4E 0.102526 0.1672ei 
49 0.1021091 0.161770 
S, 0.101669 0.161348 

p kIO 145 

K 

. 9.1 0.100475 
54.01100079 
55.0.09733 
56 0.079377 
Kit 0.099030 
58 0.098692 
19 0.078363 

60 0.096042 
61 0.09772? 
62 0.097423 
C3 0.097125 

-64 0.096833 
0.096549 

66' 0.096A. 70 
67 0.05,9992 
68 0.095732 

-49 0.095472 
70 0.095217 
71 0.054366 
K 0.094723 
73, - 0.0744H 
74' 

. 
0.094250 

75.0.094020 

cý. 16112 
0.159778 

15 905. - 
0.1518709 
0.158371 
0,1520412 
0.157721 
0.157408 
0.157102 
0.156904 
0.156512 

lls 0.156414 
0.155949 
0.1.55677 
0 . 155411 
. 0.15512 
0.1.94896 
0.154647 
0.154402 
0. MIO% 
6.153929 
0.153699 

lo k =, E; 

7A 0. C, ý a, -, -, r, .50.153474 
1 77 00 fe i 74 0.1532" 
76 003 33 557: 0- 153 03 6 

V `5 00i, 14 0-152624 
S" M929,356 0,152615 

-- 0.1 
62 OM255,11 0.152210 

C, . (D ? 233,4 

0', 154 i 0.15162LE' 
OM17621 0.151441 

670.03157E 0.1 C-1 j7 
0.07.278 0.151077 
(. '. 0 912 2 (. - 0-1,50M 

91" 0.091045 0.15 0 7114 
ol o. o9om-, 0. l5co-z 

91 " 0.090704 0.1.903B 
97V 0.070.36 0.15,641 '117 
94 0.09(1374 0.15 0 1,11 '13 
9 fl. (1-090211 0.149LM 
56 0-090054 0.1 -19 72ý3 
97 (). 02929E 0.14 5,971' 
K 0.085744 O. M42,35 
1i 0.0 23L, 53 0.14? 

2272 100 

Table 4.28. Estimates of Total Fleet Mileage as a function 

of n and C, with P fixed, using Equation E. 4.27.. (P=100, 

a=l (circle)) 
n STEM bELIVEN -IOTAL 5TE ti Z>EL%Vr; PV 'To-, AL 

1 0.6 63 1 5.052 . 5.7151 

2 1.3262 5,052 6.3752 

3 1.7893 5.052 7.041.3, 

4 2.6524 5.052 7.7044 

5 3.3155 5.052 8.3675 

.5 
3.9786 5.052 9.0306 
4.6417 5.052 9.6937 7 

8 5.3048 5.052 10.3568 

9 5. i67i 5.052 II. M99 

lo 6.631 5.052 11.683 

11 7.2941 5.052 12.3,461 

12 7.? 572 5.052 13.0092 
- 

13 8.6203 5.0k 13.6727, 

14 9.2334 5.052 14 . 3) 354 

I-S 9.9465 5.052 14.9955 

16 ; 076 10'' 5.052 15.6,516 

17 11.2727 5.052 16.3247 

18 11.9355 5.052 IM878 

19 12.5789 5.052 17.6509 

26 13.2,52 5.052 16.314 

21 13.9251 5.0 52 18.9771 

22 14.5882 5.052 17.6402 

23 115.2513 5.052 20.3033 

24 15.9144 5.052 20.9664 

25 16.5775 5.052 21.6295 

26 17,1406 5.052 22.292-6 
27 17.9037 5.052 22.9557 
28 18.5663 5.052 23.61158 
29 19.2295 5.052 A14.2819 
30 19.893 5.052 214.945 
31 A10.5561 5.052 25.6081 
32 21.2192 5.052 26.2712 

'13 21.8523 5.052 26.9343 
34 22.5454 5.052 27.5974 
35 23.2085 5.052 28.2605 
36 23.8716 5,052 28.9236 
37 24.5347 5.02 29.5867 
38 25.1978 5.052 30.2478 

. 39 25.8609 5.052 30.9129 
40 26.5124 5.052 31.576 
41 27,1a7l 5.052 32.2391 
42 27.8502 5.052 32.9022 
43 28.5133 5.052 33.5653 
44 2?. 1764 5.052 34.2284 
45 29,81 '95 5.052 34.8915 
46 30.50116 5.052 35.5546 
47 31 . 1657 -7 31 5.0K 36.. 2,: 1 
48 31.62BE 5.05, i6,880E 
49 "K. 40: 15 5.01112 37.5435 
SO 'Z7 I C= 36.2 
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Table 4-29- Estimates of Stem Distance, Delivery Distance 

and Total Fleet Mileage as a function of P, with k fixed, 

u ing Equation E. 4.27.. (k=10, a=l (circle)) 

P bEuVERý 51-r-H -jO'TAL P bF-LIVER4 STEM TOTAL 

1 0.5052 0.066,111 0.57151 51 3-607649 3.36M 
2 0.714460 0.13262 0.847090 3.64,104, K 3.442,19 7.091169 
.1 O. B75032 0.19893 1.07.196L r 3 . 5.677911 3.5144V 54 i 
4 1.0104 0.26524 27,564 I. L 54 3% . 7124 46 1-580714 7 . 219311-B.; 
5 1.129661 0.33155 1.461L 

'95 3.746663 1" . 6470'e 7,53571, 
6 1.237482 0.39786 1.635342 56 3.78,1570 3.7133t. 7 .4 7 1.3,16633., 0.46417 1 '600803 57 3.61417t 3.77967 7., P. 7046 
B 1.428921 0.530,48 1.955401 58 3-847488 3.64598 7.6-173468 
9 1.5156 0.59679 11 4 59 3.880514 3.91229 7.79,2904 

10 1.597562 0.6631 2.2260682 60 3.913262 "S. 9786 7.591562 
11 1.6755,58 0.72941 2.4040,, q 61 3.94.5738 4.04491 7- 990,548 
12 1.7,90064 0.79572 2.545784 621 3.977948 "1 3.00162 4.11ILL 
13 1.821524 203 0. BK 2.68NS 63 4.009900 4.17753,3.187430 
14 1.890285 0.92834 2.616625 64 4.0416 '14384 8.28544 4.4 
15 1.956631 0.99465 2.951 12 61 65 4.073052 4.31015 -3 -3832 02 
16 2.0208 1,06096 3.08176 66 4-104264 4.37646 4 -'-SO 7 L' 4 
17 2.082992 1.12727 3. L 10 26 121 '140 67 4.135L 4.44277 8.51 "8010 
18 2.141382 1,19.15? 3.336962 68 4.165985 4,50908 8.6,15065 
19 2.202115 I. L, 5989 3.462005 69 4.196"., 4 4.57531? 9.771596 
20 '13 2.259'K 1.326A 2 ' 3.5E. 5523 70 4.226806 4.6417 M68506 
21 2.115,117 1.192,91 3,707627 71 4.256B9O 4.70801 5,964? 00 
22 2.36959E 1.45882 3,828416 72 4.286764 4.77432 9-0.51084 
23 2.4.1228554 1. . 92.913 , 3.947984 73 4.3,164,10 4.84063 7.157060 
24 2.474964 1.55,144 4,066404 74 4.345894 4.9004 9.252834 
25 2.526 1.65779 4.1837.5, 75 4.375160 4.97.125 9- 342410 
26 2,576024 1.72406 4.30HP 76 4.404231 5.03956 9.443791 
27. 2.629076 1.7907 ' 4.415466 77 4.433112 5-10587 9.5JIM2 
2B 2.673267 1.85668 4.529947 78 4.461805 5.17215 ?. 633985 
'19 2,7205255 1.92M 4,64357 5 79 4.490315 5-2,1847 9.728805 
30 2.767094 1.9853 4.756394 60 4.516646 5.3046 9.623446' 
31 2.812834 2.05,561 4.868444 BI - 4.5468 5.37111 9.? 1791 
32 2.65784L 2.12192 4.979762 B2 4.574760 5.43742 10-01L 220 
33 '1153 2.9N 22.18%E: 23 5.090153 1591 B3 4.60L 507! 10,11,1632 
34 2.945,776 25454 M "k)(1336- 5, B4 CONN 5.57004 10.20027 
35 2.98SE1,01 22 ,3 208 5 5 .3 () 96 -13 4 85. . 657711, 5.63635 10,29406 
36 3.0312 2.38716 5.4 1E1 -6 B6 4.695032 5.7026A 10.38769 
37 3.073011 2.4534? 264F, 5.5L -- 4.712171 B7 5.76M 10.48116. 
38 3.114261 2.5-1978 5.634041 66 4.739196 5. B3528 10.57447 

. 19 3.154372 2.580, 5,741062 89 4.766047 10.66763 
40 3.195165 2.6524 5.847565 9c) 4.792748 5.9679 10.76064 
41 3.230552 2.71671 5,92%56H 91 U19-3500 6.03421 10.35-351 
42 3.274070 21.78502 5; "? 9 C. LAV to 92 U451-S 6.10052 10.94622 
43 3, .3 128 17 2.85 133 6.4164147, ,4"6.166c-., 11-03880 9.1 . 87197A 
44 3.351117 2.91764 6.266757 94 4.878095 6 . 23314 11-13123 
0 3.38? 1,184 L-9- -1 6.37ýKN 9. ý 4.924OPC, 6.2i? 45 11.222353 
46 ML '164-33 3.0 50,21 L. 6X6657; 96 4.949921,; 6 . 3657c. 11.31568 
47 3.46347t. 3.11657 6. ýsk ", 46 91 4.975642 6 . 43207 11-40771 
49 "E 3.50M 3.16L - 96 5.00M4 6 . 49HE 11.47960 
49 3-536; 3.24919 6.7Eik5 99 5: 026676 L . 5646q 11.59136 

Iso 3.57230' 3.31515 I, BR-7E! I- NO 5.05-1. 11.683 61V 
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Table 5.1. The relationship 
between H and k, using Equation 

E. 5.5.. (P=200, a=100 (circle)) 

i-r(k') 
3.2500 1.2609 1.0000 
3.5000 2.4458 2.0000 
3.7500 3.6306 3.0000 
4.0000 4.8155 4.0000 
4-2500 6.0003 6.0000 
4.5000 7.1852 - 7.0000 
4.7500 8.3700 8.0000 
5.0000 9.5549 9.0000 
5.2500 10.7397.10.0000 
5.5000 11.9246 11.0000 
5.7500 13.1094 13.0000 
6.0000 14.2943 14.0000 
6.2500 15.4791 15.0000 
6.5000 16.6640 16.0000 
6.7500 17.8488 17.0000 
7.0000 19.0337 19.0000 
7.2500 20.2185 20.0000 
7.5000 21.4034 21.0000 
7.7500 22.5882 22.0000 
8.0000 23.7731 23.0000 
8.2500 24.9579 24.0000 
8.5000 26.1428 26.0000 
8.7500 27.3276 27.0000 
9.0000 28.5125 28.0000 
9.2500 29.6973 29.0000 
9.5000 30.8622 30.0000 
9.7500 32.0670 32.0000 

10.0000 33.2519 33.0000 
10.2500 34.4367 34.0000 
10.5000 35.6216 35.0000 
10.7500 36.8064 36.0000 
11.0000 37.9913 37.0000 
11.2500 39.1761 39.0000 
11.5000 40.3610 40.0000 
11.7500 41.5458 41.0000 
12.0000 42.7307 42.0000 
12.2500 43.9155 4,3.0000 
12.5000 45.1004 45.0000 
12.7500 46.2852 46.0000 
13.0000 47.4701 47.0000 
13.2500 48.6550 48.0000 
13.5000 49.8398 49.0000 
13.7500 51.0247 51.0000 
14.0000 52.2095 52.0000 
14.2500 53.3944 53.0000 
14-5000 54.5792 54.0000 
14.7500 55.7641 55.0000 
15.0000 56.9489 56.0000 
15.0000 56.9489 56-0000 

Table 5.2. The effect of 
H on distance estiinates. 
(P=200, a=100 (circle)) 

qT SVEN 
-rcTA L 
FL -- t; - 

3.1915 0 8021.47 8021.47 
3.5 2 611.6550 3371.365 4003.0410 

3.75 3 757.4928 2019.372 2770.864 
4 4 812.33B3 1385.99B 2198.336 

4.2.5 6 840.5679 803.2,29b 1643.797 
4.5 7 841.4947 649.1273 1490.622 

4.75 B 839.1176 538.156B 1377.274 
Is 9 B34.9873 454,9735 1289.960 

5. ILI 15 10 B29.9270 370.647 1220.574 
5.5 11 B24.3965 339.6490 1164.045 

5.75 13 812. BB07 264.4302 1077.311 
6 14 807.1470 236.0823 1043.229 

6.25 1.9 801.5166 212.1236 1013.640 
6.5 16 796.0222 191.6572 987.6795 

6.75 17 790.6816 174.010i 964.6917 
7 19 780.4897 145.2315 925.7211, 

7.25 20 775.6399 133.3865 909.0264 
7.5 21 770.9503 122.8827 893.0330 

7.75 22 766.4160 113.5182 879.9342 
B 23 762.0313 105.1286 867.1600 

8.25 24 757.7900 97.57919 855.3692 
8.5 26 749.7125 84.57133 B34.283B 

B. 75 27 745. B637 78.94104 8243048 
28 742.1337 73.80052 815.9342 

9.25 2? 738.5167 67.09310 807,6099 
9.5 30 735.0073 64.77053 799.7778 

9.75 32 728.2907 57.11BO5 785.40BB 
N 33 725.0741 53.72076 778.7948 

10.25 34 721.9460 50.57159 772.5176 
10.5 35 718.9024 47.64&57 766.5487 

10.75 36 715.9393 44.92458 760.8639 
11 37 713.0532 42.38702 755.4402 

11.25 39 707.4383 37.80100 745.2973 
11.5 40 704.6233 35.724B2 740.54BI 

11.75 41 702.2127 33.77718 735.9899 
12 42 699.6637 31.94759 731.6113 

12 . 21 ' 43 697.1740 30.22666 727.4006 
12.5 45 692.3623 27.07778 719.4401 

12.75 46 690.0361 25.0525 71.9.6713 
13. 47 687.7601 24,27207 712.0322 

IMO 46 685.532e 4121.98254 708,5150 
13.5 49 683.3514 21.76149 '19 705.11L 

13.75 51 679.1221 19.50624 698.6284 
14 52 677.0707 16.46377 695.5345 

14. L5 53 675.0594 17,47310 692.5325 
14.5 54 673. OB69 16.53091 689.6178 

14,75. Is". 671.1.5-IB 15.63413 686.7857 
115 51; 669.2528 14.779?, N 684.0328 
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Table 5.3. The relationship between Total Cost per week and 
the size of the delivery-area 

CL 

b 0,1 IA. 

(E per -k) 

vcrn 
SL-CL 

-TF: M 

ý., 5 ,r 
Li S 

-Tc 
(, ý r-er vqt, ) 

250.00 115.19 13 L 370.73 b78.90 414.39 
300.00 1590.1.13 423.11 814.68 456.77 
3,90.00 IB55.27 4755.49 950.46 499.16 
400.00 2120.30 5217.68 1086.24 541.54 
490.00 A1385.34 580.26 12212.02 9B3.92 
500.00 2650.36 632.65 1357.80 626,31 
550.00 291 c5.4.2 685.03 1493.58 66B. 69 
600.00 3180.46 737.41 1629.36 711.08 
650.00 3445.49 789.80 1765.14 753.46 
700.00 3710.53 B42.16 1900.92 795.84 
750.00 3975.57 894.57 2036.70 '13 83M 

Table 5.4.1. Disaggregation of weekly costs using daily round- 

trips, when t=3-75 tons 

C\, q n X c GICM 
Cc;,,, t 

R"n"Ing 
Co 5v- 

MKI 
C051-- 

shm cosý 

05 ol P. P-rce4cqQ 
CF -rot--Ckl Cos. \- 

50 -17% Q. 75 13.33 50.29 174-85 501.26 10 .0 3- 75 3. 0.75 13.33 75.43 262.27 588.68 12.81 100 3 0.75 13.30 100.57 349.6? 676.11 14.8B 125. 3 0.75 13.36 125.72 437-12 763.53 16.47 150 4 0.75 10.00 231.63 614.05 1049.27 22 OB 175. 4 0.75 10.00 270.24 716.39 1151.61 . 
23.47 200, 4 0.75 10.00 308-84 B18.73 1253.95 24.63 22V 4 0.75 10.00 347.45 921.07 1356.29 25.62 250 5 0.75 8.00 531.83 1176.25 1720-27 30.92 275 5 0.75 S. 00 565.01 1293.87 1837.90 3 1.83. 300 5 0.75 B. 00 63B. I? - 1411.50 1955.52 32.64 325 6 0.75 6.67 692.44 1732.73 2385.56 37.41 

350 6 0.75 6.67 961.09 1B66.01 2518.84 38.16 
375 7 0.75 5.71 1272.83 2239.69 3001.33 42.41 
400 7 0.75 5.71 1357.68 23B?. Ol 3150.64 43.09 425 8 0.75 5.00 172B. 79 2816.58 3687.02 46. B9 450 9 0.75 4.44 2143.55 3282.64 4261. B9 50.30 475 10 Q. 75 4.00 2602.42 3787.75 4B75.79 53 37 500 11 0.75 3.64 3105.91 4332.39 5529.24 . 

56.17 525 14 0.75 2. B6 4463.67 5668.20 7191.47 62.07 550 16 0.75 2.50 5551.7? 6744.24 84B5.12 6 5.4 3% 575 20 0.75 2.00 7708.39 8788.78 10964. BB 70.30 
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Table 5.4.2. Disag 

stays, when t=3-75 

Y, 

gregation of 

r 

weekly costs 

Qu n r. 

using 

1-0 ýCul 

overnight 
Sýern CC-$ 

CL"ý 0, pe 

110 a. -1 I. -I 66.67 1.85 122.66 544. BO 0.34 
75 .3 1.5 66.67 2.77 183.99 606.13 0.46 

loci 3 1.5 66.67 3.70 245.32 667.46 0.55 
125 3 1.5 66.67 4.62 306.65 728.79 0.63 
150 3 1.5 66.67 5.55 367.98 790.12 0.70 
175 3. 1.5 66.67 6.47 429.32 851.45 0.76 
200 3 1.5 66.67 7.40 490.65 912.76 0.81 
225 3 1.5 66.67 8.32 551-9B 974.11 0.85 
250 4 1 50.00 22.03 5B7.92 1072.16 2.05 
275 4 1 50.00 24.23 646.72 1130.96 2.14 
Zoo 4 1 50.00 26.43 705.51 IIB9.75 2.22 
325 4 1 50.00 28.63 764.30 1248.54 2.29 
350 4 1 50.00 10.84 823.09 1307.33 2.36 
375 4 1 50.00 33.04 SBI. B9 1366.13 2.42 
400 4 1 50.00 35.24 940.68 1424.92 2.47 
425 4 1 50.00 W. 44 999.47 1483.71 2.52 
450 4 1 50.00 39.65 1058.26 1542.50 2.57 
475 5 0.75 40.00 67.08 1095.52 1639; 55 4.09 
500 5 0.75 40.00 70.61 1153.16 1697.21 4.16 
525 5 0.75 40.00* 74.14 1210.84 1754.87 4.22 
550 5 0.75 40.00 77.67 1268.50 IB12.52 4.29 
575 5 0.75 40.00 

. 
81.20 1326.16 1870.18 4.34 

Table 5.5.1. Disa ggregation of weekly costs using daily 

round-trips, when t=200 tons 

SLCM clc:, I-l-- 5kni Q unnýii3 -Tý 0ý percexltrtq-e CL n" cosi-- C054-- C0,5 ý-- -rci-cll CoSE .. i 

50 7. 14 13. -: 3 113.14 393.39 1398. IB B. Ov 
75 3. 14 13. U. --T 169.71 59C). 09 1594.87 10.64 

100 7. 14 13 . 226.2B 786.79 1791.57 12.63- 
125 14 17. 282.66 98-T. 49 1968.27 14.27. 
150 4 10 10. CIO 46V. 79 1245.41 23E33-5.19 B. 09 
175 4 1 C) 10. C)(-) 54B. 09 1452.97 2590.76 10.64 
200 4 10 10.00 626.39 1660.54 2796.7-7. 12.6 3 
225 4 10 10.00 704.69 1868.11 3-005.9C, 14.27. 
250 5 8 B. Or) 1014.90 2244.66 3553 . 69 19.71 
275 5 a E3.00 1116.39 2469.17. 3778.3.6 21.16 
300 5 8 B. CIO 1217 - BE3 269----;. 59 4002. E3ZT 22.38 
-Z-) 6 7 6.67 164ý. 10 3188.23. 4683.38 3- 44 2. 
350 6 7 6.67 1766.41 34"73.48 4926.63 218.56 
375 7 6 5.71 21245.50 3951.23 5596.60 29 .55 
400 7 6 5.71 '2395.20 4214.64 5,862 . 02 -- 0.43 
425 a 5 5.00 2901. B2 4 7.27.6 9 6487.27 3 5.0 6 
450 9 5 4.44 3597.99 5509.99 7489.52 aB 
475 10 4 4.0(-. ) 411C,. (. -)6 59e2. ()7 8006.79 40.11 
500 11 4 7-. 64 4905.23 6B42.23 9069.42 40. E36 

. 525 14 3 2.66 6517.11 8275.75 1OB23.40 44.73 
550 16 :z 2.50 B IQ 5. BO 9846. Bl 12758.41 48.04 
575 20 2 2 10075-19 11487.31 1461B. 52 51. *`ý*-. 
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Table 5.5.2. Disaggregation of weekly costs using overnight 

stays, when t=200 tons 

x 
Cr'rrzm CoSE 

0. -Sý fiýtrcýcqtr ý 
50 7 30 2B . 57 46.26 420.63 3762.28 1.23 
75 7 30 26 . 57 69.39 630.95 3972.60 1.75 

100 7 30 2B . 57 92.52 B41.27 41B2.91 2.21 
125 7 30 2B . 57 115.65 1051.59 4393.23 2.63 
150 7 30 28 . 57 138.78 1261.90 4603.55 3.01 
175 7 30 28 . 57 161.90 1472.22 4813. B7 3.36 
200 7 '30 28 . 57 IB5.03 1662.54 5024.1B 3.68 
225 7 30 2B . 57 20B. 16 1892.86 5234.50 3.98 
250 7 30 28 . 57 231.29 2103.17 5444.82 4.25 
275 7 30 26 . 57 254.42 2313.49 5655.14 4.50 
300 7 30 28 . 57 277.55 2523.81 5865.45 4.73 
325 7 30 28 . 57 300.68 2734.12 6075.77 4.95 
350 7 30 2B . 57 323.61 2944.44 62B6.09 5.15 
375 7 30 2B . 57 346.94 3154.76 6496.40 5.34 
400 7 30 2B . 57 370.07 3365. OB 6706.72 5.52 
425 7 30 2B . 57 393.20 3575.39 6917.04 5.6B 
450 7 30 2B . 57 416.33 3785.71 7127.36 5.84 
475 7 30 2B . 57 439.45 3996.03 7337.67 5.99 
500 7 30 28 . 57 462.58 4206.35 7547.99 6.13 
525 7 30 28 . 57 4B5.71 4416.66 7756.31 6.26 
550 7 30 2B . 57 50B. 84 4626.98 7968.63 6.39 
575 7 30 28 . 57 531.97 4837.30 8178.94 6.50 
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Table 5.6. Total Cost per week of alternative systems 
for values of a from 50 to 3000 miles. (t=3-75 tons) 

cx. Co 
q 

nA 
56 3 0.7 5 501.26 3 1.5 544.80 
75 3 0.75 588.6B 3 1.5 606.13 

100 3 0.75 676.11 3 1.5 667.46 
125 3 0.75 762.53 3 1.5 726.79 
150 4 0.75 1049.27 3 1.5 790.12 
175 4 0.75 1151.61 3 1.5 851.45 
200 4 0.75 1253.95 3 1.5 912.03 
225 4 0.75 1356.29 3 1.5 974.11 
250 5 0.75 1720.27 4 1 1072.16 
275 5 0.75 1837.90 4 1 1130.96 
300 5 0.75 1955.52 4 1 1189.75 
325 6 0.75 2385.56 4 1 1248.54 
350 6 0.75 251B. B4 4 1 1307.33 
375 7 0.75 3001.33 4 1 1366.13 
400 7 0.75 3150.64 4 1 1424.92 
425 8 0.75 3687.02 4 1 1483.71 
450 9 0.75 4261.89 4 1 1542.50 
475 10 0.75 4875.79 5 0.75 1639.55 
500 11 0.75 5529.24 5 0.75 1697.21 
525 14 0.75 7191.47 5 0.75 1754.87 
550 16 0.75 8485.12 5 0.75 1812.52 
575 20 0.75 10964. es 5 0.75 1610.18 

1000 8 0.75 4340.00 
1500 12 0.75 6022.00 
2000 is 0.75 9665.00 
2500 26 0.75 15741.00 
3000 51 0.75 31339.00 
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Table 7.1. The effect of time-windows on n, TFM, d, id and 

Td. (P=100, a=l (square)) 

r A A i'l -Tc 

10 22 44.434 2.022 0.065 3GB7 

20 is 41.600 2.311 0.353 3327 

30 16 39.646 2.478 0.342 3032 

40 15 38.242 2.549 0.333 217: 3 

50 14 34.954 2.497 0.307 2661 

60 1--r 37.226 2.068 0.330 2607 

70 12 31.950 2.663 0.225 2337 
90 12 34.442 2.870 0.30B 2407 

90 11 32.460 2. V51 0.292 2233 
100 11 31.192 2.836 0.231 2196 

110 11 29.228 2.657 0.26i 214, C) 

120 10 29.340 2.934 0.267 2143 

iso 10 27.996 2.800 0.255 1? 86 

140 io 27.944 2.794 0.254 1584 

150 10 27.706 2.771 0.252 1978 

160 10 27.582 2.752 0.251 1974 

170 ii 27.594 2.50V 0.249 1974 

180 11 27.212 2.474 0.245 2084 
190 10 26.366 2.637 0.240 2060 

200 11 25.00 2.353 0.233 1926 

210 li 27.224 2.475 0.245 2084 

220 11 28-30e. 2.573 0.253 2118 

230 10 24.030 2.403 0.218 1866 

240 10 23.266 2.327 0.212 1875 

250 10 23.180 2.31S 0.211 1850 

260 io 23-180 2.318 0.211 1650 

270 9 23.494 2.610 0.216 1731? 

280 9 23.502 2.611 0.216 1740 

290 10 24.992 2.500 0.227 Mol 

31-')C) 9 24.542 2.727 0.225 1769 

310 9 23.720 2.636 0.218 1746 

Z20 9 20.720 2.636 0.218 1746 

330 9 22.490 2.499 0.206 1711 

340 9 22.938 2.554 0.211 1725 

350 9 22.534 2.504 0.207 1712 

360 10 22.060 2.206 0.201 1819 

370 9 21.412 V. 379 0.196 1681 

-1801 9 21.770 2.419 0.200 1691 

390 9 21.770- 2.419 0.200 1691 

400 9 21.770 2.419 0.200 1691 

410 9 21.770 2.419 0.200 1678 

420 9 20.866 2.312 0.191 1665 

430 9 20.754 2.306 0.190 1699 

440 9 23.236 2.5a4 0.213 1733, 

450 9 22.220 2.469 0.204 1722 

460 9 22.444 2.494 0.206 1710 

470 9 23.064 2.563 0.212 1705 

480 9 22.090 2.454 0.203 1699 

490 ? 22.090 2.454 0.203 1713 

500 9 23.06S 2.563 0.212 1727 

510 9 21.068 2.563 0.212 1727 

520 v 23.068 2.563 0.212 1727 

530 ? 21.778 2.420 0.200 1683 
9 19 V36 2.215 0.183 1639 540 . 
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Table 7.2. Observed and predicted Total Cost figures, 

as r changes 
obse-Weel 'PreaicteJ 

r -T C -T C- 

1 3962 5012 
io 3887 3334 
20 3327 2707 
io 3032 2745 
40 2373 2609 
to 2161 2502 
60 2607 2428 
70 2337 2363 
so 2407 2308 
90 2231 2260 

100 2196 2218 
110 2140 2181 
120 2143 2148 
130 1986 21113 
140 1984 2090 
150 1978 2065 
160 1974 2041 
170 1974 2019 
ISO 2084 1919 
i7o 2060 I? so 
200 1? 26 1962 
210 20G4 1945 
220 2118 I? 2V 
230 1866 1? 14 
240 1375 i9oo 
250 1850 IBB6 
260 ISM 1673 
270 1739 18611 
280 1740 18412 
290 1901 1817 
300 1769 1826 
310 1746 IBI6 
320 1746 1805 
330 1711 1796 
340 1725 1786 
350 1712 1777 
360 ISIV 1768 
370 1681 1760 
380 16? 1 1751 
390 1691 1743 
400 1691 1736 
410 1678 1728 
420 1665 1721 
430 1699 1713. 
440 1733 1707 
450 1722 1700 
460 1710 1693 
470 1705 1687 
480 16% 1680 
490 1713 167.01. 
500 1727 16613 
Wo 1727 1662 
520 1727 1657 
510 1681 1651 
540 1619 1646 
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Table 7-4. The effect of time-windows on n, TFM, d and TC_L 

using the savings formula 

k- n -TFM J -Tcý 
1 31 51.450 1.660 5162 

10 29 47.066 1.623 4799 
20 27 45.038 1.668 4502 
30 22 37.708 1.714 3697 
40 23 38.758 1.635 3846 
50 20 33.302 I. SM 3474 
60 19 34.622 1.822 3250 
70 17 32.102 1.883 2940 
80 17 30.908 1.818 2906 
90 18 31.608 1.756 3046 

iGo 17 29.506 1.738 2867 
lio 17 30.326 1.734 2820 
120 V 26.872 i. 680 2673 
130 15 25.672 1.711 2519 
140 15 26.152 1.743 2533 
150 15 25.554 1.704 2516 
160 14 22.2G6 1.664 2333 
170 14 24.010 1.715 2353 
iso 14 2a. 218 1.658 2330 
iso 14 21.278 1.520 2276 
200 14 22.992 1.642 2324 
210 14 23.310 1.665 2333 
220 13 22.274 1.713 2184 
230 13 22.230 1.710 2183 
240 13 21.030 1.618 2149 
250 12 19.504 1.625 1986 
260 A 20.076 1.673 2003 
270 12 19.654 1.638 1991 
280 12 17.766 1.480 1938 
290 12 20.332 1.694 2010 
300 12 18.752 1.563 1965 
310 11 17.510 1.592 1811 
320 11 17.244 1.568 1803 
330 11 17.518 1.593 1811 
340 11 17.812 1.619 1819 
350 11 16.188 1.472 1773 
360 10 17.124 1.712 1680 
370 10 15.936 1.594 1646 
380 10 17.248 1.725 1683 
390 ii 15.612 1.561 1757 
400 10 16.210 1.621 1654 
410 10 16.060 1.606 1650 
420 9 13.050 1.450 1445 
430 9 14.538 1.615 1487 
440 9 13-982 1.554 1472 
450 10 14.448 1.447 1605 
460 9 14.068 1.563 1474 
470 9 12.870 1.430 1440 
480 8 12.516 1.564 1311 
490 9 12.842 1.427 1440 
500 8 12.368 1.546 1306 
510 8 12.468 1.559 1309 
520 8 12.948 1.619 1323 
530 8 12.548 1.569 1312 
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Table 7.5. The effect of time-windows on n, TFM, d and TC, 

using time-minimisation as an alternative to Genralised Cost 

-rFtl d -rc 
1 22 56.830 2.583 4235 

10 20 52.724 2.636 3880 
20 is 47.038 2.613 3460 
30 16 42.510 2.657 3113 
40 15 40.880 2.725 2947 
50 i3 38.890 2.338 2595 
60 13 39.860 3.066 2679 
70 12 35.976 2.998 2450 
so 12 36.614 3.051 2468 
90 12 34.932 2.91i 2421 

100 12 35.798 2.983 2445 
110 11 33.148 3.013 2251 
120 11 29.182 2.653 2139 
130 11 28.838 2.603 2124 
140 10 29.636 2.964 2032 
150 10 31.784 3.178 2092 
16D 10 28.402 2.840 1997 
170 10, 27.594 2.759 1974 
180 10 26.848 2.685 1954 
i9o 10 26.356 2.636 1940 
200 10 26.064 2.606 1931 
210 10 25.230 2.523 1908 
220 11 28.452 2.587 2118 
230 10 26.304 2.630 1938 
240 10 24.054 2.405 1875 
250 10 23.180 2.318 1850 
260 10 23.180 2.318 1850 
270 9 23.502 2.611 1740 
280 9 23.494 2.610 1739 
290 10 24.998 2.500 1901 
300 9 24.542 2.727 1769 
310 9 23.720 2.636 1746 
320 9 23.720 2.636 1746 
330 9 22.400 2.499 1711 
340 9 22.988 2.554 1725 
350 9 22.534 2.504 1712 
360 9 22.534 2.504 1696 
370 9 21.412 2.379 1681 
380 9 21.788 2.421 1686 
S90 9 21.770 2.419 i691 
400 9 21.770 2.419 1691 
410 9 21.770 2.419 1691 
420 9 21.770 2.419 1677 
430 9 20.754 2.306 1682 
440 9 23.256 2.584 1682 
450 9 22.220 2.469 170-3, 
460 9 22.444 2.494 1715 
470 9 23.064 2.563 1727 
480 9 22.090 2.454 1727 
490 9 22.090 2.454 1727 
500 9 23.068 2.563 1727 
510 9 23.068 2.563 1727 
520 9 23.063 2.563 1696 
530 9 21.778 2.420 1665 
540 9 19.936 2.215 1639 
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Table 7.6. The relationship between Total Fleet Mileage 

and Fleet Size in the presence of time-windows, (average 

Figures) 

n --rFM cl 
? 22-306 2.476 

10 25.420 2.542 
11 28.680 2.607 
12 32.939 2.745 
13 36.765 2.82S 
14 35.797 2.557 
15 38.242 2.503 
16 3S. 2S7 2.39: 2. 
18 41.028 2.279 
21 45.514 2.167 
22 46.480 2.113 
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