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Abstract

The environmental risk of growing genetically maetf (GM) crops and particularly
the spreading of GM genes to related non-GM crepsurrently a concern in European
agriculture. Because the risks of contaminationliameed to the spatial and temporal
arrangements of crops within the landscape, sa@nhaficrop arrangement are required
to investigate the risks and potential coexistemmasures. However, until recently,
only manual methods were available to create saenar

This thesis aims to provide a flexible referencedl tto create such scenarios. The
model, called LandSFACTS, is a scientific reseaimbl which allocates crops into
fields, to meet user-defined crop spatio-temporarggements, using an empirical and
statistical approach. The control of the crop agesments is divided into two main
sections: (i) the temporal arrangement of cropscosmpassing crop rotations as
transition matrices (specifically-developed metHodg), temporal constraints (return
period of crops, forbidden crop sequences), indraps in fields regulated by temporal
patterns (specifically-developed statistical anedysand yearly crop proportions; and
(i) the spatial arrangements of crops: encompgsgossible crops in fields, crop
rotation in fields regulated by spatial patternge(sfically-developed statistical
analyses), and spatial constraints (separatioardiss between crops). The limitations
imposed by the model include the size of the srsalipatial and temporal unit: only
one crop is allocated per field and per year. Tlheehhas been designed to be used by
researchers with agronomic knowledge of the lamuscAn assessment of the model
did not lead to the detection of any significaraws and therefore the model is
considered valid for the stated specificationsldvahg this evaluation, the model is
being used to fill incomplete datasets, build upd asompare scenarios of crop
allocations. Within the GM coexistence context, ith@del could provide useful support
to investigate the impact of crop arrangement atdrmgial coexistence measures on the
risk of GM contamination of crops. More informedvax could therefore be provided
to decision makers on the feasibility and efficierod coexistence measures for GM
cultivation.

Key words: crops in fields, crop arrangement, aigtion, spatio-temporal modelling,
landscape scale.
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Abbreviations and symbols

Mathematical abbreviations only valid for one stéitial test are not included here;

their comprehensive definition is given within thedinition of the test (i.e. in the same

Figure).

%CV

%R

a-sa
CETIOM
CVp

E
E analysis
Ep

Ex

EU

GIS
Genesys

GM
ha
Ho

Hi

ID
Initial crop

INRA

km?

Percentage of coefficient of variation of thegortion of fields or
area of a farmer with a specific crop during as#metime period.
Percentage of randomised %CV, which are highen the observed
%CV.

Autumn set-aside
Centre technique interprofessionel des atesag metropolitains
Proportion of randomly simulated %CV values déowthan the
observed %CV value (values ranging from 0 to 100Ph)s value is
used to control the temporal patterns within Lan&iSFS.
Result value of the E analysis

Statistical analysis of spatial pattefnsrops
Percentage of randomly simulated E values |diamn the observed E
value. This value is used to control the spatiattgpas within
LandSFACTS.
Within chi-square tests: expected value
European Union
Geographical Information System (spatial infation)

Gene flow model focusing on cross-pollbmatf rapeseed (Colbach
et al, 2001a; Colbackt al, 2001b)
Genetically Modified (crops)

Hectare
Null hypothesis in a statistical test (no statatidifference between
two sets of data)
Inverse of the null hypothesis in a statistical tgstatistical difference
between two sets of data)
Unique identifier (unique integer value)

First crop within a crop rotation tee lgrown during the simulation
(year 0).
Institut National de la Recherche Agronomique
Kilometres square
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Landscape Scale Functional AllocatiénCoops Temporally and
Spatially.
Length of rotation
Late drilled wheat
General: meters
Within statistical tests: number of fields (sarff@mer and same
rotation)
Gene flow model focusing on cross-pollinatimhmaize (Angeviret
al., 2007; Angeviret al, 2001)
Within chi-square tests: number of samples fécutating the degree
of freedom of the statistical test
Within chi-square tests: expected value
Oilseed rape
Probability determined using a statistical test
Permanent set-aside
Rye
Rotations 1 or rotation 2
Set-aside
Spring barley
Scottish Crop Research Institute
Within random number generation: first valgedufor generating
pseudo-random numbers within a simulation.
Sustainable Introduction of Genetically Mibelil crops into European
Agriculture (SIGMEA, 2005)
Transition matrix (in the context of crop rotati
Overall transition matrix (i.e. transition matrbetween transition
matrices of crop rotations)
Université de Paris Sud
Wheat
Winter Wheat
Winter barley
Chi-square value of a chi-square test
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1 Introduction

1.1 Background

Agriculture has been through multiple changes dugf" century. After the Second
World War, agricultural production was accelerateg the “industrialisation” of
agricultural activities in order to meet the in@®g demand for food. Agriculture is
now facing a new challenge, as the public and ipalitawareness of environmental
issues is increasing. Under the new European ComAgpitultural Policy's Single
Payment Scheme (SPS), the subventions are decdoghedood production (DEFRA,
2004b), and farmers must meet cross-compliancaresgents, by keeping their land in
Good Agricultural and Environmental Condition (DEAR2005b). Thus, the farmer’s
role has shifted from being solely a food produocenclude other rules such as being a
steward of the environmental and the landscape.

A new environmental concern in agriculture hasesriBom the possibility of growing
genetically modified (GM) crops (Firbangét al, 2003; Wilkinsonet al, 2005). The
possible health consequences of introducing GM<ioghe food chain are only one
part of the GM issue. The environmental risks obwgng GM crops in an open
agricultural environment are also of great imparggrparticularly the risks relating to
the “contamination” of non-GM crops (e.g. conventibor organic) or the spreading of
undesired genes to wild relatives (herbicide rasisgenes), (Timmonst al, 1996).
The understanding and mitigation of those risksfiprime importance for decision-
making on coexistence rules for GM crops.

Genes from GM crops have two main means of dispdrgahe seeds and by pollen
(Bock et al, 2002). Extended seed dispersion may occur p&tlguduring harvest
activities, as a certain proportion of seeds aneags lost during this activity either on
the field itself or during the travel from the fieto the seed store (Bo&k al, 2002).
Then the following year, volunteers may grow ugthe field, in field borders, or on
road borders en route to the store. Seeds maystdgadormant for a few years before
germinating. The risk of GM resurgence can theeetoe present for a very long time
after the last GM crop was sown (Lutmahal, 2005). The volunteers may then, in
turn, be a new source of GM contamination to therenment, either by seed or pollen
dispersal (Squiret al, 2003).
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Pollen from GM crops may cross-pollinate with reloep plants, which can either be
wild relatives or conventional crops of the sanmaifg (Bock et al, 2002; Eastham and
Sweet, 2002). GM genes may thus spread to othpscho the example of GM Oilseed
Rape (OSR) resistant to herbicide, their pollen maytaminate wild mustard flowers
or another OSR field. In the first case the wildatige may acquire the pesticide
resistance and thus may become a weed much hardemtrol; in the second case,
OSR plants which are supposed to be GM-free magrbec'contaminated” which will
reduce their market value. The issue is particplamportant to organic farmers,
because the purity of their product is one of thein selling points.

OSR pollen transport is mainly conducted by thedaémd insects, at both short and
longer distance (Bateman, 1947b; Bateman, 1947g),ceoss-pollination might occur
at more than 5km from the source (Ramsayal, 2003). Through both dispersal
mechanisms, the landscape in which the GM is growtan determine the extent to
which the genes may spreadlhe term “landscape” refers to the agriculturakawith

its fields, cropping systems, and infrastructurbs.particular, the relative spatial
arrangement of the source of contamination andhef receptive area is important,
because if seeds or pollen cannot reach a recifgeaid soil or compatible plant) the
risk of contamination is null. The pattern of sekgpersal is highly dependent on the
road routes taken by the seed trailers. Polleredsshis much more dependent upon the
landscape structure and more particularly upon diep arrangements within the
landscape, as its dispersal will be influenced byural obstacles, such as distance
between fields, or hedgerows, forest and buildifigsnt et al, 2001). The temporal
arrangement of source of contamination and of meeeprops is also important,
because from a contaminated seed bank, GM feraysgmav and thus become a new
source of contamination several years after thedgdg was grown.

The modes of dispersion of GM genes are variedtl@disks encountered are highly
dependent upon the landscape and more particultndy spatial and temporal
arrangements of contamination source (e.g. GM OSR] receptive areas (e.qg.
conventional or organic OSR), (Bateman, 1947a;rKé&ial, 2006). To limit the risks
of undesired GM dispersion, coexistence measuresh @s separation distances
between GM and non-GM crops, have been consid&E&RA, 2006).

One method for analysing the magnitude of the emwirental risk of GM genes
spreading through agricultural landscapes with witdout coexistence measures is to
use models of gene flow at the landscape scale sGectemodel is Genesys, which aims
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to “evaluate the influence of cropping systems m@ndgenes escape from rapeseed
crops to rapeseed volunteers in time and spaceb&Cbet al, 2001a; Colbaclet al,
2001b). For every year of simulation, the modelsiders the crops in every field of the
landscape. Depending upon the study, the landssjzqueal extent might be very large
in order to encompass all risk of contaminations. (several kilometres for cross-
pollination). As the specific repartition of cropghly influences the spreading of GM
genes, being able to run gene flow models on nieltgndscapes with similar spatio-
temporal characteristics of the crops would strieeigtthe conclusions drawn from gene
flow modelling. Moreover, to test possible coexnste measures, crop arrangements
meeting those conditions are required.

Currently, the creation of scenarios of crop spamporal arrangement is carried out
by manually altering the crops in the landscape lomeone. This method is highly

biased by personal decisions, time consuming arideasily reproducible. The only

models simulating crop allocation have a mechanisipproach integrating large

amounts of specialised information, e.g. soil rui$, weather or farm management
information. Such models have very limited usefathéor scenario building of crop

arrangements, because sufficient data are rareijaale.

To facilitate the generation of crop spatio-temporh arrangement scenarios for
gene flow models, a research model solely aiming allocating crops into fields to
meet specified targets of crop spatial and temporarrangements at the landscape
scale, would be an asseSuch a model would simulate crop arrangements ttirec
using an empirical and statistical approach, irtstfamodelling the mechanistic origin
of the arrangements. Thus crop arrangement scenaadold be easily created with only
minimum specialised inputs, however general knogéedf the agronomic conditions,
such as crops and rotations, are still requirethbyuser.

The subject of this thesis is precisely aimed atioling just such a model, integrating
the requirements detailed abovéo summarise, this model, hereafter called
LandSFACTS (Landscape Scale Functional Allocation foCrops Temporally and
Spatially), will greatly facilitate and strengthenscientific investigations on the risks
of GM contamination in the agricultural landscape wth and without coexistence
measures, by providing tailored scenarios of cropspatio-temporal arrangements.
From those scientific investigations, researchersaa then advise decision makers
on required coexistence rules for GM crops cultivaon.
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The initial motivation for the research in this sleecame from the EU-funded SIGMEA
(Sustainable Introduction of Genetically ModifiedoPs into European Agriculture)
project (SIGMEA, 2005), which is studying coexistenof GM, conventional and
organic agricultural systems in European agricaltur

1.2 Aim

This research aims to support the investigatiorGbf crop coexistence scenarios in
European arable landscapes by providing a modeftiagework, the LandSFACTS

model, to create and manipulate realistic scenariasop spatio-temporal allocations.
The model uses a stochastic approach to simulag amrangements in fields at the
landscape scale, whilst respecting empirical aatissital user-defined constraints that
represent the predominant agronomic, socio-econandgolitical conditions.

1.3 Objectives and linked tasks
The objectives of this research project and thieelintasks are listed below.

Objective 1. Examine the origins and characteristis of spatio-temporal
arrangements of crops in agricultural landscape.

Task 1.1 To review the literature on the origimgl aneasurements of spatio-
temporal arrangement of crops, in order to identify constraints on
crop arrangement and existing statistical analgsgsatterns.

Task 1.2 To develop and set up relevant statlsditalyses on crop patterns.

Task 1.3. To analyse the spatial and temporal qpatie crops in relevant study
landscape, in order to determine parameters atidtsial tests relevant
to the LandSFACTS model.

Objective 2. Design the LandSFACTS model of crop aangement with its
components and processes, in order to create a fieke and generic model.
Task 2.1. To review the requirements for the LarASFS model and existing
models in the literature.
Task 2.2. To define the system representing thelERACTS model, i.e. limits of
the system, components and main processes inveliieith the system.
Task 2.3. To design and set up a flexible and genstructure for the
LandSFACTS model.
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Objective 3. Assess how well does the LandSFACTS dwe fulfil its objectives?
Task 3.1. To determine the methodology for the rhadsessment
Task 3.2. To assess the model approach, struatdrérgplementations in relation
to the stated specifications.
Task 3.2. To carry out a sensitivity analysis acehario testing of the model.

1.4 Deliverables

The three deliverables listed below, will be praddy this project.

Deliverable 1: To provide constraints rules on sragangement and statistical analyses
to characterise spatial and temporal patterns apscrfrom an
agricultural landscape. This deliverable is preséim Chapter 4, 5, and
6. It will contribute towards fulfilling objectivé.

Deliverable 2: To provide the LandSFACTS model Ifeting the investigation of
landscape scenarios on specific spatial and terhporangement of
crops by researchers with agronomic background. mbedel should
integrate spatial and temporal patterns of crophjlewrespecting
specific spatial and temporal constraints (e.gp cadations or isolation
distances between crops). This deliverable is ptedein Chapter 7. It
will contribute towards fulfilling objective 2.

Deliverable 3: To provide an assessment of the S§&ACTS model against its
objectives. This deliverable is presented in Cha@tdt will contribute
towards fulfilling objective 3.

1.5 Thesis route map

To reach the aim of this thesis, the three objestilid out in Section 1.3 (Objectives
and linked tasks) must be achieved. Objective larteme of the origin and
characteristics of crop spatio-temporal arrangegs)eamnd Objective 2 (design of the
LandSFACTS model) are entwined. Objective 2 setsfthmework for the project in
Task 2.1 by identifying the specification of thendSFACTS model, whereas Objective
1 provides the background to the project by idgimg the origin of spatio-temporal
crop arrangements from the literature (Task 1.¥)phoviding specifically designed
tools to characterise crop arrangements were sgfagk 1.2) and by providing insights
on crop arrangement in a real landscape usingehestatistical tools (Task 1.3). The
tools and knowledge derived from achieving Objextlvwere then incorporated within
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the LandSFACTS model through Task 2.2. Objectivea® completed with the creation
of the LandSFACTS model (Task 2.3). Then ObjecByéhe assessment of the model,
was investigated through its three tasks: (i) medhmgy of the model assessment (Task
3.1), (ii) assessment of the model approach strecnd implementations (Task 3.2),
and (iii) sensitivity analysis and scenarios tegtifithe model (Task 3.3).

The next chapters follow the same logical ordexxasmplified above. Chapter 2 defines
the framework of the project by defining the enesss requirements of the
LandSFACTS model (Task 2.1). Chapter 3 investigegts/ant published literature on
() the origins of crop arrangements (Task 1.1)) éxisting statistical analyses
measuring crop arrangements (Task 1.1) and firadlyiii) existing models simulating
them (Task 2.1). The conclusions from the litetaview (Chapter 3) inform the lay
out of the methodology (Chapter 4) to be followed the design of the LandSFACTS
model (Task 2.2), and the datasets to be usedefong up and assessing the model are
detailed. In Chapter 5 and 6 specifically desigt@als to be integrated within the
model (Task 2.2) are presented: (i) statisticalyses of crop patterns and knowledge
on crop arrangement characteristics from a realdeape (Chapter 5, Task 1.2 and 1.3,
and thus fulfilling Objective 1), and (ii) mathental representation of crop rotations
(Chapter 6). Then in Chapter 7, the model itselpissented with its components,
simulation processes, outputs and information eir technical implementation (Tasks
2.2 and 2.3 fulfilled). This chapter concludes thigiective 2. The model is then
assessed to evaluate against the model specifisati@hapter 8), fulfilling objective 3.
A graphical representation of the project steps #malr links with meeting the
objectives and tasks is shown in Figure 1.1.
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Objectives and Tasks

Objective 1. Origins and
characteristics of spatio-
temporal arrangements of
crops

Task 1.1

Thesis Chapters outline

2 Specifications of LandSFACTS
model

3 Review of the origins, metrics, and
models of crop arrangements

spatio-temporal arrangement of
crops

Task 1.2
New statistical analyses on crop
patterns

Task 1.3
Analyses in relevant study

Objective 2. Definition of the
LandSFACTS model

Task 2.1
Requirements for the
LandSFACTS model and
existing models

Task 2.2
Definition of components and
processes for the LandSFACTS
model

Task 2.3
Creation of the LandSFACTS
model

< -

Objective 3. Assessment of
the LandSFACTS model

Task 3.1
Methodology for the model
assessment

'\'

Task 3.2
Assessment of the model
approach, structure and
implementations

-~

Task 3.2 <.
Sensitivity analysis and scenario
testing of the model

origins and measurements of\

E bt

3.1 Origin of crop arrangements

3.2 Existing spatio-temporal
metrics of crop arrangements

3.3 Review of existing models

4 Methodology for LandSFACTS
development

4.1 LandSFACTS model approach:
conclusions from review

4.2 Datasets: from analysis to
validation and examples

4.3 Steps for LandSFACTS
development

Measuring the spatio-temporal

patterns of crops

5.1 New statistical analyses on
crops’ spatial and temporal
patterns

5.2 Crop pattern analyses on
landscape datasets

5.3 Statistical analyses to integrate
within LandSFACTS model

Mathematical representation of
crop rotations

Description of the LandSFACTS

model

i 7.1 Model definition

¢ 7.2 Model inputs

7.3 Crop allocation to fields model

7.4 Model outputs and
interpretations

7.5 Model implementation

7.6 LandSFACTS current use

Model assessment

8.1 Model assessment in the
literature

8.2 Aim of LandSFACTS
assessment

8.3 Method of assessment

- 8.4 Assessment of conceptual
model

8.5 Code verification

8.6 Sensitivity analyses

8.7 Scenario testing for a real
landscape

f N

Figure 1.1: Schematic diagram of the thesis "roud@"

The line styles are different for each objective
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2 Specifications of LandSFACTS model

To develop the required framework to support sdesasf crop arrangement, the first
task of the project was to identify the requirersenit the end-users within the context
of GM coexistence. After identifying the end usetbge specifications of the
LandSFACTS model are reported in this chapter lsypgong on three main points: (i)
the purpose and uses of the model, (i) the teehraems and (ii) the modelling
approach. Those specifications for the LandSFACT8ehare the basis of the thesis
project, presented in later chapters.

2.1 End users

The targeted end-users of the LandSFACTS modehgm@nomic researchers working
with gene flow models (e.g. Genesys for rapeseedMAPOD for maize (Angeviret

al., 2007; Angevinet al, 2001)), and more particularly within the SIGMEAopect
(SIGMEA, 2005). They are researchers at INRA-DijoNRA-Grignon, CETIOM,
SCRI, and Bremen University. The model must speadify meet their requirement of
facilitating the setting up of scenarios of coexgte measures between GM and non-
GM varieties of a crop.

The main requirements for the model, described igue 2.1, were defined in
collaboration with end-users at SIGMEA meetings #mdugh emails from October
2004 until April 2006. Specific requirements fromdeusers were considered until the
end of the LandSFACTS project (June 2007) in otdefinely tune the model to the
end-users needs. The requirements were further leamepted with comments from
colleagues from Cranfield University, and Rothamd$tesearch. Wherever possible the
model was designed to be generic, to broaden éRilmess to applications other than
scenarios for gene flow models.
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LandSFACTS model

— Purpose & uses: Research tool

— justification & documentation
— scenarios, coexistence
— any landscape

— Technical aims: Crop allocation to fields
crop arrangements
yearly based
field based
landscape scale

— Modelling approach: Empirical & Statistical
':: not mechanistic
limited inputs

Figure 2.1: End-users’ requirements for the LandSF& model

The end-user requirements are based on three roasiderations: (i) the purpose and
uses of the model, (ii) the technical aims and {iie modelling approach (Figure 2.1).
Each of those considerations on the requiremerthtBomodel are detailed below.

2.2 Model specifications

2.2.1 Purpose and uses

The discussions with the end-users highlighted tiatmodel must be a research tool,
usable by agronomic researchers. The model cosld laé used by environmental
consultants, although they are not targeted prineag-users. As a research tool, the
model must allow the user to control the behavafithe model, such as how the crops
are allocated to fields, and also stochastic psEssMoreover, the model approach,
structure and processes should be fully justified @ocumented.

The end-users indicated that the model needs tableeto be used for building and
testing scenarios of crop allocations, and moréiquéarly for coexistence scenarios.
Hence it can be used to model the possible inttimuof GM crops within agricultural
landscapes and help to predict the impacts of grgvdM crops with and without
coexistence measures, which aim to mitigate patknsiks. Therefore the model should
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allow the user to control (i) the crop proportionger the years (to model the
introduction of a new crop or variety), (ii) cropparation distances (e.g. the distance
required between GM and conventional varieties ofap), and (iii) return period of
crops (e.g. conventional variety of a crop canregiown the year after GM variety).

The model must be useable on any European agmall&indscape, as it is specified by
the SIGMEA project (2005), which is EU funded. Téfere, the model must be able to
account for the diversity in European agricultueaidscapes. For example, the crops
available within the model should not be intringiche model. The model should be as
flexible as possible, to prevent any restrictionsts future use.

2.2.2 Technical aims

The main function of the software, as specifiedhmsy end-users, was to allocate crops
to fields over several years, while respecting tan#s on crop arrangements.
Therefore the software should be able to provideoa allocation from one year up to
20 years. A one-year crop allocation is required dene flow models temporally
restricted to one season. For example, in Euro@@zamdoes not survive the winter;
therefore gene flows are only modelled within ary@de maximum number of years
given here, 20 years, is only used as a guidelm&urope, there is usually only one
main crop grown each year, therefore the time stépe model is one year.

Crops are usually grown within fields with fixed wwalaries over years. Physical
boundaries, where present, can be hedgerows, tsaorieoads. The field is the assumed
unit of crop cultivation, as used by the gene floadel Genesys. Fields are represented
by polygons with specific coordinates and the vedtomat is chosen as the best
representation of the fields.

Lastly the end-users requested that the model prestide crop allocation at the
landscape scale. The definition of the size of raldaape is not universally defined
within the literature. Within the scope of analygimsks of gene flow contamination, a
landscape may have from two fields up to 5,00@&el

2.2.3 Modelling approach

The LandSFACTS model aims at providing a simple @asly way of creating scenarios
of crop arrangement. The reality of farmers’ demisi on crop allocation is a complex
process, not completely understood or predictivéiciv involves environmental,
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agronomic and socio-economic parameters, such temuflow, pest management,
farm workload, and market prices. Mechanisticallpd®lling this decision process
requires a high quantity of detailed inputs, whidten impedes the use of such models.
Therefore the approach used in this research graojas to directly simulate the crop
arrangements instead of reproducing the decisidkingaprocess leading to it. To
achieve this, the complex decision process leattingyop allocation is replaced by (i)
stochastic decisions, (ii) empirical constraintsiling crop arrangement (e.g. return
period of crops, separation distances between krapsl (iii) statistical measures of
crop arrangements (e.g. general patterns). By uslig approach, complex and
extensive environmental and socio-economic vargablel processes are replaced by a
limited number of variables directly influencingethcrop arrangements. By using
conclusions and insights from research on farmedegision making, the user may
determine the inputs of the LandSFACTS model. Te@dSFACTS model can be
defined as a shortcut tool to create a unique alimgation reproducing the conclusions
on crop arrangement drawn from research on farndexssions.

2.2.4 Conclusion

The requirements detailed in the previous paragreset up the framework in which the
LandSFACTS model was developed. In summary, theuseds indicated that the
model should be a research tool able to be usbdild scenarios of crop arrangements
at the landscape scale on any European agricultaralscape. Crops should be
allocated to the fields (polygons) over the yeasm@ a one year time step, and an
empirical and statistical approach should be usedditectly simulate the crop
arrangements and not the decision making procagdfig to it.

The setting up of the inputs requires from the umerextensive knowledge on the
agronomic and socio-economic situation of the stsitg. The correct interpretation of
the LandSFACTS reports requires a good knowledgbeprocesses occurring within
the model.

2.3 Conclusion on specifications of LandSFACTS model

This chapter details the rationale and specificatior the model. They were defined in
collaboration with agronomic researchers working @il coexistence scenarios. In
summary, the model, called LandSFACTS, had to besearch tool to build scenarios
of crop arrangement at the landscape scale on angpBan agricultural landscape,
within the context of GM coexistence. The model hadallocate crops to fields
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(polygons) over the years using a one year time. §tee general modelling approach
had to be empirical and statistical by directly slating the crop arrangements, and not
the decision making process leading to it. Thenitedn of the specification of the
model provided the framework, in which the LandSHAOmodel had to be developed.

The next step was to analyse the system to modherefore, a literature review is
presented in Chapter 3 on (i) the origin of thgpcaorangement, and more precisely the
constraints influencing it, (i) means of statiatly measuring crop patterns, and (iii)
existing models on the same topic. From those apalythe specific needs of the
LandSFACTS model can be determined and the mainoapp of the model will be
presented in Chapter 4.
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3 Review of the origins, metrics, and models of crop
arrangements

In the previous chapter (Chapter 2), the speciboat of the LandSFACTS model

compiled from end user requirements, identifiedftaenework in which the model had

to be developed. Based on those specificationdjtérature was reviewed for relevant
studies on (i) the origin of crop arrangements, €isting metrics measuring crop
arrangements, and (iii) existing models simulatongp arrangements. Each of those
subjects is detailed in this chapter, and relevemclusions are drawn for the

methodology to develop the LandSFACTS model (Chiapte

3.1 Origin of crop arrangements

Crop arrangements in the agricultural landscapeirdheenced by a combination of
environmental drivers, farming activities and seet@nomic considerations. Those
constraints on farming systems are reported in nséimgies (Papwt al, 1988; Rellier
and Marcaillou, 1990). In this chapter, four magmstraints on crop cultivation will be
investigated: (i) environmental, (ii) agronomidj)(farm management constraints, and
(iv) economic, policy and contracts. Their relatigéfects on crop spatio-temporal
arrangement will be examined.

3.1.1 Environmental constraints

Each crop and crop variety has its own range ofrenmental variables (Brady and
Weil, 2002), in which the crop is considered totle most profitable (best quality and
highest yield). The crop cultivation within a laedpe is thus influenced by its
environmental constraints. The most often citedofsc are the climate (including
rainfall characteristics, solar radiation intensiind temperature), the soil properties
(including proportions of clay, sand, silt and argamatter) and water supply (surface
or underground water). Environmental variables lguand to vary gradually at a
landscape scale, although rapid changes may béf@odae to changes in topography.

3.1.2 Agronomic constraints

Agronomic rules aim at improving the managementcadps and soil for a more
efficient agriculture, i.e. higher yields at lowewnst relative to time, economics, risks,
and the environment. One of the oldest and mostlaomental agronomic practices
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worldwide is crop rotation (Lawest al, 1895). It is thought to have been critical to the
industrial revolution in Britain (Brunt, 1999). Qraotation is defined as the successive
growing of crops on a specific field (Wibberley,98). The crop sequences result from
land managers decision aiming at optimising agraopenvironmental, and financial
objectives while considering constraints from regoins, contracts, and risk
management (Kirkegaaset al, 2004; Tarimet al, 2006).

There are four agronomic rules which structure aatptions aimed at optimising the
crop yields, pest and weed control, and faciligatiarm management. The first rule is
the return period of crops or group of crops. Traig enforces the alternation of crops
in order to break the cycle of the build-up of némdas or other soil pests (Jones and
Perry, 1978). The second rule is linked to the bener risks of growing a specific
crop immediately after another one. The benefitsic@rise from increased nitrogen
supply, soil organic matter or water availabilitjjprovements in soil structure, and
decreased pests, diseases or weed competitiorsséBgiet al, 2000). For example, in
the UK, volunteer cereal weeds are particularlyissue if cereals are followed by
autumn-sown vegetable crops (Boeidal, 2006). The third rule is linked with within-
year cycles, i.e. usually a crop may only be sowWarahe previous crop has been
harvested. The sowing and harvest timing fluctuatéf climatic conditions. For
example, late harvesting due to low temperaturaubumn rainfall can restrict autumn
cultivations to such an extent that the followimgpps will perforce be spring- rather
than autumn-sown. This constraint is exemplifiedtiy higher prevalence of spring-
over autumn-sown oilseed rape in arable rotatinrcotland in comparison to England
(Championet al, 2003). The fourth rule relates to the crop préipos on a field or
group of fields. Typically farmers have a limiteth@unt of dedicated machinery and
labour, therefore they often seek to spread outwtbek over the year, by growing a
range of crop with different requirements. Growiangange of crops also spread the risk
of total crop failure or dependence upon marketgziand thus limit the risks of
economical loss (Lockiet al, 1995).

Within the UK and probably throughout the EU nogamic sectors, there is a
diminution of the strict use of rotations. As magiare squeezed, market forces
dominate and the trend is towards greater flexjbéind less-structured rotations. No
longer is most of the arable land in Britain “cwudtied according to regular and well-
recognised successions or “rotations” of crops” @/H.929).
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Farmers may also have to preserve distances betimeerspecific crop cultures to
avoid contamination. For example, sweet corn massdparated from grain corn by at
least 300m (Sausse, 2005). Seed production recgerese distance restrictions in order
to guarantee the purity of the seeds. The Europsaon requires a distance of 500m
between oilseed rape for the seed production frglmniths and other sources of possible
pollen contamination (European Union, 1966). Thesparation distances between
crops directly influence the spatial arrangemeftsraps. As shown above, spatial and
temporal arrangement of the crops are both tak@edount for the organisation of crop
allocations to fields.

3.1.3 Farm management constraints

The structure and organisation of farming systemposes constraints on the crop
arrangements. Firstly, the number, size, and sbafee fields influence the mosaic of
crop arrangements. The regularity of the shapehef fteld is important for crop
management operations (Thenail and Baudry, 20@4machinery has a fixed width.
The distance between fields and farmstead or feodgssors is an important factor for
the accessibility of farm equipment to the fiel@ike type of access or road should not
be underestimated, particularly if some crops megheavy and wide equipment or a
harvester (Thenail and Baudry, 2004), or, in theeaaf the sugar beet if trucks have to
collect them in the field directly. The labour anghchinery resources are usually
limited but can be complemented with contractor kvfmr short periods of time, for
example at harvest. Due to this limitation, farmystd spread farm workload as much as
possible through the year, and fields spatiallgelmay have the same crops in order to
simplify management of those fields.

The constraints arising from the farm are generafiger the control of the farmer,

except for the location of food processors andofaes. However farmers may be

grouped into cooperatives or several farms may aeaged by only one of the farmers
(Orson, 2005). In those particular cases, furteenrmaunal constraints may emerge. The
farm management constraints further limit the spadind temporal arrangement of
crops within the landscape.

3.1.4 Economic, policy and contracts constraints

The economic constraints are independent of thedgrthey are imposed on the
farming systems. The fluctuating market prices rops influence the farmer’s interest
in specific crops. A crop having an increasing rearice will be grown more often
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(temporal extension) and more widely (spatial esitm). Some crop production, such
as sugar beet, has to follow a quota. The variatiothe level of the quota, such as is
currently planned by the EU, affects widely the fpability of growing sugar beet,
particularly for smaller holdings (DEFRA, 2004aulsSidy policy also influences crop
cultivations particularly with the recent shiftifigpm a support of production of milk,
meat and cereals to a reward for environmental gemant of their land
(environmental stewardship) (DEFRA, 2005a). Conitna; such as sugar beet factories
or processors using potatoes for chips are highitgaihding in terms of time delivery of
the products, their quantity, and their quality.vEEonmental legislation must also be
respected such as water restrictions and the tiontaf diffuse pollution into the water
body (rivers or ground water) are a high priorioy jovernments (DEFRA, 2005a).
Separation distances between GM and non-GM cropieircase of coexistence, may
soon be implemented by policy makers.

Policy may be set up by local government, natiggmlernment or at the European
level. The economic, policy and contracts constsaare subject to changes through
time, which may or may not be predictable. Morep¥armers are often bound with

investments and loans for machinery or infrastmgtwhich may slow down adaptation

to new economic, policy or contracts constraints.

3.1.5 Conclusions on spatial and temporal constraints afrops arrangements

The constraints exemplified above influence thearsgement of crops within
agricultural landscapes. The temporal arrangemaintsops are principally driven by
agronomic constraints through crop rotation, an@pcmarket prices. Spatial
arrangements are mainly altered by environmentabteaints. The spatial range of
crops changes through the landscape with envirotaheconditions (e.g. soill
characteristics or topology). Spatially close lomas tend to have similar ranges of
crops (spatial dependency). Landforms were notethedsg an important factor on
landscape patterns (Swansenal, 1988; Turner, 1990). Policy may impose specific
conditions on crops’ spatial patterns, particulanythe case of separation distances to
avoid cross-pollination within the same crop spedeg. in the cultivation of seeds-
crops or genetically modified crop). Constraints @ops patterns are also linked to
specific scales: (i) field scale for environmerdatl agronomic constraints; (ii) farm or
group of farms scale for farm and contracts comgsa(iii) national scale for economic
and policy; (iv) European scale for European polayd the Common Agricultural
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Policy. Thus the constraints considered and tlesipective weights are dependent upon
the spatial scale of the study.

The consequences of those conclusions on the deéitire LandSFACTS model are
detailed in Chapter 4: Methodology for LandSFACTEy@&lopment, p.35.

3.2 Existing spatio-temporal metrics of crop arrangemets

Many indices characterising spatial and tempor#kepas within landscapes have been
developed, particularly within landscape ecologyc@arigal, 2002), and specialised
software facilitate their use such as Fragstat€Gatigal, 2002; McGarigal and Marks,
1995) and GRASS-r.le (Baker, 2001; Baker and C&92). Those metrics are
dependent upon the representation of the landsagh¢he type of data analysed. In the
following sections, ways of representing the lamagigcand metrics, and their respective
relevance to the LandSFACTS model are reported.

3.2.1 Landscape representation

Depending upon the subject of study, a landscapebwaahought of, and represented
as, a continuous or discrete environment. A cootiisurepresentation of the landscape
iIs commonly used to map variables without sharpnidaties, such as land covers or
rainfall, whereas a discrete environment is moregadte to represent abrupt changes
within the landscape, such as buildings or waterrs®s. Both approaches have their
dedicated GIS format, (i) for a continuous envir@mt the space is arbitrarily divided
into square grid cells called raster format; (iy fa discrete environment, specific
geographical features are individually represemggboints (e.g. individual trees), line
(e.g. rivers), or polygons (e.g. buildings, fieldsandscape ecology research favours a
continuous representation of the landscape, péatiguas raster datasets are more
readily available from satellite imagery (e.g. COEldataset).

Independently of the format of the landscape, trettial data types may be classified
into four main categories (McGarigal, 2002): sdapaint, linear network, surface,
categorical map.

Very often “landscape metrics” only refers to catégpl map pattern (McGarigal,

2002). However, categorical maps present two dilties; they tend to ignore variation
within spatial units, and any continuous trendghe landscape (e.g. wind effect on
airborne pollution) (Gustafson, 1998). As noteddastafson (1998) the combination of

Cranfield University Marie Castellazzi 2007



20

different types of data and particularly the conalbion of spatial points and categorical
maps provide more complete information on the pagtand on the scale of patterns.

3.2.2 Landscape pattern metrics

A multitude of landscape spatial pattern metricgenbeen defined by a wide range of
authors (Baker, 2001; Cullinan and Thomas, 1992;aRd Chen, 2000; Gustafson,
1998; McGarigal, 2002; McGarigal and Marks, 199%rker and Meretsky, 2004,

Remmelet al, 2002). Mosaics of land use are often treatediraryp data: land use

class of interest and all the other ones (McGarigaD2). Patch metrics can either
quantify the “composition” of the map with the cheterisation of patch variety and
abundance, or the “spatial configuration” of thécpas on the map (McGarigal, 2002).
The main types of metrics for categorical mapandgated by McGarigal (2002), are
highlighted below. The main metrics available foeasuring spatial point patterns are
then reported. The landscape temporal pattern es thvestigated and finally the

limitations of the presented metrics are discussed.

3.2.2.1 Landscape spatial pattern metrics for categorical raps

The composition and abundance of landscape featurdasses (e.g. land cover) can be
described by composition metrics, McGarigal (200®): proportional abundance of
each class is a very simple but highly valuablerizie(ii) richness, measures the
number of each patch type; (iii) evenness or donuaaof each patch type; (iv)
diversity metrics measure the richness and eveniiégsShannon’s diversity index is
widely used (Fu and Chen, 2000), it was developedhformation theoretical measures
by Shannon and Weavers (1949) and was adaptechtisdape ecology by O’Neill
(1988).

The next metrics are aiming at describing the apatnfiguration of the landscape

features (McGarigal, 2002). Some are simply desedpof the features such as the

patch size or shape, while others, such as comitgatxamine the spatial relationships

between elements on the landscape.

Patch size distribution and density: Most simpleasugement of patch compositions.

Patch shape complexity: The most common measurensest the perimeter-to-area
ratio and the fractal dimension, some less commdites exist such as patch
elongation index (Fu and Chen, 2000). The compleaitthe patch shape is
often compared to a circle or a square, whichlaesimplest examples.

Cranfield University Marie Castellazzi 2007



21

Core area: Interior area of a patch, which is rigiceed by the edges of the patch. The
distance of influence of the edge is user defiretldepends on patches types. It
takes into account the patch size, shape and stende of an edge.

Isolation/proximity otherwise called gaps/clustgrinThese metrics measure the
distance between patches with similar functionse Ruthe imprecision of these
type of metrics, a wide range of metrics exists.

Contrast: Contrast-weighted edge density or neighimod contrast index, measures
the sharpness between one state/or type of patchrasther one.

Dispersion: The regular or irregular dispersionpaftches through the landscape is
measured. Common measurements are based on tlestnegighbour distances,
for example their relative variability within a ldscape.

Contagion and interspersion: Contagion metrics kmged on landscapes in a raster
format (grid of regular cells) instead of patchBse cells showing a high spatial
contagion form large and aggregated distributio@n the other hand,
interspersion is based on patches, and measurastémmixing of patches of
different types.

Subdivision: “refers to the degree to which a paigde is broken up (e.g. subdivided)
into separate patches (e.g. fragments), not the, gier se, shape, relative
location, or spatial arrangement of those patchas’,they are affected by
subdivision.

Connectivity: Connectivity metrics measure the degof connectivity / continuity
between patches. These measurements are pargicuiseful to determine
“corridors” for animals and are widely studied (Blayet al, 2003).

3.2.2.2 Landscape spatial pattern metrics for spatial poins

A multitude of statistical methods have been putplace to analyse spatial point
patterns (Fortiret al, 2002; Kabos and Csillag, 2002), the main metieslisted in the
Table 3.1.
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Table 3.1: Statistical methods to analyse spatiaitpatterns.

(reproduced after Fortin et al (2002)).

Data types
Categorical / qualitative Numerical / quantitative

Sampling design

Nearest neighbours
Exhaustive census k-Nearest neighbours
( x- y coordinates) Ripley’s K (uni- and bivariate)
Join-count

Aggregation indices (e.g. variance
/ mean, etc...) *

Moran’s | (correlation coefficient),
Geary's ¢, Getis (global and local)
Semivariance

SADIE

Mantel test (multivariate)

Trend surface analysis, kriging,
splines

Block variance quadrat
Spectral analysis
Wavelet analysis
Fractal dimension

Regular spacing

Moran’s | (correlation coefficient),
Geary’s ¢, Getis (global and local)
Irregular spacing . . Semivariance
(1D and 2D) Fractal dimension SADIE o
Mantel test (multivariate)
Trend surface analysis, kriging,
splines, voronoi polygons.

* Aggregation indices could be considered for afyhe sampling designs as they do
not use spatial information explicitly.

The main difficulty is determining which metricseathe most relevant for studying a
specific landscape pattern. Moreover when studgpagial data such as in a landscape,
conventional statistical methods should be conetlewnith care, particularly with
regards to statistical independence and distribudiorandom variables (Cliff and Ord,
1981; Overmarset al, 2003). To overcome the limitation of classicatistics on
spatial datasets, spatial statistics such as dgextgts, which are able to take into
account spatial autocorrelation, were developedti&8lpautocorrelation refers to the
tendency of data to be spatially dependent on beigiing values.

3.2.2.3 Landscape temporal pattern metrics

The measurement of temporal patterns in the agui@illandscape is almost never
studied on its own. Temporal pattern is generaltigdcand studied with spatial pattern,
in spatial and temporal pattern studies. In thisecavery often landscape temporal
pattern is studied by comparing landscape spatitiem at different times (e.g. Turner
(1990)). Therefore, there are no specifically desty metrics to measure landscape
temporal pattern.
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Recently crop successions have become more ofatgs ffor studies since it was
shown that it is important for biodiversity (Heaetl al, 2005). For example, flora on
field margins is more strongly influenced by thentlative effects of crop succession
on neighbouring fields than by individual crops (Bay et al, 2003; Le Coeuet al,
2002). However, no specific metrics are detailethin literature. Thus for this project,
metrics on temporal pattern will have to be desibttemeet the needs of the study and
characterise crop temporal patterns in agricultaradscapes.

3.2.2.4 General limitations of metrics

The landscape metrics are mainly affected by twaiofa (McGarigal, 2002): the
representation of the landscape (raster or veciondt) and the scale (grain -smallest
unit- and extent -observed area (Dungaral, 2002)). Firstly raster format, due to the
grid format, may alter greatly some of the metuetues (overestimation of perimeter
because of the square cells), such as patch slap@exity, perimeter-to-area ratio or
the core area metrics. Moreover the scale / grhine raster landscape will alter the
metrics further (large scale landscape will havegdg less precise square cells).
Secondly, the extent of the landscape studiedds ahportant on the measures of
spatial pattern. Too small a landscape representatiay miss patterns at larger scales
and vice versa. Thus the scale of study must benimgfall to the phenomenon under
consideration (McGarigal, 2002). Any metrics resultre characterised by and
dependent on the landscape format and the scateay (extent, grain).

Furthermore, “most of the metrics are correlatedormgnthemselves” (McGarigal,
2002). This correlation is due to the limited numlné primary measures of the
landscape from which all other metrics are derivadconclusion, the choice of using
particular metrics should be well reviewed. The liogtions of each metric should be
well understood to ensure that only relevant metaie chosen.

3.2.3 Particularity of the agricultural landscape

Landscape ecology studies mainly focus on natushitat and on the connectivity

between those habitats. In an ecological contbet)andscape is very often considered
as a continuous environment with no clear boundabetween habitats, e.g. the
boundary between a forest and a prairie is verglyaharp. Therefore landscapes in
landscape ecology are very often represented adspiforming a regular grid (raster

format), as indicated in the previous sections.
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However from the farmer’s perspective, the agrizalt landscape may be considered as
a discrete environment (non-continuous), with Beldoads, silos, water bodies, and
farm buildings (Baudret al, 2003), which are clearly spatially defined. Thoisnodel
farmer’s decision on crop allocation, the landscstpsuld be considered as discrete, and
be represented with a vector model (no pixels) hHaature of the environment has a
clear boundary, and areas such as fields are megsas homogeneous polygons. As
noted by Flamm and Turner (1994), this format lelada more adequate and efficient
representation of the “complexity of spatial pattesf agricultural landscapes; this type
of representation is commonly used in land userphan(Tullochet al, 2003).

In several studies, field boundary structure andnmasition were shown to be
dependent on the type of land use of adjacentsfiéiérr and Gillespie, 2000; Baudry
et al, 2000). Thus, the allocation of crops to fields ba be a dynamic process, with
each field or landuse influencing its surroundings.

3.2.3.1 Field unit

The main feature of interest for modelling cropoedition to fields, are fields
themselves. However, the definition of a “field ting not very clear in the literature
(Goenseet al, 1996), and it often varies from country to coyntn some regions (such
as Beauce region in France), fields can be fughbdivided for a short period of time
(Goenseet al, 1996), or aggregated to form a block (islet) igids (Thenail and
Baudry, 2004). For the purpose of this study, &ifie defined as an entity with non-
changeable boundaries. They are often delimitechdygerows, stone walls, rivers,
roads or other barriers. It is the level at whichk farmer will take decisions concerning
the crops allocation and management, even if faméas following precision
agriculture the variation of yield within the fielére considered.

3.2.3.2 Field metrics

Field metrics on fields’ polygons, are not oftersclébed in the literature. However,
from farmers’ interviews in the Mont-St-Michel Bayea, Thenail and Baudry (2004)
determined the following field descriptors: (i) geetry of the field: size, shape, and
compactness; (ii) spatial relationship: relativestaince to farm, direct access and
perimeter with woody hedgerow; (iii) physical emnment: slope and hydromorphy;
(iv) land tenure. Those fields’ descriptors wergragated at the islets level (groups of
adjacent fields) and at the farm level. For theecgtady, 60% of the land use allocation
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could be explained by the farm descriptors (Theaad Baudry, 2004). In the study no
indices for spatial and/or temporal patterns weteup at the field or farm level, except
for describing the shape of the fields which camdbated to the shape of a patch.

To circumvent the issue on polygon metrics, thiel§iepolygons can be linked to their
centroids points, and then spatial point analysisthe centroids can be carried out.
However, the metrics described in Table 3.1 areapmiicable, because the fields are
irregularly spaced and the crops are presentedtagarical information, only fractal
dimension analysis is adequate. However fractakdsion metrics are not relevant to
the spatial and temporal patterns of crops in afjtical landscapes. Thus new types of
metrics of landscape spatial and temporal pattérraps are required, with fields as
the unit.

3.2.4 Conclusions on landscape pattern metrics for croplepcation model

The landscape pattern metrics referenced in theatiire, are very largely derived from

landscape ecology research. Those metrics wergrigsito measure spatial pattern
within a continuous environment represented asidh (gaster format). Thus, they are

not directly applicable to determine crops pattevhich needs to be considered at the
field unit scale. Landscape temporal pattern metace not present in the literature.
Usually temporal pattern is studied in relation dpatial pattern, and the spatial

configuration of one year is compared with thatobther year. In conclusion, for both

spatial and temporal pattern of crops in agricaltlandscape, new metrics are required
to meet the specific needs of this study, whichfeeled based metrics on categorical

information (crop types).

The consequences of those conclusions on the desitire LandSFACTS model are
detailed in Chapter 4: Methodology for LandSFACEy@&opment, p.35.

3.3 Review of existing models

Models are “a simplified representation” of a coexplsystem (Neelamkavil, 1988;
Oxley et al, 2004), and only need to be “good enough to actismghe goals of the
task to which it is applied” (Rykiel, 1996). Resgamodels often aim to enhance the
comprehension of the system behaviour, whereas Isxéalepolicy making are rather
designed to help determining the possible effe€tshanges in policy (Oxlewt al,
2004; Winder, 2003). Agricultural systems have imgat spatial and temporal
dimensions (Kropffet al, 2001), and both must be integrated to accuratabyglel
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agricultural systems. Many studies focus on spatn temporal allocation of crops;
however their modelling approach is highly dependgon the final aim of the project.
In the next sections, the main modelling studiesilar to LandSFACTS will be
examined from the literature, along with their mawndelling components: modelling
scales, model variables, farmer decision-procesf wtations, and the mathematical
approaches.

3.3.1 Main modelling approaches to crop allocation

Spatial and temporal arrangements of crops inghddcape are an important parameter
for environmental models at the landscape leveinfistudies of diffuse pollution to
climate change. Therefore, the allocation of crbas been the focus of many studies
and the three main approaches are (i) mechanigtdels integrating farmer’s decision
making, (ii) statistically coherent models, ang finathematical models.

Farmers’ decision-making models study the mechiamsbcess of crop allocation. The
ARABLE model (Rounsevellet al, 2003a; Rounsevelket al, 1998) derived from
SFARMOD (Silsoe Farm Model (Audslest al, 1999)) takes a very comprehensive
approach to farmer decisions, integrating driviogcés such as machinery, workable
hours, husbandry operations (including ploughingl draling), costs, and farmers’
attitude to risk. Further studies (Joannon, 200dgPet al, 2002; Oxleyet al, 2004)
are following the same lead, but with the integnatof fewer driving forces. The main
drawback of this approach is the quantity of dauired to use the model. Moreover
the model risks the integration of too many vaesabkhus over-complicating and over-
parameterising the model. This approach is incoibleatvith the project requirement of
developing an empirical and statistical LandSFACGT&lel.

Statistically coherent models present ways of maatmg governmental agronomic
statistics. Some studies (Klockingt al, 2003; Mignoletet al, 2004) focus on
reproducing crop proportions from past agricultwsttistics, by randomly allocating
the crops over the landscape. Klécking (2003) matess (i) expert knowledge for
defining crop rotations for 40 years (length of #@ulation) and their spatial locations,
and (ii) statistical location of each crop over #® years. The model coordinates the
crop rotations to reach the right yearly crop prtipas. Whereas Mignolet et al.’s
model (2004), uses Hidden Markov Chains to detegrpest crop sequences integrating
transition rules between crops and the statistigaloportion of crops.
Those models require extensive agronomic expenvigage, and consider mainly past
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datasets. For the LandSFACTS model, consideringcr@p sequences as Markov
chains, and (ii) target statistical proportionciaps, would be highly beneficial.

Mathematical models examine technical ways of mModetrop allocation. Detlefesen
(2004) reproduces crop rotations by using networlt mansportation models. Klein
Haneveld and Stegeman (2005) use generic multi-feaar programming models
integrating the shortest forbidden crop sequentesnathematical studies of crop
allocation, the agronomic reasons and farmers’ sitmti processes are not fully
considered, and spatial distribution is overlookBde idea of integrating unauthorised
crop sequences is very valuable, and could be rated) within the LandSFACTS
model.

Although existing models do not exactly corresptmdhe needs of the LandSFACTS
model — particularly concerning the explicit integgon of spatial and temporal patterns
of crops on fields — very useful information mayd®rived from those studies, such as
the use of Markov chains, statistical crop propoii and forbidden crop sequences.
Further insights may be derived from their modegllaomponents.

3.3.2 Modelling components

In this section, possible approaches to modellmmgmonents crucial for crop allocation
modelling are investigated by making referencati¢omodels summarised in Appendix
A. The examined modelling components are: modelicgle, model variables, farmer
decision making process, crop rotations and matheahapproaches.

3.3.2.1 Modelling scales

Two types of scale influence spatial and tempaaabdscape modelling. At first, the
scale at which the processes are modelled (bagtjcaima the scale of the whole study,
which in fact refers to the extent of the study.

Crop allocation may be modelled at a wide rangesmdtial basic units from the
regional, farm, field (Dogliottet al, 2003), or to the land islet scale (as definedhgy

CAP regulation (Thenail and Baudry, 2004)). At deramnodelling scales, higher levels
of spatial variability and spatial characteristiosay be integrated with the crop
allocation. For example, models running at thedfistale, allow the integration of the
spatial characteristics of each field (stoninessatew supply), with the farm
characteristics (for example labour, crop proportiand machinery), with regional or
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national characteristics. By working at a higheselethe spatial variation is decreased,
for example, the study of Rounsevell (1999) considee farm as the basic unit, with
only the percentage of agricultural land use orihdaom. Even less spatial variability is
integrated within models working at the regionalelesuch as the study of Mignolet
(2004), which considers regionally homogeneoussaasaa base unit (mean area: 425
km?). Their crop allocation results in a relative merage of each crop for this basic
unit (regional area).

Usually for crop allocation models in European kcape, the temporal scale is annual,
as only one crop is grown per year. However somdiet have a higher temporal
resolution, if they also model events with highemporal variability, such as plant
growth in the CropSyst model (Donatedtial, 1997; Stockleet al, 2003).

In conclusion, the basic spatial unit of the modefines the scale at which the
processes are modelled and which variables argrattl, independently of the extent
of the study. By working at the field level (likea the LandSFACTS model), within

fields variations are not taken in account; whergap pattern between fields will be
identifiable. The temporal basic unit for the stuslya year.

3.3.2.2 Model variables

Depending on the model, and particularly on the ellod) approach (e.g. mechanistic
or statistical), the constraints on crops arrangemare taken into account differently.
For example Audsley et al (1999) in their mechamidtarm scale modelling” within
the IMPEL project (Rounsevell, 1999), prioritiseethisoil type, climate, scale of
operation, and the attitude to risk”. However a titude of external factors may be
included in the model such as (i) environmentatdiec weather (rainfall, wind, solar
receipts, exceptional events), nutrients inputpioist management of the neighbouring
areas; (i) economic factors: subventions, level dd#pendence of market price,
variability of market price; and (iii) available daur: working hours, number of
employee, flexibility of the employee, and ovetatite management. A statistical model
might only consider the crop proportions in thedscape as inputs.

The factors taken into account and the way thegramt within the model, define
precisely the scope of the model. Each model isetbee unique, and their results are
highly dependent on the variables considered artti@inprocessing.
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As indicated by Kropff et al, (2001) the more coexplhpproaches are very often the
more costly and have a higher time requirementdaching the results in comparison
with simpler approaches. Simpler approaches magr @fflower level of accuracy and
reliability (Kropff et al, 2001), but not automatically. However using coempl
approaches may not always be adequate when mapabmplex systems, as the
multiplication of input variables and processesreéases the range of errors of the
outputs. The accuracy of the model outputs is ieddpnt of its complexity. The
variables to take into account depend on the dpatthtemporal scales of the processes
modelled (Veldkamp and Lambin, 2001).

In conclusion, models variables must be adaptethéoaim of the project and the
modelling approach selected. Modelling crop allmcamight require the integration of
biophysical, land use, and socio-economic factetsch are linked to different spatial
and temporal scales (Thenail and Baudry, 2004). é¥ewthe accuracy or usefulness of
a model is independent from its level of complexAyvery important point is that the
omissions and assumptions of the model should a@waey clearly identified and
explained (Oxleyet al, 2002).

3.3.2.3 Farmer decision-making process

Technical advice provided by third party agronoreixperts, is very often poorly
followed by farmers (Aubnet al, 1998). This is not simply due to technical fagliof
farmers, but is mainly due to specific aims andst@ints of individual farmers, such as
economic and environmental constraints (Aubey al, 1998). Furthermore, a
determinant factor is “risk aversion” (Audsley al, 1999), as two farmers in exactly
the same conditions would manage their farm difféye this is mainly due to different
approaches and attitudes to risk management arldeciarmers own perception of the
variability of crop yields and prices.

Often farmers must decide, organise, and execetdatim workload, consequently the
decision-making process is very often implicit anternal (Wunsch, 2004). Farming
systems research aims specifically at identifying anderstanding the reasons of the
farmers decision (Aubret al, 1998; Spedding, 1975). Integrating human drivars
models can be particularly complex (Thenail anddg@u2004). Many studies are still
ongoing on this subject, and many models are bdagloped (Aubryet al, 1998;
Audsleyet al, 1999; Joannon, 2004; Oxleyal, 2002).
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Farmers may be modelled as “profit maximisers” (8lagiet al, 1999), they also try to

minimise the variability of the farm income betweggars. Oxley et al., (2002)

implemented stochasticity into the farmer behaviouorder to model the variations
between farmers due to social and cultural pretagnsensitivity to environmental
conservation and their attitude towards change.elher they noted that a “hierarchy
of nested spatial and temporal scales” affectsléfoesion making of farmers.

Another factor to consider is that a farmer’'s raeshifting from food producer to
manager and safe keeper of the natural environniéig.is particularly evident in the
new European system of subsidies with subventiook as the “single farm payment”,
which encourages farmers to enhance natural haditaind field, with field margins,
hedgerows (DEFRA, 2005b).

Farmer decision-making processes are thus comathekare integrating a wide range of
constraints such as agronomic, economic, and emwieotal constraints, while
managing risks and profits. The farmer decisionimglprocess may be modelled as a
mechanistic process or may be integrated as aasticlvariable. After Chapter 2, the
modelling approach of LandSFACTS should not be raeigtic but empirical and
statistical, therefore the decision-making processfarmers will be stochastically
implemented.

3.3.2.4 Crop rotations

As presented in section 3.1.2: Agronomic constsa{ptl5), crop rotation has a major
role in the crop allocation to fields. Efficient ygof setting up new crop rotations is a
constant subject of studies. Models, such as RO{&aRhinger and Zander, 2006), or
ROTAT (Dogliotti et al, 2003) are tools designed to optimise crop robatifor yield
benefits. Other models, like SFARMOD (Rounseetlal, 2003b), CropSyst (Donatelli
et al, 1997; Stockleet al, 2003), or the study of Oxley et al (2004), ainsiatulating
the farmer’s decision-making process of crop aliocaby integrating agronomic,
environmental and farm management objectives.

Only a few studies concentrate on providing emairar statistical tools to model crop
rotations in a mathematical manner, i.e. as reduwe the LandSFACTS model. Klein
Haneveld and Stegeman (2005) referred explicitlysdone of the agronomic rules
discussed above, while using a mathematical opdiiois technique know as linear
programming to derive crop rotations. DetlefserD@(presented a network model used
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to represent crop rotation. Their approach provatesxample on how to integrate crop
rotations within the LandSFACTS model.

3.3.2.5 Mathematical approaches on processes

Multiple mathematical approaches to crop allocativeve been reported in the
literature. The most popular and predominant apgraa linear programming, which
enables the optimisation of agricultural and ecoisamparameters (Dogliottet al,
2003; Klein Haneveld and Stegeman, 2005; Rounsevell, 2003a). As the farmer is
considered as a profit optimiser, the optimum eaanal solution is identified, while
considering the agronomic or managements consiraihtlti-agents models are also
used relatively often (Le Baat al, 1998; Matthews, 2006; Parker and Meretsky, 2004).
Each agent tries to meet its objectives, while ee8pg their constraints. The agents
compete against each other. For example in they stide Ber et al (1998), each agent
is a land cover type, and the agents compete dtd &llocation. Each agent aims at its
target total area, while respecting its spatial st@ints (e.g. soil type, slope), and
respecting global constraints (e.g. percentage awh eland cover type). Another
common mathematical modelling technique is simdiaa@nealing (Le Belt al,
1998). For this technique, an optimisation functisnused to determine the best
configuration (closest to the desired one), howeirerorder to avoid being blocked
within local optima, sub-optimal configurations aecepted from time to time. Sub-
optimal configurations, may violate local consttaiffor example soil type, or slope
percentage), thus the results obtained by this odellave to be checked to ensure they
respect important local constraints. Rules-basetgases, otherwise called decision
trees, may also be used (Bauétyal, 2003; Oxleyet al, 2004). Simple rules are being
followed. For example, Oxley et al (2004) represtat crop choice as a function of
socio-economics, physical properties and instihgioconditions. They indicated that
this kind of modelling framework is better adaptedexplore the possible outcomes
than to predict the future. Detlefesen (2004) itigased the possibility of using a
network and transportation algorithm to model crogations. The arcs of the network
represent the decision variables and at each noelesupply and demand must be
satisfied. The problem is then rewritten underftiven of a matrix, which then can be
solved using linear programming techniques.

Le Ber (1998) compared the results from the sinmrabf the spatial organisation on a
milk production farm, obtained by using three difiet modelling approaches: expert
knowledge, multi-agents systems and simulated dinged he results showed that the
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expert knowledge approach offered less optimisatbrthe results, moreover this
technique was less respectful of the agronomicfamder constraints. The results from
the multi-agent systems were of higher minimal iyahan the simulated annealing
model, the local constraints were well respected #re results were obtained very
quickly. On the other hand, simulated annealing ehodias able to generate more
optimal solutions but at greater expense in compirtee. The results showed as well a
lower variability than those generated from the tiragient model. The simulated
annealing process is conceptually much closer ¢oféhmer thinking, moreover the
connection with economical farm models would be/\aasily integrated.

Four main mathematical approaches were used in Isatiese to LandSFACTS. Any

of the approaches could be used for the model dpedlin this thesis. However, each
of them would be more adapted to model some spepifocesses, therefore the
different approaches could be concurrently used.elxample decision-trees could be
used to avoid some specific spatial configuratieng.( GM oilseed rape next to
conventional), and simulated annealing to optintiee spatial and temporal pattern of
crops.

3.3.3 Conclusions on modelling crops allocations

The LandSFACTS model, to be designed for this #hesiust be a research tool
allocating crops to fields, at the field scale, oseveral years. Several studies from the
literature consider similar models. However eacthefn has a different focus, either on
mechanistic approach for complex model on farmetistten-making, or a more
statistical approach to produce crop allocationecent with agronomic statistics, or
they model at a different scale (e.g. farm scagional scale). None of them integrates
the spatial and temporal patterns of crops as such.

The variables used for those models, e.g. biophlsiand use and socio-economic
factors, are adapted to their aims, their modelfgcesses, and the spatial scale at
which the processes are modelled. Their aim andeitiog approach are dissimilar to
the needs of the LandSFACTS model, which aims atethag empirically and
statistically crop allocations to fields. An impamnt component of crop allocations is the
decision-making done by the farmer. Some modetgmate fully the decision-making,
while others retain some rules and introduce somoehasticity to reproduce the
individuality of farmers’ behaviour, which are padarly due to diverse risk
managements. Many models aim at providing supmorbiilding up crop rotations,
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however very few models use crop rotations in aheragtical and empirical manner.
Furthermore the modelling itself may be built upward four mathematical processes as
indicated by the models from the literature: linpasgramming, multi-agents models,
simulated annealing, rules-based processes. Eaittosé is adapted to model specific
situations, and could be used to model differemtspaf the crop allocation to fields
model.

In summary, no existing model fulfils the LandSFAE Bpecifications of allocating
crops to fields by directly modelling the crops tspdemporal patterns, using an
empirical and statistical approach. However sevapgroach or tools reported in the
literature are relevant to the LandSFACTS modeds¢hare: the stochastic integration
of farmers decision-making, the use of rule basewtraints on crop allocation, such as
forbidden crop sequences, simulated annealing igebs to increase the model
efficiency. The detailed consequences of those lusioms on the design of the
LandSFACTS model, are detailed in Chapter 4. Methmyglyy for LandSFACTS
development, p.35.

3.4 Conclusion

To best design the LandSFACTS model, in this chiapie literature was investigated
for the origin of the crop arrangements, availaiigistical tests on crop arrangements,
and existing models on crop allocation. The cropragement in agricultural landscapes
results from a complex and not completely undeibtdecision-making process of
individual farmers, which integrates agronomic, iemvmental, economic and policy
constraints. Even if mechanistic processes musbadhcorporated within the model,
conclusions relevant to the design of the modelewdentified: (i) crop rotations
structure crop successions on fields; (ii) marketgs of crops influences the crop
choice; (iii) the spatial extent of crops can beited by environmental conditions; (iv)
spatially close fields tend to have similar rangéscrops; (v) separation distances
between crops are enforced for seed production. DdrelSFACTS model has to
control the crop arrangements by using statistcallyses. However as none in the
literature met the requirements set out for LandSF& (categorical information —crop
types— with discrete spatial units —polygons), nstatistical analyses had to be
developed. The review on existing models of crolpcations confirmed that no
currently available model met the LandSFACTS sjpeatibns, however the review
allowed the identification of useful techniques fioe LandSFACTS model, such as the
use of (i) stochasticity to simulate farmer deaisinaking; (ii) linear programming with

Cranfield University Marie Castellazzi 2007



34

simulated annealing process to optimise crop dilmca(iii) rule based constraints to
forbid specific configuration of crop allocationgeforbidden crop sequences.

Based upon the conclusions drawn from the liteeat@view in the current chapter,
Chapter 4 lay out the methodology to develop thedSEACTS model. New statistical
measurements and mathematical representations opf i@tations are detailed in
Chapter 5 and 6 respectively, before to be incateor within the LandSFACTS model
in Chapter 7.
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4 Methodology for LandSFACTS development

After identifying the specifications for the LandSETS model (Chapter 2), the
literature was reviewed (Chapter 3) to provide suppor the development of the
LandSFACTS model. Those reviews presented themrafiaracteristics and statistical
measures of the crop arrangement, and existing Iatlese to LandSFACTS aims.
From the conclusions of the reviews, this chaptesgnts the approach chosen for the
development of the LandSFACTS model. More partidyldne modelling approach and
the control of spatial and temporal arrangementsy@bs are presented. In this chapter,
datasets on crop arrangement at the landscapeaseaddso presented; they were used
for the development of the LandSFACTS model (Chapteand for its testing (Chapter
8) and later its dissemination (Appendix B).

4.1 LandSFACTS model approach: conclusions from review

As stated in Chapter 2 (Specifications of LandSFA&CTHodel), the LandSFACTS
model aims at simulating crop allocation to fielals directly modelling user-defined
crop arrangements, and not the decision makingegsoleading to it. After the literature
review carried out in Chapter 3 (Review of the mrsg metrics, and models of crop
arrangements), no existing model meets those mgenmts. Therefore, the
LandSFACTS model requires a new approach and steudb fulfil its objectives,
which can be inspired by the conclusions from thaeew in Chapter 3.

4.1.1 Combining statistical and real variables

Modelling mechanistically the decision process iegdo crop allocation, would result

in a highly complex model and would require a hugentity of data inputs; this

approach is outside of the LandSFACTS specificatias stated in Chapter 2. The
LandSFACTS model aims at directly modelling the pcrallocation, by using an

empirical (based on observations from real lands€gapnd statistical (quantifiable and
reproducible) approach.

At first, for the statistical part, the LandSFACH®del must directly simulate the crop
arrangement, using statistical tests to controctiop patterns. As no statistical analyses
on crop patterns exist in the literature for categd data (land uses) on discrete spatial
units (fields as polygons), new statistical testapded to the data characteristics must
be designed. This is investigated in Chapter 5:9deag the spatio-temporal patterns.
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However, the statistical control on crop arrangetméth only provide a “loose control”,
where specific rules cannot be controlled, sucbrawhich fields crops can be grown or
specific separation distances between crops. Toplment the statistical measures,
specific tools are needed; they are inspired byctrestraints on farming systems listed
in Chapter 3.1: Origin of crop arrangements anchfv@riables of existing models listed
in Chapter 3.3.2: Modelling components. Despite tloe-mechanistic approach of
LandSFACTS, those constraints provide rules thatntledel should respect. Such rules
are: (i) the control of the geographical extenttlod crops to reflect the conclusion
drawn from the environmental constraints; (ii) thiegration of crop rotations in a way
that permits the consideration of fixed and flegilskop rotations, as indicated by the
agronomic constraints; (iii) the addition of comstits on crop successions to
complement the crop rotations, e.g. return periddcmps and forbidden crop
sequences; (iv) the possibility of separation distés between any specified crops
(useful for GM coexistence scenarios but also éadsproduction for example).

This modelling approach of separating into (i) d¢oaiats and (ii) patterns the spatio-
temporal crop arrangements provides a high dedrdieability to the user to obtain
desired scenarios of crops arrangements. The telogy of constraints and patterns of
crops are exemplified in the next section. Sta@étivays of quantifying crop patterns
will be investigated in Chapter 5 (Measuring theatsptemporal patterns). The
mathematical integration of crop rotations is iriigeged in Chapter 6: Mathematical
representation of crop rotations.

4.1.2 Crop constraints and patterns terminology

As indicated above the spatial and temporal cregangements are both divided into

two components: (i) the constraints representirgdirules imposed on the landscape

and (ii) the patterns implementing a general tresidg statistical analyses.

The exact meanings are detailed below.

spatial pattern: defined by use of statisticalstéstmeasure the crop spatial aggregation
or homogeneity (regular spatial pattern), cf. Fegdrl.

spatial constraints: features the separation disgarbetween crops (e.g. for seed
production or possibly for coexistence system @t crops).

temporal pattern: use of statistical tests to meathe crop temporal aggregation and
homogeneity (regular temporal patterns), equivalerthe dispersion of crops
through time, cf. Figure 4.2.
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temporal constraints: features rules on crop ssitmes, such as return periods and
forbidden crop sequences.

A pattern is labelled random if no spatial pattefhs. no statistically significant

aggregation or homogeneity) can be detected. Thmsteegular and homogeneous

patterns are used interchangeably within the comtiethis thesis.

The spatial pattern and constraints influence tiop spatial arrangement, whereas the

temporal pattern and constraints influence the teagporal arrangement.

a) Aggregation of
grey fields

by Homogeneity
of grey fields

Figure 4.1: Examples of aggregated and homogemaigkpatterns of crops.

| , > y2ars

a) Agagregation of grey crops

b} Homogeneity of grey crops

Figure 4.2: Examples of aggregated and homogenrteousoral patterns of crops.

4.2 Datasets: from analysis to validation and examples

Datasets of agricultural landscapes are requirgd(ijoinvestigating existing crop
arrangements (Chapter 5), (ii) devising and tessiragistical analyses of crop patterns
(Chapter 5), (iii) assessing the LandSFACTS sofwdChapter 8), and (iv)
disseminating example datasets with the LandSFA@T&lel (Appendix B). The
dataset must be composed of a shapefile (GIS fprmigth the fields represented as
polygons. Information on the cropping systems ggined, such as crops, crop rotation,
rules on crop successions, and yearly crop prapwticropping information linked to
individual fields is an advantage. ldeally the datashould be representative of
European agricultural landscapes.
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Three datasets were easily available for the deweémt of LandSFACTS: the Fife

dataset (Scotland), Beauce dataset (France), argliBdy (France), cf. Figure 4.3. Due
to time constraints, those datasets were not as$des how comprehensively they
were representative of European agricultural laapes, particularly regarding to field

size, field shapes, and cropping systems. Howehwey are sufficiently diverse to be

adequate for developing the LandSFACTS model. Timlyaes of the spatial and

temporal pattern of crops were set up and testeasing the Burgundy dataset, due to
its immediate availability and its completenessrmdérmation on spatial and temporal
allocation of crops (Chapter 5: Measuring the speimporal patterns). The Fife and
Beauce datasets were used to verify and validate.andSFACTS model (Chapter 8:
Model assessment).
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Figure 4.3: Location of the study sites throughdpay:

Those datasets are not in the public domain, asgl #re subject to confidentiality
clauses. The dissemination of farmer specific mi@tion and digital data are restricted.
Therefore to provide example datasets to potehialdSFACTS model users, two
fictitious landscapes were created in a shapefdamat: SmallLandSCAPE and
BigLandSCAPE. Resemblance to any real landscapgiigentional. Both datasets are
provided in a digital format in Appendix B and thegre used to verify the model.

The datasets are presented below.
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4.2.1 Burgundy dataset

The Burgundy study site was originally collectedl arsed for studying oilseed rape
pollen dispersal through the landscape (Colbketcal, 2005), by INRA-Dijon (France)
with the collaboration of Dijon-Céréales Cooperatiand their member farms. This
study site encompasses 72 fields surrounded bgtfofée forest provides a physical
barrier against pollen dispersal around the stuigy thus the site can be considered as
an independent unit for the evaluation of risks tugene flow. The location of each
field and their ownership is known (10 differentrfeers), along with the crops grown
on each of them from 1994 to 1997, and the rotatiat was followed in each field.
The dataset is complete without any missing dgtartafrom the number and size of
fields managed by the study site farmers outsidesthdy area.

The most widely represented crops were oilseed, rajpeger wheat, and winter barley,

with 28.2, 26.6, and 23.2% respectively, of the meeop area. The three remaining
crops (spring barley, rye, and set-aside) werewedkrepresented on the study area
comprising less than 24% together. Ten individwaimers cultivated the 72 fields

comprising the study area. The number of fieldsfaener ranged from one to thirteen
and their total area ranges from 12.5 to 368.Hwgu(e 4.4).

Farmer Number Total area
of fields  (ha)

0 1 12.5
1 3 59.2
2 2 18.6
3 11 157.7
4 12 208.1
5 9 210.7
6 9 210.1
7 7 181.8
8 49.8
9 13 368.7

©O©oo~NO O

Figure 4.4: Number, area and location of farmée&i$ in Burgundy study site.

The colouring and the numbering on the map of thelysarea correspond to each
individual farmer listed in the table on the leiffes.
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The main drawback of the dataset is its limited banof fields. A larger dataset with
more than 1,000 fields would have been more stalbt interesting. However, no
datasets of this size with complete crop rotatidarmation for each field was available
at the time. Thus, this study site was selectedetoup and test the methodology for
analysing spatial and temporal patterns of crops.

4.2.2 Fife dataset

The Fife dataset was provided by the SCRI, afsuraey carried out in 2004 (Yourag
al., 2006) and from agricultural census (National iStias, 2005). The CETIOM
(Centre Technique Interprofessionel des Oleagindexropolitains) provided further
information on the study area (Sausse, 2005). Htasdt is composed of the shapefile
of the fields (Figure 4.5), farmers and land-uses.

Figure 4.5: Landscape of the Fife dataset.

The Fife dataset has 388 fields, correspondingntaraa of 24.92 kfn managed by 5

farmers. The cropping systems are based aroundcémstraints: temporal crop cycles,
climatic conditions, and agronomic rules on cropcgssions, and current profitability
of crops. After the survey, 114 fields out of 38& germanent grassland. For the
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purpose of this project, only 10 crops are congidewheat, winter barley, spring
barley, winter oats, spring oats, winter oilseedetaspring oilseed rape, winter GM
oilseed rape, potatoes, set-aside, and other naiseelus crops. Only a simplification of
their complex cropping systems is being used is timesis.

4.2.3 Beauce dataset

The Beauce dataset was set up for the investigafigene flow dispersal for oilseed
rape crops (Lavignet al, 2002-2006), the dataset was provided by I'InstNational
de la Recherche Agronomique (INRA), I'Universitérieesud 11 (UPS) and Centre
Technique Interprofessionnel des Oléagineux Méligios (CETIOM). Further
information on the agronomic systems and crop iarat were provided by the
CETIOM (Sausse, 2005). The shapefile with the aéiblds is presented in Figure 4.6.
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Figure 4.6: Landscape of the Beauce dataset.

The dataset is composed of 1,993 fields, over 9Rn#3of arable land, managed by 21
farmers. The main cultures are oilseed rape, mavbeat, spring and winter barley,
sunflower, peas and fodder. The cropping systemsvaried from fixed rotations for
fields with high environmental constraints (shallgwail without irrigation), to highly
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flexible rotations for irrigated fields or fieldsithy seed production contracts. In order to
facilitate the interpretation of the simulation ults, only a simplification of their
complex cropping systems is being used in thisishes

4.2.4 SmallLandSCAPE dataset

SmallLandSCAPE is a created landscape to meetuhmoge of dissemination of the
LandSFACTS model. The dataset is comprised ofdl@dj Figure 4.7. Resemblance to
any existing landscape is unintentional. The lichiteumber of fields provides new
LandSFACTS users with a comprehensible landscapewluich to investigate the

model scope, input parameters and processes.

D
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Figure 4.7: Landscape of the SmallLandSCAPE dataset

4.2.5 BigLandSCAPE dataset

BigLandSCAPE is a created landscape to meet thpoparof dissemination of the
LandSFACTS model. The dataset is comprised of 28ldsf, 3 built-up area and 5
forests, Figure 4.8. Resemblance to any existingdeape is unintentional. This larger
landscape provides new LandSFACTS users with tlssipitity to investigate further

the model behaviour and usefulness, particularbamding interactions between the
fields (e.g. spatial patterns of crops).
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Figure 4.8: Landscape of the BigLandSCAPE dataset.

4.3 Steps for LandSFACTS development

This chapter defines from the reviews in Chaptah&,methodology chosen to develop
the LandSFACTS model. The model should simulatehststically the farmer decision
on crop allocation (based on crop rotations) whaspecting (i) spatial and temporal
patterns of crops controlled by specifically desigrstatistical tools, and (ii) spatial and
temporal constraints of the crops controlled byesubuch as separation distances
between crops, forbidden crop sequences, crop grops. To create the LandSFACTS
model with the structure detailed above, two séteas must be specifically designed:
(i) new statistical analyses of crop patterns, @neew mathematical representation of
crop rotations.

The setting up and testing of the new statisticellyses of crop patterns required a
study landscape with readily available complete auat the fields shape, owners, crops
in fields over time. The Burgundy dataset met thespiirements and was used for the
above purpose. Two further datasets, Fife and Bedatasets with fields shape, crops
and main cropping systems were used to assesatidSEACTS model. Then in order

to freely disseminate example datasets with theaiddo datasets, SmallLandSCAPE

and BigLandSCAPE were created independently fropreal landscape.
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The next step of the project is to create new sttesil measurements of crop patterns
specifically designed for their integration withime LandSFACTS model (Chapter 5:
Measuring the spatio-temporal patterns). Then ahemaatical integration of crop
rotations in a flexible and versatile format is q@eted (Chapter 6: Mathematical
representation of crop rotations). When those taaist are set up, the LandSFACTS
model can be detailed (Chapter 7: Description ef tandSFACTS model) and then
assessed (Chapter 8: Model assessment).
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5 Measuring the spatio-temporal patterns of crops

Statistical methods to measure spatial and tempatatrns of crops in an agricultural
landscape are required in order to integrate tbp patterns within the LandSFACTS
model of allocation of crops to fields. The spatialt of the crop allocation is the field,
and the crop definition is categorical (crop typd3)e particularities of those data types
were detailed in Section 3.2.3 (Particularity of ggricultural landscape, p.23). In this
chapter, statistical analyses developed for thadlB&CTS model needs are detailed,
along with the conclusions drawn from their usetba Burgundy study site. The
statistical analyses presented in this chaptertlagesubject of a published article
(Castellazziet al, 2007b). Finally, after critical analysis, the rmaslequate statistical
tests are selected for integration within the L&PAIGTS model.

5.1 New statistical analyses on crops’ spatial and tenmpal
patterns

In this chapter, new methodologies to analyse pfagia and temporal pattern of crops
are detailed and the Burgundy data are used aspdegnThe methods are detailed in
literal and mathematical format; their degree ofumacy and / or precision is also
reported. At first some important definitions redjag crop rotations are presented.

5.1.1 Definitions

Crop rotation: definite cyclical sequence of crgpswn on a field, only one crop per
year.

Starting crop: indicates the crop by which the amatation is starting for a specific field
and a specific starting year. For each crop ratattonsecutive letters are given
for each crop in the sequence (Table 5.1). A flalklled as “rotation Z, with
starting crop B”, indicates that the field followstation “Z” and the crop “B” is
grown in the first year (Table 5.2).

Phasing of rotations: fields following the sameatimin, having the same starting crop;
through the years, the crops grown on the fieldsthus temporally in phase
(aggregated).

Table 5.1: Example of crops seguence in a rotation

Crop sequences A B C
Rotation Z Wheat Winter barley Oilseed rape
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Table 5.2: Example of “starting crop” numbering ocrop rotation.

Sarting erob_ 1994 1995 1996 1997 1998 1999 2000

A B C
X A B C A B C A
W wB OSR W wB OSR W
X B C A B C A B
wB OSR W wB OSR W wB
X C A B C A B C

OSR W wB OSR W wB OSR

W: wheat; wB: winter barley; OSR: oilseed rape

5.1.2 Temporal pattern of crops

Specific statistical analyses were set up to ingatt the temporal pattern of the crops
and in particular the temporal phasing of the amtations on different fields. The two
first analyses were based on the chi-square tedtthe third one introduced a
randomisation test.

5.1.2.1 Crop rotation phasing

The temporal phasing of crop sequences is detediipdwo elements: (i) the rotation

and (i) the starting crop. The crop rotation sepsthe cyclical sequence of crops,
whereas the starting crop defines the temporalippas the crop sequences. Where
there is an identical rotation and an identicattstg crop on several fields then there
will be a high temporal phasing of the crops in fie&ls. In Table 5.3, the examples of
a farmer labelled 3 and a farmer labelled 4 arsgted. Rotation 1 of farmer 3, is
followed in two of his fields, and both have themsastarting crop (A); the crop

rotations are thus in phase temporally. In the seé@xample, two fields of farmer 4 are
following rotation 7, with different starting crog® and F) and therefore the crop
rotations are not temporally aggregated.
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Table 5.3: Crop rotation phasing: example datadotesi state for chi-square test).

Number of
. Crop sequences Rotation Number fields
Farmer Rotation . .
length  of fields per starting crop
A B C D E F ABCDEF
3 1 W OSR- - - - 2 2 2
4 7 W W OSRW wB OSRG6 2 1 1

Burgundy study area
W: wheat; wB: winter barley; OSR: oilseed rape

To determine the crop rotation phasingh&square analysis per farmer per rotation
was performed. The analysis considered, for eadividual farmer and crop rotation,
the number of fields starting with the same craeitical starting crop). The observed
state, obtained from the survey (cf. Table 5.3)s wested against the expected state,
which is an even distribution of the number of delover the possible starting crops
(e.g. two fields following the same six year ratatihave, for each starting crop, an
expected value of [2 / 6] = 0.33; cf. Table 5.4, @he mathematical definition of the
test is reported in Figure 5.1. The two examples@nted in Table 5.3, are tested for
the temporal pattern of the crop rotation (Tab#,5and in these examples both have no
statistically significant temporal aggregation oontogeneity at a 95% confidence
interval.
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The chi-square is calculated as follow:
le = length of rotation
m = number of fields (same farmer and same rotation
i = starting crops (for a 6 years in rotation,A7B, C, D, E, F.)
Oi = observed value for starting crop i; numbefields starting with the same rotation year.
Ei = expected value for starting crop i; Ei=m /|
% = chi-square value
p = probability (determined using a chi-squaredabl
» _ = (Oi—Ei)?
L= 21: Ei
with the chi-square value and the degrees of freede— 1)

; the probability p is then determined using astuare tabl

Hypothesis and probabilities:
Ho: Observed and Expected values are not signifigaliffierent
Hi: Observed and Expected values are significantliferéint, indicating tempor:
aggregation.

if p>0.95-> Hpis true (not significantly different, indicatingrhporal homogeneity)

if p <0.05-> Hpis false and His true (significantly different, temporal aggréga)

Figure 5.1: Crop rotation phasing: definition of-sfuare test per farmer and rotation.

Table 5.4: Crop rotation phasing: two exampleghierchi-square test

a) Farmer 3 — rotation 1 (Burgundy study site)

Starting crop Fields Number Degree of

A B C D E F number of years freedom
Observed state  2.000.00 - - - - 2.00 2 1
Expected state  1.001.00 Chi-square Probability
(Oi-Ei)° / Ei 1.00 1.00 2.00 0.1573
b) Farmer 4 — rotation 7 (Burgundy study site)

Starting crop Fields Number Degree of

A B C D E F number of years freedom
Observed state  1.000.00 0.00 0.00 0.00 1.00 2.00 6 5
Expected state  0.330.33 0.33 0.33 0.33 0.33 Chi-square Probability
(Oi-Ei)? / Ei 1.33 0.33 0.33 0.33 0.33 1.33 4.00 0.5494
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This analysis is useful to determine the tempagratkronicity between fields following
the same crop rotation. However, the test requirasspecific crop rotations are used in
several fields. Due to the limited number of fietdssidered at a time (same farmer and
same rotation), this analysis presents two maimd¥iantages: (i) low degrees of
freedom (i.e. difficulty to obtain statisticallygsiificant results such as in the case of
rotation 1 of farmer 3), and (ii) an incompletedstwof crop temporal pattern because
the synchronisation between different crop rotai@not taken into account and any
rotation represented by only one field is overlabKéhe low degrees of freedom may
be mitigated by aggregating all the chi-square esland the degrees of freedom in the
study area (as obtained above), to determine aralbygobability of the existence of
crop rotation phasing. To further identify tempgpattern of crops, further analysis are
required.

5.1.2.2 Crop phasing

The study of the phasing of crops, regardless eif ttrop rotations, has the definite
advantage of considering the crops of every fi€ll.analyse the crop phasing ehi-
square analysis per farmer and per crop was used. The analysis considered the
proportion of fields of a farmer growing a specifiop per year (one value per farmer,
per crop and per year), independent of the cragtiots. The time period used had to be
as long as, or longer than, all the rotation leagthd was a multiple of all of them. The
observed values, obtained from the survey, weredeagainst the expected values,
which were an even distribution of the crops oviee tyears. The mathematical
definition of the test and example tables, are megoin Figure 5.2.
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The chi-square (y2 ) per farmer and per crop is calculated as follow

le = length of rotation * fi = number of fields
fir = number of fields of a farmer * C = crop consatefwheat...)

y = year of simulation considered; y =1, 2, ... 12. «fa =farmer considered; fa=1, 2, ... 10.
I = starting crop (for a 6 years in rotation, i =By C, D, E, F).

Oc,fa,y = observed value for crop c, farmer fa gedr y; proportion of a farmer’ fields having
specific crop c, at a year y. Oc,fa,\E4 fi (fa, c, y) ] (cf. Table a)

a) Observed values for farmer 1 and crop OSR (Burgudy study area)
Simulation years (y)

0,
i Famer(f@)1 2 3 4 5 6 7 8 9o 101 12 Y
11 01 00 100100 1 0
11 0100100100 10
11 100 100 100 100
f:'g 1 12012 01 2 0 1 2 025'2

Bold: individual Oc,fa,y = proportion of fields ah farmer with crop ¢ and at yeary.
%CV: Percentage of the coefficient of variationtween years (1 value per farmer, per crop),

Ei = expected value for crop c, farmer fa; = (numbkcrop ¢ within the rotation) / (rotatio
length) * (number of fields of farmer fa followirtgis rotation), cf. Table b. This expected val

=)

ue
is the same for every year due evenness of disimiinthrough the year.
b) Expected values for farmer 1 for any one year (8&gundy study area)
. Crop Rotation Number of ]
E:;mer:z()tat'on'sequence length  fi OSR in rotatiol f‘];i(NC le) (E;()pfe(:)(itggcvha:cl;ez
A B C (e (Nc)
1 3 W Wb OSR 3 11 0.33 1
1 4 W Sb OSR 3 21 0.67

p = probability (determined using a chi-squaredabl

| f 2
X2 = Z;‘% the probability p is then determined using a sdnirare table

with the chi-square value and the degree of freeflem 1)
Hypothesis and probabilities:

Ho: Observed and Expected values are not signifigaliffierent

Hi: Observed and Expected values are significantferéint, indicating temporal aggregatior
if p > 0.95-> Hy is true (not significantly different)

if p <0.05> Hypis false and His true (significantly different, temporal aggréga)
c¢) Chi-square results with observed and expected kees of farmer 1, OSR.

Years

1 23456 7 8 9 10 11 12 Chi-square Probability (p)
Observed1l 2 01 2 01201 2 O
Expected 11 1 1 1 1 111 1 1 1 8.00 0.7133

Figure 5.2: Crop phasing: definition of chi-squtest per farmer and crop.
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This analysis in Figure 5.2 has the main advantdgmnsidering all crops, regardless
of the crop rotations, by using a simple statitt&t. However the expected values of the
test, which consider an even distribution of crdpsugh years, do not take in account
the sequential structure of crop rotations, andenparticularly the minimum return
period of crops, e.g. sugar beet may be grown @njear in 3. In this analysis, the
sequences of the crops are assumed to be flexibke.sequential structure of crop
rotations, in the observed values, artificially reeses the temporal homogeneity of
crops. Hence significant homogeneity results shdiddconsidered with care and the
source of the homogeneity should be investigatenlvéver this analysis is useful for
evaluating an overall temporal pattern, when thgiof the pattern does not need to
be known (structures of the rotations used, choafesotations, or farmer choice of
starting crops). The next analysis integrates thecture of the crop rotation into the
test, to circumvent the issue outlined above.

5.1.2.3 Crop temporal variability compared to random simulations

This analysis considers the temporal pattern ofheawp of each farmer, by
investigating its variability. Moreover, the seqtiahstructure of the crop rotations is
integrated into the “expected state” in order tketanto account the homogeneity
intrinsic to the rotation structure. The “randontisa per farmer and per crop” analysis
considers the percentage of coefficient of varra{ihCV) of the proportion of fields of
a farmer with a specific crop during a specific dipperiod (one value per farmer, per
crop, per time period, cf. Figure 5.2 (a)). Thegamwf expected values is obtained by
calculating the %CV from 1,000 simulations of ramdgtarting crop for each crop
rotation of the fields (e.g. temporal shifting afop sequences). Those randomised
values provide an estimate of the range of %CV liscphysically possible with the
rigidity of the crop rotations. The observed %C\¢rided from the survey, may be
plotted on the graph of the randomised %CV, cf.ukeg5.4. The percentage of
randomised %CV, which are higher than the obsep@€/ (referred as %R), allows
the determination of whether the observed %CV igniBcantly aggregated or
homogeneous, cf. Figure 5.3.
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Randomisation test:

Randomisation curve of %CV values
significanty 4%, significantly
- reqular o ¢ * aggregated
o atp =0.05 -: A atp =005
D +e
- b L
3 7 N . 7
_— . ."ﬁ
A{;' ~ %CY values
+
CWpvalles
2.5% 50% 97 5%

Randomisation two-tailed test with the following hyothesis and probability:
Left tail:  Ho: the temporal pattern of groups of fields is ramdo
H,: the temporal pattern of groups of fields is hoetgpus.
p =[(100 - %R) / 100] x 2
if p <0.05, K is rejected (significant homogeneity)
Right tail: Hy: the temporal pattern of groups of fields is ramdo
H,: the temporal pattern of groups of fields is aggted.
p=[%R/100] x 2
if p <0.05, H is rejected (significant aggregation)

With: %R = percentage of randomly simulated %CV vahigker than the observ

%CV value.
CVp = proportion of randomly simulated %CV val lower than the observe

Figure 5.3: Crop temporal variability: definitiorf tandomisation test per farmer and

Ccrop.

Two examples are shown in Figure 5.4. The oilsestk rcrop of farmer 3 is not
significantly different from a random temporal gatt (p = 0.874). However, the spring
barley crop of farmer 8, presents a significanelef temporal aggregation (p = 0.006).
Moreover the observed %CV (around 180%) correspdodshe highest level of

variability obtained from 1,000 random simulatiodenoting the most important level
of aggregation possible with the structure of thapaotation of farmer 8.
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a) farmer 3 — o1l seed rape b} farmer 8 — spring bailey
20 400 |
2 s p=0874| = = " p=0.006
= e = 300
5 40 - = 5 200
= m ot m B
3T 111
0 T g——" - "
0 20 50 100 150 200
LY m Eandomised 05
= Observed

Figure 5.4: Crop temporal variability: two example§ randomisation points and
observed value per farmer and crops,

This analysis takes in account the constraints rop csequences to evaluate the
significance of temporal pattern in comparison t@adom pattern determined within

the rotation constraints. The effect of the streetaf the crop rotation itself is not

studied. This analysis highlights the temporal gratt of crops, which are induced by
the farmers’ choices of starting crop for each amagation. The main disadvantage of
this analysis is the use of a randomisation tesiichvrequires more intensive and
lengthy setting up and processing.

5.1.3 Spatial pattern of crops

The spatial pattern of crops is investigated byyng the spatial configuration of the
crop’s fields. Two approaches are presented beltw.first one defines the fine spatial
pattern by considering fields’ neighbours, while gecond one considers only general
pattern by using distances separating fields.

5.1.3.1 Fine spatial pattern (chi-square test)

To determine the fine-scale spatial pattern ofdtops, the neighbouring crops of each
crop were considered. The definition of the neighlbbas a fundamental parameter of
the analysis, and should always be clearly indetatée neighbours of a field may be
either the strict neighbours: fields with a commimoundary; or buffer neighbours:

fields within X metres of each other. The “obsereedp neighbours” is the number of
times a crop in a field is neighbour of anothermpcio another field (a single boundary
will thus be counted twice). An example is showrrigure 5.5
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b} Landscape with
four crops (part of
Burgundy study area)

a) Matrix of crops neighbours of the landscape
presented in b)

Crop in Total
neighbouring fields  mumber of
W O3R wB sa neighbours OSE
WwhE
W 3 2 2 1 25
A
Cropin OSR 8 2 3 2 15 "
fields wB 3 3 g4 23
za 1 2 4 4 11
Total munber 25 15 23 11 74

Figure 5.5: Fine spatial pattern: an example ool values of the spatial chi-square.

In Figure 5.5, the two main constraints that exighe table are that (i) the row and the
column sum for a crop are equal, and (ii) the tableymmetrical (e.g.: 8 oilseed rape
fields are neighbours to wheat fields, and 8 wliieédds are neighbours to oilseed rape
fields). The observed crops neighbours are therpeoad with the expected number of
crop neighbours, which are calculated for an evistribution, while respecting the
constraints of the matrix table. The definitiontleé calculations of the expected values
on neighbouring crops is presented in Figure 5.6.
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The Spatial chi-square (x2):

i={1, 2, ..., n} crop type * N=%;0; and N=X;0;
]={1, 2, ..., n} crop type neighbours * Ni =Njhgni=|
Oij = observed number of neighbours * Eiff ; F = total number of fields

Observed matrix of crops neighbours:

j ( crops neighbours)

1 2 n ZjOij
Ou1 Or2 O On N;
O1 02 O On N

[
(crops

) O|j O|j O|j Onn N;
n Onl On2 Onj Onn Ni
ZiOij Nj Nj Nj Nj ZiNi

E;j = expected number of crop neighbours:
_ 2
|f|:JE”:(f' 1)XFX(N')
f,x(F-D)xZ N,

. GxNN; 1/2
ifi #]: Ej :T;WlthG:(XY)

X = [fix(F-D)xZ N ]-[(fi —-)xF xN;]
) fi x(F =D x X, Ny
[ x(F=D)xZ;N;]-[(f, -D)xFxN;,]
) fx(F-1)xZ,, N,

Figure 5.6: Fine spatial pattern: definition of-sljuare analysis.

The chi-square test may be carried out in fiveetddht ways, which are listed in Table
5.5. Each test is evaluating differently separatemmonents of crop spatial pattern.
Those tests are one-tailed chi-square tests, with:
Ho: Observed and Expected values are not signifigalifierent
Hi: Observed and Expected values are significantiferdint, indicating non-random
spatial pattern.
- if p > 0.05-> Hp is true (not significantly different)
-if p < 0.05> Hy is false and His true (significantly different, temporally
aggregated or homogeneous)

The differentiation of spatial aggregation from leganeous pattern may be carried out
in two ways. At first a “significantly different dm random” result in the d chi-square
test would indicate an aggregated spatial pattecalse the neighbours of each fields,
would predominantly be of alike-crops, the unlikefs would then be highly different
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from random. Whereas a non-significant result womdicate homogeneity, as the
number of unlike-crop neighbours would not be veriferent from random. The
second way is to investigate the relative valuesole$erved and expected values.
Observed values higher than expected ones dencaggregated pattern, whereas the
inverse case indicates a homogeneous pattern.

Table 5.5: Fine spatial pattern: definition of midual chi-square tests.

Tests Process Valu_es Output Degree of Evaluation
considered freedom
On and
3 Calculate X for above One overallvalue n(n-1y/2 OVerall spatial
each Oij diagonal pattern
(>=1)
b Calcula_t_e X for Entire row  One value per crop-1 Spatial pattern
each Oij per crop
. One value per crofl .
Diagonal Spatial pattern
C g;cl%ug[.e X for values gr&?no(;/fe\:g:lu\éa(l)l;e -1 of alike-crop
) G=1) neighbours
each crop)
Calculate X for ~POV€ (n-2) Spatial pattern
d . diagonal One overall value of unlike-crop
each Oij S (n-1)/2 :
(G>1) neighbours
C?Iculate two
X“for on L
diagonal (Qke = On (j =1) One overall value Overall spatial
2 >~ andabove (sum of value of
e >0ij with i =] . : 1 pattern, more
_ o diagonal (j > on and above
and Eye = XZEij i) separately diagonal) general than a.
with i = j) and parat€ly diag

above diagonal.

Alike-crop neighbours: identical crops, which areeighbours (wheat-wheat
neighbours)
Unlike-crop neighbours: different crops, which aneighbours (wheat-oilseed rap
neighbours)

In Figure 5.7, results of the spatial chi-squaststare presented for the example shown
in Figure 5.5 and for two examples of extreme chugiterns: aggregated and
homogeneous.
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1) Observed ii) Aggregated 1ii) Homogeneons

QSR
wE
W
sa
a  non-significant significant significant
b 3 MNE significant ¥ M5
¢ non-significant significant significant
d  non-significant significant non-significant
e non-stgnificant significant significant

sigrificant sigrmificantly non random, withp = 005
¥ N.E three out of four craps are mon-sigrificant

Figure 5.7: Fine spatial pattern: examples of apahi-square results.

The definition for a,b,c,d, and e are provided able 5.5

The analysis shows that the landscape with theeggted crop pattern is significantly
non-random under the 5 tests. The homogeneouscapelpresent the same results as
the aggregated landscape except for the b andlgsamavhich respectively show that
the spatial pattern of each crop individually ig significantly different for three crops
out of four; and the spatial pattern of unlike @adp not significantly different from
random. The observed example is not significanifieient from random, except for
one crop (set-aside) which is significantly nondam. The combination of several
spatial chi-square tests described above is ablaligtnguish between random,
aggregated and homogeneous patterns. However thsgudre test on neighbouring
crops only takes into account fields which are igfigtclose. In the case of spatially
dispersed fields, the use of the analysis descabede would not be appropriate.

5.1.3.2 General spatial trend (E analysis)

To evaluate the spatial pattern of crops throughldhdscape, the aggregation of fields
is considered. For this analysis, each field iseggnted by its centroid; this enables a
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more flexible handling of the fields’ features, athales not require adjacency between
fields.

A system of fields is considered (cf. Figure 5.84th fields grouped by one common
attribute such as the same crop, the same cropiorgtar the same farmer. To be
considered, a group must be composed of at leasfiglds, examples of groups are
represented in Figure 5.8c for highly spatially r&ggted group of fields and Figure
5.8d for a lower spatial aggregation.

a) & Fields considered by All possible pair-wises

L &
A

) High aggregation d) Low aggregation

S

Figure 5.8: General spatial trend (E analysislualisepresentation of the test

Wi
The mean distance between centroids within eadlpgsocalculated %:\l D’ refer
i(Ni—

to Figure 5.9 for a full description of the variabland calculations), and the sum of the

Wi
mean distance of all the groups is determiredroups 22% ). The mean
i(Ni—

Wm
distance of the centroids of all the fields consdeg all fields = =——) is also

calculated, cf. Figure 5.8b. Then the ratio betwdneng groups) and thex(all fields),
tempered with the number of groups composed of ntea@ one field, is used to
determine the final values called the E analysis.

Cranfield University Marie Castellazzi 2007



59

A —“E calculation”:

Variables considered:
m = total number of fields considered
g = number of groups with more than one field
Ni = number of fields within a group.
W = distance between two fields’ centroids.
With:
i=12,...,0
m =Zi Ni; m(m-1) / 2 = total number of pairwise
Ni (Ni-1) / 2 = total number of pairwise within aagip
¥ (Wi) = sum of the distances between all centrardhkin a group
¥ (Wm) = sum of the distance between all the cedsrof the fields considered

=D Z[ > i) }

Ni(Ni -1)
E =
D> (Wmxq
B - Randomisation test:
Definition of E & Ep values
Randomisati Ry
andomisation | gignificantly s s 3 significantly
curve of E values aggregated ,.: regular
= | atp=005,.° » atp=005
@ " by
) // O ,:/
O *
e 4"' . -~ Z_Iivalues
spatial Lt [ E spatial
aggregation [ _5_5“——————______ P reqularity
' a0 87 5 100

Randomisation two-tailed test with the followingpayhesis and probability.
Left tail:  Ho: the spatial pattern of groups of fields is random
H;: the spatial pattern of groups of fields is aggted.
=[Ep/100] x 2
Right tail: Hy: the spatial pattern of groups of fields is random
H,: the spatial pattern of groups of fields is reg@feomogeneous).
= [(200 — Ep) / 100] x 2

With: Ep = pecentage of randomly simulated E values lower ttimnobserved
value

Figure 5.9: General spatial trend (E analysis)initédn of the test.

A low E value indicates a high level of spatial eeggtion of the fields and a high E
value a low aggregation, i.e. spatial regularitydties close to one indicate a random
spatial distribution of the groups (not aggregatgdhomogeneous). The range of
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possible individual E values or numbers is infllehdy the spatial disposition of the
fields, the distance between the fields, and thabmer of fields within groups. Each set
of fields has various possible E values.

To provide a “landscape independent” index, theeplesl E value must be compared
with the range of possible E values for this spet¢#ndscape. This can be set up in two
steps. At first the range and frequency of E valsesbtained by randomly allocating
fields to groups over 10,000 simulations, thoseueslwill be later referenced as
“randomly simulated E values”. When visualised ograph, the simulated E values
show a near-normal distribution curve (cf. Figur&0&), and the mean of the values,
corresponding to a random distribution, is tendm@ne. The smoothness of the curve
is highly dependent on the number of fields, thenber of groups of fields considered,
and the spatial configuration of the fields. Foamyple, four fields will yield only six
pairwises (distance between two fields’ centroidghereas 10 fields would yield 45
pairwises, thus increasing the range of possitdigega

In the second step, the observed E value is comparéhe simulated E values, to

determine the likelihood of the observed E valu@adp@a random allocation of the fields

to groups. Ep is the percentage of simulated Eegalvhich are lower than the observed
E value. In other words, Ep indicates the probabdf reaching the observed E value
when grouping the fields randomly. The distributisrtonsidered as two tailed. The left
tail (lower than 1) indicates field aggregation dhd right tail (higher than 1) represent
field homogeneity.
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a) Distribution curve of 200 .
randomised E values 1 ;:E *
700 1 af
::ﬁ 1 ‘: J
5 500 4 ‘.'.i' Y 1 4 fields
é : . '.:; — 3 fields
o 300 A o 2, == 5 fields
= ] “.’{0 - mm | field
L
100 1 j 4 X
0 - , , . E values

03 05 07 i r 11 1.3\
b) Aggregated ¢) Random d) Homogeneous
i e L ““*\Eﬁ_\yzD
&0 50 &0

25‘ 25D
59 E*“j 6z 59 Bﬂj £z 59 60

X} X}

g E=041%46 e E=1.00002 =1.26234
8  Ep=0003% e Ep=47% 5? Ep 99.98%

Figure 5.10: General spatial pattern (E analysisdmple of aggreqgation and dispersion
of the groups of fields

This example is based on the groups of fieldsraida3 on the Burgundy study area in
1995.

In the example shown in Figure 5.10, high spatigragation (b) is characterised by a
very low E value, which occurs in only 0.0031% bk tsimulated E values. This
observed spatial distribution is highly non-randddm. the other side of the distribution
curve, graph (d) represents highly homogeneouspgrad fields (the member of the
same group repulse each other), the E value is gty and the Ep reaches 99.98%.
Nearly all the simulated E values are lower, ths tonfiguration is characterised as
highly homogeneous. With an E value close to 1 amdEp value close to 47%, the
spatial configuration exemplified in (c) is veryse to a random configuration. Those
fields are not specifically grouped or homogeneous.

The E analysis can be used for answering diffeqgrstions; just by changing the
system considered (all the fields or the fieldadarmer) and/or by changing the way
the fields are grouped (per rotation or per croff)is last cited case is a test for
determining the spatio-temporal pattern, to idgnfitemporally grouped fields are also
spatially linked. The three main cases are destmineTable 5.6.
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Table 5.6: General spatial patterns (E analyssemqtial applications of the test.

System Fields Temporal :
; : Questions solved
considered grouped by resolution
. Are the fields of a farmer with the same
All fields of 1 i
f Same crop 1 year crop, spatially more correlated than a
armer . :
random spatial allocation of crops?
. Are the fields with the same crop spatially
All fields of .
Same crop 1 year more correlated than a random spatial
all farmers :
allocation of crops?
Same cro Are the fields of a farmer with the same
All fields of 1 rotation nge Rotations crop rotation spatially more correlated than
farmer Y types a random spatial allocation of crop
starting crop .
rotations?

The E analysis is based upon a randomisation wdsth conditions on the specific
observed spatial distribution of fields and théiages. Hence, the presence of particular
shapes (for example long thin fields) is unlikety interfere with the evaluation of
spatial pattern. However, a formal sensitivity gse would be required to confirm or
invalidate this assumption; this analysis was m@otied out due to time constraints, and
Is thus missing from the sensitivity analyses reggbm the following section.

5.1.3.3 Sensitivity of the E analysis

Understanding the metric’s properties and, moréqdarly, its sensitivity to variations
in landscape’s structure, is indispensable in dateng the scope and the conditions of
its use. Two variations are investigated: (i) tm#uence of an important spatial
discontinuity between fields, and (ii) the influenof the number of groups. For both
aims, the fields’ configuration is derived from tBargundy study area, however the
fields’ groups were solely designed for the purpo$ehe sensitivity analysis. The
twelve fields considered are spatially separatéal annorth and a south part (cf. Figure
5.11).

For the analysis of the influence of spatial digouanty between fields, two groups of
fields were considered. 10,000 simulations wereamithis specific field configuration
with random allocation of the fields into groupshelrandom E values average at
1.0016, which is close enough to 1 to confirm thadomness of the distribution.
However the randomisation curve is highly skewethwialues grouped into three
groups averaging at 0.35, 0.75 and 1.0. This skesvigedue to the important spatial
gap between the north and south part of the fieldisch induces gaps in the range of
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possible E values. The cumulative frequency curkiews an exponential-shaped
increase with decreasing spatial aggregation tfdie

" o¥" a¥" o€

S - i g e ol

E ,'. \ f L E:. 03819 E: 07764 E: 09841
1ees PLEM Ep: 0.4% Ep: 5.2% Ep: 32.9%
e 0.002 o 0,104 0658
Distribution curve of random allocation d)
of two groups (mean E = 1.0016) E@
-
. g E: 1.0695
[ =
& = Ep:79.2%
= = p:0.416
=
5
L}

il

Figure 5.11: General spatial pattern (E analyse)sitivity analysis on gaps detection.

The E analysis was calculated for specific spatisiribution of the groups of fields,
represented in Figure 5.11. The most aggregatetthspanfiguration, with the groups
of fields coinciding with the north and south detetions, is presented in Figure 5.11
a). Only 0.4% of random E values show the same aeraggregation and the spatial
aggregation is significant at the critical level38%. By interchanging only two fields
between the two groups (cf. b), the probabilityedching this spatial configuration by
chance increases and the spatial aggregation ggroficant (critical level of 95%), but
the value is still low (E= 5.2%). In the c) configuration, each group ists$p two, half
within the north part and half within the southtpénus each of the groups is spatially
divided into two parts. The probability of this dguration occurring by chance is
evaluated at 32.9%, which is relatively high. Theal spatial aggregation of fields is
thus not very well differentiated from the randoaiues. However the probability of c)
configuration is clearly separated from the proligbevaluated for d) (79.2%), where
the fields are completely mixed between groups. Elamalysis is thus able to measure
heterogeneity on groups which are spatially split.
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The analysis on the influence of the number of gsoaf fields was carried out on the

same spatial field configuration as indicated igure 5.11, however the number of
groups is equal in turn to 2, 3, 4, and 6 groupe fMumber of fields in each group was
made even between groups. The curves of randonkisealues are shown in Figure

5.12. The mean of the E values is independenteohtimber of groups (1.00). However
the increasing number of groups influences theildigion curve of E values: the range
of E values is more continuous (fewer gaps) ancewitihe large distance between the
north and south fields, impacts on the possiblaldes (peaks).

a) 2 groups b) 3 groups
! B 140 b
jgg ? om0 o L3500 &
B, [ *| soon = 100 4 =2
2 300 [ & & 2500 8
= 200 Jo v 3000 g 260 1500 £
32| Vi - i 5 =
100 P 4| 1000 = F20 ] - 500 2
o it/ IRE T E ] kil 0 B
05 07 09 1.1 S 04 06 08 1 1.2 e
E walues E values
c) 4 groups d) & groups
)4 groug _ 2000 ,. o } 6 grouy Q
| [&]
o0 .' 1500 & - LR
= ) [ = [ E
g 40 4 =B 404 P 1200 J5
8 3 3 1000 2 [ ©
= £ - P800 B
(1) . 4 L
& 40 R = Fa00 =
= L
- g 0 n g
) (4] 1] 0.5 1 1.5
E walues E values

Figure 5.12: General spatial patterns (E analyss)sitivity analysis on the influence
of the number of groups on randomisation curves wélues

Both the number of individual E values and the déad deviation of E values increase
logarithmically with the increasing number of grsupf fields (cf. Figure 5.13).
Therefore, care should then be taken when compé&ringlues obtained from different
numbers of groups.
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a) Results over 10,000 Number of groups
simulations 5 3 4 6
Mean E values 1.0013 1.0011 1.0003 1.001

Standard deviation of E values 0.0863 0.1286 0.1659 0.2516
Number of individual E values

(+/-0.001) 146 489 629 775

b) Relation between number of groups ¢) Relation between number of groups and

and number of individual values standard deviation of individual values
® 1000 S 03—
g y = 567.03Ln(x) - 194.76 g oom V= 0.1492Ln(x) - 0.0273
S 8001 Rz=0.954 4 s R2=0.967
- o 0.2
© 600 = 7
5 o 0.15
g 400 3 0.1

c
> 200 : S 0.05
Z n 0
% 2 4 6 8 0 2 4 6 8
Number of groups Number of groups

Figure 5.13: General spatial patterns (E analysifluence of the number of groups on
E values.

In conclusion, the E analysis seems to represeltheegeneral trend of aggregation of
the groups of fields, even if groups, which aretigfig split are not always very well
detected.

5.1.4 Conclusion on pattern analysis

Three temporal pattern metrics, two spatial pattaetrics, and one spatio-temporal
pattern metric, which is a particular case of ohthe spatial pattern metrics, detailed in
this chapter are briefly summarised in Table 5Rese analyses may be used on the
different study sites, when relevant. The exactliegipon of the metrics may differ
from one study to another, depending on the aMailalatasets and on their
completeness. Further analysis may also be castieduch as descriptive analyses and
the analysis detailed in the literature review (8kction 3.2.2. Landscape pattern
metrics, p.20).
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Table 5.7: Summary of spatial and temporal stagffnalyses

Pattern studied Focus Analysis

Chi-square test per farmer,
per rotation
Chi-square per farmer, per

Crop rotations phasing

Crops phasing

crop
Temporal pattern Randomisation test of
Crops temporal variability percentage of coefficient
compared to random of variation of crops
simulations through time (per farmer,
per crop)

Chi-square on
neighbouring crops

E analysis on groups of
crops

Fine pattern
Spatial pattern
General trends

E analysis on groups of

Spatio-temporal pattern General trends : :
identical crop sequences

5.2 Crop pattern analyses on landscape datasets

The Burgundy study site was used to analyse thp patterns, with the specifically
designed statistical analysis described above i(8ebt1). The farmers of the site are
responsible for the crop grown on their fields. $haach farm was considered as an
independent unit for decision-making. Farmers Vatlver than five fields in the study
area were not included in the statistical analysessyery low number of fields is
unfavourable to statistically significant tests.

5.2.1 Temporal pattern

As indicated inSection 3.1.2 (Agronomic constraints), crop rotati® the main driver
of temporal pattern. This section reports the figdi on the characteristics of the crop
rotation, and through three analyses, the temgdrasing of the crops in the Burgundy
study area.

5.2.1.1 Description of crop rotations

In the study site, 20 unique crop rotations wetl¥eed; they are represented in Table
5.8. Crop rotations might be completely differediffer by only one crop, such as

rotation 12 and 13, or the sequence of crops ntighaltered (cf. rotation 2 and 3). Most
of the rotations (80.89%) were based on a thresxoyear sequences and 78% of fields
were following a rotation with wheat, oilseed rag winter/spring barley.
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Table 5.8: Burqgundy site: description of crop roias.

Crops Sequences Number of Number of

Rotation Rotation

Id A B C D E F length nelds farmers
using them

0 sa 1 7 (9.7%) 4

1 W OSR 2 2 1

2 W OSR wB 3 1 1

3 W wB OSR 3 31 (43.1%) 8

4 W sB OSR 3 3 (4.2%) 2

5 W sB wB OSR 4 2 2

6 W wB sB sB wB 5 1 1

7 W W OSR W wB OSR 6 3 (4.2%) 2

8 W wB OSRW sB OSR 6 4 (5.6%) 3

9 W wB OSRW wB sa 6 2 1

10 W OSRwB W sa wB 6 1 1

11 W sB wB OSRwB OSR 6 1 1

12 W OSRW OSR W sa 6 1 1

13 W OSRW OSR sa sa 6 1 1

14 W OSR sa sa sa sa 6 2 2

15 wB OSR sa sa sa sa 6 2 2

16 sB sa sa sa sa sa 6 1 1

17 R OSR R sa sa sa 6 1 1

18 R R OSR sa sa sa 6 2 1

19 W W sa sa R OSR 6 1 1

20 W sa sa sB wB OSR 6 3 (4.2%) 1

W = wheat; wB = winter barley; sB = spring barle@SR = oilseed rape; R = rye;
sa = set-aside

The farmers followed crop rotations which suitedithndividual requirements, as 62%

of the crop rotations listed in Table 5.8 were usaty by one farmer. However, crop

rotation 3, composed of wheat/winter barley/oilsesguk, was used by 8 farmers out of
10 and was used on 43% of the fields of the studg.dt was the most widely used

crop rotation within the study area.

The respective proportions of each crop transibetween one year (n) and the next one
(n+1) are shown in Table 5.9; the transitions w&sghted by the number of fields
following each particular rotation.
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Table 5.9: Burgundy site: proportion (%) of croarsitions from year n to n+1.

Yearn+1

Wheat Winter  Spring OSR
barley barley

Rye sa Total

Wheat 0.93 17.18 3.24 4.17 0 1.39 26.90
Winter

1.20 0 0.28 18.75 0 0.46  20.69
barley
vear Spring 190 028 231 0 023 472
n barley
OSR 23.38 0.93 0 0 0.23 162 26.16
Rye 0 0 0 093 0.46 0.23 1.62
sa 1.39 0.69 0.93 0 0.93 15.979.91
Total 26.90 20.69 4.72 26.161.62 19.91 100
Percentage of the proportion of crop transitimsZ[bllz_f“ ] X%)
: [

i: crop rotation

bi: presence of a transition from crop a to cropka rotation i (binary data)
lei: length of rotation i

fii. number of fields following rotation i

OSR/wheat was the most represented crop sequente evhole study area with 23%
of the fields showing this crop sequence every yaaia mean). The next most common
crop sequences were winter barley/OSR, wheat/winéeley, and set-aside/set-aside.
13 crop transitions each represented less thanflife dransitions in a year. This table
also shows that some crop transitions were not aedtie study area. For example, rye
was never preceded by another cereal crop sucth@atywwinter/spring barley. Spring
barley was also never followed by wheat. Howeverithentionality of the unused crop
sequences is unknown, it may be by chance or hgrleSreater agronomic knowledge
is required to be able to determine the origin stnidtness of crop sequences.

The next few analyses were aimed at investigatiegtémporal pattern of the crops on
the Burgundy study site and, more precisely, thaspiyg of the rotation on different
fields. The methods used below were specificallyigieed for this study site, and are
defined in Section 5.1.2. (Temporal pattern of s;qp46).
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5.2.1.2 Crop rotation phasing

The phasing of the fields’ rotation was studied,usyng the “chi-square analysis per
farmer, per rotation” as shown in Section 5.1.Ztofp rotation phasing, p.46). The
results are shown in Table 5.10.

Table 5.10: Burgundy site: results of crop rotatbmasing test (chi-square results)

Number of field:s

Far Rotati Rotation Numbet , .
per starting cropChi-square

mer on ID Length of fields

Degree of Probabil
freedom ity

A BCDEF
1 4 3 2 2 4.0 2 0.1353
3 1 2 2 2 2.0 1 0.1573
3 3 4 2 11 0.5 2 0.7788
3 3 3 2 1 2.0 2 0.3679
4 7 6 2 1 14.0 5 0.5494
9 6 2 2 10.0 5 0.0752
5 3 3 4 1 21 0.5 2 0.7788
18 6 2 2 10.0 5 0.0752
6 3 3 3 21 2.0 2 0.3679
8 6 2 210.0 5 0.0752
7 3 3 5 2 21 0.4 2 0.8187
8 20 6 3 3 15.0 5 0.0104
9 3 3 10 2 44 0.8 2 0.6703
General Chi-square: 61.20 40 0.0171

Only the crops grown on the fields of farmer 8,ldwling rotation 20, showed a

significant level of temporal aggregation (p < Q,0&s the three fields started with the
same crop out of a choice of six. Three other imtat followed by three different

farmers were nearly significantly aggregated (farshend rotation 9, 5-18, 6-8) with

probabilities equal to 0.0752. However most of thiations studied did not show any
significant difference from a random distributiomnd no significant level of

homogeneous temporal pattern (p > 0.95).

The overall low significance of the test might heedo the low degrees of freedom of
each test, because only few fields were considaredch time. To increase the degrees
of freedom and the power of the test, a generabghare test was carried out on the
dataset presented in Table 5.10. Each chi-squéwe aad each degrees of freedom was
summed, to determine an overall chi-square proipbdf 0.0171; indicating a
significant temporal phasing of the rotations.
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Consequently, the fields following the same rotaishowed an overall significant
temporal aggregation, even if each particular farrotation combination was not
significantly phased temporally. Yet, this methaayoconsiders crop rotations with
more than one crop, followed by at least two figdes farmer. Thus nearly 40% of the
fields were not included in this analysis. Moreqvéne possibility of temporal
synchronisation of independent crop rotations wad taken into account. To
circumvent the restriction of considering crop timtias individually, the next analysis
focuses on the crops instead of crop rotation.

5.2.1.3 Crop phasing

The analysis, “Chi-square analysis per farmer arccpp”, aims at determining if each
crop type of a farmer is temporally aggregatedambgeneous. The chi-square analysis
was carried out per farmer and per crop over 12sygaultiple of 3, 4 and 6 rotation
lengths) independently of the crop rotations (dhafter 5.1.2.2: Crop phasing, p.49),
the resulting chi-square probabilities are showmhable 5.11.

Table 5.11: Burgundy site: crop phasing test (cfuase probabilities).

Farmer Oilseed Wheat Spring  Winter Rye Se_t-
rape barley  barley aside

3 0.9022 0.9754 - 0.7991 - -

4 0.2843 0.1981 - 0.0244 - 1.0000

5 0.9174 0.9985 - 0.9985 0.1411 0.7390

6 0.5304 0.3473 0.6071 0.3882 - 0.9895

7 0.9699 1.0000 - 0.9895 - 0.9985

8 0.0373 0.0950 0.0046 0.0046 - 0.2330

9 0.9624 0.8228 0.2330 0.9957 - -

“-*: less than two fields with this crop in theiwtation;
bold: p < 0.05, indicating significant temporal aggation;
shaded: p > 0.95, indicating significant temporalnhogeneity.

Oilseed rape, spring and winter barley crops omar8 showed significant temporal
aggregation (p <0.05). This result agrees withfitndings of the previous analysis (chi-
square per farmer per rotation) which indicatedyaiicant temporal aggregation of the
rotation 20, composed of the same three cropdliabove plus wheat and set-aside.
However the other rotations followed by farmer 8gimb have diluted the temporal
aggregation of wheat and set-aside, even if theativtrep was actually near significant
for temporal aggregation (p = 0.095).
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Winter barley of farmer 4 showed a significant temgb aggregation (p < 0.05). In the
previous analysis, farmer 4 had fields followingtatmon 9, which were nearly
significantly in phase (p = 0.0752). The signifita@mporal phasing of winter barley
might be due to the synchronisation of other roteiwith rotation 9.

In contrast to the crop rotation phasing analy&i8s of the crop types of all the farmers
showed significant temporal homogeneity (p > 0.9%) even repartition of the crops
through the years might be due to the structurehef crop rotations themselves
(minimum return period of each crop), or due taorfar choice of spreading crops over
years by shifting crop rotations, in order to cohthe market and agronomic risks. This
spreading out of the crops through years was ntdctix by the previous analysis.
Finally 50% of the crop types of the farmers weot significantly distinct from or
similar to an even temporal distribution.

In conclusion from this test, 37% of farmer’s croypes were significantly spread
homogeneously over the years, while only 13% showedignificant temporal
heterogeneity. This analysis brings new insightstio®m temporal pattern of crops;
however its non-consideration of the constrainttteg crop sequence derived from
rotation rigidity limits it. This issue is addresisby the randomisation per farmer and
per crop studied in the next section.

5.2.1.4 Crop temporal variability compared to random simulation

For this test, “randomisation per farmer and crdpt, each farmer, the percentage of
variation over the years (%CV) of the proportionto$ fields growing a crop was

tested, (cf. 5.1.2.3: Crop temporal variability qmared to random simulation, p.51).
The observed values (%CV) were compared again80T@hdomisations by simulating

random starting crops for each rotation (%R: pesga of randomised values with
higher temporal variability than the observed valoe determine if the observed value
was significantly aggregated or homogeneous.
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Table 5.12: Burgundy site: results from crop tempwariability test

Oilseed rape Wheat Spring Winter Rye Set-aside

(OSR (WW) barley (sB) barley (wB) (R) (sa)
Farmer %CV %R %CV %R %CV %R %CV %R %CV %R %CV %R
3 384 56.3 304 732 - 51.3 45.7- - - -
4 716 212 66.7 123 - 100.0 4.0 - - 11.6 100
5 51.1 67.6 36.9 100 - - 36.9 100 120.610.1 448 2.4
6 64.8 36.0 649 20.6116.8 19.2 77.5 21.8- - 39.1 64.6
7 426 789 21.2 100 - - 39.1 87.4- - 36.9 100
8 1431 3.3 121.02.8 180.9 0.3 180.90.3 - - 97.7 16.2
9 304 644 39.8 4831595 35.3 245 81.0- - - -

bold: significant temporal aggregation; shadedyrsficant temporal homogeneity.

From Table 5.12, out of 30 valid farmer-crop conabions (more than one field), five
(17%) were significantly homogeneous and three (1@%re significantly aggregated
at a level of confidence of 95%. Each of thesegmies was examined in turn.

The significantly homogeneous fields were the sedeacrop of farmer 4, the wheat and
winter barley crop of farmer 5, and the wheat agtdaside crop of farmer 7 (p < 0.05).
These results agree with the previous test. Allftrener-crop combinations with %R
higher than 50% (indicating a certain degree oétugteneity), were also identified in
the “crop phasing analysis” as nearly significartiBterogeneous (p > 0.90) in Table
5.11.

Farmer 8 presented the highest level of temporarbgeneity/aggregation, with spring
and winter barley being significantly aggregated<(®.05, in concordance with the
previous analysis). On the other hand, oilseed tapthis test was only close to
significant aggregation (p < 0.07), instead of pesngnificantly aggregated as in the
previous test. Wheat, as in the previous test,ch@e to being significantly aggregated.
In contrast to the previous tests, set-aside fiefdarmer 5 were significantly in phase
(p < 0.05) when compared with all possible tempaemaifigurations (random starting
crops). However, most of the farmer-crop combimetiohad no significant

homogeneous or aggregated temporal pattern (21linatians out of 28).

The results of this test show that even when cemisig the constraint of the crop

sequences, five farmer-crop combinations (wheatewwinter barley and set-aside
twice, equivalent to 17% of crops) were signifi¢gimomogeneous. Some farmers were
thus voluntarily synchronising the starting croprotations, to spread some crops over
the years, whereas for three other crops (sprimgéwibarley and set-aside, equivalent
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to 10% of crops), the farmers were voluntarily aggting them. 73% of other farmer-
crop combinations did not show any significant tenap pattern.

5.2.1.5 Conclusion on temporal pattern of crops

The three temporal pattern analyses detailed abovieave consistent results, even if
each one of them investigated the temporal pattd@rncrops using a different
methodology.

The crop rotation phasing analyses showed thatathvéelds following the same crop
rotation were significantly temporally aggregataed,they tended to start with the same
crop. Then, when each farmer’s crop individuallysveaalysed (crop phasing analyses),
independently of crop rotations, more than onedthof them were significantly
temporally homogeneous; whereas only one eighthe wagnificantly temporally
aggregated. However as this analysis did not takaccount the structure of crop
rotations, the homogeneity detected might be asfaat due to return period of crops
within the rotation. In the last analysis, takimgoi account crop rotation structure, (crop
temporal variability compared to random simulatjame tenth of farmer’s crops were
significantly aggregated, whereas one sixth wegeiicantly homogeneous.

Two main conclusions may be drawn on the Burguniylys site. Firstly, overall,
farmers’ fields following the same rotations tendedbe temporally grouped. Secondly,
between rotations, no clear rules of temporal patigere detected; the degree of
temporal homogeneity or aggregation was farmercaop dependent.

Fields with the same rotation might be grouped t@alpy by farmers, in order to ease
their management by coordination. On the other hdimdds with different crop
rotations might be used to alter the temporal paié crops, in order to spread risks, or
they might be aggregated to ease management amneksp particular market tendency.

Finally the degree of temporal phasing is thusnaportant component of crop patterns,
and should be included in the modelling of cropgratin the agricultural landscape.
The next section investigates the existence oiapgaatterns of crops on the Burgundy
study area.
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5.2.2 Spatial pattern

The crop spatial pattern in the study area maytidiesd at two levels: (i) at the study
area level without taking into account the indiafity of the farms, and (ii) at the farm
level, within individual farms. These were both emaed in turn.

5.2.2.1 Crop spatial repartition at the study area level

The spatial chi-square tests for fine pattern &edE analysis for more general pattern
(cf. 5.1.3. Spatial pattern of crops, p.53) wengied out on the Burgundy study area as
a whole for evaluating the yearly spatial pattefrcrmps from 1994 to 1997, at first

using all the crops cf. Figure 5.14, and then witly the three main crops.

1994 ! Chi-square tests E analysis
& sigrificant _
}' ?’ h: 1/6 significant (p-sa) e IR
» S E=1.0031
‘F‘ Y o significant Ep = 47 54%
- d: mor-significant o
e: non-significant Not significant
1995 L = Close to Homogeneity
- & sigrnificast
b 27 significant (B, B) p=0.2318
-.‘-6 X c: significant E=091142
< a: mm—s‘igﬁggﬁcmz En=11.59%%
L =N ﬂl:ln-slgﬂlflﬁallt Mot Sig:“j.ﬁ.fﬂllt
) — Close to Homogeneity
1996
& sigrificant
-~ b 2/6 significant (E, a-sa) p = 0.0234
“I [ Sigﬂiﬂﬁaﬂt E= DEEﬁT
- ' Ef S-E'g?EIE_.ﬁC'ﬂF‘H En=117%
F e significant Significantly aggregated
— Agoregation
1997 ‘ @ st grificant
h: 176 significant (a-sa)
‘ o significant p=0.20238
p= : e | & mon-sigeificant E=0.5524
J 8. non-Fignificant En =10.14%
= Not significant Not significant

Figure 5.14: Burgundy site: fine and general spatftern tests of the crops.

The E analysis investigated the general patterorgs. For each year, the observed
spatial configurations were within the left tail tife randomised distributions (Ep <
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50%), indicating a tendency towards aggregatioherathan homogeneity. The spatial
patterns of crops in years 1994, 1995, and 199% wet significantly aggregated;
however in 1996 the crop pattern was significamailygregated at the critical level of
95%.

The chi-square tests investigated the crop sppéitiern at a finer resolution. At first,
the overall spatial pattern, as determined by #ietést, showed a significant spatial
non-randomness for the crops grown in 1994, 1988, 1096. However in 1997, the
crop pattern was not significantly different fromrandom allocation; which was
reinforced by the non-significant results of testitand e. Thus the crop pattern in 1997
was identified as not being significantly differéram random.

As indicated above, the general crop pattern f@419.995, 1996 were identified as
non-random (test a), however the non-randomnesétnaigse from either a spatial
aggregation or homogeneity. Unlike-crop neighbdeareps neighbours of a different
type of crops, cf. test d) were significantly n@mdom in 1996, indicating an overall
spatial aggregation of the crops. Unlike-crops %94L and 1995 were not significantly
different from randomness, indicating homogenaeitthie general spatial crop pattern.
The b test investigates the spatial pattern of eacp. For each year, very few crops
had a significantly non-random spatial pattern:nparent set-aside in 1994; spring
barley and rye in 1995; rye and autumn set-asid®6; and autumn set-aside in 1997.
Moreover, constant divergences, from 1994 to 1@®the observed values from the
expected values were as following: (i) some cropsewnore spatially aggregated than
expected: wheat / oilseed rape, wheat / springebarind permanent set-aside /
permanent set-aside; (i) some crops were lesseggtgd than expected (more
homogeneous): wheat / winter barley, oilseed rapi@ter barley, winter barley / spring
barley, spring barley / autumn set-aside. The ifleation of such spatial particularities
of crops is indispensable for modelling realisticalrop spatial pattern.

The same analysis was carried out on only the tmaa crops (wheat, oilseed rape and
winter barley) from 1994 to 1997. The spatial pattef the crops was not significantly

different from random spatial pattern for every lgsia at the fine and more general
level (5 chi-square tests and E analysis).

In conclusion, when considering all the crops, teaictendency of fine or general
spatial pattern existed through the years; as theaes were not significantly different
from random, and one year was significantly aggestjavioreover, the spatial patterns
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of the three main crops were not different fromd@n pattern. The landscape level
might not be adequate for studying the crop spagjpdrtition, as the spatial pattern of
crops is influenced by the farmer’s fields anddtrategy. Studying spatial pattern at the
farmer level would thus be advisable. But beforat th preliminary analysis of the
farms’ spatial repartition is presented.

5.2.2.2 Spatial repartition of farmers

The 72 fields within the study area were part offafns, which are represented in
Figure 5.15, a). The pattern of the farms presttdirst degree of spatial pattern in the
study area.

a) Fields of 10
farmers

b) Fesults of E analysis
Mean E 1.0013
Standard dewtation E - 0.0677
Ohserved E 0.5730
Ep (%) < 0%
Probahility {p)  0.00

¢} Eesults of spatial chi-square tests
Crverall spatial pattern (a); significant

Spatial pattern within significant
= Farmers fields {c):  (except farmer 1 and 7)

3% 3 r \3 . Gpatial pattern of

different farmers felds (d): significant

General overall spatial pattern () significant

sigrificant: siguificantly different fram randam.
Farmer (Vis not considerad i those tesk.

WOZE ] O Lh

Figure 5.15: Burgundy site: general spatial pattesh (E analysis on farmers’ fields).

The actual spatial distribution of the fields waghty non-random as shown by the
results presented in Figure 5.15 b) and c). By inm@,000 simulations of the different
allocation of the fields to farmers, no configuoatihad an E value as low. The
configuration was thus considered as highly agdeshalhis example shows that the E
analysis was particularly good at identifying loavéls of aggregation. A very high
level of aggregation, such as if all the fieldseach farm were adjacent, would not be
differentiated from the actual configuration. Thesults of the spatial chi-square tests
identify that the fields overall were significanthggregated by farmers (a, c, d, and e
significant and farmer O was not considered). Gafyner 1 and 7 were not significantly
different from random (from test c).
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The spatial pattern of crops at the farm level watsconditioned by the spatial pattern
of the fields of each farmer, as the location of fields was considered as fixed.
However, even if the fields of each farmer wereraggted, few fields were really
adjacent. Thus the use of spatial chi-square festsfarmer is not adequate, the E
analysis would then be preferred as it does nasiden direct crop neighbours.

5.2.2.3 Spatial repartition of crops for each farmer individually

For investigating the spatial pattern of crops farmers individually, only the E

analysis was used, because in many cases the Trfields were not adjacent
preventing the use of spatial chi-square tests.tibthe farmer’s crops did not show
any significant spatial pattern, with the exceptidrsignificant aggregation for farmer 9
in every year and farmer 4 and 7 in 1996, Tabl8.9\b farmers showed a significant
level of crop spatial homogeneity.

Table 5.13: Burgundy site: general spatial pattézas(E analysis results on crops).

Farmers 1994 1995 1996 1997

E Ep E Ep E Ep E Ep
3 1.053 66.80 0.794 5.32 0.892 30.74 0.953 41.12
4 0.796 6.68 0.686 3.59 0.631 1.63 0.624 2.97
S 0.781 23.38 0971 46.65 1.122 67.97 1.043 57.44
6 0.553 2.72 0.660 10.05 0.975 37.87 0.619 5.62
7 0.512 4.99 0.351 5.15 0.328 2.20 0.679 11.38
8 0.802 11.19 0.802 10.27 0.802 10.60 0.802 10.85
9 0.610 0.89 0.590 1.11 0.664 0.42 0.664 0.52

Shaded cells: significantly aggregated spatial gatt(p<0.05)

In conclusion at the farmer level, crop spatialtgrat were not significantly different
from random, except for one farmer (farmer 9), vwdomsistently had an aggregated
spatial repartition of crops through the years.

5.2.2.4 Conclusion on spatial pattern of crops

The analyses on the spatial pattern of crops oBtigundy study area were carried out
at two scales: the study area level and the farmal.leAt the study area level, when
considering all the crops, no consistent spatidglepa of crops over four years was
found. When considering only the three main crogsatial patterns significantly

different from random were not found. At the fariadevel, the crops were mainly not
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different from random, even though one farmer shib&eonsistent aggregated spatial
pattern through the years.

In conclusion, no clear crop spatial patterns vieuad on this dataset, at the study area
level. Moreover, the results would suggest thatgBady farmers, with the exception of
farmer 9, do not widely use the spatial blockingfields, which is the common
management of adjacent fields to ease the worklblaig. technique is being used more
and more in England in particular (Orson, 2005).

5.2.3 Spatio-temporal pattern

To study the correlation between the spatial aredtémporal patterns of crops, the
spatial pattern of temporal groups of crop sequemaes analysed. To study the spatial
pattern, the analysis of the general trend withEhenalysis was chosen instead of the
fine pattern analysis with the chi-square testhask analysis does not require the use
of neighbouring crops. The analysis would thus bmerpolyvalent and flexible for
most landscape studied. The E analysis was caotiedy following the definition set
up in Section 5.1.3.2 (General spatial trend (Bysis, p.57). The fields considered
follow the same crop rotation, but each group haliffarent starting crop (temporally
in phase).

In order to study the spatio-temporal pattern opsrin a meaningful way, only farmers
with many fields following the same crop rotatioer® investigated. In the case of the
Burgundy study site, only rotation 3 of farmer @&h met those criteria. The results
obtained are reported in Figure 5.16 and Figur@.5.1
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a) Fields of farmer 7,
rotation 3

1) Results of E analysis

Randormisation mean of E 1.002

Randomisation stdev 0,221
Observed E 0337

Ep 4.9

Probability (p) 0.098

¢) Observed E value plotted with

47 - 7 ' randomised E values (1,000 simulations)
- 150
@q—" Obzerved E |
2 100 ;o
M s L .

- 8- ‘. u‘:C “;‘- *

1 L‘g 50
| ] E values
- 5 I L] T T
EZA Fotation 3, starting crop O 0.2 07 13

B Rotation 3, starting crop 1
Rotation 3, starting crop 2
COther fields of the farmer
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Figure 5.16: Burgundy site: general spatio-temppsdtern (E analysis), on Farmer 7,
rotation 3.

Farmer 7 had five fields following crop rotatior(\8heat / winter barley / oilseed rape),
with two fields starting with wheat, two with wintéarley and one with oilseed rape
(cf. Figure 5.16). The groups of temporally aggtedafields showed the highest
possible level of spatial aggregation, as the ofeselE value matched the lowest E
value obtained through 1,000 random simulationsvéler the spatial pattern was not
significantly aggregated at the critical level d%. This extreme configuration was
occurring too often to be significantly aggregated comparison with random

allocations.

Farmer 9 had ten fields with crop rotation 3, wfthur starting with oilseed rape

(starting crop 2), four with spring barley (1) atvdo with wheat (0). The observed E
value corresponded to 1.3% of values obtained fig00 random simulation of

starting crops. With a probability lower than 0.0 crop spatial and temporal pattern
of the fields of farmer 9, following rotation 3 waggnificantly aggregated. This specific
case testifies the possibility of significant spagmporal aggregation of crops. This
result explains the consistency through the yeftiseohigh spatial aggregation of crops
of farmer 9.
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a) Fields of farmer 9, b) Results of E analysis
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Figure 5.17: Burqundy site: general spatio-temppsdtern (E analysis), on farmer 9,
rotation 3.

Thus, only farmer 9 had a significant level of spa¢mporal aggregation of crops. This
farmer exemplified the possibility of positive celation between spatial and temporal
pattern of crops. However the use of this analigsiestricted to farmer’s fields, which

are following the same rotation. Moreover, suffiti@umbers of fields are required in
order to detect results significantly differentrfreandom.

5.2.4 Conclusion on spatial and temporal pattern analyses

The analysis presented in this chapter examinedspiagial and temporal pattern of
crops grown on the Burgundy study site from 1994387. The analysis demonstrated
the presence of significant pattern both spatiaiigl temporally different from random,

even if not always widely represented.

For the temporal pattern of crops, two main conohs were drawn: (i) overall,
farmer’'s fields with the same rotation were tempgrayrouped, and (i) when
considering all crops, regardless of their rotagjomo consistent temporal pattern was
detected; they were farmer and crop dependent.
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For spatial pattern of crops at the study areal,len@ consistent pattern through years
was found when all the crops were considered. W8tadying only the three main
crops, their spatial patterns were random. At Hrenfscale, the crops were mainly not
different from random, except for one farmer, whmwed consistently through the
years a significant level of spatial aggregatiohe Tsame farmer was the only one
presenting a significant spatio-temporal pattemurt, thus confirming the possibility of
positive correlation between spatial and tempoedtepn. The analysis demonstrated a
limitation of the E analyse, as it failed to spatreme crop spatial arrangement if its
random occurrence was too high. Therefore, it @®menended to use the E analyse
only on high number of fields.

The spatial and temporal patterns may arise fromeraé causes. The spatial
aggregation of crops in close fields might facibtdhe farmer’'s work (Maximet al,
1996), however this might also be due to similadfythe environmental conditions
(soil types, climate, water access). Both of themgses will be reflected in the use of
spatial aggregation of crops. The temporal patérops arises from the crop rotations
and the starting crop for each field, which arectiy influenced by the farmer’s needs
for products and their market price, and on hik nmenagement. These parameters are
relevant to the aims of the LandSFACTS model.

5.3 Statistical analyses to integrate within LandSFACTSnodel

Five statistical tests were developed for measuspagtial and temporal patterns of
crops. After testing on the Burgundy dataset, tiveye all able to identify significant
patterns, except for the chi-square analysis or 8patial pattern, which was not
adapted to the dataset characteristics. Only th&t aapted and versatile tests should
be integrated within the LandSFACTS model to previbntrol to the user on the
spatial and temporal patterns of crops. A comparisetween the tests is detailed
below.

For measuring the temporal patterns of crops, ttests were designed, the two first
one based on a chi-square test and the last oree mmdomisation test. The “crop
rotation phasing” test considers the starting cobpdifferent fields with the same

rotation. This test would not be useable acrosg catations, and is not versatile
enough to be integrated within the LandSFACTS modéle “crop phasing” test

considers the phasing of the crop regardless otitbp rotations, by considering the
proportions of fields with each crop for every yddowever, this analysis does not take
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into account the constraints induced by the craptians and the return period of the
crops. The “crop temporal variability compared amdom simulations” test considers
the temporal patterns of all the crops, regarddésise rotations. The temporal pattern is
measured as the percentage of variability of thmber of fields over the years. The
observed crop allocation is compared with randoitialncrops for all the fields,
therefore the constraints of the rotations arertakeaccount. This later test is more
versatile than the two previous tests on tempaaittems. It would be even more useful
if instead of recording the number of fields withch crop, the area of each crop was
taken in account.

For measuring the spatial patterns of crops, twtsterere designed, one based on a chi-
square test and the second on a randomisationTtastchi-square test measuring fine
spatial pattern considers the neighbouring cropsach crop, which are compared to the
expected number of crop neighbours from an evenilaliion. The randomisation test
on more general patterns of crops, the E analgsissiders the distances between the
centroids of fields with the same crops. The obsgzrop allocation is compared with a
random allocation of the crops to the fields. Thedomisation process can take into
account restrictions of the spatial extent of theps. The E analysis has the main
advantage of being useable on fields, which arespatially continuous. The E analysis
is also relevant for measuring spatio-temporalgpatt Therefore, the E analysis has a
greater versatility than the chi-square test oa fiatterns.

Moreover, in general, randomisation tests provieeegl advantages over chi-square
tests. First, the chi-square tests aim solely daerdening if an hypothesis is
significantly true or not, i.e. whether the observalues are significantly different from
the expected values. Randomisation tests, howtsret,to be more: (i) versatile as they
compare values measuring the degree of pattern, (Bndadapted to inflexible
constraints. The randomisation curve takes in aticthe constraints of the landscape,
for example in the temporal test, the structurerop rotations is respected. Moreover,
the randomisation curves provide a continuous stal@ both extreme patterns, i.e.
from aggregated to regular patterns, against wtdohobserved pattern may be
compared. Therefore, both randomisation tests;Eenalysis” for spatial pattern and
“Randomisation test of percentage of coefficienvarfiation of crops through time” for
temporal pattern, were more adapted, and were dhasen for integration within the
LandSFACTS model (Chapter 7).
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5.4 Conclusion

In this chapter, five specifically designed statetanalyses were presented to measure
the temporal and spatial patterns of crops forgiagon within the LandSFACTS
model. The temporal pattern tests are (i) the codgtion phasing test, based upon a
chi-square test per farmer, per rotation, (ii) thep phasing test, based upon a chi-
square test per farmer per crop, and (iii) the oamdation test of percentage of
coefficient of variation of crops through time. Ttierd test is particularly adapted for
integration within the LandSFACTS model, as it d@ used across all the farmers,
rotations, and on any landscape due to the patiabflrandomisation tests. The spatial
pattern tests are (i) the fine pattern test, bagexh a chi-square test on neighbouring
crops, and (ii) the general trend test, also caltexl E analysis based on groups of
identical crop sequences. The E analysis is pédatiguadapted for integration within
the LandSFACTS model, as it provides a generalvienerof the trend of crop spatial
patterns, and is usable on any landscape due tpatability of randomisation tests.
The E analysis is also useful to test spatio-teadpgatterns of the crops, i.e.
coordination between temporal and spatial aggregsti

The statistical tests were carried out on the Buodgustudy site. The following
conclusions were drawn: (i) farmers tend to groevghme crops in fields with identical
rotations (temporally grouped); (ii) the temporalttprns of the crops tended to be
farmer and crop dependent; (iii) spatial patterfsthe crops were not consistent
between years; (iv) one occurrence of strong sqtatigporal patterns of crops was
detected, indicating that a farmer was growing figah crops every year for his/her
spatially close fields. The scale dependency ofptitéern was noted. In conclusion, the
new statistical tests were successful at charaatgrithe crop patterns of a real
landscape, and the “E analysis” for spatial paftesaind the “Randomisation test of
percentage of coefficient of variation of cropsotigh time” for temporal patterns are
particularly useful to characterise and simulatepsr patterns within LandSFACTS
model. Their main advantage, in comparison with dkteer tests, is their use of the
randomisation test, which provides a reference d@amsation curve) to evaluate
specific crop patterns. The integration of thes¢istical tests within the LandSFACTS
model is further investigated in Chapter 7.1.3: &ahmodelling approach, p.94.

In the next chapter, a new mathematical representaif crop rotations to integrate
within the LandSFACTS model is presented.
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6 Mathematical representation of crop rotations

Crop rotation is defined as the successive grovahgrops on a field (Wibberley,
1996), and rules underlying them are complex, perted in Section 3.1.2: Agronomic
constraints (p.15). To integrate crop rotationsoirthe LandSFACTS model, the
decision process leading to crop sequences shantldbe explicitly modelled, (cf.
Chapter 2: Specifications of LandSFACTS model). Thenplexity of crop rotations
needs to be represented in a simple and systematicematical structure. Only few
studies considered crop rotations in a mathematizainer (cf. Section 3.3.2.4: Crop
rotations p.30). In order to achieve the matherahtictegration of crop rotation, a
systematic classification of the rotation is présdnbefore proposing a mathematical
and statistical structure for representing cro@atrons. This chapter is the subject of a
publication currently submitted (Castellagtial, 2008) .

6.1 Mathematical classification of rotations

The proposed classification of crop rotations isreglified by a typical arable five-year
rotation (Figure 6.1) for medium to heavy soilstiie East Anglian region in eastern
England (Clarkeet al, 2000), described by Jim Orson (Orson, 2005). diassification
into four categories is based upon variabilityna pathways (flexibility), and the length
of the rotation.

The first type of rotation is the “fixed rotatioifFigure 6.1a). Each crop follows a pre-
defined order with no possibility of deviation (séa example, (Colbacht al, 2005).
The rotation can also be defined as “cyclical, @adotation length is fixed, i.e. four
years in this example. The second rotation (Fidudd) is a “flexible” and may be
represented as a multi-pathway network. For at leas crop within the rotation, the
farmer makes a choice between several crops. Asthé previous category, this type
of rotation is “cyclical” with a fixed rotation lgth. The third category of rotations
(Figure 6.1c) is again flexible, multi-pathway, arytlical. However the rotation length
is variable, as for example, the return periodhaf wheat 2 can be either four or five
years. The fourth category (Figure 6.1d) encompagses structured rotations, with
great flexibility, cyclical structure with a highljariable rotation length. The pathways
increase exponentially with years.
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d. Flexible rotation, non-cyclical, variable rotation length

barley

Figure 6.1: Mathematical classification of cropat@ins.

In some regions rotations are highly fixed (likeBargundy, whereas in areas more
susceptible to market variation, only the main tiotaprinciples are followed (like in
eastern England, or the Fife agricultural areadatl@nd). It is important that each type
of rotations must be usable in the LandSFACTS matek, each type of crop rotation
must be represented in the same format, despitedifferences.

6.2 Rotations as transition matrices

Crop rotations are mainly sets of rules dictatingpcsequences, where the primary
driving rule is the influence of the crop in therr@nt year on the crop choice for the
next year. Therefore, it is possible to represeap cotations as Markov chains, also
called a stochastic matrix or transition matrix XGomd Miller, 1965). A crop transition

matrix T is a square matrix with as many rows ()l @olumns (j) as distinct crops. A
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crop may be considered as two distinct crops, éréhis a need to separate their
occurrence within the rotation, e.g. first and setevheat. The element in row i and
column j, called Tij, represents the probabilityder the rotation that, given the current
crop i in a field, crop j has the probability Tg be grown the next year in the field. The
sum of the elements of each row must be equal to 1.

As an example, transition matrices of the rotatipresented in Figure 6.1, are reported
in Figure 6.2.

a) Transition matrix of fixed rotation, cyclical, fiderotation length

Current year

Sugar beet  Fallow  Wheat 1 0OSR Wheat 2

Sugar beet 0 1 0 0 0

Previous Fallow 0 0 1 0 0
year Wheat 1 0 0 0 1 0
Oilseed rape (OSR) 0 0 0 0 1

Wheat 2 1 0 0 0 0

b) Transition matrix of flexible rotation, cyclicalixed rotation length

Current year

Shi%?r Fallow bsaf|::rg1 wlhg'at that hsaﬂgl;gz Beans  OSR m};at
Sugar beet 0 0.3 0.35 0.35 0 0 0 0 0
Fallow 0 0 0 0 1 0 0 0 0
Spring barley 1 0 0 0 0 1 0 0 0 0
Previous I.d. wheat 0 0 0 0 0 1 0 0 0
wear Wheat 1 0 0 0 0 0 0 0.5 0.5 0
Spring barley 2 0 0 0 0 0 0 0.5 0.5 0
Beans 0 0 0 0 0 0 0 0 1
OSR 0 0 0 0 0 0 0 0 1
wheat 2 1 0 0 0 0 0 0 0 0

c) Transition matrix of flexible rotation, cyclicalaviable rotation length

Current year

Wheat Fallow 0OSR Beans

Wheat 0 0.3 0.2 0.5

SN Fallow 02 0 03 05

year Oilseed rape (OSR) 0.5 0.25 0 0.25
Beans 0.25 0.25 0.5 0

Figure 6.2: Transition matrices of three typesrobaotation.
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The fixed rotation (a) has only binary probabikti@s only one crop is possible after
another one. The distinction between the two whegts imposes the return period of
the crop, and conditions the rotation length. Ttleotwo transition matrices (b and c)
represent more flexible crop rotations, i.e. severaps possible for a given year. The
probability of choosing a crop between severatjiiscted by the values in the matrix
(value lower than 1).

In a crop rotation, the choice of a new crop dassalways depend upon the previously
grown crop, for example potatoes may only be grewery eighth year. Fixed crop
rotations can incorporate those restrictions, haweflexible rotations cannot.
Therefore, for constraints over several years fldwable transition matrices should be
complemented with further temporal constraints,hsas return period of crop, or
maximum repetition of a crop on a field or by faltben specific crop sequences.

By representing crop rotations as transition mas;iche complex decision making of
integrating environmental variables (rainfall, tesrgture...), farm management, and
market prices within a mechanistic model is repdabg a simple empirical approach
based on statistical probabilities. This simplifioa provides a simple basis for
modelling crop rotations stochastically, withoutjuging a multitude of parameters.
However, even if only probability values are regdirwithin the transition matrices,
those values need to be chosen carefully. To reptesop rotations realistically, the
probability values should be derived from resulfsimerdisciplinary research in
agronomy, farm management, environment, socio-en@soor agronomic statistics. In
future developments of the transition matricess @pproach could be elaborated by
integrating specific variables within the matri¢cesnfluence crop choices (e.g. climatic
data, relative crops market prices).

The transition matrices can be used to calculaéadhg term proportions of crops from
each crop rotation. This tool is very useful to ttonsimulated crop proportions of a
grower or over the whole landscape in a model.

6.3 Long-term crop proportions

For a fixed rotation, the crop proportion over fbag-term is equal to one over the
number of crops, e.g. for the rotation a in Figbire the long-term proportion of every
crop is 1/5 = 0.20. However, as wheat occurs twtedpng-term proportion equals 0.4
(2 * 1/5). For flexible crop rotations, the calclibm is more complex and uses the
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properties of transition matrices to estimatefitfFogure 6.3. By multiplying the matrix
by itself many times (which can be called the “burrperiod”, default value: 200
times), the resulting matrices converge towardteady state. A steady state may only
be reached if the probabilities in the transitioatmx are between 0 and 1 exclusively.
In the case of a transition matrix containing O dndsuch as in fixed rotations, the
steady state is evaluated by carrying out furthedtiplications (called a “saving
period”, default value: 100 times) and averaging tbBsulting matrices. After each
multiplication, a rounding check is carried outfaoce the rows of the matrix to sum to
1 exactly.

0.2 0.5 03
™M, | 0.6 00 04
0.1 09 00

Rounding check
— aim: sum of each row = 1 exactly
1 u ij— Mij x
fill up (X=Xl Ey)

M, | MM | = ™,

¥

™, ol MMy | — ™,

Burn-in period (default 200)

= converge towards one unique matrix

1.‘ L R R N R " {If "DI: Dr "1" In malrl:’;. the
convergence is no longer guaranteed)

ThMygg | »< | TMi | — | TMagg
; [
e Saving period (default 100)
mm > ™ init - mzm
save mean of each column (each crop)

 snadaaddbALEEIISAALEAS LI at the end: average of all the means
- longterm proportions of each crops

TMage | >< | TMy | — | TMag

0.3 040 036

Figure 6.3: Calculation of long-term crop propomsdrom transition matrices.

As an example, consider the crop rotation b in g1, represented by the transition
matrix b in Figure 6.2. The matrix multiplicatiooroverged to the following long-term
Crop proportions: fgar bee= 0.2, faliow = 0.06, Bpring barley 1= 0.07, Rite drilled whea= 0.07,
Pwheat 1= 0.13, [Qpring barley 2= 0.07, Beans= 0.1, Rilseed rape— 0.1, Ruheat 2= 0.2. The result
for sugar beet can be simply exemplified. As sumgaat is always the crop grown in the
first year of the rotation, it occurs every fiveayee.g. a long-term crop proportion of
0.2.
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Knowledge of the long-term crop proportions of tmta is useful when aiming at
controlling the crop proportions over several feelnt even at the landscape level. For
example to achieve 30% of wheat over the whole deaple over 10 years, the
proportion of wheat over all the rotations in fielchust reach this value. Therefore by
varying the crop proportions of each rotation, thproportions over the whole
landscape can be controlled and modelled.

6.4 Transition between rotations

The use of transition matrices can be further edgdnto represent the transitions
between the crop rotations themselves. The cragioot on a field may change over
time due to fluctuations in market prices of cropsn environmental conditions such as
climate change. For example a farmer might wanalternate between a three years
fixed crop rotation, R1 (wheat, oilseed rape, bgaarsd a two years fixed crop rotation,
R2, (wheat, oilseed rape), Figure 6.4.

|—>wheat—h oilseed rape —»beans —|

a. Rotation 1 (R1)

|—> wheat — oilseed rape —|

b. Rotation 2 (R2)

Q1;~»R@

c. Transitions between rotations R1 & R2

Figure 6.4: Diagram of transitions between two widlial crop rotations.

The choice between the two rotations might be drivg the relative market prices of
the three crops, the incidence of pests or diseaseyven climatic conditions. The
transitions between the two rotations can be reptesl as a stochastic process, and
thus by transition matrices. The square matrix sidlte probabilities of transitions
between one rotation to itself, or to the otheatioh (Table 6.1). The probability of
rotation 1 after itself is noted as the probabitityand rotation 2 after rotation, 1 - r, as
the sum of each row must equal 1.
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Table 6.1: Transition matrix between two crop rotas

Current year

) Rotation Rotation
Previous R4 Ro
year
Rotation R1 r 1-r
Fotation B2 1-5 5

The system now consists of three transition matridee. rotation 1, rotation 2,
transitions between rotation 1 and 2, which is mathtically cumbersome. This system
can be simplified by combining the three transitimatrices into one, denotednl)
(Table 6.2).

Table 6.2: Overall transition matrix between tworotations (WJv)

Current year

(R1) (R2)
Wheat 03R Beans Wheat 03R

Wheat ] r ] (1-rf2 (A1-r/2
Previous (R1) 05k ] 0 r (1-rp/r2 (1-r)/2
Year Beans r 0 0 (1-rpf2 1-r/2

Wheat {(1-s)/3 (1-s5)/3 (1-s)/3 0 5

(RZ)
O5R (1-s)/3 (1-5)/3 (1-s)/3 5 ]

The overall transition matrix & is 5 x 5, composed of four blocks that represeat th
transitions between individual crops of rotation &1x 3 top left block), R2 (2 x 2
bottom right block), R1 to R2 (3 x 2 top right bkdand R2 to R1 (2 x 3 bottom left
block). The entries of the transition from R1 to &Iid R2 and R2, are a copy of the
individual transition matrices R1 and R2, multigliey the probability of remaining
within their respective rotations. The entries g transition from R1 to R2 and R2 to
R1 represent the probability of a change from a cropme rotation to a crop in a
different rotation. For simplicity it is assumedatiwhen such an event occurs the crop
in the new rotation is chosen at random, although is not a strictly necessary
condition. In this case of random choice, eacthosé entries is constructed by dividing
the probability of changing from one rotation te tther by the number of crops in the
new rotation. This process may easily be generhlisdransitions between more than
two rotations; the single overall matrixplJ that results will always be square with the
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number of rows and columns equal to the sum ofniln@ber of crops over all the
individual rotations.

The transition between rotations could be linkeddme external driving trend, such as
climatic change, for example rotation R2 may becomoee likely than rotation R1 over
the next 50 years. In those conditions, fields witation R1 would switch to R2 over
time. Here, for simplicity, we disallow a reversitm rotation R1 once a change has
been made from R1 to R2, so s = 1. But now, rfignation of time. For example,
consider the situation where a transition from & R2 would have been unthinkable at
the beginning of the present century, but the gudityof which increases steadily year
by year until, by 2050, it becomes inevitable. sTmay be modelled by the equation:
r = (2050 - Y)/50, where Y represents the curregary It is easy to substitute this
variable value for r into software that implemearsalgorithm to model such change.

6.5 Conclusion

In this chapter, the crop rotations, as preseme8eiction 3.1.2 Agronomic constraints
(p.15), were classified into four types rangingnirgtrict rotations (i.e. fixed sequence
of crops) to flexible rotations (i.e. non-cyclicahd variable rotation length). To assure
the usefulness of the LandSFACTS model, all thevatigpes of crop rotation must be
equally mathematically handled in the model. Indtemodelling the decision-making
process of farmers, the choice of crops to grow wtghastically modelled. By
assuming that choosing a crop only depends upoprdngously grown crop, Markov
chains (transition matrices) can be used. The ittangnatrices define the probability
of growing a crop after any other crop within tleg¢ation. For any restrictions on crop
successions spanning over more than two yearsirémsition matrices should be
complemented by constraints, e.g. return periock@h. From transition matrices, long-
term crop proportions can be calculated, thus pirogia tool to control them within the
LandSFACTS model. The use of transition matrices loa further extended to model
transition between crop rotations.

In the next chapter (Chapter 7), the integratiothefrotations within the LandSFACTS
model is detailed, alongside with the descriptibwhbole model.
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7 Description of the LandSFACTS model

The specifications for the LandSFACTS model weritkd in Chapter 2. In brief, the
LandSFACTS model is a research tool to facilithie $etting up of scenarios of crop
spatio-temporal arrangement at the landscape sealbin a GM-conventional
coexistence context. After analysing publishedrdiiere relevant to the aims of the
LandSFACTS model (Chapter 3), two lacking topicsrevdefined (Chapter 4) and
developed: (i) statistical metrics to measure crgpatio-temporal patterns (Chapter 5),
and (ii) mathematical integration of crop rotati¢g@hapter 6).

In this chapter, by using conclusions drawn frotrtted previous chapters, the model is
assembled. At first, the model will be defined with distinct characteristics and the
general modelling approach (Section 7.1). Themtbdel inputs, i.e. agronomic inputs
and model parameters, are detailed (Section 7o8pwed by the description of the

main process of the allocation of crops to fieldgrothe years (Section 7.3), i.e. the
“CropAllocation” program. Afterwards the model outp, i.e. crop allocation and

difficulty indexes of finding authorised allocatioare detailed and their interpretations
explained (Section 7.4). The chapter is concluded details on the implementation of

the model, including the program language, datan&y model executable and the
availability of the LandSFACTS software (Sectio®)7.This chapter has been partly
published in conference proceedings (Castellazal, 2007a), and will be the subject
of a peer-reviewed article.

7.1 LandSFACTS model definition

7.1.1 Aim of the model

The specifications of the LandSFACTS model havenbeetermined from multiple
discussions with end-users in Chapter 2. The aisifaathe LandSFACTS model to be
a scientific research tool, which allocates craps fields, to meet user-specified crop
spatio-temporal arrangements, using an empiricdl satistical approach. The model
must meet the needs for creating GM coexistenc@asios, such as spatial and
temporal separation distances between crops, hétlaim of being used by researchers
with agronomic knowledge of the landscape studied.
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7.1.2 Distinct characteristics of the model

The LandSFACTS model has three distinct charatiesisn comparison with published
models; they are reported below.

- The model’s crop allocation to fields is aimed e&ahing a user-specified spatio-
temporal arrangement of crops, using empirical gtatistical approach. Therefore,
a substantial part of the decision-making proceasihg to the crop arrangements
is not taken in account.

- The model must be useable on any European landsthpe no agronomic
information is intrinsic. The model should only pide the structure to input site-
specific agronomic rules.

- The model aims at allocating a crop to every figld every year of simulation.
Thus the spatial and temporal unit of the modéhésfield and a year respectively.
The fields are represented as polygons with boueslanchangeable through time,
field merging or divisions are not considered.

7.1.3 General modelling approach

As reported in Chapter 2, the model will simulateectly the crop arrangements by
using an empirical and statistical approach. Tleeethe core modelling variables are
kept to the strict minimum of the crops, the fieldsmd the crop rotations. Further
variables, aimed at controlling the crop arranges)are the three types of constraints:
(i) spatial constraints, imposing separation distgn between crops, (i) temporal
constraints, imposing return period and maximumetipn of crops on fields and
forbidden crop sequences, and (iii) yearly croppprion constraints limiting the area
proportions over the whole landscape. These vasalvere derived from the review on
the constraints influencing the crop arrangements $ection 3.1: Origin of crop
arrangements, p.15).

In addition to the strict constraints, general t®nn spatio-temporal patterns of the
crops are controlled by using the statistical asedydeveloped in Section 5.1 (New
statistical analyses on crops’ spatial and temppadierns, p.45). The patterns result
from the coordination between crop rotations ofidBe The spatial patterns, e.g.
dispersion of wheat over the whole landscape ohigfer concentration to specific

areas, are mainly directed by the spatial repantitof the rotations in fields. The

temporal pattern mainly results from the coordmatof the initial crops in the fields,

e.g. if all the rotations in fields start with te@me crop or if they are shifted in time.
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The constraints and patterns of crops do not hawetmodelled at the same time. The
pattern influences the general trend on the whateldcape and does concern all the
crops in all the fields at the same time. On theohand, the constraints have a more
localised influence, for example if two fields, owéh GM and one with non-GM crop
are too close, or, if the current crop sequencea@pecific field is forbidden. The
pattern should thus be imposed on the landscape arde to influence the rotation
spatial repartition and the initial crops, wherdélas constraints could be checked for
every year of crop allocation. The crop rotatiols® daave a major influence on the crop
temporal arrangement, as it initially dictates ¢h&p successions.

7.1.4 Structure of the LandSFACTS model

To use the LandSFACTS model two steps are requfiedn initialisation phase - the

preparation of the input data for crop allocatiorfields (i.e. simulation phase); and (ii)

a simulation phase — crops are allocated to figldsugh years, while respecting the
user-defined spatial and temporal arrangement efctbps (crop constraints, iteration
parameters, etc.). To support the initialisatioagghparticularly in case of missing data
or new scenario testing, two programs are availableelp with the rotation allocation

to fields (RotationFields) and with the initial p®in each field (InitialCrops). The

simulation phase (i.e. crop allocation to fieldsy solely comprised of the

“CropAllocation program”. The individual inputs, fputs and links of the three

programs are presented in FigureEfrbr! Reference source not found.
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Figure 7.1: LandSFACTS model components and program

The elements with grey background are optional ecomepts. All the components and
processes presented in the diagram are part ofitligalisation phase”, except for the
CropAllocation program which represents the “sintida phase”, and the
LandSFACTS outputs ( crops in fields for every yaar difficulty indexes).

In the following section, the initialisation phas&h the inputs to the “CropAllocation

program” is described (Section 7.2), then the mesamntrolling the crop allocation to
fields is detailed (Section 7.3). The outputs of Simulation (Section 7.4) and then
details on the technical implementation of the nh¢8ection 7.5) are reported.

7.2 LandSFACTS initialisation phase: inputs to CropAllocation
program

The LandSFACTS model integrates multiple elementgrovide a crop allocation
meeting all the user requirements. As showkiror! Reference source not found,
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the model inputs are interrelated. The definitibthe crops and the list of fields are the
two core inputs, on which other inputs are buiieBpatial extent of crops is controlled
with the list of “possible crops in fields”. Theogr rotations have the crops as their main
components. Then a crop rotation must be allocitedach field, along with the crop
to grow in the first year. Specific constraintsarops’ temporal and spatial arrangement
and yearly crop proportions are available. Furiheuts control the behaviour of the
model during the iteration process. In this chapiee inputs of the simulation (crop
allocation) are detailed successively. They area@thpulsory for the model, except if
specifically stated otherwise.

7.2.1 Crops

Crops are the smallest unit, which are yearly alled to every field. All the crops to be
allocated within the simulation must be set ughatdtart.

7.2.2 Fields

Fields are the spatial unit on which the cropstsimg allocated, and they must have
fixed boundaries through all the years. They missi be simple polygons (defined as a
closed line with no line crossing), with known aemd coordinates if the spatial

patterns are to be controlled, and with known afghe crop proportions are to be

controlled (long-term proportions or yearly cropjportions).

7.2.3 Possible crops in fields

The spatial extent of crops might need to be lidhite specific fields. For example,

maize is preferably grown on low slope levels toitisoil erosion and close to water
sources to allow the irrigation of the crop. Focledield, the available crops must be
specified, and only those crops will subsequengiyalbowed to be grown in those fields.
Therefore only crop rotations which have all treiops authorised on the field can be
chosen.

7.2.4 Crop rotations

The crop rotations are integrated within the madetransition matrices (cf. Chapter 6:
Mathematical representation of crop rotation p.8%je transition matrices regulate the
probability of growing a crop depending only upd fprevious crop in the field. The
long-term crop proportions must be calculated farhetransition matrix.
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7.2.5 Crop rotation for each field and the optional “RotationFields” program

The model requires one crop rotation per field. BHecation of a crop rotation per
field, limits the possible spatial repartition detcrops over the landscape, particularly
if the available crop rotations incorporate diffe&rerops. The crop rotations for each
field might be provided by a survey carried outtba studied landscape. However, if
the exact location of the rotation in the landsaapenknown or if new allocation of the
rotations in the landscape must be tested, the omgr use the “RotationFields”
program.

The “RotationFields” program allocates the rotasiom the fields. The user may specify
either or both of the following parameters: (i) ides long-term proportion of any or all
crops by area and the standard deviation permiitted the target, and (ii) the desired
spatial patterns of the crop rotations. The spai@dern is controlled by the statistical
analysis based on the “E analysis” defined in $ack.1.3.2 (General spatial trend (E
analysis), p.57). Two other parameters are indsgae: the maximum number of
iterations to obtain the allocation and the chatasing or not using weighted rotations
to optimise the rotation allocation. The weightetation option is a preliminary step
within the program, which alters the probabilityatla field is allocated any particular
rotation, without considering the area of the fillreas are always considered within
subsequent steps of the program). If the weightéation option is not used then each
field has an equal probability of being allocatexy af the rotations. If the weighted
rotation option is selected, then each rotatiogiven a random weight, which affects
accordingly its probability for being chosen forydreld. The weighted rotations option
is only useful if fields have relatively similareas. It should also be noted that the use
of the weighted rotation option may sometimes pitevextreme allocations (e.g. if
rotation x is given a weight of 95%, this rotatioll be over-represented within the
whole landscape).

Program inputs

- Possible crops in fields

- Rotation definitions as transition matrices

- Target long-term proportions of any crops + stadddeviation permitted — not
compulsory

- Target interval for the spatial pattern of cropatmns (Ep values, cf. Section
5.1.3.2: General spatial trend (E analysis), p-bi@dt compulsory

- Number of randomizations for creating the randotmracurve for the statistical
test
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- Maximum number of iterations
- The use, or not, of “weighted rotation” to optimibe allocation process

Program approach

The program goes through the following steps ireard

1. Crop rotations with a forbidden crop (i.e. locr@p proportion target equal to 0) are
not considered within the program.

2. Each rotation is given an equal probability éodmosen when allocating a rotation to
every field.

3. If “weighted rotations” was chosen, the abovaatgrobabilities will be altered into
uneven probabilities of choosing the rotations.

- Each rotation is given a random weight (the wedgghdll rotations adds up to 1).

- Calculate the long-term proportions of each crognhe current random weighing

- Check how many crop proportion targets are met.

- If more targets are met than the current best his turrent random weighting
replaces the current best weighing.

- If less targets are met than the current best his ¢urrent random weighing is
deleted, and a new random weighting is createds Bup keeps on iterating until
the maximum number of iterations is reached.

- If all targets of long-term crop proportions aretroe if the maximum number of
iteration is reached, the program proceeds to4tep

4. For each field, the possible rotations are detezd (using possible crops in fields)
5. For each field, a rotation is randomly allocabgdusing the rotation weights.

- If all targets of crop long-term proportions ancatsgl patterns are met --> the
rotation allocation is accepted

- if not, the program goes to step 5 until the maximoumber of iterations is
reached.

Program outputs
- A rotation for each field
- Crop long-term proportions over the landscape efrtitation allocation
- Spatial pattern value (E and Ep) of the rotatidocaltion
- Report on the iteration process
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7.2.6 Initial crops for each field and the optional “InitialCrops” program

The initial crops determine the crops, from thédfierop rotation, to be grown in the
first year of simulation. The coordination of thetial crops between fields influences
the temporal patterns of the crops. An initial cropst be specified for every field. If
they are not, then a random allocation option iailakle. If the random allocation
option is activated, the “CropAllocation programillwandomly choose an initial crop
when starting.

If the user wants to coordinate the initial croggween fields towards a specific crop
temporal pattern, the InitialCrops program is aalgé. The program will randomly
allocate an initial crop to each field, and chetckhe current crops temporal patterns
meet the requirements. The statistical analystb®fcrops temporal pattern is based on
the “Randomisation test of percentage of coefficanariation of crops through time”
defined in Chapter 5.1.2.3 (Crop temporal varigpitiompared to random simulations,
p.51).

Program inputs

- Number of randomisations for creating the randotromacurve for the statistical
test (default: 1,000 randomisations)

- Number of years on which the coefficient of vapatiis calculated (default: 100
years)

- Two choices of randomisation processes: afterladfallocation of initial crops to
fields, the failed allocation has one initial cralpered (improve_ iteration) or all are
re-randomised (random_iteration)

- Maximum number of iterations until allocation iapted.

- Crop rotations as transition matrices

- Long-term crop proportions for each rotation

- A crop rotation per field

- Field areas

- Target interval for the temporal pattern of inittabps

Program approach

The program goes through the following steps chicgically:

1. The randomization curve for the temporal patteralysis is created by using
randomly allocated initial crops to each field.

2. The temporal pattern of the current initial cropsalculated
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3. If the current CVp value is within the targess the current initial crop is accepted
and the program stops.

4. If not, the iteration process starts:

5. If improve_ iteration was selecte¢t a randomly chosen field has a new random
initial crop.

6. If random__ iteration was selectex all the fields have new random initial crops.

7. The temporal pattern of the current initial cropsalculated

8. If the current CVp value is within the targess the current initial crop is accepted
and the program stops.

9. If not: the program goes to step 5.

Program outputs
- An initial crop for each field
- Temporal pattern value (%CV and CVp) of the rota@dlocation
- Report on the iteration process

7.2.7 Crop constraints

Three broad types of constraints can control furtihe crop arrangements: spatial
constraints, temporal constraints and the yeayp @roportion constraints. Each type
of constraint is checked with the proposed cropcaliion. Crop allocations can only be
accepted if they meet all of the constraints. Tétkirey up and use of crop constraints
are not compulsory.

7.2.7.1 Spatial constraints

The spatial constraints aim at enforcing separatistances between two individual
types of crops grown in fields. Two fields are ddesed as neighbours, if the shortest
distance between their outside boundaries is withen specified distance. The main
GIS function used is the “positive buffer” functioa.g. fields boundaries expanded
outwards by the separation distance. If two crojpls gpatial constraints are too close to
each other, one of them will have to be changee. gregram allows setting priorities
to crops alteration. For example for a specificxistence scenario, the presence of
conventional crops might prevent GM crops beingwgran the neighbourhood; to
integrate this constraint within LandSFACTS, the @idp is given the highest priority
in being altered in case of conflict with convenaab crops. The number of individual
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spatial constraints is not limited. This constraygue is checked for every single yearly
crop allocation, over the whole landscape.

7.2.7.2 Temporal constraints

The temporal constraints aim at enforcing ruleshencrop succession. Three types of
temporal constraints are available: (i) return gebrof crops, or group of crops, on a
field, i.e. temporal separation between crops; rigximum successive growing of a
crop, or group of crops on a field; (iii) forbiddenop sequence. Those constraints are
inspired by classical agronomic and rotational met®ndations. The temporal
constraints are linked to individual fields in orde reflect the pluralism of individual
farmers’ decisions. The yearly crop allocationsarecked for their agreement with the
temporal constraints in relation to the precedenp @allocations.

7.2.7.3 Yearly crop proportion constraints

A target area proportion can be set up for evepp @nd year, with an authorised
standard deviation. Specifying a target for allpsr@and years is not compulsory. Every
yearly crop allocation must meet the specifiedatgdor the year and the crops.

7.2.8 lteration options and penalties

The iteration options control the behaviour of thedel, when the program attempts to
overcome an unauthorised crop allocation, by chrapgome of the crop allocations.
Four iteration options are available:

- Option 1. In this option, all fields, whether prebiatic or not have their crop
randomly altered. If this option is used during thist year of simulation, a new
random initial crop is chosen for every field. Fory other year of simulation, a
new choice of crop is made within the transitiontnoas for every field. This
option is not an optimisation process.

- Option 2.1. In this option, one randomly chosenbprmatic field has its crop
randomly altered. If this option is used during finst year of simulation, the initial
crop of one problematic field is randomly choseor. &y other year, a new choice
of crop is made within the transition matrix of eolplematic field. The choice of
the problematic field to alter is detailed in Senti7.3.2 (Problematic-points
temporary store, p.107).

- Option 2.2. In this option, the one randomly chopesblematic field (see Option
2.1) has its crop exchanged with a crop from timeeserop group set up by the user
(e.g. crops with the same function within a rotafio
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- Option 2.3. In this option, the one randomly chopesblematic field (see Option
2.1) has its crop exchanged with the universal .cidye universal crop cannot be
linked with any temporal or spatial constraints.

For each iteration option, the user specifies tgimum number of iterations allowed.
If all options are enabled, they will be carried successively until the crop allocation
for the current year is accepted.

The order of the options is intentional, as eactioapprovides a more specific crop
alteration than the previous options, which incesaghe probability of finding an
authorised crop allocation. Option 1 is the onlti@mp without optimisation, i.e. a
complete new crop allocation for every field is gexted every time; whereas the other
three options are optimising, as they improve dauarent” crop allocation by altering
only the crop of one problematic field. Option luseful to provide a completely new
random allocation without any optimisation. Althdugery often option 1 will not find
an authorised crop allocation, however it has @ipeause. For example, allowing 10
iterations with option 1 as a precursor to anyroation iteration options (2.1, 2.2, and
2.3), means that the “best” crop allocation outl6f random ones (from Option 1)
would be used for optimisation. Therefore the ogation process has more chance to
be started from a “normal” crop allocation insteafdan extremely bad one. This
technique would also decrease output variabilittwken simulations with the same
inputs (e.g. standard deviation of overall penaltienumber of iterations used).

Both Option 1 and Option 2.1 provide new randomisien(s) within the crop rotations.
As they fully respect the crop rotations, both ops can be set up to high number of
maximum iteration without altering the quality dfet crop allocation. Option 1 and
Option 2.1 differentiate by their process. Optiod & based upon an optimisation
process, as it tries to improve upon a current @fgration by altering only one field
with an unauthorised crop, whereas Option 1 is specific, as it alters all the crops,
regardless of their current agreement to consaDtie to its optimisation technique,
Option 2.1 is more efficient and reliable than ©Optil to find an authorised crop
allocation.

Option 2.2 uses the optimisation technique by ialgethe crop of only one problematic
field, as Option 2.1. However the crop rotations aot respected, as the problematic
crop is exchanged for a crop of the same crop gsatijup by the user. For example a
group could be crops with the same function withiotation, or a-like crops.
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Option 2.3 also uses the optimisation techniquetepyacing a problematic crop by a
“universal crop” chosen by the user. The univecsap option is the last chance to find
an authorised crop allocation. A universal crop rbayfallow for example, i.e. if no
crops can be grown on a specific field, it is left fallow for a year. In order to be
authorised on any field, the model obliges the asehoosing only a crop, which is not
linked to any spatial or temporal constraints. Tthes universal crop will always agree
with all the constraints. There is one exceptiome do the possibility of imposing a
yearly crop proportion for the universal crop. Téfere using the universal crop might
not improve a crop allocation if any of the crofmses not meet its targeted yearly crop
proportion. For example, if GM oilseed rape shdwddat least in 5% of the arable area,
and a GM oilseed rape field is spatially too cldseconventional one (i.e. spatial
constraint), by exchanging the GM crop for the ersal crop (e.g. fallow), the area of
GM oilseed rape may fall below 5% and thus not bi@ised. For some scenario, it
might be useful to use as the universal crop ameéaircrop”, e.g. “flag crop”, in order
to keep track of which fields couldn’t comply wittie crop allocation constraints.

Depending upon the aims of the simulation and thesitaints imposed on the crop
allocation, the maximum iteration options must lofusted. The impact of iteration
options on the authorised crop allocation and endifficulty indices of the simulation,

are further explored in Section 8.6 (Sensitivityalgees, p.120). Section 8.8
(Recommendations on model use, p.142) presentsreeadations for their setting up.

A penalty value may also be set up for each itenatiption. The penalty value will be
applied to every field on which an iteration optiatas successfully used (improved
crop allocation). Thus, the simulation keeps aktraichow often the crops in specific
fields are changed to reach the desired crop pattdrhe penalties to the fields will
allow comparison between simulations, for exampte,evaluate the difficulty of
obtaining an authorised crop allocation if the nmetndy separation distance is increased
between GM oilseed rape and conventional varieties.

Furthermore, the model records the number of tieaeh field has an unauthorised crop
allocation, and which constraint it failed. The mpsoblematic fields and constraints
may therefore be spotted, providing a tool to dlber scenarios either to facilitate the
allocation or to increase the difficulty.

Cranfield University Marie Castellazzi 2007



105

7.2.9 Simulated annealing

The simulated annealing process is a generic #tgoror optimisation, which aims at
increasing the probability of reaching a desireddf by preventing the program to be
blocked at a local minimum. For example, the log&hind this technique can be
compared to the situation of walking in a labyrintle. when blocked at a dead-end
(local minimum), it is necessary to walk back tpravious intersection and take a new
pathway. In the case of the LandSFACTS model, tlogram may be blocked at an
unauthorised crop allocation, which cannot be inpdbfurther by altering only one
crop without going back to a “worse allocation”arder to find a new pathway towards
the desired allocation. The exact process is exgtbabelow.

The program tries to overcome an unauthorised abpcation by altering the
“currently best” crop allocation using the iteratioptions. When only one crop is
altered at a time (any option except 1), the pnograay not be able to improve the
“currently best” crop allocation by altering onlyceop. A worse crop allocation would
need to be accepted as the “currently best” (séegwards) to unblock the program and
thus increase the chance of finding an authoriseg allocation.

The value of simulated annealing influences theedpand chances of reaching an
acceptable crop allocation. A low value, such as 2, would accept “worse” situations
very often, and the optimisation process would log&v {many iterations required) or
even nonexistent. A high value, such as 1,000, dvptdvide a way out of local minima
only after having checked 1,000 crop alterationgchSa high value requires an even
higher maximum number of iterations to be allowiethding the right balance for the
simulated annealing value is important, to avohlaninima, while not slowing down
the iteration process.

The use of the simulated annealing process complidgs the requirement that an
authorised crop allocation (i.e. successful allocgt must meet all the constraints
specified by the user.

7.2.10 Simulation parameters

The simulation parameters are comprised of the meunolb year of crop allocations
required, and the constraints that need to be euetdr this simulation (they can be
disabled, if necessary).
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7.3 LandSFACTS simulation phase: process of CropAllocabn
program (allocation of crops to fields)

The simulation phase is comprised of only one @ogcalled “CropAllocation”. The
program allocates the crops to the fields, by usivegcrop rotations of the fields and
their initial crops, and by respecting temporal apatial constraints, and the yearly
crop proportion.

7.3.1 Overview of CropAllocation process

The first step of the program is to check the cehee of the inputs. For example the
rotations assigned to the fields (section 7.2.%ughall be defined as rotations (7.2.4)
and with calculated long-term crop proportions.

The model starts by assigning the initial cropthifields, Figure 7.2. If random initial
crop was specified, it is carried out. This promgbseop allocation is checked for its
agreement with the spatial constraints (separaistances between crops), and the
yearly crop proportion for the initial year (yeay. 0f the proposed crop allocation
respects them, it is authorised and saved. Thergmogow consider the next year. For
each field, a new crop is randomly chosen usingrdesition matrix of their assigned
rotation and considering the crop allocated for pnevious year. The proposed crop
allocation is checked for its agreement with thengeral constraints, yearly crop
proportions, and spatial constraints. If the pregbsrop allocation respects them all, it
Is authorised, saved, and the program moves todakeyear. The program will keep on
allocating the crops to the fields, for all theusgd years.
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Figure 7.2: Overview of CropAllocation program

7.3.2 Problematic-points temporary store

For every iteration, the crop allocations are cleeckor their agreement with the
constraints, the problematic-points temporary steo®rds the fields with unauthorised
crop allocations, i.e. not complying with consttainThe store is reset before each new
iteration. The problematic-points store aims (i) emsessing the number of failed
constraints of the current crop allocation ovenhmwle landscape (sum of the points of
all the fields); (ii) at identifying the fields thahould have their crop changed.

The problematic-points are calculated over all twnstraints. For the temporal
constraints, if a crop cannot be authorised orela filue to previous crops, a point is
added to the field problematic-point temporary etéfor the yearly crop proportions, if
any crop proportion over the whole landscape israspected, all the fields have one
point added to their problematic-point temporargret In addition, the difference
between the current crop proportion and the targe¢s recorded. For the spatial
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constraints, if two crops are closer to each othan authorised, both fields have one
point added to their problematic-point temporaoret

The sum of the problematic-points for all the feefutovides an overall estimation of the
closeness to the desired allocation. The closerstime is to null, the “better” is the

allocation. This sum is indispensable to compare trop allocations and deciding
which one is closer to the desired allocation.

The problematic-points are also useful to deternteefields, which should have their
crop altered. The fields with the highest valueghair problematic-point temporary
store are given a higher probability of having theeop altered. For this purpose, some
fields have their problematic-points altered tooptise the resolution of temporal
problems over spatial problem. The points of adfiate set to null in the following
circumstances: if the field does not meet a spatiaktraint and (i) the field’s crop does
not have the highest level of priority of beingeadtd (cf. chapter 7.2.7.1: Spatial
constraints, p.101); (ii) the field’s crop has thighest level of priority of being altered
but this field meets all the non-spatial constaimhen other fields do not.

7.3.3 Overcoming unauthorised crop allocation

During the simulation, if a crop allocation doest noeet all the constraints, the
allocation is “unauthorised”. The program then malstr this crop allocation, until it is
“authorised”. It is the iteration process. The euntrcrop allocation to be improved is
labelled as “currently best”.

A new crop allocation is proposed by altering tharfently best” one. The alteration is
done by using the iteration options controlling thehaviour of the model (7.2.8:

Iteration options, p.102). If only one crop is t® &ltered at a time (any iteration option
except 1), the program chooses one field randorobpraingly to the problematic-

points (7.3.2).

This new crop allocation is checked for its compdia with the constraints. If all the
constraints are met, the crop allocation is ausiealj and thus this iteration process is
stopped. If all the constraints are not met, tlegam must decide if the new allocation
is closer to the desired landscape than the “ctiyrdrest” one. If the sum of its
problematic-points temporary store is lower or éqoahe one of the “currently best”,
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the new allocation overwrites the “currently bedft'hot, it is deleted. Then the program
goes to the next iteration.

Every time, the alteration of a crop in a field moyes the crop allocation, a penalty is
applied to the field. The penalties to fields ardependent from the problematic-point
temporary store. The penalties to fields provide eaaluation of the difficulty of
obtaining an authorised crop allocation (i.e. hoansn fields had to have their crops
altered, and how many times).

If no crop allocation is accepted after the maximowmmber of iterations is used, the
simulation is prematurely stopped. The model reptarthe user, the number of years of
successful allocation and indicates which yeaetaino crop allocation are given for
the failed year), and which constraints causeddthere.

7.4 LandSFACTS outputs and interpretations

The model provides two main outputs: the crop allion to fields and the difficulty
indexes. Both are detailed below.

7.4.1 Crop allocation to fields

The major output of the LandSFACTS simulation israp for every field and every
successful year. Only crop allocations agreeindn it the specified constraints, are
considered as successful and thus reported tosée A log file is also provided to
document the inputs, iteration processes and autduhe simulation.

7.4.2 Difficulty indexes of the obtained crop allocations

The difficulty of obtaining a crop allocation isauated by using three main indices: (i)
overall penalties to fields, (i) number of itemis used, (iii) number of conditions
which had to be overcome during the iteration psecd@he calculation of the indices is
explained in section 7.2.8 (lteration options, @YLO'he overall penalties to fields index
aim at providing an overall evaluation of the diffity of obtaining the crop allocations.
The number of iterations used gives an indicationhow difficult it was to find a
correct crop allocation. The last index providesreight on how many constraints had
to be overcome during the iteration process.
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The difficulty indexes provide an evaluation of ttiéficulty that the software has to
generate a crop allocation meeting all the useciBpé constraints. These indexes are
particularly useful to compare scenarios, for exi@mp determine if an increased
separation distance between two crops affects iffieutty of finding a valid crop
allocation. It should be noted that the value fachedifficulty index is specific to one
particular simulation (i.e. they depend on randdmoices made within the model).
Therefore to estimate the difficulty of a specsimenario, LandSFACTS should be run
many times (e.g. a strict minimum of 10 times ftatistically significant estimation,
100 times would be more relevant but is not alwagsible due to lengthy run times)
with the same inputs, in order to provide a rangdaifficulty indices that could be
analysed subsequently.

7.5 LandSFACTS implementation

7.5.1 Program language

The LandSFACTS model is available as three indepein@++ programs, written using
Bloodshed Dev-C++, version 4.9.9.1. a Bloodshedv&oke (open source software,
available on http://sourceforge.net), under a Miofo Windows environment. The
programs were built in a modular format designedatlitate the implementation of
further developments. The programs are comprehelygscommented upon to facilitate
program debugging and further developments.

7.5.2 Inputs and outputs format

The input tables and log files with the programulissare text files delimited with
tabulations, “.txt” extension. The data are withilatabase structure, cf. Appendix C.
The database structure has the advantage of beogcegse and effective way of storing
data, as it prevents redundancy and incoherenteeinlataset. User-friendly software
facilitating the data input for the LandSFACTS Cptograms is presented in Section
7.5.4.

7.5.3 Model executable and example datasets

The model executable and the source code are bhaila Appendix B in CD format.
An example dataset is also provided, with the dathe required text file format.
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7.5.4 LandSFACTS software

To facilitate the use of the LandSFACTS C++ progathey are embedded within the
LandSFACTS software, developed by Joanne Matthewsg of the SIGMEA project
(2005). The software provides graphical interfacéh wizards to facilitate the data
entry by the user, and manages the coherence aemdiencies of the data, by using a
database. The software provides many extra tamlenly cite a few: determination of
the areas, centroids, and neighbours of the fietita the landscape shapefile, display
of crops and rotation names instead of ID, autanadiculation of the long-term crop
proportions of each rotation and at the landscapel, checking of coherence between
inputs.

The LandSFACTS software is written in Python vansto4.3, and uses SQLite version
3.3.6 for database. The user interfaces are bpildsing PyQt version 4.1.1 based on
Qt version 4.1.2. The help file is created usindpiNtaker, version 7.3.

The LandSFACTS software version 1.6 was releasedhen8 June 2007, as open
source software under the GNU Public Licence. Tdfensre is complemented with a
() help file detailing users inputs, data intetpt®n, project examples and technical
information, (ii) example datasets and projectegslained in the help file, they are
based upon the SmallLandscape and BigLandscapefgdhapand (iii) a tutorial in
Microsoft PowerPoint format detailing the buildingp of a new project. They are
currently available within the Rothamsted Researchwebsite:
http://www.rothamsted.ac.uk/pie/LandSFACTShey are included in Appendix B in
digital format.

7.6 LandSFACTS current use

The LandSFACTS software and thus model is currenéiyng used by researchers to
investigates scenarios of the introduction of GMpsr within European landscapes,
within the SIGMEA project (2005). These current rgsare part of the following
research organisations: INRA (Institut Nationalla@&echerche Agronomique, France),
CETIOM (Centre technique interprofessionel des gilggux metropolitains, France),
UPS (Universite Paris Sud, France), CSL (Centrar®e Laboratory, UK).
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7.7 Conclusion

The LandSFACTS model as presented in this chagi®is at allocating crops to fields
to meet user-defined crop arrangements. The madefipproach and processes were
kept as simple as possible, in order to allow fitusers of the software to be fully
aware of the processes behind the crop allocatidmes control of the crop arrangements
is divided into two main sections, inputs contrgdli(i) temporal arrangement of crops:
crop rotations, temporal constraints, initial crapgields regulated by temporal patterns
(“InitialCrops” program) and yearly crop proportgynand (ii) spatial arrangements of
crops: possible crops in fields, crop rotation ields regulated by spatial patterns
(“RotationFields” program), and spatial constrainfthe above inputs are based upon
the definition of the crops and fields. Further utgp are required to control the
behaviour of the model in the search for the ddsirep allocation (iteration parameters
and simulated annealing parameter), and to recbed difficulty in obtaining it
(penalties to fields). The “CropAllocation program”based upon a linear programming
technique, complemented with a controlled simulaadealing process. For the first
year, the program allocates the crops to the fiakisg the initial crops in fields, this
proposed crop allocation is authorised if it agredth all the spatial, temporal
constraints and yearly crop proportions. In thisecahe program uses the crop rotation
to determine the next year's proposed crop allonoatif a crop allocation is not
authorised, it is improved by following the itetiparameters set up by the user, until
either the proposed allocation is authorised or phggram runs out of iterations
allowed. In this latter case, the program is stdpfgéne model outputs the authorised
crop allocation to fields and a report on the diffty of obtaining it.

The three programs composing the LandSFACTS madehwailable as stand-alone
C++ programs, with inputs and outputs as text fildewever to facilitate their use,
they are embedded within the LandSFACTS softwaegelbped by Joanne Matthews
as part of the SIGMEA project (2005). The softwprevides user-friendly interfaces
with wizards guiding the user’s inputs, and faatiihg data management. The software
is currently being used by researchers investigahe introduction of GM crops within
European landscapes, within the SIGMEA project §00

In the next chapter, the model is assessed tondieteiif it meet the requirements set up
by the users as specified in Chapter 2.
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8 Model assessment

The LandSFACTS model as presented in Chapterheisasult of the work carried out
in this thesis. The first step of the project wa&® tidentification of the model
specifications detailed with the end users (Chapg)erThe knowledge derived from
reviewing published research work (Chapter 3) adldwo determine a methodology for
the development of the model (Chapter 4). Spedifickesigned tool were required: (i)
new statistical analyses for spatial and tempaagtepns of crops (Chapter 5), and (ii) a
new mathematical representation of crop rotatiohafifer 6). Both tools were
integrated within the LandSFACTS model, as repoimte@hapter 7. The model and its
software are available in Appendix B. After designiand developing the model, a
further step is required: the model must be asddsséts fithess to purpose.

Models become more credible, and thus more likelpe used, after their fitness for
purpose has been assessed and is clearly docunteriteriusers of the model (Rykiel,
1996). The form of the assessment is dependent tipoaims of the model, and the
approach chosen. The chapter describes a reviemanfel assessment from the
literature, after which an aim is identified forethandSFACTS assessment. Then the
main steps of the assessment were carried out epdrted in sections on the
assessment of the conceptual model, the codeocagrin, the sensitivity analyses, and
finally a case study. The model assessment is ededl by general recommendations
on the model.

8.1 Model assessment in the literature

The model assessment must follow the steps of dprednt of the model (Refsgaard
and Henriksen, 2004; Rykiel, 1996; Sargent, 20@3e3ingeret al, 1979), cf. Figure
8.1.

Cranfield University Marie Castellazzi 2007



114

Conceptual
_—validity
Reality \
i _____________ e , Conceptual
Model analysis model
specifications i
[ 1 |
e isa’mu!aﬁ'r}n rogrammin E Sl
validation i prog 91 verification
\ : | v /
Model ____Inpuis setup Model
& inputs code
\ Model /
calibration

Figure 8.1: Diagram of modelling steps and assestsme

Adapted from Refsgaard and Henriksen (2004), Ryk8#96), and Sargent (2003)

By representing the system reality within the scapethe model specifications, a
conceptual model is built up. This step can besssskfor its conceptual validity. Then
the conceptual model is translated into model amieg programming. The code needs
to be verified. The user may then input parametthin the model, also called
calibration. And finally the model can be simulatesing those inputs in order to obtain
the model results. The assessment of this finplistthe model validation.

Model assessment and particularly the definitiohthe terms: validation, verification,
and calibration are the focus of much on-going telf@reske®t al, 1994; Pontiuset
al., 2004; Refsgaard and Henriksen, 2004; Rykiel, 199%6e controversy arises from
both semantic and conceptual philosophy.

Oreskes et al (1994) argue that verification is/quidssible on closed systems. As most
earth science models are unable to encompass aevdystem, they cannot be
considered as closed, thus their verification ispossible. Within this context,
verification can only be tested for the correct liempentation of the conceptual model
or algorithms to model codes (Hoover and Perry, 9198n order to prevent
unanticipated circumstances, Rykiel (1996) idesdiftwo types of code verification
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errors: (i) mechanical, e.g. programming errorgjallg solved by program debugging

and (ii) logical, e.g. the logic employed withiretprograms. Code verification is very

difficult for large models, therefore generally pthe common circumstances of use of
the model are being verified (Rykiel, 1996).

As stated by Oreskes et al (1994), validation dussaim at establishing if the model
accords with reality. A model can be considereddyai it doesn’t have any known or
detectable flaws (Oreskexst al, 1994), and if it fulfils its specific purpose (8ant,
2003). Sargent (2003) noted that the cost and tagaired for model validation over
the complete scope of the model is often too expendherefore, models are often
only tested on a limited range of intended applbcest, and are thus only partially
validated, or validated until proof of the contrary

In order to improve communication concerning thededion processes, Rykiel (1996)
advocates that three main elements should alwaysiteel when reporting any

validation processes: (i) the model’s purpose, th@ criteria that must be met for
validating the model, (iii) the context in whichetimodel is valid. If those elements are
not specified, the usefulness of the validatiorcpss is null, as it is unknown for what
the model has been validated.

Many different techniques of validation are repdngthin the literature (Rykiel, 1996;
Sargent, 2003), including qualitative and quantieatmeasures. The validation
techniques are very often specifically designeceteh model, the main techniques are:
comparison to other models, degeneration testseraet condition tests, face validity,
historical data validation, internal validity, parater variability or sensitivity analysis,
traces, predictive validation. Depending on theetgh model, the available data, and
time and cost constraints, one or several of trevalvalidation techniques are used.
For example, Pontius et al (2004) advocated foepssfor the validation of land-use
models: (i) budgets of the source of error; (iictompare the model to a Null model (no
changes between the initial landscape and thegtegdone), (iii) to compare the model
to a Random model (random changes); (iv) to perfrenanalysis at multiple scales.
The error budget is mainly composed of two elemethies errors of location and the
errors of quantity (Pontiust al, 2004). The determination of the respective pathe
error budget of the location and quantity erroregsential for identifying how to
improve the model further. Another example is pnésg by Baudry (2003), who used
random allocation of the crops into fields, in arttecompare with the impact of using
the “agronomic rules” on the crop allocation. Jaaris (2004) model validation aimed
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at determining if their crop allocation model cotlelp explain the choices of farmers,
and had no predictive purpose. The validation hadtivo following steps: at first only
the rules of crop succession were investigatech the second step considered the crop
allocation simulated against the real crop allarati

Model assessment is still the subject of much delsaid discussion. However for
determining the scope and application of models ihvaluable. Detailing the aim of
the assessment process and the techniques thatisaete for a particular model
assessment, as advised by Rykiel (1996) and Paoeitials(2004), is indispensable for a
good communication and understanding within thergdic community. Ideally model
assessment should be carried out by outsiderseahtidel development, particularly to
assure the independence of the assessment (S&Q@8j), However, the assessment of
the model in this thesis should provide useful imfation on the scope of the model, on
known restrictions and highlight possible enhangaseof the model. In the next
section, the precise aim of the LandSFACTS asseagsmpresented.

8.2 Aim of LandSFACTS assessment

The full assessment of the LandSFACTS model isideitsf the scope of this thesis,
due to time constraint. Therefore the aim of tlEsessment was the evaluation of the
credibility of the model within its normal scope wge. The normal use of the model is
defined as using the LandSFACTS model for obtaimrgp allocation meeting all the
crop arrangements specified by the user. The LaA@SS model is intended to be
used (i) to create scenarios of crop arrangem@nt# fill up incomplete datasets, and
(iii) to investigate the impacts of constraints @op arrangements. The model should
not be used to forecast or predict crop allocatibms only a scenario building tool,
respecting the users’ specifications of spatio-teralpcrop arrangements. Considering
the circumstances detailed above, the LandSFACT@ehis valid if (i) the obtained
crop allocations meet all the constraints specibgdhe user; and if (ii) the iteration
processes follow the parameters set up by the user.

8.3 Method of assessment

The model assessment was carried out in three: fig@yvaluation of the conceptual

model, (i) code verification, and (iii) sensitiyianalyses on iteration parameters and
separation distances. The assessment was alsoamaemiked with a case study. The
crop allocation obtained from the model could netdompared with historical data, as
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the model is not a forecasting tool. For the saeasan, the correct calibration of the
model, i.e. choice of the inputs, is the respotigitnf the user.

The LandSFACTS model is composed of three progr&osationFields, InitialCrops
and CropAllocation. The first two programs provige alternative way for the user to
set up specific inputs for the crop allocation. tNei interferes with the processes
within the CropAllocation program, which allocatesops to fields. Therefore their
assessment was limited to code verification. Thep8Hocation program, which
simulates the crop allocation to fields, is a cogmpprogram involving stochastic
decision making and constraint checking. Therefdrayas the main focus of the
assessment.

8.4 Assessment of conceptual model

After Sargent (2003), a conceptual model is vaiif)ithe assumptions and theories
behind the model are correct and if (ii) the stmuet logic, mathematical relations of the
model are “reasonable”. In relation to those pgitits conceptual model was examined
through the following topics: (i) temporal and sphtnit of crop allocation, (ii) crop
rotations, (iii) control on crop spatio-temporataargements, (iv) landscape as a unique
scale.

8.4.1 Temporal and spatial units

The main assumption of the model is its restrictiorallocating only one crop to one
field for every year. Two issues are linked to ti@striction: the fixed boundaries of the
fields over the years, and the limitation to onepcper year. The assumption of the
model is the fixed boundaries of the fields over ylkars. In agricultural landscape, field
boundaries are redefined over the years by mengitig other fields, subdivision into
smaller fields, or both at the same time. The L&WSTS software does not
incorporate this degree of complexity, and it isognised as being an issue for crop
allocation in some landscapes. The temporal réistnico one crop per year, is valid for
European agriculture, where harvesting is usualhual.

8.4.2 Crop rotations

The crop rotations represented as transition nestriand complemented with the
temporal constraints, direct the crop allocatiorfiedds over the years. This method
allows the modelling of fixed and flexible crop atbns. However, the model only
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integrates constant probabilities of transitioreyt cannot evolve through time. This
possibility of evolution would be important for malting evolving landscapes, such as
for climate change scenarios. A mitigation meastae be currently used by using
master transition matrices, which would regulagettiansition from one crop rotation to
another crop rotation (cf. Chapter 6.4: Transitietween rotations, p.90).

8.4.3 Control on crop spatio-temporal arrangements

The LandSFACTS model integrates various ways @fatly influencing the spatial and
temporal arrangement of crops within the landscapgee model controls the crop
arrangement with the crop rotations to fields, ispegmporal constraints of crops, using
empirical tests; and spatio-temporal patterns opsgr using statistical measures. The
limits of the crop patterns statistics were repbrie Chapter 5.1 (New statistical
analyses on crops’ spatial and temporal patterds)p

Moreover the control of the spatial and tempordtguas is currently outside of the
main simulation (RotationFields and InitialCrop®gram). Therefore the patterns are
fixed over the years, which can be considered dsa& back in evolving landscapes,
where crop rotations are highly variable (not fixed

8.4.4 Landscape as an unique scale

The analyses of spatio-temporal patterns on thguuly dataset cf. 5.2 (Crop pattern
analyses on landscape datasets, p.66), showedeadsggendency in the crop patterns.
Therefore the model should have provided the poisgibf controlling crop patterns at
different scales, such as farmers (group of fielded groups of farmers (e.g.
cooperatives). Due to time constraints, the cordrothe crop patterns is only available
at the landscape scale, instead of multiple scales.current conceptual model is not
wrong, but could benefit by integrating differenaikes of interactions.

8.4.5 Conclusion

The conceptual model of LandSFACTS has some impbrestrictions, such as the
limitation to allocating only one crop per yearxé field boundaries, constant crop
rotations, and a unique scale for crop patternrobrnthe model would greatly benefit
from overcoming them. However, the model does not at forecasting real crop
allocation; it is only a tool to create scenaribsrop arrangement. Therefore, as long as
the restrictions of the model are clearly identifnd communicated to the user, the
conceptual model can be considered valid withinggdrictions.
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8.5 Code verification

Code or program verification aims at ensuring thatimplementation of the conceptual
model into computer programs is correct (Sarge@32 No computer program of
consequent length can be fully verified, howeveeyt should be tested as fully as
possible. The LandSFACTS programs were verifiedeateral stages. At first, during
the program development, the process of each fimede was checked. Then general
tests were carried out to verify the agreement eetwexpected and obtained results
from the program. The main technique used was degénerative test”. For this test,
inputs were carefully chosen to test how the madélaved in specific circumstances.
For example, to test if the model forbade correttly return period of crops (e.g. a
minimum of one year gap may be required betweeraivbi®ps), a crop rotation with
this forbidden sequence (e.g. rotation with cordiiwheat) was allocated to all the
fields. The crop allocation obtained should notédwo wheat crops consecutively
grown on any field. All the constraints imposed i crop allocation have been
checked one by one during their development. Furthsts were carried out by
combining different constraints, and checking tls&nultaneous integration within the
software. A list of some of the general tests edrout is reported in Appendix D.

A source of possible errors is the stochastic m®e® occurring within the model. The
stochastic decisions are based on a pseudo randaoeragor from the standard C++
library GCC (Gnu Compiler Collection) version 3.3.A pseudorandom number
generator is an algorithm generating a sequenoermbers, which approximate random
number properties. With the same “seed”, i.e. nuntbeinitiate the generator, the

sequence of random numbers is identical. This qaatiity allows exact replication of

simulations, which is particularly useful for delgirtgg a program or to investigate the
influence of variables. Depending on the user ahdite generator is started either with
a seed based on computer time or on a specific pemaded by the user. The first

random number generated is never used, to avoidedbiaesults (time seed of
consecutive simulation could be very close or emmmtical). The random numbers
generated were visually tested for randomnesgsigtire 8.2. Over 1,000 sequentially
generated random numbers, they visually seemed splead out from O to 1 included.
No specific patterns in the number generation weoegnised; therefore, this random
generation was acceptable for the purpose of LaA@SS model. However, for future

improvement, a more robust random generator mighehuired.
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Figure 8.2: Visual test of generated random numiisn LandSFACTS model

Stochastic decisions are occurring at three insmnwithin the program: when (i)
choosing randomly an initial crop; (ii) choosingndamly a crop based on the previous
crop using the transition matrix; (iii) choosindi@d from all the problematic fields, to
alter its crop. Each of those options was testedndiated in Appendix E. The
randomness of the stochastic process within theemappeared satisfactory for the

desired level of the model requirements.

8.6 Sensitivity analyses

The sensitivity analyses were used to identify ithpacts of the model’'s parameters
upon the difficulty of obtaining a crop allocatioldeally, all the parameters of the

model should have been analysed, however due te tomstraints, only the three

following were chosen: (i) comparison between onallbcrop alterations (i.e. iteration

option 1 or 2.1), (ii) simulated annealing valueddiii) the distances for the spatial

constraints. They were chosen, as their impacherdifficulty of obtaining a landscape

was not easily predictable (i.e. straightforwardhe investigation on the simulated
annealing also provided an insight on how to sethigovariable. And the analyses on a
wide range of distances for spatial constraints wsesl to help understand their impact
on the difficulty of obtaining a crop allocation.

8.6.1 Datasets for sensitivity analyses

For the sensitivity analyses, two datasets werd:ubke Fife and the Beauce study area.
For the statistical significance of the sensitiatyalysis, datasets with a high number of
fields were indispensable. Thus, the Fife studyaamth 388 fields and the Beauce
study area with 1,993 fields were advantageous.sEmsitivity analysis did not aim at
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replicating an existing landscape, but at analysiogy the model behaved. Therefore,
the agronomic information was adapted to the neédse analysis, and did not reflect
reality within the study areas, Table 8.1. Bothadats have many differences, e.g.
number of fields, fields shapes, rotations, separadistances, therefore their results
should not, and cannot be directly compared. Theyige two independent platforms,

on which to test the sensitivity of the model.

Table 8.1: Summary of the Fife and Beauce datdsetbe sensitivity analyses

Fife

Beauce

Number of fields
Crops

Crop rotation(s)

Rotations in fields

Initial crops in
fields
Spatial constraints

Temporal
constraints

Yearly crop
proportions

Years of
simulations

388

13 crops, including GM and
conventional oilseed rape

2 rotations (cf. Appendix F):
- permanent grassland

1,993
11 crops, including GM and
conventional oilseed rape
1 rotation (cf. Appendix F):
“all crops” rotation, flexible

- all crops (11), flexible rotation, rotation for 10 crops,
probabilities adapted to yearly probabilities adapted to

crop proportions

114 fields are permanent
grassland (29% of fields), the
other fields have the all crops
rotation
random

100m between GM and

yearly crop proportions
All fields with “all crops”
rotation

random

200m between GM and

conventional oilseed rape. If too conventional oilseed rape. If

close, the GM crop must be
altered first.

- After GM oilseed rape, no
conventional oilseed rape

too close, the GM crop must
be altered first.

- wheat: two years in a row
maximum

- cereals: up to three years in a - after GM oilseed rape, no

row

conventional oilseed rape

- winter crops: up to three years the next year or the year

in a row
- winter conventional oilseed

rape: 0.18 constant over years

- wheat: 0.22 constant over
years

after

For every year:

- conventional oilseed rape:
0.15

- GM oilseed rape: 0.05

- set-aside: 0.08 constant over - wheat: 0.3

years
- spring conventional oilseed
rape: 0.04; 0.04, 0.03; 0.02;
0.01

- GM oilseed rape: 0; 0; 0.01;
0.02; 0.03

5
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8.6.2 Comparison between one or all crop alterations

The Fife dataset was used to compare the probakmfitfinding authorised crop
allocations with two different sets of iterationtigms: only 10,000 maximum iterations
for option 1 (all fields have their crop randomliteaed) or only 10,000 maximum
iterations for option 2.1 (one problematic crop ltascrop randomly altered). Each set
was run for 50 simulations of 5 years. Option 2dswun firstly without any simulated
annealing (a value of -1), and secondly with sinedaannealing using a value of 50.
The results are presented in Table 8.2.

Table 8.2: Comparison between the successes ofatiamgation using iteration options
based on the alteration of random choices (optiandl2.1)

Iteration option 1 (all fields) 2.1 (one field) 2Adne field)
Simulated annealing not applicable  not used 50
Percentage of successful0 72% 100%
simulations

Average of successful 0 3.6 5

years

When all the fields had their crops altered at atarfation (option 1), the program was
unable to find any crop allocation meeting all doastraints. However if only one crop
was altered at a time (option 2.1), with no simedadnnealing values set, 36 out of 50
simulations were completely successful (authormeg allocation for the 5 years). On
average, only 3.6 years of successful crop allonatiwere found out of 5. If the
simulated annealing value was set to 50 to avoadlloninima, the program found
authorised crop allocation for all five years dftak 50 simulations (5 successful years
out of 5).

In conclusion, the use of the optimisation algantfoption 2) increased the chances of
finding an authorised crop allocation over a notirogsation algorithm (option 1). The
advantage of using a simulated annealing valuealgshighlighted; the impact of this
variable was further analysed within the next secti

8.6.3 Simulated annealing

The simulated annealing option aimed at preventivegprogram getting blocked in a
local minimum before finding a crop allocation fali the required years. It was most
useful with iteration option 2.1 labelled as “om®domly chosen problematic field had
its crop randomly altered”, (7.2.8: Iteration opisp p.102). Both datasets were tested
with 10,000 maximum iterations per year for opt@d (penalty value = 1), over 5
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years and with various simulated annealing valbesevery simulated annealing value,
the Fife dataset was run 50 times, and the Beaatset 5 times. The limited number
of replicates was due to time constraints, e.g.Bbauce dataset, with its 1,993 fields
required at least 5 hours per simulation.

Simulated annealing values and successful simulati®

For both datasets, when not using the simulateéaimy option, not all required years
had an authorised crop allocation, i.e. on averagé; three years out of five were
authorised for the Fife dataset, and no yeardi®Beauce dataset, cf. Figure 8.3.
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Figure 8.3: Impact of simulated annealing values tba number of years with
authorised crop allocations within a) Fife datas®l b) Beauce dataset

The dotted line represents the average value diauiged years over 50 simulations
each. The cross points are individual values fag 80 simulations. They show the
values obtained for each specific simulated anngalialue (up to 6 individual values:
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from no year authorised up to the 5 years authalis&€he points on the left side of the
vertical axis represent simulation without the siated annealing option.

With simulated annealing values ranging from 3 1800 on the Fife dataset, crop
allocations were found for each year. With highémwated annealing values,
simulations were less successful at finding ausiearicrop allocation for the 5 years. In
average, for a simulated annealing of 5,000, tmulgsitions failed finding an authorised
allocation for the last year (authorised year =H#je results from the Beauce datasets
followed the same pattern of 100% of authorisedpcatiocation for 5 years for
simulated values ranging from 3 to 250. With highenulated values (500 to 1,000),
the proportions of authorised years found decreabadply to reach only one year in
five with authorised crop allocation for 1,000 siated annealing values.

The differences in results between the two datasetsthe simulated annealing values
and the sharpness of the decrease, might be dgevieral combined factors. The
constraints on the Fife dataset are less resiictiman on the Beauce dataset,
particularly in regards to (i) the number of fieldbiere GM can be grown (Fife: 388-
114 fields; Beauce: 1,993 fields), and (ii) sepgaratdistances (Fife: 100m; Beauce:
200m). Moreover, the maximum number of iteratior@s ixed at 10,000 (one field has
its crop changed at each iteration) for both dasagsegardless of their characteristics.
For example, for a simulated annealing value of0Q,Oevery time the simulated
annealing option is used (a worse crop allocateanporarily accepted to unblock the
program), it is 1,000 iterations over 10,000, whiwve been used, i.e. 1f10f the
possible iterations. Therefore, every time the $atead annealing option is used, less
iterations are available to reach an authorisextation afterwards. This is more critical
for the Beauce dataset (for which on average orlyygars produced valid, authorised
data) with its higher number of fields with potehtproblems (cf. above) than for the
Fife dataset (for which all 5 years produced ausieor data). This exemplifies that the
ratio of the simulated annealing parameter to tleimum number of iteration is a
determining factor that should be adapted to th&em@l number of fields with
problematic crop allocations. With a higher numbémaximum iterations for both
dataset, it would be expected that the decreasadeessful simulation would occur at
higher simulated annealing values. Further simutetiand case studies would be
required to capture the relationships between thana set up rules for choosing
appropriate values of the simulated annealing patars.
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In conclusion, simulated annealing values were spelisable for the optimisation
processes aiming at authorised crop allocationsveider, after a specific simulated
annealing value threshold, the simulated annegliogess did not facilitate the search
for authorised crop allocations. The threshold skemo depend upon the number of
potential problematic fields (dependent upon tHécdity of the constraints) and, the
maximum number of iterations available.

Simulated annealing values and overall penalties

The analysis of the relationship between the ol/pealalty and the simulated annealing
parameter value was important to determine if ow hihe simulated annealing
parameter value influenced the overall penaltiesthef crop allocations. Only the
simulations successful for all the years were aered for this analysis, i.e. simulated
annealing values between 3 to 1,000 for the Fifas#a#, and between 3 to 250 for the
Beauce dataset (cf. previous section: Simulatedeamy values and successful
simulations). Every time a crop was successfullgnged on a field (improving the
previous allocation by using or by not using thewated annealing option), a penalty
of 1 is added to the field. The overall penalties the sum of all the penalties of all the
fields for all the simulated years.

For both datasets, the overall penalties decreasgumbnentially with increasing
simulated annealing values, before they stabilestedround 290 penalties for the Fife
dataset and 640 for the Beauce dataset, cf. FRjdrerhe standard deviation decreased
dramatically with increased simulated annealingieal The shape of the curves can be
explained by the fact that with small simulatedealimg values, altered crop allocation
are accepted very often (i.e. many worse allocaimoepted as better). Therefore, more
penalties are applied to fields. With higher sinegaannealing values, the iteration
process has more iterations to find an altered @ltgration which improves crop
allocation. Moreover, the proportion of the numinériterations accepted using the
simulated annealing option over the overall nunitegation needed (overall penalties)
is more stable with higher simulated annealing @suhus decreasing the variability in
overall penalties between simulation runs.
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Figure 8.4: Impact of simulated annealing valuesowarall penalties within a) Fife
dataset and b) Beauce dataset.

The error bars represent the standard deviationmrb0 simulations. All of the points
represented had the 5 years of authorised crogrations.

Therefore after the analyses, to find the lowest Hre most stable overall penalties
between many runs of the same simulation, a highulsied annealing value is
recommended. However, as demonstrated earlier la $ilgulated annealing value
might decrease the probability of finding authadiseop allocations.

Simulated annealing values and simulation time

An important consideration, when running simulasios the time required to obtain an
authorised crop allocation. The time required igedatly linked with the number of
iterations that have to be performed before findingauthorised crop allocation, for a
given set of conditions to respect. Therefore,gbnoise the time cost, the limitation of
the number of iterations required is an importamtsideration.
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In Figure 8.5, the numbers of iterations used tal fauthorised crop allocation are

shown in relation to their simulated annealing ealuFor both datasets, the number of
iterations decreased with increasing simulated aimge value down to an optimised

value, 50 for the Fife dataset and 10 for the Bealataset, before it steadily increased.
With small simulated annealing values, crop allmeet regardless of their number of

unauthorised crops, are regularly accepted dutegiterations, thus preventing any
optimisation process. Whereas with large simulaaedealing values, “worse crop

allocations” are not very often accepted, thus phegram has a large number of

iterations available to find a better allocatioonfr the current crop allocation. In the

latter situation, the process is more optimisedrbay require more iterations, i.e. time.

To optimise the time required for simulations timawdated annealing values should be
chosen to correspond to the dip in number of ik@nat
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Figure 8.5: Impact of simulated annealing valueshennumber of iteration used within
a) Fife dataset and b) Beauce dataset.

In conclusion, the simulated annealing values fogigen maximum number of
iterations influenced (i) the probabilities of find authorised crop allocations, (ii) the
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overall penalty incurred to find authorised crofoedtion, (iii) the variation in overall
penalties between similar runs, and (iv) the tinreguired to find authorised crop
allocations. Therefore, the simulated annealingiesishould be chosen very carefully.
Moreover as the optimum value was dependent upeataset (e.g. landscape, crops,
and the constraints on the crop allocation), ige#ie above analyses should always be
carried out to determine the optimum simulated ahing value, before producing any
results from the LandSFACTS model. As a very roggiteline, the maximum number
of iterations should be, at the very least, douhke expected number of fields with
problematic crop allocation, or the number of feekimulated, whichever is the greater.
Furthermore, the simulated annealing parameterevahould be set initially to 0.01
times the maximum number of iterations. This gurgelcould be used to run the first
few simulations, then, depending on the resultsagntorised crop allocation found, or
successful crop allocation but too time consumira)th values should be refined
further, using the conclusion drawn from the absemssitivity analysis. For example, in
the case of unsuccessful simulations, the firgs &do increase the maximum number
of iterations. More extensive sensitivity analysesuld be required to provide more
authoritative guidelines on the setting up of timeutated annealing parameter value.

8.6.4 Separation distances

The impact of separation distances on the cropcatiion of a landscape should be
dependent upon: (i) the proportions of the targetegs in the landscape, (ii) the spatial
patterns of the targeted crops in the landscapgth{e distance to be respected, and
upon (iv) the mosaic of the fields, e.g. size @ids, field shapes, and adjacency of
fields. The impact of increased separation distanoe the difficulty of finding
authorised crop allocation was studied on two @dsas

Both datasets were set up to run for one year fixéd proportions of the crops being
separated (Beauce: 15% conventional oilseed rajge GB1 oilseed rape; Fife: 3%
conventional and 3% GM), and for a wide range piasation distances (Beauce: from
0 to 300m with 6 values, Fife: from 100 to 2,000itv8 values). For both datasets, the
maximum number of iterations (option 2.1) was fixad 10,000 per year and the
simulated annealing value at 50. Fifty replicatesemun for each scenario, except for
the Beauce dataset where 40 replicates were ruhdot00 and 200m scenario, and 10
replicates for the 300m scenario (restrictions ttuigher run time). Crop allocations
meeting the constraints were found for each scerigrgure 8.6), except for the Beauce
dataset with the 300m separation distance, for hwiki@% of the simulations were
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unsuccessful at finding authorised crop allocatim.authorised crop allocation could
have been found with higher maximum iterations; &esv, this was not tested to
respect the consistency between the scenariosemadife of the time limitations for the
analyses.

For both datasets, with increasing separation mtists, the overall penalties for finding
authorised crop allocations increased (Figure 8I®)e form of this increase was
different for the two datasets. The Beauce datsisetved a linear increase in overall
penalties with increasing separation distancés=(10.94), whereas the Fife dataset
demonstrated an exponential increage=(r0.99). When only the lowest separation
distances of the Fife datasets are plotted, thetioekhip could be explained with a
linear line (f = 0.99). Therefore, it is proposed that if the Beadataset was simulated
with higher separation distances and with highemation maximum, the overall penalty
might increase exponentially with increasing sepamadistances, as is shown by the
Fife dataset. However, this proposal would havieetdested.

In the case of the Fife dataset, the standard tlewiaf the overall penalties increased
with increasing separation distances. The largeatian in iteration numbers is
probably due to the initial random choice of thepcrallocation; if the program
randomly chose a crop allocation with few unautbexdti crop allocations, less iteration
were required to obtain the desired authorised atlmgation, than if the initial choice
had many unauthorised crop allocations. The imphtie initial crop allocation would
be higher with harsher constraints. For identicgbasation distances, for example
100m, the average overall penalty for the Beautasdawas 130 (standard deviation:
22), and 3.5 (standard deviation: 3.48) for thee Flataset. This important difference
could be caused by several contributory factorsstllyj the difference between the
datasets results arises from the number of fielitls potential unauthorised crops. The
finding of authorised GM oilseed rape allocatiorithva given separation distance from
conventional oilseed rape would be more difficuit Beauce than in Fife, for the
following main reason. Beauce has more fields taat grow GM than Fife (overall
number of fields, and number of fields with oilseege in their rotations), thus more
oilseed rape fields are within the separation distg, i.e. more fields might need to
have their crop changed (for which more iteratisrsuld be required). Despite this
difference in the difficulty of finding a crop attation, both datasets were run with the
same number of maximum iterations: 10,000. This emof iterations is enough for
the Fife dataset, but not for the Beauce datasetisashown by the unsuccessful
simulation for separation distances higher tham20® further factor would impact on
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the differences between the datasets: the shapenasdics of the crops, which might
influence the number of fields within the sepanmatitistances. Unfortunately, this factor
was not quantified within the assessment.

a) Fife datastet v = 0.0108x + 2 4097
R2= 09997

g 200 - 14 -

= 12

T 150 - y = 3 361 2g0 00 10

@ R3=0.957 g |

=: 100 - — l

'§ 50 ;

D 0 = . . 0 A

0 s00 1000 1500 2000 0 250 500

Separation distances {meters)

h) Beauce datastet

g 250
% 200
@ 130
= 100 ® y = 0.9162x + 25955
s 50 R2= 09345
=
=) 04
0 50 100 150 200

Separation distances (meters)

Figure 8.6: Impact of separation distances withitha Fife dataset and b) the Beauce
dataset on the number of overall penalties.

To thoroughly understand the impact of separatistadces on the difficulty of finding
authorised crop allocation, further analyses wdaddrequired. A possible study would
be to alter the crop proportions over the landsdapguantify its influence on finding
crop allocation with separation distances. Anostady concentrating on the impact of
field shape and mosaic upon crop allocation wolidd be useful; this would require the
gualification and quantification of the fields ihet landscapes. These studies would
provide an insight into the feasibility of sepamatidistances for landscapes with
different proportions of the crops and differergey of field shape.
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8.7 Scenario testing for a real landscape

The scenarios exemplified in this section only destiate the use of the LandSFACTS
model. This study did not aim to provide any corwlevaluation of the proposed
scenarios, and did not aim to replicate real laapssituations.

The scenarios aimed to investigate the impact afiappatterns of GM oilseed rape and
of specific separation distances between GM and/exttional oilseed rape, on the
difficulty of obtaining authorised crop allocation§o reach this aim, four scenarios
were developed: one for each extreme of spatidemabf oilseed rape varieties (A:
aggregated and B: regular), to be tested with (Ad B1) and without (AO and BO) the
separation distance. The spatial pattern of oilsep@ varieties (as described in the
following section) was controlled by imposing thattern on the allocation of the crop
rotations to fields. Scenarios without the separatlistances were useful to construct a
baseline, against which to assess the scenaribghvétseparation distance. In summary,
the four scenarios were:

- AO: spatial aggregation of GM oilseed rape rotgtimmspatial constraints,

- Al: spatial aggregation of GM oilseed rape rotgtl®m spatial constraints,

- BO: spatial regularity of GM oilseed rape rotatian,spatial constraints,

- B1: spatial regularity of GM oilseed rape rotati&Am spatial constraints.
The setting up of the scenarios is presented belolawed by the analyses of the
results.

8.7.1 Setting up scenarios

The scenarios were based upon the Beauce datagbe asigh number of fields
facilitates statistical analyses and increasestbeibility of the results. However, using
the complete cropping system of the Beauce datas@d have unnecessarily increased
the difficulty of both setting up and interpretirtige results. Therefore only a very
simplified version of its cropping system was used, its nine main crops (oilseed
rape, wheat, spring and winter barley, peas, mameflower, set-aside and other
cereals), flexible crop rotations complemented wattmporal constraints, and no spatial
restrictions on the extent of crops (all crops ke to all fields). The separation
distance between GM and conventional oilseed raggeset to 50m, this small distance
was chosen to optimise the simulation time andease the chance of finding
authorised crop allocations. If a GM and converdlonilseed rape were too close to
each other, the GM crop had to be changed. Bedaissset up could result in no GM
oilseed rape being allocated to fields, it was ssaey to control the yearly proportion
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of GM oilseed rape. Within the LandSFACTS modek #patial pattern of crops is
controlled by imposing spatial pattern on the crofations, i.e. when rotations are
allocated to fields. This required that a GM oildeape crop must be present in at least
one crop rotation, but also that at least one ootgtion must not contain this crop. The
cropping system and setting up of spatial pattarasietailed below.

8.7.1.1 Cropping system

The cropping system of the dataset was reducebré tcrop rotations. The first one
was permanent set-aside. The other two had flexitap proportions: one with and one
without GM oilseed rape. For both rotations, thebability of transition from any crop
to oilseed rape (GM or conventional depending uperrotation) equalled 0.2, to wheat
0.3, to sunflowers, maize, peas or spring barlé$,0o set-aside, winter barley or other
cereals 0.1. The flexible crop rotations were canm@nted with the following temporal
constraints: (i) wheat could only be grown two year a row, (ii) oilseed rape had a
return period of 3 years maximum (i.e. at least yea@ gap between two oilseed rape
crops), and (iii) conventional oilseed rape coubt lme grown if GM oilseed rape was in
the field two years ago. Due to the high flexilyildf the crop rotations, the proportion
of the main crops was controlled by using the yearbp proportion constraint: 15% of
conventional oilseed rape, 5% of GM oilseed rapk 209 of wheat. The allocation of
a rotation to each field is presented in the negtisn, as it imposed the spatial pattern
of the crops. Because the rotations were veryllexithe choice of the initial crop did
not impose a temporal pattern on the crops. Therefiie initial crops were set as
randomly chosen from the crops of the rotation athefield at the start of the
simulation; this initial allocation could then haween altered during the iteration
process in order to meet all the specified con#saie.g. crop proportions or temporal
constraints.

8.7.1.2 Spatial patterns of the rotation with GM oilseed rae

The allocation of the rotations to the fields wame by using the RotationFields
program. The constraints were 15% (0.2 authorissation for all proportions, i.e. for
15%, acceptable values were between 12% and 18%f)eokrea with conventional
oilseed rape, 5% with GM oilseed rape, 30% with ath&0% with set-aside, and the
fields with the GM rotation should be spatially sggpted for scenario A (Ep lower
than 0.05, with 1,000 randomisation points) andtialia regular for scenario B (Ep

higher than 99.95, with 1,000 randomisation poini$)e crop proportions within the
rotations and for the whole landscape were chosarefudly, in order to be
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mathematically compatible. In the above circumstanany rotation allocation, which
had the rotation with GM allocated for around artgraof the fields, and the rotation
with conventional oilseed rape for three quartefdhe fields, were respecting the

constraints on crop proportions.

The resulting crop rotation allocations are presénh Figure 8.7 and Figure 8.8, and

they met the requirements set up for crop propastiand spatial patterns of the

rotations, cf. Table 8.3. The proportions of GM aaehventional oilseed rape rotations

were slightly different between the two scenario®ie fields with the GM rotation, i.e.
1.4% of the landscape area, for scenario A thaisdenario B), but they both met their
targets. Closer proportions of the crops betweentivo scenarios would have been

better to isolate the influence of spatial patteshthe rotations from crop proportions.

The difference in number of fields between scersanias due to the variable field areas.

Table 8.3: Characteristics of crop rotation allamat for scenario A and B (long-term

crop proportions, levels of spatial patterns, arapprtions for each rotation).

Scenario A Scenario B

Crops : . Targets

(aggregation) (regularity)
Conventional oilseed rape 0.145 0.155 0.15 (0.2)
GM oilseed rape 0.055 0.041 0.05(0.2)
Wheat 0.3 0.294 0.3 (0.2)
Sunflowers 0.05 0.049 -
Maize 0.05 0.049 -
Set-aside 0.1 0.119 0.1 (0.2)
Peas 0.05 0.049 -
Winter barley 0.1 0.098 -
Other cereals 0.1 0.098 -
Spring barley 0.05 0.049 -
E values 0.987222 1.01899 -

Scenario A: < 0.05

Ep values 0 100 Scenario B: > 99.95
Number of fields with GM
oilseed rape rotation (in 578 (25.4) 391 (19.0) -

brackets the area in Kn
Number of fields with
conventional oilseed rape
rotation ( in brackets the
area in krf)

1415 (66.8) 1558 (71.3) -
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Figure 8.7: Crop rotation allocation with aggrega®M rotations (Scenario A).
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Figure 8.8: Crop rotation allocation with requlasiyaced GM rotations (Scenario B).
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The difference in spatial patterns of the GM oitsegpe was visually identifiable. The
spatially aggregated GM oilseed rape fields (sden@ay Figure 8.7) were concentrated
in the middle of the study area, while on the “leguandscape” (scenario B, Figure
8.8) they were spread out through the landscapeedter, the number of GM fields

being neighbours of other GM fields was visually amuhigher in the aggregated
landscape than in the regular one, this was corabbd by results in Table 8.4. In
scenario A, fields with GM oilseed rape had twikce probability of being within 50m

of another field with GM oilseed rape than in secemd®, but they also had a higher
probability of conflicting with conventional oilsédeape rotations (GM rotation within

50m distance from conventional rotation). It shooddnoted, that for scenario A due to
the higher number of fields with the GM rotationoma fields were available for

growing GM oilseed rape. Therefore, finding autked crop allocation for scenario A
could be artificially facilitated.

Table 8.4: Number of neighbouring fields with GM m@n-GM rotations for scenarios
A and B.

Rotations within 50m distance Scenario A Scenario BA— B
GM rotation GM rotation 1074 524 550
GM rotation Conventional rotation 5234 3929 1305
Conventional rotation Conventional rotation 6377 037 -1326
Any rotation Permanent grassland 0 529 -529

More extreme spatial patterns could be found, bpgua randomisation curve with
more than the current number of points (1,000).ighér number of randomisation
values would increase the chance of finding extreatéerns, i.e. increasing the tail of
the distribution. However, finding a desired ratatiallocation with a large number of
randomisation points would require more computareti With the definition of the
cropping systems, the allocation of the rotatiamsidlds, and the choice of the initial
crops, the agronomic parameters of the scenarios & up. The next section presents
parameters controlling the behaviour of the LandSF& model.

8.7.1.3 lteration parameters

The iteration parameters control how the modelrsltee proposed crop allocations,
when it does not meet the constraints specifiethbyuser, in order to find authorised
crop allocations (meeting all the constraints). Theation parameters for the scenarios
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were set as 100 maximum iterations with all fieldeadomly altered (option 1, no

penalty), 10,000 maximum iterations with randoneration of a problematic field

(option 2.1, penalty equals 1), and 500 maximumaitens with the universal crop

(option 2.3, penalty equals 100) labelled “flag@rwith a simulated annealing value of
50. The iteration parameters were used to deterthedest allocation out of 100 full

random allocations, before optimising it by usinghew random choice within the

transition matrix of the rotations. As a last réstire universal crop could be allocated.
The parameters were identified from the resulthefsensitivity analysis.

8.7.1.4 Summary of scenarios

The four scenarios described in Table 8.5, usirginputs parameters already detailed
in this section were simulated over three yearghEstenario was run 10 times with
different random decisions (i.e. random numbereggrd using time based seeds). The
results are presented in the following section.

Table 8.5: Summary of characteristics of the faengrios.

Spatial patterns of GM oilseed rape rotation

aggregation regularity
Spatial  none A0 BO
constraints 50m Al Bl

8.7.2 Results from scenarios

The statistical summary of the difficulty of obteig authorised crop allocation for each
scenario is presented in Table 8.6 (refer to Appe@dfor detailed data). The difficulty
of obtaining crop allocations with the scenariosheut separation distances (scenario
A0 and BO0) was not significantly different from &aather (p = 0.01, cf. T-test results).
These two scenarios always provided the desirep allocation with around 354 (+-
33) as overall penalties and around 4,000 iteratitincan therefore be concluded, that
the spatial patterns of the rotation with GM oildeape did not interfere with the
difficulty of finding an authorised crop allocatievhen there were no spatial constraints
(only temporal constraints and yearly crop propms).
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Table 8.6: The proportion of successful simulatjoifte number of iteration and of
penalties (statistical significance shown) in ofutag crop allocation for each scenario.

. Proportion of Number of iterations :
Scenarios ; . Overall penalties
D successful simulations used
Average Stdev Average Stdev Average Stdev
A0 100 0 3973 939 355 34
BO 100 0 4139 742 353 32
Al 100 0 9903 1438 671 58
Bl 30 48.3 18090 2866 1488 536
Bls 100 0 15588 3589 713 64
Student T-test, with p = 0.01. and 18 degree a&doen (except for B1s: 11 degrees)
Not significantly Not significantly
AOvs BO ) different different
Al vs Bl - Significantly different Significantly different
AOvs Al - Significantly different Significantly different
BO vs B1 - Significantly different Significantly different
BO vs Bls - Significantly different Significantly different
- . Not significantly
Al vs Bls - Significantly different different

B1s: only successful simulations (3 replicatesaititO)
Stdev: standard deviation

The scenarios with separation distances of 50mdmivwsM and conventional oilseed
rape were significantly different (p < 0.01 for itheverall penalties) from their

respective scenario without separation distanceigh @/ separation distance of 50m,
scenario Al (spatially aggregated GM oilseed ramtdd) had authorised crop

allocation for all the simulations, whereas in tase of scenario B1 (spatially regular
GM oilseed rape fields) 70% of the simulations (@t of 10), failed to find an

authorised crop allocation for the third year. Thenparison of the number of iterations
and overall penalties of scenario A1 and B1, shothatithey are statistically different
(p < 0.01). However as scenario B1 had 7 replicaidsout complete crop allocations
(only two years out of three), the three successifuulations were grouped in a sub-
sample called Bls. A significantly higher numberitefrations was required to find

authorised crop allocation when the GM crops wepatially regular (p < 0.01).

However, the number of fields which had to havertbmps altered (quantified with the
overall penalties) was not significantly differdrégtween A1 and B1s. The results from
Bls were only based upon three replicates, whichsugcessful crop allocations over
ten replicates, i.e. they were the three mostiefficrun out of ten. Therefore, they do
not fully represent scenario B1. To increase thelmer of successful simulations of
scenario B1, higher maximum iterations would havebé needed, for example, the
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maximum number of iterations of option 2.1 (one mawdom crop) could have been
increased from 10,000 to 20,000. However considetitat for those scenarios, one
iteration required around 1.5 seconds of computes,ta simulation could last up to 25
hours (20,000 iterations * 3 years). The higher benof simulations required to find
authorised crop allocations for scenario B1 in carigon to scenario Al, also
demonstrated that spatially aggregating crops, wwhad required separation distances,
did tend to lead to successful coexistence. A higluenber of replicates and iteration
maximum would have provided a more complete evaloatAs noted in Section
8.7.1.2 (Spatial patterns of the rotation with GNseed rape, p.132), the results could
be biased by the higher number of fields availablgrow GM oilseed rape in scenario
A in comparison with scenario B. Therefore, moreatlmns of GM oilseed rape could
be tested by the model during the iteration prazgss scenario A than B. The
evaluation of the impact of this difference in aable fields would require further
investigation.

An example of crop allocations for each scenaripresented in Figure 8.9 and Figure
8.10. The presented crop allocations were choséhegshad overall penalties close to
the median of their scenario groups.

any other craops
[l conventional ailseed rape %

B Gh oilseed rape :

Figure 8.9: Example of crop allocation for a scemal, (seed: 3197, year 0)
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CJany other crops : 5
B conventional oilseed rape Sk
B G oilzeed rape

Figure 8.10: Example of crop allocation for a scenB1 (seed: 27115, year 0)

To identify the fields, which had their crops sussfelly altered to meet the constraints,
the overall penalties to fields table (OvFP tabl@s available in the output log file of
the LandSFACTS program. The average penalties étdsfi for all successful
simulations of the scenarios (average of 10 sinarat for scenario A1 and of 3
simulations for scenario B1) are presented in Kg8ull and Figure 8.12. For both
scenarios, nearly all fields had to have their caliered at least once to meet the
temporal constraints, yearly crop proportions qrasation distance. The fields with the
highest penalties on average (the darkest coloergwall with the GM rotation. This
was due to the crop priority set up, i.e. if a GiMl@onventional crops were too close to
each other, the GM crop was altered. Therefor&diwith GM crops had more chance
of having their crop altered.
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Average penalties
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Figure 8.12: Average penalties per fields for sasfid scenarios B1 (3 simulations)

Cranfield University

Marie Castellazzi 2007



141

Due to the low number of successful replicatestliose scenarios (10 for scenario A,
and only 3 for scenario B), only tentative conans were deduced from the average
penalties to fields. Higher number of simulationswd provide a better identification
of the most problematic fields (more statisticalignificant), and therefore would allow
the investigation of the characteristics of thomdd$. For example, a specific crop
rotation, field’s shape, or number of neighboursilddbe common denominators for
most problematic fields. Identifying the origin onain causes that increased the
difficulty of finding a successful crop allocatiomjould provide an insight into how
coexistence measures would be most beneficial,idemtifying possible pitfalls (e.g.
fields with a specific shape could increase théatity of finding a crop allocation
meeting specific constraints).

8.7.3 Conclusions

The case study presented in this Section 8.7 didamn at providing a complete
evaluation of the proposed scenarios, but to ppwadull example of the use of the
LandSFACTS model. By studying the above scenariaqquld be concluded that the
spatial patterns of crops and the constraint ofusgn distances did influence the
difficulty of obtaining crop allocation. Spatialgggregated crops, in comparison with
spatially regular crops, facilitated the searchaothorised crop allocations for the
studied scenarios. However to validate those cermhs, further studies would be
required to investigate the correlation between fteeibility in crop allocation (e.g.
more fields available to grow GM oilseed rape) ahé difficulty of finding an
authorised crop allocation. Further scenario tgstiould also be needed to evaluate the
exact interactions between separation distanceatiabppatterns and yearly crop
proportions, on the difficulty of finding crop atlation. The identification of why some
configurations of parameters hindered the easeimfinig crop allocations, would
provide some insight into how to best set up cderise measures adapted to specific
landscapes. The scenarios used here only considetatvely small separation
distances (50m) for testing purposes. Analyses Veitber distance, i.e. hundreds of
meters and even several kilometres, would also dspiired for real coexistence
scenarios.

The testing of the above scenarios also demondtiie use of the LandSFACTS
model. More particularly the usefulness of coningjl spatial patterns of the crop
rotations was exemplified.
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8.8 Recommendations on model use

Through the conceptual model assessment, sensitarilysis and the scenarios,
several recommendations for the use of the modeke waentified. The
recommendations are ordered in the following sestidi) general recommendations,
(i) recommendations on designing scenarios (lampscconstraints, and multiple runs),
and (iii) recommendations on setting up model patans.

At first as a general recommendation, the modetlkshonly be used within its stated
purpose as in Section 7.1.1: Aim of the model (p.88re particularly the model only
provides crop allocations that meet the user spatibns of crop spatio-temporal
arrangements. Therefore, the user is responsiblinéoinputs provided to the software,
in terms of their agronomic and socio-economic adey and their relevance to the
scenarios studied. In particular, the extent of #imulated landscape should be
adequate for the overall study purposes. For exampbdelling gene flow of crops
might require a landscape as small as two fieldstwdy small-scale flows, or up to
more than 2,000 fields (c. 10R)rfor a larger-scale flow study. In addition, usithg
model requires a thorough understanding of the tcainss affecting the studied
landscape, and expert knowledge on the study lapésshould be sought for realistic
scenarios. To optimise further the use of the magood understanding of the model
structure is recommended. For example, as the noodglconsiders one crop per field
per year, agricultural systems with complex cropcsgsions within individual years
cannot be easily simulated. Two solutions couldwitvent this issue, (i) every intra-
annual crop succession could be considered asrope ar (i) the model time step (a
year) could be reallocated to be a smaller timp &e3. a month or 10 days). Again it
should be noted that the model does not attempiorecast or predict real crop
allocation and therefore it must not be used f@r plurpose.

Secondly, to design the scenario the three follgwgaints should be considered: (i) the
landscape itself, (ii) the choice of the constsirtii) the relevance of multiple runs.
The spatial delimitation of the simulated landscapght influence the crop allocation
of the fields close to the boundary, particulaityce spatial constraints between crops
(separation distances) must be respected. To timst “edge effect”, the simulated
landscape should be spatially extended to inclinesurrounding fields by at least
twice the largest separation distance. If suchrmédion is not available, the outer
fields of the landscape (twice the separation disty should be considered as having
potentially flawed crop allocation. The model andparticular the spatial statistical test
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(Section 5.1.3.2: General spatial trend (E anglypi®7), were designed and tested on a
limited set of landscapes. Therefore, the useefibdel on widely different mosaics of
fields (with, for example, a wide range of fieldsee@as) or fields shapes (with, for
example a large proportion of long thin fields) slilobe done cautiously, and such
results should be carefully checked.

The constraints to be imposed on the landscapeldsHmal chosen very carefully.
Whereas a large number of constraints and higlstyicive constraints might be useful
to reproduce the complexity of an existing landscapey increase the difficulty of
finding an authorised crop allocation. Moreoverclsuevels of complexity are not
necessary or relevant for all scenarios testingeiWketting up the constraints, the
number of fields within the landscape should besmered, as small number of fields
will limit the potential location(s) of crops andus their potential areas (e.g. reaching
exactly 20% of wheat in a landscape with 10 fiefdght only be possible with specific
areas for each field). Furthermore, the coheremterden all the constraints should be
checked to prevent the case that no authorisedadlogation exists (which must lead to
unsuccessful simulations). Incoherence between ootgtions, temporal constraints,
and yearly crop proportions should be investigategd particular care.

Depending upon the aim of the scenario, the focag often be on obtaining one or
more authorised crop allocations or on comparingnakdos (e.g. on the impact of
different separation distances on the possible guoyportions). In the first case,
running the simulation only once for every scenamight be sufficient. However, for

the latter case, the obtained crop allocation mighless important than the difficulty of
obtaining it (i.e. penalties). As noted in the sewity analyses (Section 8.6, p.120),
running the model with identical inputs will proedfor each run a unique crop
allocation and index value of the difficulty of aloting it. Therefore to obtain an
accurate estimation of the difficulty of obtainiagp allocations for a specific scenario,
it is recommended to base conclusions on as mamgy ofl the model as possible. A
minimum of 10 runs is suggested as a rule of thumbmeet minimal statistical

requirements, and this minimum number should bsetdally increased for landscapes
with larger numbers of fields. This analysis on tiplé runs of the model, rather than
single runs, should provide a better overview @ dhifficulty of the scenario for crop

allocation.

Thirdly, the choice of the simulation parametetsrétion options) in relation to the
aims of the scenario, and the expected difficuftthe scenario is crucial. As defined in
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Section 7.2.8: lteration options (p.102), the fiveration options to find authorised crop
allocation have different processes to improve @igcation, i.e. no optimisation using
new random choices (Option 1), optimisation usiegvmandom choice (Option 2.1),
crop group (Option 2.2) or universal crop (OptiaB)2 The iteration options must be
chosen carefully by the user, because they wiluarfce the crop allocation obtained,
particularly for option 2.2 and 2.3 as they do falow the rules set up in the crop
rotations. If simulation time is not an issue, higlaximum iterations for option 1 and
2.1 provide the advantage of respecting the crtgtioms. However option 2.2 and 2.3
provide the possibility of improving the crop alédon more quickly, but crops outside
of the dedicated crop rotation of the fields migktused. As a general guideline, the
maximum number of iterations (all optimisation opis together) should, at the very
least, double the expected number of fields witbbf@matic crop allocation, or equal
the number of fields simulated, whichever is theatgr. Precise recommendations are
not possible, as they depend upon unforeseen atitema between the landscape and
the constraints simulated. It is recommended tlofiothose guidelines for the first run
of the simulation and then adapt the maximum nurobéerations depending upon the
difficulty of reaching an authorised allocation (b valid allocation is found, the
maximum should be increased). If optimisation ami@re used (option 2.1, 2.2, 2.3),
simulated annealing values should be used to atr@doptimisation process being
blocked at a local minimum as reported in Sectidh3(Simulated annealing, p.122).
The value should be set initially to 0.01 times thaximum number of iterations
(Section 8.6.3: Simulated annealing, p.122). Whemparing scenarios of crops
allocation, the same iteration parameters shoulduged, except if the scenarios
investigate the impact of iteration parameters seues (e.g. when investigating the
influence of changing problematic crop by a crophwhe same function in a rotation,
using crop groups).

8.9 Conclusions on model assessment

In this chapter, the LandSFACTS model was assesspdovide an evaluation of the
adequacy of the model to meet its stated purpdsesreview of the conceptual model
highlighted several shortcomings, which could be tbcus of future improvements.
These included the limitation of one crop per fidided boundaries of fields over time,
constant crop rotations and crop patterns only sedoat the landscape scale. If those
restrictions are clearly communicated to poteniisérs, the conceptual model can be
considered as adapted to its purposes.
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The code of the model (three programs) was verifeedtl is deemed reliable for its
normal conditions of use. However, it should besdahat code verification can never
be exhaustive thus hidden errors might still bes@né

The sensitivity analyses investigated the impachotlel parameters on the difficulty of
obtaining authorised crop allocation. The studieatiel parameters were the iterations
options including simulated annealing values aral ithpact of separation distances.
The analyses on iteration options demonstrated effieiency of the optimisation
algorithm (iteration option 2.1) over the non-opsation one (iteration option 1). The
simulated annealing values used for the optimisatdgorithm were reported to
increase the probability of finding an authorisedpcallocation and, when found, the
difficulty and variation in overall penalties andhe required. Therefore the choice of
simulated annealing value is important for effi¢cigmmproving crop allocations.

The sensitivity analysis on separation distandeswved an increased difficulty of
obtaining authorised crop allocation with incregsiseparation distances. The
relationship was either linear or exponential delpeg upon the datasets. It is proposed
that these differences were due to differencebemumber of fields, crop proportions,
and fields sizes and shape. Further analyses queed to determine the impact of their
interactions. A complete sensitivity analysis wascarried out, due to time constraints.

To complement the assessment of the model, consgkaxarios on the impact of spatial
patterns of crops were tested. The study repohiift crops constrained by separation
distances were spatially aggregated by using tbep rotations, the difficulty of
finding authorised crop allocation was significgritwer than in the case of a regular
pattern. The scenarios also exemplified that thap allocations obtained met the
specified conditions, and that the reports on tifiecalty of obtaining the allocations
were helpful in differentiating between coexisterscenarios. Further scenario testing
would be useful to investigate the interactionswieein spatial patterns, spatial
constraints with larger separation distances, ptapts of the rotations, and yearly crop
proportions.

Through the assessment of the LandSFACTS modek timain recommendations were
highlighted. Firstly, the model should only be useithin its stated purpose, i.e. to
allocate crops to fields that meet user specifieabp cspatio-temporal arrangement.
Moreover, to use successfully the model, the useuls have a thorough understanding
of the cropping system within its study area, thernal structure of the model, and in
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particular the iteration parameters. Secondly, iplelruns of the model are required to
obtain a better accuracy on the difficulty of obtag authorised crop allocation. And
thirdly, the iteration options should be carefudlyosen and be adapted to the aim of the
studies.

As no flaws were detected during the assessmetiteomodel, it can be said that the
LandSFACTS model appears valid for the stated &pations set out by the potential

users (Chapter 2). However only a limited set cfeasments were carried out and
further investigation would be required to fullylidate the model, such as a full code
verification and a sensitivity analysis on all tfeiables of the model.
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9 Discussions and Conclusions

The previous chapters presented the work carri¢doooneet the aim of the thesis, i.e.
providing a tool to support scenario building obgrarrangement within the context of
GM coexistence. In this final chapter, the follogimpoints are discussed: (i) an
overview on how the thesis aim was reached byllintji the objectives, (ii) the major
thesis outputs and their advantages, (iii) disaumssion the levels of use of the
LandSFACTS model and how the model supports cangst scenarios research, and
(iv) examples on how best to enhance this support.

9.1 Meeting the thesis objectives

This thesis aims to provide a research frameworkbfalding up scenarios of crop
arrangement within the context of GM coexistendaough the design of the
LandSFACTS model. To reach this aim, the thesis #eamdéred around three objectives
as presented in Chapter 1:

(i) Objective 1, the examination of the origin awtaracteristics of spatio-

temporal arrangement of crops;

(ii) Objective 2, the design of the LandSFACTS mipdad

(iif) Objective 3, the assessment of the LandSFA@Idslel for its stated purpose.
The success in meeting these three objectives rwithis thesis is presented in the
following section.

9.1.1 Objective 1: origin and characteristics of spatio¢mporal arrangements

The first objective aimed to determine the origind a&haracteristics of spatio-temporal
arrangements of crops in the literature and in l@adscapes. This objective was met
through the work presented in Chapter 3 and 5.dftggns and existing measurements
of crop arrangements as described in the publibtezdture are summarised in Chapter
3. The study highlighted the complexity of the famndecision process leading to crop
allocation and notably the high number of consteatonsidered, e.g. environmental,
agronomic, economic, and policy constraints. Thaere showed that no statistical

analyses were currently available to characterisep cpatterns, and therefore
specifically designed statistical analyses wouldkedhdéo be integrated within the

LandSFACTS model. In Chapter 5, five new statistmaalyses of crop spatial and
temporal patterns were developed and used on a lasalscape to determine

characteristics of crop patterns. In general, thstistical analyses successfully
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quantified the crop patterns in the real landscdpeo pattern tests, one spatial (“E
analysis”) and one temporal (“Crop temporal vatigbicompared to random
simulations”) were particularly relevant for intagjon within the LandSFACTS model,
due to their ability to quantify patterns, theiobd applicability and ease of use. Overall
the patterns detected indicated a strong scalené¢farand landscape) and crop
dependency, and a significant spatio-temporal aggi@en of crops (i.e. spatially close
fields with similar crops). This work satisfactgriachieved the first objective. Having
developed and evaluated a range of tools for deagricrop arrangements, these tools
were then used to design the LandSFACTS modelgasresl by Objective 2.

9.1.2 Objective 2: design of the LandSFACTS model

Objective 2 aimed to design the LandSFACTS modetrop arrangement with its

components and processes. The first step was timatida of the model specification.

This was carried out in collaboration with end-gsexgronomic researchers working
with gene flow models on GM coexistence scenarkss.reported in Chapter 2, the
model had to be a research tool, which allocateg<cto fields to meet user-defined
crop arrangements, by using an empirical and statisnodelling approach.

The modelling approach chosen for LandSFACTS maodet based upon: (i) the

knowledge on the origin and characteristics of aapngement (Chapter 3, Objective
1), and (ii) the review of existing models relevantLandSFACTS aim (Chapter 3,

Objective 2). As presented in Chapter 4, the ambroaas centred around (i) the

stochastic modelling of crop rotations, (ii) theasal and temporal constraints, which
rule crop arrangement (Objective 1), and (iii) spatial and temporal patterns of crops,
which are statistical analyses controlling the gehieend of crop patterns (tests derived
from Chapter 5, Objective 1).

The use of matrices was the chosen method for septeg the rotations as
probabilities of transitions from one crop to arestione. The stochastic modelling of
crop rotations as transition matrices is repone@hapter 6.

The full description of the LandSFACTS model isganeted in Chapter 7. The model is
divided into two steps: (i) the setting up of theuts, and (ii) the allocation of the crops
to fields (“CropAllocation” program). In the firstep, the following are defined: crops,
fields boundaries, spatial extent of crops, a ratattor each field (possibility of
imposing spatial patterns using “RotationFieldsbgram), the initial crops in fields
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(possibility of imposing temporal patterns usingnitialCrops” program), spatial

constraints (separation distances between cragspdral constraints (return period of
crops, forbidden crop sequences), yearly crop ptmps, and model and iteration
parameters (to control the behaviour of the maaléihd authorised crop allocation).

The crop allocation to fields is carried out yegnfear, by using a linear programming
methodology based on optimisation and simulatedealimg processes. The model
generates, as outputs, the authorised crop akosatnd indices representing on the
difficulty of obtaining a valid allocation. The #®w console programs of the
LandSFACTS model were embedded into the LandSFA&diBvare to facilitate the
use of the model (SIGMEA, 2005). By completing ttem@dSFACTS model, Objective
2 is achieved.

9.1.3 Objective 3: assessment of the LandSFACTS model

Objective 3 aimed to provide an assessment of thedEFACTS model, and is
presented in Chapter 8. The first step was to defire aim of the assessment and its
coverage. The full assessment of the LandSFACT Seinedy. sensitivity analyses for
all the model variables, complete code verificatiaras outside of the scope of the
thesis due to time constraints. Thus the assessowmrentrated on evaluating the
adequacy of the model for its stated purposes,)oeyiewing the conceptual model,
(i) verifying code, (iii) analysing the sensitiyito iteration parameters and separation
distances, and (iv) using case study scenarios.

The investigation of the conceptual model highleghsome important restrictions of the
model. This included the consideration of only @nep per field, an inability to alter
the field boundaries and the crop rotations overyars, and ability to only control the
crop patterns at the landscape scale. Overcomoggtimitations would greatly benefit
the model, however if they are clearly identifietlacommunicated to potential users,
the conceptual model can be considered as valldmitihose restrictions.

The code verification did not identify any invalidey flaws; however, as with the
verification of any other program, hidden errorgghtistill be present. The sensitivity
analyses provided further insight on how to setthg iteration parameters, and in
particular, the influence of the simulated annepliralues for obtaining a higher
probability of finding authorised crop allocationahile limiting the difficulty of
obtaining them and the time required. Increasingas#ion distances between crops
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was found to increase the difficulty of obtainingtteorised crop allocation. The exact
type of correlation (linear or exponential) seerdegendent upon the crop proportions
and the fields’ sizes and shapes.

The study of scenarios of the impact of crop spaatterns on the difficulty of finding
valid crop allocations exemplified the relevancel arsefulness of the model. The
analyses carried out were limited to relatively Bnsaparation distances (50m) for
testing purposes, and analyses with larger distavamald also be required for real
coexistence scenarios. After the assessment caedn the LandSFACTS model, it
seems to fulfil the specifications set out by tloteptial users (Chapter 2). However
only a limited set of assessments were carried and, further investigation would be
required to fully validate the model. The third dadt objective of this thesis was thus
completed, by providing an assessment of the LaA@3S model.

9.1.4 Conclusion: from objectives to aims

The three objectives of the thesis were completedd, the LandSFACTS model
(Objective 2) was built by incorporating spatio-fgoral arrangements as highlighted in
Objective 1, and the model was assessed as fiteet ms purpose (Objective 3).
Therefore the aim of the thesis to provide a retedramework for building up
scenarios of crop arrangement within the contex@f coexistence, through the design
of the LandSFACTS model can be considered as asthiev

9.2 Thesis major outputs and their advantages

In the following sections, ways of using the Land8H'S model to support scenarios
testing within the GM coexistence context are dised. By accomplishing the thesis
objectives, three major and stand-alone outpute &ehieved.

9.2.1 Statistical analyses

The first output is the statistical analyses depetbin this thesis (Castellazet al,
2007b). They have their own added value indepehdé&nin the LandSFACTS model.
The statistical tools allow crop patterns in laragses to be characterised statistically; no
similar tools are available in the published litara. Statistical characterisation of crop
patterns could be useful within the context of sadocusing on the impact of cropping
systems, such as bird ecology studies. The spgashbn general trend of crop patterns
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(E analysis) could even be used on any categaatal linked to discrete features (e.qg.
polygons or points).

9.2.2 Mathematical representation of crop rotations

The second output is the mathematical representatiocrop rotations as transition

matrices (Castellazzet al, 2008). Transition matrices provide a unique wdy o
representing crop rotations as a stochastic proceasflexible mathematical format.

Fixed and flexible crop rotations can then be dgubandled within mathematical

models. Long-term proportions of the crops can diso calculated by using the
properties of transition matrices. A further adwea#& of this method is the simplicity of
the approach, which is usually easily understoodubgrs without requiring wide

mathematical background. The transition matrix @spnting crop rotations could be
useful for any models requiring the mathematicedgnation of crop rotations.

9.2.3 Model on crop allocation: LandSFACTS

The third output is the LandSFACTS model itself ¢eélazziet al, 2007a). The model
provides crop allocations, meeting user-definedci§ipations of crop arrangements,
along with an evaluation of the difficulty of oltég the allocation. The modelling
approach is mainly statistical (in the control @b rotation and crop patterns) and
empirical (constraints), by modelling directly tloeop arrangements instead of the
mechanistic process leading to it (i.e. farmer sleai making). The advantage of the
model is its limited number of inputs, which aréedsily available. Multiple tools are
available to control the crop arrangements andgugiem all is not compulsory. The
user can thus choose and control the constraintsr@m arrangements to meet their
needs. Another advantage of the LandSFACTS modit istructured and referenced
process to allocate crops to fields. Each step@frocess can be traced, recorded, and
most importantly can be justified. The use of theded, instead of a manual process for
allocating crops to fields, provides the user wiiite possibility of obtaining many crop
allocations with the crop arrangement (i.e. runrttmgmodel many times with the same
inputs), and also with the possibility of comparsagnarios with slightly different crop
arrangements (i.e. running the model by altering amput at a time). The model
processes were deliberately kept simple, in om@ravide a tool whose processes were
easily and quickly understood by potential usersfacilitate the use of the model, the
LandSFACTS software provides user-friendly inteef@nd help files detailing the
model inputs, processes and outputs interpretations
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9.3 Supporting coexistence scenarios

The aim of this thesis was to provide a framewarksupport the creation of scenarios
of crop arrangement within the context of coexiseenf GM crops with conventional
and organic related crops. In this section, thelkwf use of the models are described,
before examples relevant to coexistence scenaméggravided.

9.3.1 LandSFACTS levels of use

The LandSFACTS model can be used at three difféesets of complexity depending
upon the aim of the study (Figure 9.1). At the demplevel, the model is useful to fill
up an incomplete dataset to provide a single ctlmgation. For example, if only the
main crop rotations are known on a given landscafthout any information of their
spatial location among fields, the LandSFACTS maael provide a crop for each field
for each desired year. At the second level, theahoan be used to build up scenarios
of crop allocations where, for the same scenarianynunique crop allocations are
provided. Multiple allocations with the same chaéeastics of crop arrangement, as
provided by LandSFACTS, are indispensable to dffdate between the impact of
crop arrangement (i.e. general patterns, coexistemgasures, or any constraints) and
specific crop allocation (i.e. location of eachmxoAt the highest level of complexity,
the LandSFACTS model is useful to compare scenaficsop allocations, by using the
difficulty indexes of obtaining a crop allocatiare. penalties to fields.

Aim of the study LandSFACTS output

Level 1 — Fill up incomplete datasets of crop allocations — One crop allocation

Level 2 — Build up scenarios of crop allocations —  Many crop allocations
Level 3 — Compare scenarios of crop allocations — Comparing penalties
Complexity

Figure 9.1: Three different levels of complexitytme use of LandSFACTS model in
terms of aims and outputs.

The multiple tools of the LandSFACTS model to cohtirop arrangements, i.e. crop
rotations, spatial patterns of rotations, tempgpetterns of crops, spatial and temporal
constraints and yearly crop proportions, are not@hpulsory, i.e. depending upon the
aim of the project and available information on shedy area, different combinations of
inputs can be used. The model can provide a crogvéoy field, with the minimum
input of a rotation for all the fields.
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The choice of the inputs must be adapted to theadithe study. For example testing
the interactions between field shapes and separdistances between crops would not
require the same type of inputs as testing theilfidias of growing a GM crop in a
specific real landscape with specific coexistendes. The cropping system of the first
scenario would probably be extremely simplified,endas for the second scenario it
would need to be as close as possible to the agrioncharacteristics of the landscape
studied.

The three levels of use of the LandSFACTS model #mel flexibility in the
corresponding input choices (in the context of Gdxistence) are discussed below.

9.3.2 Examples of LandSFACTS uses within coexistence caxt

With its three levels of use, the LandSFACTS maatelits own, or linked with gene
flow models, can provide useful support to evaluatexistence scenarios of GM crop
and related non GM crops. Potential studies arenestigation of (i) the relationship
between agricultural landscape characteristicsrigikd of contamination, (ii) the impact
of coexistence measures on the risk of contaminatio) the “physical feasibility” of
coexistence measures, and (iv) the economic cosbexistence scenarios. Each of
them is further exemplified below.

() Risks of contamination from GM crops to non G&lated crops are dependent upon
the arrangement of the crops in the landscape ifate 1947a). Therefore
understanding the relationship between crop arraegé and risks, would provide the
knowledge to evaluate the risks for a given agtical landscape, without having to
carry out a full study using detailed surveys ardegflow models. To understand this
relationship, gene flow models would have to be witih multiple crop arrangements
controlled through the LandSFACTS model. Examplesrop arrangements to test are
different crop rotations, crops spatial pattermszrop temporal patterns.

(i) The identification of the most appropriate gmtence measures to control the risks
of contamination from GM crops to non GM relatedps is fundamental to avoid
uncontrolled contamination. For example, appropriagparation distances between
crops are still being investigated (Sanvidob al, 2007). In order to evaluate the
cumulative risks at the landscape scale, it is &8y to consider coherent crop
arrangements over several years. The LandSFACT&Inwath generate temporally
coherent crop arrangements respecting coexisteeesures, which can then be tested
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with gene flow models. Using this technique, detaant thresholds in the coexistence
measures could be uncovered, e.g. optimal separatistances between crops.
Moreover, as the LandSFACTS model can provide ntaoy allocations, based on the
same crop arrangement rules, the effect of coesteneasures (i.e. potential policy)
can be separated from the impact of a specificigordtion of the crop. Conclusions

drawn from such studies would strengthen the adsgaad credibility of coexistence

measures.

(iif) Coexistence measures aim to limit the riskcohtamination from GM crops to non-
GM related crops under a specific threshold. Howéve coexistence measures may or
may not be “physically feasible” on any given lac&jse, due to specific field
configurations, cropping systems, or crop propodidrefer to Chapter 8), (Perry,
2002). For example, if an agricultural landscapeenily has 30% of its area with
conventional oilseed rape, would any farmer be ablgrow GM oilseed rape if a
minimum of 500m is required between GM and conwardi crops? The “physical
feasibility” can be investigated with the LandSFAETsoftware, by imposing
coexistence measures on the current cropping systengiven landscape, and identify
whether an arrangement is indeed possible — indudi measure of the difficulty in
finding a fit (using the penalties). Only if coebeéece measures on a given landscape are
“physically feasible” would it be necessary to exde the economic and farm
management feasibility in the given landscape. DdredSFACTS model would provide
a first screening of the feasibility of coexistemseasures in a given landscape.

(iv) The economic cost of coexistence measuresnigmgortant factor affecting the
farmer’s decision on growing GM crops (Boekal, 2002; Messeast al, 2006). For
example the cost can be linked to (i) involuntagbntaminated non-GM crops which
have to be sold as GM, or (ii) decreased area MrcGltivation if an internal edge with
a conventional variety of the crop has to be growithin each GM field. The
LandSFACTS model provides support to examine beaibes. In the first case, the
number of non-GM crops within a specific distandeany GM fields could be
identified. In the second case, the edge area ®fGM fields, which have to be
cultivated with conventional crop, could be estietatAn evaluation of the economical
cost in a given landscape would then be facilitated

As presented in the above sections, the LandSFA@iD8el could provide useful
support for studies investigating GM coexistenceasoees. The conclusion drawn by
researchers from gene flow models would be stremgith. Thus, more informed advice
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could then be provided to decision makers on thasibdity and efficiency of
coexistence measures for GM cultivation.

9.4 Possible enhancements for coexistence scenarios

The LandSFACTS model could be enhanced to prouidihdr support for scenarios
within the GM coexistence context, in the two fallag ways: (i) by enhancing the
modelling of crop arrangement, and (ii) by provglimew tools specifically designed to
answer coexistence scenario needs.

9.4.1 Enhancing modelling of crops arrangement

The main role of LandSFACTS in supporting the testdf coexistence models is its
ability to model crop arrangement. Therefore byagmding LandSFACTS modelling of
cropping systems, the usefulness of the modelbgilihcreased and widened. Four main
enhancements of crop arrangement modelling aréhdirontrol of crop patterns over a
range of scales, (ii) the annual control of thetigp@attern of crops, (iii) the evolution
of crop rotation over time, and (iv) decision omrallocation based upon the field’s
status. They are presented below.

() Crop patterns are different depending upon s$eale of study, as reported in
Chapter 5. For example, farmers may want to gréwgir tcrop in time and space, in
order to facilitate more efficient farm managemg@ng. less traffic and less regulation);
as a result the area of crops grown every yearftoeuate at the farm scale. However
at the landscape scale (many farms), the propoafidhe main crops may be relatively
constant over the years (low temporal variation)rréntly, the LandSFACTS model
provides support for modelling crop patterns aymnie scale, i.e. the landscape scale if
the whole landscape is modelled, or the farm sttatmly the fields of a farm are
modelled. The LandSFACTS model would be enhanceallbwing the user to control
crop patterns over at least two scales simultang@unsl independently, i.e. at both the
farm and landscape scale; furthermore the contver @ third level, e.g. group of
farmer (cooperative) scale, would be advantagesusaperatives might influence the
crop managements (particularly relevant in Frergeicaltural landscapes).

(i) Crops may be spatially aggregated (aggregasedtial pattern) because of
environmental characteristics (close fields hawesaime characteristics), or because of
a farmer’s decision to group the management odidighat are close spatially. Currently,
within the LandSFACTS model, the spatial patterncodps is being controlled by

Cranfield University Marie Castellazzi 2007



156

limiting the available crops for each field, or bBquiring a specific spatial pattern on
the crop rotations, or both. Those controls areosed only once at the start of the
simulation. Moreover, the latter control is noti@#nt, if the crop to be controlled
appears in all the rotations. This control alsodbees inefficient in the case of very
flexible crop rotations; to address this problenthia LandSFACTS model, the spatial
pattern of crops would need to be controlled diyefdr every year of crop allocation.
This could be done by checking the spatial patéwrrops for every year of simulation.

(iif) Crop rotations can evolve over time to adaphew environmental conditions, such
as climate change, or new market conditions. Rmotatimight either be adapted by
altering a few crops, or they might be replacediligtally different rotation adapted to
the new circumstances. Currently, the LandSFACTSdehmnly considers one

unchangeable crop rotation for each field. Severap rotations can be considered
within the model, if they are presented as one matation controlling the probabilities

of switching between sub-rotations (refer to Chaple It would be useful to provide

the user with support in creating this ‘main ragatifrom the individual sub-rotations

(normal conventional rotations). Furthermore, mkilng the probabilities of transition

from crop to crop, to external variables, i.e. temapures or rainfall levels, variations
within crop rotations could be controlled. LandSHACwould then be able to simulate
scenarios of crop allocation in evolving landscapes. landscapes responding to
external factors such as climate change or introoluof new crops.

(iv) The farmer’s choice of growing a crop in aldies dependent upon the status of the
field, e.g. nutrient availability, organic matteontent, water balance, pests invasions,
and weeds growth. The status of fields are diffefeneach field and each year. Within
the LandSFACTS model the decisions on crop sucmessie solely directed by crop
rotations, which might be altered to meet constsaion crop arrangement. The
probabilities of transition from one crop to anatheuld be regulated by “fields status”
variables, which would be updated yearly for eautividual field, depending at least
upon the crops that are grown. This enhancemenidwprovide more responsive
landscapes to agronomic or environmental variabtethe field level. However, this
type of enhancement would complicate the model ggees, and more importantly
would introduce mechanistic processes within thedehoand thereby contradict the
main modelling approach of LandSFACTS, which ististisal and empirical.
Therefore, any mechanistic addition to LandSFACT&Ieh should be integrated as an
“extension” outside of the core of the model, inlerto avoid the confusion between
the different modelling approaches.
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The enhancement of the modelling of cropping systathin LandSFACTS would
provide more adapted support to scenarios of GMistence. Other specific tools are
presented in the next section.

9.4.2 New tools specifically designed for coexistence segios

For the specific purpose of coexistence scenatias,LandSFACTS model provides
control over the separation distances between crap temporal successions, and
yearly crop proportions. However, there are furttamis, which could be created to
provide even more support to coexistence scenafiosse include (i) the ability to

control field shapes, (i) the handling of field mgms, (ii) discard areas in fields

(buffers), and (iv) the control of farms spatiadtdibution and the integration of silos for
mixing grains. They are presented below.

(i) Field shape, size and orientation change frora cegion to another. However, in
each case, they usually define homogeneous areae whops may be grown. Field
boundaries are mostly constant over the yearspowth they can be merged or
subdivided when farm lands are reorganised. Thessishapes and number of
neighbouring fields are important factors for theks of GM contamination (Bateman,
1947a; Kleinet al, 2006) and the feasibility of coexistence rulesarfigaard and
Kjellsson, 2005). Currently the LandSFACTS modellyoconsiders fixed field
boundaries over the years for a given landscapmgBable to alter field boundaries
would increase the versatility of the model. Mamgortantly being able to control the
field shape, size, number of neighbours would leda powerful tool to investigate the
interactions between the field characteristics #red risks of GM contamination. To
achieve this, the model would need to create newdsleapes with user defined
characteristics. This research area is currentlygoavestigated by the team at the MIA
unit (Département de Mathématiques et Informatigpeliquées) in INRA-Jouy-en-
Josas (Adamczykt al, 2006). The integration within the LandSFACTS mianfetheir
newly developed statistical analyses characterifigld shapes and models of field
mosaics creation, would greatly enhance the patiemsies of the model for coexistence
scenario investigation.

(i) Margins around fields or along roads are feraireas of land on which feral plants
(GM offspring from crops grown in neighbouring fisl in the previous years) may
grow. This is particularly the case with oilseeghaawhose ferals can regularly be
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spotted on roads margins (Chartetsal, 1999; Garnieet al, 2006). The management
of the feral population is crucial in limiting thissks of GM genes spreading through the
landscape (Cresswell and Osborne, 2004; Ellstr@&@d3; Stewartet al, 2003).
Currently the LandSFACTS model does not considergma at all. By providing the
creation and handling of margins and their managéntee model would provide
support to scenario testing of the impact of addiegioving margins, or altering their
management in any given landscape.

(i) Discarding crops on the edges of GM fieldsbising considered as an additional
coexistence measure (Damgaard and Kjellsson, 26@5)example, a buffer of 5m of

conventional oilseed rape may need to be grownnar@M oilseed rape, and would be
downgraded as GM contaminated oilseed rape. Thagisi@nce measure would reduce
the risk of pollen contamination to neighbourindseed rape fields. Currently the

LandSFACTS model does not consider such measuhesmbdel could be enhanced
by allowing the user to set up a “discard buffei®” specific crops. The addition of

such a tool within the LandSFACTS model would iase its support to coexistence
scenarios by controlling another type of coexistemeasure.

(iv) A further coexistence measure to keep the Givitamination below a specific
threshold, is to dilute potentially contaminatecigs with non contaminated grains
(Ceddiaet al, 2007), i.e. by physically mixing grains withidas. This dilution could
occur at the scale of “groups of farms”, i.e. caapiges. The grouping of farmers into
cooperatives would impact upon the potential comaton at the silo level. The ability
to alter the spatial distribution of groups of fams in the LandSFACTS model, would
provide support in investigating the impact of fpatial distribution of cooperatives on
the potential contamination at the silo level.

The enhancements reported within the above sectiomdd increase the support
provided by the LandSFACTS model to scenarios of €axistence, by enhancing the
modelling of crop arrangement (e.g. crop pattermer anultiple scales, evolving
cropping systems over time), and by providing dpesdly designed tools to address
coexistence issues (e.g. altering field boundanesgins and discard areas, and farm’s
spatial grouping). The LandSFACTS model was implaee@ to allow such
enhancements; therefore, their integration withi@ model should not be a problem.
However, by increasing the complexity of the modeé model might become more
difficult to use, and could confuse potential us&sach enhancements should thus be
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clearly identifiable within the model and should developed as optional tools within
the LandSFACTS model.

9.5 Conclusion

This thesis meets the aim of providing a framewlrksimulating crop arrangements
for GM coexistence scenarios. The three objectivesthe origin and characteristics of
spatio-temporal arrangement, the design and assaswh the LandSFACTS model
have been met and the main output, the LandSFAC®&mhas been deemed valid
for its stated purpose. To design the model, twthér tools were created. These were
statistical analyses on crops spatio-temporal pettand mathematical representations
of crop rotations. This chapter has also provideaigles of the support provided by
the LandSFACTS model to coexistence scenarios,udimd support for the
investigation of the impact of crop arrangementrmks of GM contamination, of
potential coexistence measures on the level ofsyrisif the physical feasibility of
coexistence measures, and of the economic cosiexistence measures. This chapter
provided suggestions for possible improvementshencdontrol of crop arrangements
(e.g. enhanced control of crop patterns and ratgfiand the integration of further tools
adapted for coexistence scenarios needs (e.g.otootrfields boundaries, fields
margins, discard areas, spatial distribution afniens and silos).

The LandSFACTS model has been designed to be ustdnwhe context of
coexistence of GM crops in European agriculturahdicapes. However, the
LandSFACTS model is not restricted to this cont@kte model could be used on any
agricultural landscape worldwide as long as onlg orop is grown per field every year.
The model could be useful to any model requiringdfases as an input, in order to
control and statistically characterise their croagement inputs. For example, there
are examples where models of soil erosion, orglaming, plant disease, or animal-
plant interactions could benefit from the invediiga of their sensitivity to crop
arrangements. The model is also potentially ustfuhvestigate the introduction of
crops other than GM. A recent new environmentalceam is linked to the use of bio-
energy crops, such as willow, within classical agmic landscapes. The impact of
such alteration of land uses (i.e. from arable fantforest”) on the wildlife is currently
under focus (RELU-Biomass, 2007). The LandSFACTSdehavould be useful to
investigate potential scenarios of bio-energy @dpption.
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Appendix A: Existing crop allocation models
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Summary of the studies relating to crop allocatimodels.

Authors General aim  Scale of Base unit Initial Inputs Final outputs Modelling  Mathematical processes
study processes
ARABLE (Rounsevellet Evaluate European  Grid (5*5km)  Sail, climate,farmer%  agricultura Farmer decisio Optimisation process
based oral, 2003a optimum scale (modelcell = 1farm decision makin(land use / cells process Linear programming
SFARMOD Rounsevell et agricultural  at Farm very detailec (from IMPEL)
al., 1998) land use scale) (labour, timing...)
Crop (Klécking et Create ¢regional Grid 100* % of landuse peCrops/ cells Statistical Random allocation
generator al., 2003) virtual  crop 7,500kn? 100m; 1 parce homogeneous areas Year / year Crop statistics respected
pattern >= 4 cells
For STICS (Mignolet et Nitrate model Water-shed Homogeneou&xpert knowledge Main crop Expert Temporal data mining
model al., 2004) areas Agricultural rotations knowledge
425knt statistics
Crop (Klein Crop 1 unit (no- Crop sequences nCrop sequences No agronomic Mathematical approaches
succession Haneveld anisuccession  spatial allowed economic Generic multiyear lineal
Stegeman, requirement model) consideration programming model
2005) Linear constraints in tf
decision variables
ROTAT (Dogliotti et Generate Farm Not allowed Possible croj Agronomic Linear programming t
al., 2003) reproducibly (no  spatia successions, rotations (&filters Farmer-optimise tempore
crop rotation hetero- profitability, return classify specific interactions
geneity) period, dates Bio & physical constraints  &filters
and properties) objectives
CropSyst  (Donatelli et Cropping Watersheds Block offield Crop rotatior Effects or Modelling crop Deterministic model
al., 1997; systems (same template, Soil, cro environment. growth, soil Event driven model
Stockle et al, simulation environment 4specificity , crof water,
2003) model (effec same management, erosion...
climate management) climate biomas Daily time step
change) 1 polygon production, intakes.
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Authors General aim  Scale Base unit Initial Inputs Final outputs Mod. process  Mathematical processes
Simulated (Joannon, Analyse Regional field Rotation rules Crop allocatior Spatial & Not specified
crop 2004) farmer’s Return period to fields temporal Model not formalised
rotation flexibility to Previous crop constraints
change crop
systems
Crop (Oxley et al, Farmer Regional Grid, cell = 1he Crops; Physica Crops type Farmer decisio Decision trees
choice 2002; Oxleyet decision parcel socioeconomic & Water making Rule based model
al., 2004; making, crog institution requirement, Yearly
Winder, 2000) choice model conditions water sources...
(Baudryet al, Compare Water-shed Polygons Real landscapiLand use / cove Within-farm Rules based model.
2003) connectivity ~ 5*5km farming systems classes in fields rules of lanc
on a rea (topology, majol Hedgerows allocation
landscape, driving forces between fields Empirical rules
years croj classes of landus
successions. soil types).
Crop (Detlefesen, Network - - Crops Average Network / trasportatior
rotation 2004) model used fo Hectares in rotation production plan models
model crop rotation
(Le Beret al, Simulate Regional 1.homogeneou®EM Crop allocation 1. Experi 2. multi-agent systems
1998) spatial areas; 2. parce Soil map Number of cow:knowledge 3. simulated annealing
organisation o of homogeneou 2. slope, distance fed. 3. closer tc
agricultural soail, slope constraints farmers
approaches distance 3. spatial constraints thinking than 2.
(Parker  ancExplore Fictive grid  grid Urban negativi Location of urbarMacro & micro- Agent-based model
Meretsky, impacts (0} influence orand agriculturascale feedbacks
2004) urban-rural agricultural land Externalities
conflicts  on production present
land-use Repulsion of urba Cost/profit
patterns against urban land.
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Appendix B: Digital Appendices (CD)

The digital appendices (CD) provide the programd erample datasets developed
within the thesis. For the structure, refer to FegB.1.

| CropAllocation_program

| InitialCrops_program
ICiLongTermCropProportions_program
|CiRotationFields_program

| SpatialPattern_program

@ LandSFACTS_helpfile
[f]LandsFACTS Setup_vi-6

Figure B.1: Screenshot of CD content

- LandSFACTS_Setup_v1-6
This file is the installer of the LandSFACTS softeaBy double-clicking it, the
LandSFACTS software with its adds-on will be intdl The software is provided with
a comprehensive helpfile (LandSFACTS helpfile, dige accessible from
LandSFACTS interface), example datasets and psyjecid a tutorial. The simulation

programs (RotationFields, InitialCrops, and Cropa#tion) embedded within the
software are not the latest versions.

B LandSFACTS v1.6 O] x|
File | Input data Simulation Help

l__ «f Geographical information  » [t project is E:/LandSFACTS_project/project_doc |
—Hier f Crop definitions n here
«f Rotation definitions

W Assign to fields

«f Possible crops
«f Rotations

«f Temporal constraints 3
«f Spatial constraints

J ‘fearly crop proportions

Figure B.2: Screenshot of LandSFACTS software fater

- HelpFile for LandSFACTS software
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A e & 0 [ N & o

Hide Back Fonward  Stop Refresh  Home Print  Options

=10 x|

Contents | Index I §earch|

@ Overview of LandSFACTS Getting started...

Getting started...

@ Main Toolbar: File

@ Main Toolbar: Input Datz

@ Main Toolbar: Simulation
= |:Q| Project examples

A tutorial is available. P

1. Start LandSFACTS

() Userintor This page presents a summary of the use of LandSFACTS software. —
= serintefaces Refer to the Description of user-interfaces for complete details. *

[2] Bxample 1
Example 2
Example 3
@ Verfication & Validation
@ Additional information LandSEACTS
[7] Version infarmation
@ Website
pE—
@ Acknowledgements File Inputdats; Simulation Help
[7] Licenses | Status: N
Contacts :
(Hiemrchy dﬁeldr‘ map of fields will go in here
J 1l | ;I_I

Figure B.3: Screenshot of helpfile

- LandSFACTS C++ stand-alone programs.

Each program folder is composed of a source colierfoa Files folder (inputs and
outputs examples), the executable of the progrankjgure B.4, 5. Individual help files
are provided within each executable, further adviaee available in the helpfile for

LandSFACTS software.
* RotationFields program
* InitialCrops program
» CropAllocation program
* Long-term crop proportions

» Statistical test of spatial patterns (E analysis)

I Cropallocation_300707_sourcecode

IChFiles

ECrnp.ﬁ.llncaﬁnnjDD 707

Figure B.4: Screenshot of contents of CropAllocatjorogram folder
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inputs are composed of console inputs and text file.
outputs are saved within a log file.

Run the model

Help for inputs — Ouverview

Help for inputs — Detailed

Exit program

Figure B.5: Screenshot of CropAllocation program

Cranfield University Marie Castellazzi 2007



177

Database structure

Appendix C
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Appendix D: Code verification tests

List of general code verification tests:

ID Verification Status

1  Crop allocation with a known fixed rotation and Ok
initial crop for each field

2  Crop allocation with a known flexible rotationdan Ok
initial crop for each field

3  Detecting spatial constraints Ok

4  Detecting temporal constraints - return period of Ok
crops

5 Detecting temporal constraints - maximum Ok

consecutive years of crops
6  Detecting temporal constraints - forbidden crop Ok
sequences
7  Checking many temporal constraints at the same Ok
time
Reach target yearly crop proportions Ok
Check all types of conditions (temporal, spatial, Ok
crop proportions) at the same time

© 00
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Appendix E: Assessment of stochastic processes

Random initial crops

A simulation is set up to test the true randomrefseandom choice of initial crops
(crops for first year of simulation in every fieldjy giving an equal probability between
10 potential initial crops for every field. The sifation is run 1,000 times for only one
year. For every simulation, the number of fielddwvaach crop is recorded.

By determining the relative standard deviationte humber of fields with each crop
for all the simulations, the randomness of the gssds evaluated.

Dataset:
- Beauce dataset
- 1 crop rotation for all fields: equal probabilitiektransition between 10 crops
- random initial crops in fields
- no constraints and iteration parameters
- simulation years = 1
- simulation batch = 1000

Results:

The summary of the number of fields for each crepveen the 1,000 simulations is
reported in Table E.1. As for each field there nsemual probability between the 10
crops (probability of 0.1), and as there is 1,9@8§, for every simulation, each crop
should tend towards 199.3 fields. For each crop,abverage of number of fields over
the 1,000 simulations is close to 199.3. The netattandard deviations between the
numbers of fields for each crop over all the siriates are all under 0.007. Therefore
the random choice of initial crops between all ¢theps in the rotation is concluded to
be adequate, as it provides an equal probabilityldhining any of the crops for
identical probability within the transition matrikurther tests could be useful, such as
by giving non-identical probabilities between theps in the transition matrix.

Table E.1. Results on random initial crops

crop sum average  min max stdev % stdev
1 200344 200.344 156 245  13.507410.006742
2 200101 200.101 159 248  13.720170.006857
3 199143 199.143 159 246  13.26365 0.00666
4 198537 198.537 162 238  13.071170.006584
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199520 199.52 165 255  13.26188.006647
199528 199.528 152 245  13.853270.006943
198845 198.845 158 241  13.414060.006746
199013 199.013 154 240  13.170810.006618
198944 198.944 160 244 13.55 0.006811
10 199025 199.025 163 248 13.5164 0.006791
sum 1993000

© 00 N O O

The above results were obtained from 1,993,000egalderived from 1,000 simulations
over 1 year crop allocation, on 1,993 fields. Thenter of initial random choice tested
are 1,000 simulation multiplied by 1,993 fields.

Random next crop

A simulation is set up to test the true randomredssandom choice of the next crop
when using a transition matrix (crops for any year the first year of simulation), by

giving an equal probability in the transition matbhietween 10 potential crops for every
field. The simulation is run 50 times for 21 yedh® first year (initial year) is discarded
as it uses the random initial crop instead of #relom next crop. For every simulation,
the number of fields with each crop is recorded.

By determining the relative standard deviationte humber of fields with each crop
for all the simulations, the randomness of the @ssds evaluated.

Dataset:
- Beauce dataset
- 1 crop rotation for all fields: equal probabilitiektransition between 10 crops
- random initial crops in fields
- no constraints and iteration parameters
- simulation years = 21
- simulation batch = 50

Results:

The summary of the number of fields for each crepmeen the 50 simulations is
reported in Table E.2. As for each field there nsemual probability between the 10
crops, and as there are 1,993 fields, the numbeeash crop for every year of
simulation should tend towards 199.3. The tableomspthat the average value of
number of fields for each crop are very close ® 189.3 value. The relative standard
deviation between all the simulations of the nuntdfefrelds for each crop are all lower
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than 0.007, indicating a low variation from thegttr value (199.3). Therefore the
random choice of the next crop is considered aguately random for the purpose of
LandSFACTS. Further random tests could be carrigdt@ test the properties of the
random choice, such as by setting up non-equalapiblies within the transition
matrix.

Table E.2. : Results on random next crop

sum of average minimum maximum standard relative standard

crops . L
all values value value value  deviation deviation
1 199596  199.60 161 248 13.218 0.0066
2 199360 199.36 157 236 13.381 0.0067
3 199514  199.51 158 241 13.572 0.0068
4 199658  199.66 154 242 13.728 0.0069
5 199152  199.15 158 246 13.994 0.0070
6 199957  199.96 144 242 13.046 0.0065
7 198953  198.95 151 245 13.474 0.0068
8 199221  199.22 163 243 13.600 0.0068
9 198700 198.70 152 234 13.131 0.0066
10 198889  198.89 163 238 12.973 0.0065

The above results were derived from 50 simulatawes 20 year crop allocation (initial
year was not considered), on 1,993 fields.

Random field to alter

A simulation is set up to test the true randomméske fields chosen to be altered when
several fields must have their crop altered. Evialg of the dataset is linked with a
crop rotation featuring continuous wheat, at theesdgime the crop sequence wheat-
wheat is forbidden. In consequence, one year owerdll the fields, one at a time, must
have their wheat crop altered for the universapdianly option authorised). Iteration
by iteration, the simulation records how many timaeffeld does not meet a constraint,
therefore the field, which has its crop alteredtfivill have the value 1; the field, which
has its crop altered last will have the highest®dB88 for this example as it is the total
number of fields). Those values are recorded indbé called FieldsConditionsTimes,
in the column “Times”. By investigating the var@is between years and simulation of
those “Times” values; the randomness of the figddalter is evaluated.

Dataset:
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- Fife dataset with 388 fields

- 1 crop rotation: continuous wheat

- random initial crops in fields

- 1 forbidden crop sequence for all fields: wheatraftheat

- iteration parameters: only option 2.3. Universalpsrwhich is “fallow”, maximum
iterations: 1,000, penalty to fields = 1.

- simulation years = 200 (as only one year in twtested for wheat-wheat, there is
100 sample year)

- simulation batch = 50

Results:

The table E.3 reports the statistic summary ofrilmaber of “Times” for each field (i)
over all years of simulation, (ii) over one yearsihulation, (iii) over all years if the
order of the fields altered was constant (maximewsess). The relative standard
deviation of all simulations, is two order of mamwie lower than the one from
maximum skewness (0.002 instead of 0.15). Thisedifice is also reflected in the
maximum and minimum values, which are both closethe average. The evaluation
indicates that the order of the fields to alternseerandom, i.e. even distribution
between the fields of the “Times” values. This te=tld be further complemented with
an evaluation of the lowest possible skewnessjrhylating an even distribution of the
order of altered fields.

Table E.3. Results on random field to alter

all runs 1lyear maximum
skewness

number of values 5000 1 5000
sum 377330000 75466 377330000
average 972500 1945 972500
median 972508 1945 972500
standard deviation 7607 112 560750
relative standard 0.0020 0.1486 0.1486
deviation
max 992682 388 1940000
min 952572 1 5000
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Appendix F: Crop rotations for sensitivity analyses

The following tables reports the crop rotation neas used for the sensitivity analyses
in Section 8.6: Sensitivity analyses, p.120.

Table F.1: Transition matrix for permanent grasslestation (Fife dataset)
Yearn+1

Permanent grassland

Yearn Permanentgrassland 1

Table F.2: Transition matrix for “all crops” rotati (Fife dataset)

Yearn+1
W Wb Sb WoSo W W S P o0 Sa
w OS OSR OS
Rc gmn Rc
Winter 0 01 02 O 02 O 0 02 01 01 01
wheat
Winter 0 01 O 04 O 04 O 0 0 01 O
barley
Spring 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.090.09 0.1 0.09
barley

Winter oats  0.090.09 0.09 0.09 0.09 0.09 0.09 0.090.09 0.1 0.09

S Spring oats  0.090.09 0.09 0.09 0.09 0.09 0.09 0.090.09 0.1 0.09
§ Winter OSR 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.090.09 0.1 0.09
conv
Winter OSR 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.090.09 0.1 0.09
GM
Spring OSR 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.090.09 0.1 0.09
conv
Potatoes 04 029250 0 0 0 0 0 01 O
Other 0.090.09 0.09 0.09 0.09 0.09 0.09 0.090.09 0.1 0.09

Set-aside 0.09.09 0.09 0.09 0.09 0.09 0.09 0.090.09 0.1 0.09
Ww = winter wheat; Wb = winter barley; Sb = spritgrley; Wo: winter oats; So =
sunflower; WOSRc = winter oilseed rape conventionaliety; WOSRgm = winter
oilseed rape GM variety; SOSRc = spring oilseederapnventional; P = potatoes; o =
other; Sa= set-aside.
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Table F.3: Transition matrix for “all crops” rotati (Beauce dataset)

Yearn+1
OSR OSR W S M Sa P Wb o Sb
conv GM

OSR 0.15 0.05 0.3 0.0r 0.0 0.07 0.07 0.07r 0.08 0.07
conv
OSRGM 0.15 0.05 0.3 0.0 0.0/ 0.07 0.07r 0.07 0.08 0.07
Wheat 0.15 0.05 0.3 0.07r 0.0/ 0.0/ 0.07 0.07 0.0870
Sunflow 0.15 0.05 0.3 0.07 0.07 0.07 0.07 0.07 0.08 0.07
ers

= Maize 0.15 0.05 0.3 0.07 0.07 0.07 0.07 0.07 0.0870

S Set-aside 0.15 0.05 0.3 0.07 0.07 0.07 0.07 0.008 0.0.07

” Peas 0.15 0.05 0.3 0.07 0.07 0.07 0.07 0.07 0.087 0.
Winter 0.15 0.05 0.3 0.07 0.07 0.07 0.07 0.07 0.08 0.07
barley

Other 0.15 0.05 0.3 0.07 0.07 0.07 0.07 0.07 0.08 0.07
cereals
Spring 0.15 0.05 0.3 0.07 0.07 0.07 0.07 0.07 0.08 0.07
barley

OSRconv = oilseed rape conventional variety; OSR&Ghilseed rape GM; W = wheat;
S = sunflower; Sa = set-aside; P = peas; Wb = wirttarley; o = other cereals; Sb =
spring barley.
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Appendix G: Results from scenarios

The following tables reports the crop rotation neas used for the sensitivity analyses
in Section 8.7: Scenario testing for a real landec@.131.

Table G.1: Unprocessed results of each simulation
ID FailedSim Year Nbiteration NbCondFailed Penalty Seed

1 0 0 3218 4842329 337 13667

2 0 0 3431 5230842 324 5376

3 0 0 3130 4759391 350 19291

4 0 0 4367 6841779 390 10145

AO 5 0 0 2242 3084814 292 22522
6 0 0 4445 7023564 376 6055

7 0 0 4611 7196019 352 26405

8 0 0 4194 6508242 348 20840

9 0 0 5394 8464827 407 10777

10 0 0 4693 7401647 376 13450

1 0 0 5695 9542636 405 9466

2 0 0 3461 5640678 307 20370

3 0 0 4706 8139041 388 7732

4 0 0 3547 5738110 344 3010

BO 5 0 0 4674 8084697 386 10413
6 0 0 4087 6909869 354 14464

7 0 0 4093 6713520 336 5160

8 0 0 4052 6823957 354 6684

9 0 0 3964 6684982 341 26025

10 0 0 3106 4949373 312 12849

1 0 0 11977 22465910 769 15343

2 0 0 11301 20715924 728 3197

3 0 0 9014 16004598 641 6583

4 0 0 11338 20719267 660 23437

A1-50m 5 0 0 8438 15348210 607 26348
6 0 0 10798 19551917 712 10023

7 0 0 9069 16667877 642 23975

8 0 0 10514 19391363 724 1730

9 0 0 8678 15835887 622 10192

10 0 0 7905 14193776 600 4879

1 1 2 18158 35245606 1793 27115

2 0 0 14666 28096724 675 16455

3 1 2 21960 42980004 1893 16889

4 1 2 20102 39426562 1810 16911

B1-50m 5 1 2 20149 38629261 1837 31101
6 1 2 19926 38872849 1810 6867

7 1 2 16918 33045120 1797 31528

8 0 0 12551 24219992 676 28660

9 1 2 16918 33045120 1797 31528

10 0 0 19548 38041588 787 11509
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FailedSim = 1 if simulation failed; Year = if sinatlon has failed, year that failed;
Nblteration = number of iteration used for the slation; NbCondFailed = number of
failed condition during the iteration processesnBky = overall penalty to field of the
simulation; Seed = random seed, unique for eachlsition.

Table G.2: Statistical summary of results:

A0
FailedSim Year Nbiteration NbCondFailed Penalty
average 0 0 3973 6135345 355
median 0 0 4281 6675011 351
min 0 0 2242 3084814 292
max 0 0 5394 8464827 407
stdev 0 0 939 1608003 34
BO
FailedSim  Year Nbiteration NbCondFailed Penalty
average 0 0 4139 6922686 353
median 0 0 4070 6768739 349
min 0 0 3106 4949373 307
max 0 0 5695 9542636 405
stdev 0 0 742 1364015 32
A1-50m
FailedSim  Year Nbiteration NbCondFailed Penalty
average 0 0 9903 18089473 671
median 0 0 9792 18029620 651
min 0 0 7905 14193776 600
max 0 0 11977 22465910 769
stdev 0 0 1438 2807494 58
B1-50m
FailedSim Year Nbiteration NbCondFailed Penalty
average 0.7 1.4 18090 35160283 1488
median 1 2 18853 36643597 1797
min 0 0 12551 24219992 675
max 1 2 21960 42980004 1893
stdev 0 1 2866 5696071 536

FailedSim = 1 if simulation failed; Year = if sinatlon has failed, year that failed;
Nblteration = number of iteration used for the slation; NbCondFailed = number of
failed condition during the iteration processesnBky = overall penalty to field of the
simulation; stdev = standard deviation.
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Table G.3: Student’s t-test

Tests Nblteration NbCondFailed Penalty

AO0-BO 0.4386 1.1808 0.1699

Al-B1 7.8010 8.2104 5.0778

t-value AO-Al 10.9180 11.6840 14.7927

BO-B1 14.3179 14.6389 7.0856

BO-Bls 9.8810 10.1058 15.8145

Al-Bls 4.6503 4.9649 1.5336
AO0-BO no no no
N Al-B1 yes yes yes
S|gn|f|cantly AO-A1 ves ves ves

different at BO-B1 os

p=0.01? y yes yes
BO-B1s yes yes yes
Al-Bls yes yes no

Nblteration = number of iteration used for the slation; NbCondFailed = number of
failed condition during the iteration processesnBky = overall penalty to field of the
simulation.

Degree of freedom for Student’s t-test: 18, exéepBls (only 11)

Threshold value from t-test table, with p = 0.0B& except for Bls (3.10)
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