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Abstract 
Knitwear design is a creative activity that is hard to automate using the computer. The production of the 
associated knitting pattern, however, is repetitive, time-consuming and error-prone, calling for automation. 
Our objectives are two-fold: to facilitate the design and to ease the burden of calculations and checks in 
pattern production. We conduct a feasibility study for applying case-based reasoning in knitwear design: we 
describe appropriate methods and show how they can be implemented. 
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1 INTRODUCTION 

The design and production of patterns for hand knitting is 
a very tedious process, involving a highly qualified team of 
a designer, a pattern writer, several checkers and knitters, 
a typesetter and proofreaders. There is very little 
documentation and training material available, most of the 
skills are acquired through learning by doing. The 
designers and other members of the team find it difficult to 
formulate the rules which decide how they perform 
various steps, an outsider would have to watch them, try 
and understand what they are doing and then learn by 
asking questions. 
 
The designer first designs the pattern and produces a 
hand-drawn sketch on graph paper, which includes 
measurements. The pattern writer then manually 
calculates the pattern for hand knitting in different sizes. 
The checkers perform an initial check of the pattern and 
make any necessary corrections. The knitters then hand 
knit the pattern in one size and make alterations to the 
pattern if needed (for example to obtain the desired shape 
of the garment). The alterations are made on the pattern 
for six different sizes. The checkers manually check that 
all the calculations are correct. For a proper check, they 
sometimes hand knit a sample of the complicated parts of 
the pattern (a finishing, for example) to make sure that the 
result corresponds to the description. In the next step, the 
typesetter typesets the pattern using a standard word 
processor. Finally, at least three proofreaders check the 
typeset pattern for any mistakes (they perform a read-
through check). If there are alterations needed, the 
typesetter will make them on the typeset pattern. 
 

The process is very time consuming and requires a lot of 
human attention and effort. Everything in the process, 
except the typesetting, is done manually, without the use 
of computing technology. We demonstrate here how 
specialised tools can be developed to help the designer in 
producing the sketch and also to automate the checks, 
calculation and production of the written patterns. 
 
Although knitting and knitwear design has a long history 
and also includes many calculations and steps that are 
almost mechanical, there have been surprisingly few 
attempts to use computers for improving the underlying 
processes. The design of machine-produced knitwear was 
investigated by Eckert et al. [1]. Communication difficulties 
arise in large design teams since the specifications of the 
garments are often inaccurate, incomplete and 
inconsistent. To alleviate this, the authors proposed that 
designers use an intelligent CAD system. Active critiquing, 
i.e. pointing out differences between a designer’s goal and 
what is actually happening, can be used to catch errors as 
early as possible. In the user interface which was 
presented, choices were only offered if they were 
relevant, based on the answers to previous questions. 
Shapes were described using shape grammars and 
Bézier curves. Interestingly, they say that “case based 
reasoning could be employed to provide starting 
measurements for cutting pattern construction”.  
 
A system for automatically designing knitting stitch 
patterns for hand knitwear was presented by Ekárt  [2]. It 
is possible to produce many designs that are not knittable, 
because they violate the rules of knitting. For example, if a 
width of a garment does not change then the number of 
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stitches in a row must be equal to that of the previous row. 
A method of representing knitwear based on trees is able 
to avoid many of these invalid designs. Some heuristic 
measures were described, which can identify aesthetically 
pleasing patterns. This avoids the fatigue which is 
involved in the alternative techniques of asking humans to 
evaluate patterns which have been generated. 
 
Many studies on creative design conclude that human 
designers create new designs by studying past designs 
from various resources and combining them together, 
adding new elements. To assist the design and production 
of knitting patterns, we propose a case based reasoning 
system that allows for structured step-by-step production 
of new patterns from scratch or reuse and adaptation of 
similar patterns from the past.  
 
2 CASE-BASED REASONING 

Case-based reasoning (CBR) is a generic problem solving 
methodology based on the idea that a solution to a new 
problem can be obtained from solutions to similar 
problems encountered in the past [3]. In addition to using 
knowledge from previously experienced problems, CBR 
has an element of incremental learning: every new 
experience is recorded for future use.  
 
CBR is based on typical human problem solving: an 
engineer designs a new product or part by possibly 
reusing features of a past design, whose specification 
presents a certain degree of similarity with the expected 
new product; a doctor examining a patient builds up the 
diagnosis based on a comparison of the symptoms with 
those described in a book or previously shown by another 
patient; a decision in court is taken by drawing the 
similarity to a case in the past. The key in all these 
situations is to remember the similar problem case from 
the past and adapt its solution to the new situation.  
 
The main cycle of CBR consists of four steps [3]: 

• retrieve the most similar case(s) in the case base; 

• reuse these case(s) to attempt to solve the new 

problem; 

• revise the proposed solution; 

• retain the new problem and its solution in a new case 

in the case base for later use. 
 
There are various methods to represent cases, in most 
situations the problem description and the solution are 
represented as attribute-value pairs. A suitable similarity 
function has to be devised to compare the new problem 
case with the ones stored in the case base. The best 
matching cases are retrieved from the case-base and 
adapted for reuse. Adaptation is often very simple, such 
as slightly changing values of selected attributes, or left 
for the human to do. In domains where there is a huge 
number of past cases available, it is very likely to find a 

very similar past case whose solution needs little 
adjustment to the new case. However, where there are 
few past cases available only, the adaptation needs to be 
more substantial and prepared to deal with larger 
differences between past cases and the new case. It is 
customary to allow the user to rate how well the new 
solution proposed by the CBR system performed and 
possibly repair it in the revise phase. The new case is 
then retained for future use in the case base if it is judged 
to be sufficiently different from the existing cases. 
 
Lopez De Mantaras et al. [4] comprehensively discuss 
retrieval in CBR, e.g. whether to use surface features or 
data which is derived from a more in-depth analysis of the 
case. Some of the methods they discuss are variants on 
nearest neighbour algorithms, others rely on a complex 
representation of cases, e.g. in a hierarchy or as a graph. 
They mention systems where a subset of cases is 
retrieved and presented to the user; in some of these 
systems they sacrifice some of the similarity in order to 
introduce diversity. They also discuss “adaptation-guided 
retrieval”, which uses domain specific knowledge to 
reduce adaptation failures in situations where the most 
similar case is not necessarily the easiest to adapt. 
 
Price and Pegler [5] describe the Wayland advisor for the 
setting up of die-casting machines. Wayland consists of a 
series of fields, each of which has a weight chosen to set 
the significance; these are summed to give an overall 
match value. Wayland is an uncommon example of the 
successful use of CBR in a difficult design problem. There 
is a large value space for the inputs, and the relationship 
between those inputs and the desired outputs is not 
clearly understood. Nevertheless the system was able to 
find a ‘close enough’ solution, and as a result was 
successfully deployed in foundries. 
 
Kolodner [6] discusses indexing and flexible methods of 
organising cases into a network, e.g. a memory 
organisation packet. She gives four methods of computing 
similarity: using an abstraction hierarchy, a qualitative 
scale, a quantitative scale, or comparison of roles. The 
choice of representation and similarity measure depends 
on the nature of the data, e.g. whether it is hierarchical, 
discrete choices or continuous range. 
 
Bergmann et. al [7] discuss case representation, pointing 
out that the choice of case representation and similarity 
measure are related. Straightforward representations are 

feature vectors, textual and object-oriented. Generalised 
cases are achieved by introducing variables into cases to 
represent solutions to a wide range of problems. Complex 
cases may involve a choice of variables and wide ranges 
for their values. The importance of generalised cases lies 
in the fact that they can enable a CBR system to perform 
well with a small case base. 



Bergmann et al. also discuss CBR systems with a 
hierarchical representation.   Larry Leifer of Stanford 
University famously said “all design is redesign”. This 
applies to knitwear since at the lowest level garments are 
composed of the same types of stitch. Therefore, a 
partonomic hierarchy is conceivably a good way of 
representing knitwear. However, comparing the detail of 
complex cases in order to judge their similarity is much 
more difficult than simply matching on surface features. 
 
Craw [8] describes k-NN (nearest neighbour) algorithms 
and makes the point that recording how many times a 
particular case has been reused can, in future, help to 
identify problems with the coverage of the case base. 
Mejasson et al. [9] use a weighted sum algorithm in their 
intelligent design assistant system, which assists 
designers of submarine cables. The algorithm involves the 
sum of the squares of individual distances; the weights 
applied to these distances can be set by the user. In order 
to compare values, their range was often mapped onto a 
qualitative scale, with the points on the scale treated as 
being of equal distance. They use an abstraction 
hierarchy to measure the distance between components. 
 
Watson [10] underlines the fact that CBR is a 
methodology and implementers are free to use whichever 
technology is appropriate to implement, mentioning 
nearest neighbour, induction, fuzzy logic and SQL as 
examples. 
 
The existing work shows the prevalence of k-NN 
algorithms using weighted sums and techniques to deal 
with symbolic, rather than numeric data. This approach is 
suitable for our domain, since adaptation of our 
hierarchical representation (see below) will mean we do 
not need to index our cases or organise them in a 
particularly complex way, leaving us to focus on the 
challenges of adaptation. 
 
CBR is particularly suitable for the knitwear design 
problem. Designers themselves study many past patterns 
before they create a new design. A new design will always 
contain some new element or an interesting combination 
of elements used in previous patterns, but will be similar 
to previous designs. A new sweatshirt will most commonly 
contain the four ordinary parts: front, back, right and left 
sleeves. However, their shape and structure will be 
designed according to new trends and wool type. There 
could be many neck and armhole types, various different 
lengths and sleeve lengths, possible accessories (such as 
a belt) or interesting borders, and the stitch pattern can 
vary across the whole sweatshirt. 
 
Sirdar Spinning Ltd. is producing about 300 new patterns 
every year, so the case base will contain a limited number 
of very specialised cases. A new case can be solved by 

combining and adapting several sufficiently similar cases 
(over different attributes) rather than adapting one single 
case, as it is unlikely to find a very similar past case 
across all dimensions. Once the high level representation 
is created for the new case, the details at the lowest level 
must be rigorously produced in order to obtain a full 
solution. Our system cannot solely rely on the case base 
as the new trends may involve a new element or shape 
that has not been encountered before. The human user 
will be offered the possibility to create a new design 
themselves with the help of the system and then store it in 
the case base. 
 

3 CBR APPLIED TO KNITWEAR DESIGN 

3.1 Case Representation 

We represent our cases using three levels of detail: 
1. Questionnaire: A high-level specification that is 

similar to a sheet currently used by knitwear 
designers. 

2. Sketch: A visual illustration of the shape, 

consisting of points, lines or curves between 
them, and rules that govern them. 

3. Chart: A detailed and complete description of  

the knitting stitch pattern that makes up the 
garment. 

 
The three-level representation is consistent with the 
existing process, where detail develops as the design 
progresses. It facilitates case-based reasoning since we 
can use the questionnaire in the retrieval stage, so 
indexes are not required. 
 
We store our cases as XML files, in a human-readable 
format. This affords portability, and facilitates testing, 
since no interpretation of the files is required. 
 

3.2 Similarity Algorithm for Retrieval 

We use a weighted sum algorithm to assess the similarity 
of two garments. The first step is the calculation of the raw 
similarity raw_sim; the higher the value of raw_sim, the 

more similar the garments are judged to be. Each feature 
in the questionnaire for the garment that we are creating 
is compared to the equivalent in the previously created 
garment, stored in the case base. If the features match, a 
weight is added to raw_sim. The values of the weights are 

determined by the user (see section 4.4).   
 
In many cases, the values in the questionnaires are 
“yes/no” choices. However, in some scenarios there is a 
choice from a list, and options may differ in their similarity 
to each other. For example, a wrist-length sleeve is more 
similar to a 3/4 length sleeve than it is to a very short one. 
We define a 2 x 2 matrix for the attribute values and the 
user can assign a score to each pair of values. In these 
situations the the weighted score is added to raw_sim. 



If the feature is not present in the garment then the weight 
is not calculated and other features which are dependent 
on this feature are ignored in the existing garment. For 
example, if we are creating a sleeveless garment then a 
weight  (Whassleeves) would be used for existing sleeveless 

garments; but not for sleeved ones. In the latter case, 
details such as the cuffs are irrelevant. 
 
The normalised similarity (norm_sim) is given by: 
 

(1) 
 
 

where: 

min_sim(a,b) = Warmholestyle x min_scorearmholestyle 

 + Wneckshape x min_scoreneckshape 

 +Wwearer x min_scorewearer  

max_sim(a,b) = raw_sim(a,a)  

 
min_scorearmholestyle, min_scoreneckshape and 
min_scorewearer are the minimum values in the score 
matrix of the garment being created for the row 
corresponding to the armhole style, neck shape and 
wearer respectively. All these attributes are mandatory 
and independent of other data, so it is possible that some 
rows on this matrix will have values that cause the 
minimum similarity not to be zero. So, norm_sim(a,b) lies 

in the range [0,1], where 0 corresponds to completely 
different and 1 to identical. Finding the most similar 
garment to the new one is a maximisation problem. We 
argue that maximisation of similarity is more intuitive to 
the non-technical user than minimisation of distance. 
 
Let us now examine the axioms of distance metrics, as 
discussed in Tversky [11]. Minimality applies to our 
algorithm; this is exploited in our description of the 
normalisation, as explained above. However, as in many 
of the situations Tversky describes, symmetry and the 
triangle inequality do not necessarily apply to our 
algorithm. According to Craw [9], roles are important 
where there are asymmetric similarity measures; here the 
roles are ‘garment being created’ and ‘previously created 
garment’. Symmetry and triangle inequality axioms need 
not apply in our scenario, since what is really relevant is 
the adaptation distance. For example, if the sleeves are 
removed from garment A to produce garment B, then B is 
quite similar to A but not vice versa since it is easier to 
remove a sleeve than re-design it. 
 
The obvious retrieval strategy is to attempt to adapt the 
existing garment(s) with the highest similarity. If this is 
unsuccessful then the next most similar garment can be 
attempted, and so on. However, we may consider 
introducing diversity, as discussed in Aamodt et al. [5], 
since if the most similar case cannot be adapted then 

attempting adaptation on cases that are very similar to 
this may also be futile. 
 
Our algorithm was implemented in Java application on a 
computer with an Intel Core 2 Duo 2GHz processor, and 
2GB of RAM. We experimented with similarity evaluation 
on a large case base consisting of 25000 pseudo-
randomly generated cases, to ensure that efficiency is not 
an issue with the algorithm (we envisage only about 300 
cases a year being added). Our system has been 
designed for ease of maintenance and flexibility; if 
efficiency becomes a problem, then the architecture has 
to be altered to improve execution speed.  
 
We have explicitly coded our features and similarity 
measure into our Java software, as opposed to ‘adaptive 
programming’, described by Long et al. [12], using 
metadata instead. Our users require a tool to create new 
cases manually, so the features must be specified in our 
program code anyway. Our software offers both ‘creation 
from scratch’ and creation using CBR. 
 

3.3 Adaptation for Reuse 

One of the assumptions of CBR is that if two objects are 
similar then one can be adapted into the other. However, 
the well-known '15-puzzle' explained by Archer [13] 
illustrates that this assumption is questionable in some 
circumstances. In the 15-puzzle, numbered tiles are 
moved around on a board with the goal to finish with the 
tiles in a particular order. Some configurations of tiles 
have no tile in the correct position but are solvable. 
However, other configurations involve just two of the 15 
tiles being in the wrong position but are completely 
unsolvable. It needs further consideration to establish 
whether this holds in our domain. As a fallback remedy, 
our users always have the option to manually create a 
knitting pattern. 
 
Mitra and Basak [14] survey the adaptation methods used 
in many CBR systems, and classify them in various ways, 
e.g. knowledge lean and knowledge intensive. Our 
domain perhaps lends itself more to knowledge intensive 
adaptation since the cases are highly structured. 

Stochastic methods are likely to require extensive repair 
mechanisms. Derivational replay is not applicable since 
the way designs are constructed by humans is likely to be 
idiosyncratic and inconsistent. 
 
Substitution (swapping parts of the existing and newly 
created cases) and transformation (making structural 
changes to the newly created case) seem particularly 
applicable. However, the drawback of these techniques is 
that they require domain knowledge, so they reduce one 
of the claimed benefits of CBR, i.e. the elimination of the 
knowledge elicitation bottleneck. 
 

raw_sim(a,b)-min_sim(a,b) 
norm_sim(a,b) = 

max_sim(a,b)-min_sim(a,b) 



It is worth noting that our search space is fairly large: the 
questionnaire (see section 4.3) is capable of specifying 
approximately 1012 different garments. If we assume that 
ease of adaptation correlates with structural similarity, 
then the danger is that the gap between the new solution 
and the nearest existing case will be too large for any 
effective adaptation strategy. 
 
One of the ways to avoid the large search space problem 
is proposed by Watson and Perera [15] in their ‘divide 
and conquer approach’. Knitwear is composed of 
separate pieces, e.g. cardigans typically consist of a 
back, front, and two arms. The CBR could be done 
separately on these pieces. So, our new cycle might be: 

• repartition the query case into constituent parts  

• retrieve cases which have parts that are similar 

to the equivalent parts in the new case 

• reuse the parts 

• revise using one or more of the adaptation 

methods discussed 

• recompose the parts back into a whole 

• repair any inconsistencies between the parts 

• retain the solution for the future. 

 
The major disadvantage of the divide and conquer 
approach is that the parts need to be independent, as 
noted by Watson and Perrera. The potentially introduced 
inconsistencies are usually dealt with in the repair phase. 
In the case of a cardigan design, the inconsistency could 
be the production of parts with slightly mismatched 
armhole, which can be repaired using well-defined rules. 
One could imagine an inconsistency of a front and a back 
with different length as such, but this can be very simply 
avoided by using strong constraints on the size of the 
parts in the first place in the repartitioning phase. 
 
Purvis & Pu’s COMPOSER system [16] used multi-case 
adaptation in two case-based design problems. The 
adaptation phase was viewed as a constraint satisfaction 
problem; they use a greedy algorithm to find a good initial 
solution then employ a minimum conflicts algorithm. The 
algorithm uses heuristics to change the values of 
variables until all constraints have been satisfied. They 
claim that their approach requires less adaptation 
knowledge. The fact that the constraints have to be 
identified appears to be a disadvantage of this approach, 
but in our case most constraints are simple to specify (for 
example, matching length and matching armhole for 
parts, symmetries) and the creation of garments 'from 
scratch' will have to include them anyway for the purpose 
of consistency checking. 
 
To ensure compliance with potentially unpredicted 
detailed user requirements, the user will always have the 
final say in accepting the adaptation proposed by the 

system and potentially propose changes before the 
solution is produced. 
 
4 ARCHITECTURE AND IMPLEMENTATION 

4.1 Process Flow 

A useful case-based design system effectively automates 
the full CBR cycle: retrieve, reuse, retain and revise [3]. 
However, we start with an empty case base, so manual 
methods must be supported. Many studies (e.g. [17]) 
have confirmed that iteration must be supported when 
producing a semi-automatic design system. Accordingly, 
the users will be allowed to move back and forward 
between the questionnaire, sketch and chart stages. 
Automated creation may jump straight from the 
questionnaire to the chart.  
 

4.2 Transformation Rules 

To support the manual creation of garments, we require 
rules which will enable us to convert the questionnaire into 
the sketch, and the sketch into the chart. Equally, to 
ensure that the representations do not become 
inconsistent, we need inverses to these rules. This is 
analogous to the discussion given in Börner [18]. The 
rules are coded in the system using domain knowledge 
elicited from experts at Sirdar. For example, the feature-
vector representation of an armhole shape is just a single 
integer. This is transformed into a series of points which 
either form the outline of the shape, or in some cases 
control points for a Bézier curve. This is then discretised 
in the chart into a matrix of individual stitches. 
 

4.3 Editing and Creating Patterns 

 
Figure 1 shows the stages of our knitwear design system 
starting with the questionnaire, followed by sketch editing 
and approval, then chart production and finally the sketch 
is converted into the written knitting pattern. Figure 1(a) 
shows an example of a fully completed questionnaire. 
Note that we seek to hide unnecessary complexity, so 
things are only shown when they are relevant. Also, 
feedback from designers indicated that they want to be 
able to proceed to a sketch as soon as possible. The 
‘basic’ tab contains everything which is necessary to 
proceed to the sketch stage; the advanced tab can be left 
until later. The Random button creates a garment with 
pseudo-randomly generated data, utilising some 
heuristics, and populates the fields accordingly. The Clear 
button resets all the fields to blank and populates the 
fields accordingly, therefore offering potential for new 
garments. The other buttons are self-explanatory. 
 
If the divided box is checked, this indicates that the front 
of the garment separates, i.e. it is a cardigan rather than a 
sweater, and the user can choose the type of fastener; if it 
is buttoned then they can additionally choose how many 



buttons and where they are. If there are sleeves then the 
user ticks the box and specifies the shape, and their 
length. If the garment has pockets, the user can choose 
the option indicating their position. There are additional 
items for the shape of the body, neck, and armhole. 
 
On the advanced tab, which is not shown here, the user 
can select an option indicating what the ‘background 
stitch’ is. This is the default that will show on the chart 
(figure 1(c)), unless the user selects another stitch later. 
Similarly, if the user has opted for a bottom border, cuffs, 
front border or collar then they can choose the stitch for 
these. When the user presses the Save button the design 
is stored as an XML file, ready for reuse. 
 
When users open an existing garment, our system will 
automatically jump to the sketch stage. The sketch initially 
shows the whole garment, as it would be constructed by a 
knitter in separate pieces, i.e. sleeves, back, and front. 
The user can click on any one of those pieces, for 
example a sleeve, which is shown in figure 1(b). The 
sketch is scalable and the line thickness can be varied. 
The shape of a piece can be modified through dragging of 
points with the mouse, within the limits allowed for that 
particular piece. For example, a set-in sleeve can change 
the shape of the underlying curve (implemented using 
Bézier curves), but cannot become a raglan sleeve. 
 
Figure 1(c) shows a portion of a knitting chart. The knitting 
chart is a matrix of elements indicating what the knitter 
should actually do step-by-step to achieve the shape and 
structure of the garment. Each element corresponds to 
one stitch and is represented by a symbol carrying 
significance. For example, a circle typically means to 
create a hole and a triangle to combine two stitches into 
one. Each row in the chart corresponds to a row of knitting 
in the finished garment. The user can edit these symbols 
by numerous means, e.g. drag and drop with a mouse. 
 
The product of the design process, a written knitting 
pattern, is shown in figure 1(d). It is a series of textual 
instructions to the knitter, partly codified, using industry 
standard terminology. The knitting pattern can be 
produced in a fairly straight-forward automatic way from 
the knitting chart, using predefined rules.  

 
(a) Fully completed basic tab 

 

↓↓↓↓ 

 
(b) Sketch 

 

↓↓↓↓ 

 
(c) Chart 

 

↓↓↓↓ 
1st Row.K0 [2:2:0:0:1], p2 [2:2:1:2:2], * k3, p2, rep from * 
to last 0 [2:2:4:0:1] sts, k0 [2:2:3:0:1], p0 [0:0:1:0:0].2nd 
Row.K0 [2:2:0:0:1], p2 [2:2:1:2:2], * yon, s1, k2tog, psso, 
yfwd, yrn, p2, rep from * to last 0 [2:2:4:0:1] sts, k0 
[2:2:0:0:1], (yon, s1, k2tog, psso, yfwd, yrn, p1) 0 
[0:0:1:0:0] times.3rd Row.K0 [0:0:1:0:0], p0 [2:2:3:0:1], * 
k2, p3, rep from * to last 2 [4:4:1:2:3] sts, k2 [2:2:1:2:2], p0 
[2:2:0:0:1].From 1st to 3rd row sets patt. Keeping 
continuity of patt as set (throughout) work until back 
measures 44 [46:50:54:58:60]cm, (17 1/4 [18:19 ¾:21 
1/4:22 3/4:23 3/4]in), ending with a rs row. 

(d) Pattern 

Figure 1: The phases of computer aided knitwear design 



4.4 Similarity Preferences 

 
Figure 2. Preferences 

 
In order to facilitate the retrieve stage of CBR, we allow 
the user to specify their preferences for similarity between 
the new pattern being created and the retrieved pattern 
from the case base. We allow the user to indicate the 
relative importance of features, for comparison; our 
approach involves ranking features in order of preference, 
since people are typically more comfortable doing this 
than they are assigning numeric weights.  
 
Figure 2 shows the preferences window. On the left, the 
users can rank in order the importance of features; 
important items towards the top of the list are highly 
relevant. Items in bold are all of equal and maximum 
relevance, and items in the separate list at the bottom are 
irrelevant. Hence, we cater for situations in which the user 
feels that several factors are highly significant, but they 
cannot decide which one is more important. Also, by 
allowing factors to be marked as irrelevant, we allow the 
user to exclude things that have no bearing on similarity.  
The slider is used to set the scale. We offer a choice of 
seven functions for the progression of weights from one 
(most important) to zero (irrelevant). Figure 3 shows an 
example with 28 features, none of which are irrelevant.  
The shapes of the functions are shown; the middle is 
arithmetic progression. 
 
In the preferences (Figure 2) we also allow the user to set 
the relative score for similarity between options for neck 
style, armhole style, etc. These options are available by 
clicking on the corresponding button in the top right box. 

Sleeve shapes are an example: set-in is similar to semi-
set in, but different from raglan. Similarities are expressed 
using a Likert [19] scale, which is mapped linearly into the 
[0,1] range and the weighted scores are added up to 
produce the overall garment similarity as described in 
Section 3.2. 
 

 
Figure 3: Functions for converting ranks to weights 
 
5 CONCLUSIONS 

Knitwear design involves many creative processes and as 
such it is a human activity that is hard to reproduce or 
automate using the computer.  At the same time, the 
production of the associated knitting pattern includes 



several stages that are repetitive and mechanical for the 
human, which suggests automation. In this paper we 
described how the process of knitwear design, including 
the production of the knitting pattern can be automated 
using case-based reasoning.  
 
We proposed a software system that allows both design 
from scratch and design based on previously created 
patterns. The system works in stages, starting with a 
simple questionnaire, then a sketch, then a detailed chart.  
These stages are interactive; the user can decide how 
much they want to change the options offered by the 
system. The chart is then used to produce the pattern 
automatically.  The proposed system has two main goals: 
to facilitate the design and to ease the burden of 
calculations and checks. The designers will be able to 
easily reuse past patterns or their parts. Errors that are 
often present in early stages of pattern production and 
propagate to later stages will be prevented from occurring.  
 
We envision that through the use of case-based design, 
the company will be able to respond rapidly to fashion 
trends.  Case-based reasoning systems reuse good 
practice, learning with each design that is produced, and 
thus becoming an automated repository of knowledge. 
Our feasibility study shows that CBR is particularly 
suitable for this problem domain. We investigated the 
important aspects of CBR: representation, similarity 
measures, adaptation, reuse, and retention using a 
prototype system for cardigans. We are planning to 
implement adaptation next, in order to have a fully 
functional system. 
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