

 Supporting Knitwear Design Using Case-Based Reasoning

P. Richards, A. Ekárt
School of Engineering and Applied Science, Aston University, Birmingham, B4 7ET, U.K.

{richardp, ekarta}@aston.ac.uk

Abstract
Knitwear design is a creative activity that is hard to automate using the computer. The production of the
associated knitting pattern, however, is repetitive, time-consuming and error-prone, calling for automation.
Our objectives are two-fold: to facilitate the design and to ease the burden of calculations and checks in
pattern production. We conduct a feasibility study for applying case-based reasoning in knitwear design: we
describe appropriate methods and show how they can be implemented.

Keywords:
computer-aided design (CAD), case based reasoning, knitwear design, similarity, adaptation

1 INTRODUCTION

The design and production of patterns for hand knitting is
a very tedious process, involving a highly qualified team of
a designer, a pattern writer, several checkers and knitters,
a typesetter and proofreaders. There is very little
documentation and training material available, most of the
skills are acquired through learning by doing. The
designers and other members of the team find it difficult to
formulate the rules which decide how they perform
various steps, an outsider would have to watch them, try
and understand what they are doing and then learn by
asking questions.

The designer first designs the pattern and produces a
hand-drawn sketch on graph paper, which includes
measurements. The pattern writer then manually
calculates the pattern for hand knitting in different sizes.
The checkers perform an initial check of the pattern and
make any necessary corrections. The knitters then hand
knit the pattern in one size and make alterations to the
pattern if needed (for example to obtain the desired shape
of the garment). The alterations are made on the pattern
for six different sizes. The checkers manually check that
all the calculations are correct. For a proper check, they
sometimes hand knit a sample of the complicated parts of
the pattern (a finishing, for example) to make sure that the
result corresponds to the description. In the next step, the
typesetter typesets the pattern using a standard word
processor. Finally, at least three proofreaders check the
typeset pattern for any mistakes (they perform a read-
through check). If there are alterations needed, the
typesetter will make them on the typeset pattern.

The process is very time consuming and requires a lot of
human attention and effort. Everything in the process,
except the typesetting, is done manually, without the use
of computing technology. We demonstrate here how
specialised tools can be developed to help the designer in
producing the sketch and also to automate the checks,
calculation and production of the written patterns.

Although knitting and knitwear design has a long history
and also includes many calculations and steps that are
almost mechanical, there have been surprisingly few
attempts to use computers for improving the underlying
processes. The design of machine-produced knitwear was
investigated by Eckert et al. [1]. Communication difficulties
arise in large design teams since the specifications of the
garments are often inaccurate, incomplete and
inconsistent. To alleviate this, the authors proposed that
designers use an intelligent CAD system. Active critiquing,
i.e. pointing out differences between a designer’s goal and
what is actually happening, can be used to catch errors as
early as possible. In the user interface which was
presented, choices were only offered if they were
relevant, based on the answers to previous questions.
Shapes were described using shape grammars and
Bézier curves. Interestingly, they say that “case based
reasoning could be employed to provide starting
measurements for cutting pattern construction”.

A system for automatically designing knitting stitch
patterns for hand knitwear was presented by Ekárt [2]. It
is possible to produce many designs that are not knittable,
because they violate the rules of knitting. For example, if a
width of a garment does not change then the number of

CIRP Design Conference 2009

LI2106
Text Box
Proceedings of the 19th CIRP Design Conference – Competitive Design, Cranfield University, 30-31 March 2009, pp388

stitches in a row must be equal to that of the previous row.
A method of representing knitwear based on trees is able
to avoid many of these invalid designs. Some heuristic
measures were described, which can identify aesthetically
pleasing patterns. This avoids the fatigue which is
involved in the alternative techniques of asking humans to
evaluate patterns which have been generated.

Many studies on creative design conclude that human
designers create new designs by studying past designs
from various resources and combining them together,
adding new elements. To assist the design and production
of knitting patterns, we propose a case based reasoning
system that allows for structured step-by-step production
of new patterns from scratch or reuse and adaptation of
similar patterns from the past.

2 CASE-BASED REASONING

Case-based reasoning (CBR) is a generic problem solving
methodology based on the idea that a solution to a new
problem can be obtained from solutions to similar
problems encountered in the past [3]. In addition to using
knowledge from previously experienced problems, CBR
has an element of incremental learning: every new
experience is recorded for future use.

CBR is based on typical human problem solving: an
engineer designs a new product or part by possibly
reusing features of a past design, whose specification
presents a certain degree of similarity with the expected
new product; a doctor examining a patient builds up the
diagnosis based on a comparison of the symptoms with
those described in a book or previously shown by another
patient; a decision in court is taken by drawing the
similarity to a case in the past. The key in all these
situations is to remember the similar problem case from
the past and adapt its solution to the new situation.

The main cycle of CBR consists of four steps [3]:

• retrieve the most similar case(s) in the case base;

• reuse these case(s) to attempt to solve the new

problem;

• revise the proposed solution;

• retain the new problem and its solution in a new case

in the case base for later use.

There are various methods to represent cases, in most
situations the problem description and the solution are
represented as attribute-value pairs. A suitable similarity
function has to be devised to compare the new problem
case with the ones stored in the case base. The best
matching cases are retrieved from the case-base and
adapted for reuse. Adaptation is often very simple, such
as slightly changing values of selected attributes, or left
for the human to do. In domains where there is a huge
number of past cases available, it is very likely to find a

very similar past case whose solution needs little
adjustment to the new case. However, where there are
few past cases available only, the adaptation needs to be
more substantial and prepared to deal with larger
differences between past cases and the new case. It is
customary to allow the user to rate how well the new
solution proposed by the CBR system performed and
possibly repair it in the revise phase. The new case is
then retained for future use in the case base if it is judged
to be sufficiently different from the existing cases.

Lopez De Mantaras et al. [4] comprehensively discuss
retrieval in CBR, e.g. whether to use surface features or
data which is derived from a more in-depth analysis of the
case. Some of the methods they discuss are variants on
nearest neighbour algorithms, others rely on a complex
representation of cases, e.g. in a hierarchy or as a graph.
They mention systems where a subset of cases is
retrieved and presented to the user; in some of these
systems they sacrifice some of the similarity in order to
introduce diversity. They also discuss “adaptation-guided
retrieval”, which uses domain specific knowledge to
reduce adaptation failures in situations where the most
similar case is not necessarily the easiest to adapt.

Price and Pegler [5] describe the Wayland advisor for the
setting up of die-casting machines. Wayland consists of a
series of fields, each of which has a weight chosen to set
the significance; these are summed to give an overall
match value. Wayland is an uncommon example of the
successful use of CBR in a difficult design problem. There
is a large value space for the inputs, and the relationship
between those inputs and the desired outputs is not
clearly understood. Nevertheless the system was able to
find a ‘close enough’ solution, and as a result was
successfully deployed in foundries.

Kolodner [6] discusses indexing and flexible methods of
organising cases into a network, e.g. a memory
organisation packet. She gives four methods of computing
similarity: using an abstraction hierarchy, a qualitative
scale, a quantitative scale, or comparison of roles. The
choice of representation and similarity measure depends
on the nature of the data, e.g. whether it is hierarchical,
discrete choices or continuous range.

Bergmann et. al [7] discuss case representation, pointing
out that the choice of case representation and similarity
measure are related. Straightforward representations are

feature vectors, textual and object-oriented. Generalised
cases are achieved by introducing variables into cases to
represent solutions to a wide range of problems. Complex
cases may involve a choice of variables and wide ranges
for their values. The importance of generalised cases lies
in the fact that they can enable a CBR system to perform
well with a small case base.

Bergmann et al. also discuss CBR systems with a
hierarchical representation. Larry Leifer of Stanford
University famously said “all design is redesign”. This
applies to knitwear since at the lowest level garments are
composed of the same types of stitch. Therefore, a
partonomic hierarchy is conceivably a good way of
representing knitwear. However, comparing the detail of
complex cases in order to judge their similarity is much
more difficult than simply matching on surface features.

Craw [8] describes k-NN (nearest neighbour) algorithms
and makes the point that recording how many times a
particular case has been reused can, in future, help to
identify problems with the coverage of the case base.
Mejasson et al. [9] use a weighted sum algorithm in their
intelligent design assistant system, which assists
designers of submarine cables. The algorithm involves the
sum of the squares of individual distances; the weights
applied to these distances can be set by the user. In order
to compare values, their range was often mapped onto a
qualitative scale, with the points on the scale treated as
being of equal distance. They use an abstraction
hierarchy to measure the distance between components.

Watson [10] underlines the fact that CBR is a
methodology and implementers are free to use whichever
technology is appropriate to implement, mentioning
nearest neighbour, induction, fuzzy logic and SQL as
examples.

The existing work shows the prevalence of k-NN
algorithms using weighted sums and techniques to deal
with symbolic, rather than numeric data. This approach is
suitable for our domain, since adaptation of our
hierarchical representation (see below) will mean we do
not need to index our cases or organise them in a
particularly complex way, leaving us to focus on the
challenges of adaptation.

CBR is particularly suitable for the knitwear design
problem. Designers themselves study many past patterns
before they create a new design. A new design will always
contain some new element or an interesting combination
of elements used in previous patterns, but will be similar
to previous designs. A new sweatshirt will most commonly
contain the four ordinary parts: front, back, right and left
sleeves. However, their shape and structure will be
designed according to new trends and wool type. There
could be many neck and armhole types, various different
lengths and sleeve lengths, possible accessories (such as
a belt) or interesting borders, and the stitch pattern can
vary across the whole sweatshirt.

Sirdar Spinning Ltd. is producing about 300 new patterns
every year, so the case base will contain a limited number
of very specialised cases. A new case can be solved by

combining and adapting several sufficiently similar cases
(over different attributes) rather than adapting one single
case, as it is unlikely to find a very similar past case
across all dimensions. Once the high level representation
is created for the new case, the details at the lowest level
must be rigorously produced in order to obtain a full
solution. Our system cannot solely rely on the case base
as the new trends may involve a new element or shape
that has not been encountered before. The human user
will be offered the possibility to create a new design
themselves with the help of the system and then store it in
the case base.

3 CBR APPLIED TO KNITWEAR DESIGN

3.1 Case Representation

We represent our cases using three levels of detail:
1. Questionnaire: A high-level specification that is

similar to a sheet currently used by knitwear
designers.

2. Sketch: A visual illustration of the shape,

consisting of points, lines or curves between
them, and rules that govern them.

3. Chart: A detailed and complete description of

the knitting stitch pattern that makes up the
garment.

The three-level representation is consistent with the
existing process, where detail develops as the design
progresses. It facilitates case-based reasoning since we
can use the questionnaire in the retrieval stage, so
indexes are not required.

We store our cases as XML files, in a human-readable
format. This affords portability, and facilitates testing,
since no interpretation of the files is required.

3.2 Similarity Algorithm for Retrieval

We use a weighted sum algorithm to assess the similarity
of two garments. The first step is the calculation of the raw
similarity raw_sim; the higher the value of raw_sim, the

more similar the garments are judged to be. Each feature
in the questionnaire for the garment that we are creating
is compared to the equivalent in the previously created
garment, stored in the case base. If the features match, a
weight is added to raw_sim. The values of the weights are

determined by the user (see section 4.4).

In many cases, the values in the questionnaires are
“yes/no” choices. However, in some scenarios there is a
choice from a list, and options may differ in their similarity
to each other. For example, a wrist-length sleeve is more
similar to a 3/4 length sleeve than it is to a very short one.
We define a 2 x 2 matrix for the attribute values and the
user can assign a score to each pair of values. In these
situations the the weighted score is added to raw_sim.

If the feature is not present in the garment then the weight
is not calculated and other features which are dependent
on this feature are ignored in the existing garment. For
example, if we are creating a sleeveless garment then a
weight (Whassleeves) would be used for existing sleeveless

garments; but not for sleeved ones. In the latter case,
details such as the cuffs are irrelevant.

The normalised similarity (norm_sim) is given by:

(1)

where:

min_sim(a,b) = Warmholestyle x min_scorearmholestyle

 + Wneckshape x min_scoreneckshape

 +Wwearer x min_scorewearer

max_sim(a,b) = raw_sim(a,a)

min_scorearmholestyle, min_scoreneckshape and
min_scorewearer are the minimum values in the score
matrix of the garment being created for the row
corresponding to the armhole style, neck shape and
wearer respectively. All these attributes are mandatory
and independent of other data, so it is possible that some
rows on this matrix will have values that cause the
minimum similarity not to be zero. So, norm_sim(a,b) lies

in the range [0,1], where 0 corresponds to completely
different and 1 to identical. Finding the most similar
garment to the new one is a maximisation problem. We
argue that maximisation of similarity is more intuitive to
the non-technical user than minimisation of distance.

Let us now examine the axioms of distance metrics, as
discussed in Tversky [11]. Minimality applies to our
algorithm; this is exploited in our description of the
normalisation, as explained above. However, as in many
of the situations Tversky describes, symmetry and the
triangle inequality do not necessarily apply to our
algorithm. According to Craw [9], roles are important
where there are asymmetric similarity measures; here the
roles are ‘garment being created’ and ‘previously created
garment’. Symmetry and triangle inequality axioms need
not apply in our scenario, since what is really relevant is
the adaptation distance. For example, if the sleeves are
removed from garment A to produce garment B, then B is
quite similar to A but not vice versa since it is easier to
remove a sleeve than re-design it.

The obvious retrieval strategy is to attempt to adapt the
existing garment(s) with the highest similarity. If this is
unsuccessful then the next most similar garment can be
attempted, and so on. However, we may consider
introducing diversity, as discussed in Aamodt et al. [5],
since if the most similar case cannot be adapted then

attempting adaptation on cases that are very similar to
this may also be futile.

Our algorithm was implemented in Java application on a
computer with an Intel Core 2 Duo 2GHz processor, and
2GB of RAM. We experimented with similarity evaluation
on a large case base consisting of 25000 pseudo-
randomly generated cases, to ensure that efficiency is not
an issue with the algorithm (we envisage only about 300
cases a year being added). Our system has been
designed for ease of maintenance and flexibility; if
efficiency becomes a problem, then the architecture has
to be altered to improve execution speed.

We have explicitly coded our features and similarity
measure into our Java software, as opposed to ‘adaptive
programming’, described by Long et al. [12], using
metadata instead. Our users require a tool to create new
cases manually, so the features must be specified in our
program code anyway. Our software offers both ‘creation
from scratch’ and creation using CBR.

3.3 Adaptation for Reuse

One of the assumptions of CBR is that if two objects are
similar then one can be adapted into the other. However,
the well-known '15-puzzle' explained by Archer [13]
illustrates that this assumption is questionable in some
circumstances. In the 15-puzzle, numbered tiles are
moved around on a board with the goal to finish with the
tiles in a particular order. Some configurations of tiles
have no tile in the correct position but are solvable.
However, other configurations involve just two of the 15
tiles being in the wrong position but are completely
unsolvable. It needs further consideration to establish
whether this holds in our domain. As a fallback remedy,
our users always have the option to manually create a
knitting pattern.

Mitra and Basak [14] survey the adaptation methods used
in many CBR systems, and classify them in various ways,
e.g. knowledge lean and knowledge intensive. Our
domain perhaps lends itself more to knowledge intensive
adaptation since the cases are highly structured.

Stochastic methods are likely to require extensive repair
mechanisms. Derivational replay is not applicable since
the way designs are constructed by humans is likely to be
idiosyncratic and inconsistent.

Substitution (swapping parts of the existing and newly
created cases) and transformation (making structural
changes to the newly created case) seem particularly
applicable. However, the drawback of these techniques is
that they require domain knowledge, so they reduce one
of the claimed benefits of CBR, i.e. the elimination of the
knowledge elicitation bottleneck.

raw_sim(a,b)-min_sim(a,b)
norm_sim(a,b) =

max_sim(a,b)-min_sim(a,b)

It is worth noting that our search space is fairly large: the
questionnaire (see section 4.3) is capable of specifying
approximately 1012 different garments. If we assume that
ease of adaptation correlates with structural similarity,
then the danger is that the gap between the new solution
and the nearest existing case will be too large for any
effective adaptation strategy.

One of the ways to avoid the large search space problem
is proposed by Watson and Perera [15] in their ‘divide
and conquer approach’. Knitwear is composed of
separate pieces, e.g. cardigans typically consist of a
back, front, and two arms. The CBR could be done
separately on these pieces. So, our new cycle might be:

• repartition the query case into constituent parts

• retrieve cases which have parts that are similar

to the equivalent parts in the new case

• reuse the parts

• revise using one or more of the adaptation

methods discussed

• recompose the parts back into a whole

• repair any inconsistencies between the parts

• retain the solution for the future.

The major disadvantage of the divide and conquer
approach is that the parts need to be independent, as
noted by Watson and Perrera. The potentially introduced
inconsistencies are usually dealt with in the repair phase.
In the case of a cardigan design, the inconsistency could
be the production of parts with slightly mismatched
armhole, which can be repaired using well-defined rules.
One could imagine an inconsistency of a front and a back
with different length as such, but this can be very simply
avoided by using strong constraints on the size of the
parts in the first place in the repartitioning phase.

Purvis & Pu’s COMPOSER system [16] used multi-case
adaptation in two case-based design problems. The
adaptation phase was viewed as a constraint satisfaction
problem; they use a greedy algorithm to find a good initial
solution then employ a minimum conflicts algorithm. The
algorithm uses heuristics to change the values of
variables until all constraints have been satisfied. They
claim that their approach requires less adaptation
knowledge. The fact that the constraints have to be
identified appears to be a disadvantage of this approach,
but in our case most constraints are simple to specify (for
example, matching length and matching armhole for
parts, symmetries) and the creation of garments 'from
scratch' will have to include them anyway for the purpose
of consistency checking.

To ensure compliance with potentially unpredicted
detailed user requirements, the user will always have the
final say in accepting the adaptation proposed by the

system and potentially propose changes before the
solution is produced.

4 ARCHITECTURE AND IMPLEMENTATION

4.1 Process Flow

A useful case-based design system effectively automates
the full CBR cycle: retrieve, reuse, retain and revise [3].
However, we start with an empty case base, so manual
methods must be supported. Many studies (e.g. [17])
have confirmed that iteration must be supported when
producing a semi-automatic design system. Accordingly,
the users will be allowed to move back and forward
between the questionnaire, sketch and chart stages.
Automated creation may jump straight from the
questionnaire to the chart.

4.2 Transformation Rules

To support the manual creation of garments, we require
rules which will enable us to convert the questionnaire into
the sketch, and the sketch into the chart. Equally, to
ensure that the representations do not become
inconsistent, we need inverses to these rules. This is
analogous to the discussion given in Börner [18]. The
rules are coded in the system using domain knowledge
elicited from experts at Sirdar. For example, the feature-
vector representation of an armhole shape is just a single
integer. This is transformed into a series of points which
either form the outline of the shape, or in some cases
control points for a Bézier curve. This is then discretised
in the chart into a matrix of individual stitches.

4.3 Editing and Creating Patterns

Figure 1 shows the stages of our knitwear design system
starting with the questionnaire, followed by sketch editing
and approval, then chart production and finally the sketch
is converted into the written knitting pattern. Figure 1(a)
shows an example of a fully completed questionnaire.
Note that we seek to hide unnecessary complexity, so
things are only shown when they are relevant. Also,
feedback from designers indicated that they want to be
able to proceed to a sketch as soon as possible. The
‘basic’ tab contains everything which is necessary to
proceed to the sketch stage; the advanced tab can be left
until later. The Random button creates a garment with
pseudo-randomly generated data, utilising some
heuristics, and populates the fields accordingly. The Clear
button resets all the fields to blank and populates the
fields accordingly, therefore offering potential for new
garments. The other buttons are self-explanatory.

If the divided box is checked, this indicates that the front
of the garment separates, i.e. it is a cardigan rather than a
sweater, and the user can choose the type of fastener; if it
is buttoned then they can additionally choose how many

buttons and where they are. If there are sleeves then the
user ticks the box and specifies the shape, and their
length. If the garment has pockets, the user can choose
the option indicating their position. There are additional
items for the shape of the body, neck, and armhole.

On the advanced tab, which is not shown here, the user
can select an option indicating what the ‘background
stitch’ is. This is the default that will show on the chart
(figure 1(c)), unless the user selects another stitch later.
Similarly, if the user has opted for a bottom border, cuffs,
front border or collar then they can choose the stitch for
these. When the user presses the Save button the design
is stored as an XML file, ready for reuse.

When users open an existing garment, our system will
automatically jump to the sketch stage. The sketch initially
shows the whole garment, as it would be constructed by a
knitter in separate pieces, i.e. sleeves, back, and front.
The user can click on any one of those pieces, for
example a sleeve, which is shown in figure 1(b). The
sketch is scalable and the line thickness can be varied.
The shape of a piece can be modified through dragging of
points with the mouse, within the limits allowed for that
particular piece. For example, a set-in sleeve can change
the shape of the underlying curve (implemented using
Bézier curves), but cannot become a raglan sleeve.

Figure 1(c) shows a portion of a knitting chart. The knitting
chart is a matrix of elements indicating what the knitter
should actually do step-by-step to achieve the shape and
structure of the garment. Each element corresponds to
one stitch and is represented by a symbol carrying
significance. For example, a circle typically means to
create a hole and a triangle to combine two stitches into
one. Each row in the chart corresponds to a row of knitting
in the finished garment. The user can edit these symbols
by numerous means, e.g. drag and drop with a mouse.

The product of the design process, a written knitting
pattern, is shown in figure 1(d). It is a series of textual
instructions to the knitter, partly codified, using industry
standard terminology. The knitting pattern can be
produced in a fairly straight-forward automatic way from
the knitting chart, using predefined rules.

(a) Fully completed basic tab

↓↓↓↓

(b) Sketch

↓↓↓↓

(c) Chart

↓↓↓↓
1st Row.K0 [2:2:0:0:1], p2 [2:2:1:2:2], * k3, p2, rep from *
to last 0 [2:2:4:0:1] sts, k0 [2:2:3:0:1], p0 [0:0:1:0:0].2nd
Row.K0 [2:2:0:0:1], p2 [2:2:1:2:2], * yon, s1, k2tog, psso,
yfwd, yrn, p2, rep from * to last 0 [2:2:4:0:1] sts, k0
[2:2:0:0:1], (yon, s1, k2tog, psso, yfwd, yrn, p1) 0
[0:0:1:0:0] times.3rd Row.K0 [0:0:1:0:0], p0 [2:2:3:0:1], *
k2, p3, rep from * to last 2 [4:4:1:2:3] sts, k2 [2:2:1:2:2], p0
[2:2:0:0:1].From 1st to 3rd row sets patt. Keeping
continuity of patt as set (throughout) work until back
measures 44 [46:50:54:58:60]cm, (17 1/4 [18:19 ¾:21
1/4:22 3/4:23 3/4]in), ending with a rs row.

(d) Pattern

Figure 1: The phases of computer aided knitwear design

4.4 Similarity Preferences

Figure 2. Preferences

In order to facilitate the retrieve stage of CBR, we allow
the user to specify their preferences for similarity between
the new pattern being created and the retrieved pattern
from the case base. We allow the user to indicate the
relative importance of features, for comparison; our
approach involves ranking features in order of preference,
since people are typically more comfortable doing this
than they are assigning numeric weights.

Figure 2 shows the preferences window. On the left, the
users can rank in order the importance of features;
important items towards the top of the list are highly
relevant. Items in bold are all of equal and maximum
relevance, and items in the separate list at the bottom are
irrelevant. Hence, we cater for situations in which the user
feels that several factors are highly significant, but they
cannot decide which one is more important. Also, by
allowing factors to be marked as irrelevant, we allow the
user to exclude things that have no bearing on similarity.
The slider is used to set the scale. We offer a choice of
seven functions for the progression of weights from one
(most important) to zero (irrelevant). Figure 3 shows an
example with 28 features, none of which are irrelevant.
The shapes of the functions are shown; the middle is
arithmetic progression.

In the preferences (Figure 2) we also allow the user to set
the relative score for similarity between options for neck
style, armhole style, etc. These options are available by
clicking on the corresponding button in the top right box.

Sleeve shapes are an example: set-in is similar to semi-
set in, but different from raglan. Similarities are expressed
using a Likert [19] scale, which is mapped linearly into the
[0,1] range and the weighted scores are added up to
produce the overall garment similarity as described in
Section 3.2.

Figure 3: Functions for converting ranks to weights

5 CONCLUSIONS

Knitwear design involves many creative processes and as
such it is a human activity that is hard to reproduce or
automate using the computer. At the same time, the
production of the associated knitting pattern includes

several stages that are repetitive and mechanical for the
human, which suggests automation. In this paper we
described how the process of knitwear design, including
the production of the knitting pattern can be automated
using case-based reasoning.

We proposed a software system that allows both design
from scratch and design based on previously created
patterns. The system works in stages, starting with a
simple questionnaire, then a sketch, then a detailed chart.
These stages are interactive; the user can decide how
much they want to change the options offered by the
system. The chart is then used to produce the pattern
automatically. The proposed system has two main goals:
to facilitate the design and to ease the burden of
calculations and checks. The designers will be able to
easily reuse past patterns or their parts. Errors that are
often present in early stages of pattern production and
propagate to later stages will be prevented from occurring.

We envision that through the use of case-based design,
the company will be able to respond rapidly to fashion
trends. Case-based reasoning systems reuse good
practice, learning with each design that is produced, and
thus becoming an automated repository of knowledge.
Our feasibility study shows that CBR is particularly
suitable for this problem domain. We investigated the
important aspects of CBR: representation, similarity
measures, adaptation, reuse, and retention using a
prototype system for cardigans. We are planning to
implement adaptation next, in order to have a fully
functional system.

6 ACKNOWLEDGEMENTS

We are grateful for the support of EPSRC and Sirdar
Spinning Ltd. via a CASE studentship. We also thank Sue
Batley-Kyle for her valuable help on knitwear design.

REFERENCES

[1] Eckert, C.M., Cross N., Johnson, J.H., 2000,
Intelligent support for communication in design
teams: garment shape specifications in the
knitwear industry, Design Studies, 21/1:99-112.

[2] Ekárt, A., 2007, Evolution of lace knitting stitch
patterns by genetic programming, Proceedings
of the 2007 GECCO conference companion on
Genetic and evolutionary computation, 2457-
2461.

[3] Aamodt, A. and Plaza, E., 1994, Case-based
reasoning: Foundational Issues, Methodological
Variations and System Approaches, AI
communications, 7:39-59.

[4] Lopez De Mantaras, R., McSherry, D., Bridge,
D., Leake, D., Smyth, B., Craw, S., Baltings, B.,
Maher, M.L., Cox, M.T, Forbus, F., Keane, M.,
Aamodt, A., Watson, I., Retrieval, reuse,

revision, and retention in case based reasoning,
The Knowledge Engineering Review, 20/3:215-
240.

[5] Price, C.J. and Pegler, I.S., 1995, Deciding
Parameter Values with Case-Based Reasoning,
1st UK Workshop on Case-Based Reasoning,
Salford, 121-133.

[6] Kolodner, J.L., 1993, Case-Based Reasoning
Morgan Kaufmann Publishers Inc.

[7] Bergmann, R., Kolodner, J. and Plaza, E., 2005,
Representation in case-based reasoning, The
Knowledge Engineering Review, 20/3: 209-213.

[8] Craw, S., 2008, CM3016 Knowledge Engineering
(Case-Based Reasoning), available online at
http://athena.comp.rgu.ac.uk/staff/smc/teaching/
cm3016, accessed 23 June 2008.

[9] Mejasson, P., Petridis, M., Knight, B., Soper, A.,
Norman, P., 2001, Intelligent design assistant
(IDA): a case base reasoning system for
material and design, Materials & Design,
22/3:163-170.

[10] Watson, I., 1999, Case-based reasoning is a
methodology not a technology, Knowledge-
Based Systems 12/5:303–308

[11] Tversky, A 1977, Features of Similarity
Psychological review,. 84/4:327-352.

[12] Long, J., Stoeckin, S, Schwartz, D.G. and Patel
M.K., 2004, Adaptive Similarity Metrics in Case-
based reasoning, Proceedings of Intelligent
Systems and Control, Honolulu, Hawaii, USA.

[13] Archer, A.F., 1999, A Modern Treatment of the
15 Puzzle, The American Mathematical Monthly,
106/9:793-799.

[14] Mitra, R and Basak, J, Methods of Case
Adaptation: A Survey, International Journal of
Intelligent Systems archive, 20/6: 627:645

[15] Watson, I and Perera, S, 1998, A hierarchical
case representation using context guided
retrieval, Knowledge-Based Systems 11:285-
292.

[16] Purvis, L. and Pu, P., 1998, COMPOSER: A
Case-Based Reasoning System for Engineering
Design, Robotica, 16/3:285-295

[17] Parmee, I., Cvetkovic, D., Bonham, C.,
Packham, I., 2001, Introducting prototype
evolutionary systems for ill-defined, multi-
objective design environments, Advances in
Engineering Software, 32/6:429-441.

[18] Börner, K., 1994, Structural similarity as
guidance in case-based design, in: S. Wess,
K.D. Althoff, M. Richter (Eds.), Topics in Case
based Reasoning, Springer, Kaiserslautern,
1993, pp. 197–208

[19] Likert, R., 1932, A Technique for the
Measurement of Attitudes, Archives of
Psychology, 140: 1-55.

