
Accepted Manuscript

Review: Network Modelling and Simulation Tools

Muhammad Azizur Rahman, Algirdas Pakštas, Frank Zhigang Wang

PII: S1569-190X(09)00019-7

DOI: 10.1016/j.simpat.2009.02.005

Reference: SIMPAT 781

To appear in: Simulation Modeling Practices and Theory

Received Date: 19 June 2007

Revised Date: 9 January 2009

Accepted Date: 13 February 2009

Please cite this article as: M.A. Rahman, A. Pakštas, F.Z. Wang, Review: Network Modelling and Simulation Tools,

Simulation Modeling Practices and Theory (2009), doi: 10.1016/j.simpat.2009.02.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.simpat.2009.02.005
http://dx.doi.org/10.1016/j.simpat.2009.02.005
LI2106
Text Box
Simulation Modelling Practice and Theory, Volume 17, Issue 6, July 2009, Pages 1011-1031

ACCEPTED MANUSCRIPT

Review: Network Modelling and Simulation
Tools

Muhammad Azizur Rahman1, Algirdas Pakštas1, Frank Zhigang Wang2
1, 2London Metropolitan University, 66-220 Holloway Road, London N7 8DB England

3Cranfield University, Cranfield, Bedfordshire MK43 0AL, England
1m.rahman@londonmet.ac.uk, 2a.pakstas@londonmet.ac.uk, 3f.wang@Cranfield.ac.uk

Abstract
Computer network technologies have been growing explosively
and the study in computer networks is being a challenging task.
To make this task easy, different users, researchers and
companies have developed different network modelling and
simulation (MS) tools. These network MS tools can be used in
education and research as well as practical purposes. They vary
with their characteristics. This paper reviews some of the most
important network MS tools developed recently. This paper also
shows a classification of the tools used in communications
networks.

Key words:
Modelling, Network, Researcher, Simulation, Tools

I. INTRODUCTION

Network is a complex mix of applications, communications
protocols and link technologies, traffic flows and routing
algorithms. It is immensely complex. Network design process
is a challenging task, requiring designers to balance user
performance expectations with costs and capacities. One of
the obvious approaches to deal with complexity is the use of
modelling and simulation (MS) techniques. There are
currently available various MS tools created by the separate
companies and groups of researchers in academia which are
intended for use as practical and/or educational tools for
network design. There is a need to study the existing network
MS tools, their functionality, advantages and function
procedure and special features. Nearly every general-purpose
network design tool works the same way [1], sometimes
having complementary features.

The network design process is a challenging task, requiring
designers to balance user performance expectations with costs
and capacities. External factors, such as government policies
and regulations, the competitive situation, available
technological services and products are adding complexity to
the design process. Organisational strategies, culture and
policies also affect the planning and design process. The
amount of human and technical resources in the data
communication functions of the organisation can also
strongly affect the choice. Electronic communication is so
ubiquitous in modern business that it is hard to develop an
overall strategic vision that is comprehensive and at the same
time detailed enough to be useful. Additionally, these factors
can change and make the planning process even more

complex. The business role of the proposed network
application adds extra complexity to planning process.

Network analysis, architecture and the design process have
been considered art, combining an individual’s particular
rules on evaluating and choosing network technologies
together with knowledge about how technologies, services
and protocols can be meaningfully combined [2, p2]. During
the network design process, technologies for each area of the
network are evaluated and chosen, and strategies to connect
these technologies across the network are developed. The
network design process includes a requirement analysis, flow
analysis, logical design, physical design and finally making a
decision about addressing and routing [2]. The network
design process may have multiple goals that are often hard to
formulate, define or compare with each other. In order to
achieve a good design, it is often essential to build a network
model and apply certain tools to evaluate different scenarios.
Network design is also achieving design goals by applying
the trade-off, within constraints to parts of the whole network.

Researchers typically conduct the simulation using only
one simulation package. Different tools show different results
with the same simulation models. There is a wide variation in
their results. It is very hard to assume which tool’s results are
accurate [3]. This divergence and/or inconsistent results
suggest that one or all of the output might be wrong/not
perfect. Basically, no tool is perfect/accurate as it depends on
protocol stack, traffic generation parameters, application,
usage profile, package difference, incorrect parameter setting
and improper level of details. Insufficient statistical analysis
of independent simulation runs and improper data collection
techniques can produce ambiguous or inaccurate conclusions.
Simulation assumptions imposed by the tools always affect
research outcomes. A surveyed was performed on Mobile Ad
Hoc Networking and Computing (MobiHoc) from where
significant Shortfalls were found [4]. The paper [4] presents
the results of the survey with the summarize common
simulation pitfallsed studies. Thus, it would be useful, if a
model could be analysed using different tools simultaneously.

Unfortunately, errors in simulation models or improper data
analysis often produce incorrect or misleading results.
Simulation is a powerful method, but sometimes it has
pitfalls. Generalization and lack of rigor can lead to

ACCEPTED MANUSCRIPT

inaccuracy, which can result in wrong calculations or
inappropriate implementation decisions.

This purpose of this paper is to review these MS tools so
that researchers can select the right tools for their
experiments. Different tools are analysed in this paper and
according to their characteristics they are classified. Different
researchers classified the network tools in different ways. But
none to them extensively considered all of the tools together.
For example network discovery tools are not considered. One
[5] of the papers shows the classifications of the tools. A brief
review of the some of the tools is also performed in the paper
[6].The paper has the following objectives: a) to review recent
network Modeling and Simulation tools; b) to help researches
to select the right tools for their needs; and c) to identify
issues that seem to be open to further research. The
information of tools described in this paper is collected from
manual, different papers, and website. Some of the tools from
different groups (e.g., Brite, Ns-2, Glomosim, Delite, Opnet,
Ethereal, THC-RUT, etc.) are practically tested by the
authors.

 Rest of the paper is organised as follows. Section II
describes the classification of MS tools. Section III, Section
IV, Section V and Section VI describe the most used and
recently developed different kinds of MS tools. Finally,
Section VII provides conclusions.

II. CLASSIFICATION OF THE NETWORK MS TOOLS

There are different types of network MS tools available and
they are used in many ways. According to the uses and
availability (we analysed 100 tools), the network tools can be
classified into four groups: analytical tools, simulation tools,
topology discovery tools and topology generation tools. The
potential candidate tools are considered and selected
according to some criteria. The primary criterion is that the
tools must have text-formatted input and/or output file(s) so
that the information (stored data) of the model can be
retrieved. The secondary criterion is that the tools have to
have rich networking features (e.g. supported description of
protocols and applications, various types of networks
(LAN/MAN/WAN); then the usefulness of the tool, i.e., the
output of the tools and its analysis capabilities. Finally, the
availability of the tools in the market has been considered.

Analytical tools help to design a network model and
calculate different factors (e.g. reliability, utilisation) of the
model. On the contrary, simulation tools simulate dynamic
behaviors (e.g. packet passing, link failure, TCP protocol) of
a network model besides modelling. The topology generation
tools help to generate small as well as large topologies based
on different algorithms. Finally, the topology discovery tools
extract the actual network information from an existing
system and map them graphically and/or in text format. This
type of tool is used for network management purposes.
Quantitative network design tools produce more accurate and

defensive results than qualitative methods. On the other hand,
analytical tools may design and analyse the network models
more efficiently and provide solutions more quickly than a
simulation tool but do not always achieve the required
accuracy. Most often, the dynamic behaviour of the protocol
cannot be visualised using the analytical tools but can be
visualised using simulation. The topology which is generated
or discovered by a specialised tool can be visualised and
analysed by simulation and analytical tools.

Both analytical tool and topology discovery tool can be
classified into two: educational (free) and commercial tools.
Network simulation tools can be divided into three:
educational (free), commercial and specialised tool. The Fig.
1 shows the classification of the tools. This paper is focusing
on the most recent MS tools.

Fig. 1: Classification of the Network Design and Simulation tools

III. ANALYTICAL TOOLS FOR NETWORK DESIGN

The analytical tool typically formulates the network
planning problems as optimisation models where given cost
functions are minimised (maximised) under a set of
constraints [7]. Normally a single model tries to capture many
relevant aspects of the problem. When an optimal solution to
the network model is found, the values of the decision
variables can be used to decide the optimal action to be taken.

A. Educational Tools

DEsign tool LITE, Delite [8] is an educational and
practical wide area network (WAN) design tool, which can
produce network designs of limited size using a set of the
embedded network design algorithms. Delite can produce
graphical displays representing network nodes and links as
well as some additional analysis data (delay analysis,
reliability analysis, average delay analysis of the link, average
number of hops, link utilisation for every separate link
between nodes, utilisation of each node, overall network
model utilisation, etc.). There are seven files that are handled
by the Delite tool for each network design. However, the most
important for the users are .gen (original node information,
coordinates and available link types) and .net (additionally
has table of links between nodes i.e. actual design) files.
Links between nodes can be generated using a few design
algorithms. Thus, various designs may have different costs,
delays, reliability, average number of hops etc. Other files are

Tools

Educational Commercial

Educational Commercial Specialised

Commercial

Topology
Discovery

Educational

Topology
Generation

Analytical Simulation

ACCEPTED MANUSCRIPT

used for different purposes: noeqip.tbl and param.tbl are
predefined (used to supply some network parameters), .cst file
describes the costs associated with link types (e.g. T1, T3,
D96 etc.), .req file describes capacity of each link type, .inp
file contains the names of files related to a particular model.
The users can edit all of the files mentioned above as they are
in ASCII text format. The algorithms used for designing the
topology of a network model supported by Delite are: Prim,
Primdijkstra, Tour (Nearest Neighbour), Tour (Farthest
Neighbour), Esau-Williams, Sharma, Multispeed Tree
Design, Nearest Neighbour-Esau_Williams, Multicenter
Esau_William, Mentor, Incrementour. Contributor: Robert
S. Cahn. Supports: different types of network design
algoriths (mentioned above). Languages: C. Advantages: 1)
Text formated input and output files so user can manually
change the input files to see the effects; 2) Population is
taking part in designing the models; 3) World map can be
included in the model to see the suitability of the model; 4)
can include more algorithms in this tool. Limitation: 1)
limited number of nodes supported as this is a small scale
network tool; 2) documentatoin is no rich enough.

Cappuccino [9] is a web based non-commercial network
design tool. Using the tool, users can design network model,
calculate maximum traffic of each link and a lower bound of
the link cost of the network. The switches can be scattered
randomly inside the rectangular area (0, 0, 400, 400). The
properties of the switches are expressed by switch name, X
coordinate, Y coordinate, Alpha (originating capacity for a
switch) and Omega (termination capacity for a switch), which
can be changed by the users. The Alpha denotes the
maximum communication rate, which is permitted by the
network to originate from switch to the rest of the network.
The Omega denotes the maximum communication rate, which
is permitted by the network to terminate to a switch from the
rest of the network. Traffic between switches is limited by
using set-pair-constraints, which specifies the maximum
traffic between two switch sets. While designing a network
model, initially 20 switches are scattered in a region. User can
add, delete and modify the switches as required. Topology is
chosen using predefined algorithms implemented in the tool
or manually. Then traffic constraint, which specifies
maximum traffic between two sets of switches, is chosen. The
cost coefficient is proportional to the link length and a link
has two-bandwidth capacity (incoming and outgoing). The
tool uses shortest path routing algorithm for traffic. The
algorithms for network topology implemented in the tool are:
best star, minimum panning tree (Krustral’s algorithm),
delaunay triangulation and complete graph. Using shortest
path routing and taking account the constraints, the tool
calculates the maximum traffic and a lower bound cost on
every link so that user can see how far away the network is
from the optimal. The lower bound cost of the link is
calculated based on complete graph. Users can also analyse
the traffic of each link, switch and traffic constraints of each
using window menu. User can edit the switch information and
update the calculation. The tool is very user friendly. It is
platform independent. This tool will help network

users/designers create their non-blocking network model.
Languages: Java. Advantages: This is web based.
Limitation: Very limited applications.

B. Commercial Tools

XNetMod [10, 11] (based on NetMod tool), a LAN
modelling tool that allows users to analyse the performance of
a configuration before implementing it. Three approaches to
performance evaluation of this tool are analysis, simulation
and measurements. XNetMod can be used networking
environment consisting of thousands of computers sites.
XNetMod provides customised forms to enable one to specify
input parameters for the elements. XNetMod supports two
types of topology: ring and bus and two connectors: Router
and Bridge. To facilitate the concept of bottom-up design,
XNetMod allows users to cerate subnetworks. At present
there is only one element type, Subnet in the Subnetwork
element group. XNetMod supports analytic and simulation
techniques. It can summarise the entire results of an analysis
or simulation of just the result for a particular node.
Supports: FDDI, token ring, token Bus, generic bridge,
generic router, subneting. Languages: C. Advantages: 1)
ggraphically display and manipulate network topology; 2)
ease of subnetwork definition; 3) three types of analysis of
data are supported; 4) flexibility of easily add or delete
subnetworks; 5) ability to provide substantial user interaction
for either simple parameter change of major reconfiguration
of LANs and backbone; 6) hierarchical modelling capability
for extremely large models; 7) query and generate reports
based on currently displayed model.

TND-Tool (Topological Network Design Tool) [12] is used
to find out an effective solution to the network topology
design problem. The idea behind developing the TND-Tool
are twofold: first providing network designer and operator
with a tool to facilitate their work, second offering topology
design researchers an environment for testing and
representing the output of their network design algorithms. It
permits to select between node types, link types and data
bases for different kinds of networks. A Network viewer
allows to display the current topological network structure
during the optimisation process. Users, engineers are able to
set up a network interactively by inserting nodes and links,
typing in network information, e.g. traffic values, moving,
adding and removing some part of the network. According to
the tariffs defined, the TND-Tool calculates the cost for an
existing network on the screen or a network resulting from an
optimisation algorithm. The TND-Tool consists of four
major modules: 1) representation module is the graphical user
interface of the system providing all important facilities
needed by the network engineer; 2) optimisation module
enables integration of network optimisation algorithms; 3)
cost calculation module is the entity providing the rules for
calculation of network cost, e.g. tariff tables and cost
functions; 4) data base module provides all the needed data
for the functionality of the system. Currently, the TND-Tool
is used for designing GSM (Global System for Mobile
communication) and DCS1800 (Digital Cellular System

ACCEPTED MANUSCRIPT

1800) fixed networks as part of the cellular mobile
communication networks. The TND-Tool is not limited to
cellular networks and has been designed as a platform for
designing all kinds of networks such as Wireless Local Loop,
Satellite networks, ATM networks and so on. Supports:
WAN, Wireless, ATN, Satellite. Advantages: 1) an
interactive menu and mouse-driven tool; 2) Web based.
Limitation: 1) Limited only to calculate the cost of design; 2)
Limited number of topoloy design algorigm supported.

NetRule [13] is designed to combine the best features of
the mathematical analysis and simulation tool. It is mainly
performance prediction tool to design the actual network.
NetRule can model and stress test very large networks (1,000
to 10,000 nodes). It has a customised GUI like a simulator. It
uses closed-form mathematical analysis that evaluates
network load and performance in seconds with detail and
accuracy that matches the best practice of mathematical
analysis. The tool lets users to create or open network models
and libraries, edit them graphically, and evaluate their
performance. The diagram can animate message flow,
highlight bottlenecks and shows utilisation and delays bars as
components. It uses shared objects definitions to reduce
modelling time and allow global changes. The NetRule
library includes: 1) LANs, including many CSMA/CD, token
ring and polling protocols; 2) Frame relay clouds with access
ports and virtual circuits; 3) ATM switches and SONET links;
4) Routers, hubs, bridges and Ethernet switches; 5) Point-to-
point T1 and other speeds; and 6) FDDI; 7) ISDN. Reports
(output) are available for object definitions as well as for
evaluation statistics that can be sorted or can be exported to
spreadsheet, database, presentation or graphics packages. The
most interesting features of the NetRule are period objects,
which let one to establish different workloads during different
times of day (day and night period) or time of years.
Histogram can be produced for performance analysis.
Normally the report includes: computer delay/job, computer
utilisation, job cost, job delay, link delay/pkt, link utilisation.
Another important feature of NetRule is that it can import
network topology that has been discovered with a network
management tool. Contributor: Analytical Engines Inc.
Supports: CSMA/CD, Frame relay, ISDN, FDDI, ATM,
SONET, point to point T1 connection. Languages: Java.
Advantages: 1) supports very large scale network (1,000 to
10,000 nodes); 2) user can import ALL or any part of a
network and its parameters to build or modify a NetRule
model. E.g .cap files, .csv format file,MIB data; 3) Supports
generalisation option for clients, servers, and/or applications
(for example, mathematically determining the typical client);
4) it can extract from traffic files and make a new file for all
computers which can potentially be servers, all applications
(using port numbers), user traffic flow.

XNP (Extensible Network Planner) [14] is a
comprehensive network design tool for both extensible and
conventional networks. It is implemented using several
methods and incorporated them into a previously unpublished
java-based software tool, Cappuccino. Its objective is to

configure a least-cost network that accommodates any traffic
pattern satisfying the given traffic constrains. XNP allows
network designers to quickly create, configure and evaluate
network designs by providing a convenient graphic-based
interface and automated functions. There are five essential
building blocks in designing a network in XNP. Users can
create a trail topology in the blank drawing area of the XNP
main window. XNP allows two types of links (unidirectional
and bidirectional). Application format (number of processing
steps, number of machine instructions and bandwidth
required) can be added or removed by user-friendly buttons.
XNP provides three ways to specify traffic expectations. XNP
process will iterate through all links and processing nodes to
compute the capabilities for them. XNP will redraw the
topology to show the differences in resources capabilities
again and again. The thickness of each links shows its
capability relative to other link’s capabilities. Users can
evaluate the network configuration by computing a lower
bound on the cost of the best network configuration. By
adjusting options of lower bound and therefore by considering
design restrictions for using resource again and again, one can
obtain more accurate and useful measure. XNP allows three
different ways to view the drawing area-only the trail
topology and the design space together or the design space
only. XNP also allows to manage multiple designs at a time
so than one can try for different trial topologies and compare
them. Supports: supported algorithms are: 1) Complete
network; 2) Delaunay triangulation; 3) Delaunay triangulation
with trimmed links; 4) Link complement; 4) Minimum
spanning tree; 5) Random link adder; 6) Random node adder;
7) Star network; and 8) Symmetric link adder; 9)
Geographical planar projection- longitude and latitude; 10)
Grid network – N x M grid network; 11) Torus network- N x
M torus network. 12) Localised traffic constraints; 13)
Proportioned Pairwise traffic constraints. Languages: Java.
Advantages: 1) Extensible.

NPEST (Network Processing Estimator) [15] is a tool for
packet processing cost on a network node. All of the
calculations are done with the help of processing instruction
per packet. When sending a packet from one node to another,
the following delays occur: (1) transmission delay (the time it
takes to send a packet into a wire); (2) propagation delay (the
time it takes to transmit a packet via a wire); (3) processing
delay (the time it takes to handle a packet on the networking
components); and (4) queuing delay (the time the packet is
buffered before it can be sent). Normally the cost for the
delay (2) and (4) are simulated using standard simulator. The
delay for (1) and (3) are ignored. From this tool, per packet
processing cost, per-byte cost and total processing costs
(processing delay) are found and this cost can be simulated.

The NPEST is a framework on top of which packet

processing functionality can be implemented and simulated
using an actual processor simulator. NPEST allows
implementing packet processing functionality as a simple C
program with the NPEST framework providing all the
necessary packet trace processing and memory management.

ACCEPTED MANUSCRIPT

Table 1: Summary of network analytical tools

Tools Usages Design
Algorithm(s)

Target
Network
Model

Outputs Stored Data File Platform

Delite Educational Some
predefined
algorithms

WAN Graphical
Link analysis, node utilisation, overall
utilisation in percent, delay analysis

Special formatted
Text file

Windows

Cappuccino Educational Predefined
Design
algorithms

WAN Link cost, capacity etc Graphical output, no
text file

Windows
Web
based

XNetMod Commercial User defined
topology.

LAN,
Subnetwork

Delay, average packet queue length, packet
delay time, utilisation,

Graphical output, No
text file

Windows
Unix

TND-Tool Commercial User Defined
topology.

WAN,
Wireless,
ATN,
Satellite

Analysis of Cost of deigned network. Graphical output.
No Text file

Windows

NetRule Commercial User defined
topology

WAN, LAN,
ATM
switches,
ISDN, FDDI

 Computer Delay, Computer Utilisation, Jobs
cost, Job delay, Link Delay, Link Utilisation,
histogram representation.

Report can be
imported to
spreadsheet, database

Windows

XNP Commercial Predefined
design
algorithms

WAN Resource capacities, Cost analysis of links. XNP formatted text
file

Windows
UNIX

NPEST Commercial Predefined
algorithm

WAN Cost analysis of Packet processing. Need further
investigation

Unix,
Linux,,
Redhat

The NPEST results can be used integrated and used in
network simulations and nodes. One way is to integrate
NPEST with a network simulator that uses actual packet
traces and simulate the processing of the packets. The other
way of using realistic processing cost estimates is to obtain
statistics from the NPEST and the using these in network
simulations or modules.

The NPEST framework implements the functions that are
necessary to read and write packets, control the processor
simulator and manage memory. The NPEST consists of the
following sections: NPEST framework, NPEST application
and NPEST API. The framework provides basic “layer 2”
functions that prepare packet for processing, which includes
reading the packet from the input trace file, extracting headers
and writing back the processed packets to output trace file,
manage memory allocated to packets and controls the
processor simulator. The application component is the
software that requires to be evaluated for processing cost. The
API defines the interface between framework and the
application. The cost is calculated using consideration on
processor clock, processor instruction set, memory access
time, flow and packet size, processor cycle.

Several metrics can be derived from NPEST prototype.

Such as, instruction count (number of instruction executed),
memory access (number of memory references performed),
instruction mix (percent of instruction that belong to different
categories). The outputs of the NPEST are overall statistics
(total instruction, total memory access) and application
statistics (total instructions, total memory access, average
instruction/packet, average packet memory access/ packet,
average lookup memory access/packet), instruction mix in
percent (load, store, unconditional branch, conditional branch,
instruction computation, FP computation). Using the number
of instruction executed, actual time taken can be estimated.
The memory access statistics gives an indication if memory
could become a bottleneck for a given application.

This tool is helpful for the users interested for node cost
analysis and can be used with integration with other network
design and simulation tool. OS: Unix, Linux, Redhat.
Supported elements: ARM, Developed Languages: C.
Outputs: Performance analysis, observe dynamic behaviour
with instant changes while simulation runs; observe the
dynamic reaction of failure of network.

Table 1 shows the summary of analytical MS tools.

IV. NETWORK SIMULATION TOOLS

Simulation is the discipline of designing a model of an
actual or theoretical or physical system and manipulating the
model in such a way that it operates on time or place to
compress it, thus enabling one to practice the interaction.
Many unimportant details can be abstracted away and
simulations can be completely repeatable. In a simulation, a
mathematical/logical model is numerically evaluated over the
period of interest and performance measures are estimated
from model-generated data.

Simulations are complementary to analysis [16], not only
by providing a check on the assumptions of the models and
on the correctness of the analysis, but by allowing exploration
of complicated scenarios that would be either difficult or
impossible to analyse. Simulation plays a vital role in helping
researchers to develop intuition. Simulation analysis is
applicable to systems of almost any level of complexity.

A Educational Tools

ns-2 (Network Simulator) [17, 18, 19, 20], a VINT
(Virtual Inter-Network Testbed) project from U.C.
Berkeley/LBL/Xerox PARC, is a discrete event simulator
targeted at network research, which provides substantial
support for simulation of TCP, routing and multicast
protocols. The simulator is using a Tcl/Otcl (Tool Command
Language/Object Oriented Tcl) as a command and

ACCEPTED MANUSCRIPT

configuration interface. There are four types of files related to
ns-2 simulator. Model is described in files .tcl or .ns which
have common subset of commands but not exactly compatible
between each other’s. While simulator runs a model defined
in .tcl/.ns file, simulation trace file (.tr) and animation file
(.nam) are created during the session. Network Animator
(.nam) files are used to visualise the behaviour of the network
protocols and traffic of the model. Once created, users can
play with the .nam file just like a media player and check the
behaviour repeatedly. ns-2 facilitates the three broad themes
of network research simulations: 1) selecting a mechanism
from several options; 2) exploring complex behaviour; and 3)
investigating unforeseen multiple-protocol interaction.
Supports: TCP family, UDP, CBR, FTP, HTTP, Pareto,
Exponential protocols, wires, wireless, unicast, multicast.
Languages: both C++ and OTcl languages. Outputs:
dynamic output. Advantages: 1) user can design model both
manually or writing code; 2) easy configurable and fast
simulation by using two different languages (OTcl and C++);
3) many protocol already implemented; 5) dynamic behaviour
can be visualised using nam editor; 6) Open source code and
can be extended for future. Limitation: 1) Long time to get
used to usign it; 2) does not large scale simuaton (e.g.,
internet). 3) incomplete API; 4) no real time simulation; 5) no
performance analysis is possible 6) badly documented source
code; 7) no direct support of mobility and shared wireless
radio channels; 8) unable to scale to networks of Internet size
due to the computational requiremets of fine-grain packet-
level simulation and memory needed to maintain queues at
each network link.

Network Workbench [21] is a discrete event network
simulator developed for the academic investigation of Internet
protocol. It contains a complete protocol stack, abstracted
from the Internet stack and a set of exercise that focus on
critical protocol algorithms in the Internet stack. Network
Workbench has several version, which are: version 0(1994),
version 1(1994), version 2(1997), and version 3(1998). This
tool supports several network topology, DLC error control,
CSMA/CD collision backoff, optimal route computation,
reliable transport, multicast, and LAN/MAN integration. It
supports FDDI (Fiber Distributed Data Interface), OSPF
(Open Shortest-Path-First). Workbench is abstracted from the
internet (TCP/IP) stack. It contains five layers (application,
transport, network, datalink control, and physical). The
Network Workbench tool can be used to study of WAN
topology, DLC (datalink control layer) frame formatting,
DLC flow and error control, CSMA/CD local area network,
network layer routing, reliable transport, multicast networking
etc. Summary of statistics of the performance is produced at
the end of the simulation. Contributor: J. Mark Pullen.
Supports: network topology, DLC error control, CSMA/CD
collision backoff, optimal route computation, reliable
transport, multicast, and LAN/MAN integration, OSPF,
FDDI, Ethernet, TCP/IP. Languages: C++. Limitation: Very
limited implementation of protocols.

Netsim (M.I.T.’s Network Simulator) [20, 22] is a single
process discrete event simulator used for the investigation of
many aspects of Local Area Network (LAN). Netsim has
three main goals: 1) flexibility of experiment of specifying
the network and traffic; 2) simulate the accurate behaviour of

Ethernet; and 3) has features that make running sequences of
related experiments easier. The experimental data of Netsim
simulation is stored in an experiment description file which
contains: the layout of the network to be simulated, the traffic
generation behaviour of the station on the network,
information about repetitive of each run and about the
sequence of parameters to be used for a series of experiments,
etc. The entries specify the physical characteristics (e.g.,
length, packet size, data rate, number of attached stations) and
traffic generation behaviour of the attached station. There are
five types of traffic distributions in Netsim: exponential,
uniform, deterministic, continuously queued and user defined
discrete distribution (e.g. biomodal). Netsim collects
information on many aspects of the operation of the simulated
network. For example, average packet delay, histogram of
packet queuing delays and collisions per packet transmitted,
overall throughput (percentage utilisation), actual data rate,
average, queuing delay, variance of queuing delay, observed
packet transmission rate, average message size, total observed
collision rate and total number of packet, maximum packet
size, minimum packet size, maximum data rate etc.
Contributor: MIT LCS Advanced Network Architecture
group. Supports: Ethernet link, a point-to-point link, a switch
(switches packets between several links), a host (about the
same as a switch), Purdue's implementation of TCP, data
supplier and consumer from TCP, a simple Poisson traffic
source and a packet sink. Languages: C. Advantages: 1)
Netsim is a publicly available ATM simulator originally
developed at MIT; 2) its source code is freely available and
modifiable; 3) Netsim has a user friendly Graphical Interface
(GUI). Limitation:1) The GUI however is very primitive and
is inadequate for instructional purposes. It is not fault-tolerant
to novice users. An incorrect sequence of keys or mouse
clicks could cause the simulation to crash; 2) Its uses are
limited.

MaRS (Maryland Routing Simulator) [23, 24] is a discrete-
event simulator proving a flexible platform for the evaluation
and comparison of network routing algorithms. MaRS allows
physical network, routing algorithm and traffic sources.
MaRS is structured in two parts: a simulation engine, which
manages the event list and user interface and a set of
components for modelling the network configuration and
handling certain simulation functions. MaRS has been used to
evaluate and compare several next-hop routing algorithms:
two distance-vector algorithms- a) Loop-free Bellman-Ford
Routing Protocol Without Bouncing Effect, a Failsafe
Distributed routing Protocol; b) a link-state algorithm (the
New Routing Algorithm) for ARPANET. MaRS is limited
due to the lack of scrolling capability in the user interface
window. Thus, users are limited in what can be displayed to
the size of the non-scrolling window. In addition, MaRS
constrains itself to a point-to-point network structure and
therefore is not readily suitable for simulating networks with
broadcast communication. Contributor: University of
Maryland. Supports: network routing protocols (SPF,
Merlin_Segall, Bellman_Ford), FTP, Telnet, Workload
(Poison, uniform). Languages: C. Limitation: 1) Its support
for transport layer protocol and application source models is
very limited; 2) a primitive GUI is provided; 3) not available
now.

ACCEPTED MANUSCRIPT

pdns (Parallel/Distributed ns) [25] simulator consists of
extensions to the widely used and publicly available ns
network simulator. The extensions allow many existing ns
simulations to be run in a distributed environment with
minimal changes. The pdns implementation also takes
advantages of the large body of existing models found in ns
and uses those without modification. Also includes in the
pdns extensions is novel packet routing method called NIx-
vector that allow routing decisions without the necessity of
routing tables, resulting in substantial memory saving. While
distributing the ns tool to several processors, for connecting
each sub-model, IP address and a network mask is added to
physical end point (nodes) for communication in logic as well
as physical connection. For routing, each simulated node will
start with routine table priori and dynamic routing
information in the simulation time using Boarder Gateway
Protocol (BGP) to adapt to any change in the simulated
network topology. For event time management and event
distribution among the parallel simulation sub-models,
RTIKIY and LBTS (lower bound time-stamp) etc. time
management run-time library are used. For synchronous event
communication, multicast group management (MCAST)
strategy is used. Contributor: The PADS research group at
Georgia Institute of Technology. Advantages: 1) Very large-
scale simulator (hundreds of thousands of nodes); 2) IP
Addresses are supported.

The GTNetS (Georgian Tech Network Simulator) [19,
26] was developed by George F. Riley using C++ language.
GTNetS has a number of basic design goals, which is
categorized into seven high-level goals. The GTNetS is a full
featured network simulation environment that can be used for
experimental networking research on moderate to large-scale
topologies. The design is such that it is easy to learn and use.
GTNetS is presently fully capable of distributed large-scale
simulations of routers, end-systems, LAN’s and various end-
user applications. Researchers find the tool useful in instance
where existing tool can not be achieve the scale needed to
work functions being studied or can not achieve the scale
needed to produce the desired results.

The object-oriented methodology is used to design the tool

for easy extension and modification. All queueing methods
use a subclass of queue to define their behavior. The
simulator is designed like real networks are designed. In
GTNetS, there is a clear distinct between nodes, interfaces,
links, and protocols. Node objects represent the basic
functionality of a network (either a router or end-user
system), and contain one or more interface objects. Each
interface objects has an IP address and associated network
mask, as well as a link object encapsulating the behavior of
the transmission medium. Packets in GTNetS consist of a list
of protocol data objects (PDUs). This list is created and
extended while a packet moves down the protocol stack the
various layers. When moving up the stack, each protocol
layer removes and processes the corresponding protocol
header in a fashion closely modeling a real protocol stack.
Each protocol layer communicates with the layers below it by
invoking a DataRequest method, specifying the packet and
any protocol specific information required by the next lower
layer. GTNetS used NIx-Vector routing as the default packet
routing mechanism.

Simulation models for a number of different random
number generators are provided, including exponential,
Pareto, normal, uniform, empirical and constant. GTNetS
allows the specification of default object types wherever
practical. For nearly every objects (links, queues, protocols,
etc), a default value is provided that allows for creation of
object without specifying details. It provides a number of
stock objects for creating well-known topologies such as star,
dumbbell, grid and tree. GTNetS includes simulation models
of a number of popular protocols at the application layer,
transport layers, network layer and link layer (IEEE 802-3 for
wired networks, IEEE 802.11 for wireless). The application
layer models included in GTNetS are: Gnutello, GCache,
Syn-Flood and UDP storm. The transport protocols are: TCP,
TCP Reno, TCP NewReno, TCP Tahoe and TCP SACK
layer, UDP. Additionally, the design of TCP model uses a
client/server paradigm. Data contents as well as length can be
model within this tool. The tool uses IPV4 exclusively for
the network layer protocol. DropTail and Random Early
Detection (RED) queues are implemented. Nodes with
wireless interfaces also have mobility models and support
random initial node placements.

The GTNetS simulator consists of a large number of C++

objects, which implement the behavior of a variety of network
elements. Building and running a simulator using GTNetS
consisting of creating a C++ main program that instantiates
the various network elements to describe the network
topology and the various applications and protocols used to
move simulated data through the topology. The C++ main
program is then compiled with any compiler that fully
compiles with the C++ standards. After the successfully
compiling the main program, it make is linked with the
GTNetS object libraries. The resulting executable binary is
simply executed as any other application, which results in the
simulation of the topology and data flows specified in the
main program.

 Finally, GTNetS keeps and optionally reports detailed

statistics about the simulator’s performance. These statistics
include the number of objects created, number of simulation
events, memory used, just to name a few, which assist the
simulator user in identifying resource limitations or
performance problems should they occur. The tool has a
number of data summation primitives in gathering
performance statistics. Histogram(e.g., sequence number of
packet vs. time in a TCP connection) can be plotted for data
sets. The histogram objects can then be queried and printed.
Packet tracing in the simulation can be performed for
analysis. The trace file is saved in text format (.txt).

The tool runs both in windows and Unix in C++ standard
and freely available. Input file(c++) and output can be saved
for later use. The tool can handle up to half-million nodes; up
to 455,168 TCP flows and more than 4 billion simulated
packet transmission events. With 480,000 nodded topology,
simulation can complete within 15 minutes. Any user who
has a good understanding of the design and operation of real
networks will find that GTNetS works similarly.
Contributor: Riley; Year: 2002; Supported Operating
system: Windows, Unix; Supported elements: Ethernet and
point to point link, Static and NixVectors routing, IPV4

ACCEPTED MANUSCRIPT

models, TCP family, UDP, DropTail, RED; Developed
Languages: C++.

WIPSIM-Development of the Wireless IP Simulator [27]
was started in 2000 in the WING-group of CPK at Aalborg
University. In July 2001, the framework of the simulator was
redesigned to allow for easy addition of protocols and
mechanisms by multiple developers. Several reasons to start
writing a new simulator instead of using an existing tool: No
(affordable) simulator available that could fulfill the needs of
the WING-group; Increased learning effect by implementing
protocols from scratch; Create tool that could aid in
education. WIPSIM is an event-driven simulator, written in
ANSI-C++ and is open source. Input and output are handled
using text-files: Scenario-file: movement of the nodes and the
traffic in the network; Network-file: nodes, interface,
protocols and their parameters; Config-file: default
parameters for protocols, aliases

The framework of the simulator connects the different layers
of the protocol stack. Each part of the framework is
implemented as a base-class, which provides the interface for
access to other parts of the simulator and to other layers. Each
specific protocol implementation can then be derived from
this base-class.

At the physical layer, interfaces of nodes are either in-range
or out-of-range of each other. Currently, no detailed radio
propagation models are used, a frame transmitted at the
physical layer either reaches other nodes (if the interface of
that node is in-range) or not (if the interface is not in-range).
Optionally, a frame error rate can be set. The radio
propagation is kept this simple to reduce simulation overhead
and because the focus of the simulator is the IP and MAC
layer.

Movement of nodes is described in the scenario-file, where
event are listed where nodes move in- and out-of-range of
each other. Any tool can be used to provide the input for the
movement of nodes to the scenario-file based on the desired
mobility model. As such, mobility is pre-determined before
the simulation starts. This allows for comparison of different
protocols under the exact same mobility conditions.
Moreover, it reduces the amount of calculations that needs to
be done in case a number of simulations are carried out with
the same mobility. Contributor: WING-group of CPK at
Aalborg University; Supported elements: MAC, IP layer, cd
hoc rouing protocols and connectivily, node mobility, AODV,
OLSR, Multipath-aodv, simple shortest path algorithm (e.g.
Dijkstra), Diddserv, CBR UDP model, MPEG-4 video source
model. Developed Languages: C++. Extensibility: easily
extendible. Outputs: calculates average packet delays,
throughput, packet delivery ratios etc. Advantages:
Development knowledge available within CNTK; Simulator
+ source code freely available; Design of the general
framework of the simulator makes it easy to add new
protocols/mechanisms; Source code is well documented.
Limitation: User/developer base is still small, therefore there
is some uncertainty about the correctness of the
implementation of protocols; the number of implemented
protocols is not so large yet; Development and user
documentation is still under development

B Commercial Tools

OPNET (Optimised Network Engineering tool) [19, 20,
28, 29] was launched in 1987 as a first commercial available
simulation tool for communication networks. It provides a
comprehensive development environment for the
specification, simulation and performance analysis of
communication network. It can simulate all kind of wired
networks and a 802.11 compliant MAC layer implementation
is also provided. A large number of communication systems
from a single LAN to global satellite networks can be
supported. The most important features of OPNET are:
modelling and simulation cycle (to assist user to go through
three phases in design circle-building model, execution of
simulation and the analysis of output), hierarchical modelling
(describes different aspects of the complete model being
simulated), specialised in communication networks (support
for existing protocols and allow users to either modify theses
existing models or develop new models), automatic
simulation generation. An OPNET model consists of three
layers: the network models, the node model and the process
model. The tool allows the different layers in a protocol stack
running on individual nodes to be represented. OPNET
contains various tools for data collection. A probe editor
allows specifying: 1) which statistics are to be collected from
where (Probe editor); 2) their own statistics (analyse tool); 3)
animation view and formats (Filter Tool, Animation viewer).
OPNET contains objects that are capable of generation vast
amount of output data during simulation. It can generate error
rate and throughputs, delay queue size. Packet trace may be
done. Output can be plotted in graph, such as end-to end
delay vs. queue buffer capacity, loss ratio vs. queue buffer
capacity. Probability distribution function, cumulative
distribution function as well as histogram can be plotted for
several data sets. OPNET is extensively used for the study of
TCP transport across different types of ATM bearer
capabilities and diffserv per hop behaviour. Contributor: Mil
3 Inc. Supports: routing protocols (OSPF, RIP, EIGRP, BGP,
IGRP, DSR, TORA IS-IS, PNNI), Diffserv, MAC, mobility
of nodes, ad hoc connectivity, different application models.
Node failure models, modelling of power-consumptiion etc.
Languages: C, Java. Advantages: 1) extendible; 2) large
customer base; 3) professional support; 4) very well
documented; 5) ships with a large number of built-in
protocols. Limitation: 1) relatively high price; 2) complex,
takes time to learn; 3) there is restriction to its portability.

COMNET III [30, 31, 32] is a commercial integrated
discrete event object-oriented simulator for modelling and
performance analysis of computer network. With COMNET
III, users can create a variety of network architectures,
including LANs, MANs WANs, packet switching, ATM,
frame relay and so on. COMNET is entirely driven by
graphical user interface. Users are able to graphically display
traffic modelling patterns, use of realistic network objects to
reflect real networks and apply the network concepts.
COMNET III allows the users to model, tune and analyse the
performance of various types of networks. It provides an
extensive library of nodes, links, protocols and traffic objects.
The library of link objects include two classes: point to point
links and multi-access links. Multi-access protocols that can
be modelled include CSMA/CD, CSMA, ALOHA, Token
BUS, Token Ring, FDDI and Polling. It supports subnets. It
has two kinds of sources: application sources and traffic

ACCEPTED MANUSCRIPT

sources. There are four types of traffic generators: message
sources, session sources, response sources and call sources.
COMNET III is able to produce about 100 reports for
different model building blocks. Most commonly produced
reports include node utilisation and application delays, link
delays, channel utilisation, message delays, packet delays,
calls blocked, disconnected and preempted, session set up
delay, collusion statistics, token ring statistics, buffer
statistics etc. Contributor: CACI Company. Supports: LAN
(Ethernet, Token ring, FDDI), MAN, internet, packet switch,
circuit switch, ATM, bursty traffic, CSMA, CSMA/CD,
ALOHA, Polling, Protocols (TCP/IP, IPX, SNA, DECNet).
Advantages: 1) a graphical package, allow quickly and easily
analyse and predict the performance of network; 2) allows
users the flexibility to try an unlimited number of “what if”
scenarios; 3) realistic and accurate results. Limitation: 1)
source code is not available; 2) new modules were very
difficult to add; 3) It is restricted to experimenting with the
set of networking protocols provided by the package; 4) It is
not programmable by the users.

REAL (REalistic And Large) [33] is a network simulator
originally intended for studying the dynamic behaviour of
flow and congestion control schemes in packet-switched data
networks. It provides around 30 modules that exactly emulate
the actions of several well-known flow control protocols
(such as TCP), and 5 research scheduling disciplines (such as
Fair Queuing and Hierarchical Round Robin). There are
nearly 30 source types, corresponding to 30 or so transport
protocol and workload types. The sources can be categorised
into one of two types: flow-controlled and non-flow-
controlled data sources. REAL has a graphical user interface
(GUI) written in Java. The simulator takes as input a network
scenario (a description of network topology, protocols,
workload and control parameters) described in NetLanguage
(ASCII). It supports sources or sinks node, gateways
(synonymously with routers, bridges and switches). Users
have to specify some network parameters, the transport
protocol (in particular, the flow control) and the workload at
each source. Finally, users must specify control parameters
such as the latency and bandwidth of each communication
line, the size of trunk board buffers, packet sizes etc.
Contributor: S. Keshav at Cornell University. Supports:
TCP/IP, XNS, FTP, Telnet, ill behaved, FIFO, FCFS, Fair
Queuing (FQ), DEC congestion avoidance and Hierarchical
Round Robin. Languages: C, JAVA (GUI only).
Advantages: 1) the GUI allows users to quickly build
simulation scenarios with a point-and-click interface; 2)
source code is provided so that interested users can modify
the simulator to their own purposes; 3) extendible.
Limitation: 1) NEST (initial tool) didn't not allow for timers,
REAL sends out a timer packet from a source back to itself to
return after some specified time, but timers cannot be reset
using this method; 2) misses some of the behaviours in the
common protocol implementation; 3) do not support common
implementation of protocols (direct execution). Instead it uses
codes that simulates the major characterstisc of the protols.

SSF (Scalable Simulation Framework) [34, 35] is designed
to model very large-scale networks, which are described in
generic modelling language called Domain Modelling
language (DML). SSF can be run in a distributed environment
(called DaSSE) on a tightly coupled shared-memory

symmetric multiprocessor. DaSSF achieves good parallel
performance by using a periodic time-stepped approach. All
processors can safely process messages between
synchronisation cycles without fear of erroneous results due
to unsafe events. SSF supports multicast in-channel (many to
one communication) as well as multicast out-channel (one to
many) and bus-style channel mapping (many to many).
SSFNET is the first collection of SF-based models for
simulating Internet protocol and networks. The SSFNET
libraries include component models for network elements
(hosts, routers, network interface card, local area networks)
and network protocols (currently IP, UDP, TCP, BGP and
OSPF). SSFNET models are self-configuring, that is each
SSFNET class instance can autonomously configure itself.
SSF has been demonstrated on networks of several hundred
thousand nodes. Contributor: Renesys Corporation.
Supports: TCP, UDP, BGP protocols. Languages: Java,
C++. Outputs: packet-by-packet simulation. Advantages: 1)
Open souce code; 2) Free for education; 3) Platform
independentent; 4) This has open source code and based on
OOP, it can be enhanced in future. Limitation: Dynamic
simulation cannot be visualised using this tool.

TeD (Telecommunication Description Language) [36, 37,
38] is a language for describing telecommunications
networks, coupled with an optimistic network simulation
engine, based on Georgia Tech Time-warp. The TeD
language specification is split into two distinct parts-
MetaTeD and “External Language”. MetaTeD defines a set of
concepts for modelling the dynamic interactions of entities
and their compositions. When MetaTeD is appropriately
combined with any regular general-purpose programming
language (say C++) then complete language is formed. TeD is
process-oriented where the number of processes easily
exceeds one million, warranting efficient support for large-
scale process orientation. It has demonstrated good
performance and scalability when modelling ATM cell
switches and private network-network interface (PNNI),
Internet and wireless network. TeD has been demonstrated on
network models consisting of tens of thousands of nodes.
Conservative and Optimistic synchronous processes have
been implemented in TeD. Contributor: Kalyan Perumalla,
Andrew Ogielski, Richard Fujimoto at Georgia Tech. Year:
1996. Supports: TCP/IP, ATM Private Network to Network
Interface (PNNI) signaling neworks, Multicasting protocols,
wireless networks. Languages: C++ and Meta-language
(MetaTed). Outputs: Simulation of models. Advantages: 1)
TeD itself is independent of the underlying parallel simulator
and can be used with other parallel simulator (e.g. Nops,
recently developed at Darmouth); 2) TeD achieves high
parallel performance on multiprocessor machine, speeding up
the simulation by a factor proportional to N for N-processor
machine. Limitation:1) Limited protocols are implemented;
2) Not freely available.

USSF (Ultra-Large Simulation Framework) [39, 40]
simulator is based on the WARPED simulation engine.
WARPED is a parallel discrete event optimistic simulator
based on Time Warp. The syntax and semantic of the input
topology models for USSF are described in a Topology
Specification Language (TSL). Using TSL, large topologies
can be built from smaller sub-topologies and sub-sub-

ACCEPTED MANUSCRIPT

topologies. The topology is parsed into an Intermediate
Format (TSL-IF). The analysed TSL-IF by the help of static
analyser and code generator modules is then used to generate
an optimal simulatable network topology. USSF is used to
model large networks using a network of Dual-CPU Pentium
processors connected by an Ethernet network. Decoupling of
the data and states are provided for swapping data and states
in and out of the main memory based on demand, freeing up
the memory for better performance of the simulation. USSF
has been demonstrated on network models of hundreds of
thousands of nodes. The current implementation of USSF is
in C++ language in UNIX system. Contributor: Dhananjai
Madhava Rao, Philip. A. Wilsey. Supports: LAN, MAN,
Languages: C++. Advantages: Very large-scale simulator
(hundreds of thousands of nodes).

Dummynet [41, 42] is a simple, accurate and flexible
network simulation tool with minimum modification to an
existing protocol stack, allowing experiments to be run on a
standalone system and can be used to simulate network with
arbitrary topologies. Dummynet works by intercepting
communications of the protocol layer under test and
simulating the effects of finite queues, bandwidths limitations
and communication delays and possibly lossy links. The tool
allows the use of real traffic generators and protocol
implementations while solving the problem of simulating
unusual environment. The running of an experiment with this
tool is as easy and quick as running the desired set of
applications on a workstation and as a consequence no
overheads in the communication and experiments can be
performed up to the maximum operating speed supported by
the system in use.

The basic version of Dymmynet works at the interface

between TCP and IP. The implementation takes less than 300
line of kernel code in FreeBSD. Under normal condition,
there is no system overhead. The principle operation is to
implement typical protocol stack where each layer
communicates with the adjacent ones. In Dummynet, to
simulate the presence of a network between two
communicating peers the following elements are inserted in
the flow of data: Router with bounded queues size and a
given queueing policy; and communication links (pipes) with
given bandwidth and delays.

 Losses due to congestion are simulated by bounded size
queues. Random packet reordering is also simulated. These
show the unreliability of the networks. According to [41], a
simplest setting is introduced in Dummynet, which includes
one or two routers and one pipe. RED, FIFO with droptail
queue policies are implemented in Dummynet. Some filtering
rules are used to affect the traffic (e.g. TCP traffic to/from
port, all traffic through a given interface).

The applications of Dummynet are debugging, study of

new protocol and performance evaluation. Several protocols
can be tested using this tool and can see the bugs and can
debug the unexpected features of the implementations. This
tool makes it easy to simulate unusual or hard to reproduce
settings in the study of new protocols. The tool can be used to
study the behaviour of existing or new congestion control
mechanism in presence of bottleneck links or any
asynchronous links. Performances can be evaluated for a
model in specific parameter settings.

There are some limitations in Dummynet. It can only
approximate the behaviour of a real system with given
features. Most of the approximation introduced by the tool
derived from granularity and the precision of the operating
system’s timer, and in many cases have little influence on the
experiments. A second problem is that the periodic task might
be run late or even misses one or more timer ticks. Events in
the tool occur synchronous with the system’s timers, which
may hide or amplify some real-world phenomenon that occurs
due to race condition. The current implementation of
dummynet lacks any automated tool to setup an arbitrary
network topologies starting from a graphical or textural
description. The tool uses low-level user interface like
command. More details of the commands are shown in the
paper [41].

According to the paper [41], Dummynet tool can be extended
to simulate complex network model and graphical output can
be visualized. Trace file can be constructed to for the traffic
information. Dummynet runs in FreeBSD and file is not
saved and therefore the overhead introduced to the tool is
almost negligible. Contributor: Luigi Rizzo. Year:
Sept.1997. Supported Operating system: FreeBSD.
Supported elements: TCP/IP, FTP, Telnet, Web borwsers,
UDP. Developed Languages: C. Extensibility:Yes.
Outputs: Emulates a link with fair queueing, artificial delay,
etc., for testing protocols. Simulate the effects of bandwidth
limitations, propagation delays, bounded-size queues, packet
losses, multipath. Advantages: Free. Open source; Great
control over operating parameters, simplicity and availability
to use real traffic generators, high accuracy; almost no
overhead. Limitation: Dummynet can only approximate the
behaviours of a real system with given features; The periodic
task might be run late or even miss one or more timer ticks
depending on the overall system load; Events in dummynet
occur synchronously with system’s timer which might hide or
amplify some real world phenomenona which occur because
of race conditions.

Ethersim [43] is a simulation tool to model and study the

performance of multimedia–oriented integrated service ATM
networks with mobile hosts and wireless links. It is a discrete
event base simulator core and incorporates models of user
applications and transport, network and MAC layer protocols.
It provides the capability to specify a cellular wireless ATM
network topology and hosts and basestations.

Ethersim consists of five special entities relevant to

modelling mobility and wireless communication: an air
module, a map, a mover, mobile hosts, and basestations. The
air module models the physical air-interface effects (e.g. RF
power decay, frequency collusion etc). The map module is
used to define a geographical region and the placement of
various wireless entities (e.g., basestations, mobile hosts) in it
and is constructed using an undirected graph structure whose
node represent arbitrary geographical region referred to as
room or cell. The mover is a central entity that moves the
mobile hosts on the map. Ethersim allows for both random
and goal–directed movements of the mobile hosts, and allows
synchronous goal-directed movements to model conference
room type mobility patterns. Basestation is a switch with
radios, which maintains a routing table using which it routes
packets coming in on import port to an output port where they

ACCEPTED MANUSCRIPT

are buffered. The mobile host is derived from the wired host
and subsumes all its functionality with additional
enhancements (e.g., mobility aware, rerouting protocols,
MAC sub-module, and mobile capability with speed). The
tool is constructed is a modular fashion to allow functionality
at different levels of the protocol stack to be modified
independently, thereby allowing network protocol designers
to study the interaction between policies embedded in the
protocol at different layers.

Ethersim has a rich variety of network components such as

hosts, links, switches, ATM and TCP/IP protocol modules
that allow the modelling of variety of mixed of wired and
wireless network scenarios. Ethersim supports wireless and
mobility aspects in an integral fashion and uses the network
reference model consists of wired and wireless parts. The
wired part is composed of switches and wired static hosts
with point-to-point wired links connecting the hosts to
switches ports or one switch port to another switch ports.
Some switches acts as basestations having equipped with
radio interfaces. Wireless mobile hosts are derived from the
standard wired host by replacing the wired network link
interface with a radio. The radio-equipped host can
geographically moves with the users who are carrying it.
Radio may have multiple channels and radio may be
configured to operate on one of the channels. Channels are
intrinsically broadcast oriented.

Ethersim supports mobile network protocol (mobile IP and

mobile ATM), wireless links including bandwidth, large scale
and small scale propagation loss, receiver sensitivity,
multiplexing technique (FDM, TDM, frequency hopping,
direct sequence spread spectrum etc.), medium access
protocols and hand-off protocols (hard vs. soft hand off),
flexible pattern of host mobility (direct and random
movements of mobile users), convergence and divergence of
roaming to/from a meeting location, and different application
models and adaptation. While host mobbing from one
basestation to another, Ethersim uses a single parameterized
Connection Manager module which follows the combination
of the rerouting schemes of extension, extension with loop
removal, total rebuild, partial rebuild to a fixed anchor switch,
partial rebuild to a dynamically selected cross-over switch,
multicast to neighbouring basestations.

The main software modules of Ethersim are: wired static

host, switch, wired link, basestation, wireless mobile host, air,
map, mover, traffic source (statistical and trace driven),
protocol modules (transport, connection establishment, and
packet scheduling), measurement modules and graphical user
interface modules. The tool uses a single parameterized
hybrid Connection Manager module to reroute the packets
while host moving.

Ethersim allows to accurately measuring the effect of the

frequency hop collisions on the average throughput of
applications run on the top of TCP. It has various
performance measurement and graphical user interface
routine to interpret the simulation results. Host mobility
affects the achievable user and network performance as
measured by the throughput, packet delay, link utilization
levels. Ethersim allows studying the delay for rerouting the
packet path as host moves, handoff and register to new

basestation as policies and parameters used in MAC, network
and transport layers are varied. With Ethersim, user can
visualise the effects of reroute, throughput due to frequency
collusion, effect of time interval length, performance impact
on host mobility, rerouting policy on per-packet delay etc.
Error recovery and congestion control mechanism can also be
studied using the tool. Contributor: AT&T Bell Laboratory
Year: 1998. Supported Operating system: Unix.
Supported elements: Wired and Wireless network, LAN,
WAN, hosts, links, switches, ATM and TCP/IP protocol,
mobile IP and mobile ATM, multiplexing technique (FDM,
TDM), CBR, VBR, ABR, UBR, MAC protocol, noise
models(e.g. aussian), propagation loss, rerouting models.
Developed Languages: Java. Extensibility: Yes. Outputs:
performance (throughput, packet delay, link utilization),
collusion probability, packet loss. Advantages: Support
mixed wired and wirelss network scenerio; Several host
movement policies have been implemented (random
movement, goal-directed movement, group movement, mixed
movement) which may be diverge or converge; Rich in
models. Limitation: Multiath interference has not yet
included; MAC is still limited.

BONeS (Block Oriented Network Simulator) [44] is a

commercial product of Cadence Designer Systems. To use
this tool, license is required. BONeS allows the user to
investigate event-driven network systems at the packet level
by building up systems in the form of input/output modules in
a signal flow block diagram and simulate the responses at
chosen probes with given starting parameters. BONeS comes
with a variety of supported networking protocols for both
wireless and terrestrial environments. No limitation of the
number of nodes, links and agents.

There is a Motif graphical environment in BONeS

simulator for capturing the design or architecture of
communication networks and simulating the performance of
the captured designs. The user specifies a network design by
drawing a hierarchical block diagram with building blocks
from the user-extendible BONeS designer model library.
Modelling elements at the lowest level are called primitives,
and written in C++. These blocks accept data structures as
inputs, perform simple operations such as modifying fields
within the data structures, and return data structures as
outputs. A typical BONeS Designer session consists of four
steps: Creating Data Structure; Constructing Block
Diagrams; Running Simulations; Evaluating he results.

The data structures, necessary to complete the specification
of BONeS designer model using a graphical data structure
editor (DSE), are defined hierarchically and can have an
arbitrary number of fields which can contain simple entities,
such as the sequence number and the time stamps. These data
structures are defined to meet the needs of the simulation and
do not necessarily duplicate the actual packet structure in the
network being simulated. The first step for a model design is
to create a data structure.

The network model is also constructed graphically, using

the BONeS designer block diagram editor (BDE). Primitives
and other blocks are placed on the workstation screen and
connected to form protocol functions. These functions are in
turn grouped to form nodes, and nodes are then connected by
communication links to form a topological network model.

ACCEPTED MANUSCRIPT

Hierarchical and some form of model aggregation are used to
manage the complexity of models of large networks. The user
specifies parameters of the individual blocks at some points
prior to simulation. Measures characteristics of traffic and
communication links can easily be incorporated into BONeS
models.

Once the network model definition is complete; BONeS

Designer performs a variety of error and consistency checking
and automatically translates the graphical model into a C++
program. An event-driven simulation of the network model is
then executed, with user-specified values for model
parameters. During the simulation, data structures created by
some source models flow along connection lines to various
processing modules, which may alter the content of the data
structures and/or modify their path through the block
diagram. Once the simulation has been stated, the current
simulation clock time, stop time and whether error and
warning messages have occurred. Eventually, data structure
arrives at sink modules, where they are taken out of the
system. A BONeS simulation continues until there are no
more data structures in the block diagram or until the
simulation clock reaches a user-specified stop time. These are
performed using the simulation manager. The simulation
manager also provides the capability to record the sequence
of the execution of a model or to aid in debugging block
diagram.

During the simulation, BONeS Designer collects data to

various points in the network using a variety of probes. The
user specifies the location and types of the probe. The BONeS
Designer library manager takes care of the storage and
retrieval of the simulation models, programs, parameter value,
and simulation data. The data collected during the simulation
are analysed and displayed graphically using the post
processor. The PP has built-in analytical function for
performing statistical operations on the data. To display
results, the user typically goes through the following steps:
selecting simulation; selecting probes; applying a conditional
or filter to the data probe (not necessary); specifying the X-
and Y-axis expressions. Contributor: Cadence Designer
Systems. Year: 1998. Supported Operating system: Unix.
Supported elements: LAN, CSMA,TCP/IP, Wireless
protocol, ATM support. Developed Languages: C/C++.
Extensibility:Extendible. Outputs: analyze simulation
results, compute statistical and performance measures
(throughput and latency) and display results in graphical
plots. Advantages: a large library of readymade models;
Interactive simulation tool for debugging and validating
models. Limitation: Slow for large simulations;Learning
Bones is really hard; Not available now a days.

The GUTS is a transfer level simulator to simulate wide-

area network application and services. It is high level wide–
area network simulator whose goal is to enable simulation or
realistic Internet- scale topologies, under a range of realistic
workload [45]. The tool is designed explicitly for modelling
for simulating networked services at the application level,
rather than at the transport level or below. The model does not
use network queues. GUTS models a network as a directed
graph with nodes that represent either hosts or routers and
links that represent direct network connections between two
nodes. Each link has two static properties-total capacity and

propagation and two dynamic properties-allocated bandwidth
and transfers in progress. The network model allocates
bandwidth for a transfer only once, using the transient state of
the network at the beginning of the transfer, and the allocation
remains fixed for the transfer’s duration. The services
provides by GUTS include content distribution networks
(CDNs), replicated Internet services, grid computing, peer-
to-peer networks, a flexible workload construction system,
supporting several types of client request patterns and object
properties.

 The tool is written in object-oriented language C++. GUTS

runs (execution time) more than 2 orders of magnitude faster
than ns [45]. Event rates of GUTS are lower than ns. The tool
can handle few hundred of nodes. Grade et al shows in [45]
that though the traffic of GUTS are more bursty than Ns-2,
the mean traffic is nearly same. Contributor: Syam Gadde,
Jeff Chase, Amin Vahdat.Year: 2002. Supported elements:
TCP family, congestion control, WAN design, coarse-grain
algorithm. Developed Languages: C++. Outputs:
simulation of realistic Internet-scale topology (directed graph)
maintaining accurate aggregate performance metrics that
enable to compare the relative performance of services over a
common network infrastructure. Advantages: Runs more
than two orders of magnitude faster than ns simulator; Much
low event rates (than ns); The Guts network model’s
asymptotic running time is less than packer- based network
simulation model. Limitation: Limite network protocols are
implemented; No network queueing model is used;

C Specialised Tools
ATM-TN (ATM Traffic and Network simulator) [46] is

designed to characterise cell level network behaviour. The
simulator incorporates three classes of ATM traffic source
models: an aggregate Ethernet model, an MPEG model,
World Wide Web transaction model and six classes of
ATMswitch architectures including output buffered, shared
memory buffered and cross bar switch models. The ATM-TN
simulator can be used to characterise arbitrary ATM networks
with dynamic multimedia traffic loads. Call set up and tear
down via ATM signalling is implemented in addition to the
various types of cell traffic streams generated by voice, video
and data. The simulator is built on a simple, efficient
simulation language called SimKit, which is capable of
supporting both fast sequential and parallel execution. Parallel
execution is supported using WarpKit, an optimistically
synchronised kernel that is aimed at shared memory
multiprocessor platforms. The main design principles of the
ATM-TN are: 1) accurately mimic ATM network behaviour
at the cell level for specific traffic loads; 2) create a modular
extensible architecture; and 3) achieve responsible execution
times for ATM networks that consist of hundreds of traffic
sources. The structure of ATM-TN consists of the
components: traffic models, switch models, an ATM
Modelling Framework (MF), SimKit, WrapKit, OSS and the
Telecom Modelling Framework (TMF). Several distinct
components are to construct traffic models: input traffic
sources (e.g. FTP, Telnet, Mosaic, JEPG, MPEG), ATM
Adaptation Layer (AAL) for converting source data to cell
packets, access control mechanisms (e.g. leaky bucket). There
are three types of traffic models are used: MPEG, Ethernet
and WWW. The basic switch models in ATM-TN simulator

ACCEPTED MANUSCRIPT

have two components: the control module and the switch
fabric. Besides dynamic behaviour of ATM network,
analytical outputs can be estimated which include:
propagation delay, link capacity in bit/sec, error rate, work
load and several parameters. Contributor: Telesim project
led by Brian Unger at University of Calgary. Supports:
ATM, Data sources (FTP, Telnet, Mosaic, TCP/IP), Video
sources (JPEG, MPEG, video- conferencing), WWW model,
Qnet model. Languages: C++. Outputs: Link utilisation,
QoS, delay analysis. Advantages: 1) Overhead is low; 2)
High performance and realistic model; 3) The amount of
computation associated with processing such events is very
low; 4) ATM-TN has a GUI that provides easy simulation
scenario configuration, data set organisation, and control over
simulation execution and report generation. Limitation: At
present, workload is balanced manually.

Glomosim (Global Mobile System simulator) [19, 47, 48,
49] is a scalable simulation environment for wireless mobile
network systems. It is designed using the parallel discrete-

event simulation capability provided by PARSEC. The
protocol stack includes: models for the channel, radio, MAC,
network, transport, and higher layers. It supports TCP, IEEE
802.11 CSMA/CA, MAC, UDP, HTTP, FTP, CBR, Fishleye,
LARScheme-1, ODMRP, WRP, DSR, MACA, Telnet,
AODV, etc. protocols.

There is a visualisation tool VT designed to view and help
debugging the protocols. Glomosim currently supports
protocols for only wireless network. In the future, it is
planned to add functionality to simulate a wired as well as a
hybrid network. There are eight files related to a network
model designed in Glomosim network simulator. Six input
files are used to execute a network model: Configuration file,
Nodes file, Mobility file (movement of the nodes and traffic),
Routers file, Application file, Ber_bpsk file (Bit Error Rate).
Two files are related to the output of the network model.

Table 2: Summary of the small and large scale network simulation tools

Tools Usages Target Network
Model

Outputs Stored Data
Format

Platform

Ns-2 Educational,
Research

WAN Simulation of several protocols Text file (ns/tcl
format)

Unix

Network
Workbench

Educational,
research

LAN/MAN Simulation of network, summary of interlayer statistics Test file Windows
Unix

NetSim Educational LAN (Ethernet) Simulation, histogram of packet queuing delay, offered load,
overall throughput (%), actual data rate, average queuing delay,
variance of queuing delay, packet transmission rate, and total
number of packets.

Text file Windows

MaRS Educational WAN, link-
state and
distance vector
routing, SPF,
ExBF, Segal
routing

Simulation of application traffic-ftp, telnet, simple, various
meters (binary, bar graph, histogram, line graphs, etc), periodic
and event updated statistics, throughput, delay, jitter, dropped
packets, routing load etc., no trace file, Hope count, utilisation,
delay and hope-normalised delay.

Not known-
require further
investigation

UNIX,
Windows

OPNET Commercial LAN
Satellite, radio
modelling

Simulation of several protocols, delay, utilisation etc.
performance analysis.

Text file
(C/C++ format)

X window

COMNET III Commercial LAN, MAN,
WAN

Node utilisations, application delays, link delays and utilisation,
message delays, packet delays, calls blocked, disconnected and
pre-empted, session setup delays etc.

Graphical
input/output.
No text file for
modelling

Unix

REAL Commercial LAN Statistics such as the number of packets sent by each source of
data, number of packet received by sink, the queuing delay at
each queuing point, and the number of dropped and
retransmitted packets.

Text file Unix

ATM-TN Specialised LAN, MAN,
WAN

Simulation of ATM network Text file in
Unix system.

Unix

GloMoSim Specialised Wireless
network

Simulation of wireless network Text file (two
configuration
files)

Windows
Unix

Dummynet Commercial LAN Simple tcp /ip protocol, Debugging protocol, study new
protocol, Performance evaluation

No output file FreeBSD

EtherSiM Commercial Wired and
wireless
network, WAN

Performance analysis (throughput, packet delay, link
utilization), collusion probability, packet loss.

Further
investigation
needed

Unix

BoNES Commercial,
research

WAN,
Wireless, ATM
support

Per flow monitoring, no automatic trace generation, trace, built-
in post processing tool.

Further
investigation
needed

Need further
study

GTNets Educational,
research

LAN/WAN Simulation as well as performance analysis, histogram of
response time

Text file
(C based
source code)

Unix

WIPSIM Educational Wireless
network

Simulation of all layers of the OSI model, calculation of
average packet delays, throughput, packet delivery ratios etc.

Text file OS
independent

QUIPS Specialized Differentiated
Service

Simulation of behaviour of DS. Text file Unix

PlanNet Commercial WAN, LAN Need further study Need further
study

Need further
study

ACCEPTED MANUSCRIPT

All of the statistics (selected simulation events) is compiled
together into a file called glomo.stat that is produced at the
end of the simulation. Trace file is produced (if ‘write trace’
option is chosen) which can be played as many times as user
wants and this is faster than real time. Basically, Glomo.stat
and trace files store same set of data. But trace file can be
simulated any time, which is not possible with Glomo.stat.
Supports: TCP family, UDP, CBR, FTP, HTTP protocols,
wireless. Languages: Java, C. Outputs: Dynamic output in
VT tool, trace file. Advantages: 1) Easy configurable and
fast simulation; 2) Many protocol already implemented; 3)
Well documented; 4) Dynamic behaviour can be visualise
using VT tool; 5) Large scale simulator; 6) Open source code;
7) can be extended for future. Limitation: 1) Currently wired
network is not imnplemented; 2) Incomplete API.

QUIPS-II (Queen’s University IP simulation-II) [50], a

successor of QUIPS, is a discrete event specialised simulator
used for the design and performance evaluation of
differentiated service (Diffserv or DS) based on network
differentiated services or DS architecture that has recently
become a promising method to address QoS (Quality of
Service) issues in IP networks. Instead of the peer-flow
treatment in Resource reSerVation Protocol (RSVP), diffserv
networks provide QoS to each packet in the traffic stream.
The simulator implements both the expedited and the assured
forwarding per-hop forwarding behaviour in Diffserv
network, sharing many features of IETF proposal. By setting
up a network model with variable parameters, simulation can
be carried out to observe the Diffserv behaviours.

QUIPS II has been designed in a modular fashion using a
number of building blocks including network modules,
control modules, and a GUI. These building blocks interact
with each other. The network modules represent physical
network components, including senders, receivers, links and
nodes. The control modules are used to get global parameters,
read the network topology file, set parameters and collect
statistics during simulation. The GUI provides a friendly
interactive environment to users for setting parameters and
monitoring simulation runs.

QUIPS-II decomposed a DS domain into four kinds of
physical (network module) components: senders, receivers,
node and link where each kind of component is implemented
by a corresponding network module. A sender is a data source
that generates a traffic flow which could be one of the three
services classes (Premium, Assured, Best-effort) depending
on the sender’s configuration. When generated, each packet in
the traffic is marked in its DS field by the sender. The
simulator could simulate two types of traffic: CBR and bursty
traffic. A receiver is a destination that consumes the packets
sent by it peer sender and each receiver has only one peer
sender. When a receiver receives a packet, its delay and
others results are measured. A node represents a router in the
physical network, which could be either an edge router or an
interior router (two types of node). This module is the most
important element in the simulator to implement Diffserv.
Link is modelled as a unidirectional link, which is
characterized, by its propagation delay and bandwidth.

The control modules are used for controlling (a monitor, a
stopper, and some related data files) and monitoring the
simulation, which have a monitor, a stopper, and some files (4
types). The monitor is used to collect and display the
performance measurements (average delay, average drop rate

etc.) of interest periodically. The stopper is used to specify the
conditions of stopping a simulation run.

 QUIPS-II provides a user-friendly GUI interface. There are
five tabs in the GUI: Global parameter tab, PHB tab, Network
Topology tab, Result tab and Logs tab. The Global parameter
panel is used to set parameters (maximum packets sent,
packet size etc), the PHB panel is for displaying the current
PHB groups supported by DS domain including the
parameters peak rate/target rate of traffic flow etc. The
network topology panel shows the network components
(sender, receiver, server, nodes and links). The result panel
shows the simulation result updated periodically and finally
Log panel shows the information generated during simulation
run.

 QUIPS-II uses the RIQ algorithm for queue management.
RIQ is a modified version of RED, which is used to detect
upcoming congestion and provides better network utilization.
Normally to each traffic flow is 20% for the Premium, 40%
for the Assured and the remaining 40% for the best effort.
User can change these schemes using this tool. User will be
able to realize the concept of QoS, traffic conditioning,
different traffic flows. There are three types of PHBs in the
Diffser architecture implemented in QUIPS-II which are:
Expedited Forwarding (EF), Assured Forwarding (AF) and
Best-Effort (BE) which are used to built Premium service
(low loss, low latency, low jitter, assured bandwidth0,
Assured service (assured minimum throughput) and Best
effort (no QoS) services in IP network respectively. User can
find this tool useful to see the packet drop and delay
behaviour for different services with different workload.
There are four kinds of files in QUIPS II, which are: PHB
files (a set of TCAS to specify the DS endpoint with
characteristics), network configuration files (configuration of
several topologies with parameters setting), record file
(various simulation result) and log files (record of the
execution logs of simulation runs). These files are useful for
later analysis. QUIPS-II runs in UNIX environment. The tool
is developed using JAVA programming language.
Contributor: Queens University. Supported Operating
system: Unix. Supported elements: RSVP, BE, QoS, AF,
RIQ, DS, CBR, bursty traffic. Developed Languages:
JAVA. Extensibility: Extensible.Outputs: performance
measurements (average delay, average drop rate etc.).

Table 2 and Table 3 show the summary of small and large

scale simulators, and very large scale simulators respectly.

V. NETWORK TOPOLOGY GENERATION TOOLS

There are not too many works which are focused on the
overview of topology generation tools and if they do, it
mostly relates to the algorithms on which tools are based (see
e.g. [51, 52]). It appears that there are the following historical
periods in development of topology generators and their use
for Internet research:
• Before 1999 when there was a strong belief that

Internet is hierarchical [52] (Waxman algorithm, tools
Tiers, Transit-Stub);

ACCEPTED MANUSCRIPT

Table 3: Summary of the very large-scale network simulation tools

Tool Usages Description Simulation
resolutions

Scale of
operation

Stored Data
Format

Platfor
m

Pdns Educational,
Network
research

Extension to the ns simulator. Works in conjunction with
Georgia’s RTIKIT to process events in a correct
timestamp(LBTS) order in the case of distributed simulation.
The topology is modelled using (GT-ITM).

Packet level Hundred
of
thousands

Text file(tcl) Unix

TeD Commercial,
Network
research

Tele-communication networks, TeD (telecommunication
Descriptive Language) is a tool that brings automated
parallelisation of network simulation by transforming its
models into functionally equivalent GTW (Georgia Time-
Warp). C++ classes in ns become entities in TeD but ns packet
class is implemented as an event. On the negative side, it
acknowledges the cost of ‘state-saving’ as the most serious
among Time Warp overheads.

Packet level Tens of
thousand

TED
language
(text)

Sun
Solaris

SSF Commercial,
Network
research

Large-scale networks described in domain modelling language
(DML), SSF is a discrete event modelling API designed for
very large networks and can execute a million or more
concurrent TCP/IP flows. SSFNET models are self-configuring
and configuring data is hierarchical structured. SSF architecture
has just five generic primary classes.

IP packet Few
hundred
thousand

DML(domai
n modelling
language)
configuration
file

Linux,
Sun
Solaris,
, Unix,
Windo
ws

USSF Commercial,
research

To simulate complex model with over 1 million components,
USSF is a framework that runs as an application on an
underlying parallel kernel and utilising its services. The kernels
include the WARPED based on optimistic PDES and NOTIME
(an asynchronous PDES kernel). RTEL was developed to
reduce the static size of the application modules and in turn its
static memory requirements. It is an ideal candidate for
simulating large applications that contain LPs of common
description.

LP (message
passing)

Few
hundred
thousand

TSL
(topology
specification
language)
format(text)

Linux

SWiMNet Commercial Wireless, mobile network. Simulation of MH, BS and BSC
concepts. Call blocking/dropping, channel utilization, quality of
services etc.

Predefined
PCS model

Few
hundred
thousand

Further
investigation
needed

Linux

GUTS Commercial
Research
toward
coarser
gained
network
models

A high level wide area network simulator designed to
enable simulation or internet-scale topologies under a
range of realistic work loads. No network queues are
used in the model and model allocates the bandwidth to
a particular transfer only once and it remains fixed
during the transmission of that transfer-block. The
simulator tries to simulate by using bulk-transfers as
traffic composed in the backbone is of bursty nature.

No network
queues
transfer
level burst
message

Few
hundred
nodes

Need
further
study

Need
further
study

• 1999-2001 after it was discovered [51-53] that the

Internet’s degree distribution is a power law and
most of the work was focused on producing and
simulating such topologies (see e.g. [49-51]);

• Since 2001 [42] when attention was shifted again

from local properties well represented by degree
distributions towards large-scale properties which
naturally are better represented by hierarchical
generators.

Most of these tools found are discussed briefly in this
section.

Waxman [54] is one of the first topology generators
which produces random graphs based on the Erdos-Renyi
random graph model, but it includes network specific
characteristics such as placing the node on a plane and
using a probability function to interconnect two nodes in
the Waxman model that is parameterized by the distance
that separates them in the plan.

Tiers [51, 55] is a multi-tier network topology generator
that implements models trying to imitate the structure of
the Internet. The generated model of Tiers is based on a
three-level hierarchical structure aimed reproducing the
differentiating between WANs, MANs and LANs
comprising the Internet. To generate a random topology

using Tiers, one specifies a target number of LANs and
MANs. Currently Tiers cannot generate more than one
WAN per random topology. For each level of hierarchy,
one also specifies a fixed number of nodes per network. A
minimum spanning tree is computed to connect all edges,
then other edges are created based on user-specified
average inter-level and intra-level redundancy. Edge
formation favors close-by nodes, resulting in topologies
with large diameters. Tiers is written in C++.

Transit-stub (TS) [56] is a package for generating and
analyzing graph models of internetworks. According to the
edge count, the Transit-Stub model produces the connected
sub-graphs by repeatedly generating graph and checking
the graph for connectivity and unconnected graph are
cancelled. This method ensures that the resulting sub-graph
is from all possible random graphs. Several types of
information are related to nodes and edges for the
augmentation of the basic topology (e.g. label (string) of
node for properties of node, an identifiers of each node for
indicating the stub or domain, global identifier for the
belonging domain, a domain-local identifier). Each edge
has a routing policy (shortest path) weight that can be used
to find routes that follow the standard domain-based
routing. TS model does not currently support
representation of host systems. The TS generation software
is written in C language.

ACCEPTED MANUSCRIPT

GT-ITM [57, 58] is a popular topology generator that
produces topologies based on several different models. The
GT-ITM topology generator can be used to create flat
random graphs and two types of hierarchical graphs, the N-
level and transit-stub. The main characteristics of GT-ITM
are that it provides the Transit-Stub (TS) model that
focuses on reproducing the hierarchical structure of the
topology of the Internet. In the TS model, a connected
random graph is first generated. Each node in that graph
represents an entire Transit domain. Each transit domain
node is expanded to form another connected random graph,
representing the backbone topology of the transit domain.
Next, for each node in each transit domain, a number of
random graphs are generated representing stub domains
that are attached to that node. Finally, some extra
connectivity is added, in the form ‘back-door’ links
between pairs of nodes, where a pair of nodes consists of a
node from a transit domain and another from a stub
domain or one node from each of two different stub
domains. GT-ITM also includes five flavours of flat
random graphs.

Inet [59] and PLRG [60] are two generators aimed at
reproducing the connectivity properties of Internet
topologies. These generators initially assign nodes degree
from a power-law distribution and then proceed to
interconnect them using different rules, Inet first
determined whether the resulting typologies will be
connected, forms a spanning tree using nodes if degree
greater than two, attaches nodes with degree one to the
spanning tree and then match the remaining unfulfilled
degrees of all nodes with each other. PLRG works similar
to Inet in that it takes as an argument the numbers of the
nodes to be generated and exponent value of alpha. This
exponent value is the parameter n power law distribution
which is used to assign a prior degree to the nodes of the
topology.

BRITE [58, 61, 62] is a generator based on the AS
power-laws. Furthermore, BRITE also incorporates recent
findings on the origin of power-laws and observations of
skewed network placement and locality in network
connections on the Internet. By studying a number of
existing topology generators, the authors of BRITE claim
that the preferential connectivity and incremental growth
are the primary reasons for power-laws on the Internet. For
completeness, topologies are generated that incorporate
both skewed node placement and locality in network
connections as well as topologies with just incremental
growth and preferential connectivity. To generate a
topology on a plane, the plane is first divided into HSxHS

squares, then the number of nodes in each square is
assigned according to the node placement (NP) which is
either a uniform random distribution or a bounded Pareto
distribution. The bounded Pareto distribution gives a
skewed node placement where a non-negligible number of
squares have a large number of nodes in them. Each square
is further divided into LSxLS smaller squares and the
assigned nodes are then uniformly distributed among the
smaller squares. A backbone node is selected from each of
the top-level squares populated with nodes and a spanning
tree is formed among the backbone nodes. Nodes are then
connected one at a time to nodes that are already connected
to the backbone. A new node can have preferential
connectivity in its choice of neighboring nodes: locality-
based, outdegree-based or both. The locality-based
preferential connectivity uses a Waxman probability
function to connect nodes in the topology. In outdegree-
based preferential connectivity, the probability of a new
node connecting to an existing node is the ratio of the
existing node’s outdegree over the sum of all outdegrees of
nodes in the connected network. Finally, when mixing both
locality based and outdegree-based preferential
connectivity, the probability of connecting to an existing
node under outdegree-based preferential connectivity is
weighted by the Waxman probability between the new
node and the existing node. Each new node introduces new
links.

KOM ScenGen [63] is a topology generator that
supports the manual and automatic creation of
experimentation scenarios for network research from the
topology creation over traffic generation to evaluation. The
scenario includes all parameters needed for the simulation
and experiment, e.g. topology, link and node properties,
traffic mix, parameters, measurement points etc. In
ScenGen, in the first step, a topology is created manually
or automatically. Then the properties of the links and
nodes (e.g. capacity, queuing algorithm) are set manually
or automatically. Also the traffic parameters for the
scenario have to be set. Next the network load which is the
traffic of all nodes is created. This step can be followed by
a plausibility check where several things critical for the
scenario can be checked for plausibility. An example
would be estimating the capacity necessary for the
generated traffic and comparing it with the available
capacity. If much more bandwidth is needed than offered,
the operator might want to change the scenario parameters.
After the plausibility check the scenario is exported to ns-2
for simulation and/or to a collection of scripts and
configuration files that are used to setup the scenario in a

Table 4: Network Topology Generation Tools.

Tools Scale of
topology

OS Generated Topology Implemented
Languages

Type of
Output

Waxman Large Unix Random graph C Text file
Tiers Large Unix Three level-hierarchy model for LAN, MAN, WAN C++ Text file
Transit-Stub Large Unix Random graph C Text file
GT-ITM Very Large Unix Transit-stub model C Text file
Inet Very large Unix Internet, Spanning tree C Text file
PLRG Large Unix Spanning tree C Text File
BRITE Very Large Unix Seven types of model C++, Java Text file
KOM ScenGen Large Windows, Unix Network Scenario (topology and traffic) Java Text File

ACCEPTED MANUSCRIPT

testbed. The next step is to manually adapt the ns-2 files or
the scripts and configuration files for specific needs. After
that the simulation or experiment can be conducted and in
the last step be evaluated. In this tool, there are several
traffic models, sink models, load generators, traffic
generators. There is a converter with ScenGen which can
import the topologies generated by the tools Tiers, BRITE,
GT-ITM, Inet, and NLANR. Currently, there are two
export modules available in ScenGen: one for ns-2 and
other for ScenGen’s own testbed.

Another set of topologies for which special generators
are not required are regular topologies such as the mesh,
star, tree, ring, lattice, etc. These topologies have the
advantages that they are very simple and are generally used
for simplicity or to simulate specific scenarios such as
LANs or other shared communication media.

Table 4 shows the summary of network topology
generation tools.

VI. NETWORK DISCOVERY TOOLS

Currently, networks are monitored, maintained and
diagnosed using discovery tools that rely on network
protocols like Internet Control Message Protocol (ICMP)
and Simple Network Management Protocol (SNMP). These
tools support network discovery and provide the means to
remotely query and control network devices, such as
routers and hosts. These discovery tools have proved to be
effective in determining configuration problems and in
helping the security analysis [64].

The network discovery tools are commonly used for
network management because they may help to discover
the nodes, links, topology, bandwidth, utilisation,
operational state of links, bottlenecks and problems within
cabling or routine information distributed among LANs,
within the domain and in the network backbone, type of
services, deployed services, traffic, infrastructure, etc.
These types of information help the users/planners to map,
control, maintain, monitor, and secure the network.

There are many network discovery tools available. Some
of the leading discovery tools are briefly discussed in this
section.

A Educational Network Discovery Tools

Fremont [65] is a network discovery tool that uses a
combination of non-SNMP protocols and techniques to
discover the network: watching ARP (Address Resolution
protocol) packets; sending ICMP ping and netmask
requests and using traceroute; watching RIP (Routing
Information Protocol) packets between routers; and reading
DNS reverse-lookup information and using similar naming-
conversion heuristics as Scotty to locate multi-homed
machines. The use of so many techniques to discover the
network has the advantage of increasing the accuracy of the
discovery. On the contrary, it relies on non-standard
heuristics, not to mention the amount of work required to
properly implement and coordinate the multitude of the
protocols.

Scotty [66] is built upon a custom Tcl-based API. The
network discovery tool itself is called tkined and .tkined
uses ICMP (ping, traceroute, netmask request) and DNS
heuristic to discover a network. The advantage of this
method is that the protocols are generally well supported.
The disadvantages are that accuracy can suffer, since the
heuristics are based on common practice in use, not on
well-defined standards.

NetMap-there are different discovery tools with the
same name “NetMap”. As described in [67], NetMap is an
attempt to solve the problem of mapping out the
interconnections of networks and machines. For
maintaining network, an up-to-date map is needed of the
network that shows the topology and any hardware
attached. NetMap relies on a comprehensive network
model that is not limited to a specific network level.
NetMap uses only Internet Control Message Protocol
(ICMP) and SNMPv1 for the system information. ICMP
was chosen because NetMap focuses only on IP-layer
detection and the features of ICMP that are virtually
universally supported. NetMap can discover any network to
which it has IP connectivity due to its non-reliance on
protocols such as ARP. The output of the NetMap is in text
format.

When all discovering is completed, Netmap will print out
the network table it has constructed as well as some
statistics, such as the number of machines found, the
number with valid agents and so on. If a machine is found
in the ping phase but does not support SNMP, it will not be
added to the network map. As SNMP does not provide
much the accuracy (about 50%), NetMap is not very much
used in practice. NetMap is implemented in C++ on Solaris
2.5.1 platform. It uses SNMP API library to facilitate
SNMP access.

Another tool also called NetMap is described in [68]
with a comparison with other network discovery tools.

Big Brother [69] is a loosely-coupled distributed set of
tools for monitoring and displaying the current status of an
entire network and notifying network administrator if
something should be done. Big Brother consists of local
clients that test system conditions and the availability of
network services and send these status reports to one or
more display servers where these reports appear as little
dots on a web page, or pager servers that notify
administrators about system problems. The most important
features of this tool are: simple testing of the network
connectivity via ping; discovery of the availability of ftp,
http, smtp, pop3, dns, telnet, imap, nntp, and ssh servers;
local system clients monitor disk space, CPU usage,
messages, and can check that important processes are up
and running; support for multiple DISPLAY and PAGER
servers for high-availability; warning and alarm levels are
all easily redefinable; Web display can be easily modified;
support for custom external tests; Integration with other
systems like MRTG; many custom tests available to test
things like Oracle databases; notify via e-mail, numeric
pager, alphanumeric pager, or custom pager; notify based
on machine name, test type, time of day, test result; delay
notifications until a problem has existed for a

ACCEPTED MANUSCRIPT

predetermined amount of time; require notifications be
acknowledged; disable repeated pages from the web
display; automatic escalation should a problem exist for
longer than a predetermined amount of time.

B Commercial Network Discovery Tools
LANsurveyor [70] makes it easy to map, manage, and

report on entire network. LANsurveyor provides four
essential functions in one cost-effective application:
automatic network maps, asset management reports,
network monitor, and remote administration and
distribution of software. Once network nodes are
discovered, LANsurveyor compiles the information into a
cohesive, easy to view network map with lines representing
network connectivity and each node represented with an
icon. LANsurveyor generates a map of the entire network
automatically using several different methods, including
ICMP (ping), NetBIOS, and SNMP. Maps can be printed
or exported for display or editing in any editor.
LANsurveyor allows administrators to create reports that
include more than 100 different pieces of information.

NetView [71] allows IP discovery, visualization,
automatic update, event notification and so on. NetView
performs TCP/IP discovery and displays network
topologies for administrators. Also, the software manages
events and SNMP traps and performs network monitoring
by identifying network failure root causes and gathering
trending and analytical data. It too seems use SNMP for
gathering its system information. NetView uses a Web-
based interface, so the application’s data is easily
accessible from any Web browser. NetView maintains a
device inventory, easing network administrators’ asset
management tasks. NetView is available for a variety of
platforms, including AIX, Linux, Solaris, and Windows
NT/2000.

Nessus [72] is a completely new security auditing tool
which aims to be an up-to-date and easy to use tool. It is a
network scanner that can check for vulnerabilities by
attempting to exploit them. This makes it more accurate,
but also more heavy-handed, than other scanning tools that
assume well-known port numbers. Nessus supports port
scanning, and attacking, based on IP addresses or host
name(s). It can also search through network DNS
information and attack related hosts at the bequest. Tests
are implemented as plug-ins, which are grouped into
families, for example dealing with distributed denial of

service tools. Individual plug-ins or families can be
installed or not to give good control of what vulnerabilities
are scanned for. Plug-ins are frequently updated to cover
new vulnerabilities. Key features of Nessus are multihost.
testing, multithreading, plugin support, easy-to-write
plugins, easy-to-use reporting system etc. The plug-in
architecture of Nessus allows users to customize it for their
systems and networks. As with any scanner, Nessus is only
as good as the signature database it relies upon.
Fortunately, Nessus is frequently updated. It features full
reporting, host scanning, and real-time vulnerability
searches. It has a client/server architecture, the server
currently runs on Linux, FreeBSD, NetBSD and Solaris,
clients are available for Linux, Windows and there is a Java
client. There could be false positives and false negatives,
even in a tool as powerful and as frequently updated as
Nessus.

Nmap [73] is a popular much more fully-featured host
scanning tool that can be used to determine the topology of
a network. Nmap has been available for many years and is
probably the most often used tool when gathering
information. It features advanced techniques such as TCP-
IP fingerprinting, a method by which the returned TCP-IP
packets are examined and the host OS is deduced based on
various quirks present in all TCP-IP stacks. Nmap also
supports a number of scanning methods from normal TCP
scans (simply trying to open a connection as normal) to
stealth scanning and half-open SYN scans (great for
crashing unstable TCP-IP stacks). Administrators can use
Nmap on a network to find host systems and open ports on
those systems. Nmap is a competent first step in
vulnerability assessment. User can map out all the hosts
within his network and even pass an option that will allow
it to attempt to identify the operating system running on a
particular host. Nmap is a good foundation for establishing
a policy of using secure services and stopping unused
services. Nmap can be run from a shell prompt or using a
graphical frontend. A shell prompt accepts the nmap
command followed by the <hostname> or <IP address> of
the machine user wants to scan. Nmap tests the most
common network communication ports for listening or
waiting services. This knowledge can be helpful to an
administrator who wants to close down unnecessary
services.

Table 5: Network Discovery Tools.

Tool Usages Description Node
Discovery

Topology
Discovery

Node
Management

Output

Fremont Educational Topology discovery tool Yes Yes No Text file
Scotty Educational Network management Tool Yes Yes Yes Text file
NetMap Educational Port scanning, network analysis tool Yes Yes No Text file
Big Brother Educational,

commercial
Network monitoring tool No No Yes Text file

LANsurveyor Commercial Topology discovery, Network mapping. Yes Yes Yes Text file
NetView Commercial Topology discovery tool Yes Yes Yes Text file
Nessus Commercial Vulnerability scanning tool Yes No No No text file
Nmap Commercial Port scanning Yes No No No text file
Open View Commercial Network management tool Yes Yes Yes Database
Intermapper Commercial Port scanning, topology discovery, network analysis

tool
Yes Yes Yes Text file

ACCEPTED MANUSCRIPT

OpenView [74] is a Hewlet-Packard’s package that covers a
wide range of network and system management tasks. The
tool specially covers network discovery. Based on
configuration choices, it uses SNMP to gather information
about network hardware, but how it determines the existence
of the machines in the first place is unclear. HP OpenView is
quite mature and has many partner developers. Thus, it is very
comprehensive package and naturally, it is also quite
expensive. In addition, due to its size, it uses a significant
amount of resources and its operation has impact on the
networks.

InterMapper [75] is a networking monitoring and alerting
software that shows the potential network problems before
end-users and customers suffer downtime or poor
performance. SNMP probes discover and query elements
across the distributed network - whether it spans several
rooms, a building, an office park, or distributed locations.
Synthetic transactions test critical applications and alert use to
email, web, or directory server problems.

Table 5 shows the summary of the network discovery tools.

VII. INTEGRATION OF THE TOOLS

It would be useful, if a model could be analysed using
different tools simultaneously. One tool can be complemented
by other tools for their distinctive features. In this respect,
there is a need for integrating analytical, simulation, topology
discovery and generation tools altogether. In the integrated
environment, the user/planner would have the facility to test
his/her network model in different views and could consider
the outputs from different angles. Understanding the strengths
and weaknesses of a specific model in different design
environments makes it possible to improve the design
process.

If all of the network MS tools are integrated and used
together then the complementary features can be applied in a
network model and justified it [76]. For the proof of this
concept, four tools have been integrated (e.g., Ns-2, Delite,
Glomosim and Brite). As different tools are designed by
different developers, it is natural that they have different
purposes, nature and characteristics as well as
incompatibilities. Delite is a rich tool with its topology design
algorithms. It has analysis capability, such as node reliability,
utilisation etc. There is a limitation of the Delite, which is that
it does not support any model to be designed with more than
100 nodes. The ns-2 is a simulation tool with rich network
features. Most probably, this is the most popular tool now-a-
days. It supports most of the TCP/IP protocol suit. ns-2 uses
nam editor as a companion tool to edit a model as well as to
visualise the dynamic behaviours. User can design a model
manually or write down code (tcl script) to design a network
model. Anyway, ns-2 has no analysis capabilities and
topology design algorithms. Brite is topology generation tool,
which is used to create synthetic topology. It supports eight
types of different topology models. Glomosim is a wireless
simulation tool, which is becoming popular day by day. It has
also rich networking features. One can design a network
model using one tool and transform this model in other format

and then can perform experiment and see its features. For an
instance, one can design topology using Brite tool and
transform it into Ns-2 format, do experiments of different
protocols with the topology, then analyse its reliability,
utilisation transforming into Delite model (format).

VIII. CONCLUSIONS

In this paper, a survey of the research work on network MS
tools with a classification is presented. We have tried to
review all the recent research work very briefly that have
been brought to our attention, identified which are the main
contributions that have been made, and what are the issues
that seem to be open to further research.

Topology of a network or a group of networks (e.g.
Internet) has a strong bearing on many management and
performance issues. Investigation of the topological
characteristics of computer network and its practical uses is
much more accurate when right tools are applied. In this
paper, a review of the research work on network topology
generation and discovery tools is presented.

Network discovery tools are pretty diverse and can do tasks
from purely topology discovery to network mapping, to port
scanning and even vulnerability scanning. Discovering
physical IP network connectivity is not easy task and despite
the critical role of topology information in enhancing the
manageability of modern IP networks, none of the network
management platforms currently available on the market can
offer a general-purpose tool for automatic discovery of
physical IP network connectivity [77].

Our overall conclusion from this survey is that parallel,
very large-scale network simulators are relatively new and
still rapidly evolving field where Internet is trying to map.
Existing research has certainly made significant contribution
in this field. However rapid advances in simulation
technology enable to execute highly interactive and dynamic,
parallel simulations/animations on the network technology.

References:

 [1] Bragg A.W. “Which network Design Tool Is Right for
You?” IT Professional, September/October, 2000, p23-
31.

[2] James, D. McCabe. Network Analysis, Architecture
and Design. Morgan Kaufman Publishers. San
Francisco, Inc. Francisco, Ca, 2003.

[3] Todd R. Andel, Alec Yasinsac. On the Credibility of
Manet Simulations. Computer Magazine, IEEE
Computer Society, July 2006, pp48-54.

[4] Stuart Kurkowski, Tracy Camp, and Michael Colagross.
MANET simulation studies: the incredibles. ACM
SIGMOBILE MCCR Vol. 9, Issue 4, pp. 50-61, Oct.
2005.

[5] Rahman M.A., A. Pakstas and F.Z. Wang. “Network
Modelling and Simulation Tools”, Proc. of the 8th
EPSRC Annual Postgraduate Symposium on the
Convergence of Telecommunications, Networking and

ACCEPTED MANUSCRIPT

Broadcasting (EPSRC PGNet 2007), Liverpool John
Moores University, June 28-29, 2007, Liverpool, UK.

[6] Humayun Akhtar, “An Overview of Some Network
Modeling, Simulation & Performance Analysis Tools.”
Proceedings of the 2nd IEEE Symposium on
Computers and Communications (ISCC '97), 1997
p344-348.

[7] Jukka K. Nurminen. Models and Algorithms for Network
Planning Tools - Practical Experiences. System Analysis
Laboratory Research Reports, Helsinki University of
Technology, May 2003.
(http://lib.hut.fi/Diss/2003/isbn9512265745/article6.pdf)

[8] Cahn R.S. “Wide Area Network Design: Concepts and
Tools for Optimization”. Morgan Kaufman Publishers,
San Francisco, 1989.

[9] Ma H. (Bob). “Network Design Tool. Computer Science
and Engineering”, Washington University in St. Louis,
MO., 1989. (http://www.cs.wustl.edu/~javagrp/ network-
design- tool.html).

[10] Bachmann D.W., M.E. Segal, M.D. Srinivasan, T. J.
Teorey. “NetMod: A Design Tool for Large–Scale
Heterogeneous Campus Network”. Center for
Information Technology Integration (CITI), University of
Michigan. (IEEE J. on Selected Areas in
Communications. January 1991, Vol 9, No 1, 1990, p15-
24)

[11] Deboo K. “XNetMod: A Design Tool for Large-Scale
Networks”. CITI Technical Report TR-93-6. University
of Michigan, 1993.
(http://www.citi.umich.edu/techreports/reports/citi-tr-93-
6.pdf).

[12] Shahbaz M. “Network Design Tool: TND-Tool”.
ComNets Annul Report. Communication Networks,
Aachen University of Technology, Germany, 1996.
(http://www.comnets.rwth-aachen.de/report96/node129.
html).

[13] Post. S.D. “Network Planning with a Performance-
Prediction Tool”. International Journal of Network
Management, Vol 9, Issue 3, 1999, p167-173.

[14] Choi S. “Resource Configuration and Network Design in
extensible Networks”. PhD Thesis. Department of
Computer Science and Engineering, Washington
University, 2003.
(http://www.arl.wustl.edu/~syc1/web/paper/ thesis.pdf)

[15] Ning Weng, Ramaswary Ramaswary, Tilman Wolf.
Considering Processing Cost in Network Simulators.
Proc. of Workshop on Models, Methods and Tools for
Reproducible Network Research (MoMeTools) in
conjunction with ACM SIGCOMM, Karlsruhe, Germany,
25 & 27 August 2003, p47-56.

[16] Vern Paxson, Sally Floyd. Why We Don’t Know How
To Simulate the Internet. Proceedings of the 29th Winter
Simulation Conference, December 1997, p1037-1044.

[17] Bresla L., D. Estrin, K. Fall, S. Floyd, J. Heidemann, A.
Helmy, P. Huang, S. McCanne, K. Varadhan, Ya Xu and
H. Yu. “Advances in Network Simulation”. The VINT
Project. IEEE Computer, N5, 2000, p59-67.

[18] Fall K. and K. Varadhan. 2003. The ns Manual. The
VINT Project, 13 December 2003.
(http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf)

[19] Network Simulators, by Sally Floyd.
(http://www.icir.org/models/simulators.html)

[20] Network Simulation (Wikipedia)
(http://en.wikipedia.org/wiki/Network_simulation)

[21] Pullen J.M. “The Network Workbench: Network
Simulation Software for Academic Investigation of
Internet Concepts”. Computer Networks. Elsevier
Science Ltd, March 2000, Vol 3, Issue 3, 2000, p365-
378.

[22] Barnett III B.L. “An Ethernet Simulator for
Undergraduate Networking”. ACM SIGCSE Bulletin, Vol
25, Issue 1, 1993, p145-150. (Proceedings of the 24th
SIGCSE Technical Symposium on Computer Science
Education. Indianapolis, Indiana, USA.)

[23] Griffin D. “Traffic Engineering for Quality of Services in
the Internet, at Large Scale”. Technical Report, CEC
Deliverable Number: 201/UCL/bl, TEQUILA
Consortium, 2000.

[24] Alaettinoglu C., Dussa-Zieger, I. Matta, A.U. Shankar
and O. Gudmundsson. “Introducing MaRS, a Routing
Testbed”, ACM SIGCOMM, pp 95-96.

[25] Riley G.F. and M.H. Ammar. “Simulation Large
Networks: How Big is Big Enough?”. Proceedings of
1ST International Conference on Grand Challenge for
Modeling and Simulation, San Antonio, TX, 2002, p39-
45.

[26] G. F. Riley. The Georgia Tech Network Simulator. Proc.
of the ACM SIGCMM 2003 Workshops, Germany,
August 2003, p5-12.

[27] Wireless IP Simulator ©Copyright 2005 -OSTG Open
Source. Technology Group.
(http://sourceforge.net/projects/wipsim/, 2005)

[28] Chang X. 1999. “Network Simulations with OPNET”.
Proceedings of the 1999 Winter Simulation Conference,
Vol 1, 1999, p307-314.

[29] OPNET Technologies, Inc. 2004. “OPNET Modeller”.
(http://www.opnet.com/ products/modeler/home.html)

[30] Ahjua S.P. “Comnet III: A Network Simulation
Laboratory Environment For A Course In
Communications Networks”. Frontiers in Education
Conference (IEEE/ASEE conference), Tempe, AZ, 1998.
(http://fie.engrng.pitt.edu/fie98/papers/1205.pdf.)

[31] CACI Products Company. “COMNET III User’s
Manual”. January 1995.

[32] Goble J.G. and R. Mills. COMNET III: Object-Oriented
Network Performance Prediction. Proceedings of the
1994 Winter Simulation Conference, 1994, p443-445.

[33] Keshav S. “REAL 5.0 User Manual”. Cornell
University, Ithaca NY. August 1997.
(http://www.cs.cornell.edu/skeshav/real/user.html)

[34] Cowie J.H., D.M. Nicol and A.T. Ogieliski. “Modeling
the Global Internte”. Computing in Science and
Engineering. Vol 1, Issue 1, 1999, p42-50.

[35] Cowie J.H., D.M. Nicol and A.T. Ogieliski. “Toward
Realistic Million–Node Internet Simulations”.
International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’99),
Las Vegas, Nevada, 1999, p2129-2135.

[36]Bhatt S. and B. R. Fujimoto. “Parallel Simulation
Techniques for Large-Scale Networks”. IEEE
Communication Magazine, 1998, N8, 1998, p42-49.

[37] Perumalla K., R. Fujimoto and A. Ogielski. “TeD - A
Language for Modeling Telecommunication Networks”.
ACM SIGMETRICS Performance Evaluation Review,
Vol 25, Issue 4, 1998, p4–11.

ACCEPTED MANUSCRIPT

[38] Perumalla K.S. and R.M. Fujimoto. “Efficient Large-
scale Process-oriented Parallel Simulations”.
Proceedings of the 30th Winter Simulation Conference,
1998, p459-466.

[39] Wilsey P.A. and D.M. Rao. “Simulation of Ultra-Large
Communication Network”. Proceedings of 7th
International Symposium on Modeling. Analysis and
Simulation of Computer and Telecommunication
Systems, MASCOT’99, 1999, .p112-119.

[40] Wilsey P. A. and D. M. Rao. “An Ultra-Scale Simulation
Framework”. Journal of Parallel and Distributed
Computing, January 2000, Vol 10, No 1, 2000, p18-38.

[41] Luigi Rizza. Dummynet: A Simple Approach to the
Evaluation of Network Protocols. ACM SIGCOMM,
Computer Communication Review. January 1997, Vol 27,
issue 1, p31-41.

[42] Luigi Rizzo. Dummynet Tool. (Site Visited 12.9.2004).
(http://info.iet.unipi.it/ ~luigi/ip_dummynet/).

[43] M. Srivastava, Partho Minshra, Prathima Agrawal, G.
Nguyen. Ethersim: A Simulator for Application–Level
Performance Modeling of Wireless and Mobile ATM
Networks. Computer Networks and ISDN Systems, 1998,
Vol 29, p2067-2090.

[44] David Griffin. Traffic Engineering for Quality of
Services in the Internet, at Large Scale. Technical Report,
CEC Deliverable Number: 201/UCL/bl, TEQUILA
Consortium, May 2000.

[45] Syam Gadde, Jeff Chase, Amin M. Vahdat. Coarse-
Grained Network Simulation for Wide-Area Distributed
Systems. Communication Network and Distributed
Systems Modeling and Simulation Conference
(CNDS2002), 27-31 January 2002.
(http://www.cs.ucsd.edu/~vahdat/papers/ cnds02.pdf)

[46] Unger B. W., P. Gburzynski and C. Williamson. “A
High ATM Traffic and Network Simulator”. Proceeding
of the 1995 Winter Simulation Conference, Ottawa,
Ontario, 1995, p996-1003.

[47] Cavin D., Y. Sasson and A. Schiper. “On the Accuracy
of MANET Simulators”. POMC’02, Toulouse, France,
2002, p38-43.

[48] University of California, Los Angeles. 2001. “GloMoSim
Manual (ver. 1.2)”. 07 February 2001.
(http://pcl.cs.ucla.edu/projects/glomosim/
GloMoSimManual.html)

[47-49] Zeng X., R. Bagrodia and M. Gerla. “GloMoSim: A
Library for Parallel Simulation of Large-scale Wireless
Network”. Proceedings of the 12th workshop on Parallel
and Distributed Simulation, Banff, Alberta, Canada,
1998, p154-161.

 [50] H. T. Mouftah, Zesong Di. QUIPS-II: A Simulation
Tool For The Design And Performance Eveluation Of
Diffserv-Based Network, Computer Communications, 1
July, 2002, Vol 25, Issue 11-12, p1125-1131.

[51] Giuseppe Di Fatta, Giuseppe Lo Presti, Giuseppe Lo Re,
“Computer Network Topologies: Models and Generation
Tools”, Technical Report No. 5/2001, University of
Palermo, Italy, July 2001.

[52] H. Tangmunarunkit, R.Govindan, S.Jamin, S.Shenker,
and W.Willinger, “Network Topology Generators:
Degree-Based vs. Structural”, Proc. of the ACM
SIGCOMM, 2002.

[53] C.Faloutsos, P.Faloutsos, and M.Faloutsos, “On Power-
Law Relationships of the Internet Topology”, Proc. of the
ACM SIGCOMM, 1999.

[54] B. M. Waxman, “Routing of Multipoint Connections”,
IEEE Journal of Selected Areas in Communication, Vol.
6, No. 9, December 1988, p1617–1622.

[55] M. Doar, “A Better Model for Generating Test
Networks”, Proc. of IEEE Global Telecommunications
Conference (GLOBECOM), London, November 1996.

[56] K. Calvert, M. Doar, and E. Zegura, “Modelling Internet
Topology”, IEEE Communications Magazine, June
1997.

 [57] K. Calvert, M. Doar, E. Zegura, “Modeling Internet
Topology”, IEEE Transactions on Communications,
December 1997.

[58] Topology Modeling, by Sally Floyd.
(http://www.icir.org/models/topologies.html)

 [59] Cheng Jin, Qian Chen, Sugih Jamin, “Inet: Internet
Topology Generator”, Technical Report Research Report
CSE-TR-433-00, University of Michigan at Ann Arbor,
2000.

[60] William Aiello, Fan Chung, Linyuan Lu, “A Random
Graph Model for Massive Graphs”, Proc. of the 32nd
Annual Symposium on Theory of Computing, 2000.

[61] A. Medina, A. Lakhina, I. Matta, J. Byers, “Brite:
Universal topology Generator from a User’s Perspective”,
Technical Report, BUCS-TR-2001-003, April 12, 2001,
Boston University. (http://www.cs.bu.edu/brite/
publications/usermanual.pdf)

[62] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and
John Byers, “BRITE: An Approach to Universal
Topology Generation”, Proc. of MASCOTS 2001,
Cincinnati, OH, August 2001.

[63] Oliver Heckmann, Krishna Pandit, Jens Schmitt, Ralf
Steinmetz, ”KOM ScenGen The Swiss Army Knife for
Simulation and Emulation Experiments”, First
International Workshop on Multimedia Interactive
Protocols and Systems (MIPS), Napoli, Italy, 18-21
November 2003, p91-106.

[64] Giovanni Vigna, Fredrik Valeur, Jingyu. Zhou, Richard
A. Kemmerer. Composable Tool For Network Discovery
and Security Analysis. 18th Annual Computer Security
Application Conference, San Diego California, 09–13
December, 2002, p14-24.
(http://www.acsac.org/2002/papers/108.pdf).

[65] Davis C. M. Wood, Sean S. Coleman, Michael F.
Schwartz, “Fremont: A System for Discovering Network
Characteristics and Problems.” Proc. of the USENIX
Winter Conference, San Diego, California. 25-29 January
1993, p335-348.

[66] J. Schonwalder and H. Langendorfer. Tcl Extensions for
Network Management Applications. In Proc. 3rd Tcl/Tk
Workshop, Toronto, Canada, 6-8 July 1995, p279-288.

 [67] Nelson Tang, Binary Sugla, NetMap: A Network
Discovery Tool. Report for Network & Service
Management Research Lab, Bell Laboratories, Lucent
Technologies, 21 September 1998.

(http://www.cs.ucla.edu/~tang/papers/lucent_discovery.pdf)
[68] Giovanni Vigna, Fredrik Valeur, Jingyu. Zhou, Richard

A. Kemmerer, “Composable Tool For Network
Discovery and Security Analysis”. 18th Annual
Computer Security Application Conference, San Diego

ACCEPTED MANUSCRIPT

California, 09–13 December, 2002, p14-24.
(http://www.acsac.org/2002/papers/108.pdf).

[69] Big Brother Professional Edition. Quest Software Inc.,
8001 Irvine Center Drive, Irvine, CA 92618. Big Brother
Homepage. (http://www.bb4.org/, 2006)

[70] LANSurveyor, Neon Software, Inc., 244 Lafayette
Circle, Lafayette, CA 94549. (http://www.neon.com/,
2006)

 [71] IBM Tivoli NetView discovery tool. IBM Tivoli
Netview Software. Tivoli Systems Inc.
(http://www-306.ibm.com/software/tivoli/ products/
netview/, 2006)

[72] Renaud Deraison. Nessus Security Scanner. The
"Nessus" Project. Nessus Org. Nessus Homepage.
(http://nessus.org/, 2006).

[73] Fyodor. Nmap– Security Scanner, INSECURE.ORG.
(http://www.insecure.org/nmap/index.html, 2006).

[74] Hewlett-Packard Company. HP OpenView Software.
(http://www.openview.hp.com, 2006)

[75] Intermapper. Dartware, LLC, 10 Buck Road, PO Box
130, Hanover, NH 03755-0130 USA.
(http://www.intermapper.com/, 2006)

[76] Rahman M.A., A. Pakstas and F.Z. Wang. “An Approach
to Integration of Network Design and Simulation tools”,
Proc. of the 8th International IEEE Conference on
Telecommunications (ConTEL 2005), Zagreb, Croatia,
June 15-17, 2005, p173-180.

[77] Y. Breitbart, M.Garofalakis, B.Jai, C.Martin, R.Rastogi,
A.Silbershatz, “Topology Discovery in Heterogenous IP
Networks: The NetInventory System”, IEEE/ACM
Transactions on Networking, 2004, Vol.12, No 3, p401-
414.

