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ABSTRACT

A novel generic Technoeconomic, Environmental and Risk Analysis (TERA)

computational method was developed for marine power plants that are composed of

existing or at preliminary design stage marine gas turbines. The method is composed

of several numerical models in order to realistically approach the life cycle operation

of a marine gas turbine power plant-according to the operational profile of the

platform marine vessel type-coupled to an integrated full electric propulsion system

and stochastically estimate the power plant’s life cycle net present cost. The

development of the TERA method led to the creation of an integrated computational

marine vessel operation environment which was given the name “Poseidon”.

The performance and exhaust emissions (nitric oxide, carbon monoxide, carbon

dioxide and unburned hydrocarbon) of five 25 Megawatt marine gas turbines of the

same technology level and design-point overhaul interval were simulated and

modelled in “Poseidon”. The exhaust emissions of the modelled gas turbines were

calibrated for two combustor technologies: conventional and dry-low emissions for

both distillate fuel and natural gas used as fuel. The marine gas turbines are: existing

simple cycle, novel twin-mode intercooled cycle, fictional intercooled cycle, fictional

recuperated cycle and partly based on an existing design, intercooled/recuperated

cycle. Three marine vessel types that require the same power plant output power and

configuration but they utilise different operational profiles were also realistically

modelled. The marine vessels are: Destroyer, RoPax fast ferry and LNG carrier. It

was assumed that the Destroyer’s and RoPax fast ferry’s power plants use distillates

fuel and the LNG carrier’s power plant uses compressed natural gas as fuel.

Three case studies defined by each of the marine vessels were performed in order to

investigate the economic feasibility of the advanced cycle gas turbine power plants in

comparison with the power plant composed by existing gas turbines, in a possible

future scenario were all four modelled exhaust emission quantities are accurately

measured and taxed. The investment on dry-low emissions combustor technology was

also investigated as part of each case study. Both technical and economic input

datasets are realistic. Due to time restrains the LNG carrier case study features only

the intercooled/recuperated gas turbine power plant. Obtained results are presented

and discussed separately for each case study.
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Tmax Maximum day temperature

Tsea Sea water temperature

Tp Propeller thrust

TT Gas flow temperature

TBLADE Compressor turbine blade temperature

TET Turbine entry temperature

V Hull speed

VA Speed of advance



xviii

Ve Apparent wind speed
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Vmole Volume occupied by one mole of gas at standard conditions (24.45 L)

VT True wind speed
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d Cross force parameter

g Ratio of specific heats at the turbine section

e Blade cooling effectiveness (2.4.2) or apparent wind angle (2.5.2.7)

hb
Shaft bearing efficiency
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Relative rotational efficiency
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Transmission efficiency
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Thermal efficiency

n Kinematic viscosity

scfd
Blade’s design point centrifugal stress

scfo
Blade’s off-design centrifugal stress

rair
Density of air
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Density of gas turbine blade material

rsea
Density of sea water

f Flow coefficient

y Velocity coefficient at the entry of the turbine

Subscripts
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CMaint Maintenance cost
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NPC Net present cost
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PD0 Estimated percentage difference of cost from the reference prime mover
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components

PDAVLB Prime mover availability percentage per annum

PMC Actual prime mover purchase cost (or capital cost)

PMC0 Cost of the prime mover derived from the percentage difference from
the cost of the reference prime mover

PMC1 Estimated cost of the prime mover due to different technology
components
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1 Introduction

1.1 Background
This research was initialised as part of the Advanced Marine Electric Propulsion

Systems project (AMEPS), which was an academic partnership (sponsored by the

EPSRC) between three universities (Cranfield University, Strathclyde University and

University of Manchester) with the aim to profoundly investigate the integrated full

electric propulsion (IFEP) technology at a before specification stage in order to

provide technology support, technical and economic risk mitigation. The main

objective to achieve the previously mentioned aim, was defined as, the adoption of a

systems engineering approach, in order to develop a fully integrated electro-

mechanical simulation environment and apply advanced electrical system protection,

control schemes and systems integration methods. The main tasks of each of the three

partners are defined below according to the area of their expertise:

 Strathclyde University was responsible for the development of the electric

power systems and network models.

 The University of Manchester was responsible for the development of the

machine and drive models.

 Cranfield University was responsible for the development of the gas

turbine models and investigation on the economic feasibility of the

selected gas turbine cycles as part of an IFEP system.

The responsibilities of Cranfield University in the AMEPS project required the

initiation of two research projects. The main task of the first research project was the

development and creation of the gas turbine models (simulation and modelling

required off-design and transient performance) in order to be integrated with the

simulated electrical power systems, and the main task of the second research project

which was undertaken by the author was to develop a Technoeconomic,

Environmental and Risk Analysis (TERA) method and apply it on the selected marine

gas turbine cycles.
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1.2 Integrated Full Electric Propulsion System (IFEP)
The concept of using electric propulsion in marine vessels dates back to the 1900s,

but it was not until the 1980s that developments in power electronic device

construction allowed their application for power conversion and control, and even

more recently developments in switching device implementation allowed the

technological progression of marine electrical power systems [1]. Figure 1.1 presents

a typical gas turbine mechanical propulsion system of a naval vessel that can be either

a COGOG (combined gas turbine or gas turbine) or a COGAG (combined gas turbine

and gas turbine) using a reduction gear-box (GB) to connect each set of gas turbine

prime movers (low-power for cruise and/or high-power for boost) to each of the

propellers and uses a separate set of diesel generators (DG) and electrical system for

the service load requirements of the marine vessel.

Figure 1.1: Gas turbine mechanical propulsion system [1]

Figure 1.2 presents an IFEP configuration proposed for the same naval vessel [1],

where no reduction gearboxes or clutches are necessary. As it can be seen the number

of diesel generators has decreased to half as also the number of gas turbines. The

IFEP system provides the capability of utilising only one prime mover during cruising

(rotating both propellers) which can also provide the required service load by the

auxiliary electrical systems of the vessel. The diesel secondary prime movers are

operated at very low cruise speeds or in port manoeuvring and during

docking/undocking (where any installed thrusters can be also operated by the

secondary prime movers), cases that the gas turbine main prime mover would stall. It

needs to be stated that the secondary prime movers can also be gas turbines.
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Figure 1.2: Representative sample of an integrated full electric propulsion system [1]

The integration of the propulsion and auxiliary systems except that reduces the

number of prime movers and auxiliary engines; it increases the loading of the

operating prime mover at cruising conditions. An IFEP system does not require the

installation of controllable pitch propeller (CPP) due to the fact that electric motors

have maximum torque from zero rotational speed. The combination of gas turbine

prime movers and an IFEP system provides flexibility on the positioning of the prime

movers, generators and propeller electric drives especially on volume sensitive ships

carrying low density cargo (i.e. ferries, cruise ships). The prime mover(s) can be

installed on the upper decks or top decks (depending primarily on the prime mover

weight/marine vessel displacement ratio) of a marine vessel, the generator(s) can be

located near the stern of the vessel (permitting a greater utilisation of the below the

superstructure volume between for and aft perpendiculars) and the propeller electric

drives can be installed externally on pods that if they are azimuthing a dynamic

positioning system can be installed and the need for rudders can be dismissed.

1.3 Marine Gas Turbine Market Share
The following tables (1.1 and 1.2) present a forecasting analysis on the marine gas

turbine market share from 2004 to 2013 [2]. According to the analysis the leading

marine gas turbine supplier in the high-power sector is General Electric with the

LM2500/LM2500+ having the highest demand and second is Rolls-Royce [2]. The

following tables include the General Electric allied companies on the

LM2500/LM2500+. It needs to be mentioned that all marine gas turbines available in
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the market incorporate a simple thermodynamic cycle. As from 2004 the only

available advanced dry cycle marine gas turbine in the maritime market is the

intercooled/recuperated Rolls-Royce WR21 which belongs to the high power sector.

MARINE GAS TURBINES BY POWER OUTPUT: 2004-2013

Power Output # of Machines Market Share

Up to 3,000 SHP 27 3.5%

3,000 SHP up to 10,000 SHP 205 27.0%

10,000 SHP up to 20,000 SHP 41 5.4%

20,000 SHP & Larger 487 64.1%

TOTAL 760 100.0%

Table 1.1: Gas turbine market share by power output [2]

MARINE GAS TURBINES BY MANUFACTURER: 2004-2013

Manufacturer # of Machines Market Share

General Electric Company (USA) 251 33.0%

Rolls-Royce 216 28.4%

Vericor Power Systems 96 12.6%

UTC Pratt & Whitney Power Systems 55 7.2%

Mitsubishi Heavy Industries 29 3.8%

All Others 113 15.0%

TOTAL 760 100.0%

Table 1.2: Gas turbine market share by manufacturer [2]

1.4 Research Main Objectives, Definitions and
Assumptions

1.4.1 Research main objectives
The main objectives of this research are:

 To initialise the development of a novel generic Technoeconomic,

Environmental and Risk Analysis (TERA) computational method that can be

used to investigate the economic feasibility of marine power plants composed

of gas turbines that their status can range from preliminary design to

production.

 The use of the developed method to perform a series of case studies each

defined by a simulated marine vessel type in order to investigate the
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economic feasibility of four advanced cycle marine power plants-assumed at

preliminary design stage-compared with a marine power plant that is

composed of a broadly used and in production simple cycle marine gas

turbine type, in a futuristic emissions tax scenario, featuring two different

existing combustor technologies: conventional and dry-low emissions. All

simulated marine vessels are assumed that incorporate integrated full electric

propulsion (IFEP) system.

1.4.2 Research main definitions
All gas turbines that are simulated in this research have a design-point power

output of 25 Megawatt and adopt the same technology level in accordance to the

current industry capabilities. The same is assumed for the combustors that are

simulated in this research. The simulated marine gas turbines are:

 Simple cycle

 Twin mode intercooled cycle

 Intercooled cycle

 Recuperated cycle

 Intercooled/recuperated cycle

The simple cycle gas turbine is the reference cycle in this research and is simulated

as a combined version of the performance characteristics of the two offered marine

versions of the General Electric LM2500. The intercooled and the recuperated gas

turbines are fictional designs, the intercooled/recuperated is partly based on basic

characteristics of the newly introduced Rolls-Royce WR21, and the twin mode

intercooled cycle is a novel gas turbine propulsion system proposed in Cranfield

University and its configuration is primarily based on an initial preliminary

performance investigation.

All simulated marine vessels share the same power plant configuration and output

power rating (50MW twin main prime mover), ambient conditions, weather profiles,

hull fouling levels, number of scheduled journey for every installed type of power

plant, scheduled journey duration and the maximum allowable TET is common for all

gas turbine prime movers, irrelevantly of the type of marine vessel. The marine

vessels are:
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 Destroyer

 RoPax fast ferry

 LNG Carrier (Q-max class)

The phase “futuristic emissions tax scenario” is used to describe a tax emissions

policy were exhaust emission quantities can be constantly monitored, recorded and

are charged according to their cumulative emitted mass. The emission quantities that

are taken into consideration in this research are: nitric oxide, carbon monoxide,

carbon dioxide and unburned hydrocarbons. Sulphur oxide and soot are not

considered.

1.4.3 Research main assumptions
The phrase “power plant” indicates both of the main prime movers of the marine

vessel’s propulsion system assuming that they operate only in the open-sea. Port

manoeuvring and docking/undocking procedures are not considered in this research

thus any secondary prime movers needed in a typical IFEP system are neither

simulated nor included.

The operational profile of the simulated marine vessels is assumed to be the same

throughout their operational life. In the case that a marine vessel has a variable

operational profile (i.e. naval marine vessel which can use one prime mover for

cruising and both prime movers for sprinting) the role of the prime movers is not

exchanged at any fashion, thus remains the same during the operational life of the

vessel.

The effects of gas turbine components performance degradation is not considered

in this research.

The effects of intake and exhaust ducting on the performance of the simulated

marine gas turbine prime movers are assumed included within their produced results.

1.5 Thesis Structure
At this point it needs to be stated that any literature background is included within

the chapters of this thesis according to the requirements of each task that compose the
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substantialness of this research. The author has structured the thesis by separating the

fundamental components of this research between “Technical and Environmental”

and “Economic and Risk”. The main body of the thesis is composed by eight chapters

and a brief description of each one is provided below.

Chapter 2 describes the methods and tools used to create the numerical models

that constitute the integrated computational marine vessel operation environment

scheme that forms the technical and environmental part of the TERA method. The

scheme was given the name “Poseidon” from the ancient Greek god of sea.

Chapter 3 describes the methods and tools used to create the economic and risk

numerical model that forms the economic and risk analysis part of the TERA method.

Chapter 4 presents the design-point and off-design performance, the procedure of

exhaust emissions indexes calibration with presentation of the off-design exhaust

emission rates and the procedure of setting the design point hot section rotor blade life

to failure with presentation of the off-design hot section rotor blade temperature, for

each of the five 25MW simulated marine gas turbines that were modelled in

“Poseidon”.

Chapter 5 presents the dataset supplied to “Poseidon” and defines the specification

of each of the three case studies of this research.

Chapter 6 presents the economic and risk dataset supplied to the life cycle costs

model including the scenarios that compose each of the case studies.

Chapter 7 presents the “Poseidon” results for each of the case studies that are

supplied as the technical and environmental dataset to the life cycle costs model.

Additional dataset that is used on the life cycle costs model is essentially presented in

this chapter. The three case studies results are presented and discussed.

Chapter 8 presents the conclusions of this research and the author’s

recommendations for further work.
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2 Implementation of the Technical &
Environmental Part of TERA Method

2.1 Introduction
This chapter describes the methods and the tools that were used to develop and

create the numerical models that constitute the integrated computational marine vessel

operation environment “Poseidon” that forms the technical and environmental part of

the Technoeconomic Environmental and Risk Analysis (TERA) method. “Poseidon”

is implemented in M-code (MATLAB) and is composed of seven models:

 Gas turbine performance

 Gas turbine emissions

 Hot section rotor blade creep life

 Marine vessel power prediction

 Power plant operation management

 Journey management

Each model is described by introducing its task in “Poseidon” and where necessary

the preliminary development procedure is stated. Modelling methodology is then

analyzed, where the model’s mathematical expressions, functions and capabilities are

presented, as also (where necessary, separately) conditions and limitations. The

model’s inputs and outputs are described and any previous work used for the creation

and implementation of the models is overviewed. Finally any standards (i.e. ISA)

taken as reference for the creation or operation of the model are also mentioned.

2.2 Gas Turbine Performance Model

2.2.1 Introduction
The task of the gas turbine performance model is to be able to deliver the

performance parameters of the under investigation gas turbine thermodynamic cycles

at a range of off-design conditions, that a marine gas turbine installed on a vessel may

be required to operate.

For the gas turbine off-design performance simulation the “Turbomatch” scheme

was used (see section 2.2.5), and the first step was to construct the input files of each
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of the investigated gas turbines and obtain their design point performance (appendix

A.1). After establishing the design point performance (section 4.3) for each of the

engines the second step was to obtain the required for the project’s case studies off-

design performance of each of the gas turbines. In the beginning of the project it was

decided that the variables that would determine the gas turbine off-design conditions

would be the turbine entry temperature (TET), ambient temperature (Tamb) and

ambient pressure (Pamb).

Although all three variables were included in the model, as it is mentioned in chapter

4, only the first two were used as variables in the three case studies of the project as

ambient pressure was assumed constant.

2.2.2 Modelling methodology
The method that was chosen to model the off-design operational parameters of each

of the gas turbines under investigation was, after obtaining their off-design

performance parameters with “Turbomatch” then tabulate them separately in two

dimensional look-up tables in a M-file (MATLAB program files), in order to create a

single three dimensional table for each parameter (figure 2.1) and apply linear

interpolation between the reference points in order to obtain the rate of the required

output engine parameter. The interpolation overall is three dimensional and is

implemented by the use of an appropriate MATLAB function. The relationship

between the output engine parameter and the variables that define the off-design state

of the gas turbine is expressed in equation 2-1.

),,( TETPTfp ambambi  Equation 2-1

Where: pi is the output engine parameter and symbol f means “some function of”.

At this point two declarations need to be made. First “Turbomatch” recognises

altitude instead of ambient pressure and second it adjusts ambient temperature in

altitude according to the International Standard Atmosphere (ISA). Therefore in the

“Turbomatch” off-design input file (supplement sample in appendix A.1, table A.1),

ambient temperature was calibrated to ISA sea level standards (section 2.2.6), in

every altitude increasing off-design simulation step, and an interface formula as

expressed in equation 2-2 [1] was added later in the M-file to convert ambient

pressure to altitude.
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TET
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1
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3

Engine Parameter
Tables

0

0

0
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h
gM

RT
P

P

h 


 Equation 2-2

Where: h is the altitude of concern, h0 is the reference altitude, P is the input ambient

pressure, P0 is reference ambient pressure, R is the air’s universal gas constant

and g is the gravitational acceleration, M is the molar mass of air.

Figure 2.1: 3-D tabulation principle of output engine parameters

The principle idea behind the interpolation method chosen is when ambient

conditions are defined, to iterate turbine entry temperature in very small increments

from the lowest value obtained to the matching value that corresponds to the required

power by the marine vessel thus the rest of the output parameters. Each of the two

dimensional interpolation tables represents a 25 K increment in turbine entry

temperature, table rows represent 200 meter increment in altitude, and each table

column represents 10 oC increments in ambient temperature as is shown in tables 2.1

and 2.2). The modelling procedure was followed for each gas turbine separately that

is investigated in the project’s case studies (see chapter 4).

Tamb
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2.2.3 Gas turbine off-design operational range
The standards that were set and implemented (any exceptions are mentioned in

chapter 4, section 4.3) for the engine operational range that the model should cover

are: ambient temperature from -30 to +40 oC, ambient pressure from approximately

96.63 kN/m2 to 103.76 kN/m2 (which is translated in an altitude range approximately

from -200 to +400 meters) and turbine entry temperature from a point that power

turbine shaft power is low enough to provide the ability to investigate any of the

thermodynamic cycles of interest installed on vessels with low service speed

requirements (hence low power requirements) in their mission profiles (e.g.

destroyer), to much beyond the specified design point in order to provide the vessel

with the ability to maintain its service speed in increased hydrodynamic and

aerodynamic resistance conditions.

Table 2.1: Two dimensional sample table representing gas turbine power output (MW) for 1500 K
TET in different ambient conditions

Table 2.2: Two dimensional sample table representing gas turbine power output (MW) for 1525 K
TET in different ambient conditions

2.2.4 Model inputs and outputs
The input parameters for the model were identified to be the engine power (EP)

required by the vessel to maintain its required speed, ambient temperature Tamb and

ambient pressure Pamb, and the output parameters are (at every time interval): fuel

Tamb (oC)/Alt (m) -200 0 200 400

-30 29.12 28.446 27.781 27.102

-20 28.226 27.565 26.918 26.284

-10 27.399 26.756 26.127 25.511

0 26.354 25.738 25.232 24.638

10 25.228 24.634 24.046 23.488

20 24.034 23.472 22.925 22.383

30 22.957 22.42 21.896 21.379

40 21.988 21.472 20.967 20.475

Tamb (oC)/Alt (m) -200 0 200 400

-30 31.155 30.428 29.712 29.011

-20 30.174 29.468 28.776 28.101

-10 29.255 28.569 27.898 27.241

0 28.134 27.475 26.83 26.198

10 26.929 26.3 25.682 25.076

20 25.968 25.359 24.765 24.179

30 24.778 24.199 23.63 23.076

40 23.725 23.171 22.631 22.093
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flow (FF), mass flow (MF), turbine entry temperature (TET), compressor overall

pressure ratio (PR), compressor overall outlet temperature (COT) and high pressure

compressor relative rotational speed (CS) (or just compressor relative rotational speed

in the case of 2-shaft engines).

2.2.5 “Turbomatch” scheme overview
The “Turbomatch” scheme [2] is a FOTRAN programmed software, that has been

developed at Cranfield University by the School of Engineering, Department of

Power and Propulsion, to enable calculations of design-point and off-design

performance of existing and concept gas turbine thermodynamic cycles.

The scheme uses all necessary pre-programmed routines which are named “bricks”

and with the use of interface “codewords” provides the ability to simulate the

operational state of the engine’s different components, and as a result the engine’s

output power or thrust, fuel consumption, mass flow etc. The scheme assumes that the

fuel used for the simulations is kerosene with low calorific value of 43.165 MJ/kg.

It also provides detailed information of the performance of every component, and

also of the gas properties at every engine’s station. The results are presented not only

in “.txt” files but also in a special made “.xls” file which provides great flexibility if

the engine’s (or components) performance parameters are to be tabulated and

interpolated. The scheme is used in the majority of projects at Cranfield University

that require gas turbine performance calculations, either for aero, marine or stationary

gas turbines.

2.2.6 International Standard Atmosphere (ISA)
The International Standard Atmosphere is defined at sea level altitude:

 Ambient temperature Tamb at 15 oC (288.15 K)

 Ambient pressure Pamb at 101.325 kN/m2

 Air’s density at ρair at 1225 g/m3

 Universal gas constant R at 8.31432 J/molK

 Air’s molar mass M at 28.9644 g/mol

 The lapse rate up to 11 km of altitude is -6.5 oC/km
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2.3 Gas Turbine Exhaust Emissions Model

2.3.1 Introduction
The task of the gas turbine exhaust emissions model is to deliver the quantities of

exhaust emissions at the range of off-design conditions that are described in section

2.3.1. For the off-design exhaust emission quantities calculation, the “APPEM”

(Analysis and Prediction of Pollutant Emissions) scheme was used (see section 2.3.4).

2.3.2 Modelling methodology
The required by the “APPEM” scheme engine performance parameters (mass flow,

compressor overall pressure, compressor outlet temperature and fuel flow) were

obtained from the “Turbomatch” gas turbine off-design performance results, and the

method that was used to model the exhaust emissions quantities is identical with the

method described in section 2.2.3 for the gas turbine off-design performance, as the

quantities of exhaust emissions of a certain gas turbine are specific at specified off-

design conditions assuming no components degradation. The model is integrated in

the same M-file with the gas turbine performance model.

2.3.3 Model inputs and outputs
The model requires the same input parameters as the gas turbine performance

model and the output emission quantities that are presented are the output rate (at

every time interval) of nitric oxide (NOx), carbon monoxide (CO), carbon dioxide

(CO2) and unburned hydrocarbons (UHC).

2.3.4 “APPEM” scheme overview
The “APPEM” (Analysis and Prediction of Pollutant Emissions) scheme is a

FORTRAN programmed software has been developed in Cranfield University by the

School of Engineering, Department of Power and Propulsion, for combustor

performance and exhaust emissions calculation (NOx, CO, CO2, UHC). The exhaust

emissions are quantified by the use of efficiency correlations and semi-empirical

model published by A.H. Lefebvre [3]. The scheme simulates a single annular

combustor (SAC), and incorporates a technology factor in order to provide the ability

to calibrate the quantities of exhaust emissions to standards that apply to different

technology combustors. It has been used in numerous projects in Cranfield University

that require combustor performance simulation or exhaust emission analysis, in aero,

marine or stationary gas turbines.
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2.4 Hot Section Rotor Blade Creep Life Model

2.4.1 Introduction
The task of the gas turbine hot section rotor blade creep life model is to predict the

rotor’s blade life consumption of the hot section (high pressure turbine or just turbine

in the case of 2-shaft gas turbines), at the range of off-design conditions that are

described in section 2.2.3. The model is able to quantify the blade’s creep life

consumption in every change of the off-design conditions during a scheduled journey

that the gas turbine is requested to operate. The model is integrated with the gas

turbine performance model, and obtains the required input parameters from it.

2.4.2 Modelling methodology
The method that was used is to calculate the blade’s creep life fraction tf at a

specific gas turbine off-design condition is based on the Larson-Miller criterion [4],

which is defined in equation 2-3. The Larson-Miller diagram was implemented in an

M-file and is interpolated linearly.

Equation 2-3

Where: tf is the blade’s time to failure, LMP is the Larson-Miller parameter and Tb is
the blade temperature.

The blade is assumed that it experiences only centrifugal stress (no bending stress

from gas momentum and pressure on the air foil), it has a rectangular shape and one

blade represents the creep life of all the blades of the turbine stage. The centrifugal

stress σcfd on the blade at turbine design point is defined as [4]:

Equation 2-4

Where: ρb is the blade’s material density, Ks is the shroud parameter, hb is the height

of blade, N is the design point turbine’s shaft rotational speed and rmb is the

distance from mid-shaft to mid-blade.

To calculate the centrifugal stress σcfo on the blade any turbine off-design point,

equation 2-5 is used [4].

Equation 2-5

Where: Nod is the off-design turbine’s shaft rotational speed.

20
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LMP
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To calculate the temperature of an air cooled blade, equation 2-6 [4] was

implemented assuming that overall blade cooling effectiveness remains constant at all

gas turbine off-design conditions, the gas temperature is the same as the turbine entry

temperature and the compressor derived blade cooling air temperature is the same as

the compressor outlet temperature.

Equation 2-6

Where: Tg is the gas temperature, Tc is the blade cooling air temperature and ε is the

blade cooling effectiveness.

2.4.3 Model inputs and outputs
The direct inputs that the model requires by the user before any scheduled mission

are the blade’s design parameters: the shroud parameter Ks, the height of blade hb, the

design point rotational speed of the turbine’s shaft N, the distance from mid-shaft to

mid-blade rmb and the blade’s material density ρb. The variable parameters that define

the blade’s life fraction tf (blade cooling air temperature Tc, turbine shaft off-design

rotational speed Nod and gas temperature Tg) are obtained from the gas turbine

performance model (section 2.2.4). The output parameters are (at every time interval):

the blade’s time to failure tf, and the turbine blade temperature Tb.

2.5 Marine Vessel Power Prediction Model

2.5.1 Introduction
The task of the marine vessel power prediction model is to simulate the

hydrodynamic and aerodynamic resistance of a marine vessel and calculate the brake

power that needs to be applied by the vessel’s power plant in order the vessel to

maintain a certain speed, under various weather conditions. The effect of shallow

water in the hydrodynamic resistance of the hull as also propeller cavitation

phenomenon and propeller were not taken into consideration. The model is composed

by the following modules:

 Hull resistance prediction

 Propulsion factors prediction

 Propeller open water characteristics

 Hull fouling resistance

 Sea-wave resistance

 Wind resistance

)( cggb TTTT  



17

2.5.2 Modelling Methodology

2.5.2.1 Hull resistance module

A statistical method [5] was used to simulate the hull resistance of a marine vessel

under trial conditions, in preliminary design stage. The method which is based in

statistical and semi-statistical correlations is widely utilized in the Marine Engineering

field and is included within several marine vessel power prediction software packages

available in the market. The method can be applied to displacement and semi-

displacement hulls. All equations are referred to the adopted method unless otherwise

is stated within the content of this section. To calculate the form factor of bare hull k1

equation 2-7 is proposed.

6042.03649.031216.0

4611.00681.1
1

)1()/()/(

)/()/(4871.093.01




pR CLLL

LTLBck
Equation 2-7

Where: L is the length at water line, B is the breadth at water line, T is the mean draft

at water line, is the volume displacement as can approximately estimated in

equation 2-8 [6], Cp is the hull’s prismatic coefficient, the coefficient c that

accounts for the specific shape of the afterbody is given by equation 2-9.

LBTCB Equation 2-8

Where: CB is the hull’s block coefficient.

sterncc 011.01 Equation 2-9

Where: cstern is the coefficient that defines the form of the afterbody and recommended

values are presented in table 2.3.

Table 2.3: Relationship between the csterm value and afterbody form

LR is the length of the run, which if unknown can be estimated from equation 2-10.

LClcbCCL pppR ))14/(06.01(  Equation 2-10

Where: lcb is the longitudinal centre of buoyancy forward (+) of, abaft (-) midship as

a percentage of L.

cstern Afterbody form

-25 Pram with gondola

-10 V-shaped sections

0 Normal section shape

10 U-shaped sections
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The wetted surface SH of the bare hull can be estimated from the statistically

derived equation 2-11.

BBTWP

MBMH

CACTB

CCCBTLS

/38.23696.0/003467.0

2862.04425.04530.0()2( 5.0




Equation 2-11

Where: ABT is the transverse area of the bulb where the still water intersects the bulb’s

stem, CWP is the hull’s water plane coefficient and CM is the hull’s midship

section coefficient.

It needs to be indicated that all form coefficients are based on the length of the

waterline L. The resistance of the appendages is also presented in the form of an

effective form factor k, including the effect of the appendages, as defined in equation

2-12.

tot

app

S

S
kkkk )]1(1[11 121  Equation 2-12

Where: (1+k2) is the effective form factor of appendages, Sapp is the total wetted

surface of appendages, Stot is the total wetted surface of bare hull and

appendages. Table 2.4 presents the effective form factor values k2 for

different appendages.

Table 2.4 Effective form factor values for different appendages (in brackets is the implemented value)

Type of Appendage Value of 1+k2

Rudder of single screw vessel 1.3 to 1.5 (1.4)

Spade-type rudders of twin screw vessel 2.8

Skeg-type rudders of twin screw vessel 1.5 to 2.0 (1.75)

Shaft Brackets 3.0

Bossings 2.0

Bilge keels 1.4

Stabiliser fins 2.8

Shafts 2.0

Sonar dome 2.7

The effective form factor is used to calculate the viscous resistance of the hull as

defined in equation 2-13.

totFsv SkCVR )1(
2

1 2   Equation 2-13

Where: ρs is the density of sea water (table F.1, appendix F shows ρs variation with

sea water temperature Tsea [7]), V is the speed of the vessel and CF is the
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frictional resistance according to the ITTC-1957 (International Towing Tank

Conference) friction line [7] as defined in equation 2-14.

2
10 )2(log

075.0




Rn
CF Equation 2-14

Where: Rn is the Reynolds number which is define in equation 2-15.



VL
Rn  Equation 2-15

Where: ν is the kinematic viscosity of sea water (table F.1, appendix F shows ν

variation with sea water temperature [7]).

The effective form factor when more than one appendage is to be accounted is

expressed in equation 2-16.


 


i

ii

effective
S

kS
k

)1(
)1(

2

2 Equation 2-16

Where: Si and (1+k2) are the wetted area and appendage factor of each appendage that

is included, respectively.

To calculate the wave resistance of the hull the equation 2-17 is proposed.

Equation 2-17

Where: Δ is the hull’s weight displacement as defined in equation 2-17, C1, C2, C3,

m1, m2, λ and d (suggested value is -0.9) are coefficients that depend on the

hull form, Fn is the froude number and is defined in equation 2-18 [7].

 gs Equation 2-17

Equation 2-18

If Fn≤0.4 the following coefficients are suggested:

3757.10796.17861.3
41 )90()/(2223105  EiBTCC Equation 2-19

Where: C4 is defined in equations 2-20 to 2-22 and iE which is the half angle of

entrance of the load waterline is defined in equation 2-23.

If B/L≤0.11 then 3333.0
4 )/(2296.0 LBC  Equation 2-20

If 0.11< B/L≤0.25 then LBC /4  Equation 2-21

If B/L > 0.25 then BLC /0625.05.04  Equation 2-22

)cos(
321

2
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Equation 2-23

Where: Ta is the molded draft at the aft perpendicular and Tf is the molded draft at the

for perpendicular. The coefficient m1 is defined in equation 2-24.

5
3

1

1 /7932.4/7525.1/01404.0 CLBLTLm  Equation 2-24

Where: C5 is defined in equations 2-25 and 2-26.

If Cp ≤0.8 then
3

2
5

9844.6

8673.130798.8

p

pp

C

CCC




Equation 2-25

If Cp > 0.8 then pCC 7067.07301.15  Equation 2-26

The coefficient m2 is defined in equation 2-27.

29.3034.0.
62 4.0

 FneCm Equation 2-27

Where: C6 is defined in equations 2-28 to 2-30.

If L3/ ≤512 then 69385.16 C Equation 2-28

If 512 <L3/ ≤1727 then
36.2

)0.8/(
69385.1

3
1

6




L
C Equation 2-29

If L3/> 1727 then 0.06 C Equation 2-30

The coefficient λ is defined in equations 2-31 and 2-32.

If L/B ≤12 then BLC p /03.0446.1  Equation 2-31

If L/B >12 then 36.0446.1  pC Equation 2-32

According to a published technical report [8], the coefficient λ can be used to

determine if the parameters of the hull under consideration are within the limits of the

proposed method and should never exceed values above the line as it is presented in

figure 2.2.

Figure 2.2: λ should always correspond to values below the line for a specified froude number
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Coefficient C2 corresponds to the effect of the bulbous bulb on the wave resistance

created by the hull. If a vessel is designed without a bulb C2 = 1. C2 can be calculated

using equation 2-33.

)(89.1
2

irBT

rA

B

BBT

eC  Equation 2-33

Where: rB is the effective submergence of the bulb defined 2-34.

5.056.0 BTB Ar  Equation 2-34

Where: i expresses the effective submergence of the bulb as defined in 2-35.

BBf rhTi 4464.0 Equation 2-35

Where: hB is the height of the centroid of the area ABT above the base line.

The coefficient C3 expresses the influence of a transom stern on the wave resistance

and is defined in equation 2-36.

)/(8.013 MT BTCAC  Equation 2-36

Where: AT is the immersed area of the transom stern at zero speed.

For the high speed range (Fn>0.55) the following coefficients is suggested to

calculate C1 and m1.

4069.10098.233346.1
1 )2/()/(3.6919   BLLCC M Equation 2-37

6054.03269.0
1 )/()/(2035.7 BTLBm  Equation 2-38

For the intermediate speed (0.4 < Fn ≤0.55) an interpolation formula is suggested:

]5.1/)}4.0(

)55.0){(410()4.0([





FnRw

FnFnFnRwRw
Equation 2-39

The method suggests a correlation allowance coefficient CA, which corrects the

results to ideal trial conditions (still air resistance and hull roughness) as it is

expressed in equations 2-40 and 2-41.

If Tf/L ≥ 0.04 then 00205.0)100(006.0 16.0  LCA Equation 2-40

If Tf/ L< 0.04 then
)/04.0()5.7/(003.0

00205.0)100(006.0

2
45.0

16.0

LTCCL

LC

fB

A



 

Equation 2-41

If the vessel’s hull has bow thruster(s) installed the additional effect on the hull’s

resistance is calculated from the suggested equation 2-42 [9].
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BTOBTOsbt CdR
2

 Equation 2-42

Where: dBTO is the diameter of the tunnel, and CBTO ranges from 0.003 to 0.012 with

lowest value to be applied when bow thruster is installed in the bulbous bow.

The total resistance of the hull can be calculated with equation 2-43.

btBTOAFtotsT RnRwCkCSVR  ])1([
2

1 2 Equation 2-43

Where: nBTO is the number of bow thrusters.

2.5.2.2 Prediction of propulsion factors module

The following method [5] is used for the estimation of the effective wake fraction,

the thrust deduction factor and the relative-rotational efficiency of the propulsion

system installed on a marine vessel. The method covers single-propeller arrangement

with a conventional stern, single propeller with an open stern and twin-propeller. All

equations are referred to the method. For a single-screw vessel with a conventional

stern arrangement equation 2-44 is suggested to calculate the hull’s wake fraction.
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Equation 2-44

Where: the coefficients c9, c20, c11, c19 and CP1 are defined below.

The coefficient c9 depends on the coefficient c8 which can be calculated by using

equations 2-45 and 2-46.

If B/TA ≤ 5 then )/(8 ALDTBSc  Equation 2-45

If B/TA > 5 then ))3/(/()25/7(8  aa TBLDTBSc Equation 2-46

Where: D is the diameter of the propeller.

Equations 2-47 and 2-48 define the calculation of c9 coefficient.

If c8 ≤ 28 then 89 cc  Equation 2-47

If c8 > 28 then )24/(1632 89  cc Equation 2-48

Coefficient c11 is defined in equations 2-49 and 2-50.
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If Ta/D ≤2 then
D

T
c a11 Equation 2-49

If Ta/D >2 then 33333.1)(083333.0 3
11 

D
T

c a Equation 2-50

Coefficient c19 is defined in equations 2-51 and 2-52.

If CP ≤ 0.7 then
)95.0/(11056.0

)95.0/(12997.019

P

B

C

Cc




Equation 2-51

If CP > 0.7 then
P

M

C

Cc

38648.071276.0

)3571.1/(18567.019




Equation 2-52

Coefficient c20 is defined in equations 2-53.

sterncc 015.0120  Equation 2-53

The coefficient CP1 can be found by using equation 2-54:

lcbCC PP 0225.0315.045.11  Equation 2-54

The following equation expresses the thrust deduction factor t of single-screw vessels

with conventional stern.

sternP clcbC

DBTLBt

0015.0)0225.01(

/)/()/(25014.0
01762.0

2624.028956.0




Equation 2-55

The relative-rotational efficiency can be found by using the following formula:

)0225.0(07424.0/05908.09922.0 lcbCAA PoER  Equation 2-56

Where: AE/AO is the propeller’s blade area ratio.

For single-propeller vessels with open sterns the following equations can be used

though because of the small number of models that have been tested; it can be

possible to produce approximate results for the wake fraction, the thrust deduction

factor and the relative rotational efficiency as presented in equations 2-57, 2-58 and 2-

59 respectively.

1.0])1([103.0  BAFB CCkCCw Equation 2-57

t = 0.10 Equation 2-58

ηR = 0.98 Equation 2-59

For twin-propeller vessels equations 2-60, 2-61 and 2-62 are suggested to calculate

the wake fraction, the thrust deduction factor and relative rotational efficiency.

BTDCCkCCw BAFB /23.0])1([103095.0  Equation 2-60
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BTDCt B /1885.0325.0  Equation 2-61

)/(06325.0

)0225.0(111.09737.0

DP

lcbCPR




Equation 2-62

Where: P/D is propeller’s pitch to diameter ratio.

2.5.2.3 Interaction between hull and propeller module

The interaction between the hull and propeller can be calculated by the following

universally adopted method [10]. All equations are referred to the method. The hull

without a propeller installed has a total resistance RT at a speed V and is defined as the

effective power PE in equation 2-63.

VRP TE  Equation 2-63

The open water test of a propeller without a hull in front of it will produce a thrust

T at a speed VA, with an open water propeller efficiency ηOWE and this can be

expressed as the thrust power PT in equation 2-64.

AT TVP  Equation 2-64

Where: VA is the speed of advance as defined in equation 2-65 and thrust T is defined

in equation 2-66.

)1( wVVA  Equation 2-65

)1/( tRT T  Equation 2-66

The effective power PE is correlated to thrust power PT according to equation 2-67.

T

E
P

tw
P

)1/()1( 
 Equation 2-67

The hull efficiency ηH is defined according to equation 2-68.

TEH PPtw /)1/()1(  Equation 2-68

The power delivered to the propeller PD is defined in equation 2-69.

)/( ROWEHED PP  Equation 2-69

The shaft power Ps is defined in equation 2-70.

bsDS PP / Equation 2-70

Where: ηs is the sterntube seal efficiency and ηb the shaft bearing efficiency.

The shaft power Ps is related to the required brake power PB from the vessel’s

power plant by the transmission efficiency ηt of the reduction gear or electrical
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alternator and motor (assuming constant in off-design conditions) as defined in

equation 2-71.

tsB PP / Equation 2-71

The relationship between effective power PE and the break power PB required by the

power plant is defined in equation 2-72.

)/( tbsROWEHEB PP  Equation 2-72

2.5.2.4 Propeller open water characteristics module

The propeller module contains a proposed method [11] that contains the open water

characteristics of the Wageningen B-series propellers. The effects of propeller

cavitation and partial submergence have not been taken into account. The module

produces the open water efficiency ηOWE of fixed pitch (FPP) Wageningen B-series

propellers at off-design conditions. All equations are referred to the adopted method

unless otherwise is stated within the content of this section. The method allows only

first quadrant operation of the propeller (positive thrust and speed of advance), and for

Reynolds number other than 2x106 results need to be corrected (see equations 2-77

and 2-78).

The propeller’s thrust and torque coefficients, KT and KQ respectively are

expressed in polynomials (appendix F.2, table F.2) as functions of the advance ratio J,

the propeller pitch to diameter ratio P/D, the propeller blade area ratio AE/AO, the

blade number Z, the effect of Reynolds number and the thickness to chord length ratio

t/c of the propeller’s blades, as expressed in equations 2-73 and 2-74.

)/,,,/,/,(1 ctRnZAADPJfK OET  Equation 2-73

)/,,,/,/,(2 ctRnZAADPJfK OEQ  Equation 2-74

To calculate the thrust and torque coefficients of the propeller the following

relationships are proposed as expressed in equations 2-75 and 2-76.

])()/()/()([
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t

vuts

s

vutsTT ZAADPJCK  Equation 2-75

])()/()/()([
...

,,,

vu
OE

t

vuts

s

vutsQQ ZAADPJCK  Equation 2-76

For Reynolds number other than 2x106 the thrust and torque coefficients are

corrected according to the following proposed method [9].
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2

75.03.0
D

ZPc
CKK DTcorT  Equation 2-77

2

75.025.0
D

ZPc
CKK DQcorQ  Equation 2-78

Where: ΔCD is the difference in drag coefficient of the propeller’s profile section as

defined in equation 2-79 [9], P is the propeller’s pitch and c0.75 is the

propeller’s blades chord length at 75% radius as defined in 2-80 [9].

]))/log(62.1

89.1(003605.0)[)/((42(
5.2

75.0

75.0





p

D

kc

ctC
Equation 2-79

ZDAAc OE /)/(073.275.0  Equation 2-80

Where: (t/c)0.75 is the thickness to chord length ratio at 75% of propeller’s blade ratio

as defined in equation 2-81 and kp is the propeller’s blade surface roughness

(recommended value for new propellers is 3x10-5 m).

75.075.0 /)00125.00185.0()/( cDZct  Equation 2-81

To obtain the Reynolds number for the Wageningen B-series propellers at a specific

operating condition equation 2-82 is suggested, and the number is calculated at 75%

of the propeller radius.

v

DNVc
Rn

SA
22

75.0 )(
 Equation 2-82

Where: NS is the propeller’s shaft rotational speed.

In order to be able to obtain the open water efficiency at any required off-design

conditions a method [12] was applied, that uses the advance ratio as an iteration

variable in the M-file. The advance ratio is programmed to iterate from 0 to 2 in

increments of 0.0001 and by using equation 2-83 and 2-84 the propeller’s shaft

rotational speed N and the thrust produced by the propeller TP, can be found.

JD

V
N A

S  Equation 2-83

24
SscorTP NDKT  Equation 2-84

The iteration is programmed to stop when the thrust produced by the propeller

matches the thrust required by the vessel to maintain its specified service speed, as

defined in equation 2-85.
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prop

P
N

T
T  Equation 2-85

Where: Nprop is the number of propellers installed on the vessel.

To obtain the propeller’s open water efficiency equation 2-86 is applied, and the

relationship between KQ, KT, J and ηOWE can be seen in figure 2.3.
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Equation 2-86

Figure 2.3: Typical propeller diagram that shows the relationship between KQ, KT, J and ηOWE

The method can be used when the following propeller design parameters satisfy the

conditions specified as:

 The number of propeller blades N can be between 2 and 7.

 The propeller’s pitch to diameter ratio P/D can be between 0.5 and 1.4.

 The propeller’s blade area ratio AE/AO can be between 0.3 and 1.05.

 Maximum marine vessel speed can be between 30 to 35 knots.

2.5.2.5 Hull fouling resistance module

A simplified method was adopted to calculate the increment of the vessel’s

resistance due to hull fouling or more practically hull roughness. The method was

proposed by the ITTC [13], and the recommended guideline is to be used for hull

roughness from 150 μm and higher. The method was tested by simulating a

Destroyer, a RoPax ferry and a LNG carrier with a hull roughness value as low as 120

μm. The results (Appendix B.2 figures B.16, B.17 and B.18 respectively) showed that
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the average difference in hull resistance increment (assuming the same increase in

roughness for the bottom and the sides of the hull) when hull roughness increases

from 120 μm to 150 μm is approximately 2% and when hull roughness increases from

150 μm to 180 μm is approximately 2.2%. The reason for testing the vessels with a

hull roughness value lower than the recommended one is that average hull roughness

for modern vessels has decreased and lies in the order of 90~125 μm [14]. The

method is defined in a simple formula as presented in equation 2-87 and is

incorporated in the vessel’s total hull resistance (equation 2-43) as shown in equation

2-88.
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Where: kh is the mean amplitude of the hull roughness.

2.5.2.6 Sea-wave resistance module

A simplified method [15] was introduced in the marine vessel power prediction

model to predict the effect of sea-waves on the vessel’s total resistance in open water,

at a certain speed. Any effects on the vessel’s resistance by motion responses

(surging, swaying, heaving, pitching, rolling, yawing) due to sea-waves are not

included at this stage in the current marine vessel power prediction model, and their

direction when generated is assumed constant in a head direction towards the vessel’s

bow. The method is defined in equation 2-89, and the effect of sea waves in the total

resistance (from equation 2-88) of the vessel is defined in equation 2-90.
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Where: fW is the sea-wave frequency and hW is the significant height of the wave.

The module is supplied with data that provides the sea-wave frequency fW and the

significant height of the wave hW according to sea-state number [16]. The data is

presented in table 2.5.
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Table 2.5: Sea-state number and corresponding significant wave height and sea-wave frequency [16]

Sea State
Number

Significant wave
height, hw (m)

Sea-wave frequency,
fW (Hz)

0-1 0.05 0.0

2 0.3 0.158

3 0.88 0.133

4 1.88 0.114

5 3.25 0.103

6 5.0 0.080

7 9.0 0.067

8 13.0 0.061

The adopted method does not intended at its current development stage of the

model to accurately simulate the effects of sea-state on the hydrodynamic resistance

of any simulated marine vessel as this would require a significant amount of time and

effort beyond the scope of this research. By the use of the current method results of

realistic magnitude can be obtained and the effects of different sea-state numbers on

the hydrodynamic resistance of any simulated marine vessel can clearly be observed.

2.5.2.7 Wind resistance module

The task of the wind resistance module is to calculate the effect of the wind on the

total resistance of the vessel in open water, at a certain speed. The method [17] that

was implemented in “Poseidon” can be applied to a wide range of vessel types and

provides the ability to take in account wind with direction other than head towards the

vessel’s bow, though the latter was not used in the case studies of the project. At the

current development stage wind direction is assumed constant during the whole

duration of a scheduled journey. The method is defined in equations 2-91 and 2-92

and the wind is assumed that affects the total resistance of the vessel from 10 meter

above the water line.
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Where: ρair is density of the air, Ve is the apparent wind speed, AL is the lateral

projected area of the vessel, AF is the frontal projected area of the vessel, CDi

is the non-dimensional drag in head wind, CDt is the non-dimensional drag in
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beam wind, ε is the apparent wind angle (0o in head wind), δ is the cross-force

parameter and CDiAF is the longitudinal drag with respect to AF.

The values for CDt, CDiAF and δ for different vessel types are given in figure 2.4 [17]

and were not implemented in the code but they have to be inserted manually.

Figure 2.4: Values for CDt, CDiAF and δ for different vessel types [17]

To calculate the apparent wind speed Vε and angle simple trigonometry was applied

and was implemented in the model as described in figure 2.5 and defined in equations

2-93 and 2-94.
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Where: VT is the true wind speed, V is the vessel’s speed, β is the angle between the

vessel’s head direction and the true wind.
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Figure 2.5: Vector components created by the travelling vessel and wind

The total resistance (from equation 2-90) of the vessel is affected by the effect of

wind as defined in equation 2-95.
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The module is supplied with data that provides the true wind speed according to

sea-state number [16]. The data is presented in table 2.6.

Table 2.6: Sea-state number and corresponding true wind speed [16]

Sea State
Number

True wind speed,
Vwind (m/s)

0-1 3.0

2 7.0

3 13.0

4 18.0

5 24.0

6 36.0

7 50.0

8 60.0
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2.5.3 Model inputs and outputs
The model inputs are shown with and asterisk (*) in tables A.1 and A.2 in appendix

A, in an exact manner as in the input file of the model. The sea-water density ρsea and

sea-state number Wsea are handled by the journey management model (section

3.7.1.2). The outputs of the model are (at every time interval): the shaft rotational

speed NS, the vessel’s speed V, the effective power PE delivered by each propeller, the

delivered power PD to each propeller and the brake power PB required by the vessel’s

power plant.

2.5.4 Ideal marine vessel trial conditions
The ideal marine vessel trial conditions are defined as [9]:

 No wind, current, waves or swell

 Deep water at 15 oC ( ρs=1025 g/m3).

 Clean hull and propeller with a surface in accordance with modern standards

2.6 Power Plant Operation Management Model

2.6.1 Introduction
The task of the power plant operation management model is to integrate the gas

turbine models with the marine vessel power prediction model. It distributes the

required brake power PB by the marine vessel to the prime movers (if more than one)

of the vessel’s power plant, in accordance with its service speed V and weather

conditions, handles the required service load Paux from the vessel’s power plant,

defines the maximum turbine entry temperature (TET) that the prime movers are

allowed to operate at, where extra power output is needed (i.e. adverse weather

conditions, higher service speed, increased hull fouling) and in cases that increased

resistance conditions are high enough to prohibit the vessel to obtain its specified

service speed, it tests the maximum power output of the power plant at the specified

ambient conditions and estimate the maximum speed that the vessel can travel up to.

It is composed of two modules:

 Power distribution module

 Power availability module
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2.6.2 Modelling methodology

2.6.2.1 Power distribution module

In the case that the marine vessel’s power plant is constituted by more than one

prime mover the distribution of brake power PB and service load Paux required by the

vessel under specified service conditions can be arranged according to the principal of

IFEP system, to operate the lowest possible number of the installed prime movers Neng

where operational conditions allow. There are no limitations in the number of prime

movers that the module can handle. When more than a single prime mover operates

the required brake power is assumed that is distributed evenly as also the required

service load as expressed in equation 2-96. The service load is assumed constant

during the whole duration of the journey.

eng

auxB

N

PP
EP


 Equation 2-96

In the case that a vessel has a variable service speed profile (i.e. destroyer with 2

prime movers installed) and travels at a low speed requiring, at favourable weather

conditions, only one prime mover to operate, if weather conditions become adverse

then the module can accept the number of sea-state at which the second prime mover

(boost) needs to be engaged and assume the vessel’s sea-worthiness.

2.6.2.2 Power availability module

The power availability module uses the gas turbine performance module at every

time interval, after the marine vessel power prediction model has calculated the

required brake power PB, to determine the maximum engine power EP available at the

specified ambient conditions that the marine gas turbine under investigation can

produce, and according to the arranged power distribution, ambient and weather

conditions and hull fouling state, estimate the ability of the power to maintain the

vessel’s scheduled speed.

The maximum turbine entry temperature (TET) can be defined that the prime movers

are allowed to operate up to. If the maximum available output power produced by the

power plants is lower than the demand by the sum of the hydrodynamic and

aerodynamic resistance of the vessel then the module calculates the maximum

possible speed that the vessel can obtain. This is accomplished by iterating using the

marine vessel power prediction model from zero speed (which can require a

significant amount of power to maintain under adverse weather conditions) up to the
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point where the vessel’s speed matches approximately the maximum output power by

the power plant.

The condition “approximately” is used in the previous phrase because the speed

iteration step is programmed at 0.1 knots as a smaller iteration step would require a

significant additional amount of computational time and in marine vessel trial reports,

speed accuracy up to first decimal place is considered satisfactory [18].

2.6.2.3 Model inputs and outputs

The model inputs are: the maximum turbine entry temperature (TET) that the prime

movers are allowed to operate up to, the service load (or auxiliary power) Paux of the

marine vessel, the number of prime movers of the vessel’s power plant and the sea-

state number that the boost prime mover is needed to be engaged, if the vessel has a

variable operational profile.

2.7 Journey Management Model

2.7.1 Introduction
The journey management model which is integrated with the power plant operation

model is composed of three modules:

 Journey schedule

 Ambient conditions management

 Engine parameters quantification

The journey schedule module handles the journey scheduled distance, the amount of

the journey scheduled time, the time intervals that ambient conditions change and

calculates the journey time prolongation in case the vessel is required to operate in

increased resistance conditions (i.e. adverse weather conditions) in which the power

plant’s maximum power rating is below the power required by the vessel to maintain

its scheduled service speed. The model provides two modes of operation, one mode

for vessels with a constant service speed profile (i.e. ferries) and one mode for vessels

with a variable service speed profile (i.e. naval vessels).

The ambient conditions management module handles the ambient temperature (air

and sea) and sea-state profile at the specified time intervals during journey.

The engine parameters quantification module quantifies the essential gas turbine

parameter products for the determination its life cycle direct operating costs (DOC)
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which are, the hot section’s blade creep life consumption, fuel consumption and the

total emission quantities (NOx, CO, CO2 and UHC) produced by each of the prime

movers (if more than one) after a scheduled journey. The model is integrated with the

journey management model.

2.7.2 Modelling methodology

2.7.2.1 Journey schedule module

When a vessel with constant service speed profile is simulated the total journey

distance Sj is determined by simply multiplying the journey schedule time tT with the

vessel’s service speed V as expressed in equation 2-97.

Tj VtS  Equation 2-97

The principle idea remains the same when a vessel with variable service speed

profile is simulated with the difference that the service speed needs to be specified at

every time interval of the journey and the average service speed determines the

journey distance as expressed in equation 2-98.
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Where: n is the time interval number.

The time interval in which the ambient conditions change during a scheduled

journey at the current stage of “Poseidon”, is fixed at 1 hour, and is implemented in

the code in the form of iterations that the model needs to make in order to obtain the

total scheduled journey distance.

The journey time prolongation is estimated, by recording the vessel’s speed and the

total distance that has covered at the end of every time interval. If the vessel is not

able to obtain the required distance, at the scheduled journey time, then the program

continues to iterate until the total distance in the last iteration equals or surpasses the

scheduled one, as the time interval is fixed at 1 hour. If at the last iteration the

distance is more that the scheduled one, the total journey time tT+a is found between

nmax and n(max-1) and is calculated as defined in equation 2-99 which subtracts the time

that the vessel requires to cover the superfluous distance, and adjusts it to the time that
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is required to cover the scheduled distance under journey average speed lower than its

schedule one.
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Where: tj is the sum of total scheduled time intervals, ta is the sum of total superfluous

time intervals, Sa is the superfluous journey distance and VLI is the vessel’s

speed at the last iteration

2.7.2.2 Ambient conditions module

The profile of ambient temperature Tamb of air during a full day cycle (i.e. 24

hours) is simulated by a proposed method [19] that recommends three cosine

functions, each one representing a day period. The first period is defined from

midnight to sunrise (td) (equation 2-100), the second period from td to the time of day

that temperature peaks (tp) (equation 2-101) and the third from tp to midnight

(equation 2-102).

)]24/()(cos[)( pddampmamb ttttTTtT   Equation 2-100

)]/()(cos[)( dppampmamb ttttTTtT   Equation 2-101

)]24/()24(cos[)( pddampmamb ttttTTtT   Equation 2-102

Where: t is the actual time of the day, Tm is the mean daily temperature (equation 2-

103) and Tamp is the amplitude of daily temperature variation (equation 2-104).
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The change in the actual day temperature is defined by the time interval step change.

The sea water temperature Tsea and sea-state Wsea profile can be defined manually

by entering the correspondent value of the each one of the two variables for every

time interval of the journey. Tsea can vary from 0 to 30 oC and Wsea from 0 to 8.

2.7.2.3 Engine parameters quantification module

To calculate the cumulative creep life consumption of the hot section rotor blade

after a journey at tj or (tj+ta), the linear damage summation law or Miner’s law [4] was

implemented as expressed in equations 2-105 and 2-106 respectively.
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Equation 2-105

)](()/1[()/1( )max(
1max LI

aj

ajnf
n

nfb
V

SS
ttnttq






Equation 2-106

Where: qb is the total blade life consumption (qb,max=1) after a journey.

To calculate the products of the output parameters qp of each of the prime movers

of the simulated vessel after a journey at tj or (tj+ta), equations 2-107 and 2-108 are

recommended respectively.
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Where: qp is the quantity of the product of the output prime mover parameter after a

journey, the subscript p identifies the quantity other than blade life

consumption, y is the rate of the product of the output prime mover parameter

and tφ is the unit of time rate to quantity conversion factor.

2.7.3 Model inputs and outputs
The model input parameters are: the schedule time of journey tT, the schedule

distance Sj of journey, the service speed of the vessel at every time interval Vn in the

case that the type of the simulated marine vessel has a variable service speed profile,

the time of the day tstart that journey starts, the sunrise time of day td, the time of day

that temperature peaks tp, the minimum and maximum day temperature Tmin and Tmax

respectively, the sea water temperature Tsea and the sea-state number Wsea at every

time interval. The model output parameters are: the total journey time tT+a and the

quantity of the products of each of the operational prime mover(s) output parameters

after a schedule journey, which are the mass fuel consumption qFF, the hot section

rotor’s blade creep life consumption qb, the mass quantity of nitric oxide (NOx),

carbon monoxide (CO), carbon dioxide (CO2) and unburned hydrocarbons (UHC)

exhaust emissions, qNOx, qCO, qCO2 and qUHC respectively.
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3 Implementation of the Economic & Risk
Part of TERA Method

3.1 Introduction
This chapter describes the methods and the tools that were used to develop and

create the numerical model that forms the economic and risk part of the

Technoeconomic Environmental and Risk Analysis (TERA) method. The model is

described by introducing its task, its composition and any definitions that apply in this

chapter. Modelling methodology is then analyzed, where the model’s mathematical

expressions, functions and capabilities are presented. The model inputs and outputs

are finally described.

3.2 Life Cycle Costs Model

3.2.1 Introduction
The task of the life cycle costs model is to calculate the net present cost (NPC) of

the direct operating cost (DOC) of the candidate marine vessel’s power plant

throughout its operational life cycle. The life cycle costs model is composed of the

following modules:

 Life cycle

 Capital related costs

 Maintenance cost

 Taxed emissions and fuel cost

 Net present cost (NPC)

 Random numbers generator

 Normal distribution

It needs to be mentioned that wherever the word “concept” is mentioned in the next

section (3.2.2), it describes a function without the incorporation of the risk element

and the function is defined with it later in the chapter.
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3.2.2 Modelling methodology

3.2.2.1 Life cycle

The life cycle module defines the operational life time of the vessel and the time

interval that the vessel’s hull average roughness amplitude is restored to its design

value. The assumptions are that the vessel has an operational life time of thirty years

and hull fouling increases in five annual steps but remains constant between them. For

each prime mover that composes the marine vessel’s power plant the prime mover’s

quantified output parameters (section 2.7.3) are produced by using “Poseidon” for

two data sets of five scheduled journeys (i.e. the format can be seen in Appendix D.5,

tables D.1 to D.5 for first data set and tables D.6 to D.10 for second data set).

Each set contains the output parameters that are obtained under a certain weather

profile that the vessel is operated under, and each of the schedule journeys of the data

set represents a certain value of hull roughness due to fouling which increases

annually from year one to year five in annual steps. After every five year hull fouling

cycle until year thirty, the marine vessel is assumed that has been dry-docked and

starts a new hull fouling cycle where its average hull roughness amplitude is restored

back to its design value. The concept of calculating the annual operational time tannual

of each prime mover is defined by its operational time per scheduled journey top and

the annual number of scheduled journeys Nasj as described in equation 3-1.

asjopannual Ntt  Equation 3-1

3.2.2.2 Maintenance cost

The maintenance cost module is constructed by utilising a proposed method [1] that

is primarily applied on aircraft turboprop-turbofan engines. The decision to adopt the

mentioned method is based on the assumption that the marine gas turbines

investigated in this project are aero-derivative and the fact that the design principles

between aero-derivative gas turbines incorporating a power turbine and aircraft

turboprop aircraft engines are very similar. All equations are referred to the adopted

method unless otherwise is stated within the content of this section.

The engine maintenance hours per operational hour MHRmengbl is defined in

equation 3-2. When the method is applied to turbofan engines the equation presented

below is modified to accommodate thrust, but as it is of no usage in this research

consequently is not presented.
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Where: EPDP is the design point prime mover power output (kW) and Hem is the

number of hours between engine overhaul.

The concept of calculating the number of hours between engine overhaul is defined in

equation 3-3, suggested by the author.
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The maintenance labour cost for every scheduled journey Clab/eng is defined in

equation 3-4.

))()()(3.1(03.1// oplengmengblsjenglab tRMHRC  Equation 3-4

Where: Rleng is the maintenance labour rate per hour.

The factor that depends on the number of hours between engine overhaul KHem is

defined in equation 3-5.
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The cost of maintenance materials for each prime mover per hour of scheduled

journey Cmat/engb/hr is defined in equation 3-6.
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Where: PMC is the actual prime mover purchase cost (or capital cost) as defined in

section 3.2.2.4 and ESPPF is the spare parts cost factor (i.e. if the cost of a

spare part is the same to its proportion on the cost of a new prime mover then

ESPPF = 1).

The cost of maintenance materials for each prime mover for every scheduled journey

is defined in equation 3-7.

))((339.1 //// ophrengmatsjengmat tCC  Equation 3-7

The cost of the maintenance administrative, logistics and required energy (i.e.

generators operation) costs for every scheduled journey Camb can be estimated by

using equation 3-8.
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Equation 3-8

Where: Famb/lab and Famb/mat are overhead labour and materials distribution factors

respectively. The range of Famb/lab and Famb/mat for a certain type of prime

movers installed in a fleet of vessels that are utilised for commercial purposes

is 1.0-1.4 and 0.3-0.7 respectively.

The annual maintenance cost is defined in equation 3-9.

))](/()[( ////int annualopambsjengmatsjenglabMa ttCCCC  Equation 3-9

3.2.2.3 Taxed emissions and fuel cost

The taxed emissions and fuel cost module calculates the cost of the exhaust

emissions produced and the fuel consumed by each of the operating prime movers (if

more than one) per annum. The module contains a gas turbine combustor technology

factor Ktech that can be adjusted to approximately simulate exhaust emissions

quantities produced by different combustor technologies (i.e. conventional, dry low-

emissions etc.) or by different fuels (i.e. distillate diesel, natural gas etc.), without the

necessity of producing and tabulating exhaust emission results (as described in

chapter 2, section 2.3) more than once according to the supposed case study’s

requirements, for each simulated marine gas turbine. The concept of calculating the

annual cost of exhaust emissions and fuel consumed quantities for each prime mover

is defined in equation 3-10 [2].

asjpptechp NPqKC  Equation 3-10

Where: Cp is the annual cost of the quantity and Pp is the cost of the quantity per unit

mass. The subscript p represents the identity of the quantity (chapter 2, section

2.7.3). When the equation is used for fuel quantity, Ktech is not applied.

3.2.2.4 Capital related costs

The capital related costs module adopts a method [2], which has been modified in

accordance with requirements of the project, to calculate the costs that are assumed

are related to the initial purchase cost of the prime mover and need to be taken into

account before investing on a particular prime mover. All equations are referred to the

adopted method unless otherwise is stated within the content of this section. The

module is structured to accept a reference initial prime mover purchase cost IPMC,



43

and in the case that prime movers of different IPMC (i.e. different thermodynamic

cycle, output power etc.) are compared then the estimated percentage difference PD0

in the initial purchase cost can be entered, as also the estimated percentage difference

PD1 due to a different technology component (i.e. conventional or dry low-emissions

combustor). The concept of calculating the actual purchase cost (or capital cost) of the

prime mover PMC is defined in equations 3-11, 3-12 proposed by the author and 3-13

[2].

)])([( 00 PDIPMCIPMCPMC  Equation 3-11

)])([( 1001 PDPMCPMCPMC  Equation 3-12

)1(1
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down

tHem

t
PMCPMC


 Equation 3-13

Where: PMC0 is the cost of the prime mover derived from the percentage difference

from the cost of the reference prime mover, PMC1 is the estimated cost of the

prime mover due to different technology components, PD0 is the estimated

percentage difference of cost from the reference prime mover, PD1 is the

estimated percentage difference cost due to different technology components

and tdown is the downtime of the prime mover subtracted from tannual.

The prime mover downtime tdown is calculated from the concept of the assumed prime

mover availability as defined in equation 3-14 proposed by the author.

100

)100( AVLBannual
down

PDt
t


 Equation 3-14

Where: PDAVLB is the prime mover availability percentage per annum.

The annual interest cost CINT on the actual prime mover purchase cost is defined in

equation 3-15.

CINT =(IR)(PMC) Equation 3-15

Where: IR is the interest rate for the overall operational life of the vessel.

The annual insurance cost CINS on the actual prime mover purchase cost is defined in

equation 3-16.

CINS =(ISR)(PMC) Equation 3-16

Where: ISR is the insurance rate.
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3.2.2.5 Net present cost (NPC)

The direct operating cost DOC for each prime mover per annum is defined in

equation 3-17 [2].

)

05.1(

int

2

MaINSINTUHC

COCONOxF

CCCC

CCCCDOC




Equation 3-17

Where: CF is the annual cost of fuel and is multiplied by a factor of 1.05 to reflect

logistics and handling costs, CNOx is the annual NOx emissions cost, CCO is the

annual CO emissions cost, CCO2 is the annual CO2 emissions cost and CUHC is

the annual UHC emissions cost.

The net present cost for each prime mover throughout its operational life cycle is

defined in equation 3-18 [2].
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IR

DOC
PMCNPC Equation 3-18

Where: i is the number of years in service.

3.2.2.6 Random numbers generator

The modelling of the random numbers generator module is derived from an existing

method [2] in which the generation of normal random variables is obtained by the use

of discrete uniformly distributed pseudo-random numbers that arrange the output

value of the variable with a standard deviation between maximum and minimum

value that is arranged by eleven intervals. All equations are referred to the adopted

method unless otherwise is stated within the content of this section. The standard

deviation intervals are defined in equation 3-19.
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Where: SD is the standard deviation value, vmax is the maximum value of the variable,

vmin is the minimum value of the variable and I1, 2,…,11 is the value of the

variable at every interval number.

The generation of the pseudo-random numbers is accomplished by the use of an

appropriate MATLAB function that generates uniformly distributed pseudo-random

numbers between zero and one. The output value of the variable I is calculated at the

last iteration of a series of fifty thousand pseudo-random number generation attempts

as it is described in table 3.1, in which x is the pseudo-random number’s value.

Table 3.1: The relationship between the range of the values of pseudo-random number x and number of
interval I.

x ≤0.005 ≤0.015 ≤0.085 ≤0.155 ≤0.325 ≤0.495 ≤0.665 ≤0.835 ≤0.905 ≤0.985 <1.0

I I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11

The module is incorporated within the life costs model code as expressed in

equation 3-20, and when the cost of the prime mover’s output quantity per unit mass

Pp is stochastically estimated then the minimum and maximum cost Pp-min and Pp-max

respectively, of the quantity per unit mass needs to be entered (see also equation 3-10)

),("" maxmin vvnameI  Equation 3-20

Where: “name” is the call name of the function.
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Weather probability

The random numbers generator module is used to introduce at this preliminary

stage of the TERA for marine gas turbines the element of forecasting the annual

journey weather conditions. The method was proposed by the author. As it is

described in section 3.2.2.1 the life cycle costs model uses results from two data sets

that each one represents a certain weather profile, so the random numbers generator

module is used to estimate the amount of total journeys thus the annual operational

time of each of the prime movers per annum under each of the two weather profiles.

This is calculated by using equation 3-20 where vmin and vmax are given values of zero

and one respectively as expressed in equation 3-21.

)1,0(""nameI jd  Equation 3-21

Where: Ijd is the journey distribution risk factor.

Then the annual operational time of the prime mover under each of the two weather

profiles and the same hull roughness amplitude if they are named tannual-WP1 and tannual-

WP2 respectively is expressed in equations 3-22 and 3-23.

asjjdopWPannual NItt )1(
1

 Equation 3-22

asjjdopWPannual NItt )(2  Equation 3-23

The total average operational time of each of the prime movers per journey is then

defined in equation 3-24, which is used in equation 3-1 to substitute top, in order to

obtain the annual operational time of the prime mover tannual.

asj

WPannualWPannual
aveop

N

tt
t 21 




 Equation 3-24

Prime mover output parameters quantification per annum

The calculation of the prime mover’s output quantities qannual-p per annum as also

the hours between engine overhaul Hem are calculated first by deriving the annual

amount of the quantity produced under each weather profile with the same hull

roughness amplitude as defined in equations 3-25 and 3-26 proposed by the author.

))(( 11)(1)( WPannualbpbpannual tqq   Equation 3-25

))(( 22)(2)( WPannualbpbpannual tqq   Equation 3-26
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Where: qannual-p(b)1 and qannual-p(b)2 apply for both the prime movers annual output

quantities (subscript p can be fuel consumption (FF), NOx, CO, CO2, UHC)

and hot section rotor blade’s life consumption.

The total annual prime mover output quantities qannual-p and the hours between

engine overhaul Hem are defined in equations 3-27 and 3-28 respectively proposed by

the author.

21 pannualpannualpannual qqq   Equation 3-27
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 Equation 3-28

Then equation 3-10 is implemented in the M-code as defined in equation 3-29.

asjppppannualtechp NPPnamePqKC )],(""[ maxmin   Equation 3-29

Where: Pp-min and Pp-max is the minimum and maximum estimated cost of the prime

mover’s output quantity per unit mass (fuel is entered per unit volume and is

converted in unit mass, as defined in chapter 6, equation 6-1).

Downtime probability

Equation 3-14 that defines the downtime per annum of each of the prime movers is

re-expressed with the incorporation of the random numbers generator module in

equation 3-30 proposed by the author.

100

)]},(""[100{ maxmin 
 AVLBAVLBAVLBannual

down

PDPDnamePDt
t Equation 3-30

Where: PDAVLB-min and PDAVLB-max are the minimum and maximum percentage

availability of the prime mover per annum respectively.

Prime mover actual purchase cost probability

If the prime mover actual purchase cost is unknown comparing to the cost of a

reference prime mover the random numbers generator module is incorporated by re-

expressing equations 3-11 and 3-12 proposed by the author.

)]},("")[{( max0min000  PDPDnamePDIPMCIPMCPMC Equation 3-31

)]},("")[{( max1min11001  PDPDnamePDPMCPMCPMC Equation 3-32
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Where: PD0-min and PD0-max are the estimated minimum and maximum percentage

difference of cost from the reference prime mover respectively, PD1-min and

PD1-max are the estimated minimum and maximum percentage difference of

cost due different technology components respectively.

Interest rate probability

The interest rate IR (equation 3-15) is assumed steady for the thirty years of the

operational life of the marine vessel and randomly changes at every risk scenario as it

is explained in section 3.2.2.7. The annual interest cost CINT is re-expressed in

equation 3-33 [2].

))](,(""[ maxmin PMCIRIRnameIRC INT  Equation 3-33

Where: IRmin and IRmax are the minimum and maximum interest rate for the overall

operational life of the vessel respectively.

3.2.2.7 Normal Distribution

The normal distribution module is derived from a proposed method [2] and its use

has been extended not only to calculate the probable values of the NPC of the power

plant but also the probable values of cost of NOx, CO, CO2 and UHC emissions,

maintenance cost and fuel cost. The module records the value of each of the prime

mover life cycle cost components including the NPC at every iteration-which

represents a risk scenario- in single dimensional arrays, where the standard deviation

of each of the components is obtained, by subtracting the minimum recorded value of

the cost component from the maximum one and dividing the outcome value with the

number of intervals which are eleven. The value of the cost component at every

interval (iteration begins from interval one) of the distribution is calculated by

counting the number of values (probability) Nprob of the cost component that satisfy

the following condition as expressed in equation 3-34 [2].
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Equation 3-34

Where: A is the one dimensional array that the cost component values are recorded in,

J is the position number of the value of the cost component at every risk

scenario, Amin is the first value (J=1) of the cost component in the array, In is
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the number of the interval of the distribution and NDSD is the standard

deviation of the distribution.

The value of the cost component of the distribution C, the probability of the value

of the cost component Nprob and the cumulative probability Nsum at every interval are

defined in equation 3-35, 3-36 and 3-37 respectively [2].

)2/())(1(min NDSDNDSDIAC n  Equation 3-35

Nprob=Value of J Equation 3-36





11

1n
nsum JN Equation 3-37

3.2.3 Economic and risk analysis of power plant
The modelling methodology (sections 3.2.2.1-6) applies for the economic and risk

analysis of a single prime mover. To perform an economic and risk analysis for the

power plant then the output quantified parameters are entered for each of the prime

movers separately, and the program uses the same number of risk scenarios for every

prime mover of the power plant. The values of each of the cost components of all

prime movers are added together at every value of J in an array (as described in

3.2.2.7) so the array still has the same number of values as the number of risk

scenarios but every value responds to all prime movers of the power plant. Then the

normal distribution module operates as described in section 3.2.2.7.

3.2.4 Model inputs and outputs

3.2.4.1 Economic and risk related input parameters

The economic and risk input parameters that the model requires in order to operate

are: the reference initial prime mover purchase cost IPMC, the maintenance labour

rate Rleng , the insurance rate ISR, the estimated minimum and maximum percentage

difference of cost from the reference prime mover PD0-min and PD0-max respectively,

the estimated minimum and maximum percentage difference of cost due different

technology components PD1-min and PD1-max respectively, the estimated minimum and

maximum fuel cost per unit volume PFF-min and PFF-max respectively, the minimum and

maximum interest rate IRmin and IRmax respectively, the minimum and maximum NOx

emission tax cost per unit mass PNOx-min and PNOx-max respectively, the minimum and

maximum CO emission tax cost per unit mass PCO-min and PCO-max respectively, the
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minimum and maximum CO2 emission tax cost per unit mass PCO2-min and PCO2-max

respectively, the minimum and maximum UHC emission tax cost per unit mass PUHC-

min and PUHC-max respectively, the spare parts cost factor ESPPF and the number of risk

scenarios.

3.2.4.2 Technical related input parameters

The technical input parameters that the model requires in order to operate are: the

prime mover’s design point output power EPDP (kW), the estimated minimum and

maximum annual percentage availability PDAVLB-min and PDAVLB-max respectively, the

prime mover quantified output parameters for every scheduled journey of the two sets

of journeys each under a certain weather profile (every set is composed of 5 journeys

with increasing hull roughness amplitude due to fouling) which are the mass fuel

consumption qFF, the hot section rotor’s blade creep life consumption qb, the mass

quantity of nitric oxide (NOx), carbon monoxide (CO), carbon dioxide (CO2) and

unburned hydrocarbons (UHC) exhaust emissions, qNOx, qCO, qCO2 and qUHC

respectively, the prime mover operational time top in every journey and the annual

number of scheduled journeys Nasj.

3.2.4.3 Overall output parameters

The model’s output parameters which apply for the life cycle of the power plant are

the probability normal distribution and the cumulative probability normal distribution

of: the net present cost (NPC), the maintenance cost and the cost of each of the taxed

emissions (NOx, CO, CO2, UHC) separately.
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4 TERA Case Studies Dataset: The
Simulated Marine Gas Turbines

4.1 Introduction
This chapter starts with a general overview of the gas turbine thermodynamic

cycles that are incorporated in the simulated marine gas turbines in the case studies of

this project. The chapter continues with definitions and assumption regarding the

derivation of the off-design performance of the engines which are associated with the

off-design variables range (turbine entry and ambient temperature as ambient pressure

is used as a constant) and with the common cycle design and component performance

parameters that the marine gas turbines were simulated at design-point. Then the

design-point and off-design performance of the simulated gas turbines is separately

presented, including any background information regarding reference existing gas

turbines and technical description associated with their operation.

The hot section rotor blade creep life dataset is then presented following the gas

turbine performance where essential definitions are mentioned regarding any

assumptions made for the calculation of the hot section rotor dimensions and design-

point turbine rotational speed (for each of the simulated gas turbines) required by the

hot section rotor blade creep life model, in order to obtain the required design-point

blade life time to failure. The blade material data, the gas-path sizing methodology

adopted and the results of the hot section rotor dimensions and design-point turbine

rotational speed are consequently presented.

The gas turbine exhaust emissions dataset is presented, starting with an overview

on the generation mechanism principles of the emission quantities considered in this

project (NOx, CO, UHC and CO2). The calculation procedure and the results of the

design-point emissions index calibration are described and presented respectively, for

both conventional and dry-low emissions combustors and for both distillate and

natural gas assumed as combustion fuels. Finally the off-design exhaust emission

quantity rates are presented.
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4.2 General Overview of the Gas Turbine Cycles

4.2.1 Simple cycle
The simple cycle (figures 4.1 & 4.2) is the fundamental gas turbine cycle where the

working fluid is compressed in the compressor(s), mixed with fuel and heated in the

combustor and then is expanded by the turbine(s), where the power produced is used

to power the compressor(s) and the remaining is used as an output.

Figure 4.1: Simple cycle gas turbine in a single shaft configuration [1]

Figure 4.2: Simple cycle gas turbine in a two shaft configuration [1]

The basic shaft configuration is the single shaft (figure 4.1) where the output power

shaft is structurally coupled on the turbine of the gas generator. This arrangement is

almost exclusively used for power generation applications as the gas generator rotates

at a constant rotational speed, irrelevantly of the power output requirement. The

installation of a free power turbine (figure 4.2) enchases the part load thermal

efficiency of the cycle as the gas generator shaft is independent of the

aerodynamically coupled power turbine which for power generation needs to rotate at

a constant speed. When the gas turbine is required to operate at part load the rotational

speed of the compressor of the gas generator reduces and this results in higher

working fluid mass flow, pressure ratio and temperature which reduces the required

power by the compressor unlike with a single shaft configuration where at part load
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the constant rotational speed of the compressor of the gas generator does not reduce

its power requirements as significantly and thermal efficiency drops more rapidly [2].

Also the power turbine provides the advantage of having high torque at low rotational

speeds [3], which makes the starting of the engine easier as the low and high pressure

turbomachinery can reach their autonomous operational points without taking in

consideration the high inertia of the rotating machinery of the coupled electrical

generator of the marine vessel’s propulsion system.

At high total compression pressure ratios the compression can be split between two

compressors, a low pressure LPC and a high pressure compressor HPC. The

advantages are that the high pressure compressor can rotate at higher rotational speeds

and this provides the advantage that it can be designed with larger gas path area,

where in a single compressor especially at the last stages of the compression there

would be a loss in efficiency due to aerodynamic restrains that are created from the

small height of the annulus area of the gas path. The low and high pressure

compressor configuration can result in a shorter length gas turbine. At part load

conditions the pressure ratio across the low pressure turbine LPT falls more rapidly

than across the high pressure turbine HPT, and if the LPT is chocked then the HPT

does not experience any change in its non dimensional flow or pressure ratio [4]. In

general at part load the high pressure shaft does not experience fluctuations in

rotational speed as high as the low pressure shaft. Overall there are not significant

differences in thermal efficiency at design-point or off-design between the single and

the two shaft arrangement of the gas generator.

At a specified turbine entry temperature (TET) the optimum total compression

pressure ratio (PR) for optimum thermal efficiency ηth is higher than that for specific

power [4], though specific power thus the dimensions of the gas turbine is not a major

restrain factor on the marine vessels that take part in the case studies of this project.

The optimum thermal efficiency of the cycle is obtained at the point where the

temperature difference between the compressor outlet temperature and the combustor

outlet temperature divided by the exhaust gas temperature reaches a minimum value,

which is simply translated as the minimum wasted amount of heat input. The

optimum specific power is obtained when the difference between the compressor

outlet temperature and the combustor outlet temperature subtracted by the exhaust gas
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temperature reaches a maximum value, which can be adjusted primarily by reducing

the power requirements of the compressor.

4.2.2 Intercooled cycle
The intercooled cycle (figure 4.3) incorporates an intercooler (more than one can be

considered) at a point during the compression process. The intercooler reduces the

work that needs to be utilized by the high pressure compressor turbine in order to

further compress the working fluid and for the same pressure ratio without any

intercooling the working fluid requires less volume to be compressed.

Figure 4.3: Intercooled cycle in a three shaft configuration [1]

An advantage of an intercooled gas turbine comparing with a simple cycle that has

the same power output, pressure ratio, turbine entry temperature and component

efficiencies is that there is an increase in the specific power, but at a cost of thermal

efficiency as more heat input is needed (more fuel of the same low calorific value) to

compensate for the extracted work [5]. Research has shown that for optimum thermal

efficiency, the low pressure compressor pressure ratio should be in the range 2.0-4.5

for high total pressure ratio cycles (30≤PR≤60) and 1.4-3.0 for low total pressure ratio

cycles. [5]

In order to increase the efficiency of the intercooled cycle high pressure ratios are

needed, and in fact the maximum pressure ratio for optimum thermal efficiency of an

intercooled gas turbine is higher than that of a simple cycle gas turbine of identical

specification [3], and at the same turbine entry temperature slightly higher thermal

efficiencies can be obtained.
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4.2.3 Recuperated cycle
The recuperated cycle (figure 4.4) incorporates a heat-exchanger (recuperator type)

which utilises the temperature of the exhaust gases of the gas turbine in order to add

heat in the compressed working fluid before entering the combustor. This means that

the less heat input needs to be added to the working fluid for the gas turbine to

produce the same output power comparing with a simple cycle having the same power

output, turbine entry temperature and component efficiencies. The optimum thermal

efficiency of the cycle is obtained at lower total compression pressure ratios than that

of a simple cycle and the reason for that is that low expansion ratios produce high

temperature exhaust gases.

Figure 4.4: Recuperated cycle in a two shaft configuration [1]

The part load thermal efficiency of the recuperated cycle at fuel flow control only is

lower than of that of the simple cycle at an equivalent design-point thermal efficiency,

and it can be increased by increasing the total compression pressure ratio further than

for optimum design-point thermal efficiency (the design-point specific power will

increase) [6].

By increasing turbine entry temperature the optimum total compression pressure

ratio increases [7] because of the fact that there is an optimum point between the

compression outlet temperature and the heat recovery of the working fluid. By

increasing the recuperator effectiveness at constant turbine entry temperature the

optimum total compression pressure ratio decreases because the amount of heat

recovery of the working fluid compensates for the lower thermal efficiency of the

cycle it was simple [7]. If specific power (which is lower than that of a simple cycle
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gas turbine) is of more interest then the optimum total compression pressure ratio is

slightly reduced comparing with the simple cycle because of the recuperator pressure

losses and recuperator effectiveness does not affect it [7]. The recuperator

effectiveness depends as every heat-exchanger’s (i.e. regenerator, intercooler) mainly

on the heat transfer coefficient of the construction material, the heat capacities of the

heat exchanging fluids per unit volume, and the volume of the recuperator.

The incorporation of variable area nozzles VAN in the first stage of the free power

turbine of a recuperated gas turbine is proved to be beneficial because by varying the

area between the low pressure turbine and the power turbine the pressure drop ratio

between them can be changed so to keep the core gas generator turbine(s) near their

design-point efficiency, and produce high gas path temperatures, which increase

further the thermal efficiency of the cycle at part load conditions [8].

4.2.4 Intercooled/Recuperated cycle
The intercooled/recuperated cycle (figure 4.5) incorporates both an intercooler and

a recuperator, and the cycle inherits some of the characteristics of both the intercooled

and the recuperated cycle but with higher design-point and off-design thermal

efficiency than both of them and the simple cycle assuming that all cycles incorporate

the same technology level and are optimized for optimum thermal efficiency [8].

Figure 4.5: Intercooled/Recuperated cycle in a three shaft configuration with variable area
nozzles before the power turbine [9]
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The cycle requires lower total compression pressure ratio than that of the simple

and intercooled cycles for maximum thermal efficiency, but higher than the

recuperated cycle. For optimum efficiency the total compression pressure ratio is split

between the low and high pressure compressor at approximately 40% and 60%

respectively [10]. For optimum specific power (which is lower than that of the

intercooled cycle but higher than the simple cycle) the split becomes equal for both

LP and HP compressors [7].

4.3 Design-Point and Off-design Performance of
Marine Gas Turbines

4.3.1 Off-design performance definitions
The off-design performance of the simulated gas turbines is presented as function

of the air ambient temperature Tamb and the turbine entry temperature TET. The

ambient pressure Pamb although it is included in the simulated gas turbine models

(chapter 2, section 2.2) was not used as a variable in the case studies of the project

because this would require a significant amount of time, beyond the time constrains

that defined the completion this research. The use of Pamb as off-design variable is

ready to be used in future projects that may require it. The off-design performance

results of the simulated gas turbines that are presented in this chapter were produced

by using the gas turbine performance model (chapter 2, section 2.2) integrated with

the hot section blade creep life model (chapter 2, section 2.4).

The range of the ambient temperature Tamb that the off-design performance of the

gas turbines where simulated is from -30 to +40 oC and the range of the turbine entry

temperature TET is from 1100 K to 1550 K, which satisfies the lowest power settings

at the specified ambient temperatures Tamb that the gas turbines as prime movers are

required to operate at in the case studies of this project. Most of the gas turbines were

simulated with TET lower than 1100 K but in some cases the results obtained were

not considered reliable, and because of the fact that power settings that required TET

lower than 1100 K proved to be unnecessary in the operational profile of the marine

vessels in the case studies of this project (see chapter 7), for most of the simulated

gas turbines the lowest value of the already mentioned TET range was decided to be
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presented. The exception is the twin mode intercooled gas turbine (TMI) and further

details are given in section 4.3.4.4.

The off-design parameters that are presented later in this chapter are the essential

for the technoeconomic and risk analysis (engine power EP, fuel flow FF, high

pressure turbine or (just turbine in the case of single shaft gas generator) blade

temperature Tb (or TBLADE in the figures), high pressure compressor (or just

compressor relative rotational speed ) CS of the simulated gas turbines and to obtain a

basic understanding of the behaviour of the engines at off-design conditions (mass

flow MF, total compression pressure ratio PR), but in future projects if it is needed,

more gas turbine off-design performance parameters can be investigated, by simply

adding more performance parameter tables in the gas turbine model (chapter 2,

section 2.2). TBLADE is derived by assuming a cooling effectiveness ε of 0.6 which

remains constant at all off-design conditions. The rotational speed of the

aerodynamically coupled power turbine of all simulated gas turbines is assumed

constant at off-design conditions according to the power law index appropriate for

electricity generation available in “Turbomatch”.

4.3.2 Common cycle design and component performance parameters
Because of the fact that there is limited information published by gas turbine

manufacturers on the detailed technical specification of their products, it was

necessary to make a number of assumptions about the cycle design and component

performance parameters of the simulated gas turbines of this project, based on

published academic literature and the limited information published by the gas turbine

manufacturers. It needs to be mentioned that these assumptions are made in order to

reflect some of the capabilities of the technology level of cycle design and component

performance parameters of gas turbines at design stage at the time that this research

was in development stage. The common cycle design-point parameter (appendix

A.1,”Turbomatch” input files) on all marine gas turbines that are investigated in this

project is the turbine entry temperature (TET), which is set at 1509.5 K [11] [12] [13].

The common component performance parameters at design-point are (appendix

A.1,”Turbomatch” input files) the low and high pressure compressor isentropic

efficiency at 90% [2], except for the twin mode intercooled gas turbine (TMI) which

is set at 89% because of assumed dimensional and geometrical restrictions (i.e. frontal
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area, blade tip to casing distance etc.) of the 5MW core gas turbine [8], the air-cooled

turbine isentropic efficiency at 87% [2], the non-cooled turbine isentropic efficiency

at 89% [8], the combustion efficiency and pressure loss at 99.8% and 3.5%

respectively [8], assuming low combustor loading and intensity as combustor volume

is not a major design restrain for a marine gas turbine. The extracted cooling flow for

the air cooled turbines is assumed at 10% [8].

The intercooler on all gas turbines that incorporate one is assumed on-engine,

liquid-gas type and common performance parameters at design-point are the pressure

losses which are set at 1% [11]. The intercooler output temperature of the intercooled

(INT) and intercooled/recuperated (ICR) gas turbines is a common component

performance parameter, though the twin mode intercooled gas turbine (TMI) is

simulated with a different value as it is explained in sections 4.3.4.1 and 4.3.4.4. The

effectiveness was not used as a performance parameter in the intercooler as although

“Turbomatch” accepts the intercooler effectiveness as input it requires the intercooler

output temperature in order to operate which remains steady at off-design conditions.

The intercooler inlet cooling water temperature (sea water temperature) is assumed to

be at 15 oC at all conditions.

The recuperator (it has a different implementation than the intercooler in

“Turbomatch”) common performance parameters at design-point are the effectiveness

which is set at 73% which a proposed value of the recuperator effectiveness of the

Rolls-Royce WR21 intercooled/recuperated marine gas turbine [12] [14], cold and hot

section pressure loss at 10% [12] and mass flow leakage at 2% [8].

4.3.3 Simple cycle gas turbine performance

4.3.3.1 Design-point performance

The simple cycle (SC) gas turbine is a two shaft engine (figure 4.2) and resembles

an approximate proposed simulation of the General Electric LM2500 marine gas

turbine. The word “approximate” is used because “GE energy” and “GE aviation”

both offer a marine version of the LM2500 [15] [16] [17] but with small differences

in the limited published specification so it was decided to simulate the engine by

combining the published manufacturers and academic information together with the

common design cycle and component performance parameters adopted all the
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simulated marine gas turbines. Table 4.1 shows a comparison between the published

design point parameters of the LM2500 [15] [16] [17] [18] and the simulated simple

cycle gas turbine, at ISA conditions in zero altitude. Detailed information on the

design-point performance of the simulated 25MW simple cycle gas turbine can be

read in its “Turbomatch” input file in appendix A.1.

Table 4.1: Design-point performance parameters of simulated SC gas turbine and GE LM2500

Performance parameter Simulated 25MW simple
cycle gas turbine

General Electric
LM2500

Power turbine rating, PPT 25.0 MW 25.05 MW

Inlet mass flow, MF 70.86 kg/s 68.96 kg/s

Exhaust mass flow, EF 72.40 kg/s 70.54 kg/s

Exhaust gas temperature, Texh 814.26 K 836.26 K

Fuel flow, FF 1.545 kg/s 1.581 kg/s

Total compression pressure ratio, PR 18:1 18:1

Thermal efficiency, ηth 0.375 0.37

4.3.3.2 Off-design performance

The effects of ambient temperature Tamb (in degrees Celsius) and turbine entry

temperature (TET) on the engine power (EP) and fuel flow (FF), total compressor

pressure ratio (PR) and intake mass flow (MF), compressor turbine blade temperature

(TBLADE) and compressor relative rotational speed (CS) relative to design-point are

presented in figures 4.6, 4.7 and 4.8 respectively.

Figure 4.6: Simple Cycle (SC) – The effect of Ambient (Tamb,
oC) & Turbine Entry Temperature (TET)

on Engine Power (EP) & Fuel Flow (FF)
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Figure 4.7: Simple Cycle (SC) – The effect of Ambient (Tamb,
oC) & Turbine Entry Temperature (TET)

on Total Compression Pressure Ratio (PR) and Mass Flow (MF)

Figure 4.8: Simple Cycle (SC) – The effect of Ambient (Tamb,
oC) & Turbine Entry Temperature (TET)

on Compressor Turbine Blade Temperature (TBLADE) & Compressor Relative Rotational
Speed (CS) to Design-Point
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4.3.4 Twin mode intercooled cycle gas turbine performance

4.3.4.1 Twin mode intercooled cycle gas turbine concept overview

The gas turbine is a proposal for a novel and compact marine propulsion system

[11]. A high amount of space savings has been predicted from the installation of the

engine on a naval marine vessel as a prime mover as it deletes the necessity of

installing low power gas turbines for cruising and high power gas turbines for

sprinting (boost), which require separate intake and exhaust ducts, and results in large

volumes of overall ducting [11]. It has also been predicted that high thermal

efficiencies in both cruise and boost modes can be attained. The engine as it can be

seen in figure 4.9 is composed of a low power core three-shaft gas turbine which is

installed in one of the lower decks of the vessel and a fourth shaft which is installed

on the weather deck of the vessel and features a low pressure compressor, an

intercooler and a low pressure turbine. The installation of the fourth shaft on the

weather deck of the marine vessel further reduces the ducting volume comparing with

an installation arrangement that would require the fourth shaft to be installed at the

lower deck of the vessel.

Figure 4.9: General representation of the twin mode cycle gas turbine components arrangement [11]

When the engine operates in the cruise mode (low power) the intake air flow is by-

passed from the weather deck compressor and intercooler with the operation of an air-

tight valve and the same happens at the exhaust side where another air-tight valve by-

passes the exhaust gases straight to the environment instead of the weather deck

turbine as it is shown in figure 4.10. When the engine is required to operate at the

boost mode (high power) then the weather deck shaft is in operation and the intake air
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is first compressed from the weather deck low pressure compressor, heat extracted by

the intercooler and after the heat extraction the same ducting is used for the air flow to

be further compressed by the core engine. At the exhaust side the gases are not wasted

straight to the environment but they are further expanded by the weather deck low

pressure turbine.

Figure 4.10: General representation of the ducting arrangement of the twin mode cycle gas turbine [11]

The common use of the low and high pressure turbomachinery of the core engine

require for optimum efficiencies at design-point and off-design conditions that the

engine non dimensional parameters to be very similar at both modes at design-point

conditions as it can be seen in figure 4.14 in section 4.3.4.4, which also explains the

use of the same ducting, from the exit of intake air flow from the intercooler until

before the weather deck turbine [11]. In order the weather deck low pressure turbine

to be able to provide the weather deck low pressure compressor with the required

power to compress the intake air flow, the pressure drop available for expansion

before the power turbine is not fully utilized by it, and a small percentage is available

for expansion by the weather deck low pressure turbine [11].

The initial design-point and off-design performance investigation of the twin mode

intercooled cycle gas turbine was performed with the design point power rating of the

low power mode set at 5MW and the high power mode set at 24MW, and the design-
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point thermal efficiency of the two modes of the engine, were 0.3565 and 0.4203 for

the low and high power mode respectively. The total compression pressure ratio of the

engine in the high power mode is very high (PR>85) comparing with gas turbines in

production, and this can be a major restrain factor in the structural integrity of the

engine.

In this technoeconomic investigation the original configuration of the engine was

adopted, with the difference that the high power mode power rating was increased to

25MW, and the turbomachinery’s component isentropic efficiencies were increased

giving higher design-point thermal efficiency at both modes.

4.3.4.2 Design-point performance of the 5MW gas turbine mode

The core gas turbine (TMI low power mode) of the twin mode intercooled cycle is a

5MW simple cycle three-shaft design (figure 4.10) as it was described in section

4.3.4.1 [11]. The design point performance of the core gas turbine at ISA conditions

at zero altitude is shown in table 4.2. Detailed information on the specification and

design-point performance of the low power mode of the engine can be read in its

“Turbomatch” input file in appendix A.1.

Table 4.2: Design-point performance parameters of the low power mode of the simulated TMI gas
turbine

Performance parameter Simulated 5MW simple
cycle gas turbine

Power turbine rating, PPT 5.0 MW

Inlet mass flow, MF 14.90 kg/s

Exhaust mass flow, EF 15.20 kg/s

Exhaust gas temperature, Texh 776.30 K

Fuel flow, FF 0.3031 kg/s

Total compression pressure ratio, PR 22.4:1

Thermal efficiency, ηth 0.383

4.3.4.3 Off-design performance of the 5MW gas turbine mode

The effects of ambient temperature Tamb (in degrees Celsius) and turbine entry

temperature (TET) on the engine power (EP) and fuel flow (FF), total compressor

pressure ratio (PR) and intake mass flow (MF), compressor turbine blade temperature

(TBLADE) and compressor relative rotational speed (CS) relative to design-point are

presented in figures 4.11, 4.12 and 4.13 respectively.
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Figure 4.11: Twin Mode Intercooled Cycle (TMI) (Low Power) – The effect of Ambient (Tamb,
oC) &

Turbine Entry Temperature (TET) on Engine Power (EP) & Fuel Flow (FF)

Figure 4.12: Twin Mode Intercooled Cycle (TMI) (Low Power) – The effect of Ambient (Tamb,
oC) &

Turbine Entry Temperature (TET) on Total Compression Pressure Ratio (PR) and Mass
Flow (MF)
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Figure 4.13: Twin Mode Intercooled Cycle (TMI) (Low Power) – The effect of Ambient (Tamb,
oC) &

Turbine Entry Temperature (TET) on HP Turbine Blade Temperature (TBLADE) & HP
Compressor Relative Rotational Speed (CS) to Design-Point

4.3.4.4 Design-point performance of the 25MW gas turbine mode

The high power mode of the TMI gas turbine was upgraded from the 24MW

initially proposed design-point power turbine rating [11] to 25MW in order to make

the engine directly comparable with the other four gas turbines that take part in this

project. The design-point performance of the high power mode of the gas turbine is

shown in table 4.3. Detailed information on the specification and design-point

performance of the high power mode of the engine can be read below its

“Turbomatch” input file in appendix A.1.

Table 4.3: Design-point performance parameters of the high power mode of the simulated TMI gas
turbine

Performance parameter Simulated 5MW simple
cycle gas turbine

Power turbine rating, PPT 25.0 MW

Inlet mass flow, MF 61.71 kg/s

Exhaust mass flow, EF 62.95 kg/s

Exhaust gas temperature, Texh 561.50 K

Fuel flow, FF 1.2409 kg/s

Total compression pressure ratio, PR 92.51:1

Intercooler outlet temperature, TIOT 298.0 K

Thermal efficiency, ηth 0.467
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The design-point non dimensional mass flow of the gas turbine operating in the

high power as it was explained in section 4.3.4.1 is almost identical with the 5MW

core gas turbine from the intercooler outlet to the entry of the power turbine. The

slight difference as it can be seen in figure 4.14 occurs because of the almost 10 K

higher temperature at the entry of the low pressure compressor when the gas turbine

operates at the high power mode, due to the cooling capabilities of the intercooler. It

was decided to do this intentionally as the initial off-design simulation [11] of the

5MW core gas turbine was made with a reference ambient temperature of 298 K and

the author changed it to ISA (288.15 K) in order to provide a more realistic view of

the operational differences of the two operating modes in off-design conditions,

assuming that the core engine’s component maps would be optimised for operation in

the low power mode. Detailed information on the specification and design-point

performance of the high power mode of the engine can be read in its “Turbomatch”

input file in appendix A.1.

Figure 4.14: Non dimensional flow comparison between high and low power mode at design-point
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4.3.4.5 Intercooler design-point effectiveness

As it was mentioned before in this chapter “Turbomatch” although it accepts the

intercooler effectiveness as an input, in order to operate it requires the intercooler

outlet temperature in the input gas turbine simulation file, which remains steady at

off-design simulations, and the input intercooler effectiveness does not apply. In order

to evaluate the design-point intercooler output temperature and as a consequence

overall design point performance of the engine the following calculations are

presented in equation 4-1 in order to provide the assumed effectiveness of the

intercooler at design-point εΙΝΤ-DP [11] (see reference equation 2-6):

9411.0
15.28898.457

29898.457
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TT

TT

seaIET

IOTIET
DPINT Equation 4-1

Where: TIET is the intercooler inlet temperature.

4.3.4.6 Off-design performance of the 25MW gas turbine mode

The off-design performance of the gas turbine in the intercooled 25MW mode was

obtained for an ambient temperature range from -10 to +40 oC and for turbine

temperature range from 1150 to 1550 K. At turbine entry temperatures below 1300 K

with ambient temperatures below -10 oC “Turbomatch” could not converge as also at

turbine entry temperatures below 1150 K and at the complete range of ambient

temperature. Nevertheless, as it can be observed in the off-design performance figures

4.11 and 4.15 the engine will never be needed to operate below TET 1150 K in high

power mode at ambient temperatures down to -10 oC, as this power bandwidth can be

covered by the low power mode having better thermal efficiency as far as the engine

can be allowed to operate at an off-design TET higher than approximately 1525 K.

The effects of ambient temperature Tamb (in degrees Celsius) and turbine entry

temperature (TET) on the engine power (EP) and fuel flow (FF), total compressor

pressure ratio (PR) and intake mass flow (MF), compressor turbine blade temperature

(TBLADE) and compressor relative rotational speed (CS) relative to design-point are

presented in figures 4.15, 4.16 and 4.17 respectively.



69

0

20

40

60

80

100

1150 1250 1350 1450 1550

TET (K)

E
n

g
in

e
P

o
w

e
r

(M
W

)

0

0.5

1

1.5

2

2.5

F
u

e
l

F
lo

w
(k

g
/s

)

EP TMI25 -10 EP TMI25 0 EP TMI25 +10 EP TMI25 +20
EP TMI25 +30 EP TMI25 +40 FF TMI25 -10 FF TMI25 0
FF TMI25 +10 FF TMI25 +20 FF TMI25 +30 FF TMI25 +40

0

25

50

75

100

125

150

1150 1250 1350 1450 1550

TET (K)

T
o

ta
l

C
o

m
p

r.
P

re
s

s
u

re
R

a
ti

o
&

M
a

s
s

F
lo

w
(k

g
/s

)

PR TMI25 -10 PR TMI25 0 PR TMI25 +10 PR TMI25 +20
PR TMI25 +30 PR TMI25 +40 MF TMI25 -10 MF TMI25 0
MF TMI25 +10 MF TMI25 +20 MF TMI25 +30 MF TMI25 +40

Figure 4.15: Twin Mode Intercooled Cycle (TMI) (High Power) – The effect of Ambient (Tamb,
oC) &

Turbine Entry Temperature (TET) on Engine Power (EP) & Fuel Flow (FF)

Figure 4.16: Twin Mode Intercooled Cycle (TMI) (High Power) – The effect of Ambient (Tamb,
oC) &

Turbine Entry Temperature (TET) on Total Compression Pressure Ratio (PR) and Mass
Flow (MF)
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Figure 4.17: Twin Mode Intercooled Cycle (TMI) (High Power) – The effect of Ambient (Tamb,
oC) &

Turbine Entry Temperature (TET) on HP Turbine Blade Temperature (TBLADE) & HP
Compressor Relative Rotational Speed (CS) to Design-Point

4.3.5 Intercooled gas turbine performance

4.3.5.1 Design-point performance

The intercooled gas turbine (INT) is a three shaft (figure 4.3) concept design that

incorporates the on-engine intercooler between the low and high pressure

compressors. The total compression pressure ratio at design-point is 25:1, and the

optimum thermal efficiency of the gas turbine at the already mentioned total pressure

ratio is obtained by setting the low pressure compressor at pressure ratio of 10.8 % of

the total [5]. The reason for choosing the previously specified total compression

pressure ratio is although better thermal efficiencies can be obtained at higher total

pressure ratios at the specified design-point turbine entry temperatures [5] as it is

already shown in the case of the twin mode intercooled TMI gas turbine it is of

interest of the author to investigate the economic feasibility of an intercooled gas

turbine with relatively low total compression pressure ratio as a marine prime mover.

The design-point performance of the intercooled gas turbine is shown in table 4.4.

Detailed information on the specification and design-point performance of the

intercooled gas turbine can be read in its “Turbomatch” input file in appendix A.1.
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Table 4.4: Design-point performance parameters of the simulated intercooled gas turbine

Performance parameter Simulated 25MW
intercooled gas turbine

Power turbine rating, PPT 25.0 MW

Inlet mass flow, MF 59.99 kg/s

Exhaust mass flow, EF 61.41 kg/s

Exhaust gas temperature, Texh 754.75 K

Fuel flow, FF 1.4217 kg/s

Total compression pressure ratio, PR 25:1

Intercooler outlet temperature, TIOT 310.0 K

Thermal efficiency, ηth 0.408

4.3.5.2 Intercooler design-point effectiveness

The intercooled gas turbine in contrast with the twin mode intercooled gas turbine

is assumed that operates constantly with the intercooler engaged at all off-design

conditions and the complication of matching the operational points of the two modes

in the compressor and turbine maps does not exist. This allows the intercooler to

operate at lower design-point effectiveness, which can affect the prime mover cost

PMC of the gas turbine and also its life cycle cost. In order to evaluate the design-

point intercooler output temperature and as a consequence overall design point

performance of the engine the following calculations are presented in equation 4-2 in

order to provide the assumed effectiveness of the intercooler at design-point εΙΝΤ-DP

(see reference equation 2-6):

7915.0
15.28895.392

31095.392
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4.3.5.3 Off-design performance

The effects of ambient temperature Tamb (in degrees Celsius) and turbine entry

temperature (TET) on the engine power (EP) and fuel flow (FF), total compressor

pressure ratio (PR) and intake mass flow (MF), compressor turbine blade temperature

(TBLADE) and compressor relative rotational speed (CS) relative to design-point are

presented in figures 4.18, 4.19 and 4.20 respectively.
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Figure 4.18: Intercooled Cycle (INT) – The effect of Ambient (Tamb,
oC) & Turbine Entry Temperature

(TET) on Engine Power (EP) & Fuel Flow (FF)

Figure 4.19: Intercooled Cycle (INT) – The effect of Ambient (Tamb,
oC) & Turbine Entry Temperature

(TET) on Total Compression Pressure Ratio (PR) and Mass Flow (MF)
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Figure 4.20: Intercooled Cycle (INT) – The effect of Ambient (Tamb,
oC) & Turbine Entry

Temperature (TET) on HP Turbine Blade Temperature (TBLADE) & HP Compressor
Relative Rotational Speed (CS) to Design-Point

4.3.6 Recuperated gas turbine performance

4.3.6.1 Design-point performance

The recuperated gas turbine (REQ) is a two shaft concept design (figure 4.4) and its

performance simulation does not incorporate the use of variable area nozzles. The

engine is a concept design that incorporates a recuperator in order to elevate the

temperature of the compressed mass flow (by transferring the heat from the exhaust

mass flow) before entering the engine’s burner (section 4.2.3). The engine was

optimized for optimum efficiency according to the recuperator specification and the

specified design-point turbine entry temperature, and it was obtained at 13:1 total

compressor pressure ratio. The design-point performance of the recuperated gas

turbine is shown in table 4.5. Detailed information on the specification and design-

point performance of the recuperated gas turbine can be read in its “Turbomatch”

input file in appendix A.1.
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Table 4.5: Design-point performance parameters of the simulated recuperated gas turbine

Performance parameter Simulated 25MW
recuperated gas turbine

Power turbine rating, PPT 25.0 MW

Inlet mass flow, MF 76.25 kg/s

Exhaust mass flow, EF 77.68 kg/s

Exhaust gas temperature, Texh 879.61 K

Fuel flow, FF 1.4260 kg/s

Total compression pressure ratio, PR 13:1

Thermal efficiency, ηth 0.407

4.3.6.2 Off-design performance

The effects of ambient temperature Tamb (in degrees Celsius) and turbine entry

temperature (TET) on the engine power (EP) and fuel flow (FF), total compressor

pressure ratio (PR) and intake mass flow (MF), compressor turbine blade temperature

(TBLADE) and compressor relative rotational speed (CS) relative to design-point are

presented in figure 4.21, 4.22 and 4.23 respectively.

Figure 4.21: Recuperated Cycle (REQ) – The effect of Ambient (Tamb,
oC) & Turbine Entry

Temperature (TET) on Engine Power (EP) & Fuel Flow (FF)
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Figure 4.22: Recuperated Cycle (REQ) – The effect of Ambient (Tamb,
oC) & Turbine Entry

Temperature (TET) on Total Compression Pressure Ratio (PR) and Mass Flow (MF)

Figure 4.23: Recuperated Cycle (REQ) – The effect of Ambient (Tamb) & Turbine Entry Temperature
(TET) on HP Turbine Blade Temperature (TBLADE) & HP Compressor Relative
Rotational Speed (CS) to Design-Point
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4.3.7 Intercooled/Recuperated gas turbine performance

4.3.7.1 Design-point performance

The intercooled/recuperated gas turbine (ICR) is a three shaft design (figure 4.5)

and its configuration as also its output power rating is modelled having as reference

the existing Rolls-Royce WR21 intercooled/recuperated marine gas turbine [14] [19]

[20], as also the total compression pressure ratio and the pressure ratios of the low

and high pressure compressors. The simulated engine does not incorporate variable

area nozzles. The design-point performance of the intercooled/recuperated gas turbine

is shown in table 4.6. Detailed information on the specification and design-point

performance of the intercooled/recuperated gas turbine can be read in its

“Turbomatch” input file in appendix A.1.

Table 4.6: Design-point performance parameters of the simulated intercooled/recuperated gas turbine

Performance parameter Simulated 25MW
intercooled/recuperated

gas turbine

Power turbine rating, PPT 25.0 MW

Inlet mass flow, MF 66.80 kg/s

Exhaust mass flow, EF 68.13 kg/s

Exhaust gas temperature, Texh 642.53 K

Fuel flow, FF 1.3330 kg/s

Total compression pressure ratio, PR 14.7:1

Thermal efficiency, ηth 0.4349

4.3.7.2 Intercooler design-point effectiveness

The intercooler design-point effectiveness of the intercooled/recuperated gas

turbine is presented in equation 4-3.

8149.0
15.28824.406

31024.406
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DPINT Equation 4-3

4.3.7.3 Off-design performance

The effects of ambient temperature Tamb (in degrees Celsius) and turbine entry

temperature (TET) on the engine power (EP) and fuel flow (FF), total compressor

pressure ratio (PR) and intake mass flow (MF), compressor turbine blade temperature

(TBLADE) and compressor relative rotational speed (CS) relative to design-point are

presented in figure 4.24, 4.25 and 4.26 respectively.
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Figure 4.24: Intercooled/Recuperated Cycle (ICR) – The effect of Ambient (Tamb,
oC) & Turbine Entry

Temperature (TET) on Engine Power (EP) & Fuel Flow (FF)

Figure 4.25: Intercooled/Recuperated Cycle (ICR) – The effect of Ambient (Tamb) & Turbine Entry
Temperature (TET) on Total Compression Ratio (PR) and Mass Flow (MF)
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Figure 4.26: Intercooled/Recuperated Cycle (ICR) – The effect of Ambient (Tamb) & Turbine Entry
Temperature (TET) on HP Turbine Blade Temperature (TBLADE) & HP Compressor
Relative Rotational Speed (CS) to Design-Point

4.4 Hot Section Rotor Blade Creep Life Dataset

4.4.1 Definitions
A primitive hot section gas path sizing was performed for each of the simulated gas

turbines in order to obtain the hot section rotor blade height and distance from mid-

shaft to mid-blade, and as a consequence the design-point rotational speed of the high

pressure turbine shaft N (or just turbine shaft in the case of single shaft gas generator)

at the specified design point blade time to failure tf (hot section design-point overhaul

interval) which is set at 30,000 hours. The calculations were performed without

taking into account the amount of cooling mass flow that is mixed with the main gas

flow exiting the combustor, as the off-design results are not affected by this

assumption because what determines the off-design centrifugal stress σcfo is the ratio

between the off-design Nod and design-point N shaft rotational speed (relative

rotational shaft speed) which is expressed in equation 2-5. Of greater importance is

the calculation of the design-point turbine rotational speed which in combination with

the design-point turbine entry temperature TET, design-point cooling flow
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temperature Tc, constant assumed blade cooling effectiveness ε and blade material

properties, design and dimensions determine the Larson-Miller parameter LMP, thus

the specified design-point blade time to failure tf. No coatings are assumed that are

applied on the surface of the hot section turbine blade.

4.4.2 Hot section rotor blade material data

4.4.2.1 Material general description

The material that the hot section turbine blade is assumed that is made of, was

chosen to be the polycrystalline GTD-111 Nickel based superalloy which has been

developed by General Electric in the mid-70’s and is used as a stage one blade

construction material in a wide range of industrial and aeroderivative gas turbines

[21]. The material possesses a 20 oC creep rupture advantage over the also widely

used stage one turbine blade material IN738 which substitutes [21] [13] [20], and its

composition suggests that it is a derivative of IN738 and the also widely used aero-gas

turbine alloy René 80 [13].

4.4.2.2 Material Larson-Miller data

The Larson-Miller diagram [13] of the polycrystalline GTD-111 nickel based

super alloy is presented in figure 4.27. The diagram contains data from a study [13]

and published data, of which the latter was implemented in the gas turbine hot section

rotor blade creep life model. The implementation method of the diagram in the model

is described in chapter 2, section 2.4.2.

Figure 4.27: Larson-Miller diagram of the polycrystalline GTD-111 hot section turbine blade material
[13]
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4.4.2.3 Material density

The density of the polycrystalline GTD-111 at room temperature as aged or any

other conditions was not found in any published or academic literature and a

approximate value was assumed to be used as blade material density which is

ρb=8500 kg/m3. The estimation was based first on the density of IN738, which was

found to be 8110 kg/m3 at 1033 K [22], and second on the reduction of the density of

the Nickel based superalloy stage one aero-gas turbine blade material CMSX-4

which was found to be approximately 4% at temperatures between 298 K and 1050 K

[23].

4.4.3 Hot section gas path sizing and shaft rotational speed

4.4.3.1 Gas path sizing methodology

The gas path sizing procedure was performed in order to obtain a very approximate

value of the hot section turbine blade height hb and the distance from mid-shaft to

mid-blade rmb. The method that is described in this section is based on small part of a

complete study on the gas-flow-path sizing and aero-engine weight [24] and uses a

combination of gas-dynamic and geometric formulas as they are presented later in this

section. In order to obtain the hot section turbine blade height hb and the distance from

mid-shaft to mid-blade rmb, the initial step is to calculate the velocity coefficient ψ at

the entry of the turbine which is defined in the gas-dynamic equation 4-4 [24].
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Equation 4-4

Where: γ is the ratio of specific heats which at the hot section is assumed 1.33 and M

is the mach number of the gas flow at the entry of the turbine which is

assumed at all cases at 0.3.

The next step is the estimation of flow coefficient φ which is defined in the gas-

dynamic equation 4-5 [24].
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The gas path area AGP at the entry of the turbine can then be calculated as defined in

the gas-dynamic equation 4-6 [24].
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Where: GF is the gas mass flow, TT is the temperature of the gas flow, PT the pressure

of the gas flow at the entry of the turbine and Sgc is a gas dynamic constant

which is defined in equation 4-7 [24].
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Where: R is the gas is the universal gas constant (8.31432 J/molK).

Then the tip diameter DT is calculated as it is defined in equation 4-8 [24].
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Equation 4-8

Where: HTR is the hub-to-tip ratio, which at the entry of the hot section turbine is

assumed 0.82 for all simulated marine gas turbines.

The hub diameter DH is calculated by using equation 4-9 and the blade height hb is

defined in equation 4-10 [24].

)(HTRDD TH  Equation 4-9
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 Equation 4-10

Finally the mid-shaft to mid-blade distance rmb is calculated by using equation 4-11

[24].
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 Equation 4-11

4.4.3.2 Calculation of hot section blade height and distance from mid-shaft to
mid-blade

The calculation of the hot section blade height and distance from mid-shaft to mid-

blade was performed for each of the simulated marine gas turbine by implementing

the method described in the previous section on an excel spreadsheet. The gas mass

flow properties required by equation 4-6 at the engine station that represents the entry

of the hot section turbine were obtained from the detailed design-point performance

results below the “Turbomatch” input file in appendix A.1. The supplemented input
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data for the calculation of the hot section blade dimensions required by the method

described in the previous section is presented in table 4.7, where in the case of the

TMI cycle gas turbine the calculation is performed by using the 5MW low-power

HPT thermodynamic state as there is a little difference in the simulation of design-

point results in the non-dimensional flow and speed of the HPC between the low and

high power mode, but it needs to be mentioned that during operation at design-point

there is a difference in the HPC outlet temperature of +9 K between the high-power

and the low-power mode (see also section 4.3.4.4).

Table 4.7: Supplement input data for the calculation of the hot section blade height and distance from
mid-shaft to mid-blade for each of the simulated marine gas turbines

Parameter/Engine Simple
cycle

TMI cycle
(both

modes)

Intercooled
cycle

Recuperated
cycle

Intercccoled/
Recuperated

cycle

Pressure at turbine
entry (N/m2)

168721.6 218831.8 233089.9 112412.2 123674

Gas mass flow GF
(kg/s)

65.41 13.6 55.41 70.051 61.453

The calculated results, with the use of the method described in the previous section,

of the hot section turbine blade height hb and distance from mid-shaft to mid-blade rmb

are presented in table 4.8 and were used as input data for the calculation of the design

point turbine rotational speed N. The results describe from a very general point of

view the dimensional differences between the hot section rotor blades of the simulated

gas turbines due to their adopted thermodynamic cycles and power output.

Table 4.8: Results presentation of the calculated blade height and distance from mid-shaft to mid-blade
for each of the simulated marine gas turbines

Parameter/Engine Simple
cycle

TMI cycle
(both

modes)

Intercooled
cycle

Recuperated
cycle

Intercooled/
Recuperated

cycle

Blade height, hb

(cm)
10.94 4.38 8.57 13.88 12.39

Distance from mid-
shaft to mid-blade,

rmb (cm)

55.35 22.16 43.34 70.17 62.66

4.4.3.3 Calculation of design-point turbine rotational speed

The calculation of the hot section shaft rotational speed was performed in order to

adjust the design-point blade time to failure tf at 30,000 hours, as the thermodynamic

state and the essential dimensional properties of the hot section rotor blade are already
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calculated. For the calculation of the design-point turbine rotational speed N the rotor

blade creep life model (chapter 2, section 2.4) was used independent from

“Poseidon”, and an iteration routine was added to the model which performed turbine

rotational speed steps of 0.01 rpm from to low to high values, until the Larson-Miller

criterion (equation 2-3) calculated the nearest design-point blade time to failure tf

value to 30,000 hours. The supplement input data that were used are presented in table

4.8 and table 4.9. The shroud parameter Ks was given a universal value of 1.2.

Table 4.9: Supplement input data for the calculation of the turbine rotational speed of each of the
simulated marine gas turbines

Parameter/Engine Simple
cycle

TMI cycle
(both

modes)

Intercooled
cycle

Recuperated
cycle

Intercccoled/
Recuperated

cycle

Cooling flow
temperature, Tc (K)

687.06 746.00 609.38 626.53 505.65

The calculated results of the design-point turbine rotational speed N for each of the

simulated marine gas turbines that were obtained with the method described earlier in

this section and define the design-point blade time to failure tf at 30,000 hours are

presented in table 4.10.

Table 4.10: The design-point turbine rotational speed of each of the simulated marine gas turbines

Parameter/Engine Simple
cycle

TMI cycle
(both

modes)

Intercooled
cycle

Recuperated
cycle

Intercccoled/
Recuperated

cycle

Turbine design
point rotational
speed, N (rpm)

7279.3 16706.0 10000.0 6068.2 7524.2

Note: The +9 K difference in the HPC outlet temperature between the high-power

and the low-power mode of the TMI cycle gas turbine causes the design-point blade

time to failure tf to drop to approximately 23,000 hours, a phenomenon that will have

a negative effect in the maintenance cost of the TMI power plant.
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4.5 Gas Turbine Emissions Dataset

4.5.1 Emissions background overview

4.5.1.1 Nitric oxide (NOx) emissions

The nitric oxide (NOx) compounds are toxic and environmentally hazardous

because when they are emitted in the atmosphere they initiate chemical reactions that

form nitric acid which is part of the components of acid rain and they take part in the

creation of low level or tropospheric ozone. Nitric oxide is produced by three different

mechanisms:

 “Thermal” NOx

 “Fuel” NOx

 “Prompt” NOx

“Thermal” NOx

“Thermal” NOx which utilises the Zeldovich mechanism is produced at high

temperatures in the flame post flame gases (>1850 K) during combustion and it is

proportional to the residence time and is affected by pressure [25]. The production of

“Thermal” NOx reaches its highest values at the lean-fuel side of the stoichiometric

mixture ratio, because of the potential of fuel and nitrogen to react with the available

oxygen, and it is highly affected by fluctuations in the mass flow temperature entering

the combustor, as increasing the mass flow temperature the levels of “Thermal” NOx

also increase. The effects of fuel type (i.e. liquid and gaseous fuels) on the production

of “Thermal” NOx are significant especially at lower regions of flame temperature

(<1900 K) where gaseous fuels have the advantage of producing lower levels of

“Thermal” NOx than liquid fuels though at higher regions of flame temperature

(>1900 K) gaseous fuels start to approach the “Thermal” NOx production levels of

liquid fuels [26].

“Fuel” NOx

In the case that fuel contains organically bounded nitrogen then at the combustion

process it will form an amount of the so-called “Fuel” NOx. The percentage of the

nitrogen that will create nitric oxide compounds depends on the characteristics of the

combustion process [27]. Distillate fuels contain a small amount of organically

bounded nitrogen which averages at 0.06%. Gaseous fuels (i.e. natural gas) can
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contain more than 4% of organically bounded nitrogen, but it is removed in a high

percentage before it is commercially available.

“Prompt” NOx

The “Prompt” NOx is mainly formed in low temperature fuel-rich flames a

phenomenon that is not compatible with the kinetically overall process and its levels

cannot be predicted at any degree of precision, but it becomes an important NOx

emissions factor in combustor that incorporates lean premixed combustion [27].

4.5.1.2 Carbon monoxide (CO) emissions

Carbon monoxide emissions are toxic and they can theoretically be created first if

the primary zone of the combustor operates at fuel-rich conditions where the oxygen

levels do not allow the formation of carbon dioxide (CO2) and second if the mixture

ratio in the primary zone is stoichiometric or slightly fuel-lean, where these conditions

advance the dissociation of carbon dioxide (CO2) [27]. Practically carbon monoxide

is formed at low flame temperatures where there is incomplete combustion and some

of the reasons that cause it, are[27]:

 Inadequate burning rates in the primary zone due to very low fuel/air ratio and

residence time.

 Not complete mixing of fuel with air where mixture can be very lean to

support combustion or very rich which create high concentrations of carbon

monoxide.

 Rapid cool-down of the post-flame products caused from the liner wall

cooling air. That is the reason annular combustors inherently produce lower

carbon monoxide levels than tubular.

4.5.1.3 Unburned hydrocarbons (UHC) emissions

Unburned hydrocarbons emissions are toxic and are believed to be created

primarily by poor atomisation, inadequate burning rates in the primary zone and the

rapid cool-down of the post flame products caused from the liner wall cooling air

[27]. Generally unburned hydrocarbons are produced (as carbon monoxide) at low

flame temperatures where both emission compounds are produced in high amounts

and significantly decrease with increasing flame temperatures and pressures thus

engine power, which is also a characteristic of carbon monoxide emissions.
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4.5.1.4 Carbon dioxide (CO2) emissions

Carbon dioxide is primarily responsible for the phenomenon of global warming and

its emitted quantities are governed by the quality and quantity of the fuel. Methods of

decreasing the carbon dioxide emissions are:

 The use of high low-calorific value fuels.

 Adoption of advanced thermodynamic cycles and technologies which promote

part and full load thermal efficiency.

4.5.2 Design-point emissions index calibration

4.5.2.1 Dry-low emissions combustor (DLE)

The design-point exhaust emission indexes (EI) (grams of exhaust emission

quantity per kilogram fuel, g/kg, as required by “APPEM”) of NOx, CO and UHC of

all simulated gas turbine combustors needed to be calibrated to the same levels before

obtaining and tabulating their off-design rates into the gas turbine exhaust emissions

model (chapter 2, section 2.3). The design-point exhaust emissions rates were mostly

(see UHC emission index) modelled from published information on already in

production and measured dry-low emissions combustors (DLE) [16] [28]. The units

that the information on the exhaust emission output quantities is usually published are

parts per million on a volume dry basis (ppmv) corrected to a certain percentage of

excess oxygen (3%, 7%, 15% etc.) with the majority of publications (as discovered by

the author) presenting the emission quantities output rates corrected to 15% oxygen at

standard conditions (20 oC, 1 atm). The conversion from parts per million on volume

dry basis (ppmv) assuming standard conditions to EI (g/kg) can be accomplished by

the proposed equation 4-12. The conversion is independent of the percentage of

excess oxygen the exhaust emission quantity samples are corrected to.
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 Equation 4-12

Where: Subscript p can be NOx, CO and UHC, ρair is assumed 1.225 kg/m3, Mp is the

molar mass of the exhaust emission output quantity, Vmole is the volume

occupied by one mole of gas at standard conditions (24.45 L) and Vfluegas

equals with 1,000,000 m3 of flue gas.
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It needs to be stated at that point that because the twin-mode intercooled cycle

(TMI) operates at two different total compression pressure ratios-although combustor

inlet temperature is almost the same which means that there are two standards of

exhaust emission quantity rates depending on the operational power mode, it had to be

decided whether the emission indexes should be calibrated by taking the low or high

power mode as point of reference (section 4.3.4). Because of the fact that there is not

a production DLE combustor that operates at such high compression pressure ratios as

the high power mode of the TMI cycle gas turbine which would be of considerable

high volume and mechanical integrity thus of higher technological level of the DLE

combustors currently in the market, the emission indexes were calibrated by taking as

point of reference the low power mode. In the case that any investigation requires the

emission indexes of the high power mode to be at the same level as production DLE

combustors results can be easily obtained by “APPEM” and can be modelled in the

gas turbine emissions model (chapter 2, section 2.3) with no additional procedure

steps.

NOx emissions index (EINOx)

The NOx design-point exhaust emissions quantity output level for all simulated gas

turbines (except for the TMI cycle gas turbine) using distillate fuel as it is assumed in

the case studies of the RoPax ferry and the Destroyer (chapter 5, section 5.5.1) was

calibrated at 100 ppmv dry corrected to 15% O2 [16]. In the case study (chapter 5,

section 5.5.2) of the intercooled/recuperated gas turbine which is used as a prime

mover in the LNG carrier and it is assumed that uses natural gas as fuel the NOx

design-point emissions quantity output level was calibrated at 25 ppmv dry corrected

to 15% O2 [16]. The molar mass MNOx of NOx was assumed to be the same as of nitric

dioxide (NO2) at 46 g/mole. The design-point NOx emissions index EINOx for the two

different fuels, distillate and natural gas respectively, is presented in table 4.11,

together with the design-point NOx emissions index EINOx of the high power mode of

the TMI cycle gas turbine.
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Table 4.11: NOx design-point emissions index for distillate and natural gas

Distillate Natural
Gas

Parameter/Fuel

All gas turbines TMI high
power mode

ICR only in
LNG carrier

NOx emissions index,
EINOx (g/kg)

7.20 13.36 2.62

CO emissions index (EICO)

The procedure of calibrating the CO design-point exhaust emissions output quantity

level is identical with procedure that was described in the previous section for the

NOx. The CO exhaust emissions output quantity level for distillate fuel and natural

gas was calibrated at 20 ppmv and 7 ppmv dry corrected to 15% O2, respectively [16].

The molar mass MCO of CO is 28 g/mole. The design-point CO emissions index EICO

for the two different fuels, distillate and natural gas respectively, is presented in table

4.12, together with the design-point CO emissions index EICO of the high power mode

of the TMI cycle gas turbine.

Table 4.12: CO design-point emissions index for distillate and natural gas

Distillate Natural
Gas

Parameter/Fuel

All gas turbines TMI high
power mode

ICR only in
LNG carrier

CO emissions index,
EICO (g/kg)

1.35 0.22 0.443

UHC emissions index (EIUHC)

The calibration of UHC exhaust emissions quantity output rate for distillate fuel

was accomplished with an “approximation” method as no specific values (ppmv, dry

corrected to 15% O2) were found in the open literature for gas turbines that

approximately have similar cycle design parameters (turbine entry temperature, total

compression pressure ratio etc.) so the ICAO aero-gas turbine database [28] was

studied and it was found that there is not a certain ratio between EIUHC and EICO

although they are created at similar conditions (sections 4.5.1.2 and 4.5.1.3). The

liberation was taken to calibrate the UHC emissions index EIUHC directly at a ratio

EICO/ EIUHC of approximately 5.5 resulting in an EIUHC of 0.245 g/kg which if it is

assumed that the molar mass MUHC of UHC exhaust emissions for distillate fuel is the

same as of propylene (C3H6) at 42 g/mole [29] then by using equation 4-12 the UHC
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design-point exhaust emissions quantity output level is calculated to be approximately

4 ppmv dry corrected to 15% O2.

The calibration of UHC exhaust emissions quantity output level for natural gas fuel

was obtained by taking as point of reference published information [16] and was set at

2.75 ppmv dry corrected to 15% O2. The molar mass MUHC of UHC for natural gas

was assumed to be the same as of methane (CH4) at 16 g/mole. The design-point UHC

emissions index EIUHC for natural gas, is presented in table 4.13 including also the

EIUHC for distillate fuel, together with the design-point UHC emissions index EIUHC of

the high power mode of the TMI cycle gas turbine.

Table 4.13: UHC design-point emissions index for distillate and natural gas

Distillate Natural
Gas

Parameter/Fuel

All gas turbines TMI high
power mode

ICR only in
LNG carrier

UHC emissions index,
EIUHC (g/kg)

0.245 0.006 0.069

CO2 emissions index (EICO2)

The CO2 emissions index did not need to be calibrated as it solely depends on the

low-calorific value (LCV) of the fuel. The assumption concerning the low-calorific

value of distillate (assumed at 43.165 MJ/kg) and natural gas (depends between 38-50

MJ/kg) fuel respectively is that both have a similar LCV [30]. The CO2 emissions

index EICO2 (which is directly obtained from “APPEM”) is rated at 3137g/kg.

4.5.2.2 Conventional combustor (SAC)

Distillate fuel

The calibration of the emission indexes EI of NOx, CO and UHC for distillate fuel,

in order to reflect the exhaust emission output quantities of a conventional single

annular combustor, was accomplished by taking as point of reference published

information on uncontrolled NOx exhaust emissions output quantity levels (ppmv dry

corrected at 15% O2) [16] [31] and adjusting at the same incremental proportion the

CO and UHC exhaust emissions output quantity levels. The NOx exhaust emission

output quantity level was increased by a factor of 3.1 (310 ppmv dry corrected to 15%

O2) which was applied also to CO and UHC (62 ppmv and approximately 12.4 ppmv,
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respectively). The increased values of the exhaust emission quantities were

implemented at the life cycle costs model (chapter 3, section 3.2.2.6, equation 3-29)

by setting the combustor technology factor Ktech at 3.1, as the combustor adopted

technology is assumed to have a linear effect on the exhaust emissions output

products (chapter 2, section 2.3). The design-point NOx, CO and UHC emissions

indexes EINOx, EICO, EIUHC for distillate fuel, are presented in table 4.14, together with

the design-point emissions indexes of the high power mode of the TMI cycle gas

turbine.

Table 4.14: Emission indexes of conventional combustor for distillate fuel

DistillateParameter/Fuel

All gas turbines TMI high
power mode

NOx emissions index,
EINOx (g/kg)

22.32 41.16

CO emissions index,
EICO (g/kg)

4.19 0.682

UHC emissions index,
EIUHC (g/kg)

0.76 0.018

Natural gas fuel

The calibration of the emission indexes EI of NOx, CO and UHC for natural gas

fuel was obtained by following the same procedure as described in the previous sub-

section. The uncontrolled NOx exhaust emissions output quantity levels (ppmv dry

corrected at 15% O2) were calibrated at 208 ppmv [16] [31] by setting the combustor

technology factor Ktech at 2.08. The uncontrolled CO and UHC exhaust emissions

output quantity levels were set at approximately 37.8 ppmv and 7.5 ppmv respectively

by setting the combustor technology factor Ktech at 1.89 for both exhaust emission

quantities [28]. The design-point NOx, CO and UHC emissions indexes EINOx, EICO,

EIUHC for distillate fuel, are presented in table 4.15.

Table 4.15: Emission indexes of conventional combustor for natural gas fuel

Natural gasParameter/Fuel

ICR only in
LNG carrier

NOx emissions index,
EINOx (g/kg)

14.98

CO emissions index,
EICO (g/kg)

2.55

UHC emissions index,
EIUHC (g/kg)

0.463
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4.5.3 Off-design exhaust emissions quantity rates
The off-design exhaust emissions quantity rates for each simulated gas turbine

including the two power modes of the TMI gas turbine cycle which were obtained

with the use of the gas turbine performance and gas turbine emissions models are

presented in appendix B.1 in the following format:

 The effect of ambient (Tamb) & turbine entry temperature (TET) on carbon

dioxide (CO2) and unburned hydrocarbons (UHC) exhaust emissions rates.

 The effect of ambient (Tamb) & turbine entry temperature (TET) on nitric oxide

(NOx) and carbon monoxide (CO) exhaust emissions rates.

4.6 References
1. http://www.cospp.com/articles/

2. Polyzakis, A.L., “Technoeconomic Evaluation of Trigeneration Plant: Gas Turbine Performance,
Absorption Cooling and District Heating”, PhD Thesis, Cranfield University, Academic Years
2002-2006.

3. Boyce, M.P, “Gas Turbine Engineering Handbook, Third Edition”, Gulf Professional Publishing,
ISBN No. 0-88414-732-6, Chapter 2, pp 67-75, 2006.

4. Pilidis, P., Palmer, J.R., “Gas Turbine Theory and Performance”, MSc Thermal Power Lecture
Notes, Cranfield University, October 2006.

5. Cunha Alves da, M.A., Franca Mendes Carneiro de, H.F., Barbosa, J.R., Travieso, L.E., Pilidis, P.,
“An Insight on Intercooling and Reheat Gas Turbine Cycles”, Proceedings of the Institution of
Mechanical Engineers, Vol. 215, Part A, pp 163-171, 2001.

6. Kim, T.S., Hwang, S.H., “Part Load Performance Analysis of Recuperated Gas Turbines
Considering Engine Configuration and Operation Strategy”, Journal of Energy, Vol. 31, Issues 2-
3, pp 260-277, February-March 2006.

7. Walsh, P.P., Fletcher, P., “Gas Turbine Performance, Second Edition”, Blackwell Science Ltd.,
ISBN No. 0-632-06434-X, Chapter 6, pp 299-301.

8. Walsh, P.P., Fletcher, P., “Gas Turbine Performance, Second Edition”, Blackwell Science Ltd.,
ISBN No. 0-632-06434-X, Chapter 5, pp159-166, pp 191-195, pp 243-245.

9. http://library.thinkquest.org/C007007/energy/conventional/Gas_turbine.htm

10. Marx, M., “Investigation and Optimisation of Intercooling in an Intercooled Recuperative Aero
Engine”, MSc Thesis, Cranfield University, Academic Year 2006-2007.

11. Kazatzis, P., “A Novel and Compact Marine Propulsion System”, MSc Thesis, Cranfield
University, Academic Year 1996-1997.

12. www.benwiens.com/enenrgy2.html

13. Daleo, J.A., Wilson J.R., “GTD-111 Alloy Material Study”, Journal of Engineering for Gas
Turbines and Power, Vol. 120, pp 374-382, April 1998.

http://www.cospp.com/articles/
http://library.thinkquest.org/C007007/energy/conventional/Gas_turbine.htm
http://www.benwiens.com/enenrgy2.html


92

14. “WR 21 Propulsion Module, Fact Sheet”, Rolls-Royce plc, Ref: MP/37/00, 2000.

15. “LM 2500 Marine Gas Turbine”, GE Marine, Ref: AE-28203F, August 2006.

16. Badeer, G.H., “GE Aeroderivative Gas Turbines-Design and Operating Features”, GE Power
Systems, Ref: GER-3695E, October 2000.

17. “LM 2500 Gas Turbine”, GE Aero Energy*.
*http://gepower.com/prod_serv/products/aero_turbines/en/downloads/lm2500.pdf

18. Andreini, A., Facchini, B., “Gas Turbine Design and Off-design Performance Analysis with
Emissions Evaluation”, Journal of Engineering for Gas Turbines and Power, Vol. 126, pp 83-91,
January 2004

19. Parker, M.L., MacLeod, P.K., Coulson, M., “Advances in a Gas Turbine System for Ship
Propulsion”, RTO AVT Symposium on “Gas Turbine Engine Combustion, Emissions and
Alternative Fuels”, Lisbon, Portugal, 12-16 October 1998.

20. Shepard, S.B., Bowen, T.L., Chiprich, J.M., “Design and Development of the WR-21 Intercooled
Recuperated (ICR) Marine Gas Turbine”, Journal of Engineering for Gas Turbines and Power,
Vol. 117, pp 557-562.

21. Schilke, B., “Advanced Gas Turbine Materials and Coatings”, GE Energy, Ref: GER-3569G,
August 2004.

22. Thakur, A., “Microstructular Responses of a Nickel-Base IN-738 Superalloy to a Variety of Pre-
Weld Heat-Treatments”, MSc Thesis, The University of Manitoba, Academic Year 1996-1997.

23. Mills, K.C., Youssef, Y.M., Li, Z., Su, Y., “Calculation of Thermophysical Properties of Ni-based
Superalloys”, ISIJ International, Vol. 46, No. 5, pp 623-632, 2006.

24. Shanghi, V., Kishore Kumar, S., Sundararajan, V., “Preliminary Estimation of Engine Gas-Flow-
Path Size and Weight”, Journal of Propulsion and Power, Vol. 14, No. 2, pp 208-214, March-April
1998.

25. Razdan, M.K., Chin, J.S., “Marine Gas Turbine Engine Emissions: Current State of the Art and
Future Needs”, 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Indianapolis, IN, June
27-29, 1994.

26. Lefebvre, A.H., “Gas Turbine Combustion, Second Edition”, Taylor and Francis, ISBN No. 1-
560-32673-5, Chapter 9, pp 324-333.

27. Lefebvre, A.H., “Fuel Effects on Gas Turbine Combustion”, Performed by: School of Mechanical
Engineering, Purdue University, West Lafayette IN 47907, Controlled by: Aero Propulsion
Laboratory, Air Force Wright Aeronautical Laboratories, Wright Paterson Air Force Base, Ohio
45433, Status: Unlimited distribution, January 1983.

28. “ICAO Engine Emissions Databank”, Issue 15, 16 July 2007.

29. Dake, A.R., “Modelling and Control of Cold Start Hydrocarbons Emissions”, MSc Thesis, Indian
Institute of Technology, Bombay, Academic Year 2004-2005.

30. Walsh, P.P., Fletcher, P., “Gas Turbine Performance, Second Edition”, Blackwell Science Ltd.,
ISBN No. 0-632-06434-X, Chapter 13, pp 587-592.

31. “Alternative Control Techniques Document-NOx Emissions from Stationary Gas Turbines”, U.S
Environmental Protection Agency, Office of Air and Radiation, Office of Air Quality Planning and
Standards, Ref: EPA-453/R-93-007, Chapter 2, pp. 4-10, January 1993.



93

5 TERA Case Studies Dataset: “Poseidon”
Scheme and Scenarios

5.1 Introduction
This chapter starts with the description and specification of the existing and in pre-

production stage marine vessels that were used as reference for their simulated

equivalent expressions implemented on the marine vessel power prediction model,

based on published and academic literature. Consequently, the simulated marine

vessels are described and their specification and performance is presented, including

essential definitions on common procedures, parameters and assumptions made

during pre-modelling and modelling stage. Information is also given on the modelling

procedure and any evaluation tools used. The chapter continues with definitions and

background information on the supplementing dataset that was implemented on each

of the models that compose the “Poseidon” scheme; and delimit the structure of the

three case studies that fulfil the technical and environmental part of TERA of this

project. There more, the journey scenarios dataset are defined for each of the marine

vessels and as a consequence each case study.

5.2 Marine Vessel Power Prediction Model Dataset

5.2.1 Reference marine vessels description and specification

5.2.1.1 Reference RoPax fast ferry

The marine vessel that was chosen to be used as reference for the simulation of the

RoPax fast ferry is a typical example of a 3rd generation fast monohull roll-on/roll-off

passenger ferry that exceeds an overall length of 180 m and has a service/or maximum

speed of 29 knots [1] [2] [3].All these vessels typically have a diesel engine four

stroke medium speed power plant (2-4 prime movers) coupled with a twin propeller

arrangement via mechanical transmission (reduction shaft speed gear box and

engaging/disengaging clutch) and for the auxiliary service load they incorporate 1~4

four stroke high speed diesel generators. Their hull design is of normal shape and

universally incorporates a bulbous bow and a transom stern that reduce the

hydrodynamic resistance of the vessel [4]. The number of thrusters installed on the
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hull can vary from one to two positioned for and zero to two positioned aft, with the

reference vessel having two positioned for and one positioned aft. For good stability

the reference vessel incorporates a pair of anti-vortex stabilizer fins positioned mid-

ship. Information on the propeller design parameters of the reference RoPax fast ferry

in not published in the public domain, but research on marine vessels of similar size,

form and propeller arrangement showed that propeller diameter can vary from 4.5 to

5.5m [3] [5] [6] [7] depending on limitations from the draft and the breadth of the

marine vessel and other factors which are beyond the scope of the current research.

The published information on the technical specification of the reference RoPax fast

ferry is shown in table 5.1 [1] [8] [9].

Table 5.1: Reference RoPax fast ferry published design parameters

Parameter

Length overall, Loa (m) 194.30

Length between perpendiculars, Lpp (m) 176.0

Length at water line, L 188.54

Breadth, B (m) 25.0

Design draft, T (m) 6.40

Displacement, Δ (tons) 16997.3

Wetted surface area, SH (m2) 5116

Service speed at 85-90% MCR (knots) 28.5

Prime movers 4 x geared medium speed 4-stroke diesels

Installed prime mover power (MW) 42.24

Auxiliary generators 3

Installed auxiliary power (MW) 4.38

Propulsion devices 2 x controllable pitch propellers (CPP)

Thrusters 2 for, 1 aft

5.2.1.2 Reference Destroyer

The marine vessel that was chosen to be used as reference for the simulation of the

Destroyer is a last generation naval vessel (Type 45 Destroyer) that incorporates an

integrated full electric propulsion system (IFEP) (figure 5.1, see also chapter 1,

section 1.2). The vessel’s prime movers are two de-rated WR-21 21MW

intercooled/recuperated gas turbines, together with two 4-stroke high speed diesel

generators, rated at approximately 2MW each, for port manoeuvring and very low

cruising speeds [10]. The vessel was designed for a boost speed of 28 knots but at sea

trials it was able to obtain a speed of approximately 30.5 knots [11]. Each of the prime

movers is attached to an alternator and there are two 20MW electric propulsion

motors installed within the lower decks, each coupled via a conventionally installed

shaft (from engine room to propulsion devices) to a fixed pitch propeller (FPP). The



95

hull design is of V-shape and incorporates both a bulbous bow (with the sonar

installed inside it) and a transom stern, but it was not found in published literature the

position and the number of thrusters installed on the hull, though these type of vessels

normally incorporate at least one thrusters positioned for and one positioned aft. No

information on the public domain was found on reference propeller design

parameters. The limited published information on the technical specification of the

reference Destroyer naval vessel is shown in table 5.2 [11] [12] [13].

Table 5.2: Reference Destroyer published design parameters

Parameter

Length overall, Loa (m) 152.4

Length between perpendiculars, Lpp (m) Not published

Length at water line, L Not published

Breadth, B (m) 18.0

Design draft, T (m) 5.1

Displacement, Δ (tons) 7350.0 (full load)

Wetted surface area, SH (m2) Not published

Service speed (Cruise)/ (Boost), Vs (knots) 18/28+ (max. 30.5 at sea trials)

Prime movers 2 x Intercooled/recuperated alternator gas
turbines & 2 x 4-stroke high speed diesels

Installed prime mover power (MW) Approximately 54MW

Auxiliary generators Prime movers

Installed auxiliary power (MW) Not published

Propulsion devices 2 x Fixed pitch propellers (FPP)

Thrusters Not published

Figure 5.1: General representation of the IFEP system of the reference Destroyer [10]
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5.2.1.3 Reference liquefied natural gas (LNG) carrier (Q-max)

The simulation model of the LNG carrier is based on published information that

defines the design specifications of the Q-max class, which is a new generation on

LNG carriers with volumetric capacity of liquefied natural gas from 260,000 m3 and

more. Until the completion of the research on available information on LNG carriers

there was not a Q-max class marine vessel in service, but it is confirmed that at least

one has floated out of dry-dock and it is being outfitted and 14 Q-max class marine

vessels have been signed for construction [14]. This class of marine vessels depending

on the unit configuration will either use compressed boil-off gas (which can vary from

0.1% to 0.2% daily of the total LNG cargo quantity) as fuel for the power plant or

they can incorporate a reliquefaction system for the boil-off gas and use liquid fuel

(i.e. heavy fuel oil, distillate fuel etc. depending on the prime mover type) for a dual-

fuel power plant [15]. The Q-max class of marine vessels can either incorporate a

single or twin propeller arrangement [15], attached to a mechanical or electrical

propulsion system.

The hull of these vessels incorporates a bulbous bow and the stern is of a single or

twin gondola type unless podded propulsion is preferred where a transom stern design

can be adopted. Thrusters may be installed for and aft on the vessel’s hull for easier

docking manoeuvring [16]. The design draught of this class of vessels is limited to

12m because of limitation in port facilities [15] and as a guideline if a twin propeller

propulsion system is chosen a preliminary estimation on the propeller diameter can be

obtained by calculating as equal to 76% of the design draft [15], as due to the low

density of the LNG cargo the ballast draft is close to the design draft. By adopting the

above guideline the diameter of each of the propeller of the Q-max marine vessel is

estimated at 9.12m. The limited published information on the technical specification

of the reference Q-max class LNG carrier is shown in table 5.3 [15], and is a product

of research concerning preliminary estimation of the powering requirements of this

class of marine vessels.
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Table 5.3: Reference Q-max class published guide design parameters

Parameter

Length overall, Loa (m) 345.0

Length between perpendiculars, Lpp (m) 332.0

Length at water line, L Not published

Breadth (m) 54.0

Design draft, T (m) 12.0

Displacement, Δ (tons) Not published

Wetted surface area, SH (m2) Not published

Service speed at 90% MCR 20.0

Prime movers 2 x 2-stroke slow speed diesels

Installed prime mover power (MW) 41.60

Auxiliary generators Not Published

Installed auxiliary power (MW) Not published

Propulsion devices 2 x FPP Propellers

Thrusters Not published

5.2.2 Simulated marine vessels description and specification

5.2.2.1 Definitions

All simulated marine vessels incorporate a 50MW at design-point power plant

which is composed by two marine gas turbines and they utilise a twin propeller

arrangement. The main form coefficients and elements of the hull shape of the

simulated marine vessels were obtained from published literature [4] (appendix F.5,

figure F.2) that provides information on the variation of the above mentioned

coefficients and elements according to the type of the marine vessel. Information or

general guidelines on the design parameters of a bulbous bow and the transom stern

(cross sectional area of the bulb on the vertical plane ABT, height of the centroid of the

area ABT above the base line hB and the immersed area of the transom stern at zero

speed AT) was not found in the public domain and an extensive trial and error

procedure was adopted after estimating the bulbous bow required design parameters

from published drawings and figures, as the effect of the bulbous bow on the

hydrodynamic resistance and propulsive efficiency of the vessel can result in a

reduction of 10-15% and 4-5% respectively, resulting in an up to 20% reduction in the

required power delivered to the propeller PD in calm sea [4]. The same procedure was

applied for the estimation of the lateral and frontal projected areas of the vessels, AL

and AF respectively, as the effect of the aerodynamic resistance of the marine vessel

on its total resistance RT can be an additional 2-4% in no wind conditions [17]. The

estimation of the appendages areas (bilge keels, rudder(s), shaft brackets, bossing etc)

and thrusters position and diameter was also obtained by implementing the above
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mentioned procedure, as shaft brackets and bossing can increase the hydrodynamic

resistance of the marine vessel by 5-12%, though bilge keels and rudders can

contribute to a small increase of 1-2% [18]. Bow thrusters if carefully positioned do

not affect the hydrodynamic resistance of the marine vessel, but transverse thrusters

positioned in the afterbody can increase resistance by 1-6% [18].

The RoPax fast ferry and the LNG carrier are both assumed that they utilise

azimuthing pod-drives to deliver any required power PD to the propellers. Podded

propulsion reduces the hydrodynamic resistance of a marine vessel comparing with

conventional shaft drive arraignment as/and it neglects the need for shaft brackets,

rudders, stern thrusters and bossings [19]. On the other hand they reduce propulsive

efficiency but the improvement in hydrodynamic resistance is more influential than

the loss in propulsive efficiency [19]. Currently the maximum power output that a

single pod-drive, available in the market, can transmit is 28MW [20]. Because

“Poseidon” at its current stage cannot formally facilitate marine vessels equipped with

pod-drives, in order to approximate the total appendages area of the RoPax ferry and

the LNG carrier were kept to a minimum, and the propellers open water efficiency

ηOWE of both previously mentioned marine vessels was kept to an estimated 1-2%

lower than optimum. The optimum open water efficiency of the propellers thus the

pitch to diameter ratio P/D and the blade area ratio AE/AO was obtained with the aid of

the academically developed propeller optimisation program (POP) [21] which is

available in the public domain and simulates the Wageningen B-series propellers.

The mean initial hull roughness amplitude kh applied to all simulated marine

vessels is assumed to be 120μm and the transmission efficiency ηt of the electrical

propulsion system is assumed to be 95% including alternator efficiency [10]. The

design-point and off-design performance of the simulated marine vessels were

obtained with the use of the marine vessel power prediction model (chapter 2, section

2.5) independent from the “Poseidon” scheme.

5.2.2.2 Simulated RoPax fast ferry

The simulated RoPax fast ferry differs from the published technical specification of

the reference Ropax fast ferry, in the length at water line L, breadth B and design draft

T which were increased accordingly in order the 50MW power plant to operate at
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approximately 85% maximum continuous rating (MCR) (trial conditions, clean hull)

at a service speed Vs of 29 knots including the service load Paux required, resulting in a

design-point overall power requirement of 42.23MW. The marine vessel is assumed

that sails averagely at every journey at design draft condition because the typical

operational profile of a RoPax ferry is to unload in-bound and load out-bound

passengers and vehicles at every terminal or intermediate scheduled ports. The marine

vessel and propeller design parameters are shown in appendix A.2, tables A.2 and A.3

respectively. The off-design performance of the marine vessel and propellers

including the effects of hull fouling (see section 5.2.3) in trial conditions can be found

in appendix B.5, figure B.14.

5.2.2.3 Simulated Destroyer

The length at water line of the simulated Destroyer was estimated from published

figures of similar marine vessels as detailed information was not available at the time

of modelling to public domain. The vessel’s propeller diameter was estimated by also

using published figures, and tested by using the propeller optimisation program

(POP). The propeller design-point open water efficiency ηOWE was adjusted at 28

knots (trial conditions) and the overall power requirement including the service load

Paux was calculated to be 27.11MW. Setting the boost speed at 30.5 knots the overall

power requirement was increased to 41.34MW (approximately 83% MCR). The

cruise speed of the Destroyer was adjusted at 19 knots with an overall power

requirement of 8.12 MW (trial conditions, clean hull). The marine vessel is assumed

that operates constantly at design draft carrying the same amount of personnel and

weaponry. The marine vessel and propeller design parameters are shown in appendix

A.2, tables A.2 and A.3 respectively. The off-design performance of the marine vessel

and propellers including the effects of hull fouling (see section 5.2.3) in trial

conditions can be found in appendix B.5, figure B.13.

5.2.2.4 Simulated Liquefied Natural Gas (LNG) carrier (Q-max)

The length at water line of the simulated LNG carrier was estimated from published

figures of similar marine vessels as detailed information was not available at the time

of modelling to public domain. The overall total power requirement including service

load Paux at 20 knots (trial conditions, clean hull) of the LNG carrier is 44.25MW

(88% MCR). The LNG carrier was simulated only in laden (design draft) condition

due to constrains in available time for the completion of the current research, and for
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reference purposes a general guideline on the variation of the required brake power PB

of an LNG carrier from a ballast to a laden condition is an increase of approximately

4% [22]. The fuel supplied to the prime movers is assumed to be compressed natural

gas (needs to be higher than the total compression ratio of the gas turbine prime

mover) obtained from boil-off quantities. The marine vessel and propeller design

parameters are shown in appendix A.2, tables A.2 and A.3 respectively. The off-

design performance of the marine vessel and propellers including the effects of hull

fouling (see section 5.2.3) in trial conditions can be found in appendix B.5, figure

B.15.

5.2.3 Hull fouling resistance dataset

5.2.3.1 Background

The hull of all the simulated marine vessels is assumed that is coated with a hydrid

TBT self polishing anti-fouling system, which a balanced mixture of SPC (Self

Polishing Copolymer) and CDP (Controlled Depletion Polymer) [23]. The average

annual increase in hull roughness amplitude due to fouling when a hydrid TBT self

polishing antifouling system is used is 30μm. For SPC and CDP anti-fouling systems

the average annual increase in hull roughness amplitude due to fouling is 20μm and

40μm respectively, and the cost of an anti-fouling system is proportional to its

performance [23]. The most technologically advanced anti-fouling systems are the

“foul release” with an average annual increase in hull roughness amplitude due to

fouling of 5μm [23].

5.2.3.2 Hull fouling progression

The initial (F1) average hull roughness amplitude that corresponds to all simulated

marine vessels is 120μm [23], assumed for both the bottom and sides of the hull

(chapter 2, section 2.5.2.5). Table 5.4 presents the average annual increase in hull

roughness amplitude due to fouling that is used for all the case studies in this project.

Table 5.4: Average annual increase in hull roughness amplitude used in all three case studies

Year Average hull roughness
amplitude, kh (μm)

F1 120

F2 150

F3 180

F4 210

F5 240
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The evaluation of the effects of hull fouling increase on the resistance of the each

of the simulated marine vessels is presented in appendix B.5, figures B.34, B.35,

B.36.

5.3 Power Plant Operation Management Model
Dataset

5.3.1 Power distribution module dataset

5.3.1.1 Service load (or auxiliary power)

The service load Paux required by the auxiliary systems of each of the simulated

marine vessels is assumed constant during the duration of all the case study scheduled

journeys (chapter 2, section 2.6.2.1). Each of the simulated marine vessels has a

different required service load which depends on the type of the vessel, size, season of

year, time of day and mission profile, and for the estimation of the required service

load for each of the simulated marine vessels an effort was made to average the values

that are used in the case studies of this project based on academic and published

literature [1][22][24]. The average service load Paux assumed for each simulated

marine vessels in all case study journey scenarios are presented in table 5.5. The

service load for the LNG carrier is assumed that includes the power required for the

natural gas fuel compressor (generally around 6% of the prime mover output power)

[25].

Table 5.5: Assumed service load required by each of the simulated marine vessels

5.3.1.2 RoPax fast ferry and LNG carrier power plant operation

Both the RoPax fast ferry and the LNG carrier have a similar operational profile,

and are assumed that they both travel in open sea and ideal ambient conditions

constantly at service speed where both prime movers are in operation. At adverse

weather conditions and/or increased hull fouling both the marine vessels are

programmed to travel at the maximum possible speed that can be obtained (with both

Marine vessel Service load, Paux (MW)

RoPax Ferry 3.5 [1]

Destroyer 2.5 [24]

LNG carrier 3 [22]
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prime movers in operation) in combination with the maximum capabilities of the

power plant under these conditions.

5.3.1.3 Destroyer power plant operation

The Destroyer has a variable operational profile and generally naval vessels of this

type spend 75% of their operational life at cruise speeds and 25% at boost speeds

[26]. The plural as expressed in the word “speeds” briefly describes a typical marine

engineering difficulty which is the commonality of naval vessel to operate with

profiles different than those they are designed to [24]. In the case study regarding the

Destroyer one operational profile is adopted due to restrains in the available time to

complete the current research: At ideal weather conditions the naval marine vessel

uses a single prime mover at cruise mode (19 knots) and both prime movers at boost

mode (30.5 knots). At adverse weather conditions and cruise mode the naval marine

vessel uses a single prime mover up to sea-state Wsea seven where is programmed to

travel up to cruise speed if possible and at sea state eight the second prime mover

engages and the marine vessel is allowed to travel up to cruise speed if possible. At

adverse weather conditions and boost mode both prime movers are constantly in

operation. In the case that scheduled journey time is prolonged due to adverse weather

conditions or high hull roughness amplitude due to fouling the Destroyer is

programmed to travel at cruise speed for the remaining of the journey. It is assumed

that the prime movers do not exchange operational roles, which means during the

operational life of the marine vessel, the same prime mover is used for cruising and as

a consequence the same prime mover engages at sprinting (boost). The chosen hull

fouling progression profile does not require any modification or further additions in

the power plant operation profile (exception is described below in the case of the TMI

power plant).

Twin mode intercooled cycle gas turbine power plant

When the Destroyer is equipped with the TMI gas turbine power plant, both prime

movers are in constant operation in cruise and boost speeds. At ideal weather

conditions the low-power mode is used for cruising and the high-power mode is used

for boost. When cruising at adverse weather conditions the low power mode is

engaged up to sea state seven where the vessel is allowed to travel up to cruise speed,

and at sea state eight the high power mode engages where the vessel is allowed to
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travel again up to cruise speed. At adverse weather conditions and boost speed the

high power mode is constantly in operation. In the case that hull fouling phenomenon

prevents the naval vessel to obtain the required cruise speed (independently of sea

condition) the high power mode engages in order to obtain it.

5.3.2 Power availability module dataset
The maximum turbine temperature (TET) that all gas turbine prime movers are

allowed to operate up to in all scheduled journeys of the case studies of this project is

set to 1530 K, as no components degradation of the prime movers is assumed in the

case studies of this project, which can cause the turbine entry temperature to be

elevated (if allowed) at values much beyond the design-point in order the marine

vessel to obtain any required under certain performance conditions.

5.4 Journey Management Model Dataset

5.4.1 Journey schedule
The journey schedule time tT is set to 24 hours for all the simulated marine vessels

and all schedule journeys, at ideal conditions and clean hull (kh=120μm), and was

chosen as first it can be a realistic journey schedule time for all three marine vessels

types in real case scenarios (though a marine vessel can change numerous schedule

routes during its operational life which in most cases would be impossible to predict

unless a risk or even stochastic approach can be undertaken) and second simulation

time was kept at reasonable amounts. In addition no port manoeuvring and

entering/exiting port procedure is included in the case studies of this project and what

is of more significance than the journey schedule time, at this stage, is the annual

operational time of the marine vessel thus the annual operational time tannual of each

prime mover. The journey distance Sj which directly depends on the vessel’s speed

profile is presented in table 5.6.

Table 5.6: Scheduled journey distance of each of the simulated marine vessels

Marine vessel Scheduled journey distance, Sj

(Nautical miles)

RoPax Ferry 696

Destroyer 525

LNG carrier 480
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5.4.2 Ambient conditions

5.4.2.1 Air ambient temperature profile

The air ambient temperature Tamb profile that is applied to all scheduled journeys of

the case studies, was obtained by using the data presented in table 5.7 and appendix

F.3, figure F.1 and table F.3 [27]. The derived air ambient temperature profile is

presented in figure 5.2. The journey start time tstart is applied to all scheduled

journeys.

Table 5.7: Air ambient conditions input data

5.4.2.2 Sea ambient temperature profile

The sea ambient temperature Tsea is assumed to be constant during the duration of

all the scheduled journeys at 15 oC which is the same as the assumed intercooler

cooling water temperature used by the correspondent gas turbine prime movers

(chapter 4, section 4.3.2).

5.4.2.3 Sea-state profiles

As it was described in chapter 3, section 3.2.2.1, the required by the life cycle costs

model is two sea-state Wsea profiles. The first profile that was adopted assumes trial

conditions (or no weather conditions) (sea state 0-1) at all schedule journeys of the

case studies. The second weather profile contains a variable sea-state profile where all

sea-state numbers are included from 0 to 8. In the case that there is a journey time

prolongation (tT+a) all remaining time intervals assume trial conditions. The variable

weather profile is presented in figure 5.2.

Parameter

Minimum day temperature, Tmin (oC) 10

Maximum day temperature, Tmax (oC) 25

Sunrise time of day td (hh:mm) 06:00

Peak day temperature, tp (hh:mm) 14:00

Journey start time, tstart (hh:mm) 07:00
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Figure 5.2: Ambient temperature and sea-state profile against time of day

5.5 Journey Scenarios Dataset

5.5.1 RoPax fast ferry and Destroyer case studies
The number journey scenarios dataset of the RoPax fast ferry and the Destroyer is

identical and each marine vessel represents a case study. All five marine gas turbine

prime movers are investigated individually under the same conditions, which were

described in the previous sections of this chapter, as power plants of both marine

vessels. The dataset is composed of five gas turbine power plants, single value of

service load required, five hull fouling progression profiles, two sea-state profiles and

single air ambient temperature profile. The schedule journey scenarios simulation

sequence which applies to both vessels is presented in appendix F.4, table F.4

5.5.2 LNG carrier case studies
The implementation procedure of the case study of the LNG carrier is identical to

case studies of the RoPax fast ferry and Destroyer with the difference that only one

gas turbine power plant is investigated, due to constrains in time availability. The

prime mover type of the LNG power plant that is investigated in the homonymous
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case study is the intercooled/recuperated cycle gas turbine. The schedule journey

scenarios simulation sequence which applies only for the LNG carrier is presented in

appendix F.4, table F.5.
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6 TERA Case Studies Dataset: Economic
and Risk Model

6.1 Introduction
This chapter describes the dataset that was implemented on the life cycle costs

model for the completion of the three case studies of this research, according to the

model inputs defined in chapter 3, sections 3.2.4.1 and 3.2.4.2. All model inputs are

defined providing the implementation methodologies, assumptions made and input

variables range, except the prime mover quantified output parameters qp for every

scheduled journey of the two sets of journeys each under the two already defined

weather (or sea-state) profiles (chapter 5, section 5.4.2.3) which are presented in

chapter 7, as part of the case studies technical related results. The economic and risk

part of the TERA method is composed of three scenarios based on the PMC0 of the

simulated marine gas turbines (except the simple cycle) where every scenario is

performed assuming two different cases: conventional or DLE combustor. The

reference scenario which represents the simple cycle marine gas turbine is also

performed assuming the two already defined combustor cases. The rest of the input

variables are used having the same values or range of values on all risk scenarios

(which are 10,000 iterations in this research).

6.2 Capital Costs Dataset

6.2.1 Initial prime mover cost
Generally, published gas turbine purchase costs include electrical generator

(alternator), single fuel capability, air intake stack, basic filter, exhaust stack, auxiliary

systems (i.e. gear box), starter and controls and conventional combustion system, and

they can considerably fluctuate according to the design needs of the marine vessel and

the fleet’s volume(i.e. number of prime movers, auxiliary systems, air intake and

exhaust stack volume etc.), currency fluctuations and market competitive conditions

[1]. Installation and shipment costs can be estimated at around 10% of the published

gas turbine purchase costs [2]. The initial prime mover cost IPMC was estimated from

published cost figures of the reference simple cycle gas turbine (chapter 4 section
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4.3.3.1) including installation costs [1][3], assuming that it is the contract purchase

cost per gas turbine for the two prime mover power plant of the three simulated

marine vessels. The initial prime mover cost IPMC that was implemented on the life

cycle costs model is $430 per kW, and for 25MW that is the design-point power

output rating EPDP (kW,x100) of the simple cycle gas turbine equals to a total of

$10,750,000. The purchase cost was converted from U.S dollars (USD) to Great

Britain pounds (GBP) at an exchange rate of 0.49 (11/12/07) which results to an

initial prime mover cost IPMC of £5,267,500. The IPMC is used as actual prime

mover cost PMC in scenarios where the simple cycle gas turbine composes the power

plant of the RoPax fast ferry or the Destroyer.

6.2.2 Advanced cycle prime mover cost range
Research on marine gas turbine purchase costs showed that the purchase cost of the

25MW ICR cycle gas turbine available in the market, is approximately £10,000,000

[4] which is an approximately 89.84% difference over the assumed initial prime

mover cost IPMC not including installation and shipment costs. The marine gas

turbine market does not offer any prime movers that incorporate a just intercooled or a

just recuperated cycle and the assumption that was made is that the minimum

purchase cost of a just intercooled or just recuperated engine is higher than of a

simple cycle gas turbine with the same design-point power output but does not

surpass the purchase cost of an intercooled/recuperated gas turbine. The TMI cycle

gas turbine is a novel proposal and taking in consideration its design principals and

technical specification (chapter 4, section 4.3.4) is assumed that its minimum

purchase cost is higher than of a simple cycle gas turbine of the same design power

output and that there are possibilities that it can also surpass the purchase cost of an

ICR gas turbine. Three different prime mover cost risk scenarios are investigated on

the possible PMC0 for each of the simulated marine gas turbines. The first two apply

on all the simulated marine gas turbines and the third is applied only on the simulated

TMI gas turbine due to the assumption mentioned before in this section on its possible

maximum purchase cost. The estimated minimum and maximum percentage

difference of cost from the reference prime mover, PD0-min and PD0-max respectively is

presented in table 6.1. In the case study of the LNG carrier PMC0 assumes that the

essential equipment for the compression of natural gas before is delivered to the fuel

injection system of the prime mover is included within the PD0-min and PD0-max range.
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Table 6.1: The three different scenarios each representing a PD0 range

Scenario
Number

PD0-min

(%)
PD0-max

(%)

Scenario 1 20 65

Scenario 2 65 110

Scenario 3
(TMI only)

110 155

6.2.3 DLE combustor cost range
The installation of a DLE combustor instead of a conventional one, can increase the

purchase cost of an aeroderivative gas turbine from 5% to 30% according to its

technological level, cycle design characteristics, power output, nature of operational

conditions, company policies, contract arrangements etc. [1][2][5]. The estimated

minimum and maximum percentage difference of cost due to different technology

components (installation of a DLE combustor instead of a conventional) PD1-min and

PD1-max respectively, that is applied to all simulated marine gas turbines is presented

in table 6.2. Two cases are performed for each prime mover cost scenario: one

assuming a conventional combustor and one assuming a DLE combustor. The actual

prime mover cost PMC is calculated at every risk scenario which is directly connected

to the position number of the value of the cost component J (chapter 3, section

3.2.2.7), and depends also on the calculated prime mover downtime tdown (equation 3-

14 and 3-30).

Table 6.2: The estimated minimum and maximum percentage difference of cost due different
technology components PD1

Scenario
Number

PD1-min

(%)
PD1-max

(%)

Scenario 1, 2, 3 10 30

6.2.4 Insurance cost
Typical insurance schemes can cover partial or total system failure (or total loss in

the case of an on-board accident due to external factors), compensation of lost income

and compensation of lost deposits [2]. The cost of insurance of a prime mover

depends on the nature of the operational conditions, type of installation platform, user

statistical data, reliability and availability data and system design [2]. The insurance

cost can typically range from 0.25% to 2% of the purchase cost of the prime mover

[2]. The annual cost of insurance CINS that is implemented on the life cycle costs
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model is assumed to be 1%, and applies to all simulated marine gas turbines in all

three case studies.

6.2.5 Interest rate
The interest rate describes the depreciation of the value of money during the

operational life of each of the marine power plants, and as a consequence it is the

factor that determines net present cost NPC (chapter 3, section 3.2.2.5). As it was

described in chapter 3, section 3.2.2.6 the interest rate is assumed steady for 30 years

and changes randomly at every risk scenario. The average interest rate for 30 years of

operational can fluctuate at every risk scenario as presented in table 6.3 [6].

Table 6.3: Minimum and maximum interest rate fluctuation at every risk scenario

Interest rate fluctuation

IRmin (%) IRmax (%)

2 7

6.3 Maintenance Cost Dataset

6.3.1 Maintenance labour rate
The maintenance labour rate per man hour Rleng is assumed that includes routine,

major overhaul and unscheduled maintenance. The value of Rleng that was

implemented on the life cycle costs model is £23 per hour based on information on

maintenance cost of electricity generation technologies, including gas turbines [7],

though maintenance labour rate can fluctuate depending on several factor such as: gas

turbine and marine vessel company salary rates, companies’ registered location,

maintenance site, special requirements (i.e. time limitations) etc.

6.3.2 Spare parts factor
The recommended value of the spare parts factor ESPPF which apply for aero-gas

turbines (turbojet, turbofan and turboprop) is 1.5 [8], but because the number of gas

turbines used in the aviation sector is vastly higher than in the marine sector which

means that spare parts sales for aero-gas turbines are superior than for marine

aeroderivative gas turbines, the value of the spare parts factor ESPPF is assumed to

be 2.
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6.3.3 Power plant availability
All simulated marine gas turbines is assumed that they are reliable engines

according to any manufacture’s specifications and appropriate diagnostic techniques,

recommended maintenance time intervals and procedures are applied on them.

Further more, availability depends on the power plant’s number of prime movers [9],

which means that in the case of the three marine vessels that are used in the current

project, adding the above assumptions, if one prime is not available then the marine

vessel can sail on one prime mover. In the case of the Destroyer its operational profile

can be fulfilled at least 75% as it needs only one prime mover to cruise, taking into

account that if the importance of the mission is high the vessel may sail with only one

operational main prime mover (25 MW gas turbine) relying also on the manoeuvring

prime movers (1-2 MW engines) (assuming a gas turbine IFEP propulsion system, as

it is described in chapter 1, section 1.2 and chapter 5, section 5.2.1.2). In the case of

the RoPax fast ferry and LNG carrier, if only one main prime mover is operational

then cruise speed will not be possible to be obtained and safety laws may prohibit the

unberth of the vessel unless the prime mover has become unavailable during journey.

Another factor that needs to be taken in account is that inherently naval vessels have

lower annual operational time than ferries and LNG carriers. Availability of certain in

production marine gas turbine types [10] has reached values of 99.6% and in

combination with the assumed scenarios described above the estimated values of the

minimum and maximum annual percentage availability PDAVLB-min and PDAVLB-max of

the simulated gas turbines regardless of their cycle, but according to vessel type are

presented in table 6.4.

Table 6.4: The estimated annual percentage availability PDAVLB and PDAVLB of the simulated gas
turbines

Vessel Type PDAVLB-min

(%)
PDAVLB-max

(%)

Destroyer 98 100

RoPax fast ferry 97 100

LNG carrier 97 100
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6.4 Fuel and Emissions Cost Dataset

6.4.1 Fuel cost

6.4.1.1 Distillate fuel cost

The distillate fuel that is assumed that the power plants of the RoPax fast ferry and

the Destroyer use is ultra low-sulphur (sulphur S<0.0015% by weight) No. 2 fuel oil

(marine classification: bunker A). The maximum fluctuation in the price of low

sulphur No. 2 fuel oil (data on ultra low sulphur No. 2 fuel oil was available from

January to September 2007, but its price was almost identical to low sulphur No. 2

fuel oil) from December 2004 to August 2007 was from approximately 145 U.S.

cents/gallon to approximately 255 U.S. cents/gallon respectively (not taxed fuel) as

presented in figure 6.1 [11].

Figure 6.1: Low sulphur No.2 fuel oil not taxed price variation from September 2004 to August
2007[11]

Assuming that the price of the fuel will never drop below the minimum obtained

price, but can increase beyond the maximum obtained price including interest rate but

excluding inflation at a prime mover operational life of 30 years, the minimum and

maximum fuel cost per unit volume, that was implemented in the life costs model, is

from 145 to 340 U.S cents/gallon respectively and was converted to GBP/kg by using

equation 6-1 which is implemented in the life cycle costs model.
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Where: ρfuel is the density of fuel in kg/lt (assumed 0.85 kg/lt at ambient temperature

Tamb case studies range), EX(C1-C2) is the exchange rate of the converting

currency to the converted currency (USD->GBP = 0.49 as defined in section

6.2.1), UV is the converting volume unit (3.785 from gallons to litres) and PFF-

vol is the fuel cost per gallon.

The minimum and maximum fuel cost per unit mass (GBP/kg) PFF-min and PFF-max

that was implemented in the life costs model is presented in table 6.5.

Table 6.5: The minimum and maximum distillate fuel cost per unit mass

Fuel Type
PFF-min

(GBP/kg)
PFF-max

(GBP/kg)

Ultra low sulphur No.2
fuel oil

0.188 0.518

6.4.1.2 Natural gas fuel cost

Natural gas is assumed that is used as fuel only by the power plant of the LNG

carrier and the concept is that, naturally and forced boil-off cargo natural gas is

charged at not taxed natural gas rates. According to the above concept, cargo natural

gas is bought and utilised even when the vessel sails unloaded, towards the natural gas

loading facility. The maximum fluctuation in the price of natural gas from December

2004 to August 2007 was from approximately 18.5 U.S. cents/m3 to approximately 44

U.S. cents/m3 respectively (not taxed fuel) as is presented in figure 6.2 [12].

Figure 6.2: Natural gas not taxed price variation from September 2004 to August 2007[12]
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Assuming that the price of natural gas can drop below the minimum obtained price

according to the 2006-2007 price slop (figure 6.2) and can increase beyond the

maximum obtained price, including interest rate but excluding inflation at a prime

mover operational life of 30 years, the minimum and maximum fuel cost per unit

volume, that was implemented in the life costs model, is from 15 to 60 U.S cents/m3

respectively and was converted to GBP/kg by using equation 6-1 which is

implemented in the life cycle costs model. The natural gas density ρfuel is assumed

72x10-5 kg/lt at the case studies ambient temperature range. The minimum and

maximum fuel cost per unit mass (GBP/kg) PFF-min and PFF-max that was implemented

in the life costs model is presented in table 6.6.

Table 6.6: The minimum and maximum natural gas cost per unit mass

Fuel Type
PFF-min

(GBP/kg)
PFF-max

(GBP/kg)

Natural Gas 0.102 0.408

6.4.2 Exhaust Emissions cost
As it was mentioned before a possible future concept of emissions taxation is

adopted in this research (chapter 1, section 1.4.2) which is not newly conceived as the

Massachusetts Department of Public Utilities proposed in 1990 a taxation scheme that

exhaust emission quantities are taxed per produced unit mass, though it needs to be

mentioned that it does not apply as an international policy, as it is assumed in this

research. The suggested values of the cost of the exhaust emission quantities are

presented in table 6.7 [9].

Table 6.7: Cost of exhaust emissions proposed by the Massachusetts Department of Public Utilities
proposed in 1990

Exhaust emission
quantity

Cost
(U.S. cent/kg)

NOx 393.7

CO 52.7

CO2 1.4

UHC 13.3

The values presented in table 6.7 were adjusted by taking as point of reference the

cost per unit mass of nitric oxide (NOx) exhaust emissions emitted by marine vessels

according to present Norwegian marine emissions policy [13], and apply the

proportion difference between the two nitric oxide values to the rest exhaust

emissions quantities (CO, CO2, UHC). Nitric oxide exhaust emissions emitted by
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international marine vessels that sail in Norwegian waters on domestic routes are

charged at approximately 300 U.S. cents/kg. The offsetting of emission values before

the introduction of the risk element from table 6.7 is presented in table 6.8 and values

are converted to GBP/kg at the indicated exchange rate in this chapter.

Table 6.8: Assumed cost of exhaust emissions before the introduction of risk element

Exhaust emission
quantity

Cost
(U.S. cent/kg)

Cost
(GBP/kg)

NOx 300.0 1.47

CO 40.15 0.20

CO2 1.07 0.0052

UHC 10.11 0.049

The minimum and maximum estimated cost (GBP of the prime mover’s output

exhaust emission quantities per kg, Pp-min and Pp-max (where p can be NOx, CO, CO2

and UHC) are presented in table 6.9.

Table 6.9: Assumed cost of exhaust emissions with the introduction of risk element

Exhaust emission
quantity p

Pp-min

(GBP/kg)
Pp-max

(GBP/kg)

NOx 0.75 2.25

CO 0.15 0.45

CO2 0.005 0.015

UHC 0.03 0.09
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7 TERA Case Studies: Results &
Discussion

7.1 Introduction
This chapter begins with the presentation of the case study results separately for

each marine vessel in the same format. The quantified output parameters qp are

presented first, as they compose the technical related input parameters of the life cycle

costs model, followed by the selected number of scheduled journeys and the annual

utilisation of the prime movers of each of the investigated power plants. As all the life

cycle costs input data is defined and derived, the power plant economic and risk

analysis results are presented. The presentation of the results for each of the marine

vessels separately is followed by a discussion on the gas turbine off-design operation

in accordance with the ambient and weather conditions simulated in the case studies

of this research. The power plant economic feasibility is then discussed, where for

every marine vessel separately all advanced cycle gas turbine power plants are

compared with the reference power plant (in the case of the LNG carrier the

investigated power plant is only one, but is discussed in accordance to the results

produced by each of the two scenarios) . The discussion on the power plant economic

feasibility is also extended to the comparison of the advanced cycle gas turbine power

plants. Finally, a brief discussion is made on validity of the simulation of the marine

vessel sea-keeping performance.

7.2 Case Studies Results: Technical & Economic

7.2.1 Destroyer

7.2.1.1 Quantified output parameters

The prime mover quantified output parameters qp for every scheduled journey of

the Destroyer, produced by using “Poseidon”, of the two sets of journeys under each

of the two already defined weather (or sea-state) profiles which are part of the

technical related input data of the life cycle costs model (chapter 3, section 3.2.4.2 and

chapter 6, section 6.1) are presented in two sets of tables in appendix C.5 (tables C.1

to C.10), with each table representing a hull roughness amplitude due to fouling (F1-
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F5, chapter 5, section 5.2.3.2). Each of the table sets represents the weather profile

(ideal or adverse) and the results are presented separately for the cruise and the boost

prime mover, except for the TMI cycle power plant where both prime movers operate

constantly (chapter 5, section 5.3.1.3). Analytical graphical presentation of the cycle

performance (turbine entry temperature and fuel flow), engine power-ship (marine

vessel) speed relationship, exhaust emissions rate and hot section rotor blade time to

failure of each of the five prime movers at every time interval during every of the fifty

in total scheduled journeys are presented for each simulated gas turbine in appendices

C.1, C.2, C.3 and C.4 respectively. The boost prime mover (except for the TMI cycle

power plant) is programmed to engage at the following times of the day (as it is

expressed on the representing figures) where sea-state number can be maximum

seven: 10, 13, 16, 20, 23 and 02. At time of day 18 sea-state is programmed at

number eight and the boost prime mover engages although the marine vessel is

programmed to travel at cruise speed (see chapter 5, section 5.3.1.3).

7.2.1.2 Annual Utilisation

The annual number of scheduled journeys Nasj of the Destroyer which is a major

factor that contributes to the life cycle costs of a marine vessel’s power plant is

estimated according to the average annual number of hours that a naval vessel of this

type typically spends in the open sea, during its operational life. Annual utilisation

can vary but under a general purpose operating profile a value of 4800 hours (55%

annually) is considered representing [1], though values between 25% lower and 5-

10% higher can be considered realistic. The life cycle costs model was supplemented

assuming an annual number of scheduled journeys Nasj of 210 and the annual

operational time of the prime movers (cruise and boost, except TMI)) can fluctuate

due to the weather probability module (chapter 3, section 3.2.2.6) according to the

calculated values presented in table 7.1. The values were calculated from the

“Poseidon” results presented in the appendix C.5, by considering the minimum and

maximum operational time per journey top (see tables C.1 and C.10).
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Table 7.1: Minimum and maximum annual operational time per prime mover type

7.2.1.3 Power plant economic and risk analysis

The results that describe the economic performance of each of the power plants

installed on the Destroyer according to the case scenarios investigated during this

research were obtained as it was described in chapter 3, with the use of the life cycle

costs model and the input dataset was implemented to it as described in chapter 6 and

in this chapter in sections 7.2.1.1 and 7.2.1.2. The graphical expression of the

probability and cumulative probability distribution of the net present cost [NPC in

GBP (£) million] of each of the power plants incorporating either the conventional or

the DLE combustors described in chapter 4, section 4.5 and chapter 6, section 6.2.3,

are presented in two sets of figures: the first set (figures 7.1 and 7.2) expresses the

first scenario and the second set (figures 7.3. and 7.4) expresses the second and third

scenario (the three economic scenarios are described in chapter 6, section 6.2.2). It is

reminded that the reference gas turbine power plant is the simple cycle. The graphical

expression of the rest of the probability and cumulative probability distributions of the

overall output parameters (chapter 3, section 3.2.4.3) are presented in appendix C.6,

figures C.47-C.66.

Engine
Cruise

-----------
Boost

Minimum operational time
tannual (hours)

Maximum operational time
tannual (hours)

5040 5111.4 (0%)
SC

1260 1470

TMI x2 5040 5086 (-0.5%)

5040 5098.8 (-0.24%)
INT

1260 1470

5040 5113.5 (0.041%)
REQ

1260 1470

5040 5103 (-0.016%)
ICR

1260 1470
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Figure 7.1: Destroyer – Probability distribution of the NPC of each power plant (Scenario 1)
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Tables 7.2 to 7.10 present the minimum-maximum and standard deviation

percentage difference of the overall output parameters of each of the power plants

according to the three different scenarios comparing with reference simple cycle gas

turbine power plant. The minimum-maximum values in the above mentioned tables

(including the tables presented in section 7.2.2.3 regarding the RoPax fast ferry)

represent a probability of zero, but the definition of the standard deviation, and the

already specified nature of the chosen distribution adding the fact that for each of the

overall output parameters (life cycle cost components including NPC) the peak

probabilities do not fluctuate significantly (Destroyer only: exception is the TMI

power plant that both prime movers operate constantly and for that reason including

the fixed number of risk scenarios it shows NPC and life cycle maintenance cost

probability distribution with higher variability), an adequate understanding can be

obtained on the variability of the distributions of the overall output parameters, thus

the range of the probable NPC of each of the simulated power plants. In appendix C.7,

tables C.11 to C.19 present the actual minimum-maximum and standard deviation of

each of the overall output parameters of the power plants in millions GBP (£).

Table 7.2: Destroyer - Minimum-maximum and standard deviation percentage difference of NPC of all power
plants from reference cycle (Scenario 1)

Engine (20%-65%)
Conventional & DLE

Combustor

Minimum
NPC

(% from SC)

Maximum
NPC

(% from SC)

Standard
Deviation

(% from SC)

SC-Reference Cycle 0 0 0 0 0 0

TMI -5.45 -11.85 -6.95 -9.47 -8.66 -6.77

INT -8.65 -4.01 -3.41 -3.19 2.29 -2.14

REQ -8.06 -8.26 -6.14 -7.70 -4.01 -7.00

ICR -12.74 -12.57 -12.41 -11.43 -12.10 -10.01

Table 7.3: Destroyer - Minimum-maximum and standard deviation percentage difference of NPC of all
power plants from reference cycle (Scenarios 2 and 3)

Engine (65%-110%)
Conventional & DLE

Combustor

Minimum
NPC

(% from SC)

Maximum
NPC

(% from SC)

Standard
Deviation

(% from SC)

SC-Reference Cycle 0 0 0 0 0 0

TMI -0.65 -2.21 -7.20 -1.36 -13.89 -0.29
TMI (110%-155%) 0.24 6.40 1.30 4.36 2.43 2.21

INT 4.51 4.25 1.71 2.78 -1.36 1.25

REQ 0.06 -1.92 -3.60 -0.25 -7.59 1.69

ICR -3.50 -1.38 -7.38 -5.78 -11.67 -10.60
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Table 7.4: Destroyer - Minimum-maximum and standard deviation percentage difference of maintenance
cost of all power plants from reference cycle (Scenario 1)
Engine (20%-65%)

Conventional & DLE
Combustor

Minimum
Maint. Cost
(% from SC)

Maximum
Maint. Cost
(% from SC)

Standard Deviation
(% from SC)

SC-Reference Cycle 0 0 0 0 0 0

TMI 98.25 71.21 113.47 104.32 122.54 122.22

INT -1.75 10.65 37.61 42.93 61.97 60.00

REQ -15.10 -22.99 15.88 9.69 35.21 27.78

ICR 12.04 1.31 29.11 34.16 39.44 52.22

Table 7.5: Destroyer - Minimum-maximum and standard deviation percentage difference of maintenance
cost of all power plants from reference cycle (Scenarios 2 and 3)

Table 7.6: Destroyer - Minimum-maximum and standard deviation percentage difference of fuel cost of all
power plants from reference cycle (All scenarios)

Engine Minimum
Fuel Cost

(% from SC)

Maximum
Fuel Cost

(% from SC)

Standard Deviation
(% from SC)

SC-Reference Cycle 0 0 0

TMI -21.04 -19.63 -18.27

INT -13.51 -7.62 -1.90

REQ -14.16 -10.29 -6.49

ICR -20.15 -17.35 -14.63

Table 7.7: Destroyer - Minimum-maximum and standard deviation percentage difference of cost of taxed
NOx exhaust emissions of all power plants from reference cycle

Table 7.8: Destroyer - Minimum-maximum and standard deviation percentage difference of cost of taxed
CO exhaust emissions of all power plants from reference cycle

Engine
Conventional & DLE

Combustor

Minimum
CO Cost

(% from SC)

Maximum
CO Cost

(% from SC)

Standard
Deviation

(% from SC)

SC-Reference Cycle 0 0 0 0 0 0

TMI -65.85 -65.79 -64.97 -65.54 -62.67 -65.85

INT -14.36 -10.96 -11.21 -12.08 -8.00 -14.36

REQ 9.21 10.09 8.09 9.70 8.00 9.21

ICR -13.41 -9.65 -12.04 -12.28 -10.67 -13.41

Engine (65%-110%)
Conventional & DLE

Combustor

Minimum
Maint. Cost
(% from SC)

Maximum
Maint. Cost
(% from SC)

Standard Deviation
(% from SC)

SC-Reference Cycle 0 0 0 0 0 0

TMI 169.15 160.93 140.42 174.21 150.70 182.22
TMI (110%-155%) 200.22 229.72 225.90 236.39 243.66 242.22

INT 55.14 51.40 75.30 87.43 88.73 107.78

REQ 24.07 7.48 40.10 57.13 50.70 84.44

ICR 62.36 57.20 75.14 72.77 84.51 82.22

Engine
Conventional & DLE

Combustor

Minimum
NOx Cost

(% from SC)

Maximum
NOx Cost

(% from SC)

Standard Deviation
(% from SC)

SC-Reference Cycle 0 0 0 0 0 0

TMI 58.25 46.15 57.85 57.91 55.79 68.97

INT -5.88 -6.64 -2.56 -0.98 0.00 6.90

REQ -12.23 -11.19 -9.36 -8.16 -7.37 -3.45

ICR -2.54 -4.20 -3.03 -1.79 -3.16 0.00
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Table 7.9: Destroyer - Minimum-maximum and standard deviation percentage difference of cost of taxed
CO2 exhaust emissions of all power plants from reference cycle

Table 7.10: Destroyer - Minimum-maximum and standard deviation percentage difference of cost of taxed
UHC exhaust emissions of all power plants from reference cycle

Engine
Conventional & DLE

Combustor

Minimum
UHC Cost

(% from SC)

Maximum
UHC Cost

(% from SC)

Standard Deviation
(% from SC)

SC-Reference Cycle 0 0 0 0 0 0

TMI -88.46 -89.41 -88.70 -89.46 -89.47 -88.89

INT -19.23 -23.53 -19.13 -18.92 -19.30 -16.67

REQ 9.62 5.88 11.30 10.81 14.04 11.11

ICR -28.85 -29.41 -30.43 -29.73 -29.82 -33.33

7.2.2 RoPax fast ferry

7.2.2.1 Quantified output parameters

The prime mover quantified output parameters qp for every scheduled journey of

the RoPax fast ferry, produced by using “Poseidon”, of the two sets of journeys under

each of the two already defined weather (or sea-state) profiles which are part of the

technical related input data of the life cycle costs model (chapter 3, section 3.2.4.2 and

chapter 6, section 6.1) are presented in two sets of tables in appendix D.5 (tables D.1

to D.10), with each table representing a hull roughness amplitude due to fouling (F1-

F5, chapter 5, section 5.2.3.2). Each of the table sets represents the weather profile

(ideal or adverse) and as it was mentioned in chapter 5, section 5.3.1.2 both prime

movers are constantly in operation. Analytical graphical presentation of the cycle

performance (turbine entry temperature and fuel flow), engine power-ship (marine

vessel) speed relationship, exhaust emissions rate and hot section rotor blade time to

failure of each of the five prime movers at every time interval during every of the ten

in total scheduled journeys are presented for each simulated gas turbine in appendices

D.1, D.2, D.3 and D.4 respectively

Engine Minimum
CO2 Cost

(% from SC)

Maximum
CO2 Cost

(% from SC)

Standard Deviation
(% from SC)

SC-Reference Cycle 0 0 0

TMI -19.59 -19.35 -19.61

INT -8.14 -7.64 -6.86

REQ -11.65 -10.56 -9.80

ICR -15.26 -16.29 -16.67
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7.2.2.2 Annual Utilisation

The annual number of scheduled journeys Nasj of the RoPax fast ferry is estimated

assuming that the marine vessel is in constant annual operation assuming a five hours

berth at every scheduled journey, due to schedule arrangements, refuelling,

passengers and vehicles loading unloading etc. The life cycle costs model was

supplemented assuming an annual number of scheduled journeys Nasj of 280

assuming non-operational time due to scheduled factors such as annual maintenance

of the marine vessel, and non-scheduled factors such as no-sail decisions or

permissions due to highly adverse weather conditions. The minimum-maximum

annual operational time tannual of the prime movers that are presented in table 7.11

were calculated from the “Poseidon” results presented in appendix D.5 by considering

the minimum and maximum operational time per journey top (see tables D.1 and

D.10).

Table 7.11: Minimum and maximum annual operational time per prime mover type

7.2.2.3 Power plant economic and risk analysis

The results that describe the economic performance of each of the power plants

installed on the RoPax fast ferry according to the case scenarios investigated during

this research were obtained as it was described in chapter 4, with the use of the life

cycle costs model and the input dataset was implemented to it as described in chapter

6 and in this chapter in sections 7.2.2.1 and 7.2.2.2. The graphical expression of the

probability and cumulative probability distribution of the net present cost [NPC in

GBP (£) million] of each of the power plants incorporating either the conventional or

the DLE combustors described in chapter 4, section 4.5 and chapter 6, section 6.2.3,

are presented in two sets of figures: the first set (figures 7.5 and 7.6) expresses the

first scenario and the second set (figures 7.7. and 7.8) expresses the second and third

scenario (the three economic scenarios are described in chapter 6, section 6.2.2). The

graphical expression of the rest of the probability and cumulative probability

distributions of the overall output parameters (chapter 3, section 3.2.4.3) are presented

in appendix D.6, figures D.47-D.66.

Engine Minimum operational time
tannual (hours)

Maximum operational time
tannual (hours)

SC 6720 7291.2 (0%)
TMI 6720 7151.2 (-1.92%)
INT 6720 7145.6 (-2.0%)
REQ 6720 7291.2 (0%)
ICR 6720 7159.6 (-1.8%)



129

0

0.1

0.2

0.3

0.4

0.5

350 450 550 650 750 850 950

Net Present Cost (£ million)

P
ro

b
a
b

il
it

y

NPC SC CONV. NPC TMI CONV. NPC INT CONV. NPC REQ CONV.
NPC ICR CONV. NPC SC DLE NPC TMI DLE NPC INT DLE
NPC REQ DLE NPC ICR DLE
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Tables 7.12 to 7.20 present the minimum-maximum and standard deviation

percentage difference of the overall output parameters of each of the power plants

according to the three different scenarios comparing with reference simple cycle gas

turbine power plant.. In appendix D.7, tables D.11 to D.19 present the actual

minimum-maximum and standard deviation of each of the overall output parameters

of the power plants in millions GBP (£).

Table 7.12: RoPax ferry - Minimum-maximum and standard deviation percentage deference of NPC of all
power plants from reference cycle (Scenario 1)

Engine (20%-65%)
Conventional & DLE

Combustor

Minimum
NPC

(% from SC)

Maximum
NPC

(% from SC)

Standard
Deviation

(% from SC)

SC-Reference Cycle 0 0 0 0 0 0

TMI -7.38 -15.93 -7.54 -9.66 -7.71 -3.13

INT -7.82 -1.46 -6.87 -3.81 -5.96 -5.95

REQ -7.31 -7.29 -6.40 -6.14 -5.53 -4.53

ICR -9.95 -8.344 -11.18 -8.69 -12.19 -8.71

Table 7.13: RoPax ferry - Minimum-maximum and standard deviation percentage difference of NPC of all
power plants from reference cycle (Scenarios 2 and 3)
Engine (65%-110%)
Conventional & DLE

Combustor

Minimum
NPC

(% from SC)

Maximum
NPC

(% from SC)

Standard
Deviation

(% from SC)

SC-Reference Cycle 0 0 0 0 0 0

TMI -6.22 -0.23 -4.28 -4.70 -2.39 -4.30
TMI (110%-155%) -2.48 -5.63 -1.86 0.07 -1.86 6.07

INT -4.39 3.21 -2.85 -0.18 -1.19 -3.18

REQ -9.80 -4.40 -4.67 -4.91 0.38 -5.07

ICR -7.16 -2.69 -8.68 -5.17 -10.16 -7.31

Table 7.14: RoPax ferry - Minimum-maximum and standard deviation percentage difference of
maintenance cost of all power plants from reference cycle (Scenario 1)

Table 7.15: RoPax ferry - Minimum-maximum and standard deviation percentage difference of
maintenance cost of all power plants from reference cycle (Scenarios 2 and 3)
Engine (65%-110%)
Conventional & DLE

Combustor

Minimum
Maint. Cost
(% from SC)

Maximum
Maint. Cost
(% from SC)

Standard Deviation
(% from SC)

SC-Reference Cycle 0 0 0 0 0 0

TMI 102.88 88.51 138.03 130.63 161.79 152.07
TMI (110%-155%) 128.27 102.13 193.05 179.49 236.99 220.71

INT 65.41 45.97 81.36 94.07 91.87 119.53

REQ 2.99 18.07 48.83 42.23 79.67 54.14

ICR 68.07 52.27 88.14 77.91 102.03 90.53

Engine (20%-65%)
Conventional & DLE

Combustor

Minimum
Maint. Cost
(% from SC)

Maximum
Maint. Cost
(% from SC)

Standard Deviation
(% from SC)

SC-Reference Cycle 0 0 0 0 0 0

TMI 58.59 14.27 81.63 96.23 96.75 141.12

INT 6.32 10.38 35.26 43.95 54.88 69.53

REQ -8.09 -17.33 19.43 21.41 38.21 42.60

ICR 40.02 21.41 40.84 41.48 41.46 50.89
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Table 7.16: RoPax ferry - Minimum-maximum and standard deviation percentage difference of fuel cost of all
power plants from reference cycle (All scenarios)

Engine Minimum
Fuel Cost

(% from SC)

Maximum
Fuel Cost

(% from SC)

Standard Deviation
(% from SC)

SC-Reference Cycle 0 0 0

TMI -18.52 -19.70 -20.86

INT -9.24 -8.42 -7.77

REQ -9.24 -8.68 -8.18

ICR -15.24 -14.54 -13.88

Table 7.17: RoPax ferry - Minimum-maximum and standard deviation percentage difference of cost of taxed
NOx exhaust emissions of all power plants from reference cycle

Engine
Conventional & DLE

Combustor

Minimum
NOx Cost

(% from SC)

Maximum
NOx Cost

(% from SC)

Standard Deviation
(% from SC)

SC-Reference Cycle 0 0 0 0 0 0

TMI 65.63 70.03 70.13 71.63 73.75 73.27

INT -7.82 -5.10 -7.57 -5.01 -7.50 -4.95

REQ -10.98 -13.63 -9.05 -10.12 -7.19 -5.94

ICR -9.37 -10.30 -9.42 -8.29 -9.38 -5.94

Table 7.18: RoPax ferry - Minimum-maximum and standard deviation percentage difference of cost of
taxed CO exhaust emissions of all power plants from reference cycle

Engine
Conventional & DLE

Combustor

Minimum
CO Cost

(% from SC)

Maximum
CO Cost

(% from SC)

Standard
Deviation

(% from SC)

SC-Reference Cycle 0 0 0 0 0 0

TMI -62.48 -63.54 -63.60 -63.61 -64.41 -63.16

INT -11.13 -9.39 -11.07 -10.43 -11.02 -10.53

REQ -7.45 -7.18 -2.90 -4.58 0.00 -2.63

ICR -12.57 -10.22 -13.52 -13.23 -14.41 -15.79

Table 7.19: RoPax ferry - Minimum-maximum and standard deviation percentage difference of cost of taxed
CO2 exhaust emissions of all power plants from reference cycle

Engine Minimum
CO2 Cost

(% from SC)

Maximum
CO2 Cost

(% from SC)

Standard Deviation
(% from SC)

SC-Reference Cycle 0 0 0

TMI -18.70 -20.64 -22.22

INT -8.95 -10.38 -11.11

REQ -9.60 -8.98 -8.17

ICR -11.70 -15.76 -18.95

Table 7.20: RoPax ferry - Minimum-maximum and standard deviation percentage difference of cost of taxed
UHC exhaust emissions of all power plants from reference cycle

Engine
Conventional & DLE

Combustor

Minimum
UHC Cost

(% from SC)

Maximum
UHC Cost

(% from SC)

Standard Deviation
(% from SC)

SC-Reference Cycle 0 0 0 0 0 0

TMI -94.09 -94.29 -94.11 -94.19 -93.48 -94.00

INT -18.18 -7.14 -11.58 -12.90 -6.52 -13.33

REQ -4.55 0.00 -5.26 -9.68 -2.17 -6.67

ICR -13.64 -14.29 -15.79 -16.13 -17.39 -13.33
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7.2.3 LNG carrier

7.2.3.1 Quantified output parameters

The prime mover quantified output parameters qp for every scheduled journey of

the LNG carrier, produced by using “Poseidon”, of the two sets of journeys under

each of the two already defined weather (or sea-state) profiles which are part of the

technical related input data of the life cycle costs model (chapter 3, section 3.2.4.2 and

chapter 6, section 6.1) are presented in two tables in appendix E.5 (tables E.1 and

E.2), with each table representing a hull roughness amplitude due to fouling (F1-F5,

chapter 5, section 5.2.3.2). Each of the table sets represents the weather profile (ideal

or adverse) and as it was mentioned in chapter 5, section 5.3.1.2 both prime movers

are constantly in operation. Analytical graphical presentation of the cycle performance

(turbine entry temperature and fuel flow), engine power-ship (marine vessel) speed

relationship, exhaust emissions rates and hot section rotor blade time to failure of the

intercooled/recuperated gas turbine (ICR) at every time interval during every of the

ten in total scheduled journeys are presented for each simulated gas turbine in

appendices E.1, E.2, E.3 and E.4 respectively

7.2.3.2 Annual Utilisation

The annual number of scheduled journeys Nasj of the LNG carrier is estimated

assuming that the marine vessel is in constant annual operation. Modern LNG

carriers are designed to spend minimum possible time at the charge/discharge natural

gas docking stations, and their operational profile is very similar to ferries, as their

journeys are scheduled and in principle they operate on a constant route. The cargo

charge/ discharge time, in this study, is assumed to be 12 hours [2], and the life cycle

costs model was supplemented assuming an annual number of scheduled journeys Nasj

of 200. The required power from the cargo charging/discharging pumps can be as

high as approximately 38% of the total installed power plant power [3], and when an

IFEP system is installed on a LNG carrier that incorporates a twin main prime mover

arrangement the required by the pumps power is provided by one of the vessel’s

prime movers, a procedure that adds considerable amount of operational time thus

operating cost on the vessel’s power plant, and because as it has been previously

mentioned this study is concentrated on the technoeconomic, environmental and risk

analysis of the power plants of the marine vessels in the open-sea, the power plant
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operation for charging/discharging cargo from the marine vessel is not taken into

consideration. An important difference in the operation of a LNG carrier comparing

with a ferry is that under highly adverse weather conditions the LNG carrier will be

required to sail, in order to satisfy schedule and contract arrangements. The

minimum-maximum annual operational time tannual of the prime movers that are

presented in table 7.21 were calculated from the “Poseidon” results presented in

appendix E.5 by considering the minimum and maximum operational time per

journey top (see tables E.1, hull fouling F1-F5 and E.2, hull fouling F5).

Table 7.21: Minimum and maximum annual operational time per prime mover type

7.2.3.3 Power plant economic and risk analysis

The results that describe the economic performance of each of the

intercooled/recuperated gas turbine power plant installed on the LNG carrier

according to the case scenarios investigated during this research were obtained as it

was described in chapter 3, with the use of the life cycle costs model and the input

dataset was implemented to it as described in chapter 6 and in this chapter in sections

7.2.3.1 and 7.2.3.2. The graphical expression of the probability and cumulative

probability distribution of the net present cost of scenarios 1 and 2 [NPC in GBP (£)

million] of the intercooled/recuperated gas turbine power plant incorporating either

the conventional or the DLE combustor described in chapter 4, section 4.5 and chapter

6, section 6.2.3, is presented in figures 7.9 and 7.10 respectively. The economic

scenarios 1 and 2 are described in chapter 6, section 6.2.2). The graphical expression

of the rest of the probability and cumulative probability distributions of the overall

output parameters (chapter 3, section 3.2.4.3) are presented in appendix E.6, figures

E.11-E.22.

Engine Minimum operational time
tannual (hours)

Maximum operational time
tannual (hours)

ICR 4800 5816
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Figure 7.9: LNG carrier – Probability distribution of the NPC of the ICR power plant (Scenarios 1and 2)
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7.3 Gas Turbine Off-design Operation

7.3.1 General overview

7.3.1.1 Ideal weather conditions

The principal task of the simulated marine gas turbine power plants is to provide the

required by the marine vessel power to maintain a scheduled speed. Assuming that the

vessel travels at ideal weather conditions and a constant speed profile (RoPax fast

ferry: appendix D.2, figure D.11 and LNG carrier: appendix E.2, figure E.3) the

factors that affect the thermodynamic performance (RoPax fast ferry: appendix D.1,

figures D.1 to D.5 and LNG carrier: appendix E.1, figure E.1) of the gas turbine prime

movers is only the air ambient temperature, as the sea temperature remains constant

during all scheduled journeys as also air ambient pressure. As at every journey time

interval air ambient temperature increases (chapter 5, section 5.4.2.3) the prime mover

is required to maintain the same power output which means that the density of air

decreases, the entropy of air increases, total compression work increases, total

compression pressure ratio decreases as also intake mass flow and more fuel needs to

be added, which results in higher turbine entry temperature and a drop in the thermal

efficiency.

The effects of the increasing air ambient temperature on the gas turbine NOx exhaust

emissions rates is that the increase in the turbine entry temperature (increased

combustor flame temperature) and fuel flow rate have a more significant effect on the

NOx production than the decreased total compression pressure ratio which results in an

increase in the gas turbine NOx exhaust emission rates (RoPax fast ferry: appendix

C.3, figures C.27 to C.31 and LNG carrier: appendix E.3, figure E.7). The CO

(presented in the same figures with NOx) and UHC (RoPax fast ferry: appendix C.3,

figures C.17 to C.21 and LNG carrier: appendix E.3, figure E.5) exhaust emission

rates are dictated by the increase in the turbine entry temperature and although fuel

flow increases the emission rates of CO and UHC decrease. The production of CO2

solely depends on fuel flow rate and is directly proportional to it (presented in the

same figures with UHC).
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The effects of increasing air ambient temperature on the gas turbine hot section

rotor blade time to failure is that the compressor outlet temperature and relative

rotational speed increases as also the turbine entry temperature which results in a

decrease in the blade’s time to failure (RoPax fast ferry: appendix C.4, figures C.37 to

C.41 and LNG carrier: appendix E.4, figure E.9), and consequently an increase in gas

turbine maintenance cost.

When the air ambient temperature decreases at constant output power the effects on

gas turbine performance and as a consequence exhaust emission rates and hot section

rotor blade time to failure are exactly the opposite.

7.3.1.2 Adverse weather conditions

The response of the performance parameters of a marine gas turbine in increasing

sea-state numbers (appendices: C.1, D.1, E.1, figures: C.6 to C.10, D.6 to D.10 and

E.2 for the Destroyer, RoPax fast ferry and LNG carrier respectively) is identical in

principal to the increasing power requirements difference of the Destroyer between

cruise and boost speed (appendix C.2, figure C.11) and the increasing power

requirement due to hull fouling. Assuming that air ambient temperature between time

intervals is constant, when the required prime mover output power increases, all gas

turbine performance parameters, that form the basis of this technoeconomic study,

increase. This means that NOx and CO2 exhaust emissions rate increase and CO and

UHC emissions rate decrease, as also the hot section rotor blade life to failure. The

effects of a decreasing required output power on gas turbine performance and as a

consequence exhaust emission rates and hot section rotor blade time to failure are

exactly the opposite.

When the hydrodynamic resistance of the marine vessel at a certain speed is greater

than the maximum available output power produced by the installed power plant, due

to increased sea-state numbers and/or hull fouling progression, then the operating

turbine entry temperature of the engaged prime mover(s) peaks at the maximum input

value of 1530 K which stops to be a variable performance factor and the maximum

prime mover power output depends on the variation of the air ambient temperature

with time of day. As air ambient temperature decreases maximum power output

increases, due to increased intake mass flow rate, total compression ratio and as a
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result increased fuel flow rate. The NOx exhaust emissions rates (appendices: C.3,

D.3, E.3, figures: C.32 to C.36, D.32 to D.36 and E.8 for the Destroyer, RoPax fast

ferry and LNG carrier respectively) show to increase due to the higher values of the

performance parameters, and a similar phenomenon is observed with CO exhaust

emission rates (presented in the same figures with NOx), where the dominant factor

appears to be the increased fuel flow rate rather than the CO exhaust emissions index.

On the other hand UHC exhaust emissions index seems to be a more significant factor

than fuel flow rate in the production of UHC exhaust emission quantities (at least at

the specified TET and Tamb range) and as a consequence UHC exhaust emission rates

decrease (appendices: C.3, D.3, E.3, figures: C.22 to C.26, D.22 to D.26 and E.6 for

the Destroyer, RoPax fast ferry and LNG carrier respectively).

Under the conditions defined earlier in this sub-section the hot section rotor blade

time to failure decreases (appendices: C.4, D.4, E.4, figures: C.42 to C.46, D.42 to

D.46 and E.10 for the Destroyer, RoPax fast ferry and LNG carrier respectively) as

both compressor outlet temperature and relative rotational speed increase.

When the air ambient temperature increases, at maximum allowable turbine entry

temperature, the effects on gas turbine performance and as a consequence exhaust

emission rates and hot section rotor blade time to failure are exactly the opposite.

7.3.1.3 Effects of intercooling

As it was stated in chapter 4, section 4.3.2 the intercooler output temperature TIOT of

the simulated high-power mode TMI, INT and ICR marine gas turbines remains

constant at off-design conditions. This means that the HP shaft (all three designs are

3-shaft, chapter 4, sections 4.3.4, 4.3.5 and 4.3.7 for the high-power TMI, INT and

ICR respectively) is isolated from changes in the air ambient temperature and the only

performance handling variable that define its off-design state is the turbine entry

temperature (chapter 2, section 2.2.2), thus the required output power. This can be

observed in figures 4.17, 4.20 and 4.26 (chapter 4, high-power TMI, INT and ICR

respectively) where TBLADE remains practically unchanged with air ambient

temperature variation. It needs to be added that the exhaust gas temperature delivered

to the recuperator of the ICR gas turbine is primarily affected by the expansion ratio

of the LP turbine as the LP compressor is exposed to the variation of the ambient
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conditions, a phenomenon that causes TBLADE to vary inconsiderably with changes

in the air ambient temperature but still much less than in the case of the SC, low-

power mode TMI and REQ (chapter 4, figures 4.8, 4.13 and 4.23 respectively). The

relative rotational speed CS of the HP shaft which is presented in the same figures

with TBLADE, in the case of the 3-shaft engines, varies according the gas turbine

performance principles described in chapter 4, section 4.2.1.

It can be observed that the variation of intake mass flow MF (chapter 4, figures

4.16, 4.19 and 4.25 for high-power TMI, INT and ICR respectively), total compression

pressure ratio PR (presented in the same figures with intake mass flow MF), fuel flow

FF (chapter 4, figures 4.15, 4.18 and 4.24 for high-power TMI, INT and ICR

respectively), and as a consequence engine power (power turbine output) EP

(presented in the same figures with fuel flow FF), with air ambient temperature from

design-point of the marine gas turbines incorporating an intercooler, is significantly

lower in amplitude comparing with the SC (chapter 4, figures 4.6 for FF and EP, 4.7

for MF and PR) and REQ (chapter 4, figures 4.21 for FF and EP, 4.22 for MF and

PR) cycles and the reason for that is the fact that only the LP compressor of the

intercooler featuring cycles is affected by the changes in ambient conditions. For that

reason in the information contained within tables C.6 to C.10 and D.6 to D.10

(appendices C.5 and C.6 for the Destroyer and RoPAx ferry respectively) the

scheduled journey prolongation due to adverse weather conditions in combination

with increased hull roughness amplitude due to fouling is kept in lower values when

the power plant platform marine vessel incorporates intercooled gas turbine prime

movers. The ICR power plant because of the installed recuperator, as it was

mentioned earlier in this section, shows to be more affected by the changes in the air

ambient temperature than the TMI (high-power mode) and INT power plants.

The effects of intercooling in exhaust emissions rates (appendix B.1, figures B.1 to

B.12) due to different air ambient temperatures are similar to the effects on the

performance parameters described earlier in this section. The exception in the

emission rates is the NOx where does not show to follow the above observation, as in

the INT and TMI (high-power mode) gas turbines when the TET increases after 1350-

1400 K nitric oxide exhaust emission rates become more affected by air ambient
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temperature. On the other hand the ICR gas turbine does not show the above described

sensitivity.

The effects of intercooling in the hot section rotor blade time to failure is that it is

observed that at part load conditions (i.e. Destroyer cruise mode) in the TMI (high-

power mode), INT and ICR gas turbine prime movers turbine entry temperature is

kept higher at the same output power requirement comparing with the SC and REQ

(even lower) prime movers which means that hot section blade life is reduced in

contrast with the SC and REQ gas turbines although cooling air temperature in some

cases (i.e. INT and ICR) is lower due to intercooling. At the maximum allowed

turbine entry temperature (1530 K) and decreasing air ambient temperature the

advantage of the non-intercooled gas turbines starts to fade as the compressor outlet

temperature increases more significantly than in the gas turbines that accommodate an

intercooler. The marine gas turbine that shows the highest turbine entry temperature at

part load conditions is the ICR followed by the (in a higher to lower order) INT, SC

and REQ, something that can be seen in the case studies results of both the Destroyer

and the RoPax fast ferry (appendices C.1 and D.1, figures C.5 and C.10, and D.5 and

D.10 respectively). The TMI gas turbine prime mover has a different operational

profile (when installed on the Destroyer) and for that reason is not directly compared

with the other four marine gas turbines on the above mentioned phenomenon.

7.4 Case Studies Discussion: Power Plant Economic
Feasibility

7.4.1 Destroyer

7.4.1.1 Intercooled/recuperated cycle gas turbine power plant

According to the results of the three economic scenarios, the power plant that is

estimated to be the most economically feasible option in powering the Destroyer is the

ICR, equipped either with conventional or DLE combustors. The installation of DLE

combustors on the power plant’s (all) prime movers is a marginally more economical

solution in the case of scenario 1, but in scenario 2 the increased probable PMC0

(chapter 3, sections 3.2.2.4 and 3.2.2.6) leads to a higher PMC1 as the DLE

combustors cost more than in scenario 1 (PMC also increase), which means that the
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overall probable maintenance costs also increase (chapter 3, equation 3-6), and in this

case (scenario 2) makes the installation of conventional combustors a marginally more

economically proposal. As it was stated in chapter 6, sections 6.2.2 and 6.2.3 all prime

movers depending on the scenario number have the same PD0-min -PD0-max and PD1-

min-PD1-max range, and the main factor that differentiates the Cmaint of each of the prime

movers (assuming the investigation concerns a single marine vessel type and have the

same operational profile i.e. cruise or boost) is the number of hours between engine

overhaul Hem (journey time prolongation in the case of the Destroyer is not a major

factor) which according to chapter 3, sections 3.2.2.3 and 3.2.2.4 it affects PMC and

as a consequence Cmaint (Hem inherently affects Cmaint). The turbine entry temperature

is the main parameter in determining the hot section rotor blade time to failure (thus

Hem) and as it can be seen in the relative figures in appendices C.1 and C.4 (ideal

weather conditions, all hull fouling levels) the ICR prime movers (both cruise and

boost prime movers operate at part-load, but in a different level) operate at the highest

TET comparing with the SC, INT and REQ (the TMI power plant is described in the

next section) producing the second lowest Hem (both cruise and boost prime movers,

second to TMI power plant). At adverse weather conditions (see relative figures in

appendices C.1 and C.4) and referring to sections 7.3.1.2 and 7.3.1.3, the Hem of both

the cruise and boost ICR prime movers increase comparing the SC and the INT power

plant (similar qb values especially between the boost prime movers). In both scenarios

the ICR power plant is probably more expensive to maintain than the reference power

plant (which in general as the lowest maintenance cost as also the REQ power plant

either with conventional or DLE combustors). Comparing the maintenance cost of the

ICR and INT power plants in both scenarios, the ICR equipped with conventional

combustors is benefited by the smaller variability of the maintenance cost

distributions although its minimum maintenance cost is higher than the INT power

plant equipped with the same combustor technology. When the two power plants are

compared (both scenarios), equipped with DLE combustors the INT power plant

shows a probability of higher Cmaint. At this point a comment needs to be made: due to

the fact that the normal distributions are defined, in general, by eleven intervals, their

shape may not be presented perfectly according to their ideal shape, and this

limitation can be considerably compensated by knowing the number of risk scenarios,

the minimum-maximum of the distributions and their variability (standard deviation).
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In terms of probable fuel cost (which is the most influential cost component in the

NPC of all power plants in this TERA research) the ICR power plant not only benefits

from its second highest design-point thermal efficiency (ηth=0.4349) but also from its

highest part-load thermal efficiency (approximately 80% of design-point at air

ambient temperature of 10.6 oC at 8.12MW which is the lowest required brake power

by the Destroyer at cruise mode) and operational profile. The ICR power plant

produces the second lowest probable fuel cost behind the TMI power plant. The

highest probable fuel cost is produced as expected by the SC power plant.

The probable cost of CO2 exhaust emissions is dictated by the thermal efficiency

characteristics of the power plant, and the two reasons that is differentiated from the

probable fuel cost in terms of minimum-maximum cost and distribution variability is

the emission tax rate and the range of it (chapter 6, sections 6.4.1 and 6.4.2). The

probable NOx exhaust emissions cost of the ICR and INT power plants is marginally

lower in minimum-maximum cost range and variability either equipped with

conventional or DLE combustors comparing with the SC power plant (table 7.7,

appendix C.7, table C.16 and appendix C.6, figures C.53, C.54, C.55 and C.56), and it

needs to be mentioned that the only factor that differentiates the probable NOx exhaust

emissions cost (in a proportional manner) thus minimum-maximum cost and

distribution variability produced by either using conventional or DLE combustors is

the combustor technology factor Ktech (applies to probable CO and UHC exhaust

emissions cost). The CO and UHC exhaust emission quantities (especially UHC) are

considered as secondary influential factors in the estimation of the probable NPC of

the power plants as generally the quantities produced by the power plants are lower

than that of NOx as also their cost per produced unit mass (chapter 6, section 6.4.2).

By changing the cost of emission quantities per unit mass the effect of each of the

exhaust emission quantity can change. The high turbine entry temperatures sustained

by the ICR prime movers at part-load (and the very good part-load thermal

efficiencies) produce smaller quantities of CO and UHC exhaust emissions comparing

with the SC and REQ power plants. Comparing the probable CO exhaust emissions

cost of the ICR and INT power plants the produced results are very similar either

when the power plants are equipped with DLE or conventional combustors. It is

interesting the fact that the ICR and INT prime movers either as cruise or boost prime

movers (the cruise prime movers in general, naturally produce larger CO and UHC
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exhaust emission quantities, first because of their extensive operation at part load and

second because of the their higher operational time per scheduled journey) produce

similar CO exhaust emission quantities. On the other hand the ICR power plant

produce lower probable UHC exhaust emissions cost comparing with the INT power

plant as at both weather conditions and prime mover operational modes the ICR prime

movers produce lower UHC exhaust emissions quantities.

7.4.1.2 Twin-mode intercooled cycle gas turbine power plant

According to the results of scenario 1 the TMI power plant equipped with DLE

combustors is clearly the option that produces the second lowest probable NPC with a

minimum value very close to the minimum probable NPC cost of the ICR power plant

equipped also with controlled exhaust emissions combustors, but with a larger

standard deviation that results in a higher maximum probable NPC, thus a higher

probability that the TMI power plant may produce a higher NPC value. The

installation of conventional combustors increase the probable NPC and the TMI power

plant produces an economic feasibility similar to the REQ power plant equipped with

conventional combustors with a higher minimum probable NPC but with smaller

variability. Either with controlled or uncontrolled combustion the system remains a

more economical option than the reference power plant equipped with either

conventional or DLE combustors. According to the results of scenario 2 the TMI

power plant equipped with conventional combustors is a more economical option than

the reference power plant equipped also with technologically the same combustion

system as it produces a marginally smaller minimum NPC and the distribution has a

smaller variability. When the two power plants are compared equipped with DLE

combustors (the reference power plant equipped with DLE combustors is clearly a

more economically feasible option than equipped with conventional combustors) the

TMI power plant remains a marginally more economical system. According to the

results of scenario 3 the TMI power plant is considered as the least economically

feasible option in comparison with all power plants and in addition the conventional

combustion system produces a lower probable NPC than the DLE.

As it was mentioned in the previous section the TMI power plant produces the

lowest probable fuel cost. The prime movers of the power plant when they operate at
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the low-power mode their minimum thermal efficiency at 10.6 oC (ideal weather

conditions and clean hull, required brake power 8.112MW divided by two) is 96% of

the low-power mode design-point, which is the highest thermal efficiency at cruise

mode comparing with all power plants. At ideal weather conditions the high-power

mode does not engage in order the Destroyer to maintain its cruise speed, and at an air

ambient temperature of 10.6 oC the high-power mode (boost speed, ideal weather

conditions clean hull) has a minimum thermal efficiency ηth of approximately 0.45

which is also the highest thermal efficiency at sprinting. At adverse weather

conditions (appendix C.1, figure C.23) (clean hull) the high-power mode of the TMI

power plant according to the Destroyer power plant operation (chapter 5, section

5.3.1.3) is required to engage at, at least 6 time intervals (raising to 7 time intervals at

hull fouling level F5) forcing the prime movers to operate at power as low as 5.5MW

each. As the high-power mode engages at so low required brake power the thermal

efficiency of the power plant reduces. The thermal efficiency of each of the TMI

prime movers at an air ambient temperature of 10.6 oC (clean hull, 5.5 MW required

power) is approximately 71.8% of the high-power mode design-point (a further

example of the part-load thermal efficiency of the high power mode which directly

compares it with the other four simulated marine gas turbines is: at 8.12MW and air

ambient temperature 10.6 oC the thermal efficiency ηth is approximately 79% of the

high-power mode design-point). A proposal on optimizing thermal efficiency during

the scheduled journeys under adverse weather conditions would be the prohibition of

the engagement of the high-power mode for the maintenance of cruise speed in order

the Destroyer to cruise only on low-power mode (high-power mode may engage in

high sea-state numbers), something that can also prolong journey time, but further

investigation is needed in order to obtain the economical feasibility of the proposal

(note: recommendation for further work), as restraints in available time for the

completion of the current research did not allow its additional implementation.

The operational profile of the TMI power plant inherently produces the highest

probable maintenance cost Cmaint comparing with the other four power plants as its

standard operation requires high average turbine entry temperatures, and when the

prime movers of the power plant operate in the high-power mode the design-point

blade time to failure tf drops to approximately 23,000 hours (chapter 4, section

4.4.3.3), affecting equally the blade time to failure at off-design conditions. Off-
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standard operation of the power plant is when the high-power mode engages at

adverse weather conditions in order the Destroyer to sustain cruise speed and at the

corresponding time intervals the hot section rotor blade time to failure increases due

to the reduction of the turbine entry temperature (appendix C.4, figure C.43), although

the above described operation is not adequate to reduce probable maintenance cost to

the levels of the other four power plants. In scenario 1, the TMI power plant equipped

with conventional combustors produces a minimum probable Cmaint of 98.25 % higher

than that of the reference power plant and the normal distribution extends to a

maximum probable Cmaint of 113.47% having a 122.54% higher variability. The

installation of DLE combustors has the effect of raising the variability of distribution

26% more, at a similar minimum probable maintenance cost. At scenarios 2 and 3

maintenance costs increase even further as due to the phenomena described in the

previous section.

The probable cost of CO2 exhaust emissions is as stated before directly connected

with the thermal efficiency characteristics of the power plant and for that reason the

TMI power plant produces the lowest probable CO2 exhaust emissions cost. The

probable cost of NOx exhaust emissions is the highest comparing with the other four

power plants equipped with conventional or DLE combustors respectively. When the

power plant operates at the low-power mode the produced NOx exhaust emission rates

per prime mover are significantly lower comparing with each of the cruise prime

movers of the other four power plants, but because of the fact that both TMI prime

movers are in constant operation the resulting total NOx exhaust emission rates of the

TMI power plant operating at the low-power mode are higher comparing with all the

other power plants. When the TMI power plant is requested to operate at the high-

power mode the EINOx increases at approximately 85.5% and as it was mentioned

before according to the power plant operation management at adverse weather

conditions the high-power mode is requested to operate more than the standard 25%.

The above mentioned factors are primarily connected with the high probable cost of

the NOx exhaust emissions. On the other hand the probable cost of CO and UHC

exhaust emissions respectively (equipped with conventional or DLE combustors) is

the lowest comparing with the other four power plants (comparisons at the same

combustor technology level). This can be explained from the facts that when the TMI

power plant operates at the low-power mode the minimum TET is much closer to
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design-point comparing with the single-mode prime mover power plants as also

thermal efficiency and when the TMI power plant is requested to operate at the high-

power mode (taking into account the previously described operational profile) the

EICO and EIUHC decrease approximately 83.7% and 97.55% respectively.

7.4.1.3 Recuperated cycle gas turbine power plant

According to the results of scenario 1, the minimum probable NPC of the REQ

power plant equipped either with conventional or DLE combustors (marginally lower

probable NPC comparing with the conventional combustion system) is a more

economically feasible option than the reference power plant irrelevantly of the

installed combustor technology. Also the REQ power plant is clearly a more

economically feasible solution comparing also with the INT power plant regardless of

the installed combustor technology. According to the results of scenario 2 the power

plant regardless of combustion technology still performs better than the INT power

plant, but comparing with the reference power plant, its economic performance is very

similar. When the two power plants are equipped with conventional combustors

produce an almost identical minimum probable NPC but the REQ power plant shows

a smaller variability. When the two power plants are equipped with DLE combustors,

both perform critically better than when equipped with conventional combustors, and

the REQ power plant shows a marginally lower overall probable NPC but with an also

marginally larger variability.

Regarding probable fuel cost, the REQ power plant cannot compete the TMI and

ICR plant mainly because of the lower design point thermal efficiency of the REQ

marine gas turbine (ηth=0.407), but it produces a lower probable fuel cost comparing

with the SC and INT power plant. The SC marine gas turbine has the lowest design-

point thermal efficiency (ηth=0.375) and the INT marine gas turbine has a design-point

efficiency ηth of 0.408 which is almost identical to the REQ engine. Comparison of the

part-load thermal efficiency of the three prime movers with their design-point at a

brake power of 8.12MW and air ambient temperature of 10.6 oC (Destroyer: cruise

speed, ideal weather conditions, clean hull) shows:

 Simple cycle: approximately 71.4% of design-point

 Intercooled cycle: approximately 73.4% of design-point

 Recuperated cycle: approximately 78.9% of design-point
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As the operation of the Destroyer incorporating an IFEP system requires extensive

single-prime operation (except TMI power plant) at part-load the REQ power plant

has a lower overall fuel consumption. It needs to be added that the boost prime mover

(and the cruise at boost speed) operates also at part-load under ideal weather

conditions (increased hull fouling level increases the required brake power but TET

never increases beyond design-point at ideal weather conditions) although the

difference in part-load efficiency is smaller as at boost speed the required brake power

is significantly higher. At full-load and beyond both INT and REQ show an almost

identical thermal efficiency (at the range of ambient temperatures of the equivalent

profile).

The REQ power plant produces the lowest probable maintenance cost comparing

with the advanced cycle power plants at all three scenarios. In scenario 1 it produces

significantly lower minimum probable maintenance cost comparing with the reference

power plant, where the REQ power plant equipped with DLE combustors has a lower

minimum probable maintenance cost comparing with reference power plant equipped

with conventional combustors. The overall probability of lower probable maintenance

cost declines significantly due to the fact that both maintenance cost distributions

(conventional and DLE combustors) of the REQ power plant show a higher

variability, and as a consequence a higher maximum probable maintenance cost. The

TET range that the REQ prime movers operate during the scheduled journeys of the

Destroyer is the greatest comparing with all other gas turbine prime movers. At part

load-conditions the operational turbine entry temperatures of the REQ prime movers

are the lowest in comparison with the other gas turbine prime movers a phenomenon

that significantly increases Hem, at every time interval (in comparison with the other

power plants), thus decrease Cmaint. The low turbine temperature can be explained by

the fact that low specific power values are maintained at the above described

conditions, as mass flow decreases at lower rates (as also overall compression

pressure ratio) comparing with the other simulated gas turbines. At design-point TET

and beyond the REQ marine gas turbine shows to be affected by the fluctuation of the

air ambient temperature more than the other four marine gas turbines (more also than

the SC marine gas turbine, see also section 7.3.1.3).
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The probable cost of CO2 exhaust emissions as it has been mentioned before

depends on the thermal efficiency characteristics of the prime mover of the power

plant and no further comments are about to be made. The REQ power plant produces

the lowest probable NOx emissions cost equipped with either optional combustion

systems. This can be explained by the low turbine entry temperatures at part-load

conditions and also the good part-load thermal efficiency characteristics. The low

turbine entry temperatures at part-load operation have the opposite effect on the

probable CO and UHC exhaust emissions cost. The REQ power plant produces the

highest probable CO and UHC exhaust emissions cost comparing with the other

advanced cycle power plants, and it is the only power plant that produces CO and

UHC exhaust emissions cost distributions that have a positive percentage difference in

minimum-maximum cost and variability in comparison with the reference power

plant.

7.4.1.4 Intercooled cycle gas turbine power plant

According to the results of scenario 1 the INT power plant is a more economically

feasible option than the reference power plant equipped either with conventional or

DLE combustors. The installation of DLE combustors on the prime movers of the INT

power plant increases the minimum probable NPC but the distribution is characterised

by a lower variability which decreases almost equally the maximum probable NPC,

resulting in an almost equal NPC in terms of risk assessment. In scenario 1 the INT

power plant (equipped with either of the two combustion systems) can be considered

as the least economically feasible option comparing with the other three advanced

cycle power plants. According to the results of scenario 2 the INT power plant

equipped with conventional combustors produces a lower probable NPC in

comparison with INT power plant equipped with DLE combustors. Both options

though, are considered as the least economically feasible in scenario 2, producing a

lower probable NPC than the TMI power plant investigated in scenario 3.

The INT marine gas turbine when it operates at part-load it experiences a high drop

of mass flow (and overall compression pressure ratio) a phenomenon that causes the

turbine entry temperature to sustain high minimum values (lower than the ICR but

higher that then SC and the REQ gas turbines). The INT power plant shows in both

scenarios equipped either with conventional or DLE combustors a higher probable
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maintenance cost comparing with the reference power plant (SC power plant:

maintenance cost with conventional combustors is lower than with DLE).

As it was described in the previous section (7.4.1.3) regarding the design-point and

part-load thermal efficiency of the SC, INT and REQ gas turbine prime movers , the

INT power plant is clearly a more economical option in terms of probable fuel cost

comparing with the SC power plant, but it is the least economical option in

comparison with the other advanced cycle power plants, and this is reflected also in

the probable CO2 exhaust emission cost.

The probable NOx exhaust emissions cost is marginally lower comparing with the

reference power plant and comparing the variability of the distributions of the two

power plants equipped with conventional combustors the variability of the

distributions is equal. When they are equipped with DLE combustors the distribution

of the INT shows a marginally larger variability. It needs to be mentioned that due to

the higher sustained turbine entry temperatures at part-load of the INT gas turbine the

expectation would be that the probable NOx exhaust emissions cost would be higher

comparing with the reference power plant, but the decisive factor is the higher design-

point thermal efficiency of the INT gas turbine and its better part-load performance.

The probable CO and UHC exhaust emission costs are lower in comparison with the

probable costs produced by the SC power plant, primarily because of the higher

sustained turbine entry temperatures at part-load and secondarily because of, as

described above, its better thermal efficiency characteristics.

7.4.2 RoPax fast ferry

7.4.2.1 Definitions

The operational profile of the RoPax fast ferry is much simpler than the

Destroyer’s. Both of the power plant’s prime movers are always engaged and share

equal load, having a minimum operational power rating of approximately 85% MCR,

which resembles the operation of the power plants installed on the Destroyer, at boost

speed (minimum 83% MCR). This means that gas turbine part-load performance is of

less importance comparing with the operational profile of the Destroyer, and design-

point thermal efficiency has a more important role not only in the probable fuel cost

of each of the power plants but also in the probable cost of the exhaust emissions. The
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variation on the performance differences between the simulated marine gas turbines

that were identified in the previous main section (7.4.1) are apply also in the operation

of the RoPax fast ferry but in a smaller magnitude (i.e. part-load thermal efficiency,

turbine entry temperature levels at part-load operation etc.) as the prime movers of the

under investigation power plants operate much closer to the design-point turbine entry

temperature.

7.4.2.2 Twin-mode intercooled cycle gas turbine power plant

According to the results of scenario 1, the power plant that is estimated to be the

most economically feasible option in powering the RoPax fast ferry is the TMI power

plant equipped with DLE combustors. The results derived from scenario 1 also show,

that the option of investing on DLE combustion results in a lower probable NPC of all

power plants in comparison with investing on their equivalents equipped with

conventional combustors. The TMI power plant due to its high output rates of NOx

exhaust emissions (chapter 4, section 4.5.2.1) shows that the DLE combustors

investment is financially the most beneficial in comparison with the other four power

plants. It needs to be stated that the reference power plant, even if it is incorporated

with controlled exhaust emissions combustors, produces the highest probable NPC in

scenario 1. According to the results of scenario 2, the TMI power plant equipped with

DLE combustors is also the most economically feasible option in powering the RoPax

fast ferry and produces a marginally lower probable NPC in comparison with the ICR

power plant equipped also with DLE combustors. In general the results of scenario 2

show also that the installation of a DLE combustion system on the prime movers of

each of the power plants produce a lower probable NPC in comparison with the

equivalents equipped with conventional combustors. Results from scenario 3 show

that the TMI power plant equipped with DLE combustors is a more economical option

in comparison with its equivalent equipped with conventional combustors. The TMI

power plant equipped with DLE combustors produces a lower probable NPC in

comparison with the reference power plant equipped with conventional combustors,

and produces a similar probable NPC with the reference plant equipped also with DLE

combustors, with the main difference of having, a lower minimum probable NPC with

a distribution of higher variability resulting in an almost equal maximum probable

NPC. The TMI power plant equipped with conventional combustors (scenario 3)

produces together with the INT and the reference power plant (scenario 2)
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respectively the higher probable NPC, with the reference power plant producing the

higher risk of the three, but not of considerable magnitude in difference.

The TMI power plant produces in general the highest maintenance costs with

distributions of high variability. In terms of probable fuel and CO2 exhaust emissions

cost the TMI power plant produces the lowest probable values and the reason is the

highest design-point efficiency of the TMI gas turbine operating in the high power

mode. The probable cost of NOx is the highest among all the other power plants as it

was explained in section 7.4.1.2, and the probable cost of CO and UHC respectively

are the lowest (see section 7.4.1.2).

7.4.2.3 Intercooled/recuperated cycle gas turbine power plant

The results from scenario 1 and 2 show that the ICR power plant equipped with

DLE combustors produces the second lowest probable NPC and when is equipped

with conventional combustors it produces the third lowest probable NPC respectively.

In all scenarios and combustor configurations the power plant is regarded as a more

economical option in comparison with the reference power plant equipped either with

conventional or DLE combustors.

The probable maintenance cost of the ICR power plant (conventional and DLE) in

both scenarios, is as expected (section 7.4.1.1) higher than the reference power plant’s

in both combustors configuration. The power plant in general requires higher probable

maintenance costs in comparison with the REQ power plant, but in comparison with

the INT power plant in scenario 1, when both power plants are equipped with

conventional combustors the probable maintenance cost is regarded as similar

(appendix D, figure D.50) and the same can be expressed when the two power plants

are equipped with DLE combustors. In scenario 2, both power plants produce a

similar minimum probable maintenance cost but the distribution of the ICR power

plant shows a higher variability and a higher maximum probable maintenance cost.

When the two power plants are equipped with DLE combustors the minimum

probable maintenance cost is still similar among them but the distribution of the INT

power plant shows a higher variability and a higher maximum probable maintenance

cost.
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The probable fuel and CO2 exhaust emissions costs of the ICR power plant,

respectively, are as expected, the second lowest behind the TMI power plant. The

probable cost of NOx produced by the TMI power plant is lower comparing with the

reference power plant (comparison is between combustors of the same technology)

and the differences observed in the case of the destroyer apply also in the case of the

RoPax fast ferry taking into account, that fuel flow rate and intercooling (see section

7.3.1.3) has more important role in the probable NOx, CO and UHC exhaust emissions

cost (see section 7.4.2.1). The ICR power plant also produces a lower probable NOx

emissions cost in comparison with the INT power plant (comparison is between

combustors of the same technology) but in comparison with the REQ power plant

their probable NOx exhaust emissions cost is regarded as practically equal. The

probable CO and UHC exhaust emissions cost is lower comparing with the reference

power plant, and also lower in comparison with the REQ and INT power plants.

7.4.2.4 Recuperated cycle gas turbine power plant

According to the results of scenario 1, the REQ power plant equipped with

conventional combustors produces a lower probable NPC in comparison with the

reference and the INT power plant, both equipped with DLE combustors. Equipped

with DLE combustors is a more economically feasible option in comparison with the

TMI power plant equipped with conventional combustors because its distribution

produces a lower variability. Scenario 2 results show that the REQ power plant

equipped with DLE combustors is still a more economically feasible option than the

reference power plant equipped with the same combustors. The REQ power plant

equipped with DLE combustors is considered, in both scenarios, as financially more

suitable option in comparison with both the reference and the INT power plant both

equipped with conventional combustors.

The probable maintenance cost of the REQ power plant is as in the case study of

the Destroyer the lowest in comparison with the other three advanced cycle power

plants in both scenarios. In comparison with the reference power plant, according to

scenario 1 results, although the minimum probable maintenance cost of the REQ

power plant is lower, its variability is considerably higher, due to the fact that the

reference power plant has a fixed PMC1. This applies to combustors of the same
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technology. In scenario 2 results the REQ produces a higher probable maintenance

cost, than the SC power plant, of equivalent combustion technology.

The probable fuel and CO2 exhaust emissions costs of the REQ power plant are

lower in comparison with the reference power plant, and they practically equal with

the INT power plant. At ideal weather conditions and minimum required brake power

at 85% MCR the REQ gas turbines have a better part-load performance in comparison

with the INT gas turbines, a phenomenon that is observed in all five hull fouling

levels, and this difference is compensated at adverse weather conditions, beyond the

design-point TET where the INT gas turbines perform better (higher thermal

efficiency). It needs to be added that in general, scheduled journey time is prolonged

more when the RoPax fast ferry is equipped with the REQ power plant, which means

that the additional operational time, increases the quantified output parameters qp.

The probable NOx exhaust emissions cost produced by the REQ power plant is

lower in comparison with the reference and INT power plants (comparison is between

combustors of the same technology). The reason is that the REQ power plant operates

at part-load with lower turbine entry temperatures (and higher part-load thermal

efficiency), than both power plants (see section 7.4.1.3). The probable cost of CO and

UHC exhaust emissions of the REQ power plant, is lower in comparison with the

reference power plant but higher than the INT power plant (comparison is between

combustors of the same technology). This can be partly explained from the facts that

although the SC gas turbines operate at higher turbine entry temperatures at part-load

(still lower than the INT gas turbines) their thermal efficiency characteristics are

considerably lower, in comparison with the REQ gas turbine. On the other hand the

higher part-load turbine entry temperatures of the INT gas turbines seem to be the

most important factor in its lower probable cost of CO and UHC exhaust emissions.

7.4.2.5 Intercooled cycle gas turbine power plant

According to the results derived from scenario 1, the INT power plant produces the

highest probable NPC in comparison with the three advanced cycle power plants.

When it is equipped with conventional combustors it can be regarded as a marginally

more economically feasible option in comparison with the reference power plant

equipped with DLE combustors. The results derived from scenario 2, the INT power
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plant equipped with DLE combustors produce a higher probable NPC than the

equivalent reference power plant, though it can still be regarded as a more feasible

investment than the reference power plant equipped with conventional combustors.

The above observation applies also to the INT power plant equipped with

conventional combustors although the cost range difference is more marginal but still

of lower overall risk.

The probable maintenance cost of the INT power plant is significantly higher than

the reference power plant, but the probable cost of all four exhaust emission quantities

is lower, and what can be observed is that although the same phenomena are observed

in the case of the ICR power plant, design-point and part-load thermal efficiency have

a significant impact on the economic feasibility of the power plant (at the same

design-point emission indexes).

7.4.3 LNG carrier

7.4.3.1 Definitions

The operational profile of the LNG carrier’s power plant in the open sea is identical

to the RoPax fast ferry with the difference that the maximum continuous rating

(MCR) is in this case, approximately, 88%. Because of the fact that the investigation

takes into account the power plant operating in the open-sea (see section 7.2.3.2) the

net present costs (as also the cost components that compose it) produced in the two

scenarios, with the power plant equipped either with conventional or DLE

combustors, are lower (NPC distribution parameters) in minimum, maximum and also

variability, in comparison with an investigation that adds in the power plant life cycle

costs, the operation of the prime mover(s) during cargo loading/unloading, but

restrains in available time for the completion of this TERA research did not allow the

implementation of the above remark.

7.4.3.2 Intercooled/recuperated cycle gas turbine power plant

The results derived from scenario 1 show that the power plant equipped with DLE

combustors, produces a lower minimum probable NPC in comparison with the power

plant equipped with conventional combustors, but its distribution is characterised by a

higher variability, which results in a higher maximum probable NPC and as an

investment can be considered of higher risk. Results derived from scenario shows that
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the installation of DLE combustors increases the probable NPC considerably, and

although the investment does not produce major additional risks, the minimum-

maximum values of the normal distribution are higher. Comparing scenarios 1 and 2,

it is observed that both combustor option of scenario 2, cannot be regarded as more

economical feasible in comparison with the option of installing conventional

combustors on the power plant in accordance with the probable capital costs range of

scenario 1. The use of different fuel (natural gas instead of distillate) shows that the

installation of DLE combustors can have a negative effect on the probable NPC of the

power plant, due to the fact that the selected price range of the DLE combustors in

combination with the increased maintenance cost, do not compensate the reduction in

exhaust emission quantities, although an exhaust emissions taxation of higher rates

per unit exhaust emission mass, can result in transforming the DLE combustor option

as more economically feasible. The same can be suggested in the case that PD1-min and

PD1-max had a smaller range (both above comments apply also for the option of using

distillate fuel).

7.5 Marine Vessel Sea-keeping Performance
An important hull form design parameter that affects the sea-keeping performance

of a marine vessel is the block coefficient CB, where when it is increased, the

additional resistance created by sea-waves on the cruising marine vessel, increases

[4]. The effects of CB on the additional resistance created by the waves in adverse

weather conditions can be observed in the cases of the LNG carrier and RoPax fast

ferry. An example is that when the Ropax fast ferry (CB = 0.55) equipped with the

ICR power plant, sails in adverse weather conditions at sea-state number 8 (clean hull)

the vessel’s speed (appendix D.2, figure D.16) drops approximately 58.5%, and at the

same conditions the LNG carrier’s speed (CB = 0.75) potentially drops more than

100% (appendix E.2, figure E.4). The word “potentially” is used in order to describe

that the LNG carrier under the above described conditions could have a negative

speed value. The difference in the maximum continuous rating between the two

marine vessels at trial conditions is approximately 3% higher for the LNG carrier,

which means that it has less power margin at adverse weather conditions, something

that partly composes the overall difference between the LNG carrier and the RoPax

fast ferry in their previously described speed drop, also taking in account the larger
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frontal area of the LNG carrier, which increases the overall resistance of the marine

vessel. The purpose of the sea-wave resistance module in the current developing stage

of “Poseidon” is not to accurately simulate the effects of waves on the resistance of a

marine, but to describe them as close as possible in combination with the research

time restrains. The above described phenomenon does not affect the performance

simulation of the prime movers as at the above described weather conditions the

power plant’s gas turbines would operate at their maximum allowed turbine entry

temperature as the marine vessel is forced to reduce its speed, which means that the

total journey time is affected (less time to complete scheduled journey). From a

technoeconomic point of view, comparisons between different cycle technology

power plants (or different components technology) are still valid as all of them would

experience the same effects, assuming that they operate at the maximum allowable

turbine entry temperature.
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8 Conclusions & Recommendations

8.1 Conclusions
A novel generic Technoeconomic, Environmental, Economic and Risk Analysis

(TERA) method was developed for the investigation of the life cycle economic

feasibility of existing and novel marine gas turbine power plants operating as part of

an integrated full electric propulsion system (IFEP), based on the initial proposal

regarding the Advanced Marine Electric Propulsion Systems (AMEPS) project.

Chapter 1 described the research background, provided information to the reader on

principles of marine integrated full electrical propulsion (IFEP), a brief forecast on

the marine gas turbine market share and specified a) the research objectives followed

by main definitions that were intended to be useful to the reader in order to obtain a

spherical view of the tasks of this research and b) main assumptions created at the

beginning and during its progress.

Chapter 2 described the methods and tools used to create the numerical models that

constitute the integrated computational marine vessel operation environment scheme

“Poseidon” that forms the technical and environmental part of the TERA method. The

validity of the methods used to construct the scheme is supported by their extensive

use in their relative fields. The exception is the method used in the wave-resistance

module which was a compromise between the available time to complete the current

research and the complexity characterised the modelling of the effects of sea-waves

on the power requirements of a marine vessel. The scheme does not take into account

the effects of shallow water in the hydrodynamic resistance of the marine vessel as

also cavitation and partial submergence of the propeller(s). The scheme was created to

be able to simulate without modifications different fundamental power plant

operational strategies according to the type of the marine vessel. The main outputs of

“Poseidon” per scheduled journey are: Prime mover fuel consumption, hot section

rotor blade life consumption, exhaust emissions mass quantities (NOx, CO, CO2 and

UHC separately), operational time.
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Chapter 3 described the methods and tools used to create the economic and risk

numerical model that forms the economic and risk analysis part of the TERA method.

The validity of the methods used to construct the model is supported by the facts that,

first, although the version of the method used to predict the maintenance cost of the

simulated marine gas turbines corresponds to turboprops engines, their design

similarities is fundamental and second, the method has been successfully used in a

number of projects in Cranfied University. The operational life time of the gas turbine

prime movers was set at 30 years. The model included a technology factor to provide

the ability to adjust the exhaust emissions quantities in accordance with the

technology level of the installed combustor. Due to restrains in available time, the

model can only accommodate two different weather profiles.

Chapter 4 presented the design-point and off-design performance, the procedure of

exhaust emissions indexes calibration with presentation of the off-design exhaust

emission rates and the procedure of setting the design point hot section rotor blade life

to failure with presentation of the off-design hot section rotor blade temperature, for

each of the five 25MW simulated marine gas turbines that were modelled in

“Poseidon”. The effects of gas turbine component degradation were not included in

this research. The simulated marine gas turbines all featuring a power turbine were:

 Simple cycle (2-shaft)

 Twin mode intercooled (3-shaft simple cycle at low-power mode and 4-shaft

intercooled cycle at high power mode)

 Intercooled cycle (3-shaft)

 Recuperated cycle (2-shaft)

 Intercooled/recuperated cycle (3-shaft)

The simple cycle gas turbine was the reference cycle in this research and was

simulated as combined version of the performance characteristics of the two offered

marine versions of the General Electric LM2500. The intercooled and the recuperated

gas turbines are fictional designs, the intercooled/recuperated was partly based on

basic characteristics of the Rolls-Royce WR21, and the twin mode intercooled cycle is

a novel proposal that its configuration is primarily based on its initial preliminary

performance investigation. The simulations were performed assuming distillate fuel.

The technology level of the gas turbine components and the main cycle design
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parameter (TET) are identical for all simulated gas turbines, within the boundaries of

the capabilities of the gas turbine industry at the time of the gas turbine models

preparation. The above condition was applied in the calibration of the emissions

indexes (EINOx, EICO and EIUHC), of the conventional and DLE combustor of each of

the simulated gas turbines, which were set according to design-point values of

existing designs (the exhaust emissions indexes of the ICR gas turbine were also

calibrated for natural gas fuel, assuming a LCV equal with distillate fuel).

Consequently it was discovered that the twin mode intrecooled cycle gas turbine-

because of its high overall compression ratios of the high power mode will need a

DLE combustor of higher technology in order to obtain a design-point NOx emissions

index equal with the other four single-mode gas turbines when operating in the high

power mode. The design point hot section rotor blade life to failure of the twin mode

intercooled gas turbine was calibrated taking as reference again the core gas turbine

and when the gas turbine switches to high power mode the intercooler outlet

temperature increases by approximately 9 K (ISA conditions) the hot section rotor

blade life to failure drops by approximately 23%.

Chapter 5 presented the dataset supplied to “Poseidon” including the three case

studies of this research. Each of the case studies was defined by a different type of

marine vessel. The marine vessels were:

 Destroyer

 RoPax fast ferry

 LNG Carrier (Q-max)

All three marine vessels shared the same power plant configuration and output

power rating (50MW twin main prime mover), ambient conditions, weather profiles,

hull fouling levels, number of scheduled journey for every installed type of power

plant, scheduled journey duration and the maximum allowable TET was common for

all gas turbine prime movers, irrelevantly of the type of marine vessel. The

operational profile of each of the vessels as also the service load (which remained

constant during every journey) was adjusted in accordance with the type of the vessel

and the flexibility that an IFEP system can provide. The Destroyer and the RoPax fast

ferry acted as platforms for all five marine gas turbine power plants and every set (2

weather profiles times 5 hull fouling levels, a hull fouling level represented a year and
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after 5 years of operation the hull was considered as cleaned) scheduled journeys was

performed two times, one with the power plant equipped with conventional

combustors and one equipped with DLE combustors. Due to time constrains, the LNG

carrier acted as a platform on the intercooled/recuperated gas turbine power plant only

(natural gas fuel), but both combustor types were simulated. All dataset was based in

the maximum degree possible on realistic background information, but an extensive

trial and error procedure was undertaken to calibrate the design-point required brake

power by each of the three marine vessels according to design and hull form

parameters that describe their type, due to lack of published information.

Chapter 6 presented the economic and risk dataset supplied to the life cycle costs

model including the scenarios that completed each of the case studies, assuming a

futuristic maritime policy that NOx, CO, CO2 and UHC emissions are taxed per unit

mass in the open-sea. The scenarios were directly connected with the estimated

minimum and maximum percentage difference of cost from the reference prime

mover (reference scenario), PD0-min and PD0-max of the advanced cycle gas turbine

prime movers in comparison with the reference one. It was assumed that the probable

purchase cost of either the INT or the REQ gas turbines cannot be higher than the

ICR’s as an indicated purchase cost for a Rolls-Royce WR-21 falls within the PD0

range of scenario 2. The scenarios correspond to an economic and risk analysis as if

the advanced cycle gas turbine prime movers are in pre-design stage. The scenarios

were:

1. PD0-min and PD0-max at 20% and 65% respectively

2. PD0-min and PD0-max at 65% and 110% respectively

3. PD0-min and PD0-max at 110% and 155% respectively (only TMI prime mover)

Each scenario included two cases: one assuming conventional combustion and one

assuming DLE combustion. In the case of DLE combustion the estimated minimum

and maximum percentage difference of cost due to different technology components

was assumed as:

1. PD1-min and PD1-max at 10% and 30% respectively

Additionally the economic variables that adopted the risk element were: interest rate,

power plant availability, fuel cost and exhaust emissions cost. The economic variables

that did not adopt the risk element were: insurance cost, maintenance labour rate and
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spare parts factor. All dataset was based in the maximum degree possible on realistic

background information.

Chapter 7 presented the “Poseidon” results for each of the case studies that were

supplied as the technical and environmental dataset to the life cycle costs model. The

number of annual journeys of each of the three marine vessels was also defined which

completed the dataset of the life cycle costs model. The economic and risk analysis

results were presented and discussed. A general overview was discussed on the gas

turbine off-design operation including the effects of intercooling. The following

conclusions are products of the obtained normal distributions of the net present cost of

each of the power plants equipped with conventional or DLE combustors regarding

each of the three marine vessels.

Destroyer: According to scenario 1 all advanced cycle gas turbine power plants

showed to be more economical options in comparison with the reference power plant,

with the intercooled power plant to be the least favourable option. The first three

choices to power the Destroyer are:

1. Intercooled/recuperated power plant with DLE combustors

2. Intercooled/recuperated power plant with conventional combustors

3. Twin mode intercooled power plant with DLE combustors

According to scenario 2 the only power plant that can be regarded as a more

economical option than the reference power plant is the intercooled/recuperated. The

first three choices to power the Destroyer are:

1. Intercooled/recuperated power plant with conventional combustors

2. Intercooled/recuperated power plant with DLE combustors

3. Reference power plant with DLE combustors

RoPax fast ferry: According to scenario 1, again, all advanced cycle gas turbine

power plants showed to be more economical options in comparison with the reference

power plant, with the intercooled power plant to be the least favourable option. The

first three choices to power the RoPax fast ferry are:

1. Twin mode intercooled power plant with DLE combustors

2. Intercooled/recuperated power plant with DLE combustors

3. Intercooled/recuperated power plant with conventional combustors

According to scenario 2 the gas turbine power plants that are considered as noticeably

more economical options than the reference power plant are:
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1. Twin mode intercooled power plant with DLE combustors

2. Intercooled/recuperated power plant with DLE combustors

3. Intercooled/recuperated power plant with conventional combustors

4. Recuperated power plant with DLE combustors

Both Destroyer and RoPax fast ferry: Scenario 3 results showed that the twin

mode intercooled power plant cannot be considered as a more economically profitable

option to the reference power plant, installed either on the Destroyer and the RoPax

fast ferry.

LNG carrier: The case study showed that according to the economic scenarios of this

research, the choice of DLE combustors on the intercooled/recuperated power plant

using natural gas as fuel to power the LNG carrier in the open-sea has an

environmental value, and cannot be considered as a choice of higher economic

feasibility.

8.2 Recommendations

8.2.1 Project case studies
The following recommendations were created during the preparation and at the end

of completion of the three case studies, assuming no modifications in the models of

the TERA method (see section 8.2.2):

 The simulation and modelling of a marine version of a 25MW air bottoming

cycle (ABC) gas turbine system is recommended. An attempt was made to

implement the above recommendation but it was not completed due to time

restrains.

 Further investigation can be undertaken, in connection with the intercooled

marine gas turbine. The adoption of higher possible compression pressure

ratios (at the same component performance parameters and turbine entry

temperature) which can result in higher design-point thermal efficiency may

be considered.

 Further investigation can be undertaken in connection with the recuperated

marine gas turbine. The gas turbine can be optimised for operation at part-load

performance.
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 The twin mode intercooled cycle can be simulated and modelled optimised in

the high-power mode using distillate fuel. The recommendation concerns the

design-point hot section rotor blade to failure, and the exhaust emission

indexes when the gas turbine is equipped with a DLE combustor.

 The incorporation of at least two air ambient temperature profiles in the case

studies is advisable. One to describe average winter temperatures and one to

describe average summer temperatures.

 The LNG carrier case study should include all five power plants (may include

the air bottoming cycle), the ballast and laden draft should be taken into

account as also the use of the main prime mover(s) of the power plant during

cargo loading/unloading. Marine gas turbine dual fuel capability can also be

considered as also the adjustment of the low calorific value of natural gas used

as fuel, to higher than the distillate fuel.

 Both the Destroyer and RoPax fast ferry case studies can be modified, to

include the use of natural gas as fuel instead of distillate fuel.

 The operational profile of the Destroyer can be enriched with additional cruise

and/or boost speeds.

 A case study that is defined by a cruise marine vessel can be investigated.

8.2.2 TERA method
The development of the models of the current TERA method is currently in its

initial stages and limitations that have been identified during the research, but could

not be eliminated due to constrains in available time, are expressed as

recommendations for further work including suggested references:

 The effects of gas turbine component performance degradation can be

included in the gas turbine performance and exhaust emissions models.

 The effects of bending stress from gas momentum and pressure on the air foil

can be modelled in the hot section rotor blade creep life model. The modelling

of the effects of low-cycle fatigue on the hot section rotor is also

recommended [1].

 “Poseidon” can be enriched with the capability of simulating multi-hull

marine vessels (i.e. catamarans, small waterplane area twin hull vessels etc)

[2]. Planning marine vessels can also be considered either mono-hull or multi-
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hull. This will require propulsors more suitable for high speeds than the

Wageningen B-series propellers, and initially two suggestions can be

considered: Gawn-Burill series propellers [3] and waterjets [4] [5]. The

capability of simulating more than two propulsors may also be considered [4],

as also propeller cavitation effects and partial submergence (i.e. heavy sea)

[5]. In the case that marine vessel port manoeuvring is decided to be included

in any case studies in the future the propeller model will require the selected

propulsor(s) to operate in all four-quadrants, as also the modelling of

secondary low-power prime movers may be required, including the effects of

shallow-water in the hydrodynamic resistance of a marine vessel.

 The applicability range of the current sea-wave resistance method should be

further examined. The sea-wave resistance module can be enriched with a

method that considers marine vessel motion responses to regular waves, and

be able to have the opposite effects of a head direction towards the vessel’s

bow [6].

 The life cycle costs model can be modified to accommodate more than two

weather profiles in order to provide a more realistic approach to the simulation

of weather phenomena though every case study will require a greater amount

of computational time. Insurance cost, maintenance labour rate and spare parts

factor can be easily modified to incorporate the risk element. The capital cost

of non-existing or novel gas turbine prime movers can be modified to be

calculated according to suitable cost functions for the gas turbine components

[7].

 “Poseidon” and the life cycle costs model if integrated can save a considerable

amount of time for the completion of a case study. More time can be saved if

results are represented on tables and graphs derived directly from MATLAB.

8.2.2.1 Recommended references
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75068150-0, Chapter 6, pp 108-109, 2007.
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TURBOMATCH SCHEME - Windows NT version (October 1999)

LIMITS:100 Codewords, 800 Brick Data Items, 50 Station Vector
15 BD Items printable by any call of:-
OUTPUT, OUTPBD, OUTPSV, PLOTIT, PLOTBD or PLOTSV

Input "Program" follows

!25MW SIMPLE CYCLE 2-SHAFT MARINE GAS TURBINE

OD SI KE CT FP
-1
-1
INTAKE S1-2 D1-4 R100
COMPRE S2-3 D5-10 R101 V5 V6
PREMAS S3,13,4 D11-14
BURNER S4-5 D15-17 R102
DUCTER S5-6 D18-21
MIXEES S6,13,7
TURBIN S7-8 D22-29,101 V23
TURBIN S8-9 D30-38 V30 V31
DUCTER S9-10 D39-42
NOZCON S10-11,1 D43 R107
PERFOR S1,0,0 D30,44-46,107,100,102,0,0,0,0,0,0
CODEND

DATA ITEMS
!INTAKE
1 0.0 !INTAKE ALTITUDE
2 0.0 !ISA DEVIATION
3 0.0 !MACH NO
4 0.9951 !PRESSURE RECOVERY
!COMPRESSOR
5 0.85 !SURGE MARGIN (DEFAULT=0.85)
6 0.999 !SPOOL SPEED (DEFAULT=1.0)
7 18.0 !PRESSURE RATIO
8 0.90 !ISENTROPIC EFFICIENCY
9 0.0 !ERROR SELECTION
10 2.0 !COMPRESSOR MAP NUMBER
!TURBINE COOLING
11 0.1 !BLEED AIR
12 0.0 !FLOW LOSS
13 1.0 !PRESSURE RECOVERY
14 0.00 !PRESSURE LOSS
!BURNER
15 0.065 !PRESSURE LOSS
16 0.998 !COMBUSTION EFFICIENCY
17 -1.0 !FUEL FLOW
!DUCTER
18 0.0 !NO INTERCOOLING
19 0.02 !PRESSURE LOSS
20 0.0 !EFFICIENCY
21 0.0 !LIMITING VALUE OF FUEL FLOW
!COMPRESSOR TURBINE
22 0.0 !AUXILIARY POWER REQUIRED
23 0.81 !NON-DIMENSIONAL MASSFLOW (DEFAULT=0.8)
24 0.6 !NON-DIMENSIONAL SPEED (DEFAULT=0.6)
25 0.87 !ISENTROPIC EFFICIENCY
26 -1.0 !RELATIVE ROTATIONAL
27 1.0 !COMPRESSOR NUMBER
28 4.0 !TURBINE MAP NUMBER
29 -1.0 !POWER LAW INDEX
!POWER TURBINE
30 25000000.00 ! AUXILIARY POWER REQUIRED
31 0.89 !NON-DIMENSIONAL MASSFLOW (DEFAULT=0.8)
32 0.68 !NON-DIMENSIONAL SPEED (DEFAULT=0.6)
33 0.89 !ISENTROPIC EFFICIENCY
34 1.0 !RELATIVE ROTATIONAL
35 0.0 !COMPRESSOR NUMBER
36 5.0 !TURBINE MAP NUMBER
37 1000.0 !POWER LOW INDEX
38 -1.0 !COMPRESSOR WORK
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!DUCTER
39 0.0 !NO INTERCOOLING
40 0.026 !PRESSURE LOSS
41 0.0 !EFFICIENCY
42 0.0 !LIMITING VALUE OF FUEL FLOW
!CONVERGENT NOZZLE
43 -1.0 !AIR FIXED
!PERFOR
44 1.0 !PROPELLER EFFICIENCY
45 0.0 !SCALING INDEX
46 0.0 !REQUIRED THRUST
-1
1 2 70.86 !INLET MASS FLOW
5 6 1509.5 !COMBUSTION OUTLET TEMPERATURE
-1

Time Now 01:51:50

***********************************************

The Units for this Run are as follows:-

Temperature = K Pressure = Atmospheres Length = metres

Area = sq metres Mass Flow = kg/sec Velocity = metres/sec

Force = Newtons s.f.c.(Thrust) = mg/N sec s.f.c.(Power) = mug/J

Sp. Thrust = N/kg/sec Power = Watts
1

***** DESIGN POINT ENGINE CALCULATIONS *****

***** AMBIENT AND INLET PARAMETERS *****
Alt. = 0.0 I.S.A. Dev. = 0.000 Mach No. = 0.00
Etar = 0.9951 Momentum Drag = 0.00

***** COMPRESSOR 1 PARAMETERS *****
PRSF = 0.27824E+02 ETASF = 0.10477E+01 WASF = 0.24022E+00
Z = 0.85000 PR = 18.000 ETA = 0.90000
PCN = 0.9990 CN = 0.99900 COMWK = 0.29126E+08

***** COMBUSTION CHAMBER PARAMETERS *****
ETASF = 0.99800E+00
ETA = 0.99800 DLP = 1.2538 WFB = 1.5449

***** TURBINE 1 PARAMETERS *****
CNSF = 0.78134E+02 ETASF = 0.10226E+01 TFSF = 0.24794E+01
DHSF = 0.15941E+05
TF = 416.674 ETA = 0.87000 CN = 2.060
AUXWK = 0.00000E+00

***** TURBINE 2 PARAMETERS *****
CNSF = 0.78582E-02 ETASF = 0.10097E+01 TFSF = 0.44658E+00
DHSF = 0.27915E+05
TF = 242.033 ETA = 0.89000 CN = 2.360
AUXWK = 0.25000E+08

Additional Free Turbine Parameters:-
Speed = 100.0% Power = 0.25000E+08

***** CONVERGENT NOZZLE 1 PARAMETERS *****
NCOSF = 0.10000E+01
Area = 1.6188 Exit Velocity = 102.57 Gross Thrust = 7213.98
Nozzle Coeff. = 0.97136E+00

Scale Factor on above Mass Flows, Areas, Thrusts & Powers = 1.0000
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Station F.A.R. Mass Flow Pstatic Ptotal Tstatic Ttotal Vel Area
1 0.00000 70.860 1.00000 1.00000 288.15 288.15 0.0 ******
2 0.00000 70.860 ****** 0.99510 ****** 288.15 ****** ******
3 0.00000 70.860 ****** 17.91181 ****** 687.06 ****** ******
4 0.00000 63.774 ****** 17.91181 ****** 687.06 ****** ******
5 0.02422 65.319 ****** 16.65799 ****** 1509.50 ****** ******
6 0.02422 65.319 ****** 16.32483 ****** 1509.50 ****** ******
7 0.02180 72.405 ****** 16.32483 ****** 1435.74 ****** ******
8 0.02180 72.405 ****** 4.44838 ****** 1108.71 ****** ******
9 0.02180 72.405 ****** 1.04735 ****** 814.26 ****** ******

10 0.02180 72.405 ****** 1.02011 ****** 814.26 ****** ******
11 0.02180 72.405 1.00000 1.02011 809.64 814.26 102.6 1.6188
12 0.00000 0.000 ****** 0.00000 ****** 0.00 ****** ******
13 0.00000 7.086 ****** 17.91181 ****** 687.06 ****** ******

Shaft Power = 25000000.00
Net Thrust = 7213.98

Equiv. Power = 25465136.00
Fuel Flow = 1.5449

S.F.C. = 61.7963
E.S.F.C. = 60.6675

Sp. Sh. Power = 352808.38
Sp. Eq. Power = 359372.50
Sh. Th. Effy. = 0.3752

Time Now 01:51:50
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TURBOMATCH SCHEME - Windows NT version (October 1999)

LIMITS:100 Codewords, 800 Brick Data Items, 50 Station Vector
15 BD Items printable by any call of:-
OUTPUT, OUTPBD, OUTPSV, PLOTIT, PLOTBD or PLOTSV

Input "Program" follows

!5MW SIMPLE CYCLE 3-SHAFT MARINE GAS TURBINE AND CORE FOR THE 25MW NOVEL INTERCOOOLED
CYCLE

OD SI KE CT FP
-1
-1
INTAKE S1-2 D1-4 R100
COMPRE S2-3 D5-11 R101 V5 V6
DUCTER S3-4 D12-15 R102
COMPRE S4-5 D16-22 R103 V16 V17
PREMAS S5,6,16 D23-26
PREMAS S16,17,18 D27-30
BURNER S6-7 D31-33 R104
MIXEES S17,7,8
TURBIN S8-9 D34-41,103 V35
DUCTER S9-10 D42-45
MIXEES S10,18,11
TURBIN S11-12 D46-53,101 V47
TURBIN S12-13 D54-61 V54 V55
DUCTER S13-14 D62-65
NOZCON S14-15,1 D66 R105
PERFOR S1,0,0 D54,67-69,105,100,104,0,0,0,0,0,0
CODEND

DATA ITEMS
!INTAKE
1 0.0 !INTAKE ALTITUDE
2 0.0 !ISA DEVIATION
3 0.0 !MACH NO
4 0.9951 !PRESSURE RECOVERY
!LP COMPRESSOR
5 0.85 !SURGE MARGIN (DEFAULT=0.85)
6 1.0 !SPOOL SPEED (DEFAULT=1.0)
7 4.0 !PRESSURE RATIO
8 0.89 !ISENTROPIC EFFICIENCY
9 0.0 !ERROR SELECTION
10 4.0 !COMPRESSOR MAP NUMBER
11 0.0 !ANGLE
!DUCTER
12 0.0 !NO INTERCOOLING
13 0.0 !PRESSURE LOSS
14 0.0 !EFFICIENCY
15 0.0 !LIMITING VALUE OF FUEL FLOW
!HP COMPRESSOR
16 0.85 !SURGE MARGIN (DEFAULT=0.85)
17 1.0 !SPOOL SPEED (DEFAULT=1.0)
18 5.6 !PRESSURE RATIO
19 0.89 !ISENTROPIC EFFICIENCY
20 1.0 !ERROR SELECTION
21 4.0 !COMPRESSOR MAP NUMBER
22 0.0 !ANGLE
!TURBINE COOLING 1
23 0.90 !BLEED AIR
24 0.0 !FLOW LOSS
25 1.0 !PRESSURE RECOVERY
26 0.0 !PRESSURE LOSS
!TURBINE COOLING 2
27 0.70 !BLEED AIR
28 0.0 !FLOW LOSS
29 1.0 !PRESSURE RECOVERY
30 0.0 !PRESSURE LOSS
!BURNER
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31 0.065 !PRESSURE LOSS
32 0.998 !COMBUSTION EFFICIENCY
33 -1.0 !FUEL FLOW
!HP TURBINE
34 0.0 !AUXILIARY POWER REQUIRED
35 0.8 !NON-DIMENSIONAL MASSFLOW (DEFAULT=0.8)
36 0.6 !NON-DIMENSIONAL SPEED (DEFAULT=0.6)
37 0.87 !ISENTROPIC EFFICIENCY
38 -1.0 !COMPRESSOR TURBINE
39 2.0 !COMPRESSOR NUMBER
40 1.0 !TURBINE MAP NUMBER
41 -1.0 !POWER LAW INDEX
!DUCTER
42 0.0 !NO INTERCOOLING
43 0.015 !PRESSURE LOSS
44 0.0 !EFFICIENCY
45 0.0 !LIMITING VALUE OF FUEL FLOW
!IP TURBINE
46 0.0 !AUXILIARY POWER REQUIRED
47 0.8 !NON-DIMENSIONAL MASSFLOW (DEFAULT=0.8)
48 0.6 !NON-DIMENSIONAL SPEED (DEFAULT=0.6)
49 0.87 !ISENTROPIC EFFICIENCY
50 -1.0 !COMPRESSOR TURBINE
51 1.0 !COMPRESSOR NUMBER
52 3.0 !TURBINE MAP NUMBER
53 -1.0 !POWER LAW INDEX
!POWER TURBINE
54 5000000.00 !AUXILIARY POWER REQUIRED
55 -1.0 !NON-DIMENSIONAL MASS FLOW (DEFAULT=0.8)
56 0.599 !NON-DIMENSIONAL SPEED (DEFAULT=0.6)
57 0.89 !ISENTROPIC EFFICIENCY
58 1.0 !RELATIVE ROTATIONAL
59 0.0 !COMPRESSOR NUMBER
60 5.0 !TURBINE MAP NUMBER
61 1000.0 !POWER LAW INDEX
!DUCTER
62 0.0 !NO INTERCOOLING
63 0.02 !PRESSURE LOSS
64 0.0 !EFFICIENCY
65 0.0 !LIMITING VALUE OF FUEL FLOW
!CONVERGENT NOZZLE
66 -1.0 !AIR FIXED
!PERFORMANCE
67 1.00 !PROPELLER EFFICIENCY
68 0.0 !SCALING INDEX
69 0.0 !REQUIRED THRUST
-1
1 2 14.9 !INLET MASS FLOW
7 6 1509.5 !COMBUSTION OUTLET TEMPERATURE
-1

Time Now 01:57:01

***********************************************

The Units for this Run are as follows:-

Temperature = K Pressure = Atmospheres Length = metres

Area = sq metres Mass Flow = kg/sec Velocity = metres/sec

Force = Newtons s.f.c.(Thrust) = mg/N sec s.f.c.(Power) = mug/J

Sp. Thrust = N/kg/sec Power = Watts
1

***** DESIGN POINT ENGINE CALCULATIONS *****

***** AMBIENT AND INLET PARAMETERS *****
Alt. = 0.0 I.S.A. Dev. = 0.000 Mach No. = 0.00
Etar = 0.9951 Momentum Drag = 0.00

***** COMPRESSOR 1 PARAMETERS *****
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PRSF = 0.29412E+01 ETASF = 0.10723E+01 WASF = 0.84099E-01
Z = 0.85000 PR = 4.000 ETA = 0.89000
PCN = 1.0000 CN = 1.00000 COMWK = 0.23542E+07

***** COMPRESSOR 2 PARAMETERS *****
PRSF = 0.45098E+01 ETASF = 0.10723E+01 WASF = 0.26116E-01
Z = 0.85000 PR = 5.600 ETA = 0.89000
PCN = 1.0000 CN = 1.00000 COMWK = 0.47176E+07

***** COMBUSTION CHAMBER PARAMETERS *****
ETASF = 0.99800E+00
ETA = 0.99800 DLP = 1.4489 WFB = 0.3031

***** TURBINE 1 PARAMETERS *****
CNSF = 0.10698E+03 ETASF = 0.10132E+01 TFSF = 0.14847E+02
DHSF = 0.61712E+04
TF = 401.640 ETA = 0.87000 CN = 2.800
AUXWK = 0.00000E+00

***** TURBINE 2 PARAMETERS *****
CNSF = 0.94820E+02 ETASF = 0.97041E+00 TFSF = 0.63315E+01
DHSF = 0.38586E+04
TF = 430.924 ETA = 0.87000 CN = 2.750
AUXWK = 0.00000E+00

***** TURBINE 3 PARAMETERS *****
CNSF = 0.71568E-02 ETASF = 0.10608E+01 TFSF = 0.19579E+01
DHSF = 0.54556E+05
TF = 219.627 ETA = 0.89000 CN = 2.198
AUXWK = 0.50000E+07

Additional Free Turbine Parameters:-
Speed = 100.0% Power = 0.50000E+07

***** CONVERGENT NOZZLE 1 PARAMETERS *****
NCOSF = 0.10000E+01
Area = 0.3415 Exit Velocity = 97.37 Gross Thrust = 1437.83
Nozzle Coeff. = 0.97134E+00

Scale Factor on above Mass Flows, Areas, Thrusts & Powers = 1.0000

Station F.A.R. Mass Flow Pstatic Ptotal Tstatic Ttotal Vel Area
1 0.00000 14.900 1.00000 1.00000 288.15 288.15 0.0 ******
2 0.00000 14.900 ****** 0.99510 ****** 288.15 ****** ******
3 0.00000 14.900 ****** 3.98040 ****** 444.61 ****** ******
4 0.00000 14.900 ****** 3.98040 ****** 444.61 ****** ******
5 0.00000 14.900 ****** 22.29025 ****** 746.00 ****** ******
6 0.00000 13.410 ****** 22.29025 ****** 746.00 ****** ******
7 0.02260 13.713 ****** 20.84139 ****** 1509.50 ****** ******
8 0.02097 14.756 ****** 20.84139 ****** 1459.78 ****** ******
9 0.02097 14.756 ****** 7.81936 ****** 1201.37 ****** ******

10 0.02097 14.756 ****** 7.70207 ****** 1201.37 ****** ******
11 0.02034 15.203 ****** 7.70207 ****** 1188.88 ****** ******
12 0.02034 15.203 ****** 4.41293 ****** 1060.19 ****** ******
13 0.02034 15.203 ****** 1.04000 ****** 776.30 ****** ******
14 0.02034 15.203 ****** 1.01920 ****** 776.30 ****** ******
15 0.02034 15.203 1.00000 1.01920 772.09 776.30 97.4 0.3415
16 0.00000 1.490 ****** 22.29025 ****** 746.00 ****** ******
17 0.00000 1.043 ****** 22.29025 ****** 746.00 ****** ******
18 0.00000 0.447 ****** 22.29025 ****** 746.00 ****** ******

Shaft Power = 5000000.00
Net Thrust = 1437.83

Equiv. Power = 5092707.00
Fuel Flow = 0.3031

S.F.C. = 60.6133
E.S.F.C. = 59.5099

Sp. Sh. Power = 335570.47
Sp. Eq. Power = 341792.41
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Sh. Th. Effy. = 0.3826
Time Now 01:57:01

TURBOMATCH SCHEME - Windows NT version (October 1999)

LIMITS:100 Codewords, 800 Brick Data Items, 50 Station Vector
15 BD Items printable by any call of:-
OUTPUT, OUTPBD, OUTPSV, PLOTIT, PLOTBD or PLOTSV

Input "Program" follows

!25MW 4-SHAFT NOVEL INTERCOOLED MARINE GAS TURBINE SIMULATION (5MW CORE ENGINE)

OD SI KE CT FP
-1
-1
INTAKE S1-2 D1-4 R300
COMPRE S2-3 D5-11 R301 V5 V6
DUCTER S3-4 D12-15 R306
COMPRE S4-5 D16-22 R302 V16 V17
DUCTER S5-6 D23-26
COMPRE S6-7 D27-33 R303 V27 V28
PREMAS S7,8,20 D34-37
PREMAS S20,21,22 D38-41
BURNER S8-9 D42-44 R305
MIXEES S21,9,10
TURBIN S10-11 D45-52,303 V46
DUCTER S11-12 D53-56
MIXEES S12,22,13
TURBIN S13-14 D57-64,302 V58
TURBIN S14-15 D65-72 V65 V66
TURBIN S15-16 D73-80,301 V74
DUCTER S16-17 D81-84
NOZCON S17-18,1 D85 R304
PERFOR S1,0,0 D65,86-88,304,300,305,0,0,0,0,0,306
CODEND

DATA ITEMS
!INTAKE
1 0.0 !INTAKE ALTITUDE
2 0.0 !ISA DEVIATION
3 0.0 !MACH NUMBER
4 0.9951 !PRESSURE RECOVERY
!LP COMPRESSOR
5 0.8696 !SURGE MARGIN (DEFAULT=0.85)
6 0.997 !SPOOL SPEED (DEFAULT=1.0)
7 4.41 !PRESSURE RATIO
8 0.89 !ISENTROPIC EFFICIENCY
9 0.0 !ERROR SELECTION
10 2.0 !COMPRESSOR MAP NUMBER
11 0.0 !ANGLE
!INTERCOOLER
12 2.0 !2: INTERCOOLER
13 0.01 !PRESSURE LOSS
14 0.95 !EFFECTIVENESS
15 0.0 !LIMITING VALUE OF FUEL FLOW
!IP COMPRESSOR
16 0.86 !SURGE MARGIN (DEFAULT=0.85)
17 0.999 !SPOOL SPEED (DEFAULT=1.0)
18 3.83 !PRESSURE RATIO
19 0.89 !ISENTROPIC EFFICIENCY
20 0.0 !ERROR SELECTION
21 4.0 !COMPRESSOR MAP NUMBER
22 0.0 !ANGLE
!DUCTER
23 0.0 !NO INTERCOOLING
24 0.0 !PRESSURE LOSS
25 0.0 !EFFICIENCY
26 0.0 !LIMITING VALUE OF FUEL FLOW
!HP COMPRESSOR
27 0.859 !SURGE MARGIN (DEFAULT=0.85)
28 1.0 !SPOOL SPEED (DEFAULT=1.0)
29 5.477 !PRESSURE RATIO
30 0.89 !ISENTROPIC EFFICIENCY
31 0.0 !ERROR SELECTION
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32 4.0 !COMPRESSOR MAP NUMBER
33 0.0 !ANGLE
!TURBINE COOLING 1
34 0.90 !BLEED AIR
35 0.0 !FLOW LOSS
36 1.0 !PRESSURE RECOVERY
37 0.0 !PRESSURE LOSS
!TURBINE COOLING 2
38 0.70 !BLEED AIR
39 0.0 !FLOW LOSS
40 1.0 !PRESSURE RECOVERY
41 0.0 !PRESSURE LOSS
!BURNER
42 0.065 !PRESSURE LOSS
43 0.998 !EFFICIENCY
44 -1.0 !FUEL FLOW
!HP TURBINE
45 0.0 !AUXILIARY POWER REQUIRED
46 0.889 !NON-DIMENSIONAL MASSFLOW (DEFAULT=0.8)
47 0.664 !NON-DIMENSIONAL SPEED (DEFAULT=0.6)
48 0.87 !ISENTROPIC EFFICIENCY
49 -1.0 !COMPRESSOR TURBINE
50 3.0 !COMPRESSOR NUMBER
51 5.0 !TURBINE MAP NUMBER
52 -1.0 !POWER LAW INDEX
!DUCTER
53 0.0 !NO INTERCOOLING
54 0.0 !PRESSURE LOSS
55 0.0 !COMBUSTION EFFICIENCY
56 0.0 !LIMITING VALUE OF FUEL FLOW
! IP TURBINE
57 0.0 !AUXILIARY POWER REQUIRED
58 0.73 !NON-DIMENSIONAL MASS FLOW (DEFAULT=0.8)
59 0.43 !NON-DIMENSIONAL SPEED (DEFAULT=0.6)
60 0.87 !ISENTROPIC EFFICIENCY
61 -1.0 !COMPRESSOR TURBINE
62 2.0 !COMPRESSOR NUMBER
63 5.0 !TURBINE MAP NUMBER
64 -1.0 !POWER LAW INDEX
!POWER TURBINE
65 25000000.00 !AUXILIARY POWER REQUIRED
66 0.703 !NON-DIMENSIONAL MASS FLOW (DEFAULT=0.8)
67 0.64 !NON-DIMENSIONAL SPEED (DEFAULT=0.6)
68 0.89 !ISENTROPIC EFFICIENCY
69 1.0 !RELATIVE ROTATIONAL
70 0.0 !COMPRESSOR NUMBER
71 5.0 !TURBINE MAP NUMBER
72 1000.0 !POWER LAW INDEX
!LP TURBINE
73 0.0 !AUXILIARY POWER REQUIRED
74 0.652 !NON-DIMENSIONAL MASS FLOW (DEFAULT=0.8)
75 0.678 !NON-DIMENSIONAL SPEED (DEFAULT=0.6)
76 0.89 !ISENTROPIC EFFICIENCY
77 -1.0 !RELATIVE ROTATIONAL SPEED
78 1.0 !COMPRESSOR NUMBER
79 5.0 !TURBINE MAP NUMBER
80 1000.0 !POWER LAW INDEX
!DUCTER
81 0.0 !NO INTERCOOLING
82 0.015 !PRESSURE LOSS
83 0.0 !COMBUSTION EFFIECINCY
84 0.0 !LIMITING VALUE OF FUEL FLOW
!CONVERGENT NOZZLE
85 -1.0 !AIR FIXED
!PERFORMANCE
86 1.0 !PROPELLER EFFICIENCY
87 0.0 !SCALING INDEX
88 0.0 !REQUIRED THRUST
-1
1 2 61.71 !INLET MASS FLOW
4 6 298.0 !INTERCOOLER OUTLET TEMPERATURE
9 6 1509.5 !COMBUSTION OUTLET TEMPERATURE
-1

Time Now 01:52:45
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**********************************************

The Units for this Run are as follows:-

Temperature = K Pressure = Atmospheres Length = metres

Area = sq metres Mass Flow = kg/sec Velocity = metres/sec

Force = Newtons s.f.c.(Thrust) = mg/N sec s.f.c.(Power) = mug/J

Sp. Thrust = N/kg/sec Power = Watts
1

***** DESIGN POINT ENGINE CALCULATIONS *****

***** AMBIENT AND INLET PARAMETERS *****
Alt. = 0.0 I.S.A. Dev. = 0.000 Mach No. = 0.00
Etar = 0.9951 Momentum Drag = 0.00

***** COMPRESSOR 1 PARAMETERS *****
PRSF = 0.54737E+01 ETASF = 0.10356E+01 WASF = 0.21087E+00
Z = 0.86960 PR = 4.410 ETA = 0.89000
PCN = 0.9970 CN = 0.99700 COMWK = 0.10592E+08

***** DUCT/AFTER BURNING 1 PARAMETERS *****
ETA = 0.9000 DLP = 0.0439 WFB = 0.0000

DUCTER IS USED AS AN INTERCOOLER!
****INTERCOOLER****HEAT REMOVED:11200.55 KWATTS

***** COMPRESSOR 2 PARAMETERS *****
PRSF = 0.27468E+01 ETASF = 0.10720E+01 WASF = 0.81456E-01
Z = 0.86000 PR = 3.830 ETA = 0.89000
PCN = 0.9990 CN = 0.99900 COMWK = 0.97020E+07

***** COMPRESSOR 3 PARAMETERS *****
PRSF = 0.43432E+01 ETASF = 0.10723E+01 WASF = 0.26197E-01
Z = 0.85900 PR = 5.477 ETA = 0.89000
PCN = 1.0000 CN = 1.00000 COMWK = 0.19599E+08

***** COMBUSTION CHAMBER PARAMETERS *****
ETASF = 0.99800E+00
ETA = 0.99800 DLP = 5.9237 WFB = 1.2409

***** TURBINE 1 PARAMETERS *****
CNSF = 0.88962E+02 ETASF = 0.98735E+00 TFSF = 0.88239E+01
DHSF = 0.19709E+05
TF = 241.784 ETA = 0.87000 CN = 2.328
AUXWK = 0.00000E+00

***** TURBINE 2 PARAMETERS *****
CNSF = 0.64192E+02 ETASF = 0.10704E+01 TFSF = 0.29685E+01
DHSF = 0.27171E+05
TF = 202.201 ETA = 0.87000 CN = 1.860
AUXWK = 0.00000E+00

***** TURBINE 3 PARAMETERS *****
CNSF = 0.74251E-02 ETASF = 0.12017E+01 TFSF = 0.17455E+01
DHSF = 0.11358E+06
TF = 195.479 ETA = 0.89000 CN = 2.280
AUXWK = 0.25000E+08

Additional Free Turbine Parameters:-
Speed = 100.0% Power = 0.25000E+08

***** TURBINE 4 PARAMETERS *****
CNSF = 0.63231E+02 ETASF = 0.13539E+01 TFSF = 0.32157E+00
DHSF = 0.12299E+06
TF = 182.783 ETA = 0.89000 CN = 2.356
AUXWK = 0.00000E+00

***** CONVERGENT NOZZLE 1 PARAMETERS *****
NCOSF = 0.10000E+01
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Area = 1.2616 Exit Velocity = 78.94 Gross Thrust = 4827.10
Nozzle Coeff. = 0.97133E+00

Scale Factor on above Mass Flows, Areas, Thrusts & Powers = 1.0000

Station F.A.R. Mass Flow Pstatic Ptotal Tstatic Ttotal Vel Area
1 0.00000 61.710 1.00000 1.00000 288.15 288.15 0.0 ******
2 0.00000 61.710 ****** 0.99510 ****** 288.15 ****** ******
3 0.00000 61.710 ****** 4.38839 ****** 457.98 ****** ******
4 0.00000 61.710 ****** 4.34451 ****** 298.00 ****** ******
5 0.00000 61.710 ****** 16.63947 ****** 453.53 ****** ******
6 0.00000 61.710 ****** 16.63947 ****** 453.53 ****** ******
7 0.00000 61.710 ****** 91.13438 ****** 755.28 ****** ******
8 0.00000 55.539 ****** 91.13438 ****** 755.28 ****** ******
9 0.02234 56.780 ****** 85.21065 ****** 1509.50 ****** ******

10 0.02073 61.100 ****** 85.21065 ****** 1460.32 ****** ******
11 0.02073 61.100 ****** 31.86317 ****** 1200.93 ****** ******
12 0.02073 61.100 ****** 31.86317 ****** 1200.93 ****** ******
13 0.02011 62.951 ****** 31.86317 ****** 1188.69 ****** ******
14 0.02011 62.951 ****** 18.30564 ****** 1060.56 ****** ******
15 0.02011 62.951 ****** 2.96345 ****** 715.99 ****** ******
16 0.02011 62.951 ****** 1.03388 ****** 561.50 ****** ******
17 0.02011 62.951 ****** 1.01837 ****** 561.50 ****** ******
18 0.02011 62.951 1.00000 1.01837 558.58 561.50 78.9 1.2616
19 0.00000 0.000 ****** 0.00000 ****** 0.00 ****** ******
20 0.00000 6.171 ****** 91.13438 ****** 755.28 ****** ******
21 0.00000 4.320 ****** 91.13438 ****** 755.28 ****** ******
22 0.00000 1.851 ****** 91.13438 ****** 755.28 ****** ******

Shaft Power = 25000000.00
Net Thrust = 4827.10

Equiv. Power = 25311236.00
Fuel Flow = 1.2409

S.F.C. = 49.6346
E.S.F.C. = 49.0243

Sp. Sh. Power = 405120.75
Sp. Eq. Power = 410164.28
Sh. Th. Effy. = 0.4672

Time Now 01:52:45
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TURBOMATCH SCHEME - Windows NT version (October 1999)

LIMITS:100 Codewords, 800 Brick Data Items, 50 Station Vector
15 BD Items printable by any call of:-
OUTPUT, OUTPBD, OUTPSV, PLOTIT, PLOTBD or PLOTSV

Input "Program" follows

!25MW INTERCOOLED 3-SHAFT MARINE GAS TURBINE SIMULATION

OD SI KE CT FP
-1
-1
INTAKE S1-2 D1-4 R300
COMPRE S2-3 D5-11 R301 V5 V6
DUCTER S3-4 D12-15 R305
COMPRE S4-5 D16-22 R302 V16 V17
PREMAS S5,6,15 D23-26
PREMAS S15,16,17 D27-30
BURNER S6-7 D31-33 R303
MIXEES S7,16,8
TURBIN S8-9 D34-41,302,42 V35
MIXEES S9,17,10
TURBIN S10-11 D43-50,301,51 V44
TURBIN S11-12 D52-60 V52 V53
DUCTER S12-13 D61-64
NOZCON S13-14,1 D65 R304
PERFOR S1,0,0 D52,66-68,304,300,303,0,0,305,0,0,0,0,0
CODEND

DATA ITEMS
1 0.0 !INTAKE ALTITUDE
2 0.0 !ISA DEVIATION
3 0.0 !MACH NUMBER
4 0.9951 !PRESSURE RECOVERY
!LP COMPRESSOR
5 -1.0 !SURGE MARGIN (DEFAULT=0.85)
6 -1.0 !SPOOL SPEED (DEFAULT=1.0)
7 2.7 !PRESSURE RATIO
8 0.90 !ISENTROPIC EFFICIENCY
9 0.0 !ERROR SELECTION
10 4.0 !COMPRESSOR MAP NUMBER
11 0.0 !ANGLE
!INTERCOOLER
12 2.0 !2:INTERCOOLER
13 0.03 !PRESSURE LOSS
14 0.90 !INTERCOOLER EFFECTIVENESS
15 100000.00 !LIMITING VALUE OF FUEL FLOW
!HP COMPRESSOR
16 -1.0 !SURGE MARGIN (DEFAULT=0.85)
17 -1.0 !SPOOL SPEED (DEFAULT=1.0)
18 9.26 !PRESSURE RATIO
19 0.90 !ISENTROPIC EFFICIENCY
20 0.0 !ERROR SELECTOR
21 4.0 !COMPRESSOR MAP NUMBER
22 0.0 !ANGLE
!TURBINE COOLING 1
23 0.90 !BLEED AIR
24 0.0 !FLOW LOSS
25 1.0 !PRESSURE RECOVERY
26 0.0 !PRESSURE LOSS
!TURBINE COOLING 2
27 0.70 !BLEED AIR
28 0.0 !FLOW LOSS
29 1.0 !PRESSURE RECOVERY
30 0.0 !PRESSURE LOSS
!BURNER
31 0.065 !PRESSURE LOSS
32 0.998 !EFFICIENCY
33 -1.0 !FUEL FLOW
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!HP TURBINE
34 0.0 !AUXILIARY POWER REQUIRED
35 0.8 !NON-DIMENSIONAL MASSFLOW (DEFAULT=0.8)
36 0.6 !NON-DIMENSIONAL SPEED (DEFAULT=0.6)
37 0.87 !EFFICIENCY
38 -1.0 !COMPRESSOR TURBINE
39 2.0 !COMPRESSOR NUMBER
40 3.0 !TURBINE MAP NUMBER
41 -1.0 !POWER LAW INDEX
42 0.0 !ANGLE
!IP TURBINE
43 0.0 !AUXILIARY POWER REQUIRED
44 0.8 !NON-DIMENSIONAL MASS FLOW (DEFAULT=0.8)
45 0.6 !NON-DIMENSIONAL SPEED (DEFAULT=0.6)
46 0.87 !ISENTROPIC EFFICIENCY
47 -1.0 !COMPRESSOR TURBINE
48 1.0 !COMPRESSOR NUMBER
49 3.0 !TURBINE MAP NUMBER
50 -1.0 !POWER LAW INDEX
51 0.0 !ANGLE
!POWER TURBINE
52 25000000.00 !POWER REQUIRED
53 -1.0 !NON-DIMENSIONAL MASS FLOW (DEFAULT=0.8)
54 -1.0 !NON-DIMENSIONAL SPEED (DEFAULT=0.6)
55 0.89 !ISENTROPIC EFFICIENCY
56 1.0 !RELATIVE ROTATIONAL
57 0.0 !COMPRESSOR NUMBER
58 5.0 !TURBINE MAP NUMBER
59 1000.0 !POWER LAW INDEX
60 0.0 !COMPRESSOR WORK
!DUCTER
61 0.0 !NO INTERCOOLING
62 0.005 !PRESSURE LOSS
63 0.0 !EFFICIENCY
64 0.0 !LIMITING VALUE OF FUEL FLOW
!CONVERGENT NOZZLE
65 -1.0 !AIR FIXED
!PERFORMANCE
66 1.00 !PROPELLER EFFICIENCY
67 0.0 !SCALING INDEX
68 0.0 !REQUIRED THRUST
-1
1 2 59.99 !INLET MASS FLOW
4 6 310.00 !INTERCOOLER OUTLET TEMPERATURE
7 6 1509.5 !COMBUSTION OUTLET TEMPERATURE
-1

Time Now 01:50:44

***********************************************

The Units for this Run are as follows:-

Temperature = K Pressure = Atmospheres Length = metres

Area = sq metres Mass Flow = kg/sec Velocity = metres/sec

Force = Newtons s.f.c.(Thrust) = mg/N sec s.f.c.(Power) = mug/J

Sp. Thrust = N/kg/sec Power = Watts
1

***** DESIGN POINT ENGINE CALCULATIONS *****

***** AMBIENT AND INLET PARAMETERS *****
Alt. = 0.0 I.S.A. Dev. = 0.000 Mach No. = 0.00
Etar = 0.9951 Momentum Drag = 0.00

***** COMPRESSOR 1 PARAMETERS *****
PRSF = 0.16667E+01 ETASF = 0.10843E+01 WASF = 0.33860E+00
Z = 0.85000 PR = 2.700 ETA = 0.90000
PCN = 1.0000 CN = 1.00000 COMWK = 0.63307E+07

***** DUCT/AFTER BURNING 1 PARAMETERS *****
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ETA = 0.9000 DLP = 0.0806 WFB = 0.0000

DUCTER IS USED AS AN INTERCOOLER!
****INTERCOOLER****HEAT REMOVED: 5630.35 KWATTS

***** COMPRESSOR 2 PARAMETERS *****
PRSF = 0.80980E+01 ETASF = 0.10843E+01 WASF = 0.13410E+00
Z = 0.85000 PR = 9.260 ETA = 0.90000
PCN = 1.0000 CN = 1.00000 COMWK = 0.18393E+08

***** COMBUSTION CHAMBER PARAMETERS *****
ETASF = 0.99800E+00
ETA = 0.99800 DLP = 1.5687 WFB = 1.4217

***** TURBINE 1 PARAMETERS *****
CNSF = 0.10479E+03 ETASF = 0.97041E+00 TFSF = 0.42805E+01
DHSF = 0.62945E+04
TF = 430.924 ETA = 0.87000 CN = 2.750
AUXWK = 0.00000E+00

***** TURBINE 2 PARAMETERS *****
CNSF = 0.94792E+02 ETASF = 0.97041E+00 TFSF = 0.17817E+01
DHSF = 0.25703E+04
TF = 430.924 ETA = 0.87000 CN = 2.750
AUXWK = 0.00000E+00

***** TURBINE 3 PARAMETERS *****
CNSF = 0.73073E-02 ETASF = 0.10609E+01 TFSF = 0.65583E+00
DHSF = 0.64828E+05
TF = 219.627 ETA = 0.89000 CN = 2.200
AUXWK = 0.25000E+08

Additional Free Turbine Parameters:-
Speed = 100.0% Power = 0.25000E+08

***** CONVERGENT NOZZLE 1 PARAMETERS *****
NCOSF = 0.10000E+01
Area = 1.3121 Exit Velocity = 99.48 Gross Thrust = 5934.12
Nozzle Coeff. = 0.97137E+00

Scale Factor on above Mass Flows, Areas, Thrusts & Powers = 1.0000

Station F.A.R. Mass Flow Pstatic Ptotal Tstatic Ttotal Vel Area
1 0.00000 59.990 1.00000 1.00000 288.15 288.15 0.0 ******
2 0.00000 59.990 ****** 0.99510 ****** 288.15 ****** ******
3 0.00000 59.990 ****** 2.68677 ****** 392.95 ****** ******
4 0.00000 59.990 ****** 2.60617 ****** 310.00 ****** ******
5 0.00000 59.990 ****** 24.13312 ****** 609.38 ****** ******
6 0.00000 53.991 ****** 24.13312 ****** 609.38 ****** ******
7 0.02633 55.413 ****** 22.56447 ****** 1509.50 ****** ******
8 0.02443 59.612 ****** 22.56447 ****** 1452.10 ****** ******
9 0.02443 59.612 ****** 8.75251 ****** 1204.12 ****** ******

10 0.02370 61.412 ****** 8.75251 ****** 1188.16 ****** ******
11 0.02370 61.412 ****** 6.09097 ****** 1103.22 ****** ******
12 0.02370 61.412 ****** 1.02577 ****** 754.75 ****** ******
13 0.02370 61.412 ****** 1.02064 ****** 754.75 ****** ******
14 0.02370 61.412 1.00000 1.02064 750.35 754.75 99.5 1.3121
15 0.00000 5.999 ****** 24.13312 ****** 609.38 ****** ******
16 0.00000 4.199 ****** 24.13312 ****** 609.38 ****** ******
17 0.00000 1.800 ****** 24.13312 ****** 609.38 ****** ******

Shaft Power = 25000000.00
Net Thrust = 5934.12

Equiv. Power = 25382614.00
Fuel Flow = 1.4217

S.F.C. = 56.8692
E.S.F.C. = 56.0120

Sp. Sh. Power = 416736.09
Sp. Eq. Power = 423114.06
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Sh. Th. Effy. = 0.4078
Time Now 01:50:44

TURBOMATCH SCHEME - Windows NT version (October 1999)

LIMITS:100 Codewords, 800 Brick Data Items, 50 Station Vector
15 BD Items printable by any call of:-
OUTPUT, OUTPBD, OUTPSV, PLOTIT, PLOTBD or PLOTSV

Input "Program" follows

!25MW RECUPERATED 2-SHAFT MARINE GAS TURBINE

OD SI KE CT FP
-1
-1
INTAKE S1-2 D1-4 R100
COMPRE S2-3 D5-10 R101 V5 V6
PREMAS S3,20,4 D11-14
HETCOL S4-5 D15-18
BURNER S5-6 D19-21 R102
MIXEES S6,20,7
TURBIN S7-8 D22-29,101 V23
TURBIN S8-9 D30-38 V30 V31
HETHOT S4,9,13 D39-42
DUCTER S9-10 D43-46
NOZCON S10-11,1 D47 R107
PERFOR S1,0,0 D30,48-50,107,100,102,0,0,0,0,0,0
CODEND

DATA ITEMS
!INTAKE
1 0.0 !INTAKE ALTITUDE
2 0.0 !ISA DEVIATION
3 0.0 !MACH NO
4 0.9951 !PRESSURE RECOVERY
!COMPRESSOR
5 0.4511 !SURGE MARGIN (DEFAULT=0.85)
6 0.998 !SPOOL SPEED (DEFAULT=1.0)
7 13.0 !PRESSURE RATIO
8 0.90 !ISENTROPIC EFFICIENCY
9 0.0 !ERROR SELECTION
10 1.0 !COMPRESSOR MAP NUMBER
!TURBINE COOLING
11 0.10 !BLEED AIR
12 0.0 !FLOW LOSS
13 1.0 !PRESSURE RECOVERY
14 0.0 !PRESSURE LOSS
!COLD SIDE HEAT EXCHANGER
15 0.1 !COLD SIDE PRESSURE LOSS
16 0.73 !EFFECTIVENESS
17 1.0 !TYPE:RECUPERATOR
18 0.02 !MASS FLOW LEAKAGE
!BURNER
19 0.065 !PRESSURE LOSS
20 0.998 !COMBUSTION EFFICIENCY
21 -1.0 !FUEL FLOW
!COMPRESSOR TURBINE
22 0.0 !AUXILIARY POWER REQUIRED
23 0.682 !NON-DIMENSIONAL MASSFLOW (DEFAULT=0.8)
24 0.49 !NON-DIMENSIONAL SPEED (DEFAULT=0.6)
25 0.87 !ISENTROPIC EFFICIENCY
26 -1.0 !RELATIVE ROTATIONAL
27 1.0 !COMPRESSOR NUMBER
28 4.0 !TURBINE MAP NUMBER
29 -1.0 !POWER LAW INDEX
!POWER TURBINE
30 25000000.00 !AUXILIARY POWER REQUIRED
31 0.89 !NON-DIMENSIONAL MASSFLOW (DEFAULT=0.8)
32 0.62 !NON-DIMENSIONAL SPEED (DEFAULT=0.6)
33 0.89 !ISENTROPIC EFFICIENCY
34 1.0 !RELATIVE ROTATIONAL
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35 0.0 !COMPRESSOR NUMBER
36 5.0 !MAP NUMBER
37 1000.0 !POWER LAW INDEX
38 -1.0 !COMPRESSOR WORK
!HOT SIDE HEAT EXCHANGER
39 0.1 !HOT SIDE PRESSURE LOSS
40 0.73 !EFFECTIVENESS
41 1.0 !TYPE:RECUPERATOR
42 0.02 !MASS FLOW LEAKAGE
!DUCTER
43 0.0 !NO INTERCOOLING
44 0.02 !PRESSURE LOSS
45 0.0 !EFFICIENCY
46 0.0 !LIMITING VALUE OF FUEL FLOW
!CONVERGENT NOZZLE
47 -1.0 !AIR FIXED
!PERFOR
48 1.0 !PROPELLER EFFICIENCY
49 0.0 !SCALING INDEX
50 0.0 !REQUIRED THRUST
-1
1 2 76.25 !INLET MASS FLOW
6 6 1509.5 !COMBUSTION OUTLET TEMPERATURE
-1

Time Now 01:51:08

***********************************************

The Units for this Run are as follows:-

Temperature = K Pressure = Atmospheres Length = metres

Area = sq metres Mass Flow = kg/sec Velocity = metres/sec

Force = Newtons s.f.c.(Thrust) = mg/N sec s.f.c.(Power) = mug/J

Sp. Thrust = N/kg/sec Power = Watts
1

***** DESIGN POINT ENGINE CALCULATIONS *****

***** AMBIENT AND INLET PARAMETERS *****
Alt. = 0.0 I.S.A. Dev. = 0.000 Mach No. = 0.00
Etar = 0.9951 Momentum Drag = 0.00

***** COMPRESSOR 1 PARAMETERS *****
PRSF = 0.55605E+02 ETASF = 0.11567E+01 WASF = 0.12196E+00
Z = 0.45110 PR = 13.000 ETA = 0.90000
PCN = 0.9980 CN = 0.99800 COMWK = 0.26429E+08

HETYP = 1.0 HEUA = 85.178

HETYP = 1.0 HEUA = 88.082

HETYP = 1.0 HEUA = 87.985

***** HEAT EXCHANGER COLD SIDE PARAMETERS *****

ETAD = 0.73000E+00
ETA = 0.73000 DLP = 1.2936

***** COMBUSTION CHAMBER PARAMETERS *****
ETASF = 0.99800E+00
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ETA = 0.99800 DLP = 0.7568 WFB = 1.4260

***** TURBINE 1 PARAMETERS *****
CNSF = 0.67219E+02 ETASF = 0.10264E+01 TFSF = 0.14302E+01
DHSF = 0.19060E+05
TF = 386.881 ETA = 0.87000 CN = 1.774
AUXWK = 0.00000E+00

***** TURBINE 2 PARAMETERS *****
CNSF = 0.76049E-02 ETASF = 0.10111E+01 TFSF = 0.34027E+00
DHSF = 0.24434E+05
TF = 242.033 ETA = 0.89000 CN = 2.240
AUXWK = 0.25000E+08

Additional Free Turbine Parameters:-
Speed = 100.0% Power = 0.25000E+08

HETYP = 1.0 HEUA = 87.985

***** HEAT EXCHANGER HOT SIDE PARAMETERS *****

ETAD = 0.73000E+00 HEUA = 87.985 ETASF = 0.00000E+00
ETA = 0.7300 DLP = 0.1041 TOTHOT = 723.7771

***** CONVERGENT NOZZLE 1 PARAMETERS *****
NCOSF = 0.10000E+01
Area = 1.9423 Exit Velocity = 99.15 Gross Thrust = 7481.22
Nozzle Coeff. = 0.97136E+00

Scale Factor on above Mass Flows, Areas, Thrusts & Powers = 1.0000

Station F.A.R. Mass Flow Pstatic Ptotal Tstatic Ttotal Vel Area
1 0.00000 76.250 1.00000 1.00000 288.15 288.15 0.0 ******
2 0.00000 76.250 ****** 0.99510 ****** 288.15 ****** ******
3 0.00000 76.250 ****** 12.93631 ****** 626.53 ****** ******
4 0.00000 68.625 ****** 12.93631 ****** 626.53 ****** ******
5 0.00000 68.625 ****** 11.64268 ****** 811.18 ****** ******
6 0.02078 70.051 ****** 10.88590 ****** 1509.50 ****** ******
7 0.01870 77.676 ****** 10.88590 ****** 1430.03 ****** ******
8 0.01870 77.676 ****** 3.70548 ****** 1152.65 ****** ******
9 0.01870 77.676 ****** 1.04081 ****** 879.61 ****** ******

10 0.01870 77.676 ****** 1.02000 ****** 879.61 ****** ******
11 0.01870 77.676 1.00000 1.02000 875.33 879.61 99.2 1.9423
12 0.00000 0.000 ****** 0.00000 ****** 0.00 ****** ******
13 0.01870 77.676 ****** 0.93673 ****** 723.78 ****** ******
14 0.00000 0.000 ****** 0.00000 ****** 0.00 ****** ******
15 0.00000 0.000 ****** 0.00000 ****** 0.00 ****** ******
16 0.00000 0.000 ****** 0.00000 ****** 0.00 ****** ******
17 0.00000 0.000 ****** 0.00000 ****** 0.00 ****** ******
18 0.00000 0.000 ****** 0.00000 ****** 0.00 ****** ******
19 0.00000 0.000 ****** 0.00000 ****** 0.00 ****** ******
20 0.00000 7.625 ****** 12.93631 ****** 626.53 ****** ******

Shaft Power = 25000000.00
Net Thrust = 7481.22

Equiv. Power = 25482366.00
Fuel Flow = 1.4260

S.F.C. = 57.0380
E.S.F.C. = 55.9583

Sp. Sh. Power = 327868.84
Sp. Eq. Power = 334194.97
Sh. Th. Effy. = 0.4066

Time Now 01:51:08
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TURBOMATCH SCHEME - Windows NT version (October 1999)

LIMITS:100 Codewords, 800 Brick Data Items, 50 Station Vector
15 BD Items printable by any call of:-
OUTPUT, OUTPBD, OUTPSV, PLOTIT, PLOTBD or PLOTSV

Input "Program" follows

!25MW INTERCOOLED/RECUPERATED 3-SHAFT MARINE GAS TURBINE
OD SI KE CT FP
-1
-1
INTAKE S1-2 D1-4 R300
COMPRE S2-3 D5-11 R301 V5 V6
DUCTER S3-4 D12-15 R305
NOZCON S4,5,1 D16 R307
COMPRE S5-6 D17-23 R302 V17 V18
PREMAS S6,7,20 D24-27
PREMAS S20,21,22 D28-31
HETCOL S7-8 D32-35
DUCTER S8-9 D36-39
BURNER S9-10 D40-42 R303
MIXEES S10,21,11
TURBIN S11-12 D43-50,302,51 V44
MIXEES S12,22,13
DUCTER S13-14 D52-55
TURBIN S14-15 D56-63,301,64 V57
DUCTER S15-16 D65-68
TURBIN S16-17 D69-77 V69 V70
HETHOT S7,17,23 D78-81
DUCTER S17-18 D82-85 R306
NOZCON S18-19,1 D86 R304
PERFOR S1,0,0 D69,87-89,304,300,303,307,0,305,0,0,0
CODEND

DATA ITEMS
1 0.0 !INTAKE ALTITUDE
2 0.0 !ISA DEVIATION
3 0.0 !MACH NUMBER
4 0.9951 !PRESSURE RECOVERY
!LP COMPRESSOR
5 -1.0 !SURGE MARGIN (DEFAULT=0.85)
6 -1.0 !SPOOL SPEED (DEFAULT=1.0)
7 3.01 !PRESSURE RATIO
8 0.90 !ISENTROPIC EFFICIENCY
9 0.0 !ERROR SELECTION
10 4.0 !COMPRESSOR MAP NUMBER
11 0.0 !ANGLE
!INTERCOOLER
12 2.0 !2:INTERCOOLER
13 0.03 !PRESSURE LOSS
14 0.90 !INTERCOOLER EFFECTIVENESS
15 100000.00 !LIMITING VALUE OF FUEL FLOW
!CONVERGENT NOZZLE (Experimental. No effect on the performance of the cycle.)
16 -1.0 !AIR FIXED
!HP COMPRESSOR
17 -1.0 !SURGE MARGIN (DEFAULT=0.85)
18 -1.0 !SPOOL SPEED (DEFAULT=1.0)
19 4.9 !PRESSURE RATIO
20 0.90 !ISENTROPIC EFFICIENCY
21 0.0 !ERROR SELECTOR
22 4.0 !COMPRESSOR MAP NUMBER
23 0.0 !ANGLE
!TURBINE COOLING 1
24 0.90 !BLEED AIR
25 0.0 !FLOW LOSS
26 1.0 !PRESSURE RECOVERY
27 0.0 !PRESSURE LOSS
!TURBINE COOLING 2
28 0.70 !BLEED AIR
29 0.0 !FLOW LOSS
30 1.0 !PRESSURE RECOVERY
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31 0.0 !PRESSURE LOSS
!COLD SIDE HEAT EXCHANGER
32 0.1 !COLD SIDE PRESSURE LOSS
33 0.73 !EFFECTIVENESS
34 1.0 !TYPE:RECUPERATOR
35 0.02 !MASS FLOW LEAKAGE
!DUCTER
36 0.0 !NO INTERCOOLING
37 0.0 !PRESSURE LOSS
38 0.0 !EFFICIENCY
39 0.0 !LIMITING VALUE OF FUEL FLOW
!BURNER
40 0.065 !PRESSURE LOSS
41 0.998 !EFFICIENCY
42 -1.0 !FUEL FLOW
!HP TURBINE
43 0.0 !AUXILIARY POWER REQUIRED
44 0.8 !NON-DIMENSIONAL MASSFLOW (DEFAULT=0.8)
45 0.6 !NON-DIMENSIONAL SPEED (DEFAULT=0.6)
46 0.87 !ISENTROPIC EFFICIENCY
47 -1.0 !COMPRESSOR TURBINE
48 2.0 !COMPRESSOR NUMBER
49 3.0 !TURBINE MAP NUMBER
50 1000. !POWER LAW INDEX
51 0.0 !ANGLE
!DUCTER
52 0.0 !NO INTERCOOLING
53 0.0 !PRESSURE LOSS
54 0.0 !EFFICIENCY
55 0.0 !LIMITING VALUE OF FUEL FLOW
!IP TURBINE
56 0.0 !AUXILIARY POWER REQUIRED
57 0.81 !NON-DIMENSIONAL MASS FLOW (DEFAULT=0.8)
58 0.6 !NON-DIMENSIONAL SPEED (DEFAULT=0.6)
59 0.87 !ISENTROPIC EFFICIENCY
60 -1.0 !COMPRESSOR TURBINE
61 1.0 !COMPRESSOR NUMBER
62 3.0 !TURBINE MAP NUMBER
63 1000.0 !POWER LAW INDEX
64 0.0 !ANGLE
!DUCTER
65 0.0 !NO INTERCOOLING
66 0.0 !PRESSURE LOSS
67 0.0 !EFFICIENCY
68 0.0 !LIMITING VALUE OF FUEL FLOW
!POWER TURBINE
69 25000000.00 !POWER REQUIRED
70 0.81 !NON-DIMENSIONAL MASS FLOW (DEFAULT=0.8)
71 0.583 !NON-DIMENSIONAL SPEED (DEFAULT=0.6)
72 0.89 !ISENTROPIC EFFICIENCY
73 1.0 !RELATIVE ROTATIONAL SPEED
74 0.0 !COMPRESSOR NUMBER
75 5.0 !TURBINE MAP NUMBER
76 1000.0 !AUXILIARY WORK CONSTANT (GENERATOR)
77 -1.0 !COMPRESSOR WORK
!HOT HEAT EXCHANGER
78 0.1 !HOT SIDE PRESSURE LOSS
79 0.73 !EFFECTIVENESS
80 1.0 !TYPE:RECUPERATOR
81 0.02 !MASS FLOW LEAKAGE
!DUCTER
82 0.0 !NO INTERCOOLING
83 0.02 !PRESSURE LOSS
84 0.0 !EFFICIENCY
85 0.0 !LIMITING VALUE OF FUEL FLOW
!CONVERGENT NOZZLE
86 -1.0 !AIR FIXED
!PERFORMANCE
87 1.0 !PROPELLER EFFICIENCY
88 0.0 !SCALING INDEX
89 0.0 !REQUIRED THRUST
-1
1 2 66.8 !INLET MASS FLOW
4 6 310.00 !INTERCOOLER OUTLET TEMPERATURE
10 6 1509.5 !COMBUSTION OUTLET TEMPERATURE
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-1
Time Now 01:50:20

***********************************************

The Units for this Run are as follows:-

Temperature = K Pressure = Atmospheres Length = metres

Area = sq metres Mass Flow = kg/sec Velocity = metres/sec

Force = Newtons s.f.c.(Thrust) = mg/N sec s.f.c.(Power) = mug/J

Sp. Thrust = N/kg/sec Power = Watts
1

***** DESIGN POINT ENGINE CALCULATIONS *****

***** AMBIENT AND INLET PARAMETERS *****
Alt. = 0.0 I.S.A. Dev. = 0.000 Mach No. = 0.00
Etar = 0.9951 Momentum Drag = 0.00

***** COMPRESSOR 1 PARAMETERS *****
PRSF = 0.19706E+01 ETASF = 0.10843E+01 WASF = 0.37703E+00
Z = 0.85000 PR = 3.010 ETA = 0.90000
PCN = 1.0000 CN = 1.00000 COMWK = 0.79488E+07

***** DUCT/AFTER BURNING 1 PARAMETERS *****
ETA = 0.9000 DLP = 0.0899 WFB = 0.0000

DUCTER IS USED AS AN INTERCOOLER!
****INTERCOOLER****HEAT REMOVED: 7279.32 KWATTS

***** CONVERGENT NOZZLE 1 PARAMETERS *****
NCOSF = 0.10000E+01
Area = 0.0988 Exit Velocity = 322.26 Gross Thrust = 26345.66
Nozzle Coeff. = 0.97512E+00

***** COMPRESSOR 2 PARAMETERS *****
PRSF = 0.38235E+01 ETASF = 0.10843E+01 WASF = 0.13394E+00
Z = 0.85000 PR = 4.900 ETA = 0.90000
PCN = 1.0000 CN = 1.00000 COMWK = 0.13267E+08

HETYP = 1.0 HEUA = 70.613

HETYP = 1.0 HEUA = 75.063

HETYP = 1.0 HEUA = 74.902

***** HEAT EXCHANGER COLD SIDE PARAMETERS *****

ETAD = 0.73000E+00
ETA = 0.73000 DLP = 1.4236

***** COMBUSTION CHAMBER PARAMETERS *****
ETASF = 0.99800E+00
ETA = 0.99800 DLP = 0.8328 WFB = 1.3330

***** TURBINE 1 PARAMETERS *****
CNSF = 0.10455E+03 ETASF = 0.97041E+00 TFSF = 0.20436E+01
DHSF = 0.40913E+04
TF = 430.924 ETA = 0.87000 CN = 2.750
AUXWK = 0.00000E+00
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***** TURBINE 2 PARAMETERS *****
CNSF = 0.97730E+02 ETASF = 0.97438E+00 TFSF = 0.11795E+01
DHSF = 0.26305E+04
TF = 433.096 ETA = 0.87000 CN = 2.750
AUXWK = 0.00000E+00

***** TURBINE 3 PARAMETERS *****
CNSF = 0.73999E-02 ETASF = 0.10496E+01 TFSF = 0.42829E+00
DHSF = 0.52430E+05
TF = 222.117 ETA = 0.89000 CN = 2.166
AUXWK = 0.25000E+08

Additional Free Turbine Parameters:-
Speed = 100.0% Power = 0.25000E+08

HETYP = 1.0 HEUA = 74.902

***** HEAT EXCHANGER HOT SIDE PARAMETERS *****

ETAD = 0.73000E+00 HEUA = 74.902 ETASF = 0.00000E+00
ETA = 0.7300 DLP = 0.1041 TOTHOT = 642.5325

***** CONVERGENT NOZZLE 2 PARAMETERS *****
NCOSF = 0.10000E+01
Area = 1.6652 Exit Velocity = 98.73 Gross Thrust = 6534.46
Nozzle Coeff. = 0.97136E+00

Scale Factor on above Mass Flows, Areas, Thrusts & Powers = 1.0000

Station F.A.R. Mass Flow Pstatic Ptotal Tstatic Ttotal Vel Area
1 0.00000 66.800 1.00000 1.00000 288.15 288.15 0.0 ******
2 0.00000 66.800 ****** 0.99510 ****** 288.15 ****** ******
3 0.00000 66.800 ****** 2.99525 ****** 406.24 ****** ******
4 0.00000 66.800 ****** 2.90540 ****** 310.00 ****** ******
5 0.00000 66.800 1.53424 2.90540 258.24 310.00 322.3 0.0988
6 0.00000 66.800 ****** 14.23644 ****** 505.65 ****** ******
7 0.00000 60.120 ****** 14.23644 ****** 505.65 ****** ******
8 0.00000 60.120 ****** 12.81279 ****** 761.36 ****** ******
9 0.00000 60.120 ****** 12.81279 ****** 761.36 ****** ******

10 0.02217 61.453 ****** 11.97996 ****** 1509.50 ****** ******
11 0.02057 66.129 ****** 11.97996 ****** 1445.39 ****** ******
12 0.02057 66.129 ****** 6.60779 ****** 1283.77 ****** ******
13 0.01996 68.133 ****** 6.60779 ****** 1262.97 ****** ******
14 0.01996 68.133 ****** 6.60779 ****** 1262.97 ****** ******
15 0.01996 68.133 ****** 4.48713 ****** 1167.18 ****** ******
16 0.01996 68.133 ****** 4.48713 ****** 1167.18 ****** ******
17 0.01996 68.133 ****** 1.04118 ****** 856.22 ****** ******
18 0.01996 68.133 ****** 1.02036 ****** 856.22 ****** ******
19 0.01996 68.133 1.00000 1.02036 851.96 856.22 98.7 1.6652
20 0.00000 6.680 ****** 14.23644 ****** 505.65 ****** ******
21 0.00000 4.676 ****** 14.23644 ****** 505.65 ****** ******
22 0.00000 2.004 ****** 14.23644 ****** 505.65 ****** ******
23 0.01996 68.133 ****** 0.93706 ****** 642.53 ****** ******

Shaft Power = 25000000.00
Net Thrust = 32880.12

Equiv. Power = 27120010.00
Fuel Flow = 1.3330

S.F.C. = 53.3220
E.S.F.C. = 49.1537

Sp. Sh. Power = 374251.50
Sp. Eq. Power = 405988.19
Sh. Th. Effy. = 0.4349

Time Now 01:50:20
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Table A.1: “Turbomatch” input file supplement sample of temperature calibration at ISA sea level
standards

5 6 1425 !TET (K)
-1
1 -400 !ALTITUDE (M)
-1
-1
2 -47.6 !TEMPERATURE ( oC)
-1
-1
2 -37.6
-1
-1
2 -27.6
-1
-1
2 -17.6
-1
-1
2 -7.6
-1
-1
2 2.4
-1
-1
2 12.4
-1
-1
2 22.4
-1
-1
2 32.4
-1
-1
1 -200
-1
-1
2 -46.3
-1
-1
2 -36.3
-1
-1
2 -26.3
-1
-1
2 -16.3
-1
-1
2 -6.3
-1
-1
2 3.7
-1
-1
2 13.7
-1
-1
2 23.7
-1
-1
2 33.7
-1
-1
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Table A.2: Marine Vessel Design Parameters (* Ship power prediction input parameters)

Marine Vessel
Design

Parameter

Destroyer RoPax Fast Ferry LNG Carrier
(Q-max)

L (m)* 147.0 191.0 335

B (m)* 18.0 25.3 54.0

Tf (m)* 5.1 6.5 12.0

Ta (m)* 5.1 6.5 12.0

Δ (tons) 7351.9 17722.9 169293.7

SH (m2) 2829.5 4985.0 20965.3

CB* 0.50 0.55 0.75

CP* 0.58 0.59 0.76

CWP* 0.69 0.69 0.80

CM* 0.78 0.93 0.98

LCB (%)* -0.8 -2.0 -2.0

1+k 1.146 1.148 1.157

hb (m)* -1.2 3 6

ABT (m2)* 10 25 60

AT (m2)* 20 30 50

Stern Type* V-stern Normal-Stern Pram & Gondola

Skeg type rudder
twin screw (m2)*

40 0 0

Shaft
brackets(m2)*

10 0 0

Bossings (m2)* 10 0 0

Bilge Keels(m2)* 50 100 200

Shatfs (m2) 15 0 0

Stabilizer
fins(m2)*

10 20 0

nBTO* 1 2 1

dBTO* 2 2 3.5

CBTO* 0.005 0.005 & 0.006 0.005

AF (m2)* 250 350 600

AL (m2)* 1500 3000 3000

CDt* 0.85 0.9 0.9

CDl-AF* 0.6 0.45 0.55

δa* 0.65 0.6 0.5

Kh (μm)* 120 120 120

Nprop* 2 2 2

Fn 0.257 (Cruise)
0.413 (Boost)
0.379 (Design)

0.344 0.178

Vs (knots)* 19 (Cruise)
30.5 (Boost)
28 (Design)

29 20

λ 0.62 0.63 0.91
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Table A.3: Propeller Design Parameters (* Ship power prediction input parameters)

Propeller Design
Parameter

Destroyer RoPax Fast Ferry LNG Carrier
(Q-max)

Dprop* 4.1 5.1 9.2

AE/AO* 0.751 0.763 0.844

P/D* 1.254 1.150 1.034

Nblades* 5 5 5

ksp (μm)* 30 30 30

NS (rpm) 128.5 (Cruise)
227.2 (Boost)
201.0 (Design)

174.4 70.9

ηowe 0.726 (Cruise)
0.698 (Boost)

0.711 (28knots)

0.711 0.69
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APPENDIX B
Contains:

 APPENDIX B.1:…………………………………………………………….26

1. [Fig. B.1-B.6]: The effect of ambient (Tamb) & turbine entry

temperature (TET) on carbon dioxide (CO2) and unburned

hydrocarbons (UHC) exhaust emissions.

2. [Fig. B.7-B.12]: The effect of ambient (Tamb) & turbine entry

temperature (TET) on nitric oxide (NOx) and carbon monoxide (CO)

exhaust emissions.

 APPENDIX B.2:……………………………………………………...……..32

1.[Fig. B.13-B.15]: The effect of ship speed (SS) and hull fouling (F#)

progression on required power plant brake power (PB), propeller open

water efficiency (OWE) & propeller shaft rotational speed (PRS).

2.[Fig. B.16-B.18]: Brake power increase due to resistance from hull

fouling and comparison with hybrid anti-fouling system performance

[Chapter 2, Ref. 6]. Values for destroyer are the average of cruise and

boost speed.
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Figure B.1: Simple cycle (SC) – The effect of ambient (Tamb) & turbine entry temperature (TET) on
carbon dioxide (CO2) and unburned hydrocarbons (UHC) exhaust emissions

Figure B.2: Twin mode intercooled cycle (TMI) (Low power) – The effect of ambient (Tamb) & turbine
entry temperature (TET) on carbon dioxide (CO2) and unburned hydrocarbons (UHC)
exhaust emissions
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Figure B.3: Twin mode intercooled cycle (TMI) (High power) – The effect of ambient (Tamb) & turbine
entry temperature (TET) on carbon dioxide (CO2) and unburned hydrocarbons (UHC)
exhaust emissions

Figure B.4: Intercooled cycle (INT) – The effect of ambient (Tamb) & turbine entry temperature (TET)
on carbon dioxide (CO2) and unburned hydrocarbons (UHC) exhaust emissions
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Figure B.5: Recuperated cycle (REQ) – The effect of ambient (Tamb) & turbine entry temperature (TET)
on carbon dioxide (CO2) and unburned hydrocarbons (UHC) exhaust emissions

Figure B.6: Intercooled/recuperated cycle (ICR) – The effect of ambient (Tamb) & turbine entry
temperature (TET) on carbon Dioxide (CO2) and unburned hydrocarbons (UHC) exhaust
emissions
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Figure B.7: Simple cycle (SC) – The effect of ambient (Tamb) & turbine entry temperature (TET) on
nitric oxide (NOx) and carbon monoxide (CO) exhaust emissions

Figure B.8: Twin mode intercooled cycle (TMI) (Low power) – The effect of ambient (Tamb) & turbine
entry temperature (TET) on nitric oxide (NOx) and carbon monoxide (CO) exhaust
emissions



Appendix B.1

30

0

5

10

15

20

1100 1200 1300 1400 1500

TET (K)

N
O

x
E

x
h

a
u

s
t

E
m

is
s
io

n
s

(g
/s

)

0

2.5

5

7.5

10

C
O

E
x

h
a

u
s
t

E
m

is
s
io

n
s

(g
/s

)

NOx INT -30 NOx INT -20 NOx INT -10 NOx INT 0
NOx INT +10 NOx INT +20 NOx INT +30 NOx INT +40
CO INT -30 CO INT -20 CO INT -10 CO INT 0
CO INT +10 CO INT +20 CO INT +30 CO INT +40

0

10

20

30

40

50

1150 1250 1350 1450 1550

TET (K)

N
O

x
E

x
h

a
u

s
t

E
m

is
s

io
n

s
(g

/s
)

0

1

2

3

4

5

C
O

E
x

h
a

u
s

t
E

m
is

s
io

n
s

(g
/s

)

NOx TMI25 -10 NOx TMI25 0 NOx TMI25 +10 NOx TMI25 +20

NOx TMI25 +30 NOx TMI25 +40 CO TMI25 -10 CO TMI25 0
CO TMI25 +10 CO TMI25 +20 CO TMI25 +30 CO TMI25 +40

Figure B.9: Twin mode intercooled cycle (TMI) (High power) – The effect of ambient (Tamb) & turbine
entry temperature (TET) on nitric oxide (NOx) and carbon monoxide (CO) exhaust
emissions

Figure B.10: Intercooled cycle (INT) – The effect of ambient (Tamb) & turbine entry temperature (TET)
on nitric oxide (NOx) and carbon monoxide (CO) exhaust emissions
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Figure B.11: Recuperated cycle (REQ) – The effect of ambient (Tamb) & turbine entry emperature
(TET) on nitric oxide (NOx) and carbon monoxide (CO) exhaust emissions

Figure B.12: Intercooled/Recuperated cycle (ICR) – The effect of ambient (Tamb) & turbine entry
temperature (TET) on nitric oxide (NOx) and carbon monoxide (CO) exhaust emissions
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Figure B.13: Marine vessel type: Destroyer – The effect of ship speed (SS) and hull fouling (F#)
progression on required power plant brake power (PB), propeller open water efficiency
(OWE) & propeller shaft rotational speed (PRS)

Figure B.14: Marine Vessel Type: RoPax fast ferry – The effect of ship speed (SS) and hull fouling
(F#) progression on required power plant brake power (PB), propeller open water
efficiency (OWE) & propeller shaft rotational speed (PRS)
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Figure B.16: Destroyer – Brake power increase due to resistance from hull fouling and comparison
with hybrid anti-fouling system performance [Chapter 2, Ref. 6]. Values for destroyer are
the average of cruise and boost speed

Figure B.17: RoPax fast ferry – Brake power increase due to resistance from hull fouling and
comparison with hybrid anti-fouling system performance [Chapter 2, Ref. 6]
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Figure C.1: Simple cycle (SC) - Turbine entry temperature (TET) and fuel flow (FF) variation
against time of day, during journey with annual hull fouling progression (F#) and ideal
weather conditions

Figure C.2: Twin mode intercooled cycle (TMI) - Turbine entry temperature (TET) and fuel flow (FF)
variation against time of day, during journey with annual hull fouling progression (F#)
and ideal weather conditions
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Figure C.3: Intercooled cycle (INT) - Turbine entry temperature (TET) and fuel flow (FF) variation
against time of day, during journey with annual hull fouling progression (F#) and ideal
weather conditions

Figure C.4: Recuperated cycle (REQ) - Turbine entry temperature (TET) and fuel flow (FF) variation
against time of day, during journey with annual hull fouling progression (F#) and ideal
weather conditions
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Figure C.5: Intercooled/recuperated cycle (ICR) - Turbine entry temperature (TET) and fuel flow (FF)
variation against time of day, during journey with annual hull fouling progression (F#) and
ideal weather conditions
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Figure C.6: Simple cycle (SC) - Turbine entry temperature (TET) and fuel flow (FF) variation
against time of day, during journey with annual hull fouling progression (F#) and adverse
weather conditions

Figure C.7: Twin mode intercooled cycle (TMI) - Turbine entry temperature (TET) and fuel flow (FF)
variation against time of day, during journey with annual hull fouling progression (F#) and
adverse weather conditions
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Figure C.8: Intercooled cycle (INT) - Turbine entry temperature (TET) and fuel flow (FF) variation
against time of day, during journey with annual hull fouling progression (F#) and adverse
weather conditions

Figure C.9: Recuperated cycle (REQ) - Turbine entry temperature (TET) and fuel flow (FF) variation
against time of day, during journey with annual hull fouling progression (F#) and adverse
weather conditions
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variation against time of day, during journey with annual hull fouling progression (F#)
and adverse weather conditions
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Figure.C.11: All Engines – Ship speed (SS) and Engine power (EP) (for each engine) variation against
time of day, during journey with annual hull fouling progression (F#) and ideal weather
conditions

Figure C.12: Simple cycle (SC) – Ship speed (SS) and engine power (EP) (for each engine) variation
against time of day, during journey with annual hull fouling progression (F#) and adverse
weather conditions
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Figure C.13: Twin mode intercooled cycle (TMI) – Ship speed (SS) and engine power (EP) (for each
engine) variation against Time of day, during journey with annual hull fouling
progression (F#) and adverse weather conditions

Figure C.14: Intercooled cycle (INT) – Ship speed (SS) and engine power (EP) (for each engine)
variation against time of day, during journey with annual hull fouling progression (F#)
and adverse weather conditions
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Figure C.15: Recuperated cycle (REQ) – Ship speed (SS) and engine power (EP) (for each engine)
variation against time of day, during journey with annual hull fouling progression (F#)
and adverse weather conditions

Figure C.16: Intercooled/recuperated cycle (ICR) – Ship speed (SS) and engine power (EP) (for each
engine) variation against time of day, during journey with annual hull Fouling progression
(F#) and adverse weather conditions



Appendix C.3

49

0

1000

2000

3000

4000

5000

07 10 13 16 19 22 01 04

Time of Day (hh)

C
O

2
E

x
h

a
u

s
t

E
m

is
s
io

n
s

(g
/s

)

0

0.5

1

1.5

2

2.5

U
H

C
E

x
h

a
u

s
t

E
m

is
s
io

n
s

(g
/s

)

CO2 SC F1 CO2 SC F2 CO2 SC F3 CO2 SC F4 CO2 SC F5
UHC SC F1 UHC SC F2 UHC SC F3 UHC SC F4 UHC SC F5

0

1000

2000

3000

4000

5000

07 10 13 16 19 22 01 04

Time of Day (hh)

C
O

2
E

x
h

a
u

s
t

E
m

is
s
io

n
s

(g
/s

)

0

0.025

0.05

0.075

0.1

0.125

U
H

C
E

x
h

a
u

s
t

E
m

is
s
io

n
s

(g
/s

)

CO2 TMI F1 CO2 TMI F2 CO2 TMI F3 CO2 TMI F4 CO2 TMI F5
UHC TMI F1 UHC TMI F2 UHC TMI F3 UHC TMI F4 UHC TMI F5

Figure C.17: Simple cycle (SC) – Carbon dioxide (CO2) and unburned hydrocarbons (UHC) exhaust
emissions variation against time of day, during journey with annual hull fouling
progression (F#) and ideal weather conditions

Figure C.18: Twin mode intercooled cycle (TMI) – Carbon dioxide (CO2) and unburned Hydrocarbons
(UHC) exhaust emissions variation against time of day, during journey with annual hull
fouling progression (F#) and ideal weather conditions
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Figure C.19: Intercooled cycle (INT) – Carbon dioxide (CO2) and unburned hydrocarbons (UHC)
exhaust emissions variation against time of day, during journey with annual hull fouling
progression (F#) and ideal weather conditions

Figure C.20: Requperated cycle (REQ) – Carbon dioxide (CO2) and unburned hydrocarbons (UHC)
exhaust emissions variation against time of day, during journey with annual hull fouling
progression (F#) and ideal weather conditions
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Figure C.21: Intercooled/recuperated cycle (ICR) – Carbon dioxide (CO2) and unburned hydrocarbons
(UHC) exhaust emissions variation against time of day, during journey with annual hull
fouling progression (F#) and ideal weather conditions
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Figure C.22: Simple cycle (SC) – Carbon dioxide (CO2) and unburned hydrocarbons (UHC) exhaust
emissions variation against time of day, during journey with annual hull fouling
progression (F#) and adverse weather conditions

Figure C.23: Twin mode intercooled cycle (TMI) – Carbon dioxide (CO2) and unburned hydrocarbons
(UHC) exhaust emissions variation against time of day, during journey with annual hull
fouling progression (F#) and adverse weather conditions
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Figure C.24: Intercooled cycle (INT) – Carbon dioxide (CO2) and unburned hydrocarbons (UHC)
exhaust emissions variation against time of day, during journey with annual hull fouling
progression (F#) and adverse weather conditions

Figure C.25: Recuperated cycle (REQ) – Carbon dioxide (CO2) and unburned hydrocarbons (UHC)
exhaust emissions variation against time of day, during journey with annual hull fouling
progression (F#) and adverse weather conditions
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Figure C.26: Intercooled/recuperated cycle (ICR) – Carbon dioxide (CO2) and unburned hydrocarbons
(UHC) exhaust emissions variation against time of day, during journey with annual hull
fouling progression (F#) and adverse weather conditions



Appendix C.3

55

0

2.5

5

7.5

10

12.5

15

07 10 13 16 19 22 01 04

Time of Day (hh)

N
O

x
E

x
h

a
u

s
t

E
m

is
s

io
n

s
(g

/s
)

0

1

2

3

4

5

6

C
O

E
x

h
a

u
s

t
E

m
is

s
io

n
s

(g
/s

)

NOx SC F1 NOx SC F2 NOx SC F3 NOx SC F4 NOx SC F5
CO SC F1 CO SC F2 CO SC F3 CO SC F4 CO SC F5

0

5

10

15

20

25

30

07 10 13 16 19 22 01 04

Time of Day (hh)

N
O

x
E

x
h

a
u

s
t

E
m

is
s
io

n
s

(g
/s

)

0

1

2

3

4

5

6

C
O

E
x
h

a
u

s
t

E
m

is
s
io

n
s

(g
/s

)

NOx TMI F1 NOx TMI F2 NOx TMI F3 NOx TMI F4 NOx TMI F5
CO TMI F1 CO TMI F2 CO TMI F3 CO TMI F4 CO TMI F5

Figure C.27: Simple cycle (SC) – Nitric oxide (NOx) and carbon monoxide (CO) exhaust emissions
variation against time of day, during journey with annual hull fouling progression (F#)
and ideal weather conditions

Figure C.28: Twin mode intercooled cycle (TMI) – Nitric oxide (NOx) and carbon monoxide (CO)
exhaust emissions variation against time of day, during journey with annual hull fouling
progression (F#) and ideal weather conditions
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Figure C.29: Intercooled cycle (INT) – Nitric oxide (NOx) and carbon monoxide (CO) exhaust
emissions variation against time of day, during journey with annual hull fouling
progression (F#) and ideal weather conditions

Figure C.30: Recuperated cycle (REQ) – Nitric Oxide (NOx) and carbon monoxide (CO) exhaust
emissions variation against time of day, during journey with annual hull fouling
progression (F#) and ideal weather conditions
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Figure C.31: Intercooled/recuperated cycle (ICR) – Nitric oxide (NOx) and carbon monoxide (CO)
exhaust emissions variation against time of day, during journey with annual hull fouling
progression (F#) and ideal weather conditions
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Figure C.32: Simple cycle (SC) – Nitric oxide (NOx) and carbon monoxide (CO) exhaust emissions
variation against time of day, during journey with annual hull fouling progression (F#)
and adverse weather conditions

Figure C.33: Twin mode intercooled cycle (TMI) – Nitric oxide (NOx) and carbon monoxide (CO)
exhaust emissions variation against time of day, during journey with annual hull fouling
progression (F#) and adverse weather conditions
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Figure C.34: Intercooled cycle (INT) – Nitric oxide (NOx) and carbon monoxide (CO) exhaust
emissions variation against time of day, during journey with annual hull fouling
progression (F#) and adverse weather conditions

Figure C.35: Recuperated cycle (REQ) – Nitric oxide (NOx) and carbon monoxide (CO) exhaust
emissions variation against time of day, during journey with annual hull fouling
progression (F#) and adverse weather conditions
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Figure C.36: Intercooled/recuperated cycle (ICR) – Nitric oxide (NOx) and carbon monoxide (CO)
exhaust emissions variation against time of day, during journey with annual hull fouling
progression (F#) and adverse weather conditions
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Figure C.37: Simple cycle (SC) – Compressor turbine creep life variation against time of day, during
journey with annual hull fouling progression (F#) and ideal weather conditions

Figure C.38: Twin mode intercooled cycle (TMI) – HP turbine creep life variation against Time of day,
during journey with annual hull fouling progression (F#) and ideal weather conditions
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Figure C.39: Intercooled cycle (INT) – HP Turbine creep life variation against time of day, during
journey with annual hull fouling progression (F#) and ideal weather conditions

Figure C.40: Recuperated cycle (REQ) – Compressor turbine creep life variation against time of day,
during journey with annual hull fouling progression (F#) and ideal weather conditions
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Figure C.41: Intercooled/recuperated cycle (ICR) – HP turbine creep life variation against time of day,
during journey with annual hull fouling progression (F#) and ideal weather conditions
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Figure C.42: Simple cycle (SC) – Compressor turbine creep life variation against time of day, during
journey with annual hull fouling progression (F#) and weather conditions

Figure C.43: Twin mode intercooled cycle (TMI) – HP Turbine creep life variation against time of day,
during journey with annual hull fouling progression (F#) and adverse weather conditions
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Figure C.44: Intercooled cycle (INT) – HP turbine creep life variation against time of day, during
journey with annual hull fouling progression (F#) and adverse weather conditions

Figure C.45: Recuperated cycle (REQ) – Compressor turbine creep life variation against time of day,
during journey with annual hull fouling progression (F#) and adverse weather conditions
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Figure C.46: Intercooled/recuperated cycle (ICR) – HP turbine creep life variation against time of day,
during journey with annual hull fouling progression (F#) and adverse weather conditions
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Table C.1: Hull fouling F1 – Quantified engine (Cruise & Boost) parameters per journey at ideal weather
conditions

Engine
Cruise

-----------
Boost

Fuel
Consumption

(kg)

HP Turbine Life
Consumption

(%)

Total NOx
Emissions

(kg)

Total CO
Emissions

(kg)

Total CO2
Emissions

(kg)

Total UHC
Emissions

(kg)

Operational
Time per
Journey
(hours)

74319.0 0.001248 370.5 275.8 233218 120.5 24.0
SC

28740.1 0.001248 193.9 43.8 90184.9 9.41 6.0

TMI x2 39510.4 0.008211 430.4 42.5 123973.5 6.30 24.0

67307.21 0.001616 376.9 245.1 211213.5 98.3 24.0
INT

26513.2 0.001616 182.4 39.2 83199.0 8.31 6.0

64132.7 0.000341 328.3 311.2 201249.4 134.0 24.0
REQ

26171.2 0.000341 174.7 42.5 82121.0 9.06 6.0

59226.6 0.002865 393.1 244.9 185863.7 82.4 24.0
ICR

24428.5 0.002864 181.9 38.9 76658.7 8.02 6.0

Table C.2: Hull fouling F2 – Quantified engine (Cruise & Boost) parameters per journey at ideal weather
conditions

Engine
Cruise

-----------
Boost

Fuel
Consumption

(kg)

HP Turbine Life
Consumption

(%)

Total NOx
Emissions

(kg)

Total CO
Emissions

(kg)

Total CO2
Emissions

(kg)

Total UHC
Emissions

(kg)

Operational
Time per
Journey
(hours)

75286.3 0.001798 379.4 273.4 236252.9 117.7 24.0
SC

29154.6 0.001798 199.2 43.2 91485.3 9.10 6.0

TMI x2 40133.2 0.010993 442.8 41.8 125927.6 6.09 24.0

68222.5 0.002372 385.0 242.3 214082.1 95.9 24.0
INT

26901.3 0.002372 186.9 38.8 84416.4 8.07 6.0

65079.3 0.000520 337.1 307.8 204221.7 130.9 24.0
REQ

26591.1 0.000520 180.2 41.7 83443.3 8.73 6.0

60121.7 0.003592 402.1 242.6 188677.9 80.8 24.0
ICR

24820.8 0.003592 185.5 38.3 77894.76 7.78 6.0

Table C.3: Hull fouling F3 – Quantified engine (Cruise & Boost) parameters per journey at ideal weather
conditions

Engine
Cruise

-----------
Boost

Fuel
Consumption

(kg)

HP Turbine Life
Consumption

(%)

Total NOx
Emissions

(kg)

Total CO
Emissions

(kg)

Total CO2
Emissions

(kg)

Total UHC
Emissions

(kg)

Operational
Time per
Journey
(hours)

76140.1 0.002475 387.5 271.4 238932.6 115.3 24.0
SC

29521.3 0.002475 204.0 42.6 92634.2 8.85 6.0

TMI x2 40677.6 0.014223 453.8 41.3 127635.8 5.90 24.0

69023.6 0.003145 392.2 239.8 216597.4 93.7 24.0
INT

27240.7 0.003145 190.9 38.4 85483.5 7.88 6.0

65910.3 0.000753 344.9 304.8 206826.2 128.2 24.0
REQ

26959.3 0.000753 185.1 40.9 84594.8 8.44 6.0

60908.1 0.004436 409.2 240.4 191135.0 79.4 24.0
ICR

25165.1 0.004435 188.6 37.7 78967.6 7.57 6.0
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Table C.4: Hull fouling F4 – Quantified engine (Cruise & Boost) parameters per journey at ideal
weather conditions

Engine
Cruise

-----------
Boost

Fuel
Consumption

(kg)

HP Turbine Life
Consumption

(%)

Total NOx
Emissions

(kg)

Total CO
Emissions

(kg)

Total CO2
Emissions

(kg)

Total UHC
Emissions

(kg)

Operational
Time per
Journey
(hours)

76912.14 0.003288 394.9 269.6 241354.9 113.3 24.0
SC

29853.0 0.003288 208.5 42.2 93676.2 8.64 6.0

TMI x2 41164.7 0.017835 463.9 40.7 129164.0 5.74 24.0

69741.1 0.003963 398.6 237.7 218852.5 92.0 24.0
INT

27546.2 0.003963 194.5 38.1 86442.0 7.72 6.0

66658.6 0.001043 352.1 302.1 209174.2 125.7 24.0
REQ

27291.1 0.001043 189.6 40.3 85637.6 8.19 6.0

61615.1 0.005327 415.8 238.3 193354.6 78.0 24.0
ICR

25474.9 0.005326 191.3 37.2 79940.2 7.37 6.0

Table C.5: Hull fouling F5 – Quantified engine (Cruise & Boost) parameters per journey at ideal
weather conditions

Engine
Cruise

-----------
Boost

Fuel
Consumption

(kg)

HP Turbine Life
Consumption

(%)

Total NOx
Emissions

(kg)

Total CO
Emissions

(kg)

Total CO2
Emissions

(kg)

Total UHC
Emissions

(kg)

Operational
Time per
Journey
(hours)

77616.1 0.004248 401.8 267.9 243566.8 111.5 24.0
SC

30155.3 0.004248 212.6 41.7 94626.3 8.44 6.0

TMI x2 41606.3 0.021879 473.2 40.3 130549.7 5.59 24.0

70392.7 0.004771 404.4 235.9 220897.5 90.5 24.0
INT

27823.1 0.004771 197.7 37.9 87310.9 7.59 6.0

67339.6 0.001405 358.8 299.6 211310.9 123.4 24.0
REQ

27592.7 0.001405 193.8 39.8 86581.6 7.98 6.0

62258.7 0.006253 421.7 236.3 195373.5 76.7 24.0
ICR

25756.1 0.006252 193.9 36.7 80824.8 7.18 6.0
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Table C.6: Hull fouling F1 – Quantified engine (Cruise & Boost) parameters per journey at adverse weather
conditions

Engine
Cruise

-----------
Boost

Fuel
Consumption

(kg)

HP Turbine Life
Consumption

(%)

Total NOx
Emissions

(kg)

Total CO
Emissions

(kg)

Total CO2
Emissions

(kg)

Total UHC
Emissions

(kg)

Operational
Time per
Journey
(hours)

93068.2 0.040929 559.9 244.9 292046.7 90.7 24.30
SC

36124.9 0.022419 263.0 47.3 113356.4 9.34 7.0

TMI x2 52723.5 0.040603 648.3 58.6 165432.7 5.89 24.20

85374.8 0.035488 544.3 212.4 267901.1 72.3 24.24
INT

33639.0 0.019556 244.9 43.1 105552.8 8.36 7.0

82471.0 0.030372 508.1 265.8 258785.4 99.0 24.30
REQ

33078.2 0.015567 241.9 45.0 103792.3 8.86 7.0

76814.7 0.034229 550.4 212.45 241049.2 62.8 24.26
ICR

31087.7 0.019379 237.27 41.6 97553.7 8.00 7.0

Table C.7: Hull fouling F2 – Quantified engine (Cruise & Boost) parameters per journey at adverse
weather conditions

Engine
Cruise

-----------
Boost

Fuel
Consumption

(kg)

HP Turbine Life
Consumption

(%)

Total NOx
Emissions

(kg)

Total CO
Emissions

(kg)

Total CO2
Emissions

(kg)

Total UHC
Emissions

(kg)

Operational
Time per
Journey
(hours)

92188.11 0.038369 551.6 246.5 289283.1 92.5 24.29
SC

36436.7 0.024958 267.3 46.8 114334.9 9.14 7.0

TMI x2 52171.3 0.035354 637.2 59.1 163699.9 6.04 24.19

84568.5 0.034128 537.1 214.1 265368.7 73.8 24.23
INT

33925.1 0.020899 248.2 42.8 106455.0 8.22 7.0

81630.1 0.028184 499.9 268.3 256149.0 101.22 24.29
REQ

33387.8 0.017751 246.3 44.4 104765.4 8.63 7.0

76018.5 0.032741 543.2 213.8 238551.2 63.7 24.25
ICR

31375.7 0.020819 240.0 41.3 98455.6 7.86 7.0

Table C.8: Hull fouling F3 – Quantified engine (Cruise & Boost) parameters per journey at adverse
weather conditions

Engine
Cruise

-----------
Boost

Fuel
Consumption

(kg)

HP Turbine Life
Consumption

(%)

Total NOx
Emissions

(kg)

Total CO
Emissions

(kg)

Total CO2
Emissions

(kg)

Total UHC
Emissions

(kg)

Operational
Time per
Journey
(hours)

93804.8 0.042766 566.9 243.6 294353.5 89.2 24.32
SC

36677.1 0.02677 270.5 46.4 115088.2 8.99 7.0

TMI x2 53204.6 0.046540 658.2 58.2 166942.1 5.75 24.21

86101.4 0.036984 550.8 211.0 270183.4 71.1 24.25
INT

34177.5 0.022373 251.2 42.6 107246.0 8.09 7.0

83206.0 0.032094 514.9 263.9 261095.5 97.2 24.32
REQ

33627.3 0.019468 249.7 44.0 105517.7 8.46 7.0

77511.0 0.035747 556.8 211.2 243232.2 61.9 24.27
ICR

31628.6 0.022286 242.4 40.9 99250.8 7.75 7.0
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Table C.9: Hull fouling F4 – Quantified engine (Cruise & Boost) parameters per journey at adverse
weather conditions

Engine
Cruise

-----------
Boost

Fuel
Consumption

(kg)

HP Turbine Life
Consumption

(%)

Total NOx
Emissions

(kg)

Total CO
Emissions

(kg)

Total CO2
Emissions

(kg)

Total UHC
Emissions

(kg)

Operational
Time per
Journey
(hours)

94459.4 0.043657 572.9 242.7 296406.9 87.9 24.33
SC

36864.9 0.027635 273.0 46.2 115677.2 8.87 7.0

TMI x2 53817.8 0.043289 667.9 61.6 168866.2 6.03 24.21

86737.5 0.038584 556.5 209.7 272178.3 69.9 24.26
INT

34404.6 0.023951 253.9 42.3 107956.5 7.99 7.0

83824.31 0.032772 520.5 262.2 263035.6 95.5 24.33
REQ

33814.5 0.020139 252.3 43.7 106104.5 8.34 7.0

78141.07 0.037301 562.5 210.0 245214.4 61.1 24.29
ICR

31855.4 0.023796 244.6 40.7 99962.7 7.64 7.0

Table C.10: Hull fouling F5 – Quantified engine (Cruise & Boost) parameters per journey at adverse
weather conditions

Engine
Cruise

-----------
Boost

Fuel
Consumption

(kg)

HP Turbine Life
Consumption

(%)

Total NOx
Emissions

(kg)

Total CO
Emissions

(kg)

Total CO2
Emissions

(kg)

Total UHC
Emissions

(kg)

Operational
Time per
Journey
(hours)

95049.6 0.044681 578.4 241.7 298264.0 86.8 24.34
SC

37038.3 0.028632 275.4 45.9 116220.3 8.76 7.0

TMI x2 54213.8 0.048374 676.2 61.3 170109.0 5.92 24.22

87332.2 0.040238 561.9 208.7 274043.6 69.0 24.28
INT

34610.9 0.025577 256.4 42.1 108605.9 7.90 7.0

84393.17 0.033685 525.7 260.7 264819.8 94.1 24.35
REQ

33985.0 0.021046 254.7 43.4 106640.7 8.24 7.0

78709.6 0.039035 567.8 208.9 246993.9 60.4 24.30
ICR

32062.1 0.025480 246.6 40.4 100612.0 7.54 7.0
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Figure C.47: Destroyer – Probability distribution of fuel cost of each power plant

Figure C.48: Destroyer – Cumulative probability distribution of fuel cost of each power plant
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Figure C.49: Destroyer – Probability distribution of maintenance cost of each power plant (initial
capital cost from 20% to 65% over the reference power plant)

Figure C.50: Destroyer – Cumulative probability distribution of maintenance cost of each power plant
(initial capital cost from 20% to 65% over the reference power plant)
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Figure C.51: Destroyer – Probability distribution of maintenance cost of each power plant (initial
capital cost from 65% to 110% over the reference power plant). TMI power plant initial
capital cost is extended to a range from 110% to 155%

Figure C.52: Destroyer – Cumulative probability distribution of maintenance cost of each power plant
(initial capital cost from 65% to 110% over the reference power plant). TMI power plant
initial capital cost is extended to a range from 110% to 155%
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Figure C.53: Destroyer – Probability distribution of cost of taxed NOx exhaust emissions of each
power plant with conventional combustors

Figure C.54: Destroyer – Cumulative probability distribution of cost of taxed NOx exhaust emissions
of each power plant with conventional combustors
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FigureC.55: Destroyer – Probability distribution of cost of taxed NOx exhaust emissions of each power
plant with DLE combustors

Figure C.56: Destroyer – Cumulative probability distribution of cost of taxed NOx exhaust emissions
of each power plant with DLE combustors
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Figure C.57: Destroyer – Probability distribution of cost of taxed CO exhaust emissions of each power
plant with conventional combustors

Figure C.58: Destroyer – Cumulative probability distribution of cost of taxed CO exhaust emissions of
each power plant with conventional combustors
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Figure C.59: Destroyer – Probability distribution of cost of taxed CO exhaust emissions of each power
plant with DLE combustors

Figure C.60: Destroyer – Cumulative probability distribution of cost of taxed CO exhaust emissions
of each power plant with DLE combustors
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Figure C.61: Destroyer – Probability distribution of cost of taxed CO2 exhaust emissions of each power
plant

Figure C.62: Destroyer – Cumulative probability distribution of cost of taxed CO2 exhaust emissions
of each power plant
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Figure C.63: Destroyer – Probability distribution of cost of taxed UHC exhaust emissions of each
power plant with conventional combustors

Figure C.64: Destroyer – Cumulative probability distribution of cost of taxed UHC exhaust emissions
of each power plant with conventional combustors



Appendix C.6

80

0

0.1

0.2

0.3

0.4

0.5

0.000 0.010 0.020 0.030 0.040 0.050

UHC Cost (£ million)

P
ro

b
a

b
il

it
y

UHC COST SC DLE UHC COST TMI DLE UHC COST INT DLE
UHC COST REQ DLE UHC COST ICR DLE

0.0

0.2

0.4

0.6

0.8

1.0

0.000 0.010 0.020 0.030 0.040 0.050

UHC Cost (£ million)

C
u

m
u

la
ti

v
e

P
ro

b
a

b
il

it
y

UHC COST SC DLE UHC COST TMI DLE UHC COST INT DLE
UHC COST REQ DLE UHC COST ICR DLE

Figure C.65: Destroyer – Probability distribution of cost of taxed UHC exhaust emissions of each
power plant with DLE combustors

Figure C.66: Destroyer – Cumulative probability distribution of cost of taxed UHC exhaust emissions
of each power plant with DLE combustors
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Table C.11: Destroyer - Minimum-maximum and standard deviation of NPC of all power plants with PD0

range from 20% to 65% from reference cycle
Engine (20%-65%)

Conventional & DLE
Combustor

Minimum
NPC

(£ million)

Maximum
NPC

(£ million)

Standard
Deviation
(£ million)

SC-Reference cycle 168.7 167.1 322.4 316.7 13.97 13.58

TMI 159.5 147.3 300.0 286.7 12.76 12.66

INT 154.1 160.4 311.4 306.6 14.29 13.29

REQ 155.1 153.3 302.6 292.3 13.41 12.63

ICR 147.2 146.1 282.4 280.5 12.28 12.22

Table C.12: Destroyer - Minimum-maximum and standard deviation of NPC of all power plants with PD0

range from 65% to 110% from reference cycle. TMI power plant is extended from 110% to
155%

Engine (65%-110%)
Conventional & DLE

Combustor

Minimum
NPC

(£ million)

Maximum
NPC

(£ million)

Standard Deviation
(£ million)

SC-Reference cycle 168.7 167.1 322.4 316.7 13.97 13.58

TMI 167.6 163.4 299.2 312.4 12.03 13.54
TMI (110%-155%) 169.1 177.8 326.6 330.5 14.31 13.88

INT 176.3 174.2 327.9 325.5 13.78 13.75

REQ 168.8 163.9 310.8 315.9 12.91 13.81

ICR 162.8 164.8 298.6 298.4 12.34 12.14

Table C.13: Destroyer - Minimum-maximum and standard deviation of maintenance cost of all power
plants with PD0 range from 20% to 65% from reference cycle

Engine (20%-65%)
Conventional & DLE

Combustor

Minimum
Maint. Cost
(£ million)

Maximum
Maint. Cost
(£ million)

Standard Deviation
(£ million)

SC-Reference cycle 4.57 5.35 12.47 15.28 0.71 0.90

TMI 9.06 9.16 26.62 31.22 1.58 2.00

INT 4.49 5.92 17.16 21.84 1.15 1.44

REQ 3.88 4.12 14.45 16.76 0.96 1.15

ICR 5.12 5.42 16.10 20.50 0.99 1.37

Table C.14: Destroyer - Minimum-maximum and standard deviation of maintenance cost of all power
plants with PD0 range from 65% to 110% from reference cycle. TMI power plant is extended
from 110% to 155%

Engine (65%-110%)
Conventional & DLE

Combustor

Minimum
Maint. Cost
(£ million)

Maximum
Maint. Cost
(£ million)

Standard Deviation
(£ million)

SC-Reference Cycle 4.57 5.35 12.47 15.28 0.71 0.90

TMI 12.30 13.96 29.98 41.90 1.78 2.54
TMI (110%-155%) 13.72 17.64 40.64 51.40 2.44 3.08

INT 7.09 8.10 21.86 28.64 1.34 1.87

REQ 5.67 5.75 17.47 24.01 1.07 1.66

ICR 7.42 8.41 21.84 26.40 1.31 1.64



Appendix C.7

82

Table C.15: Destroyer - Minimum-maximum and standard deviation of fuel cost of all power plants
Engine Minimum

Fuel Cost
(£ million)

Maximum
Fuel Cost
(£ million)

Standard Deviation
(£ million)

SC-Reference Cycle 123.6 250.7 11.55

TMI 97.6 201.5 9.44

INT 106.9 231.6 11.33

REQ 106.1 224.9 10.80

ICR 98.7 207.2 9.86

Table C.16: Destroyer - Minimum-maximum and standard deviation of cost of taxed NOx exhaust
emissions of all power plants

Engine
Conventional & DLE

Combustor

Minimum
NOx Cost
(£ million)

Maximum
NOx Cost
(£ million)

Standard Deviation
(£ million)

SC-Reference Cycle 8.67 2.86 19.12 6.13 0.95 0.29

TMI 13.72 4.18 30.18 9.68 1.48 0.49

INT 8.16 2.67 18.63 6.07 0.95 0.31

REQ 7.61 2.54 17.33 5.63 0.88 0.28

ICR 8.45 2.74 18.54 6.02 0.92 0.29

Table C.17: Destroyer - Minimum-maximum and standard deviation of cost of taxed CO exhaust
emissions of all power plants

Engine
Conventional & DLE

Combustor

Minimum
CO Cost

(£ million)

Maximum
CO Cost

(£ million)

Standard
Deviation

(£ million)

SC-Reference Cycle 0.738 0.228 1.570 0.505 0.075 0.025

TMI 0.252 0.078 0.550 0.174 0.028 0.009

INT 0.632 0.203 1.394 0.444 0.069 0.022

REQ 0.806 0.251 1.697 0.554 0.081 0.028

ICR 0.639 0.206 1.381 0.443 0.067 0.021

Table C.18: Destroyer - Minimum-maximum and standard deviation of dost of taxed CO2 exhaust
emissions of all power plants

Engine Minimum
CO2 Cost
(£ million)

Maximum
CO2 Cost
(£ million)

Standard Deviation
(£ million)

SC-Reference Cycle 9.70 20.93 1.02

TMI 7.80 16.88 0.82

INT 8.91 19.33 0.95

REQ 8.57 18.72 0.92

ICR 8.22 17.52 0.85

Table C.19: Destroyer - Minimum-maximum and standard deviation of cost of taxed UHC exhaust
emissions of all power plants

Engine
Conventional & DLE

Combustor

Minimum
UHC Cost
(£ million)

Maximum
UHC Cost
(£ million)

Standard Deviation
(£ million)

SC-Reference Cycle 0.052 0.017 0.115 0.037 0.0057 0.0018

TMI 0.006 0.0018 0.013 0.0039 0.0006 0.0002

INT 0.042 0.013 0.093 0.030 0.0046 0.0015

REQ 0.057 0.018 0.128 0.041 0.0065 0.0020

ICR 0.037 0.012 0.080 0.026 0.0040 0.0012
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Figure D.1: Simple cycle (SC) - Turbine entry temperature (TET) and fuel flow (FF) variation
against time of day, during journey with annual hull fouling progression (F#) and ideal
weather conditions

Figure D.2: Twin mode intercooled cycle (TMI) - Turbine entry temperature (TET) and fuel flow (FF)
variation against time of day, during journey with annual hull fouling progression (F#)
and ideal weather conditions
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Figure D.3: Intercooled cycle (INT) - Turbine entry temperature (TET) and fuel flow (FF) variation
against time of day, during journey with annual hull fouling progression (F#) and ideal
weather conditions

Figure D.4: Recuperated cycle (REQ) - Turbine entry temperature (TET) and fuel flow (FF) variation
against time of day, during journey with annual hull fouling progression (F#) and ideal
weather conditions
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Figure D.5: Intercooled/recuperated cycle (ICR) - Turbine entry temperature (TET) and fuel flow (FF)
variation against time of day, during journey with annual hull fouling progression (F#) and
ideal weather conditions
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Figure D.6: Simple cycle (SC) - Turbine entry temperature (TET) and fuel flow (FF) variation
against time of day, during journey with annual hull fouling progression (F#) and adverse
weather conditions

Figure D.7: Twin mode intercooled cycle (TMI) - Turbine entry temperature (TET) and fuel flow (FF)
variation against time of day, during journey with annual hull fouling progression (F#) and
adverse weather conditions
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Figure D.8: Intercooled cycle (INT) - Turbine entry temperature (TET) and fuel flow (FF) variation
against time of day, during journey with annual hull fouling progression (F#) and adverse
weather conditions

Figure D.9: Recuperated cycle (REQ) - Turbine entry temperature (TET) and fuel flow (FF) variation
against time of day, during journey with annual hull fouling progression (F#) and adverse
weather conditions
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Figure D.10: Intercooled/recuperated cycle (ICR) - Turbine entry temperature (TET) and fuel flow (FF)
variation against time of day, during journey with annual hull fouling progression (F#)
and adverse weather conditions
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Figure D.11: All Engines – Ship speed (SS) and engine power (EP) (for each engine) variation against
time of day, during journey with annual hull fouling progression (F#) and ideal weather
conditions

Figure D.12: Simple cycle (SC) – Ship speed (SS) and engine power (EP) (for each engine) variation
against time of day, during journey with annual hull fouling progression (F#) and adverse
weather conditions
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Figure D.13: Twin mode intercooled cycle (TMI) – Ship speed (SS) and engine power (EP) (for each
engine) variation against time of day, during journey with annual hull fouling progression
(F#) and adverse weather conditions

Figure D.14: Intercooled Cycle (INT) – Ship speed (SS) and engine power (EP) (for each engine)
variation against time of day, during journey with annual hull fouling progression (F#)
and adverse weather Conditions
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Figure D.15: Recuperated Cycle (REQ) – Ship speed (SS) and engine power (EP) (for each engine)
variation against time of day, during journey with annual hull fouling progression (F#)
and adverse weather conditions

Figure D.16: Intercooled/recuperated cycle (ICR) – Ship speed (SS) and engine power (EP) (for each
engine) variation against time of day, during journey with annual hull fouling progression
(F#) and adverse weather conditions



Appendix D.3

96

3000

3500

4000

4500

5000

07 10 13 16 19 22 01 04

Time of Day (hh)

C
O

2
E

x
h

a
u

s
t

E
m

is
s
io

n
s

(g
/s

)

0.2

0.4

0.6

0.8

1

U
H

C
E

x
h

a
u

s
t

E
m

is
s
io

n
s

(g
/s

)

CO2 SC F1 CO2 SC F2 CO2 SC F3 CO2 SC F4 CO2 SC F5
UHC SC F1 UHC SC F2 UHC SC F3 UHC SC F4 UHC SC F5

3000

3500

4000

4500

5000

07 10 13 16 19 22 01 04

Time of Day (hh)

C
O

2
E

x
h

a
u

s
t

E
m

is
s
io

n
s

(g
/s

)

0

0.0125

0.025

0.0375

0.05

U
H

C
E

x
h

a
u

s
t

E
m

is
s
io

n
s

(g
/s

)

CO2 TMI F1 CO2 TMI F2 CO2 TMI F3 CO2 TMI F4 CO2 TMI F5
UHC TMI F1 UHC TMI F2 UHC TMI F3 UHC TMI F4 UHC TMI F5

Figure D.17: Simple cycle (SC) – Carbon dioxide (CO2) and unburned hydrocarbons (UHC)
exhaust emissions variation against time of day, during journey with annual hull
fouling progression (F#) and ideal weather conditions

Figure D.18: Twin mode intercooled cycle (TMI) – Carbon dioxide (CO2) and unburned hydrocarbons
(UHC) exhaust emissions variation against time of day, during journey with annual hull
fouling progression (F#) and ideal weather conditions
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Figure D.19: Intercooled cycle (INT) – Carbon dioxide (CO2) and unburned hydrocarbons (UHC)
exhaust emissions variation against time of day, during journey with annual hull fouling
progression (F#) and ideal weather conditions

Figure D.20: Requperated cycle (REQ) – Carbon dioxide (CO2) and unburned hydrocarbons (UHC)
exhaust emissions variation against time of day, during journey with annual hull fouling
progression (F#) and ideal weather conditions
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Figure D.21: Intercooled/recuperated cycle (ICR) – Carbon dioxide (CO2) and unburned hydrocarbons
(UHC) exhaust emissions variation against time of day, during journey with annual hull
fouling progression (F#) and ideal weather conditions
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Figure D.22: Simple cycle (SC) – Carbon dioxide (CO2) and unburned hydrocarbons (UHC) exhaust
emissions variation against time of day, during journey with annual hull fouling
progression (F#) and adverse weather conditions

Figure D.23: Twin mode intercooled cycle (TMI) – Carbon dioxide (CO2) and unburned hydrocarbons
(UHC) exhaust emissions variation against time of day, during journey with annual hull
fouling progression (F#) and adverse weather conditions
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Figure D.24: Intercooled cycle (INT) – Carbon dioxide (CO2) and unburned hydrocarbons (UHC)
exhaust emissions variation against time of day, during journey with annual hull fouling
progression (F#) and adverse weather conditions

Figure D.25: Recuperated cycle (REQ) – Carbon dioxide (CO2) and unburned hydrocarbons (UHC)
exhaust emissions variation against time of day, during journey with annual hull fouling
progression (F#) and adverse weather conditions
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Figure D.26: Intercooled/recuperated cycle (ICR) – Carbon dioxide (CO2) and unburned hydrocarbons
(UHC) exhaust emissions variation against time of day, during journey with annual hull
fouling progression (F#) and adverse weather conditions
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Figure D.27: Simple cycle (SC) – Nitric oxide (NOx) and carbon monoxide (CO) exhaust emissions
variation against time of day, during journey with annual hull fouling progression (F#)
and ideal weather conditions

Figure D.28: Twin mode intercooled cycle (TMI) – Nitric oxide (NOx) and carbon monoxide (CO)
exhaust emissions variation against time of day, during journey with annual hull fouling
progression (F#) and ideal weather conditions
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Figure D.29: Intercooled cycle (INT) – Nitric oxide (NOx) and carbon monoxide (CO) exhaust
emissions variation against time of day, during journey with annual hull fouling
progression (F#) and ideal weather conditions

Figure D.30: Recuperated Cycle (REQ) – Nitric oxide (NOx) and carbon monoxide (CO) exhaust
emissions variation against time of day, during journey with annual hull fouling
progression (F#) and ideal weather conditions
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Figure D.31: Intercooled/recuperated cycle (ICR) – Nitric oxide (NOx) and carbon monoxide (CO)
exhaust emissions variation against time of day, during journey with annual hull fouling
progression (F#) and ideal weather conditions
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Figure D.32: Simple cycle (SC) – Nitric oxide (NOx) and carbon monoxide (CO) exhaust emissions
variation against time of day, during journey with annual hull fouling progression (F#)
and adverse weather conditions

Figure D.33: Twin mode intercooled Cycle (TMI) – Nitric oxide (NOx) and carbon monoxide (CO)
exhaust emissions variation against time of day, during journey with annual hull fouling
progression (F#) and adverse weather conditions
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Figure D.34: Intercooled cycle (INT) – Nitric oxide (NOx) and carbon monoxide (CO) exhaust
emissions variation against time of day, during journey with annual hull fouling
progression (F#) and adverse weather conditions

Figure D.35: Recuperated cycle (REQ) – Nitric oxide (NOx) and carbon monoxide (CO) exhaust
emissions variation against time of day, during journey with annual hull fouling
progression (F#) and adverse weather conditions
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Figure D.36: Intercooled/recuperated cycle (ICR) – Nitric oxide (NOx) and carbon monoxide (CO)
exhaust emissions variation against time of day, during journey with annual hull fouling
progression (F#) and adverse weather conditions
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Figure D.37: Simple cycle (SC) – Compressor turbine creep life variation against time of day, during
journey with annual hull fouling progression (F#) and ideal weather conditions

Figure D.38: Twin mode intercooled cycle (TMI) – HP turbine creep life variation against time of day,
during journey with annual hull fouling progression (F#) and ideal weather conditions
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Figure D.39: Intercooled cycle (INT) – HP turbine creep life variation against time of day, during
journey with annual hull fouling progression (F#) and ideal weather conditions

Figure D.40: Recuperated cycle (REQ) – Compressor turbine creep life variation against time of day,
during journey with annual hull fouling progression (F#) and ideal weather conditions
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Figure D.41: Intercooled/recuperated Cycle (ICR) – HP Turbine creep life variation against time of
day, during journey with annual hull fouling progression (F#) and ideal weather
conditions

Figure D.42: Simple cycle (SC) – Compressor turbine creep life variation against time of day, during
journey with annual hull fouling progression (F#) and weather Conditions
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Figure D.43: Twin mode intercooled cycle (TMI) – HP turbine creep life variation against time of day,
during journey with annual hull fouling progression (F#) and adverse weather conditions

Figure D.44: Intercooled cycle (INT) – HP turbine creep life variation against time of day, during
journey with annual hull fouling progression (F#) and adverse weather conditions
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Figure D.45: Recuperated cycle (REQ) – Compressor turbine creep life variation against time of day,
during journey with annual hull fouling progression (F#) and adverse weather conditions

Figure D.46: Intercooled/recuperated cycle (ICR) – HP turbine creep life variation against time of day,
during journey with annual hull fouling progression (F#) and adverse weather conditions
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Table D.1: Hull Fouling F1 – Quantified engine (each) parameters per journey at ideal weather conditions

Table D.2: Hull Fouling F2 – Quantified engine (each) parameters per journey at ideal weather conditions

Table D.3: Hull Fouling F3 – Quantified engine (each) parameters per journey at ideal weather conditions

Table D.4: Hull Fouling F4 – Quantified engine (each) parameters per journey at ideal weather conditions

Table D.5: Hull Fouling F5 – Quantified engine (each) parameters per journey at ideal weather conditions

Engine
Fuel

Consumption
(kg)

HP Turbine Life
Consumption

(%)

Total NOx
Emissions

(kg)

Total CO
Emissions

(kg)

Total CO2
Emissions

(kg)

Total UHC
Emissions

(kg)

Operational
Time per Journey

(hours)

SC 124030.5 0.02962 887.0 165.1 389197.1 32.3 24.0

TMI 99108.3 0.03843 1496.4 60.9 310976.1 1.97 24.0

INT 114398.2 0.02921 826.8 149.8 358984.4 29.1 24.0

REQ 113757.0 0.01087 810.4 155.9 356959.5 30.3 24.0

ICR 106197.8 0.03477 799.04 144.3 333259.1 27.6 24.0

Engine
Fuel

Consumption
(kg)

HP Turbine Life
Consumption

(%)

Total NOx
Emissions

(kg)

Total CO
Emissions

(kg)

Total CO2
Emissions

(kg)

Total UHC
Emissions

(kg)

Operational
Time per Journey

(hours)

SC 116833.7 0.00642 791.2 175.8 366619.3 37.0 24.0

TMI 92937.3 0.01375 1335.3 64.7 291613.3 2.25 24.0

INT 107759.7 0.00902 749.4 155.9 338152.7 32.4 24.0

REQ 106535.7 0.00185 711.5 169.6 334302.4 33.5 24.0

ICR 99480.93 0.01359 738.1 154.2 312187.4 31.3 24.0

Engine
Fuel

Consumption
(kg)

HP Turbine Life
Consumption

(%)

Total NOx
Emissions

(kg)

Total CO
Emissions

(kg)

Total CO2
Emissions

(kg)

Total UHC
Emissions

(kg)

Operational
Time per Journey

(hours)

SC 118935.5 0.01016 818.4 172.6 373213.1 35.6 24.0

TMI 94768.5 0.01867 1381.3 63.5 297359.0 2.16 24.0

INT 109725.4 0.01334 772.2 153.9 344326.3 31.3 24.0

REQ 108667.0 0.00316 739.67 165.5 340989.3 34.0 24.0

ICR 101468.4 0.01816 756.3 151.2 318423.1 30.1 24.0

Engine
Fuel

Consumption
(kg)

HP Turbine Life
Consumption

(%)

Total NOx
Emissions

(kg)

Total CO
Emissions

(kg)

Total CO2
Emissions

(kg)

Total UHC
Emissions

(kg)

Operational
Time per Journey

(hours)

SC 120793.3 0.01517 842.9 169.7 379039.4 34.3 24.0

TMI 96370.2 0.02421 1422.4 62.5 302384.7 2.09 24.0

INT 111447.5 0.01822 792.2 152.4 349731.4 30.4 24.0

REQ 110537.5 0.00501 765.1 165.8 346855.7 32.6 24.0

ICR 103211.0 0.02329 771.8 148.4 323888.7 29.1 24.0

Engine
Fuel

Consumption
(kg)

HP Turbine Life
Consumption

(%)

Total NOx
Emissions

(kg)

Total CO
Emissions

(kg)

Total CO2
Emissions

(kg)

Total UHC
Emissions

(kg)

Operational
Time per Journey

(hours)

SC 122474.9 0.02156 865.7 167.3 384321.9 33.26 24.0

TMI 97801.7 0.03046 1460.6 61.7 306876.4 2.02 24.0

INT 112992.2 0.02361 810.3 150.9 354576.3 29.7 24.0

REQ 112219.7 0.00755 788.4 158.6 352131.5 31.3 24.0

ICR 104773.4 0.02880 786.1 146.2 328786.9 28.3 24.0
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Table D.6: Hull Fouling F1 – Quantified engine (each) parameters per journey at adverse weather conditions

Table D.7: Hull Fouling F2 – Quantified engine (each) parameters per journey at adverse weather conditions

Engine
Fuel

Consumption
(kg)

HP Turbine Life
Consumption

(%)

Total NOx
Emissions

(kg)

Total CO
Emissions

(kg)

Total CO2
Emissions

(kg)

Total UHC
Emissions

(kg)

Operational
Time per Journey

(hours)

SC 136014.8 0.09340 987.5 177.4 426796.3 34.4 25.56

TMI 109338.8 0.11083 1696.9 64.1 343076.8 2.03 25.47

INT 126157.6 0.08652 928.5 157.7 395867.6 29.9 25.45

REQ 124744.5 0.07099 905.3 168.1 391430.3 32.6 25.57

ICR 116993.9 0.08229 888.4 153.3 367134.0 29.1 25.49

Table D.8: Hull Fouling F3 – Quantified engine (each) parameters per journey at adverse weather conditions

Engine
Fuel

Consumption
(kg)

HP Turbine Life
Consumption

(%)

Total NOx
Emissions

(kg)

Total CO
Emissions

(kg)

Total CO2
Emissions

(kg)

Total UHC
Emissions

(kg)

Operational
Time per Journey

(hours)

SC 137420.8 0.098617 1004.5 175.8 431205.2 33.7 25.58

TMI 110664.7 0.11842 1730.5 63.5 347237.1 1.98 25.50

INT 127600.8 0.09425 944.5 156.9 400402.8 29.4 25.48

REQ 126133.8 0.07504 922.8 166.1 395787.3 31.8 25.59

ICR 118357.4 0.08820 900.3 152 371410.4 28.5 25.51

Table D.9: Hull Fouling F4 – Quantified engine (each) parameters per journey at adverse weather conditions

Engine
Fuel

Consumption
(kg)

HP Turbine Life
Consumption

(%)

Total NOx
Emissions

(kg)

Total CO
Emissions

(kg)

Total CO2
Emissions

(kg)

Total UHC
Emissions

(kg)

Operational
Time per Journey

(hours)

SC 138733.0 0.10350 1020.2 174.6 435319.5 33.1 26.01

TMI 111753.5 0.12546 1758.97 63.1 350653.6 1.95 25.52

INT 128752.6 0.09975 957.4 156.2 404015.3 28.9 25.50

REQ 127413.1 0.07894 938.8 164.4 399803.7 31.1 26.01

ICR 119564.1 0.09241 910.7 151 375186.2 28.1 25.54

Table D.10: Hull Fouling F5 – Quantified engine (each) parameters per journey at adverse weather conditions

Engine
Fuel

Consumption
(kg)

HP Turbine Life
Consumption

(%)

Total NOx
Emissions

(kg)

Total CO
Emissions

(kg)

Total CO2
Emissions

(kg)

Total UHC
Emissions

(kg)

Operational
Time per Journey

(hours)

SC 139891.0 0.10903 1034.6 173.4 438957.9 32.6 26.04

TMI 112710.9 0.13168 1784.1 62.7 353657.4 1.92 25.54

INT 129824.5 0.10371 969.2 155.7 407373.4 28.6 25.52

REQ 128568.9 0.08394 953.4 163.2 403422.5 30.5 26.04

ICR 120649.5 0.09674 920.3 150.1 378588.9 27.7 25.57

Engine
Fuel

Consumption
(kg)

HP Turbine Life
Consumption

(%)

Total NOx
Emissions

(kg)

Total CO
Emissions

(kg)

Total CO2
Emissions

(kg)

Total UHC
Emissions

(kg)

Operational
Time per Journey

(hours)

SC 134278.5 0.08551 966.6 179.3 421351.3 35.3 25.53

TMI 107882.8 0.10324 1660.1 64.7 338508.1 2.08 25.44

INT 124529.1 0.07842 910.3 158.9 390762.7 30.6 25.42

REQ 122995.3 0.06439 883.6 170.5 385942.3 33.6 25.53

ICR 115398.7 0.07661 874.4 154.7 362117.7 29.7 25.46
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Figure D.47: RoPax fast ferry – Probability distribution of fuel cost of each power plant

Figure D.48: RoPax fast ferry – Cumulative probability distribution of fuel cost of each power plant
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Figure D.49: RoPax fast ferry – Probability distribution of maintenance cost of each power plant (initial
capital cost from 20% to 65% over the reference power plant)

Figure D.50: RoPax fast ferry – Cumulative probability distribution of maintenance cost of each power
plant (initial capital cost from 20% to 65% over the reference power plant)
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Figure D.51: RoPax fast ferry – Probability distribution of maintenance cost of each power plant (initial
capital cost from 65% to 110% over the reference power plant). TMI power plant initial
capital cost is extended to a range from 110% to 155%

Figure D.52:

RoPax fast ferry – Cumulative probability distribution of maintenance cost of each power
plant (initial capital cost from 65% to 110% over the reference power plant). TMI Power
plant initial capital cost is extended to a range from 110% to 155%
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Figure D.53: RoPax fast ferry – Probability distribution of cost of taxed NOx exhaust emissions of each
power plant with conventional combustors

Figure D.54: RoPax fast ferry – Cumulative probability distribution of cost of taxed NOx exhaust
emissions of each power plant with conventional combustors



Appendix D.6

119

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40

NOx Cost (£ million)

P
ro

b
a

b
il

it
y

NOx COST SC DLE NOx COST TMI DLE NOx COST INT DLE
NOx COST REQ DLE NOx COST ICR DLE

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

NOx Cost (£ million)

C
u

m
u

la
ti

v
e

P
ro

b
a

b
il

it
y

NOx COST SC DLE NOx COST TMI DLE NOx COST INT DLE
NOx COST REQ DLE NOx COST ICR DLE

Figure D.55: RoPax fast ferry – Probability distribution of cost of taxed NOx exhaust emissions of each
power plant with DLE combustors

Figure D.56: RoPax fast ferry – Cumulative probability distribution of cost of taxed NOx exhaust
emissions of each power plant with DLE combustors
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Figure D.57: RoPax fast ferry – Probability distribution of cost of taxed CO exhaust emissions of each
power plant with conventional combustors

Figure D.58: RoPax fast ferry – Cumulative probability distribution of cost of taxed CO exhaust
emissions of each power plant with conventional combustors
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Figure D.59: RoPax fast ferry – Probability distribution of cost of taxed CO exhaust emissions of each
power plant with DLE combustors

Figure D.60: RoPax fast ferry – Cumulative probability distribution of cost of taxed CO exhaust
emissions of each power plant with DLE combustors
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Figure D.61: RoPax fast ferry – Probability distribution of cost of taxed CO2 exhaust emissions of each
power plant

Figure D.62: RoPax fast ferry – Cumulative probability distribution of cost of taxed CO2 exhaust
emissions of each power plant
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Figure D.63: RoPax fast ferry – Probability distribution of cost of taxed UHC exhaust emissions of
each power plant with conventional combustors

Figure D.64: RoPax fast ferry – Cumulative probability distribution of cost of taxed UHC exhaust
emissions of each power plant with conventional combustors
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Figure D.65: RoPax fast ferry – Probability distribution of cost of taxed UHC exhaust emissions of
each power plant with DLE combustors

Figure D.66: RoPax fast ferry – Cumulative probability distribution of cost of taxed UHC exhaust
emissions of each power plant with DLE combustors
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Table D.11: RoPax Fast Ferry - Minimum-maximum and standard deviation of NPC of all power plants
with PD0 range from 20% to 65% from reference cycle
Engine (20%-65%)

Conventional & DLE
Combustor

Minimum
NPC

(£ million)

Maximum
NPC

(£ million)

Standard Deviation
(£ million)

SC-Reference Cycle 455.1 438.6 916.3 882.5 41.92 40.20

TMI 421.5 368.7 847.2 797.2 38.69 38.94

INT 419.5 432.2 853.3 848.1 39.42 37.81

REQ 421.8 406.6 857.6 828.3 39.60 38.38

ICR 409.8 402.0 813.8 805.8 36.81 36.70

Table D.12: RoPax fast ferry - Minimum-maximum and standard deviation of NPC of all power plants with
PD0 from 65% to 110% from reference cycle. TMI power plant is extended from 110% to 155%
Engine (65%-110%)
Conventional & DLE

Combustor

Minimum
NPC

(£ million)

Maximum
NPC

(£ million)

Standard Deviation
(£ million)

SC- Reference Cycle 455.1 438.6 916.3 882.5 41.92 40.20

TMI 426.8 437.6 877.1 841.0 40.92 38.47
TMI (110%-155%) 443.8 413.9 899.3 883.1 41.14 42.64

INT 435.1 452.7 890.2 880.9 41.42 38.92

REQ 410.5 419.3 873.5 839.2 42.08 38.16

ICR 422.5 426.8 836.8 836.9 37.66 37.26

Table D13: RoPax fast ferry - Minimum-maximum and standard deviation of maintenance cost of all
power plants with PD0 range from 20% to 65% from reference cycle

Engine (20%-65%)
Conventional & DLE

Combustor

Minimum
Maint. Cost
(£ million)

Maximum
Maint. Cost
(£ million)

Standard Deviation
(£ million)

SC-Reference Cycle 18.04 21.58 45.18 58.30 2.46 3.38

TMI 28.61 24.66 82.06 114.4 4.84 8.15

INT 19.18 23.82 61.11 83.92 3.81 5.73

REQ 16.58 17.84 53.96 70.78 3.40 4.82

ICR 25.26 26.20 63.63 82.48 3.48 5.10

Table D.14: RoPax fast ferry - Minimum-maximum and standard deviation of maintenance cost of all
power plants with PD0 range from 65% to 110% from reference cycle. TMI power plant is
extended from 110% to 155%
Engine (65%-110%)
Conventional & DLE

Combustor

Minimum
Maint. Cost
(£ million)

Maximum
Maint. Cost
(£ million)

Standard Deviation
(£ million)

SC-Reference Cycle 18.04 21.58 45.18 58.30 2.46 3.38

TMI 36.60 40.68 107.54 134.46 6.44 8.52
TMI (110%-155%) 41.18 43.62 132.40 162.94 8.29 10.84

INT 29.84 31.50 81.94 113.14 4.72 7.42

REQ 18.58 25.48 67.24 82.92 4.42 5.21

ICR 30.32 32.86 85.00 103.72 4.97 6.44



Appendix D.7

126

Table D.15: RoPax fast ferry - Minimum-maximum and standard deviation of fuel cost of all power plants
Engine Minimum

Fuel Cost
(£ million)

Maximum
Fuel Cost
(£ million)

Standard Deviation
(£ million)

SC- Reference Cycle 350.5 725.5 34.09

TMI 285.6 582.6 26.98

INT 318.1 664.4 31.44

REQ 318.1 662.5 31.30

ICR 297.1 620.0 29.36

Table D.16: RoPax fast ferry - Minimum-maximum and standard deviation of cost of taxed NOx
exhaust emissions for all power plants

Engine
Conventional & DLE

Combustor

Minimum
NOx Cost
(£ million)

Maximum
NOx Cost
(£ million)

Standard Deviation
(£ million)

SC – Reference Cycle 29.68 9.61 64.98 20.76 3.20 1.01

TMI 49.16 16.34 110.55 35.63 5.56 1.75

INT 27.36 9.12 60.06 19.72 2.96 0.96

REQ 26.42 8.30 59.10 18.66 2.97 0.95

ICR 26.9 8.62 58.86 19.04 2.90 0.95

Table D.17: RoPax fast ferry - Minimum-maximum and standard deviation of cost of taxed CO exhaust
emissions for all power plants

Engine
Conventional & DLE

Combustor

Minimum
CO Cost

(£ million)

Maximum
CO Cost

(£ million)

Standard
Deviation

(£ million)

SC – Reference Cycle 1.114 0.362 2.412 0.786 0.118 0.038

TMI 0.418 0.132 0.878 0.286 0.042 0.014

INT 0.990 0.328 2.145 0.704 0.105 0.034

REQ 1.031 0.336 2.342 0.750 0.118 0.037

ICR 0.974 0.325 2.086 0.682 0.101 0.032

Table D.18: RoPax fast ferry - Minimum-maximum and standard deviation of cost of taxed CO2 exhaust
emissions for all power plants

Engine Minimum
CO2 Cost
(£ million)

Maximum
CO2 Cost
(£ million)

Standard Deviation
(£ million)

SC – Reference Cycle 27.70 61.44 3.06

TMI 22.52 48.76 2.38

INT 25.22 55.06 2.72

REQ 25.04 55.92 2.81

ICR 24.46 51.76 2.48

Table D.19: RoPax fast ferry - Minimum-maximum and standard deviation of cost of taxed UHC
exhaust emissions for all power plants

Engine
Conventional & DLE

Combustor

Minimum
UHC Cost
(£ million)

Maximum
UHC Cost
(£ million)

Standard Deviation
(£ million)

SC – Reference Cycle 0.044 0.014 0.095 0.031 0.0046 0.0015

TMI 0.0026 0.0008 0.0056 0.0018 0.0003 0.00009

INT 0.036 0.013 0.084 0.027 0.0043 0.0013

REQ 0.042 0.014 0.090 0.028 0.0045 0.0014

ICR 0.038 0.012 0.080 0.026 0.0038 0.0013
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Figure E.1: Intercooled/recuperated cycle (ICR) - Turbine entry temperature (TET) and fuel flow (FF)
variation against time of day, during journey with annual hull fouling progression (F#) and
ideal weather conditions

Figure E.2: Intercooled/recuperated cycle (ICR) - Turbine entry temperature (TET) and fuel flow (FF)
variation against time of day, during journey with annual hull fouling progression (F#) and
adverse weather conditions
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Figure E.3: Intercooled/recuperated cycle (ICR) – Ship speed (SS) and engine power (EP) (for each
engine) variation against time of day, during journey with annual hull fouling progression
(F#) and ideal weather conditions

Figure E.4: Intercooled/recuperated cycle (ICR) – Ship speed (SS) and engine power (EP) (for each
engine) variation against time of day, during journey with annual hull Fouling progression
(F#) and adverse weather conditions



Appendix E.3

132

3000

3500

4000

4500

5000

07 10 13 16 19 22 01 04

Time of Day (hh)

C
O

2
E

x
h

a
u

s
t

E
m

is
s

io
n

s
(g

/s
)

0.2

0.4

0.6

0.8

1

U
H

C
E

x
h

a
u

s
t

E
m

is
s

io
n

s
(g

/s
)

CO2 ICR F1 CO2 ICR F2 CO2 ICR F3 CO2 ICR F4 CO2 ICR F5
UHC ICR F1 UHC ICR F2 UHC ICR F3 UHC ICR F4 UHC ICR F5

3000

3500

4000

4500

5000

07 10 13 16 19 22 01 04 07 10

Time of Day (hh)

C
O

2
E

x
h

a
u

s
t

E
m

is
s

io
n

s
(g

/s
)

0.2

0.4

0.6

0.8

1

U
H

C
E

x
h

a
u

s
t

E
m

is
s

io
n

s
(g

/s
)

CO2 ICR F1 CO2 ICR F2 CO2 ICR F3 CO2 ICR F4 CO2 ICR F5
UHC ICR F1 UHC ICR F2 UHC ICR F3 UHC ICR F4 UHC ICR F5

Figure E.5: Intercooled/recuperated cycle (ICR) – Carbon dioxide (CO2) and unburned hydrocarbons
(UHC) exhaust emissions variation against time of day, during journey with annual hull
fouling progression (F#) and ideal weather conditions

Figure E.6: Intercooled/recuperated cycle (ICR) – Carbon dioxide (CO2) and unburned hydrocarbons
(UHC) exhaust emissions variation against time of day, during journey with annual hull
fouling progression (F#) and adverse weather conditions
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Figure E.7: Intercooled/recuperated cycle (ICR) – Nitric oxide (NOx) and carbon monoxide (CO)
exhaust emissions variation against time of day, during journey with annual hull fouling
progression (F#) and ideal weather conditions

Figure E.8: Intercooled/recuperated Cycle (ICR) – Nitric oxide (NOx) and Carbon monoxide (CO)
exhaust emissions variation against time of day, during journey with annual hull fouling
progression (F#) and adverse weather conditions
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Figure E.9: Intercooled/recuperated cycle (ICR) – Compressor HP turbine creep life variation against
time of day, during journey with annual hull fouling progression (F#) and ideal weather
conditions

Figure E.10: Intercooled/recuperated cycle (ICR) – Compressor HP turbine creep life variation against
time of day, during journey with annual hull fouling progression (F#) and adverse weather
conditions
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Table E.1: Hull fouling F1-F5 – Quantified engine (ICR) parameters per journey at ideal weather conditions
Hull

Fouling
Fuel

Consumption
(kg)

HP Turbine Life
Consumption

(%)

Total NOx
Emissions

(kg)

Total CO
Emissions

(kg)

Total CO2
Emissions

(kg)

Total UHC
Emissions

(kg)

Operational
Time per Trip

(hours)

F1 103575.1 0.024528 704.67 147.87 325021.9 28.90 24.0

F2 105789.5 0.032999 723.0 144.88 331969.3 27.79 24.0

F3 107737.0 0.042515 739.39 142.39 338089.3 26.87 24.0

F4 109484.6 0.053496 754.36 140.21 343572.2 26.09 24.0

F5 111077.4 0.066066 768.28 138.22 348566.2 25.40 24.0

Table E.2: Hull fouling F1-F5 – Quantified engine (ICR) parameters per journey at adverse weather
conditions

Hull
Fouling

Fuel
Consumption

(kg)

HP Turbine Life
Consumption

(%)

Total NOx
Emissions

(kg)

Total CO
Emissions

(kg)

Total CO2
Emissions

(kg)

Total UHC
Emissions

(kg)

Operational
Time per Trip

(hours)

F1 132948.7 0.104584 921.06 168.54 417184.8 31.45 28.52

F2 134741.8 0.112085 935.46 166.80 422806.0 30.75 28.56

F3 136203.7 0.120004 947.53 165.19 427400.2 30.14 28.58

F4 137446.5 0.126105 957.85 164.0 431295.7 29.68 29.01

F5 138637.3 0.132894 967.86 163.01 435028.9 29.28 29.04
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Figure E.11: LNG carrier – Probability distribution of fuel cost of ICR power plant

Figure E.12: LNG carrier – Cumulative probability distribution of fuel cost of ICR power plant
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Figure E.13: LNG carrier – Probability distribution of maintenance cost of ICR power plant (initial
capital cost from, 1: 20% to 65% and 2: from 65% to 110% over the reference power
plant)

Figure E.14: LNG carrier –Cumulative probability distribution of maintenance cost of ICR power plant
(initial capital cost from, 1: 20% to 65% and 2: from 65% to 110% over the reference
power plant)
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Figure E.15: LNG carrier – Probability distribution of cost of taxed NOx exhaust emissions of ICR
power plant with conventional & DLE combustors

Figure E.16: LNG carrier – Cumulative probability distribution of cost of taxed NOx exhaust emissions
of ICR power plant with conventional & DLE combustors



Appendix E.6

139

0

0.1

0.2

0.3

0.4

0.5

0.0 0.25 0.5 0.75 1.0

CO Cost (£ million)

P
ro

b
a
b

il
it

y

CO COST ICR CONV. CO COST ICR DLE

0

0.2

0.4

0.6

0.8

1

0.0 0.25 0.5 0.75 1.0

CO Cost (£ million)

C
u

m
u

la
ti

v
e

P
ro

b
a

b
il

it
y

CO COST ICR CONV. CO COST ICR DLE

Figure E.17: LNG carrier – Probability distribution of cost of taxed CO exhaust emissions of ICR
power plant with conventional & DLE combustors

Figure E.18: LNG carrier – Cumulative probability distribution of cost of taxed CO exhaust emissions
of ICR power plant with conventional & DLE combustors



Appendix E.6

140

0

0.1

0.2

0.3

0.4

0.5

20 25 30 35 40 45

CO2 Cost (£ million)

P
ro

b
a
b

il
it

y

CO2 COST ICR

0

0.2

0.4

0.6

0.8

1

20 25 30 35 40 45

CO2 Cost (£ million)

C
u

m
u

la
ti

v
e

P
ro

b
a
b

il
it

y

CO2 COST ICR

Figure E.19: LNG carrier – Probability distribution of cost of taxed CO2 exhaust emissions of ICR
power plant

Figure E.20: LNG carrier – Cumulative probability distribution of cost of taxed CO2 exhaust emissions
of ICR power plant
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Figure E.21: LNG carrier – Probability distribution of cost of taxed UHC exhaust emissions of ICR
power plant with conventional & DLE combustors

Figure E.22: LNG Carrier – Cumulative probability distribution of cost of taxed UHC exhaust
emissions of ICR power plant with conventional & DLE combustors
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Table E.3: LNG Carrier - Minimum-maximum and standard deviation of cost of quantified engine
parameters

Engine Life Cycle Cost
Parameter
(£ million)

Minimum Cost
Conv. & DLE

Combustor

Maximum Cost
Conv. & DLE

Combustor

Standard
Deviation

Conv. & DLE
Combustor

NPC (20%-65%) 291.2 286.6 603.6 612.2 28.38 29.58

NPC (65%-110%) 291.0 305.1 608.8 639.6 28.9 30.4

Fuel 207.0 452.4 22.28

Maintenance (20%-65%) 21.92 23.86 67.86 81.52 4.16 5.24

Maintenance (65%110%) 26.86 37.4 85.14 111.2 5.28 6.7

NOx 13.28 1.792 28.56 3.94 1.38 0.196

CO 0.442 0.058 0.968 0.128 0.048 0.0062

CO2 18.72 41.82 2.04

UHC 0.016 0.0018 0.034 0.0036 0.0016 0.00018
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Table F.1: Variation of salt water density and kinematic viscosity with temperature (interpolate
linearly for other salinities) [Chapter 2, Ref. 7]

Sea-water
Temperature

deg. oC

Kinematic Viscosity
of Salt Water ν 

(m2/sec)106

Density of Salt
Water, ρs

(kg/m3)

0 1.82844 1028.0

1 1.76915 1027.9

2 1.71306 1027.8

3 1.65988 1027.8

4 1.60940 1027.7

5 1.56142 1027.6

6 1.51584 1027.4

7 1.47242 1027.3

8 1.43102 1027.1

9 1.39152 1027.0

10 1.35383 1026.9

11 1.31773 1026.7

12 1.28324 1026.6

13 1.25028 1026.3

14 1.21862 1026.1

15 1.18832 1025.9

16 1.15916 1025.7

17 1.13125 1025.4

18 1.10438 1025.2

19 1.07854 1025.0

20 1.05372 1024.7

21 1.02981 1024.4

22 1.00678 1024.1

23 0.98457 1023.8

24 0.96315 1023.5

25 0.94252 1023.2

26 0.92255 1022.9

27 0.90331 1022.6

28 0.88470 1022.3

29 0.86671 1022.0

30 0.84931 1021.7
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Table F.2: Wageningen B-series polynomials [Chapter 2, Ref. 11]

CT s t u v CQ s t u v

0.0088 0 0 0 0 0.00379 0 0 0 0

-0.2046 1 0 0 0 0.00887 2 0 0 0

0.16635 0 1 0 0 -0.0322 1 1 0 0

0.15811 0 2 0 0 0.00345 0 2 0 0

-0.1476 2 0 1 0 -0.0409 0 1 1 0

-0.4815 1 1 1 0 -0.108 1 1 1 0

0.41544 0 2 1 0 -0.0885 2 1 1 0

0.0144 0 0 0 1 0.18856 0 2 1 0

-0.053 2 0 0 1 -0.0037 1 0 0 1

0.01435 0 1 0 1 0.00514 0 1 0 1

0.06068 1 1 0 1 0.02094 1 1 0 1

-0.0126 0 0 1 1 0.00474 2 1 0 1

0.01097 1 0 1 1 -0.0072 2 0 1 1

-0.1337 0 3 0 0 0.00438 1 1 1 1

0.00638 0 6 0 0 -0.0269 0 2 1 1

-0.0013 2 6 0 0 0.05581 3 0 1 0

0.1685 3 0 1 0 0.01619 0 3 1 0

-0.0507 0 0 2 0 0.00318 1 3 1 0

0.08546 2 0 2 0 0.0159 0 0 2 0

-0.0504 3 0 2 0 0.04717 1 0 2 0

0.01047 1 6 2 0 0.01963 3 0 2 0

-0.0065 2 6 2 0 -0.0503 0 1 2 0

-0.0084 0 3 0 1 -0.0301 3 1 2 0

0.01684 1 3 0 1 0.04171 2 2 2 0

-0.001 3 3 0 1 -0.0398 0 3 2 0

-0.0318 0 3 1 1 -0.0035 0 6 2 0

0.0186 1 0 2 1 -0.0107 3 0 0 1

-0.0041 0 2 2 1 0.00111 3 3 0 1

-0.0006 0 0 0 2 -0.0003 0 6 0 1

-0.005 1 0 0 2 0.0036 3 0 1 1

0.0026 2 0 0 2 -0.0014 0 6 1 1

-0.0006 3 0 0 2 -0.0038 1 0 2 1

-0.0016 1 2 0 2 0.01268 0 2 2 1

-0.0003 1 6 0 2 -0.0032 2 3 2 1

0.00012 2 6 0 2 0.00334 0 6 2 1

0.00069 0 0 1 2 -0.0018 1 1 0 2

0.00422 0 3 1 2 0.00011 3 2 0 2

5.7E-05 3 6 1 2 -3E-05 3 6 0 2

-0.0015 0 3 2 2 0.00027 1 0 1 2

0.00083 2 0 1 2

0.00155 0 2 1 2

0.0003 0 6 1 2

-0.0002 0 0 2 2

-0.0004 0 3 2 2

8.7E-05 3 3 2 2

-0.0005 0 6 2 2

5.5E-05 1 6 2 2
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Figure F.1: Sunrise, sunset, dawn and dusk times in Greece (Athens) for each month of year [Chapter
5, Ref. 27]

Table F.3: Average monthly ambient air temperature in Greece (Athens) for each month of year
[Chapter 5, Ref. 27]

Temperature °C 10.30 10.14 12.11 15.99 20.66 24.93 26.82 26.67 23.88 19.68 14.98 11.48

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Sunshine

Dawn

Dusk

Darkness
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Table F.4: Case studies dataset of RoPax fast ferry and Destroyer naval vessel

Case studies dataset of RoPax fast ferry and Destroyer naval vessel

Gas turbine
Power plant

Hull fouling
level

Sea-state profile

F1
F2
F3
F4

Simple cycle
SC

F5

F1
F2
F3
F4

Twin mode
intercooled

cycle
TMI

F5

F1
F2
F3
F4

Intercooled
Cycle
INT

F5

F1
F2
F3
F4

Recuperated
cycle
REQ

F5

F1
F2
F3
F4

Intercooled/
Recuperated

Cycle
ICR

F5

No weather conditions (Ideal)

F1

F2
F3
F4

Simple cycle
SC

F5

F1
F2
F3
F4

Twin mode
intercooled

cycle
TMI

F5

F1
F2
F3
F4

Intercooled
Cycle
INT

F5

F1
F2
F3
F4

Recuperated
cycle
REQ

F5

F1
F2
F3
F4

Intercooled/
Recuperated

Cycle
ICR

F5

Adverse weather conditions
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Table F.5: Case study dataset LNG carrier

Case study dataset of LNG carrier

Gas turbine
Power plant

Hull fouling
level

Sea-state profile

F1
F2
F3
F4

Intercooled/
Recuperated

Cycle
ICR

F5

No weather conditions (Ideal)

F1
F2
F3
F4

Intercooled/
Recuperated

Cycle
ICR

F5

Adverse weather conditions
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Figure F.2: A guide of main form coefficients and elements of the hull shape [Chapter 5, Ref. 4]


