
CRANFIELD UNIVERSITY

J A KIMBER

ELASMOBRANCH ELECTRORECEPTIVE FORAGING BEHAVIOUR:
MALE-FEMALE INTERACTIONS, CHOICE AND COGNITIVE ABILITY

SCHOOL OF APPLIED SCIENCES

PhD THESIS



ii

CRANFIELD UNIVERSITY

SCHOOL OF APPLIED SCIENCES

PhD THESIS

Academic Years 2005-2008

J A KIMBER

Elasmobranch electroreceptive foraging behaviour: male-female interactions,
choice and cognitive ability

Supervisors: A B Gill & D W Sims

August 2008

© Cranfield University 2008. All rights reserved. No part of this publication may be
reproduced without the written permission of the copyright owner.



iii

GENERAL ABSTRACT

Aspects of electroreceptive foraging behaviour were investigated in a benthic
elasmobranch, Scyliorhinus canicula (small-spotted catshark). The findings build on
current knowledge of sexual conflict in this species and provide novel information
concerning differentiation ability, choice and cognition relating to elasmobranch
electroreceptive foraging behaviour. Hierarchical catshark behaviours towards artificial,
prey-type electric fields (E fields) following stimulation by food-derived scent were
recorded under laboratory conditions.

Experiment 1: Male-female interactions

Foraging behaviour of single- and mixed-sex catshark groups were investigated using
electroreception as a proxy for feeding levels. Results indicated significant reductions in
foraging levels of being grouped with the opposite sex, in addition to higher
responsiveness in females. These attributes are most likely consequences of differing
reproductive strategies and resultant sexual conflict.

Experiment 2: Choice

Catsharks were trained to swim through narrow tunnels and upon exit were presented
with two differing E fields simultaneously. Choices were recorded and analysed, and
thereby their ability to distinguish between and/or show preferences for fields was
determined. Differentiation ability was demonstrated by preferences for stronger rather
than weaker direct current fields, and alternating rather than direct current fields. The
fish were either unable to distinguish or showed no preference for artificial (electrodes)
and natural fields (crabs).

Experiment 3: Cognitive ability

Response levels and changes in response levels over time of catsharks rewarded for
responding to E fields were compared to those of catsharks that were not rewarded.
Results demonstrated learning and habituation behaviour improving foraging efficiency
over short time scales according to profitability of fields. Failure to retain altered
behaviour after an interval indicated short memory windows. These attributes would
prove beneficial in a variable environment.

Given many elasmobranchs’ continuing population declines and increasing potential
interactions with anthropogenic E fields, such information will hopefully benefit both
fisheries managers and offshore renewable energy developers.
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1. GENERAL INTRODUCTION

1.1. Introduction

Energy is crucial to living organisms. It is required for fundamental biological

processes ranging from metabolism and life maintenance to development, growth and

reproduction. Animals acquire energy by consuming and digesting food and the trade-

offs involved in obtaining it contributes greatly to their Darwinian fitness via

contribution to somatic and gonadal growth. Foraging for food is therefore vitally

important and consequently animals devote significant time and effort to the behaviour

(Elton, 1927; Stephens & Krebs, 1986). Compared to herbivores, predatory carnivores,

in particular, are faced with a great challenge when locating and capturing their prey. In

turn, the prey must strive to avoid detection and capture. In addition to the need to

locate mates, to navigate and to identify suitable habitats, this evolutionary arms race

between predator and prey has resulted in highly tuned senses to detect signals such as

scent, noise, movement, shape, colour, pressure and heat.

Signals emitted by prey in aquatic environments (including oceans, lakes and

rivers) often differ to signals emitted by terrestrial prey due to the vastly contrasting

properties of water and air such as density, viscosity, pressure, temperature and

diffusion rates (Denny, 1993; Tait & Dipper, 1994). For example, certain signals

attenuate in water more rapidly than in air (e.g. light via absorption and scattering)

whereas others attenuate less rapidly in water (e.g. sound via propagation of sound

waves and impedance). Consequently, aquatic and terrestrial predators have often

evolved to possess differing sensory adaptations and acuteness.
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One sense is only observed in aquatic environments owing to the conductivity of

water. Known as electroreception, it is the detection of electric fields and represents a

key factor in certain animals’ foraging behaviour and therefore highly important for

their individual success (Tricas & Sisneros, 2004).

The following study investigated a number of important aspects of foraging

behaviour exhibited by an electroreceptive elasmobranch (arguably the most

electrosensitive taxon), the often studied, benthic, marine predator; the small-spotted

catshark (Scyliorhinus canicula).

1.2. Electroreceptive organisms

Electroreception is the biological ability to receive and make use of electrical

impulses. There are two varieties of the sense; passive and active. Passive

electroreception involves the detection of the weak bioelectric fields emitted by aquatic

animals (and possibly the Earth’s electromagnetic fields). Active electroreception

consists of the generation of electric fields and subsequent detection of distortions in the

fields by the local environment (including aquatic animals) and can also be used as a

means of communication.

There are a few mammals and amphibians that exhibit electroreception when

foraging in water including the star-nosed mole, Condylura cristata; Gould et al.,

1993), the monotremes (echidnas and the platypus, Ornithorhynchus anatinus; Scheich

et al., 1986) and salamanders (Fritzsch, 1981). Otherwise the sense is thought to be

exclusive to fish. Those possessing active electroreceptive capabilities are

predominantly teleosts (bony fishes) such as synodontid catfishes (Hagedorn et al.,

1990) gymnotiform (the electric eel, Electrophorus electricus, and knife fishes; Nelson
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& Maciver, 1999) and mormyriform fishes (elephant fish, Gnathonemus petersii; von

der Emde, 1990). These are thought to have evolved from passive electroreceptive fish

which are primarily primitive groups including lampreys (Bullock et al., 1983), bichirs

(Jorgensen, 1982), lungfish (Northcutt, 1986; Watt et al., 1999), coelacanths (Bemis &

Hetherington, 1982), chondrosteans (sturgeons and paddlefish, Teeter et al., 1980;

Northcutt, 1986) and the chondrichthyans (sharks, skates, rays & chimeras; Bullock et

al., 1983; Bodznick & Boord, 1986; Fields et al., 1993). A sub-class of the latter

provide the focus of this study; the elasmobranchs (sharks, skates and rays).

1.3. Elasmobranch electroreception

1.3.1. Early investigation

Electro-sensitivity in fish was discovered in the early twentieth century in the

catfish, Amiurus nebulosus (Parker & van Heusen, 1917). However, it was not until

Lissmann’s research on weak electric fish and his suggestion that their abilities evolved

from more primitive fish without electric organs, but sensitive to electric fields, that

work on elasmobranchs began (Lissman, 1958). Evidence of electro-sensitivity in the

latter began to surface in 1935 when Disgraaf and his student, Kalmijn, noticed that

blindfolded S. canicula responded to rusty steel wires but not to glass rods. They

suggested the sharks were sensitive to electric fields generated by the wire (Disgraaf &

Kalmijn, 1962). In the 1960’s Murray went further by demonstrating that the Ampullae

of Lorenzini (named after the biologist who first described the organ in the late 17th

century) were responsive to electrical stimulation (Murray, 1962). Kalmijn went further

still by severing the organ’s nerves, disabling the shark’s ability to detect electric

currents thereby proving the organ’s electroreceptive function (Kalmijn, 1966).
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Kalmijn proceeded to demonstrate the use of the sense during prey detection in a

series of classic behavioural, laboratory experiments (Kalmijn, 1971) which can be

summarised as follows:

a) Recorded S. canicula (small-spotted catshark) and Raja clavata (thornback

ray) successfully searching for, locating and consuming live plaice

(Pleuronectes platessa) entirely buried in sand.

b) Demonstrated S. canicula and R. clavata were still successful at locating and

responding to buried plaice when the latter is positioned under an agar

chamber (designed such that it transmits bioelectric fields but not scent).

c) The catsharks and rays were, however, unsuccessful in locating or responding

to pieces of whiting (Merlangius merlangus) buried under the sand and

placed under the chamber.

d) The elasmobranchs were also unsuccessful at locating or responding to live

plaice under the chamber when the chamber was covered with thin plastic

film (to block electric field transmission without inhibiting mechanical cue

transmission).

e) The elasmobranchs were able to detect and attempted to bite buried

electrodes emitting a small, artificial electric field.

f) The elasmobranchs responded to buried electrodes rather than exposed

whiting pieces when the stimuli were placed in close proximity.

By a process of elimination he was therefore able to conclude that the

elasmobranchs were using a sense other than sight (a), scent (b & c), and mechanical

(d), that they were able to detect weak, artificial, electric fields and responded to them

as if they were prey (e), and that the electric sense seemed more important than vision
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and olfaction when within close proximity to a stimulus (f). A decade later he confirmed

that free ranging sharks (dusky smooth hound, Mustelus canis and blue shark, Prionace

glauca) attracted by prey scent would, within short distances, respond to electrodes

simulating prey electric fields and would do so preferentially over scent (Heyer et al.,

1981; Kalmijn, 1982).

1.3.2. Morphology and physiology

In the three decades that have followed a great deal of work has been undertaken

to understand the morphology of the Ampullae of Lorenzini and the physiology behind

the sense. A brief summary follows hereafter.

The ampullae consist of a network of clustered, small, continuous, alveolar sacs,

each of which is connected to an open pore on the skin via a single canal that extends

from the subdermal ampulla and through the dermis (Waltman, 1966; Tricas &

Sisneros, 2004; Figure 1). Clusters sometimes number up to 400 in marine

elasmobranchs (Chu & Wen, 1979).
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Figure 1. Diagram illustrating the morphology of the electroreceptive apparatus, the
Ampullae of Lorenzini (Compagno et al., 2005).

The pores are distributed over much of the head, particularly around the snout

and mouth (Figure 2), and in the case of skates and rays extend on to the wing-like

pectoral fins (Murray, 1960; Raschi, 1986; Tricas, 2001). Species that feed primarily on

benthic prey tend to possess higher pore densities ventrally than those that feed

primarily on pelagic prey (Raschi, 1986).
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Figure 2. Diagram illustrating ampullary canal and pore distribution on a squaloid shark
(Compagno et al., 2005).

The canals’ dimensions vary both within and between species (shorter in

freshwater species; Zakon, 1986 & 1988) and even within each individual but can

measure up to 200 mm in length and approximately 1 mm width (Murray, 1974;

Whitehead, 2002). They radiate in all directions from the ampullary clusters, which is

thought to allow directional sampling of electric fields surrounding the animal (Kalmijn,

1971; Murray, 1974). They are lined with thick, highly electrically insulating walls

(Waltman, 1966). Both the sacs and canals are filled with a low resistivity,

muccopolysacharride gel (Murray & Potts, 1961; Waltman, 1966). The ampullary sac

walls consist of sensory epithelium (receptor and support cells joined by tight junctions,

Tricas, 2001).

The receptor cells are stimulated by minute voltage changes between their basal

surface and the water at the skin surface (conveyed along the canals) causing increasing

(negative potential) or decreasing (positive potential) transmitter release and discharge

rates onto primary afferent nerves leading to the brain (Montgomery, 1984; Tricas &

New, 1998; Tricas, 2001). A sophisticated set of filter mechanisms in the brain then
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extract the weak electro-sensory signals from the strong background noise, the latter of

which is largely created by the animal’s own movement (Montgomery & Bodznick,

1999).

The numbers of nerves associated with the sense rival those associated with

optical, auditory and mechanical senses underlining the relative importance of

electroreception to the animals that possess it (Murray, 1974). In fact, it is thought to be

one of the most acute senses known throughout the animal kingdom. Murray (1962)

reported neural responses of skate electrosensory primary afferents to a voltage gradient

of approximately 1 micro-volt per cm. This equates to being able to detect a 1.5 V

gradient (akin to the battery power of a small torch) over 1600 km (Kalmijn 1971).

More recent experiments have extended this sensitivity to below 20 nano-volts per

centimetre (round stingray, Urobatis halleri; Tricas & New, 1998).

1.3.3. Behaviour

Despite the extensive literature on morphology and physiology, there has been a

relative dearth of studies undertaken on electroreceptive behaviour (Bres, 1993; Tricas

and Sisneros, 2004). Past work has often concentrated on proving the existence or

descriptions of species’ electroreceptive response. Of the nine extant orders within the

subclass, Elasmobranchii, only species from four have had electroreceptive behaviour

documented, two of which are represented by just one species (Table 1).



Table 1. Elasmobranchs for which electroreceptive behaviour has been identified and described
Order Species Author/s

Rajiformes Clearnose skate (Raja eglanteria)
Little skate (Raja erinacea)

Winter skate (Leucoraja ocellata)
Thornback ray (Raja clavata)

Atlantic stingray (Dasyatis Sabina)

Pacific electric ray (Torpedo californica)
Freshwater rays (Potamotrygon genus)

Sisneros et al., 1998
Bratton & Ayers, 1987
Bratton & Ayers, 1987

Kalmijn, 1971
Kalmijn & Kalmijn, 1981; Blonder & Alvezion, 1988;

Haine et al., 2001
Lowe et al. 1994
Szabo et al., 1972

Orectolobiformes
(Carpet Sharks)

Nurse shark (Ginglymostoma cirratum) Johnson et al., 1984

Lamniformes
(Mackerel sharks)

Great white shark (Carcharodon carcharias) Tricas & McCosker, 1984

Carcharhiniformes
(Ground sharks)

Small-spotted catshark (Scyliorhinus canicula)
Blue Shark (Prionace glauca)

Bonnethead shark (Sphyrna tiburo)
Scalloped hammerhead shark (Sphyrna lewini)

Swell shark (Cephaloscyllium ventriosum)
Blacktip reef shark (Carcharhinus melanopterus)

Sandbar shark (Carcharhinus plumbeus)
Smooth dogfish (Mustelus canis)

Kalmijn, 1971; Pals et al., 1982a; Filer et al., 2008
Heyer et al., 1981; Ryan, 1981; Kalmijn, 1982

Kaijura, 2003
Kaijura & Holland, 2002

Tricas, 1982,
Haine et al., 2001

Kaijura & Holland, 2002
Dawson et al., 1980; Kalmijn, 1982



Chapter One: Introduction

10

There have been even fewer rigorous studies of elasmobranchs’ electroreceptive

behavioural parameters and ecology. Examples include Dawson et al. (1980) and

Kalmijn (1982) who compared the responses of smaller, younger Mustelus canis with

larger, adult specimens to electric fields simulating both small and large prey. They

found that their sensitivities to the electric fields and preference for size of “prey”

differed. Blonder and Alevizon (1988) found that stingray were unable to discriminate

between prey and non-prey invertebrates using electroreception alone. Kaijura &

Holland (2002) worked on approach patterns of carcharhinid and sphyrid sharks to prey-

simulating electric stimuli. They suggested that whilst the hammerhead head

morphology does not confer greater electrical sensitivity it does permit larger search

areas and increased manoeuvrability, both of which would improve prey capture

success. Filer et al. (2008) investigated the electroreceptive foraging behaviour of S.

canicula upon different substrates. They concluded that the fish responded significantly

less over pebbles and rocks than over sand or no substrate and that responses were

significantly reduced at substratum depths of more than 1 cm, with no bites occurring

below 3 cm. Gill, A. B., Kimber, J. A. & Bellamy, P. H. (unpublished data) studied

intraspecific variation in the electroreceptive foraging behaviour of small groups of the

same species. They found significant variation both within and between groups.

1.3.4. Ecology and electrical environment

Elasmobranchs have evolved a hierarchical array of highly tuned senses over the

past 450 million years. Electroreception is the last to be used over short distances of up

to approximately 40 cm (Kalmijn, 1982; Haine et al., 2001), although less for smaller,

benthic species (Kalmijn, 1966, 1971; personal observation). The sense is crucial when

accurately locating prey and orienting jaws moments before biting (Kalmijn, 1971;
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Tricas, 1982; Blonder & Alevison, 1988; Haine et al., 2001 to name but a few). It is also

used during the location of and communication with conspecifics by those species that

bury themselves in sediment (Bratton & Ayers, 1987; Tricas et al., 1995; Sisneros, et

al., 1998), for the detection of predators, particularly by embryos, hatchlings and

juveniles (Peters & Evers, 1985; Sisneros et al., 1998), and is thought to aid navigation

as the fish pass through the earth’s natural electromagnetic fields (Kalmijn, 1974 &

1984, Pals et al., 1982b; Paulin, 1995; Montgomery & Walker, 2001).

There are numerous sources of electric field (E field) that an elasmobranch may

encounter in the marine environment. Measuring such (often minute) fields in sea water

is very difficult owing to the variable nature of the fields in a complex, three-

dimensional medium with variable salinity, conduction, dissipation and water and ion

movement (Kalmijn, 1971, 1972; Kraus & Fleisch, 1999), not to mention the

inhospitable and problematic working conditions. There are, however, a few references

in the literature, a brief review of which follows.

Aquatic animals emit weak E fields of three types; those associated with (a) high

frequency alternating currents caused by muscle action potentials (including heart, gill

and motor function muscles), (b) direct currents associated with the difference in

potential arising from membranous and epithelial proximity to water in body cavities

(mouth, respiratory and anal), and (c) low frequency alternating currents caused by the

alternating expansions and contractions of body cavities modulating the direct currents.

The extent and strength of these E fields varies significantly among different taxa

(Table 2) and in general each species’ fields increase in strength with increasing

specimen size.



Table 2. Measurements of the bioelectric fields emitted by marine organisms in the literature
Organism Direct current E field Alternating current E field Author/s

Teleosts
(small)

20 – 24 mV
10 – 100 µV
To 500 µV

n/a
1.5 Hz, voltage not specified

Low freq. (<20 Hz) to 500 µV, high freq. (>20
Hz) to 10 µV

Potts & Hedges, 1991
Haine et al., 2001

Kalmijn, 1972

Chondrichthyes
(small)

To 50 µV Low freq. (<20 Hz) to 50 µV, high freq. (>20
Hz) to 10 µV

Kalmijn, 1972

Tunicata To over 100µV ~ 130 µV, very low freq. Kalmijn, 1972

Echinodermata Mostly 10 µV
(some species to 80)

None Kalmijn, 1972

Crustacea 10 - 100 µV
To 50 µV

0.1 – 1.0 mV (copepods)

None or negligible
Some minimal low freq.
8 – 10 Hz, 0.1 – 1.0 mV

Haine et al., 2001
Kalmijn, 1972

Wilkens et al., 1997

Mollusca
(small)

To 100 µV (gastropods) &
1 - 10 µV (other groups)

10 µV (bivalvia)

Very low freq. to 100 µV

None

Kalmijn, 1972

Haine et al., 2001

Annelids &
Cnidaria

To 10 µV None Kalmijn, 1972

Spongiae Negligible None Kalmijn, 1972

V = volts (voltage); Hz = hertz (frequency); n/a = no information available
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These measurements were, however, often based upon just a few species and

specimens and seem fairly variable, possibly owing to the difficulty of measurement

methods. Nevertheless, the figures do provide the best gauge upon which to base

assumptions about relatively small elasmobranch prey and conspecifics. Conversely,

measurements of the E fields associated with larger predatory organisms are lacking.

Sisneros et al. (1998) and Ball (2007) demonstrated embryonic thornback rays ceasing

body movement that facilitates critical ventilatory movement of water upon sensing

artificial E fields. This suggested the rays were employing detection minimisation

behaviour as the E fields were similar to those of predatory animals (small, adult

elasmobranchs, teleosts and molluscs). But there are no data in the literature concerning

the bioelectric fields of larger predators capable of catching and consuming even small,

adult elasmobranchs (such as large elasmobranchs, teleosts, cephalopods or sea

mammals). It is clear that further research is required to develop a more complete

picture of the E fields emitted by marine organisms.

Elasmobranchs also encounter uniform E fields due to the movement of sea

water through the Earth’s geomagnetic field in the region of 0.05 to 0.50 µV/cm for

ocean currents (von Arx, 1962; Kalmijn 1974, 1984) and 8 µV/m for tidal currents

(Pals, 1982b). Many species exhibit migratory behaviour over wide ranging temporal

and spatial scales often swimming along remarkably straight lines (Carey et al., 1990;

Klimley, 1993; Holland, et al., 1999; Boustany et al., 2002; Gore et al., 2008). Kalmijn

has long postulated that elasmobranchs may utilise electroreception to sense the

geomagnetic field; passively by detecting fields induced by ocean currents and actively

by detecting gradients produced by their own movement through the water. He

demonstrated that stingrays could detect and orientate relative to the field (Kalmijn,
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1978a, 1978b; Kalmijn & Kalmijn, 1981). Pals et al. (1982a) demonstrated S. canicula

orienting to local E fields. A more recent investigation demonstrated sandbar and

scalloped hammerhead sharks responding directly to changes in magnetic fields (Meyer

et al., 2004) yet it still remains unclear whether magnetoreception, electroreception, or

both are involved.

Artificial sources of E fields also exist in the marine environment, significant

examples of which are those associated with offshore renewable energy developments

(ORED). Recent modelling (CMACS, 2003; Gill et al., 2005) reported that offshore

wind farm cable shielding successfully prevented direct leakage of E fields. However,

shielding failed to prevent magnetic field leakage which induced alternating current E

fields in the water close to the cable. The fields were estimated to be within the range

detectable by electrically sensitive fish (from approximately 0.9 µV/cm at cable

surfaces to 0.1 µV/cm eight metres from cables). Larger sharks may also be exposed to

strong E fields associated with devices used by divers and surfers to prevent potentially

dangerous shark encounters such as the SharkPOD or Shark Shield. The equipment

utilise approximately 80 volts and 100 amps (Natal Sharks Board, 2002, personal

communication; Shark Shield Pty Ltd., 2008) which elicit avoidance responses even in

large, predatory sharks.

1.4. Requirement for further research

Throughout the world’s oceans, many species of elasmobranch are facing

dramatic population declines. In 2003, of the species that had been assessed (less than a

third) for the World Conservation Union (IUCN)), 21% were identified as Threatened

with Extinction and 24% as Near Threatened (Compagno et al., 2005). Another 24%
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were deemed so data deficient as to be impossible to assess. These declines are

primarily due to human overexploitation and poor fisheries management. 700,000 to

800,000 tonnes (or 70 to 100 million animals) are caught worldwide per annum, many

solely for their fins. Moreover, this figure is probably grossly underestimated due to

unreported bycatch, discards, recreational and illegal fishing. These catch rates are

simply unsustainable (Dulvy et al., 2008). The situation is exacerbated by the slow life

histories and therefore slow population recovery rates these fish exhibit (Smith et al.,

1999; Baum et al., 2003; Frisk et al., 2005; Dulvy et al., 2008). Furthermore, many

species have been demonstrated to segregate by sex (Springer, 1967; Klimley, 1987;

Sims, 2005) which may cause additional complications in fisheries management. When

one also considers the importance of these top predators in oceanic food webs (Stevens

et al., 2000; Schindler et al., 2002) and the fragility of ecosystems to reduced species’

abundances and extinctions (Chaplin et al., 2000), it becomes clear that elasmobranch

fisheries management and conservation demand immediate attention (Helfman, 2007;

Dulvy et al., 2008).

Moreover, there is growing concern that these vulnerable fish may be affected

by increasing occurrences of anthropogenic E fields in many of the world’s coastal,

benthic habitats (Gill et al., 2005; Gill & Kimber, 2005; Sutherland et al., 2008).

Historically, the possibility of electric fields emitted by, for example, sub-sea cables or

cathodic protection of coastal structures and vessels affecting electrically sensitive fish

has been overlooked. With the threats of rising carbon emissions and dwindling finite

resources looming, deployment of offshore renewable energy developments (ORED) is

increasing (The Crown Estate, 2008) with subsequent proliferation of sub-sea cabling.

The developments often occur in shallow, coastal areas similar to those that support
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many elasmobranchs (Rogers et al., 1998; Rogers & Ellis, 2000). The E fields induced

in the proximity of the cables (see previous section) are within the range detectable by

and attractive to elasmobranchs (Kalmijn, 1971; Gill et al., 2005). Damage to sonar

arrays in the late seventies was attributed to sharks via bite patterns (Johnson, 1978),

and Kalmijn (1978b) suggested such attacks most likely arose due to E field emission

resembling those of natural prey. Similarly, Marra (1989) recorded details of four power

transmission failures in an AT & T transatlantic fibre-optic cable in the mid eighties.

Upon raising the cable for repairs, bite marks and embedded teeth were found at the

damaged sections. Further investigation revealed the damage was attributable to shark

bites in all four instances. Attraction to electromagnetic fields emanating from the cable

was considered the most likely reason for shark responses. There was no consideration

of whether such incidences have potential to damage the fish physically or

neurophysiologically. High frequency alternating current E fields have been shown to

cause avoidance behaviour in a number of species (Yano et al., 2000). Despite these

concerns Environmental Impact Assessments, designed to identify and predict possible

effects of developments on the surrounding area, have largely overlooked possible

interactions between elasmobranchs (or any other electroreceptive animals) and ORED

(Gill, 2005; Sutherland et al., 2008). Many have focused instead upon effects on birds,

sea mammals and the value of ocean front property.

Given the significance of electroreception in the final moments of foraging

events, in addition to its use whilst searching for mates, avoiding predators and possibly

navigating between habitats, it is clear how important the sense is for contributing to

elasmobranch fishes’ individual success (Tricas & Sisneros, 2004) and thus to their

Darwinian fitness. Along with the possibility that these processes may be affected by
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increasing anthropogenic electric sources, our lack of knowledge with respect to the

behaviour and ecology associated with this important and remarkably acute sense

evidently needs to be addressed. Considering many areas of elasmobranch behaviour

remain poorly understood, increased research of a broad range of such areas, including

those addressed in this study (see Chapter 6.4), will improve our baseline knowledge of

these predators’ ecology and potentially contribute to better management of their

populations.

1.5. Study objectives

The study documented hereafter therefore aims to address aspects of our poor

understanding of elasmobranch electroreceptive behaviour and ecology.

1.5.1. Sexual conflict

Differences between the sexes’ senses are common throughout the animal

kingdom (e.g. Searcy, 1990; Murphy et al., 2001; Arikawa et al., 2005). The

phenomenon has been relatively overlooked in elasmobranchs bar a few exceptions

(Barber et al., 1985; Carrier et al., 1994; Sisneros & Tricas, 2000; Myrberg Jr., 2001).

The sexes of many species of elasmobranch possess similar diet composition (Lyle,

1983; Matallanus et al., 1993; Morato et al., 2003) thus one may not expect differences

in foraging behaviour or electroreceptive response between the males and females.

However, S. canicula show markedly different behavioural strategies resulting in fine-

scale sexual segregation (Sims et al., 2001) thought to be driven primarily by aggressive

courtship and mating behaviour of males towards females causing refuging behaviour in

the latter (Sims, 2005; Sims et al., 2005). Whilst the effects of similar strategies among

poeciliid fish on their foraging have been studied (Magurran & Seghers, 1994; Griffiths,
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1996; Agrillo et al., 2006), the topic has not been considered for any elasmobranch.

Electroreception is an important sensory mode during foraging in elasmobranchs and

results in behavioural responses to artificial prey that are routinely repeatable and

quantifiable. The following hypothesis was therefore formulated and is addressed in

Chapter 3:

 H1: There are significant differences between the electroreceptive foraging

behaviour of mixed- and single-sex groups of S. canicula towards artificially created

prey-type electric fields.

1.5.2. Choice

Sensory preference has been demonstrated in a wide range of animals, no more

so than for bees’ preferences for certain flower colours and sizes (Dukas & Real, 1993;

Dyer et al., 2006; Ishii, 2006; Goulson et al., 2007), female birds’ preferences for

different male songs (Collins, 1999; O’Loghlen & Rothstein, 2003; Swadle & Page,

2007) and stickleback fishes’ preferences for colours and ultra violet (McKinnon, 1995;

Smith et al., 2002; Modarressie & Bakker, 2006). Study of elasmobranch sensory

preferences has been lacking although a few have been identified (vision: Clarke, 1961;

Strong, 1996, temperature: Wearmouth, 2006; Wallman & Bennett, 2006). Again,

electroreceptive work in this area is slight (Dawson et al., 1980; Kalmijn, 1982). The

ability to differentiate between two or more stimuli is important to all animals,

especially for opportunistic predators such as coastal elasmobranchs that inhabit

variable environments and feed on diverse prey. It permits preference for certain stimuli

and allows informed choices to be taken based upon prior experience. Whether

elasmobranchs are able to detect differences and make choices between different prey

and predators, sizes of prey and predators and suitability of mates and habitats will
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ultimately contribute to their individual success. Recent concerns surrounding

interactions between these fish and electric fields associated with ORED also raise the

question of whether they can differentiate between natural and anthropogenic E fields.

The following hypothesis was therefore formulated and is addressed in Chapter 4:

 H2: S. canicula can distinguish and show preferences between:

o Artificially created E fields associated with 9 µA and 90 µA direct currents.

o Artificially created E fields associated with 90 µA direct and 90 µA

alternating currents.

o Artificially created E fields associated with 16 µA direct currents and similar

naturally occurring bioelectric fields emitted by a typical prey; the shore crab

(Carcinus maenas).

1.5.3. Cognitive ability

The intelligence (in so far as one can define it) of teleost fish has recently

received a great deal of attention. The general consensus is that many possess

significantly superior cognitive ability than commonly believed (Huntingford, 2003).

For example, learned foraging skills have been demonstrated in stickleback fishes (Croy

& Hughes, 1991a; Girvan & Braithwaite, 1998; Odling-Smee & Braithwaite, 2003a),

salmon, Salmo salar (Brown et al., 2003) and mosquito fish, Brachyraphis episcopi

(Brown & Braithwaite, 2005). Learned escape responses have been demonstrated in

zebra fish, Danio rerio (Arthur & Levin, 2001) and haddock, Melanogrammus

aeglefinus (Ozbligin & Glass, 2004). Memory windows of varying length have been

demonstrated in a number of species (three hours in paradise fish, Macropodus

opercularis: Csanyi et al., 1989, three months in cod, Gadus morhua: Nilsson et al.,

2008). The cognitive ability of elasmobranchs, however, has received much less
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attention. In general, the few examples of investigations in the field are relatively old

(Clarke 1959; Wright & Jackson, 1964; Aronson et al., 1967; Graeber & Ebbesson,

1972; Schluessel & Bleckmann, 2005). Many coastal sharks, skates and rays are

opportunistic predators and as such must adapt their foraging behaviour to suit a

variable environment and a range of prey. Those that are able to successfully learn and

remember to do so will benefit via improved individual success and Darwinian fitness.

Recent concerns surrounding interactions between these fish and E fields associated

with ORED also raise the question of whether they might be able to learn to ignore such

stimuli. The following hypotheses were therefore formulated and are addressed in

Chapter 5:

 H3: S. canicula are able to learn to alter their electroreceptive foraging behaviour

dependent on the success of foraging events towards artificially created prey

type E fields.

 H4: S. canicula are able to remember learned alterations in electroreceptive

foraging behaviour after an interval.
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2. GENERAL METHODOLOGY

2.1. Experimental animal

Scyliorhinus canicula (the small-spotted catshark, formerly known as the lesser

spotted dogfish; Figure 3) is a benthic, marine elasmobranch found in the north-eastern

Atlantic, distributed from Norway and the British Isles in the north to Senegal and the

Ivory Coast in the south, including the Mediterranean Sea (Campagno et al., 2005).

Figure 3. Photograph of experimental animal, Scyliorhinus canicula, in its natural
environment, at rest on seabed (© Javier Santiago, www.mer-littoral.org/34/Scyliorhinu
s-canicula.php).

It inhabits continental shelves and upper slopes on various sediments to depths

of 110 m and exceptionally 400 m. It is a monomorphic species (with respect to size)

that matures at approximately 50 - 60 cm total length and is thought to grow to no more

than 100 cm (although less in the Mediterranean). This oviparous species has an
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extended, if not continuous egg-laying season (Ford, 1921; Metten, 1939; Sumpter and

Dodd, 1979; Henderson and Casey, 2001) and owing to different reproductive

strategies, the sexes are known to periodically segregate into single-sex groups (Sims et

al., 2001; Sims, 2005; Wearmouth & Sims, 2008). They prey and scavenge on small

benthic invertebrates (crustaceans, gastropods, cephalopods, polychaete worms) and

bony fish (Ford, 1921; Lyle, 1983; Rodriguez-Cabello et al., 2007).

Although not evaluated on the IUCN Red List, S. canicula remains fairly

abundant with some populations stable or increasing (Compagno et al., 2005). It is

taken in many fisheries and when retained can be utilized fresh or dried-salted for

human consumption and also for oil or fishmeal. When discarded the fish shows high

survival rates. The species is also amenable to captivity and is commonly displayed in

aquariums.

The species’ small size, abundance and ease of capture have made it an

important model for elasmobranch physiological studies (e.g. Scanes et al., 1972;

Bromm et al., 1975; Peters & Evers, 1985; Masseck & Hoffmann, 2008). Its hardiness

and amenability to captivity also render it an ideal model for laboratory behavioural

studies (e.g. Kalmijn, 1971; Pals et al., 1982a; Southall & Sims, 2003; Filer et al., 2008;

Wearmouth, 2008).

2.2. Laboratory facilities and animal husbandry

Fieldwork was undertaken at the Marine Biological Association of the United

Kingdom (MBA), Plymouth. The catsharks were caught via demersal otter trawling at

depths of 50 – 70 m off Plymouth (station L4: 50º15’N, 4º13’W) on an MBA research

vessel, the Quest, during routine, bimonthly, benthic sampling. Only mature specimens
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were brought to the laboratory for experimentation (520 mm for males and 550 mm for

females; Ellis & Shakley, 1997). They were transported to shore in small numbers

within large tubs shaded from sunlight and with clean seawater pumped through

constantly.

On arrival at the MBA the fish were weighed and measured and immediately

transferred to aerated, 2242 litre capacity, circular holding aquaria (1.83 m diameter by

0.43 m depth). The aquaria were constantly fed by a flow and return system from a

300,000 litre reservoir that was part exchanged with clean sea water three times per

week. Water quality was routinely and frequently checked by MBA staff. The

photoperiod and water temperature matched natural conditions for the time of year.

Prior to any experimental work, catsharks were allowed to acclimatise for

approximately three weeks during which time behaviour and health were closely

monitored by the author and a Named Animal Care and Welfare Officer (NACWO).

Seven aerated, 792 litre capacity, rectangular arenas (1.65 m L x 0.80 W x 0.60 D) in

isolated rooms and supplied with filtered water were available for experimental work.

An acclimatisation period of 60 hours was imposed after transferring fish to these

arenas and before experimental treatments commenced.

The catsharks were fed a mixture of squid (Loligo forbesi), whiting (Merlanguis

merlangus) and marine pellets with liposome spray (New Era Aquaculture Ltd., Thorne,

UK). Whilst in holding aquaria (both prior to and after experimentation) 20 g rations per

fish were offered twice weekly (equivalent to approximately 3 % wet body mass per

feed; Sims & Davies 1994). During experiments minimum rations of 13 g a week

(approximately 2 % wet body mass per week: Sims & Davies, 1994) were used to

ensure fish were motivated to feed throughout a week.
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Two types of identification tag were used during the project. For individuals that

needed to be identified within an experimental group a Petersen-type disk (2-cm

diameter Floy Tag ® laminated discs; FLOY TAG Inc., Seattle, Washington, USA) was

attached to the pectoral fins so as to enable identification directly and on video

recordings of subsequent trials. Individuals that just needed to be identified whilst in

holding aquaria had T-bar anchor tags (FLOY TAG Inc., as before) attached just below

the base of the dorsal fins but above the lateral line. Skin was treated with iodine

immediately after tagging.

2.3. Experimental apparatus & methodology

The basic experimental methodology used throughout this project was based on

tried and tested techniques. These techniques involve observing elasmobranch responses

to artificially created electric fields that mimic bioelectric fields emitted by their prey

(Kalmijn, 1971; Heyer et al., 1981; Blonder & Alevizon, 1988; Kaijura & Holland,

2002; Filer et al., 2008). Stimulation by food-derived scent is utilitised to invoke

foraging behaviour and attract the fish towards E field sources.

The apparatus used to produce the electric fields in this study were as follows

(Figure 4); insulated wires fed through an upright, rigid, white, PVC pipe (20-mm bore),

connected to a 90º bend and a short horizontal pipe, terminating with gold plated banana

plugs inserted and sealed into separate, open-ended, rigid aquarium tubing (8-mm bore).

The open ends of the tubing were held 1.5 cm apart and formed the dipole. The

apparatus were attached to a transparent acrylic base with 20- and 5-cm radius circles

centred on the dipole marked. These circles defined an Activity and Electrode Zone

respectively. In this way, a 1.5-cm dipole salt-bridge was sunk to the base of an arena
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with the upright pipe leading the wires out up the side of the arena where they were

connected to a power supply. Using different resistances electric fields of various

voltages were then produced at the base of an arena. 2-mm bore transparent, flexible,

aquarium tubing was fed down the PVC tubing ending 7.5 cm before the dipole. Food-

derived scent (sieved whiting and squid mixed with seawater) was then introduced into

the arena using a syringe. The scent was required to induce experimental catsharks to

begin foraging behaviour, thereby increasing their swimming activity and passes over

the Activity Zone, and attracting them to close proximity of the dipole (over the

Electrode Zone) to elicit electroreceptive responses. The equipment was easily

transferred to different ends of an arena or between the seven experimental arenas.



Figure 4. Schematic diagram of experimental apparatus showing basic design and implementation of a salt-bridge circuit and electrode
plate in an arena (not to scale).
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Behavioural observations were made directly by the author or using video replay

of footage recorded by overhead cameras (Sanyo VCC 6572P and Panasonic WV-

BP140 1/3” CCD). Activity levels were recorded by counting the frequency that each

catshark swam over the Activity Zone (20-cm radius circle). Movement within close

proximity of the dipoles could be recorded by counting the frequency the catsharks

passed over the Electrode Zone (5-cm radius circle). An elasmobranch’s

electroreceptive response towards an E field closely resembles an attack on a prey

animal. When a catshark swims near the Electrode Zone and if it detects the prey-type E

field emanating from the dipole and decides to attack, it will make an abrupt alteration

to its swimming path and a sudden turn towards the perceived prey. It may also bite

once, or repeatedly, upon the electrodes. Electroreceptive foraging behaviour was

therefore recorded using the frequency and times of turns towards and bites on the

electrodes. Only those turns and bites that were distinct, unambiguous and

unmistakably directed towards the electrodes were recorded. For relatively small,

benthic elasmobranchs, such as S. canicula, these behaviours predominantly occur

within approximately 5 cm to 15 cm of stimuli (Kalmijn, 1966; Kalmijn, 1971; personal

observation) compared with 25 to 40 cm for larger, pelagic species (Kalmijn, 1982;

Haine et al., 2001).

2.4. Ethical considerations

All techniques used in this study were approved by the MBA Ethical Review

Committee and with reference to Stamp Dawkins & Gosling (1994). The author

successfully completed a program of training in the Animals (Scientific Procedures)
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Act, 1986 (Module 3: Fish). Home Office approval was not required as no regulated

procedures were used.

2.5. Release of experimental animals

When catsharks’ experimental trials had finished they were transferred back to

the holding aquaria. Their tags were removed and attachment points treated. They were

fed a normal ration and observed by the author and NACWO for at least two weeks to

ensure health and normal behaviour. They were then certified for release to sea off

Plymouth.

2.6. Notes on data analyses

Throughout this study, various types of generalized linear modelling were

utilised with Genstat software to analyse data sets for the following reasons: (a) in many

cases dependent data was distributed non-normally (e.g. count and binomial data), (b)

the uncontrollable nature of the behaviour of catsharks and the fact that individuals were

often utilised repeatedly over time required random effects to be accounted for, and (c)

the complexity of the data to be analysed (e.g. categorical predictors included E field,

week and sex group in Chapter 3) required powerful and flexible methods.

Specific types of distributions were chosen depending upon the type of

dependent data (e.g. Poisson for count data, binomial for binomial data or normal for

time (continuous) data). Appropriate link functions were then chosen to transform the

parameters of these distributions to continuous distributions which therefore enabled

regressions to be performed. Generalized linear modelling was performed with

reference to McConway et al. (1999).
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Catshark responses were often plotted using statistical effect sizes from Genstat

outputs. Using the size and direction of an effect was a more accurate means of

displaying responses than using means from the original data due to non-normal

distributions of responses and the complex experimental set up.
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3. THE EFFECTS OF MALE-FEMALE INTERACTIONS UPON

ELECTRORECEPTIVE FORAGING BEHAVIOUR

3.1. Abstract

To examine potential effects of male-female interactions on the sexes’ foraging

behaviour equal sized, single- and mixed-sex groups of a benthic elasmobranch, the

small-spotted catshark (Scyliorhinus canicula), were studied in response to electric

stimuli. A total of 88 size-matched, adult individuals were repeatedly presented with a

range of artificial, prey-type electric fields (E fields) under laboratory conditions in

groups of (i) four males, (ii) four females, and (iii) two of each sex. Females in single-

sex groups were more responsive towards E fields than both single- and mixed-sex

group males, despite exhibiting similar activity levels. Equally, females in mixed-sex

groups were more responsive than males in mixed groups, but showed similar activity

levels. Furthermore, females in mixed-sex groups were less responsive to E fields than

females from single-sex groups, despite showing similar activity levels. Males in

mixed-sex groups were less responsive than males in single-sex groups, but were more

active. These results indicate more intense foraging behaviour among females than

males and significant reductions in foraging behaviour when grouped with the opposite

sex. Both findings are likely associated with consequences of differing reproductive

strategies and resultant sexual conflict (specifically male harassment and female

avoidance).
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3.2. Introduction

Sexual differences in the foraging behaviour of elasmobranchs are perhaps not

expected given that stomach analyses suggest that the sexes of many species seem to

have similar diet composition (e.g. narrow mouthed catshark, Matallanus et al., 1993;

tiger shark, Simpfendorfer et al., 2001; porbeagle shark, Joyce et al., 2002; thornback

ray and tope shark, Morato et al., 2003). Nevertheless, although male and female small-

spotted catsharks (Scyliorhinus canicula) also show evidence of similar diets (Lyle,

1983), this species’ sexes show markedly different behavioural strategies resulting in

year-round fine-scale sexual segregation (Sims et al., 2001). At some sites, males

occupy deeper water areas during the day and forage at night in warmer, shallow water,

whereas females aggregate in shallow water in daytime and conduct nocturnal foraging

in deep water (Sims et al., 2006).

Segregation among S. canicula (a monomorphic species: Ford, 1921; Henderson

& Casey, 2001) has been proposed to be partly driven by aggressive courtship and

mating behaviour of males towards females, resulting in refuging behaviour of females

in single-sex groups (Sims et al., 2001; Sims, 2005; Sims et al., 2005). Male catsharks

are thought to mate throughout the year (Sims, 2005). Females, however, can store

sperm for long periods of time (Metten, 1939), have a very extended, if not continuous,

egg-laying season (Ford, 1921; Metten, 1939; Sumpter & Dodd, 1979; Henderson &

Casey, 2001) and can lay eggs regularly (Harris, 1952). Therefore, it seems likely that

females have the potential to exert considerable choice over copulation partners and

may do so in part to avoid energetically costly courtship with multiple aggressive males

since it may result in injury and/or energy loss through sustained high activity (Pratt,

1979; Carrier et al., 1994; Sims et al., 2006). As with many other animals (including
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insects, Parker, 1979; guppies, Magurran, 2001; lizards, Schutz et al., 2007; sea lions,

Chilvers et al., 2005) these different mating strategies generate strong sexual conflict.

Male harassment of females could also cause decreased female foraging

efficiency, as has been observed in female poeciliid fish as a consequence of male

aggression (Magurran & Seghers, 1994; Griffiths, 1996; Plath et al., 2003; Agrillo et

al., 2006). This may be why female S. canicula have been shown to refuge in female-

only aggregations in shallow, labyrinthine caves, and conduct foraging in different

habitat to that of males (Sims, 2005). However, whether the presence of males affects

foraging behaviour of female catsharks has not been tested directly principally because

of the logistical difficulties of recording free-ranging behaviours of multiple individuals

across the spatio-temporal scales over which foraging takes place.

Electroreception is the last sense to be used in the hierarchical array of senses

utilised by elasmobranchs when foraging, has been shown to override all other senses

when in close proximity of a stimulus, and is crucial for predatory and reproductive

success among benthic species that search for prey and mates buried beneath the

substratum (see Chapter 1). Despite its importance, and notwithstanding substantial

physiological investigation of the sense, knowledge concerning electroreceptive

behaviour remains poorly described (see Chapter 1; Tricas & Sisneros, 2004). Past work

has often concentrated on demonstrating and/or describing species’ electroreceptive

responses rather than focusing on quantifying the extent and variability in response to

significant behavioural influences, such as individual variability (Gill et al., unpublished

data), male-female differences and interactions (see below), choice (Chapter 4) or

profitability of stimulus (Chapter 5). Different prey species and sizes emit different

bioelectric E fields (Kalmijn, 1972; Haine et al., 2001; Chapter 1). One would therefore
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expect variability in electro-sensitivity between electroreceptive fish with differing

diets. Although stomach content analyses suggest that the sexes of many

elasmobranchs, including S. canicula, possess similar diets (Lyle, 1983), it is important

to carefully investigate possible variability in electro-sensitivity when studying male

and female electroreceptive foraging behaviour. This seems especially important when

one considers stomach content may be more a result of prey availability than predator

preference or sensory capability.

Intra-specific variability in senses between the sexes is common throughout

nature. Differences in olfaction and/or dimorphism in chemosensory tissue have been

observed in many organisms from crustaceans (Weissburg et al., 1996; Bauer &

Caskey, 2006) and amphibians (Woodley, 2007) to reptiles (Thorpe, 1989; Murphy et

al., 2001) and mammals (Garcia-Falgueras et al., 2006; Murias et al., 2007; Palagi &

Dapporto, 2007). Acoustic differences and/or dimorphism in ears have been reported in

amphibians (Narins & Capranica, 1974; Vassilakis et al., 2004), birds (Searcy &

Brenowitz, 1988; Searcy, 1990) and mammals (McFadden et al., 1999; Smith et al.,

2007). Visual differences and/or dimorphism in eyes occur, for example, in crustaceans

(Ohtsuka & Huys, 2001) and insects (Arikawa et al., 2005; Lau et al., 2007).

Among elasmobranchs, sex differences in auditory apparatus have been found

(Barber et al., 1985) and differences in hearing abilities suggested (Carrier et al., 1994;

Myrberg, 2001). Olfaction is thought to be important for males locating potential mates

in many elasmobranchs (Myrberg & Gruber, 1974; Johnson & Nelson, 1978; Carrier et

al., 1994) and although female pheromone release and subsequent male chemo-

reception has been suggested (Gordon, 1993; Kaijura et al., 2000; Pratt & Carrier,

2001), sex differences in sensitivity are yet to be investigated. Species that periodically
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bury themselves in substrate have been shown to utilise electroreception to locate

conspecifics (stingrays: Tricas et al., 1995; Sisneros & Tricas, 2000, skates: Bratton &

Ayers, 1987; New, 1994; Sisneros et al., 1998). Gonadal androgens have been shown to

induce neurophysiological changes in the electro-sense of male Atlantic stingrays

(Sisneros & Tricas, 2000). However, there is no available evidence of sex differences in

electroreceptive behaviour in these, or any other elasmobranchs. A recent investigation

of the effects of substratum type and depth on S. canicula electric field detection

indicated no apparent sex differences (Filer et al., 2008). However, a comprehensive

investigation of whether male and female S. canicula possess differing sensitivities to

different E fields (which may relate to different prey animals and sizes) has not been

undertaken.

3.2.1. Objectives

The effects of male-female interactions on the foraging behaviour of sharks,

skates and rays have not been the subject of quantitative studies. Electroreception is an

important sensory mode during foraging in elasmobranchs and results in behavioural

responses to artificial prey that are routinely repeatable and quantifiable. To date,

laboratory studies focused on male and female shark responses to prey-simulating

electric fields as a measure of sex related feeding behaviour have not been attempted.

Therefore the aim of the present study was to use electroreceptive responsiveness as a

behavioural proxy for feeding to examine whether there were differences between male

and female S. canicula foraging behaviour. The hypothesis was tested that the proximity

of the opposite sex may affect electroreceptive foraging behaviour of male and female

S. canicula. The behaviour of equal-sized, single- and mixed-sex groups of S. canicula

towards artificial, prey-type electrical fields was examined under laboratory conditions.
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A range of E fields was used in order to confirm whether or not the sexes possess

differing sensitivities to different E field intensities.

3.3. Methodology

3.3.1. Animals and apparatus

Eighty eight size-matched, adult small-spotted catsharks (S. canicula) were

caught on a Marine Biological Association of the U.K. (MBA) research vessel off

Plymouth, southwest England (station L4: 50º15’N, 4º13’W), between May and

September 2005. The 44 male and 44 female fish averaged 66.45 ± 3.29 cm and 59.66 ±

2.67 cm total length (±SD), respectively. Catsharks were maintained as described in

Chapter 2.

Four catsharks were transferred into each behavioural arena (see Chapter 2) in

early July 2005 with three arenas containing two of each sex, two arenas containing four

males, and two arenas containing four females. Catsharks were tagged with a Petersen-

type disk through the pectoral fin (2-cm diameter Floy Tag ® laminated discs; FLOY

TAG Inc., Seattle, Washington, USA) according to licensed Home Office animal

welfare regulations. Tagging of different pectoral fins and use of black and white disks

enabled each of four individuals per arena to be identified directly and on video

recordings of subsequent trials.

Salt-bridge apparatus were used to present the catsharks with biologically

relevant electric fields (E fields) produced by 0.9 µA, 9.0 µA and 90.0 µA currents in

addition to control treatments (0.0 µA) during which apparatus set up remained the

same except that the power was disconnected (see Chapter 2; specifically Figure 4). The

E fields in question (approximately 0.095, 0.95 and 9.5 µV/cm at the dipole,
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respectively) were within the range previously shown to be associated with the

bioelectric fields of prey and attractive to elasmobranchs (Kalmijn, 1972, 1982; Chapter

1).

3.3.2. Experimental procedure

The catsharks in each arena were presented with one different E field per day

over four days at random ends of the arenas, with fields assigned using stratified,

random numbers. The catsharks were fed to satiation immediately following the

experiment on the fourth day. A four day period was termed an experimental week.

There was a three day gap before another four day experimental week to ensure the

catsharks were motivated to forage upon introduction of food-derived scent. In order to

account for individual variation the experimental week was repeated five times such that

each catshark was presented with each of the four E fields (and control) a total of five

times. Three similar phases of experiments were undertaken using different groups of

catsharks to increase statistical power whilst reducing the confounding effects of using

the same catsharks over protracted time periods. The data from each of the 88 catsharks

was recorded separately to enable individual ID use as a random factor in statistical

analysis. Once each group’s experiments were concluded they were moved to holding

aquaria, and after a short period of observation were certified for release to the sea off

Plymouth.

Prior to any particular treatment a salt-bridge apparatus was introduced into a

randomly chosen arena, and at a randomly chosen end, with the power switched off to

allow the catsharks to settle down. Water flow was stopped and the temperature of the

water was measured. After 20 minutes the power was switched on, except during

controls, and 20 ml of food-derived scent (sieved squid and whiting added to water) was
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introduced into the arena and behavioural observations commenced. Treatments lasted

for 20 minutes during which time direct observations were made together with video

recordings of the following hierarchical foraging behaviours of each catshark: (a)

Reaction time to scent, (b) number of times the Activity Zone was entered (an indicator

of movement around an arena), (c) time latency of turns towards electrodes (scent time

from turn times), (d) frequency of turns towards electrodes, (e) proportion of times each

catshark turned towards electrodes having entered the Electrode Zone, and (f) frequency

of bites upon electrodes. Only those turns and bites that were distinct, unambiguous and

clearly directed towards the electrodes were recorded.

3.3.3. Data analysis

Correlation analysis was used to test for relationships between temperature

change over time and behaviour for the whole study period. Similarly, any effect of

body size on behavioural responses was also examined.

Each catshark had a unique identifier. In addition, for each catshark, its ‘sex

group’ was identified (Figure 5); i.e. a male in an all male arena (M), a female in an all

female arena (F), a male in a mixed-sex arena (M+F) and a female in a mixed-sex arena

(F+M).
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Figure 5. Diagram illustrating different sex group configurations in arenas and
highlighting identifiers allotted to catsharks of each sex within those groups (♂ = male; 
♀ = female). 

Hierarchical generalized linear mixed modelling (HGZMM) repeated measures

were used to evaluate the differences in electroreceptive foraging responses (a) to (f)

with respect to sex groups. For count data, the HGZMM used a Poisson distribution

owing to the large number of zero and low integer values. A logarithm link function

then transformed this to a normal distribution. For continuous data, a normal

distribution was used with an identity link function (which simply multiplies the

distribution by 1 and thus does not transform it). For proportion data, a binomial

distribution was used which was then transformed to continuous logit curves using a

logit link function. In all three cases, fixed effects of E field, week and sex group were

used such that each data point for each catshark was utilised only once during each

analysis whilst ensuring the unbalanced design attributed to single- and mixed-sex
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groups was accounted for. Random effects of individual by week were used to account

for replication.

For all HGZMM results reported, the distribution of the residuals was plotted

and found to be close to normal so the model could be assumed to be satisfactory. It was

not possible to use scaled deviances to estimate goodness of fit owing to the inclusion of

a random effect in the model. Residual degrees of freedom were between approximately

500 and 1600 for all analyses (except turn times which was 2079). All statistical

analyses were performed using Statistica 7.0 and Genstat 9.0 software.

Statistical sizes of effect from Genstat outputs were used to plot responses of

catsharks compared between the sex groups. Throughout, the F group (females in

single-sex arenas) was the reference value (zero) to which the other three groups were

compared. The effects shown in the graphs indicate the relative size and direction of any

differences. Significant differences between groups’ response levels are annotated using

differences in lower case, italic letters. For example, in Figure 6 the F, F+M, M and

M+F groups are labelled ab, ab, a and b respectively which indicates that the final two

groups are significantly different to each other (M and M+F) but that all other groups

are similar to each other.

3.4. Results

The food-derived scent introduced to arenas initiated catshark movement in 93.5

% of the trials. The average time for catsharks to respond to the scent by swimming

movement was 1.97 min ± 2.28 (SD; N = 88). Following stimulation by the scent a total

of 2472 turn responses and 1093 bite responses to E fields were recorded. On average

44.0 % ± 14.9 (SD; N = 88) of turns resulted in a bite.
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Over the course of the experimental period there was a gradual linear decrease in

water temperature with time (slope = -0.15, N = 20, P < 0.0001 for arenas 1-4, mean

water temperature 15.2 ºC ± 1.09 SD; slope = -0.62, N = 10, P < 0.0001 for arenas 5-7,

mean water temperature 15.8 ºC ± 1.93 SD). There was no correlation between

temperature and catshark activity or electroreceptive responsiveness (Spearman’s rank

correlation: R range, -0.067 - 0.067, N = 809, P range, 0.06 - 0.72, for male responses; R

range, -0.050 - 0.013, N = 836, P range, 0.15 - 0.81, for female responses). Similarly,

there was no correlation between catshark body length and movement within arenas

(Spearman’s rank correlation: R = -0.088, N = 88, P = 0.42). There were also no

correlations between catshark body length and responsiveness to E fields (Male turns, R

= -0.065, N = 44, P = 0.68; male bites, R = -0.145, N = 44, P = 0.35; female turns, R = -

0.139, N = 44, P = 0.37; female bites, R = -0.142, N = 44, P = 0.36).

HGZMM analysis showed turn and bite responses were significantly less for

control experiments than those with applied E fields (P < 0.01). There were no

differences between the turn and bite responses towards 0.950 and 9.500 μV fields, but

responses to 0.095 μV fields were significantly less than 0.950 and 9.500 μV fields (P <

0.01). This pattern of responses to different E fields was observed within all sex groups

(Kendall’s coefficient of concordance W = 0.91, N = 4, k = 8, critical value at P = 0.05

is 0.376).

Mixed group males (M+F) entered the Activity Zone significantly more than

males in male-only groups (M) (P < 0.05, Figure 6). The other sex groups’ activity

levels were not different (Figure 6).
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Figure 6. Relative number of times Activity Zone entered by different sex groups with
F as the zero reference (+/- standard error; Y axis plotted using statistical effect size;
differences in lower case, italic letters denote significant differences between groups)

The latency in time between food scent stimulus and turn response to E fields

was similar between the sexes, but those in mixed arenas turned significantly later than

those in single-sex arenas (P < 0.01, Figure 7). When only the first turn made by each

catshark in each treatment was considered a similar pattern was found (mixed groups

responding later than single-sex groups), though differences were not significant

probably owing to the reduced sample size.
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Figure 7. Relative time latency between stimulation by scent and turn response toward
E field of different sex groups with F as zero reference. (± standard error; Y axis plotted
using statistical effect size; differences in lower case, italic letters denote significant
differences between groups.)

F females turned towards the electrodes more than all other sex groups (P <

0.01, Figure 8a). M+F males turned less than M males and F+M females (P < 0.05, Figure

8a). The proportion of times F females turned when passing over the Electrode Zone

was significantly higher than all other sex groups (P < 0.02, Figure 8b) and the

proportion for M+F males was lower than for M males (P < 0.05, Figure 8b). Females (F

and F+M) made bites at the electrodes significantly more than M males (P > 0.01) and

M+F males (P > 0.01 for F and P > 0.02 for F+M, Figure 8c).
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Figure 8. Relative (a) frequency of turns towards electrodes, (b) proportion of times
turns made when within Electrode Zone, and (c) frequency of bites on electrodes by
different sex groups with F as zero reference. (± standard error; Y axis plotted using
statistical effect size; differences in lower case, italic letters denote significant
differences between groups.)
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3.5. Discussion

The results demonstrate higher foraging responsiveness in females than males,

independent of activity level. F females turned towards and made bites on electrodes

more often than M and M+F males even though they displayed similar activity levels.

Equally, F+M females appeared more responsive to the electrodes than M+F males, with

more turns towards and bites on electrodes despite similar activity levels. Furthermore,

the results provide evidence that the presence or absence of the opposite sex had striking

effects on activity levels and foraging responsiveness. F females were more responsive

than F+M females in that they exhibited more turns towards the electrodes and higher

proportions of turns having entered the Electrode Zone despite similar activity levels.

Equally, M males were more responsive than M+F males in that they exhibited more

turns and higher proportions of turns having entered the Electrode Zone despite lower

activity.

The study was designed to minimise factors other than sex affecting

electroreceptive foraging behaviour. Temperature has been shown to affect the

sensitivity of fish electro-receptive apparatus (Henzel, 1955; Akeov et al., 1980; Akeov,

1990). However in this study no correlation was found of electroreceptive

responsiveness with temperature. Responsiveness was not correlated with catshark body

size either. The catsharks were size matched as far as possible to minimise any age

related effect and were all sexually mature. Also, catsharks are generalist feeders (Ford,

1921; Lyle, 1983) and one would therefore expect them to be less dependent on prior

experience than specialists (Hirvonen et al., 1999). The catsharks used in the study were

from the same geographic location thereby reducing any influence of local effects on

experience even further. They were also allowed to acclimatise for three weeks in a
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homogenous environment with a regulated feeding regime to help equalise in so far as is

possible their feeding motivation. Furthermore, the diet composition of male and female

catsharks has been found to be similar (Lyle, 1983; Sims, 2005; Rodriguez-Cabello et

al., 2007). The sexes’ sensitivities to prey E fields would therefore be expected to be

similar and thus not likely to cause differences in the sexes’ responsiveness to such

fields. The data from this study confirm this by demonstrating a similar pattern of

responses to the four prey-type E fields in all four sex groups. Equally, although

electroreception is important for elasmobranchs that search for conspecifics buried

under substrate (stingrays: Tricas et al., 1995; Sisneros & Tricas, 2000, skates: Bratton

& Ayers, 1987; New, 1994; Sisneros et al., 1998), S. canicula tend to rest on, rather

than under, the substrate (Kalmijn, 1971; Froese & Pauly, 2008). Differential electrical

sensitivities and responsiveness are therefore not expected to be linked to searching for

mates in this species (olfaction is likely more important: Kleerekoper, 1978; Pratt &

Carrier, 2001). Again, the findings from this study confirm no sex-specific electrical

sensitivity differences.

Although catshark behaviour was not analysed over time, no change in

behaviour was found with temperature, which decreased over time. Equally, noteworthy

changes in behaviour were not noted by the observer during the five week experimental

periods. Thus the effects of male-female interactions observed during this study cannot

simply be considered as initial anomalies caused by naturally segregating sexes being

confined together in experimental arenas.

Taking into account the factors above, an intriguing question arose of why

female foraging levels were higher than those of males. Gonadal androgens have been

shown to induce neurophysiological changes in the electro-sense of male Atlantic
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stingrays (Sisneros & Tricas 2000), thought to aid mate detection by honing electro-

sensitivity to female bioelectric fields. However, Sisneros and Tricas (2000) found no

effect upon foraging electroreception. One possible explanation for higher

responsiveness by females is that they may possess higher energy requirements for egg

production (fish, Hendry & Berg, 1999; Trudel et al., 2000; Whiteman & Cote, 2002;

reptiles, Kwan, 1994; Nunez et al., 1997; birds, Moore et al., 2000) so may need to

forage more intensively than males. They have been shown to undertake shorter

foraging excursions than males from their refuges which was suggested to reduce

foraging times and overlap with males that remain active throughout the diel cycle

(Sims et al., 2001). Thus, there may be pressure for female excursions to be more

intense and successful in an attempt to consume as much prey as possible, as rapidly as

possible. In the present study, this apparent intraspecific, sex-based competitive release

effect may be the reason why we observed similar activity levels between females in

single- and mixed-sex groups that confound assumptions that the latter would be more

active in an attempt to avoid males.

Male and female foraging levels were markedly reduced when in the presence of

the opposite sex. The most plausible explanation for this finding is between-sex

inhibition arising from male harassment of females (note that female avoidance of males

may also be considered as a form of harassment with the potential to affect male

foraging). Whilst no observations of overt, physical interactions between the sexes were

observed during experiments, it is likely that such interactions did occur at some point

during the catsharks’ time spent in the arenas when not under observation

(approximately 14 hours per week compared to 154 hours per week respectively).

Moreover, subtle but powerful and long-lasting effects of the risk of interaction are
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sufficient to induce marked reactionary behaviour (Smith 1997; Scott et al. 2005; V.J.

Wearmouth & D.W. Sims unpublished data). For many female elasmobranchs,

courtship with multiple, aggressive males are costly since they may result in injury

and/or energy loss through sustained activity (Pratt & Carrier 2001). This is evidenced

by females having evolved vigorous evasive behaviours to avoid males (Klimely 1980;

Castro et al. 1988) and thicker skin as a defence mechanism against males’ bites (up to

three times; blue shark, Pratt & Carrier 2001).

In this study, males and females isolated in single-sex groups showed more

numerous, rapid and probable foraging responses to electric stimuli when within the

Electrode Zone. In mixed-sex groups the males’ higher activity levels but lower

responsiveness to E fields are most likely related to primary responses towards female

presence rather than to the presence of prey-simulating dipoles. Equally, the females’

reduced responsiveness in mixed-sex groups is most likely linked to female avoidance

of males. Whilst the precise mechanism underlying these behaviours is unknown, male

aggressive courtship behaviour, and the risk of such behaviour (possibly involving

pheromones and olfaction, see Johnson & Nelson 1978; Pratt & Carrier 2001) are the

most probable causes. In the context of the behavioural arenas used in this study, the

reduced foraging activity of females may reflect a refuging behaviour in response to

heightened male reproductive activity, a combination of behaviours that are generally

consistent with field observations of male and female S. canicula interactions

(Wearmouth & Sims, 2008).

Reduced female foraging behaviour due to male harassment has also been

observed in poeciliid fish (Magurran & Seghers, 1994; Plath et al., 2003; Agrillo et al.,

2006). Furthermore, as in this study, Griffiths (1996) demonstrated decreased foraging
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levels in both female and male poeciliid fish in mixed-sex groups relative to single-sex

groups. Griffiths (1996) suggested that males make feeding and mating choices based

upon hunger, whereas female feeding is constrained by sexual harassment. A similar

constraint is apparent with catsharks. Indeed, the inhibition of female catshark feeding

may be costly enough to combine with factors such as energy loss and injury in having

directed the evolution of sexual segregation in this, and species exhibiting similar

strategies (e.g. Port Jackson sharks, H. portuskacksoni, in which females refuge in reef

caves; McLaughlin & O’Gower 1971). Furthermore, such inhibition may contribute to

increased pressure upon female feeding which is manifested in higher foraging levels

among females than males.

It is important to note that subtle male-female interactions other than harassment

and avoidance may have also, in part, influenced catshark foraging behaviours. For

example, male competition for mates (Lucifora et al. 2002) could contribute to

decreased foraging levels in both sexes (and may also be linked to harassment).

Disparity in intra-specific competitiveness between males and females may occur. Due

to a lack of research in these, and many other areas of elasmobranch behaviour, it is

unclear whether such factors may have any influence. Equally, whilst pheromones and

steroids can affect food conversion efficiency in teleost fish (Mandiki et al. 2004), the

physiological effect is unknown in elasmobranchs.

The results from this study significantly enhance understanding of foraging

behaviour and sexual segregation among male and female elasmobranchs, and how

interactions between the sexes may shape these behaviours. Such information may

benefit the management of species in which male-female interactions have implications

for population dynamics (Chapters 1 & 6).
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4. ABILITY TO DISCRIMINATE BETWEEN DIFFERENT

ELECTRIC FIELDS: ELECTRORECEPTIVE PREFERENCES

4.1. Abstract

The ability of a benthic elasmobranch to distinguish between different prey-type

electric fields (E fields) was investigated. To address this objective, small-spotted

catshark (Scyliorhinus canicula) preferences were studied by behaviourally conditioning

the fish to swim through narrow tunnels, and simultaneously presenting them with two

different E fields upon exit. Their subsequent choices were recorded, given the

following options of E field pairs;

a) E fields with differing strength direct current (D.C.)

b) E fields with similar strength direct (D.C.) and alternating current (A.C.)

c) E fields with similar strength natural and artificial direct current (D.C.)

Analysis showed a highly significant preference for the stronger D.C. electric field and

a less pronounced, but still significant, preference for A.C. electric fields rather than

D.C. electric fields. No preference was demonstrated between artificial and natural D.C.

electric fields. The findings are discussed in relation to the animal’s diet and ecology

and with regard to anthropogenic sources of E fields within their habitat.
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4.2. Introduction

At their basic level foraging models predict that organisms will attempt to

maximise gains and minimise costs to optimise somatic growth and reproduction

(Optimal Diet Theory: Charnov, 1976). In the case of fish, this process may be affected

by a number of factors (Kaiser & Hughes, 1993) including physiological state (Croy &

Hughes, 1991b; Gill & Hart, 1998), experience (Croy & Hughes, 1991a; Warburton,

2003), competition (Thompson & Jones, 1983; Gill & Hart, 1996), and predator-prey

interactions (Hart & Hamrin, 1990; Huang & Sih, 1991; Kaiser et al., 1992a). However,

two of the most fundamental considerations for all predators are prey choice and

exploitation of prey within patches given the direct nature of their effect on energy

intake (Stephens & Krebs, 1986). For instance, certain prey may be easier to catch and

consume than another, although more difficult prey may possess higher nutritional value

and might therefore be worth the extra effort (Gill & Hart, 1994). Equally, certain

locations might provide high quality foraging potential with high density of suitable

prey, but even better opportunities elsewhere may be lost by focusing entirely on the

former (Stephens & Krebs, 1986). Decisions made between prey and patch options may

arise directly through individuals making active choices or indirectly as phenotypic

attributes arising via natural selection. Regardless of which scenario, these decisions are

crucial to an individual’s success at obtaining food resources required for somatic and

gonadal growth and therefore potentially influence Darwinian fitness.

The ability to differentiate between two or more stimuli is fundamental for

animal behavioural choice scenarios. It enables preference for certain stimuli and

therefore the opportunity for informed choices to be taken based upon prior experience.

Sensory preference has been demonstrated throughout the animal kingdom. There is a
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large amount of literature regarding bees’ preferences for certain flower colours and

sizes (Dukas & Real, 1993; Dyer et al., 2006; Ishii, 2006; Goulson et al., 2007), female

birds’ preferences for different male songs (Collins, 1999; O’Loghlen & Rothstein,

2003; Swadle & Page, 2007), frog and toads’ preferences for auditory cues (Jennions et

al., 1995; Bodnar, 1996; Schwartz et al., 2001; Endepols et al., 2003; Castellano et al.,

2004) and stickleback fishes’ preferences for colours and ultra violet (Baube et al..,

1995; McKinnon, 1995; Smith et al., 2004; Modarressie et al., 2006; Rick et al., 2006).

Other examples of work on preferences range widely from taste in fruit flies (Gordesky-

Gold et al., 2008) and colour and movement in lizards (LeBas & Marshall, 2000) to

light levels in cattle (Baldwin & Start, 1981) and vision and touch in pinnipeds (Busch

& Duecker, 1987; Dehnhardt, 1994 respectively).

There are few studies that have investigated elasmobranch preferences for

different stimuli relating to the same sense. Clarke (1961) demonstrated that adult

lemon sharks (Negaprion brevirpstris) were able to discriminate targets differing in

shape and pattern. Aronson et al. (1967) demonstrated light-dark discrimination in

juvenile nurse sharks (Ginglymostoma cirratum). Strong (1996) demonstrated great

white sharks’ (Carcharadon carcharias) preference for seal-shaped visual targets rather

than square targets. Wallman and Bennett (2006) observed preferences for cooler water

among fed stingrays (Dasyatis sabina) and warmer water among pregnant female

stingrays possibly owing to increased nutrient uptake and reduced gestation periods

respectively. Following observations of sexual segregation in the wild (Sims, 2001;

Sims, 2005), Wearmouth & Sims (2008) used laboratory studies to demonstrate that

female small-spotted catsharks preferred warmer temperatures, despite higher energetic

costs, when refuging from males. Gardiner et al. (2007) found preferences for scented
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and turbulent plumes over unscented and oozing plumes in the smooth dogfish

(Mustelus canis). This final example, however, is limited in its context as the sharks

were, in effect, offered a choice between the presence and absence of the stimuli rather

than differing levels of the stimuli.

Weakly electric teleost fish have been shown to be able to discriminate and

choose between objects differing in their electrical characteristics using active electro-

location (von der Emde, 1990). However, preferences for electric fields (E fields) using

passive electroreception in elasmobranchs have received little attention. Blonder &

Alevizon (1988) attempted to demonstrate whether stingrays were able to differentiate

between prey and non-prey invertebrates using electroreception alone. Their findings

suggested the stingrays were unable to do so, however they added that the findings were

not conclusive; possible reasons for which included inability of stingray to identify a

non-prey item, experimenters’ uncertainty of the difference between prey and non-prey

bioelectric fields and overly hungry stingrays feeding in a non-discriminatory manner,

i.e. showing no preference. Indeed, this raises an important consideration when

questioning whether elasmobranchs show preferences for certain types of E fields;

whether the fish are actually able to differentiate between them. Behavioural studies

have demonstrated various species to be attracted to a range of fields (as low as 5

nV/cm; Kalmijn, 1982; upper limits less certain but avoidance shown at higher voltages

> ~ 1000 nV/m; Dijkgraaf & Kalmijn, 1962; 0.2 to 10 V; Yano et al., 2000). It is also

possible to measure the sensitivity range of the electroreceptive apparatus, Ampullae of

Lorenzini, neuro-physiologically (to 20 nV/cm, Tricas & New, 1998; D.C. to approx.

10 Hz A.C., Montgomery 1984; Peters & Evers, 1985; Sisneros & Tricas, 2000).

However, how the brain processes these inputs and the fish translate the information
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remains uncertain. It is not possible to determine whether the fish are capable of

differentiation rather than simply detection of the presence of fields (more akin to an

“on - off” switch) without observing behavioural responses to simultaneously presented

E fields.

Electroreception has been demonstrated to be crucial in the final moments of

elasmobranch feeding and is also used during the location of and communication with

conspecifics, the detection of predators and possibly in aiding navigation (see chapter

1). The ability of fish to successfully detect differences and make choices between

different types and sizes of prey, predators and symbionts and suitability of mates,

habitats, swimming paths and navigation routes will ultimately contribute to individual

success and Darwinian fitness.

4.2.1. Objectives

Given the importance of the electro-sense to elasmobranchs, but the lack of

knowledge regarding their detection abilities of and preferences for different E fields,

the aim of this study was therefore to determine whether a benthic elasmobranch, the

small-spotted catshark (Scyliorhinus canicula), shows preferences for certain prey-type

electric fields. In doing so the ability of the catsharks to differentiate between the fields,

rather than merely detect the presence of fields, would also be ascertained. In the wild,

prey and prey patches can be encountered sequentially or simultaneously (Stephens &

Krebs, 1986), but in order to comprehensively address these objectives individual

catsharks were simultaneously presented with sets of differing pairs of electric fields

under laboratory conditions. Their subsequent choices were recorded and analysed.



Chapter Four: Choice

54

4.3. Methodology

4.3.1. Experimental animals

Sixty size-matched small-spotted catsharks (S. canicula; hereafter referred to as

‘catsharks’) were caught on a Marine Biological Association of the UK (MBA) research

vessel off Plymouth, southwest England (station L4: 50º15’N, 4º13’W), in late 2006 and

early 2007. The fish averaged 62.0 ± 3.4 cm total length (±SD). Catsharks were

maintained as described in chapter 2.

4.3.2. Experimental apparatus

Behavioural arenas, used previously (see Chapters 2, 3), were adapted for use

during this study. Barriers, held in place by brackets on the arena walls, spanned the

width of each arena such that the only access between a larger (100-cm length) and

smaller (45-cm length) section was through a small and narrow tunnel (20.0 cm long x

10.0 wide x 8.5 high; Figure 9). A barrier consisted of two 3-mm thick, upright, acrylic

sheets held 20 cm apart by two supporting plastic tubes at the top and an oven-folded 5-

mm thick acrylic sheet at the base (Figure 9). The folded acrylic sheet formed the tunnel

and was attached to the upright sheets using nylon screws. Rocks and sections of

drainage pipe were added to the large sections of each arena to increase environment

heterogeneity and thus provide a more inviting habitat for catsharks placed in the

arenas. The upright acrylic sheets facing the large sections were opaque white (to

imitate an arena wall from the point of view of the catsharks) whereas those facing the

small sections and those forming tunnels were transparent (to allow the observer to see

catsharks entering tunnels).

Salt-bridge electrode circuits and plates similar to those used previously

(see Chapters 2, 3) were used to present catsharks with prey-type electric fields (E
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fields). The apparatus were modified to enable two E fields to be presented

simultaneously to a catshark exiting a tunnel into the small section of an arena. The

alterations were such that when the apparatus were placed in the small section the two

dipoles were positioned at equal distances from the centre of the exit of a tunnel (11 cm;

Figure 10). The dipole pairs were both aligned in the same direction as the tunnel so that

the catsharks approached the E fields along their most intense gradients (along, rather

than perpendicular to axes; Figure 10). This also prevented the formation of

quadropoles (whereby the positive and negative components of one dipole interact with

the opposite components of the other dipole to effectively form four dipoles). Using

plots of decreasing electrical potential with increasing distance (calculated with

reference to Kraus & Fleisch, 1999), the dipoles were located (a) far enough apart to

ensure that (i) any interference and/or additive effect between E fields were minimised

and kept below the emission intensity at the dipoles, and that (ii) stronger E fields would

not swamp weaker fields, but (b) close enough together so that both E fields were

simultaneously detectable by catsharks exiting tunnels (based on S. canicula sensitivity

documented in Kalmijn, 1982). The optimum electrode placement, estimated by

balancing these conditions, was achieved by forming an isosceles triangle between the

centre of a tunnel exit and the two dipoles measuring 15 x 11 x 11 cm (Figure 10).

The narrow tunnels restricted the movement of catsharks enough to keep their

bodies straight, whilst not preventing swimming action, and in effect acted as funnels to

ensure the catsharks always approached the dipole pairs from a uniform direction and

that their snouts always entered the two E fields at the same location. On exit from the

tunnels, the dipoles were positioned far enough away from the barriers such that the
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catsharks were able to either twist their bodies to turn toward and respond to one

electrode or the other, or could ignore both and pass between them.



Figure 9. Schematic cross-sectional diagram of behavioural arena set-up showing large and small sections with tunnel and dipole position
(not to scale).



Figure 10. Schematic diagram illustrating the positions of the dipoles relative to the tunnel exit (not to scale).
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4.3.3. Experimental procedure

Six catsharks were transferred from the holding aquaria into the larger sections

of the six behavioural arenas (one per arena) and allowed to acclimatise for 60 hours.

Prior to any particular treatment the salt-bridge apparatus was carefully placed in the

small section of the arena. After approximately 2 minutes (to ensure the catshark was

not disturbed) the two E fields were switched on and an experimental trial commenced.

Each trial consisted of inducing a catshark through the tunnel by remotely

introducing 40 ml food-derived scent (sieved squid and whiting added to water) through

flexible air tubing housed within a rigid plastic tube. Approximately half the mixture

was injected from the small section through the tunnel to diffuse from the entrance into

the large arena section. The remainder was used to leave a trail of scent leading back

through the tunnel and beyond the dipoles in the small section. Catshark responses,

having swum through and exited the tunnel, were recorded as either no response to

electrodes, or a response (turn or bite; see Chapter 2) to one or the other electrode.

Catsharks were then rewarded whilst still in the small arena section with approximately

1.3 g food regardless of their response. All six catsharks underwent the same

experimental procedure and this procedure was repeated twice a day over five days (an

experimental week: a total of ten trials). The two E fields were randomly assigned to left

or right sides of the plate in each trial. The reward system and lowered feeding regime

(approximately 2 % wet body mass per week: Sims & Davies, 1994; Chapter 2) ensured

the catsharks were motivated to forage throughout a week and conditioned to swim

through the tunnel throughout a week as consistently as possible. Those catsharks not

passing through the tunnel every trial were fed the remainder of their 13.0 g weekly

ration at the end of the experimental week. The original six catsharks were then
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swapped with six from the holding aquaria and the experimental week was repeated for

all subsequent groups of six catsharks.

Three sets of experiments were undertaken to assess preference for three

different pairs of E fields. The types and intensities of fields were chosen to reflect those

that the fish are likely to encounter in their natural environment and that are known to

be attractive to elasmobranchs (Kalmijn, 1971; Kalmijn, 1972; also see Chapter 1). The

pairs of prey-type E fields were those associated with:

A) Artificial 9 µA and 90 µA direct currents (D.C.)

B) Artificial 90 µA D.C. and alternating currents (A.C. 2 Hz frequency)

C) Artificial and natural 16 µA D.C. (approximately)

The artificial D.C. fields in Experiment (A) were produced and monitored using 9 v

power-packs and multi-meters, as were the D.C. fields in Experiments (B) and (C). The

artificial A.C. fields used in Experiment (B) were produced and monitored using a

function generator, inverting amplifier and oscilloscope. The natural D.C. fields in

Experiment (C) were emitted by live shore crabs (Carcinus maenas). Those with

approximately 4-cm carapace diameters were selected. Their D.C. bioelectric fields

were estimated to be similar to those associated with 16 µA currents. Estimations were

based upon measurements of a selection of reasonably small crabs’ (Portunus holsatus,

Eupagurus prideauxi and Dardanus arrosor) bioelectric fields made by Kalmijn (50 µV

at carapace surface; 1972) and with reference to calculations in Kraus & Fleisch (1999)

to adjust for size. Crabs were contained and concealed beneath re-mouldable, dome-

shaped, 1.5-cm thick, 4 % agar chambers fastened to the plate using nylon screws

(Figure 11).



Figure 11. Photograph of an agar chamber on a small acrylic plate (not submerged) showing
screws (b). Measurements: 11 & 4.5 cm external diameter & height; 8 & 3.0 cm internal diam
chamber is not screwed down, is flooded with sea water and contains a crab, yet the crab is not v

a

b

attachment points (a) and sockets for nylon
eter & height; 1.5 cm thickness. Note: the
isible and there is no leakage of water.

b
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The chamber methodology was adapted from pioneering work performed by

Kalmijn (1971) and subsequent experiments by Tricas (1982) and Blonder & Alevizon

(1988) and utilizes the screening of all but electrical stimuli. The chambers were

designed and constructed such that crabs underneath them were not visible to catsharks

exiting a tunnel (Figure 11). The chambers formed a seal with the plate and therefore

omitted mechanical and chemical signal conduction. They did, however, permit electric

fields to pass through uninterrupted (confirmed in pilot experiments using electrodes

under chambers to induce unmistakeable electroreceptive responses in catsharks).

During Experiment (C), one dipole was removed from each of the two salt-bridge

apparatus, but from opposite sides. A crab could therefore be randomly presented on

different sides of the tunnel exit throughout experiments simply by alternating the

apparatus. Chambers were also placed over the remaining dipoles to ensure the

catsharks encountered stimuli differing only in the E field they emitted.

Prior to experiments, power analysis was performed to determine sample sizes

required to detect a range of possible ratios of choices made between a pair of E fields

(Lenth, 2001; Lenth, 2006; Table 3).

Table 3. Sample sizes of choices recorded required to demonstrate different margins in
ratio of choice between two E fields (significance 0.05; power 90 %)

Ratio Choice Sample Size

0.9 : 0.1 12

0.8 : 0.2 24

0.7 : 0.3 63

0.6 : 0.4 264

0.55 : 0.45 1000
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Previous work had shown catsharks to respond significantly less to controls (no

current) and 0.9 µA D.C. E fields than 9.0 and 90.0 µA D.C. fields when encountering

the fields sequentially (Chapter 3). There was no significant difference between the

number of responses to the 9.0 and 90.0 µA fields, indicating the catsharks may choose

both fields in similar amounts when encountered simultaneously. No previous work was

available to consult regarding potential choice ratios between either 90 µA D.C. and

A.C. fields or 16 µA natural and artificial D.C. fields. Due to the large number of

specimens and replicates required to detect a ratio of 0.55 : 0.45 (1000; Table 3),

especially considering time, apparatus and ethical constraints, and considering such a

small ratio would be difficult to interpret as anything other than random choice, no

preference for or inability to discriminate between fields, a ratio of 0.6 : 0.4 was chosen

as the level to imply preference. Therefore, based on Table 3, a sample size of 240 (6

groups of 6 fish with 10 experimental treatments each) was decided upon for each

paired E field experiment. However, sample size flexibility was incorporated into

experimental design. Numbers of specimens and replicates could be adjusted during

trials as follows: a) lowered, if a considerable preference (and therefore a large ratio)

became apparent b) raised, should fish fail to pass through tunnels consistently and/or if

a more narrow preference (and smaller ratio) became apparent.

4.3.4. Data analysis

Chi squared contingency analysis was used on the total number of choices made

towards the two different E fields by all catsharks in each of the three experiments.

Generalized linear model analysis (GZM) was then performed on the choice data to

analyse whether all individuals and both sexes responded similarly to each other, and

therefore whether the contingency analysis result was a reflection of the behaviour of all
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catsharks and both sexes or biased by a few individuals and/or one sex. Owing to the

binomial distribution of the data (choice x or y), binomial models were used. Logit link

functions were applied to transform the distribution onto continuous logit curves.

Individual (catshark) and sex were used (separately) as categorical predictors and choice

was used as the dependent variable. All statistical analyses were performed using

Statistica 8.0 and Genstat 10.0 software.

4.4. Results

During Experiment (A) a total of 134 responses by 24 fish were recorded. The

catsharks responded to the 90 µA D.C. electric field on significantly more occasions

(91%) than the 9 µA D.C. electric field (χ2 = 69.96, d.f. = 1, P << 0.0001; Figure 12a).

During Experiment (B) 202 responses by 30 catsharks were recorded. The

catsharks responded to the A.C. 90 µA electric field on significantly more occasions

(61%) than the D.C. 90 µA electric field (χ2 = 8.62, d.f. = 1, P = 0.003; Figure 12b).

During Experiment (C) 679 responses by 36 catsharks were recorded. There was

no significant difference between the number of occasions (52 & 48%) the catsharks

responded to the artificial and natural 16 µA D.C. electric fields (χ2 = 2.39, d.f. = 1, P =

0.12; Figure 12c).

Table 4 shows the number of individual catsharks that exhibited different

responses during each of the three experiments. For all three Experiments, general linear

modelling determined that, on average, neither individuals nor sexes made significantly

different choices to each other (Table 5). The results from the chi squared contingency

analysis can therefore be assumed to be unbiased and represent all catsharks within a

given Experiment.



Table 4. Numbers of catsharks exhibiting different responses during each experiment
Exp A Exp B Exp C

Response Number of fish Response Number of fish Response Number of fish

No choices 2 No choices 3 No choices 0

Equal choices to both 1 Equal choices to both 7 Equal choices to both 5

Only 90 9 Only A.C. 2 Only artificial 0

Only 9 0 Only D.C. 0 Only natural 0

90 > 9 12 A.C. > D.C. 15 Artificial > natural 17

9 > 90 0 D.C. > A.C. 3 Natural > artificial 14

Table 5. Results of GZM analysis of individual and sex effect upon response differences
Exp A Exp B Exp C

Individual Sex Individual Sex Individual Sex

Log likelihood -41.91 -50.05 -121.68 -130.82 -443.48 -462.94

Degrees of freedom 13 1 25 1 35 1

P value 0.21 0.83 0.83 0.95 0.28 0.46
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Figure 12. Mean number of choices made to different E fields during each experiment;
A), B) & C) (± 95% confidence limits).
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4.5. Discussion

Previously it was unclear whether these fish merely detect the presence of

electric fields or whether they are able to differentiate between them. By assessing their

preferences through presentation of different E fields simultaneously, this study has

demonstrated that they do possess the ability to distinguish some fields but are either

unable to distinguish between, or at least show no preference for others.

Results from Experiment (A) show the catsharks possess a highly significant

preference for the stronger direct current E field (Table 4 & Figure 12a). Overall,

catsharks that swam through the tunnels and reached the dipoles directed responses to

the 90 µA field rather than the 9 µA field on 91 % of occasions. Results from

Experiment (B) reveal a less pronounced, but still significant, preference for alternating

current E fields rather than direct current fields (Table 4 & Figure 12b). Overall,

catsharks reaching the electrodes directed responses to the 90 µA alternating current

field rather than the 90 µA direct current field on 61% of occasions. The results from

experiment (C), however, show no preference between artificial and natural direct

current E fields (Table 4 & Figure 12c). In general, the catsharks exiting the tunnel

directed responses to the 16 µA artificial and natural direct fields in approximately

equal proportions (52% and 48% respectively).

The original sample size of 240 (6 groups of 6 fish subjected to 10 trials) was

not reached for Experiment (A) due to failures to respond to scent and swim through the

tunnel. However, the resulting sample size of 134 proved powerful enough to detect the

wide choice margin between 9 and 90 µA. The sample size was raised in Experiment

(B) to account for failures to reach the electrodes and the narrower margin between 90

µA D.C. and A.C. E fields observed in early experimental weeks (18 fish subjected to
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10 trials and 12 fish to 15 trials). The lack of difference between E field choice in

Experiment (C), despite raising sample size and statistical power even further (12 fish

subjected to 10 trials and 24 subjected to 30 trials), confirmed the lack of preference or

inability to distinguish the artificial and natural 16 µA D.C. E fields.

Trials in which catsharks failed to respond to scent or failed to swim through

tunnels (on average 36% of trials in each experiment) were not included in analyses.

This study was simply interested in the choice made by catsharks between two electric

fields and therefore analysis focused upon trials in which catsharks responded to scent

and reached the tunnel exit. There is a possibility that those catsharks failing to reach

the electrodes more than others (i.e. less bold) may have possessed differing preferences

than other (more bold) catsharks. However, behavioural syndromes are unknown in

elasmobranchs. Furthermore, the GLZ investigating potential bias in the data between

individuals would have to some extent accounted for such an effect.

The pairs of E fields used in these experiments were chosen owing to their

similarity to E field types and intensities that the species is likely to encounter in its

natural environment and that are within the range attractive to elasmobranchs (Kalmijn,

1971; Kalmijn, 1972; Chapter 1). It is therefore possible to make some inferences about

the results with respect to foraging behaviour in the wild.

The catsharks’ clear preference for the larger D.C. current E fields (Exp A) may,

for example, relate to preferences for larger prey (electroreception operates over such

small distances that effects of distance on E field size, e.g. a smaller E field simply

relating to a similar sized prey further away, would be minimal). A larger specimen of a

species will provide a greater food energy source, and therefore more nutrients and

energy, than a smaller specimen of the same species. Despite this preference, when the
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catsharks encounter the same, two E fields (9 & 90 µA) sequentially rather than

simultaneously, they respond to both equally (Chapter 3). Responses to different fields

therefore seem to be context specific (similar to differences in stickleback response

owing to context of prey encounter; Gill & Hart, 1999). This makes sense for an

opportunistic predator in a variable environment such as elasmobranchs in coastal

habitats. After all, weaker D.C. fields may be associated with entirely different prey

species of differing nutrient content and/or ease of capture and consumption, rather

than, or in addition to, smaller specimens of the same prey species (Kaiser et al., 1992b;

Gill & Hart, 1994). Previous work has demonstrated catsharks to be less responsive to E

fields associated with 0.9 µA currents compared to 9.0 and 90.0 µA currents in

sequential encounters (Chapter 3). This supports the suggestion that these fish prefer

stronger D.C. fields. However, as current increases much beyond 100 µA, and

especially as E fields reach approximately 1000 nN/cm, catsharks would be expected to

exhibit avoidance responses (Dijgraaf & Kalmijn, 1962; Yano et al., 2000).

The preferences observed for A.C. rather than D.C. electric fields were less

pronounced but still significant. Bioelectric A.C. fields are predominately associated

with fish (Kalmijn, 1972; Chapter 1). Both teleosts and chondrychthians emit low and

high frequency A.C. fields. This suggests that, given the choice, catsharks may choose

to prey on fish rather than invertebrates, but this remains to be tested. Again, such

decisions will be context specific and may be based upon nutrition and/or ease of

capture and consumption. And similarly, the fact that the fish also often respond to the

D.C. fields strengthens the suggestion that these opportunistic predators could optimise

foraging by adapting their behaviour and responding to a variety of options sequentially

over extended time periods (Dill, 1983). Stomach analyses show this species preys on a
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wide range of macrobenthic fauna (Lyle, 1983; Olaso et al., 2005; Rodriquez-Cabello et

al., 2007) ranging from teleosts and crustaceans to molluscs and polychaetes.

Despite the ability of these fish to distinguish between the two pairs of artificial

E fields it seems as though they are either unable to discriminate between or show no

preference for similar strength, D.C., natural or artificial E fields. From this

methodology alone it is not possible to discern which scenario is occurring. It appears

that elasmobranchs might respond to both prey and artificial electric sources of similar

strength should they encounter them either simultaneously or sequentially in the marine

environment. This finding has important implications when considering possible

interactions between electrically sensitive fish and anthropogenic E fields (Chapter 1) as

it would appear that the fish may confuse prey bioelectric fields with artificial E fields

whilst foraging (see Chapters 5 & 6).
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5. LEARNING, HABITUATION AND MEMORY EFFECTS ON

ELECTRORECEPTIVE FORAGING BEHAVIOUR

5.1. Abstract

Whether a benthic elasmobranch, Scyliorhinus canicula (small-spotted

catshark), is able to learn to alter its electroreceptive foraging behaviour and remember

learned changes was investigated. To address these objectives the behaviour of

individual catsharks towards artificial, prey-type electric fields (E fields) following

stimulation by food-derived scent was studied. Catsharks that were rewarded for

responding to the E fields throughout a week were compared to those that were not.

Trials were then repeated after a three week interval with previously rewarded catsharks

receiving no rewards and vice versa.

Analysis of the data demonstrated significant differences in the behaviour of

rewarded and unrewarded fish. Rewarded catsharks exhibited more intense foraging

behaviour towards E fields than unrewarded catsharks. Furthermore, rewarded catsharks

improved their foraging efficiency throughout experimental weeks. Conversely,

unrewarded catsharks reduced their interest in E fields throughout experimental weeks.

These altered behaviours were not, however, continued after the experimental interval

and electroreceptive foraging behaviour was independent of whether rewards were

offered before or after the interval.

The findings demonstrated learning and habituation occurring after very few

foraging events but suggested a memory window of less than three weeks. Some of the

series of search paths taken to electrodes by individual fish are reproduced herein to

clearly illustrate these behavioural adaptations. The findings are discussed in relation to
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the animals’ diet, habitat and ecology and with regards to anthropogenic sources of E

fields within their habitat.
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5.2. Introduction

The attributes of the natural environment vary both spatially and temporally.

Coastal environments are particularly changeable due to the convergence of dynamic

marine, freshwater, terrestrial, atmospheric and anthropogenic inputs. Organisms that

inhabit such an environment should theoretically exhibit behavioural flexibility to

enable them to adapt to changing conditions and thereby maximize individual success

(Dill, 1983). Though certain behaviours are innate and inflexible, others can be adjusted

based upon experience (Kieffer & Colgan, 1992). Learning and memory are crucial

means with which to facilitate such adaptation.

In general, the widely held view that fish (common inhabitants of shallow

coastal seas) possess limited intelligence, memory and adaptive ability has been

consigned to the past (Laland et al., 2003). The current consensus is that many teleosts

(bony fish) possess significantly superior cognitive ability than previously believed

(Huntingford, 2003; Brown et al., 2006). They have been observed to co-operate

(Milinski et al., 1990a), manipulate (Bshary & Wurth, 2001), use tools (Bshary et al.,

2002), build nests (Paxton & Eschmeyer, 1998), possess complex social relationships

(McGregor, 1993) and exhibit cultural traditions (Helfman & Schultz, 1984).

Learning and memory are also well developed in teleosts. For example, learned

foraging skills have been demonstrated in stickleback fishes (Croy & Hughes, 1991a;

Girvan & Braithwaite, 1998; Odling-Smee & Braithwaite, 2003a), salmon, Salmo salar

(Brown et al., 2003) and mosquito fish, Brachyraphis episcopi (Brown & Braithwaite,

2005). Learned escape responses have been demonstrated in zebra fish, Danio rerio

(Arthur & Levin, 2001) and haddock, Melanogrammus aeglefinus (Ozbligin & Glass,

2004). Varying memory windows have been demonstrated in rainbowfish
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(Melanotaenia duboulayi) escape responses (Brown, 2001), trout (Salvelinus fontinalis)

and stickleback fishes prey handling skills (Bryan & Larkin, 1972; Mackney & Hughes

1995 respectively), and paradise fish (Macropodus opercularis) predator recognition

(Miklosi et al., 1992).

This evidence presents a compelling case for teleosts having comparable

cognitive abilities to many land vertebrates (Laland et al., 2003). Conversely,

chondrichthyans (cartilaginous fish) have received relatively little attention with respect

to cognitive ability. This is surprising given that certain elasmobranchs (sharks, skates

and rays) possess brain to body mass ratios that overlap those of mammals and birds

(Demski & Northcutt, 1996). In general, the few examples of investigations in the field

are relatively old. Clarke (1959) conditioned two adult lemon sharks to consistently

press a target (associated with an acoustic stimulus) in order to receive food. The sharks

retained this behaviour after a 10 week interval. She subsequently demonstrated that the

lemon sharks could also discriminate targets differing in shape and pattern (Clarke,

1961). Wright & Jackson (1964) performed very similar experiments but used groups of

immature lemon (Negaprion brevirostris) and bull (Carcharhinus leucas) sharks. The

results suggested that younger sharks learn more quickly than adults and that lemon

sharks are quicker than bull sharks. Aronson et al. (1967) demonstrated that young

nurse sharks (Ginglymostoma cirratum) were able to be similarly conditioned, that their

response latencies reduced over time and that they possessed similar learning curves for

light-dark discrimination to teleosts and mice. Similar sharks were also shown to be able

to discriminate both black-white and vertical-horizontal patterns (Graeber & Ebbesson,

1972; Graeber et al., 1978). More recently, Schluessel & Bleckmann (2005)
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demonstrated spatial memory of environment in juvenile freshwater stingrays

(Potamotrygon motoro).

Electroreception has been demonstrated to be crucial in the final moments of

elasmobranch feeding and is also used during the location of and communication with

conspecifics, the detection of predators and possibly in aiding navigation (see Chapter

1). Flexibility in their responses to electric stimuli within their environment via learning

and memory would provide ecological benefits to these fishes’ life processes. Recently,

there has been growing concern over possible interactions between elasmobranchs and

anthropogenic sources of electric fields (E fields) in the coastal environment (see

Chapter 1). The research in Chapter 4 demonstrates that a benthic elasmobranch was

able to discriminate between certain types of E fields by showing preferences when

fields were presented simultaneously. However they were either unable to differentiate

between or showed no preference for similar artificial (electrodes) and natural (crab) E

fields. This raises the question of whether these fish would effectively waste time and

energy “hunting” artificial E fields or whether they could learn to adapt their behaviour

depending on the relative success of encounters with different electric stimuli. To date,

there have been no investigations into either learning or memory associated with

elasmobranch electroreceptive foraging.

5.2.1. Objectives

The aim of this study was therefore to investigate the ability of a model species of

benthic elasmobranch, the small-spotted catshark (Scyliorhinus canicula), to learn to

adapt its electroreceptive foraging behaviour and remember learned changes.

Laboratory studies were therefore designed to make comparisons between fish rewarded
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for responding to E fields (R) and fish that were unrewarded (U). Experiments were

developed to compare:

a) Behavioural response levels between R and U

b) Changes in behavioural responses through time between R and U

c) Both (a) and (b) for R and U before and after an interval comprised of normal

feeding and no electric stimuli.

5.3. Methodology

5.3.1. Experimental animals

Twenty four size-matched small-spotted catsharks (S. canicula) were caught on

a Marine Biological Association of the U.K. (MBA) research vessel off Plymouth,

southwest England (station L4: 50º15’N, 4º13’W), in May 2006. The fish averaged 61.8

± 4.8 cm total lengths (±SD). They were randomly assigned to one of four groups (1 to

4) and tagged with different coloured, individually numbered T-bar anchor tags (FLOY

TAG Inc., Seattle, Washington USA) accordingly. Catsharks were maintained as per

descriptions in Chapter 2.

5.3.2. Experimental apparatus

Salt-bridge electrode circuits and plates similar to those used previously (see

Chapters 2 & 3) were used to present catsharks with prey-type electric fields. The

apparatus were modified to allow rewards to be presented to catsharks after responding

to an electric field. The plate that the dipole was attached to was made opaque white (to

match arena base) and raised by 3 cm with gently inclining ramps added to each side. In

this way a hidden trap-door mechanism and food compartment was attached under the

plate whilst not hindering the catsharks’ movement over the plate (Figure 13).
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The mechanism consisted of an acrylic panel with a sunken, circular food

compartment (5 cm diameter x 1 cm depth) that could be pushed and pulled back and

forth within rails on both sides, and blockers at both ends. As such, the compartment

could be “opened” under a similar sized hole in the electrode plate when in the forward

position, and then “closed” again when slid back to the original position (Figure 14).

The trap-door mechanism was constructed to minimise potential seepage of food

scent from the compartment containing the food. A sealed, water-filled system of 1 mm

and 20 mm polypropylene BD Luer Lok syringes, Nalgene 380 PVC 3.2 x 1.6 mm (bore

x wall) tubing and an elastic band allowed the trap-door to be opened and closed

remotely, smoothly, quickly and silently by the observer (Figure 14). This apparatus

permitted presentation of rewards to catsharks in close proximity to the dipole,

immediately after a response to an electric field, and with minimal disturbance.



Figure 13. Photograph of modified salt-bridge apparatus, from above, showing the gentle ramps (a) and position of the dipole (b) next to
the trap door (c).
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Figure 14. Photograph of the underside of the modified plate showing the trap door mechanism. Mechanism is shown in original, “closed”
position. Compartment (d) is pushed forward (right to left) by hydraulic system (e) to “open” under trap door (c). It can then be brought
back to original position partly using hydraulic system but with aid of elasticity of band (f). Rails (g) and blocks (h) are also shown.
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5.3.3. Experimental procedure

The six catsharks from group 1 were transferred to randomly chosen behavioural

arenas (one fish in each of six arenas) and allowed to acclimatise for 60 hours (see

Chapter 2). The fish were then presented with an electric field produced by a 9 µA

current twice per day (early morning & late afternoon) for five days (a total of 10

consistently spaced experiments: an experimental week). Three of the fish were

rewarded with approximately 1.3 g food for their first response to the electrodes in each

experiment. Fish not taking all of their rewards were fed the rest of their weekly 13.0 g

ration at the end of the experimental week. This reduced feeding ration (approximately

2 % wet body mass per week: Sims & Davies, 1994; Chapter 2) ensured satiation was

not reached during the week and that hunger and normal foraging behaviour persisted.

The other three fish were not rewarded at all during experiments but were instead fed a

13.0 g ration at the end of the experimental week. On completion of the experimental

week the group 1 fish were transferred back to the holding aquaria and replaced with the

fish from group 2. After 60 hours acclimatisation group 2 then underwent a similar

experimental week. This procedure was repeated for groups 3 and 4.

Once group 4’s experimental week was complete, each group (1 - 4 in turn) then

underwent a second experimental week (with catsharks in different, randomly assigned

arenas), similar except that those previously rewarded were not rewarded and vice

versa. There was therefore a 3 week interval between each group’s two experimental

weeks (Table 6).
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Table 6. Sequence of experimental weeks for six catsharks in a group
Catshark Week Before

(10 experiments)
3 week interval Week After

(10 experiments)

1 R U

2 U R

3 R U

4 U R

5 R U

6 U

Other

Groups

in use

R

R = rewarded; U = unrewarded

Prior to any particular experiment a salt-bridge apparatus was introduced into a

randomly chosen arena, and at a randomly chosen end (to ensure catsharks were not

simply learning the location of food source), with the power switched off and water

flow stopped to allow the catsharks to settle down. After 20 minutes the power was

switched on, and 20 ml of food-derived scent (sieved squid and whiting added to water)

was introduced into the arena next to the dipole and behavioural observations

commenced. Experiments lasted for no more than 15 minutes and were recorded using

overhead cameras. The observer recorded (directly or later by reviewing videos) the

following hierarchical response variables of each fish: (a) Reaction time to scent, (b)

number of times Activity Zone entered (see Chapter 2 & Figure 4), (c) number of times

Electrode Zone entered (see Chapter 2 & Figure 4), (d) time latency of turns and bites

towards electrodes (scent time from response times), (e) frequency of turns towards and

bites on electrodes, and (f) bite number and time when a reward was taken. Only those

turns and bites that were distinct, unambiguous and unmistakably directed towards the

electrodes were recorded.
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The paths the catsharks took from their starting position (prior to scent

detection) to their first response at the dipole were traced from video footage on a large

monitor. These traces were then converted to JPEG files using an HP Designjet 815 mfp

scanner and subsequently opened using ArcGIS software, converted to polyline shape

files and geo-referenced to arena size. Both the distance from catshark starting position

to dipole and the distance of their search paths to the dipole were measured using

ArcGIS tools. The relationship between these two distances generated an index of the

catsharks’ path directness to the electrodes (catshark path ÷ original distance to

electrodes = path directness: Figure 15).



Figure 15. Two traces with similar original catshark and electrode positions but differing search paths illustrating how measurements of
paths were taken and path directness calculated (C = catshark starting position; E = electrodes; P.D. = path directness (2 d.p.); unbroken
line = catshark swimming path; hashed line = direct line from start position to electrode).
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5.3.4. Data analysis

Hierarchical generalized linear mixed models (HGZLMM) on count and loge

transformed continuous (e.g. times) data, and general linear models (GLM) on path

directness ratios were used to evaluate differences in the electroreceptive foraging

behavioural parameters (a) to (f) and paths between rewarded catsharks and unrewarded

catsharks, and between experimental weeks before and after the three week interval.

The HGZLMM on the count data used a Poisson distribution owing to many zero and

low integer values. A logarithm link function then transformed this to a normal

distribution. The HGZLMM on continuous data used a normal distribution and an

identity link function (which simply multiplies the data by 1 and thus does not transform

the distribution). In both cases, a fixed effect of reward (yes or no) by week (before or

after) and a random effect of individual (catshark) by experiment treatment number (1

to 10) were used. The GLM used individual, reward and week as categorical predictors

related to loge transformed path data. Transformations were made to satisfy the

assumption of normality of residuals.

HGZLMM was also used to analyse changes in parameter levels (a) to (f) within

experimental weeks, having split the data into rewarded and unrewarded sets. Again, for

count data, a Poisson distribution and logarithm link function were used and for loge

transformed continuous data a normal distribution and identity link function were used.

In both cases a fixed effect of experimental number (1-10) and a random effect of

individual were used. Similar analysis of trends in path directness data was performed

using GLM with individual as the categorical predictor and experimental number as the

continuous predictor.
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For all model results reported, the distribution of the residuals was plotted and

found to be close to normal so the model could be assumed to be satisfactory unless

stated otherwise. Residual degrees of freedom were between approximately 215 and 460

unless stated otherwise. All statistical analyses were performed using Statistica 8.0 and

Genstat 10.0 software (see Chapter 2).

Statistical effect sizes with standard errors were used to plot responses of

catsharks compared between rewarded and unrewarded catsharks, or weeks before and

after the interval (e.g. Figure 16). One treatment is compared to the other, the latter of

which is the reference value (zero). The effects shown in the graphs indicate the relative

size and direction of any differences. Statistical effect sizes were also used to plot

responses throughout an experimental week (e.g. Figure 17). Effects were calculated for

each experiment number (1-10) using slope and constant parameters from Genstat

outputs and then plotted as a continuous variable. Responses throughout weeks for

different treatments could then be compared to each other. Time data were back-

transformed and plotted on log scales, whereas original count data were plotted on

normal scales.

5.4. Results

5.4.1. Learning and habituation

a) Response time to scent:

There was a suggestion that catsharks rewarded for electroreceptive responses

reacted to the scent more quickly than those that were not, but the difference was not

significant due to large variation (Wald = 1.08; P = 0.298; Figure 16). However,

rewarded catsharks were slower to react to scent through the week (t = 2.79; P = 0.005)
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whereas unrewarded catsharks’ times showed no change (t = 0.82; P = 0.412; Figure

17).
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Figure 16. Relative average times to respond to scent by rewarded and unrewarded
catsharks (± standard error. Note: Y axis plotted using statistical effect sizes.
Unrewarded is zero reference).
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Figure 17. Relative changes in scent response times throughout experimental week
(note: Y axis values are back transformations of statistical effect sizes plotted on log
scale).
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b) & c) Passes over Activity and Electrode Zones:

Before first contact with the electrodes rewarded catsharks swam round arenas

(Activity Zone passes; Chapter 2) and passed near electrodes (Electrode Zone passes;

Chapter 2) significantly more than unrewarded catsharks (t = 5.49 (Activity) & 8.61

(Electrode); both P << 0.0001; Figures 18a.i & b.i). Rewarded catshark activity levels

were also higher than unrewarded catshark activity levels after first contact with the

electrodes, but to a lesser extent (t = 3.24; P = 0.001; Figure 18a.ii). However, rewarded

catsharks did not pass the electrodes more than unrewarded cathskarks after first contact

(t = 1.26; P = 0.208; Figure 18b.ii).
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Figure 18. a) Relative activity levels and b) electrode passes i) before and ii) after first contact with the electrodes (± standard error. Note:
Y axis plotted using statistical effect sizes. Unrewarded is zero reference).
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Rewarded catsharks showed decreasing activity and electrode passes before first

contact with electrodes within experimental weeks (t = -4.22 (Activity) & -4.59

(Electrode); both P < 0.0001; Figures 19a.i & b.i). A slight increase in activity level and

no change in electrode passes were observed in unrewarded catsharks although the

models did not fit well due to lack of data (dotted lines; Figures 19a.i & b.i). After first

contact with electrodes, rewarded catsharks showed less marked decreases (t = -2.02 & -

1.87; P = 0.044 & 0.062 respectively; Figures 19a.ii & b.ii). Contrastingly, unrewarded

catsharks now showed more significant decreases (t = -1.94 & -3.84; P = 0.053 &

0.0001 respectively; Figures 19a.ii & b.ii).
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Figure 19. Relative changes in a) activity levels and b) electrode passes throughout experimental week i) before and ii) after first contact
with electrodes (note: Y axis plotted using statistical effect sizes).
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d) Turns & bites:

There were significantly more turns and bites made by those catsharks that were

rewarded (t = 5.35 (turns) & 5.57 (bites); both P << 0.0001; Figures 20a & b). Both

rewarded and unrewarded catsharks showed decreasing turns and bites throughout

experimental weeks though the trend was more pronounced for unrewarded catsharks

(rewarded: t = -6.70 (turns) & -8.27 (bites); unrewarded: t = -10.77 (turns) & -9.93

(bites); all P < 0.0001; Figures 21a & b). Indeed, on average, unrewarded catsharks

stopped biting the electrodes altogether between six and seven treatments.
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Figure 20. Relative a) turn and b) bite levels by rewarded and unrewarded catsharks (±
standard error. Note: Y axis plotted using statistical effect sizes. Unrewarded is zero
reference).
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Figure 21. Relative changes in a) turn and b) bite levels throughout experimental week
for rewarded and unrewarded catsharks (note: Y axis plotted using statistical effect
sizes).

e) Turn & bite time latencies:

The larger number and therefore later average times for rewarded catsharks may

have skewed the modelling of turn and bite time latencies. Therefore only time latencies

of first turns and bites were analysed. Too few data were available to analyse bite times

(model not well fitting), and although there was a suggestion that rewarded catsharks
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turn earlier the effect was not significant (t = -1.46; P = 0.145; Figure 22). However,

within an experimental week rewarded catsharks showed decreasing turn times (t = -

2.47; P = 0.014; Figure 23a). Again, although there was a suggestion bite times

decreased too, the effect was not significant (t = -1.42; P = 0.156; Figure 23b). There

were no trends for unrewarded catsharks (both t = -0.11; both P = 0.912; Figures 23a &

b).
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Figure 22. Relative first turn time latencies by rewarded and unrewarded catsharks (±
standard error. Note: Y axis plotted using statistical effect sizes. Unrewarded is zero
reference).
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Figure 23. Relative changes in a) first turn and b) first bite time latencies throughout
experimental week for rewarded and unrewarded catsharks (note: Y axis values are back
transformations of statistical effect sizes plotted on log scale).
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f) Bite number and time of bite at which reward acquired:

Among rewarded catsharks, there were significant decreasing trends observed

for the time and bite number at which rewards were acquired throughout the

experimental week (t = -2.87 (time) & -3.94 (bite); P = 0.004 & 0.0001; Figure 24a &

b). These parameters were not applicable for unrewarded catsharks.

0.0001

0.001

1 2 3 4 5 6 7 8 9 10

B
it

e
ti

m
e

a
t

w
h

ic
h

re
w

a
rd

a
tt

a
in

e
d

(R
e

la
ti

v
e

e
ff

e
c

t
s

iz
e

)

a)

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8 9 10

Time (Experimental number)

B
it

e
n

u
m

b
e
r

a
t

w
h

ic
h

re
w

a
rd

a
tt

a
in

e
d

(R
e
la

ti
v
e

e
ff

e
c
t

s
iz

e
)

b)

Figure 24. Changes in the a) time and b) bite number at which rewarded catsharks
acquired food reward throughout experimental week (note: Y axis plotted using
statistical effect sizes; back transformed and plotted on log scale for time).
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Table 7 shows the number of rewarded individuals exhibiting different trends

(from correlation and Kendal Tau analyses) in the bite number and time of bite at which

they attained food rewards (76 and 70 % showed decreasing trends in time and bite

respectively).

Table 7. Numbers of rewarded catsharks showing different trends in bite numbers and
times of bites at which rewards were taken

Trend Reward time Reward bite

Decrease 13 12

No change 0 2

Increase 4 3

(Note: Seven catsharks not available - not enough data points for correlation and Kendal
Tau analyses)

Search paths:

Visual comparisons highlight differences between individual catshark’s search

path trends in rewarded and unrewarded weeks (Figures 25 - 27). The diagrams also

highlight the fact that learning and habituation effects begin within just a few

experiments (within 3 -5). Individuals Blue1501 and Red1506 were unrewarded in week

1 and then rewarded in week 2. When unrewarded, Blue1501 responded to the electrode

in the first experiment, but subsequently failed to respond despite long tracks and

eventually began not even responding to the scent (Figure 25; top row). Red1506 began

by finding and responding to the electrodes fairly quickly and directly, but after a few

such responses started to undertake longer search paths and failed to respond to the E

field (Figure 26; top row). However, when rewarded, Blue1501 initially embarked on

very long tracks, which progressively became shorter and were eventually very direct

(Figure 25; bottom row). Similarly, when rewarded, Red1506’s tracks gradually became

more consistently short and direct, having been higher initially (Figure 26; bottom row).
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Individual Green230 was rewarded in week 1 and unrewarded in week 2. When

rewarded, after a few very indirect and lengthy tracks, this catshark’s paths to the

electrodes became consistently shorter and more direct (Figure 27; top row). When

unrewarded, its paths showed no clear trend with some very direct, but also very long

paths, and some occurrences of failure to respond to the scent or electrodes (Figure 27;

bottom row).



Before interval: UNREWARDED

After interval: REWARDED

Figure 25. Search paths of an individual catshark, Blue1501, throughout week (i to v) when unrewarded (top) and rewarded (bottom) before and after
experimental interval respectively. C = catshark start position; E = electrode position; P.D. = path directness (rounded figures). Note: where no path is
shown, catshark did not even respond to scent.



Before interval: UNREWARDED

After interval: REWARDED

Figure 26. Search paths of an individual catshark, Red1506, throughout week (i to v) when unrewarded (top) and rewarded (bottom) before and after
experimental interval respectively. C = catshark start position; E = electrode position; P.D. = path directness (rounded figures).



Before interval: REWARDED:

After interval: UNREWARDED:

Figure 27. Search paths of an individual catshark, Green230, throughout week (i to v) when rewarded (top) and unrewarded (bottom) before and after
experimental interval respectively. C = catshark start position; E = electrode position; P.D. = path directness (rounded figures). Note: where no path is
shown, catshark did not even respond to scent.
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Rewarded catsharks showed significant decreases in path directness (i.e. became

more direct) through the experimental week (SS = 5.91; P = 0.019; Figure 28) whereas

unrewarded catsharks showed no change (SS = 0.137; P = 0.693; Figure 28).
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Figure 28. Relative changes in path directness to electrodes exhibited by rewarded and
unrewarded catsharks throughout experimental weeks (note: Y axis plotted using
statistical effect sizes).

Table 8 shows the different trends in path directness exhibited by individual

catsharks. 83.3% exhibited trends that would be expected for learning (when rewarded)

and habituation (when unrewarded). Only 17.7% exhibited unexpected trends.

Table 8. Numbers of catsharks exhibiting different trends in changes of path directness
throughout experimental weeks (from correlation analyses)

Difference between paths Number Percentage

R down; U up, no change or n/a 11

Both down but R more so 4
83.3%

R up; U down 3 17.7%

R = rewarded; U = unrewarded (note: Six catsharks not available - not enough data
points)
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5.4.2. Overview of rewarded catshark behaviour

There was a suggestion that rewarded catsharks responded more quickly to scent

than their unrewarded counterparts. The rewarded catsharks became slower to react to

scent throughout a week. They exhibited high levels of movement around the arenas and

electrodes; more so before the first E field response than after. In both cases these levels

of movement decreased throughout a week; again, more so before than after. They

turned towards and bit the electrodes often, but these levels decreased markedly

throughout a week. There is a suggestion that they were slightly quicker to respond to

the E fields than unrewarded catsharks and these response times significantly decreased

throughout a week. The time and bite at which they acquired the food reward and the

directness of the search paths they employed all decreased significantly over time.

5.4.3. Overview of unrewarded catshark behaviour

Unrewarded catsharks exhibited no change in reaction time to scent. They

showed very little movement around the arenas and electrodes prior to first response to

the E fields and these levels remained similar throughout a week. However, movement

around the arenas and, especially, the electrodes were considerably greater following

first response, although these levels decreased markedly throughout a week. They

responded to the E fields less frequently than their rewarded counterparts, and although

they, too, showed decreasing response levels through time, the trend was more distinct

than that of rewarded catsharks. There is a suggestion they may have responded later,

but there was no change in these response times throughout a week. Nor was there any

change in how direct their search paths towards the electrodes were.
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5.3.4. Memory

There were no differences between experimental weeks before and after the

interval for any of the hierarchical responses, except for first turn times (Table 9). In

other words, when rewarded and unrewarded catshark data were grouped together and

analysed by week, behavioural levels were, on average, similar before and after the

three week interval. Neither were any interactions observed between reward (yes/no)

and week (before/after) for any of the categories (Table 9). Therefore, behaviour was

independent of whether a catshark was rewarded before the interval and unrewarded

after the interval or vice versa. This suggests the altered behaviours, owing to the offer

or denial of food reward, were not retained after a three week interval.

Table 9. P values generated by modelling when comparing hierarchical response
parameters between week before and week after interval and interactions between
rewarded/unrewarded and week before/after

Response Variable Week before & Week after Interaction

Scent time 0.236 0.602

Activity Zone 0.347 0.255

Electrode Zone 0.436 0.516

Turn frequency 0.112 0.881

Bite frequency 0.818 0.660

Latency to 1st turn 0.047* 0.134

Latency to 1st bite 0.424 0.358

Reward time (d.f=139) 0.981 n/a

Reward bite(d.f.=170) 0.749 n/a

Path directness 0.802 0.159

(* significant P value highlighted; n/a = not applicable)
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5.4. Discussion

The objectives of this study were to investigate elasmobranch learning,

habituation and memory, specifically with respect to electroreceptive foraging

behaviour. Adjustments to foraging behaviour dependent on the relative success of

responses to E fields (in terms of food gain) were clearly demonstrated within very few

events (often as few as three). However these changes did not seem to be remembered

after an interval with no experimental procedures and a normal feeding regime.

All fish were of similar size and maturity, were from the same geographic

location, were acclimatized for equal time periods and fed on equal, minimum rations.

Previous experience and initial motivation to feed could therefore be assumed to be as

standardised as possible among experimental animals (possible effects of different

phenotypes cannot obviously be controlled for; e.g. bold versus nervous fish). Despite

becoming slightly slower to react to scent (Figure 17), rewarded catsharks consistently

foraged and ingested rewards suggesting the small size of rewards prevented satiation

and ensured continued motivation. Unrewarded catsharks showed consistent responses

to introduced scent and a burst of interest in the E fields after first contact with them

confirming continued, but not increasing motivation to feed (Figures 17 & 18).

Water temperature varied with natural conditions to some extent during

experimental procedures (18.22 °C +/- 0.98 S.D.). However, this level of variation has

previously been shown to have no impact on electroreceptive behaviour (Gill et al.,

unpublished data; Chapter 3). All experimental animals were subjected to the same

experimental conditions in stable, predator free environments and the large sample size

and powerful modelling gives confidence that differences and trends observed are

accountable to experience and behavioural flexibility.
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Catsharks rewarded for electroreceptive responses exhibited more intense

foraging behaviour in comparison to unrewarded catsharks: Higher levels of activity,

more movement in close proximity to the electrodes and more frequent (and potentially

quicker) turn and bite responses to them. Improvements in acquisition of rewards over

time were also demonstrated suggesting the occurrence of learned behaviour: Activity

levels and passes near the electrodes before first responding to the E field were

significantly reduced; the number of responses to the electrodes also decreased

markedly; furthermore, the time latency and bite number at which the catsharks

acquired the food rewards also significantly declined; the search paths the fish

employed to locate the electrodes became considerably more direct despite electrodes

being placed at randomly assigned ends of arenas (see Figures 25 - 27). Combined,

these behavioural alterations improved the catsharks’ foraging efficiency over time and

theoretically would have reduced energetic costs per unit food attained.

Conversely, catsharks that were not rewarded for electroreceptive responses,

exhibited less intense foraging behaviour: Lower levels of activity, less movement near

the electrodes and less frequent (and possibly slower) turn and bite responses to them.

Changes in these catsharks’ behaviour towards the electrodes over time were also

demonstrated. However, these alterations differed to those of the rewarded catsharks

and suggested habituation behaviour: Despite no clear trends in their low activity levels

and electrode passes before first response to E fields (c.f. rewarded catsharks), the

higher levels, and especially passes, after first response significantly reduced over time,

even more than those of rewarded catsharks; the numbers of responses to E fields also

declined over time and to a larger extent than did those of rewarded catsharks; their

latencies to respond, however, showed no change; nor was there any change in the
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directness of the search paths they employed (see Figures 25 - 27). Although these

behaviours would not improve the acquisition of food (c.f. rewarded catsharks), they

could also be considered to reduce energetic costs over time by reducing wasted effort.

The fact that none of the learned and habituated behaviours described above

were continued in the second experimental weeks and that behaviour levels were

independent of whether rewards were offered before or after the experimental interval

suggests that the memory window for these elasmobranchs is less than three weeks.

Having returned to the experimental arenas after three week intervals the catsharks

behaved as if they had not been subjected to the previous trials. They then began to

learn or habituate again over the subsequent experimental weeks accordingly. For

example, individual Green230 honed its search path to the electrodes when rewarded

before the interval, but failed to exhibit the efficiency at the beginning of the subsequent

week after the interval (Figure 27).

Like many other elasmobranchs, S. canicula inhabit highly unpredictable coastal

waters (Compagno, 1984; Compagno et al., 2005). In part owing to this fact, many are

also opportunistic predators (Lyle, 1983; Ellis et al., 1996; Laptikhovsky et al., 2001).

When considering populations of these elasmobranchs in their natural habitats, the

cognitive abilities demonstrated here make ecological sense. In essence, the catsharks

seem able to learn to improve their electroreceptive foraging efficiency towards

rewarding stimuli over short temporal periods (and presumably within small spatial

scales). Equally, within similar temporal and spatial limits they can habituate to (or

learn to ignore) non-rewarding stimuli. This flexibility may therefore allow, for

example, the predators to focus their efforts on easily caught, edible or nutritious prey

(Dill, 1983; Stephens & Krebs, 1986; Kaiser et al., 1992b; Gill & Hart, 1994).
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Similarly, efforts towards inedible, nutrient deficient and difficult to catch prey could be

reduced thereby permitting focus elsewhere and minimizing missed opportunities.

These behaviours are generally consistent with those observed in other animals towards

variable and non-variable foraging stimuli. For example, Micheli (1997) demonstrated

greater modification of foraging behaviour based on experience in crabs encountering

variable prey and prey patches than those within more stable environments. Similar

differences were demonstrated between stickleback fishes inhabiting more and less

stable habitats (Girvan & Braithwaite, 1998).

The coastal zone is especially variable due to both natural (Tait & Dipper, 1994;

Lalli & Parsons, 1997; Barnes & Hughes, 1999) and anthropogenic factors (fishing:

Blaber et al., 1981; Frid et al., 1999, land reclamation: McLusky et al., 1992,

eutrophication: Powers et al., 2005, climate change: Rogers & McCarty, 2000,

pollution: Matthiessen & Law, 2002). In such an environment, therefore, remembering

foraging adaptations over longer temporal periods and larger spatial scales may not be

of benefit (sensu Hirvonen et al., 1999) considering prey diversity and distributions, in

addition to physical habitat, may well change over relatively short time periods and over

small distances.. Long memories have been demonstrated in fish inhabiting relatively

stable environments (e.g. up to 6 months in trout: Bryan & Larkin, 1972; 3 months in

cod: Nilsson et al., 2008) and shorter memories demonstrated in those inhabiting more

variable environments (e.g. 3 hours in paradise fish: Csanyi et al., 1989; from minutes

to days in sticklebacks: Mackney & Hughes, 1995; Hughes & Blight, 1999). It would be

interesting to determine exactly where the memory window lies in S. canicula;

seemingly somewhere between 12 to 24 hours (learned behaviour was obviously

remembered between experimental treatments each day) and 3 weeks (the experimental
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interval period) and how it would relate to other teleost and chondrichthyian fishes. It is

also interesting to note whether the catsharks were, in actual fact, “forgetting” or

whether they were simply choosing to ignore previous experience and instead, choosing

to thoroughly inspect all possible stimuli to track current prey and patch states and

prevent missing any opportunities (Stephens & Krebs, 1986; Krebs & Inman, 1992; Dall

et al., 1999).

Recently, predation pressure was demonstrated to be an important influence

upon three-spined stickleback (Gasterosteus aculeatus) learning and memory (Brydges

et al., 2008). In fact, predation was observed to override the effect of habitat stability.

Catsharks were studied in predator free environments during this study but it is

important to note that, in the wild, in addition to habitat variability, predation pressure

may also affect elasmobranch learning and memory. However, presumably the effect

would be less pronounced on sharks, skates and rays compared with small teleosts

owing to their comparatively larger size, their position further up the food chain and

therefore their fewer numbers of natural predators.

The learning, habituation and memory skills associated with electroreceptive

foraging demonstrated through this experiment represent valuable attributes in S.

canicula’s capacity to maximise gains and minimize costs and thereby potentially

optimise individual feeding success and improve Darwinian fitness. Such cognitive

abilities may extend to other uses of the sense such as predator and symbiont detection,

location of and communication with conspecifics and navigation, all of which would

also have important implications on life processes. The abilities may also be important

when considering how elasmobranchs may cope with being confronted with
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anthropogenic E fields that closely resemble their prey bioelectric fields (see Chapters

1, 4 & 6).

Cognitive abilities are likely to vary between elasmobranch species. For

example, one may expect better memory windows in species inhabiting more stable

habitats than more variable habitats (sensu Odling-Smee & Braithwaite, 2003a, b).

Inter-specific differences in visual learning have previously been observed between

lemon and nurse (Clarke, 1959) and lemon and bull sharks (Wright and Jackson, 1964).

Variation in brain to body mass ratios and in the relative mass of the major brain

divisions can be used to postulate the capacities of different species’ senses and

cognition (Demski & Northcutt, 1996). Scyliorhinus canicula have average brain to

body mass ratios (Ridet et al., 1973) compared to higher and lower elasmobranchs such

as scalloped hammerheads (Sphyrna lewini) and Greenland sharks (Somniosus

microcephalus) respectively (Northcutt, 1978; Myagkov, 1991). They also possess

generic relative brain division sizes (which can be used to estimate capabilities

associated with different behaviours). For example, Carcharodon carcharias possess

unparalleled olfactory bulb size suggesting that chemical stimuli may be important in

guiding behaviour associated with, for example, feeding, mating and social interactions.

Carcharhinids and Sphyrnids posses enlarged central nuclei which may be related to

complex social and territorial behaviours and therefore learning of conspecific and

habitat stimuli, exemplified by hammerheads observed aggregating in sub-divided

segregations based upon social dominance, size and sex (Myrberg & Gruber, 1974;

Klimley, 1987).
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6. GENERAL DISCUSSION

Locating and consuming food are essential to animals (Elton, 1927; Stephens &

Krebs, 1986), and among elasmobranch fish electroreception is arguably the most

important sense utilised over short distances for prey detection and jaw orientation

(Kalmijn, 1971; Tricas, 1982; Blonder & Alevison, 1988; Haine et al., 2001). One

would assume coastal benthic species that inhabit waters with lower light intensity and

greater turbidity, in comparison to pelagic species, will be less likely to rely on vision

and become more reliant on other senses such as electroreception (Raschi et al., 2001;

Collin & Whitehead, 2004; Linsey & Collin, 2007). Accordingly, species of skate

inhabiting deeper, and therefore darker habitats, possess more and larger Ampullae of

Lorenzini (the electroreceptive apparatus) than those in shallower habitats with higher

light levels (Raschi & Adams, 1988). Coastal benthic species’ diets often include prey

that may be hidden from view; for example amongst marine algae or mangrove root

systems, within coralline or rocky structures or actually buried beneath substrates such

as sand and silt (Lyle, 1983; Matallanus et al., 1993; Morato et al., 2003).

Electroreception significantly aids the location, manipulation and ingestion of prey

otherwise less detectable by other sensory modalities (Raschi, 1986; Tricas, 2001). The

sense also enables nocturnal predation (Tricas, 1982; Blonder & Alevizon, 1988).

Electroreception is therefore a decisive contributor to the acquisition of food

among such species. Owing to the influence that obtaining food has upon survival and

the maintenance of somatic and reproductive growth, the electro-sense can also be

considered one of the key factors affecting Darwinian fitness. The fact that

electroreception is also widely used in predator detection (Peters & Evers, 1985;
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Sisneros et al., 1998), conspecific location and communication (Bratton & Ayers, 1987;

Tricas et al., 1995; Sisneros, et al., 1998) and possibly during navigation (Kalmijn,

1974 & 1984, Pals et al., 1982b; Paulin, 1995; Montgomery & Walker, 2001) only

strengthens the fundamental significance of the electro-sense to these animals and their

life processes.

Despite electroreception’s biological and ecological importance, and

notwithstanding considerable physiological work on the apparatus facilitating electric

field detection (the Ampullae of Lorenzini; e.g. Waltman, 1966; Raschi, 1986;

Montgomery & Bodznick, 1999; Tricas, 2001; Chapter 1), the associated behaviour and

ecological context of the sense has received little attention (Collin & Whitehead, 2004;

Tricas & Sisneros, 2004). Considering the importance of elasmobranchs to ecosystems

as apex predators (Stevens et al., 2000, Schindler et al., 2002), their vulnerable life

histories (Smith et al., 1999; Baum et al., 2003; Frisk et al., 2005; Dulvy et al., 2008),

their continuing population declines (Compagno et al., 2005; Dulvy et al., 2008) and

ever increasing interactions with human activities and development (Stevens et al.,

2000; Gill, 2005; Dulvy et al., 2008) the requirement to reduce such gaps in our

understanding becomes ever more urgent. The behavioural research on Scyliorhinus

canicula detailed within this thesis was formulated in order to address some of the

poorly understood aspects of elasmobranch behaviour, especially those linked to

electroreceptive foraging, that have hitherto remained poorly described. The topics

covered related to important population and life processes and are summarised as

follows:
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1) Sexual conflict: the effects of male harassment and female avoidance upon

elasmobranch feeding behaviour using electroreception as an indicator (Chapter

3).

2) Choice: the ability of elasmobranchs to discriminate between E fields and

preferences they show for them (Chapter 4).

3) Cognitive ability: the ability of elasmobranchs to learn to alter their behaviour

towards E fields of differing profitability and remember learned alterations.

(Chapter 5).

6.1. Overview of results

There were clear findings from the research that not only advance understanding of

the functionality of electroreception, but also shed light on some fundamental, and yet

previously un-described, elasmobranch life processes.

The findings from Chapter 3 build on our current understanding of sexual conflict

in elasmobranchs and its role in causing sexual segregation. A marked reduction in

foraging efficiency among individuals in mixed-sex groups compared to same-sex

groups was demonstrated. Mixed-sex groups responded to the electrodes less than

single-sex groups despite exhibiting similar or higher activity levels. There was also

evidence of higher responsiveness towards electric fields (E fields) by females

compared to males, despite similar activity levels between the sexes. Furthermore, the

sexes’ sensitivities to different E fields were similar, supporting stomach analysis

evidence that suggests male and female S. canicula possess similar diets.

Chapter 4 details one of the very few studies investigating the capacity of an

elasmobranch to differentiate and choose between E fields (and one of only very few
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investigating choice in any of the elasmobranch senses). A considerable preference for

stronger rather than weaker direct current (D.C.) fields was demonstrated. A less

marked preference, though a significant one, was demonstrated for alternating current

(A.C.) fields rather than D.C. fields. However, either an inability to discriminate

between, or no preference for, similar artificial and natural fields was revealed.

The work documented in Chapter 5 provides demonstration of learning, habituation

and memory capabilities associated with electroreceptive foraging behaviour (and one

of only very few investigating cognitive abilities related to any elasmobranch

behaviours). The catsharks were able to learn to improve their foraging efficiency

towards rewarding E fields and habituate towards non-rewarding E fields. Behavioural

adaptations were, however, not retained after a three week interval suggesting the

catsharks’ memory window lies somewhere between twelve to twenty four hours and

three weeks.

6.2. Advantages of current study

6.2.1. Scope of investigation

When studying a specific aspect of an organism’s behaviour it is crucial to be

aware of the general biology and ecology of the species in question (Krebs & Davies,

1997). This enables appropriate explanations of findings and suggestions of plausible

causes and effects to be made. Foraging behaviour, in particular, is a highly complex

phenomenon which effects and is affected by many varied processes. The success of

foraging will ultimately determine the amounts of energy available for partitioning into

somatic and reproductive growth and therefore individual success and Darwinian fitness

(Stephens & Krebs, 1986).
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Foraging behaviour is, in turn, influenced by a number of intrinsic and extrinsic

factors (boxes on Figure 29). Intrinsic factors are those influenced by the individual’s

biology and life processes (shaded boxes) whereas extrinsic factors are external

influences including the biotic and abiotic environments (un-shaded boxes). A predatory

fish’s intrinsic factors may include physiological state (e.g. Griffiths, 1996; Gill & Hart,

1998; Gill, 2003), adaptive flexibility (e.g. Croy & Hughes, 1991a; Hughes & Blight,

1999) and sensory capability (e.g. Holmes & Gibson, 1986; Kaiser & Hughes, 1993).

For example, foraging levels and efficiency are likely to increase in a hungry fish, with

proficient learning, habituation and memory capabilities, and the ability to acutely

detect and recognise prey. Alternatively, satiation, reproductive urge and poorer

cognitive and sensory abilities are likely to have the opposite effect. External factors

may include conspecifics (e.g. Magurran & Seghers, 1994; Gill & Hart, 1996),

predators (e.g. Holbrook & Schmitt, 1988) and natural and anthropogenic environments

(e.g. Girvan et al., 1998; Odling-Smee & Braithwaite, 2003a; Filer et al., 2008). For

example fish foraging behaviour will likely be affected by inter-and intra-specific

competition, mating, shoaling, predation risk (timing or location of feeding events and

escape ability), habitat variability and human use of the coastal zone. Encounters with

prey are also, obviously, crucial (point of thick arrow, Figure 29) with factors such as

prey size, health, crypsis, handling time, armour, digestibility and escape capability

potentially having significant effects on their predators’ foraging success (e.g.

Kislalioglu & Gibson, 1976; Kaiser et al., 1992a, b; Gill & Hart, 1994). Given these

numerous influences, the foraging process is therefore highly variable (as represented

by the variable length of shaft of thick arrow, Figure 29).
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In addition to directly affecting foraging behaviour, many of these factors will

be interlinked and thus provide indirect influences on the behaviour (dotted arrows on

Figure 29). For example the outcome of a prey encounter may have consequences for

both hunger (physiological state) and learning; habitat variability (environment) may

affect learning and memory window; sensory capability may influence both predation

risk and the detection of mates (conspecifics); hunger may impinge on reproductive

urge (both physiological states).

Note that the predator in question could also be considered as prey for a larger

predator (predation risk box; Figure 29) and would thus represent a factor in that

predator’s foraging processes. Equally the prey (point of thick arrow, prey encounter;

Figure 29) may also prey on smaller organisms and would therefore represent a factor in

that prey’s foraging processes. The diagram could consequently be repeated through

different trophic levels.



Figure 29. Diagram illustrating major factors affecting a predatory fish’s foraging behaviour (shaded boxes = intrinsic factors; un-shaded
boxes = extrinsic factors), important interrelations between them (solid arrows = direct effect; broken arrow = indirect effect), and points at
which electroreception is a significant consideration (asterisks).
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The current study’s three research topics, though all related to electroreception,

encompass a broad spectrum of the factors and linkages influencing foraging and

illustrated in Figure 29. Chapter 3’s content (male-female interactions) relates to both

physiological state and conspecifics via hunger and reproductive urge. Chapter 4’s

content (ability to distinguish and preference) is relevant when considering both prey

encounters and environment (anthropogenic versus natural stimuli). Chapter 5’s content

(cognitive ability) concerns learning, memory and environment (variability).

Furthermore, electroreception considered generally, can obviously be applicable in

many areas including sensory capability, prey encounter, the detection of conspecifics

and predators and the environment (see asterisks, Figure 29). Therefore, contrary to its

apparent focus on a specialised and unusual sense, the results and findings generated by

the research in this thesis fit well with more general aspects of foraging behaviours in

these fish.

6.2.2. Experimental sample sizes and repeated measures

In order to achieve optimum statistical power, a large data set was used

throughout this study whilst bearing in mind time and facility constraints. Studies

utilised large sample sizes of catsharks compared with many other elasmobranch

behavioural investigations (88 specimens during the sexual conflict experiments for

example; Chapter 3), aided by the ability to release animals following experimentation.

This enabled data analyses to cope with inherent, natural, individual variability

(Magurran, 1986), increased the likelihood of distinguishing subtle behavioural

differences and reduced the confounding effects of using the same fish over protracted

time periods. Furthermore, the ability to run treatments across seven, similar

experimental tanks, whilst acclimatising fish for subsequent trials in adjacent holding
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tanks permitted an intense regime of experimentation to maximise use of limited time.

In turn, this allowed experimental treatments to be repeated a number of times on the

same specimens which not only increased the ability to reduce variance in the data but

enabled investigation of temporal changes in behaviours. Studies observing individuals

on relatively few occasions preclude temporal effects and are therefore momentary

representations of behaviour (Hughes et al., 1992). A more dynamic approach involves

considering more variables over time (Houston et al., 1988; Hughes, 1990). Obviously,

a trade-off results in which one must balance observing individuals on enough occasions

to obtain a representation of a behaviour and its variation over time, with using

individuals for too long and possibly recording erroneous results (such as seasonal

effects, habituation to experimental procedures and the erosion of natural behaviour

and/or health in prolonged captivity) .

The work in Chapter 3 (sexual conflict) illustrates the importance of designing

experiments with large sample sizes and repeated measures in order to address subtle

aspects of a species’ behaviour. Differences in electroreceptive behaviour between the

sexes were previously unsupported (Gill et al., unpublished data; Filer et al., 2008).

However, with eighty eight specimens subjected to twenty five treatments each,

resulting in a total of over two thousand turn and one thousand bite responses recorded,

this study distinguished subtle, but important, differences between the foraging

behaviour of different sex groups. Similarly, the vast majority of previous work on the

electro-sense has focused on describing and/or demonstrating electroreceptive foraging

behaviour whereas the work in Chapter 5 illustrates the importance of considering how

the behaviour may change over time as a result of intrinsic and extrinsic factors.
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6.3. Ecology

Sharks, skates and rays have been major predators in marine ecosystems for

millions of years, but the biological functions and selective pressures that shape the

evolution of their ampullary electro-sensory system are poorly known (Tricas &

Sisneros, 2004). How does the current study help to address some of the shortcomings

in current understanding of elasmobranch electroreceptive foraging behaviour?

6.3.1. Sexual conflict

Results from chapter 3 corroborate the hypothesis from previous studies that S.

canicula sexual segregation is caused by male harassment and female avoidance (Sims,

2001; Sims, 2005; Wearmouth & Sims, 2008). It goes further by suggesting that, in

addition to injury caused and energy spent during aggressive courtship by males (Pratt

1979; Carrier et al., 1994; Sims et al., 2006), the subsequent significant reduction in

female foraging efficiency may also be an important contributing factor in driving

female avoidance behaviour. Males also showed reduced foraging efficiency in mixed-

sex groups but this would likely be a result of choice rather than a constraint. Male

feeding and mating decisions seem dependent on hunger whereas female foraging is

more constrained by harassment (sensu Griffiths, 1996), although male mating will also

be dependent on female avoidance to some extent (and avoidance can be thought of as a

form of female harassment of reproductively active males). Harassment therefore has a

true cost in terms of lost feeding opportunities for females under conditions where

trade-offs concerning mating and feeding have to be made simultaneously (sensu

Griffiths, 1996). Similar reductions in foraging efficiency (sometimes halved) caused by

male aggression have been demonstrated in poeciliid fishes (Agrillo et al., 2005;

Magurran & Seghers, 1994a, 1994b; Griffiths, 1996; Plath et al., 2003). Females of
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these teleost fishes subsequently varied shoaling behaviour when harassed by 1)

approaching other males to promote male-male interactions, and 2) reducing distance to

other females to dilute male disturbance. Female catsharks may refuge in all female

aggregations (Sims, 2005; Wearmouth & Sims, 2008) for similar reasons.

Increased electroreceptive foraging levels by females compared to males

demonstrated in this study also suggest that when not in the company of males, female

S. canicula may undertake more intensive feeding forays. This makes sense given the

short time periods in which females are able to leave their refuges to forage (Sims et al.,

2001), combined with possible higher energy requirement for egg production. This may

be the first demonstration of sex-based, intra-specific competitive release as opposed to

the more commonly discussed inter-specific (Holbrook & Schmidt, 1995; Persson &

Hansson 1999) and ontogenic (Persson & Broenmark, 2002) forms. One might assume

elasmobranch species exhibiting similar reproductive strategies (e.g. female Port

Jackson sharks, H. portuskacksoni, refuging in reef caves off Australia; McLaughlin &

O’Gower, 1971) may exhibit similar interactive effects.

Despite the difference in electroreceptive behaviour discussed above, both sexes

showed similar preferences for different strength, direct current E fields presented

sequentially (Chapter 3). Preferences for three different pairs of E fields presented

simultaneously also showed no variation by sex (Chapter 4). When considered

alongside the similar diets observed in stomach analyses (Lyle, 1983; Rodriguez-

Cabello et al., 2007), these similar electro-sensitivities support the general view that this

species shows no difference in dietary preference by sex.
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6.3.2. Choice

Early methods of discovering fishes’ prey preferences involved dietary analysis

by recording stomach content. This is a rather limited means of acquiring such

information as contents may well be determined by prey distribution, availability, ease

of capture and digestibility rather than preference per se. Hence observed predatory

diets in the field are rarely random samples of available prey (Stephens & Krebs, 1986;

Hughes, 1988). Food is not homogeneously distributed; prey behaviour, habitat

association and other factors lead to heterogeneous patches of prey. Within these

patches prey will vary by species, size and abundance and thus predators have a number

of options available to them. A predator’s discriminatory ability and preference will

significantly shape the types, sizes and amounts of prey consumed (Kaiser & Hughes,

1993). Foraging theory was developed to predict what animals will ultimately choose in

their diets to maximize net yield of energy per unit foraging time (Charnov, 1976;

Stephens & Krebs, 1986). Sensory ability, including the electro-sense, will be a crucial

component of diet choice through enabling recognition and/or discrimination of

different prey to permit choice (Hughes, 1979).

Von der Emde (1990) demonstrated the weakly electric teleost fish,

Gnathonemus petersii was able to distinguish objects of different complex electrical

impedances. Similarly, Graff et al. (2004) demonstrated that Gnathonemus petersii &

Sternopygus macrurus, which possess no vibrissae and limited vision, were able to use

electro-location to distinguish horizontal conductance zones (akin to vertical plant

shoots) from horizontal resistance zones (akin to floating or sunken twigs or rocks).

Their results demonstrated the ability to recognize spatial patterns and object

characteristics independently of optical and mechanical stimuli. The ability of passive
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electric fishes to distinguish between objects has, however, not been demonstrated

(Blonder & Alevizon, 1988). The work detailed in Chapter 4 demonstrates that passive

electroreception may be an important means of facilitating recognition and choice in

elasmobranch feeding. S. canicula was able to distinguish between differing types and

strengths of E fields.

Bioelectric fields will vary with organism size and type (see Chapter 1) and

therefore, contrary to Blonder and Alevizon’s findings (1988; stingray were unable to

discriminate prey species using electroreception alone, although results were

inconclusive) the results from Chapter 4 suggest that sharks may be able to differentiate

between different sizes and species of prey using electroreception. This would be

especially beneficial for benthic elasmobranchs whose prey is often varied and may be

conspicuous owing to burial (under sandy or silty substrates for example), refuging

(amongst algal fronds, mangrove roots or rocky/coralline caves for example) or crypsis.

Their individual ability to discriminate and choose successfully would ultimately affect

their Darwinian fitnes by affecting somatic and gonadal growth. The ability appears

especially important when one considers they may also be able to recognise a number of

other important signals: the risk associated with differing species and sizes of potential

predators; different conspecifics (possible rivals or suitable mates); optimum navigation

paths (to reach feeding grounds, mating areas or refuges); and differing symbionts such

as mutualistic cleaning fish and shrimps as opposed to parasitic copepods and mimic

cleaner fish.

Whether a fish chooses to attack a prey item will depend on a number of

intrinsic and extrinsic factors (Kaiser & Hughes, 1993; Figure 29, section 6.2.1.).

However, sensory capability is an important intrinsic factor (e.g. Holmes & Gibson,
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1986; Kaiser & Hughes, 1993; Figure 29) and electroreception has been shown to

effectively override all other senses when elasmobranchs are within close proximity of a

prey stimulus (Kalmijn, 1971, 1982; Heyer et al., 1981; personal observation). The

electro-sense is therefore crucial in the final moments of a feeding event for these fish.

By using an E field created by dipoles (a stationary and small target) with isolated and

continually motivated catsharks, the simplified methodology utilised in this study

effectively controlled for all other factors, allowing choices demonstrated between

different E fields to be attributed to an individual’s preference or sensory ability.

6.3.3. Cognitive ability

Foraging and feeding behaviour in teleost fishes are energetically costly (Lucas

et al., 1991) and there is pressure for them to acquire the most energy possible whilst

ensuring least energy is expended (e.g. eels; Helfman & Winkelman, 1991; sunfish;

Stein et al., 1984). Foraging theory predicts that predators will maximise net energy

intake through learning and habituation (Hughes, 1979). Differences in search

behaviour and capture techniques, reinforced by learning and habituation, can lead to

individual variations in food specialization (Bryan and Larkin, 1972) and therefore

variations in energy acquisition and growth allocation. This in turn may lead to disparity

in individual success which may also influence Darwinian fitness. The effect will be

magnified among those species that inhabit variable environments in which adaptive

flexibility is even more vital (Dill, 1983). In fact, among fishes, there seems to be little

relationship between learning ability and taxonomy (Hughes et al., 1992); instead, it

seems correlated more with environment (Girvan & Braithwaite, 1998; Odling-Smee &

Braithwaite, 2003a, b). Predation may also be important (Brydges et al., 2008) but will

depend on the species of fish.
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One may assume that benthic elasmobranchs occupying variable habitat

(Compagno, 1984), and with few natural predators, will possess well developed learning

and habituation capabilities to cope with unpredictable prey availability, distribution

and diversity. Despite this, following a brief surge involving visual conditioning nearly

half a century ago (initiated by Clarke, 1959, 1961), this topic has since received little

attention with respect to sharks, skates and rays. Chapter 5 documents the first

demonstration of learning and habituation in an elasmobranch’s electroreceptive

foraging behaviour. S. canicula were shown to improve their foraging success and

minimise wasted effort by learning and habituation respectively when repeatedly

presented with E fields differing in their profitability (in terms of food gain).

Furthermore, they did so within a reasonably short time frame; usually within as few as

3 to 5 encounters.

Owing to these E fields’ similarity to prey bioelectric fields, it seems, therefore,

that these elasmobranchs might be able to effectively and rapidly adapt their foraging

efficiency by reducing responses to less rewarding prey and increasing their responses

and speed of response to more rewarding prey. When one considers these

elasmobranchs may also be able to recognise different prey (Chapter 4) the benefits of

such processes would be even further enhanced. The catsharks also showed an aptitude

for being trained to swim through a narrow tunnel in order to be fed (Chapter 4). Whilst

considerable variation was apparent (some individuals were slow to learn the task, a few

proved completely unwilling or unable to do so), most individuals eventually learned to

negotiate the tunnel. Indeed, some were extremely quick to learn the task, swam through

the tunnel in all trials and occasionally even stretched the observer’s reaction times by

exiting the tunnel and responding to an E field a few seconds after the scent had been



Chapter Six: Discussion

125

introduced into the arena. Combined with the previously mentioned visual conditioning

studies, the work from these studies presents a compelling case for the existence of well

developed adaptive flexibility across elasmobranch sensory behaviour. However, certain

associations are likely to be learned more readily than others (sensu Garcia & Koelling,

1966; Goldsmith et al., 1981; Cole et al., 1982) which will depend on relative

development of brain areas (Demski & Northcutt, 1996) which will, in turn, have

evolved as a consequence of ecology. For example learned foraging is likely to be

influenced more by electroreception in benthic elasmobranchs but more by vision or

olfaction in pelagic species.

Despite well developed capacities to learn and habituate, S. canicula failed to

remember (or at least ignored) foraging adaptations after 3 weeks. Precisely how long

the memory window is remains unknown but from this research it can be assumed to be

between 12 to 24 hours (behaviour was obviously remembered between treatments each

day) and 3 weeks (the experimental interval length). Without a more specific

measurement of the window it is difficult to discuss the ecological significance of S.

canicula’s memory. However, one can suggest that environment may play an important

role considering the substantial observations of significant inter-specific and inter-

population differences correlated with ecology among teleost fishes (Warburton, 2003).

For example, paradise fish remember conspecifics for only one week, but inter-specifics

for at least three months (Miklosi, 1992) thought to be due to breeding territories being

reorganised every week, but predators constantly being important throughout life

history. Also, freshwater, anadromous and marine sticklebacks possess foraging

memory windows of 25, 10 and 8 days respectively as a result of the stability of their

particular habitats (Mackney & Hughes, 1995).
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In a variable habitat it would make sense to forget learned behaviour considering

conditions are susceptible to significant and frequent change. As such, over larger

temporal and spatial scales, previous experience is rendered less important. This

promotes the investigation of as many stimuli as possible to track current status which

will minimise missed opportunities that may, otherwise, have arisen by focusing on

fewer stimuli (Stephens & Krebs, 1986; Krebs & Inman, 1992; Dall et al.., 1999). In a

more stable environment (such as lakes or the abyssal oceanic zone), an animal would

probably benefit most from remembering learned foraging behaviour as conditions

would remain similar temporally and spatially (sensu Girvan & Braithwaite, 1998;

Odling-Smee & Braithwaite, 2003).

Again, memory has received very little attention among elasmobranchs. Clarke

(1959) demonstrated lemon sharks retaining learned visual conditioning for a period of

ten weeks. Although considered a coastal species, lemon sharks have been observed

migrating across Open Ocean (Froese & Pauly, 2008) and have proven homing ability

(Edrem & Gruber, 2005) and may possess a reasonably longer memory window than

would normally be expected. Significant spatial memories have been suggested in the

Port Jackson shark, Heterodontus portusjacksoni, (O’Gower, 1995) and freshwater

stingray, Potamotrgon motoro, (Schluessel & Bleckmann, 2005) but with no window

lengths reported.

The findings from Chapter 5 support the notion that elasmobranchs are well

adapted to their heterogeneous environment. At small scales variation in food

distribution encourages rapid learning but over large scales habitat variability

necessitates rapid forgetting (Hughes et al., 1992).
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6.4. Application of study

Whilst there is a significant biological focus to this research, the findings have a

wider relevance to the coastal environment that many elasmobranchs inhabit and have

potential important coastal management applications.

6.4.1. Sexual segregation and fisheries

Many elasmobranch species are currently undergoing substantial population

declines due to a combination of over exploitation by humans and the slow life history

traits they exhibit (Vas, 1994; Baum et al., 2003; Dulvy et al., 2008). When one also

considers the importance of these top predators in oceanic food webs (Stevens et al.,

2000, Schindler et al., 2002) and the fragility of ecosystems to reduced species’

abundances and extinctions (Chaplin et al., 2000) it becomes clear that elasmobranch

fisheries management and conservation demand immediate attention (Helfman, 2007;

Dulvy et al., 2008). The importance of animal behaviour to the development of

conservation strategies has received increased recognition in recent years (Rubin &

Bleich, 2005). It is now accepted that animal behaviour plays a large role in ecological

processes and therefore has great implications for conservation (Gosling & Sutherland,

2000).

Whilst S. canicula is not currently considered at risk (Compagno et al., 2005)

the reason it is utilised so frequently in research is that it represents a useful model for

other, more vulnerable elasmobranch species with similar life history and ecology (Sims

et al., 2001). There is also the possibility that, with decreasing stocks of familiar fishes

such as cod, plaice and skate (Cook, 1997; Dulvy & Reynolds, 2002; Helfman, 2007;

van Keeken et al., 2007), landings of S. canicula (commonly referred to as rock salmon
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or rock, along with Squalus acanthias and Mustelus mustelus) may increase and

consequently apply enhanced pressure on their populations.

Sexual segregation can have significant repercussions on conservation (Rubin &

Bleich, 2005) as temporal and spatial groupings of males and females have implications

for habitat management, population monitoring, research and management. A good

example of the concept comes from the protection of bighorn sheep (Ovis canadensis)

solely on upper slopes being deemed ineffective owing to the tendency of males to

occupy the lower slopes (Bleich et al., 1997). But this segregation only occurred during

a certain period of the year (December to July, Festa-Bianchet, 1988; Bleich et al.,

1997) and thus most effective and least costly protection measures would result from

considering both spatial and temporal factors. Segregation was found to be caused by

differing reproductive strategies; males increased fitness by inhabiting lower, gentler

slopes offering superior nutrition, though increased predator risk, whereas females (and

their offspring) inhabited higher, steeper slopes in order to decrease predation risk,

whilst incurring poorer nutrition (Bleich et al., 1997).

It is not currently known whether spatially focused fisheries exacerbate

population declines by differential exploitation of a particular sex compared to the other

within a species. However, anecdotal evidence suggests human exploitation of sexually

segregated sharks may lead to dramatic population declines (Wearmouth & Sims,

2008). The aggregating behaviour of mature, female piked dogfish (Squalus acanthias,

called spurdog locally) into unisexual schools, and their dominance in landings in

southwest England during the early 20th century (Wearmouth & Sims, 2008) were

probably major factors causing the collapse of the English Channel spurdog fishery

between 1928 and 1931 (2710.3 tons to 802.4 tons; Steven, 1933). Similarly, an



Chapter Six: Discussion

129

apparent local basking shark (Cetorhinus maximus) population collapse was thought to

be partly due to large female-biased catches in the harpoon fisheries off west Ireland

and northwest Scotland (McNally, 1976; Anderson, 1990).

Determining sex-based differences in behavioural strategies of wild fishes is

important to marine fisheries management as any differences will provide information

on spatio-temporal dynamics of male-female distribution and abundance, and thus their

availability and catch rates (Sims et al., 2001, 2005). Should S. canicula (or any species

exhibiting similar segregation; for example the Port Jackson shark, H. portuskacksoni,

Mclaughlin & O’Gower, 1971) face population declines it would be prudent for

fisheries managers to consider their sex-specific behaviours and reasons for them. S.

canicula segregation has been suggested to be caused by male harassment and female

refuging (Sims et al., 2001, 2005) possibly driven partly by decreased female foraging

efficiency (Chapter 3). Males may prove more susceptible to fishing pressure

considering they inhabit open water throughout the day and night rather than seeking

refuge in rocky caves (Sims et al., 2001, 2005). Equally, it is important to understand

whether one sex is more vulnerable than the other due to foraging restricted to differing

depths (males, shallower; females, deeper, Sims et al., 2001, 2005). Furthermore, one

would assume it is especially crucial to prevent disruption to the briefer, more intense

forays undertaken by females (Chapter 3; Sims et al., 2001, 2005). The research in

Chapter 3 builds on current knowledge of sexual segregation among elasmobranchs by

demonstrating the implications of male harassment, female refuging and associated

intra-specific competitive release on foraging efficiency.
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6.4.2. Possible interactions between fish & anthropogenic E fields

With the threat of rising carbon emissions and dwindling finite resources

looming, deployment of offshore renewable energy developments (ORED) around the

world, and in particular the United Kingdom’s coast, is increasing (The Crown Estate,

2008). Wind farms are currently the most commonly implemented method, as other

technologies (such as wave and tidal) are still being developed. Arrays of cables are

used to transmit electricity between wind turbines and from turbine grids to the shore.

These cables are usually buried at shallow depths beneath the substrate to avoid

physical damage to them (by trawling for example), and are covered with protective

shielding which prevents direct emission of electric fields. However, recent modelling

(CMACS, 2003; Gill et al., 2005) demonstrated that despite insulation, alternating

current E fields are induced in the surrounding water owing to magnetic field leakage.

The fields were estimated to range from approximately 0.9 µV/cm at cable surfaces to

0.1 µV/cm eight metres from cables. The strengths of these artificial fields are similar to

many bioelectric fields produced by small marine animals (see Chapter 1) and are

within the range detectable by and attractive to elasmobranchs (Kalmijn, 1971; Tricas &

Sisneros, 2004). The presence of these fields has recently been confirmed (Gill,

personal communication).

There are nearly two dozen species of sharks and a similar number of rajiformes

that are either resident in or regular visitors to U.K. waters (Compagno, 1984; Vas,

1994; Compagno et al., 2005). The majority of these are benthic or near benthic species,

and many inhabit shallow sandy areas (Rogers et al., 1998; Rogers & Ellis, 2000) which

also happens to be the preferred substrate type for offshore wind farm installations.

Unsurprisingly, there is therefore mounting concern over potential interactions between
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ORED and elasmobranchs (Gill, 2005; Gill et al., 2005; Sutherland et al., 2008).

Indeed, even as long ago as the late seventies, damage to sonar arrays was attributed to

sharks via bite patterns (Johnson, 1978), and Kalmijn (1978) suggested such attacks

most likely arose due to E field emission resembling those of natural prey.

Whilst increasing our knowledge of the behaviour of a model, benthic, predatory

elasmobranch towards prey-type E fields, the findings from this study also allow

improved understanding of how elasmobranchs might respond to anthropogenic sources

of E field, such as those associated with ORED. The research detailed in Chapter 4

describes experiments in which elasmobranchs are offered a simultaneous choice

between bioelectric and anthropogenic E fields. The results demonstrate that S. canicula

are either unable to decipher between or show no preference for similar strength, natural

and artificial direct current E fields. It would therefore appear that, for whichever

reason, wild elasmobranchs are likely to respond equally to natural and artificial E fields

upon first encounter. In turn, this raises the question of whether these predators might

effectively waste time and energy “hunting” E fields associated with ORED whilst

searching for bioelectric fields associated with their prey. Over time, such a

consequence would ultimately increase effort expenditure whilst decreasing energy

gain. Subsequent reductions in somatic and gonadal growth, and therefore survival and

populations may potentially occur. Figure 30 explicitly illustrates how physical aspects

and environmental effects of cabling associated with ORED (1 & 2) may affect

individual elasmobranch life processes (3), which in turn may affect elasmobranch

populations (4).
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Figure 30. Flow diagram illustrating how ORED could potentially affect elasmobranchs
through confusion of E fields associated with ORED with prey bioelectric fields
(adapted from Fox et al., 2006). (1 = wind farm photograph, Vestas Wind Systems A/S, from www.owen.eru.rl.ac.u

k/; 2 = cross-sectional modelling of induced E field surrounding buried cable, adapted from CMACS, 2003; 3 & 4 = individual S.
canicula and school of Squalus acanthias photographs, © Andy Murch, from www.elasmodiver.com)
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However, it is important to consider if elasmobranchs may be able to adapt their

electroreceptive behaviour when repeatedly encountering an E field, dependent on the

field’s apparent profitability; i.e. whether food is gained from attacking an E field or

not. Chapter 5 details an investigation into whether elasmobranchs possess adaptive

flexibility, via cognition, with respect to electroreceptive foraging behaviour. S.

canicula rewarded for responding to E fields exhibited more intense foraging behaviour

towards E fields than those that were unrewarded. Furthermore, rewarded catsharks

rapidly improved their foraging efficiency towards E fields, whereas unrewarded

catsharks’ interest in E fields swiftly decreased. These findings suggest that, in the short

term (within 3 to 5 encounters) elasmobranchs would be capable of habituating and

thereby avoiding E fields associated with ORED and learning to focus more efficiently

upon actual prey bioelectric fields. In doing so they would be effectively maximising

net energy gain. This scenario would depend on their capacity to discriminate the E

fields present. If the equal number of responses to artificial and natural fields observed

during choice experiments (Chapter 4) arose because catsharks were able to distinguish

the fields, but showed no preference for either, learning and habituation would be

possible. However, if the catsharks were actually incapable of discriminating between

the fields, they may not be able to identify which fields related to previously rewarding

and unrewarding encounters without responding to both. Nevertheless, use of other

senses such as vision, olfaction and the mechano-sense, in addition to electroreception,

would most probably permit discrimination in the latter scenario and thus adaptive

flexibility would still be possible.

The findings from Chapter 5 also demonstrate that S. canicula possess a

reasonably short memory window with regard to foraging behaviour of between 12
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hours and 3 weeks. Learned and habituated behaviours towards E fields were not

continued after a three week experimental interval and behaviour levels were

independent of whether rewards were offered before or after the experimental interval.

These results suggest that elasmobranchs’ adaptations in electroreceptive responses

towards ORED E fields and prey bioelectric fields will likely be forgotten within a few

days or weeks. Hence, whilst the catsharks may be able to detect and avoid

anthropogenic E fields and focus foraging on prey over short time and small spatial

scales (e.g. within hours or days; within patches and between nearby patches), over long

time scales and large spatial scales (e.g. after weeks or months; between distant patches)

they are likely to respond to both types of E field equally. A trade-off would ensue, in

which the catsharks would effectively be reducing possible missed opportunities but

would also be expending time and energy upon non-rewarding foraging. The balance

between these two scenarios would ultimately dictate long term effects on individual

success and Darwinian fitness.

Renewable energy, including wind, is crucial to global efforts to minimise the

use of fossil fuels and release of carbon dioxide. Therefore widespread ORED

development should, and will, continue. Indeed, the installation of wind turbines to the

coastal, marine environment is likely to have positive, as well as negative,

environmental impacts (Gill, 2005). For example, elasmobranchs are likely to benefit

from improved prey availability and choice via increased biota abundance and diversity.

These increases may occur due to a) enhanced habitat heterogeneity arising from turbine

shafts, bases and scour protection and their subsequent colonisation, and b) locally

reduced fishing effort around wind farms allowing communities to flourish (Gill &
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Kimber, 2005; Figure 31). Furthermore, scour protection may offer ideal refuges for

segregating, female S. canicula.

However, there is a requirement to consider all ecological consequences of a

development; not least a human responsibility, but also legal requirements including

Environmental Impact Assessments (a European Union directive) and the Food and

Environmental Protection Act (U.K. Government licensing and monitoring

requirements). There is also an opportunity for cooperative management to attempt to

address issues relating to both the environment and the industries in question (Gill &

Kimber, 2005). Precautionary measures, during early stages of development, are far

more effective than reactionary measures, once full scale implementation is complete.

Despite increasing concerns over possible interactions between electrically sensitive

fish and ORED (Sutherland et al., 2008), Environmental Impact Assessments, designed

to identify possible effects of developments on the surrounding area based on available

information, have largely overlooked possible interactions between elasmobranchs and

ORED (Gill, 2005). Many have focused instead upon effects on birds, sea mammals and

the value of ocean front property.
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Figure 31. Flow diagram illustrating how ORED could potentially affect
elasmobranchs through increased prey abundance and diversity (adapted from Fox et
al., 2006). (1 & 2 = colonised turbine base photographs, © MarineSeen & CMACS, courtesy of NPower Renewables; 3 & 4 =

individual S. canicula and school of Squalus acanthias photographs, © Andy Murch, from www.elasmodiver.com)
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The previously discussed findings from this study offer valuable, novel

information with regards to how one group of electrically sensitive fish, the

elasmobranchs, may interact with ORED (Figure 32). The findings from Chapters 4 and

5 demonstrate how elasmobranchs interact with and chose between artificial and prey E

fields (Electroreceptive behaviour box; Figure 32). Considering these behavioural data

alongside information concerning ORED cabling from the industry and modelling and

measurements of induced E fields from technical reports (Specification box; Figure 32),

provides better understanding of how elasmobranchs may interact with ORED over

short and long time scales (Interaction oval; Figure 32). The information should

contribute to crucial baseline knowledge required by scientists, fisheries managers,

policy makers, conservationists and coastal developers to proceed with cooperative

coastal zone management (Cooperative initiatives oval; Figure 32). A good example of

this concept is illustrated by an incident in the mid eighties during which shark bites

were found to be causing costly power shortages along an AT&T, transatlantic, fibre-

optic cable (Marra, 1989; Chapter 1). Following an in depth investigation of the shark

species involved, it was concluded that, rather than raising the entire length of the cable

and improving protective shielding at great cost, only certain parts of the cable needed

to be protected owing to the habitat depths occupied by the sharks causing the problem.



Figure 32. Diagram illustrating the potential to combine knowledge concerning elasmobranch populations and ORED (1) gained from
elasmobranch behaviour research (including findings from this study) and ORED specification (level 2) to enable cooperative management
of mutual benefit (level 3) (adapted from Gill & Kimber, 2005; asterisks mark where information was gained from present study).
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6.5. Future work

The work undertaken during this study significantly increases knowledge of

elasmobranch electroreceptive behaviours and their ecological implications. As clear

from the previous section (6.4.), it also contains valuable information that may be of use

to fisheries and ORED managers. However, as previously highlighted in the thesis, the

behaviour and ecology of sharks, skates and rays (especially those associated with the

electric sense) are areas of marine biology that have received surprisingly little attention

considering the importance and appeal of these top predators. Whilst this study (and

similar recent investigations, e.g. Filer et al., 2008) is a step in the right direction,

considerable questions still remain concerning electroreceptive behaviour, some of

which are raised when considering the research in this thesis:

6.5.1. General

 There is an urgent requirement to more accurately measure electric fields associated

with different species (prey, predators, symbionts and conspecifics) with consistent

methods (see Chapters 1 & 4). The same applies to those E fields associated with

anthropogenic devices and developments (see Chapters 1, 4 & 5). Whilst difficult to

achieve, this would be extremely worthwhile as it would permit better

understanding of E fields in the marine environment and how electrically sensitive

organisms may interact with their electrical environment.

 It is important to determine whether findings from this study are species specific or

characteristic of a wider range of species. Thus, electroreceptive foraging behaviour

should be examined across a wider range of elasmobranch species to enable

comparison between alternative taxa and their respective ecologies. For example,

contrary to the findings relating to S. canicula in Chapter 3, foraging behaviour may
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be unaffected by the presence of the opposite sex among species in which sexual

conflict and segregation do not occur. Similarly, whilst male and female S. canicula

showed similar sensitivities to different E fields (Chapters 3 & 4), in species that

locate conspecifics by detecting their bioelectric fields or that have different diets

the sexes may exhibit differing sensitivities to different E fields. Furthermore,

investigation of a broader range of taxa would enable the questions of whether

benthic species are likely to possess more developed and acute electro-senses than

pelagic species (Chapter 4), and whether learning rates and memory windows vary

according to environmental heterogeneity (Chapter 5) to be addressed.

6.5.2. Male-female interactions

 It would be interesting to perform experiments similar to those documented in

Chapter 3, but with some habitat heterogeneity offering refuges added to arenas.

This would determine whether female activity levels and responses to E fields

decrease even further when in the presence of males as a result of being able to

avoid them more effectively. If so, this would strengthen the evidence of sexual

conflict affecting foraging behaviour and, in turn, being one of the causes of sexual

segregation in S. canicula.

 Another fascinating question raised by this study arises from the link between

Chapters 3 & 5; given that male harassment and subsequent female avoidance seem

to cause increased female foraging intensity, possibly via competitive release

(Chapter 3), one may also expect more rapid learning and habituation among

females. Theoretically, this would permit even more successful foraging during their

relatively brief forays from refuges (Sims et al., 2001; Sims et al., 2005).
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6.5.3. Choice

The novel methodology used during this study to examine preferences for

different E fields presented simultaneously (Chapter 4) could be utilised to:

 Determine whether the catsharks are, in actual fact, unable to distinguish between

similar artificial and natural E fields or whether they simply show no preference. In

doing so, the answer as to whether these elasmobranchs would be able to learn to

reduce wasted effort by avoiding “hunting” artificial E fields would become more

clear. This could be achieved by conditioning the catsharks; positively reinforcing

responses to one E field (e.g. by food reward) and negatively reinforcing responses

to the other E field (e.g. by shaking the electrodes).

 Determine whether the catsharks are able to differentiate between different natural

prey and therefore more precisely identify the level of control the electro-sense

permits on elasmobranch diet selection and therefore maximisation of energy intake.

This could be achieved by placing different prey animals and sizes under each agar

chamber (for example a crab and a small, teleost fish or a large and a small crab).

6.5.4. Cognitive ability

The novel method of rewarding the catsharks for responding to E fields (via the

hydraulically operated trap door, Chapter 5) could be utilised further in order to:

 Discover whether learning rates are faster when more than one elasmobranch co-

habits an experimental tank. Observation of conspecifics has been demonstrated to

improve foraging improvement via learning in some species of teleosts (Pitcher &

Magurran, 1983; Pitcher & House, 1987; Jain & Sahai, 1989; Ozbilgin & Glass,

2004).
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 Precisely identify the length of memory window in S. canicula by repeating learning

experiments after differing lengths of intervals (between 12 hours and 3 weeks) to

determine how long altered foraging behaviour is retained. This would allow the

memory of this species to be more accurately compared with other elasmobranch

species, and even with teleost fishes, birds and mammals.

6.6. Conclusion

The experimental work, analyses and discussions detailed within this study

significantly improve current understanding of elasmobranch electroreceptive foraging

behaviour with regards to sexual conflict, choice and cognitive ability. Such

information, when considered in conjunction with research covering other aspects of

elasmobranch behaviour, physiology and ecology, will better prepare scientists,

conservationists, fisheries managers and policy makers to confront elasmobranch

management concerns by improving previously poor baseline knowledge.
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