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. Abstract 

Microfluidic devices are popular tools in the biotechnology industry where 

they provide smaller reagent requirements, high speed of analysis and the possibility for 

automation.  

The aim of the project is to make a flexible biocompatible microfluidic 

platform adapted to different specific applications, mainly analytical and separations 

which parameters and configuration can be changed multiple times by changing 

corresponding computer programme. The current project has been supported by Vice 

Chancellor Trans-Campus Iinitiative. 

Channels and various design geometries can easily and rapidly be marked on ice 

with a CO2 laser. Within seconds a microchannel pattern of features as small as 100 µm 

were obtained. The channels and design cavity dimensions are governed by the ratio of 

laser power by the beam velocity. The channels created in ice stay open for a duration 

which depend on their geometry and therefore on the ratio of the laser beam power by 

the beam velocity. Microchannels were created with a power/velocity ratio between 0.4 

and 20 W/m. In this range of settings, the channels were 300 µm wide and stayed open 

for 2 s. After that they refreeze and the micropattern disappears in the ice bulk.  

Transport inside the channel can be obtained by the laser marking process alone. 

It is caused by the sheer surface tension within the melted area because of the 

temperature gradient within. The transport observed inside the channels was of the 

order of 1 mm/s in the laser experimental conditions (1.25 W and 100 mm/s). The 

temperature increase in the channel depends on the ratio of the laser power over 

velocity. High temperatures above 50°C can be achieved inside ice cavities. The 
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experimental data were compared to theoretical values of the cavities dimensions and 

temperatures.  

A valve adapted for a microfluidic in ice functioning upon freezing/melting 

promoted by laser scanning was tested. The opening of the area depends only on the 

power and the speed of the laser while the closing time by freezing depends on the 

cooler devices set temperature. A laser-assisted zone melting technique for the 

preconcentration of analytes demonstrated on Meldola’s Blue as a model analyte was 

performed. A travelling melting zone of 1.5 mm x 1.5 mm was scanned at 6% power 

and 150 mm/sec with 25 scans over an area of 7.5 mm x 1.5 mm. An increase in 

concentration in end part of the melting zone was monitored after three successive 

travels.  

Channels created in conductive frozen solution can be conductive if linked to an 

electrical power supply. Electrophoresic transport and electroseparation of Rhodamine 

B and Bromocresol Green in ice capillaries were demonstrated for analytes separation 

with a power supply (electrical conditions 100 V, 0.1 mA and 3 W).  

 

The experimental results were in agreement with theoretical modelling and 

provide proof for the feasibility of the proposed concept of reconfigurable microfluidic 

device developed in ice and supported by scanning computer-controlled IR laser. 
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1. Outline 

Microelectronic integrated circuit chips technology has been applied to 

miniaturised analysis devices for various biological applications since 1990. Research 

has developed state of the art micromachining and microelectromechanical fabrication 

technologies for efficient microfluidic devices. Those techniques however usually do 

not make reconfigurable devices while industrial design of new applications would 

beneficite from reconfigurability of the devices.  

The aim of the project is to make a flexible biocompatible microfluidic 

platform adapted to different specific applications which parameters and configuration 

can be changed multiple times by changing corresponding computer programme.  

In a novel approach, this microfluidic platform was made in ice with a software 

controlled CO2 laser. This thesis presents the work that has been done to develop this 

new, challenging but promising platform.  

 

The thesis starts with a review on conventional microfluidic devices and the 

techniques used for their fabrication and follows with discussion of ice properties 

which make them suitable for application in reconfigurable microfluidic devices. The 

experiments describe freezing and laser processing of ice during the marking of simple 

geometries in ice. The relation between the laser parameters and the dimensions of the 

created channels marked, the temperature reached inside the geometries and the time of 

opening and closing are presented. Work follows with study of the transport properties 

in the ice channels. 



 2

In chapter 2 complimentary technology related to the creation of valves in ice is 

presented. Here we describe valve functioning upon freezing/melting promoted by laser 

scanning. We also discuss in chapter 2 use of laser-assisted zone melting technique for 

the preconcentration of analytes. 

Freezing can be applied also for immobilisation of biological molecules and 

even cells which can be used for separation and development of assays.  

Chapter 4 presents the application of ice microfluidic platform in capillary 

electrophoresis. 
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2. Literature review 

2.1. Microfluidics 

2.1.1. Definition 

The demand for smaller and increasingly integrated microsystems, also called 

micro total analysis systems (µTAS) or “labs on a chip” has been growing over recent 

decades. Microfluidic devices are one large area of investigation of microsystems.  

By definition, microfluidic devices handle fluids in microlitre amounts. Typical 

dimensions are within 1 to 5 cm2 for a microfluidic chip, 10 to 100 mm for he width of 

a microchannel and 0.01 to 10 mL for volumes handled (Whitesides, 2006).  

2.1.2. Fluid flow in microfluid devices 

The fluid flow regime depends on the Reynolds number, Re, which is the ratio 

of the inertial forces to the viscous forces: 

µ
ρvd

=Re          Equation 1 

where ρ is the density of the fluid (kg/m3), v is the mean fluid velocity (m/s), d is the 

channel diameter and µ the dynamic viscosity of the channel (N.s/m2). When Re << 1, 

the flow is laminar and very smooth. When Re > 103, the flow is turbulent and mainly 

characterised by vortices (Kundu, 2007).  

Flow within microstructures typically have Reynolds numbers of 10-3 to 10-5 

and are characterised by a laminar flow. Contrary to fluid dynamic in larger scales 

devices, in microfluidic devices viscous forces dominate, turbulence is non-existent. 
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Surface tension can be an important driving force and mixing is slow and occurs 

through diffusion (Purcell, 1977). Mixing in short microchannels can be improved by 

various techniques such as through the application of external voltages (Aubry et al, 

2004), ultrasonic waves (Yang et al, 1999), by slanted walls at a T intersection 

(Johnson et al, 2002) and the separation of the main fluid stream into smaller ones, 

altered so as to offer increased boundary surfaces (Koch et al, 1998), among other 

techniques.  

2.1.3. Historical background of the development of microfluidic 

systems 

The history of microfluidic device technology was reviewed by Reyes et al. 

(2002). The first microfluidic device was a miniaturised gas chromatograph developed 

at Stanford University in 1975, which used integrated circuit processing technology. It 

consisted of a 5 cm diameter silicon wafer with an open-tubular capillary column, two 

sample injection valves and a thermal conductivity detector. This device was the first 

step towards smaller, lighter and more portable devices. This gas chromatograph was 

able to separate a simple mixture of compounds in a matter of seconds (Terry et al., 

1979). Despite its good performances and its small size, no further research on 

miniaturised gas chromatographs was initiated until the 90s. However researchers 

investigated and developed micropumps, microvalves and microchemical sensors. 

Progress in molecular biology also stimulated the development of capillary 

electrophoresis for the separation and analysis of DNA and proteins, as well as other 

macromolecule mixtures. T-junctions were also created in the late 80s as the first 

capillary injection tools.  
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In 1990, Manz et al. presented a miniaturised open-tubular liquid 

chromatograph on a silicon wafer. Manz is also the creator of the novel concept of the 

micro total analysis system (µTAS). A µTAS contains pre-treatment, separation and 

detection devices all on one chip. He widely promoted µTAS as offering many 

components within a single chip of reduced size and since the first µTAS, new 

microfabrication processes, separation, detection and analysis methods have been 

developed and have found new applications. 

2.1.4. Applications, advantages and disadvantages of microfluidic 

devices 

Microfluidic devices have been used in fundamental research as well as in wide 

practical applications in biomedical science, genomics, forensics, toxicology, 

immunology, environmental studies, chemistry or biochemistry). They can be used for 

rapid DNA sequencing (Woolley & Mathies, 1995), PCR (Waters et al. 1998), 

detection of pathogens (Abbott & Skaife, 2004) or environmental contaminants (Van 

den Berg et al., 1993), clinical analysis of blood (Lauks, 1998), sample preparation (Li 

& Harrisson, 1997), micro-scale organic synthesis (Konrad et al., 1997) or even in the 

development of biomimetic systems (Runyon et al., 2004), among other examples.  

Microfluidic devices have widespread applications because of their many 

benefits. They are small, light, portable, have low manufacturing, usage and disposal 

costs, analysis times are reduced, as are he consumption of  reagents and analytes, 

smaller sample volumes limit the exposure of the operators to biohazardous samples 

and higher separation efficiencies are usually achieved. In addition, physiological 

studies are now possible thanks to microfluidic devices because they can reproduce in 
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vivo capillaries sizes or microenvironment and allow studies which would be not 

otherwise be possible with normal scale devices, hence their wide applications in 

biochemistry, biology and medicine.  

Microfluidic devices present few disadvantages, however their size can actually 

present some difficulties. Detection can be become more challenging, the devices are 

susceptible of blockages from particles and they are more sensitive to the adsorption of 

species on the surface of the capillaries. 

2.1.5. Components of microfluidic devices 

In a µTAS, the microfluidic unit is connected to a sampling unit, a detector unit 

and an electronic unit. The main components of the microfluidic unit are injectors, 

channels, pumps, valves, switches, reactors and storage containers. 

Various types of valves and pumps are presented in the following sections. 

2.1.5.1. Valves 

As major fluid handling tools, valves are used in most microfluidic devices and 

have been the object of various studies. Micro valves offer various advantages over 

traditional valves: rapid response time, lower power consumption, smaller dead volume 

and improved fatigue properties (Gravesen et al., 1993).  

Van den Berg & Lammerink (1999) classified valves depending on the type and 

direction of the restriction made to the flow. In most valves the flow is stopped when a 

restriction is made to the channel. This restriction can either be perpendicular to the 

flow, parallel to the flow or a mixture of both. In a very different type of valve the flow 

is stopped by the formation of a frozen part inside the channel. The latter type does not 
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require a moving part and avoids any leakage around the valve, which can occur in 

micromachined valves. 

 Micromachined valves can also be segregated in two categories: passive valves 

(or check valves), which do not require mechanical actuation and active valves, which 

do. Cantilever valves, diaphragm valves, diffuser/nozzle valves are typical passive 

valve types. Actuation of active valves is generally piezoelectric, thermopneumatic, 

electrostatic or electromagnetic (Koch & Ewans, 2000).  

2.1.5.2. Micropumps 

Transport in microfluidic devices can either be achieved due to passive 

mechanisms such as surface tension, by utilising valves or through pumping (Laser & 

Santiago, 2004).  

Two kinds of micropumps have been developed: mechanical micropumps and 

non-mechanical or continuous flow micropumps. 

Most of the mechanical micropumps consist of a pressure chamber closed by a 

flexible diaphragm driven by an actuator and inlet and outlet valves. The fluid pumping 

process is generated by the 2-phase cycle of the moving diaphragm: during the supply 

phase of the pump cycle, fluid enters the pump chamber on underpressure through the 

inlet; during the pump phase, the fluid leaves the chamber on overpressure through the 

outlet valve. The inlet valve prevents unwanted flow in it’s the reverse direction, so that 

the output flow is unidirectional. The outlet flow is generated in a series of discrete 

pulses, the volume of which depend on the diaphragm stroke volume during the pump 

cycle (Wois, 2004).  
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Most inlets and outlets valves of mechanical pumps are check valves. However 

pumps without valves (sometimes called diffuser pumps) have also been developed 

(Olssen et al., 1995) to avoid the risk of valves becoming blocked by small particles, 

resulting in pumping failure. They use flow rectifying diffuser/nozzle elements, which 

create a unidirectional flow, as depicted in Figure 1. Valve-less pumps are not sensitive 

to valve blocking and allow pumping of fluids containing small particles.   

 
Figure 1: Principe of a valve-less diffuser pump. Diffuser/nozzle elements make 

the overall flow unidirectional (Olssen et al., 1995). 

 

There are four main types of actuation for mechanical micropumps. 

Piezoelectric actuation was used in the first micropump developed in the late 70s by 

Spencer (1978). But it was ten years later with Van Lintel et al. (1988) and Smits (1990) 

publications on piezoelectric actuations than research on micropumps really started. In 

piezoelectric actuation the valves and the pump diaphragm are coated with a 

piezoelectric material such as Lead Zirconate Titanate (PZT), which is readily available. 

Piezoelectric materials move when excited by an electrical current and induce the 

displacement of the pump diaphragm and valves. Piezoelectric actuation provides a 

comparatively high stroke volume and a fast mechanical response. However this 
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requires a high voltage (minimum 100V) and the mounting procedure of the 

piezoelectric materials on the valves and the diaphragm can be problematic.  

A second type of actuation, thermopneumatic actuation, was developed by Van 

de Pol et al. in 1990. The displacement of the pump diaphragm is generated by the 

extension of an air-filled chamber with an integrated resistive heater mounted on top of 

the diaphragm. The voltages used for thermopneumatic pumps are much lower than 

those used for piezoelectric actuation, making this pump much more adaptable to 

microfluidic devices containing electrochemical sensors.  

More recently an electrostatically actuated pump has been developed by 

Zengerle et al. (1995). It is constructed of a capacitor, consisting of an electrode 

mounted on the pump diaphragm, which is electrostatically attracted to a fixed counter 

electrode when high voltage is applied between the pair of electrodes. When the 

capacitor discharges, the diaphragm returns to its initial position. The capacitance 

between the pump diaphragm and a counterelectrode of the same diameter, d, separated 

by a distance s, is: 

s
dC

4

2επ
=         Equation 2 

Although the pump diaphragm typically bows during the pump operation, the 

generated force during electrostatic actuation is proportional to the square of the 

applied voltage and inversely proportional to the square of the distance between the 

electrodes. At the beginning of pump operation, when the electrodes are parallel, the 

electrostatic force between the two electrodes is: 

2
2

2
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where ε is the permittivity of the medium separating the electrodes and V the potential 

difference between them (Griffiths, 1999). Electrostatically actuated pumps can achieve 

a higher output frequency than piezoelectric and thermopneumatic actuated pumps, 

which results in a smoother flow. However they require high voltages (200V) and 

achieve small actuator strokes compared to piezoelectric and thermopneumatic pumps 

(Judy et al, 1991; Bourouina et al, 1997).  

Micropumps using electromagnetic actuation have also been made, although 

more rarely (Dario et al., 1995). A permanent magnet is attached to the pump 

diaphragm and is moved by an external coil, causing the pump diaphragm 

displacement. Voltage requirements are comparable to those of thermopneumatic 

actuators, however electromagnetic actuation offers a slightly faster mechanical 

response.  

 

A second type of micropump, which does not require mechanical moving parts, 

has been developed. Unlike mechanical pumps, continuous flow micropumps provide a 

steady output flow. Their use and performance can however be limited by the 

properties of the pumped fluid, such that, in most cases, gas transport is not possible.  

The mode of operation of electrohydrodynamic pumps relies on the interaction 

of electrostatic forces with ions in a dielectric fluid. The electric force, Fe, that results 

from an applied electric field E, is given by: 

⎥
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where q is the charge density, ε the fluid permittivity, ρ the fluid density, T the fluid 

temperature and P the polarization vector (Melcher, 1981). One type of 
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electrohydrodynamic (EHD) micropump was developed by Richter et al., in 1991. It 

consisted of two gold electrodes mounted on silicon chips placed into a channel. Ions 

were injected from the electrodes to the fluid when a high voltage was applied between 

the electrodes. The ions migrated in the electric field, which induced fluid transport. 

The mode of operation of this type of pump relies on the injection of ions, which 

generally takes place at a metal/liquid interface and involves the electrochemical 

formation and movement of charged particles. Another type of EHD pump (see Figure 

2) relies on inductive pumping (Bart et al., 1990), where charges are induced at a fluid-

fluid or fluid-solid boundary layer in the electric field, due to a non-uniformity in the 

electrical conductivity of the fluid. The latter can be caused by a non-uniform 

temperature distribution or the non-homogeneity of the fluid, e.g. two phase fluid.  

 

Figure 2: EHD pump driven by induction pumping relying on a conductivity 

gradient and an electric field.  
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The use of EHD pumps is strictly limited by the ionisation process (which 

depends on the electrode composition) the fluid electrical properties and the voltage 

applied. 

Electroosmotic force micropumps rely on the presence of immobile surface 

charges in glass capillaries. At neutral pH, the surface of glass (silicate groups) is 

negatively charged and attracts mobile, positively-charged counterions, present in the 

fluid, forming an electrical double layer. The thickness of the double layer is the Debye 

shielding length, λD of the fluid, given by: 

∑ ∞

=

i
ii

D nzq
kT

,
2

ελ        Equation 5 

where ε is the permittivity of the fluid, T the temperature of the fluid, zi the valence 

number, n the number density of the ionic species, i, in solution, k the Boltzmann 

constant and q the electron charge. When an electric field is applied parallel to the 

channels a portion of the mobile counterions in the liquid phase of the electric double 

layer can be set into motion and induce the overall fluid flow (Adamson & Gast, 1997). 

During electroosmotic pumping, dispersion is minimised and the fluid typically shows 

a very flat velocity profile (Scales & Tail, 2004). Basic electroosmotic pumps consist of 

microchannels and electrodes submerged within reservoirs located at the ends of the 

channels (Dasgupta & Liu, 1994; McKnight et al., 2001).  
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Figure 3: Electoosmotic flow: an externally applied electrical field causes motion 

of counter ions accumulated at the negatively-charged channel surface, dragging 

the bulk fluid.  

2.1.6. Materials used in microsystems fabrication 

A wide range of materials have been used for the fabrication of microfluidic 

systems (Qin et al., 1999). The first microfluidic devices were made in silicon and glass, 

since microfluidics fabrication techniques derived from technology used within the 

microelectronics industry (Manz et al, 1991). Silicon is chemically and thermally stable 

and channels can be fabricated in this material by etching or photolithography. 

However silcon wafers are expensive, brittle and opaque in the UV and visible regions 

and is therefore not suitable for devices relying on optical sensors for detection (Shoji 

& Eshasi, 1994). Glass was an early replacement for silicon, being less expensive, 

transparent, negatively charged, and a good support for electroosmotic flow (Yao et al., 

2003). Glass wafers are available in different composition and sizes. Fused silica 

wafers, made of pure amorphous silicon dioxide, can withstand high temperatures and 

have very low autofluoresence. Borosilicate wafers (such as Pyrex) are less expensive 
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than fused silica but cannot be exposed to high temperatures and have higher 

autofluoresence (Stjernstrom & Roeraade, 1998). Both silicon and glass processing 

require high voltages and temperatures as well as a cleanroom environment. 

Manufacturers of commercial mass production microfluidic devices looked for easier 

and cheaper alternatives.  

Polymers are inexpensive which allows for the manufacture of disposable 

devices. They also offer interesting properties for microfluidic devices. Rigid 

elastomeric materials have good structural rigidity and strength and enable the 

fabrication of small and rigid microfluidic devices. Channels can be formed in 

polymers by moulding and various soft lithography processes and sealing of discrete 

parts can be achieved thermally or with adhesives. However, their surface chemistry is 

more complex than that of silicon or glass. They are often incompatible with organic 

solvents and generally cannot be used at high temperatures (McDonald, 2000). The 

most popular polymers in which microfluidics can be fabricated are 

poly(methylmethacrylate) (Schulz et al., 2000) polycarbonate (Shen & Lin, 2002) and 

poly(dimethylsiloxane) (PDMS) (McDonald et al., 2000). PDMS can be easily and 

quickly moulded into a microfluidic device but suffers from limitations due to its 

chemistry (organic solvents and small organic analytes are not compatible with PDMS 

devices and can cause the polymer to dissolve), its elasticity (certain geometries cannot 

be maintained in PDMS), its low thermal conductivity (leading to heating in the device 

and high permeability to gases. PDMS is still ideal for a range of applications where the 

device needs to be bent or sealed to other materials and is also ideal for uses with 

aqueous fluids. Other interesting compounds are Teflon®-based polymers. They are 
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inert to most solvents and chemicals and offer great potential for biomedical 

microfluidics when used with corrosive fluids (Lee et al., 1998). 

2.1.7. Techniques used to fabricate microfluidics 

The first fabrication processes used for the manufacture of microfluidic devices 

derived from processes used in the microelectronics industry: the devices were 

fabricated by photolithography or by etching in silicon and glass. These techniques 

were expensive and time-consuming and were soon replaced by cheaper and quicker 

methods, such as laser ablation or injection moulding and soft lithography, which were 

made possible by the use of new materials such as polymers. The speed of fabrication, 

the size of the microfluidic device, its geometry and the components needing to be 

fabricated are the main aspects to be considered when choosing one or other technique. 

2.1.7.1. Photolithography 

The first microfluidic devices were fabricated by photolithography (Moreau, 

1988). Developed for microelecronics, this method can be applied on silicon and glass 

to fabricate networks of channels. It consists of the exposure, through a suitable mask, 

of a surface coated with a sensitive photoresist, to ultraviolet light. The photoresist is 

modified by exposure to light and typically becomes soluble in a developer, whereas 

unexposed regions remain insoluble (negative-working resist). The developed regions 

are washed away leaving the pattern of the mask on the surface, as shown in Figure 4. 

This method enables good control over the shape and size of the patterns, which can be 

created simultaneously over an entire surface. Patterns smaller than 100 nm however 
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cannot be formed. Photolithography also requires planar surfaces and extremely clean 

operating conditions (Brittain et al., 1998).  

 

Figure 4: The photolithographic process 

2.1.7.2. Etching techniques 

Etching techniques derived from microelectronics technologies have also been 

used to fabricate microfluidics. They consist of exposing the surface, delimited by a 

pattern, to an etching solution (wet etching) or to high-energy ions (dry etching). 

Etching can be isotropic or anisotropic as shown in Figure 5. Isotropic etching etches in 

all directions equally; leading to undercutting and a rounded etch profile. Anisotropic 

etching is directional and is more common in dry etching. 
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Figure 5: Isotropic etching (left) and anisotropic etching (right) 

 

Wet etching requires minimal equipment. Silicon wet etching can be performed 

with solutions of hydrofluoric acid and nitric acid which results in an isotropic etch 

(Robbins & Schawarz, 1960) or with solutions of potassium hydroxide, 

tetramethylammonium hydroxide and ethylenediaminepyrocatechol, giving an 

anisotropic etch (Sze, 1988).  

Dry etching is a more expensive technique but can give very deep and narrow 

structures. Xenon difluoride is a dry isotropic etchant of silicon (Chu et al, 1997). 

2.1.7.3. Soft lithography  

Soft lithography techniques were developed by Xia & Whitesides (1998) to 

allow the fabrication for smaller patterns These techniques rely on the use of 

elastomeric pattern-transfer elements, usually made of PDMS, hence their collective 

name of "soft lithography" methods. Unlike photolithography, these methods do not 

require a clean room when producing most patterns and can be used on curved surfaces 

(Brittain et al., 1998). The next section gives a brief description of some soft 

lithography techniques.  

substrate substrate 

  mask 
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Kim et al. (1995) developed micromoulding in capillaries, where a pattern-

transfer element, fabricated in PDMS and containing a network of capillaries, was 

placed on the substrate and a polymeric precursor was injected at one end of the 

microchannels. The precursor was drawn into the channels by capillary action and then 

cured by heating or by exposure to UV radiation. The pattern-transfer element was then 

removed, leaving the newly-formed polymeric structure on the substrate, as shown in 

Figure 6. 

 

 

Figure 6: Micromoulding in capillaries. A PDMS mould is placed on a substrate 

forming a network of microchannels in which a precursor in injected. After curing 

and removal of the PDMS, the microchannel structure is created on the substrate. 

Microtransfer moulding was first performed by Zhao et al., .1996. The 

technique consists in pouring a polymeric precursor into the pattern-transfer element, 

which is then placed on top of the substrate. The prepolymer is cured and when the 

pattern-transfer element is removed the polymeric structure remains on the substrate 

(see Figure 7). 

 

Substrate 

PDMS Injection of a precursor in the microchannels 

After curing
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Figure 7: Microtransfer moulding: a prepolymer is poured into a PDMS mould 

which is then placed on top of a substrate. After curing and removal of the PDMS 

a microchannel structure remains on the substrate.  

 

In solvent-assisted micromoulding (King et al., 1995), the substrate surface is 

coated with a layer of polymer, while the pattern-transfer element is coated with a 

solvent which dissolves the polymer when the pattern-transfer element is placed on top 

of the substrate. The dissolved polymer flows and fills the pattern-transfer element. The 

pattern-transfer element is then removed, leaving the pattern on the substrate.  

                        Substrate 

PDMS Prepolymer  

Cured polymer 
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Figure 8: Solvent assisted micromoulding: A thin film of polymer is coated onto a 

substrate. A solvent-coated PDMS mould is then brought into contact with the 

polymer. After dissolution of the polymer by the solvent and removal of the mould, 

the microstructure is created in the polymer as a raised pattern. 

 

In replica moulding (Xia et al, 1996), the pattern-transfer element is filled with 

a polymeric precursor such as polyurethane, which is cured by heating or irradiation 

with UV light and then separated from the mould. This results in the formation of a 

polymeric replica of the PDMS mould (see Figure 9).  
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Figure 9: Replica moulding: a PDMS mould is filled with a polymeric precursor. 

After curing the polymer is separated from the mould showing the microchannel 

structure. 

2.1.7.4. Hot embossing 

Hot embossing is a low-cost technique that imprints microstructures in plastic 

materials. This is the widespread and commercially used technique to make CDs. It 

consists of pressing a heated thermoplastic film under pressure firmly into a mould in 

an evacuated chamber. The plastic fills the mould and replicates the microstructures. 

The set-up is then cooled and the plastic material is removed from the mould. Low flow 

rates ensure the replication of features as small as 25 nm (Heckele et al., 1998).  

2.1.7.5. Injection moulding 

The macroscopic injection moulding process can also be adapted to the 

manufacture of microfluidic devices. This consists of injecting a polymer inside a 

mould cavity which is heated above the glass transition temperature of the polymer. 

The polymer fills the mould cavity, is cooled down and then removed from the mould. 

This technique can generate microstructures with features as small as 0.5 µm. It can 

PDMS 

Polyurethane 

Polyurethane 
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also create fibre-reinforced metal components and those made of metal-ceramic 

compounds (Heckele & Schomburg, 2004).  

2.1.7.6. Laser ablation 

Laser ablation refers to the removal of material induced by a high energy laser 

beam. The phenomenon was first observed in 1973 (Emmony et al.). The beam breaks 

the covalent bonds between the substrate molecules and produces a shock wave which 

removes the decomposed materials (Roberts et al., 1997). The emissions of the laser 

beam emitted can range from deep ultraviolet, as in the case of Excimer lasers, the 

wavelength range of which spans from 150 to 330 nm, to the infrared, as exemplified 

by the CO2 laser, operating at a of wavelength 10600 nm. Polymers can also be doped 

with dyes that exhibit a peak in absorbance at the laser beam wavelength to enhance the 

efficiency of the ablation process. 

Laser ablation is a rapid process. Microfluidic devices are created by tracking 

the focused laser beam over the substrate. This can be achieved either with a fixed laser 

and the substrate mounted on a x-y moving stage or with a fixed substrate and a x-y 

moving laser beam. The laser contains steering and imaging optics, such as mirrors, 

apertures and focusing lens, designed to direct and focus the beam onto the substrate 

surface. Dimensions as small as 6 µm, can be created in polymers, glass, ceramics and 

metal. The main parameters which determine the dimensions of the feature of the 

microfluidicdevice that can be created depend on the laser fluence (energy per unit 

area), the size of the focused laser spot, the scanning velocity, the number of repetitions 

and the nature of the substrate. If the laser fluence is too low, no ablation will occur. 

The number of repetitions and the scanning velocity affect the roughness and the depth 
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of the ablated area. However the depth obtained is limited by the depth of focus of the 

laser, since the laser fluence decreases when the laser beam is out of focus. When 

deeper structures are needed, the focus should be readjusted between repetitions 

(Waddell, 2006).  

2.2. Ordinary water ice 

2.2.1. Water 

Life on earth depends on the unusual properties of water (Luck, 1985). In total 

at least 41 anomalies of water have been named such as: non-ideal vapour, high 

dielectric constant, and changes in various properties between hot and cold water, a low 

density (temperature of maximum density is 277 K) and the actual structures of water 

and ice (Chaplin, 2001).  

2.2.2. Hydrogen bonding and proton ordering. 

The hydrogen atoms in a water molecule are about 108° apart. The positively 

charged portion of one water molecule is attracted to the negatively charged portion of 

a neighbour. This attraction, termed hydrogen bonding, gives water many of its unique 

properties. 

There are two hypothetical networks of water molecules (see Figure 10). On the 

left hand side, the bonds are proton-ordered: hydrogen atoms are bonded to oxygen 

atoms in a regular pattern. On the right hand side, the bonds are proton-disordered: 

hydrogen atoms are bonded to oxygen atoms in a random fashion, although there is a 

hydrogen atom between every pair of adjacent oxygen atoms. Proton-ordered networks 

form at temperatures below -80 to -1000C. 
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Figure 10: Proton-ordered (left) and proton-disordered (right) networks of water 

molecules. Hydrogen = blue), oxygen = red, bonds within a water molecule = violet, 

hydrogen bonds = light blue.  

2.2.3. Water crystallisation 

Freezing of water is a crystallisation process (Leloux, 1999). It begins with the 

generation of a sufficient driving force enabling nucleation of molecules in order to 

create a crystal lattice. Further addition of molecules or coagulation/aggregation with 

other nuclei of crystal lattice occurs during respectively secondary nucleation and 

crystal growth.  

Supersaturation is a thermodynamically metastable state of a liquid being 

supercooled, or cooled below its freezing point. It can create a settling of molecular 

clusters either heavier or lighter than the surrounding solution and a reduction in 

viscosity and/or diffusivity, leading to the formation of clusters. The freezing point of 

ice is decreased if small solutes are present in solution at high concentration. If 

macromolecules are added in solution, many small ice crystal are created instead of 

macroscopic ice crystals 
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The structure of ice is a loose three-dimensional array of regular tetrahedra with 

oxygen in the centre of each tetrahedron and hydrogen atoms at the four corners. The 

hydrogen atoms are not exactly midway between the oxygen atoms (Pauling, 1935). 

Roughly one sixth of the hydrogen bonds of ice are broken when ice melts, which 

explain why the structure of ice at 0 °C occupies a larger volume than the same mass of 

liquid water at that temperature. 

Ice exhibits a large number of polymorphs depending on the temperature and 

pressure as shown in Figure 11. Ice on earth is Ice I, which exists in two forms: 

hexagonal ice and cubic ice. 

 

Figure 11: Phase diagram showing the various forms of ice existing over a range of 

pressures and temperatures.  
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2.2.4. Hexagonal Ice (Ice Ih) 

At 0.1 MPa and 273 K water crystallises into a hexagonal polymorph of ice Ih, 

which is the form of all natural snow and ice on earth, as evidenced by the six-fold 

symmetry in snow flakes. Ice Ih has tetrahedrally coordinated water molecules and 

disordered protons. The H2O molecular dimensions are unlikely to be distorted by the 

static or dynamical disorder in the ice structure (Katrusiak, 1996). 

Ordinary ice consists of two interpenetrating lattices with a hexagonal close 

packed stacking arrangement.  

The structure of ice Ih is shown in Figure 13. The Ih structure has a relatively 

low density, with a distance between the oxygen atoms of 4.5 Å. 

 

 

Figure 12: The structure of hexagonal ice, Ih. The sets of layers are numbered 1 

and 2 with darker colours towards the rear of the structure. Red lines show O-H-

O links.  
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Figure 13: Top view of the Ice Ih structure. Red dots on some atoms mark a B 

layer with O-H-O links pointing up to the next B layer. Other atoms are in an A 

layer and have O-H-O links pointing down to the next A layer. 

2.2.5. Cubic ice (Ice Ic) 

Cubic ice is a metastable form of ice that can be formed, by condensation of 

water vapour, at ambient pressure only at very low temperature (less than -80°C) or by 

reducing the pressure. In cubic ice, oxygen atoms have a cubic packing arrangement. 

Figure 14 shows the structure of the cubic ice. 
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Figure 14: Cubic ice structure  

Ice Ic has almost exactly the same density as Ice Ih. Ice Ih does not change to 

Ice Ic at very low temperatures but Ice Ic readily reverts to Ice Ih when warmed above -

80°C. Ice Ic may form in extremely high clouds and some halo features not readily 

explainable in terms of hexagonal ice have been attributed to Ice Ic. The Ic structure is 

more dense (with the distances between the oxygen atoms about 3.4 Å) 

2.3. Aim and objectives 

The aim of this thesis is to demonstrate that a microfluidic device can be fabricated 

in ice with a laser.  

The objectives of the thesis are: firstly to study the laser-ice interactions during the 

marking of channels in ice (section 3); secondly to show that microchannels made in 

ice can be effective components of a microfluidic device (section 4) and finally to 

investigate the applications of microfluidic channels created in ice (section 5). 
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3. Marking of open channels in ice with a CO2 laser 

3.1. Laser uses on ice in the literature 

The beginning of The Empire Strikes Back, episode V of Star Wars, released in 

1980, featured a laser cannon that carved into ice. What was only the fruit of the 

imagination of George Lucas became reality only a decade later. 

The first laser (light amplification by stimulated emission of radiation) was 

created in the late 50s out of a ruby crystal (Maiman, 1960). A Laser is a coherent, 

convergent and monochromatic beam of electromagnetic radiation with wavelength 

ranging from UV to Infrared (IR). Since the 60s lasers have found a wide range of 

applications in engineering (Ion, 2005), medicine (Wolbarsht, 1991) and electronics 

(Steen, 2005).  

One of its applications is laser ablation. This consists of the removal of material 

from a surface with a laser beam of high power by vaporising the material. It was first 

observed by Guo et al. in 1995 on a block of graphite. Laser ablation is now a common 

technique used for the removal of paints or coatings (McLean et al., 1997).  

In 1973, a CO2 laser of 50 W was used to cut ice of up to 3 cm width. The cuts 

had an average width of 30 mm (Clark et al.) however this idea was not explored until 

the 90s. In 1991, samples for ice core analysis were cut quickly and cleanly with a CO2 

laser of 15 W (Zeller et al.). The cut were 2 mm wide. 

In parallel, patents were filled in North America for laser induced ice removal 

from surfaces such as plane wings (Vega & Vega, 1990) or electrical power lines or 

building (Long, 1999). The CO2 laser was preferred for both applications because the 
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beam emitted would vaporize ice without affecting the surface on which ice was found 

since the CO2 laser beam penetration depth is only up to 2 mm. Also, the high 

absorption coefficient if ice at the laser wavelength (10650 nm) (Bass, 1995) makes the 

device energy efficient, . 

In 2001, laser ablation was a new tool for investigating ice cores. The laser 

enabled the vaporisation of small cavities in ice, which offered a lower risk of 

contamination and better spatial resolution compared to conventional methods 

(Reinhardt et al.). The laser operated at a wavelength in the UV and its beam could be 

focused to small spots with the radiation being absorbed strongly within the material.  

In 2006, Jennison & Gibala presented a laser ice etching system using a CO2 

laser. This system aimed to make ice cubes as well as to mark designs on the ice cubes 

formed. The formation of the design was due to explosive evaporation: when the laser 

beam contacted the surface of the ice cube, ice was immediately vapourised, leaving the 

mark of the design on the ice. 

The idea of making microfluidic devices in ice with a CO2 laser, investigated in 

this thesis, relies on the same principle as laser ablation. The laser beam is used as a 

tool to melt or vaporise a predetermined design area.  

The following chapter presents the method of marking microchannels in ice 

with a CO2 laser, the optimum laser set up for this application and experimental results 

showing how the channels parameters are affected by the laser power and beam 

velocity.  
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3.2. Laser-ice interactions 

The literature on laser processing is very abundant for materials such as metals, 

polymers or ceramics but does not exist for ice. This section presents a simple model of 

the laser-ice interactions inspired by the existing models for others materials, which 

takes into account the properties of ice and the experimental observations.  

In all the existing models on laser processing, the thermal properties of the 

materials interacting with the laser are assumed to be constant with temperature. This 

assumption, for the purpose of simplification of the model, is also made here. Models 

also assume that the energy provided by the laser beam is entirely used for the melting 

or vaporisation process; possible heat conduction in the material is neglected (Steen, 

2005). For this assumption to be valid the penetration depth of the laser should be 

similar to or larger than the thermal diffusivity depth √(αt) where α is the thermal 

diffusivity (α = k/ρcp) and t is the time of scanning of a single microvector (t = db/v) 

where db is the beam diameter and v the beam velocity (Duley, 2004). This condition 

shows that the smallest dimensions achievable depend on the material properties and 

the beam velocity. This assumption was also made in the laser/ice model presented 

below and will be verified in the experimental section.  

The main parameters considered where the laser is concerned were the power 

and the marking velocity. In the first section, the interaction of the laser with an 

uncovered ice surface (when the channels and patterns created in ice are open) is 

considered. In the second section, the model is extended to the situation where a cover 

glass covers the ice surface (closed channels). 
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3.2.1. Marking of open channels 

3.2.1.1. The laser beam 

The reflectivity R of the material is the ratio between the reflected intensity and 

the irradiated intensity, the transmissivity T is the ratio between the transmitted 

intensity by the irradiated intensity and the absorptivity A is the ratio between the 

absorbed intensity and the irradiated intensity (see Figure 19). A, R and T are related by 

the equation:  

1=++ TRA         Equation 6 

 The transmissivity is also related to the absorption coefficient, a, of the 

materials by the Bert-Lambert law: 
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        Equation 7 

where d is the thickness of the material. 
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Figure 15: Reflection, absorption and transmission of the laser irradiation by a 

material. A part of the incident radiation is reflected from the surface of the 

material, a part is absorbed by the material and the remainder passes through the 

material as the transmitted beam. 

 

For opaque materials, no light is transmitted. The absorption coefficient, a, is 

high and T = 0, therefore the absorptivity of the material A is given by: 

RA −= 1         Equation 8 

At 10650 nm, ice at 100 K has a reflectivity of 0.5% and an absorption 

coefficient of 2.0 × 102 cm-1 (Bertie et al., 1968) and water has a reflectivity of 0.8% 

(Irvine & Pollack, 1968) and an absorption coefficient of 7.0 × 102 cm-1(Brass, 1995). 

The very small reflectivity and large absorption coefficient of water and ice means that 

A ≈ 1. All the energy of the laser is absorbed by ice and water.  

Irradiation

Reflected radiation 

Absorbed radiation 

Transmitted radiation 
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3.2.1.2. Relation between the laser intensity and the melted cross-

sectional area of a channel 

The energy required to melt a design in one scan is related to the power of the 

laser beam as follows: 

t
QW =         Equation 9 

where W is the power, Q the energy and t the time of scanning. 

The threshold power P* is the limit value below which melting does not occur 

was expressed in Duley (1999) as: 

)( 0
* TTkdP mb −= π        Equation 10 

where k is the thermal conductivity of ice, db the beam diameter, Tm the melting 

temperature and T0 the initial ice temperature. With db = 118 µm, Tm-T0 = 6°C, k= 2.26 

W/mK, the threshold power has a value of 0.025 W. A very small laser power can melt 

the ice. 

The total heat used to melt the design created in ice is given by: 

)( 21 TcTcVQ psolutionpicedesignice ∆++∆= λρ     Equation 11 

where ρice is the ice density, Vdesign  is the volume of the design in ice, λ is the latent heat 

of fusion, cpice and cpsolution  are respectively the ice and solution heat capacity and ∆T1 

and ∆T2 are respectively the temperature of heating in ice and in solution. The 

temperature of fusion of ice is 00C, ∆T1 equals to –Tice and ∆T2 equals to Twater, the 

final temperature of the melted solution.  

In the applications of a CO2 laser on ice described in section 3, the laser 

vaporised the ice. For microfluidic applications, channels should not to be created by 
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vaporisation but by melting of the channel contents which would then allow a 

continuous flow to occur inside them. Therefore Twater should not exceed 1000C. 

When a linear object is marked by the laser (see Figure 16), the time of marking 

is the ratio between the length ldesign of the object and the beam velocity. After 

substituting Q and t, equation 9 becomes: 

( )21 TcTcv
l
V

W psolutionpiceice
design

design ∆++∆= λρ     Equation 12 

where the ratios Vdesign by ldesign equals to the cross sectional area melted in ice Adesign: 

design
design

design A
l
V

=                    Equation 13 

When a filled object is marked by the laser (see Figure 16), the lines scanned by 

the laser are scanned at velocity v while the galvanometer moves from one line to the 

next with the velocity v’ independent of v. The time of scanning can be approximated 

to (v + v’) × ldesign. When the marking velocity is chosen such as v = v’, the time of 

marking was 2vldesign.  The relation between the power of the laser and the velocity of 

the beam for a filled object verifies equation 12 with a coefficient 1/2. However, the 

beam path ldesign can be difficult to estimate for certain object geometries and since the 

time of marking can be easily measured, equation 9 should be applied. 
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Figure 16: Left: marking of a linear object. The laser follows the contour of the 

object. Right: marking of a filled object. The laser follows lines inside the object. 

Arrows show the direction of the laser. 

 

The following equation shows that the ratio of the power of the laser by the 

beam velocity is constant for a given design. This ratio is the laser intensity I: 

)( 21 TcTcA
l

Q
v

WI psolutionpiceicedesign
design

∆++∆=== λρ   Equation 14 

In different models, the cross section of a cut by the laser was either modelled 

as rectangular (Zhou & Mahdavian, 2003) or circular (Ion, 2005). Experiments in ice 

showed that the widths of channels varied with the laser beam power and the velocity, 

the cross-sectional area of the channel created around the point of the beam where it 

hits the ice surface was here modelled as semi-circular as shown in Figure 17 and in 

cross section in Figure 18.  



 37

 

Figure 17: Schematic view of the marking of a channel on ice. The moving laser 

beam heats the ice creating a channel. 

 

Figure 18: Cross sectional area of a channel marked in ice with the laser beam 
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The melted channel has a radius rchannel and is related to the laser intensity as 

follows: 

  
)(

2

21 TcTc
Ir

psolutionpiceice
channel ∆++∆

=
λπρ

    Equation 15 

Most of the experiments were designed in frozen water or highly diluted 

solutions. For ice/water, cpice = 2.1 KJ/KgK, λ = 334 KJ/Kg and cpsolution = 4.2 KJ/KgK. 

Since Tice = -60C, the heat term coming from the ice heat capacity can be neglected. 

When marking channel the temperature increase recorded was below 100C and the term 

coming from the heat capacity of water can also be neglected. The latent heat is the 

most significant term of heat in the previous equation which can be simplified to:  

λπρ ice
channel

Ir 2
=        Equation 16 

3.2.1.3. Temperature inside a channel after a single scan 

The temperature profile in a material after a single scan was derived by Ashby 

and Easterling in 1982. The peak temperature after a single scan is reached at a point of 

a distance r from the laser beam at a time: 

α4

2rt =           Equation 17 

where α is the thermal diffusivity.  

For thick materials, in which the thickness is larger than the diffusivity depth, the 

difference between the value of the peak temperature and the initial temperatures T0 is 

given by the following equation:  

2

2
rc

I
e

TT
p

op ρπ
=−         Equation 18 
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After scanning, the cooling of the material at a distance r from the laser beam 

with time is given by: 

t
r
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ITT α
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2

2
−

=−         Equation 19 

For thin materials, in which the thickness d is smaller than the diffusivity depth, 

the peak temperature and the cooling equations are:  
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3.2.1.4. Temperature inside a channel after repeated scanning 

When n scans are repeated at a time intervals τ, such as τ > r2/4α, the equations 

become: 

For thick materials:  
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And for thin materials:  
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3.2.1.5. Maximum temperature inside the channel 

When scanning is continued with constant laser power and beam velocity, the 

heat flow becomes steady and the temperature reaches a maximum value. The 

expression of maximum temperature reached inside a solid heated by a point source 

moving at a constant speed v was derived by Rosenthal (1946) as follow: 

p
ice

p
ice cA

IT
vcA

WTT
ρρ

+=+=max      Equation 26 

where A is the heated area. When the heated area is a channel of length l and radius r, 

the area A = 2lr. 

3.2.1.6. Evaporation of the channel content 

For high laser intensities, the design of the channel in ice is achieved by 

evaporation instead of melting. Evaporation can happened after a single scan or after 

repeated scanning. The critical value of the intensity at which the ice will sublime can 

be found using the temperature expressions given above. 

Also the energy required to sublime a volume Vdesign in ice is:  

)( 21 vpsolutionpicedesignice TcTcVQ λλρ +∆++∆=                Equation 27 

where λv is the latent heat of vaporisation. 

For water, as earlier the ice heat capacities term can be neglected, however the 

water heat capacities cannot since the temperature increase in now equal to or exceeds 

100°C.  

The relation between the laser intensity and the radius of the evaporated channel 

of radius r created by one scan is: 
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2

2 vpsolutionice Tc
Ir

λλπρ +∆+
=      Equation 28 

3.2.1.7. Keeping the channel open 

 After the design is marked on the ice surface, water cools down and refreezes 

unless the laser keeps scanning through the design at regular intervals. Freezing of 

samples is explained in section 3.3.1. The freezing of channels follows the same 

process with the only difference being that the geometry of the freezing area is semi-

cylindrical with radius r. The first step is the cooling of the channel to 0°C and the 

second step is the solidification of water.  

The cooling time has been estimated in the literature (Gurney & Lurie, 1923) in 

accordance with the temperature of the surrounding ice and the initial temperature of 

the melted ice. 

Then the time of freezing of the cooled solution follows the Stefan solution for a 

cylinder of radius r as: 

2

2
r

Tk
t

∆
=

λρ         Equation 29 

3.2.1.8. Transport of liquid inside open channels 

Transport phenomena inside the area melted by the laser beam were observed in 

metal laser welding (Hawkes et al., 1983). Various forces created during laser welding 

act on the melted area (Figure 19). The flow of the melted area is primarily driven by a 

surface tension force resulting from the variation of surface tension with temperature.  
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Figure 19: Forces acting on the melted area created by the laser beam 

(Steen, 2005). 

 

The laser beam causes a thermal gradient in the melted area, which then 

undergoes a surface shear stress (dσ/dx) where σ is the surface tensions as follows 

(Steen, 2005): 

x
T

Tx δ
δ

δ
δσ

δ
δσ

=         Equation 30 

The sheer stress τ due to viscosity acts in the opposite direction and is given by: 

dy
dvητ =         Equation 31 

where η is the viscosity coefficient and dv/dy the velocity gradient perpendicular to the 

flow direction.  

The gravitational pressure acting on a channel of height h is the product: 

Laser beam 

Photons and vapour pressure 

Direction of scanning 

gravity 

Surface tension 

viscosity Melted area 
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ghPg ρ=         Equation 32 

where ρ is the liquid density, g the gravitational acceleration of 9.8 m/s and h the height 

of the channel. 

3.2.2. Marking of closed channels/cavities 

To prevent evaporation during scanning, in some applications it can be 

beneficial to cover the ice surface with a glass slide (Figure 20). 

 

Figure 20: Schematic view of the laser beam passing through a cover glass slide. 

 

The cover glass used in our experiments had a thickness d of 0.15 mm and a 

reflectivity R of 4%. The part of the laser beam energy entering the glass slide is 

therefore 0.96 W, where W is the laser beam power. The value of the cover glass 

absorption coefficient, a, was not provided by the manufacturer at the laser wavelength, 

however the relative data from the literature provides high values of absorption 

coefficients of other borosilicate glasses at 10600 nm (Sahba & Rockett, 1992) meaning 
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that a significant part of the laser beam is absorbed by the cover glass. However the 

thickness (150 µm) of the cover glass is lower than the thermal diffusivity depth of the 

laser beam in glass (260 µm): when the laser heats the glass slide, heat is effectively 

conducted through the glass to the ice and enables melting as shown in Figure 21 where 

Tg is the outside glass slide temperature, Tg-c is the inside glass slide temperature and 

Tice is the ice temperature. 

 

Figure 21: Heat flow (in red) through the glass slide from the glass surface heated 

by the laser towards the ice.  

 

The power of the laser beam transmitted through the glass and the power of heat 

conducted through the glass are related to the energy Q required to melt the ice as 

follows: 
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Tg 
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t
QWWeRW heat

ad =+−= −)1('      Equation 33 

where W’ is the power absorbed by the ice, W is the laser beam power, R is the 

reflection coefficient, a the absorption coefficient, d the glass thickness and Wheat is the 

heat flux with: 

)( 21 TcTcVQ psolutionpicedesignice ∆++∆= λρ     Equation 34 

as defined earlier.  

 

 Considering that the heat has melted the ice, the rate of heat flow conducted 

through glass and through the melted area of depth p is: 
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where A is the area heated by the laser, Tice is the ice temperature at the bottom of the 

channel, Tg is the temperature of the glass heated by the laser, Tg/I is the temperature 

at the ice/channel interface and k is the combined thermal conductivity of glass and the 

melted area, kg and kw are respectively the glass and water thermal conductivity.  

The temperature variation inside the glass was shown to be a function of the 

laser beam intensity (see sections 3.2.1.3 and 3.2.1.4). The initial glass temperature will 

be the same as the initial ice temperature, therefore Wheat and the laser beam W are 

correlated. We can write: 

WW β='         Equation 36 

where β is the correlation coefficient between W’ and W. 
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When one scan is marked, the peak temperature of the glass (of thickness d) at 

the glass/channels interface can be calculated by the equation given by Ashby and 

Eterling (1982) for the case of a single scan on a thin material. Replacing Tg/I by its 

expression in Equation 35, the value of Wheat at peak temperature is: 

32
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And the peak power at the ice interface W’ is:  
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For the known coefficient of correlation, the depth of the melted area is 

unknown and if the other parameters are known, it can be calculated as: 
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When the temperature has reached a stationary value (equation 20), the rate of 

heat flow is:  
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where ρ is the glass density and cp the heat capacity of glass. Both values were provided 

by the manufacturer (ρ= 2510 Kg/m3 and cp= 820 J/KgK).  

The power at the ice interface becomes: 
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3.3. Methods 

Equipment:  

The liquid cooler was the LTD 20 G Grant (Cambridge, Cambridgeshire, UK). The 

laser 1-30 W IR CO2 Fenix™ was supplied by SYNRAD (Mukilteo, WA, USA). The 

multimeter was the model 49T from Maplin (Rotherham, South Yorkshire, UK). The 

thermocouple was supplied by TME electronics (Worthing, West Sussex, UK). The 

Lock-In Amplifier Model SR 830 was supplied by Stanford Research Systems 

(Sunnyvale, CA, USA). The microscope/camera Digital Blue was supplied by Digital 

Blue (Heckmondwike, West Yorkshire, UK). The cover glasses were from Menzel-

Glaser (Braunschweig, Germany). 

 

Reagents:  

Water was purified by reverse osmosis with the Elgastat B224 water purification unit 

(Elga Ltd, Marlow, Buckinghamshire, UK). Ethylene glycol and hydrochloric acid 

(HCl) were from Acros Organics (Loughborough, Leicestershire, UK). The platinum 

wires (product number 26720-1, 99.99 % purity) were from Aldrich (Gillingham, 

Dorset, UK). The quick set epoxy adhesive was from RS components Ltd (Corby, 

Northamptonshire, UK). 

3.3.1. The freezing unit 

A solution (usually water unless otherwise stated) was frozen inside reservoirs 

fixed on a flat cooling platform with flowing cooling liquid, consisting of an equi-

volume mixture of water and ethylene glycol. The freezing unit worked in the 

temperature range of -30 to 100 ºC with a precision of ± 1 ºC. The freezing unit of 20 L 
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capacity was cooled from room temperature to a set temperature (-10, -15 or -20 ºC). 

The following equation gives the theoretical cooling time of the unit in minutes when 

no liquid is in circulation: 

W
TcV

t p

60
∆

=            Equation 42 

where t is the time (min), V the volume of the cooling liquid (L), ∆T the temperature 

difference, cp the volumetric liquid heat capacity (J/LK) and W the average cooling 

power of the unit (W). 

3.3.2. Freezing of samples 

The cassettes filled with solution were laid on top of the cooling platform and 

covered by a cover glass to isolate the solution from air.  

 

The formation of an ice cube with one side in contact with a cooling platform 

and the other sides subject to natural convection was modelled and compared to 

experimental results by Kowalewski & Rebow (1999). The results showed that this 

complex problem is still not entirely understood and is very difficult to model 

accurately. In this particular case the area of the ice sample in contact with the cooling 

device was relatively large as compared to the side walls, in addition natural convection 

was ignored.  

 

The overall thermal conductivity, density and heat capacity of the filled and 

covered cassettes are a combination of the properties of the cassette base, the solution 

and the cover glass: 
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where hbase,  hsolution and hglass are respectively the height of the base of the cassette, of 

the solution and of the glass cover, correspondingly, kbase, ksolution and kglass are 

respectively the thermal conductivity of the base of the cassette, of the solution and of 

the glass and ρbase, ρsolution and ρglass are respectively the density of the base of the 

cassette, of the solution and of the glass and cpbase, cpsolution and cpglass are respectively the 

heat capacity of the base of the cassette, of the solution and of the glass. 

In most cases, the thickness of the base and the cover glass were very small 

compared to the height of the cassette. The thermal conductivity, density and heat 

capacity were then approximated to that of the solution.  

The cassette height is relatively small compared to its surface area therefore the 

heat exchange in the cassette can be considered to be one-dimensional.  

During freezing, the first step consists of lowering the temperature of the 

cassette-solution to 0 ºC. Over the temperature range of the cooling step, the thermal 

conductivity can be assumed to be constant and the temperature verifies the one 

dimensional heat equation: 
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where ρ is the density, cp the heat capacity, k the thermal conductivity.  
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Equation 46 has been analytically solved and plotted (Gurney & Lurie, 1923) 

for various geometries. The height (h) of the cassettes is relatively small compared to 

the surface area. The plot of the solution of equation 46 in the case of slabs enables to 

estimate the time needed to cool a water solution from room temperature to 0 ºC.  

The second step of freezing consists in the solidification of water into ice, it is 

the Stefan problem (1891). Stefan assumed a linear temperature profile which led to the 

expression between time and the ice thickness x as follows: 

2

2
x
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∆
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         Equation 47 

where k the thermal conductivity of ice, λ is the latent heat of fusion, ∆T is the 

temperature difference between the solution at 0 ºC and the cooling platform and ρ is 

the density of ice. 

The time of freezing is the sum of the time of cooling and the time of 

solidification. 

3.3.3. Set up for marking channels 

The CO2 laser used in this study was reliable, simple to use and cost effective. 

The laser marker generated a laser beam of wavelength 10650 nm with a maximum 

output power of 25 W. The laser marker was a self-contained system which consisted 

of a galvo-based marking head, internal cooling fans and power supplies. The light was 

focused by lenses into a small intense beam. The laser tube was a rigid box providing a 

very stable platform for the laser resonator. The laser was monitored through a PC via 

the Winmark software (USA). 
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As shown on Figure 22, the laser beam generated was delivered to X scanning 

mirror mounted at about 45° position. This deflected the beam at right angles. The 

beam was then reflected on a Y mirror onto the sample surface.  

 

Figure 22: Schematic view of the laser scanning system 

 

Samples were laid under the laser beam on a stage, the height of which could be 

adjusted with the rotation of a jack rotation wheel. A rotation of the wheel of 360° 

corresponded to a height increase of the stage of 15 mm. The focal length of the lens of 

the laser was 80 mm. The samples were positioned at the focal length. The focal length 

was tested when the laser beam could cut through a sheet of glossy paper at 20% power. 

When the height of the sample holder was higher or lower the laser beam did not cut 

the glossy paper but would only leave a mark on it. The top cooling fan exhaust of the 

laser was closed with tape in order to prevent warm air from melting the ice underneath 

the laser. The experimental room was cooled to 18°C. 

The laser can mark vector objects made of a straight or curved path when the 

“vector marking” option is chosen (i.e. the beam moved along the vector). The laser can 

also mark filled objects when the ‘raster marking’ option is chosen. The beam switches 
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on and off as it moves across the object and marks one pass, returns, moves down one 

step and marks another pass and so on until it has marked the whole object, as shown in 

Figure 16. The raster could move across the image horizontally, vertically or in both 

directions.  

The design of the pattern to be marked could be imported or directly drawn into 

the Winmark software which controlled the laser. The number of passes, the power of 

the laser beam, the marking velocity (i.e. the microvector velocity), the resolution 

(number of microvectors per inch), the choice of a continuous marking or a spot 

marking and the choice of a unidirectional or bidirectional raster were inputted into the 

software. In all the cases the resolution chosen was 1000 microvectors per inch, the 

marking was continuous unless stated otherwise and when marking filled objects the 

marking was unidirectional. The only variables in the different marking were the power 

and the scanning velocity. When the sample was ready for marking, a simple click on 

the launch button on the software would start the marking process. The power input 

was in percentage of the maximum laser beam power (25 W) in 1% increments. 

The experimental set-up can be seen in Figure 23. 

3.3.4. Transport of liquid inside open channels 

On order to test the transport of liquid in the open channels two apertures were 

created in ice, one of which was filled with a dye consisting of a solution of Meldolas’s 

Blue diluted at 0.8 g/L. The laser beam hitting the aperture would move the dye along 

the channel (see Figure 24). 

In another experiment, 50 µL of dye were directly injected at the top end of the 

channel with a micropipette. 
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Figure 23: Set up for the marking of channels on ice with a computer assisted CO2 

laser. 

 

Figure 24: Marking of a channel between a reservoir filled with Meldola’s blue 

and an empty reservoir. The laser drags the dye in the channel towards the empty 

reservoir.  
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3.3.5. Temperature and resistance measurements 

The temperature and the electrical resistance inside the channels were measured 

in order to quantify the suitable laser conditions for the marking channels in ice as well 

as the time for which the channels are open. 

3.3.5.1. Temperature measurements 

A thermocouple (linked to a multimeter calibrated in degrees Celsius) was 

frozen inside the ice just under the surface (it can be estimated that the thermocouple 

was 0.5 mm under the surface). Channels were marked on the ice surface above the 

thermocouple.  

 

Figure 25: A thermocouple is frozen inside the ice for temperature measurements. 

Plate containing frozen solution 

Temperature reader 

Thermocouple 

Channels 



 55

3.3.5.2. Resistance measurements 

A conductive solution of 10 mM hydrochloric acid (HCl) was frozen inside a 

rectangular polypropylene cassette of dimensions 5.7 cm × 8.3 cm × 0.3 cm equipped 

with two platinum wires of 0.533 mm diameter, 9.5 cm long 1.5 cm apart. The wires 

were fixed to the cassette with epoxy glue and connected to a Lock-In Amplifier, with 

the following set up: alternating voltage of 100 mV and frequency of 100 kHz. An 

extra resistance of known value (r = 1 kΩ) was added in the circuit (see Figure 26) to 

allow calculation of the resistance between the wires from the voltage reading of the 

Lock-In from the following relation. 

r
Vm
VR ×−= )1(        Equation 48 

where R is the solution resistance (Ω), V the input voltage of the Lock-In (V), Vm the 

voltage measured by the Lock-In (V) and r the series resistance added in the circuit (Ω). 

 The power dissipated in the channels by the Joules effect was related to the 

measured voltage as follow: 

r
VmVmVP )( −=        Equation 49 

The Lock-In amplifier was linked to a PC and the measures taken by the Lock-

In amplifier were recorded on the PC during freezing of the conductive solutions when 

the cooling device was set at various temperatures as well as during the marking of 

channels across the wires.  
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Figure 26: Circuit for the measurement of the electrical resistance in the channels 

drawn on the frozen solution 

3.4. Results 

3.4.1. The freezing unit 

The freezing unit average power was 540 W. The heat capacity for a 50/50 

water/glycerol mixture was 3800 J/LK. The estimated time to cool the mixture from 20 

ºC to -10, -15 and -20 ºC were respectively calculated with Equation 42 as 70, 82 and 

94 min. The cooling unit would therefore only be effective after one and half hours to 2 

hours. Because of this time constraint, the freezing unit was continuously kept switched 

on. 
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3.4.2. Freezing of samples 

The variation of electrical resistance in a 10 mM HCl solution, shown in Figure 

27, were obtained from the recording of voltages by the Lock-In amplifier in the 

solution frozen at three different cooler device temperatures (-10, -15 or -20 ºC). 

The resistance, which is inversely proportional to the conductivity, increased 

during freezing up to a plateau value of 4,500 Ω for the three temperatures tested. The 

solution froze quicker when the cooler temperature was lowest. Before reaching the 

plateau value, when the cooler temperature was set at -20 ºC or -15 ºC, the resistance 

reached a peak value and then slightly decreased after. The maximum resistance value 

should coincide with the phase transition point of the solution. In each following 

experiment the cooler was set at -20 ºC to obtain ice samples more quickly.  
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Figure 27: The change in resistance of a 10 mM HCl solution upon freezing 

for a cooler device at three different set temperatures (-10, -15 and -20 ºC). 
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Cassettes of various sizes, geometries and compositions were tested. The 

cassettes will be described in detail in the electrophoresis chapter. The larger the 

cassette, the higher the surface area available for heat exchange with the surrounding 

atmosphere through the sides and especially through the top of the cassette. This 

convection could be ignored for small cassettes where the estimation of the freezing 

time presented in section 3.3.2 was valid. However it cannot be ignored for larger 

cassettes. The geometry of the cassette also contributes to heat exchange with the 

surrounding atmosphere. Materials of small thermal conductivity were used in the 

design of the sides of the cassette while conductive materials of higher thermal 

conductivity were used for the bottom side of the cassette.  

The best results (i.e. shortest time of freezing and good reproducibility of 

freezing time) were obtained with a cassette 2.4 cm × 2.4 cm made of a flat base in 

glass 1 mm thick having borders made of PDMS 2 mm thick of very low thermal 

conductivity (k = 0. 15 W/mK) and a cover glass on top 0.15 m thick. For these 

cassettes, the freezing process was quicker than for cassettes made entirely in Pyrex 

(thermal conductivity k = 1.1 W/mK).  

3.4.3. Laser marking on ice 

The 1-30 W IR CO2 Fenix™ laser usually used for marking or cutting plastic, 

glass or metals enabled the marking of microchannels, cavities or more complex 

geometries in ice with the laser with good reproducibility (see Figure 28, Figure 29 and 

16 taken with a Digital Blue camera with a 10 times enlargement lens).  

Practically any type of geometric design of dimensions as small as 0.2 mm 

could be accurately created in the ice within minutes. The created design could be 
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maintained in the ice during prolonged period of time by repeated scanning at some 

time intervals.  

Figure 28 was taken after marking five channels with the laser set up at 3 % of 

the total power, a beam velocity of 5 mm/s with 5 scans (one scan every minute). The 

ice surface was uncovered to enable the channel to evaporate during the scanning so 

they would be open during picture taking.  

The channels were 2 mm apart and it was estimated from the figure that they 

were 200 to 400 µm wide.  

 

 
Figure 28: Channels marked with a CO2 laser beam at 3% of total power and a 5 

mm/s velocity (5 scans). 

 

1 mm 
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The value of the intensity of the laser for each scan was I = 150 J/m. From the 

value of laser intensity, the value of the radius r of the channels was calculated using 

Equation 16. The value found was 180 µm which agreed with the observation on 

Figure 28.  

The laser-ice model will be valid only if the penetration depth r is greater that the 

thermal diffusivity depth √(kdb/ρcpv). The beam has a diameter of 116 µm, and for ice 

k = 2.26 W/mK, ρ = 920 Kg/m3 and cp = 2100J/KgK. When v = 5mm/s, √(kdb/ρcpv) = 

165 µm. The depth of the channel was larger that 180 µm and the condition of validity 

of the model was confirmed.  

The ice thickness is relatively large compared to the thermal diffusivity depth, 

therefore ice can be considered a thick material and the value of the critical intensity 

above which evaporation occurs was calculated when the temperature in the channel of 

diameter r given by equation 16 for thick materials reaches 100°C. To evaporate a 

channel of 180 µm radius in one scan, the critical intensity value was found to be of 55 

J/m.  

Spots were just as easily marked in ice. Figure 29 showed cavities of diameters 

as small as 300 µm marked with the 1-30 W IR CO2 Fenix™ laser. Figure 30 showed a 

pattern with spots and channels. The channels were marked with a laser beam at 3% of 

total power and a 100 mm/s velocity (20 scans), the cavities were marked with a laser 

beam at 1% of total power and a velocity of 100 mm/s (10000 scans).  
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Figure 29: Cavities of decreasing diameters (from 1.5 to 0.3 mm) marked with a 

CO2 laser beam at 4 % total power and a 100 mm/s velocity (25 times) using a spot 

marking style. 

 

Figure 30: Pattern scanned in the ice with CO2 laser beam of 100 mm/s velocity. 

5mm long channels: 3% of total power (20 scans), 0.5 mm diameter dots: 1% of 

total power (10000 scans). 

 

0.5 mm 

0.5 mm 
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The literature was able to provide the experimental conditions for CO2 laser 

processing in ice. Therefore trials of various power and velocity combination were 

necessary. Channels were marked with a single scan with a laser beam of velocity in a 

range between 100 and 200 mm/s. In all cases channels would become visible for 

powers above 2% and would become too large for powers above 8%. For the lower 

range of velocity, the channel would start to evaporate. Therefore the ranges 3-8 % for 

the power and 100-200 mm/s for the velocity were found to be optimal to mark non 

evaporated channels, which corresponds to a laser intensity range of 4-20 J/m. Similar 

intensity values could be achieved with other power and velocity settings for which this  

ratio was in the same range. The previous scanning velocities and power ranges were 

chosen because experiments could be monitored and controlled more easily when the 

marking was not instantaneous as it would be with higher velocities. It can be noted 

that in some particular cases when wide channels were necessary, higher laser 

intensities were also used. 

Consecutively to those experiments, Meglinski et al. (2005) realised 

simulations of a simplified physical/optical model of ice marking with a CO2 laser 

beam. He calculated the distribution of the power applied by unit area from which he 

deduced the optimum power and velocity which corroborate the optimum values found 

experimentally. 

3.4.4. Transport of liquid inside open channels. 

Liquid flow can be achieved through the channels created in ice with the laser 

as depictued in Figure 31. When the laser beam marked the channel in ice, the fluid 

inside the reservoir, or inputted directly in the channel with a micropipette, flowed 
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inside the channel. The following picture shows a channel filled with Meldola’s Blue 

dye. The channel started from a reservoir filled with Meldola’s Blue and was marked 

with a laser beam at 5% power and a 100 mm/s velocity. After 100 scans the channel 

was filled with dye.  

 

direction of scanningdirection of scanning  

Figure 31: Microchannels formed in ice by repetitive scanning: empty channels 

(top) and filled with dye solution (bottom) marked with a laser beam at 5% and a 

100 mm/s velocity (100 scans). 

 

100 scans at 100 mm/s were necessary to move the dye along the whole channel. 

The velocity of the progression of the dye inside the channel can therefore be estimated 

to 1 mm/s. This value, although minimal, shows that transport inside the channel is 

possible by marking alone. However the flow was discontinuous: each scan makes the 

liquid advance further in the channel.  

The physical properties of Melodola’s Blue diluted at 0.8 g/L can be 

approximated to those of water. The variation of surface tension with temperature for 

water is dσ/dT = 1.5 10-4 N/°C/m (Dean, 1999). The thermal gradient dT/dx is created 

0.5 mm 
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when the laser beam hits the ice surface. After continuous scanning of one channel (5% 

power, 100 mm/s), the temperature increase in the scanned channel was 5 °C (see 

section 3.4.5.2). It can be assumed that the local temperature at the beam hit point on 

ice is far greater than the temperature recorded experimentally. However considering a 

5 °C increase and the radius of the hot area of approximately 160 µm predicts dT/dx 

~3.1 × 104 °C/m. The minimal surface shear stress acting in the melted channel has 

therefore a value of 4.6 N/m2.  

The highest viscosity coefficient of water is reached at 0 °C and has value of 1.8 

× 10-3 Ns/m. The highest velocity of the liquid inside the fluid cannot exceed the beam 

marking velocity. Hence the maximal sheer stress caused by viscosity, in a channel of 

maximal height 0.4 mm and marked at 100 mm/s is 0.4 N/m2.  

The gravitational pressure acting on water inside the channel of same height 

was 3.9 N/m2
. 

Therefore the surface sheer tension can cause the melted channel to flow. The 

real value can be expected to be even higher because of the high value of temperature at 

the beam hit point. 

Flow depends on the Prandtl number, Pr = ν/d, where ν is the kinetic viscosity 

and d the thermal diffusivity. For materials of high Prandtl numbers (Pr >> 1) like 

ceramics or polymers, the motion of the melted area is retarded by the viscosity 

whereas for materials of low Prandtl number (Pr << 1) (e.g. metals), the viscosity has 

no effect on the melt motion (Tokarev & Kaplan, 1999). The Prandtl number of water is 

9. This value explains that the motion of water inside the channel is limited by viscous 

friction. The Prandtl number (Chan et al, 1984) was also shown to dictate the aspect 

ratio (width divided by depth) of the channel created by the laser. The larger the Prandtl 
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number, the more difficult thermal diffusion becomes and the higher is the aspect ratio. 

Water, with a Prandtl number close to unity, exhibits aspect ratio close to unity (hence 

channels of cylindrical shape). 

3.4.5. Temperature measurements  

The temperature created in the local scan area was measured as described in 

section 3.3.5.1. The thermocouple was frozen inside ice made of distilled water at -6°C. 

During the course of the experiments, the temperature of the bulk of ice remained 

constant.  

3.4.5.1. Single scan inside an open channel 

A thermocouple was frozen in the ice. After 6 s, a single channel was marked 

with a CO2 laser beam at 100 mm/s and 6% power on the surface of the ice. The 

temperature profile recorded by the thermocouple is shown in Figure 32.  

The thermal diffusivity depth of the laser beam scanned at 100 mm/s in ice is 27 

µm and is negligible compared to the total thickness of the ice. The theoretical peak 

temperature and the temperature profile were therefore calculated with the equation 18 

and 19, given for thick materials, and plotted against the measured temperature profile. 
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Figure 32: Temperature profile measured by a frozen thermocouple (black) and 

theoretical temperature profile (blue) following a single scan of one channel 

marked by a CO2 laser beam at 100 mm/s and 6 % of total power.   

 

The temperature increased by 3°C in a second after the scan. After that it 

decreased by 1°C in one second and by a further 2°C over 20 s.  

When a scan is launched, there is a delay of 0.5 s between the launch (t = 6 s) 

and the actual start of the marking. The time at which the temperature increase is 

measured by the thermocouple which is at a distance r = 0.5 mm from the ice surface is 

r2/4α where α is the diffusivity. The time was calculated to be 0.1 s. Also it took 0.3 s to 

mark the channel. The maximum temperature is reached approximately 0.9 s after the 

launch of the scan. 

The intensity of the laser was 15 J/m. The solution was water. Therefore with 

the equations described in section 3.2.1.7, the theoretical refreeze time of a channel of 

opening radius of 180 µm was calculated as 0.7 s.  
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From the graph above, the channel can be assumed to be closed when the 

temperature measured falls below 4°C. After the temperature decreased past 4°C the 

temperature keep decreasing until it reached that of the surrounding ice. 

The programmed repetition of scans every 0.7 s is required to maintain this 

channel open for these specific irradiation conditions.  

3.4.5.2. Temperatures measured in open channels for various laser 

intensities 

Figure 33 represents the experimental (black) and theoretical (pink) results for 

measuring the peak temperature reached inside a channel formed with 10 scans with a 

laser beam of 100 mm/s velocity and a power from 4 to 20 %.  
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Figure 33: Peak temperatures reached after a single channel was marked with 10 

scans at 100 mm/sec over a range of laser power from 4 to 20% (laser Intensity 

range from 10 to 50 J/m per scan) measured with a thermocouple compared to the 

theoretical temperature peak expected in the channel (pink) with standard error 

bars. 

 

The temperature measured increased by 10 °C at the intensity of 50 J/m after 10 

scans. This graph shows that the temperature inside the channel increases linearly with 

the laser intensity as does the theoretical peak temperature. At high intensities, more ice 

melts which lower the temperatures recorded compared to the theoretical peak 

temperature. 

3.4.5.3. Continuous scanning of open channels 

Figure 34 represents the temperature increase read by the frozen thermocouple 

when 10 channels were scanned repetitively for 8 minutes (30 scans of each of the 10 
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channels) on the ice area under which the thermocouple was frozen with a laser beam 

of 100 mm/s and 2 to 6% power. The intensity of the laser beam ranged from 5 to 15 

J/m per scan. For powers above 3% (intensity of 7.5 J/m), the temperature increased 

linearly during the first 3 minutes of the scanning and reached a maximum temperature 

which was maintained for the duration of the scanning. 
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Figure 34: Temperature increase measured by a frozen thermocouple upon 

continuous scanning of ten adjusted channels scanned on the ice surface under 

which the thermocouple is frozen. Scans were made with a CO2 laser beam of 100 

mm/s velocity and at 2, 3, 4, 5 and 6% total power (intensities of 5, 7.5, 10, 12.5 

and 15 J/m). 

 

The theoretical maximum temperature obtained when channels were 

continuously marked above the thermocouple with a laser of power 3, 4, 5 and 6% of 

total power was calculated using equation 20 and is presented in the following table 
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and compared with the experimental maximum temperatures measured with the 

thermocouple. 

Table 1: Comparison between the theoretical average maximum 

temperatures reached when 10 channels 2 cm long were scanned continuously 

with a laser power of 3, 4, 5 and 6%. 

Power (W) 
 3 4 5 6 

Theoretical 
Tmax (°C) -3.2 -2.3 -1.4 -0.5 

Experimental 
Tmax (°C) -4 -2 -1 0 

 

The theoretical maximum temperature value appeared to be a good estimate of 

the maximum temperature reached for a continuous scanning of the channel.  

3.4.5.4. Continuous scanning of a large open area  

The repetitive scanning at increasing powers (from 3 to 6% of total power) of a 

6 mm × 6 mm area was performed at 100 mm/s during 2 hours. The temperature was 

recorded throughout the experiment and the temperature variations are presented in 

Figure 35. After 2 hours, the measured temperature in the area had reached 50 °C. 

Little water was left on the thermocouple at the end of the experiment, due to 

evaporation. 

Another experiment was undertaken as a preliminary to cell culture in ice. An 

area 0.36 mm2 was scanned since higher temperatures could be achieved inside the 

melted area than in a single channel scanned at the same laser conditions. However if a 

single channel was scanned, the temperature would also increase with increasing power. 
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From the previous results, an increase of about one degree could be expected in a 

channel if the power was increased by 1%. 
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Figure 35: Continuous scanning of a square area of 6 mm × 6 mm with a CO2 laser 

beam at 100 mm/sec and 3, 4, 5 and 6 % power (intensities from 7.5, 10, 12.5 and 

15 W/m) 

3.4.5.5. Single scan of a closed channel 

The thermocouple was frozen inside ice made from water at -6 °C. After 6 s a 

single channel was marked with a CO2 laser beam at 100 mm/s for various powers. The 

temperature profile is presented in Figure 36.  

This temperature profile is fairly similar to that measured when one open 

channel was marked at 100 mm/s and 10% of total power. The peak temperature 

recorded was -3 °C, just as if an open channel was marked with a laser beam at 6% with 
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the same velocity. The power absorbed by the ice was therefore 60% of the value of the 

laser beam power (β= 0.6).  
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Figure 36: Temperature changes measured by a frozen thermocouple following a 

single scan of one channel marked by a CO2 laser beam at 100 mm/s and 10 % of 

total power. 

 

Equation 39 gave the relation between β and the depth of the melted area based 

on the peak temperature reached in the channel. Assuming that the transmitted power is 

equal to zero and for a channel, A= 2rbl where rb is the beam radius and l the length of 

the channel, the depth of the channel was calculated in this case as 120 µm, which is 

slightly smaller than the depth estimated for an open channel (180 µm) marked at 6% 

power for a single scan.  

The temperature drop is quicker for a closed channel rather than for an open 

channel. The channel temperature reached the ice temperature of -6°C after t2 = 16 s 
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instead of t1 = 21 s (Figure 32). The refreeze of the channel is quicker when the ice 

surface is covered with a cover glass as the cover glass isolates the ice from any natural 

air convection and also because the overall conductivity of a melted channel covered 

with a cover glass is higher than for an uncovered melted channel.  

The open channel’s thermal conductivity was k1 = 0.6 W/mK, its density was ρ1 

= 1000 Kg/m3 and its heat capacity was cp1 = 4200 J/KgK. When the channel was 

covered, the overall properties of the channel could be calculated with equations 43, 44 

and 45 became k2=0.8 W/mK, ρ2= 1700 Kg/m3 and cp2=1900 J/KgK when the depth of 

the channel was taken as 170 µm. From the equation of cooling for ice after a scan 

(equation 19) for the same absorbed intensity and distance from the beam, the product 

of the time by the thermal conductivity and the product of the thermal diffusivity by the 

time should be constant:  

2211 tktk =         Equation 50 

22

22

11

11

pp c
tk

c
tk

ρρ
=        Equation 51 

With he values calculated: k1 t1- k2 t2=0.2 W/m ≈0 W/m while k1 t1/ ρ1cp1- k1 t1/ ρ1cp1= 

10-6 m2 ≈ 0 m2.  

Covered channels made in ice refreeze more quickly than open channels. 

3.4.5.6. Continuous scanning of closed channels 

Figure 37 represents the temperature increase recorded by the frozen 

thermocouple when 10 channels were scanned repetitively for 8 minutes (30 scans of 

each channel) in covered ice, with a laser beam scan rate of 100 mm/s and at 5, 10 and 

15% power. The temperature increased linearly during the first 2 minutes of the 
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scanning and reached a maximum temperature which was maintained for the duration 

of the scanning.  
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Figure 37: Temperature increase measured by a frozen thermocouple upon 

continuous scanning of ten adjusted channel scanned in ice covered with a cover 

glass. The CO2 laser beam velocity was 100 mm/s and its power was set at 5, 10 

and 15% total power (standard error bars ). 

 

The ice had an initial temperature of -6 °C. The maximum temperature reached 

-3 °C for marking at 5%, 0 °C when marking at 10% and 3 °C at 15%.  

Just like the scanning of a single scan (section 3.4.5.5), the temperature reached 

when marking at 10% through the cover glass is similar to the temperature reached 

when marking open channels at 6%, for the same velocity (100 mm/s). Again the 

maximum temperature is reached more quickly within closed channels (2 min) than in 
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open channels (3 min) (see Figure 34) due to the higher overall thermal conductivity 

and diffusivity of the covered channel compared to an open channel. 

3.4.6. Measures of the electrical resistance between two 

electrodes frozen in a conductive solution while 

scanning channels across them. 

3.4.6.1. Scanning of open channels 

One channel 27 mm long was marked on a frozen 10 mM HCl solution, 

crossing the electrodes, using a laser beam velocity of 100 mm/s and at 4, 5, 6 and 7% 

of total power. The results did not show any significant differences between the 

different powers at which the laser beam was set; therefore 15 channels 0.5 mm apart 

from each others were marked in the frozen 10 mM HCl solution across the electrodes 

with a laser beam at 100 mm/s and 4, 5, 6 and 7% of total power. 

The marking was launched at t = 0 s and the 15 channels were scanned in 20.6 s. 

The Lock-In Amplifier recorded the change in current during first 60 s. The resistance 

between the electrodes was then calculated. Figure 38 presents the variation in 

resistance which is the difference between the initial frozen solution resistance and the 

resistance at time t, versus time. 

A decrease in resistance means that the media between the electrodes becomes 

more conductive and shows that the channels are open. An increase in resistance means 

that the media between the electrodes becomes less conductive and that the channels 

are refreezing. When no channels are scanned, the resistance of the ice kept increasing 

since the ice became denser with time. 



 76

 

-4000

-3000

-2000

-1000

0

1000

2000

3000

0 10 20 30 40 50 60
Time (s)

∆R
 (Ω

)  
. 10 J/m

12.5 J/m

15 J/m

17.5 J/m

no laser

 

Figure 38: Variation of resistance of ice while scanning 15 channels, 1 scan each, 

with a CO2 laser beam at 100 mm/s and at 4, 5, 6 and 7% power: intensities:10, 

12.5, 15 and 17.5 J/m and standard deviation of up to 500 Ω. 

 

When the channels were scanned at 4%, the resistance between the electrodes 

increased slightly (by up to 100 Ω) for the fist 20 s. The resistance decreases to 0 Ω at 

25 s and started increasing again after that up to 300 Ω. The marking of channel did not 

counteract the lowering of resistance induced by ion depletion. The decrease in 

resistance observed at 25 s was very minimal; the ions in the channels became depleted. 

When the channels were marked at 5%, the resistance between the channels also 

started to increase slightly (by 80 Ω), but after 5 s the resistance decreased to 1500 Ω. 

After that the resistance increased again. The marking of the channels initially 
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increased the current passing between the electrodes. After 25 s, the resistance was 

increasing since the ions in the channels were depleting. 

When the channels were marked with a laser of 6 and 7% power, the resistance 

between the electrodes started to decrease immediately. The resistance decreased up to 

2500 Ω when the channels were marked at 6% and 3400 Ω when they were marked at 

7%. After 25 s, the resistance increased again. The increase is relatively slow but it 

indicates the depletion of ions in the channels and the refreezing of the channels. 

Since the marking of the channels take 20 s to be opened but the resistance 

decreases until 25 s for most powers, it can be assumed that the channels stay open for 

at least 5 s after they are open and current is passing through them. 

For a single channel scanned at 100 mm/s at 4, 5, 6 and 7% (intensities of 10, 

12.5, 15 and 17.5 J/m respectively) in ice made of a dilute (10 mM) HCl solution, the 

density and thermal properties of which can be approximated to those of water, the 

channel opening radii are respectively 143, 161, 176 and 190 µm. If the temperature 

difference between the channel and the surrounding ice reaches 3°C, the theoretical 

closing time of each channel is 0.5, 0.6, 0.7 and 0.8 s. Without an external electrical 

circuit applied, the channels should refreeze in less than 1 s after the end of the 

scanning. However because of the existing electrical circuit and the movement of ions 

in the channels, in this series of experiment the channels stay open longer (5 s). 

The power dissipated in the channels by Joules heating was calculated using 

equation 49. For all the laser powers it was of the order of 1.5 × 10-7 W. This value is 

fairly insignificant however it could explain why the channels stay open slightly longer 

than when there is no current passing through them. 
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In the next experiment one channel was marked in the frozen 10 mM HCl 

solution, containing electrodes, with a laser beam with a velocity of 100 mm/s and at 2, 

3 and 4 % of total power every 30 s for 5 min and compared with the resistance in non-

marked ice. The marking was launched every thirty seconds and lasted 40 s. The Lock-

In Amplifier recorded the change in current during the first 5 min. The resistance 

between the electrodes was calculated from the values of the current recorded. Figure 

39 presents the variation in resistance, which is the difference between the initial frozen 

solution resistance and the resistance at time t, versus time. 

 

Figure 39: Variation in the electrical resistance of ice (∆R) when a channel was 

marked with a laser beam at 100 mm/s and 3 and 4% of total power (intensities of 

7.5 J/m and 10 J/m) every 30 s for 5min. 
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When no channel was marked, the resistance of the ice kept increasing with 

time. When a channel was marked every thirty seconds with a laser of 3 or 4% power, 

the resistance between the electrodes decreased linearly with time. The decrease was 

twice as important when the power was 4%. According to the results of the previous 

graph, in the presence of an external current a channel stays open for about 5 s. If 

marking is repeated, each successive freezing and opening of the channels puts more 

ions in solution and makes the channels conductive for longer.  

3.4.6.2. Resistance measurements (closed channels) 

15 channels, 27 mm long and 0.5 mm apart from each others were marked on 

the frozen 10 mM HCl solution across the electrodes with a laser beam at 100 mm/s 

and 5, 10 and 15% of total power. The marking was launched at t = 0 s and the 15 

channels were scanned in 20.6 s. The Lock-In Amplifier recorded the change in current 

during first 60 s and the resistance between the electrodes was then calculated. Figure 

40 presents the variation in resistance which is the difference between the initial frozen 

solution resistance and the resistance at time t, versus time. 

It could be expected that the resistance results obtained for a closed channel 

marked at 10% would be similar to the one obtained when an open is marked at 6%, 

however the resistance decreases by 55000 Ω and not by 2500 Ω. When the scan 

stopped the resistance increased instantaneously and rapidly. Again this shows that the 

channel closes more quickly when it is covered than when open. 
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Figure 40: Variation of resistance of ice while scanning 15 channels, 1 scan 

each, with a CO2 laser beam at 100 mm/s and at 5, 10 and 15% power: intensities: 

12.5, 25 and 37.5 J/m. Standard deviation of up to 500 Ω. 

3.4.7. Glass failure 

One drawback of the cover glass is its potential fracture during laser scanning. 

This was observed after successive scanning, especially when scanning spots. Laser 

induced fracture is not entirely understood since there are many reasons why 

illumination by a laser beam can damage glass.  

One cause of the damage is related to the changes in optical properties of the 

material, induced by the laser beam, and related to its non-linear refractive index. This 

index is generally small, but intense laser beams have been shown to be responsible for 

damages in glass. The critical power above which this damage occurs is given by: 
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where c is the speed of light (2.99 × 108 m/s), λ is the laser wavelength and ne is the 

nonlinear refractive index (Hayden, 1995). Borosilicate glass has a non-linear index of 

of 1.7 × 10-13 esu (Fournier & Snitzer, 1974). The critical power of the CO2 laser was 

then calculated as 2.3 × 109 W. The laser used in this application deliver powers lower 

than the critical power. 

However glass heated by a laser beam can also experience thermal stress and 

can break when the temperature reached within the glass has attained its strain 

temperature. The strain temperature of the cover glass was 515°C.  

From Equation 20 fracture will happen in one scan of laser beam in which the 

ratio of power to velocity exceeds 99 J/s (i.e. a power of 40% and a speed of 100 mm/s). 

For repeated scans this critical ratio can decrease to 75 J/s (i.e. power 30% and a speed 

of 100 mm/s). 

For the laser conditions used to mark channels and holes in ice, no fracture 

should appear. However marking through glass leaves a slight mark on the cover glass, 

and when repeated, the mark can deepen and eventually break the cover glass which 

then needs to be replaced.  

However it can also be useful to drill holes in the cover glass. In the 

electrophoresis chapter, 2 mm diameter discs were marked at 40% and 100 mm/s in the 

cover glass for the purposes of the experiment. 
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3.5. Conclusions 

Channels and various design geometries can easily and rapidly be marked in ice 

with a CO2 laser. Within seconds a microchannel pattern can be created. This is a major 

advantage over the traditional processes used in the fabrication of microfluidic devices, 

such as photolithography or soft lithography, which demand several lengthier steps to 

be carried out before obtaining the desired micropatterns.  

The dimensions of the channels and cavities required by the micropattern design 

that can be made in ice with a laser are governed by the ratio of laser power to the beam 

velocity. Features with dimensions as small as 100 µm were obtained. These 

dimensions are similar to dimensions obtained with photolithography. However on 

other substrates laser ablation can result in channels of smaller dimensions: for instance 

channels 20 µm were marked in PET with a KrF excimer laser of wavelength 248 nm 

(Kim & Xu, 2003). The difference in dimensions between channels made in ice and 

channels made in solid substrates is linked to the rapid evaporation of water under laser 

processing. On the other hand, smaller channels in ice would refreeze very quickly once 

the marking was finished, which would present a disadvantage for the utilisation of the 

device. 

The channels created in ice stay open for a duration which depend on their 

geometry and therefore on the ratio of the laser beam power by the beam velocity. After 

that they refreeze and the micropattern disappears in the ice bulk. This is a unique 

characteristic to microfluidic devices made in ice and it enables the redirection of flow 

and the creation of a reconfigurable device within minutes. In a conventional substrate, 

channels cannot be closed unless an external mean such as a valve or a jet of cryogen 
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liquid and carbon dioxide at -65°C (Bevan & Mutton, 1995) is used to stop the flow 

inside the existing channel.  

To keep ice channels open longer, larger channels can be marked with a laser of 

higher power/velocity ratio or by successive scanning of the channel. However this can 

be a drawback, since repeated laser scanning may be incompatible with or alter the 

microchannel analytes or their mode of operation: for instance DNA or cells present 

inside the channel would not be viable after laser scanning. In addition visualisation by 

fluorescence could be affected during the scan. This must be taken into account when 

using the device. 

Microchannels were obtained with a power/velocity ratio between 0.4 and 20 

W/m. In this range of settings, the channels were 300 µm wide and stayed open for 2 s. 

Laser processing in ice was not tested therefore those results cannot be compared to 

other data.  

Transport inside the channel can be obtained by the laser marking process alone. 

This is caused by the sheer surface tension within the melted area due to the 

temperature gradient within. The transport observed inside the channels was of the 

order of 1 mm/s under the laser experimental conditions (1.25 W and 100 mm/s). This 

was observed in other substrates and is typical of laser operation, however it was never 

experimented on ice. In stainless steel, for which the Prandtl number is 0.078, velocities 

of the molten area as high as 14 cm/s with a laser used at power above 40 W were 

estimated by Cline & Anthony (1977). In conventional microchannels a wide range of 

flow velocity have been recorded from small values such as 50 µm/s (Santiago et al. 

1998) or 10 mm/s (Meinhart et al, 1999) depending on the pump type and microchannel 

dimensions . 
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The temperature increase in the channel depends on the ratio of the laser power 

to the velocity. High temperatures (above 50 °C) can be achieved inside ice cavities. 

Chan et al. (1984) showed that temperature rise decreases with the Prandtl number. Up 

to 40°C temperature rise inside a laser ablated channel were also reported by Stuart et 

al. (1997) who used a Nd:YAG (neodymium-doped yttrium aluminium garnet) laser on 

enamel, a high Prandtl number substrate. Estimations of very high temperature 

increases (up to 1400°C) in stainless steel with a CO2 laser (100W, 500 mm/s) were 

made by Cline & Anthony (1977).  

Channels created in frozen solutions of electrolytes can be observed by 

conductivity measurements when linked to an electrical power supply. Therefore ice 

can be a good substrate for electrokinetically driven flow. Also channels stay open 

longer due to the resulting current. 

Channels can be marked in ice through a cover glass. When marking channels at 

100 mm/s in covered ice, the laser beam absorbed by the ice is about 60% of the laser 

power therefore the maximum temperature reached in a channel is similar to that 

obtained when the channels are open and marked with a laser beam of 40% lower 

power. The melting and freezing occur more quickly in closed channels rather than in 

open channels. One drawback of the marking of covered channels is the eventual 

failure of the cover glass. After a series of repeated scanning, replacement of the cover 

glass is necessary. 
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4. Creation of a microfluidic device in ice 

4.1. Introduction 

Microfluidic devices are self contained systems with injectors, preconcentrators, 

channels, valves, reactors, analysis processes and detectors.  

In the previous chapter it was demonstrated that channels, cavities and various 

geometries could be easily and quickly created in ice with a CO2 laser and kept open as 

long as needed with repeated scans with the laser at proper time intervals. Cavities and 

other features drilled in ice can be used as injectors, reactors or storage containers while 

the channels would link the different constituents of the device. In this section we will 

discuss a laser-operated valve system in ice as well as the possibility of an inline laser 

induced preconcentration technique in ice.  

4.2. Literature 

4.2.1. Opening of a valve made of ice 

Successive freezing and melting can control and switch fluid flow inside 

capillaries. This non-invasive technique offers an alternative to the conventional 

micromachined valves described in section 2. In a first method, freezing of the content 

of microcfluidic channels was achieved with a fine jet of cryogen liquid and carbon 

dioxide at -65°C which instantaneously stopped the fluid flow and the electrical current 

in the channel (Bevan & Mutton, 1995). The melting duration depended on the freezing 

duration. Gui & Liu (2004) used a thermoelectric cooling device associated with a heat 
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dissipater and an electric heater to freeze and melt the contents of the microfluidic 

channels involved. 

4.2.2. Preconcentration 

Microfluidic devices are very attractive tools for sample analysis because of the 

small sample requirements. Detection is usually performed with high sensitivity 

detection techniques; however preconcentration of the sample may be needed for some 

applications. There are various methods available to achieve concentration of samples 

involving electrophoresis, electroosomosis or filtration (Auroux et al., 2002). 

The slow melting and refreezing of a solid, containing impurities, in a narrow 

zone from one end of the sample to the other can result in the redistribution of those 

impurities and is known as a purification technique called zone refining or zone melting 

(Pfann & Olsen, 1952). It was first demonstrated on germanium crystals and can be 

used on metals, salts and organic or inorganic substances. It was demonstrated for the 

purification of water (Smith & Thomas, 1959) or ice (Oughton & Xu, 2001). 

In 1979 laser beam scanning was used for a first time as a zone melting 

technique by Nobuo et al. and was applied for the purification of crystals frozen inside 

capillaries. Zone melting with a laser beam can be used for inline preconcentration of 

different analytes. The efficiency of the process is described by Equation 53 showing 

the final concentration C reached after one cycle as a function of the initial 

concentration C0 (Pfann & Olsen, 1952): 
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where k is the distribution coefficient of the species, defined as the ratio of 

concentration in the solid to that in the liquid at equilibrium. 

4.3. Methods 

Equipment: 

The liquid cooler was the LTD 20 G Grant (Cambridge, Cambridgshire, UK). The laser 

1-30 W IR CO2 Fenix was from Synrad (Mukilteo, WA, USA). The 100 µL capacity 

analytical syringe was from Scientific Glass Engineering (Melbourne, Australia). The 

10 µL capacity analytical syringe was from Hamilton (Rhäzüns/Switzerland). The 

spectrophotometer USB2000 was from Ocean Optics (Dunedin, FL, USA). The 

deuterium/halogen light source was UV-VIS-NIR DH2000 from Mikropack (Ostfildern, 

Germany). The cover glasses were from Menzel-Glaser (Braunschweig, Germany). The 

micrcuvettes were from Kartell (Noviglio MI, Italy). The optical mirror was from 

Melles-Griot (Albuquerque, NM, USA). The disposable dishes were from Nunc 

(Roskilde, Denmark). 

Reagents:  

Water was purified by reverse osmosis with the Elgastat B224 water purification unit 

(Elga Ltd, Marlow, Buckinghamshire, UK). The Meldola’s Blue dye was from Sigma-

Aldrich (Gillingham, Dorset, UK).  

4.3.1. Opening of a valve made of ice 

It has been anticipated that scanning with a laser can open channels closed by 

freezing by the same principle as the freezing-melting valves techniques described in 
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section 4.2.1. Channels can be opened with the laser and the channels refreeze and 

close when the laser is turned off (see chapter 3). In this section a series of experiments 

was conducted in which only a 1 mm wide area of the channel was closed with ice, in 

order to determine the time required to melt it and open the channel. 

Reservoirs made using a border of PDMS between a glass slide and a cover 

glass (see Figure 41) were filled with water and fixed onto the cooling system. They 

were frozen with two tubes made in Polyaryletheretherketone (PEEK) of 1.61 mm 

external diameter aligned and 1 mm apart. The solution was frozen. The tubes were 

then removed leaving the mark of two channels in ice. An area of 0.5 mm diameter was 

scanned above the area separating the channels with the laser at 3, 4, 5 and 7% of total 

power and a 100 mm/s velocity. One channel was connected to a micropipette filled 

with Meldola’s Blue. The time required to melt the ice and to pass dye from one 

channel to the other was considered as the “opening” time for the channels and 

recorded for each power.  

 

Figure 41: Melting of a 1 mm ice area between two channels. 
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4.3.2. Spectroscopy detection of a dye in ice 

capillaries 

The concentration of analytes in ice channels and cavities was detected with a 

fibre optic reflection probe. The probe is linked at one end to the Ocean Optics 

USB2000 spectrophotometer connected to a Windows XP PC via USB and to the other 

end to a halogen light source (see Figure 42). As a model analyte we chose the dye 

Meldola’s Blue. 

 

 

Figure 42: Spectrophotometer set up.  

 

The measure of the absorbance at a given wavelength is the measure of how 

much light the sample absorbs at that wavelength. It is proportional to the concentration 

of the substance interacting with the light as given by the Beer-Lambert law: 

Aλ = ελcl        Equation 54  

where Aλ is the absorbance at wavelength λ,  c is the concentration in moles per litre, l 

is the path length in centimetres, and ελ is the molar extinction coefficient of the 

absorbing species at wavelength λ.  
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To determine the absorbance of a sample with the USB spectrophotometer, a 

measure of the dark intensity, which is the intensity when the lights is switched off, 

must be taken as well as a measure of a reference sample intensity. When the sample 

intensity is recorded, OOIBase32 calculates the absorbance using the following 

equation: 
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where Sλ is the sample intensity at wavelength λ, Dλ is the dark intensity at wavelength λ 

and Rλ is the reference intensity at wavelength λ. 

The set-up described in Figure 42 was used to demonstrate the ability to 

measure the concentration of aqueous solutions of Meldola’s Blue. The probe was 

placed perpendicularly at 2 mm from the side of the mircrocuvettes containing 

solutions of Meldola’s Blue of various concentrations. A mirror was placed behind the 

micro cuvettes to reflect the incident light. Water was used as control. The absorbance 

of the solution was calculated by the OOIBase32 software. The maximum absorbance 

at Meldola’s peak wavelength (570 nm) was recorded for each concentration. 

In capillaries the dye concentration was measured using the same set-up. Ice 

was frozen inside dishes 3.3 cm diameter and 1.5 cm high. The height of the liquid was 

1 cm. A mirror was placed under the dishes. 4 channels were marked with the laser (30 

scans each, 4 %, 100 mm/s) and 10 µL of Meldola’s Blue was injected inside the 

channel with a Hamilton syringe. The optical probe was placed above the dye in the 

channel and absorbance measurements were taken. Water was used as control. The 

maximum absorbance at 570 nm was measured.  
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4.3.3. Preconcentration 

4.3.3.1. Distribution coefficient of Meldola’s blue 

To determine the distribution coefficient k of Meldola’s Blue, 2 mL of 0.015 

g/L Meldola’s Blue were frozen in a dish placed onto the cooling device while an area 

of 2 mm diameter was scanned continuously (4 %, 100mm/s, one scan every 30 

seconds). The area illuminated was kept melted while the surrounding froze (Figure 43). 

The optical probe was placed above the dye in the illuminated area. The absorbance at 

570 nm was measured. Water was used as control. Measurements of the absorbance in 

the area scanned were performed until the area surrounding the 2 mm disc was frozen. 

 

Figure 43: Illumination of a 2 mm diameter area by the laser beam upon freezing 

of the surrounding area. 

4.3.3.2. Laser zone melting in a ice channel 

2 mL of 0.015 g/L Meldola’s Blue were frozen inside a Petri dish and placed on 

top of the cooling platform, while a travelling melting zone of 1.5 mm x 1.5 mm was 

 

Laser beam 
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illuminated with the CO2 laser at 6% power, 150 mm/s beam velocity and 25 scans. The 

travelling molten zone was scanned over an area of 7.5 mm x 1.5 mm. One cycle of 

travel of the molten zone in the area lasted 15 minutes.  

 

Figure 44: Schematic diagram of the progression of the molten zone in the sample 

by laser illumination. 

4.4. Results and Discussion 

4.4.1. Opening of a valve made of ice 

The time at which the 1 mm wide ice area separating two channels melted was 

recorded for different laser powers. A spot 0.5mm diameter was marked between both 

channels with the CO2 laser at 3, 4, 5, 6 and 7% of the total power and a 100 mm/s 

velocity. The time of opening was recorded and plotted against the laser power (Figure 

45).  

 

Laser beam 
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Figure 45: Melting time of a 1mm wide ice section separating two channels with 

standard deviation bars. 

 

Laser powers above 3% were needed to melt the ice. The time of opening 

decreased from 185 s to 40 s when the laser power increased from 4 to 7%. 

As shown in section 3.2.1.2, the power of the laser beam is related to the energy 

Q absorbed by the ice to melt over time. The power was then plotted against the inverse 

of time for the values measured (Figure 46).  
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Figure 46: Laser power versus the inverse of the time of opening. 

 

The plot of the power versus the inverse of the melting time can be 

approximated to a straight line (R2 = 0.994). The slop of the plot of the power of the 

laser beam can therefore be estimatived as 
β
Q  where β is the coefficient between the 

laser power and the power absorbed by the ice (see section 3.2.2). From the value of the 

slope, β was calculated as 0.66, which coincides with the value calculated in 3.4.5.5. 

The dye contained in one of the channel flowed through the opened cavity when 

the ice area separating the channels was melted. After the laser beam stopped 

illuminating the area, the gap refroze in two minutes. The time of refreeze was 

independent of the laser power and velocity of marking of the cavity since it only 

depends on the cavity dimensions. 
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The opening-closing times can be substantially shortened for smaller channel 

dimensions in microfluidic devices. This technique can be a useful tool for opening 

channels in a microfluidic device. The opening of the area depends only on the power 

and the speed of the laser.  

4.4.2. Spectrophotometry 

4.4.2.1. Calibration plot of Meldola’s Blue in solution 

Concentrations of Meldola’s Blue inside the ice were measured with a fibre 

optic probe. A calibration plot of the absorbance of Meldola’s Blue in solution was 

established for the USB spectrophotometer used with the reflection optical probe. The 

absorbance peak at Meldola’s peak wavelength (570 nm) was recorded for various 

concentrations (Figure 47). 
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Figure 47: Absorbance calibration for Meldola’s Blue solutions (at 570 nm) 

performed using Qmicro-R200-7-UV/VIS-BX reflection probe and the USB2000 

spectrophotometer. 

 

The measurements were compared with the maximum absorbance measured at 

570 nm with a traditional spectrophotometer. The results are similar (within 10%) 

showing that the probe can be used effectively to measure the absorbance. The 

reflective probe is very sensitive and some stray light may cause the slight difference. 

Performing the experiments under the same conditions assures the repeatability of the 

measurements and the adequacy of the calibration plot for further use. 

4.4.2.2. Absorbance of Meldola’s Blue in ice channels 

The purpose of the reflection probe is to detect dye in ice, a calibration of 

absorbance of the frozen dye at various concentrations inside the ice channels was 

therefore established. The measurements of the maximum absorbance measured at 570 
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nm by the reflection probe when 10 µL drops of dye were injected inside ice channels 

are shown in Figure 48. 
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Figure 48: Absorbance of Meldola’s Blue dye drops inside channels marked in ice 

at 570 nm. Measurements were performed with the Qmicro-R200-7-UV/VIS-BX 

reflection probe and the USB2000 spectrophotometer. 

 

The slope of this graph is within 5% of the slope of the calibration plot shown in 

Figure 47. The absorbance measure in the absence of Meldola’s Blue had a value of 0.4. 

From the values of the absorption coefficient given by Johari (1981), the absorbance of 

ice at this wavelength should be in the range of 0.02. In order to understand why the 

initial absorbance was not equal to zero, measures of the absorbance of water during 

freezing were undertaken in the same conditions with the reflective probe. The results 

are shown in Figure 49. 
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Figure 49: Changes in ice absorbance at 570 nm during freezing.  

 

Ice crystallisation and increased strength of the hydrogen bonds are responsible 

for an increase in the absorbance at 570 nm observed during the freezing process. In the 

liquid state, water molecules vibrate but as rigid ice crystals form those vibrations are 

more and more restricted, resulting in a higher absorbance of solid ice by comparison 

with the absorbance spectrum of liquid water (Ewing et al., 2003).  

 

The linear expansion was also monitored during freezing. The results are shown 

in Figure 50.  
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Figure 50: Linear expansion measured during freezing of water inside dishes. 

 

The measures shown in Figure 48 were taken on samples frozen after 30 min, 

the thickness of ice had increased by 0.12 cm and the absorbance by 0.2%. The linear 

expansion of ice upon freezing cannot explain the high values of absorbance measured 

in ice with the reflection probe when no Meldola’s Blue was present. However for 

samples analysed at the same freezing conditions, it was possible to accurately 

determine the concentration of dye in frozen solution with the absorbance calibration 

plot given in Figure 48. 

4.4.3. Preconcentration 

4.4.3.1. Distribution coefficient 

The absorbance of Meldola’s Blue in the melted area was measured upon 

freezing of the surrounding area which took 40 min. From the calibration plot of 

absorbance versus calibration realised for Meldola’s Blue with the reflection probe 
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(Figure 47) the concentration in the melted area was calculated and was plotted in 

Figure 51: 
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Figure 51: Change in concentration of dye in the melted area during freezing of 

the surrounding zone (standard deviation bars). 

 

The concentration in the melted area increased with time until it reached the 

value of 0.023 g/L. The area illuminated was 2 mm diameter while the dish was 3.3 cm 

diameter. The solution was 1 cm high. The distribution coefficient of Meldola’s Blue 

was then calculated as 0.6. 

4.4.3.2. Laser zone melting in a ice channel 

A travelling melting zone of 1.5 mm x 1.5 mm was scanned at 6% power and 

150 mm/sec with 25 scans over an area of 7.5 mm x 1.5 mm. One cycle of travel of the 

melting zone in the area took 15 minutes. In the last region of the melting zone travel 
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the absorbance at 570 nm was measured after each cycle. The concentration at the end 

of each cycle was deduced and was plotted in Figure 52 together with the theoretical 

values calculated with Equation 53 with a value of k of 0.6. 
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Figure 52: Experimental (squares) with standard deviation bars and theoretical 

(pink) concentrations of dye in the final part of the travelling melting zone after 1, 

2 and 3 cycles in ice. 

 

The results show that the concentration of dye in solution increased linearly 

with the number of cycles. The difference between the experimental and the theoretical 

concentration values was within 10 %. 

This experiment shows that the concentration of Meldola’s Blue increased 

during laser zone melting. The laser coupled with freezing can be used for 

preconcentrating samples inline in a microfluidic device created in ice. 
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4.5. Conclusions 

The freezing and melting of ice can be used as a valve technique for 

microfluidic systems. The opening of the area depends only on the power and the speed 

of the laser while the closing time by freezing depends on the cooler devices set 

temperature. This non-micromachined valve can be used on an ice microfluidic device. 

However compared to the non-intrusive ice valves of Bevan & Mutton (1995) or Gui & 

Liu (2004) the laser beam can be damaging to the content of the channel (e.g. cells, or 

DNA). This method could however be employed in laser resistant material 

microchannels such as the one developed by Laptewicz & Bauer (1985) made of 

graphite in a polymer matrix. 

 

The preconcentration of analytes in ice microfluidic devices by laser-assisted 

zone melting has been demonstrated using Meldola’s Blue as a model analyte. It 

consists of concentrating the analyte molecules at the end of the travelling melt zone 

and is achieved after successive cycles of zone travelling in ice. This technique can be 

used in an ice microfluidic device for inline sample preconcentration for both sensing 

and separation purposes. This purification and concentration method is however slow 

and necessities numerous cycles of scans of the travelling zone and can be a drawback 

for a fast utilisation of the device.  
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5. Electrophoresis in channels in ice 

5.1. Literature review 

Electrophoresis is a separation technique which is based on the differential 

velocities of charged ions in an electric field. It was discovered by Reuss in 1807 when 

he observed the migration of water towards the cathodes through clay particles. In 1870 

Helmoltz related the flow parameters of electrokinetic transport to the electric field. 

There are two main types of electrophoresis techniques: electrophoresis in free solution 

and electrophoresis on a support media. 

Moving boundary electrophoresis in free solution was tested by Tiselius in 1937 

on a protein mixture in a buffer solution which under an electric field flowed in a 

direction determined by the current and at a rate determined by their charge and 

mobility. His work was rewarded with a Nobel price in 1948. Hannig (1982) developed 

the free flow electrophoresis technique in which a continuous stream of buffer flows 

perpendicular to the electrical field for the separation and identification of parasites. 

This technique is very effective and can separate particles with minimal differences in 

their surface charges.  

Electrophoresis on a support was developed as a way of monitoring the 

progression of the mixture and to visualise the separated components. This principle is 

called zone electrophoresis. Kunkel & Tiselius developed a filter-paper electrophoresis 

method in 1952. Agarose gel is another common support of zone electrophoresis 

(Hjerten, 1961) used in biochemistry and molecular biology for the separation of DNA 

molecules in which the shorter DNA fragments move faster than longer ones. 
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Convection in the electrophoretic media or adsorptive interactions between the 

solute and the support can take place and create zone broadening. Zone electrophoresis 

was then developed in microcapillaries to increase heat dissipation through the surface 

of the capillaries and minimize zone broadening (Jorgenson & Lukacs, 1981). Capillary 

electrophoresis (CE) is carried out in 20 to 30 cm long columns with an internal 

diameter of 50 to 200 µm. The separation can be detected with the instrumentation 

already developed for high performance liquid chromatography. Microchip CE can be 

used for the analysis of nucleic acids and proteins, genotyping and DNA sequencing. 

These techniques have considerably accelerated the sequencing of the human genome 

(Luckey et al, 1990). The analyses are very rapid: less than a minute for 

oligonucleotides (Effenhauser et al, 1994) to 20 min for DNA sequencing (Liu et al, 

1999). 

5.1.1. Electrophoresis separation 

The velocity v of an ion migrating in the electrical field E (V/m) is given by the 

expression: 

Ev eµ=         Equation 56 

where µe is the electrophoretic mobility (m2/Vs). 

 The ion inside the applied current is subject to an electric force Fe and the 

frictional force Ff. The electrical force can be expressed by: 

qEFe =         Equation 57 

where q is the charge of the ion (C) while the frictional force for a spherical ion of 

radius r can be expressed by: 



 105

rvFf πη6=         Equation 58 

where η is the viscosity (Ns/m2). 

The ion moves in the field with a constant velocity, therefore the electric force and 

the frictional force acting on the ion have same value. The mobility is therefore given 

by: 

r
q

e πη
µ

6
=         Equation 59 

Ions of high charge and of small size have high mobility. 

 In conventional capillaries, the motion of ion also arises from an electroosmotic 

flow within the capillary which depend strongly upon the composition of the capillary. 

The overall mobility of an ion is then: 

eofe µµµ +=        Equation 60 

where µeof is the electroosmotic mobility (m2/Vs). 

5.1.2. CE on microchips 

In 1992, Manz et al. presented the first CE on a microchip where injection, 

sample manipulations and separation took place on the microfluidic device. Because of 

the short separation length, the microchip CE is quick (within minutes if not seconds) 

and without significant peak broadening. The other advantage of microchip CE is the 

micro amount of sample needed.  

Glass and polymers are the two main types of substrates for capillary CE on 

microchips. In those substrates, the electrical field applied can be very high, of the 

order of KV/cm (Seiler et al, 1993). Microcapillaries have high electrical resistance, 



 106

therefore the amount of heat generated by the high electrical field is modest and readily 

dissipated through the walls of the capillary. The use of high electrical currents in 

microchip CE also leads to shorter separation times and higher separation efficiency 

compared to traditional electrophoresis systems, since the efficiency of separation is 

highly dependant on the electrical field applied, as shown by the expression of the 

separation efficiency:  

D
EN

2
µ

=         Equation 61 

where D is the diffusion coefficient of the migrating species.  

The resolution of the separation is defined as the ratio of the distance between 

sample peaks (∆L) and the standard deviation of the sample zone (σ): 

σ
LR ∆

=         Equation 62 

5.1.3. Instrumentation 

The length of the separation channel is limited by the sample plug length. If 

needed the size of the channel can be increased: serpentine capillaries as long as 50 cm 

were fabricated on chips as small as 1 cm2 (Seiler et al, 1993).The depth of the 

capillaries is usually 15 to 40 µm and their width 60-200 µm (Jacobson et al, 1994). CE 

microfluidic designs can be as simple as a single microchannel to more complex arrays 

of microchannels (Woolley et al, 1997). The later can offer the analysis of a large 

number of samples simultaneously. The number of channels on one device can however 

be limited by the size of the substrate, the detection method and the channel geometries 

and requirements (Dolnik et al., 2000). 
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Samples are loaded inside reservoirs and injected electrokinetically into an 

injection channel orthogonal to the separation channel as shown on Figure 53. A high 

voltage is then applied along the separation channel and it induces migration of the 

sample and separation to occur. The electrokinetic injection of sample controls the 

volume of sample injected in the separation channel (Harrison, 1992). 

 

Figure 53: Schematic view of an electrophoretic separation system on a micro-chip 

 

Detection is mainly achieved by laser-induced fluorescence, a detection method 

of high sensitivity. Laser-induced fluorescence can detect quantities as small as 10 

yoctomoles (10 × 10-24 moles) (Da Yong et al, 1994). While its sensitivity is very high, 

the laser-induced fluorescence detection system is very large. Other detection systems 

were developed for capillary electrophoresis to address this issue: electrochemical 

detection (Gavin & Ewing, 1996) and mass spectrometry (Zhang et al, 1999). 
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Waste reservoir 

Detector Electric field 

Injection channel 
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5.1.4. Ice as a separation substrate 

Electroseparation inside ice has been demonstrated by Piletsky et al. (2002). A 

glass capillary was filled with 10 mM HCl frozen at -20 °C. When a 10,000 V potential 

was applied, part of the capillary melted to let through a current of 0.2 µA. A mixture 

of amino acids and peptides was separated in the ice-filled capillary. Immunoglobulin 

can also interact with their corresponding antibodies whilst frozen inside ice (Piletsky 

et al., 2002). 

These results clearly indicate that ice can work as a separation matrix and that 

ice capillaries could offer improved compatibility with proteins or nucleic acids 

compared to polymer microstructures. This leads to the idea of creating ice channels for 

separation and sensing by capillary electrophoresis. Channels can be created inside ice 

with a CO2 laser as described above and refrozen and reformed as needed.  

Attempts at electroseparation performed in channels made inside various frozen 

media (gels, polymers and solutions) are presented in this section. They were also 

compared with electroseparation in polymeric substrates under the same conditions.  

 

5.2. Materials and Methods 

Equipment:  

The liquid cooler was the LTD 20 G Grant, (Cambridge, Cambridgshire, UK). The 

electrophoresis power supplies were the Consort 3000V-300mA E833 (Turnhout, 

Belgium and the EPS 301 from Amersham Biosciences, Little Chalfont 

Buckinghamshire, UK. The platinum electrodes (product number 26720-1, 99.99 % 

purity) were from Sigma-Aldrich (Gillingham, Dorset, UK). The laser 1-30 W IR CO2 



 109

Fenix™ was from SYNRAD (Mukilteo, WA, USA). The 100 µL capacity analytical 

syringe was from Scientific Glass Engineering (Melbourne, Australia). The 

microscope/camera Digital Blue was from Digital Blue (Heckmondwike, West 

Yorkshire, UK). The CCD camera was the pinhole B/W CCD board Camera from RS 

components (Corby, Northamptonshire, UK) used with the Adaptec AVC 1100 Video 

Capture software (Milpitas, CA, USA). The UV light was the Mineralight lamp model 

UVG54 from Ultraviolet Prod. INC (Upland, CA, USA). The spectrophotometer 

USB2000 was from Ocean Optics, (Dunedin, FL, USA). The halogen light source was 

UV-VIS-NIR DH2000 from Mikropack, (Ostfildern, Germany).  

 

Reagents:  

Acrylamide, methacrylic acid (MAA), acrylamidomethylpropansulfonic acid (AMPSA), 

methylene bisacrylamide, Rhodamine B, Bromocresol Green and Meldola’s Blue were 

from Sigma-Aldrich, (Gillingham, Dorset, UK). Ammonium persulphate (APS) was 

from Fisher Scientific UK (Loughborough, Leicestershire UK), N,N,N,N-

tetramethylethylendiamine (TEMED), tris(hydroxymethyl)aminomethane, 2-propanol, 

dichlorodimethylsilane, methanol, hydrochloric acid (HCl) and acetic acid were from 

Acros Organics (Geel, Belgium). N-octane was from VWR, West Chester, Lutterworth, 

Leicestershire, UK The silicone elastomer 2-compound system QSil215S was from 

ACC Silicones (Bridgwater, Somerset, UK). The heat sink compound and the quick set 

epoxy adhesive were from RS components (Corby, Northamptonshire, UK). Water was 

purified by reverse osmosis with the Elgastat B224 water purification unit (Elga Ltd, 

Marlow, Buckinghamshire, UK).  
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5.2.1. Capillary T-junctions in Perspex 

5.2.1.1. Millimetre T-junction 

A T-junction (800 µm width) was drilled in Perspex at 50 % power, 150 mm/s  

Figure 54). The channels were 0.8 mm width and 26 mm long with the exception of the 

separation channel which was 1.8 mm long. The electrodes were inserted into the 

cavities designed to fit them. 

 

Figure 54: Design of the millimetre T-junction using Winmark software 

5.2.1.2. Micro capillary T-junction 

A micro capillary T junction (100 µm width channel) was drilled in Perspex at 

50% power, 150 mm/s with the laser as shown in Figure 55. Two platinum electrodes 

were placed in 0.8 mm width, 26 mm long channels 2 cm apart. The dye and the 

separation channels were 100 µm wide. The separation channel was 1.8 mm long. The 

electrodes were as previously inserted into the specifically designed cavities. 
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Figure 55: Design of the micro capillary T-junction using Winmark software 

5.2.2. Cassettes 

5.2.2.1. Cassette A allowing a specific area to be frozen.  

The area of solution to be frozen in this cassette was delimited by the 

dimensions of an aluminium stage: 0.4 cm high, 2 cm width and 8 cm long. The 

aluminium stage was mounted onto a plastic plate (7.5 cm × 12.5 cm) with an aperture 

of the dimension suitable for the fitting of the aluminium stage (2 cm × 8 cm). A heat 

sink compound was rubbed into that plate. A plastic cassette (5 cm × 7 cm) was placed 

on top of the aluminium and the bigger plate as shown in Figure 56. The two platinum 

electrodes were glued onto that cassette, 4 cm apart from each other, with quick set 

epoxy adhesive. They were positioned to remain in the unfrozen part. 
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Figure 56: Schematic representation (top view) of Cassette A 

5.2.2.2. Cassette  B with masked electrodes 

In order to define and precisely locate the region for the application of current 

and to allow the supply of electrophoretic solution for electrophoresis, the platinum 

electrodes were entirely masked except of a 4 mm area by insertion inside PEEK tubes 

of 0.5 mm interior diameter provided with a 4 mm aperture on their side. The apertures 

enable fresh electrophoretic solution buffer to be supplied for electrophoresis. 

The two platinum electrodes inserted in the PEEK tubes were fixed 1.5 cm apart 

into a Petri dish as shown in Figure 57. They were passed through 1.5 mm holes in the 

Petri dish and fixed with epoxy glue.  
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Figure 57: Schematic representation of the Cassette B  

5.2.2.3. Cassette C 

Cassette C was formed by a 2.4 cm × 2.4 cm × 2 mm frame made of PDMS 

attached onto a glass slide with epoxy glue and covered by a cover glass. To create the 

frame in PDMS, a mould of the frame as shown in Figure 58 was drilled into Perspex 

with the laser (150 mm/s, 50 %, 2 scans). The QSil215 silicone elastomer 2-compound 

system was mixed in the ratio of 1:10, poured into the mould and allowed to harden for 

2 hrs.  
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Figure 58: Design of Cassette C mould using Winmark software 

 

In some experiments the cover glass covering the cassettes contained two 

apertures, as will be explained later: The 2 mm diameter apertures, 2 cm apart, were 

made in the glass cover with the laser (100 mm/s, 40 %, 2 scans) at the position of the 

intersection of the electrodes and the channel, to enable air bubbles to escape the 

medium. The electrodes, 1.5 cm apart, were passed through the PDMS frame close to 

the top. Initially the electrodes were inserted inside PEEK tubes with an aperture as 

described in Cassette B but as eventually the PEEK tubes were discarded and the final 

design of Cassette C is represented in Figure 59.  

1cm 
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Figure 59: Schematic representation of Cassette C 

 

5.2.3. Gels, polymer and solution frozen inside the cassettes 

Polymers, gels and electrolytic solutions were successively frozen between the 

electrodes. A glass cover was put on top of the electrodes and 6 channels were scanned 

over the area covered (100 mm/s, 6 %, 50 scans). 

5.2.3.1. Gels 

A first gel was prepared by dissolving 0.2 g of acrylamide and 0.2 g of 

methacrylic acid in 5 mL of water and a second gel was prepared by dissolving 0.8 g of 

acrylamide and 0.205 g of AMPSA in 5 mL of water. The solution was sonicated for 

10 min and degassed with argon. The initiators (5 µL of 1.7 M ammonium persulfate 

(APS) and 2.5 µL of 99 % TEMED) were added to the mixture and the polymerisation 

was carried out at 22 °C for 1 hr.  
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5.2.3.2. Polymers 

3.33 mL of acrylamide/methylene bisacrylamide (stock solution containing 

30% total monomer and 2.6% cross-linker) were placed in 16.67 mL of water. The 

solution was sonicated and mixed for 5 min and then placed in the fridge for another 5 

min. Tris(hydroxymethyl)aminomethane was added to shift the pH to 7.5. The solution 

was then sonicated again for another 10 min. 5 µL of 99 % TEMED and 5 µL of 40 % 

APS were added into 5 mL of the polymer solution. The solution was mixed together 

and poured into a plate. The polymerisation was carried out in an oven at 60 °C for 30 

minutes. A cover glass was placed on top of the polymer between the electrodes and 

the plate was frozen. 

 

Short polymeric chains AMPSA/acrylamide and MAA/acrylamide were 

polymerised. 0.8 g of acrylamide were mixed with 0.459 g of AMPSA, 5.503 g of 

water and 0.786 g of 2-propanol for the former and 0.8 g of acrylamide were mixed 

with 0.2 g of MAA in 3.5 g of water and 0.5 g of 2-propanol for the latter. Both 

solutions where sonicated for 20 minutes.4 µL of 40 % APS and 4 µL of 99 % TEMED 

were added to them. The polymerisations were carried out in an oven at 80 °C for 2 hrs. 

5.2.3.3. Solutions 

The 10 mM HCl had a pH of 2.0 and a conductivity of 3.3 × 10-6 S at room 

temperature. The 100 mM acetic acid was mixed with 20 % sucrose to increase the 

density and had a pH of 3.6 and a conductivity of 6.7 × 10-7 S at room temperature. 

The media were tested before carrying out electrophoresis. The media were 

frozen inside Cassette A. A glass cover covered the solution between the electrodes and 
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6 channels 22 mm long and 1.25 mm apart were scanned 50 times at 6% power and 100 

mm/s over the area covered. The electrophoresis power supply was then switched on 

and the current was recorded. 

5.2.4. Dye electrophoresis 

The initial experiments of separation in channels were performed in Cassette A 

filled with 10 mM HCl. Cassette A was laid on the cooling platform at -20 °C. After 60 

min, the middle area was frozen and the experiments for separation were undertaken as 

follows: a 2 mm diameter cavity was drilled with the laser (6%, 150 mm/s, 50 scans) in 

the frozen area 0.5 cm away from the liquid area (see Figure 60). The cavity was filled 

with 0.8 g/L Meldola’s Blue, which was left to freeze for 2 min, covered with a cover 

glass and left for 5 more minutes until the cover glass became attached to the surface. 

The electrical conditioning with the power supply was set at 50 V, 20 mA and 3 W 

maximum. Channel A, as shown in Figure 60, was scanned with the laser (8 %, 150 

mm/s, 50 scans) to allow the dye to fill the channel. The channel was allowed to 

refreeze for 4 minutes without any current before the current was reapplied. The 

separation channels (B) were scanned (8 %, 150 mm/s, 50 scans). Channels B were 4 

cm long and 6 mm apart. The presence of dye in the separation channels was checked 

with a microscope and a spectrophotometer. 
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Figure 60: Electrophoresis design 

5.2.5. Dye separation  

The later experiments on dye separation were performed in Cassette C filled 

with 10 mM HCl. Cassette C was mounted on top of the cooling platform at -20 °C. 

After 25 min the 10 mM HCl solution was frozen. Two holes of 2 mm diameter, 2 cm 

apart, were drilled in the glass cover with the laser (100 mm/s, 40 %, 7 scans) at the 

position of the intersection of the electrodes and the channel, to enable air bubbles to 

escape the medium.  

The electrophoresis conditions were 500 V, 10 mA and 3 W. The voltage was 

applied until the current was stable. The value of 0.5 mA remained stable for 5 minutes, 

then Channel A (see Figure 61) was scanned with the laser (6 %, 50 mm/s, 150 scans) 

and 2 µL of 2 mg/mL Rhodamine B was injected inside channel A with a micro syringe 

and left to freeze for 10 min, after which the separation channel (channel B) was 

scanned (5 %, 150 mm/s, 50 scans). The marking was unidirectional (from left to right). 
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The current was reapplied. The migration of the dye within the separation channel was 

observed with the Digital Blue camera. 
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Figure 61: Experimental set-up for dye electrophoresis 

 

A longer separation path was then tested. The first long path tested was a zigzag 

shaped channel as shown in the picture below on the left, then an s-shaped channel as 

on the right hand side. 

1cm 
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Figure 62: Long path separation channels 

 

 

 

Figure 63: Experimental set-up for long path separation 

 

The electric conditioning of the power supply set the value of the voltage supply 

and the limit values of current and power. The electric conditions were 100 V,0.1 mA 
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tnd 3 W. The current reading was 0.3 mA. Rhodamine B dye was injected into channel 

A and the scanning of channel B was repeated 80 times at 6 % power and 50 mm/s. The 

electrophoresis was monitored with a CCD camera under UV light.  

Following the protocol described in the previous section, we also tested a bi-

directional beam (50 mm/s, 5% power, 50 scans in both directions). 

To test the separation of a mixture, we used a mixture of 1 g/L Rhodamine B 

and 1 g/L Bromocresol Green (dissolved in glycerol). The same protocol as described 

in paragraph 5.2.5 was followed. 

5.2.6. Separation in channels created by laser (no current applied) 

In Cassette C mounted on top of the cooling platform at -20 °C, a 2 mm 

diameter hole was drilled in the 80 mM frozen acetic acid and filled with a mixture of 1 

g/L Rhodamine B and 1g/L Bromocresol Green (dissolved in glycerol). The solution 

was allowed to freeze for 10 minutes and an s-shaped channel was scanned at 50 mm/s 

and 6 % across the frozen dye area. 

5.3.  Results 

5.3.1. Cassettes 

The freezing time of water inside the cassettes previously described was tested. 

The cassettes were filled with water and mounted on top of the cooling platform at -20 

°C. The volume of each cassette and the time required to freeze the water solution in 

each cassette were recorded (Table 2).  
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Table 2: Volume and time of freezing of Cassettes A, B and C 

Cassette Volume Time of freezing (cooler at -20ºC) 

A 10 mL 60 min 

B 10 mL 75 min 

C 2 mL 25 min 

 

 Cassette B was discarded and replaced by Cassette C because freezing took too 

long and the contents melted very easily during manipulation. 

In the initial design of Cassette C, the electrodes were masked in PEEK tubes 

with only a 4 mm aperture to restrict the area available for electrophoresis. However 

the solution inside the PEEK tube would freeze as well, no current was monitored and 

electrophoresis could not proceed. The use of PEEK tubes was therefore discarded. 

Freezing and scanning were performed with and without a cover glass. In the 

absence of a cover glass, the ice surface was not flat and evaporation during laser 

marking would occur. A thin layer of mineral oil (N-octane) was spread on top of 

frozen HCl to enable a flat ice surface. However it melted the ice so the idea was 

discarded. 

In the presence of a cover glass, shrinking and expansion of ice against the 

cover occurred as well as condensation on the glass cover (leading to poor imaging). In 

order to make the cover glass hydrophobic it was treated with a solution of 2% 

dichlorodimethylsilane in methanol. Also 1 mm diameter holes were drilled with the 
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laser (100 mm/s, 90 %, 1 scan) in the cover glass to let the bubbles created during 

electrophoresis escape. 

5.3.2. T-junction 

Electrophoresis in ice capillaries is a very complex process and this holds 

mainly to the nature of ice which can melt or freeze very easily. Electrophoresis in 

capillaries made under low voltage was tested in T-junction capillaries made in Perspex. 

T-junctions were the first devices developed as injection tools inside capillaries by 

Verheggen et al. (1988) and they are common devices used for capillary electrophoresis 

nowadays. 

5.3.2.1. Millimetre capillary T-junction 

First, millimetre T-junction channels made in Perspex, as described in Figure 54, 

were filled with electrophoresis solution (Figure 65). The electrophoresis solution was 

100 mM acetic acid (pH = 3.3) mixed with 20% sucrose. Acetic acid was preferred to 

an HCl solution, which generated too many bubbles in this study. Sucrose was added to 

increase the solution density and prevent the dye from moving freely inside the 

channels.  

The electrophoresis power supply was switched on. The electrophoresis 

conditions were set to 500 V, 10 mA and 3W. The current value stabilised at 0.6 mA in 

5 min. 2 µL of 1 mg/mL Rhodamine B (Figure 64) was injected into the dye channel 

(Figure 66) with a micro syringe and the voltage was applied (readings: 500 V and 0.6 

mA). The dye moved towards the cathode (Figure 67). However due to the dimensions 

of the channel, the dye entered the separation channel before the voltage was applied, 
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therefore it was decided to try this experiment with a micro capillary T-junction instead. 

The micro capillary T-junction had channels 8 times smaller than the millimetre T-

junction.  

 

Figure 64: Rhodamine B structure  

 

Figure 65: T-Junction drilled in Perspex 
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Figure 66: Injection of Rhodamine B dye 

 

 

Figure 67: After application of a voltage between the electrodes the dye moves to 

the cathode. 

 

Dye moving 

 to the cathode 
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5.3.2.2. Micro capillary T-junction 

The micro capillary T-junction was described in Figure 55. As previously, the 

channels were filled with a solution of 100 mM acid acetic (pH=3.3) containing 20 % 

sucrose (Figure 68). The electrophoresis conditions were 500V, 10 mA and 3 W. The 

voltage was applied until the current was stable and reached a value of 0.4 mA. It 

stayed stable for two minutes and then dropped to a value below 100 µA. 2 µL of 1 mg/ 

Rhodamine B was injected into the dye channel with a micro syringe (Figure 69) and 

the voltage was applied (readings: 500 V and 100 µA). The dye moved again towards 

the anode electrode in approximately 60 s (Figure 70).  

 

Figure 68: Capillary T-junction in Perspex. 
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Figure 69: Injection of Rhodamine B into the dye channel. 

 

 

Figure 70: After appliance of voltage between the electrodes the dye moves to the 

anode. 

 

The same experiment was conducted in the dark under illumination from a UV 

lamp. Pictures were taken with the CCD camera before and during the application of 

the voltage between the electrodes to follow the movement of the dye inside the 

junction. The sequence is shown in Figure 71  

Dye moving  
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Figure 71: Sequence of pictures taken with a CCD camera under the illumination 

of a UV lamp showing the flow of Rhodamine B in the microcapillary junction 

when a voltage of 500 V was applied between the electrodes. 

 

The first image (Figure 71, top) was taken after the Rhodamine B dye was 

deposited in the centre of capillary junction, initially filled with 100 mM acid acetic 

(pH=3.3) containing 20 % sucrose. The dye can be spotted as the lighter cross-shape in 

the middle of the T-junction. The second picture was taken 5 s after the power supply 

linked to the electrodes was switched on to deliver 500 V. The dye can be seen to have 

cathode anode 
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spread inside the channel. The last picture was taken after one minute and shows that 

the most of the dye had concentrated at the anode.  

5.3.3. Electrophoresis in various frozen media 

The first media tested was a solution of 10 mM HCl frozen on the cooler at -20 

°C and covered with a glass cover. The voltage was applied between the electrodes (50 

V, 10 mA, 3 W). The channels were scanned (150 mm/sec, 8 %, 50 scans) over the 

frozen HCl solution and then stopped. The scanning was repeated 4 times. The current 

changes were recorded in Figure 72.  
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Figure 72: Changes is current passing through the channels created in frozen HCl 

frozen solution, at 50 V, when 5 channels were scanned (150 mm/s, 8 %, 50 scans). 
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After each successive opening of the channel, the increase in the current was 

smaller after each scan; a possible explanation for this was that the solution was 

depleted in ions from ice. 

To prevent this from happening we tried to use anticonvective media which are 

commonly used for electrophoresis, since the early work done by Tiselius (1937). The 

passage of current in anticonvective media does not produce heat. Therefore 

anticonvective media prevent heat-induced modification in the separation process. A 

representative of this type of support was the MAA gel polymerised as described in 

section 5.2.3.1. It was poured between the electrodes set 2 cm apart and frozen on top 

of the cooler at -20 °C. When the voltage was applied (50 V, 10 mA, 3W) between the 

electrodes and the channels were scanned (6 %, 100 mm/sec, 50 scans) over the frozen 

MAA without cover glass, an increase in current was recorded.  However we noticed 

issues with the marking of channels in the frozen MAA. Thus scanning resulted in 

uneven channels, which were impossible to correct. It was decided to discard the use of 

MAA gel. 

Another gel based on AMPSA was also tested. Its polymerisation was described 

in section 5.2.3.1. It was poured between the electrodes set 2 cm apart and frozen on 

top of the cooler at -20 °C. Two holes of 2 mm diameter, 2 cm apart were made in the 

glass cover with the laser (100 mm/s, 90 %, 1 scan) at the position of the intersection of 

the electrodes and the channel, to enable air bubbles to escape the media. Despite this 

precaution, too many bubbles were formed on the electrodes when the difference of 

potential was applied (50 V, 10 mA, 3 W) between the electrodes and the channels 

were scanned (6 %, 100 mm/sec, 50 scans). Because of the high conductivity of 

AMPSA, the current was too high and a lot of bubbles were generated. No significant 
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results were obtained with AMPSA gel. As a result of this the work on gels was not 

continued. 

Subsequently short chains were tested. Short chains of relatively low viscosity 

increase the resolution of separation and have been developed for electrophoresis by 

Gelfi et al. (1995). First, short chain MAA was polymerised as described in section 

5.2.3.2. The difference of potential was applied (50 V, 10 mA, 3W) between the 

electrodes and the channels were scanned (6 %, 100 mm/sec, 50 scans). A net increase 

of current between the electrodes when 6 channels were scanned was recorded. MAA 

short chain polymer was a suitable electrophoretic medium for electrophoresis: not 

many bubbles were generated and the channels scanned were even. AMPSA short 

chain polymer polymerised as described in section 5.2.3.2 was also tested but too many 

large bubbles were generated at the electrodes to give any result. 

5.3.4. Dye electrophoresis 

Figure 74 shows the cavity filled with frozen dye and the separation channels as 

described in section 5.2.4. This was the first set up tested to investigate the mobility of 

dye in ice capillary electrophoresis. Meldola’s Blue, which is positively charged 

(Figure 73), should migrate towards the cathode. The dye moved from the hole inside 

the s-shaped channel, but when the difference of potential was switched on between the 

electrodes and the separation channel was scanned, no evidence of the presence of dye 

in the separation channel was found. This can be explained by the dissolution of dye 

when it flows from the hole of dye into channel A and then from channel A into the 

separation channels B. It was very diluted by the time it arrived into channels B and 

even more by the time the picture was taken – since taking the picture required removal 
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of the cassette from the cooling platform under the laser to place it under the 

microscope, which allowed the channels to melt and the dye to sink to the bottom of 

the ice, meaning that it was impossible to photograph this. This set up was not 

continued and it was preferred to inject dye directly into channel A as was done in the 

next section.  

 

Figure 73: Meldola's Blue structure  

 

Figure 74: Microfluidic set up created for investigation of mobility of Meldola’s 

Blue in ice capillaries scanned by the laser (8 %, 150 mm/s, 50 scans) 
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5.3.5. Dye separation 

The set up described in section 5.2.5 was tested for dye mobility as well as dye 

separation. Figure 75 was taken when the Rhodamine B dye was injected into channel 

A and Figure 76 was taken after the separation channel was marked across channel A 

and the electrodes, before the voltage was applied. A migration of dye in the separation 

channel towards the cathode can be seen in Figure 76. To make the following pictures 

(Figure 75 to 77) the cassettes were removed from the cooling platform and put under 

the microscope. This would involve partial melting of the surface of the ice and the 

capillaries and the migration of dye outside the channels, which explains the presence 

of dye outside the channels on some of the following pictures and the poor imaging.  

 

Figure 75: Rhodamine B load 
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Figure 76: Flow of Rhodamine B inside the separation channel. Image made after 

letting the channel freeze for 1 minute. 

 

In case of a bi-directional scanning, the dye also moved towards the cathode as 

shown in Figure 77. 

 

Figure 77: Electrophoresis result when the separation channel was scanned in 

both directions. 
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5.3.6. Mixture of dye separation 

 

Figure 78: Electroseparation of Rhodamine B and Bromocresol Green. 

 

In the picture above, Rhodamine B migrated towards the cathode and 

Bromocresol Green towards the anode. Bromocresol Green was only very slightly 

visible in the channel towards the anode. Some Rhodamine B was visible in the 

previous picture in the separation channel in the direction of the anode. This is due to 

the partial melting of the ice when the picture was taken and the moving of dye that it 

provoked. 

Rhodamine B 

Bromocresol Green 
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Figure 79: Bromocresol Green structure  

5.3.7. Long path channel 

The dye was not moving along the whole zigzag path described in section 5.3.7 

which was too long and too angular to let the dye move along the whole path. It was 

modified to become an S-shaped path with rounded angles. In this path, the moving of 

the dye through electrophoresis can be seen in Figure 80 demonstrating that the 

separation path does not have to be rectilinear and perpendicular to the electrodes to 

observe movement of the dye and, within certain limits, it can have various shapes and 

length. 
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Figure 80: Successive images taken with a CCD camera in the dark under the 

illumination of a UV light during the scanning of an S-shaped channel in which 

Rhodamine B flows 

5.3.8. Mobility of dye in the channel when no current was applied 

This experiment was to done to investigate the effect of laser scanning on dye 

mobility inside the channels when no voltage was applied.  

The dye moved along the channel in the direction of scanning although no 

voltage was applied. 

The results of this series of experiments showed that dye can move inside 

channels during scanning alone as well as during electrophoresis and that both scanning 

and the applied current have an effect on the movement of the dye. 
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5.4. Conclusion 

This work is similar to early stages capillary electrophoresis development where 

basic parameters (i.e. capillary dimensions and voltage conditions) have to be 

optimized first. The objective of the experiments done here was primarily to investigate 

the optimum parameters in which electrophoresis could be successful in ice capillaries.  

 

This series of experiments on electrophoresis in ice capillaries demonstrates the 

following points: 

• It is possible to provide electrophoretic transport in an ice capillary. 

• It is possible to obtain electroseparation of 2 dyes (Rhodamine B and 

Bromocresol Green) in ice capillaries. 

 

Those results were however not obtained without difficulties. First, because 

high voltages provoked ice to melt quickly, early experiments made in ice capillaries 

showed the necessity to use low voltage instead of the high voltage in the order of 3000 

V usually used in capillary electrophoresis (Su et al., 2003). Secondly the dye flowed 

freely inside the capillaries and the electrophoresis did not result in sharp bands. Finally, 

the recording of images brought extra difficulties, since it was necessary to move the 

cassettes from the cooling platform placed under the laser to the microscope, provoking 

the partial melting of the ice surface and the migration of dye outside the channels.  

It can be noted that microcapillaries made in ice are wider than those used for 

electrophoresis on chips made of traditional material (100 µm instead of 25 µm): 

smaller channels would freeze instantaneously and dye would not be able to flow.  
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6. Conclusions and suggestions for future work 

The current project was pioneering in the sense that nobody has been using ice 

as a material for separation before, which made this project very challenging. Despite 

this some successful results have been obtained which show that the idea of making a 

microfluidic device in ice was not unrealistic.   

 It was possible to use a CO2 laser for rapid creation of channels in ice and 

various design geometries with dimensions and inner temperature controlled by the 

laser parameters. The conditions for freezing, and laser scanning were studied in 

conjunction with the effect they have on ice/channels properties. The optimal range of 

power/velocity of the laser for the creation of channels was identified as 0.4 to 20 W/m. 

In this range of settings, the channels with 300 µm wide stayed open for 2 s and could 

be kept open by successive scanning. 

 The conductivity measurements in ice confirmed that we can create open and 

closed channels which can transport ions, analytes and liquid flow in general. Transport 

inside the channels can be obtained by pressure gradient, by applied current or by the 

laser marking process alone thanks to the sheer surface tension within the melted area 

created by the temperature gradient within. The rate of transport observed inside the 

channels was of the order of 1 mm/s.  

 We have demonstrated that electrophoresis can be used not only for transport 

but also for separation of analytes such as Rhodamine B and Bromocresol Green in ice 

capillaries. 
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 The freezing and melting of ice can be used as a valve in microfluidic systems. 

The opening of the area depends only on the power and the speed of the laser scanning 

while the closing by freezing depends on the temperature of the cooling device. 

 A fibre-optic spectrophotometer was used successfully for measuring dye 

concentration inside ice channels.  

 The preconcentration of analytes in ice-based microfluidic devices by laser-

assisted zone melting has been demonstrated using Meldola’s Blue as a model analyte. 

This technique can be used for preconcentrating samples inline in a microfluidic device 

created in ice for both sensing and separation purposes. 

 The results achieved so far are in line with early development work of 

traditional microfluidic devices created in glass, plastic or ceramic. More efforts are 

required to transform the current feasibility study into a successful commercial project. 

We believe however that the present work provides confidence that this is possible. 

 The future work can include application of ice-based microfluidic devices for 

cell growth and for DNA amplification. It is also desirable to achieve miniaturisation of 

the instrument using Pelletier bridges and a portable laser. The development of a laser 

resistant container would be also essential for further developments of this microfluidic 

platform.  
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