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SYNOPSIS 

Recent advances in composite structures and active control systems have 

made the concept of a forward swept wing aircraft a viable alternative to the 

more conventional configurations. 

This thesis encompasses some of the work resulting from a three year 

research program covering the dynamic behaviour and characteristics of a 
FSW aircraft having a closely coupled canard. The dynamic model has been 
based on the output of a first order optimisation routine with emphasis on 

minimum induced drag and static margin as the two most important criteria. 
Stability characteristics of the dynamic model were extracted from the 

transient response tests in both longitudinal and lateral modes by means of 

a statistical method, namely Extended Kalman Filter (E. K. F. ). In carrying 

out the dynamic tests, use was made of the facilies outlined by Ref. 8. 

Validated through computer based experiments, the Extended Kalman 
Filter algorithm has successfully been applied to the open-loop wind tunnel 

tests. Simulations of the equations of motion using estimates of stability 
derivatives obtained in this way closely match the observed behaviour. 

Furthermore, substitution of aerodynamic data obtained via static wind 
tunnel measurements in theoretically derived expressions for some of the 

stability derivatives has resulted in an alternative set of stability 
derivative estimates. ' 

Finally, estimates of the stability derivatives obtained with the E. K. F., 

first order optimisation program and static tests are compared. Although 

the results are limited to very low subsonic Mach numbers, nevertheless, they 

are very encouraging. It is hoped that future work might extend the studies 
into unstable flight regimes. 
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ý. INTRODUCTION 

1.1 Background 

Although it has been recognised that wings with forward sweep may 
offer some aerodynamic advantages over more conventional wings, the full 

potential of this type of layout has not yet been totally utilised. 

The first aircraft to make use of forward sweep was the German 
JU287 with a forward sweep angle of 15° which flew in 1944. Work on 
this concept continued after the Second World War but due to the aero- 
elastic problems associated with forward-swept wings, namely wing tortional 
divergence, all activity was abandoned. From the design point of view 
the divergence speed of swept-back wings is not a matter of vital 
concern. On the contrary, divergence speeds of wings with forward sweep 
is low enough to cause this configuration option to be ruled out. This 
is because the additional structural mass required to assume sufficient 
stiffness to prevent divergence prevention more than offsets the aero- 
dynamic advantages of the wing with forward sweep. However true in the 

case of wings with conventional wing structure, it may not be so for 

wings constructed of composite materials. With the additional facility 

of aeroelastic tailoring, the flexural axis of the forward-swept wing 
can be aligned in such a way that the amount of wash-in caused by the 

aerodynamic loading is reduced as the latter increases . 
New developments in composite structural technology have therefore 

revived the interest in forward-sweep wings. This renewed interest, 

though initially confined to mere analytical studies, has resulted in 
the implementation of such wings on experimental aircraft. 

Some advantages of the forward-swept wing design are 

(i} Higher LID ratio at manoeuvring Mach numbers. 
(ii) Lower trim drag. 

(iii) Better lateral control at high angles of attack - lower 

stall and therefore slower landing. 
(iv) Higher leading edge suction and therefore the extension of 

laminar boundary layer over a bigger section of the wing. 
(v) Better volume distribution leading to less wave drag. 

Furthermore, with the enormous developments in digital control and 
its application to active control technology, it is not only possible 
to augment the stability of an otherwise unstable aircraft but also to 
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make weight savings in its structure. This would undoubtedly lead to an 

unstable structure which could, through the application of active controls, 
behave in a stable manner. An example of this is the 'GRUMMAN' X-29 

advance technology demonstrator which has an extremely high level of 

relaxed stability. 

The aerodynamic advantages of a forward-swept wing can best be 

enhanced by the combination of the forward-swept wing with a closely 

coupled foreplane in a canard layout. So far, research into forward- 

swept wing aircraft has suggested that a forward-swept wing and canard 
layout is the only viable option which could offer some questionable 
advantages over the conventional combat aircraft layout. 

1.2 Aims of the Research Program 

Having established that a forward-swept wing and canard configuration 
offers a cleaner aircraft from the aerodynamic point. of view, the 
dynamic characteristics and control of such a layout, as applied to 

combat aircraft, was chosen as the main research area. A purely theoret- 
ical approach to this problem has proved unsatisfactory mainly because 

of limited data availability. The first step towards a realistic 
analysis of the problem therefore, was to design an aerodynamically 
optimised fighter aircraft with forward-swept wings having a closely 
coupled foreplane. This in itself proved to be a challenging task since 

complete optimisation can only be possible if detailed wing and foreplane 

loading data are available. Despite the lack of such detailed data, use 

was made of available information which was then used in conjunction 
with computer programs to carry out the optimisation task. The main 
objective of the design optimisation process as applied to the present 

study was to minimise the induced drag resulting from the interaction 

of the F. S. W. and the foreplane at a particular Mach number. 

A scaled dynamic model of this optimised layout was then developed 
having fully operational control surfaces. This generalised dynamic 

model of a forward-swept wing combat aircraft was then the subject of 
static and dynamic wind tunnel tests. The scale factor for the dynamic 

model was determined by the size of the test rig facilities accompanying 
the 42" diameter open jet "Weybridge" wind-tunnel. Details of the test 

rig are given in Ref. 8. This test rig allows the model to move in four 
degrees of freedom, namely, pitch, roll, yaw and heave. 
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A major part of the research program was taken up with the devel- 

opment of parameter identification algorithms for the purpose of the 
estimation of both longitudinal and lateral stability derivatives. 
Computer simulations of the aircraft were then used to verify the appli- 
cability of the techniques used prior to the implementation of the codes 
for the analysis of results of the dynamic wind-tunnel experiments. 
The latter consisted of short period longitudinal and lateral response 
tests which, with the aid of the parameter identification programs for 
analysis, provided some insight into the dynamic characteristics and 
behaviour of the model. The techniques on which the parameter identifi- 

cation could be based are varied in property and number. However, the 

extended Kalman filter (E. K. F. ) technique was chosen here in particular 
because the estimates provided by the E. K. F. possess a maximum likelihood 

property which in effect makes it an optimal state estimator. 

In order to gain insight into some of the more basic aerodynamic 
parameters, such as lift curve slopes, limited static wind tunnel tests, 

using the dynamic model, were carried out. Furthermore, aerodynamic 
data obtained from static tests carried out in the 8' x 6' wind tunnel 

were then used to estimate some of the stability derivatives for which 
theoretical expressions could also be derived. This enabled comparisons 
to be made between the estimates of stability derivatives obtained 
through, 

(i) A purely theoretical approach based on aerodynamic data 

output of optimisation program. 
(ii) Extended Kalman filtering as a means of estimation of 

stability derivatives. 
(iii) Insertion of aerodynamic data from static tests into theore- 

tical expressions. 

Finally, an extension of the analysis to include the dynamic 

behaviour and characteristics of the model with relaxed stability 
brought the research programme to a close. 
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2. DESIGN OF THE F. S. W. AIRCRAFT 

The primary reason for the design of a full size F. S. W. aircraft was to 

assess the theoretical behaviour of such aircraft and more importantly to 
construct a dynamically scaled version of it. The configuration was based on 
both computerized design and empirical data where appropriate. It must 
however be pointed out that all design stages were concerned with the aerodynamics 
rather than structure, engine placement, system design, etc. With this view in 

mind the following design levels were devised. 

2.1 Conceptual Level 

During this early stage connectivity, component placement, and 

approximate sizes were defined. Limited engineering calculations were performed 
at this stage to provide a three-view drawing and cross sections showing 
approximate placement and size of all the major F. S. W. aircraft components. 
Details of the first drawing together with initial dimensions are given in 

Fig. 2.1. It must be pointed out that the design at this stage was entirely 
based on crude approximations to the aircraft configuration, the major 
components of which were wing, canard, fuselage and fin. More attention was 
paid to the shape of components than the interaction between them, which was 

dealt with in the next-stage of the design. 

2.2 Preliminary Design Level 

At this stage referred to as the preliminary design stage, emphasis was 
on the quantitative measures of performance in order to make comparisons. 
Empirical data and expressions were used since aerodynamic data 

such as detailed wing loading and canard-wing interactions were not available. 
However, with concepts that are novel or unusual, the existing engineering 
methods may not be applicable. Under these circumstances, significant 
theoretical study was required to validate the design which unfortunately was 
beyond the scope of the present study. Various stages of design at this level 

were as föllows: - 
(i) Define initial configuration. 

(ii) Estimation of component masses. 
(iii) Calculations of aerodynamic parameters. 
(iv) First order optimisation of wing-foreplane geometry as regards 

the vertical gap between the two. 
(v) Estimation of C. G. and N. P. positions and stick-fixed static margin. 

(vi) Overall configuration optimisation. 
(vii) Determination of principal moments of inertia. 

(viii) Determination of the full size aircraft configuration. 
(ix) Dynamic scaling for model. 
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(x) Estimation of longitudinal stability derivatives. 

All these stages with the exception of 1,3,7 and 8 form various 
computational blocks of the first order optimisation computer program. 

2.2.1 Initial Configuration Data. 

This stage of the design level primarily served as an input to the 

whole of the scheme and it originates from the conceptual design. This 
input data includes basic dimensions, approximate positions of the 

aerodynamic centres of the F. S. W., canard and fin, mean aerodynamic chords, 
aspect ratios, etc., and in general geometric information extracted from the 
first drawing of the conceptual configuration. Therefore, this stage of the design 

could be classified as a data block since there are no computations involved with it. 
2.2.2 Estimation of Component Masses. 

The component masses were determined through the use of empirical formulae 

which are conditioned by the many different geometric properties of the 

components. These expressions take many forms, but in general, their estimates 
have a narrow scatter band. Here, use was made of Ref. 1 in order to maintain 
the compatibility between all the empirical information used throughout the 

present design level. Significant weight reduction could be achieved through 

the use of carbon fibre materials, in fact Ref. 1 sugaests that in using 

carbon fibre structures the following reduction in component masses could be 

achieved. 

(i) 25% reduction in each foreplane and fin + rudder masses. 
(ii) 25% reduction in the front fuselage mass. 

(iii) 30% reduction in the intake duct mass. 

'For'a stable structure no significant mass reduction is achieved 
as a result t if fibre usage. Details of mass breakdown are given in 
Table B1 of Appendix B. From the point of view of program structure, this 

stage of the design level forms a computational block containing the empirical 
formulae for the estimation of component masses. 

2.2.3 Calculations of Aerodynamic Parameters. 

As already mentioned, one of the criteria chosen for optimisation 
is the minimisation of induced drag. In the absence of any other vortex 
shedding the induced drag represented in the computer program is entirely due 
to trailing edge vortices of the F. S. W. and foreplane. These surfaces cannot 
be treated in isolation from each other since there exists mutual interference 
between them which can be turned into an advantage. One of the ways in which 
such optimisation could be achieved is as follows: 
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(i) Computation of F. S. W. and canard lift distribution using extended lifting 

line or lifting surface theories. 
(ii) Computation of induced flow fields caused by F. S. W. and canard and 

their effects on each other. 
(iii) Computation of secondary and higher order interference between F. S. W. 

and canard and iteration until convergence occurs. 
(iv) Repeat for different relative positions of canard with respect to wing 

as regards the vertical gap between the two. 
(v) Compute the induced drag in each case. 
(vi) Finally use a hill climbing optimisation technique to find the optimal 

vertical gap. 

Clearly, this would involve a great deal of complex computational work 

which would have been beyond the scope of this thesis. Nevertheless, a first 

order optimisation technique was adopted here which only treats the influences 

of foreplane on the F. S. W. and is described in section 2.2.4. 

In the absence of detailed wing and forpplane loading, important aerodynamic 
parameters such as wing-body and canard-body lift curve slopes, zero lift drag 

CD , etc., were estimated. Details of these calculations are presented in 

Appendices B and G. However, these calculations are confined to Mach number range 

M<0.6, since the study was limited to low subsonic Mach numbers. 

In considering the wing-body and canard-body geometries it can be said 
that 

CL 
wing-body 

=a 
wing-body 

a 

CL =a. (a+n) 
foreplane-body foreplane-body 

where 'a' represents the lift curve slope 

However, the geometry of the wing-body mounting has to be taken into 

account. For the present design, the chord lines of the wing aerofoils were 
chosen to be parallel to the body x-axis. Hence, the zero-lift line of the 
F. S. W. makes, according to characteristics of NACA 65-206 aerofoil, an angle 
of a0=1.8° with the body x-axis. Therefore, the lift coefficient of wing-body 
combination could be presented as; 

CL =a .a W. B. W: B. Effective 

or CL 
W. B. 

=aW. 
B. 

(a + ao) 

with no changes in the foreplane lift coefficient presentation since 
the aerofoils used have symmetrical section. 
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2.2.4 First Order Optimisation of Wing-Foreplane Geometry 

The optimisation criterion chosen was the optimum vertical gap between 
the F. S. W. and the foreplane which would lead to a minimisation of induced 
drag in trimmed flight at a Mach number of M=0.3. From Ref. 3, the induced 
drag of a wing-foreplane combination is given by: 

L2 2L LQ+ L2 Q* 
E D W. B. C. B. W. B. C. B. EQ. 2.1 = 

q7rb 
+ 

qnb b gnb2 .1 
w cw c 

where q= }pU2 40 

o= Prandtl's interference factor 

Q* = Non-elliptic interference factor. 

Fig. 2.2 represents the variation of a and a* with the non-dimensional vertical 

. Equation 2.1 can be presented in coefficient form as: gap b= YC_ 

aW. B. (a + ao)2 2aW. B. aC. B, b 

. (« + a0 + n). Q CDinduced =7W+ irARC 

a2 
. (« } n)2.0* } nd 

Sc 

cw 
EQ. 2.2 

By keeping aW. B., aC. B., bc, bw, Sc and Sw constant, the induced drag 

would depend upon atrim' ntrim' a and a*. It can be shown (see Appendix E) 

that by combining equation 2.2 and equilibrium force and moment considerations 
that, for a trimmed flight, 

fCa3trim - 
ýla 

- 
taA {EDO + A2a2 + A3a + AO -1=0 EQ. 2.3 

Expressions giving the values of constants Al to A5 are given in Table E4 

of Appendix E. The following steps were then taken to minimise the induced 

drag at M=0.3. 

(i) The vertical gap was set to zero and the values of a and a* were 
determined from Fig. 2.2. 

(ii) For these values of a and a* the trim incidence angle atrim was calculated 
through an iterative solution of equation 2.3. 

(iii)The foreplane trim angle trim was then calculated by back substitution. 
(ivy CLW. B. and CLC. B. and consequently CDinduced' were calculated. 
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(v) The vertical gap was increased by a small increment ah, and steps (ii) 

to (iv) repeated. 

Variation of CDinduced with the non-dimensional vertical gap is presented 
in Fig. 2.3. Clearly, the minimum induced drag occurs for fi = 0.1 This value 
of the vertical gap was then implemented in the geometry of the aircraft. 
However, the induced drag cannot be determined accurately for the wing and 
foreplane in isolation from the fuselage since the latter induces a flow- 
field which could influence those of wing and foreplane. Details of 
calculations and derivations of equations are presented in Appendix E. 

2.2.5 Estimation of C. G. and N. P. Positions and Static Margin 
Stick-Fixed- 

Once the estimates of component masses have become available, 
the position of C. G. is determined by taking moments of these masses 

about an axis which was chosen to be the plane of the nozzle. Next the 

method of Appendix C was used to determine the approximate position of the 

neutral point and thereby the static margin. The determination of C. G. and 
N. P. positions were subject to the assumptions that aerodynamic data from 

section 2.2.2 and 2.2.3 were reasonably accurate, which cannot be fully 

justified. The static margin constituted the second optimisation criteria 
in that a design static margin of 2%E to 6%c was desirable. Therefore, it 

would have been necessary to relocate components in order to satisfy this 

criteria. 

2.2.6 Overall Optimisation. 

In section 2.2.4, the only geometrical parameter assumed to affect the 
induced drag was taken to be the vertical gap h. However, this is not 
entirely true since the horizontal distance between the F. S. W. and canard also 
affects the induced flow field, although not to the same extent. Therefore, 

neglecting the latter influence, the F. S. W. was chosen as the component the 

movement of which could result in the design static margin range. The reason 
behind this decision was that not only the F. S. W. constitutes a large 

proportion of total A. U. W. of the aircraft but also develops almost all the 
lift force. The overall optimisation was then achieved by fixing the value of 
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the vertical gap h and shifting the F. S. W. by small increments either forward 
or aft of the pre-assumed position provided by the conceptual design level. 
Details of these computations are given in Appendix B, where table P -H 
represents the effect of wing movement on the C. G., N. P. and thereby static 
margin. With the vertical gap and C. G. position fixed, the principal moments 
of inertia were estimated. 

2.2.7 Determination of Principal Moments of Inertia. 

Moment of inertia calculations could not form an integral part of the 
design level because the majority of aircraft components could not be assumed 

as being lumped masses and this would necessitate the application of parallel 
and perpendicular axis theorems for the determination of moments of inertia of 
the respective components. retails of such calculations are presented in 

Section Hl and Table H-2 of Appendix H. It was also assumed that the aerodynamic 
axes are approximately coincident with the principal axes and that is to say 
that the ratios of moments of inertia IzX/Ixx and Izx/Izz were taken to be zero. 

2.2.8 Formation of the Full Size Aircraft Configuration. 

So far the results of the previous computational design stages have been 
limited to numbers rather than shapes. The idea here was to transform the 
information obtained thus far into an aircraft configuration. In order to 

achieve this, a three view drawing of the desired configuration with the 

enhancement of desired characteristics was formed. By merging the information 

of the three aircraft projections, a three-dimensional view of the entire 

aircraft was realised. This task should not be underestimated since many of the 

surfaces formed in this way contained double curvature. Details of this manual 
process are presented in Appendix D. 

2.2.9 Dynamic Scaling. 

It is evident from the previous design stages that no attention has 
been paid to the structure of the full size aircraft. This has been to no 
great loss since , as far as the present study is concerned, any treatment of 
the full size aircraft structure would not serve any purpose. However, in 

order to simulate the dynamic behaviour of the full size aircraft there was a 
need to develop a dynamic model of the full scale aircraft. 

Dynamic scaling in itself is a complex subject, and detailed theoretical 
treatment of it is beyond the scope of this thesis. 'However, its application 
to the present design is briefly explained below. In order to scale the full 
size aircraft dynamically the following rules had to be observed. 

2.2.9.1 Dynamic Similarity. 
Two systems are said to be dynamically similar if corresponding points 
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of the systems are such that their position vectors referred to sets of fixed 

axes in the respective systems satisfy the equation 

Rsystem 1= aRsystem 2 

where a is the constant linear scale factor. 
If it is further assumed that the body forces measured at corresponding points 
and the initial velocity vectors at those points are related by 

fsystem 1= ufsystem 2 

and, 
system 1= VVsystem 2 

Respectively then, for the systems to describe geometrically similar paths 
the 'Froude' number given by 

F= 'f or - where L is a typical length 

must be the same for both systems. Also, since the action and reaction are 

equal and opposite according to Newton, it follows that the accelerations 
induced by the mutual action of the two systems will remain in a fixed ratio. 
Hence it is, in general, necessary for similarity of behaviour that corresponding 

masses of the two systems shall be in a fixed ratio. 'Froude' number can be 

represented as 

F=my2 
LP 

where f=p 

P= force 

m= mass of the system. 

Taking P to be the weight of the system, then 

f=m=g the acceleration due to gravity. 

Therefore, equality of F for both systems results in the correct ratio 
of the gravitational force. If the gravity field is the same for the A/C and 
model, then 



'model 
_ model 

MA, Cp 
del 

where L is taken to be the length of model or AJC. It must be noted that 

equality of 'Froude' number for the systems is a sufficient condition for 

similarity of behaviour but not a necessary condition for similarity of motion. 

2.2.9.2 Similarity of Periodic Oscillations- 
This effect is governed by the 'Strouhal' number. 

i. e. St = 

where w= angular frequency 
L= length 

v= speed 

Equality of 'Strouhal' number ensures that the angles of attack are equal. 

2.2.9.3 Similarity of Flow 
Since the model is flown at a Mach number M<0.1, compressibility 

effects are neglected and therefore, similarity of steady, uniform and incom- 

pressible but viscous flows is considered. This effect is governed by 

'Reynolds' number given by 

Re = pvL 
11 

which must be equal for both systems for similar flow fields. Again if 

gravitational fields are the same for both systems, then; 

Re 
model _ 

vA/C ý/2 
_ 

ý/2 
under I. S. A. 

A/C model 

However, having decided the overall length of the model which is equivalent 
to 1/14 scale, the length parameter in 'Reynolds' number was fixed together 

with the maxfinum tunnel speed. A more detailed consideration is given in 

Appendix G. 

Furthermore, trip wires were used in order to initiate boundary layer 

separation over foreplane, fin and F. S. W. for similarity of flow in that 

respect. Details are given in Appendix K. 

Details of derivations of similarity parameters can be found in Ref. 8, 
however the results are quoted in Table E3 of Appendix E. 
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2.2.10 Estimation of Longitudinal Stability Derivatives. 

At this stage of design, the method of Section 2.2.4 was used to 
determine the aerodynamic parameters associated with the trimmed flight of 
the dynamically scaled model. Furthermore, from equilibrium considerations 
based on small perturbation theory, theoretical expressions for the estimation 

of longitudinal stability derivatives were derived. Estimates of the stability 
derivatives could then be obtained by inserting the aerodynamic parameters 

given earlier into these expressions. Details of these calculations are 

presented in Sections F'4 -7 of Appendix t, together with program 
"DERIVATIVE"-shown as a block diagram on Fig. 2.4. 

2.3 The First Order Optimisation Code 

The basis for this code was the combination of data and computational 
blocks of the previous sub-sections 2.2.1 - 10. A simplified representation 
of the complete routine is represented in Figure 2.5. Evidently there 
are considerable errors and deviations in the data supplied to the program in 

additions to the simplifications and assumptions used in developing 

individual sub-routines. Therefore, the errors tend to increase as the 

computations proceed. Unfortunately, there were no methods available to 

check the accuracy of the results obtained and as a result, provisions were 

made in the development of the dynamically scaled model in order to compensate 
for these discrepancies. 

Clearly, the more accurate the data supplied to the optimisation code, 
the more realistic would be the results and, therefore, there seems to be 

scope for a great deal of improvement not only from the data point of view, but 

also from the inclusion of parameters which affect the optimisation process. 
It must be pointed out that the optimisation as a whole would lead to a 
compromise between the optimisation of individual sub-systems since some of the 

optimal criteria beneficial to one such sub-system may affect the optimality of 

other sub-systems. The optimisation program was run for the flight conditions 
given in Table E. 5 of Appendix .E and the estimates of the lonqitudinal stability of 
derivatives obtained via this run are presented in Tables Fir-and "Vin concise 
and aeronormalised forms respectively. A check on the static stability of 
full size configuration has also been carried out, the details of which are 
presented in Appendix 'r-. 
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2.4 Model Construction 

It was found that a 1114th scale model of the full size F. S. W. 
aircraft would suit the Weybridge tunnel and test rig. Full details 
regarding the development of the latter are given in Reference 8. However, 
for the purpose of clarity, a brief review has been presented here as 
follows: 

Figure 2.6 represents the basic layout of the rig itself, with the 
additional height transducer loop, developed as part of the present research 
programme. Plate 1, taken from Ref. 8, shows the complete test rig which 
includes the control unit. The basic functions of this control unit are 
presented in Fig. 3. The link between the rig and the control unit is via 
an umbilical chord. Basically the rig allows the model to have freedom of 
movement in heave along a vertical rod and yaw through the rod rotation. 
Also pitch and roll rotations are provided by the gimbal unit. 

Now the purpose for which the dynamic model was developed, namely, 
estimation of stability derivatives, dictated the model construction. 
The following requirements had to be satisfied: 

a) Ability to fly in trimmed straight level flight 
b) Low all-up-weight so that moments of inertia and mass could be 

adjusted 
c) Large interior space for placement of the necessary equipment. 

The conditions stated above meant that conventional methods of 
construction could not be used since total access to the constituent parts 
was needed. Hence, the model was constructed on a modular basis. Further- 

more, dynamic scaling was subject to appropriate ratios of moments of inertia 

of the full size F. S. W. aircraft to those of the model. Therefore, the wing 
was constructed out of foam, ply booms, thin ply covering and laminating 

resin to , them together. An exploded view of the model minus the 

electronic parts and wiring is given in Fig. 2.7. The actual three dimen- 

sional picture, based on which the model was made, resulted from the cross 
reference of three-view drawing of the final design. Trailing edge extentions 
were used in order to increase the static margin as shown in Fig. 2.7. 



- 14 - 

2.5 Experimental Determination of the Principal Moments of Inertia 

There are several methods available for experimental determination 

of the moments. of inertia, however, they are not often used nowadays because 

of aircraft size and development of weight analysis computer programs. 
Generally, the experimental methods are based on forced oscillations, 

whereby the aircraft is either hung on a supportive cradle or balanced on a 
knife edge. It is then made to oscillate and the oscillations are damped 

out by various springs placed at appropriate locations. The response is 

recorded and later analysed. This analysis leads to an estimate of the 

moments of inertia which include Ixx' Iyy' Izz' Ixy' Izy, etc. 

Here, the principal moments of inertia were of interest and in order 
to obtain an estimate of them, the following method was developed. First, 

the model was balanced on the dynamic rig about the chosen C. G. position up 
to its estimated mass, based on the dynamic scaling, so that it was straight 

and level. Figure 2.8 represents the configuration and location of the 

damping springs for the estimation of respective principal moments of inertia. 

The dynamic model was then made to oscillate in the plane of interest in 

such a way that the rotations about the C. G. were confined to less than }100. 

The application of Newton's second law of motion to the system provided 
the relationship between the period of the oscillations and the moment of 
inertia in each plane. The recorded traces of the oscillations were then 

used in conjunction with the derived relationships for the estimation of 

the principal moments of inertia. Details of the experiments and results 

are presented in Section Gl of Appendix G. 
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3. PARAMETER IDENTIFICATION AND KALMAN FILTERING 

The evaluation of coefficients in a mathematical model of a system from 

measured input-output data is termed parameter identification. Over the past 
ten years or so, much work has been carried out on parameter identification 

with the result that very many techniques have now become available. Clearly, 

every method has its advantages and disadvantages and therefore it is up to the 

systems engineer to decide on the suitability of the application of one of 
these techniques. 

Generally speaking, the parameter identification methods fall into two 

categories, namely those based on weighted least squares and those based on 
the minimisation of the probability density function. In the first category, 
the optimality criterion for the state estimation is a scalar quantity termed 

the cost function k, the minimisation of which in effect minimises the residuals 
between the measured and the corresponding estimated points. The difficulty 

with these techniques can be attributed to the problem of choosing the weights. 
This problem is overcome in the second category by relating the weights to 

the measurement and process noises assumed to be uncorrelated and white. 
The disadvantage however with these techniques lies in the fact that a-priori 
knowledge of the states is needed. 

3.1 Theory of Kalman Filter Techniques 

Before describing Kalman Filter theory, it is necessary to have a look 

at the systems and dynamical equations. In general, the equations of motion 
of an aircraft can be represented in the continuous time sense as, 

z(t) = f(x(t) , u(t), t) 
y(t) = q(x(t) , u(t), t) 

state equation 
output equation 

where u(t) is a set of q input functions such as control surface movements 
with associated effects. i. e. 

lJT = CU, U2, U3 .... Uq] 

Also y(t) is a set of n output functions, which usually take the form of 
measurements, i. e. 

YT = [Yi" Y2 9 Y3 """" Yn1 

Furthermore, x(t) is a set of m state functions such as w, q, e, z, zq, etc. 
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i. e. 
X 

T= EX1, X2, X3 .... Xm 

and finally t is the time. 

Function f is such that the state equation has a unique solution. 
Figure 3.1, below, illustrates the interconnection between state and output 

equations. 

ufX INT 
~ýy 

x, 

FIGURE 3.1 

BLOCK DIAGRAM ILLUSTRATING THE STATE AND OUTPUT EQUATIONS 

Reference can be made, Reference 5, on system design theory regarding 
the characteristics of a system such as time invariance, linearity, linear 
time invariance systems, system response, stochaistic continuous time systems, 
etc. However, as far as the present study is concerned, only discretised 

time systems are of significance. 

3.2 Discrete time systems 

The dynamical equations of a system in discrete time can be described 

by the following equations: 

X(n + 1) = f(X(n), u(n), n) state equation 

Y(n) = 2(X(n), u(n), n) output equation 

with initial values of the states X(0). U(n) is a set of input functions 
such as control surface deflection. 
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Y(n) is a column matrix representing the output of the system. 

If the functions f and g are linear, the discrete time system which 
they describe is said to be linear. For linear systems, the above set of 

equations can be written as 

X(n + 1) = o(n)X(n) + pý(n)U(n) 
----- E4.3.1 

Y(n) = C(n)X(n) + D(n), U(n) 

If the functions representing the states and the output do not depend on 
time explicitly then, the system is called time invariant. Therefore, if 

matrices n(n), W(n), C(n) and D(n) of the above linear system are constants, 
the whole system is called a linear time-invariant system. 

or 
X(n + 1) = oX(n) + 4U(n) 

EQ. 3.2 

Y(n) = CX(n) + DU(n) 
Figure 3.2 represents the block diagram of Equation 3.2. 
The square matrix -(m, m) is called the state transition matrix. 

4(m, m) is the state matrix 
ý(m, g) is the input matrix 
C(r, m) is the output matrix 
D(r, q) is the direct matrix 

u(n) 

FIG. 32 BLOC: DIAGRAN OF EQUATIONS 3.2 
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3.3 The Transfer Function Matrix 

Consider a linear time invariant system described by equations S4, S5. 
It must be noted that in departure from continuous time systems into discrete 

time systems it is necessary to move from s-plane onto z-plane. Therefore, 

taking the z-transforms of the state and output equations gives: 

zX(z) =4 (z) + *u(z) 
y(z) =C (z) + Du(z) 

On substituting z(z) from3.3 into 3.4 ; 

Y(z) = [C(zI - 0)-1* + 0]ü(z) 

and the transfer function matrix F(z) is 

(z) i = F(z) = C(zI - 4) i+D 
U(Z) 

3.4 Stochastic Discrete Time Systems 

EQ. 3.3 

EQ. 3.4 

In most of the practical applications of system design, measurements 

are corrupted by noise. For a linear time-invariant stochastic discrete-time 

system, the general state and output equations can be represented as; 

x(n + 1) = 4x(n) + *u(n) + wd(n) 

y(n) = Cx(n) + Du(n) + Yd(n) 

where: 
wd(n) is the discrete process noise vector 

and vd(n) is the discrete output noise vector. 

These equations will be used again in Section 3.6. 

3.5 Kalman Filter Estimation 

In the early stages of design of aircraft, missiles, etc., it is 

necessary to assess the dynamic behaviour of the design. Usually, the 

variables of interest are impossible to measure directly. Therefore, 

means have to be found of obtaining them. A linear time-invariant system 
may be modelled by the equations: 
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x(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) + nu(t) 

where A is the state matrix 
B is the input matrix 
C is the output matrix 
D is the direct matrix. 

-----EQ. 3.5 

-----EQ. 3.6 

The Kalman Filter estimator would have the following form: 

x(t) = Ax(t) + Bu(t) + P(y(t) - y(t)) ----- En. R. 7 

y(t) =Cz(t)+Du(t) EQ. 3. R 

where P is the estimator gain which is to drive the estimated states z(t) 

into coincidence with the system states x(t). Assuming the error in the states 
is thus expressed as 

i(t) =x(t) -x(t) ----- 
EQ. 3.9 

If Lim z(t) f0 
t-º° 

then the estimator is said to be an asymptotic state estimator. 

Subtracting 3.6from 3.8 gives: 

y(t) - y(t) = CX(t) 

On differentiating 3.9 : 

X(t) = X(t) ' X(t) 

Substituting for X(t) and z(t) from 3.5 and 3.7; 

PC)z(t) 

The solution to which is: 

z(t) = z(0)e(A-PC)t 

EQ. 3.1O 

EQ. 3.11 

EQ. 3.12 

EQ. 3.13 
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By looking at 3". 13, it is evident that in order to minimise the error 
z(t), eigenvalues of (A - PC) must be negative. In other words, they must lie 
in the open left half S-plane. The further to the left we place the eigenvalues 
of (A - PC), theoretically the faster the convergence. 

However, another practical consideration is the corruption of states 
by noise, assumed white. Poles which are close to the imaginary axis of the 
S-plane will filter much more noise than poles far away from it. Therefore, 

a compromise has to be reached. It is the optimal choice of P, given system 
characteristics and noise statistics, which lead to the concept of the Kalman 
filter. In other words, Kalman filter is an optimal state estimator and hence 

a statistical method like weighted least-square curve fitting with the difference 
that the weights are based on the measurement and process noise. 

3.6 Discrete Time Kalman Filter 

Consider a linear system given by the following equations: 

x(n + 1) = q(n)x(n) + ip(n)u(n) + e(n)w(n) 

An) = C(n)x(n) + D(n)u(n) + v(n) 

where 
tc is the state vector 
y is the input vector 
y is the output vector 

w is the process noise vector 
v is the measurement noise vector 
$(m, m). state transition matrix 
i, (m, q) input matrix 
e(m, k) process noise matrix 
C(. rnm) output matrix 
D('; q) direct input matrix 
m is the number of states 
q is the number of inputs 

r is the number of outputs 
k is the number of process noise inputs 

n is the iteration number. 
Also w and v are assumed to be white noise, Gaussian with zero-mean, uncorrelated 
with each other and uncorrellated with the initial states, i. e. 
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E w(n) =E v(n) =0 

E w(n). v(m)T =0 

E w(n)xö =E v(n)xö =0 

where E is the expected value. 

Furthermore, we need to find the noise covariance matrices given by: 

Ew (n)w(n)T = Q(n) 

E y(n)y(n) 
T= R(n) 

From 3.7 the equations of Kalman filter can be written as: 

x(n + 1) _ O(n)x(n) + ip(n)u(n) + P(n)(y(n) + C(n)z(n) - D(n)u(n)] 
Y(n) = X(n) 

where is the estimate of x 
and P(m, n) is the gain matrix. 

The estimation error is given by 
I 

z(n) = x(n) - x(n) 

with the error covariance matrix defined as 

G(n) =E x(n)z(n)T 

The most important elements of G(n) are the diagonal elements since the rest 
of the elements are very small due to uncorrelation between the states, then 
the filter gain matrix P which minimises trace G, i. e. minimises the sum of 
the squared errors ET z2(n). is given by: 

P(n) = $(n)G(n)C(n)T[C(n)G(n)C(n)T + R(n)]-1 ----- EQ. 3.1 4 

where: 
G(n+1) = [O(n) - P(n)C(n)]G(n)ý(n) T+ 

e(n)Q(n)e(n)T ----- EQ. 3.. 15 

In order to estimate x(n+l), it is necessary to use v(n) and u(n). 
However, in many applications of the Kalman filter where the best estimate of 
states x(n) is required, the filter is split as follows: 
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z-(n+l) = ý(n)x+(n) + p(n)u(n) 

x (n) = x-(n) + J(n)[x(n) - C(n)x^-(n) - D(n)u(n)] 

where J(n) is defined as the split Kalman filter gain matrix and, 

P(n) = o(n)J(n) 
also 

x-(n) = x(n) - x-(n) 

x+ (n) = x(n) - x+ (n) 
----- EQ. 3. F 

G -(n) = Ex (n)x (n)T 

G+ (n) = Ex(n)z+(n)T 

with following definitions respectively 

G (n) = error covariance matrix in the interval [n-l, n], before u(n) 
and y(n) are available. 

G+(n) = error covariance matrix in the interval [n, n+l], after u(n) 

X(n) become available. 
z (n) = error in the state estimation in the interval [n-l, n], before 

u(n) and X(n) are available. 
(n) = error in the state estimation in the interval [n, n+l], after 

u(n) and y(n) have become available. 

; -(n) = best estimate of x(n) in the interval [n-1, n], before u(n) 
and y(n) are available. 

z (n) = best estimate of x(n) in the interval [n, n+l], after x(n) and 

and y(n) have become available. 

Now, the split Kalman filter gain matrix J(n) which minimises both the 

trace of G+ and trace G is given by: 

J(n) = G_(n)C(n)T [R(n) 
+ C(n)G_(n)C(n)Tl 

1 

with 
G (n+1)= ý(n)G}(n)¢(n) 

T+ 
e(n)Q(n)e(n)T 

G+(n)= [I - J(n)C(n)]G (n) 

and y^ (n) = z+(n) which is the Kalman filter output equation. The 
calculation sequence of the split filter is given in Fig. 3.3 
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THE CALCULATION SEQUENCE 

The split Kalman filter calcuation sequence may be described as 
shown in 

ITERATION n-1 n n+l 

INPUTS u (n) u (n+ 1)-ßl 

y(n) y(n+1) 

STATE x (n) 
_r. 

x (n+l) - x (n+2) 
ESTIMATION 

) x (n)_ "-} X (n+l) -- 

ERROR ºJ (n+l) . ýº J (n+2) 
COVARIANCE J(n) 
AND 

IN GA 
CALCULATION G+(n) G+(n+l) 

G (n) 
- 

-- 
! 

G (n+l) G (n+2) ý-. --a 

FIG. 3 3: SPLIT KALMAN FILTER CALCULATION SEQUENCE 
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3.7 Extended Kalman Filter 

Now, consider a non-linear system described by the following equations: 

x(n+l) = f(x(n)) + E(x(n))w(n) 
----- EQ. 3.17 

y(n) = g(x(n)) + v(n) 

where: 
f is the state function 

g is the output function 
E is the process noise matrix 

and it must be noted that f and 9 are non-linear continuous functions of x, 
with continuous first partial derivatives of x. 
In this case the split Kalman filter equations can be represented as: 

x(n+l) = f(x}(n)) ----- EQ. 3.1 8 

x (n) =X ̂-(n) + J(n) [Y(n) - 9(X (n) )] ----- EQ. 3.19 

y(n) = X+(n) 

Equations 3.17 and 3.18 describe the split extended Kalman filter which deals 

with non-linear systems. 

3.8 The Gain Matrix J(n) 

Filter errors are defined as defined by equations 3 , gare: 

z (n+1) = x(n+l) - z-(n+1) 

which in substitution for x(n+1) and '(n+1) from -3.. l 7,3.18and 3 29 Sbecomes: 

x' (n+l) = f(x(n)) + E(x(n)w(n) - f(z+(n)) ----- EQ. 3.20 

For sufficiently small 11x+11, f(x(n)) can be expanded using Taylor series as: 

f(e(n)) - f(x+(n)) + (ýX) . x+(n) ----- EQ. 3-. 2 ) 
ne=x+ (n) 

Substitution into S22 gives 

of 
z (n+l) = (fix) . z+(n) + E(+(n))w(n) ----- EQ. 3.22 

nx=x+(n) 
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Furthermore, 

x+ (n) = x(n) - z+(n) ----- EQ. 3.23 

Substituting for z} (n) from S21 and S19: 

z+ (n) = x(n) -X ̂-(n) - J(n) g(x(n)) + v(n) - g(z (n)) ----- EQ. 3.24 

Assume Ili -11 is sufficiently small so that 9(x(n)) can be expanded using 
Taylor series, then; 

ag _ g(x(n) = g(x_(n)) + COX) Ix (n) ----- EQ. 3.25 
nx=R-(n) 

and substitution of S27 into S26 gives: 

+ (n) = 
[I 

- i(n)( 
ag 
ýx) 

I ]x-(n) 
- J(n)v(n) ----- EO. 3.26 

nx=x (n) 

By comparing 3.26,3.22 with equations 3.16 it can be shown that: 

of 
4(n) _ (aX) IA 

+ nx=x 
a 

(n) 
C(n) = (x ) 

nx=x(n) 

and 
e(n) = E(x+(n)) 

where, J. G-9 G+, Q and R are defined as before. 

3.9 Effect of Sampling on E. K. F. 

In order to adapt the extended Kalman filter, in this study, the measure- 

ments have to be taken at intervals of hm. The first step in mechanising a 
Kalman filter on a digital computer is to use a suitable integration algorithm 
to numerically integrate the Kalman filter equations. Since the sampling rate 
was chosen to be 10 ms, then a simple forward difference method would do the 
job without. the risk of . 

instability and divergence associated with this type of 
integration. For accuracy reasons and also to give the filter time to catch 
up with the measurements, the algorithm routine is split into those where 
sampling the measurements at the rate 

I 
and that of Kalman filter (time update 
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equation), S 
which is higher than . Fora non-linear system the algorithm 

is as follows: 

(i) MEASUREMENT UPDATE 

x+ (n) = x-(n) + J(n) [y(n) - gCX-(n), u(n))] 
-------- EQ. 3.27 

G+(n) = [I - J(n)C(n)]G (n) 

(ii) TIME UPDATE at an instant a measurement is taken 

z (n+1) = f(x+(n), u(n)) + E(z+(n))S(n)R(n)-l[y(n) - g(x+(n), u(n))1 

G (n+1) = [fi(n) - E(x(n))S(n)R(n)-1C(n)] G+(n) . 
[O(n) - E(X+(n))S(n)R(n)-1C(n)T] + E(+(n)) ----- EQ. 3.2P 

[Q(n) - S(n)R(n)-I S(n)T] E(X+(n)). 

(iii) TIME UPDATE between measurements 

Between the measurement, equations S29 become; 

((n+1) = f(x+(n), u(n)) 

G (n+1) = o(n)G+(n)o(n) 
T+ 

e(n)Q(n)e(n) T 
-----EQ. 5.29 

where J(n) is set at zero. Therefore from the measurement update equations 
listed above; 

z(n) = z-(n) 

G+(n) =G -(n) 

and the time update is repeated until the next measurement arrives, i. e. 
hm/hI times. Also it must be noted that in S30 above; 

of 
fi(n) = (fix) 

` nx=z} (n) 

and e(. n) = E(x+(n)) 

ag 
" C(n) (aX) 

nx=z+(n) 
--------- EQ. 3.30 

The flow diagram of Fig. 3.4 illustrates the calculation sequence. 
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4. THE LINEARISED EQUATIONS OF MOTION FOR STRAIGHT SYMMETRIC FLIGHT 

4.1 General Equations 

For a body of fixed mass m, the laws of motion for an isolated and 
unconstrained rigid body state that, 

dV 
F=mom 

and _d1t rx(wxr)dm] 
body 

where F= resultant of all external forces 
G= resultant of all the external moments about the C. G. of the 

body 
V= linear velocity vector of C. G. 
h= angular momentum of body. 

Vectors F, G, V and h are measured relative to an inertial set of axes and 
the position vector r is measured with respect to the body axis as in Fig. 4.1 
below. 

ºY Ars s 

FIGURE 4.1 

2 
The vector components are defined as; 

F= Xi +Yj+Zk 

V=ui+vj+wk 

=pi+qj+rk 

ii = h, 
Xi + hyyj + hzzk 

G=Li+Mj+Nk 

Now, according to the Coriolis Law which connects the rates of change 
of a vector as seen from non-rotating and rotating reference axes, 
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dV aV 
-H ýt + wxy 

dh ah 
-H - +wxh 

It can be shown therefore that, 

X= m(o+ gw- rv) 
Y= m(v+ ru- pw) 

Z= m(w+ pv- qu) 

L= hxx + ghzz - rhhY 

M= ; 
yy + rhxx phzz 

N= h + ph gh zz YY xx 

Also hxx = Ixxp Ixyq Ixzr 

hyy= -Iyxp + Iyyq - Iyzr 

hZZ = -IzXp - Izyq + Izr 

-----EQ. 4.1 

where IXX, Iyy etc. are the moments and products of inertia. For an aircraft 
with a longitudinal plane of symmetry, 

Iyz = Izy = Ixy =I=0 so that, 

hxx - Ixxp IXzr 

hyy = Iyyq 

hzz = Izzr - Izxp 

The orientation of the aircraft is defined as in Fig. 4.2 

For a symmetric level flight, with small perturbations, 

u=Ue+u' , v=O+v' , w=0+w' 

p=0+ p' , q=q' , r=r' 
4_e' , e=ee+e' , p=e' 
X=Xe+X' , Y=Y' , Z=Ze+Z' 
L=L' M=M' 9 N=N' 

-----EQ. 4.2 
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Where the subscript 'e' means equilibrium conditions. In combining 
the gravitational terms, aerodynamic terms representing the changes in the 

aerodynamic forces and moments which to the first order and for Strouhal 

number "<0.02 can be presented as: 
e 

Xaero = u(ü) + V(v) ...... + C(äx) etc., 
X=Xe X=Xe X=Xe 

into the equations of motion for a rigid body derived earlier and omission 
of the non-linear terms such as 'wq', it can be shown that the equations 
describing the small perturbation motion about a straight symmetric flight 

path in linearised form, neglecting the trust variation are, 

m(ü + qw + egCosee) = uXu + wXw + qXq + nXn 

m(v + rUe - pw - 4gCosee - tgSinee) = vYv + pY0 + rYr + CYC + cYc 

m(* -qUe + egSinee) = uZu + wZw + wZw + qZq + nZn 

Ixxb - Ixz = vlv + pLp + rLr + CLC + CL 

Iyyq = uMu + wMw + wMw + qMq + "Mn 

1 
zzt - Ixzp = vNv + pNp + rNr + CNC + CND 

P 
B=q 

=r where u, w, p, q and r, represent deviations from the 

equilibrium conditions. 

It is usually convenient to reduce these equations to a concise form 
by dividing the force equations through by mass and each moment equation by 
the appropriate moment of inertia. The set of equations above uncouple into 
two groups provided airframe is typically symmetrical and coupling terms are 
negligible, as follows: 

ýS Xu Xw (w+Xq)q q, u Xn n I 
w zu zD (UefZq)q Z q2 w 

= 
4 Imu (mwD+r ) mq 

f 
0q mit 

g0 0 1 0e 

where D =H, Xu = 
Xm 

, mu _ TY-Y , etc., 

EQ. 4.3 

EQ. 4.4 
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Equations 4.4 represent the linearise equations of longitudinal symmetric 
and level flight. The second group of equations representing the lateral 

motion is: 

v Yv (We+YP) (-Ue+Yr) 9i 92 v YY 

1v (D+!. ) (exD+Lr) 0 0 p I Ic 

nv (e2+np) (D+nr) 0 0 r +nn 
0 1 0 0 0 

0 0 1 0 0 

where 
Izx 

_ 
Izx 

ex= 7' ez -T 

and D=- 

EQ. 4.5 

Equations 4.4 and 4.5 represent the longitudinal and lateral motion 
of an aircraft in symmetric and level flight in six degrees of freedom and are 
therefore inapplicable to the dynamic model. Therefore, they must be modified 
to represent the small perturbation symmetric and level flight of the dynamic 

model on the test rig. 
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4.2 Longitudinal Equations of Motion for the Dynamic Model 

As far as the wind tunnel simulations are concerned the model is 

suspended on the test rig so that the X-axis is supressed thereby allowing 
the drag equation to be removed from the equations 4.4. Also the air 
velocity in the tunnel is constant during a test run so the terms describing 

the perturbations in U can be removed. Thus the longitudinal equations of 
motion reduce to: 

zw Zq+Ue 0ww 1zr1 n 

mw mq 0qq+ [mjit EQ. 4.6 

010ee 

which is of the form 

X=AX+BU 

The fact that the model has to travel up and down a vertical support 
rod does not alter Equation 4.6 since the only extra force acting would be 

the small friction force caused by the linear bearing of the gimbal system, 
the direction of which is perpendicular to and through the C. G.. Also, at 
this stage, zq was assumed to be small and was hence removed from Equation 4.5. 

The characteristic equation of this short period motion can be 

realised from 

[zW Ue 
AS. P. 

mw m 

where the third row and column have been removed since they do not affect 

any other state variable. The characteristic equation is given by 

detIsl - Al =0 

i. e. s2 + (-zw - mq)s + (zwmq - mwUe) =0 

which has the approximate solution 
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5= -- f1 �k -- 

where 
k2 = (zwmq - mwUe) 

and k3 = (-zw - mq) 

The damping index is given by, 

- 

and the frequency by, 

-4'R 
Ev= �k 2--= we = wn L 

where CREL is the relative damping index and for 4REL -1 the motion is 

critically damped and also wn is the natural frequency given by, 

ýn = 'Ic 
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4 2.1 Effect of Changes in Stability Derivatives on Short Period Motion 

It can be shown from section 4.1 that 

wn = ZWmq - mmUe 

ýD_ 
1 -z -m 

The effect of the parameters are often shown, either one or two at a 
time, in the form of stability diagrams. The single most important factor determining 
the characteristics of longitudinal oscillations is the position of the C. G. 
and its effect on the static margin. The effects of C. G. movement are often 

shown through the derivative mw. Fig. 4. Lrepresents the stability diagram 
for the short period motion. 

Whilst there is a complex pair of roots, larger values oflmwigive larger 
frequencies but do not alter the damping. When C. G. is forward of N. P., 

w is negative which corresponds to a positive static margin stick-fixed. 
Further, when mw (or static margin) becomes small so that 

ý> k2, real roots 
are obtained which initially give a subsidence. However, when k2 becomes 

negative or in other words the static margin is negative, a divergent root is 

obtained i. e. zwmq -Uemw<0. This is the condition for dynamic instability. 

It must be noted that zw and mq are always negative. It should be noted 
that movement of the C. G. behind the N. P. does not necessarily coincide with 
any rapid deterioration in the aircraft's handling qualities and with 

reasonable care, an aircraft can still be flown under these conditions. 

For a satisfactorily damped oscillation, relative damping Crel > 0.11 

which in other words means that the oscillation should not take more than 

one cycle to damp to half amplitude. But in the primary operating zone of 
the aircraft, Crel should be greater than 0.25 or 0.36, depending on the 

rolle of the aircraft. (see Ref. 36) 



- 43 - 

r 

k 

silence (real root) 
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Whilst there is a ccniplex 
pair of roots larger values 
of b give larger frequencies 
but to not alter the damping. 

A 

snail mý 

A SIT -_ 

Large mm 

FIGURE 4. i ONE PARAMETER STABILITY DIAGRAMS FOR THE LONGITUDINAL MOTION 
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4.3 Lateral Equations of Motion for the Dynamic Model 

Equations 4.5 can be modified to represent the motion in the dynamic 

rig in the wind tunnel. The dynamic model is free to rotate in yaw but 
there is no translation in y-direction so the aerodynamic sideforces and 
gravity components are balanced by the support system. However, the fact 
that ät 

=0 implies that, 

v+Uer=0 

since the model is locked in position during lateral wind tunnel experiments, 
i. e. we = 0. 

Therefore the lateral equations of motion with respect to the wind- 
tunnel simulations for steady horizontal datum flight would become: 

00 -Ue 0v00 

IV Ip Rr 0pI Rý c 

r nv np nr 0rnn 

0100 

This is of the form 

X=AX+BU 

and therefore the characteristic polynomial can be realised from 

00 -Ue 

A= 11v 11 P Jt r 
n Lv np nr 

EU. 4.7 

where the fourth row and column have been removed since they do not affect 

any other state variable. The characteristic polynomial is given by: 

det IsI - Al =0 

i. e. s3 + s2(-nr - tP) + (Lpnr - trnp + nvUe)s + Ue(Rv np -IDnv)=0 EO. 4"8 
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One way of determining the stability is through the Routh-Hurwitz 
tests. These would lead the following stability criteria. 

(i) All coefficients of Eq. 4.8 must be positive 

(ii) J2J1 - JoJ3 >0 

where 
Jo=1 

J1 = (-nr - Lp) 

J2 = (Lpnr - Rrnp - nvUe) 

J3 = Ue(Z 
vnp -t pnv 

Therefore, provided the above conditions are satisfied, the aircraft 
would be stable in the semi-free flight comprising the previously defined 
four degrees of freedom. As far as this study is concerned, short period 
oscillations induced by rudder or ailerons are of interest. Hence, other 
lateral motions are not considered here. For this purpose, it was assumed 
that the lateral derivatives i and iv would tend to zero for short period p 
oscillations. The characteristic equation 4.8 then factorises into 

(s - Lp)(s2 - nrs + Uenv) 

or in other words, roll subsidence and dutch roll oscillations. Therefore, 

rudder and aileron inputs were chosen to excite oscillations rather than roll 
subsidence. 



- 46 - 

t 

ýy X 
,LQ 

CID 
LL 

yZ` 
F- W 

/\Q 
G 

W 
\O 91- 

MW 

/ 
I- 

i 
c: c 

S p, ý -17 



- 47 - 

5. APPLICATION OF EXTENDED KALMAN FILTER TO LONGITUDINAL MOTION 

As it was described in Section 3, the E. K. F. can be used as a tool 
in the estimation of states in a non-linear system. In this section the 
longitudinal equations of motion given by Eq. 4.6 represent the mathematical 
model of the system. Where it is required to estimate the stability 
derivatives which appear as coefficients. Although in reality the stability 
derivatives are time invariant, as far as the estimation process is concerned 
their values vary from one iteration to the next until they approach a 
steady state value after a number of iterations depending on the filter 

convergence. Therefore the longitudinal equations of motion given by 

Eq. 4.6 are assumed to be non-linear and given by: 

I1= X4. X1 + Ue. X2 + X7. n 

X2= XS. X1 + X6. X2 + X8. n 

X3= X2 

where, 
X1 =w , X2 =q , X3=e 1 
X4 =zw9 X5 =mw, X6=mq 

X7 =zn, X8 =mn 

Further, let 

X4 =W1 = zw , 
X5=w2=fiw 

X6 = w3 = mq X7= w4 = zn 

98 =w5= mn 

where wT = [w1 w2 w3 wq w5] is a stationary white noise vector. 

Thus the general form of the state equations becomes: 

EQ. 5.1 

= f(X, U) + E(w) or , r" nr r 
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X= f(X, U) + E(w) becomes 

X1 X4X1 + UeX2 + X7.71 

XZ XSX1 + X6X2 + X8. n 

X3 0+ X2 

X4 = 0 

X5 0 

K6 0 

K7 0 

K8 0 

i+i 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

1 0 0 0 0 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

0 0 0 0 1 

wl 

W2 

W3 

W4 

W5 

EQ. 5.2 

Assuming that the motion sensors 'reduce an output which is contam- 
inated by a stationary and white noise vector V, then the general form of 
the output equation is: 

Y= g(X, U) +V 

Since the function g(X, Q) is linear in this case, the output equation in 

matrix form reduces to: 

CX+V 

or, 

Yl 1 0 0 0 0 0 0 0 

YZ = 0 1 0 0 0 0 0 0 

Y3 0 0 1 0 0 0 0 0 

X1 

X2 

X3 

Xy 

X5 

X6 

X7 

X8 

V1 

+ `12 

V3 
EQ. 5.3 
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where Yj = derived vertical velocity 

Y2 = derived pitch rate 

Y3 = attitude sensor 

The outputs Y1. Y2 and Y3 are obtained from the mathematical model of 
system in the case of computer simulations, or derived from the motion 
sensors in the case of dynamic wind tunnel tests. 

The continuous Kalman Filter equations are in general form 

. AAA 

f(X, U) + NY - CX) 

AA 

Y=X 

The above equations can be represented in this case as 

A 

X1 
A 

X2 

3 
X4 

X5 

X6 

Y, 7 
X8 

X4X1 + UeX2 + X7. 
n 

X5X1 + X6X2 + X8. q 

0+ X2 

0 

0 
0 
0 
0 

+i 

P11 P12 P13 

P21 P22 P23 

P31 P32 P33 

P41 P42 P43 

A 

Y-CX 
r ýr 

EQ. 5.4 

A A 

Y1 Xl 
A A 

Y X 2 2 
A A 

Y3 X3 

P51 P52 P53 

P61 P62 P63 

P71 P72 P73 

p81 P82 P83 

EQ. 5.5 
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Equation 5.5 above can be written in the discrete form using a forward 
difference algorithm, 

. dX X(n + 1) - X(n) 
i. e. X =-a ------ EQ. 5.6 

Applying this to the equations above: 

X(n + 1) =f(X(n), U(n)) + Ew(n) 

Y(n) = CX(n) + V(n) 

The function f(X(n), Lj(n))is given by 

fi(X(n), (n)) = X1(n) + h(Xa(n)"X1(n) + UeX2(n) + X7(n). n) 

f2(X(n), U(n)) = X2(n) + h(XS(n). X1(n) + X6(n)"X2(n) + X8(n). n) 

f3(X(n), U(n)) = X3(n) + h. X2 

f11( 
11 11 

)= X4(n) 

--- EQ. 5.7 

f 5( u 11 )= XS(n) 

f6(" 'I )= X6(n) 

f7( 11 it )= X7(n) 

f8( 14 ei )= X8(n) 

i o 0 0 0 0 0 0 
C= O 1 0 0 0 0 0 0 E_ 

L0 0 1 0 0 0 0 0 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
h 0 0 0 0 

0 h 0 0 0 
0 0 h 0 0 
0 0 0 h 0 
0 0 0 0 h 
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Now, consider the model of the F. S. W. aircraft. It has four degrees 

of freedom and its longitudinal motion is expressed by the following output 
parameters which are measured directly or derived from measured quantities. 

W 

Output vector 

Therefore, there is no need to simulate the equations of motion and the 

above output after being discretized through an interface can be stored in 

computer at each sampling ' instant and used in the Kalman Filter 

algorithm given below. 

5.1 Kalman Filter Algorithm 

The split extended Kalman Filter equations are: 

Given the following initial values, 
A X(0), G(O). 

Then 
J(n) =G"(n). CT 

IF 
+ C. G-(n) CT] --''' EQ. 5.8 

This can be used in the following equations to give a better estimate of 

the states 

X+(n) =X -(n) + J(n)[Y(n) - CX (n)1 

G+(n) = [I - J(n)C]G-(n) 

Then 

X-(n + 1) = f(X+(n), U(n)) 

"G -(n + 1) = $(n)G+(n)j(n) + EQET 
0. 

After which let 
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X (n) =X (n+l) 

G-(n) =G -(n + 1) 

and we go back to calculate the gain matrix J(n) from 5.3 and go through 
the loop again. 

5.2 The state transition matrix. 

The state transition matrix is given by: 

af(X(n), U(n) 
O(n) =a (nom 

n 
or, 

With reference to equations 5.2 

1+h. X4(n) h. Ue 0 h. Xl(n) 0 0 h. n 0 

h. X5(n) 1+h. X6(n) 0 0 h. Xl(n) h. X2(n) 0 h. n 

0 h 1 0 0 .0 
0 0 

0 0 0 1 0 0 0 0 

fi(n) 0 0 0 0 1 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 1 

5.3 Estimation of white noise intensities 

EQ. 5.9 

The bandwidth is defined in general sense as the frequency over which 
the system will have an output g(t) approximately equal to the desired 

output, i(t), see Ref. 5. 

It was assumed that process and measurement noise vectors W and V 

were represented stationary white noise sources with zero mean, 'in the sense 
that the spectral density of these noise sources are constant over a certain 

range of frequency. Fig. 5.1 'shows a first order filter with a cut-off 
frequency we chosen to generate the white noise wi over the required bandwidth. 
The input to this filter is the white noise intensity qi and its transfer 
function given by: 
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FIGURE 5.1. First Order Filter for the White Noise 
Generation 

EQ. 5.10 

ro4/s 
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5.3.1 Signal Sampling 

The sampling theorem states that: 
rA continuoussignal can be represented completely by, and reconstructed 

from, a set of instantaneous measurements or samples of its voltage 
which are made at equally spaced times. The interval between such 
samples must be less than one-half the period of the highest frequency 

component in the signal' 

VI 
oll, 

t, ý'n 

r s'2k 

FIGURE 5.2 Effect of Sampling Rate on the Signal Representation 

From the definition of the sampling theorem above, if the highest 

frequency is taken to be fc then, 

1 fc _T 

. where T is the period of the highest frequency component of the signal and 
can be presented as, 

T= 2nh 

where n is the number of samples and h the sampling interval. 

Thus, bandwidth 
1 fý= TnT 
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In the present application, convergent transient responses are of interest 

and in addition the response signals need to be differentiated numerically 
in order to obtain the time rates of change. Therefore, a smooth numerical 
variation of the signal is needed which calls for a high sampling rate. 

5.4 Calculation of Covariance Matrices, R and Q 

For the system under consideration the process measurement noise 

vectors assumed white are: 

T 
W' = 

EW19W2, W39W4, W5] 

VT = [V19V2. V3] 

The process noise covariance matrix Q is given by 

E(wwT) = Qö 
ftft 

a= delta function 

where E means the expected value which would result if the measurements 

matched the expected distribution (assumed Gaussian) perfectly. 

The elements of both wT and vT are assumed uncorrelated. 
i. e. E(wlw2), etc = 0.0 

Wi 0 0 0 0 

0 WZ 0 0 0 

. 
ý. E(wi) =E 0 0 W3 0 0 =Q 

0 0 0 W? 0 

0 L 0 0 0 WS 

From Fig. 5.1 the white noise wi produces a spectral density Owi. wi over the 
bandwidth specified by wc. From Ref. 5, the mean square value of a stationary 

zero-mean white noise is related to its intensity qi by: 

C2 
mean square value = E(wi)2 = Zd 

0d qi (i = 1.... 5) EQ. 5.11 
oI 

It can be shown that the values of the parameters Co, do and di are related to 

the transfer function of the first order filter of Fig. 5.1 by: 
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Co=1 

d0=1 

c 

Now, assume that E(wi)2 can be presented as the root mean square 
error ei of the respective state then Eq. 5.11 becomes: 

2222 
qi _w . eI = -eI or, 

cc 

qi = 
2ýh. 

ei (i = 1,....., 5) EQ. 5.12 

Equation 5.12 relates the root mean square errors of the respective states 
to be identified, to the diagonal elements of the Q matrix. In the same 

manner the diagonal elements of the R matrix are given by: 

rý = 
2nh. 

eý 

where ei represents the root mean square error in the output states. For 

the purposes of the present study the errors in w, q and 0 ej were assumed 
to be 1% of the maximum attainable values of the output states, and for 

ei, 10% of the parameters to be identified, namely, zw, mw, mq, zn and mn. 

5.5 Initial Experiments 

In order to test and verify the parameter identification process based 

on the extended Kalman filter, a computer program was written incorporating 

the above algorithms. Verification of the parameter identifiability was 
performed according to the block diagram shown in Fig. 5.3. For the purposes 
of this verification exercise, the A/C was modelled using the advanced 
continuous simulation language (ACSL). 
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SIMULATION OF THE LONGITUDINAL 
EQUATIONS OF MOTION BASED 
ON KNOWN AERODYNAMIC DERIVATIVES 
USING A. C. S. L 

SAMPLING THE TRANSIENT 
RESPONSE AT fsamp1e= 100s-1 

SUPPLYING THE SAMPLED 
PARAMETERS w, q and e 
TO THE ELK. F. ALGORITHM 

ESTIMATED PARAMETERS 
zW, mW. mq. zn' mit 

FIGURE 5.3 Verification Study Routine 

5.6 Longitudinal Case Studies 

The values of the longitudinal stability derivatives used in the 

simulation of the A/C response were chosen in an arbitrary manner. A large 

number of experiments were carried out in order to test and modify the 

analysis process and programming techniques. For illustration purposes only 
a few of these experiments are presented here. The experimental conditions 
during the computer simulations together with the key to figure numbers of 
the experiments and their results are presented in Table 5.1. 

During the course of these experiments, it was found that control 
inputs in the form of pulse or dipole result in the best convergence of the 

estimated longitudinal stability derivatives. The input forcing functions 

studied here are illustrated in Figure 5.4 below. 
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PULSE INPUT 

CONTINUOUS SINUSOIDAL 
INFUI 

FIGURE 5.4 INPUT FORCING FUNCTIONS 

Details of the calculation of covariance matrices G, R and 0 are 

given in Section J1 of Appendix J. Furthermore, the known values of the 

longitudinal stability derivatives with which the equations of motion in 

four decrees of freedom were simulated and their estimates given by the extended 
Kalman filter pronram for cases included in Table 5.1, are represented in 

Table J1 of Appendix J. together with their respective simulation and 

convergence characteristics. However, the results of Case II of Table 5.1 

are presented here. 

Fig. 5.5 'shows the simulation of the longitudinal response of 
the aircraft to a dipole foreplane input which is used for the purpose of 
parameter estimation. From Fig. 5.6 it can be seen that the estimated 
stability derivatives converge to their known values, given in Fig. 5.5, but 
the convergence characteristics of the individual estimated derivatives are 
different. The reason for the differences- is discussed in Section 12. 

STEP INPUT 

DIPOLE INPUT 
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CASE II 
U= 20.0 m/s 
zW = -2.0 
mw = -0.2 
m= -0.8 Q- 
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FIGURE 5.5 

SIMULATED LONGITUDINAL'RESPONSE Ofl! UE A/C'TO'A DIPOLE FOREPLANE INPUT 

0.0- 2.0 4.0 6.0 60,10.0 
T -(sec) 
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6. APPLICATION OF EXTENDED KALMAN FILTER TO THE LATERAL MOTION 

The procedure and objectives in this section are similar to those of 
Section 5. The lateral equations of motion given by Eq. 4.7 represent the 

mathematical model of the system for the estimation of the lateral stability 
derivatives are of interest. Representation of the stability derivatives 

as state variables changes the linear equations of motion given by equation 
4.7 to a non-linear set of equations given by: 

X1 = -UeX3 
X2 

= X5X1 + X6X2 + X7X3 + X11& + X12 

X3 = XBX1 + X9X2 + X10X3 + X13C + X14 

Xa = X2 

where 
X1 =v 

X2 =p 

X3 =r 

X4 = 

X5 =v 

X6 = p 
X, _ Lr 

Xe = nv 

X9 =np 

Xlo= nr 
X11= 

X12= 

X3.3 n 

X14= nz 

EQ. 6.1 

As mentioned in Section 5, although the stability derivatives are 
time invariant, as far as the filter is concerned their values change 
from one iteration to the next and therefore it is assumed that: 
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X5 I 

X6 = Rp = w2 
X7 = Rr = W3 

Xe =nv w4 

X9 =np w5 

Xlo = nr = w6 
X11 

= 
Rý 

= w, 

X12 
= w8 

X13 
= 

Ac 
= W9 

X14 = n; = woo 

where wT = [w1, w2 ....., wlo] is a stationary white noise vector. 

6.1 State Equations 

The general form of the state equations is given by, 

X= f(X, U) + E(w) 

and upon expansion, 

il 

R2 

X2 

Xy 

is 

X6 

X7 

Xe 

Xy 

Xlo 

ill 

X12 

X1s 

i114 

I al 

. ýfx3 
X Xl + X6X2 + X7X3 + x11E + X12C 

X. XI + X, X2 + X10X3 + X1SE + Xl1si 

X2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

i4 i 

0000000000 wi 

0000000000 W2 

0000000000 W3 

0000000000w,, 

1000000000 w5 

0100000000 w6 

0010000000 w7 

0001000000 we 

0000100000 wy 

W10 0000010000 
0000001000 
0000000100 
00000v0010 
0000000001 

EQ. 6.2 
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Further, Equation 6.2 can be discretised with the aid of Equation 
5.6 of Section 5, as follows, 

X(n + 1) - X(n) 
X=h where 'h' is the time step. 

. '. fl(X(n), U(n)) = X1(n) + h. X3(n) 

f2(x(n), u(n)) = X2(n)+h(Xs(n). xi(n)+x6(n). X2(n)+X7(n). X3(n)+Xll(n). E+X12(n). r 

f3(X(n). U(n)) = X3(n)+h(X8(n)"X1(n)+Xg(n)"X2(n)+Xio(n)"X3(n)+Xi3(n). E+Xl4. ý) 

f4(X(n), U(n)) =X (n) + h. X2(n) 

fs(X(n), V(n)) = XS(n) 

f6(X(n), V(n)) = X6(n) 

f7 (X(n), U(n)) = X7(n) 

f 
8(X(n), 

U(n)) =X , 
(n) 

EQ. 6.3 
f9(X(n), U(n)) = X9(n) 

f 
lo(X(n), 

V(n))= Xlp(n) 

fll(X(n), IJ(n))= X11(n) 

f12(X(n), U(n))= X12(n) 

6.2 The Output Equation 

fi3Q(n), 2(n)) = X13(n) 

fi9. (X(n). IJin)) = X14(n) 

Assuming that the motion sensors produce output signals contaminated 
by measurement noise vector V assumed white and stationary with zero mean, 
the general form of the output equation becomes: 

Y= g(X, U) +V= CX +V EQ. 6.4 
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Since the function g(X, U) is linear and the direct matrix D is 

zero. Upon expansion in matrix form, Equation 6.4 becomes: 

y, 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Y2 0 .1 0 0 0 0 0 0 0 0 0 0 0 0 

Y3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

Y4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

where 

y, = sideslip velocity v 

y2 = roll rate p 

y3 = yaw rate r 

Y4 = roll angle " 

and, 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 1 o 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 

6.3 The State Transition Matrix 

The state transition matrix is given by, 

fi(n) _ 
af(X(n), U(n)) 

an 
n 

which with reference to Equation 6.3 becomes, 

X1 

R2 

x3 
X4 

x5 

x6 

X7 

X8 

x9 

X10 

X11 

X12 

X13 

X14 

VI 

V2 
} 

V3 

V4 
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ý(ý) =1 

I0 
-Ueh 00000000000 

h. X5 1+h. X6 h. X7 0 h. X1 h. X2 h. X3 000h. & h. r 00 
h,. ß(8 h. X9 1+h. X10 0 0 0 0 h. X1 h. X2 h. X3 0 0 h. & h. c 

0 h 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 

6.4 Filter Algorithm 

The split extended Kalman filter algorithm used in the present 
application is the same as that of Section 5.1 and therefore is not 
repeated here. 

6.5 Lateral Case Studies 

At this stage a second computer program was developed which employed 
the extended Kalman filter in order to identify estimates of the lateral 

stability derivatives. Details of the calculations included in the program 
leading to the initial values of the covariance matrix G and constant 
values of the covariance matrices Q and R are given in Section J2 of 
Appendix J. The sequence of events in this program were also as shown in 

the block diagram of fig. 5.3 of Section 5. The output transient responses 
of a computer simulation model of an aircraft subjected to disturbances 
due to aileron or rudder deflections were studied. One of these computer 
based experiments is discussed below as an example. Table 6.2 shows the 

experimental conditions and key to figure numbers of the results. For 
further details reference can be made to Section J2 of Appendix J. 
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A/C AILERON AMPLITUDE DURATION SIMULATION ESTIMATION 
SPEED CONTROL (rad) (s) RESULTS CONVERGENCE 
(ms-1) INPUT 

20 DIPOLE 0.1 1 Fig. J6 Fig. J7, J8 

ALL INITIAL VALUES OF THE ESTIMATED STATES WERE SET TO ZERO 

TABLE 6.1 

FLIGHT CONDITION AND ALLOCATION OF RESULTS, FOR THE LATERAL 
CASE STUDY EXAMPLE 

Figs. 6.1 and 6.2 represent the simulated lateral response of the aircraft 
to a dipole aileron input and convergence characteristics of the estimated 
lateral stability derivatives respectively. It can be seen from Fig. 6.2 
that the estimated stability derivatives converge to their steady state 
values which in actual fact are the values used in the mathematical computer 
simulation model. In Table 6.2 below, the estimated stability derivatives 

and their actual values are compared and clearly they are very close. 

A/C 
CONCISE LATERAL STABILITY DERIVATIVES 

SPEED Iv Ip Lr nv np nr IC nC 

ACTUAL -20.0 -5.0 1.5 15.0 1.5 -5.0 50.0 -6.0 

ESTIMATE -20.0 -5.0 1.0 15.0 1.5 -5.0 50.0 -4.5 

TABLE 6.2 ACTUAL AND ESTIMATED LATERAL STABILITY DERIVATIVES 

The apparent closeness can be explained by the fact that not only 
in these case studies the mathematical dynamic model used in the extended 
Kalman filter code is identical to that of the simulated system and also, 
there is no noise contamination of the responses. Therefore, in the 
presence of noise and mismatch in the dynamic model of the system, the 
experimental results of the open-loop dynamic wind tunnel tests are expected 
not to be as satisfactory as those above. 
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7. EXPERIMENTAL PROCEDURES 

Most of the hardware comprising the experimental facility is shown 
in Figure 7.4, with the exception of the height measuring transducer system 
which will be discussed in the followinc sub-section. Operation of various 
equipment, calibration of control surface and attitude pick-off signals, 

signal processing and conditioning and its analysis constitute the remainder 
of this section. 

7.1 The Height Measuring Transducer System 

In order to measure the acceleration and velocity in heave, many 
techniques may be used but the amount of equipment that can be placed 
conveniently in the dynamic model of the F. S. W. aircraft is limited. One 

way of measuring the above variables, namely w and w, is to measure height 

variations of the model with respect to a datum. The recorded height 

variations of the model due to the disturbance can then be digitised, and 
both w and w can be derived numerically at any instant of time during the 

transient response. Fig. 7.1 below, shows the height sensing loop together 

with the dynamic test rig. 

NETGNI 
TRANSCUCEP 
ASSEMPLY 

TUPN RUCKLE 
TO ADJIKT TH 
TENSION IN 
THE LOOP SUPPORT 

STURCTURE 

oool doll 110-1 ol. " 
FIG. 7.1 

SUPPOOT STRUCTURE, SIISPFN'; ION SYSTEM AND HEIGHT TRANSDI'CER ASSEMBLY 

UPPER STOP 
`-- SPRING 
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As can be seen from Fig. F6, the cable loop was connected to the 
Gimbal system in the model at point W. At point 'B' a 10 kn, 10 turn 

potentiometer was installed, the shaft of which was attached to a pulley. 
This pulley had a diameter chosen to give approximately 12 cm of linear 

travel per turn. This in effect meant that height variation in the order of 
±50 cm could be recorded through the potentiometer which was mounted above the 

model suspension system. The signal from the potentiometer was digitised 
directly through the multifunction interface, by a process which is explained 
in detail in Section 7.3. Subsequently, the digitised signal was differen- 
tiated numerically to give w. 

7.2 Instrumentation and Calibration Procedures 

It was necessary to calibrate the control surface angle sensors in 

the model and the attitude sensors, namely, pitch, roll and yaw potentiometers. 
In order to calibrate the control surface sensors ,a chart recorder and the 

output from the control box as detailed in Ref. 8 were used. Then datum 

zero angle deflections of the control surfaces were determined with the aid 

of a horizontal reference surface and an inclinometer. With the instruments 

set up, the control surfaces were moved by five degree increments and the 

corresponding control voltage inputs recorded via the chart recorder. It 

should, however, be noted that at angles above 200, non-linearities arose 
due to the linkage geometry between the actuator and control surface. 

The model attitude sensing potentiometers. were. energised. by a. + 10 v 

reference power supply, and the height measuring device was energised with 

a ±15 v supply. Now, with the model mounted on the rig, signals from roll 

and pitch potentiometers, at 50 interval rotations, were recorded on the chart 

recorder; a tunnel mounted inclinometer was used for this purpose. The yaw 

potentiometer on the other hand was calibrated with the aid of a modified 

protractor mounted on the vertical shaft of the test rig. Finally the 

height measuring transducer was calibrated by recording the signal for 

vertical model movements at 10 cm intervals. Calibration curves and data 

are qiven by Figs. F3, F4 and F5 and Tables F2, F3 and F4 of Appendix F. 

The calibrated signals were conditioned and amplified through the secondary 

amplifiers which acted as signal summers, low-pass filters, and amplifiers. 
The primary reason for using summer circuits was that any signal input into 

the amplifier has associated with it an offset voltage which must be eliminated 
before amplification and this could easily be done by adding a bias signal 
to the signal of interest. 
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7.3 Digitisation of the Analogue Signals 

In order to record the transient response of the F. S. W. model in 

digital form. in either longitudinal or lateral senses, an interface was used. 
In particular, a type PCI 6380 multi-function interface was employed. 
Reinq a microprocessor controlled instrument, the operating system was held 
in 'ROM' within the unit. Incorporated into the above multi-function 
interface unit were software options with which the input gains could be 

set to the desired value, thereby facilitating the input of analogue and the 
output of digital signals over the IEEE-488 bus to a CBM microcomputer, 
and thence to floppy disc storage. This interface operated subject to the 
following specifications: 

Resolution (input and output) 
Calibrated accuracy (20°C) 
Hysteresis 
Power supply 
Operating temperature 
Number of inputs 
Operating time per channel 
Input range 

Input noise 

12 bits 
±0.1% 
1 bit 
220-240 v ±10% 

o- 500C 
8 

<1 ms 
Programmable 
± 100 mv, ±1v, ± 10 v 
1 bit 

When using the IEEE-488 bus, the interface unit was given a device 

number by means of a4 way lever operated switch working in binary code. 
As far as the CBM microcomputer was concerned, numbers 0-4 and 8 were used 
in its own operating system so these numbers were avoided. The range of 
address values are given in Table 7.1 below: 

32K RAM MEMORY 

BINARY ASCII 

START (128) (0) 0 
(ACTUALLY 32768) 

END (255)(255) 32767 
(ACTUALLY 65535) 

TABLE 7.1 
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This unit stored the data in digitised form starting from a given 
address in its 'RAM' memory and then transferring the data over IEEE-488 
bus onto the computer where it was then stored on a disc. This interface 

unit was capable of taking up to 1000 samples per second, of the input 

analogue signal although the required sampling was 10 ms or 100 samples per 
second. Since the signals from the attitude sensors of the model were 
amplified, the gain was set to ±10 v. On recovering the output, the digitised 
information was converted from ASCII form to an equivalent scaled representation 
by dividing each sample by the number 32768. The equivalent voltages were 
then rescaled to represent radians and hence time histories of attitude 

variations were obtained in digital form. 

7.4 Data Formatting and Conditioning 

After recording the response data on disc for each experiment, it 

was transferred onto the DEC VAX 11/750 computer. Since't'here were no means of 
measuring attitude rates directly, they had to be derived by' differentiation of 
attitude time histories . Once this data was transferred, it was formatted. 

Now, in Its original form, data obtained from the experiment was contaminated 

with noise. Taking into account the fact that attitude time histories 

from the model were represented by noisy samples meant that any attempt to 

differentiate it numerically would be quite unsatisfactory as is evident by 

such an experiment illustrated graphically in Fig. 1. 

Therefore, the time histories obtained from the model had to be 

conditioned so that numerical differentiation could be sensibly carried out 

to yield the rates of changes of pitch angle, etc. A possible alternative 

solution was to use rate gyros of the type used in model helicopters, but 

this was not a practical solution since the space inside the F. S. W. model 
10 aircraft was very limited. 

It was concluded that the best way to condition the attitude time 

histories was to use a curve fitting routine using a weighted least-square 

technique. For this purpose, a least-square Chebyshev-polynomial curve 
fitting routine was used. Since the number of points was quite large, a 

very smooth curve fit was obtained. Fig. 7.3 shows the result of this process 

as applied to the pitch angle time history of Fig. 7.2. A computer program 

was written to read in the experimental values and then curve-fit them and 
store the resultant signals and their derivatives in a formatted form ready 
for the parameter identification program. ' 
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7.5 Kalman Filtering 

Two codes were developed and tested, one for longitudinal and one for 
lateral studies, for the purpose of implementing the parameter identification 

technique, whose validity and scope was discussed above. The process noise 

was included in the covariance matrices for both the longitudinal and lateral 

parmaeter identification algorithms and then the programs were run for the 

various tunnel speeds and experiments and the results were output either 
as data or in graphical form. 

7.6 Data Output and Plots 

In order to gain confidence in the results obtained from the Kalman 
filtering algorithms, a plotting routine was vrritten to plot the unprocessed 
and Kalman filter outputs on the same axes. Provided the covariance matrices 
are of the right order and magnitude, all responses should be coincident 

when the estimation process results are ideal. 
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8. LONGITUDINAL DYNAMIC WIND TUNNEL EXPERIMENT 

In Section 5, the application of the extended Kalman filter to the 

computer simulation of longitudinal short period oscillations was studied 
which gave an insight into the behaviour of the filter and how to improve 
its mechanisation. This knowledge was crucial in the present application 

where it was required to estimate the dynamic stability and control characteritics 
of the dynamic model from response data. Because of the limitations of the 
dynamic model and suspension system all longitudinal dynamic wind tunnel tests 

were concerned with the short period motions only and consisted of short period 
transient response to foreplane control inputs. The analysis of the transient 

responses by means of the extended Kalman filter then resulted in the estimates 
of the respective longitudinal stability derivatives. 

8.1 Initiation of the Disturbances 

The linearised equations of motion in four degrees of freedom were valid 
as long as the disturbance introduced results in a pitch attitude variation in 

order of +10°. Experiments showed that a foreplane deflection not exceeding +5° 
would satisfy this requirement. However, foreplane deflections were limited to 

the positive sense only due to the motion contraints of the test-rig. In other 

words, the model was made to ascend. Furthermore, the limited vertical freedom 

for the model meant that the experiments could only be performed at a limited 

tunnel speed range since any foreplane deflection at higher speeds would result 
in catastrophic damage to the model. In addition, every experiment had to be repea- 
ted several times before a good response was obtained. A response was considered 

good when, following the foreplane deflection, the F. S. W. model climbed to a 

certain height and remained in that position until the attitude response had died 

away. For this purpose, two tunnel speeds, namely 27 and 30 m/s were found to 

be most suitable. With two C. G. positions this defined a total of four test 

cases. Further longitudinal experiments were performed after incorporation to 
the development of a height control system together with the incorporation of 
the latter into the equations of motion listed above. This was necessary since 
lack of vertical velocity signal would have resulted in failure of E. K. F. 

parameter identification algorithm. 

8.2 Validity of the Longitudinal Short Period Equations 

Preliminary experiments involving the short period oscillations of the 
F. S. W. model revealed that the set of equations describing the motion given 
by equation (4.6) do not represent the transient response completely. That is 
to say the stability derivatives estimated through the extended Kalman filter 
would oscillate and thus not converge to a definit: value. The most likely cause 
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was considered to be the omission of zq from the equations. 

Therefore zq was included inthe longitudinal equations of motion 

describing the short period oscillations of the F. S. W. model on the test 

rig. The revised equations are; 

CV = w. w (z +e+n. n 

q= mw. w + mq. q+ mn. n----- 

e=q 

EQ. 8.1 

The transition matrix O(n) was also modified and another state was added 

to the Extended Kalman Filter equations representing 2q" Now the new 

characteristic equation became, 

s2 + s(-zW - mq) + (Zw 
q- mw(zq + Ue)= 0 

Therefore, 

n= zMmq-in zq+ e 
----- EQ . 8.2 

zm 

Clearly the inclusion of zq has not altered the damping. Earlier tests 

regarding the determination of the position of N. P. has suggested (see 

Appendix G) that the F. S. W. model had a static margin stick-fixed of 

approximately -1% c with the model balanced at the forward C. G. of 0.444 m from 

datum. This would obviously produce a positive value for mw. 

8.3 Analysis of the Longitudinal Experiments 

As stated above, the longitudinal experiments were limited to two C. G. 

positions for each tunnel speed. Table 8.3 lists the conditions of each 

experiment. It must however be pointed out that experiments 1 to 4 were 

selected as the best from many similar experiments. After conditioning and 
formatting the experimental data for each experiment, four data files were 

generated within the computer which were then used for the analysis of 
longitudinal transient responses with the parameter identification algorithm. 
Details of calculations and results derived from the tests listed in Table 
8.3 are given in Appendix J. In order to illustrate the effect of variations 
in the elements of measurement covariance matrix R, for every experiment two 
longitudinal transient responses with varying covariance matrix R are presented 
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in Appendix J. Evidently, the choice of the values of the R matrix elements was 
found to be very important and therefore, their values were adjusted during the 

course of the computational analysis. Estimated longitudinal stability derivatives 

are given in Tables J3a and J3b of Appendix J for forward and aft C. G. locations 

respectively. These estimates were then used in the computer simulation of the 

equations of motion given by equation 8.1 which correspond to dynamic tests listed in 

Table 8. The simulated plots are coded as in Table 8 and presented in Appendix 

J. As an example experiment 2 is discussed here. Fig. 8.1 shows the actual and 

estimated transient response corresponding to experiment 2. The agreement 
between the two responses is clearly very close and proves that the filter is 

performing the required task. The matching of the actual and estimated responses 
does not necessarily mean that the filter has produced the right estimates of 
the stability derivatives. One way of testing this is to simulate the mathematical 

model of the longitudinal short period oscillations using the estimated derivatives. 

Fig. 8.2 shows such simulation for the results of experiment 2 of Table 8. 

Comparison of Figures 8.1 and 8.2 shows the close similarity of the simulated 

and observed responses. 

As mentioned in Section 3, the 'Kalman' filtering was based on the 

representation of measurement and process noises in the form of white noise. 

Certainly, the assumption that the measurement noise was white could not be fully 

justified since during the experiments the wind tunnel was running at somewhere 

around its resonant speed. This produced periodic oscillations in the flow 

which in turn affected the model behaviour. This is obviously contrary to the 

definition of white noise. In cases where these periodic disturbances were 

pronounced such as that of experiment 3, mismatching occurred. This resulted 

in poor convergence mainly for -control. derivatives zn and mn.. ' 
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9. LATERAL DYNAMIC WIND TUNNEL EXPERIMENTS 

The broad outline and objectives in this section are similar to 
those of Section 8. In particular the lateral dynamic wind tunnel tests 

which consisted of the lateral transient response to control surface 
inputs were analysed by means of the extended Kalman filter algorithm 
from which the respective lateral stability derivatives were estimated. 
These experiments were subject to the following assumptions. 

(i) - for small perturbations in response to rudder and aileron 
control inputs the heave motion could be neglected. 

(ii) - in the absence of a lateral translation the sideslip velocity 
could be represented as: 

v= -$Ue 

Under these assumptions the lateral equations of motion are given 
by Equation 4.7 of Section 4 as: 

00 -Ue 0v00 

vp Lr 0pý 
_+----- 

EO(9.1) 

nv np nr 0r nc nr 

010000 

9.1 Initial Experiments 

Initial experiments were undertaken to obtain basic response data 
for rudder or aileron impulse disturbances at a limited number of flight 

conditions. As a consequence of assumption (i) above, there was no need 
to record the heave motion. Thus, with the C. G. set at its forward 

position of 0.444 m from datum, the model was fixed at the centre of the 

vertical rod, being free to traverse ±0.01 m up and down the rod. This 

was done in order that, prior to the introduction of disturbances, the model 
was flying straight and level in the centre of the tunnel flow. 
Disturbances were then initiated by means of rudder or aileron pulse 
control inputs. A total of 16 experiments were conducted as listed in 
Table 9.1 below. 
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FORWARD C. G. AFT C. G. 

TUNNEL SPEED AILERON 1/P RUDDER 1/P AILERON 1/P RUDDER 1/P 

27 � � � � 

29 � � � � 

31 . ve � .� � 
33 � (data lost) (data lost) 

X x 

TABLE 9.1 

9.2 Validity of the Lateral Equations 

As the model was extremely responsive and the tunnel flow less than 

ideal, the roll motion under trimmed flight conditions was subject to 

large perturbations. Therefore, for the urraugmented aircraft model the 

roll responses were so contaminated by these perturbations and they were 

not suited for analysis. Furthermore, by limiting the experiments to 

those involving rudder pulse control inputs, there was no need to include 

the control derivatives associated with the aileron. The equations of 

lateral motion subject to these omissions then become: 

v00 -Ue 0v0 

p ý'r 0p 
+ -----EQ(9.2) 

r nv np nr 0rn 

01000 

Equations 9.2 were then implemented in the Extended Kalman Filter 

parameter identification program through which the rudder initiated 

lateral transient responses were analysed. Table 9.2 below lists these 

experiments and the various parameter changes associated with them. 

However, it should be pointed out that the outcome of the lateral 
dynamic. experiments, namely the estimated lateral stability derivatives, 
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differed from those of an unconstrained model since in Equation 9.2 
the lateral forces yp, yr and especially yv were neglected whereas zv and 
nv were retained. Further, the inclusion of yv in the equations of motion 
would confuse the filter since the sideslip velocity v cannot be measured 
independently. 

9.3 Analysis of the Lateral Experiments ' 

The analysis process applied to the lateral experiments was similar 
to that applied to the longitudinal dynamic tests. However, the choice of 
measurement covariance matrix R in this case was critical since initial 

experiments showed that the extended Kalman filter estimator would match 
the transient response for a wide range of values of R matrix, whereas, 
the convergence of the estimated lateral stability derivatives seemed to 
be best for a much more limited range of values of the elements of the 

covariance matrix R. 

Due to the correlation between roll and yaw motions, estimates of 
the stability derivatives tv and nv oscillate in value which was found to 
be a function of the R matrix. These observations are discussed in detail 
in Section 12. The results of the analysis in the form of estimated 
lateral derivatives based on an average of ten runs for each dynamic test 

are presented in Tables J4, J5 and J6, J7 of Appendix J together with 
transient response plots coded as listed in Table 9.2 for forward and aft 
C. G. positions respectively. Furthermore, the initial value of the elements 
of the covariance matrices G. R and Q are given in Section J4 of Appendix J, 

which are based on the method of calculations of Section J1. Unfortunately, 
dynamic experiments, Exp. 10 and Exp. 11, failed to produce any meaningful 
results, since, as figure J38 and Figure J39 of Appendix J indicate despite 

matching the response, the estimated stability derivative values determined 
by the extended Kalman filter algorithm would not converge. This behaviour 

would be expected since the mathematical model implemented in the extended 
Kalman filter is not representative of the observed response. As an 
example, the results of experiment 5 of Table 9.2 are included here as 
Figs. 9.1 and 9.2. Fig. 9.1 shows the lateral transient response due to 

rudder pulse input together with the estimated response. The estimated 
response is certainly very close to the observed response but as mentioned 
in Section 8, not necessarily an indication that the filter estimates of 
the respective lateral derivatives are of the right . order and sign. thus it 
was essential to simulate the mathematical model of the lateral transient 
reponse given by Eq. 9.2 using the estimated derivatives. This simulation 
is shown in Fig. 9.2 and clearly the simulated response matches the observed 
response as shown in Fig. 9.1. 
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10. STATIC WIND TUNNEL MEASUREMENTS 

In the work discussed in the preceding sections, most of the 

aerodynamic parameters assumed were based on theoretical estimates. In 

order to assess the validity of these parameters it was decided to conduct 
limited static wind tunnel tests so that some of the more important 

aerodynamic characteristics of the dynamic model could be measured and 
analysed, and for this purpose the CoA 8' x 6' low speed wind tunnel was 
used. 

The support structure consisted of a streamlined vertical strut which 
was attached to the gimbal brackets in the model. The strut was designed 

in such a way that the centre of the balance and the centre of gravity of 
the model were coincident. As a result, no axis transformations were 

necessary as far as the symmetric force and moment measurements were conc- 

erned. The support structure was completed by tail wires which could be 

adjusted remotely and in doing so, change the incidence of the model. 
Fig. 10.1 shows diagramatically the model and the supporting structure. 
Obviously the presence of the support structure would lead to small errors 
in the measured values of lift, drag, moments, etc . these corrections were obtaine 
by conducting appropriate force and moment measurements on the support 

structure in the absence of the model. 

It must be emphasised that the F. S. W. aircraft model was primarily 
designed for dynamic, rather, than static tests. In general, static models are 
made with a safety factor of 8 to 10 in mind which literally means a solid 

construction. Dynamic tests however, had indicated that the model could with- 
stand the stresses at speeds and incidences of up to 30 m/s and 250 respectively 
while free to fly in four degrees of freedom. As a result the support 
structure was designed to accommodate the latter limits. 

Generally, static wind tunnel measurements are rather tedious, the 

reason being that the tunnel has to be stopped and restarted every time there 
is a need to change the control surface setting, etc. In the case of large 
tunnels the restart procedure is time consuming since the tunnel speed has to 
be increased gradually until steady state conditions at the required tunnel 
speed are reached. As far as the dynamic model was concerned, measurements 
could be taken continuously since all the control surfaces were actuated 
remotely via the umbilical chord. Figure 10.2 represents a block diagram 

of the instrumentation. 
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10.1 Tunnel Corrections 

The presence of a model in the wind tunnel disturbs the flowfield in 
the working section and therefore, the measurements have to be corrected for 
these interference effects. From Ref. 12, the interference effects relevant 
here are; 

(i) Solid blockage 
(ii) Wake blockage 

(iii) Lift effect 

These are discussed below. 

10.1.1 Solid Blockage 
This involves a change of axial velocity around the model since the 

presence of the model has blocked part of the working section, thereby 
reducing the section area. It is convenient to express the blockage in 
terms of a factor cs defined by 

OF = UT(1 + cs) 

where UT is the tunnel speed and UF is the corresponding free-air speed 
which is taken to be the speed at the working section. The solid blockage 
is considered to have two contributory components, namely blockage due to 
fuselage esF and blockage due to a wing of finite aspect ratio csw. Then 
in the notation of Ref. 12, 

(i)- for a body of revolution, 

CSF=() r(1+0.4t 

Ml- for a finite wing, 

esW = (ß) t(1 + 1.2 ý) 
_ ýV 
R'2 

where 
1 is the fineness ratio', V is the volume of the model fuselage or wing 

as the case may be, A is the tunnel cross-section area at the working section and 
It 'T 

= 0.723 for a tunnel with a square cross-section at the working section. 
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10.1.2 Wake Blockage 
This is a similar effect to that of sub-section 10.1.1, but it corresponds 

to a reduction of speed within the wake of the model. This effect is repre- 

sented by the factor cw and as before, 

OF = UT(1 + Ew) 

In the notation of Ref. 12, cw can be expressed by, 

S 
Ew ý T)* CD 

where S is the area on which the drag coefficient is based, h and b are the 
tunnel height and breadth respectively. This expression can be used for both 

a body of revolution and a wing of finite PR. This effect is usually negligible 
for streamlined bodies and therefore was not taken into account in the analysis 
of the static wind tunnel measurements in the present study. 

10.1.3 Lift Effect 
This arises from the tunnel boundary constraints put on the velocity 

field induced by the bound and trailing vortices. For a wing of finite 

aspect ratio Ref. 12 gives, 

aF - aT =d ALT 

where subscripts F and T have the previous meanings, S and C are the wing and 
tunnel cross-section areas respectively and d is a factor whose value is 
dependent on the shape of the working section. As a result of the change in 
incidence, the lift vector is inclined to its correct direction and the drag 
has to be approximately corrected, viz, 

CDF - CDT = (czF - UT) CST 

Figure 254 of Ref. 12 is reproduced in Appendix M and shows the 
interference due to lift effect in three-dimensional flow for a closed 
rectangular tunnel as a function of wing span to tunnel breadth ratio. 
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10.2 Test Procedures for Force and Moment Measurements 

With the instruments set up, the model was given the required 
attitude and the wind-off balance force readings were set to zero and 
recorded. With wind-on the control surface and/or model incidence were 

varied remotely without the need to shut the tunnel down between readings 

and the corresponding force readings were recorded. In the case of moment 

measurement, the balance had to be set to zero for every attitude and in 

order to save time, the following technique was adopted. For every control 
surface setting the model was taken through the incidence range and the 
balance readings recorded. This process was repeated for all control surface 
angle settings. From the analysis of these measurements, the required 
results were extracted. Tables 10.1 and 10.2 represent the flight-attitude 

conditions covered by the static tests. 

10.3 Data Acquisition and Analysis 

The complete data acquisition process is shown in diagrammatic form 

on Fig. 10.2, where model reference attitude and tunnel balance measurements 

were recorded on a chart recorder and mini computer respectively. In 

recording the data and its subsequent analysis, use was made of two computer 

programs both of which were interactive in nature. Although part of a 

standard 8' x 6' tunnel data acquisition system, both of the programs had 

to be modified to a great extent before they could be used specifically for 

the dynamic model. By the implementation of tunnel corrections and 

appropriate axis transformations the measured data from the first computer 

program were analysed by the second program, the output of which was the 

aerodynamic data. The output of this process was then formed into graphs 
from which the aerodynamic data were then obtained. Tables H2 and H4 of 
Appendix H list the results of the static tunnel measurements. For simplicity 

all forces and moments are given in non-dimensional form. The values of 

aerodynamic parameters given in Tables H2 and H4 have been extracted from 

Figures H1 - H14, which include CL - Is Cm - a, Cn - ý, CD - a, and CL -E 
variations. Some examples of the results are presented here. Figures 
10.3,10.4,10.5,10.6 and 10.7 represent the Cý - a, Cp - C2, Cm - a, 
Cn -C and CR -E variations respectively. The appropriate tunnel speeds are 
indicated on the respective figures. 
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11. THE DESIGN OF AN ANALOGUE HEIGHT HOLD CONTROL SYSTEM 

As was mentioned in Section 8, longitudinal experiments involving 
the short period oscillations of the model on the test rig were limited to 

a finite range of tunnel speed. This was because foreplane deflections of 
magnitude sufficient to disturb the short period pitching oscillation would 
also result in relatively large vertical motions in which the model would 
impact the end stops. In order to increase the experimental speed range, 
a height hold autopilot system was designed. The control command demands 
the model position on the vertical rod and any subsequent departures from 
this position would automatically activate the control system to return the 
model to its original position and attitude. 

Clearly, in order to design such a control system the longitudinal 
dynamic characteristics of the model would be needed. These characteristics 
were identified here through the mathematical model of the model response. 
Analysis of the system was then based on the substitution of the longitudinal 
stability derivatives with the extended Kalman filter algorithm. 

It must be noted that evenin asteady level flight condition, the 

model would be subjected to external disturbances which are a direct 

result of turbulence in the tunnel. The turbulence induces symmetric 
aerodynamic loads on the model which affect its vertical position. Due to 
the complexity of representing the transfer function of this behaviour, the 

effect of such disturbances was assumed negligible, which was justifiable 
if a lateral auto-pilot were to be used to suppress rolling motion. 

Initial experiments employing a simple height feedback control loop 

proved unsatisfactory in many ways, therefore, a two-state feed-back control 
system was developed, the analysis of which, together with the possible 
inclusion of a heave velocity feed-back loop, constitutes the rest of this 
section. 

11.1 Design of the Control System 

The equations representing the short period oscillations with the 
inclusion of height are, 

s- zW -s(Ue + zq) 0w1 zn 

MW s2-smq 0 mit 

- Ue sh 

Ax 
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where w, e and Fi mean w(s), e(s) and h(s) respectively. Therefore unless 
otherwise stated the latter notation is used throughout this section. 

Pitch attitude response to foreplane control input, with the 

application of Cramer's rule is given by: 

e NO (S) S zW zn 0 
--os- aet - mw mit 0 
TI 10s 

where 

det A= e(s) = s2(s2 + s(-zW -mq) + (mgzw - mw(Ue + zq))) 

N8 (s) s(s mit + znmw - zWmn) 

A(S) S2(S2 +s -zw -mq + mgzw - mw e+ zq 

s mit +znmw- zWmn 
-S (S2 +s -zw -mq + mgzw - mW e+ zq ----- EQ. 11.1: 

Similarly, the height response to elevator transfer function is given by, 

N(s) 
s- ze -s(Ue + zq) zn 

F_1 
n(s) =os" MW s2 - smq mit 

n 
Ue 0 

- 
-s2zn + s(Uemn - mn(Ue + zq) + znmq) + Ue(znmw - zWmn) 

s2(s2 + s(-zw -mq) + (mgzw - mw(Ue + zq))) 

The design of the height control system was split into two parts, 

namely a pitch loop and a height loop control system. 
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11.2 Pitch Loop Design 

Pitch control is achieved via the 0-feedback loop of Fig. 11.3 below. 

K .` (sCb)B eo 
0 

FIGURE 11.1 PITCH LOOP SYSTEM 

where the open-loop transfer function is given by. 

i. e. 

60 

- 
ep smn + znmw -zwmn 

- EQ. 10.21 =kk 6o en s(s2 + s(-zW -mq) + (mgzw - mw(Ue + zq))) 

Further, the closed-loop transfer function is given by; 

eo 
_ 

keknG(S)e 
$ý 1+ ce cn, se 

At this stage a CASD package'was used to determine the value of k 

for a satisfactory resarnse, details of these calculations are presented in 

Section *11 of Appendix 1. Fig. 11.4 represents the response of the pitch 

control system to a step input. 

Now by adopting the control law, 

n= kekn(e o) 

The equations of motion describing the short period mode would become, 

s- zW -s(Ue + zq) 0w zn k6kn(e e) 

-MW s2 - smq 0e mit 

1 -Ue sh0 
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or 
s- zW -s(Ue +zq)+ keknzn 

_MW s2 - smq + kekmm 

1 -U e 

0 keknzn er 

0 k8km 

s0 

Application of Cramer's rule leads-to'the, following transfer function, 

s- zW -s(Ue + zq) + keknzn knkezn 
° 

-m s2 - sm + kek mk kem er swqn in nn 

II -Ue 0 

V . e. 
ho -keknzns2 + kekn(mnUe - mn(Ue +zq)+ mgzn)s + keknUe(znmw - mnzW) 

er s(s3 + s2(-zw mq) + s(kekmmin +zwmq- mW(Ue + zq)) + kekn(mwzn - mnzW)) 

-----EO11.3 

11.3 Height Loop Desian 

The complete control system can be represented as in Fin. 11.2 below; 

t 
e_ 

Rh 
e" 

° lr( y) 

FIGURE 11.2 HEIGHT LOOP SYSTEM 

Cro-)O 'b 

The open and closed-loop transfer functions of this system are; 

'F° 
=k G(s) hh 

and 
No khG (s)h 

+ ch sh 
r 

-----EO. 11.4 
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A control law of the form, 

er = kh(hr - ho) 

was adopted. 

Therefore, the equations governing the response of the model to a height 

change are given by, 

[s-z 
W- s(Ue + zq) + keknzn 0w keknzn 

_. _.. _- khr - h) 
-mw s2 - smq + kekmmý 0e= kekmmn 

1- Ue sh0 

s- zW -s(Ue + zq) + keknzn keknkhzn w keknkhzn 

or -mW SMý keknkhmn keknkhmn hr 

1- Ue s0 

w zw (Ue + zq) -keknzn -keknkhzn c keknkhzn 1[mw 
mq km kkkm 

'kkkm 

q enn erahn erahn 
"+ hr 

0100e0 

h -1 0U0h0 
e 

-----EQ. 11.5 

The above set of equations describes the short period transient response 
of the model due to a disturbance from the required height. These equations 

were simulated with the aid of a real time computer simulation package in 

order to verify the -characteristics of the height-lock control system. 
Figs. 11.5 A 11.6 represent such simulations for various values of a correction 
factor defined as; 

k 
- CF = keo 
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where k0 = -0.1. In this way the effect of changes in the value of ke 

could be observed. The performance of this two-state feedback control 
system will be discussed in Section 12. Suffice to say here that the 
performance of this control system was not satisfactory and therefore 

other techniques were examined. A more detailed description of the analysis 
and simulation exercise are included in Appendix I. 

11.4 Velocity Feedback as a Means of Reducing the Response Time 

One way of increasing the damping of a control system is to use velocity 
feed-back. Fig. 11.3 below shows this system in block diagram form. 

FIGURE 11.3 CONTROL SYSTEM WITH. VELOCITY FEEDBACK 

The open and close-loop transfer functions of this system are given by; 

Wo 
= kh(kvs + 1). G(s)h 

where steady state error can be shown to be zero, and 

ii; kh. (kvs + 1). G(s)h 
---- EQ" 11.6 

Fir 1+ kh(kvs + 1). G(s)h 

respectively. 

Figs. 11.7 and 11.8 represent the system response to a step height command 

of 1 and the Bode plot of system respectively for, 

kv=2 

and 
kh = 0.015 
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Details of calculations are contained in Section 14 of Appendix I 
together with the modified circuitary given by Fig. z11 

Further in adopting the control law 

er = kh[hr - h(kvs + 1)] 

The equations of motion representing the height auto-pilot control 

system with velocity feed-back would become, 

or 

s- zW -s(Ue + zq) + keknzn 0 keknzn 

-mm s2 - smq + kekmm 0 k0kmmn khhr- khh(kv s+ 1) 

L1 -Ue sh0 

s- zW -s(Ue+zq) + keknzn 

-mw s2 - smq + kekmmTi 

L1 -Ue 

kekkh(kvs+l)zn w k0knkhzn hr 

kekkh(kvs+l)mn keknkhmn 

s0 

-- EQ. 11.7 

Equation (11.7) is readily simulated on a digital computer and hence 

enables the entire performance to be analysed for various gain settings. 

11.5 Analysis of Longitudinal Dynamic Tests with the Inclusion of Auto-Pilot 

As was mentioned in Section 10, the turbulence effects comprised 
the primary source of external disturbances which needed to be suppressed. 
This was achieved by employing two additional proportional feedback systems 

controlling the roll and yaw motion of the model, which in effect rid the 

longitudinal flight mode of the unsymmetric induced aerodynamic loads. 

Initial tests have shown this to be the case. 

However, in order to analyse the dynamic tests, the new mathematical 
model representing the response of the model has to be implemented in the 

extended Kalman filter parameter identification code. Initially, the system 
could have been simulated with the aid of a simulation language and 
subsequently analysed. Once the method was verified, it could then have 
been applied to the physical system. Unfortunately, this was beyond the time 
available and the scope of this thesis. 
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12. RESULTS AND DISCUSSION 

Clearly, from what has been presented in the preceding sections, 

three alternative methods have been used to estimate the stability deriva- 

tives of the F. S. W. aircraft. The first set of estimates were obtained 

from the first order design optimisation program. The second method of 

estimation was the extended Kalman filter algorithm and finally the static 

wind tunnel measurement data from which some of the stability derivatives 

were estimated. In this section each of these methods is discussed in 

detail with respect to its efficiency as a mean for estimating stability 
derivatives, the validity of the results and possible ways in which these 

might be improved. 

12.1 The Results of the First Order Optimisation Program, their 
Validity and Scope 

In the absence of detailed wing and foreplane loading data and the 

limited availability of aerodynamic data the first order optimisation program 

yielded the following results. First and foremost was the data from which, 

a three view drawing of the full scale aircraft was produced. Input data 

as far as this design stage was concerned, was mostly based on linearised 

theory and the relevant calculations are given in Appendices A and B. 

In order to achieve an optimized layout, two criteria were chosen, 

namely, static margin stick-fixed and minimum induced drag. Therefore in 

theory, the full size aircraft was designed to meet these two criteria. 
However, with respect to the construction of a dynamic model, based on the 

full size aircraft obtained in this way, the assumptions needed to be re- 

examined. In doing so, the following had to be justified. 

(i) Application of linearised theories to wing and foreplane in 

isolation. 
(ii) Neglecting interference effects due to vortex shedding of the 

fuselage. 
Assumption that the lift generated is totally due to circulation. 
In other words, slender wing theory not to be applied. 

(iv) Assumption that the linearised theory would still be applicable 
at M=0.3 or, in other words, incidence not greater than 100 
below such a Mach. number. 
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Clearly all these assumptions are interrelated and therefore not 
entirely justifiable. Nevertheless, by making provision for variation of 
the centre of gravity in the development of the dynamic model, any error 
in the determination of static margin could be compensated for. Checks 

on static longitudinal and lateral stability of the full size aircraft were 
carried out (see Appendix C) which proved the design to be satisfactory. 

A rather more drastic result of the above assumptions was the mani- 
festation of errors in the estimates of stability derivatives, which formed 
the output of the second stage of the optimisation routine. Basically, 
linearised theories base the estimates of stability derivatives upon trimmed 
flight conditions such as foreplane trim angle at a given incidence, 
CLtrim' CD, etc. These values in turn depend on the accuracy of the methods 
with which they have been calculated. Therefore, the derivative estimates 
obtained at this stage were assumed to be unreliable to an extent that could 
not be assessed until later in the research program. Calculations supporting 
the second stage of the optimisation program are given in Appendices B and E. 

12.2 Verification of the Extended Kalman Filter Parameter Identification 
Code Using Computer Based Simulations 

After the development of the Extended Kalman Filter code, it was 

necessary to verify it before actually applying it to wind-tunnel based 
dynamic tests. As mentioned in Section 5, the equations of motion in four 

degrees of freedom were simulated using predetermined stability derivatives. 

The aim was to see whether or not, by feeding these simulated responses to the 

estimating program, it would produce estimates of the stability derivatives 

matching the original values. A typical simulated response using the original 
stability derivatives (see Sections 5.6 and 6.2) is shown on Fig. 12.1, 

together with Fig. 12.2 showing the convergence characteristics of the 

estimated derivatives to their known values. More detailed examples are 
contained in Appendix J. Results from these simulations proved beyond a 
shadow of a doubt that under steady-state conditions and from a theoretical 

point of view the estimates of stability derivatives and their known values, 
as used in the simulations, represented a perfect match. 

However, as with all theoretical approaches, the following limitations 

were applied to the validation study, 

(i) Absence of coloured noise, i. e. all noise assumedwhite with no 
correlation between'them. 
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(ii) Equations of motion in four degrees of freedom would represent 
the actual physical motion of the model on the test rig. 

By making sure that the departure from trimmed flight remains within 
the bounds of linearised theory the above assumptions can be justified. 

12.3 Use of the Dynamic Model for the Purpose of the Open-Loop Dynamic Tests 

12.3.1 Dynamic Model 

In order to be able to apply the extended Kalman filter algorithm to 
the physical responses, it was necessary to design and build a 1/14 scale 
dynamic model of the full size aircraft. Appendix E contains the dynamic 

scale relationships between the model and full size aircraft as discussed 

in Section 2.3. 

As far as the similarity of flow was concerned, calculations leading 

to an estimate of zero-lift drag revealed that the Reynolds number for the 

model does not correspond to a fully turbulent flow. Therefore, use was 

made of trip wires on the flying surfaces of the model in order to trip the 

boundary layer into an early transition. Calculations to determine the 

diameter of the wire and its chordwise position on the F. S. W. foreplane and 

fin are given in Appendix F. Although these calculations were based on a 

2-D treatment, ref. 2 suggests that for a F. S. W. they would be sufficiently 

representative to ensure a good approximation to the actual position of 

ransition f om laminar to turbulent boundary layer. The dynamic similarity 

analysis formed the basis on which the dynamic model was developed. The 

model was designed and built to comply with these fundamental requirements 

and also to comply with some additional requirements as described in Section 

2.5. 

The experimental test facilities described in Ref. 8 were also further 

developed, mainly from the instrumentation, point of view (see Sections 7.1 

and 7.3). As pointed out in Section 12.1, the model was constructed so 
that the gimbal system, on which the model was suspended, could be moved 
10.02 m fore and aft from the predicted centre of gravity. This C. G. range 

was chosen in accordance with Fig. B2 of Appendix B. which suggests that for 

a static margin stick-fixed range of -6% c to +6% caC. G. movement of 0.279 m 

for the full size aircraft, and therefore 0.02 m for the 1/14th scale dynamic 

model was necessary. 

The principal moments of inertia were then adjusted in compliance 
with the dynamic similarity requirements. Initial test flights showed 
that the model was unstable although the level of instability was unknown at 
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this stage. In an attempt to secure a stable airframe for initial experiments 
two extensions were added to the trailing edge of the wing root in order to 

move the neutral point aft and, additionally, the C. G. was moved to its 

forward limit. With this configuration, the model could be made to fly 

with great ease although no stability analysis was carried out at this 

stage. 

The next step was to establish the. position of the neutral point. 
Calculations and experiments leading to the determination of this position 

are given in Appendix G. These calculations revealed that with the C. G. at 
0.444 m from the plane of the nozzle, the model had a static margin stick- 
fixed of approximately -1%; in other words, the model was statically 

unstable. Despite this fact, the model was behaving in a dynamically stable 

manner. The reason for this was not known until some static tests were 

carried out, the results of which are discussed below. 

Having established that the model was capable of flying in trimmed 

condition, dynamic tests were carried out. These transient response tests 

were carried out to evaluate firstly the longitudinal open-loop dynamics, and 
ýý 

secondly, the lateral open-loop dynamics of the aircraft model. 

12.3.1.1 Longitudinal open-loop tests 
Instrumentation noise was one of the major obstacles to progress. 

Without adequate suppression of signal noise, signal rates could not have been 

properly derived. Due to the magnitude of the signal sampling rate hs = 10-1 

sec, 200 data points were available for the digitisation of an analogue 

transient signal for a period of 2 seconds. Noise suppression of the 

attitude signals was achieved by curve fitting the recorded points and 
differentiation of the fitted function could then follow. (See Section 7.3.4) 

In this way pitch and other attitude responses were curve fitted and 
differentiated in order to acquire pitch rate q, etc. It was found that 

the signals from the height measuring transducer (Section 7.1) were 

relatively noise free and therefore it was not necessary to apply this 

process to obtain height rate. 

As explained in Section 7.3.1, the initial analysis of the short 

period responses with the Kalman filtering indicated that the equations of 

motion were not consistent with the observed physical motion. It was then 
decided to invlude zq in the longitudinal equatioreof motion. The inclusion 

of zq clearly stabilized the filter and in this way convergent estimates of 
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the stability derivatives zw, zq, mw, mq, zn and mit were obtained. Although 

the estimates converged to a value, oscillations with low frequency and 
small amplitude were apparent. Through a series of experiments with different 

measurement noise matrices R, is was found that these oscillations could be 

minimised. Table 7.1 lists the experiments and conditions under which they 

were carried out. Instrumented results include two runs of the parameter 
identification program for the same flight condition but with different 

measurement noise matrices R. As an example, the results of experiment 2 

of Table 7.1, are shown on Figures 12.3 and 12.4. Further, Fig. 12.7 

shows the simulated short period oscillations using the estimated stability 
derivatives with the extended Kalman filter program. From these figures 
it can be seen that the simulated result shown on Fig. 12.5 agrees favourably 

with the observed response shwon on Fig. 12.5. 

However, it must be noted that the observed transient response is 

affected by two main factors. Firstly, gimbal frictional effects which 

manifest themselves as additional motion damping such as friction in pitch 
freedom pivot and in the heave motion linear bearing. Secondly, the non- 

uniformity of the airflow across the tunnel test section and blockage 

effects. These factors could, and in some instances did, cause the model 
to assume a different incidence at various vertical positions prior to the 

introduction of the disturbance, following a foreplane control input. 

This effect can clearly be seen from the pitch attitude time history 

of the experiments 3 and 4 as on Fig. 12.6. Here, after the transient response 
has died away, there is a steady state error in the pitch attitude response. 
Computer experiments showed that in the more severe cases, this steady 

state error could cause oscillations and possible divergence of the extended 
Kalman filter parameter identification program. 

12.3.1.2 Lateral Open-Loop Tests 
Clearly, as the lateral equations of motion in four degrees of freedom 

indicate, see Section 6, the need to measure heave motion does not arise. 
Therefore, in carrying out the lateral dynamic tests, the model was locked 

in position halfway up the vertical rod in such a way that a heave movement 

of 0.02 m was possible. This was done, in order to make sure that prior to 

the introduction of disturbances, the model was flying straight and level. 

For both fore and aft C. G. positions, observations showed that even 
under trimmed flight conditions, random oscillations in roll were evident. 
The maximum amplitude of these oscillations were within "= ±100 of the 
wing-level condition. 
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The inability to return to the flight attitude prior to the introduction 

of an aileron control input made the analysis of the response of the model 
to aileron control inputs impossible mainly because of the low signal to 

noise ratio. These observations were demonstrated in the poor quality of 
the recorded responses. Therefore, it was realised that without a feedback 

control system, as far as the roll degree of freedom was concerned, no useful 
information would result from the analysis of such responses. As a result of 
the above argument, only the responses due to rudder control inputs were 
analysed. The experiments conducted at this stage are listed in Section 9. 
In deriving the extended Kalman filter code, it was assumed that the white 
noise components of the various signals were uncorrelated. This assumption 
is more justified in the case of longitudinal than in the case of lateral 
dynamic response experiments because some correlation between signals is 

evident when the motion exceeds the limits associated with linear approxi- 
mation. Although, in the case of computer based experiments, this could be 

achieved, it was not possible in the physical experimentation environment. 

Therefore, unlike the results of Section 5.5 as discussed in Section 
11.2, oscillations in the estimates of lateral derivatives, especially Rv, 

nv and 2p, nr were predicted. This was verified as the lateral responses 

under different flight conditions were analysed. By way of example refer to 

Figures 12.7 and 12.8, which show the observed response due to rudder control 
input but with two different measurement noise matrices R. Although the 

extended Kalman filter seems to match the response closely, the estimated 
lateral derivatives, especially tv and nv, constantly oscillate in order for 

the extended Kalman filter to match the response. It was found that the 
frequency and amplitude of these oscillations were sensitive to small 
changes in the measurement noise matrix R, although this sensitivity was 
not evident in the matching of the response. The best estimates were obtained 

when elements of the R matrix were of the order of 10-6. Simulation of 
the lateral equations of motion using the estimated derivatives for the same 
flight conditions is shown on Fig. 12.9, which agrees favourably with the 

observed response in frequency, amplitude and damping. 

What became evident ft stly from the observed responses at different 

tunnel speeds and consequently from the simulated responses, was that the 
damping became less and less as the tunnel speed was increased, as shown on 
Figures 12.9 to 12.11. By changing the C. G. position from 0.444 m to 0.44 m 
the response due to rudder control input became erratic and indeed, except 
for a tunnel speed of 27 ms-1, analysis of the responses, although matched by 
the extended Kalman filter code, would not lead to convergent estimates of 
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the lateral stability derivatives. Just as for the case of the responses 
to aileron control inputs, only through a yaw axis feedback control system 
would it be possible to first stabilise the response and then analyse it. 
Although roll and yaw control could be achieved independently of each other 
for small deviations from the equilibrium conditions, some autostabilisation 
would be necessary to cope with large perturbations. The treatment of large 

perturbations however, was beyond the scope of this thesis. 

During the course of the initial computer based experiments described 
in Section 5 and in Section 6, the dynamic response simulations and extended 
Kalman filter estimator were both based on the same mathematical model, which 
in effect eliminated any mismatch between the two systems. As far as the 
dynamic experiments described in Sections 8 ant 9 were concerned, the diffi- 

culties arose once an attempt was made to represent a physical motion by a 
mathematical model which clearly has its shortcomings as it depends on the 

assumptions made. 

12.4 Static Wind Tunnel Results 

Static wind tunnel tests were carried out to obtain the basic aero- 
dynamic characteristic data which would extend and verify the data obtained 
from the earlier dynamic experiments. The background to this work is discussed 

below followed by a more detailed description of the results obtained from 

the various tests. 

12.4.1 Preliminary Results 

Due to the nature of the research program and the availability of wind 
tunnels, the static wind tunnel measurements had to be conducted after the 
dynamic model was designed and built. Nevertheless, results from this part 
of the programme helped in the understanding of the results of earlier work. 
Prior to carrying out the static wind tunnel tests, some of the dynamic 

experiments had already been conducted. The latter were partially concerned 

with the approximate determination of the neutral point of the model. 

The method adopted here to estimate the neutral point is explained in 
detail in Appendix G. The following assumptions had been made: 

(i) Frictional effects such as those in the bearing and pivots of 
the gimbal were neglected. 

(ii) Downwash effects were not accounted for. 
(iii) Forces due to the weight of the umbilical connection were assumed 

to act along the vertical rod of the test rig. 
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Results from these dynamic experiments indicated that with the trailing 

edge extension (see Section 11.3.1), the static margin stick-fixed was around 

-1%. Assuming at this stage that the results were meaningful, it was 
deduced that the pitching moment was acting in a nose up sense. In other 
words the stability derivative try was positive, which was in accordance with 
the results of the extended Kalman filter parameter identification of that 
derivative. 

12.4.2 Static Wind Tunnel Measurements 

The prime purpose of these measurements was to obtain the basic 

aerodynamic characteristics of the model. However, due to the nature of 
the support structure, incidence variations were limited to ±200 relative 
to the horizontal plane, but the actual experimental range was from -5o to 

+200. Yaw angle variations were within ±200 of the tunnel centre line. 
Results of the static tests are accumulated in Appendix H. Although 
dynamic tests had indicated that the model possessed a high strength to 

weight ratio, the tunnel speed for the static tests was not taken beyond 

approximately. 28 m/s, since, in the event of structural failure, the remainder 
of the research program would have been jeopardised. 

12.4.2.1 Pitching moment variation with incidence 
From Section 12.4.1, it was predicted that under normal flight 

conditions, i. e. positive incidence, a nose-up pitching moment would be 

associated with all positive incidences. Figures 12.12 and 12.13 show the 

variation of pitching moment coefficient with incidence a for various canard 

angle settings n in the absence of the wing trailing edge extensions. 
Since from the dynamic tests the minimum lift-off speed, defined as the minimum 
speed at which the model could support its own weight, was found to be 

approximately 22 m/s, only Figure 12.13 is discussed here. From this 
figure it is clear that under normal flying conditions, which would correspond 
to a positive incidence of between 00 and 50 and a foreplane trim angle ntrim 
of 40 to 8°, the position of the neutral point must lie ahead of the C. G. 
Furthermore, for the range of incidence a= ±50 and a= 50 to 15°, 

d 
is 

positive and then negative respectively. 

Since 
d 

<0 for static stability, the model is unstable for -5° < TT, 
< +5°, but stable for 50 <a< 15°. These results conform to the observations. 
All the static tests were performed in the absence of the trailing edge 
extensions and through correlation between pitching moment and lift data 
obtained from these tests it was possible to estimate the position of the neutral 
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point. This was approximately 0.025 m ahead of the C. G. which would correspond 
to stick-fixed static margin of approximately -14%c. On the other hand, 
from Section C2 of Appendix G, the stick-fixed static margin with the inclusion 

of trailing edqe extension and a C. G. position corresponding to that of static 
tests, i. e. 0.435 m from datum, is qiven as -6%E. In conformity with these 

results the stability derivative mw must be positive, as was predicted by 

the extended Kalman filter estimator. 

12.4.2.2 Wing and Foreplane-body Aerodynamic Forces 
Results of the static wind tunnel tests covering these aspects are 

given in Table H2 of Appendix H. Included in the same table are the corres- 
ponding aerodynamic parameters obtained theoretically, as discussed in 
Appendix B. The comparison between the experimental and theoretical values 
of the aerodynamic parameters will be undertaken in Section 12.5 below. 
Consider figures 12.14,12.15 and 12.16, which show the variation of lift 

coefficient with incidence a for different foreplane angle settings n and 
three tunnel speeds. Clearly, as the incidence is increased, the foreplane 

stalls and towards the upper incidence range all the CL : -a curves for various 
foreplane angle settings n converge. Further, it is evident that wing stall 

occurs at an incidence greater than a= 20 0. Therefore, at high angles of 
incidence the F. S. W. seems to behave like a delta wing. Theoretical extra- 

polations indicate that the incidence corresponding to CLmax would be 

somewhere between 250 to 35°. 

The results are in agreement with experimental results of reference 2 

and reproduced on Figure 12.17. In order to compare the variation of CL 

with incidence for foreplane-on and foreplane-off configurations, use was 
made of Figure 12.18. Here the tunnel speed with corrections was approximately 
28 m/s and the foreplane angle was set at n= 00. Evidently, there exists a 
non-linear relationship between CL'and a when a varies between 00 to 3°. 
This non-linearity was expected since at these near zero incidences inter- 
ference effects between model components become predominant. It can also be 

seen that for n=0, zero-lift incidence is approximately a=0.60. Further, 
due to foreplane-body interference effects, the variation of CL with 
foreplane angle n is seen to be non-linear. Here interference effects are 
more dominant mainly because of the body diameter to foreplane span ratio. 

12.4.2.3 Rolling Moment Measurements 
Here, results were limited to rolling moment variation with aileron 

angle deflection C°, with incidence a=0 and a tunnel speed of approximately 
24 mIs. With reference to Figure 12.21, it can be seen that the variation is 

almost linear. Further, the rolling moment coefficient CR corresponding 
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to a=ý= 00 is zero which again gave a good indication that the model was 

not twisted or warped. The average dlope of the Cr C curve is given in 

Table H4 of Appendix H. This value can be used to give an estimate of 
the lateral power derivativeCL. Clearly the value of 

ä- 
would vary with 

incidence assuming that the ailerons remain within an undisturbed flow region 
dCt 

which is one of the advantages of F. S. W. layout. The chance in - would 
then result in a variation inCI . 

12.4.2.4 Yawinq Moment and Side Force Measurements 

These measurements were carried out at a tunnel speed of approximately 
19 mIs and they include the variation of yawing moment with yaw angle p for 

angles of incidences 00 and 20°. With reference to figures 12.20 and 12.21, 

which show the variation of yawing moment coefficient with yaw angle, the 
following observations were made: 

(i) For various yaw angles p, with rudder angle ; set to zero, there 

exists a yawing moment, the direction and magnitude of which 

varies with incidence a. This is particularly evident from 

Figure H9. 
(ii) The variation of Cn with c is slightly non-linear over the 

incidence range. 
(iii) For yaw angles greater than i= 100 and incidence angles in the 

region of 200, the fin and rudder become immersed in the wake of 

the wing and body and are rendered less effective. This was 

also observed during the dynamic tests. 

Average values of the slopes of the Cn C curves are given in Table H4 

of Appendix H. Values of obtained in this way can be used to Give an 

estimate of the lateral control derivative nC at an approximate tunnel speed 

of 19 mIs. It must be noted that the wing trailing edge extensions were not 

. 
used in this static test. Furthermore, the estimated lateral control 
derivative n corresponds to at U= 19 m/s. Usually 

., 
the value of 

dCn 
TC- would change with incidence. Unfortunately, the manner in which this 

change might occur could not be investigated since it was thought that the 

model was not capable of sustaining the high frequency vibrations experienced 

at high incidence and yaw angles. 

12.4.2.5 Drag Measurements 
Measurements covering this aspect of the static wind tunnel tests 

are given in Tables H1 and H2 of Appendix H. Comparison between the theor- 

etical estimates of drag and the actual measurements are discussed in Section 
12.5, below. As a typical example, results corresponding to drag variation 
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at a tunnel speed of approximately 28 m/s shown on Figure 12.22 will be 
discussed here. Clearly from Figure 12.22 there is a marked increase in 
drag coefficient as the foreplane angle n was varied. 

Protruberances are one of the contributing factors to drag force. 
In developing models for the purpose of static wind tunnel measurements, 

gaps and cavities are avoided since they would otherwise distort the flow 

and cause a substantial drag increase. Dynamic models on the other hand 
have to accomodate instruments and mechanisms which inevitably lead to the 

existence of such gaps and cavities, although the severity of this is 
dependent on the application to which the model is subjected. 

Therefore, dynamic models are unsuitable for drag measurements since 
they do not represent the clean aircraft. Finally, Finure 12.23 shows the 
variation of CD wigh CL with n=0, the tunnel speed was approximately 28 m/s 
for foreplane-on and foreplane-off cases. Evidently in the absence of 
foreplane there is a drag increase at the same lift coefficient for incidence 

angles greater than 10°. This is due to the fact that the mutually beneficial 
interaction between wing and foreplane has been eliminated, which in effect 
has increased the induced drag. 

12.5 Comparison of Common Results 

During the course of this research programme a lot of data was compiled, 
as a result of which some of the variables have been estimated or calculated 
by different methods and means. Where appropriate, these have been compared 
as follows: 

(i) Comparison between design C. G. and N. P. positions and those 

obtained experimentally. 
(ii) Comparison between design and experimental lift curve slopes. 

(iii) Comparison between predicted and measured CD variations. 
(iv) Comparison of estimated stability derivative. 

These are discussed further below. 

12.5.1 Comparison between Design C. G. and N. P. Positions and those 
Obtained Experimentally 

As discussed in Section 12.3.1, the dynamic model initially lacked 
the design stability margin due to an error in the estimation of neutral 
point position which was not unexpected. The first order design optimisation 
program with an objective design static margin of +2%E had estimated the 
position of C. G. and neutral point to be at 0.425 m and 0.422 m respectively 
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ahead of the datum. Initial dynamic tests revealed that the neutral point 
lay ahead of the design C. G. and in order to compensate for the apparent 
lack of stability, two trailinq edge extensions were fitted to the model and 
the C. G. was moved to its forward limit of 0.444 m from datum. From Appendix 

G. the estimated static margin stick fixed associated with the present model 

configuration was -1%'E which corresponds to C. G. and neutral point positions 
of 0.444 m and 0.445 m respectively. Therefore the errors in design C. G. 

and neutral point positions with respect to those corresponding to the dynamic 

tests would be approximately 4% and 5% of the experimental values respectively. 
The error in the position of the C. G. was within the tolerance of the gimbal 

support bracket of ±0.02 in. 

Due to friction between the linear bearing of the gimbal and vertical 

support rod, there is an extra force acting on the dynamic model. Ordinarily, 

with the model balanced the effect of this force may be neglected. However, with 
the model slightly unbalanced, the situation represented in Fia. 12.24 comes 
into play 

Lp 

CHMIX11 

""4, i 

rý 

F 
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FIGURE 12.24 

FORCES ACTING ON A SLIGHTLY UNBALANCED MODEL 

From this figure it can be seen that however minute, the friction 
force F has a detrimental effect on the stability of the model since it 
always acts in the opposite direction and has a stiction property. That 
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is to say, that initially this frictional break-out force has to be overcome 
if the model is to heave. From Fia. 12.24 it can be seen that not only the 
force F reduces the lift, but also brings the resultant force closer to the 
C. G. and thus reduces the static margin. 

12.5.2 Comparison between Design and Experimental Lift Curve Slopes 

Table 12.1 lists the theoretical and experimental component lift curve 
slopes. From the compatibility point of view, they have all been based on 
the wing area. Clearly, the theoretical values of lift curve slope in all 
cases have been over-estimated to various degrees. Detailed theoretical lift 

curve slope calculations are given in Appendix B. In the case of the total 
lift curve slope (da-)total, with foreplane on and off configurations, two 

cTa 
theoretical values are presented in Table 12.1. These correspond to the 

inclusion and exclusion , respectively, of the interference factor given by 

Fig. 11.3 of reference 1. Evidently the latter gives a better agreement 

with experiment as far as the dynamic model is concerned. The interference 

effects cannot be ignored and the apparent lack of agreement between theory 

and experiment is caused by the fact that the aspect ratios of both wing and 
foreplane in the absence of the fuselage have been used in Equation (1) of 
Appendix B. Better agreement could be achieved if corrected aspect ratios, 

corrected for the presence of the fuselage, were used. } 

The same argument can be applied to the foreplane-body lift curve 

slope. Included in Table 12.1 is the experimental foreplane-body lift curve } 

slope in isolation from the wing at a= 00. Unfortunately, as a resultCof foreplanE 

angle' variations relative to the fuselage, no theoretical value of ( L) 
00 

could be estimated. 

12.5.3 Comparison between Predicted and Measured C. Variations 
N 

In the light of the discussion in Section 12.4.2.5, the various 

protruberances contributed a large proportion of the drag force. Naturally, 

therefore, a substantial agreement between predicted and measured drag could 

not be expected. Other contributing factors to the expected difference were, 

(i) Induced drag due to strakes 
(ii) Induced drag due to vortices emanating from the flat underside 

of the front . of the fuselage 
(iii) Secondary influences of (i) and (ii) on the mutual interference 

between the F. S. W. and the closely coupled foreplane. 
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Figure 12.25 shows the variation of total drag coefficient CD with 
lift coefficient CL as obtained theoretically and experimentally correspon- 
ding to a speed of U= 28 m/s. The agreement between theory and experiment 
is not impressive, which merely confirmed the above arguments. The effect 
of this disagreement on the theoretically estimated longitudinal stability 
derivatives and on the experimentally estimated values is discussed in the 
following section. Measured and estimated values of zero lift drag are given 
in Table 12.1. Further details are contained in Appendix H. 

12.5.4 Comparison of Theoretically and Experimentally Estimated 
Stability Derivatives 

In order to make such comparisons, the ways in which the derivatives 

were estimated have to be discussed. The first set of estimates were obtained 
through the first order design optimisation program.. Here, theoretically 
derived lift curve slopes and drag characteristics, for trimmed flight, 

see Appendix E, were used to estimate the longitudinal stability derivatives. 

As discussed in Sections 12.4.1 to 12.4.3, substantial discrepancies exist 
between measured and estimated values of CL and especially CD, bearing in 

mind also the differences between real and estimated positions of C. G. and 

neutral point. 

Details of the theoretical procedure with which estimates of longi- 

tudinal stability derivatives were made are given in Appendix E. Tables 12.2 

and 12.3 represent the results of a ran of the design optimisation program 
to obtain the longitudinal stability derivatives in concise and aeronormal- 
ised form, respectively. The flight conditions corresponding to this run 
are given in Table 12.4. 

On the other hand, factors affecting the estimates of longitudinal 

stability derivatives as obtained with the extended Kalman filter algorithm 

were discussed above in Section 12.3.1.1. Finally, it was possible to 

obtain another set of longitudinal stability derivative estimates by inserting 
data from the static wind tunnel measurements into theoretical expressions for 

the stability derivatives as used in the design optimisation program. These 
derivatives are listed in Table 12.5 and discussed in more. detail in 
Appendix E. Comparison of the three sets of derivatives reveals that the 

estimates based on the static tests data agrees more favourably with that of 
the Kalman filter estimator. Unfortunately, it has not been possible to eval- 
uate zq by any other means, therefore the estimate given by the extended 
Kalman filter has been relied upon since in using it in the simulation of 
dynamic responses favourable agreement with the observed responses is evident. 
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In order to compare the theoretical estimates of the lateral derivatives 

with those obtained from the extended Kalman filter estimator, Table 12.6 was 
formed. From this table it is clear that the theoretical estimates of Lp 

and Nv agree favourably with those of the extended Kalman filter estimator. 
However, there is a great deal of discrepancy between Lvtheoretica1 and 
LvE. K. F.. By assuming that the E. K. F. estimates were representative of 
the actual model, a fact justified by simulations, the discrepancy could be 

put down to the fact that the theoretical expression for Lv does not take 

into account the contribution due to fuselage and especially the large canopy. 

Values of" and from Table 12.4 can be used to estimate the dCL 

lateral control derivatives NC and L respectively. However, the estimates 

of NC and Lz obtained in this manner could not be compared with those of 
the extended Kalman filter algorithm since the latter estimates correspond 

n 
act 

and to a tunnel speed of U> 27 m/s whereas the measured value of 
d 

correspond to tunnel speeds of 19 m/s and 25 m/s respectively. 

12.6 Initial Computer Based Simulations of the Flight Control System 

In moving from experiments in stable flight regime to experiments in 

an unstable flight regime it became necessary to design a suitable auto- 

stabilisation system for the model. Details of the design philosophy and 

calculations were given in Section 10. Initial experiments involving the 

implementation of the autostabiliser have been limited to observations, 

the most important of which are listed below. 

(i) The height-locking control system of the F. C. S. was affected by the 

stiction in the heave motion due to friction between the gimbal 
linear bearing and the vertical support rod. 

(ii) Partly as a result of (i) and partly because of the backlash in the 

servomechanisms, there was always a steady state error in attitude. 
(iii) An attempt to use an integrator to overcome (ii) reduced the phase 

margin and the system became unstable. 
(iv) Theoretical values of proportional gains were found to be too small 

for the physical height-lock control system. 
(VI An attempt to increase the proportional gains of the height-lock 

control system for a quicker and better response shifted the system 

poles to the right half s-plane and resulted in oscillatory and 
divergent characteristics. 

(vi) The implementation of a lead network in the system provides a marginal 
improvement in the height lock control system. 
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(vii) Independent roll and yaw control loops resulted in a reduction in 

perturbations to within ±100 of the trimmed flight datum values. 
Any departure beyond these limits would have required a control law 

to cope with the resulting roll-yaw coupling. 

A computer simulation of the height holding control system response 
to a height step input showed a satisfactory performance as Figures 12.25 and 
12.26 indicate. It may be deduced from these two finures that the response 
time was about 6 s, at best. By using heave velocity feedback the response 
time was halved and this is shown in Fig. 12.27. A more detailed evaluation 
of the system is contained in Appendix I. With the application of the flight 

control system to the dynamic model and its incorporation into the extended 
Kalman filter parameter estimation program, it was hoped that estimates of 
the longitudinal stability derivatives of the dynamic model with relaxed 
stability could be obtained. 
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13. COMMENTS AND CONCLUSIONS 

13.1 Comments on the Test Rig 

In carrying out the dynamic wind tunnel experiments, use was made of 
the test rig facilities described in ref. 8. However modifications to the test 

rig were needed in order to make it suitable for the present work. These 

modifications are explained below and other than these there were no major 
departures from the original test rig. 

13.1.1 Gimbal System 

There were no major design changes to the gimbal system described 
in ref. 8 other than a change of size and improved bearings. Due to the 

lateral movement of the model and the lack of suitable restraints, problems 

were experienced with the original design. That is to say, that because 

of un-constrained lateral movements the wiper on the pitch attitude potentiometer 
frequently came off the track and hence disrupted the output signal. This 

problem has been overcome in the present design. Also repeated use of the gimbal 

system resulted in some backlash between the relative motion of the linear 

bearing of the gimbal system and the vertical rod. Under normal flight conditions 

the latter shortcoming could be tolerated. However, the use of a yaw auto- 

stabilisation system required the monitoring of the yaw-attitude signal obtained 

from yaw-attitude potentiometer, the shaft of which is fixed to the vertical 

rod. Any backlash in this link would have a direct effect on the stability of 

the control system and its performance. Therefore, further developments were 

needed to improve this. Also the cables supporting the vertical rod tended to 

slacken off with use, as a result of tunnel resonance, resulting in vertical 

mis-alignment of the support rod. This could lead to asymmetrical friction force 

along the rod. 

13.1.2 Installation of a Height Transducer 

Studies of the mathematical model of the short period motion of the dynamic 

model showed that heave velocity measurement is essential to a proper analysis 

of the motion. Therefore, some simple means of obtaining this information had 

to be devised. Full details of the subsequent design are given in section 7.1. 

Despite its simplicity, the performance of the height transducer was extremely 
satisfactory, the friction in the pulleys was assumed negligible. 
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13.1.3 Power Supply Modifications 

Due to the characteristics of the servoactuators fitted to the F. S. W. 

dynamic model, there was a need to change the voltages of the power supplies 
to the model control equipment. Details of the functions of the various 

power supplies can be found in ref. B. As a result of these changes, the 

electronic control unit and model reference input and output signals were 

recalibrated. 

13.2 Comments on the Model Construction and Peformance 

Mainly because of the modular construction of the dynamic model internal 

access was extremely straightforward, even with the model mounted on the test 

rig. Three servo-actuators, the specifications of which are listed in 

Appendix D were used to actuate the control surfaces. In order to minimise 

control system back-lash, miniature bearings were used for the foreplane and 

aileron actuation mechanism. The foreplane mechanism was, however, spring- 

loaded to suppress any residual backlash in the sytem. Details of these 

mechanisms are given in Appendix D. Despite its low weight, the F. S. W. model 

aircraft was found to possess a very high strength to weight ratio, mainly 

because of the composite structure shown in Fig. 13.1. No noticeable 

vibrations or twist of the model were observed, even at speeds well beyond the 

experimental range. After initial installation of the servo-actuators they were 

energised via two voltage regulators which were placed in the model and 

designed specifically for this purpose. It was then found that, due to mutual 

electrical interference, the servos were interacting with each other. This 

problem was found to be due to an earthing fault and was therefore remedied 

completely. 

As far as the model structure was concerned, it was found that despite the 

complexities of the modular design, the model possessed an accurate structural 

geometry , as confirmed by the static wind tunnel measurements. 

13.3 Conclusions 

The conclusions of the present research program covering the various 

aspect of the work presented in the preceding sections are listed below. 

(i) The first order. design optimisation code based on linearised theories 

predicted the position of the neutral point reasonably well and minimises the 

induced drag due to wing and foreplane mutual interference. This optimization 

was limited to the vertical gap between wing and foreplane. 

(ii) Estimates of the longtudinal º stability derivatives obtained with the 
first order design optimisastion code to not represent the dynamic characteristics 
of the F. S. W. model accurately. 
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iii) The predictions of stability derivatives made by the first order design 
optimisation code can be much improved in accuracy if more representative 
aerodynamic data, such as wing lift curve slope, etc., are available from 
experimental measurements. 

(iv) Computer based experiments regarding flight simulation and its analysis 
through the developed Extended Kalman Filter parameter identification software, 
provided an effective means of gaining insight into the behaviour of the filter 
code as applied to this particular system. This information proved invaluable 
when analysing observed motion of the model in the wind tunnel. However, 
parameter estimation was almost perfect since the flight simulation and Kalman 
filter are based on the same mathematical model, a fact which cannot be fully 
justified when the mathematical model of the Kalman filter is assumed to 

represent the physical dynamic behaviour of the model. 

(v) The y14 th scale dynamic model constructed on a modular basis offers 
much easier access to model components than a solid construction. 

(vi) By using composite materials the need, especially for a solid F. S. W. 

construction is eliminated and the moments of inertia of the model can readily 
be adjusted by placement of lumped masses at the appropriate radii of gyration. 

(vii) In order to trim the model at high tunnel speeds the backlash in the actuation 

mechanisms must be minimised so as to achieve the precise trimming required. 
Use of miniature bearings proved to be an effective way of eliminating some of 
the problems. 

(viii)The performance of the test rig described in ref. 8 with the new gimbal 
design provided a satisfactory performance in the intended four degrees of 
freedom. 

(ix) The electronic control unit described in ref. 8 provides effective control 

of the F. S. W. dynamic model although the model reference attitude outputs 

needed further amplification and noise filtering before they could be digitized. 

(x) At the lower range of flying speeds, the friction force in the heave 

motion due to the gimbal linear bearing, influenced the heave motion by 
introducing additional damping and stiction. 

(xi) The model was found to have exceptionally good flying qualities although 
it was critically stable from the static stability point of view, which can be 

attributed to the pitching moment characteristics of the model. 
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(xii) Auto-stabilisation in roll and yaw was achieved in a relatively simple 

way. However, the height holding control system design could not be optimised 

due to stiction in heave motion on the test rig. 

(xviii) Independent roll and yaw auto-stabilisation control systems were effective 

for small perturbations only and for larger deviations from the trimmed flight 

conditions, more sophisticated control laws would have to be devised in order 

to cope with coupling between roll and yaw motions. 

(xix) It was established that the flight control system was capable of providing 

auto-stabilisation for relatively large negative static margins also. 

(xx) The parameter identification code was effectively applied to the dynamic 

wind tunnel tests and provided estimates of both longitudinal and lateral deri- 

vatives which upon substitutitution in the mathematical model of the motion and 

its subsequent simulation, resulted in a similar behaviour to the observed responses. 
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NOTE: Throughout the Appendtces the foreplane has been referred to as 
Canard, 
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APPENDIX A: Initial Geometric Data of the Full-Scale F. S. W. Aircraft. 

Forward Swept Wing Parameters 

chord sweep angle Ale a -450 

taper ratio aM = 0.4 

aspect ratio AR a 4.0 
w 

wing area $w - 20.0 m2 

Canard Parameters 

leading edge sweep angle AL. ¬. = 45° 

aspect ratio AR 
C 3.0 

canard area = 25: x wing area 

taper ratio ac = 0.5 

Fin Parameters 

leading edge sweep angle " 450 

aspect ratio AR " 1.6 

fin + rudder area F  28t x wing area 

taper ratio 
ýF 

" 0.43 

TABLE Al INITIAL DATA 

Determination of the Mean Aerodynamic Chords 

The aerodynamic chord in terms of taper ratio and root chord is given 
by; 

21 +x+a2 c=3 root 1+ A 

Based on this expression, 

cwin9 = 2.35 m 

ccanard = 1.34 m 

cfin+rudder = 1.12 m 
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Aerodynamic Centre Positions 

The position of this point is given by; 
E 

_ c(y). x(y). dy 
0 

which could be represented by the following numerical approximation, 

X=Sö cýXney 

with n=9 

wing = 4.75 m 

)'canard = 8.0 m 

Yfin+rudder = 1.82 m 

where T is measured from the plane of the nozzle. 
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APPENDIX B 

B. 1 Mass Breakdown and Aerodvnarnic Data Evaluation. 

Generic equations of reference 1 were used to estimate masses of the 
aircraft components with the following coding. 

MW = mass of the wing 
MC = mass of the canard 
MFR = mass of the fin + rudder 
MR & MF2 = masses of front and rear fuselage sections 
MUC = mass of the U/C 

ME = mass of the engine FlOO-pw-100 
MINTS = mass of the intake and support structure 
MIND = mass of the internal duct 
MFC = mass of the fuel cells 
MFSS = mass of the fuel support structure 
MDD = mass of dump and drain 
MAHP = mass of the actuators, hydraulic and pneumatics 
MEC = mass of engine controls 
MFIN = mass of flight instruments 
MEIN = mass of engine instruments 
MELEC = mass of electrics 
MMIN = mass of miscellaneous indicators 
MPIL = mass of the pilot 
MEJS = mass of ejection seat 
MACON = mass of airconditioning equipment 
MEMER = mass of emergency equipment 
MGUN = mass of gun 
MAVIN = mass of avionics 
MSW = mass of sidewinder missiles 
MAMRAM = mass of AMRAM 

MCGC = mass of c. g. controls 
TFF = total fuselage fuel 
TWF = total wing fuel 
MRADAR = mass of radar 

Table B1,1ists these components together with their respective distances 
from x, y and z axes. 
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COMPONENT X (m) Y (m) 'ý (m) MASS OF THE 
COMPONENT (kg) 

MW 1.23 1.83 0 988.0 
MC 2.3 0 0.2 98,4 
MFR 4.39- 0 1.77 162.1 
Mn 2.44 0 0 1049.4 
MF2 4.56 0 0 1399.2 
0.25 MUC 2.06 0 0.62 89.9 
0.75 MUC 0.94- 1.75} 0.62 260.8 
ME 2.62 0 0 1450.2 
MINTS 1.21 0 0.2 62.1 
MIND 1.21 0 0.2 117.1 
(MFC+MFSS) 1.23 0 0.5 73.2 
MOD 2.44 0 0.5- 8.8 
(MAHP+MEC) 1.23 0 0.5 366.2 
(MFIN+MEIN) 5.21 0 0.29- 9.3 
MELEC 3.82 0 0.1 157.8 
MMIN 5.21 0 0.3- 1.4 
(MPIL+MEJS) 4.56 0 0.3 236.7 
MACON 3.06 0 0.4- 69.0 
MEMER 4.36 0 0.3 18.8 
MGUN 2.81 0.55 0 238.0 
MAVIV 5.21 0 0.3- 133.4 

MSW 2.11 4.65} 0 214.0 
MAMRAAr1 0.46 0.6} 0.6 300.0 
MCGC 1.23 0 0.5 13.3 
TFF*3.637 0.26 0 0.55- 185.1 

69%TWF*3.637 0.47' 2.6} 0 804.8 
31%TWF*3.637 1.89' 0.25± 0 361.6 
MRADAR 6.36 0 0.2 84.8 

TOTAL MASS = 895.4 kg 

TABLE B1 

Component masses and their positions relative to the 
plane of the nozzle 
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Finite Wing Linear Lift Curve Slope 

This is given by: 

dCL 
Zing 

21rAR 

2+4+ AR2g2(1 + tan2A(max. thickness line) 

B2 

Eq. B1.1 

where 
Amax. thickness - _ 470 

line (wing) 

Amax. thickness ° 400 
line (canard) 

AR 
wing 

4.0 

ARcanard ' 3.0 

The table below shows the variation of wing and canard lift curve slope 
variation with Mach number. 

M 
dCL 
ý- per rad 

wing 

dCL 
per deg 

wing 

dCL 
a- per rad 

"canard 

dCL 
a-- per deg 

'canard 

0.1 3.07 0.054 2.95. 0.051 
0.2 3.08. 0.054. 2.96 ' 0.052 
0.3 3.11 0.054 2.98 0.052 
0.4 3.14 0.055 3.02 0.053 
0.5 3.19 0.056. 3.07 0.054 
0.6 3.25 0.057 3.13' 0.055 
0.7 3.33. 0.059 3.21 

. 0.056 
0.8 3.43` 0.06 3.31 0.058 
0.9 3.56 0.062 3.44 . 0.06 

TABLE (B2) 

NOTE: It can be assumed that the values of lift curve slopes M<0.1 
are the same as the ones for M=0.1. 
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Equation (1) gives the theoretical value of the lift curve slope with the 
wing in isolation. However, the wing and canard lift curve slopes are affected 
by the presence of fuselage. Fig. 11.3 of Ref. 1 gives interference factors 
of 1.5 and 2.3 for wing-body and canard body combinations respectively. 
It must be pointed out that unlike the wing, canard is free to rotate relative 
to the fuselage. This gives rise to two lift curve slopes. 

dCL 
i) ( ), which is the contribution to total CL by canard when n= 00 

., 
dCL 

which is the contribution to total CL by canard when a=0 
and canard is rotated. 

Table B3 gives the wing-body lift curve slopes. 

TABLE B3 

WING-BODY LIFT SLOPES 

dCL dCL 

WB CTW6 
1 Rad-1 Deg- 

. 40.1 . 40.1 3.86 0.064. 
0.2 3.70 0.064 
0.3 3.73. 0.065 
0.4 3.77 0.065. 
0.5 3.83 0.066 
0.6 3.91 0.068 

Further. the values of canard lift curve slope are based on the wing area when 
the total lift coefficient is required. Therefore, canard lift slope is 
corrected for: 

i) canard-body interference 
dC dC 

. 7) x 2.3 () (B 
corrected C. B. 

ii) data correction 
dCL dCL 

( L) (a x 0.56 
corrected C. B. 
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iii) reference area correction 
dC 

(aal) _( 
dC -) x 

Sr 

C. B. C. B. w 

TABLE B4 

CANARD -BODY LIFT SLOPES 

(ý) (Rad-1) (. -) (deg-1) (dCL) (Rad-1) M 
n=0 n=0 canard 
canard canard 

0.1 0.95 0.016. 0.73' 
0.2 0.95 0.016 0.74 
0.3 0.96. 0.016 0.74 
0.4 0.97. 0.017 0.75 
0.5 0.98 0.017 0.76. 
0.6 1.00. 0.017. ' 0.78. 
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d_1.5 
= 0.387 (& 

canard 
7 

d_1.5 
= 0.167 TT 

wing 

7.0 MACH SYMBOL AR SYMBOL 

0.15 d1 OPEN 
L 44 2 OPEN-CLOSED j 
2.45 03 CLOSED -:, 
3.48 p4 OPEN -f LAC 

6'0IWHERE CE, IS BASED 
UPON EXPOSED WING AREA 
Se (CROSS HATCHED AREA) 

5.0 

F 

do 

3.0 

2. o. 

LO 

MACH 3.5 
" MACH 1.5\ 

MACH 1.44 
MACH 0.15\ 

.. 1 
V 

0 .1 .2 .3 .4 .5 .6 
BODY DIAMETER d 

WING SPAN b 

Fig. 11.3 Wing-Body Lift Interference Factor 
(Reference 10) 

II 
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To find the position of the aerodynamic centre of the wing and canard, 

use was made of Fig. 21.13 of Reference 1 with the following adoption. 

ý ýný - 

where (hn)w is the theoretical position 

of the aerodynamic centre. 

For the wing: 
AR = 4.0 
Taper ratio= 0.4 

6= Prandtl-Glavert's correction factor = 1- Mil 

AR*tan(A, ) = 4.44 Aj _ chordwise sweep angle = -48.00 
Cw = 2.35 m. 

Table (B3) gives the variation of (hn)w with Mach number. 

For the canard: 

AR = 3.0 

Aj = 33.00 

Taper ratio= 0.5 
AR*tan(A) = 1.95 
co = 1.34 m. 

Table (B4) gives the variation of (hn)c with Mach number. 
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ARW. tan(A) = 4.44 

ARc. tan(A) = 1.95 
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Fig. 21.13 Theoretical Chordwise Position 
of the Aerodynamic Center 
(Data courtesy of the Royal 
Aeronautical Society Data Sheets) 
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POSITION OF W. B. AERODYNAMIC CENTRE 

M AR g (h ) (ha)wxC distance 
w n (m) f rom datum 

(m) 

0.2 3.92 0.278. 0.648 4.675 
0.6 3.2 0.278 0.648 4.675 
0.8 2.4 0.28 0.652 4.671 
0.9 1.74 0.289 0.673 4.625 

0.95 1.25 0.297 0.692 4.625 
1.0 0.00 0.324 0.755 4.562 
1.05 1.28 0.322 0.750 4.56 
1.1 1.83 0.317 0.739 4.575 
1.2 2.65 0.411 0.958 4.375 
1.3 3.32 0.475 1.107 4.200 
1.4 3.92 0.508 1.184 4.120 
1.6 4.99 0.508 1.184 4.12 

TABLE B3 

POSITION OF CANARD-BODY AERODYNAMIC CENTRE 

( h xC (n distance 
M AR ß 

canar 
candrd 

from datum d (m) (m) 

r 
>1 

0.2 2.94 0.250 0.33 b 

0.6 2.4 0.24 0.317 Ecö 

0.8 1.8 0.237 0.313 
4J 

C6 ö 

0.9 1.31 0.237 0.313 Mü 

1.0 0.0 0.276 0.364 
1.05 0.96 0.346 0.457 
1.1 1.37 0.385 0.508 
1.2 1.99 0.388 0.512 
1.3 2.49 0.388 0.512 
1.4 2.94 0.408 0.538 
1.6 3.75 0.470 0.62 

TABLE B4 

POSITION OF W. B. AERODYNAMIC CENTRE 

M AR g (h ) (hn)wxC distance 
w n (m) from datum 

(m) 

0.2 3.92 0.278. 0.648 4.675 
0.6 3.2 0.278 0.648 4.675 
0.8 2.4 0.28 0.652 4.671 
0.9 1.74 0.289 0.673 4.625 

0.95 1.25 0.297 0.692 4.625 
1.0 0.00 0.324 0.755 4.562 
1.05 1.28 0.322 0.750 4.56 
1.1 1.83 0.317 0.739 4.575 
1.2 2.65 0.411 0.958 4.375 
1.3 3.32 0.475 1.107 4.200 
1.4 3.92 0.508 1.184 4.120 
1.6 4.99 0.508 1.184 4.12 
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Aerofoil Sections 

The wing aerofoil section was chosen to be NACA 65-206 with the following 

characteristics: 

0 aOL = -1.6 

Cmo = -0.031 

= 0.105 /deg 
Ba 

L 

Aerodynamic centre at 0.257 C 

aCLmax = 12.00 

CLmaX = 1.03 at a=6.00 (without flaps) 

The inner wing aerofoil section is of the NACA 66-206 type with 

coordinates given in Table B7. 

Fin and Canard Aerofoil Section 

TYPE: NÄCA 65.006 (symmetrical) 

Characteristics: aOL = 0.0 

Cmo = 0.0 

acl 
= 0.105 deg-1 

a. c = 0.264 C 

"CLmax = 12.0° 

CLmax = 0.92 at a* = 7.60 
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It must be pointed out that the characteristics of these aerofoils 

are based on a 2-D treatment. 

A more likely trend is given below: 

With reference to page 1.20-8 of Reference 2, it is evident that for a 
forward swept wing with strakes, maximum lift coefficient is achieved at an 
angle of incidence of around 30-35 degrees and moreover, at such incidences 
lift coefficient has a value between 1.4 - 1.6 without using either leading 

of trailing edge flaps. 

Typical CL v. at CD v. CL and Cm v. CL are given in Figure Bi. Also 

maximum lift to drag ratio is about (L/p)max '5 at CL = 0.45 which is 

within the linear part of CL V. a curve. It should be*noted that the 

strake contributes around 12% to the lift coefficient and therefore is 

beneficial. 
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B2 .: Determination of the static margin stick-fixed 

Static margin is defined as - 

SM = 
XNP _ XCF 

----- EQ. B? .i C 

where, 
XNP = location of neutral point (relative to datum) 

XCG = location of aircraft centre of gravity. 

Since XC. G is already determined by the layout and weight distribution, 
(Appendix B), it only remains to establish the position of neutral point X. 

For the position of N. P. 

aCMC. G. 
=0 8a 

From Reference 1, page 21-7 for a canard layout 

aCMC. G. X aC 
aa 

ýc'. -ýw+(aaM)intake -----EQ. B2.2 

where VC = 
PcSc 

°c = (5aCcanard 
----- EQ. B2.3 C sw 

a CL 
pia ýaa swing 

If N. P were to be at C. G.; terms in (C-2) could be written as 

QC_rXNP 
XCNI/ 

1C 1I\: 

where XCN = location of canard aerodynamic centre. 

Also, 
Xw = (XAC - XNP) where XAC = location of wing body aerodynamic 

centre. 
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Moreover, 

aEm 2m 
_- 

aß (_ 
aa 

)intake VWC a 
(XNP XIN) 

aß 
= rate of change of flow deflection angle at intake ýa 

w. r. t. incidence. 

where XIN = location of air intake 

m= engine mass flow rate 

Now the criterion for combat aircraft would be agility at combat Mach number, 
Having decided on combat Mach number say M=0.3, and data from Appendix B 
together with engine characteristics given in Table (Cl) below. 

M 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

lb/s 216.75 220.0 223.75 232.0 24.10 253.25 266.25 282.5 302.5 322.5 346.25 

TABLE C-1. PRATT & WHITNEY F100-PW-100 AFTERBURNING TURBOFAN CHARACTERISTICS 

and also XIN = 3.74 m 

aS=1.69 (from Reference 1) Fa- 

Equation (C-1) becomes 

acht 
=0= 

(XNP XCN) Sc 
,_ 

(XAC XNP) 2m 
_ 

eß 
ea wc w+ pV SC auCXNP - XIN) 

ýW 

which gives 

XNP = 

(XCN" W"acý + (XAC" w) + (XIN " Pvý s-w 

ýS-W 
c 

(Cl )+ (2ýVw 
a) WP °° W 

----- EQ. B2.4 

This expression was adopted in the optimisation code so that the position of 
N. P. and hence the static margin could be determined. 
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Stick-Fixed Static Margin Data and C. G. Movement for the Full-Size 

Aircraft 

Table B5 below represents the variation of static margin stick- 
fixed with the wing location. 

XNP = estimated location of neutral point 

XMW = estimated location of wing C. G. 

SMSF = Static margin stick-fixed 

XMW (m) XC. G. (m) XN. P. (m) SMSF 
=fit 

4.16 5.8 5.47 14 
4.22 5.82 5.52 13 
4.28 5.84 5.57 11 

4.34 5.85 5.62 10 

4.4 5.87 5.67 9 

4.46 5.89 5.72 7 
4.52 5.9 5.77 6 

4.58 5.92 5.82 5 

4.64 5.94 5.87 3 

4.7 5.95 5.92 2 

TABLE B5 

Here the F. S. W. was fixed at a point 4.64 m relative to the 

plane of the nozzle corresponding to a static margin of 3%E. By 

moving the C. G. the variation of static margin with C. G. was determined. 

This variation is presented in Fig. B2. Clearly, for a static margin 

range of -6E - 6E a C. G. movement of 0.28 m is required. 
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Flight condition. 

Level flight n=1 
w= mg 
I. S. A. prevails. 

C=W 
w IOV2SW 

mass of A/C = 19544 lb = 8865 kg. 

p=1.225 kg/m3 
Sw 20 m2 

M Lw 
(m) 

LC 
(m) 

a1 
(radý ) 

ac. 
(rad ) 

V 
(m/s) 

total 
CDo 

DCMDAJ 
(rad- ) C w 

, 0.2 cn co g; 7 4.77 68.06 0.0257 0.0099 1.532 
0.4 ö N 3.78 4.87 136.12 0.0264 0.0053 0.383 
0.6 3.91 5.04 204.18 0.0265 0.0039 0.170 

TABLE. B6 

AERODYNAMIC CHANGES OVER THE MACH NUMBER 

RANGE OF UP TO M=0.6 
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B. 4 . Zero Lift Drag Calculations for the F. S. W. Model. 

We would like to test the model at a speed corresponding to Mach 

number M=0.3 for A/C 

VA/C=Mx a where a is the speed of sound 

VA/C = 0.3 x 340.3 = 102.1 m/s 

For Fraud number to be the same, for both model and aircraft we must 
have the following relationships: 

VM 
-= VM - 102.1 x� = 27.29 m/s VA/ C 

VA/ C 
or VM = 

Now for this to be true, that is to say, for A/C and model to fly under the 

same gravitational acceleration Reynolds numbers must have the ratio - 

ReM 3/2 
Re A/ CX 

Now ReA/C = 
102.1 x 2.355 

= 1.6 x 107 
1.461 x 10 

ReM = 1.6 x 107 x() 
/2 

=3x 105 

Now for our model 

Re = 
27.29 x 0,168 

=3x 105 M 1.461 x 10-5 

which is the same as above. 

Now generally airflow over the wing becomes turbulent at Re =4x 105. 
Therefore it may be necessary to use a trip wire over the wings. 
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(i. ) Wing-zero lift drag-subsonic 

Cpo is due to skin friction. The expression for (Cpo)w is based upon 
the wing reference area (Sref) here taken as the exposed wing area, Se 
E0.11.13, Ref. 1 Se = 16.65 m 

(CD0)w = Cf L1+ L(I) + 100(1)4 R. 
S 
wet I 
5ref 

L= aerofoil thickness location parameter 
= 1.2 for t/c 

max at x, 0.3t 

= 2.0 for t/c max at x<0.3t 
For our wing 

L=1.2 
t 
c=0.06 

SWet 22x Se =2x 16.65 = 33.3 m2 

R= lifting surface correlation factor obtained from Ref. 1 
Fig. 11.8, see Table below. 

Cf = turbulent flat plate skin friction coefficient. 

M R 

0.2 0.950 
0.4 0.980 
0.6 1.025 
0.7 1.080 
0.8 1.130 
0.85 1.160 
0.9 1.22 

The turbulent flat plate skin friction coefficient is determined from 
the combination of the following source data. 

Re . l, Table 11.1 - to select a type of surface and to determine the 
roughness height. 
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R ef. 1, Fig. 11.9 - to determine the cut-off Reynolds number (Re) suitable 
for 1/k 

and to compare with Re for the flow, where 'K' 
is the equivalent sand roughness. 

ReF. 1, Fig. E. 2 - to find Cf, based on the smaller Re or ReL 

From Table 11.1 

For camouflage paint -K=0.4 x 10-3 inch = 0.01 x 10-3m 

=1x 10-5m 

2.35 
= 1model = Cmodel = 14 ' 0.168 m 

0.168_ 1.68 x 104 Tc Tc 10- 5 

From Ref. 1, Fig. 11.9, when 
k=1.68 

x 104 for 0<M<1 

R= 106 
eL 

Re = 
T- 

At sea level at I. S. A. conditions, Y=1.461 x 10-5 
The table below shows variations of Re with M. 

0 

M Re (FLOC 

40.2 7.8 x 105 
0.4 1.6 x 106 
0.6 2.3 x 106 
0.8 3.1 x 106 

0.9 3.5 x 106 

Since Re is greater than Ret 

we choose Re to determine Cf. 

From Fig. E-2 for our Re range, Cf can be found approximately from formula 

O_0.455 1700 (for a turbulent flow) f [O1o e Ie 
t- :1 
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0 '. (Cpo)w subsonic is 

(CD) =C1+ (1.2)(0.06) + 100(0.06)`' R. 2x 16.65 
ow- f1 -6.67- 

(Cpo)W = 2.1466. Cf. R 

The table below shows (Cpo)w at various M and R. 

M R Cf x 10-3 (Cp )w x lo- 

e0.2 0.95 2.5 5.09 
0.4 0.98 3.04 6.39 
0.6 1.025 3.1 6.82 
0.8 1.13 3.1 7.52 
0.9 1.22 3.1 8.12 

(ii) Body Drag - Subsonic 

11 

At subsonic speeds, (CD0) of smooth slender bodies is primarily due to 
body skin friction. (CDO)body is referenced to the maximum x-sectional area 

SS. Now, since the intake is open, air is allowed to circulate through the 

fuselage. As a first approximation drag due to fuselage was doubled in order 
to take this into account. 

(CDO)B = (DDp)g + CDOb (. ReV. 1 , Eq. 11.21a) 

(CDp)B 
= body skin friction coefficient 

Cpo 
b= 

base pressure coefficient 

Skin friction coefficient 
From Ref. 1 Eq. 11.22. 

(CpoF)B =Cf+60.0 + 0.0025( 
S 

x-) ý-- (1B/d) B 

'Bmodel = body length = 
14/14.0 

=1 m 

dmodel 0 body diameter ('4/14,0 
-0,1 m 
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1B 
T- = body fineness ratio = 10 

SS = wetted area of the body surface = 47.33 m2 

SB = 1.54 m2 

To find Cf we have to find Re referenced to 1Bmodel 

M Re 

<0.2 4.6 x 106 
0.4 9.3 x 106 
0.6 1.4 x 108 
0.8 1.9 x 108 
0.9 2.1 x 108 

_ 
0.455 

f [logioRe]258 

NOTE: Since we have the ratio 
6 

there is no need to scale the areas down. 

. '. (CDOF)B = Cf 1+ 60 
+ 0.0025 x 10 47.33 

(10)3 1.54 

= (CpOF)g = 33.346 Cf 

* Since our engine nozzle 
completely fills the 
base region, base drag 

* is zero. * 

(iiil Miscellaneous Drag Items DDo 

M Cf x 10-3 (CDOF)g xdel 

4.2 3.42 0.114 
0.4 3.03 0.101 

0.6 2.85 0.095 

0.8 2.71 0.0905 
0.9 2.67 0.089 

Use was made of Fig. 11.22 of ReM . However the data on this figure 
is referenced to a wing area of 280 square feet. Thus, the data must be 

corrected for the appropriate Sref where 

Sref ° 16.65 m2 

Now since for this range of Re the flow 
is fully turbulent from Fig. E. 2 

Cf is given by 

Sref = Se = 16.65 m2 
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26.01285 
eC CX OEanopy O2anopy 

16.65 
our from 
A/C fig 11.22 

0<M<0.9 

oCp = 0.0006 x 
26.01285 

_ 0.00094 
. anopy 16.65 

oCD = 0.00125 X 
26.01285 

= 0.00195 
Rozzle 16.65 

boat 
tail 

oCp = 0.0014 x 
26 01285 

= 0.0022 
prötruberances 16.65 

tCDO for 2x sidewinder = 0.0008 
AIMD 

Assume twice for AMRAM 

. '. oCpo for 2x AMRAM = 0.0016 

EoCD = 0.00748 
Miscellaneous 

As a first approximation to canard 
and fin drag (CD0)stabilizer 

Assume (CD0)stabilizer = (CDo)wing> Sc+SF 
5ref 

where 
SF = fin area (wetted) = 5.59 m2 

Sc = canard area(Wetted) = 2.81 m2 

Sref = 16.65 m2 

M -3 (CD0)stabilizerxl0 

<0.2 2.57 
0.4 3.22 
0.6 3.44 

0.8 3.79 
0.9 4.09 

i 

'S' (CD0)stabilizer ° 0.5045 x (CD0)wing 
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B4.1 Zero-Lift Drag Coefficient (CDo)total 

For the first approximation let this be the sum of individual 

Cpo components. 

i. e. ** SB 
(CDo)total - (CDO)w + (CDo)stab + (CDO)B x+ EoCpo ---- EQ(1) 

Sref 

M (CDo)total 

<0.2 
0.4 0.036 

0.6 
TABLE B6 

* *: This is because (CDO)B was based on SB and the rest of the terms in 

EQ(1) are based on Sref = Se so we multiply it by SB to make it 

Sf 
o 

based on Sref' 
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APPENDIX C: Check on the Canard and fin sizes regarding the static 

longitudinal and directional stabilities at M=0.3 

(i) Check on the canard size 

From Ref. 1, pitching moment equation can be presented as, 

dCM 
_ 

XW dCM 
T= Vc. aC. B. F+ 

CT07, 
INTAKE 

£c Sc dCLC. B. where Vc =c aC. B. _ ý"-dn 
ý=0 

dCL 
aW. B. ýýW. B. 

and 
ýý) = 

2m 
_. -XI) 

INTAKE pVSJj(IXcG 
IN 

From appendices A and B the above parameters have the values of, 

Rc 

w 

XC. G. 
IXC. 

G. 
XIN 

aC. B. 

aW. B. 

m 

2.06 m 

0.74 m 

5.94 m 

XINI) = 3.71 m 

9.65 m 

0.96 rad-1 

3.73 rad-1 

engine mass flow rate = 146.12 kg/s 

= 1.69 a 

F = 2.35 m 

SW = 20.0 m2 

Sc = 5.0 m2 

V = 103.0 m/s 

p = 1.225 kg/m3 

EQ. C1 
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Therefore from equation Cl, 

dCM 2.06 x 5.0 0 . 74 
ý-_ 2.35 x 20.0 x0.96- =x3.73 

f2x 
146.12 

, 1.69x3.71 I. ZZb x IU3 xx2.35 

0.32 rad-1 

A typical value for d 
as regards the fighter aircraft would be in 

the region of -0.3 - -0.4 rad-1. Therefore canard is assumed to be of the 
right size. 

(ii)CHECK FIN SIZE 

Directional stability for a canard layout can be expressed as 

Cr = (Cn )+ (Cn )+V (C La) (l + 
dý) qvs 

ßß fuselage ß wing vs vs q 

"vs" refers to vertical stabilizer. 

where 
yvs ' 

JEvs Svs 
_ 

RF SF 
= fin volume coefficient. sew -w s 

(Cn8) is neglected. 
power 

For directional stability 
äßn 

must be >0 

From Reference 1 
3.06, E 

(1 + 
ß) 

- 
Qqs 

= 0.724 +W+0.4 + 0.009 AR 
1+ Co S, & c/4 

and 
(Cna) =V (CL) (1 + da) qvs 

vS vS a vs 
Wq 
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where 
Sys = fin + rudder area with this area extended to the fuselage 

centre line = 7.734 m2 = 
Zw = distance along the aircraft z-axis from the wing root 

chord to the fuselage centre line. 
d= maximum fuselage depth. 

C. 1 A CHECK ON DIRECTIONAL STABILITY 

The static directional stability derivative can be expressed 
as (Nicolai equation 21-20, Ref. 4, Sec 5.4 from the same chapter) 

Lf 
TB- 

w 
= 0nß = (0nß) 

fuselage 
+ (Onß) 

wing 
+ --b 

n 

S'fin 
dC 3.0%-L 

trfin. (0o724 +1+ osAC k 
fin 

where 

+ 0.4. 
ZE 

+ 0.009AR) 

Sfin = area of the fin extended to the fuselage centre line 

= 7.734 m2 
Zw = the distance along the aircraft z-axis from the wing 

root chord to the fuselage centre line 

= 0.7 m 
d= maximum fuselage depth = 2.24 m 

AR = wing aspect ratio = 4.0 
dCL 

(L) = lift curve slope of the fin based on the fin planform 
fin 

area plus an effective aspect ratio of 1.55 times the 

geometric aspect ratio of the fin since the fuselage 

acts as a large tip plate. 
Ago = 420 

ý5 n 
SW = 20 m2 
b 9.0m* 

Sfin = 5.6 m2 
Lfin = 4.11 m 

0 
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For a finite wing the linear lift curve slope is given by 

dCL 
, 

2nARfin/compensated 
CTF 

fin 
fin 

2 (1 + 
anAmax. thickness line) 2+4+ AR2 

compensated 2 

where a= angle of sideslip 

subsonicj= I1 - M2 

Amaximum thickness = 370 

ARfincompensated = 1.55 x ARfin = 1.55 x 1.6 = 2.48 

dCL 
aB rad-l 

0.2 2.68 
0.4 2.73 
0.6 2.81 
0.8 2.94 
0.9 3.04 

TABLE Cl 

(i) FIN CONTRIBUTION 

Fin contribution to Cnß is given by (see Ref. 1) 

Sfin 
dC 3.0S 

A+0.4 a-- + 0.009 AR) Vfin( 
a) fin 

(0.724 ++ Cos c/4 
fin 

I 
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3.06 x 
7.734 

0ß_4. llxx 
20 

5.6 
x 2.68 x (0.724 ++o+0.4 x0 n )fin 9+0.009 

x 4) 

= 0.536 rad-l 

(ii) WING CONTRIBUTION 

Wing contribution (subsonic) is given by (Ref. 1 equation 21-22) 

21 TanAC/k AR AR2 (Cna) 
wing 

= CL 4nAR n+ osAc/4 
ýCosAc/ -ý- os c/4 

6XW SinACA 
fc 

where Xw = wing distance between wing-body aerodynamic centre and c. g. 

= 2.424 ft = 0.739 m 
ACA -450 

Assuming a CL of 0.67 at M=0.3 
then 
(Cnß) _ -0.014 rad-1 

wing 

(iii) FUSELAGE CONTRIBUTION 

This is given by ( Ref. 1 equation 21-23) 

(c) =- Sw' w 

where volume of fuselage = 20 m3 
h= the ratio of mean fuselage depth to mean fuselage width w 

= 1.0 
b= wing span = 9.0 m 

Sw = wing area = 20 m2 
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20 ' .. (Cna) 
fuselage 

= -1.3 x .1= -0.1444 

Total (Cnß) = -0.014 - 0.1444 + 0.536 = 0.38 

Since this is positive the aircraft has static directional 
stability. However, the fin Cnß increases and then decreases with 
increasing Mach number due to the variation in (d) . Since 

fin 
dCL) (F 

fin 
decrease by a factor of three from subsonic to Mach 3, 

n 
the static directional stability decreases at high Mach numbers. 
Therefore, fin area should be more than what is required for subsonic 
range to compensate for this effect. 

C2- CHECK ON LATERAL STABILITY (STATIC) 

The static lateral stability derivative is 

dC 
= C2. ß where CR is the rolling moment coefficient 

This stability derivative is influenced by the wing, the fin and the 

wing-fuselage interaction. 

Therefore CL can be expressed as 

Cßß = (CR8) + (CIO) + (CL8) 
wing fin wing-fuselage 
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(i) WING CONTRIBUTION 

uQ 
t 

v . -- 
` ýý'F 

UN \ 

cro ýe u 

xt 
Y 

VI = sideslip velocity 
vý 

Ve 
JS Ue = free stream 

velocity 
tic = component of Ue 

bLr to 1c. line 

aYRCP -V Tx> 'roc Us = component of Ue 
LINE. Il to *c. line 

us has negligible cffect of lift due to sideslip. 

Now UN = Ue. a and Uc = UeCoSAF- V'SinAF 

or tic = UeCosAtl - 
V' TanA 
e 

Now V' = Ue. ß 

000 Uo = Ue. CosF(1 - B. TanAý 

For a chordwise strip on the starboard wing. The incidence of the 

chordwise strip is UN/Uc so that lift on the starboard wing is 

approximately 

/cosAF 
dC U 

}c eU2c 
(Ta i. C (h) dh 

o 
/COSA 

F 
ý 

peUeCos f( 
dC L) UN. C(h). (1 - ß. TanA). dh _ 

f 

r- 

0 
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dCL 
where (T7) is the local value of the lift curve slope. With no 

sideslip, the lift on starboard wing is 

2 Sw Ss/c0sAF dCL 1 
ipeUe 7-'CL = iPeUeCos L, (ß) UN - C(h). dh 

0 

Hence, the lift on the starboard wing 

S 
_ {1 - BTanAý. lpeUe 2 CL 

on the port wing, 
Uo = UeCosAr-+ V'SinAF 

and the lift S 
= (1 + ßTanhd }pelle .. CL 

The rolling moment can be written as 

L= +ßTan F. }peUeSWCL. d 

where d is the moment arm measured in the Oy direction and the 

contribution to Lß due to wing sweep forward is then 

Lg = ff-a =+ }peUeSw. d. CL. TanAF ..... 

NOTE: AFis the absolute value of angle of sweep. 

EQ. C2 

Therefore, it can be seen that the forward sweep has a destructive 

effect on CRß which for static lateral stability must be negative 
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From equation (F) above 

}a U2S d. C 
cl_eewL. TanA = 

4CL 

wing jpeUeSw. s F 

Assuming 'd' to be the y-coordinate of aerodynamic centre of half 

the wing 
i. e. d="1.85 m 

also s=4.5 

21 . CL = 0.41-CL . 
. '. 

(Czß) = 
0.132 

wing 

As a firs approximation for the model 

CL at M=0.3 is given by 

__ w_ 8953.4. x 9.81 
= 0.67 

i: U"Sw 0.5 x 1.225 x 1032 x 20 

. '. (CÄ 
a) wing 

= 0.41 x 0.67 = 0.27 

(ii)WING-FUSELAGE CONTRIBUTION 

From reference 4, where (CQ ) is obtained ß wing-fuselage 
empirically, the following applies. 

Nigh wing (CL, ) 
wing-fuselage 

= -0.0344 rad-1 

Mid wing (Cl 
ß) =0 

wing-fuselage 

Low wing (Ct 
ß) wing-fuselage 

= +0.0458 rad-1 

For our model, we have a mid wing 

. '. (CRB) - 0.0 
wing-fuselage 
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(iii) FIN CONTRIBUTION 

From reference 1 (page 21-15) this is estimated to be 

dCý 3.06 
S'fin 

Zw 

fin fin(0i24 
+1+ 

Cos1t 
+ 0.4 a- + 0.009AR) 

C/ 4 

Sfin Zw 
x --5. -. F- 

b= span 

where +he terms are the same as before. 

dCL 
At M=0.3, (. -} is given from table E-2 as 

fin 

(ý) v 2.68 rad-1 
fin 

3.06 7.734 

. '. (Czp) = -2.. 68(0.124 ++ o) + 0.4 x 
0.7 

+ 0.009 x 4) 
fin 

5.6 0.146 
x7u-xu-. 4 

_ -0.268 rad-1 

Therefore, total (C£ß) is given by 

(CZ8) 
total 

C -0.268 + 0.27 W . 0.0 " at M= 03 

This is not of the right sign and magnitude. 

NOTE: 7Wmodel = the distance from the vertical position of 
aerodynamic centre of the fin to c. g. 

= 2.04. in. 
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APPENDIX D: Drawings, Calibration Tables/Graphs and a Summary of Full-Size 

and 1/14th Scale Dynamic Model Dimensions. 
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slront Ballast Bay Cover 
i. Front Ballast Support Bolts 
i. Canard Actuator 
.. Canard Actuator Rod 
Z. Canopy Nodule 
t, 61mbol Support Bracket 
T. Support Bearing 
I. FSW Fuselage Mountings 
i. Canard Surface 
io. Aft Ballast Bay Cover 
is Canard Rotation Shaft 

sz Aft Ballast Support Bolts 
U Rudder Actuator 
'Rudder Actuator-Rod 

11 
O 

1ý �/ J/ 

�p 

Pitch Pot 

w, Roll Pot 
Aileron Rotation Arm (See Ref. Drawing-1) 

n. Aileron Mounting (See Ref. Drawing 1) 
ij. Fin $ Rudder Mounting Brackets 
so, Aileron Actuator Rods 
! i, Aileron Actuator 
u. Aft Fuselage Top Cover 
It. Boat Tail 
24. Slmbol System 

FIGURE D1: Exploded View of the Dynamic Model 
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SPRANG LOADED 
TO SUPRESS 
BACKLASH. 

BARING 

"Oa S 

IN. 
ý" 

DETAILS OF CANARD ASSEHBLY. 

UNIVERSAL 
BALL JOINT. 

TO AILERON. 

v 

L 

P 

(0 
p 

i' ý 

. -1ý_ .ý 

BEARING 

DETAILS OF AILERON 
ACTUATION ASSEMBLY. 

FIGURE D1: Supplement 
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ientation 
+450 

wing box ply wood 
orientation 0° and 9011 

cut by hot wire 

ntation 
±450 

0 
4S 

ORIENTATION 

FIGURE 02: F. S. W. STRUCTURE 
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SUMMARY OF AIRCRAFT AND 1/14th SCALE MODEL DIMENSIONS 

WING-SECTION Outer NACA 65-206 
Inner NACA 66-206 A/C MODEL 

Area (gross) m2 20.0 0.102 

Full span m 9.0 0.65 
1 chord line sweep A0 -450 -450 
Distance of a. c. of half wing from CL m 1.85 0.13 
Mean aerodynamic chord m 2.35 0.17 
Aspect ratio 4.0 4.0 
Taper ratio 0.4 0.4 
Root chord m 3.16 0.23 
Tip chord m 1.27 0.09 
Zero-lift angle ao -1.8° -1.8° 0 

CANARD-SECTION NACA 65-006 A/C MODEL 

Area (Gross) m2 5 0.026 
Full span m 3.92 0.28 
L. E. sweep A0 450 450 
Mean aerodynamic chord m 1.34 0.096 

Aspect ratio 3.0 3.0 
Taper ratio 0.5 0.5 
Root chord m 1.72 0.123 
Tip chord m 0.86 0.061 

FIN + RUDDER SECTION NACA 65-006 A/C MODEL 

Area (gross) m2 5.49 0.028 
Span m 3.64 0.26 
L. E. sweep A0 45° 45° 
Mean aerodynamic chord m 1.96 0.14 
Taper ratio 0.43 0.43 
Aspect ratio 1.6 1.6 
Root chord 2.62 0.19 
Tip chord 1.12 0.08 

TABLE Q1 (cont. over) 
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FUSELAGE A/C MODEL 

Length m 
Fineness ratio 

14.0 
0.1 

1.0 
0.1 

TABLE D1 (continued) 
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CONTROL 
SURFACE 

DEFLECTION 
(deg) 

CANARD 
REF 0/P 

(volt) 

AILERON 
REF OR 

(volt) 

RUDDER 
REF 0/P 

(volt) 

5 -0.125 -0.075 0.15 
10 -0.25 -0.15 0.3 
15 -0.375 -0.225 0.45 
20 -0.5 -0.3 0.6 

SCALES 0.025 0.015 0.03 
v/deg v/deg v/deg 

TABLE D2 

ATTITUDE 
INDICATORS 
DEFLECTION 

(deg) 

PITCH 
(-volt) 

ROLL 
(volt) 

YAW 
(volt) 

0 0.0 0.0 0.0 

10 1.5 1.5 1.5 
20 3.0 3.0 3.0 
30 4.5 4.5 4.5 

SCALES 0.15 0.15 0.15 
v/deg v/deg v/deg 

TABLE D3 

VERTICAL REFERENCE 
HEIGHT VOLTAGE 

(m) (volt) 

0.0 0.0 
0.1 0.8 
0.2 1.6 
0.3 2.4 
0.4 3.2 

TABLE D4 

CALIBRATION TABLES 



CANARD CALIBRATION 

CURVE 

we 

es) 

FIG. 03 

RUDDER CALI BRATFON 
CURVE 

.0 

FIG. D4 



- 217 - 

AILERON CALIBRATION 
CURVE 

_ý 

r1L. D5 

C 

The calibration of the above plots was conducted with the model 
suspended on the test rig. An inclinometer and suitable scale + 

pointer arrangements were employed to find attitude changes versus 
the output voltage from signal conditioning amplifiers. 

IL 
-%- 
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5 YLMDER 5S C48,9 (Ro, oav SLAvo) 

517E AND wewi r 

L-- z.? _, 
4E- 1"1c.. 

WEIGHT 
10 t. ua- 

(2 
ot) 

4 . 5c., 

X RAE 01 DIR =irf r, 
5E/V'S 

ARövISroWAL TEST RtSVLTS of EVALVATTON. 

f 2.3C, 4 c 

ý, R[cý, vN or Aos, ýi, ou FOR INCRCASE oP iwpur P' . SE 

fSSUE D19TE 

! 29 9Z 

RESULTS of TESTS 0N owe TFVice ozv v, tts .v 
VALUE 

CURRENT NO LOAD NOT move/NG 
C 

ý+A 

CURRENT NO LOAD MOV(/MG 200 ý. q 

CURRENT " START/NG SIN; 37ALL 9 00 -mg 

cmfirwr PEAK 
(MOT** REyERsgL ANO evrAsgxxr coAAeCr/ow sports) I AH' 

NO LOAD SPEED 2.00 VISE c 

EFFECT OF iNPUr PULSE ! 03 %S 

TOTAL MOV(PIEMT 220 o 

WORKING. RANGE OF iN/P7 PULS& 
( 

ooorofAAA04E CAWS StA[L) 0.2, 's r0 ; Z"25s.. s 

MAXIMUM TORQVF SERVO CAAJ MOVE 0.34 N/M "L. 
M, gxrAlUrr TORQUE SEAVO CAN MOLD OVER 0 N1rt 
MIlxlrnvP TORQUE SERVO CAN N04D 

(va3un'o' 
oR INtar fVLSE) 0 "14 N/rf 

TABLE D5: SPECIFICATION OF THE SERVO-ACTUATORS 
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APPENDIX. E: Estimation of Principal Moments of Inertia Ixx Iyy, 
ZZ, 

Trim Cn, CL, C and Stability Derivatives of the Dynamic 

Model. 

In order to estimate the moments of inertia namely, IXX, Iyy, IZZ, 

Table (H-1) was constructed in which the masses of different components are 
multiplied by the square of their respective distances from their centres of 
gravity. However, this is inaccurate in itself and therefore parallel and 
perpendicular axis theorems were used whereever necessary. 

All masses are in k2 
All dimensions are inrn.. unless otherwise stated. 
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E. 1 Moment of Inertia Calculations 

Assuming uniform density, the following calculations were made. 

-.. l. l WING MOMENT OF INERTIA 

6.89 
X --x 

h_ 17.7( 

yl 

ý, (h2(a2 + 4ab + b2) 
+ 0.892) Ixx 

18(a + b)2 

Ixx ' 2178.01 (17.762(4.172 +4x4.17 x 10.4 + 10.42) 
+ 6.892) 

18(4.17 + 10.4)2 

= 6622.5 km m2 

To estimate Iyy, wing was transformed into the following planform. 

yI Where, /--rte 
b=4.17 + (10.4 - 4.17 , 

Ther, Iyy is given by the 

standard formulae, 

1_ ßb2 + a2Cos2 42 
+ 4.882) 

YY 

8.91 

3" 

--- --. 
1Iah 

1 

x 

= 2178.01(7.282 + 23.92Cos2(42) 
12 

+ 3.082) 

= 3688.8 kg-m2 

a-23.9 

\Ix 

%Y I 
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By the application of perpendicular axis theorem 

IzZ = 244691.04 lb ft2 

CANARD MOMENTS OF INERTIA 

Ixx ° MC(h2(a2 + 4ab + b2)) 
+ 2.222) 

18(a + b)2 

216.91(6.352(2.822 +4x2.82 x 5.64 + 5.642) 
18(2.82 + 5.64)2 ýa«82.82 

+ 2.222 l 

ý, s 
I6.35 

74.6 kg m2 

b- FVF IX 

In order to estimate Iyy, canard Planform was repläced by the 

0 

following planform. 

Where, 
b= (5.64 - 2.82} 

+ 2.82 

Iyy ` M(b2 + a2Cos2 45 
+ 7.522) 

= 216.91(4.232 + 8.982Cos2(45) 
12 

+ 7.522) 

'551.2 kg rn2 

7y "S1 

0 415 

i 

By the application of perpendicular axis theorem, IZZ was found to be, 

Izz = 635.. kg in2 



Text cut off in original 
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E. 1.2 MOMENT OF INERTIA OF FIN + RUDDER 

Ixx is given by: 

Ixx = 357.38(9.822(3.692 +4x3.69 x 8.58 + 8,582) 
+ 5.812) 

18(3.69 + 8.58)2 ar- 3. cq 

= 623.0 kgm2 I 

zl 
In order to estimate IZZ, fin + rudder planform was transformed into 
the following shape. 

b= (8.58 3.69) 
+ 3.69 

z1 ýý 

= 6.13 ft. x- cI4_. 
-- 

IZZ is then given by the standard formulae, .4 

IZZ = 357.38(6.132 + 13.8 9? Cos? (45) 
+ 14.42) 

= 3291.1 kgm2 

E . 1.3 MOMENT OF INERTIA OF FUSELAGE 

7- 

ý' b 6"ý3 

7.; - 
45 4.91 
--- 

Assume fuselage to be a right-hollow circular cylinder of diameter 

3.7 ft, which is the average width of our fuselage. Length of 45.93 ft. 

Xý 

Then Iyy is given by 

Iyy = (6a2 77- 

Z 

2 

i 
R=! "85 

1 

x 
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= 5397.98(6 x 1.872 + 45.932) 
12 

0 

= 40386.4 kgm2 

and IXX by, 

IXx = Mf. R2 

= 5397.98 x 1.872 = 18876.20 lb ft2 

Also 
IZZ = Iyy = 40386.4 kgm2 
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COMPONENT k (m) ý( (m) (m) IXX(kgm2) Iyy(kgm2) IZZ(kgm2) MASS OF THE 
COMPONENT 

(kg) 

MW 1.23 1.83 0 6622.5 3688.8 10311.3 988.0 
MC 2.3 0 0.2 74.6 561.2 635.9 98.4 
MFR 4.39 0 1.77 623.0 3291.1 3291.1 162.1 
MF1 2.44 0 0 1049.4 

ADD 759.4 40386.4 40386.4 
MF2 4.56 0 0 1399.2 
0.25MUC 2.06 0 0.62 33.3 403.4 370.1 89.9 
0.75MUC 0.94 1.751 0.62 898.1 329.7 1028.0 260.8 
ME 2.62 0 0 374.2 2908.0 2908.0 1450.2 
MINTS 1.21 0 0.2 2.5 93.8 91.3 62.1 
MIND 1.21 0 0.2 4.7 177.1 172.3 117.1 
(MFC+MFSS) 1.23 0 0.5 18.3 127.1 108.8 73.2 
MDD 2.44 0 0.5 2.2 54.3 52.1 8.8 
(MAHP+MEC) 1.23 0 0.5 91.5 635.8 544.3 366.2 
MFIN+MEIN 5.21 0 0.29 0.8 254.0 253.2 9.3 
MELEC 3.82 0 0.1 1.6 2299.5 2297.9 157.8 
MMIN 5.21 0 0.3 0.1 36.8 36.7 1.4 
(MPIL+MEJS) 4.56 0 0.3 21.1 4949.8 4928.7 236.7 
MACON 3.06 0 0.4 10.8 657.9 647.0 69.0 
MEMER 4.36 0 0.3 1.7 359.8 358.1 18.8 

MGUN 2.81 0.55 0 71.6 1883.7 1955.3 238.0 
MAVIO 5.21 0 0.3- 11.9 3634.6 3622.7 133.4 
MSW 2.11 4.651 0 4623.6 954.8 5578.4 214.0 
MAMRAAM 0.46 0.6 0.6 216.3 172.5 172.5 300.0 
MCGC 1.23 0 0.5 3.3 20.5 19.7 13.3 
TFF*3.637 0.26 0 0.55- 55.7 68.4 12.7 185.1 
69%TWF*3.637 0.47- 2.6± 0 5440.1 177.3 5617.4 804.8 
31%TWF*3.637 1.89 0.25 0 22.6 1291.2 1313.8 361.6 
MRADAR 6.36 0 0.2 3.4 3437.7 3432.3 84.8 

Ixx = 20025 kgm2 
Iyy = 72854 kgm2 
IZZ = 90146 kgm2 

TABLE E2 

Details of component masses and their moments of inertia 
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E. 2 Dynamic scaling 

The aircraft was scaled down 14 times so the linear scaling ratio x is 

14 

From ref. 8 
Mass ratio is given by 

mmodel 
_ 

'model 
_ 

pA/C. 
A3 = A3 mA/C PA/C VA/C 

'0' mmodel ý mA/C*A3= 3.23 kg. 

Ratio of the moment of inertia is given by 

pmodel 5 Imodel = IA/C x A/C 

From Table H-2 

Ixxmodel = 0.037 kg. m2 

I= 
yymodel 

0.135 kg. m2 

I 0.168 kg. m2 zzmodel 

Assuming a maximum tunnel speed of 30 m/s flow Reynolds number is: 

R model = 
30 x 0.166 3.4 x 105 

eY1.461 x 10-5 

Trip wire has to be used in order to simulate a realistic air flow over 
the model. 
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TABLE E. 3 DYNAMIC SIMILARITY PARAMETERS 

SCALE FACTOR A= 14 

PARAMETERS A/C MODEL MEASURED 

Mass (kg) 8050.5 3.0 3.0 

Density I. S. A., sea level (kg m-3 ) 1.225 1.225 - 
Speed (ms-1) 102.0 28.0 
Acceleration due to gravity (kg ms-2) 9.81 9.81 - 
Principal moments of inertia (kg m2)* 
Ixx , 

14841.74 0.028 0.026 
Iyy , 68586.7 0.127 0.139 
IZZ 80957.7 0.15 0.15 

PARAMETERS RELATIONSHIP BETWEEN 
MODEL AND A/C 

Linear displacement XM/XA/C =A 

Angular displacement eM/eA/C =1 

Linear velocity VM/VA/ C =z 

Angular velocity eM/eA/C =z 

Linear acceleration aM/aA/C T 

Angular acceleration e /e M A/C 
1 

= - T2 

Load factor n /n M A/C 
VM 2 ) = 
A/C 

Time . T 
TM 

= T- A/C 

* Here the model mass and principal moments of inertia were based on 
the full size aircraft excluding the missile payload. 



/ ll 

11+ 

1"z 
1 

1. 
cr 
I. 

8 

W6 
W 
ix 
W 
'. 4 

W 
h- 
2 

.2 

VERTICAL GAP 2 h/c 

FIGURE E1.: VARIATION OF PRANDTL'S INTERFERENCE FACTOR Q AND 
NON ELLIPTIC INTERFERENCE FACTOR Q* WITH NON- 
DIMENSIONAL VERTICAL GAP. (Ref. 3) 

0 

.2 . yý .6 .81.0 1.2 



- 231 - 

E. 3 Evaluation of the Trimmed Flight Conditions 

j 

- 
-1 ia 
Lý 

Pitching moment equation for the trim flight is 

-LWtw + Mo +LcLc + M4 =0 

where 
zw = distance between wing-body aerodynamic centre and c. g. 

z= distance between canard-body aerodynamic centre and c. g. 

Dividing by }pV2Swc we get 

ýw sczc dCM 
-CLW. B. ' _+ Cmo +' CLC + ýýlntke =0 

c 

Let ,ºI £c 
z c cwc 

Now a is measured from the chord line to direction of free stream, whereas 
the true wing incidence is a+ ao where for our wing section 
a 1.. 8° = 0.03141 rad = ao 
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dcm 

waj 
-aw. b.. i . (a + ao) + Cmo + ýtcac. 

b. (a + n) +() .a=0 

or dc 
-aw. b,. Lw. a + aw. b,. 1w. aO + Cmo + S. ý,. a . (a + n) + m) 

.a=0 w c. b Ta- I 

c or (aw. b.. kw -( 
d), 

)a - Cmo + aw. b.. Lw. ao Ta- (a+n)= 
c , Fw- . tcoac. b. 

----- or or a .SS 
EQ E 

+ (aCbtC. 
SC 

wb' ww_ 
cw 

dem Sw 
+a-c. 

C. a ko . ýc. a c. b. I c. b. c. b. cc 

L 

From equilibrium considerations 

w=L+Tsina 
D 

D=Tcosa 

Dividing by JOV2S 

/ý 

V 

-(II< - 

w -a 
CW = ac. b. (ý)(a + TO + aW b (a + ao) + CT sins ---- EQ "2 

CD=CTcOsa ---- EQ-E3 

Substituting for (a + n) from El in E2. 

Sc aw. b. LwSw Sw dem Sw 
Cw = ac. b. ( S; 

1ý 
)' 

Lac. b LcSc " czzcac. b. " ýc -) I"" ciccac "CMo 

+ 
aw. b, w w. ao +a ac. b. 4cSc wb 

(a + ao) + CT. sina ---- ß"H4 

From reference 3 for a canard configuration 

SwCLw. b. + 
2Sc. CLc. b.. CLw. b. 

c+ 
Sc2CLc 2 

C . b. ?= ------- , Q* nduced nbw , rbcbw Swn. bc 
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Now 
CDtotal CDototal + CD 

induced 

r[ab(a 2+ )2 2a acb b 
= CDo 

otal 
+. 

wo+ 
wrb s(a + ao)(a + n)"a TAR tc 

a2 
+ 

irC C 

b. S 
(C) (cc + n) 

2Q* 

Also CD 
CT - Cosa 

-----EQ"ES 

-----EQ. D6 

Equations 1-8 can be manipulated and combined to yield an equation in 

terms of angle of incidence 'a' of the form: 

As = Al + tan(a) {C00+ A2a2 + A3a +'A1} 

" or 
tan(a) {Cpo + A2a2 ----- BQ"ý"7 + A3a + AO 

11 

where the parameter Cw = weight and Rý and Iw have different values at 
3 pV Sýý 

different Mach numbers. Also, coefficients A1, A2, A3, A4 and A5 are 
listed in Table F-4 . 

Equation E7 has been incorporated in the first order optimisation 
code both to optimise the wing-canard interference and to estimate the 
longitudinal stability derivatives. Table E5 represents the flight conditions 
under consideration. Estimated longitudinal stability derivatives based on 
these flight conditions are represented in tables E6 and E7 in both concise 
and aeronormalised forms. 
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E. 4 Force Velocity Derivatives. 

From equilibrium conditions, 

X=T+LSina - DCosa 

Z= -L Cosa -D Sina 

which for a <100 would be approximated by, 

X=T+La -D 

Z=-L-Da 
then 

ax 
-- Xu = -pV esw 

(C D+V 
ac 

aue aVe) 

ac 
äu = Zu = -pVeSw (2CL + Ve aTee 

dC 
aw 

Xw = lpvesw CL 
eaD 

dC 
aw w -pVesw + CC 

In concise and aeronormalised forms these derivatives become 

CONCISE 

'u m 

"w m 

Z_ zu 
um 

Za 

wm 

AERONORMALISED 

2C V 
DCD 

Xu D --a-v 

%P dCp 

Zu 
= -2CL -V 

aCL 

eý 
dCL 
a -a +CD 

where m= mass of the aircraft. 
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E. 5 Moment Velocity Derivatives 

estimation (theoretical) 

M -- P 2SWCLW. B.. LW + Mo + 'PV2ScCLCB. tc + 'PvtSwýdý) 
INTAKE 

du - PVSWCEW. B. LW + PVSWCCMo "* p ? ScCEC. B. Lc + PV%(7)ac 
INTAKE 

or Mu = PV(-SWCLW. B. LW + SWCCMo 

concise form is: 

My 
Mu IYY 

non-dimensional form is: 

Mu =2 MV/PVSWE 

M, 
_, 

estimation (theoretical) 
ýR 

+ SCCEC. B. Lc + SW(d )ac ) 
INTAKE 

Differentiating the pitching moment equation above w. r. t. w; 

_pY2swC 
d 

w 

dC da = =- aV2SwLw'aW. B.. T + PV2ScLc. aC. B. 'dw + pV2Sw(ýý 
INTAKE- 

since for small angles a=Q 

S 
SS MW = }PV(-SW. LW. aW. B. + SctcaC. B. + SWC. (d) ) 

INTAKE 

concise form is; 

= 
MW 

yY 

non-dimensional form is; 

NW = 2%Ipvs. c 
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E. 6 Force Rotary Derivatives 

These derivatives are Xq, Zq, Mq. Therefore it is necessary to find 
the contribution of lift and drag forces with respect to rate of rotation 
about y-y axis, namely q. As an approximation to this, contributions of 
individual components were estimated and added together as follows. 

From equilibrium conditions; 

X=T+LSina - DCosa = T+La -D 

Z= -L Cosa -D Sina - -L - D. a 

where for small a; Sina =a, Cosa =1 and a= aequilibrium+ aperturbation' 

aX 
_ 

BT AL a« BD 
q ýq + q. « + -ý-q -q 

aZ aL 
- 

aD as. 0 aq aq -q c' - ßq 

neglecting thrust term, and since a and q are independent, 

aX aD + al. a aq aq 

az aL aD 
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E.. 6.1 CANARD CONTRIBUTION 

Consider the figure below. 

) x=F+I(s - 
s 

Also for small a 

C11 

Applying the strip theory; 

4! 
diff 

Lift on the strip is = }pV2c(y)dy( ffm )c - SECTION 
y C'. G- 1-s'i 

Then the total lift due to q becomes, for half the canard, 

= pVgC. B. q 

bC12 

c(Y) xd Y 
0 

. CL L_ pVaC. B. q 

b yZ 

c(y)xdy cincrement w 
due to q 

1b92 2aBq c(y)xdy 
_ Ps 

w o 
B 

b91 
2 

B= CR (1 + -(a - 1)(F +T- 
jX)dy 

cc 
0 

ýT ý% 

ý_ r_ 

by2 

= CR (F +T- +r (X - 1)y + T(A - 1)y/ - Ty2(a - l)/52)dy 

0cc 

Integration gives; 

C_ 
2aC. B. q 3F + 27 +X (3F +CS 

ýcincrementý vSw Rc 
due to q 

dCLc 
_ 

2aC. B. CRSc 3F + 2T +X (3F + T) where Sw = wing area 
Sc = be/2 = half span 

A= taper ratio. 

--- S 
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£.. 6.2 WING CONTRIBUTION 

Consider the figure below; 

7 
rry, i 

Applying the strip theory, 
E 

dC 
Lift on strip =pv2c(y)ayý)w. -T 

x 
i 

section Y 
t xý 

iß 

. '. total lift is given by; 
YN bý p 

Lincrement = pVaWB. q c(y)xdy -J2 c(y)xdy Ný 

due to qo YN 

A 

since x=6(1 -f-) , 0<y<YN 
N 

and x= E(-H) ,N yN <y< Sw 

C "4 ciýF 

also; 
c(Y). = CR(1 - 

ý-(x 
- 1). 

w 

Now; (N1 

A=CR-B fs(a-1)(l -yN). dy -Ew (l+s(a-1)( Ys-- YN 
yN)dy 

° YN 
where upon integration 

yN (a- UYIý E 7ý +1 YN JAN A=CR -B (-Z- +s)S YN 
S-ý-Z. 

yN s+ -ý- + 6s 

+1+ 2a 
s2) 

2 

or CL = 
2aW. B. gCR 

-B(yN +0- 
l)yN) 

- -E vs 
w 

6s s YN 
increment 
due to q 

)yN 
- ((1 + 2a 

S2 + 
YN (a -13 a+1 

=s YN. s) 
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SS 

dCLW. B. 
_ 

2aW. B. CR (a - 1) 2 
ýq- 

{_Bi 
ý7 + `6s yN 

(1 + 2A 
s2+yN+ a- 1) 

y3 _j 
a+ty 

s) sN6TNN 

where Sw = wing area 

sw = half span 
a= taper ratio. 

Now, the induced drag is given by 

CLW. B. 2 bc CLC. B. CDinduced =+ c'FW CLW. B. CLC. B. 0 +Rc 'ý* 

integrating w. r. t. q gives 

dCD, 
_ 

dCD0 
CdCD C 

total -ý induced 

-1 
dCLW. B. 2_ bc dCLW. B. 

= 2CLW. B. 'dq +a . CLC. B. + -7-rW-C Fw- 
t 

dq 

dC dC C. B. C. B. 1 
'cy* ýq CLW. B. -aq + 2CLC. 6. W-C 

dCD dCLdCLThe 
above expressions for 9- dq'B' and -dq'B. can then be used 

to estimate both force rotary derivatives äq äq and moment rotary 

derivative äq given by 

'W dCLW B. Mq = }pV2SWc( 
c 

dq 
Sc c 
wc 

dCLC B 
dq + 

dC M da 
take 

a4) ()i 
n 

where in concise form 

mq 
YY 

and in non-dimensional form 

2 Mn Mq = 
pVSwc2 
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E. 7 CANARD CONTROL DERIVATIVES X and Mn 

From equilibrium conditions; 

X=T+LSina - DCosa 

Z+ -L Cosa -D Sina 

Differentiation w. r. t. n gives 
0 

dX dT dL dD 
+ý. a+L 

/r, 

--E F 
O 

dZ 
T- an ___dL_dD. a_D. 

d 

since a is small and a= a' =0 

Assuming that the only drag increase is due to the induced drag, then; 

dX dD dZ dL 

dC 

r, n 
X11 "rn - av2Sw(-) 

induced 

[2CL IdCLWB} 2SCCLCBa dCLWB+ 
W. B. W'T ,rcw '-n 

2SC-CLW. B CLC. B. 
v + 2C 

Sc2 
o* 

dCLC. B. jpV2S 
,rc. w cn LC. B. W.. -. do w 

in concise form 
Xn 

Xn - A/C mass 

This derivative is usually neglected for stability. 

From equilibrium conditions, 

dZ dL 
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dCL Sc dCLC B. 

= -'pV2Sw(--dn=6' +W. -fin= ) to first order in a. Tn- 

However, a and n are assumed independent and therefore, 

dz__ipy25c, dcd 

In concise form, 

Zn 
Zn =m 

and in aeronormal ised form, 

v 2Zn 
Zn w 

also differentiating the pitching moment equation w. r. t. n gives, 

LM 
_IpV2S 

dCLW. B. da 
+ JpV2S k ý- . 

dCLC. B. 
do wwccd 

i. e. dM 
= JpV2S Ic. 

dCLC. B. 
'2 c --Tn- 

In concise form 

Mn 

and in aeronormalised form, 

., 2Mn 
Mn = 
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TABLE-E8: List of Longitudinal Stability Derivatives in Dimensional, 
Aeronormalised and Concise Forms 

STABILITY 
DERIVATIVES 

IN 
DIMENSIONAL 

FORM 

DIVISORS 
TO OBTAIN 
CONCISE 

FORM 

DIVISORS TO 
OBTAIN 

AERONORMALISED 
FORM 

Xu mass xu JpVSw 
fto 

Xu 
X 

W 
it x 

w 
" X 

w 
X x 7J P SWC 
q q q 

Zu of zu 3pVSw 
u 

z 

w 
of z 

w 
of z 

w 
Z 81 z JPVS c Z 

q q w q 
M I m }pVS c M 

u yy u w u 
M .. Mr .. M 
w w 

M m }pVS ý M 
q q w q 

X mass x pV2S X 
n n w n 

z of z 11 i 
n n n 

M I m c 3pV2S A 
n yy it w 
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E. 8 Estimation of Lateral Derivatives 

E. 8.1 Moment Velocity Derivatives L., Nv 

Here the moment derivatives Lv and Nv are estimated. These will have 
a different value compared to ones obtainable from CRß and Cnß of Appendix E 
since the C. G. positions of the dynamic model and that of the full-size 
model do not coincide. 

The contributions are due to fuselage and fin. Normally the 

contribution of fuselage to Nv is destabilising and this effect must be 
overcome by the fin. In the event of a sideslip the whole aircraft is 
subject to the sideslip velocity whereas with the c. g. fixed the only 
effect is due to weathercock stability. Assuming the fin to be the only 
contributory part to Nv, it can be shown that 

dC1 
Nvfin = }pVSfin--ff-BfintF. K 

where K is the interference factor due to sidewash. However, dihedral, 

anhedral, wing sweep, wing-fuselage arrangement and fin all contribute to 
Lv. Here, dihedral, anhedral do not exist for the model and since the wing is 

mounted in the middle of the fuselage as regards the vertical position, this 

effect is also zero. Therefore, assuming the fin to be the main contributory 
element, it can be shown that, 

dCL 
ývfin -10V -" SF hF. K 

With reference to Appendix E, the contribution of wing forward sweep due to 

sideslip, to Lv is destructive and estimated to be 

Lvsweep ' 3pvSwd. CLw. TanA-. K 
forward 

Here, -EF = distance from fin centre of pressure to c. g. 

hF = distance from fin centre of pressure to CL 

d= wing moment arm in ey direction. 

It must however be noted that the wing contribution cannot be 
treated in isolation from the fuselage since for a sideslip to starboard say, 
the port wing would be blanketted by the fuselage wake. Therefore the 
above treatment of L. represents a crude approximation to the important 
derivative L. 
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E. 8.2 MOMENT ROTARY DERIVATIVE 

Using strip theory it can be shown that the total rolling moment due 
to rolling velocity is, 

L- pVp total =I( oýc 
(y)y y i_s 

+5 dCL 

lo 
c 2d 

cal 
dCL 

Assuming () to be constant, then 

dCL +s 
L=- oVP(ý)" c(Y)Y2dy 

S 

J 
+s 

and c(y)y2dy = SWkn 

-s 

where kn is the radius of gyration of wing area about ý. 

dL 
_2 U-P - -pv( 

dC 
ý)swkn 

From the f. s. w. model layout and aerodynamic characteristics. 

£F = 0.34 m 

k=0.8 

CLW. B. = 0.78 at V= 27 m/s 

CLW. B. = 0.63 at V= 30 m/s 

hF = 0.14 m 

SF = 0.028 m2 

d=0.13 m 

IM ' 0.0256 kg m2 

IZZ u 0.151 kg m2 
IX=0.0123 kg m2 ýºi ng 

dCL 
='2.68 rad-1 'd ß 

model f. s. w. mass r 0136 kg 

kn '=0.18 m 
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By substitution of thesedata in expressions for Lv, LP and Nv 
Table H14 below has been formed. 

LATERAL STABILITY DERIVATIVES IN 

CONCISE FORM AERONORMALISED FORM 

SPEED 
(m/s) 

£V nV LP TV Nv t 

30 
27 

1.21 

-0.08 

2.48 
2.23 

-8.8 
-7.9 

0.06 
0.0 

0.61 
0.55 

-1.14 
-1.02 

TABLE N9: ESTIMATED LATERAL DERIVATIVES (THEORETICAL) 

In order to evaluate the other lateral derivatives detailed aerodynamic 
data is essential and in its absence no attempt was made to estimate them. 
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TABLE-ElO: List of Lateral Stability Derivatives in Dimensional, 
Aeronormalised and Concise Forms. 

STABILITY 
DERIVATIVES 

IN 
DIMENSIONAL 

FORM 

DIVISORS 
TO OBTAIN 

CONCISE 
FORM 

DIVISORS TO 
OBTAIN 

AERONORMALISED 
FORM 

Lv IXx IV IpUSWs Lv 

Lp It Ib 7ipUSW52 ýP 

L 
r kr 11 L 

r 
Nv IZZ nv JpUSWs Nv 

Np it np JpUSws2 Np 
N 

r 
01 n 

r 
11 

r 
LC IXX £ jpU2Ss C 
L .. St 

N I n N ZZ C C 
N n it N 
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N 
W 

W N 
LLJ 

Q 1- W "N F "N 
JND WW F- WW 

2.0 -1.21 0.7 -0.1 

-12.0 -8.8 -8.0 -7.9 

r -2.0 - -3.2 - 

of n 2.0 2.48 2.2 2.23 
v 

v n 26.0 - -2.0 - 
U 

C) n -9.0 - -8.0 - U r 
118.0 - 100.0 - 

n 222.0 - 380.0 - 
Lv 0.08 -0.06 0.03 0.00 

t 
p -1.15 -1.14 -1.03 -1.02 

t -0.26 - -0.41 - r 

v 
0.49 0.61 0.54 0.55 

9 19.83 - -1.53 - 
ý1 -6.86 - -6.1 - r 

0.16 - 0.15 - 
N 1.83 - 3.49 - c O 

C) U= 30 m/s U= 27 m/s 
W 

C. G. AT 0.444 m FROM C. G. AT 0.44 m 
DATUM FROM DATUM 

C POSITIVE TO STARBOARD 

TABLE E12: ESTIMATED LATERAL DERIVATIVES 



PROGRAM STRUCTURE DIAGRA14 

FIGURE E. L: STRUCTURE DIAGRAM OF THE SUB-ROUTINE DERIVATIVE 
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APPENDIX -. F 

TRIP WIRE CALCULATIONS 

In order to calculate the approximate position and thickness of 
the trip wire the velocity distribution round the aerofoil is needed. 
The theory of wing sections permits the two-dimensional calculation of 
the pressure distribution and hence the velocity distribution with 
considerable accuracy. Although this method is not unduly laborious, 

the computations required are too long to permit the quick and easy 
calculations which are necessary in this case. 

Here, it was assumed that the velocity distribution about the wing 

section is composed of the three separate and independent components 
listed below: 

1) The distribution corresponding to the velocity distribution over 
the basic thickness form at zero angle of attack, .. 

2) The distribution corresponding to the additional load distribution 

of the mean line at its ideal angle of attack, A. 

3) The distribution corresponding to the additional load distribution 

associated with angle of attack, 
Aua 

Consider the case where the aerofoil is at an angle of incidence 

of 00 (different from effective angle of incidence), in this case 
Au 

9 
This procedure or rather superposition of velocity distributions 

is illustrated in Fig. Fl. 
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SYWETRICAL *1&; SECTION 
AT ZERO ANGLE OF ATTACK 

MEAN LISE AT IDEAL 
ANGLE OFATTAGK 

CAMBERED Wt G SECTION AT 
aAL ANGLE OF ATTACK 

. 8- 

.4 
Av-2 

VEIDG(TY R CREMEr4T RESULTING O 
FROM ANGLE OF ATTACK FOR 
SYMMETRICAL Wi G SECTION 

CAI &Rr'D WING SECTCN 
ATANGLE OF ATTACK 

st 
Fla. 38. Synthesis of pressure distribution. 

FIG. 1 (ae. 36) 
From Appendix B, the aerofoil sections chosen were from NACA, 

Series 6, with the following allocations. 

Outer Section 
Wing: 

Inner Section 

NACA 65-206 

NACA 66-206 

Canard 
+: NACA 65-006 

Fin 

Now, in order to camber NACA 6-series wing sections, mean lines 

are usually used which produce a uniform chordwise loading from the 
leading edge to the point -E = a, where x is the chordwise distance 

from the leading edge and c is the chord, and, from this point onwards 

a linearly decreasing load to the trailing edge. 

,4 
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From Ref. 9, data for NACA mean lines with values of -a- equal 
to 0,0.1,0.2, ------ , 1.0 are known for NACA 6 series sections. 
The data are presented for a design lift coefficient of unity. All 
tabulated values vary directly with the design lift coefficient. 
Corresponding data for similar mean lines with other design lift 

coefficients may accordingly be obtained simply by multiplying the 
tabulated values by the desired design lift coefficient, In the case 
of 65-206 and 66-206 sections where the value of -a- is not specified, 
it is understood that the uniform load mean line (a = 1.0) has been 
used. 

NACA 65-206 
(Stations and ordinates given in 

per cent of airfoil chord) 

Upper surface Lower surface 

Station Ordinate Station Ordinate 

00 0 0 
0.460 0.524 0.540 - 0.424 
0.706 0.642 0.794 - 0.502 
1.200 0.822 1.300 - 0.608 
2.444 1.140 2.556 - 0.768 

4.939 1.625 5.061 -6.993 
7.437 2.012 7.563 - 1.164 
9.936 2.340 10.064 - 1.306 

14.939 2.869 15.061 - 1.523 
19.945 3.277 20.055 - 1.685 

24.953 : 3.592 25.047 - 1.802 
29.962 3.824 30.039 - 1.880 
34.971 I 3.982 35.029 - 1.922 
39.981 4.069 40.019 - 1.927 
44.990 4.078 45.010 - 1.888 

50.000 1+ 4.003 50.000 - 1.797 
55.009 3.836 54.991 - 1.646 
60.016 3.589 59.984 - 1.447 
65.022 3.276 64.978 - 1.216 
70.026 2.907 69.974 - 0.963 

75.028 I( 2.489 74.972 - 0.699 
80.027 2.029 79.973 - 0.437 
85.024 

1 
1.538 84.976 - 0.192 

90.018 1.027 89.982 0.007 
95.009 0.511 94.991 0.121 

100.000 0 100.000 0 

L. E. radium: 0.210 
Slope of radius throu-, h L. E.: 0.084 

NACA 66-206 
(Stations and ordinate' given in 

per cent of airfoil chord) 

Upper surface Lower surface 

Station Ordinate Station Ordinate 

0 0 0 0 
0.461 0.509 0.539 - 0.409 
0.707 0.622 0.793 - 0.482 
1.202 0.798 1.298 -0.584 
2.447 1.102 2.553 - 0.730 
4.941 1.572 5.059 - 0.940 
7.439 1.947 7.561 - 1.099 
9.939 2.268 10.061 - 1.234 

14.942 2.791 15.058 - 1.445 
19.947 3.196 20.053 - 1.604 

24.954 3.513 25.046 - 1.723 
29.962 3.754 30.038 - 1.810 
34.971 3.929 35.029 - 1.869 
39.981 4.042 40.019 - 1.900 
44.990 4.095 45.010 - 1.905 
50.000 4.088 50.000 - 1.882 
55.009 4.020 54.991 1.830 
60.018 3.886 69.982 - 1.744 
65.026 3.641 64.974 - 1.581 
70.031 3.288_ 

` 
69.969 - 1.344 

75.034 2.848 74.966 - 1.058 
80.034 2.339 79.966 - 0.747 
85.031 1.780 84.969 - 0.434 
90.023 1.182 89.977 - 0.148 
95.012 0.578 94.988 0.054 

100.000 D 100.000 0 

L. E. radius: 0.223 
S1ope of radius through L. E.: 0.084 

FIG. F4. (ß. f. 36) FIG. 5. 
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From Ref. 9, the design lift coefficient of NACA 65-206 is 
CLdesign = 0.2. Since the value of -a- is not specified, -a- must be 

equal to unity. Fig. F2, gives the load distribution over NACA mean line 

a=1.0 with a design coefficient of CLdesign = 1.0. However, in the 

case of NACA 65-206, CLdesign = 0.2 , so multiplication of every 
ordinate of NACA mean line a=1.0, by a factor of 

3 
and its addition 

with the corresponding ordinate of "NACA 65-006, basic thickness", 

would yield the corresponding ordinate of the upper surface of NACA 
65-206. Moreover, the value of U- of this mean line, multiplied by 
the same factor and added to the value of g of NACA 65-006 would 
supply us with the approximate velocity distribution about NACA 65-206 

section. Also, the velocity distribution about NACA 65-006 section is 

readily given in Fig. F3 . 

It is assumed that the velocity increment on the upper surface 
is equal to the velocity decrement on the lower surface. This 

assumption is in accord with the basic concept of the distribution of 
the circulation used in the theory of thin wing sections. 

Tables F: 1 and F. 2 give the approximate velocity distribution 

round the NACA 65-206 and NACA 65-006 respectively. 

Now, for the relatively simple case of two-dimensional constant- 

property boundary layer the transition position can be satisfactorily 

calculated by using several empirical correlations. One such useful 

correlation suggested by Ref. 10 is that there is a connection between 

Re(= Uie/y) and Rex(= Ulx/Y) at transition where x is the distance 

along the aerofoil surface. 

At the transition point according to Ref. 10 

22400 0.46 
Retransition ° 1.174(1 + 'Ve-x Rextransition -"EQ P1 

transition 

According to the expression above, the development of Re as a function 

of Rex is needed. These values of Re and Rex are the transitional 

values. 
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At this stage Thwaite's method was used to calculate the 

momentum thickness e through 

62=0.45«y 

ru5dx 

----- 
U6 1 

Jo SQ. F2 

From tables F1 and F2 the values of U1 for both NACA 65-206 and 
NACA 65-006 were readily available. A computer program was written to 

calculate e, Re and RX for both NACA 65-206 and 65-006. These were 
tabulated in tables K3 and K4 respectively. 

One way of estimating the transition point is to use a graphical 

procedure in which Re is plotted as a function of Rex in order to find 

the intersection of this curve and the curve represented by E. F1 

above. FiguresF 6 and F7 give transition points as: 

NACA 65-206 at = 30% curing 

NACA 65-006 at = ME 
canard 
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F. S. W. Zwing= 2.35m 

FULL SCALE MODEL M=0.3 ,a=0.00 

x%c ' peer y%1ower U (m s) U (m/S) 

surface surface 
ö e pp lower 

0 0 0 
0.5 0.524 -0.424 109.45 99.24 
0.75 0.642 -0.502 109.96 99.75 
1.25 0.822 -0.608 110.37 100.16 
2.5 1.140 -0.768 111.30 101.08 

5.0 1.625 -0.993 112.21 102.0 
7.5 2.012 -1.164 112.82 102.61 

10.0 2.340 -1.306 113.13 102.92 
15.0 2.869 -1.523 113.84 103.63 
20.0 3.277 -1.685 114.25 104.04 

25 3.592 -1.802 114.56 104.35 
30 3.824 -1.880 114.86 104.65 
35 3.982 -1.922 115.07 104.86 
40 4.069 -1.927 115.12 104.96 
45 4.078 -1.888 115.37 105.16 

50 4.003 -1.797 115.27 105.06 
55 3.836 -1.646 114.35 104.14 
60 3.589 -1.447 113.33 103.12 
65 3.276 -1.216 112.21 102.00 
70 2.907 -0.963 110.88 100.67 

75 2.489 -0.699 109.45 99.24 
80 2.029 -0.437 107.82 97.61 
85 1.538 -0.192 106.18 95.97 
90 1.027 -0.007 104.35 94.14 
95 0.511 -0.121 102.1 91.89 

100 0.0 0.0 99.65 89.44 

TABLE Fl. 

TWO-DIMENSIONAL VELOCITY DISTRIBUTION ON THE UPPER AND 

LOWER WING SURFACES 
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CANARD n=0.00 

FULL SCALE MODEL M=0.3 

x%c y%c Ux m/s 

0 0 0 
0.5 0.476 104.35 
0.75 0.574 104.86 
1.25 0.717 105.265 
2.5 0.956 106.18 

5.0 1.31 107.10 
7.5 1.589 107.71 

10 1.824 108.02 
15 2.197 108.74 
20 2.482 109.14 

25 2.697 109.45 
30 2.852 109.76 
35 2.952 109.96 
40 2.998 110.06 
45 2.983 110.27 

50 2.9 110.16 
55 2.741 109.25 
60 2.518 108.23 
65 2.246 107.10 
70 1.935 105.77 

75 1.594 104.35 
80 1.233 102.71 
85 0.865 101.08 
90 0.510 99.24 
95 0.195 96.99 

100 0 94.54 

TABLE F 2. 

TWO-DIMENSIONAL VELOCITY DISTRIBUTION 
OVER UPPER AND LOWER CANARD AND/OR 

FIN + RUDDER SURFACES 
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F. S. W. 

M= 0.3, a=0.0 , c=2.35m 

e Ree Rex x%c 

2.66 x 10 5 185.61 82113.3 0.5 
3.22 x 10 5 225.11 123170.0 0.75 
4.14 x 10-5 289.38 205283.2 1.25 
5.8 x 10 5 405.425 410566.4 2.5 
8.15 x 10-5 569.77 821132.8 5.0 
9.93 x 10-5 693.86 1231699.18 7.5 
1.14 x 10-4 800.21 1642265.6 10.0 
1.39 x 10 4 973.72 2463398.3 15.0 
1.6 x 10 4 1121.66 3284531.1 20.0 
1.79 x 10-4 1251.86 4105663.93 25.0 
1.96 x 10 4 1367.92 4926726.7 30.0 
2.11 x 10 4 1476.03 5747929.5 35.0 
2.26 x 10 4 1581.37 6569062.3 40.0 

2.39 x 10- 4 1671.94 7390195.1 45.0 
2.53 x 10- 4 1771.23 8211327.85 50.0 
2.72 x 10 4 1903.08 9032460.6 55.0 
2.92 x 10 4 2038.3 9853593.4 60.0 

3.12 x 10 4 2178.52 10674726.2 65.0 
3.34 x 10 4 2332.0 11495859.0 70.0 
3.57 x 10- 4 2494.67 12316991.79 75.0 

TABLE F'3. 

VARIATION OF Re', Ree AND MOMENTUM THICKNESS e 
WITH DISTANCE ALONG THE WING SURFACE 
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CANARD 

M= 0.3, n= 0.00 

e Re Rex x%c 

2.05 x 10-5 143.58 46822.0 0.5 
2.49 x 10 5 174.00 70233.06 0.75 
3.2 x 10-5 223.66 117055.1 1.25 
4.48 x 10-5 313.28 234110.2 2.5 
6.3 x 10-5 439.6 468220.4 5.0 
7.66 x 10-5 535.72 702330.6 7.5 
8.84 x 10 5 617.79 936440.8 10.0 
1.07 x 10-4 751.4 1404661.2 15 
1.24 x 10 4 865.7 1872881.6 20 
1.38 x 10 4 966.07 2341102.0 25 
1.51 x 10 4 1055.27 2809322.4 30 
1.63 x 10-4 1138.73 3277542.8 35 

1.744x 10-4 1218.82 3745763.2 40 
1.84 x 10-4 1285.8 4213983.6 45 
1.96 x 10 4 1367.1 4682204.0 50 
2.1 x 10 4 1470.1 5150424.4 55 

2.25 x 10-4. 1576.4 5618644.8 60 
2.41 x 10-4 1687.5 6086865.2 65 

2.6 x 10-4 1809.0 6555085.5 70 

TABLE F, 4. 

VARIATION OF Rex, Ree AND MOMEPTUM THICKNESS e 
WITH DISTANCE ALONG THE CANARD AND/OR FIN + RUDDER SURFACE 
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104 

5 

2 
Rye 

"1 

S 

2 

10ý 

Fig. FP6 Prediction of transition for Eq. Pl graphically 

op 

For the 'FARJAN' FSW model the only difference is the 

scaling factor., but the trip-wire should still be placed at the 30% 

chord in case of the F. S. W. and 20% chord in case of the Canard. Fin 

was not treated since the flow around it was assumed to be turbulent 

for both full scale and model versions. This and other assumptions 

and approximations will be justified after the flow visualization 
has been completed. 

105 15 106 2 
RPM 

5 107 25 10 $ 
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Rex 

Fig. F7 pediction of transition to' Eq I! 'ý gr. +tlhicalt, ' 

From Ref. ll, if the diameter of-the trip-wire is taken to be -d-, 
dimensional analysis shows that in a constant-pressure laminar boundary 

layer the transition behaviour depends on 
UYa 

and d/ö only. An 

empirical criterion for transition to occur a negligibly small distance 

behind the wire is 

Ub(y = d) Y= 800 

where ub is the boundary layer velocity at distance y from the surface. 
In practice, 

Uia at the desired transition position may be not far 

short of 800 (- = 2.6 x 104 in zero pressure gradient, more in 
favourable gradients), so d is close to 6, ub(y = d) is close to U1, 

and the above criterion is not too far from 

U1 =8OO -------- sQ. r3 

25 106 25 107 25 109 
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Based on a tunnel speed of 20 m/s, i. e. U= 20 m/s, equation K3 gives 

Uid = 800 

. 1.461 x 10-5 x 800 

d=0.6 mm 

As mentioned earlier on, flow visualisation would justify the 

usage of this trip wire. 
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APPENDIX -G 

G. 1 MEASUREMENT OF MOMENTS OF INERTIA 

For this purpose the model was suspended on the vertical shaft of 
the rig seen in the diagram below. A relatively soft spring was chosen 
for the purpose of oscillation. This spring had the following 

characteristic: 

If tension =R extension 

T=. x 

dT 
=a_ 16.922 N/m a-x 

Iyy measurement. 

Assuming that the set of body-axes and the principal axis coincide, then 

essentially the system can be represented as: 

'IT 

t 
With the assumption that friction at the gimbal is negligible and that the 

damping due to wing + fuselage moving through the air is small, Newton's 
Second Law of Motion gives the relationship between frequency of oscillation 
and moment of inertia. 
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Iyy, IXX measurements. 

With reference to figures , it can be seen that the 
general mathematical model below can be applied to both Iyy and Ixx 

measurements. , /, / 

OT 

_ 1- 

For small displacement from equilibrium position 

mg k-Tk= lyy9 

where T= Ax 

and for small e 
x=ke 

,A= modulus of the spring 

mgk - Akte = Iyye 

Multiply both sides by 2 iff and integrate 

d 2(mgk - Akte) IYY' f(ß)2 

Off = T- (mgk - Ak2e)de 
yy 

(Ede)2 _ 
2mgke - A282 +B 

yy 
where B is constant. 
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de Ake 2 2� k 
au 

/- 

yy Ak2 Ake. 

do Ake ýe mýk2 
_ (mgký2 YY B Tyy 

Ake Ake Ake 

de Ake [(mgk)2 
+ YY e- mgk 2 

ýf c1Ly Ake Ake Ak2ý 

or 

. W(ý1k2 

4 

2 AA 

2 In 

2 
T2k) 2 

2 YY k Ak Ak 

Integration yields, 
M2K 

±Sin-1 AkT t 
/(Mgk)2 

+B 
Ake Ake 

e-mgk 
Ak2 

/()2 
+! cB 

Ake Ake 

or 

L2 Sin( .t+ C) 
yy 

Ak 

r 

where n= undamped angular frequency = 
Ak 
IYY 

. '. period T= 2w 
= 

Ak e 
TYY 



- 271 - 

or 

Similarly 

I= 
Ak-YY 

YY 4w2 

Ak 
I= 
YY -Yy 2 4w 

rly 
2 T2 Ak 

I 
xx _ 

xxxx 
2 

----- EQ.: G. 1 

Here the weight was chosen to be 150 gr. which includes the 

weight and mounting assembly onto the model. The trace of the 

oscillations about x-x and y-y axis showed that the damping was small 

so the damped frequency was assumed to be the same as the natural 

undamped frequency of the system. Therefore, from Eq. Gl, 

Ak2. T2 
4n2 

about 
x-x and y-y 
axis 

where k is the distance between axis of rotation and point of 

connection to the spring. 

From Fig. G4, G5, with plotter set on 500 mm/min paper feed, the 

periods were found to be 

T=0.708 S 
x-x 
T=1.236 S 

Y-Y 

where 
m k=0.345 

x-x 
m k=0.46 

y-y 

Since the gun and missiles have not been represented on the 

model, then their masses and moments of inertia were subtracted from 

those given in Table Al of Appendix E. 
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This modification brought about the following changes: 

Mass of aircraft = 18073.37 lb = 8050.5 kg 

Ixx 
A/C 

= 358650.4.2 lb ft2 = 14841.74 kg m2 

I 
yyA/C = 1657395.36 lb ft2= 68586.7 kg m2 

I 
izA/C = 1956341.07 lb ft2= 80957.7 kg m2 

When scaled down dynamically: 

Mass of model = 3.0 kg 

Ixxmodel = 0.02 9 kg m2 

I=0.127 kg m2 yymodel 

I=0.150'. kg m2 zzmodel 

The above set of values should not be considered very accurate 

since the moments of inertia of the aircraft itself were found 

approximately. Therefore, these values would serve as a guide line. 

The experiments based on the mathematical model outlined earlier 

yielded the following results: 
2 T2 

Ixx 
Akx 

° 0.02 6 kg m2 
4n2 

I- 
Akyy2 T2 

'=0.139, kg m2 
yy 4112 

IZZ measurement 

With reference to Fig. 03, it can be said that for small 

oscillations: 



- 273 - 

4± Sin-1 e 

Z 
2Ak2 

FXL_ 

.t+C 

e=+6. 
IzZ 

Sin(� 
2. 

t + C) 
2Ak2 zz 

n= angular frequency =P 
Zz 

T=nn 

T= 2n 
2Ak2 

47r2. Izz 
= T2 = 

2Ak2 

=I= 
Ake 

. T2 
zz 2n? 

Here k=0.5 m 

With reference to Fig. G. 6, with plotter set to 500 mm/min paper feed, 

the period of the oscillations about the zz-axis was found to be 

TZZ = 0.84 s 

zz 
16.922 x 0.52 

. 0.842 
2X., r2 

Izz = 0.151 kg m2 

The same argument for I> and Iyy applies to IZZ as well. 



0- 

Tlk - T2k = 10 

A(ý - ke). k - A(L + ke). k = Ie 

Ask - Akte - Aik - Akte = Je 

- 2Ak2e = IZZ"e 

2. d2e 
-- 

ale 2 de 
. e. 

dt zz 

)2 = 
r- 4Ak2 ode 

.1 zz 

_-2. 
- 

+B 
ZZ 

ý2- 

Z 

de 2Ak2 _zz 02 '7 zz 2Ak2 

TýO 
do 

= 
F- 

. dt 
. 22 

- e2 - 2Ak2 

where T1 = A(R - x) 
T2=A(z + x) 
x is the extension and 
2, is the length of the 

spring 
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C. 2 EXPERIMENTAL DETERMINATION OF THE NEUTRAL POINT POSITION 

The pitching moment equation is given by - neglecting the downwash 
and uDwash. 

x 
ý+ W CMc. 

g. 
CMo 

c 
Cc ä ýýýc + (AMC. 

g ") intake 

where the drag component is neglected. 
Differentiate w. r. t. CL; 

dCMC. 
. 

xw dCLc dCMC. 
. 

LLL ontake 

Xc. 
g. 

XAC dCL 
c. 2m aß _ -( -)+V. 

g+ 
-.. 

(Xnp -Xi) C `". ß PV. S Lw"8 L 
WC 

where Vc = canard volume coefficient. 

Neglecting the intake term; 

dCMc. 
. 

xc'g. 

_ 

XAC) 
+ V. 

ac. 
b 

+ V. a 
do 

c w. B c. 8' 
.., 

which should equate zero when c. g. is placed on the neutral point. 

- 
Xc. 

g. 
XAC 

+ V. 
ac. 6 

do aW. B 

For stick-fixed case 
dn 

=0 since canard is not moving. 

Then; 
Xna 

= 
XAC 

+ V. 
ac. B 

cc aW. B 

d'l 
_ 

Xc. 
9. 

xnp 
_ 

ks 

L V. ac. B ac. B 
where ks is static margin 

stick-fixed. 
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The dynamic model was then made to fly in trim at different speeds. 
For every speed, trim was measured and CL calculated since, 

C= mg 
L ipU2SW 

This process was repeated for three known C. G. positions and results 

given in Tables G1, G2 and G3. Variations of CL with ntrim for the C. G. settings 

are depicted in Figure Gl. Slopes of CL ntrim curves from Figure Gl were then 

calculated and plotted against the C. G. positions (Fig. G2). The intersection 

of this line and the axis representing the C. G. location was found to be 

approximately 0.445 m from datum. This represents a static margin stick-fixed 

of approximately -1% E. Table G4-gives the static margin corresponding to the 

three C. G. settings used in this experiment. 

C. G. AT 0.444m FROM DATUM 

APPROXIMATE 
NNEL SP T 

'TRIM C L U EED (deg) U (m/s) 

24.85 8 0.93 
27.04 6 0.78 
28.22 5 0.72 
30.17 4 0.63 

TABLE Cl 

VARIATION OF Cl WITH ntrim- FOR 
THE RESPECTIVE C. G. POSITIONS 

C. G. AT 0.439m FROM DATUM 

APPROXIMATE 
TUNNEL SP 

TI TRIM C L EED (deg) U (m/s) 

. 22.81 8 1.1 
23.16 6 1.07 
23.34 5 1.05 
23.51 4 1.03 

TABLE G2 



- 279 - 

C. G. AT 0.435m FROM DATUM 

APPROXIMATE TRIM C L TUNNEL SPEED (deg) U (m/s) 

22.08 8 1.17 
22.08 6 1.17 

22.08 4 1.17 

TABLE G3 

VARIATION OF C, WITH ntrim 

C. G. POSITION 444 0 0 439 0.435 (m) . . 

STATIC MARGIN_ 
_ _1 0 = -4.0 = -6.0 STICK FIXE! ) %c . 

TABLE G4 

ESTIMATED STATIC MARGIN STICK-FIXED FOR THE 
THREE C. G. SETTINGS 
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APPENDIX -H 

STATIC WIND TUNNEL RESULTS 

: $. l Longitudinal Measurements 

These tests were carried out at approximate tunnel speeds of 19,25 and 
28 m/s, which are corrected for tunnel interference. Results include pitching 

moment, lift and drag variations with incidence for various canard angle 

settings (see Table S1). 

Aerodynamic data extracted from Table Hl are presented in TableH. 2, 

together with the corresponding theoretical values where available from 

Appendix B. From available pitching moment and lift data, the position of the 

N. P. was estimated to be at 0.025 m ahead of the C. G. position at 0.435 m 
from datum. This would result in an approximate negative static margin stick- 
fixed of -14%E. 

H. 2 Lateral Measurements 

These tests were mainly concerned with the yaw variations, although 

rolling moment due to aileron deflection at zero yaw was also examined. These 

measurements are coded according to Table K3. As before, results have been 

corrected for tunnel interference. Unlike the longitudinal case above, there 

was not scope for a substantial comparison between theory and experiment. 
However, aerodynamic data obtained through Table E3 is presented in Table x4 

and where treated theoretically, results are given. 
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APPENDIX -Z 

I. 1 Control System Design Calaulations 

By substituting the estimated longitudinal stability derivatives from 

Table13dof Appendix) - 

For U= 30. Om/s 

zW = -6.0 
m= 8.0 
w 

m= -2.7 q 
z = -32.0 q 
zn = -155.0 
m= 143.. 0 

n 

The characteristic equation given by denominator of Equation (11.1) 

of section 11, becomes: 

e= s2(s2 + 7.4s + 22.4) =0 

S2=0 

or s2 + 7.4s + 22.4 =0 

which represents two poles at zero and two poles at 

s= -3.7 ± i2.9 

This leads to a damping ratio 4 of C=0.78, and and un-damped frequency 

wn of wn = 4.7 rad/sec. 

1.2 Pitch-Loon Analysis 

Pitch control is achieved via the e-feedback loop of Fig. 11.2, the open- 
loop transfer function is given by 

kek71G(s)e 
e_ r) 

sm Ti + zTi mw- zWmn 
k0 

s(s2 + SC-zw - mq )+ Cm 
qzw-m w(Ue + zq))) 

where on substitution of estimated stability derivatives: 
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e 
(e - 0) r 0 

143knke(s - 1.6) 

s(s2+ 7.4s + 22.4) 

Further, the closed-loop transfer function is given by 

knk0G(s)0 

er 1+ k0knG(s)0 

_ 
143kekn(s - 1.6) 

s3 + 7.4s2 + (22.4 + 143kekn)s - 227k6kn 

where for the servo-actuators 
kn = 0.7 rad/volt 

0.. 
e 100. lke(s - 1.6) 
er s3 + 7.4s2 + (22.4 + 100.1ke)s - 158.9ke 

By assuming the control law: 

n=ke(er - o) 

the value of ke to give a satisfactory response was found to be ke = -0.1. 
The step response of this sub-system is given by Fig. 12 below. 

� 
m 

W 

Z 
a 
a s tJ 

Z°C 

Z 

k 
ý ýº 

-3 

14! 12 lt 2i 

t tim : 2.80-El output 
41.19xExP(-4.3 

w? 1 
-rime (Se 

-ti. 44Fxp<-1.51$T). Sirt(I. 446$T-7.57E-3) 

FIG. 12 CLOSED-LOOP TIME RESPONSE TO A STEP DEFLECTION OF 1 rad. 
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Now, by substitution of stability derivative estimates and the above 

control law in equation (11.3) of Section 11, 

Fio 
_ -10.85s2 - 3.49.6s + 47.7 

Tr s(s3 + 8.7s2 + 20.2s + 15.89) 

1.3 Height Loop Analysis with Unity Feedback 

From Equation (11.4) of Section 11, the closed-loon transfer function 

of the height loon is given by: 

-F0 
_ 

khG(s)h 

Fir 1 khG(s)h 

After substitution of the stability derivatives estimates and some 

manipulations: 

No 
_ ýr 

-10.85kh(s2 + 32.2s - 43.94) 

s4 + 8.7s3 + s2(20.2 - 10.85kh) + s(15.89 - 349.6kh) + 476.7kh 

The value of*kh to give a satisfactory response was found to be, 

kh = 0.01 

Therefore, the control laws are given by 

n=-0.1(er-eo) 

er = 0.01(hr - h0) 

Figures 14 and 15 represent the computer simulations of Equation (11.5) 
for various values of a correction factor defined as: 

CF =- 
eo 

where keo = -0.1 
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1.4 Height Loop Analysis with Velocity Feedback 

By substituting the estimated values of derivatives in Equation (10.6) 

of Section 10, 

h -10.85kvkhs3+(-349.6kv kh-10.85kh)s2 +(476.7kvkh-349.6kh)s+476.7kh 
o_ 

'Fr s4+(8: 7-10.35kvkh)s3+ (20.2-349.6kv kh-10.85kh)s2+(15.89+476.7kvkh-349.6kh)s+476.7kh 

The optimal values of kv and kh are somewhere around kv =2 and kh = 0.015 

respectively. For these values, the poles and zeros of the system become, 

-0.6 ± 1.54 1.32 

-0.25 poles and -0.6 zeros 

-7.0 -3.3 

Fig. 13 shows the response of this system to a step input. Evidently, 

the response time has become shorter and to about half the value of the system 

with no velocity feed-back. Fig. 19 represents the bode plot for this system. 

Despite the advantage of the velocity feed-back, the noise in the physical 

system, namely, the test rig, would result in oscillations in the canard 

servo-actuator, especially with small values of kv. 
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APPENDIX -. Ti Initial Estimation of the Covariance Matrices G, R and Q 

Initially, the elements of G, Q and R matrices for both longitudinal 

and lateral computer based, parameter identification experiments were set to 

zero except for G where the diagonal elements which were approximated by 

6» = £(Xi X) , 

since other elements were assumed un-correlated. Also a first order approx- 
imation to process and measurement intensities is given from section 5.4 by 

rl ql = 
(r. m. s. )&rror. 2nh 

where n= 100 and h=0.01 s. 
Since 100 sapples per second are 
taken. 

ASSUMED MAXIMUM r. m. s. ERROR 
STATES INITIAL VALUE % OF MAXIMUM Gii qj ri 

VALUES ATTAINED VALUE 
J 

I w 0 4.0 (m/s) 1.6 x 1Ö 3 1o 

t. - 
_ Iq 0 1.0 (rad/s) 10-4 6x 10-5 

e 0 0.4 (rad) 1.6 x 10-5 10-5 o : 

V 0 0.1 (m/s) 1% 10-6 6x 10-7 

d P 0 0.5 (rad/s) 2.5 x 10- 1.6 x 10-5 

R 0 0.04(rad/s) 2x 10 1.3 x 10-7 
0 0.2 (rad/s) 4x 10- 2.5 x 10-6 

zw -2.0 -2.0 0.04 .5x 10-2 

ä m -0.2 -0.2 0.0004 .5x 10- ̀ ' 
w 

z 
mq 

- 
-0.8 

- 
-0.8 

- 
0.0064 .1x 10-3 

zq -10.0 -10.0 10% 1.0 0.64 
J it 

m 40.0 40.0 16.0 10.2 
n 

v -20.0 -20.0 4.0 2.5 

-5.0 -5.0 0.25 0.16 p 
r 

1.5 1.5 0.0225 .4x 10-2 

nv 15.0 15.0 2.225 1.4 
J W n 1.5 1.5 0.0225 

.4x 10 2 
p 

n -5.0 -5.0 0.25 0.16 r 
1E 50.0 50.0 25.0 15.9 
nc -6.0 -6.0 0.36 0.23 
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1, 

These values of covariance matrices were used for the computer based 

experiments of sections 5 and In matrix form G, Q and R can be presented 

as: 

J. 1 LONGITUDINAL CASE 
" 

G= 

1.6 x 10 3 
10- 4 

0 

0 

1.6 x 10-5 
4x 10- 

42 x10- 0 
6.4 x 10-3 

1.0 
0 16.0 

[io 300 

R= 0 6x10-5 0 

00 10-5 

2.5 x 10 2 0 0 0 0 
0 2.5 x 10- 4 0 0 0 

Q_ 0 0 4.1 x 10-30 0 
0 0 0 0.64 0 
0 0 0 0 10.2 
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J. 2 LATERAL CASE 

10-6 
_5 

0 
12.5x10 

2x 10-7 

G= 

0 

4x 10-6 
4.0 

0.25 
0.0225 0 

2.225 
0.0225 

0.25 
25.0 

0 0.36 

6x 10-7 000 
0 1.6 x 10 500 

R001.3 x 10-7 0 
0002.5 x 10-6 

2.5 
0.16 

1.4 x 10 2 

Q= 
1.4 

1.4 x II D-2 
0.16 

15.9 
0.2. 



- 308 - 

'J-3* Results of Computer Based Experiments Regarding the Parameter 
Identification Code 

This appendix contains the results obtained from the computer based 

experiments regarding the E. K. F., parameter identification algorithm. 
Simulated short period longitudinal and lateral responses with known stability 
derivatives due to various inputs to canard and aileron have been examined. 
These results have been coded in accordance with tables 5.6 and 6.2 of 

sections 5 and 6 respectively. It must be pointed out that the simulations 

were based on the same mathematical model as the E. K. F. algorithm. Tables 

Jl and J2 below represent the actual and estimated longitudinal and lateral 

stability derivatives respectively. The estimated values are based on the 

average of 10 runs. 

CONCISE LONGITUDINAL STABILITY DERIVATIVES 

CASE NO: /C 
SPEED (m/s) 

zW mw mq zn mit 

-2.0 9. 
Case -I 300 

-20 2 

IIO 

-20.0 1.0 

-2.0 -0.2 -0.8 -10.0 40.0 
Case - II 20 

-2.0 -0.2 000 -0.7 -15.0 45.0 

-2.0 -0. -0.8 -10.0 40.0 
Case - III-i 20 

.5 -1.1 -16.0 32.0 

-2.0 -0.2 0.8 -10.0 40.0 
Case - III-ii 20 

-2,0 -0.2 -0.6 -9.0 48.0 

Note: Superscript '"' represents the estimated value of the stability 
derivative. 

TABLE Jl: ACTUAL AND ESTIMATED LONGITUDINAL STABILITY DERIVATIVES 

CONCISE LATERAL STABILITY DERIVATIVES 
A/C 
SPEED iv tp Lr nv np nr nC 

ACTUAL -20.0 -5.0 1.5 15.0 1.5 -5.0 50.0 -6.0 

ESTIMATE -20.0 -5.0 1.0 15.0 1.5 -5.0 50.0 -4.5 

TABLE J2: ACTUAL AND ESTIMATED LATERAL STABILITY DERIVATIVES 



0 

C 

v 

¢0 

Li 0 

C 

O 

O 
:V 

O 

vp 

0 

co 
O 
ti 

oll% 

'VZ 
ö 

o 
Q 
N 

0.00 

- .3 UV 

CASE I 

U= 300 m/s 
z= -2.0 
m= -0.02 

2.00 4.00 6.00 
T (SEC) 

FIGURE JO 

8.00 ! 0.0 

SIMULATED LONGITUDINAL RESPONSE OF THE A/C TO A DIPOLE CANARD INPUT 



0 

L-1. C 

L'7 
0 

O 
G 

to 
0 

C) 

X 

C 

U') 
ham. 

C 
O 
L 
W 

N Z 

i__ 
Lo 

Cým -i 
LLj 

W U 
1ý 

n W LL 

ÖQ -i LLJ cm 
- W LL. cr- 

11 - 

N ^' _ 

O 
a 

N 

Ly 

W 
U 

LO 

W 

W o 

O 
L) 

O 

031VHIIS3 



- 311 - 

C) 

'TJ 
L 

Lr) 

L CD 

0 

C) 
0 

1 

%-4 W 

c3 O 

C 

O 

1 11) 

Ez 
vG 

D _" 

ca 
' C. Oid 

CASE II 
U= 20.0 m/s 
z= -2.0 w 
mW = -0.2 
m= -0.8 
_q ,�� 

2.00 4.00 6.00 8.00 ! 
T (SECI 

FIGURE J01 

SIMULATED"LONGITUDINAL'RESPONSE Or'T1 ýIC'TO A DIPOLE CANARD INPUT 



- 312 - 

2.0 
N 

K ýG 

W 

-10 

0-2 

0" 

W 
rS 

0.1 

1o 

E 

z 
W 

-110 

e 
E 

o' k 
e s_ 
W 

FIGURE J1l 

4 

CONVERGENCE OF SOME OF THE ESTIMATED PARAMETERS WITH NUMBER OF 
ITERATIONS (CASE II) 



- 313 - 

e 

oc 
ýc 

uu 
ra 

F- 
a- 

J 
d 
G 
«-. 

O 
N 

ý-r 
N 

M 
7 

W 

UJ- 

.r 

W 
N 

C.: 

cn 

I- 

w 

tL 
c 

Z 
zi 

I 

W 
H 

W 

4i. 

U 
Z 
W 
Cr 

W 
Z: 
c 
L) 

Z 031VW1153 



- AlA - 

o ' 
O 

u, a 
t7 

O 
D 

In 

U a ý" 

" >< 0 0 O 
. -94 N Q 

WhN 
N KA ö t'() N 

~ 
C l CD v 2 
E > .d -4 

-ý 
V F- N 

z 
C 
"ý Z 1-- N 

" Z 
UJI 

J rz-ý W k" W Cý w 
0 ý ý-"ý CY- 
CD Läi O ti. LL- 
Kn N e O 

3 N 
v) a N m 

L'7 = 

N 

"O C 

F-- 
la] 

O 

W 
C9 
W 

ti 0 M Z- _ 
CD 

Z " 091VW 1153 



- 315 - 

Q 

'v 

-o 
b 
%to 0 

0 

0 
0 

0 

IM 
L 

QN 

W 

I-- 

0 
a 

C) 0 

N 

r0 C 

0o 

C) 
0 

0 
0 

. ý. 
r- 

Ný 
E 

... 

3 

FIGURE J5: 

U. uw -- -- 

1t 
SEC) W. ULI 10.0 

SIMULATED LONGITUDINAL RESPONSE OF A/C TO A SINUSOIDAL CANARD INPUT 

CASE 111-i 
U= 20.0 m/s mq = -0.8 
z. = -2.0 , ,.,. 



C fir 

6 

... rV 

a- 

0 
0 

0 O 

r 
1 

N 
10 

L 

'V O 

c ö. 

cy- 

O 
G 

r_. 
0 

Ir 

Ici 

O 

O 

C 
C 

O_ 

0 

Np 

C 

- 316 - 

Cl -T-- If 

'0.00 2.00 T. i 
SEC) 

6.00 8.00 

FIGURE J6 

SIMULATOR LATERAL RESPONSE OF A/C TO A DIPOLE. AILERON INPUT 

10.0 

.I 



c z 0 

s 
a% 

0 N 

- 
031vw1153 

e 
H 

0 
w 

z 

2 

`ý 

41 1 

b-4 Z: 
F- ý 
N F- 

ý 

Q 

Ü 
N 

WW 
ý7F-- 

W 
WZ 

cl: 

OQ 

o p. 
13- 

W 
c2 

031vWi1S3 

CA 

% a. 
Ni 

"� 03lvui153 

e 
M 

e 

'r 031vwi1S3 

"ý G31vWiLSJ 



- 318 - 

A: 
NTIF: C&7! CN 

sao 

ýw 

Q 
W 
r 
KT 

C 
r 
H 
W 

-30.0 

5o 

ey 

0 W 
r t 
Z 
F 
H 
W 

-S-0 

FIGURE J8: CONVERGENCE OF ESTIMATED PARAMETERS WITH TIME 



- 319 - 

v 

zm 
>- a aW 
O 0" 

Lj- UJ -4 CZ 
- 

LLJ 2= 
W 

G Q 
C~ 

NC 
r-ý L+.: Y 

N r-+ 
W 4 

C 
º- >= z z0-. 4 cD O 
C -ä 

LAj 

f d (>-ý 
G F- ý1 

V) C=) 
_J LU 

00, ý, 49: z C= r_ 

ooo 00 "O ý 
- - F I ý 00 eo, , O 'Ir 

rf W 

O O 
m Ü z 

a 
N 

-J W 

O S r'ýO 1 LCC 
c 0 l 

Q 
U OG t ?C 

L! J 
1 

N 

a 
O 
S 

I--- 
p 

Ö 
C) 

I I I 



- 320 - 



321 

++ 
cc vv 

L1_ C>! I+ 11 11 

C 

X C 
< < I 

F-- 

1- 

C 11 
+ C 

F-- 
~ ~XW 

9 C 

M 
1 (I OC<C > 

Wc I- M- Wa 
NC O 

m v 
J $I 

J+ C 

I C. i 

C a- 
C) 

=I O 
w 

J 

G 1 

LAJ 4-1 
ý- 11 
Q i1 

ÜC 

ýI v 

u <I 



- 322 - 

J. 4 Calculations and Results Regarding Experiments 1-4 of Table 8.3 

Covariance matrices G, R and Q were initially estimated to be: 

G= 

1.6 x 10-3 0 0 0 0 

0 10-4 0 0 0 

0 0 1.6 x 10-5 0 0 

0 0 0 4x 10 2 0 

0 0 0 04 x 10 4 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

10 300 

R=06x 10 50 

L00 10-5 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
o 0 0 

6.4 x 10-3 0 0 

0 1.0 0 

0 0 16.0 

2.5 x 10-2 0 0 0 0 

0 2.5 x 10-4 0 0 0 

0 0 4.1 x 10-3 0 0 

0 0 0 0.64 0 

L0 0 0 0 10.2 

With all initial values set to zero. The covariance matrices were based on 

an assumed 10%. r. m. s. in the estimation of the aerodynamic derivatives and 
1% r. m. s. error in measurement. Based on the average of ten runs with different 
R deviating from its estimated value by ±20%, Table J3 'gives the mean estimated 
stability derivatives of the F. S. W. model with C. G. at 0.444 m from datum. 
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ESTIMATED DERIVATIVES IN CONCISE FORP1 
E 

TUNNEL zW mW mq zn zq mit q* 
SPEED (m/s) 

oa 

U= 27 -4.5 7.0 -1.4 -92,0 -31.0 108.0 äö 

.ý 
U= 30 -6.0 8.0 -2.7 -155,0 -33.0 143.0 j 

ESTIMATED DERIVATIVES IN AERO-NORMALISED FORM E 

TUNNEL 2W M Pi z 2 M 

SPEED (m/s) W q q n oö 

U= 27 -8.0 3.3 -4.0 -6.1 -328.2 1.9 

U= 30 -9.6 3.4 -6.9 -9.2 -314.4 2.3 

TABLES- 3. a 

MEAN ESTIMATED STABILITY DERIVATIVES WITH C. G. AT 0.444 m FROM DATUM 

ESTIMATED DERIVATIVES IN CONCISE FORM 
E 

TUNNEL zW MW mq zn zq IR: r 2: 
mit 

SPEED (m/s) ä 
I 

U= ?F -5.0 8.0 -1.0 X -32.0 140.0 aö 

U= 28 -7.0 10.0 -2.2 -190.0 -32.0 
Cz L, - 160.0 

ESTIMATED DERIVATIVES IN AERO NORMALISED FORM 
E 

TUNNEL Z M M y 
SPEED (m/s) W W q q q n `r 

o 

U= 26 -9.2 3.9 -2.8 X -338.7 X 

U= 28 -12.0 4.8 -6.2 -13.5 -338.7 3.0 

TABLES-J3. b 
MEAN ESTIMATED STABILITY DERIVATIVES WITH C. G. AT 0.440 m FROM DATUM 
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J. 4 Results of the Lateral Dynamic Tests 

This section contains the results of lateral experiments as riven by 
Table 9.2 of Section Q. 

Covariance Matrices G, R, n 

Based on the method of section JL., the initial value of the state 
covariance matrix 'C' was estimated to be: 

G(o) = 

r"L.. "J":... .__.. I. 0.2 

r--1r 0.2 
;:.: v.. 0.158 .. _ ý.. :.. _.. ... . ý. _.. .. ' 
C.: : "L .. "ý 0.02 .:.. .. .'.. ý : "ý ." 
V. L u. L 

...:, .. 
ý 0.25 

...........:. ..::. . 

0 ? 89 
:.: ,.... ,... ý.. ... L.. 0.09 ,. .'_. " ..: 'd "Jr"r""L".. ". "L"_0.25 '., 

_. 
L" t1 

.. ".. .. "1. ."-. ". v":. ". 
0.026...: 

"\-"r'"I" 

C. ýý L.. ..:. .. __.. .. '. .... " :. 0.088 .:.: .. '.. r 
"0_ 0 

" 

_ 
r.. ý.: 64.0 

ý. "VV"ý. r"_. ""r"r". "v"ý. ". "^"rv"vQ"0. " 

' 64.0 

Also, measurement noise covariance matrix 'R' and process noise 
covariance matrices 't' were estimated to be: 

R= 

Q= 

10-6 000 
0 10-6 00 
00 lÖ-6 0 
000 10-6 

0.02 
17 

C. O N. t. C.. 0.01 
. "' .. ý. ý 

C ý... .., 0.03 ý. :. :. _.: ý. . 
C. $: 
ý% .V 

to .v 
J" :ý 

v 
V"ý Y". fir .r 

0.3 
0.0 

."r 

;. 
. 

.. t. 
: 

- ,. 
" 

'i J"1 

0.0 
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ESTIMATED DERIVATIVES IN CONCISE FORM 

TUNNEL ýv ýP 't r nv nP nr nt 
E SPEED (m/s) 

27 2.0 -12.0 -2.0 2.0 26.0 -9.0 118.0 

29 0.5 - 2.0 -1.2 0.8 30.0 -7.2 124.0 240.0 äö 

31 1.5 - 4.5 -1.0 1.5 32.0 -8.0 132.0 210.0 `ý- 

33 1.0 - 7.8t-0.9 1.2 33.0 -9.0 147.0 190.0 

TABLE- J4 . 

ESTIVATED DERIVATIVES IN AERONORMALISED FORM 

TUNNEL LV In 

SPEED (m/s) 
tr Nv Nn Nr 

27 0.09 -1.72 -0.29 0.55 22.03 -7.63 0.2 2.26 

29 0.02 -0.27 -0.16 0.2 23.67 -5.68 0.18 2.12 

31 0.08 -0.56 -0.12 0.36 23.62 -5.9 0.17 1.62 

33 0.04 -0.92 -0.11 0.27 22.88 -6.24 0.17 1.3 

E 

wo" 
v1- 
o¢ 0 

0 

C. D La- 

U 

TABLE -JS, 

TUNNEL 
SPEED (m/s) 

27 

ESTIMATED DERIVATIVES IN CONCISE FORM e 

lc: c ýý ýp Rr nV np nr ýc nc öö 

aX: 
"o 

0.7 -8.0 -3.2 2.2 -2.0 -8.0 100.0 380.0 

TABLE , r, 46. 

ESTIMATED DERIVATIVES IN AERONORMALISED FORM 

TUNNEL ýv t rr Nv 
r o 

SPEED (m/sl p p 
0 It 

27 0.03 -1.15 -0.46 0.6 -1.69 -6.78 0.17 3.17 

TABLE _J7. 
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