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Abstract.

Previous workers have proposed the use of multivariate geostatistics for the problem of

estimating temporal change in soil properties for soil monitoring, but this has yet to be

evaluated. We present a case study of this approach from the Humber-Trent region in

North East England. We extracted data from two sources on cobalt, nickel and vanadium

concentrations in the topsoil on two dates. Autovariograms were estimated for each

metal on each date, and pseudo cross-variograms for each metal on the two dates. It was

shown that robust estimators of the auto and pseudo cross-variograms were needed for

the analysis of these data. A linear model of coregionalization was then fitted to describe

the spatio-temporal variability of each metal.

While the concentration of each metal in the soil showed pronounced spatial depen-

dence, that we know is driven by parent material, the change over time was only spatially

structured for cobalt and vanadium. This shows that information on spatial variability

from a single date may be a poor guide to the design of a monitoring scheme. We showed

how the cokriging variance of the change in concentration of cobalt and vanadium depends

on sampling effort and strategy. The change in these particular variables between two

dates is best estimated by sampling with equal intensity at the same sites on both dates;

and when resampling an existing baseline survey it is best to sample them at rather than
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between the original sites. The best strategy in any case depends on how the variable is

coregionalized over time.

Keywords: geostatistics; pseudo cross-variogram; cokriging; robust estimation; soil moni-

toring; heavy metals; pedometrics.
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1. Introduction

1.1 The soil monitoring problem

There is considerable interest in how best to monitor the quality of the soil, so as to

ensure that it is managed sustainably (e.g. Mol et al., 1998; DETR, 2001; Huber et al.,

2001). There are many important questions that must be addressed if the soil is to be

monitored adequately. One of these is how soil properties should be sampled in order to

detect changes over time with adequate precision. This has been addressed in the context

of how to estimate the mean change of a variable within an individual monitoring site

(e.g. Miller et al., 2001). In this paper we are concerned with how to map changes in soil

quality as spatial variables. This will be necessary in order to identify where particular

problems are emerging, and where effort for improved management should be targeted.

This is a challenging problem. Various studies have shown that the spatial compo-

nents of soil variation can be very large in multitemporal data sets (e.g. Bringmark and

Bringmark, 1998; Webb et al., 2000). Papritz and Webster (1995a) point out that, with-

out adequate sampling design and analysis, it may not be possible to detect important

changes in soil properties because of spatial variability. They considered design-based and

model-based sampling designs for soil monitoring, the latter based on a proposal of Pa-

pritz and Flühler (1994) for geostatistical mapping of change in soil variables. They then

2



used simulated data to illustrate how these might be implemented (Papritz and Webster,

1995b).

1.2 The coregionalization model of spatio-temporal variation

The model-based method for estimating change proposed by Papritz and Flühler (1994)

treats a soil variable on m dates as a realization of m coregionalized random variables

and so exploits any temporal persistence of the spatial variation that can be expressed as

cross-correlation between values of the variables on different dates. When this has been

done the change in the variable between two particular sampling dates can be estimated

for unsampled sites, or for blocks, by cokriging, which also supplies an estimate of the

estimation variance.

The advantages of this approach are twofold. First, if there is cross-correlation over

time then, once an initial baseline survey has been conducted, subsequent resampling

for monitoring could be done less intensively while maintaining adequate precision for

estimates of the change of the soil variable at unsampled sites. Second, cokriged estimates

of change are coherent, that is to say the estimate of change and both the estimates of

the variable on two dates are all best linear unbiased predictors (see Webster and Oliver,

2001).

This multivariate geostatistical model of multitemporal soil data could be used to

address various questions. Van Duijvenbooden (1998) points out that various European

countries are developing monitoring schemes based on grid samples of the soil. For ex-

ample, England and Wales has a 5-km grid baseline survey, which is likely to provide a

basis for future monitoring (McGrath and Loveland, 1992). We may ask whether, having

established a baseline survey, at what intensity we must resample on future dates in order

to estimate changes in the soil with adequate precision. We may also ask whether it is best

to attempt to resample the same sites, or to sample at other locations. Such questions

could be addressed with the coregionalization model.

1.3 Alternative geostatistical approaches and their limitations
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Geostatistical studies of real data, motivated by an interest in soil monitoring, have mostly

focussed on analysis of data for a single time (e.g. Arrouays et al., 2000; Scholz et al.

1999). This is understandable since most soil monitoring activity is at an early stage of

development. However, the limitation of these studies is that we cannot be confident that

the spatial variability of a soil property on one date will be a good guide to how we should

sample in order to monitor change in the soil. For example, the spatial variability of heavy

metals in soil may be largely determined by geological variation (e.g. Atteia et al., 1994),

and this will persist over time. The task of resampling is to detect change against the

baseline sample, not to re-estimate a pattern of variation dominated by the geology. The

spatial variation of change in the soil properties should determine the resampling strategy,

and this may be quite different from the baseline variation, as is illustrated by the results

of Sun et al. (2003).

One interesting study on temporal change of soil properties using univariate geo-

statistics is that of Zhang and McGrath (2004) who analysed data on the organic carbon

content of soils in part of the Republic of Ireland. These had been collected on two

dates. These authors used ordinary kriging to estimate organic carbon content for each

date separately on a common grid, then estimated the change simply by computing the

differences. The estimation variance of change was computed by adding the two kriging

variances. This method discards any information that the data for one date might con-

tribute to estimates of the property on date two, and the estimate of change cannot be

regarded as the best linear unbiased prediction of change because the two ordinary kriging

estimates are not coherent (Webster and Oliver, 2001). Further, the estimation variance

is likely to be conservative.

Despite the disadvantages of the univariate approach, it makes no restrictive as-

sumptions about the relationship between the variation of a soil variable on several dates

(e.g. that it is consistent with a linear model of coregionalization) because it does not

require modelling of the cross-covariance. Further, if the sampling sites on different dates
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do not coincide then it is less straightforward to model the coregionalization than in most

geostatistical problems since the model must be based on pseudo cross-variograms or the

generalized cross-covariances of Künsch et al. (1997). While the coregionalization model

is attractive in principle, there are possible practical problems, and we require evidence

of its usefulness when applied to real data on the soil.

1.4 What is needed now

We are not aware of any studies where the approach of Papritz and Flühler (1994) and

Papritz and Webster (1995a) has been applied to multitemporal data on the soil — other

than a rather contrived case study by one of us (Lark, 2002a) where a subsampled data

set on soil water content was used to investigate a methodological problem. The objective

of the present paper is to evaluate the use of the multitemporal coregionalization model

for spatio-temporal variability of soil properties which are pertinent to the monitoring of

soil quality. Our case study is based on concentrations of three metals in the top soil of

the Humber-Trent region of eastern England. We describe the spatio-temporal variation

of these metals on two dates by a linear model of coregionalization. We then use this

model to test the hypothesis that the spatial variation of change in metal content of the

soil can be quite different from the spatial variation of metal content on any one date.

We also demonstrate how change in the concentration of the metal can be estimated by

cokriging and draw conclusions on how the soil of cognate landscapes should be sampled

in order to monitor change in these variables.

2. Materials and methods

2.1 Soil sampling and Analysis

We used two sources of data in this study. The first is the National Soil Inventory of

England and Wales (NSI) collected by the National Soil Resources Institute (then the

Soil Survey of England and Wales), and sampled on two dates the latter less intensively.

The second is data from the Geochemical Baseline Survey of the Environment (G-BASE)

survey of the British Geological Survey. Since the G-BASE survey of the Humber-Trent
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region, an area of approximately 15,800 square kilometres in North East England, took

place at a similar time to the second NSI sampling, we have limited our study to this

region that is shown in Figure 1.

The NSI baseline survey in the Humber-Trent region took place between 1979 and

1984. Sampling took place at sites on a 5-km orthogonal grid aligned with the Ordnance

Survey National Grid. Details of the protocol are published elsewhere (McGrath and

Loveland, 1992). Soil sampling was restricted to the uppermost 15 cm of mineral soil (or

less if rock intervened), or of peat, as appropriate, i.e. litter layers were not sampled.

The actual sampling depth was recorded. Twenty-five cores were taken at the nodes of

a 5-m grid within a 20-m square centred on the basic 5-km grid-point. The cores were

bulked and mixed well in the field, double-bagged in food-grade polythene bags, and a

waterproof and rot-proof label placed between the bags. The target sample mass was 450

g of air-dried soil. In the laboratory the soil was air-dried, half the material was ground

to 2-mm, then a 25-g sub-sample was taken from this by coning and quartering, and

ground to <150 µm. This subsample was extracted with aqua regia and then analyzed

for a range of metals by ICP-OES or atomic absorption spectrometry (for a few metals

including vanadium).

Essentially the same protocol was followed when the NSI grid was resampled in the

Humber-Trent region in 1995. The sample sites were selected at random from those used

in the baseline survey so that, nationally, just under 30% of sites were resampled. There

had been some development in analytical methods, but reanalysis of stored soil from

the baseline sample suggested that the results were comparable for the elements that we

report in this paper.

The G-BASE data were collected under a non-aligned sampling scheme. The basic

strata were 2-km squares of the Ordnance Survey grid, and every second square was

sampled. A sample site was selected at random within the square. At each site five soil

cores were collected from the centre and corners of a 20-m square. As in the NSI survey,

6



the cores were 15-cm long and excluded surface litter. The five cores at each site were

bulked. All samples of soil were air-dried, disaggregated, sieved to pass 2 mm, coned and

quartered. From each a 50-g sub-sample was ground in an agate planetary ball mill until

95% of the material was finer than 53 µm. The total concentrations of 24 major and

trace elements were determined in each sample by wavelength dispersive XRFS (X-Ray

Fluorescence Spectrometry). The G-BASE sampling in the Humber-Trent region took

place in the summers of 1994, 1995 and 1996, and 6411 sites were sampled.

2.2 Combining the data

Of the NSI baseline sample points 623 lie within 10-km of a G-BASE site from the

Humber-Trent survey. Of these 229 were subsequently resampled. We could use these

data alone to investigate spatio-temporal variability of metals in the soil but this restricts

our analysis to variation over distances of 5 km or more, the basic interval of the NSI data;

and because the resampled data are relatively sparse and collected at random, they are

not ideally suited to spatial analysis. To obtain information on spatio-temporal variability

at finer spatial scales we decided to combine the NSI resampled data and the G-BASE

data into a single set (‘Date 2’) for comparison with the NSI baseline survey (‘Date 1’).

There are obvious objections to this. Both data sets are collected on topsoil (0–

15-cm) with litter excluded, and both from a 20-m square, but there are differences in

sample support. The NSI sample is 25 cores bulked from across the square while the G-

BASE data are 5 cores bulked from the corners and centre of the square. The analytical

methods are also different. The NSI is based on aqua regia extraction and ICP-OES while

the G-BASE is a solid phase analysis by XRFS that determines the total concentration

of an element in the soil. Experience suggests that analysis by XRFS will usually yield

larger total concentrations of certain metals in soil in comparison to an aqua regia digest

followed by ICP-OES, because during the acid digestion some of the more recalcitrant soil

minerals may not be dissolved. This may also account, in part, for the smaller analytical

variances (from the analysis of duplicates and sub-samples) for XRFS (see Table 1) in

7



which some of the metals may be present in different forms.

Ideally we would not combine these two data sets. Rather we would undertake a

new sampling campaign or reanalyze retained soil samples with a common technique.

In practice we must make the best use of available data that represents a substantial

investment of resources in order to make informed decisions about how best to monitor

these variables in future.

We compared the statistics of the NSI resampled data from the Humber-Trent region

and the G-BASE data. In this paper we focus in detail on the analysis of data on

cobalt, and report some results for nickel and vanadium. In Table 1 we present for

comparison the statistics on these variables in the two data sets, and in Figure 2 we show

the empirical cumulative frequency distributions. As well as standard descriptive statistics

we present some robust measures of location (the median), variability (Rousseeuw and

Croux’s (1992,1993) Qn that estimates the standard deviation) and skew (the octile skew,

see Brys et al. 2003). These statistics are resistant to the effects of outlying data that are

expected in data on metal concentrations in the soil, since some point pollution is likely.

The estimator Qn is based on a linear combination of order statistics. It was proved

by Rousseeuw and Croux (1992,1993) to be both robust and efficient.

Qn = 2.219{|Xi −Xj|; i < j}(H
2 ), (1)

where X1, . . . , Xn are the n ordered data, {}k is the kth order statistics of the terms in

brackets and H is the integer part of (n/2)+1. The constant is a consistency correction so

that Qn estimates the standard deviation if the data are drawn from a normal distribution.

The octile skew is defined as

(P0.875 − P0.5)− (P0.5 − P0.125)

P0.875 − P0.125

(2)

where Pq is the value of the ordered datum such that proportion q of the data are smaller

than Pq (Brys et al., 2003). The octile skew is zero if the 1st and 7th octiles are symmetric

about the median. Data with a conventional coefficient of skew larger than 1.0 are usually
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transformed (Webster and Oliver, 2001). We found that random variables drawn from

distributions in Tukey’s g family with a conventional coefficient of skew of 1.0 have an

octile skew close to 0.2.

The three variables shown in Table 1 and Figure 2 are among those where we

combined the NSI resampled data with the G-BASE data. In all cases the robust measures

of skew and dispersion were of similar order and the shapes of the empirical cumulative

distribution functions were also similar. The distributions differed more or less in their

means and medians, which was attributed to differences between the analytical methods

so in all cases the data sets were adjusted to a common median value (that of the set with

the largest value). This was done by an additive correction, i.e. by adding the absolute

difference between the medians of the two sets to each value in the set with the smaller

median. Note that the median and mean values of the combined data set do not affect

the LMCR that is fitted, since this depends only on the variances and covariances of the

values on the two dates.

2.3 Spatial Analysis

We assume that the value of a soil property at time u and location x, zu(x) is a realization

of an intrinsically stationary random function Zu(x). Intrinsic stationarity is discussed

in detail elsewhere (e.g. Webster and Oliver, 2001). It includes the assumption that we

may define an auto-variogram function γu,u(h) where h is a spatial interval, the lag. If

the soil is observed on a second date, v, then a new random function, Zv(x), is invoked

with auto-variogram γv,v(h). The spatial covariation of the variable on the two dates is

described by a cross-variogram function:

γu,v(h) =
1

2
E[{Zu(x)− Zu(x + h)}{Zv(x)− Zv(x + h)}]. (3)

The auto-variograms and cross-variograms can be estimated for different lags, then a

model is fitted to the estimates. The joint model of the variograms must have certain

properties so that the overall coregionalization model is positive definite (all combinations

of the constituent random variables have a positive variance). This is most readily ensured
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by fitting a linear model of coregionalization (LMCR). We do not discuss this here, details

are given by Goovaerts (1997) and by Lark and Papritz (2003), but it does impose the

requirement that the values of the variable on different dates can be regarded as linear

combinations of a common set of random variables.

When a LMCR has been obtained for two variables then their values, or linear

combinations such as the difference zv(x0)−zu(x0), at unsampled sites, x0, or over blocks

can be estimated by cokriging. Cokriging is an optimal estimator in the sense that the

mean square estimation error is minimized, an estimate of this error is also provided

(the cokriging variance). This variance is determined by the disposition of sample points

around the target location or block where the estimate is made, and the LMCR. It is

therefore possible, once an LMCR is obtained, to compare different sampling strategies

with respect to the cokriging variances and so to select a strategy that is both economical

and fit for purpose (McBratney and Webster, 1983).

This is not straightforward in the present case. First, we cannot use all available

data to estimate the cross-variogram since this can only use data from sites where all

variables are measured. Second, data on soil metal concentrations over a large area such

as this are likely to contain outliers from contaminated hot spots. These will inflate

variogram estimates (Lark, 2000) and so will give misleading information on the precision

with which can be estimated from a given sample. We now discuss these issues in more

detail.

2.3.1 The Pseudo cross-variogram. In this case study only the resampled NSI sites in

the Date 2 data set are at locations common to Date 1, that is 229 sites. This is a

small proportion of all the data available and no information on spatial variation over

distances less than 5 km is available from these sites, but it is only these data that may

be used directly to estimate the cross-variogram. For this reason we used an alternative

variogram, the pseudo cross-variogram defined by Myers (1991) as:

γP
v,u(h) =

1

2
Var[Zv(x + h)− Zu(x)], (4)
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where Var[ ] denotes the variance of the term in brackets. An alternative approach is to

follow Künsch et al. (1997) and to fit an LMCR to generalized cross-covariances. Here we

used the pseudo cross-variogram since suitable robust estimators exist (see the discussion

below).

Papritz et al. (1993) describe the pseudo cross-variogram in detail. Here we note

only that, while the pseudo cross-variogram can be defined for any pair of weakly sta-

tionary random variables it only exists in certain conditions when the variables are only

intrinsically stationary.

A LMCR may be fitted to estimates of the auto-variogram and pseudo cross-

variogram of two variables; see, for example, Lark (2002a). Certain assumptions are

necessary if an estimate of the pseudo cross-variogram at lag zero is not available, (Pa-

pritz et al., 1993; Lark, 2002a) but this is not the case in the present study. When

an LMCR has been fitted, then the cokriging estimates of linear combinations of the

constituent variables can be obtained, as described by Papritz and Flühler(1994).

2.3.2 Robust estimators of the pseudo cross-variogram. A standard estimator of the pseudo

cross-variogram is the centred estimator proposed by Papritz et al. (1993):

γ̂P,Pa
v,u (h) =

1

2Nv,u(h)

Nv,u(h)∑
i=1

[{zv(xi + h)− z̄v} − {zu(xi)− z̄u}]2, (5)

where z̄u and z̄v are the arithmetic averages of the variable z on dates u and v.

This estimator is equivalent to Matheron’s (1962) estimator of the auto-variogram

when v = u, and like Matheron’s estimator it is very susceptible to the effect of a few

outlying values. Outliers can be values unusually large or small relative to the marginal

distribution of the data (‘marginal outliers’), or values that are only unusual relative

to those at neighbouring locations (Laslett’s & McBratney’s (1990) ‘spatial outliers’).

Outliers, other than simple errors, arise from processes different from those that cause

soil variation over most of the region. For example, deposits of dung and urine on pasture

give patches of soil with larger nutrient concentrations than the background concentrations

elsewhere (McBratney & Webster 1986).
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Outliers may represent important phenomena that we wish to detect, such as ‘hot

spots’ of pollutants, but they should not influence unduly the variograms used to krige

over a whole site, or to design a grid for detailed sampling. Because the differences in

Equation (5) are squared the effect of an outlier on the estimates is large; and, because

one observation is likely to appear in several differences over different lags, one outlier

can inflate the whole variogram. This is clearly undesirable.

Large errors of measurement or transcription are usually detected and removed

when data are edited, but not all outliers are unambiguously wrong. If we remove large

or small but legitimate values we may will bias later inferences from data. For this reason

robust estimators should be used to estimate parameters from data that include outliers.

Such estimators are resistant to the effects of extreme values. Lark (2000) reviewed

and demonstrated some robust estimators of the auto-variogram and later showed (Lark,

2002a) that these can be generalized to robust estimators of the pseudo cross-variogram

since the latter is a univariate variance.

The sample average of a data set, used in the pseudo cross-variogram estimator

in Equation (5) is susceptible to outliers while the median is a robust estimator of the

location of a distribution. The robust estimators of the pseudo cross-variogram first centre

the data for each variable by the sample median. For simplicity of notation we define a

centred difference variable:

Y i
ṽ,ũ(h) ≡ {zv (xi + h)− z̃v} − {zu (xi)− z̃u} (6)

where z̃u and z̃v are the sample medians.

We may generalize the robust auto-variogram estimator of Cressie & Hawkins (1980)

to a pseudo cross-variogram estimator γ̂P,SRD(h):

2γ̂P,SRD
v,u (h) =

{
1

N2,1(h)

∑Nv,u(h)
i=1 |Y i

ṽ,ũ(h)| 12
}4

0.457 + 0.494
Nv,u(h)

+ 0.045
N2

v,u(h)

. (7)

The denominator is a consistency correction, on the assumption that the data uncon-

taminated by outliers are drawn from a bivariate normal spatial process. This estimator
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has useful properties. Lark (2002a) showed that it was both resistant to outliers and

efficient. However, unlike some estimators it is not B-robust, i.e. the effect of a very large

contaminant is not bounded. One B-robust estimator of variance is the Median Absolute

Difference. Lark (2002a) proposed the estimator:

2γ̂P,MAD
v,u (h) = 2.198{Median[|Y i

ṽ,ũ(h)|]N2,1(h)
i=1 }2. (8)

When v = u this is equivalent to Dowd’s (1984) robust variogram estimator. There are

bounds on the effect of any outlier on this estimator (see Lark 2000 for discussion) and

simulation showed it to be very robust although less efficient than alternatives (Lark,

2002a).

We have already used Rousseeuw & Croux’s (1992, 1993) Qn as a robust estimator

of the standard deviation. This may be applied to the difference variable in order to

return a robust variogram estimate:

2γ̂P,Qn
v,u (h) =

[
2.219{|Y i

ṽ,ũ(h)− Y j
ṽ,ũ(h)|; i < j}(Hh

2 )

]2

. (9)

where Hh is the integer part of (1 + Nv,u(h)/2) and Nv,u(h) is the number of centred pair

difference observations over lag h in our data. When v = u this is equivalent to Genton’s

(1998) robust estimator of the auto-variogram.

In this study we used the standard auto-variogram estimator, γ̂P,Pa
v,u (h), γ̂P,SRD

v,u (h),

γ̂P,MAD
v,u (h) and γ̂P,Qn

v,u (h) to estimate auto- and pseudo cross-variograms for data on soil

metal concentrations from the two dates.

Lark (2000) showed that differences between robust and non-robust estimators of

the auto-variogram may reflect the presence of outliers in the data, but may also arise

when our data do not resemble a contaminated normal process (a log-normal process may

be a more appropriate model). It was found that we can distinguish these situations by

cross-validation of the variogram model. A model is fitted to each set of estimates of

the auto-variogram. Each observation, zu(xi), is then excluded from the data set in turn

and estimated from the rest by ordinary kriging. This returns an estimate, Ẑu(xi) and a
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kriging variance σ2
K(xi) . From these we may compute a standard square kriging error:

θ(xi) =

{
Ẑu(xi)− zu(xi)

}2

σ2
K(xi)

. (10)

If the variogram model is correct then the expected value of θ(xi) is 1, since the squared

error should equal the kriging variance on average. If the variogram is overestimated

(due to outliers, for example), then the ratio will tend to be smaller than 1. However,

the average value of θ(xi) over all observations will be a misleading diagnostic statistic

because it is itself susceptible to the effects of outliers. Lark (2000) proposed the median

value, θ̃ = median [θ(xi)]
N
i=1 as a better diagnostic because of its robustness.

If the variogram model is correct then the expected value of θ̃ is 0.455 when the

background process is normal. Lark (2002b) showed how confidence limits for the sample

value of θ̃ could be obtained by bootstrapping to allow for correlation among the kriging

errors. It is proposed that if the value of θ̃ obtained with the variogram based on a non-

robust estimator is significantly smaller than 0.455, then that robust estimator is used for

which the value is closest to the expectation.

2.4 Analytical protocol

In this study we estimated auto-variograms for the concentration of a metal in each of the

two data sets, Date 1 and Date 2. We cross-validated each model and computed confidence

limits for the sample θ̃ by bootstrapping. If θ̃ for the auto-variogram obtained by the

standard estimator was not significantly different from 0.455 on both dates, then this

estimator and γ̂P,Pa
v,u (h) were used to obtain auto-variograms and pseudo cross-variograms

respectively. Otherwise the robustly estimated auto-variogram model that performed

most consistently on both dates was chosen and the pseudo cross-variogram was estimated

by the corresponding robust estimator:— γ̂P,SRD
v,u (h), γ̂P,MAD

v,u (h) or γ̂P,Qn
v,u (h).

A LMCR was then fitted to the set of estimates by weighted least-squares with

the usual constraints on the coefficients to ensure a positive definite model. A simu-

lated annealing algorithm was used that allows all model parameters to be optimized

simultaneously while meeting these constraints (Lark and Papritz, 2003).
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The LMCR was then used to map metal concentrations on both dates and the

change variable with the cokriging equations of Papritz and Flühler (1994). The LMCR

was then used to determine the following.

1. The auto-variogram of the change variable Zv(x)− Zu(x) where v denotes the second

date. The change auto-variogram, γv−u(h) is :

γv−u(h) = γv(h) + γu(h)− 2γv,u(h), (11)

so we can estimate the variogram of change from the terms of the fitted LMCR.

2. The point cokriging variance for estimates of the change variable Zv(x) − Zu(x) from

three notional square-grid sampling schemes applied at different intensities. In each case

the cokriging variance was estimated for a location at the centre of a Date 1 grid cell

cokriging from the nearest 36 observations on each date. The sampling schemes were as

follows:

i. Sample effort (measured as samples km−2 over both dates) equally divided between

two dates on a square grid with sampling at the same location on each date.

ii. Sample effort on Date 1 is constrained to the NSI baseline survey (a 5-km interval

square grid) and sampling on Date 2 is at intervals 5/n km where n is an integer

and the sample grids on both dates are in phase, thus all Date 1 sample sites are

resampled on Date 2. Here our sampling strategy is to resample all sites on the

baseline survey and to intercalate additional points.

iii. As (ii) but the Date 2 sampling is done on square grids of interval i=2,3 or 4-km

so that Date 2 points only coincide with proportion p of the Date 1 points where

p = min
{

1
i
, 1

imod(5)

}
. Here we only resample a proportion of the baseline survey

sites and collect other samples on Date 2 from sites not previously surveyed.

2.5 Hypothetical examples

The cokriging variances obtained above will reflect the particular coregionalization struc-
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ture of our data sets. To investigate the sensitivity of the choices between sampling

strategies to the strength of the cross-correlation between the two dates we compared

strategy (i) above with a fourth strategy for hypothetical LMCR. The strategy was

iv. Sample effort is divided equally between two dates on square grids both of interval i.

The The grids on the same date are aligned but offset along the rows and columns

by i/2. In practice the sampling on the second date would be supplemented by

resampling some of the date 1 sites to support estimation of the pseudo cross-

variogram at lag zero, but we have not considered the impact of these points on

kriging here.

We computed the maximum point cokriging variance of the difference between the

two dates under strategy (i) and (ii) with the same grid intervals, kriging from the nearest

36 observations for each date. We assumed an LMCR with all nugget terms zero and a

spherical component of range 5 km. The sill variances for each date were set to 1.0 and

three values for the covariance of the spherical components were considered: 0.0, 0.4 and

0.8.

3. Results

Table 1 shows the summary statistics for the data sets on three metals. Note that in

most cases the standard moment-based coefficient of skew was larger than 1 while the

corresponding robust Octile skew was smaller than 0.2. This suggests the presence of

outlying values among the data. The auto-variograms for soil cobalt concentration by all

estimators on both dates are shown in Figure 3. On Date 1 the difference between the non-

robust estimator and the robust alternatives is particularly pronounced. Table 2 shows the

cross-validation results for cobalt. Note that on both dates the median standard squared

kriging error, θ̃, obtained with the non-robust variogram estimator is significantly smaller

than expected, suggesting that this has been overestimated due to outliers. On both dates

θ̃ for cross-validation of the variogram model fitted to estimates obtained from γ̂P,SRD
v,u (h)
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were not significantly different from the expected value, and were in fact very close to

it. This estimator was therefore selected to estimate the pseudo cross-variograms. These

estimates and the fitted LMCR are shown in Figure 4, the model parameters are presented

in Table 3. The fitted model is somewhat smaller than the estimates of the pseudo cross-

variogram, this reflects the constraints on the LMCR to ensure positive definiteness, and

may be due to some non-linearity in the process of change in the variable. Note that the

covariance structures for the nugget terms of Cobalt and Vanadium are degenerate, that

is to say the implied correlation is 1.0 This probably reflects some non-linearity in the

coregionalization over short distances, and hence a poor fit of the LMCR. The spatially

correlated components for Nickel also have a degenerate covariance.

Note that in the pseudo cross-variograms of cobalt and vanadium there is evidence

for a very short range structure, and the fitted model overestimates the pseudo cross-

variogram at the second shortest lag (about 140 m, the shortest lag for the pseudo cross-

variogram is zero). This cannot be fitted by the LMCR because we do not have evidence

in the Date 1 autovariogram for structure at these distances as the shortest lag there is

5 km. The LMCR can only accommodate a structure in the cross-covariance model that

also appears in the auto-covariance model. However, the model fit is good at all longer

lags, so our conclusions about (point) kriging variance are unaffected.

For economy of space we do not present all the details on the analysis for the

other two metals, but in both cases the variogram estimates obtained with γ̂P,SRD
v,u (h)

were selected by the same process. The robust estimates and fitted model are shown in

Figures 5 and 6, and the parameters of the LMCR are in Table 3. For all these metals there

is strong spatial structure in the variability of concentrations in both dates and strong

structure of the covariation revealed by the pseudo cross-variograms. Spatial dependence

is seen at lag distances of up to 15 to 25 km. This is not surprising. Rawlins et al.

(2003) have shown that the variation of trace metals in the soil of this region is strongly

influenced by the spatial pattern of parent material, and this factor is unchanged over
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time.

The variograms of the difference variable were computed from the fitted LMCR

with Equation (11). There is some question over how reliable these are because of the

sensitivity of the semi-variance of the change at shorter lags to the covariance structure

of the nugget component of the LMCR, which is degenerate for cobalt and vanadium and

does not reflect all the information in the pseudo cross-variogram because of the absence

of short-range information for date 1. Equation (11) is therefore likely to underestimate

the nugget component of the change variograms. As a check we computed the change

variogram directly from the observed change at the relatively few resampled NSI sites from

date 2. There are only 203 of these for cobalt and nickel and 155 for vanadium. Further,

as we have seen, the variances of the date 2 observations from the NSI resampling are

not always similar to those from the GBASE data for date 2. The comparison of the

variogram estimates with the models obtained from Equation (11) must therefore be

made with some caution. Both are presented in Figure 7. There is good agreement for

nickel and vanadium, (although the sparsity of data on the latter means that we cannot

look at lags less than 10km). The agreement for cobalt is poor, particularly at longer

lags. Both sets of variograms show that the spatial structure of the change process, which

is the variable of central interest in soil monitoring, may not be inferred directly from

observation that the variables on either of the two dates have spatial structure. The

change variables for cobalt and vanadium both show strong spatial structure, but that

for nickel is close to a nugget process, essentially a flat variogram. This indicates that, in

the case of nickel, the spatially structured variation is very similar on both dates, and the

difference is a process of uncorrelated noise. For the other elements there is some spatial

structure to the process of change in the metal concentration. This will have implications

for our interpretation of the data (the likely processes driving change in each case) and

for monitoring. It would be futile to try to map change in nickel concentration in this or

cognate environments by kriging, for example, given the lack of spatial dependence.
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The change in the other elements can be mapped, however, as long as we can

sample at intervals of 7 km or less. This is illustrated in Figures 8 and 9. The former

shows cokriged estimates of the metal concentration for both dates. In Figure 9 (top)

is the kriged map of change in the variables. Note that this has been scaled to a mean

change of zero (since we are not certain that the overall difference between the dates is

due to anything other than differences in laboratory methods). This does not affect the

kriging variance (lower map) that shows how the uncertainty of the map of change varies

with the density of observations over the region.

The kriging variances for difference sampling schemes are shown for cobalt and

vanadium in Figure 10. The kriging variance falls with sampling effort, so in principle we

could read off these graphs the sample effort needed to map change in the variables to

a specified level of precision. Note that the cokriging variance at a given level of effort

is always smallest for case (i) where the sampling effort is divided equally between the

dates. The response to extra effort is much smaller when this is concentrated on a single

date. Similarly, at a given total sampling effort, the cokriging variance is smaller when the

Date 2 sample includes all the Date 1 sites (dotted line), although the difference depends

on the spatial variation of the change process and is bigger for cobalt than for vanadium,

since the change process in the latter case has a very small nugget variance.

The cokriging variances for the hypothetical case studies are shown in Figure 11.

Note that the cokriging variances decrease as the correlation between the spatially struc-

tured components of the variables on the two dates increase. Note also that strategy

(iv) is preferred to (i) when the correlation is weak or absent, but it is best to resample

at the original sites (as in our LMCR for cobalt and vanadium) when the correlation is

strong. When the correlation is small the cokriging variance will approach the sum of the

ordinary kriging variances for the two dates separately, and it is clear that this can be

minimized over points within a sampled region if we minimize the distance to the nearest

neighbouring sample point, regardless of the date on which it is sampled. By contrast,
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when the correlation is strong we benefit from direct observation of the change variable..

5. Conclusions

We have estimated auto-variograms for metal concentrations in the soil on two different

dates, and estimated the pseudo cross-variograms. For each metal these variograms could

be fitted reasonably well by a linear model of coregionalization, as first proposed by Papritz

and Flühler (1994). We could then use these models to draw the following conclusions

that are pertinent to the problem of soil monitoring.

i. As hypothesized above, the spatial variability of the change in a soil variable, which

will determine the efficiency of a particular sample design for monitoring, is not

necessarily related to the variability of the property on a particular date. The

spatial variability of metals in the soil of this region is driven primarily by parent

material, which determines a strong spatial pattern distinct from the factors that

drive change (Rawlins et al., 2003). We should be wary of planning monitoring from

observations of a variable on a single date.

ii. For some variables the spatial variation of the change process means that it is possible

to map this change by cokriging from a feasible sample density, while this is not

possible for other variables (nickel in this case) A LMCR from a reconnaissance

resampling of the baseline grid is necessary in order to identify which properties

could be monitored in this way.

iii. The most efficient sampling design for cokriging estimates of change in the variables

we have looked at here is to divide sampling effort equally between dates. In practice,

however, we require a good baseline survey, and subsequent resampling will have to

be designed within cost constraints.

iv. When we are resampling a baseline survey of the variables that we have examined

here, with quite strong correlation of the spatially dependent components of vari-

ation on the two dates, then it is important to resample the original sites in order
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to avoid inefficiency, particularly if the short-range variability is large. In practice

resampling a site may be constrained by the disturbance caused on previous visits,

and the accuracy with which the sample site can be relocated. In this case study a

bulk sample from within a sampling area was used which smooths local variation,

reduces the effect of relocation error, and would allow the sampler to avoid obviously

disturbed microsites.

v. By contrast, the hypoithetical cases show that if the correlation between observations

on two days is weak then resampling the date 1 sites on date 2 will be inefficient

(although some resampling will be needed to estimate the pseudo cross-variogram

at lag zero). This underlines our observation under (ii) above that a reconnaissance

resampling of a baseline survey, so as to estimate the LMCR, will allow a rational

decision to be made about how best to undertake a full second sampling to monitor

change in soil against a baseline.

We now examine the broader implications of these conclusions for soil monitoring

strategy. The first decision to be made when planning a monitoring scheme must be

whether we require local or regional estimates of change in the soil. The latter may

be satisfactory for many purposes, but local estimation will be necessary if one goal

of monitoring is to identify where remediation may be needed, or possible sources of

problems. When regional estimates are required then design-based sampling according to

some scheme of randomization is straightforward and cost-effective (Papritz and Webster,

1995a). The considerations on which design-based or systematic sampling would be chosen

for a problem are discussed by Brus and de Gruitjer (1997). An important point that

they emphasize is that design-based sampling and estimation can be correctly applied to

spatially dependent variables. It may also be chosen over geostatistical estimation when

there is no evidence of spatial dependence, or when spatial dependence is only seen over

distances that are too small to be resolved with available sampling effort.

If we decide that local estimation is required, then we face two questions.
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i. Is it feasible to obtain local estimates of change, given the spatial variability and the

available resources for sampling?

ii. How should the sampling be done to estimate change with adequate precision?

We have seen that the answer to this question depends quite sensitively on the spatial

coregionalization of the variable with itself over time, and that the spatial variability of the

variable on a single date may be a poor guide to this. In practice, when sampling against

some existing baseline survey, we could conduct a reconnaissance sample to estimate an

LMCR. This would include some resampling of previous sites, and sampling at intervening

sites to give information on short-range variability. The resulting LMCR can then be used

to investigate the cokriging variances for change in the variable under different sampling

schemes, as we have done here.

If the LMCR indicates that local estimates of change in the variable cannot be ob-

tained with available resources for resampling then we are confined to regional estimation.

When the baseline survey is a systematic grid then this lack of randomness must be ac-

counted for in the resampling and estimation of a regional mean. One approach would be

to use cokriging of the regional mean, as discussed by Papritz and Webster (1995a).

Our discussion above assumes an essentially static approach to sampling, with the

aim of estimating change relative to some baseline survey. Thus may be suitable for many

problems in soil monitoring where changes are relatively small and slow. For more volatile

properties, where the changes are large relative to the baseline values, an adaptive ap-

proach to monitoring may be favoured, as used by Wikle and Royle (1999) for atmospheric

monitoring.

As a final comment, we accept that the LMCR may prove too restrictive a model for

multitemporal soil variation. We suggest that the development of ideas for soil monitoring

should start from the proposals of Heuvelink and Webster (2001) for the modelling of soil

variation in space and time. In short, rather than looking for more complex statistical

models we should aim to incorporate physical knowledge of the processes and mechanisms
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of soil pollution or degradation into the monitoring scheme.
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Table 3 Parameters of the linear models of coregionalization. The superscript 0 denotes

the nugget component, and 1 the spatially dependent component with a the range of

a spherical variogram and the distance parameter of an exponential. The superscripts

denote date, 1 or 2.

Metal b0
1,1 b0

2,2 b0
2,1 Model type a/metres b1

1,1 b1
2,2 b1

2,1

Nickel 72.2 40.8 0.01 Spherical 15145 123.8 98.9 110.6

Vanadium 250.6 237.8 244.1 Exponential 6005 318.1 1017.9 392.8

Cobalt 7.4 11.8 9.4 Exponential 7639 30.1 52.0 35.7
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Figure captions

Figure 1 The Humber-Trent region of the G-BASE survey.

Figure 2 Empirical cumulative frequency distributions for (thin line) resampled NSI data

and (thick line) G-BASE data on (top) Cobalt, (middle) Nickel and (bottom) Vanadium

concentrations in soil of the Humber-Trent region.

Figure 3 Auto-variograms and fitted models for cobalt concentration in the soil. Top

(one graph) on Date 1 (NSI Baseline) and, below (four separate graphs) on Date 2 (NSI

resample + G-BASE).

Matheron’s (1962) standard estimator: •; γ̂SRD
u,u : ◦; γ̂P,MAD

u,u : +; γ̂P,Qn
u,u : ×.

Figure 4 Auto-variograms for Date 1 (Top), Date 2 (Middle) and Pseudo cross-variogram

for both dates with fitted linear model of coregionalization. Soil Cobalt concentration.

Figure 5 Auto-variograms for Date 1 (Top), Date 2 (Middle) and Pseudo cross-variogram

for both dates with fitted linear model of coregionalization. Soil Nickel concentration.

Figure 6 Auto-variograms for Date 1 (Top), Date 2 (Middle) and Pseudo cross-variogram

for both dates with fitted linear model of coregionalization. Soil Vanadium concentration.

Figure 7 Auto-variograms change process, (solid line) calculated from the linear models

of coregionalization and (symbol) estimated from collocated data. Top: Cobalt; Middle:

Nickel; Bottom: Vanadium.

Figure 8 Maps of Cobalt concentration obtained by point co-kriging for (Top) Date 1
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and (Bottom) Date 2. Northings and Easting are UK Ordnance Survey Grid (metres).

Units of concentration are mg kg−1.

Figure 9 Maps of change in Cobalt concentration obtained by point co-kriging for (Top)

and kriging variance (Bottom). Note that the changes are rescaled so that zero on the

map is equivalent to the mean change between the two dates for this region.

Figure 10 Maximum point cokriging variance of change in concentration plotted against

sample effort. Solid line: equal division of total effort between two dates. Dotted line:

5-km square grid on Date 1 and sample sites on Date 2 including all Date 1 sites. Broken

line: 5-km square grid on Date 1 and sample sites on Date 2 not coincident with Date 1

sites. Top: Cobalt. Bottom: Vanadium.

Figure 11 Maximum point cokriging variance of change in concentration plotted against

sample effort for three hypothetical LMCR. Correlation of the spatially dependent com-

ponents of variation are (top) 0.0, (middle) 0.4 and (bottom) 0.8. There are two sampling

strategies, both with equal effort on both dates. The heavier line is for resampling of the

date 1 locations on date 2, the finer line is for date 2 sample points offset from date 1
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