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SUMMARY

During the last two decades, the interest in civil and military high speed marine vehicles has lead to several new configu-
rations. Some of them exploit a combination of aerodynamic and hydrodynamic forces to sustain part of the weight of the
craft, leading to a hybrid vehicle (HV). This paper focuses on the study of the longitudinal high-speed dynamics of such hy-
brid vehicles. Since airborne and waterborne vehicles belong to two distinct areas of research, they have been investigated
with a rather different approach. The authors propose a unified mathematical model to represent the kinematics suitable for
hybrid vehicles, including a detailed analysis of the aerodynamic and hydrodynamic forces acting on the vehicle. Then a
set of ordinary differential equations of motion is derived in the frame of small-disturbance stability theory, leading to the
Cauchy standard form. An illustrative example of a hybrid vehicle (KUDU II) is analyzed with the proposed method.

1 INTRODUCTION

In order to elaborate the dynamic model for the HV,
the approach used respectively for planing crafts and wing
in ground effect vehicles is used and a brief background of
these methodologies is presented.

Research on high speed planing started in the early
twentieth century for the design of seaplanes. Later the
research focused on applications to design planing boats
and hydrofoil crafts. During the period between 60’s and
90’s, many experiments have been carried out and new
theoretical formulations proposed. Savitsky [1] carried
out an extensive experimental program on prismatic plan-
ing hulls and obtained some empirical equations to cal-
culate forces and moments acting on planing vessels. He
also provided simple computational procedures to calcu-
late the running attitude of the planing craft (trim angle,
draft), power requirements and also the stability character-
istics of the vehicle. Martin [2] derived a set of equations
of motion for the surge, pitch and heave degrees of free-
dom and demonstrated that surge can be decoupled from
heave and pitch motion. Using the coefficients of Mar-
tin, Zarnick [3] defined a set of highly nonlinear integro-
differential equations of motion, which coefficients were
determined by a combination of theoretical and experi-
mental results. Since this method proved to hide some
of the physics, Zarnick built a nonlinear numerical sim-
ulator. Troesch and Falzarano ([4],[5]) studied the non-
linear integro-differential equations of motion and carried
out several experiments to develop a set of coupled ordi-
nary differential equations with constant coefficients, suit-
able for modern methods of dynamical systems analysis.
Troesch [6] later extended his previous work and expanded
the nonlinear hydrodynamic force equations of Zarnick us-
ing Taylor series up to the third order, obtaining a form
of equation of motion suitable for path following or con-
tinuation methods (e.g. [7]). Modern motion simulation

and control-oriented mathematical models start from these
past work to define coordinate systems, equations of mo-
tion and to calculate hydrodynamic forces (e.g. [8],[9]).

Research on WIGe vehicles has mainly been carried
out in the former Soviet Union, where they were known as
‘Ekranoplans’. The Central Hydrofoil Design Bureau, un-
der the guidance of R. E. Alekseev, developed several test
craft and the first line production ekranoplans: Orlyonok
and Lun types [10]. In the meantime, several research pro-
grams were undertaken in the west to better understand the
peculiar dynamics of the vehicles flying in ground effect
(IGE). In the 60’s and the 70’s Kumar ([11],[12]) started
research in this area in Cranfield University. He carried
out several experiments with a small test craft and pro-
vided the equations of motion, the dimensionless stabil-
ity derivatives and studied the stability issues of a vehi-
cle flying IGE. Staufenbiel [13] in the 80s carried out an
extensive work on the influence of the aerodynamic sur-
face characteristics on the longitudinal stability in wing in
ground effect. Several considerations about the aerofoil
shape, the wing planform and other aerodynamic elements
were presented, in comparison with the experimental data
obtained with the experimental WIG vehicle X-114 built
by Rhein-Flugzeugbau in Germany in the 70’s. The equa-
tions of motion for a vehicle flying IGE were defined, in-
cluding non linear effects. Hall [14], in 1994, extended
the work of Kumar, modifying the equations of motion of
the vehicle flying IGE, taking into account the influence
of perturbations in pitch on the height above the surface.
Unlike Gera [15], Hall took into account also the varia-
tion of the derivatives of CL and CD with respect to the
height above the surface. More recently Chun and Chang
[16] evaluated the stability derivatives for a 20 passenger
WIG vehicle, based on wind tunnel results together with
vortex lattice method code. Using the work of Kumar and
Staufenbiel, the static and dynamic stability characteris-
tics have been investigated, demonstrating the validity of
the approach developed so far in the west.
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2 UNIFIED APPROACH

2.1 AXIS SYSTEM

To describe the motion of the HV and the forces acting on
it, a number of different axis systems are used. Starting
from the axis systems used for planing crafts ([1],[6],[9])
and for WIGe vehicles ([14],[17]), an earth-axis system
and two body-axis system are presented below. They are
all right-handed and orthogonal as represented in Fig.1.
Dashed lines represent the vehicle in a disturbed state (ro-
tation and displacements have been emphasized for clar-
ity).

Body-axis systems
The origin O is taken to be coincident with the center of
gravity (CG) position of the HV in equilibrium state. The
x and z axis lay in the longitudinal plane of symmetry, x
positive forward and z positive downward. The direction
of the x-axis depends on the body-axis system. Two are
considered:

• Aero-hydrodynamic axes (η1Oη3), the direction
of the x-axis η1 being parallel to the steady forward
velocity V0,

• Geometric axes (ξOς), the direction of the x-axis ξ

being parallel to a convenient geometric longitudi-
nal datum (as the keel of the planing surfaces).

Aero-hydrodynamic axes are the counterpart of the aero-
dynamic axes (called wind or wind-body axes in UK and
stability axes in USA) used for airplanes. Usually the sta-
bility derivatives are calculated in this axis system.

Earth-axis systems (xOz)
The direction of the axes are fixed in space. The z-axis
is directed vertically downward, the x-axis is directed for-
wards and parallel to the undisturbed waterline and the ori-
gin at the undisturbed waterline level.

2.2 NOMENCLATURE

CG Center of gravity
h height above the waterline
HV Hybrid Vehicle
Iii Moment of inertia with respect to ηi
Ii j Product of inertia wrt ηi and η j
IGE In Ground Effect
m mass of the HV
RULM Rectilinear Uniform Level Motion
WIGe Wing In Ground effect
wrt with respect to
η1(t) surge displacement,
η3(t) heave displacement, positive downward,
η5(t) pitch rotation, positive bow up
τ trim angle (between keel and the waterline)

Superscript
a related to aerodynamics
h related to hydrodynamics
′ perturbation value.
ẋ ∂x

∂t
ẍ ∂2x

(∂t)2

∗ derived values
∗∗ estimated values

Subscript
0 value at the equilibrium state
h derivative with respect to h

2.3 FORCES AND MOMENTS ACTING ON THE HV

Configuration of the HV
To analyze forces and moments acting on the vehicle, a
configuration is required. The general configuration has:

• a high-speed prismatic planing hull, with constant
deadrise angle β (hydrodynamic surface),

• a main aerofoil and a secondary aerofoil (aerody-
namic surfaces),

• hydrodynamic and aerodynamic control systems,

• an aero- or hydro-propulsion system.

The HV is supposed to have a waterborne capability at
rest, therefore the hydrodynamic surface is also a hydro-
static surface. In this analysis, only the high speed equilib-
rium motion is analyzed (full planing mode), as explained
in the following paragraph.

Main forces at a given equilibrium motion
It is possible to define the forces acting on the vehicle. In
general they are:

• weight,

• hydrostatic forces, acting on the hull,

• hydrodynamic forces, acting on hydrodynamic
high-speed planing hulls,

• aerodynamic forces, acting on aerodynamic sur-
faces,

• aerodynamic and hydrodynamic control systems’
forces (supposed constants, control fixed analysis),

• aero- or hydro-propulsion forces (constant, suffi-
cient to maintain a given steady forward speed).

Depending on the steady forward velocity of the HV, it
is possible to make assumptions on the forces which are
negligible. The present work concentrates on the study of
a equilibrium motion characterized by a rectilinear trajec-
tory, a constant speed and a constant altitude above the
surface, which will be referred as rectilinear uniform level
motion (RULM). The steady forward speed (and the ge-
ometrical configuration of the HV) is such that the main



forces are the hydrodynamic and aerodynamic ones, with
a small contribution of hydrostatic forces (buoyancy) to
the restoring forces.

Decoupling of Equations of Motion
The HV, represented as a rigid body in space, has 6 degrees
of freedom. To describe its motion a set of six simulta-
neous differential equations of motion is needed. How-
ever, a decoupled system of equations of motion can be
derived. For airplanes, in the frame of small perturba-
tions approach, the lateral-longitudinal coupling is usually
negligible. This is still valid for WIGe vehicle [16]. For
planing craft, as demonstrated in [2], not only the lateral-
longitudinal coupling is usually negligible, but also the
surge motion can be decoupled from the heave and pitch
motion. Therefore it is assumed that the HV has a negligi-
ble longitudinal-lateral coupling. In this work, the longi-
tudinal motion of the HV is analyzed, then only the forces
and moments acting on the longitudinal plane are taken
into account: surge, heave forces and the pitch moment.
Following the nomenclature used for ships and airplanes,
the force in x direction is X, in z direction is Z and the
moment about the y axis is M.

Forces and moments expressions
The total force acting on the HV can be expressed as:

F = Fg +Fa +Fh +Fc +Fp +Fd (1)

where the components of each force are

Fi = [ X i Zi Mi ]T

The total force is the sum of gravitational force, aerody-
namic and hydrodynamic forces, control systems forces,
propulsion force and environment disturbances forces.

When considering the motion of an airplane or a ma-
rine vehicle after a small perturbation from a datum mo-
tion condition, it is usual to express aerodynamic and hy-
drodynamic forces and moments in expansions about their
values at the datum motion state. The expansion can be
nonlinear and expanded up to the n-th order, but in this
work a linear expansion will be used. As for airplanes and
planing craft, the forces and moments are assumed to de-
pend on the values of the state variables and their deriva-
tives with respect to time. Then, each force and moment
is the sum of its value during the equilibrium state plus its
expansion to take into account the variation after the small
disturbance, which is:

F = F0 + F’ (2)

F0 = [ X0 Z0 M0 ]T

F’ = [ X ′ Z′ M′ ]T

where the subscript (0) denotes starting equilibrium state
and superscript (′) denotes perturbation from the datum.
Initially, the HV is assumed to maintain a RULM with zero
roll, pitch and yaw angle. In this particular motion, the

steady forward velocity of the HV is V0 and its component
in the aero-hydrodynamic axis system are [η̇1,0, η̇3,0], with
η̇1,0 = V0 and η̇3,0 = 0, since this is a level motion (constant
height above the surface).

Control, power and disturbances forces
In this analysis it is assumed that the controls are fixed
(similar to the “fixed stick analysis” for airplanes). Then
controls’ forces and moments variations are equal to zero.
The thrust is assumed not to vary during the small pertur-
bation motion and it is equal to the total drag of the vehicle.
The effects of environmental disturbances, like waves, are
beyond the scope of this work, then a stable undisturbed
environment is assumed.

Fc = Fc
0

Fp = Fp
0

Fd = 0

(3)

Gravitational force
The gravitational contribution to the total force can be ob-
tained resolving the HV weight into the axis system. Since
the origin of the axis system is coincident with the CG of
the HV, there is no weight moment about the y axis. Re-
membering that the equilibrium state pitch angle is equal
to zero and the angular perturbation θ′ is small, the gravi-
tational contribution is

Fg = Fg
0 + Fg′ (4)

Fg
0 = [ 0 mg 0 ]T

Fg′ = [ −mgθ′ 0 0 ]T
(5)

Aerodynamic forces
Usually, to evaluate aerodynamic forces and moments, the
state variables taken into account in their Taylor linear ex-
pansion are the velocity along the x and z axes (η̇1 and η̇3)
and the angular velocity about the y axis (η̇5). Among the
accelerations, only the vertical acceleration (η̈3) is taken
into account in the linear expansion. Since the dynamics
of a vehicle flying IGE depends also on the height above
the surface, Kumar, Irodov and Staufenbiel introduced for
WIGe vehicles the derivatives with respect to height (h).

These derivatives can be evaluated knowing the geo-
metrical and aerodynamics characteristics of the aerody-
namic surfaces of the HV ([14], [17]). As shown by Chun
and Chang [16], the Taylor expansion stopped at the 1st
order (linear model) is a good approach to have a first eval-
uation of the static and dynamic stability characteristics as
well as a good approximation of the dynamic motion be-
havior of the WIGe vehicle. Analytical formulas to have
an estimation of these derivatives are presented in table 4.

The expansion of the generic aerodynamic force (mo-
ment) in the aero-hydrodynamic axis system (η1Oη3) for
a HV with a longitudinal plane of symmetry is

Fa = Fa
0 + Fa′ (6)



Fa
0 = [ Xa

0 Za
0 Ma

0 ]T

Fa′ =

 Xa
h

Za
h

Ma
h

 h′+

+

 Xa
η̇1

Xa
η̇3

Xa
η̇5

Za
η̇1

Za
η̇3

Za
η̇5

Ma
η̇1

Ma
η̇3

Ma
η̇5

  η̇1
η̇3
η̇5

′

+

+

 0 Xa
η̈3

0
0 Za

η̈3
0

0 Ma
η̈3

0

  η̈1
η̈3
η̈5

′

The superscript a denotes “aerodynamic forces”. Fj de-
notes the derivative of the force (or moment) F with re-
spect to the state variable j, it corresponds to the partial
differential ∂F/∂ j.

Hydrodynamic forces
In Hicks et al. [6] the nonlinear integro-differential expres-
sions to calculate hydrodynamic forces and moments are
expanded in a Taylor series through the third order. There-
fore, equations of motion can be written as a set of ordi-
nary differential equations with constant coefficients. An-
alytic expressions are available for these coefficients in the
work of Hicks [18]. The planing craft dynamics is highly
non-linear, but the first step in the study of the dynamics is
to linearize the non-linear system of equations of motion
and to calculate eigenvalues and eigenvectors, which vari-
ations are monitored with quasi-static changes of physical
parameters, such as the position of the CG. This approach
seems reasonable as a first step for the analysis of the HV
dynamics, for which a linear system of equations is devel-
oped.

The derivatives are usually divided in restoring coef-
ficients (derivatives with respect to displacements and ro-
tation), damping coefficients (derivatives with respect to
linear and angular velocities) and added mass coefficients
(derivatives with respect to linear and angular accelera-
tions). It has been shown that the added mass and damp-
ing coefficients are nonlinear functions of the motion but
also that their nonlinearities are small compared to the
restoring forces nonlinearities [5]: therefore added mass
and damping coefficients are assumed to be constant at a
given equilibrium motion. Their value can be extrapolated
from experimental results obtained by Troesch [4]. For the
restoring coefficients, the linear approximation presented
in Troesch and Falzarano [5] will be followed:

Fh, restoring−Fh, restoring
0

∼=−[C]η (7)

The coefficients of [C] can be determined using Savitsky’s
method for prismatic planing hull [1].

An approach to estimate added mass, damping and
restoring coefficients is presented by Martin [2]. Further-
more, an alternative approach is to compute the added

mass and damping coefficients as presented in Faltinsen
[19].

Then the expansion of the generic hydrodynamic force
(moment) with respect to the aero-hydrodynamic axis sys-
tem η1Oη3 for a HV is

Fh = Fh
0 + Fh′ (8)

Fh
0 = [ Xh

0 Zh
0 Mh

0 ]T

Fh′ =

 0 Xh
η3

Xh
η5

0 Zh
η3

Zh
η5

0 Mh
η3

Mh
η5

  η1
η3
η5

′

+

+

 Xh
η̇1

Xh
η̇3

Xh
η̇5

Zh
η̇1

Zh
η̇3

Zh
η̇5

Mh
η̇1

Mh
η̇3

Mh
η̇5


 η̇1

η̇3
η̇5

′

+

+

 Xh
η̈1

Xh
η̈3

Xh
η̈5

Zh
η̈1

Zh
η̈3

Zh
η̈5

Mh
η̈1

Mh
η̈3

Mh
η̈5


 η̈1

η̈3
η̈5

′

The superscript h denotes “hydrodynamic forces”. Xη1 ,
Zη1 and Mη1 are equal to zero since surge, heave and pitch
moment are not dependent on the surge position of the
HV.

2.4 EQUATIONS OF MOTION

The generalized equations of motion (in 6 degrees of free-
dom) of a rigid body with a left/right (port/starboard) sym-
metry are linearized in the frame of small-disturbance sta-
bility theory. The starting equilibrium state is a RULM,
with a steady forward velocity equal to V0. The total ve-
locity components of the HV in the disturbed motion are
(evaluated in the Earth-axis system):


η̇1
η̇2
η̇3
η̇4
η̇5
η̇6

 =


V0 + η̇′1

η̇′2
η̇′3
η̇′4
η̇′5
η̇′6

 (9)

By definition of small disturbances, all the linear and the
angular disturbance velocities (denoted with ′) are small
quantities: therefore, substituting (9) in the generalized 6
degrees of freedom equations of motion, and eliminating
the negligible terms, the linearized equations of motion



can be expressed as

mη̈′1 = X

m(η̈′2 + η̇′6V0) = Y

m(η̈′3− η̇′5V0) = Z

I44η̈′4− I46η̈′6 = L

I55η̈′5 = M

I66η̈′6− I64η̈′4 = N

(10)

If the system of equations is decoupled, the longitudinal
linearized equations of motion are

mη̈′1 = X

m(η̈′3− η̇′5V0) = Z

I55η̈′5 = M

(11)

N.B. From now on the superscript ′ representing the per-
turbated state will be omitted.

Equilibrium state
When an equilibrium state has reached, by definition, all
the accelerations are zero as well as all the perturbations
velocities and the perturbation forces and moments. Then,
using (3), (4), (6) and (8) in (11):

0 = Xg
0 +Xa

0 +Xh
0 +Xc

0 +X p
0 +Xd

0

0 = Zg
0 +Za

0 +Zh
0 +Zc

0 +Zp
0 +Zd

0

0 = Mg
0 +Ma

0 +Mh
0 +Mc

0 +Mp
0 +Md

0

(12)

or 
0 = Xa

0 +Xh
0 +Xc

0 +X p
0

0 = mg+Za
0 +Zh

0 +Zc
0 +Zp

0

0 = Ma
0 +Mh

0 +Mc
0 +Mp

0

(13)

In this work a given equilibrium state is assumed. Alterna-
tively the equilibrium state condition could be calculated
using (13), knowing the steady state forward velocity and
the geometrical and inertial characteristics of the HV.

Longitudinal linearized equations of motion
Taking into account (13), the longitudinal linearized equa-
tions of motion (11) written in the aero-hydrodynamic axis
system can be rearranged as:

[A] η̈+[B] η̇+[C]η+[D]h = 0 (14)

where

η =

 η1
η3
η5



and h is the (perturbated) height above the waterline.
The matrix [A] is the sum of the mass matrix, the hy-

drodynamic added mass derivatives and the aerodynamic
“added mass” terms (usually in aerodynamics they are not
called added mass terms, but simply “acceleration deriva-
tives”).

[A] =


m−Xh

η̈1
−Xa

η̈3
−Xh

η̈3
−Xh

η̈5

−Zh
η̈1

m−Za
η̈3
−Zh

η̈3
−Zh

η̈5

−Mh
η̈1

−Ma
η̈3
−Mh

η̈3
I55−Mh

η̈5


(15)

[B] is the damping matrix and is defined as:

[B] =


−Xa

η̇1
−Xh

η̇1
−Xa

η̇3
−Xh

η̇3
−Xa

η̇5
−Xh

η̇5

−Za
η̇1
−Zh

η̇1
−Za

η̇3
−Zh

η̇3
−Za

η̇5
−Zh

η̇5

−Ma
η̇1
−Mh

η̇1
−Ma

η̇3
−Mh

η̇3
−Ma

η̇5
−Mh

η̇5


(16)

[C] is the restoring matrix and is defined as:

[C] =


0 −Xh

η3
−mg−Xh

η5

0 −Zh
η3

−Zh
η5

0 −Mh
η3

−Mh
η5

 (17)

The matrix [D] represents the wing in ground effect,
to take into account the influence of the height above the
surface on the aerodynamic forces.

[D] =


−Xa

h

−Za
h

−Ma
h

 (18)

2.5 CAUCHY STANDARD FORM OF EQUATIONS
OF MOTIONS

By defining a state space vector ν as

ν =
[

η̇1 η̇3 η̇5 η1 η3 η5 h
]T (19)

the system of equations (14) can be transformed in the
Cauchy standard form (or state-space form). The state
space vector has seven variables while the system of equa-
tions (14) has only 3 equations. The remaining 4 equations



are: 

∂(η1)
∂ t = η̇1

∂(η3)
∂ t = η̇3

∂(η5)
∂ t = η̇5

∂(h)
∂t = −η̇3 +V0 η5

(20)

The system of equations of motion in state-space form is:

ν̇ = [H]ν (21)

where

[H] =


−[A]−1 [B] −[A]−1 [C] −[A]−1 [D]

[I]3x3 [0]3x3 [0]3x1

0 0 −1 0 0 V0 0


(22)

[I] is the identity matrix, [0] is the null (zero) matrix and
n x n means n rows times n columns.

3 ILLUSTRATIVE EXAMPLE

One example of hybrid vehicle is the KUDU II [20]. It is
a beam ram wing planing craft, where a wing section op-
erating IGE is mounted between two planing sponsons. It
was launched in 1974 and in September of the same year
the KUDU II won the 156 mile San Francisco offshore
powerboat race. It has been chosen as example because at
cruise speed (in RULM motion) the main forces are aero-
dynamic and hydrodynamic, with a small contribution of
hydrostatic forces (buoyancy) to the restoring forces.

N.B. The ideal case would be to start knowing the
added mass matrix ( [A], eq 15), the damping matrix ( [B],
eq 16), the restoring matrix ( [C], eq 17) and the WIGe
matrix ( [D], eq 18) of the vehicle. Since these data are
not available, the authors will derive, if possible, these co-
efficients from the data availables in [20]. If not possible,
a rough estimation of the coefficients will be used, since
the aim of this example is to illustrate how to obtain [H]
in eq 21 and it is not to give the exact value of the sta-
bility derivatives of the KUDU II. Derived and values are
denoted with the superscript ‘ * ’ and estimated values are
denoted with the superscript ‘**’.

Configuration
The configuration of the KUDU II is:

• 2 planing hulls;

• 1 aerofoil, between the planing hulls;

• no controls in the longitudinal plane;

• two surface-piercing propellers.

The planing hulls are approximated with one prismatic
planing hulls with beam (Bh) equal to the double of the
beam of each sponson (bh) and constant deadrise angle (β)
equal to the outside deadrise angle (βout ). The airfoil is not
taken from any “family”: it was designed specifically for
the KUDU II in order to have a low pitching moment. The
lower surface of the wing is set a 5 deg angle to the keel:
therefore the angle of attack of the airfoil is the trim angle
of the vehicle plus 5 deg. Main dimensions of the KUDU
II are presented in table 1.

Equilibrium state: forces and moments
This analysis starts from an equilibrium state. In partic-
ular, a rectilinear uniform level motion is analyzed, illus-
trated in table 2. The equilibrium forces and moments (F0
term in eq 2) acting on the vehicle are presented in table 2.
As it can be seen, aerodynamic and hydrodynamic forces
and moments are of the same order of magnitude (103 to
104 in Newton and Newton-meter). Lift and drag, as usual,
are defined as the component of the aerodynamic (hydro-
dynamic) force respectively normal (positive upward) and
parallel (positive rearward) to the velocity. The propul-
sion force has been divided in a lift and a thrust(parallel to
the velocity, positive forward) component. The moment is
positive bow up and is about the CG.

Forces and moments after the disturbance
In the previous section the F0 term of the eq 2 has been an-
alyzed. Now we need to illustrate the forces and moments
arising after a perturbation, the F′ term.

Control, power and disturbances forces
As previously said, this is a control fixed analysis and the
thrust is assumed not to vary. Furthermore environmental
disturbances are assumed equal to zero.

Gravitational force
If the mass of the vehicle at the equilibrium state is known
it is easy to calculate the gravitational contribution with eq
5.

Aerodynamic forces
Aerodynamic stability derivatives of the KUDU II are not
available. Therefore their values have been approximated
using the expressions presented by Hall and Delhaye [14]
[17], illustrated in table 4. The following coefficients have
to be known:

CL coefficient of lift
∂CL/∂V CL derivative wrt the velocity
∂CL/∂α CL derivative wrt the angle of attack
∂CL/∂(h/c) derivative of CL wrt dimensionless h

CD coefficient of drag
∂CD/∂V CD derivative wrt the velocity
∂CD/∂α CD derivative wrt the angle of attack
∂CD/∂(h/c) derivative of CD wrt dimensionless h



∂Cm/∂V Cm derivative wrt the velocity
∂Cm/∂α Cm derivative wrt the angle of attack
∂Cm/∂(h/c) derivative of Cm wrt dimensionless h

Furthermore, if a secondary wing is present, also these co-
efficients are needed:

∂CLT /∂α CL derivative wrt the angle of attack
SLT area of the secondary airfoil
lT distance of aerodynamic centre of

secondary wing aft of the CG
εα downwash derivative at secondary wing
(CLT = coefficient of lift of the secondary airfoil)

Unfortunately only some of these coefficients are known
for the KUDU II: the others have been approximated by
the authors, using a NACA 6512 profile. The values of the
needed coefficients are illustrated in table 3. Since this ve-
hicle has not a secondary wing, all the related coefficients
are equal to zero.

Hydrodynamic forces
No data are available on the behaviour of the KUDU II
after a perturbation: no restoring, damping or added mass
coefficients are available. Therefore an approximation of
these values has been conducted by the authors, using the
method presented by Martin [2]. The coefficients needed
are:

cV (FnB) Froude number based on hydrodynamic beam
LK Keel wetted length
τ0 Trim angle
β Deadrise angle

lcg/bh Dimensionless longitudinal position of CG
vcg/bh Dimensionless vertical position of CG
c∆ Dimensionless mass

and their values are in tab 3. The values of hydrodynamic
stability derivatives are in tab 4.

Longitudinal Linearized Equations of Motion and
Cauchy standard form
The stability derivatives values can be used now to calcu-
late the added mass matrix [A], the damping matrix [B], the
restoring matrix [C] and the WIGe matrix [D] in the eq 14.

Then the state space matrix [H] can be calculated using
the eq 22.

4 CONCLUSIONS

For certain configurations of high speed marine vehicles,
at high speed, aerodynamic forces and moments become
significant and of the same order of magnitude as hydro-
dynamic ones, therefore they are equally important in the
analysis of the dynamics. In this work, an approach to take
into account all the forces and moments acting on HVs and
to calculate the state space matrix of the HVs is presented.
From this matrix ([H] in eq 21), the characteristic poly-
nomial can be derived and, using a stability criterion such
as the Routh-Horwitz criterion, the stability of the vehi-
cle can be evaluated. This is a linear approach, because
the added mass, damping and restoring coefficients are as-
sumed constant: it is useful as a first step in the study of
the dynamics. Further development of this work will con-
sider only the added mass and damping coefficients con-
stants, using a non-linear approach to estimate the restor-
ing forces.
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Figure 1: Hybrid vehicle axis systems



Vehicle
LOA length overall 34 ft 10.36 m

B beam 14 ft 4.27 m
Sponsons (each) Airfoil

bh beam 3.15 ft 0.96 m c chord 25.9 ft 7.89 m
βin inside deadrise angle 90 deg ba span 7.71 ft 2.35 m

βout outside deadrise angle 13 deg Sa area 199.7 ft2 18.55 m2

Table 1: KUDU II main dimensions

RULM characteristics
m mass 11820 lb 5361.6 kg
lcg longitudinal position of CG (forward from the transom) 7.5 ft 2.29 m
vcg vertical position of CG (height above the keel) 2.8 ft 0.85 m
V0 speed 80 mph 35.76 m/s (≈ 130 km/h)
τ0 trim angle 4.6 deg (0.0803 rad)

LK keel wetted length 7 ft 2.134 m
LC* chine wetted length 1.24 ft 0.377 m

Equilibrium forces and moments
Aerodynamic Hydrodynamic Propulsion

Lift 2631 lb 11707.5 N 10682 lb 47533 N -1493 lb -6643.5 N
Drag 829 lb 3688.9 N 1610 lb 7164.2 N -2439 lb -10853.1 N (thrust)

Moment 21854 lb·ft 29640.7 N·m -45680 lb·ft -61956 N·m 23826 lb·ft 32315.3 N·m

Table 2: Motion characteristics and equilibrium forces

α0* angle of attack 9.6 deg
h0/c* height of the aerodynamic center above the surface / c 0.13

Ca
L 0.845 CD 0.266 ∂CLT/∂α 0

∂CL/∂V** 0 ∂CD/∂V** 0 ∂Cm/∂V 0 SLT 0
∂CL/∂α* 3.62 rad−1 ∂CD/∂α* 1.89 rad−1 ∂Cm/∂α 2.77 rad−1 lT 0

∂CL/∂(h/c)* -0.17 ∂CD/∂(h/c)* -0.32 ∂Cm/∂(h/c)* -0.02 εα 0

Bh approx as 2bh 1.92 m
β approx as βout 13 deg

cV (FnB) V0√
gBh

8.24

LK keel wetted length (tab 2) 0.654
τ0 trim angle (tab 2) 4.6 deg

lcg/Bh dimensionless lcg (tab 2) 1.193
vcg/Bh dimensionless vcg (tab 2) 0.443

c∆
m

ρh(Bh)3 0.737

Table 3: Coefficients for aerodynamic and hydrodynamics derivatives



Aerodynamic derivatives
Derivative Dimensional conversion Dimensionless expression Dimensionless value*

Xa
h 1/2 ρa Sa V 2

0 /c
(
− ∂CD

∂(h/c)

)
0.32

Xa
η̇1

1/2 ρa Sa V0

(
−2CD−V0

∂CD
∂V

)
-0.532

Xa
η̇3

1/2 ρa Sa V0

(
CL− ∂CD

∂α

)
-1.045

Xa
η̇5

1/2 ρa Sa V0 c negligible (0)
Xa

η̈3
1/2 ρa Sa c negligible (0)

Za
h 1/2 ρa Sa V 2

0 /c
(
− ∂CL

∂(h/c)

)
0.17

Za
η̇1

1/2 ρa Sa V0

(
−2CL +V0

∂CL
∂V

)
-1.69

Za
η̇3

1/2 ρa Sa V0

(
−CD− ∂CL

∂α

)
-3.886

Za
η̇5

1/2 ρa Sa V0 c
(
− ∂CLT

∂α

ST lT
S c

)
0

Za
η̈3

1/2 ρa Sa c
(
− ∂CLT

∂α

ST lT
S c εα

)
0

Ma
h 1/2 ρa Sa V 2

0

(
∂Cm

∂(h/c)

)
-0.02

Ma
η̇1

1/2 ρa Sa V0 c negligible (0)

Ma
η̇3

1/2 ρa Sa V0 c
(

∂Cm
∂α

)
2.77

Ma
η̇5

1/2 ρa Sa V0 c2
(
− ∂CLT

∂α

ST l2
T

S c2

)
0

Ma
η̈3

1/2 ρa Sa c2
(
− ∂CLT

∂α

ST l2
T

S c2 εα

)
0

Hydrodynamic derivatives
Derivative Dimensional conversion Dimensionless value*
Xh

η3
ρh g (Bh)2 ·(-1.510)

Xh
η5

ρh g (Bh)3 ·(-3.828)
Xh

η̇1
ρh (Bh)3

√
g/Bh ·(-0.029)

Xh
η̇3

ρh (Bh)3
√

g/Bh ·(-0.361)
Xh

η̇5
ρh (Bh)4

√
g/Bh ·(-0.432)

Xh
η̈1

ρh (Bh)3 ·(-0.001)
Xh

η̈3
ρh (Bh)3 ·(-0.017)

Xh
η̈5

ρh (Bh)4 ·(-0.016)

Zh
η3

ρh g (Bh)2 ·(-18.770)
Zh

η5
ρh g (Bh)3 ·(-29.068)

Zh
η̇1

ρh (Bh)3
√

g/Bh ·(-0.361)
Zh

η̇3
ρh (Bh)3

√
g/Bh ·(-4.480)

Zh
η̇5

ρh (Bh)4
√

g/Bh ·(-5.362)
Zh

η̈1
ρh (Bh)3 ·(-0.017)

Zh
η̈3

ρh (Bh)3 ·(-0.213)
Zh

η̈5
ρh (Bh)4 ·(-0.203)

Mh
η3

ρh g (Bh)3 ·(+0.406)
Mh

η5
ρh g (Bh)4 ·(-10.464)

Mh
η̇1

ρh (Bh)4
√

g/Bh ·(+0.149)
Mh

η̇3
ρh (Bh)4

√
g/Bh ·(+1.854)

Mh
η̇5

ρh (Bh)5
√

g/Bh ·(-3.070)
Mh

η̈1
ρh (Bh)4 ·(-0.016)

Mh
η̈3

ρh (Bh)4 ·(-0.203)
Mh

η̈5
ρh (Bh)5 ·(-0.201)

Table 4: Aerodynamic and Hydrodynamic derivatives


