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Abstract

Mad is a Matlab library of functions and utilities for the automatic differentiation of Matlab func-
tions/statements via operator and function overloading. Currently the forward mode of automatic differentia-
tion is supported via the fmad class. For a single directional derivative objects of the fmad class use Matlab
arrays of the same size for a variable’s value and its directional derivative. Multiple directional derivatives
are stored in objects of the derivvec class allowing for an internal 2-D, matrix storage so allowing the use of
sparse matrix storage for derivatives and ensuring efficient linear combination of derivative vectors via high-level
Matlab functions. This user guide covers:

• installation of Mad on UNIX and PC platforms,

• using TOMLAB /MAD,

• basic use of the forward mode for differentiating expressions and functions

• advanced use of the forward mode including:

– dynamic propagation of sparse derivatives,

– sparse derivatives via compression,

– differentiating implicitly defined functions,

– control of dependencies,

• use of high-level interfaces for solving ODEs and optimization problems outside of the TOMLAB frame-
work,

• differentiating black-box functions for which derivatives are known.
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1 Introduction

Automatic (or algorithmic) differentiation (AD) is now a widely used tool within scientific computing. AD concerns
the mathematical and software process of taking a computer code, which calculates some outputs y in terms of
inputs x through the action of some function y = F(x), and calculating the function’s derivatives, e.g. the Jacobian
F′(x) = ∂F/∂x. The standard reference is the book [Gri00]. It is common notation to take x ∈ IRn and y ∈ IRm.
In AD the function F is considered to be defined by the computer code which is termed the source or source code.

A variety of tools exist for AD of the standard programming languages including:

Fortran : ADIFOR [BCKM96], TAF/TAMC [GK96], Tapenade [INR05], ADO1 [PR98].

C,C++ : ADIC [BRM97], ADOL-C [GJU96]

All these tools will calculate Jacobian-vector products F′v by the forward (tangent-linear) mode of AD. Some will
calculate vector-Jacobian products uT F′ = F′T u via the reverse (adjoint) mode. Some will efficiently calculate
matrix products F′V, UT F′ and thus facilitate calculation of the Jacobian F′ by taking V = In or U = Im (where
In is the n × n identity matrix). Additionally a few will determine second derivatives (Hessians, Hessian-vector
products) and even arbitrary order derivatives. An up to date list of AD tools may be found at the website [aut05].
The recent textbook [Gri00] and conference proceedings [BCH+05] detail the current state of the art in the theory
and implementation of AD techniques.

For these languages listed above AD is implemented either via source-text transformation [BCKM96, GK96, INR05,
BRM97] or overloading [PR98, GJU96]. In source-text transformation the original code that numerically defines
the function F is transformed, via sophisticated compiler techniques, to new code that calculates the required
derivatives. In overloading the ability offered by modern programming languages to define new data-types and
overload arithmetic operations and intrinsic function calls is utilised to systematically propagate derivatives through
the source code and hence calculate the necessary derivatives of the function.

In Matlab progress has been slower. Rich and Hill [RH92] detail a TURB-C function, callable from Matlab that
allows a function defined by a character string to be differentiated by the forward mode and returned as another
character string. The resulting string representing the derivatives may then be evaluated for any particular input
x. We view this approach more as a symbolic algebra technique for differentiating a single statement rather than
AD which is concerned with many lines of code containing subfunctions, looping etc. and which may make use of
symbolic/compiler techniques.

Modern developments began with Coleman & Verma’s produced the ADMIT Toolbox [CV00] allowing functions
specified by C-code to be differentiated and accessed from within Matlab through use of ADOL-C. Of even
greater relevance is the pioneering work of Verma who demonstrated in his ADMAT tool [Ver99, Ver98b] how the
object oriented features of Matlab version 5 (not available to Rich and Hill in 1992) could be used to build up
overloaded libraries of Matlab functions allowing first and second order derivatives to be calculated using both
forward and reverse AD. ADMIT may now calculate Jacobians via ADMAT.

Our experience of ADMAT is that, although it has floating point operations counts in line with theory, it runs
rather slowly. Additionally we have had some difficulties with robustness of the software. With these deficiencies
in mind we reimplemented the forward mode of AD for first derivatives in a new Matlab toolbox named Mad
(Matlab Automatic Differentiation) [For06].

In common with other overloaded, forward mode AD tools Mad evaluates a function F(x) at x = x0 and in the
course of this also evaluates the directional derivative F′(x0)v This is done by first initialising x as an fmad object
using (in Matlab syntax) x = fmad(x0,v) to specify the point x of evaluation and the directional derivative v.
Then evaluation of y=F(x) propagates fmad objects which, through overloading of the elementary operations and
functions of Matlab ensures that directional derivatives and values of all successive quantities and in particular
y are calculated. By specifying v = V, a matrix forming several directional derivatives, then several directional
derivatives may be propagated simultaneously. In particular, if V = I the identity matrix, then the Jacobian F′(x)
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at x = x0 is evaluated. The tool is not restricted to vector valued functions. If the result of a calculation is a
N -dimensional array, then directional derivatives are N -dimensional arrays, and an N + 1 dimensional array may
be propagated to handle multiple directional derivatives.

Our implementation features:

• A new Matlab class fmad which overloads the builtin Matlab arithmetic and some intrinsic functions.

• Separation of storage and manipulation of derivatives into a separate class derivvec. This greatly reduces the
complexity of the Matlab code for the fmad class. Additionally it allows for the straightforward optimisation
of the derivative vector operations using the high level matrix/array functions of Matlab.

• The derivvec class also allows for the use of Matlab’s sparse matrix representation to exploit sparsity in
the derivative calculations at runtime for arbitrary dimension arrays.

• New for version 1.2: Support for compressed Jacobian calculations when a sparse Jacobian has known
sparsity pattern detailed in section 5.4.

• New for version 1.2: High-level interfaces for enabling use of Mad with Matlab’s Optimization Toolbox
and stiff ODE solvers as described in Section 6.

• New for version 1.2: Black box interfaces of section 7 for interfacing Mad with code for which derivative
code already has been developed or for calling external procedures for which derivatives are known.

• New for version 1.2: all examples now available as script M-files and added to the Matlab path on startup.

• New for version 1.2: Improved help facilities allowing removal of the Appendix of previous versions of this
manual and introduced in Section 2.5.

Coverage of Matlab’s huge range of intrinsic functions is being constantly extended with new functionality added
as demanded; so allowing for carefully testing on user’s test cases before widespread release.

An implementation of reverse mode AD is currently under development.

This document constitutes a User Guide for the fmad class of Mad. Section 2 covers installing Mad. Section 4
introduces basic usage of the forward mode via some simple examples. Section 5 details more advanced usage
of the forward mode and in particular provides guidance on how Matlab functions should be written to give
effective usage of Mad. Section 6 introduces the high-level interfaces first described in [FK04]. These allow
users of Matlab’ Optimisation Toolbox [Mat06b] or Matlab’s stiff ODE solvers [mat06a, Chapter 5] to easily
use Mad for calculating function gradients or Jacobians. Section 7 details black box interfaces allowing users to
interface Mad to functions whose derivatives are known and which possibly are coded in external mex files written
in Fortran or C.
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2 Installation of Mad

In this section we detail the steps needed to install Mad on a UNIX or PC platform.

2.1 Requirements

Mad requires Matlab version 6.5 or higher.

2.2 Obtaining Mad

Mad is available from Tomlab Optimization.

2.3 Installation Instructions (UNIX)

Mad is supplied in the gzipped TOMLAB tar file *.tar.gz. Please follow the these instructions.

1. Place *.tar.gz in an appropriate directory dir. TOMLAB and Mad will be placed in its own sub-directory
so you don’t need to create a specific TOMLAB or MAD directory.

2. Now, from within directory dir, gunzip, and tar extract. Mad will be installed in tomlab/mad

gunzip *.tar.gz
tar xvf *.tar

If you have any difficulties using gunzip or tar please check with your system’s administrator that they are
installed and accessible to you before contacting the author.

3. To be able to use Mad it must be in your Matlab path and must have several other paths and Matlab
global variables initialized. To ensure this occurs correctly on starting TOMLAB you must edit your personal
TOMLAB startup.m in /tomlab. MAD succesfully installed should appear in your Matlab command
window when starting TOMLAB.

2.4 Installation Instructions (Windows)

Follow the directions in the TOMLAB installer. Edit the TOMLAB startup.m file to make sure that MAD will be
initialized when starting TOMLAB. MAD succesfully installed should appear in your Matlab command window
when starting TOMLAB.

2.5 Online Help Facilities

After successful installation you can get help on many aspects of using Mad from the Matlab command line.
For example,

• help MAD
gives a list of web-pages, directories and classes associated with Mad.

• help fmad/Contents
lists all the functions of the fmad class used for forward mode automatic differentiation.
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• help madutil
lists all Mad’s utility functions designed to ease use of automatic differentiation.

• help MADEXAMPLES
lists the folders contained example scripts and source files, many of which we meet in this user guide.

• help MADbasic
lists the example scripts and function files for all the basic examples.

All the example scripts, which start with MADEX (e.g. MADEXForward1), have been written in cell mode allowing us
to generate the LATEX source code for most examples featured in this user guide.
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3 Using TOMLAB /MAD

MAD can be used for automatic differentiation in TOMLAB.

TOMLAB features several methods for obtaining derivatives of objective function, gradients, constraints and
jacobians.

• Supplying analytical derivatives. This is the recommended method at almost all times, as the highest speed
and robustness are provided.

• Five methods for numerical differentiation. This is controlled by the flags, Prob.NumDiff and Prob.ConsDiff.

• The solver can estimate the derivatives internally. This is not available for all solvers. TOMLAB /SNOPT
also provides derivative checking. See the TOMLAB /SNOPT manual for more information.

• Automatic differentiation with MAD. This is controlled by setting the flags Prob.ADObj and Prob.ADCons
to 1 or -1. If the flags are set to 1, only the objective function and constraints are given. If the flags are set
to -1, second derivatives will be calculated. In this case the first derivatives must be supplied.

3.1 Example

The following example illustrates how to use TOMLAB /MAD when the objective function and constraints are
given. MAD uses global variables that need to be initialized.

madinitglobals;
Prob = conAssign( ... ); % A standard problem structure is created.
Prob.ADObj = 1; % First derivatives obtained from MAD for objective.
Prob.ADCons = 1; % First derivatives obtained from MAD for constraints.
Result = tomRun(’snopt’, Prob, [], 1) % Using driver routine tomRun.

If the user has provided first order information as well, the following code could be used. Observe that the solver
must use second order information for this to be useful.

madinitglobals;
Prob = conAssign( ... ); % A standard problem structure is created.
Prob.ADObj = -1; % Second derivatives obtained from MAD for objective.
Prob.ADCons = -1; % Second derivatives obtained from MAD for constraints.
Result = tomRun(’knitro’, Prob, [], 1) % Using driver routine tomRun.

% KNITRO uses second order information.

The number of MATLAB functions that MAD supports is limited. Please report needed additions to sup-
port@tomopt.com.
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4 Basic Use of Forward Mode for First Derivatives

4.1 Differentiating Matlab Expressions

Using forward mode AD, Mad can easily compute first derivatives of functions defined via expressions built-up of
the arithmetic operations and intrinsic functions of Matlab. For the moment let us simply consider the trivial
operation y = f(x) = x2 for which the derivative is 2x. Let us determine this derivative at x = 3 for which
f(3) = 9 and df(3)/dx = 6. We will make use of the fmad constructor function fmad, and the functions getvalue
and getderivs for extracting values and derivatives from fmad objects.

Example 4.1 MADEXForward1: Forward Mode Example y = x2

This example demonstrates how to differentiate simple arithmetic expressions in Matlab.

See also MADEXForward2

Contents

• Differentiating y = f(x) = x2

• Using fmad
• Calculating y
• Extracting the value
• Extracting the derivatives

Differentiating y = f(x) = x2

MAD can easily compute first derivatives of functions defined via expressions built-up of the arithmetic operations
and intrinsic functions of Matlab using forward mode AD. For the moment let us simply consider the trivial
operation

y = f(x) = x2

for which the derivative is

dy

dx
= 2x.

Let us determine this derivative at x=3 for which f(3)=9 and df(3)/dx=6.

6



Using fmad

We first define x to be of fmad class and have value 3 and derivative 1 (since the derivative with respect to the
independent variable is one, dx/dx=1). The command and Matlab output is as below.

format compact % so there are no blank lines in the output
x=fmad(3,1) % creates the fmad object with value 3 and derivative 1

value =
3

derivatives =
1

Calculating y

The value of the object x is 3 and its derivatives correspond to an object of size [1 1] (a scalar) with one derivative
of value 1. We now calculate y exactly as we would normally, allowing the fmad function libraries to take care of
the arithmetic associated with values and derivatives.

y=x^2

value =
9

derivatives =
6

Extracting the value

We extract the value of y using the MAD function getvalue.

yvalue=getvalue(y)

yvalue =
9

Extracting the derivatives

Similarly we extract the derivatives using getderivs.

yderivs=getderivs(y)

yderivs =
6
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4.2 Vector-Valued Functions

Let us now consider a simple, linear vector-valued function for which we may use fmad to calculate Jacobian-vector
products or the function’s Jacobian. We also see, for the first time fmad’s getinternalderivs function.

Example 4.2 MADEXForward2: Forward Mode Example y = A ∗ x

This example demonstrates how to calculate Jacobian-vector products and how to calculate the Jacobian for a
simple vector-valued function.

See also MADEXForward1

Contents

• Differentiating y = f(x) = A ∗ x
• Directional derivative in [1;0;0] direction
• Directional derivative in [0;1;0] direction
• Calculating the Jacobian
• But dy is a 3-D array not a matrix!

Differentiating y = f(x) = A ∗ x

MAD easily deals with vector-valued functions. Let us consider the function

y = f(x) = A ∗ x

at x=[1; 1 ;1 ] where A is the matrix,

A=[ 1 4 7
2 5 8
3 6 9]

for which the Jacobian is the matrix A and directional derivatives in the 3 respective coordinate directions are the
3 respective columns of A.

format compact;
A=[1 4 7;2 5 8; 3 6 9];
xval=[1;1;1];
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Directional derivative in [1;0;0] direction

Using the fmad constructor function we initialise x with its directional derivative, calculate y and extract the
derivative. We find the correct directional derivative [1;2;3].

x=fmad(xval,[1;0;0])
y=A*x;
dy=getderivs(y)

fmad object x
value =

1
1
1

derivatives =
1
0
0

dy =
1
2
3

Directional derivative in [0;1;0] direction

Similarly in the [0;1;0] direction we get [4;5;6].

x=fmad(xval,[0;1;0]);
y=A*x;
dy=getderivs(y)

dy =
4
5
6

Calculating the Jacobian

To obtain the full Jacobian we initialise the derivative with the 3 x 3 identity matrix.

x=fmad(xval,eye(3))
y=A*x
dy=getderivs(y)
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fmad object x
value =

1
1
1

derivvec object derivatives
Size = 3 1
No. of derivs = 3
derivs(:,:,1) =

1
0
0

derivs(:,:,2) =
0
1
0

derivs(:,:,3) =
0
0
1

fmad object y
value =

12
15
18

derivvec object derivatives
Size = 3 1
No. of derivs = 3
derivs(:,:,1) =

1
2
3

derivs(:,:,2) =
4
5
6

derivs(:,:,3) =
7
8
9

dy(:,:,1) =
1
2
3

dy(:,:,2) =
4
5
6

dy(:,:,3) =
7
8
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9

But dy is a 3-D array not a matrix!

Notice now that we have a 3-dimensional array returned for a result we expect to be a matrix. This is easily
remedied using the Matlab intrinsic squeeze, which squeezes out singleton dimensions, or more conveniently using
getinternalderivs to extract the derivatives from the fmad object y.

dy=squeeze(dy)
dy=getinternalderivs(y)

dy =
1 4 7
2 5 8
3 6 9

dy =
1 4 7
2 5 8
3 6 9

This example brings us to an important topic, how are the derivatives stored in Mad?

4.3 Storage of Derivatives in Mad

Mad stores derivatives in two ways depending upon whether a variable of fmad class possesses single, or multiple
directional derivatives.

4.3.1 Single Directional Derivatives

For a variable of fmad class with a single directional derivatives the derivatives are stored as an array of class
double with the same shape as the variable’s value. The getderivs function will therefore return this array. We
have seen this behaviour in Example 4.1 and Example 4.2.

4.3.2 Multiple Directional Derivatives

For a variable of fmad class with multiple directional derivatives, the derivatives are stored in an object of class
derivvec. Mad has been written so that multiple directional derivatives may be thought of as an array of
one-dimension higher than that of the corresponding value using, what we term, the derivative’s external repre-
sentation. Mad also has an internal representation of derivatives that may often be of use, particularly when
interfacing Mad with another Matlab package. Accessing the internal representation is covered in section 5.1.
Consider an N-dimensional Matlab array A with size(A)=[n1 n2 n3 ... nN], such that (n1 n2 ... nN) are
positive integers. Then the external representation of A’s derivatives, which we shall call dA is designed to have
size(dA)=[n1 n2 n3 ... nN nD], where nD> 1 is the number of directional derivatives. An example or two
may make things clearer.
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Example 4.3 MADEXExtRep1: External representation of a matrix

This example illustrates MAD’s external representation of derivatives for a matrix.

See also MADEXExtRep2, MADEXIntRep1

Contents

• Define a 2 x 2 matrix A.
• Multiple directional derivatives for A
• The fmad object
• The derivs component

Define a 2 x 2 matrix A.

format compact
A=[1 2; 3 4]

A =
1 2
3 4

Multiple directional derivatives for A

Define a 2 x 2 x 3 matrix (note the transpose) to provide 3 directional derivatives for dA.

dA=reshape([1 2 3 4;5 6 7 8;9 10 11 12]’,[2 2 3])

dA(:,:,1) =
1 3
2 4

dA(:,:,2) =
5 7
6 8

dA(:,:,3) =
9 11

10 12

The fmad object

We create the fmad object,

A=fmad(A,dA)

12



value =
1 2
3 4

Derivatives
Size = 2 2
No. of derivs = 3
derivs(:,:,1) =

1 3
2 4

derivs(:,:,2) =
5 7
6 8

derivs(:,:,3) =
9 11

10 12

The derivs component

The last index of the A’s derivs component refers to the directional derivatives and we see that, as expected, we
have a 2 x 2 x 3 array which makes up 3 sets of 2 x 2 directional derivative matrices.

Note that fmad (like Matlab and Fortran) assumes a column major (or first index fastest) ordering for array
storage. The derivatives supplied to the constructor function fmad are therefore assumed to be in column major
order and the external representation reshapes them appropriately. We therefore needn’t bother reshaping the
derivatives before passing them to fmad as the example below shows.

Example 4.4 MADEXExtRep2: External Representation Example

This example shows the use of column-major ordering for an input derivative.

See also MADEXExtRep1, MADEXIntRep1

Contents

• Define a 2 x 2 matrix A.
• Multiple directional derivatives for A
• The fmad object
• The derivs component

Define a 2 x 2 matrix A.

format compact
A=[1 2; 3 4]

13



A =
1 2
3 4

Multiple directional derivatives for A

Define a vector to provide directional derivatives for dA.

dA=[1 2 3 4 5 6 7 8 9 10 11 12];

The fmad object

We create the fmad object,

A=fmad(A,dA)

value =
1 2
3 4

Derivatives
Size = 2 2
No. of derivs = 3
derivs(:,:,1) =

1 3
2 4

derivs(:,:,2) =
5 7
6 8

derivs(:,:,3) =
9 11

10 12

The derivs component

Notice how the elements of dA are taken in column major order to provide the 3 directional derivatives of A in
turn.

4.4 Use of Intrinsics (Operators and Functions)

We have produced overloaded fmad functions for most commonly used Matlab operators and functions. For
example addition of two fmad objects is determined by the function @fmad\plus, subtraction @fmad\minus, etc.
To see which overloaded intrinsic operators and functions are provided type

help fmad.Contents
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at the Matlab prompt. The help information for individual functions describes the function and any additional
information such as restrictions, e.g.

help fmad.plus

4.5 Additional Functions

We have also coded a small number of additional functions which are not part of Matlab but application specific.
For example, for a matrix A, logdet(A) calculates log(abs(det(A))) a function used in statistical parameter
estimation. This composition of functions may be differentiated very efficiently by considering it in this composite
form [Kub94, For01]. Note that a version of the function valid for arguments of classes double and sparse is
provided in the MAD/madutil.

4.6 Differentiating User Defined Functions

In section 4.1 we saw how simple Matlab expressions could be differentiated using Mad. It is usually straight-
forward to apply the same methodology to differentiating user defined functions.

Example 4.5 (Brusselator ODE Function) Consider the function which defines the Brusselator stiff ODE
problem from the Matlab ODE toolbox, supplied as brussode_f.m and shown in Figure 1. For a given scalar
time t (unused) and vector y of 2N rows, this function brussode f will supply the right-hand-side function for an
ODE of the form,

dy
dt

= F(t,y).

The Jacobian of the function is required to solve the ODE efficiently via an implicit stiff ODE solver (e.g., ode15s
in Matlab). The function has actually been written in so-called vectorised form, i.e. if y is a matrix then the
dydt supplied will also be a matrix with each column of dydt corresponding to the appropriate column of y. This
approach allows for the efficient approximation of the function’s Jacobian via finite-differences.

It is trivial to calculate the Jacobian of the function of figure 1 using Mad. The commands to do so are given in
the script MADEXbrussodeJac.m. The script also includes a simple one-sided finite-difference (FD) calculation of
the Jacobian.

MADEXbrussodeJac: Full Jacobian of Brusselator Problem

This example shows how to use the fmad class to calculate the Jacobian of the Brusselator problem and com-
pare the result with those from finite-differencing. More efficient AD approaches are available as shown in
MADEXbrussodeJacSparse, MADEXbrussodeJacComp

See also: brussode f, brussode S, MADEXbrussodeJacSparse, MADEXbrussodeJacComp, brussode

Contents

• Initialise variables
• Use fmad to calculate the Jacobian
• Using finite-differencing
• Comparing the AD and FD Jacobian
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Initialise variables

We define the input variables.

N=3;
t=0;
y0=ones(2*N,1);

Use fmad to calculate the Jacobian

We initialise y with the value y0 and derivatives given by the identity matrix of size equal to the length of y0. We
may then evaluate the function and extract the value and Jacobian.

y=fmad(y0,eye(length(y0)));
F=brussode_f(t,y,N);
F_fmad=getvalue(F); % grab value
JF_fmad=getinternalderivs(F) % grab Jacobian

JF_fmad =
-2.6400 1.0000 0.3200 0 0 0
1.0000 -1.6400 0 0.3200 0 0
0.3200 0 -2.6400 1.0000 0.3200 0

0 0.3200 1.0000 -1.6400 0 0.3200
0 0 0.3200 0 -2.6400 1.0000
0 0 0 0.3200 1.0000 -1.6400

Using finite-differencing

We make 2N extra copies of y, add a perturbation to the copies, perform all function evaluations taking advantage
of the vectorization of the function brussode f, and approximate the derivatives using 1-sided finite-differences.

y=repmat(y0,[1 2*N+1]);
y(:,2:end)=y(:,2:end)+sqrt(eps)*eye(2*N);
F=brussode_f(t,y,N);
F_fd=F(:,1);
JF_fd=(F(:,2:end)-repmat(F_fd,[1 2*N]))./sqrt(eps)

JF_fd =
-2.6400 1.0000 0.3200 0 0 0
1.0000 -1.6400 0 0.3200 0 0
0.3200 0 -2.6400 1.0000 0.3200 0

0 0.3200 1.0000 -1.6400 0 0.3200
0 0 0.3200 0 -2.6400 1.0000
0 0 0 0.3200 1.0000 -1.6400
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Comparing the AD and FD Jacobian

The function values computed are, of course, identical. The Jacobians disagree by about 1e-8, this is due to the
truncation error of the finite-difference approximation.

disp([’Function values norm(F_fd-F_fmad) = ’,num2str(norm(F_fd-F_fmad,inf))])
disp([’Function Jacobian norm(JF_fd-JF_fmad)= ’,num2str(norm(JF_fd-JF_fmad,inf))])

Function values norm(F_fd-F_fmad) = 0
Function Jacobian norm(JF_fd-JF_fmad)= 2.861e-008

function dydt=brussode_f(t,y,N)
% brussode_f: defines ODE for the Brusselator problem.
% Taken from matlab 6.5 brussode.
%
% See also MADEXbrussode, brussode_S, brussode

% AUTHOR: S.A.Forth
% DATE: 30/5/06
% Copyright 2006: S.A.Forth, Cranfield University
%
% REVISIONS:
% DATE WHO WHAT
c = 0.02 * (N+1)^2;
dydt = zeros(2*N,size(y,2)); % preallocate dy/dt

% Evaluate the 2 components of the function at one edge of the grid
% (with edge conditions).
i = 1;
dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + c*(1-2*y(i,:)+y(i+2,:));
dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + c*(3-2*y(i+1,:)+y(i+3,:));

% Evaluate the 2 components of the function at all interior grid points.
i = 3:2:2*N-3;
dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ...

c*(y(i-2,:)-2*y(i,:)+y(i+2,:));
dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + ...

c*(y(i-1,:)-2*y(i+1,:)+y(i+3,:));

% Evaluate the 2 components of the function at the other edge of the grid
% (with edge conditions).
i = 2*N-1;
dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + c*(y(i-2,:)-2*y(i,:)+1);
dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + c*(y(i-1,:)-2*y(i+1,:)+3);

Figure 1: Brusselator function supplied with Matlab ODE Toolbox
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We should note that the above approach is not efficient either for FD or AD for large N. The Jacobian is sparse
and exploiting the sparsity greatly increases the efficiency of both approaches. Exploiting sparsity will be covered
in Sections 5.3 and 5.4.

4.7 Possible Problems Using the Forward Mode

In many cases fmad will be able to differentiate fairly involved functions as shown in Figure 1. However some
problems in terms of robustness and efficiency may occur.

1. Assigning an fmad object to a variable of class double. For example,

>> x=fmad(1,1);
>> y=zeros(2,1);
>> y(1)=x;
??? Conversion to double from fmad is not possible.

See Section 5.2 and Example 5.4 for a solution to this problem.

2. Differentiation for a particular function is not supported. For example,

>> x=fmad(1,1);
>> y=tanh(x)
??? Error using ==> tanh
Function ’tanh’ not defined for variables of class ’fmad’.

Please contact the author to arrange for the fmad class to be extended for your case.

3. Derivatives are not accurate when differentiating an iteratively defined function. See section 5.5 for an
approach to this issue.

4. Differentiation is slow compared to finite-differences. The fmad and derivvec class are designed to be
competitive with finite-differencing in terms of speed of execution. They will of course return derivatives
correct to within machine rounding. If this is not the case then please contact the author.

5. Derivatives are incorrect. Then you have discovered a bug, please contact the author.
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5 Advanced Use of Forward Mode for First Derivatives

We have seen in section 4 how Mad via overloaded operations on variables of the fmad class may calculate first
derivatives. In this section we explore more advanced use of the fmad class.

5.1 Accessing The Internal Representation of Derivatives

We saw in section 4 that fmad returns multiple derivatives as N-D arrays of one dimension higher than the
corresponding value. Since Matlab variables are by default matrices, i.e. arrays of dimension 2, then we see
that by default for multiple directional derivatives fmad will return 3-D (or higher dimension arrays). Although
this approach is systematic it can be inconvenient. Frequently we require the Jacobian matrix of a vector valued
function. We can trivially reshape or squeeze the 3-D array obtained by fmad to get the required matrix. However,
and as we shall see in Section 5.3, this approach will not work if we wish to use Matlab’s sparse matrix class
to propagate derivatives. We should bear in mind that the derivvec class stores arbitrary dimension derivative
arrays internally as matrices. This internal representation of the derivatives may be accessed directly through use
of the function getinternalderivs as the following example shows.

Example 5.1 MADEXIntRep1: Internal Representation

This example illustrates MAD’s internal representation of derivatives.

See also fmad, MADEXExtRep1, MADEXExtRep2

Contents

• Define a vector [1;1] with derivatives given by the sparse identity
• Getderivs returns the external form in full storage
• Getinternalderivs returns the internal form

Define a vector [1;1] with derivatives given by the sparse identity

format compact
a=fmad([1;1],speye(2))

value =
1
1

Derivatives
Size = 2 1
No. of derivs = 2
d =

(1,1) 1
d =

(2,1) 1
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Getderivs returns the external form in full storage

da=getderivs(a)

da(:,:,1) =
1
0

da(:,:,2) =
0
1

Getinternalderivs returns the internal form

getinternalderivs maintains the sparse storage used internally by MAD’s derivvec class.

da=getinternalderivs(a)

da =
(1,1) 1
(2,2) 1

See Section 5.3 for more information on this topic.

5.2 Preallocation of Matrices/Arrays

It is well-known in Matlab that a major performance overhead is incurred if an array is frequently increased in
size, or grown, to accommodate new data as the following example shows.

Example 5.2 MADEXPrealloc1: importance of array preallocation

This example illustrates the importance of preallocation of arrays when using MAD.

Contents

• Simple loop without preallocation
• Simple loop with preallocation
• Fmad loop without preallocation
• Fmad loop with preallocation
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Simple loop without preallocation

Because the array a continuously grows, the following loop executes slowly.

format compact
clear a
n=5000;
x=1;
a(1)=x;
tic; for i=1:n; a(i+1)=-a(i);end; t_noprealloc=toc

t_noprealloc =
0.0563

Simple loop with preallocation

To improve performance we preallocate a.

clear a
a=zeros(n,1);
a(1)=x;
tic; for i=1:n;a(i+1)=-a(i);end;t_prealloc=toc

t_prealloc =
0.0089

Fmad loop without preallocation

With an fmad variable performance is even more dramatically reduced when growing an array.

clear a
x=fmad(1,[1 2]);
a(1)=x;
tic;for i=1:n;a(i+1)=-a(i);end;t_fmadnoprealloc=toc

t_fmadnoprealloc =
15.1634

Fmad loop with preallocation

To improve performance we preallocate a.

21



clear a
a=zeros(n,length(x));
a(1)=x;
tic; for i=1:n;a(i+1)=-a(i);end;t_fmadprealloc=toc

t_fmadprealloc =
4.5518

Note that we have preallocated a using zeros(n,length(x)). In fmad we provide functions length, size and
numel that return, instead of the expected integers, fmad object results with zero derivatives. This then allows for
them to be used in functions such as zeros (here) or ones to preallocate fmad objects. Also note that it is not
possible to change the class of the object that is being assigned to in Matlab so if we wish to assign fmad variables
to part of an matrix/array then that array must already be preallocated to be of fmad class. This technique has
previously been used by Verma [Ver98a, Ver98c] in his ADMAT package.

Example 5.3 (Preallocating fmad Arrays)
In example 4.5 the input argument y to the function will be of fmad class. In the third non-comment line,

dydt = zeros(2*N,size(y,2)); % preallocate dy/dt

of the function of Figure 1 we see that size(y,2) is used as an argument to zeros to preallocate storage for the
variable dydt. Since y is of class fmad then so will be the result of the size function, and hence so will be the
result of the zeros function and hence dydt will be of class fmad. This will then allow for fmad variables to be
assigned to it and derivatives will be correctly propagated.

We now see how to avoid problem 1 noted in Section 4.7.

Example 5.4 (Solution to Possible Problem 1)
We make use of length, acting on an fmad variable to preallocate the array y to be of fmad class.

>> x=fmad(1,1);
>> y=zeros(2,length(x(1)));
>> y(1)=x;

5.3 Dynamic Propagation of Sparse Derivatives

Many practical problems either possess sparse Jacobians or are partially separable so that many intermediate
expressions have sparse local Jacobians. In either case it is possible to take advantage of this structure when
calculating F′(x)V in the cases when V is sparse. In particular using V = In, the identity matrix, facilitates
calculation of the Jacobian F′(x). In order to do this we need to propagate the derivatives as sparse matrices.
Matlab matrices (though not N-D arrays) may be stored in an intrinsic sparse format for efficient handling
of sparse matrices [GMS91]. Verma’s ADMAT tool [Ver98a] can use Matlab’s sparse matrices to calculate
Jacobians of functions which are defined only by scalars and vectors. In fmad careful design [For06] of the derivvec
class for storage of derivatives has allowed us to propagate sparse derivatives for variables of arbitrary dimension
(N-D arrays). In this respect fmad has a similar capability to the Fortran 90 overloading package ADO1 [PR98],
and the Fortran source-text translation tool ADIFOR [BCH+98] which may make use of the SparseLinC library
to form linear combinations of derivative vectors. See [Gri00, Chap. 6] for a review of this AD topic.
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5.3.1 Use of Sparse Derivatives

In order to use sparse derivatives we initialise our independent variables with a sparse matrix. We use the feature
of the fmad constructor (section 4.3) that the derivatives supplied must be of the correct number of elements and
in column major order to avoid having to supply the derivative as an N-D array. As the following example shows,
getinternalderivs must be used to access derivatives in their sparse storage format.

Example 5.5 Sparse1: Dynamic sparsity for Jacobians with fmad

This example illustrates use of dynamic sparsity when calculating Jacobians with fmad.

Contents

• A function with sparse Jacobian
• Initialising sparse derivatives
• Using sparse derivatives
• Extracting the derivatives
• Accessing the internal derivative storage

A function with sparse Jacobian

As a simple, small example we take,

y = F(x_1, x_2)=[ x_1^2 + x_2
x_2^2 ]

for which

DF/Dy = [ 2x_1 1
0 2x_2]

and at (x 1,x 2)=(1,2)’ we have,

DF/Dy = [ 2 1
0 4]

Initialising sparse derivatives

We set the derivatives using the sparse identity matrix speye. Note that fmad’s deriv component stores the
derivatives as a derivvec object with sparse storage as indicated by the displaying of only non-zero entries.

x=fmad([1 2],speye(2))
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value =
1 2

Derivatives
Size = 1 2
No. of derivs = 2
d =

(1,1) 1
d =

(1,2) 1

Using sparse derivatives

We perform any calculations in the usual way - clearly y has sparse derivatives.

y=[x(1)^2+x(2); x(2)^2]

value =
3
4

Derivatives
Size = 2 1
No. of derivs = 2
d =

(1,1) 2
d =

(1,1) 1
(2,1) 4

Extracting the derivatives

If we use getderivs then, as usual MAD insists on returning a 3 D array and sparsity information is lost.

dy=getderivs(y)
dy=reshape(dy,[2,2])

dy(:,:,1) =
2
0

dy(:,:,2) =
1
4

dy =
2 1
0 4
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Accessing the internal derivative storage

By accessing the internal derivative storage used by fmad in its calculation, the sparse Jacobian can be extracted.

J=getinternalderivs(y)

J =
(1,1) 2
(1,2) 1
(2,2) 4

The above example, though trivial, shows how sparse derivatives may be used in Mad. Of course there is an
overhead associated with the use of sparse derivatives and the problem must be sufficiently large to warrant their
use.

Example 5.6 MADEXbrussodeJacSparse: Brusselator Sparse Jacobian

This example shows how to use the fmad class to calculate the Jacobian of the Brusselator problem using sparse
propagation of derivatives. The compressed approache of MADEXbrussodeJacComp may be more efficient.

See also: brussode f, brussode S, MADEXbrussodeJac, MADEXbrussodeJacComp, brussode

Contents

• Initialise Variables
• Use fmad with sparse storage to calculate the Jacobian
• Using finite-differencing
• Comparing the AD and FD Jacobian

Initialise Variables

We define the input variables.

N=3;
t=0;
y0=ones(2*N,1);

Use fmad with sparse storage to calculate the Jacobian

We initialise y with the value y0 and derivatives given by the sparse identity matrix of size equal to the length of
y0. We may then evaluate the function and extract the value and Jacobian.
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y=fmad(y0,speye(length(y0))); % Only significant change from MADEXbrussodeJac
F=brussode_f(t,y,N);
F_spfmad=getvalue(F); % grab value
JF_spfmad=getinternalderivs(F) % grab Jacobian

JF_spfmad =
(1,1) -2.6400
(2,1) 1.0000
(3,1) 0.3200
(1,2) 1.0000
(2,2) -1.6400
(4,2) 0.3200
(1,3) 0.3200
(3,3) -2.6400
(4,3) 1.0000
(5,3) 0.3200
(2,4) 0.3200
(3,4) 1.0000
(4,4) -1.6400
(6,4) 0.3200
(3,5) 0.3200
(5,5) -2.6400
(6,5) 1.0000
(4,6) 0.3200
(5,6) 1.0000
(6,6) -1.6400

Using finite-differencing

y=repmat(y0,[1 2*N+1]);
y(:,2:end)=y(:,2:end)+sqrt(eps)*eye(2*N);
F=brussode_f(t,y,N);
F_fd=F(:,1);
JF_fd=(F(:,2:end)-repmat(F_fd,[1 2*N]))./sqrt(eps)

JF_fd =
-2.6400 1.0000 0.3200 0 0 0
1.0000 -1.6400 0 0.3200 0 0
0.3200 0 -2.6400 1.0000 0.3200 0

0 0.3200 1.0000 -1.6400 0 0.3200
0 0 0.3200 0 -2.6400 1.0000
0 0 0 0.3200 1.0000 -1.6400

Comparing the AD and FD Jacobian

The function values computed are, of course, identical. The Jacobians disagree by about 1e-8, this is due to the
truncation error of the finite-difference approximation.
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disp([’Function values norm(F_fd-F_spfmad) = ’,num2str(norm(F_fd-F_spfmad,inf))])
disp([’Function Jacobian norm(JF_fd-JF_spfmad)= ’,num2str(norm(JF_fd-JF_spfmad,inf))])

Function values norm(F_fd-F_spfmad) = 0
Function Jacobian norm(JF_fd-JF_spfmad)= 2.861e-008

5.3.2 User Control of Sparse Derivative Propagation

Some AD tools, for example ADO1 [PR98], ADIFOR [BCH+98], allow for switching from sparse to full storage
data structures for derivatives depending on the number of non-zeros in the derivative. There may be some user
control provided for this. The sparse matrix implementation of Matlab [GMS91] generally does not convert from
sparse to full matrix storage unless a binary operation of a sparse and full matrix is performed. For example a
sparse-full multiplication results in a full matrix. In the derivvec arithmetic used by fmad we presently provide
no facilities for switching from sparse to full storage once objects have been created. Since MAD version 1.2, the
derivvec class is designed to ensure that once calculations start with sparse derivatives, they continue with sparse
derivatives. Any behaviour other than this is a bug and should be reported.

5.4 Sparse Jacobians via Compression

It is well known [Gri00, Chap. 7] that, subject to a favourable sparsity pattern of the Jacobian, the number of
directional derivatives that need to be determined in order to form all entries of the Jacobian may be greatly
reduced. This technique, known as Jacobian (row) compression, is frequently used in finite-difference approxi-
mations of Jacobians [DS96, Sec. 11.2], [NW99, p169-173]. Finite-differencing allows Jacobian-vector products to
be approximated and can be used to build up columns, or linear combinations of columns, of the Jacobian. Use
of sparsity and appropriate coloring algorithms frequently enables many columns to be approximated from one
approximated directional derivative. This technique is frequently referred to as sparse finite-differencing however
we shall use the term compressed finite-differencing to avoid confusion with techniques using sparse storage. The
forward mode of AD calculates Jacobian-vector products exactly and, using the same colouring techniques as in
compressed finite-differencing, may therefore calculate many columns of the Jacobian exactly by propagating just
one directional derivative. Thus row compression may also be used by the fmad class of Mad.

Coleman and Verma [CV96] and, independently, Hossain and Steihaug [HS98] showed that since reverse mode AD
may calculate vector-Jacobian products it may be used to calculate linear combinations of rows of the Jacobian.
This fact is frequently utilised in optimisation in which an objective function with single output has its gradient,
or row Jacobian calculated by the propagation of a single adjoint. These authors showed that by utilising both
forward and reverse AD, and specialised colouring algorithms they could efficiently calculate sparse Jacobians
which could not be calculated by sparse finite-differences. Such techniques are not available in Mad.

For a given sparsity pattern the row compression calculation proceeds as follows:

1. Calculate a good coloring from the given sparsity pattern using MADcolor.

2. Construct an appropriate seed matrix to initialise derivatives using MADgetseed.

3. Calculate the compressed Jacobian by using fmad to propagate derivatives, initialised by the seed matrix,
through the function calculation to yield a compressed Jacobian.

4. The compressed Jacobian is uncompressed using MADuncompressJac to yield the required sparse Jacobian.

We use the Brusselator example again to illustrate this.
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Example 5.7 MADEXbrussodeJacComp: Brusselator Compressed Jaco-
bian

This example shows how to use the fmad class to calculate the Jacobian of the Brusselator problem using compressed
storage. If a good coloring can be found then this approach is usually more efficient than use of sparse or full storage
as in MADEXbrussodeJac and MADEXbrussodeJacSparse.

See also: brussode f, brussode S, MADEXbrussodeJac, MADEXbrussodeJacSparse, brussode

Contents

• Initialise variables
• Obtain the sparsity pattern
• Determine the coloring
• Determine the seed matrix
• Calculate the compressed Jacobian using fmad
• Uncompress the Jacobian
• Using finite-differencing
• Comparing the AD and FD Jacobians
• Using compressed finite-differencing
• Comparing the AD and compressed FD Jacobians

Initialise variables

We define the input variables, setting N to 10 for this example.

format compact
N=10;
t=0;
y0=ones(2*N,1);

Obtain the sparsity pattern

The function brussode S returns the sparsity pattern, the matrix with an entry 1 when the corresponding Jacobian
entry is nonzero and entry 0 when the corresponding Jacobian entry is always zero.

sparsity_pattern=brussode_S(N);
figure(1)
spy(sparsity_pattern)
title([’Sparsity pattern for the Brusselator Problem with N=’,num2str(N)])
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Determine the coloring

The function MADcolor takes the sparsity pattern and determines a color (or group number) for each component
of the input variables so that perturbing one component with that color affects different dependent variables to those
affected by any other variable in that group.

color_groups=MADcolor(sparsity_pattern);
ncolors=max(color_groups) % number of colors used

ncolors =
4

Determine the seed matrix

The coloring is used by MADgetseed to determine a set of ncolors directions whose directional derivatives may be
used to construct all Jacobian entries.

seed=MADgetseed(sparsity_pattern,color_groups);
figure(2);
spy(seed);
title(’Sparsity pattern of the seed matrix’)
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Calculate the compressed Jacobian using fmad

We initialise y with the value y0 and derivatives given by the seed matrix. We then evaluate the function and
extract the value and compressed Jacobian.

y=fmad(y0,seed);
F=brussode_f(t,y,N);
F_compfmad=getvalue(F); % grab value
Jcomp=getinternalderivs(F); % grab compressed Jacobian
figure(3);
spy(Jcomp);
title(’Sparsity pattern of the compressed Jacobian’)
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Uncompress the Jacobian

MADuncompressJac is used to extract the Jacobian from its compressed form.

JF_compfmad=MADuncompressJac(Jcomp,sparsity_pattern,color_groups);
figure(4);
spy(JF_compfmad);
title(’Sparsity pattern of the calculated Jacobian’)
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Using finite-differencing

y=repmat(y0,[1 2*N+1]);
y(:,2:end)=y(:,2:end)+sqrt(eps)*eye(2*N);
F=brussode_f(t,y,N);
F_fd=F(:,1);
JF_fd=(F(:,2:end)-repmat(F_fd,[1 2*N]))./sqrt(eps);

Comparing the AD and FD Jacobians

The function values computed are, of course, identical. The Jacobians disagree by about 1e-8, this is due to the
truncation error of the finite-difference approximation.

disp([’Function values norm(F_fd-F_compfmad) = ’,num2str(norm(F_fd-F_compfmad,inf))])
disp([’Function Jacobian norm(JF_fd-JF_compfmad)= ’,num2str(norm(JF_fd-JF_compfmad,inf))])

Function values norm(F_fd-F_compfmad) = 0
Function Jacobian norm(JF_fd-JF_compfmad)= 4.2915e-008

Using compressed finite-differencing

We may also use compression with finite-differencing.

y=repmat(y0,[1 ncolors+1]);
y(:,2:end)=y(:,2:end)+sqrt(eps)*seed;
F=brussode_f(t,y,N);
F_compfd=F(:,1);
Jcomp_fd=(F(:,2:end)-repmat(F_fd,[1 ncolors]))./sqrt(eps);
JF_compfd=MADuncompressJac(Jcomp_fd,sparsity_pattern,color_groups);

Comparing the AD and compressed FD Jacobians

The function values computed are, of course, identical. The Jacobians disagree by about 1e-8, this is due to the
truncation error of the finite-difference approximation.

disp([’Function values norm(F_compfd-F_compfmad) = ’,num2str(norm(F_compfd-F_compfmad,inf))])
disp([’Function Jacobian norm(JF_compfd-JF_compfmad)= ’,num2str(norm(JF_compfd-JF_compfmad,inf))])

Function values norm(F_compfd-F_compfmad) = 0
Function Jacobian norm(JF_compfd-JF_compfmad)= 4.2915e-008
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5.5 Differentiating Iteratively Defined Functions

Consider a function x → y defined implicitly as a solution of,

g(y,x) = 0, (1)

and for which we require ∂y/∂x. Such systems are usually solved via some fixed point iteration of the form,

yn+1 = h(yn,x). (2)

There have been many publications regarding the most efficient way to automatically differentiate such a sys-
tem [Azm97, BB98b, Chr94, Chr98] and reviewed in [Gri00]. A simple approach termed piggy-back [Gri00], is to
use forward mode AD through the iterative process of equation 2. It is necessary to check for convergence of both
the value and derivatives of y.

Example 5.8 MADEXBBEx3p1 - Bartholomew-Biggs Example 3.1 [BB98a]

This example demonstrates how to find the derivatives of a function defined by a fixed-point iteration using fmad.
The example is taken from (M.C. Bartholomew-Biggs, ”Using Forward Accumulation for Automatic Differentiation
of Implicitly-Defined Functions”, Computational Optimization and Applications 9, 65-84, 1998). The example
concerns solution of

g1 = y1 − u1 + u3 ∗ y1 ∗
√

y2
1 + y2

2 = 0

g2 = y2 − u2 + u3 ∗ y2 ∗
√

y2
1 + y2

2 = 0

with

u1 = x1 ∗ cos(x2), u2 = x1 ∗ sin(x2), u3 = x3

via the fixed-point iteration,

ynew = yold − g(yold).

See also BBEx3p1 gfunc

33



Contents

• Setting up the iteration
• Analytic solution
• Undifferentiated iteration
• Naive differentiation
• Problems with naive differentiation
• Adding a derivative convergence test
• Conclusions

Setting up the iteration

We set the initial value y0, the value of the independent variable x, the tolerance tolg and the maximum number
of iterations itmax.

format compact
y0=[0; 0];
x0=[0.05; 1.3; 1]
tolg=1e-8;
itmax=20;

x0 =
0.0500
1.3000
1.0000

Analytic solution

An analytic solution is easily found by setting,

y1 = r cos θ, y2 = r sin θ,

giving

θ = x2, r =
−1 + R

2x3
, R =

√
1 + 4x1x2,

which may be differentiated to give the required sensitivities.

x=x0;
theta=x(2);
R=sqrt(1+4*x(3)*x(1));
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r=(-1+R)/(2*x(3));
y_exact=[r*cos(theta); r*sin(theta)]
dthetadx=[0, 1, 0];
dRdx=[2*x(3)/R, 0, 2*x(1)/R];
drdx=dRdx/(2*x(3))-(-1+R)/(2*x(3)^2)*[0,0,1];
Dy_exact=[-r*sin(theta)*dthetadx+cos(theta)*drdx; ...

r*cos(theta)*dthetadx+sin(theta)*drdx]

y_exact =
0.0128
0.0460

Dy_exact =
0.2442 -0.0460 -0.0006
0.8796 0.0128 -0.0020

Undifferentiated iteration

For the nonlinear, undifferentiated iteration we have:

y=y0;
x=x0;
u=[x(1)*cos(x(2));x(1)*sin(x(2));x(3)];
disp(’Itns. |g(y)| ’)
for i=1:itmax

g=BBEx3p1_gfunc(y,u);
y=y-g;
disp([num2str(i,’% 4.0f’),’ ’,num2str(norm(g),’%10.4e’)])
if norm(g)<=tolg

break
end

end
y_undif=y
Error_y_undif=norm(y_undif-y_exact,inf)

Itns. |g(y)|
1 5.0000e-002
2 2.5000e-003
3 2.4375e-004
4 2.3216e-005
5 2.2163e-006
6 2.1153e-007
7 2.0189e-008
8 1.9270e-009
y_undif =

0.0128
0.0460

Error_y_undif =
1.6178e-010
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Naive differentiation

Simply initialising x with the fmad class gives a naive iteration for which the lack of convergence checks on the
derivatives here results in only slight inaccuracy.

y=y0;
x=fmad(x0,eye(length(x0)));
u=[x(1)*cos(x(2));x(1)*sin(x(2));x(3)];
disp(’Itns. |g(y)| ’)
for i=1:itmax

g=BBEx3p1_gfunc(y,u);
y=y-g;
disp([num2str(i,’% 4.0f’),’ ’,num2str(norm(g),’%10.4e’),’ ’,...

num2str(norm(getinternalderivs(g)),’%10.4e’)])
if norm(g)<=tolg

break
end

end
y_naive=getvalue(y)
Dy_naive=getinternalderivs(y)
Error_y_naive=norm(y_naive-y_exact,inf)
Error_Dy_naive=norm(Dy_naive-Dy_exact,inf)

Itns. |g(y)|
1 5.0000e-002 1.0000e+000
2 2.5000e-003 1.0003e-001
3 2.4375e-004 1.4508e-002
4 2.3216e-005 1.8246e-003
5 2.2163e-006 2.1665e-004
6 2.1153e-007 2.4729e-005
7 2.0189e-008 2.7469e-006
8 1.9270e-009 2.9909e-007
y_naive =

0.0128
0.0460

Dy_naive =
0.2442 -0.0460 -0.0006
0.8796 0.0128 -0.0020

Error_y_naive =
1.6178e-010

Error_Dy_naive =
2.9189e-008

Problems with naive differentiation

A major problem with naive iteration is if we start close to the solution of the nonlinear problem - then too few
differentiated iterations are performed to converge the derivatives. Below only one iteration is performed and we
see a large error in the derivatives.
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y=y_naive;
x=fmad(x0,eye(length(x0)));
u=[x(1)*cos(x(2));x(1)*sin(x(2));x(3)];
disp(’Itns. |g(y)| ’)
for i=1:itmax

g=BBEx3p1_gfunc(y,u);
y=y-g;
disp([num2str(i,’% 4.0f’),’ ’,num2str(norm(g),’%10.4e’),’ ’,...

num2str(norm(getinternalderivs(g)),’%10.4e’)])
if norm(g)<=tolg

break
end

end
y_naive2=getvalue(y)
Dy_naive2=getinternalderivs(y)
Error_y_naive2=norm(y_naive2-y_exact,inf)
Error_Dy_naive2=norm(Dy_naive2-Dy_exact,inf)

Itns. |g(y)|
1 1.8392e-010 1.0000e+000
y_naive2 =

0.0128
0.0460

Dy_naive2 =
0.2675 -0.0482 -0.0006
0.9636 0.0134 -0.0022

Error_y_naive2 =
1.5441e-011

Error_Dy_naive2 =
0.0848

Adding a derivative convergence test

The naive differentiation may be improved by adding a convergence test for the derivatives.

y=y_naive;
x=fmad(x0,eye(length(x0)));
u=[x(1)*cos(x(2));x(1)*sin(x(2));x(3)];
disp(’Itns. |g(y)| ’)
for i=1:itmax

g=BBEx3p1_gfunc(y,u);
y=y-g;
disp([num2str(i,’% 4.0f’),’ ’,num2str(norm(g),’%10.4e’),’ ’,...

num2str(norm(getinternalderivs(g)),’%10.4e’)])
if norm(g)<=tolg & norm(getinternalderivs(g))<=tolg % Test added

break
end

end
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y_improved=getvalue(y)
Dy_improved=getinternalderivs(y)
Error_y_improved=norm(y_improved-y_exact,inf)
Error_Dy_improved=norm(Dy_improved-Dy_exact,inf)

Itns. |g(y)|
1 1.8392e-010 1.0000e+000
2 1.7554e-011 9.5445e-002
3 1.6755e-012 9.1098e-003
4 1.5992e-013 8.6949e-004
5 1.5264e-014 8.2988e-005
6 1.4594e-015 7.9208e-006
7 1.4091e-016 7.5600e-007
8 1.6042e-017 7.2157e-008
9 4.4703e-019 6.8870e-009
y_improved =

0.0128
0.0460

Dy_improved =
0.2442 -0.0460 -0.0006
0.8796 0.0128 -0.0020

Error_y_improved =
4.1633e-017

Error_Dy_improved =
5.7952e-010

Conclusions

Simple fixed-point iterations may easily be differentiated using MAD’s fmad class though users should add conver-
gence tests for derivatives to ensure they, as well as the original nonlinear iteration, have converged. Note that
getinternalderivs returns an empty array, whose norm is 0, for variables of class double, so adding such tests
does not affect the iteration when used for such variables.

5.6 User Control of Activities/Dependencies

Example 5.9 MADEXDepend1: User control of activities/dependencies

This example shows how a user may modify their code to render inactive selective variables which MAD automat-
ically assumes are active.

See also: depend, depend2

Contents

• Function depend
• One independent variable
• Dealing with one dependent variable
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Function depend

The function depend defines two variables u,v in terms of independents x,y,

u = x + y, v = −x

Using the fmad class it is trivial to calculate the derivatives du/dx, du/dy, dv/dx, dv/dy. We associate the first
directional derivative with the x-derivatives and the second with those of variable y.

format compact
x=fmad(1,[1 0]); y=fmad(2,[0 1]);
[u,v]=depend(x,y);
Du=getinternalderivs(u);
du_dx=Du(1)
du_dy=Du(2)
Dv=getinternalderivs(v);
dv_dx=Dv(1)
dv_dy=Dv(2)

du_dx =
1

du_dy =
1

dv_dx =
-1

dv_dy =
0

One independent variable

Dealing with one independent, say x, is trivial and here requires just one directional derivative.

x=fmad(1,1); y=2;
[u,v]=depend(x,y);
du_dx=getinternalderivs(u)
dv_dx=getinternalderivs(v)

du_dx =
1

dv_dx =
-1
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Dealing with one dependent variable

When we are only interested in the derivatives of one dependent variable, say u, then things are more tricky
since fmad automatically calculates derivatives of all variables that depend on active inputs. We could, of course,
calculate v’s derivatives and simply discard them and in many cases (including that here) the performance penalty
paid would be insignificant. In some cases a calculation may be significant shortened by ensuring that we calculate
derivatives only for those dependent variables we are interested in, or which are involved in calculating those
dependents. To illustrate this see function depend2 in which we ensure v is not active by using MAD’s getvalue

function to ensure that only v’s value and not its derivatives, is calculated. u=x+y; v=-getvalue(x); Note that in
this case an empty matrix is returned by getinternalderivatives.

x=fmad(1,[1 0]); y=fmad(2,[0 1]);
[u,v]=depend2(x,y);
Du=getinternalderivs(u);
du_dx=Du(1)
du_dy=Du(2)
Dv=getinternalderivs(v)

du_dx =
1

du_dy =
1

Dv =
[]

The last case of just one active output is more difficult to deal with because derivatives are propagated automat-
ically by fmad’s overloaded library. Automatically dealing with a restricted number of active outputs requires a
reverse dependency or activity analysis [Gri00]. This kind of analysis requires compiler based techniques and is
implemented in source transformation AD tools such as ADIFOR, TAF/TAMCand Tapenade. In the present
overloading context such an effect can only be achieved as above by the user carefully ensuring that unneces-
sary propagation of derivatives is stopped by judicious use of the getvalue function to propagate values and not
derivatives. Of course such coding changes as those shown above, should only be performed if the programmer is
sure they know what they are doing. Correctly excluding some derivative propagation and hence calculations may
make for considerable run-time savings for large codes. However incorrect use will result in incorrectly calculated
derivative values.

5.7 Adding Functions to the fmad Class

Because Matlab has such a large, and growing, range of builtin functions it is not possible to commit to providing
differentiated fmad class functions for them all. Our strategy is to add new functions as requested by users; most
such requests are dealt with within a working week (depending on staff availability and complexity of the task).
Some users may wish to add differentiated functions to the fmad class themselves, this section describes how this
may be done. We request that users who do extend Mad in such a way forward their fmad class functions to
TOMLAB so that they may be tested, optimised, and added to the Mad distribution to the benefit of all users.

In order for users to extend the fmad class they must add functions directly to the @fmad folder of the Mad
distribution. In order to simplify this, and since Mad is distributed in p-code format preventing users looking at
existing code, a non-p-coded template function @fmad/userfunc.m (shown in Figure 2) is included in the Mad
distribution for users to modify. To illustrate how a user can create their own fmad functions consider the example
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function y=userfunc(x)
% userfunc: y=userfunc(x) taemplate for user-defined function of fmad variable
%
% See also

y=x; % deep copy of x so y has x’s class and components
y.value= ; % add value here written in terms of x.value
y.deriv=.*x.deriv; % add multiplier of x’s derivative written

% in terms of x.value and perhaps y.value
% to give y’s derivative

Figure 2: The template function userfunc.m that may be copied and modified to extend Mad’s functionality.
Some comments have been omitted for brevity

of y=sinh(x)1. First the user would make a copy of userfunc.m named sinh.m in the fmad class folder @fmad
of their installed Mad distribution. They would then modify their function sinh.m to be as in Figure 3. We see

function y=sinh(x)
% sinh: y=sinh(x) hyperbolic sine of fmad variable
%
% See also sinh, fmad/asinh, fmad/cosh, fmad/tanh

y=x;
y.value=sinh(x.value);
y.deriv=cosh(x.value).*x.deriv;

Figure 3: A possible user created sinh.m function for the fmad class created from the template userfunc.m of
Figure 2

that just three changes have been made:

1. The function name has been changed appropriately to sinh.

2. The value component of the function’s output y.value has been set to a value calculated using the value
component of the function’s input x.value. In this case the output’s value component is the sinh of the
input’s value component.

3. The deriv component of the function’s output y.deriv has been set to a value calculated using the value
component of the function’s input x.value multiplied by the deriv component of the function’s input
x.deriv. In this case the output’s deriv component is cosh(x.value) times the function’s input derivs
component because the derivative of sinh(x) is cosh(x). In all cases the multiplier of x.deriv is the lo-
cal derivative of the function, i.e., the derivative of the function’s output with respect to its input in the
mathematical analysis sense.

The user should then test their coding on simple problems for which they know the solution. For example, in the
sinh(x) case above we might consider the derivatives when x is the vector x=[ 1 2 ]. Then to get derivatives of
the output with respect to both components of x we would perform the following:

>> x=[1 2]

1sinh(x) is already part of the fmad class.
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x =
1 2

>> xfmad=fmad(x,eye(length(x)))
fmad object xfmad
value =

1 2
derivvec object derivatives
Size = 1 2
No. of derivs = 2
derivs(:,:,1) =

1 0
derivs(:,:,2) =

0 1
>> yfmad=sinh(xfmad)
fmad object yfmad
value =

1.1752 3.6269
derivvec object derivatives
Size = 1 2
No. of derivs = 2
derivs(:,:,1) =

1.5431 0
derivs(:,:,2) =

0 3.7622
>> yvalue=getvalue(yfmad)
yvalue =

1.1752 3.6269
>> y=sinh(x)
y =

1.1752 3.6269
>> Dy=getinternalderivs(yfmad)
Dy =

1.5431 0
0 3.7622

>> derivy=cosh(x)
derivy =

1.5431 3.7622

in which we see that the calculated value of y’s value using fmad is yvalue=[1.1752 3.6269] agreeing with the
directly calculated y=sinh(x); and the calculated value of y’s derivatives,

Dy =
1.5431 0

0 3.7622

agrees with the analytic derivative derivy=cosh(x)2.

As stated before, users should send their coding of such fmad functions to TOMLAB for performance optimisation
and incorporation into the general distribution.

2Only the derivatives ∂y1/∂x1 and ∂y2/∂x2 have been calculated analytically while the zero derivatives ∂y1/∂x2 and ∂y2/∂x1 have
been additionally calculated by fmad.
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6 High-Level Interfaces to Matlab’s ODE and Optimization Solvers

In many cases users wish to use AD for calculating derivatives necessary for ODE or optimisation solvers. When
using the TOMLAB optimisation solvers the use of AD is easily achieved by setting the flags, Prob.NumDiff
and Prob.ConsDiff as noted in Section 3. When solving stiff ODE’s using Matlab’s ODE solvers or solving
optimization problems using Matlab’s Optimization Toolbox functions the user can either:

• Directly use calls to Mad’s functions to calculate required derivatives as detailed in Sections 4-5.

• Or use the facilities of Mad’s high-level interfaces [FK04] to the ODE and optimization solvers as detailed
in this section.

For a vector-valued function F(x), x ∈ IRn, F(x) ∈ IRm Mad currently provides 3 techniques for computing the
Jacobian JF,

Forward mode AD with full storage (see Section 4) - this is most likely to be efficient when n is small.

Forward mode AD with sparse storage (see Section 5.3) - this is most likely to be efficient for larger n,
particularly if the Jacobian is sparse. Even if the Jacobian is dense, then provided n is sufficiently large
this method is likely to outperform full storage because there is always sparsity present in the early stages
of a Jacobian calculation. For small n this technique is likely to be slower than full storage because of the
overhead of manipulating a sparse data structure.

Forward mode AD with compressed storage (see Section 5.4) - this is likely to be most efficient for large
n when the Jacobian is sparse and has a favourable sparsity pattern (e.g., diagonal, banded) in which case
the number of directional derivatives required to compute the Jacobian may be reduced to p < n with p
dependent on the sparsity pattern and bounded below by the maximum number of nonzeros in a row of the
Jacobian. Note that sparse storage always uses fewer floating-point operations than compressed storage -
but provided p is sufficiently small then compression outperforms sparse storage. This method requires the
sparsity pattern of the Jacobian (or a safe over-estimate of the sparsity pattern) to be known. If the sparsity
pattern is unknown but is known to be fixed then the sparsity pattern may be estimated using a Jacobian
calculation with sparse storage and randomly perturbed x (to reduce the chance of unfortuitous cancellation
giving a Jacobian entry of zero when in general it is non-zero). If the sparsity pattern changes between
evaluations of F (perhaps because of branching) then either compression should not be used or the supplied
Jacobian pattern must be an over-estimate to cover any possible pattern.

In general it is not possible to predict a priori which technique will be most efficient for any particular problem
since this depends on many factors: sparsity pattern of JF; relative size of n, m and when compression is possible
p; efficiency of sparse data access; performance of the computer being used. A rational approach is to try each
technique (except default to full storage for small n and reject full storage for large n), timing its evaluation and
choosing the most efficient. To make this easy for the user this approach has been implemented within the function
MADJacInternalEval and interfaces to MADJacInternalEval for ODE or optimisation solvers have been provided.
Consequently user’s need never access MADJacInternalEval directly and needn’t bother themselves with the exact
AD technique being used confident that a reasonably efficient technique for their problem has been automatically
selected. Of course, this selection process has an associated overhead so the interface allows the user to mandate
a technique if they so wish, perhaps based on experiments conducted previously.

6.1 Stiff ODE Solution

When solving the ordinary differential equation (ODE)

dy
dt

= F(t,y, p1, p2, . . .), y(t = 0) = y0,
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for y ∈ IRn where p1, p2, . . . are fixed parameters using Matlab’s stiff 3 ODE solvers ode15s , ode23s, ode23t,
and ode23tb then it is necessary to calculate, or at least approximate accurately, the Jacobian,

JF(t,y, p1, p2, . . .) =
∂

∂y
F(t,y, p1, p2, . . .),

for the solvers to use a quasi-Newton solve within their implicit algorithms. By default such Jacobians are
approximated by finite-differences. If the Jacobian is sparse and the sparsity pattern supplied then Jacobian
compression is used [SR97] (c.f. Section 5.4). Using MADODEJacEval we may easily take advantage of AD.

Example 6.1 MADEXvdpode: Jacobian driver for the Van der Pol ODE.

This example shows how to use MAD’s ODE Jacobian function MADJacODE to solve the stiff Van der Pol ODE
problem.

See also: vdpode f, vdpode J, vdpode, ode15s, MADODERegister, MADODEJacEval, MADODEReport

Contents

• Set up the ODE problem
• Integrate using finite-differencing for the Jacobian
• Use the analytic Jacobian
• Use the MAD Jacobian function MADODEJacEval
• Repeat of MADODEJacEval use
• MADODEReport
• Conclusions

Set up the ODE problem

First we define:

MU = 1000; % default stiffness parameter for Van der Pol problem
tspan = [0; max(20,3*MU)]; % integration timespan of several periods
y0 = [2; 0]; % initial conditions
options=odeset(’Stats’,’on’); % display ODE statistics

Integrate using finite-differencing for the Jacobian

Using the default finite-differencing a solution is easily found.

t1=cputime;
[t,y] = ode15s(@vdpode_f,tspan,y0,options,MU);
tfd=cputime-t1;
disp([’Jacobian by Finite-Differencing - CPU time = ’,num2str(tfd)])

3An ODE is stiff when the eigenvalues λi of the Jacobian matrix ∂F/∂y are such that real(λi) < 0 for all i and max |real(λi)| �
min |real(λi)| [Dor96, p. 125].
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591 successful steps
225 failed attempts
1883 function evaluations
45 partial derivatives
289 LU decompositions
1747 solutions of linear systems
Jacobian by Finite-Differencing - CPU time = 0.75108

Use the analytic Jacobian

Since the Jacobian is recalculated many times supplying an analytic Jacobian should improve performance.

options = odeset(options,’Jacobian’,@vdpode_J);
t1=cputime;
[t,y] = ode15s(@vdpode_f,tspan,y0,options,MU);
tjac=cputime-t1;
disp([’Jacobian by hand-coding - CPU time = ’,num2str(tjac)])

591 successful steps
225 failed attempts
1749 function evaluations
45 partial derivatives
289 LU decompositions
1747 solutions of linear systems
Jacobian by hand-coding - CPU time = 0.75108

Use the MAD Jacobian function MADODEJacEval

The automated MAD Jacobian calculation avoids the need for the user to supply the Jacobian. First we use odeset

to specify that the Jacobian will be calculated by MADODEJacEval. We then use MADODEDelete to first clear any
existing settings for vdpode f, then MADODERegister register the function and then integrate.

options = odeset(options,’Jacobian’,@MADODEJacEval);
MADODEDelete; % deletes all previous settings for ODE evaluation
MADODERegister(@vdpode_f); % all we must do is supply the ODE function handle
t1=cputime;
[t,y] = ode15s(@vdpode_f,tspan,y0,options,MU);
tmadjac=cputime-t1;
disp([’Jacobian by MADODEJacEval - CPU time = ’,num2str(tmadjac)])

591 successful steps
225 failed attempts
1749 function evaluations
45 partial derivatives
289 LU decompositions
1747 solutions of linear systems
Jacobian by MADODEJacEval - CPU time = 0.88127
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Repeat of MADODEJacEval use

On a second use (without calling MADODEDelete) MADODEJacEval should be slightly faster since it “remembers”
which technique to use to calculate the Jacobian.

t1=cputime;
[t,y] = ode15s(@vdpode_f,tspan,y0,options,MU);
tmadjac2=cputime-t1;
disp([’Repeat of Jacobian by MADODEJacEval - CPU time = ’,num2str(tmadjac2)])

591 successful steps
225 failed attempts
1749 function evaluations
45 partial derivatives
289 LU decompositions
1747 solutions of linear systems
Repeat of Jacobian by MADODEJacEval - CPU time = 0.91131

MADODEReport

Using MADODEReport we see which technique is used and why – here full storage is used due to the small size (2×2)
of the Jacobian required.

MADODEReport % report on which technique used

MADODEreport
Function name vdpode_f
Jacobian of size 2x2
Fwd AD - full 0.010014 s
Fwd AD - compressed Inf s
FWD AD - full selected
MADJacInternalEval: n< MADMinSparseN=10 so using forward mode full

Conclusions

Using MAD for such small ODE problems gives similar performance to finite-differencing. MAD is more useful
for large ODE problems, particularly those with sparse Jacobians in, for example the Brusselator problem of
MADEXbrussode.

bar([tfd,tjac,tmadjac,tmadjac2])
colormap hsv
ylabel(’CPU time (s)’)
title(’Solving the Van der Pol Problem with Different Jacobian Techniques’)
text(1,tfd/2,’FD’,’Rotation’,90)
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text(2,tfd/2,’Analytic Jacobian’,’Rotation’,90)
text(3,tfd/2,’MADJacODE’,’Rotation’,90)
text(4,tfd/2,’Repeat of MADJacODE’,’Rotation’,90)

Using Mad for such small ODE problems gives similar performance to finite-differencing. Mad is more useful
for large ODE problems, particularly those with sparse Jacobians in, for example the Brusselator problem of
MADEXbrussode.

Example 6.2 MADEXbrussode: Jacobian driver for the Brusselator ODE.

This example of MADEXbrussode shows how to use MAD’s high-level ODE Jacobian function MADODEJacEval to
solve the stiff ODE Brusselator problem.

See also: brussode f, brussode S, brussode, ode15s, MADODERegister, MADODEFuncEval, MADODEJacEval,
MADODEReport

Contents

• Set up the ODE problem
• Integrate Brusselator problem using finite-differencing for the Jacobian
• Integrate Brusselator problem using compressed finite-differencing
• Use the MAD ODE Jacobian function - MADODEJacEval
• Specifying that the sparsity pattern is fixed
• Specifying the sparsity pattern
• Difference in solutions
• Specifying a Jacobian technique
• Conclusions
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Set up the ODE problem

First we define:

N = 80; % number of mesh points,
tspan = [0; 50]; % timespan of integration,
t=tspan(1); % initial time,
y0 = [1+sin((2*pi/(N+1))*(1:N)); repmat(3,1,N)];
y0=reshape(y0,[2*N 1]); % initial conditions. and sparsity pattern
S=brussode_S(N); % find sparsity pattern.

Integrate Brusselator problem using finite-differencing for the Jacobian

Initially we use finite-differences to approximate the Jacobian ignoring any sparsity, timing and running the cal-
culation.

options = odeset(’Vectorized’,’on’,’Stats’,’on’);
t1=cputime;
[tfd,yfd] = ode15s(@brussode_f,tspan,y0,options,N);
cpufd=cputime-t1;
disp([’FD-Jacobian : cputime = ’,num2str(cpufd)])

339 successful steps
54 failed attempts
2868 function evaluations
13 partial derivatives
110 LU decompositions
774 solutions of linear systems
FD-Jacobian : cputime = 2.0329

Integrate Brusselator problem using compressed finite-differencing

Finite-differencing can take advantage of sparsity when approximating the Jacobian. We set options to: specify the
Jacobian sparsity pattern, print out statistics and to turn on vectorization. We then time and run the calculation.

options = odeset(’Vectorized’,’on’,’JPattern’,S,’Stats’,’on’);
t1=cputime;
[tfd,yfd] = ode15s(@brussode_f,tspan,y0,options,N);
cpucompfd=cputime-t1;
disp([’Compressed FD-Jacobian : cputime = ’,num2str(cpucompfd)])

339 successful steps
54 failed attempts
840 function evaluations
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13 partial derivatives
110 LU decompositions
774 solutions of linear systems
Compressed FD-Jacobian : cputime = 0.91131

Use the MAD ODE Jacobian function - MADODEJacEval

First delete any existing settings for MADODE using MADODEDelete. Then register function brussode f for
MADODEJacEval using MADODERegister. Then use odeset to specify that MADODEJacEval will calculate the required
Jacobian. Finally time and run the calculation and use MADODEReport to provide information on the Jacobian
technique used.

MADODEDelete % deletes any internal settings
MADODERegister(@brussode_f) % supplies handle to ODE function
options=odeset(options,’Jacobian’,@MADODEJacEval);
t1=cputime;
[tmadjac,ymadjac]=ode15s(@brussode_f,tspan,y0,options,N);
cpumadjac=cputime-t1;
disp([’MAD Jacobian : cputime = ’,num2str(cpumadjac)])
MADODEReport

339 successful steps
54 failed attempts
776 function evaluations
13 partial derivatives
110 LU decompositions
774 solutions of linear systems
MAD Jacobian : cputime = 1.1416
MADODEreport
Function name brussode_f
Jacobian of size 160x160
Fwd AD - full Inf s
Fwd AD - sparse 0.020029 s
Fwd AD - compressed Inf s
FWD AD - sparse selected
Sparsity not fixed so compression rejected. Large system reject full method.

Specifying that the sparsity pattern is fixed

For this problem the Jacobian is large and sparse but MAD does not “know” that the sparsity pattern is fixed and
so can only use sparse forward mode and not compression. We first delete any internal settings, specify that the
sparsity pattern is fixed, i.e., it does not change from one evaluation to the next due to branching; and then use the
MAD Jacobian. The Jacobian sparsity pattern is calculated using fmad’s sparse forward mode for a point randomly
perturbed about y0.
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MADODEDelete % delete any internal settings
MADODERegister(@brussode_f,’sparsity_fixed’,’true’)% specify fixed sparsity
options=odeset(options,’Jacobian’,@MADODEJacEval); % Use MAD Jacobian
t1=cputime;
[tmadjac,ymadjac]=ode15s(@brussode_f,tspan,y0,options,N);
cpumadjac_fixed=cputime-t1;
disp([’MAD Jacobian (sparsity fixed): cputime = ’,num2str(cpumadjac_fixed)])
MADODEReport
% Compressed forward mode should now have been used.

339 successful steps
54 failed attempts
776 function evaluations
13 partial derivatives
110 LU decompositions
774 solutions of linear systems
MAD Jacobian (sparsity fixed): cputime = 1.1416
MADODEreport
Function name brussode_f
Jacobian of size 160x160
Fwd AD - full Inf s
Fwd AD - sparse 0.020029 s
Fwd AD - compressed 0.020029 s
Percentage Sparsity = 2.4844%
Maximum non-zeros/row = 4 of 160
Maximum non-zeros/col = 4 of 160
Size of compressed seed = 160x4
Percentage compressed to full seed = 2.5%
FWD AD - compressed selected
Large system reject full method. Sparse is worse than compressed - discarding Sparse.

Specifying the sparsity pattern

If available the sparsity pattern can be specified directly within MADsetupODE.

MADODEDelete % delete any internal settings
MADODERegister(@brussode_f,’sparsity_pattern’,S)
options=odeset(options,’Jacobian’,@MADODEJacEval);
t1=cputime;
[tmadjac,ymadjac]=ode15s(@brussode_f,tspan,y0,options,N);
cpumadjac_S=cputime-t1;
disp([’MAD Jacobian (sparsity given) : cputime = ’,num2str(cpumadjac_S)])
MADODEReport

339 successful steps
54 failed attempts
776 function evaluations
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13 partial derivatives
110 LU decompositions
774 solutions of linear systems
MAD Jacobian (sparsity given) : cputime = 1.1216
MADODEreport
Function name brussode_f
Jacobian of size 160x160
Fwd AD - full Inf s
Fwd AD - sparse 0.030043 s
Fwd AD - compressed 0.010014 s
Percentage Sparsity = 2.4844%
Maximum non-zeros/row = 4 of 160
Maximum non-zeros/col = 4 of 160
Size of compressed seed = 160x4
Percentage compressed to full seed = 2.5%
FWD AD - compressed selected
Large system reject full method. Sparse is worse than compressed - discarding Sparse.

Difference in solutions

Of course, there should be no discernable difference between the finite difference and AD-enabled solutions.

plot(tfd,yfd(:,1),’-’,tmadjac,ymadjac(:,1),’o’)
xlabel(’t’)
ylabel(’y’)
legend(’FD Jacobian’,’MAD Jacobian’)
title(’Comparison of Brusselator solutions using FD and AD for Jacobians’)
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Specifying a Jacobian technique

We can specify from the outset that compression is to be used.

MADODEDelete % delete any internal settings
MADODERegister(@brussode_f,’sparsity_pattern’,S,’ad_technique’,’ad_fwd_compressed’)
options=odeset(options,’Jacobian’,@MADODEJacEval);
t1=cputime;
[tmadjac,ymadjac]=ode15s(@brussode_f,tspan,y0,options,N);
cpumadjac_comp=cputime-t1;
disp([’MAD Jacobian (compressed specified) : cputime = ’,num2str(cpumadjac_S)])
MADODEReport

MADJacInternalRegister: AD technique selected is ad_fwd_compressed
339 successful steps
54 failed attempts
776 function evaluations
13 partial derivatives
110 LU decompositions
774 solutions of linear systems
MAD Jacobian (compressed specified) : cputime = 1.1216
MADODEreport
Function name brussode_f
Jacobian of size 160x160
Fwd AD - compressed 0.010014 s
Percentage Sparsity = 2.4844%
Maximum non-zeros/row = 4 of 160
Maximum non-zeros/col = 4 of 160
Size of compressed seed = 160x4
Percentage compressed to full seed = 2.5%
FWD AD - compressed selected
AD_FWD_COMPRESSED specified by call to MADJacInternalRegister

Conclusions

For this problem compressed finite-differencing is most efficient. If the sparsity pattern is not known then sparse
forward mode AD outperforms finite-differencing. On supplying the sparsity pattern the performance of compressed
forward mode AD approaches that of compressed finite-differencing. Simply using the MADODEJacEval interface
yields acceptable performance.

bar([cpufd,cpucompfd,cpumadjac,cpumadjac_fixed,cpumadjac_S,cpumadjac_comp])
colormap hsv
ylabel(’CPU time (s)’)
title([’Solving the Brusselator Problem with Different Jacobian Techniques (N= ’,num2str(N),’)’])
text(1,cpucompfd/2,’FD’,’Rotation’,90)
text(2,cpucompfd/2,’Compressed FD (sparsity supplied)’,’Rotation’,90)
text(3,cpucompfd/2,’MAD’,’Rotation’,90)
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text(4,cpucompfd/2,’MAD(sparsity fixed)’,’Rotation’,90)
text(5,cpucompfd/2,’MAD(sparsity supplied)’,’Rotation’,90)
text(6,cpucompfd/2,’MAD(compression specified)’,’Rotation’,90)

The example MADEXpolluode provides a third example for these techniques.

6.2 Unconstrained Optimization

High-level interfaces to Mad’s functionality for Matlab’s Optimization Solvers have also been developed. In this
section we cover unconstrained optimisation, in Section 6.3 we cover the constrained case.

Example 6.3 MADEXbanana: Unconstrained Optimization Using High-
Level Interfaces

This example illustrates how the gradient for an unconstrained optimization problem, the banana problem of bandem,
may be calculated using the high-level interface function MADOptObjEval and used within fminunc.

See also MADOptObjEval, MADOptObjDelete, MADOptObjRegister, MADOptObjReport, fminunc, banana f, ba-
nana fg, bandem

Contents

• Default BFGS optimization without gradient
• Use of exact gradient
• Use of MAD’s high-level interface MADOptObjEval
• Information on the AD techiques used
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Default BFGS optimization without gradient

If the gradient is not supplied then fminunc will approximate it using finite-differences.

format compact
x=[0 1];
options=optimset(’LargeScale’,’off’);
t1=cputime;
[xsol,fval,exitflag,output] = fminunc(@banana_f,x,options);
xsol
disp([’Default with no gradient took ’,num2str(output.iterations),...

’ iterations and CPU time = ’,num2str(cputime-t1)])

Optimization terminated: relative infinity-norm of gradient less than options.TolFun.
xsol =

1.0000 1.0000
Default with no gradient took 20 iterations and CPU time = 0.030043

Use of exact gradient

Since the function is just quadratic it may easily be differentiated by hand to give the analytic gradient in banana fg.

options=optimset(options,’GradObj’,’on’);
t1=cputime;
[xsol,fval,exitflag,output] = fminunc(@banana_fg,x,options);
xsol
disp([’Default with analytic gradient took ’,num2str(output.iterations),...

’ iterations and CPU time = ’,num2str(cputime-t1)])

Optimization terminated: relative infinity-norm of gradient less than options.TolFun.
xsol =

1.0000 1.0000
Default with analytic gradient took 20 iterations and CPU time = 0.020029

Use of MAD’s high-level interface MADOptObjEval

Using MADOptObjEval is easy, we first delete any previous settings, register the objective function banana f and
then use MADOptObjEval as the objective function which will automatically calculate the gradient when needed.

MADOptObjDelete
MADOptObjRegister(@banana_f)
options=optimset(options,’GradObj’,’on’);
t1=cputime;
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[xsol,fval,exitflag,output] = fminunc(@MADOptObjEval,x,options);
xsol
disp([’Jacobian by MADFandGradObjOpt took ’,num2str(output.iterations),...

’ iterations and CPU time = ’,num2str(cputime-t1)])

Optimization terminated: relative infinity-norm of gradient less than options.TolFun.
xsol =

1.0000 1.0000
Jacobian by MADFandGradObjOpt took 20 iterations and CPU time = 0.09013

Information on the AD techiques used

The function MADOptObjReport displays information on the techniques used. In this case since there are only 2
independent variables forward mode with full storage is used.

MADOptObjReport

MADOptObjReportODE
Function name banana_f
Jacobian of size 1x2
Fwd AD - full 0.010014 s
Fwd AD - compressed Inf s
FWD AD - full selected
MADJacInternalEval: n< MADMinSparseN=10 so using forward mode full

6.3 Constrained Optimization

If we have a constrained optimization problem then we use MADOptObjEval for the objective, as in Example 6.3,
and MADOptConstrEval for the constraint as Example 6.4 demonstrates.

Example 6.4 MADEXconfun: Constrained Optimization Using High-Level
Interfaces.

This example shows how to use MAD’s high-level interface functions to obtain both the objective function gradient
and the constraint function Jacobian in a constrained optimisation problem solved using MATLAB’s fmincon

function.

See also MADEXbanana, MADOptConstrRegister, MADOptConstrEval, MADOptConstrReport, MADOptCon-
strDelete, MADOptObjRegister, MADOptObjEval, MADOptObjReport, MADOptObjDelete

55



Contents

• Default optimization without gradients
• Using analytic gradients
• Using MAD’s high-level interfaces
• Seeing which AD techniques are used

Default optimization without gradients

Here we simply use the medium-scale algorithm with gradients evaluated by default finite-differencing.

options = optimset(’LargeScale’,’off’);
x0 = [-1 1];
t1=cputime;
[x,fval,exitflag,output] = fmincon(@objfun,x0,[],[],[],[],[],[],@confun,options);
t2=cputime-t1;
disp([’Default fmincon took ’,num2str(output.iterations),...

’ iterations and cpu= ’,num2str(t2)])

Optimization terminated: first-order optimality measure less
than options.TolFun and maximum constraint violation is less
than options.TolCon.
Active inequalities (to within options.TolCon = 1e-006):

lower upper ineqlin ineqnonlin
1
2

Default fmincon took 8 iterations and cpu= 0.040058

Using analytic gradients

The Mathworks supply functions objfungrad and confungrad which return the objective’s gradient and constraint’s
Jacobian when needed can be used for analytic evaluation of the required derivatives.

options = optimset(options,’GradObj’,’on’,’GradConstr’,’on’);
t1=cputime;
[x,fval,exitflag,output] = fmincon(’objfungrad’,x0,[],[],[],[],[],[],...

’confungrad’,options);
t2=cputime-t1;
disp([’Hand-coded derivs in fmincon took ’,num2str(output.iterations),...

’ iterations and cpu= ’,num2str(t2)])

Optimization terminated: first-order optimality measure less
than options.TolFun and maximum constraint violation is less
than options.TolCon.
Active inequalities (to within options.TolCon = 1e-006):

lower upper ineqlin ineqnonlin
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1
2

Hand-coded derivs in fmincon took 8 iterations and cpu= 0.040058

Using MAD’s high-level interfaces

Calculating the gradients and Jacobians using MAD’s high-level interfaces is easy, we first use MADOptObjDelete

and MADOptConstrDelete to delete any old settings, then register the objective and constraint functions using
MADOptObjRegister and MADOptConstrRegister, then optimize using MADOptObjEval and MADOptConstrEval to
supply the objective and constraints, and when needed their derivatives.

MADOptObjDelete
MADOptConstrDelete
MADOptObjRegister(@objfun)
MADOptConstrRegister(@confun)
t1=cputime;
[x,fval,exitflag,output] = fmincon(@MADOptObjEval,x0,[],[],[],[],[],[],...

@MADOptConstrEval,options);
t2=cputime-t1;
disp([’MAD driver in fmincon took ’,num2str(output.iterations),...

’ iterations and cpu= ’,num2str(t2)])

Optimization terminated: first-order optimality measure less
than options.TolFun and maximum constraint violation is less
than options.TolCon.
Active inequalities (to within options.TolCon = 1e-006):

lower upper ineqlin ineqnonlin
1
2

MAD driver in fmincon took 8 iterations and cpu= 0.10014

Seeing which AD techniques are used

The functions MADOptObjReport and MADOptConstrReport report back which techniques have been used and why.
Here full mode is used since the number of derivatives is small.

MADOptObjReport
MADOptConstrReport

MADOptObjReportODE
Function name objfun
Jacobian of size 1x2
Fwd AD - compressed Inf s
FWD AD - full selected
MADJacInternalEval: n< MADMinSparseN=10 so using forward mode full
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MADOptConstrReport
Function name confun
Jacobian of size 2x2
Fwd AD - full 0.010014 s
Fwd AD - compressed Inf s
FWD AD - full selected
MADJacInternalEval: n< MADMinSparseN=10 so using forward mode full
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7 Black Box Interfaces

In some cases it is necessary or desirable for a user to provide code directly to provide the derivatives of a function
that forms part of the target function that is being differentiated with Mad. Examples of this are when analytic
derivatives for a function are available, or perhaps when the function is coded in another language (e.g., Fortran
or C) and interfaced to Matlab via a mex file or some other interface. We refer to such a function as a black
box function since, as far as Mad is concerned it is a black box that should not be differentiated directly but for
which derivative information will be supplied by the user. In order for Mad to differentiate through such black
box functions three steps are necessary:

1. Use the function MADBlackBoxRegister to register the black box function with Mad supplying information
on the number of input and output arguments, which of these are active (i.e., have derivatives), and to register
a second function which calculates the necessary derivatives of output variables with respect to inputs.

2. Provide a function to calculate the required derivatives of the black box function.

3. Change the line of code in which the black box function is called so that the function call is made via the
function MADBlackBoxEval.

The example of MADEXAERBlackBox will make this clearer.

Example 7.1 MADEXAERBlackBox: Black Box Interface Example for
AER Problem

Demonstration of using black box interface to calculate the gradient of the AER (analysis of an enzyme reaction)
problem from MINPACK-2 collection.

The AER problem is to find x to minimise the sum of squares,

f(x)=sum(F(x).^2)

where the residual vector F is supplied by MinpackAER F. Here we look at how the gradient of f(x) may be calculated
by direct use of fmad or by making use of the Jacobian of F(x) via a Black Box Interface.

See also: MADBlackBoxRegister, MinpackAER Prob, TomlabAERBlackBox, ToolboxAERBlackBox

Contents

• Function definition
• Direct use of fmad
• Setting up the black box interface
• 1) Register the black box function
• 2) Provide a function to calculate required derivatives
• 3) Prepare a modified objective function
• Calculate derivatives using black box interface
• Conclusions
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Function definition

The function we wish to differentiate is AERObj f which consists of the following code:

function f=AERObj f(x,Prob)

R=MinpackAER F(x,Prob);

f=R’*R;

the Jacobian DR/Dx of the function MinpackAER F is available in the function MinpackAER J. We may differentiate
AERObj f in one of two ways:

• Using fmad throughout.
• Using the Jacobian information from MinpackAER J within a black box interface with fmad.

Direct use of fmad

By using the fmad class in the usual way we calculate the function’s gradient.

Prob=MinpackAER_Prob(zeros(4,1)); % set up structure Prob
x0=Prob.x_0;
x=fmad(x0,eye(length(x0)));
f=AERObj_f(x,Prob);
gradient=getinternalderivs(f)

gradient =
0.1336 -0.0007 -0.0090 0.0111

Setting up the black box interface

We’ll go through the 3 stages step-by-step.

1) Register the black box function

First we use MADBlackBoxRegister to specify that MinpackAER F is to be treated as a black box so that fmad needn’t
differentiate it and that the Jacobian of this function will be returned by MinpackAER J. Note that we specify that
MinpackAER F has Nin=2 input variables, NOut=1 output variable and that only the first input (ActiveIn=1) and
first output (ActiveOut=1} are active. If more than one input or output is active then ActiveIn and ActiveOut
are vector lists of the position of the active variables in the argument list. As a result of this MinpackAER J should
calculate the Jacobian of the first output with respect to the first input.

MADBlackBoxRegister(@MinpackAER_F,’NIn’,2,’NOut’,1,’ActiveIn’,1,’Activeout’,1,...
’JHandle’,@MinpackAER_J)
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2) Provide a function to calculate required derivatives

This is the aforementioned MinpackAER J.

3) Prepare a modified objective function

We must now modify the code of the objective function in AERObj f so that the call to MinpackAER F is wrapped
within a call to MADBlackBoxEval - we have coding such a change in AERObjBlackBox f replacing the line,

R=MinpackAER F(x,Prob);

of AERObj f with

R=MADBlackBoxEval(@MinpackAER F,x,Prob);

in AERObjBlackBox f. MADBlackBoxEval has a similar syntax to MATLAB’s feval function, i.e. its arguments
are the handle to the original function followed by the arguments passed to the original function. When evaluated
with non- fmad arguments MADBlackBoxEval will simply use feval(@MinpackAER F,x,Prob) so AERObjBlackBox f

may be used with arguements of class double.

Calculate derivatives using black box interface

It is now easy to calculate the required derivatives since MADBlackBoxEval takes care of all the interfacing of fmad
variables with those supplied by MinpackAER J.

x=fmad(x0,eye(length(x0)));
f=AERObjBlackBox_f(x,Prob);
gradient=getinternalderivs(f)

gradient =
0.1336 -0.0007 -0.0090 0.0111

Conclusions

Using MAD’s black box interface facilities it is straightforward to make use of analytic expressions, hand-coding,
or external Fortran or C programs for calculating derivatives of functions.

For an example using such an interface in conjunction with the TOMLAB optimisers see MADEXTomlabAERBlackBox;
Matlab Optimization Toolbox users should see MADEXToolboxAERBlackBox.

Mad stores all data about black box functions in the global variable MADBlackBoxData. In addition to MADBlackBoxRegister
and MADBlackBoxEval further black box interface functions to manipulate the data in MADBlackBoxData are:

• MADBlackBoxDisplay: which displays a list of all registered black box functions. For example, after running
Example 7.1 MADBlackBoxDisplay produces the following output.

61



>> MADBlackBoxDisplay
Function : MinpackAER_F
Type : simple
File : C:\ShaunsDocuments\matlab\MAD\EXAMPLES\BlackBox\MinpackAER_F.m
NIn : 2
NOut : 1
ActiveIn : 1
ActiveOut : 1
J function : MinpackAER_J
Type : simple
File : C:\ShaunsDocuments\matlab\MAD\EXAMPLES\BlackBox\MinpackAER_J.m

This shows that MinpackAER F has been registered as a black box interface function, gives the file that defines
the function, information on the input and output variables, and information on the Jacobian function.

• MADBlackBoxIndex: Given the function handle of a registered black box function, this function returns the
index of that function (and optionally the function name) in Mad’s internal list of black box functions. For
example,

>> i=MADBlackBoxIndex(@MinpackAER_F)
i =

1

>> [i,name]=MADBlackBoxIndex(@MinpackAER_F)
i =

1
name =
MinpackAER_F

It is not anticipated that users will use this function.

• MADBlackBoxDelete: Given the function handle of a registered black box function, this function will delete
that function from Mad’s list of black box functions. For example,

>> MADBlackBoxDelete(@MinpackAER_F)
>> MADBlackBoxDisplay
MADBlackBoxDisplay: No functions registered

Note that MADBlackBoxDelete with no function handle argument deletes details of all registered black box
functions.
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8 Conclusions & Future Work

In this document we have introduced the user to the automatic differentiation (forward mode) of Matlab expres-
sions and functions using the fmad class. We have included examples that illustrate:

• Basic usage for expressions

• Basic usage for functions

• Accessing the internal, 2-D matrix representation of derivatives.

• Preallocation of arrays to correctly propagate derivatives

• Calculating sparse Jacobians via dynamic sparsity or compression.

• Differentiating implicitly defined functions.

• Controlling dependencies

• The use of fmad in Matlab toolboxes (ODEs and Optimization)

• Differentiating black box functions

Future releases of this document will feature reverse mode, second derivatives, FAQ’s and anything else users find
useful. The function coverage of fmad will be increased and present restrictions decreased with user demand. We
are interested in receiving user’s comments and feedback, particularly regarding cases for which fmad fails, gives
incorrect results or is not competitive (in terms of run times) with finite-differences.
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